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Abstract: Several applications of artificially modeled drivers, such as autonomous vehicles (AVs) or
surrounding traffic in driving simulations, aim to provide not only functional but also human-like
behavior. The development of human-like AVs is expected to improve the interaction between AVs
and humans in traffic, whereas, in a driving simulation, the objective is to create realistic replicas
of real driving scenarios to investigate various research questions under safe and reproducible
conditions. In urban traffic, driving behavior strongly depends on the situational context, which
introduces new challenges not only for modeling but also for the evaluation of such models. However,
current objective assessment strategies rarely consider situational context and human similarity,
whereas subjective approaches are not suitable for iterative development processes. In this paper,
we present a first attempt to make the plausibility and human-likeness of vehicles’ trajectories
objectively measurable. A multidimensional quality function is presented that incorporates various
parameters characterizing human-like driving behavior and compares each of those parameters to
human driving behavior under similar conditions. Among other things, our validation results show
that the presented evaluation methodology is scalable to a wide range of situations has the ability to
identify model weaknesses, and is able to reflect the way people distinguish between artificial and
human behavior.

Keywords: traffic data; driver models; autonomous driving; driving simualtion; urban; human
factors

1. Introduction

There are various applications for artificially modeled road users. In driving sim-
ulations, for example, the objective is to recreate a realistic driving scenario including
artificially modeled drivers. In Driver-in-the-Loop (DiL) applications, the aim is to achieve
a high degree of presence of participants during the experiment by providing realistic
interactions between the driver and artificially modeled drivers [1]. Software-in-the-Loop
(SiL) applications, on the other hand, require the human-like behavior of surrounding
traffic to investigate individual research questions involving interactions between an AV
function and other road users. The constantly growing field of autonomous driving also
ultimately faces the challenge of replacing the human driver with a complex model that
can safely and meaningfully handle the complex task of driving. The development of
human-like driving capabilities in AVs is expected to enhance the ability of surrounding
drivers to understand and anticipate the behavior of AVs, resulting in more natural interac-
tions [2]. As a result, AVs are required to mimic human-like driving behavior [3]. Following,
human-like behavior should be considered in the automated driving design, as mentioned
by Hang et al. [4] and in driver models noted by Lindorfer et al. [5]. Due to the complexity
of such tasks, most likely there will not be a single perfect solution for all applications,
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and there is still a long development journey ahead. Therefore, meaningful evaluation
strategies are important to determine the capabilities and limitations of developed models.

In urban traffic, driving behavior is highly dependent on the situation, which intro-
duces even more complexity to both modeling and evaluation. For the resulting model
behavior, provided by a driver model, the planning or prediction module can be described
by the spatiotemporal movement, the trajectory. However, current metrics for assessing the
quality of trajectories rarely consider situational context and are often bound to specific
ground truth (GT) data for comparison. Common evaluation strategies for trajectory predic-
tion models, for example, usually rely on spatiotemporal distance measures to compare GT
and artificially generated trajectories for quantifying model performance [6,7]. Previously
published research identified cases in which behavior deviates from the real trajectory but
is still plausible [8]. In some cases, for example, the error value was large because the
model chose a longer time gap than the individual human in a right-of-way situation. Both
trajectories did not lead to a collision and were not critical. Thus, when comparing artificial
trajectories to any individual human-driven trajectory, the result may show large error
values but be still plausible, and vice versa. This can be remedied by evaluating a trajectory
detached from individual behavior using a general metric that provides insight into how
the artificial trajectory fits within the range of human behavior in similar situations.

In summary, current research is intensively addressing the problem of developing
driver models, planning, and prediction modules for complex urban situations, whereas
the challenge of adequately evaluating the results is rarely considered.

Therefore, this paper aims at creating a plausibility metric that can be applied to
driver models and sub-modules by evaluating the human-likeness of trajectories while
considering the situational context. In the following paper, human-likeness is understood as
a significant similarity to the behavior exhibited by humans in comparable traffic situations,
measured by different objective parameters. Driving behavior is assumed to be conditional
and therefore dependent on various external influences [9].

This paper is organized as follows. After a broad overview of state-of-the-art ap-
proaches to evaluating driver models, the methodology is presented in Section 3. For
evaluation, a multidimensional quality function, including various objective parameters to
characterize human-like driving behavior, presented in Section 3.1, is formulated. Trajecto-
ries are categorized into different driving situations by assigning contextual information.
The characterization of each driving situation allows for a conditional comparison of model
behavior to that of humans in similar situations by selecting a subset of human traffic data
showing the respective driving situation. The concept of context assignment is presented
in Section 3.2. For processing trajectory and environmental data, some data processing
is required, discussed in Section 3.3. Based on the behavior and context parameters, the
degree of human similarity of the artificial model can be evaluated by employing statistical
analysis within a quality function explained in Section 3.4. Since this method attempts
to objectify human-like behavior that is difficult to attribute to any objective truth, the
developed method is validated with the help of a subjective survey explained in Section 3.5.
The purpose of the validation is to find out whether the human-likeness score obtained by
the metric corresponds to people’s subjective assessment of model behavior.

Section 4 provides specific details on the implementation, the datasets, the parametriza-
tion of the quality function, and the setting of the survey.

Section 5 discusses the results of the survey and the objective results of the method for
the presented datasets are presented. To show how the presented method can be used to
investigate and improve a driver model in detail, an exemplary case study is provided.

2. Related Work

Common evaluation strategies can be categorized into objective and subjective ap-
proaches. In the area of AV development, most of the objective metrics rely on the direct
comparison of modeled driving data to a unique single driving sample using any distance
measure [10]. Common metrics for evaluating prediction or planning frameworks employ
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displacement errors, measured, for example, as the distance between the actual and pre-
dicted trajectories [7]. Such metrics indicate how accurately the predicted trajectory matches
the individual, human-driven trajectory. However, in the case of larger displacement errors,
no conclusions can be drawn as to whether the trajectory was still plausible and only the
behavior deviated with regard to safety, for example, or whether the trajectory exhibited
functional problems. Therefore, in some individual cases, more sophisticated evaluation
strategies are applied, e.g., taking into account functional errors such as road violations [11]
or unrealistic headways [12]. To quantify the similarity between driver models and human
traffic behavior in driving simulation, macroscopic analyses are performed. With the help
of endurance tests, synthetic data are generated and compared with real traffic data in
typical highway scenarios, such as cut-in maneuvers [13]. Typical indicators to describe
human behavior in related works are average and maximal velocity, frequency and ex-
ceeding of speeding [14], acceleration and headway [15,16], as well as Time-to-Collision
(TTC) and longitudinal distance [17]. Based on such parameters, the relative validity of the
macroscopic behavior of driver models can be determined [18,19]. Such methods compare
observed macroscopic parameters of artificial vehicles with a distribution of respective
parameters among real vehicles. For comparing distributions, statistical approaches such
as Kolmogorov–Smirnov in the study conducted by Wang et al. [20], or Kullback–Leibler
divergence as in research by Kuefler et al. [6] are applied.

However, most approaches focus on highway traffic and do not consider contextual
influences, which in turn raises doubts about the applicability of such methods to more
complex urban traffic since driving behavior is affected by various external influences [21].
Subjective approaches, on the other hand, measure human-likeness using questionnaires,
interviews, or surveys that automatically consider behavior within an individual context.
The underlying assumption of such methods is that either what is perceived as real or can
not be distinguished from artificial behavior defines human-likeness. Y. Zhang et al., for
example, adapted the Turing test and asked participants to classify the driving behavior
of another vehicle into either artificial or human-driven [22]. Similarly, Dumbuya et al.
asked subjects to rate how realistic they perceived a drive completed by different driver
models and how likely it was that the drive was conducted by a real human driver [23].
Further research investigates the human-likeness of driver models and the extent to which
the perceived realism of a VE is affected by the behavior [1,24]. Since subjective methods
always require an experiment involving participants, such methods are not suitable for an
iterative development process due to the effort associated with the evaluation.

In summary, current evaluation strategies either do not consider contextual informa-
tion, focus on macroscopic assessments, or are associated with a high implementation effort
and are therefore not scaleable or inappropriate for quantifying human-like behavior in
urban traffic.

3. Method

The core idea in this paper is to develop a metric that can objectively quantify the
plausibility, and thus the human-likeness, of an artificially generated trajectory. The method
is required to be transferable and suitable for complex urban traffic. The metric obtains
artificial driving data (trajectories) in combination with situational information describing
the context, e.g., whether the vehicle is currently yielding the right-of-way to someone.
The metric returns a summarized human-likeness score and a multidimensional quality
function incorporating various parameters characterizing behavioral plausibility, as shown
in Figure 1.
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Figure 1. The general idea of evaluating model behavior within situational context.

The multidimensional quality function is composed of functional, dynamic, and
interaction-related parameters. All parameters are checked against human behavior in similar
situations and can be weighted to be adaptable to different applications and requirements.
Finally, all weighted checks are combined into one human-likeness score. The value ranges to
either pass or fail a check for each parameter are extracted from real traffic data, and thresholds
can be assigned to narrow the desired range of human similarity based on application-specific
requirements, such as safety. This modular design is intended to provide high scalability of the
method, allowing developers to choose which parameters to consider and how to weight them,
depending on the application. For example, the evaluation of a trajectory planner might require
a higher level of safety in behavior compared to artificial road users in driving simulation. This
work focuses on interactive situations at urban intersections, as this is where the largest gap in
state-of-the-art evaluation strategies has been identified.

Context parameters are assigned to identify an individual situation in which the
artificial driving data were generated. Based on knowledge of the given situation, a subset
of similar situations can be extracted from real traffic data. In this way, artificial behavior
can be compared with human behavior under similar conditions by considering the context.
Instead of evaluating longitudinal acceleration at a macroscopic level, this method allows,
for example, a comparison of acceleration measured when approaching an intersection
with human acceleration values in such situations.

In order to investigate the extent to which the proposed metric is able to replace the
subjective evaluation of a human assessing artificial behavior, the method is validated through
a subjective survey. During the survey, participants are asked to rate the human-likeness of
drivers in different situations, without knowing whether the vehicle was driven by a human
or by a model. Based on the participants’ ratings and the automatically calculated objective
human-likeness score, the proposed metric can be validated. The present concept can be divided
into the following steps: specification of parameters to characterize human driving behavior,
identification of context-based similarity of situations, preparing databases, formulation of the
quality function, and validation, as shown in Figure 2.

„EVALUATION OF EVALUATOR“

DEFINE 

PARAMETERS THAT 

INDICATE HUMAN-

LIKE BEHAVIOR

IDENTIFY 

REQUIRED 

CONTEXTUAL 

INFORMATION

FORMULATE 

QUALITY 

FUNCTION AND 

SCORING

SYNTHETIC 

TRAJECTORY DATA

+ CONTEXT

REAL TRAJECTORY 

DATA

+CONTEXT 

SURVEY

HUMAN-

LIKENESS 

SCOREDATA OF 

REAL 

TRAFFIC

validate

DRIVER 

MODEL
EVALUATOR

Figure 2. Overview of the entire toolchain and concept.



Appl. Sci. 2023, 13, 10218 5 of 17

3.1. Parameter Specification

In the first step, parameters for the evaluation of human-like driving behavior have to
be defined. Inspired by literature, Table 1 provides an overview of potential parameters
to characterize human-like driving behavior. The parameters aim to cover the following
categories:

• Functional: is there a collision, or does the trajectory stay within the driveable area?
• Dynamic values: is motion measured by acceleration, jerk, and velocity in a human-

like range?
• Interactive: are cautiousness and criticality in interactive situations, measured by time

gaps and distances, in a plausible range?

Table 1. Overview parameters for describing human-likeness and plausibility of behavior.

Category Parameter References

Functional Road violation [7,11,25]

Collision check [26]

Dynamic Lateral Velocity [3]

Longitudinal Velocity [3,27–30]

Lateral Acceleration [3,27,29]

Longitudinal Acceleration [3,27,29,30]

Longitudinal Jerk [29]

Interaction Relative Velocity [3,27,29,30]

Distance to the partner [3,29]

Time-to-Collision (TTC) [28,29]

Time Exposed Time-to-Collision (TET) [28]

Max. Value for critical time gap when interacting [31]

Post Encroachment Time (PET) [28]

The parameters can be calculated for all samples of real and artificially generated
behavioral data, provided that the spatiotemporal motion, road user classification, and
information about the static environment, i.e., the map, are available. Algorithms to
calculate interaction-related information are based on a fusion of map and time-series data
according to our previous work [8].

3.2. Identification of Context-Based Similarity of Situations

In order to compare artificial behavior with the behavior of humans in similar situa-
tions, contextual information must be assigned to the data. Inspired by Scholtes et al. [32],
a multi-layer approach to describe urban scenarios is used to create the basis for contextual
parameters, shown in Table 2. The parameters were inspired by Schlote’s approach in com-
bination with the real traffic database, which shows right-of-way-controlled intersections.
For an extension of the methodology to other traffic scenarios, additional context parame-
ters might be required. Algorithms to extract context information are based on a fusion of
map and time-series data according to our previous work [8]. Contextual parameters will
be assigned to all samples in all databases.
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Table 2. Overview context parameters for distinguishing scenarios sorted by priority order (P) to
identify similarity.

P Scenario Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5

1 Infrastructure maneuver:
relation to intersection

Before Just Before Inside Just After After

2 Infrastructure maneuver:
lane turn direction

Left Right Straight - -

3 Vehicle state maneuver Acc Dcc Steady Stop -

4 Object-related maneuver Following Waiting for
gap

Approaching Waiting
queue

-

5 Number of legs Three Four - - -

6 Number of interactive ve-
hicles

Zero One Multiple - -

7 Number of interactive
VRU

Zero One Multiple - -

8 Intersection density Low Moderate High - -

9 Right-of-way relationship Giving Receiving - - -

10 Closest interacting vehicle
class

Car Truck / Bus - - -

11 Closest interacting VRU
class

Bicycle Pedestrian - - -

3.3. Preparing the Database

To effectively compare real and artificial driving behaviors, it is crucial to analyze them
under similar situational conditions. The situation is described by the context parameters
shown in Table 2. Based on these parameters, a subset of real data can be selected. The
subset of the real traffic database forming the basis for the comparison is required to
contain sufficient samples to be comparable. The time-series data are aggregated into
sequences of one-second time windows to determine the context. Context information is
also used to select the parameters to be considered, since, for example, calculating PET
in the absence of interaction partners would not be reasonable. A defined threshold is
used to determine if the number of GT data is sufficient for comparison. If the number
of remaining samples in the GT subset is insufficient, the level of abstraction is increased
and context-describing parameters are gradually removed from the filtering. The priority
order of context parameters for increasing abstraction is shown in Table 2 in column P.
The priority order was determined empirically by expert knowledge and scanning the real
traffic data. Knowledge of the number of matching parameters is later used to provide
additional information about the certainty of the comparison. For this purpose, the Jaccard
Index is used to quantify the similarity of subsets [33].

3.4. Quality Function Formulation

Once all behavioral parameters have been calculated and a subset of real data is
extracted, the comparison of driving behavior can be conducted. In order to select an
appropriate statistical test to measure the difference between real and artificial behavior,
the underlying statistical distribution for each parameter under consideration must be
examined first. For the proposed metric, the similarity of the distribution of driving be-
havior parameters of the artificial vehicle to the driving behavior of real vehicles in the
same context is measured by using the Kolmogorov–Smirnov two-sample test method [34].
In addition, the extremes of some driving parameters are evaluated to verify that driving
behavior exhibited by artificial vehicles lies within the limits defined by the minimum
and maximum values obtained from real drivers in matching scenarios. The following
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parameters were selected for additional extrema evaluation: maximum longitudinal veloc-
ity, maximum lateral velocity, maximum longitudinal acceleration, minimum longitudinal
acceleration, minimum distance to partners, and maximal critical time gap. By assign-
ing thresholds, all individual parts of the metric either pass or fail in human similarity,
are weighted by wi, and finally calculated into a human similarity score according to
Equation (1). Inspired by the parameters identified in the literature, presented in Table 1,
the metric includes the parameter checks listed in Table 3.

score = ∑(wi + pass checki)

∑(wi + total checki)
∗ 100 (1)

Please note that not all parameters are suitable for all driving situations; for example,
if no vehicle interacts when turning, no time value can be calculated for the gap acceptance.
The unavailability of such parameters was assumed as pass when calculating the final score.

Table 3. Thresholds for measuring human-likeness for different parameters extracted from inD
data [35]. Distributions of velocities, accelerations, and jerk are compared using KS statistics. Percent
ratios are assigned for maximum values and raw thresholds are assigned for context-free parameters.
Parameters marked with * are calculated context-free.

Name of Parameter Check Initial Fine-Tuned

KS Longitudinal Vel. >0.993648 >0.668406
KS Lateral Vel. >0.952358 >0.624929
KS Longitudinal Acc. >0.780503 >0.559198
KS Lateral Acc. >0.926266 >0.647957
KS Jerk >0.685024 >0.511960
Max. Longitudinal Vel. <66.67% <66.67%
Max. Lateral Vel. <73.33% <83.13%
Max. Longitudinal Acc. <64.00% <71.80%
Min. Longitudinal Acc. <78.00% <72.00%
Min. Distance to partners <84.00% <93.60%
PET * <0.64 s <0.50 s
TET * >4.96 s >3.90 s
Max. Critical Time Gap * >6.98 s >5.40 s

3.5. Strategy for Validating the Method

Since the proposed metric attempts to quantify the complex construct of human-like
behavior in the absence of any official objective truth, validation is required. The validation
of the method explores whether the human-like driving scores obtained by the metric
correlate with people’s subjective ratings. The strategy is based on the assumptions that,
first, human-likeness is defined by the ability of subjects to distinguish between artificial
and human behavior and second, that if a correlation is found between scores obtained
by the metric and subjective ratings, validation demonstrates the ability of the metric to
objectively quantify human-likeness. The subjective experiment was inspired by the work
of Zhang et al. [22], who adjusted the Turing Test to quantify the human-likeness of their
proposed methodology in a driving simulator. In order to validate the metric, participants
are asked to assess the behavior of vehicles in short videos without knowing if one marked
subject vehicle is driven by a real human or an artificial driver. The videos are designed
to remove any indication of whether the behavior comes from artificial or real data. After
each video, participants were asked to rate the behavior, of one marked vehicle, by the
following scale: 1: Completely artificial driving; 2: Somewhat artificial driving; 3: Not sure;
4: Somewhat human-like driving; 5: Completely human-like driving. Based on this, it can
be investigated whether the scores given by humans correlate with those of the proposed
metric. In addition, it can be evaluated to what extent participants are able to distinguish
between artificial and human behavior. For further validation of the method, the metric is
applied to some real driving and artificial driving data, assuming that the human-likeness
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score of real data is significantly higher compared to synthetic behavioral data. The metric
includes several aspects that can be tuned, such as how narrowly the range of human
similarity is defined or how individual parameters are weighted for the final score. The
insights from the survey provide a basis for tuning the metric toward how people would
distinguish between artificial and real.

4. Implementation
4.1. Used Databases and the Exemplary Driver Model

For representing real human driving behavior, the open-source dataset inD (https:
//ind-dataset.com/, accessed on 1 February 2023) was selected, which provides recordings
of four German unsignalized intersections from a birds-eye perspective shown in Figure 3
(right) [35]. The dataset is composed of tracks data describing the spatiotemporal motion of
all road users, meta data describing dimensions and classifications of road users, and the
respective openDRIVE map for the location. For creating the human behavior database,
all recordings except recording 12 were selected, whereby this recording was retained
for validation purposes as described in Section 3.5 (as referred to inD12). For testing
the proposed metric, artificial driving data were created on two intersections, which are
shown in Figure 3 (left). For testing on a large scale of interactive situations, data were
created with the help of the simulation framework Spider at BMW [36]. Driving behavior is
generated by the BMW proprietary driver model TRM. The model follows a hierarchical
and heuristic structure, categorizing the driving task into maneuvers like car-following,
changing lanes, overtaking, stopping due to an obstacle or red lights, slowing down for
speed limits, or curved roads. Based on the situational and environmental information,
multiple maneuver evaluators identify their need for action in each time step. The chosen
maneuver is subsequently performed by applying the respective motion model such as the
Wiedemann-following model for car-following [1]. Behavioral and contextual parameters
are computed according to Section 3 for all datasets employing the fusion and interaction
identification algorithms presented in our previous work [8]. The algorithms first fuse the
time-series and map data by assigning all vehicles to the respective lane they are driving on.
Based on this assignment and the knowledge from the map, interactions can be identified
and described by semantic parameters.

4.2. Metric Formulation and Thresholds

By assigning thresholds and weights, all individual parts of the metric can be combined
into one human-likeness score according to Equation (1). For PET, TET, and Max. Critical
Gap, global thresholds for human similarity were derived from the real traffic database
since not enough situational samples could have been extracted for contextual comparison
due to the heuristics applied to calculate these parameters. All other parameters could
be compared considering the situational context, i.e., in comparison to the behavior of
real drivers in comparable situations. Accordingly, threshold values represent the limits
for statistical similarity. The human-likeness scores for the two synthetic locations and
the retained real recording (inD12) were calculated. Since the driver models used in
the synthetic data showed quite high scores, thresholds for each parameter were further
narrowed to fulfill the assumption that the overall results of the real test data would
significantly exceed those of the synthetic data. The tuning resulted in a score of 89.62% for
the real dataset (inD12), 77.31% for interSection 1 (synthetic), and 77.87% for interSection 2
(synthetic). Initially extracted and tuned thresholds for all parameters are shown in Table 3.

https://ind-dataset.com/
https://ind-dataset.com/
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Figure 3. Locations for data gathering—Left: synthetic intersections for creating artificial driving
behavior. Right: locations from inD Data [35].

4.3. Survey for Validation

The survey was conducted online and involved 23 participants rating the behavior
of vehicles in 12 videos. Four videos showed real driving behavior and eight artificial
behavior. Real scenarios were extracted from the inD dataset of recording 12, whereby
artificial behavior was created on the two synthetic intersections as described in Section 4.1.
The order of the videos was randomized to eliminate the possibility of order effect bias. In
each video, the vehicle to assess was marked red whereas all other vehicles were blue, as
shown exemplarily in Figure 4. The visualization was abstracted to eliminate any indicators
that might help distinguish between real and artificial. After each video, participants were
asked to rate on a five-point scale whether they perceived the red vehicle’s behavior as real
or artificial.

Figure 4. Exemplary screenshots of a video shown to participants for rating human-likeness of a
subject vehicle (marked red).

5. Results

In the following section, the results of the survey, providing subjective assessments of
human-likeness, are compared with the objective scores obtained by the proposed metric.
In order to apply the proposed method to a broader range of samples, the human-likeness
score is additionally computed for the datasets described in Section 4.1. Finally, a case
study is presented as exemplary, showing how to apply the proposed method for model
improvement.

5.1. Objective Metric Results versus Subjective Human Ratings

When investigating the results of the survey, two aspects are of interest. First, subjects
were able to distinguish between real and artificial behavior, and second, participants’
subjective ratings correlated with objective scores calculated by the proposed metric. The
mean value of the Turing test (6.37), indicated that participants’ ability to distinguish
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between artificial and real drivers is only slightly higher than random responses or the
result (exactly 6.0) when selecting “Not sure” for all vehicles. Figure 5 visualizes the
subjective ratings for all test vehicles shown during the survey associated with the objective
scores calculated by the proposed metric. Real vehicles are green, whereas artificial vehicles
are colored red. The y-axis shows the rating scale presented during the survey. The blue
value above each vehicle rating describes the objective human-likeness score obtained by
the proposed metric. During the survey, artificial vehicles were selected that exhibited high
and low levels of human-likeness. Furthermore, for the real vehicles, samples with more
and less objective human-likeness scores were selected to determine if the metric is able to
detect both good and bad results.

Figure 5. Subjective human-likeness rating obtained from participants (y-axis) associated with
objective human-likeness scores obtained by the proposed metric (blue value above). Vehicles are
sorted by the average rating assigned by participants, in descending order from left to right.

Comparing the objective scores from the metric to participants’ subjective ratings from
the survey, a positive correlation could be observed with a Spearman correlation coefficient
of 0.62 and a p-value of 0.030, and a Pearson correlation coefficient of 0.65 and a p-value of
0.023 shown in Figure 6. The p-values indicate that there is a moderately monotonic positive
relationship at the 97% confidence level and a moderately linear positive relationship at the
97% confidence level, which can be considered statistically significant.

Based on the insights into which vehicles were rated as more human-like by the
participants and the multidimensional quality function, the individual parameters could be
analyzed in terms of the extent to which they contribute to the decision for real or artificial
behavior. Table 4 provides the results of this analysis using the Spearman correlation,
which is further transformed into a weighting of the individual parameters with the aim of
reflecting how people prioritize differences in the individual behavioral parameters.
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Figure 6. Relationship between the fine-tuned objective human-like driving behavior scores provided
by the proposed methodology and subjective ratings of participants during the survey.

Table 4. Spearman correlation between the parameters and average human-like driving behavior
score from the survey, with correlations converted into weights.

Parameter Spearman
Correlation

p-Value Conversion
to Weight

KS Longitudinal Vel. 0.073555 0.820285 0.016269
KS Lateral Vel. 0.178634 0.578567 0.03951
KS Longitudinal Acc. −0.30823 0.329698 0.068174
KS Lateral Acc. 0.021016 0.948312 0.004648
KS Jerk −0.51839 0.084229 0.114656
Max. Longitudinal Acc. ratio −0.42732 0.165877 0.094514
Min. Longitudinal Acc. ratio −0.50794 0.0918 0.112346
Max. Longitudinal Vel. ratio −0.12151 0.706773 0.026876
Max. Lateral Vel. ratio 0.309234 0.328046 0.068396
Min. Distance to partners ratio −0.3632 0.245869 0.080333
Max. Critical Time Gap (s) −0.94286 0.004805 0.208539
TET (s) −0.52179 0.288343 0.115409
PET (s) −0.22755 0.587845 0.050329

5.2. Human-Likeness of Investigated Datasets

As described in Section 3.5, the metric is applied to retained real driving (inD12) and
artificial driving data, assuming that the human-likeness score of real vehicles should be
significantly higher compared to synthetic behavioral. The used database is described in
Section 4.1 and results of the objective scores obtained by the metric are shown in Figure 7.
The scores were calculated once with the initial thresholds and without weighting according
to Table 3 (right), and once with the tuned quality function, incorporating weights from the
survey and adjusted thresholds from Table 3 (left). First of all, the difference in those two
figures demonstrates the sensitivity of results to weights and thresholds within the quality
function. Regarding the initial setting, only the comparison of real data and artificial
behavior of interSection 2 showed significant differences in the human-likeness scores
when using the Mann–Whitney U test (U = 82,727.0, pvalue = 4.06 × 10−13 ), whereas the
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comparison of behavior on interSection 1 compared to real humans showed no significant
difference (U = 58,561.0, pvalue = 0.78). This can be explained by the quite far-developed
driver model, which was used to create the artificial data. Therefore, without weighting
or tightening the thresholds of the quality function, only harsh outliers of behavior can be
detected. When using the tuned quality function, (Figure 7 left) a clear difference between
real and artificial behavior could be measured (human-like grades of inD12 vs. interSection
1: U = 103,568.5, pvalue = 4.34 × 10−68 ; human-like grades of inD12 vs. interSection 2:
U = 113,910.0, pvalue = 1.54 × 10−60 ).
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5.3. Case Study: Exemplary Application of the Method for Model Improvement

The proposed method is characterized by two main aspects. First, by using various
parameters involving functional, dynamic, and interactive behavior, the multi-modality
of driving behavior is objectively measurable at different levels. Secondly, behavior is
assumed to be conditional and compared within a situational context instead of comparing
parameters on a macroscopic level. Therefore, this approach provides a high level of
transparency and enables targeted model improvement. How the proposed method can be
used for model improvement is presented in the following case study.

The overall scores measured for the artificial driver model in Figure 7 show a mean
human-likeness score of 78.89% showing a variance of 33.33 on interSection 1. The scoring
method enabled for quantifying model behavior among multiple situations measured by
various parameters. Based on the proposed method, we are able to address the following
questions to enable model improvement:

• In which scenarios does the model show less human-like behavior?
• Which parameters mostly fail when comparing the model to human behavior?
• Why do those parameters fail; how does the distribution of parameters distinguish

when comparing model behavior and human behavior?

Based on the correlation analysis presented in Table 4, the critical time gap was found
to have a high negative correlation with the subjective ratings of human-like driving
obtained through the survey. Therefore, the critical time gap value is further investigated.
In the real traffic data, the value was determined to be 6.98 seconds, whereas the same
parameter in the synthetic data was determined to be 10.05 seconds at InterSection 1 and
9.98 seconds at InterSection 2. This shows a significant difference in behavior and needs
to be improved in the driver model. To further investigate in which situations model
behavior mostly differs from that of humans, the distribution of failing scenario parameters
is investigated. Considering all context parameters and the distribution of failed parameter
checks, the following conclusions could be drawn. Vehicles are more likely to fail:
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• In the maneuver states: approaching, accelerating, decelerating, or stopping;
• Giving right-of-way;
• In the object-related maneuver: approaching or waiting for a gap;
• Interacting with fewer partner vehicles;
• Driving in lower intersection density.

The calculated behavior parameters of the synthetic data are analyzed to identify
which behavior parameters mostly fail. Illustrated in Figure 8, the five most often failing
behavior parameter checks were identified to be: KS Longitudinal Vel., KS Lateral Vel., KS
Longitudinal Acc., KS Lateral Acc., and KS Jerk.

In the next step, the value distributions of the extracted parameters can be analyzed.
For this purpose, the distribution of the dynamic parameters extracted from real data
is compared with the dynamic parameters of the artificial samples showing a human-
likeness score of less than 70%. The distributions are extracted on a macroscopic level and
situationally under the scenario conditions identified above as causing most of the failures.
All distributions are summarized in Table 5.

Table 5. Analysis of the value distribution for dynamic parameters for model behavior and real
humans on a macroscopic level (left) and scenario-specific under situational conditions (right).

Parameter Real Data: Syn Data: Real Data: Syn Data:
Macroscopic Macroscopic Situational Situational

Longitudinal Vel. [m/s] mean 7.18 3.38 5.71 3.48
std 5.24 3.92 4.68 3.48
min −4.35 0.00 −0.21 0.00
max 27.48 19.05 20.52 12.34

Lateral Vel. [m/s] mean 0.04 0.03 0.04 0.14
std 0.19 0.15 0.26 0.25
min −2.87 −0.77 −0.99 −0.07
max 10.89 1.45 1.07 0.85

Longitudinal Acc. [m2/s] mean 0.06 0.06 −0.08 −0.47
std 0.87 1.02 1.01 2.72
min −6.25 −9.58 −4.34 −9.58
max 6.54 5.25 4.72 2.61

Lateral Acc. [m2/s] mean −0.04 0.13 −0.08 0.65
std 0.61 0.78 0.89 1.14
min −5.57 −3.97 −4.62 −0.20
max 4.98 4.78 4.12 3.27

Jerk [m3/s] mean −0.05 0.03 0.06 0.14
std 0.84 2.91 1.05 12.20
min −20.35 −21.40 −6.96 −18.17
max 16.16 220.04 16.16 220.04
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As shown in Table 5, the jerk parameter stands out in particular. The maximal values
measured in artificial behavior are much larger compared to those observed by human
drivers. It should be noted that the jerk values observed by real humans are determined
by tracking algorithms that process video data from drones. Since the open-source real
traffic dataset is preprocessed, it is not known to what extent the values in this data are
smoothed. However, the jerk values of the driver model show significantly high maximum
values, which should be further investigated. Therefore, some trajectories were extracted
and analyzed. Figure 9 shows some example trajectories that illustrate the jerking problem
that occurs when switching between driving maneuvers. Since the driver model used is
based on heuristic decision-making, the temporal behavior and motion are more discrete
compared to humans. However, from a subjective visual point of view, the jerking problem
is not perceptible, as shown by the survey, and therefore not critical for driver models in
the context of DiL traffic simulation.
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an intersection.

Further interesting insights are provided by the comparison between macroscopic
behavior parameter distribution (left) and situational behavior (right) in Table 5. When
considering longitudinal acceleration, for example, one can observe that distributions are
in line with human value ranges in a macroscopic perspective but not when comparing the
parameter situationally . This shows that macroscopic comparison can result in misleading
conclusions regarding the extent of human-like behavior.

In summary, the case study demonstrates the potential of the method to reveal model
weaknesses and enable better model parameterization.
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6. Conclusions

In the present work, a new method was introduced to objectively measure the degree
of human-likeness of artificial driver models. Driving behavior is characterized by various
parameters, which are then compared to the behavior of humans in real traffic. Using
statistical analysis in the context of a quality function, a final human-likeness score can be
computed for each trajectory. Since behavior in urban scenarios is influenced by various
factors and assumed to be conditional, the situational context for each trajectory in real
and artificial data is characterized by automatically computed context parameters that aim
to distinguish between different situations that may occur in urban traffic. Thus, a subset
of GT data showing human behavior under similar conditions can be used to compare
behavioral parameters.

Since there is no clear definition of human-likeness, we investigated the ability of
the proposed method to reflect the subjective ratings of humans when assessing driving
behavior in a survey inspired by the Turing test. Results of the survey showed a significant
correlation between the scores calculated by the proposed metric and the scores assigned by
participants. In addition, the survey provided interesting insights into which parameters
contribute most to the distinction between artificial and human driving behavior. These
findings were used to parameterize the quality function and provided valuable insights
into specific weaknesses of the used driver models.

Evaluation of large datasets has shown that the proposed metric has the potential to
evaluate models or sub-modules in a wide range of situations, which is crucial for develop-
ing reliable solutions for urban traffic. The case study exemplified how the proposed metric
can be used for detailed model evaluation and targeted model improvement. The modular
structure of the metric allows models to be evaluated according to application-specific
requirements. In a driving simulation, for example, the priority is more on human-like be-
havior than on rule compliance and safety. In contrast, when evaluating a trajectory planner
for AVs in real traffic, the focus might be more on non-critical behavior, accepting a lower
level of aggressiveness during interactions. By weighting and narrowing the thresholds for
individual parameters, the method can be used for a broad range of applications.

7. Limitations and Future Work

The proposed method presents a first attempt to objectify human-like driving behavior,
taking into account the situational context. The multi-modality of human behavior is
mapped into individual parameters, which are then statistically evaluated by assigning
thresholds for “pass” or “fail” and potentially additional weights. Weighting and threshold
assignment have a significant impact on the final metric score, resulting in high sensitivity
to individual tuning. In the future, more parameters can be added to better account for the
multimodality of human driving behavior, and extensive surveys could provide a basis for
fine-tuning when focusing on replacing subjective evaluations of humans. Instead of the
binary approach of either passing or failing a parameter, a more sophisticated concept could
be used whereby the range of human-likeness is discretized into bins for each parameter.

In order to determine similar matching situations from real driving behavior, context
parameters are assigned to the data. The heuristics used in this paper correspond to the
scenarios encountered in real traffic data showing unsignalized intersections. To extend
the proposed metric for other traffic scenarios, additional context parameters should be
considered. The algorithms for computing context parameters, such as the number of
interaction partners and related parameters, are based on heuristics. Such heuristics, of
course, do not guarantee that meaningful results are provided across the entire diversity of
interpersonal situations occurring in urban traffic. Some parameters, such as PET, were
calculated only for situations in which reliable results could be guaranteed, resulting in
a significant reduction in samples. Future work will attempt to increase the validity of
heuristics to allow a contextual comparison for all parameters.

A simple abstraction strategy was used to measure the similarity between situations
in artificial and real data. State-of-the-art techniques offer alternative approaches for
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measuring similarity between datasets, such as those presented by Heuer [37], which could
be used in the future.
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