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Abstract

A mobile crane equipped with a boom system is widely used to lift the heavy load on
construction sites. Lattice boom with lower self-mass is designed to lift larger load and
move. Therefore, the dynamic response of the lattice boom is important but also time-
consuming due to a large number of degrees of freedom.

In this thesis, several flexible models are established to simulate the beam elements,
rod elements and rope elements. In addition, a detailed super truss element formula-
tion for nonlinear truss element is proposed to reduce the number of degrees of free-
dom of complex lattice boom.

According to the control requirements of the lattice boom crane, a quasi-static control
method is designed to realize the optimal control for specified complex system. This
method combines the static mapping relationship with the target optimal trajectory to
generate the optimal control trajectory.

Several experiments for different beam elements are performed to do the cross verifi-
cation. A dynamic calculation of the lattice boom crane is performed to simulate the
lifting, luffing and slewing stages.

Keywords: non-linear dynamics, mobile crane, lattice boom, optimal control
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Variable = in inertial coordinate

Variable * in local body coordinate

Variable * of body i

Variable * for element

Rotation matrix from local body coordinate to inertial coordinate
First-order total derivative of the variable = to time
Second-order total derivative of the variable * to time
First-order total derivative of the variable * to arc coordinate
Second-order total derivative of the variable * to arc coordinate
Transpose of a matrix or vector *

Identity matrix, zero matrix and zero vector

Rotation vector

Skew symmetric matrix of vector *

elementary rotation matrix

base vector of the global coordinate system

base vector of the local body coordinate system

angular velocity of body i in the coordinate system j
curvature of body i in the coordinate system j
Transformation matrix

Mass, Moment of inertia, Moment of inertia

Density of body

Volume of body

Length of beam or rod or rope

Area of section

Force vector, Moment vector

Stiffness or Constitutive matrix, normal stiffness, shear stiffness
(Normal) strain, shear strain

Stress

Virtual variable *

Gravity vector

Power

Generalized coordinate and generalized velocity

Constraint vector

Lagrange operator

Deformation vector



N Shape function or shape matrix
V() Nabla operator

E Deformation Gradient Tensor
g Right Cauchy-Green Tensors
B Left Cauchy-Green Tensors

f Finger Deformation Tensor

4 Cauchy Deformation Tensor

Z Cauchy Stress

z 1t Piola-Kirchhoff Stress

S 2 Piola-Kirchhoff Stress

] Cost function

L(x(t), u(®),t) Running cost

®(xe, te) Terminal cost

to, te Start time and end time

t, te Sampling time and simulation time
X State variable

All units used in this thesis are based on Sl (Systeme International d'Unités).
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1 Introduction

1.1 Background of Lattice Boom Crane

Among the large number of cranes developed for various tasks, mobile cranes are
particularly flexible in their application possibilities. Truck-mounted cranes, mobile
cranes, railway cranes, and crawler cranes are different cranes equipped with a boom
system, which can be designed as telescopic or truss boom. Compared with the con-
tinuous boom structure, the crane with a truss boom has a higher load capacity under
the same mass due to the optimization of its structure. It is suitable for lifting tasks with
special requirements of lifting height and radius. It is mainly used for large-scale factory
construction, steel industry, and building construction [Kle-1996].

The form and boom configuration of cranes is diverse and complex. In the design pro-
cess, simulation and proofreading for different types of cranes under different load
cases are required, which causes many calculations. As a kind of engineering machin-
ery, mobile cranes need to lift a large load and move (crawler crane). Considering the
mass of the hoisting cargo and the boom structure, dynamics calculations should be
done, especially for some extreme conditions in the lifting capacity sheet. The dynamic
modeling of lattice boom becomes difficult due to the unevenness of cross-section and
a large number of nodes and elements. Previously there are mainly two modeling
methods: 1. Modeling of each element of the lattice boom [GUn-1997]; 2. Modeling the
entire lattice boom with a continuous flexible beam element.

Therefore, a scientific reduction method that accelerates the model calculation and
makes the number of degrees of freedom small is urgently needed. For truss boom,
there is a static condensation method, which condenses the stiffness and gravity of the
truss beam to the nodes on the end section. This method is only suitable for the static
reduction of linear models [Kle-2006]. For dynamics reduction, the Craig-Bampton
method is often used. It converts the dynamic equations from the time domain into the
frequency domain to obtain information such as the natural frequency of the system
[Kou-2007]. However, for nonlinear models, it is very difficult to convert them to the
frequency domain [Kam-2015].

The vibration of flexible large structures is a severe test for the stability and safety of
large structures [Arn-2003]. In order to reduce the impact of dynamic loads on the
crane structure, a controller is needed which can reduce the vibration while meeting
specific operation objects [Neu-2010]. In addition, the movement of such large

1



1 Introduction

machinery is very energy consuming, it is necessary to investigate the optimal trajec-
tory to meet the requirements of moving time, mechanical stability and energy con-
sumption. Currently, general optimal control algorithms are only used for simpler mod-
els. The research on optimal control algorithms for large-scale dynamics models is
very necessary.

1.2 Technical Route

In chapter 1, the research background, research goals and research framework of this
thesis are clarified. In chapter 2, the modeling methods (kinematics, materials proper-
ties, dynamics modeling methods) and control methods (iterative format, optimal con-
trol algorithm) are introduced.

In chapter 3, different types of dynamics models are introduced, including rigid body
model, spatial Timoshenko beam, strut tie model, Cubic Spline Beam and the super
truss element. And in Chapter 4, through multi-body dynamics, these simple dynamics
models are connected through constraints to form the final model. In addition, the
Baumgartner stability method, state space expression, and explicit and implicit Runge-
Kutta integrator are also introduced to solve the dynamic equations.

In chapter 5, the traditional optimal control algorithm and the optimal control based on
deep reinforcement learning are introduced.

In chapter 6, a rigid-flexible hybrid multi-body dynamics program platform based on
MatLab is introduced. The functions, operation method and basic logics of the program
are described. And in chapter 7, based on this platform, several commonly used crane
models are created by defining the composition, connection and driving mode.

In chapter 8, some experimental results are shown. Firstly cross-validation experi-
ments with different flexible beam models are conducted. Secondly, the vibration tests
of cantilever truss beam and approximate static deformation calculation for super truss
element are performed, to get the dynamics and statics response. Finally, the motion
response of the crane model without control and with optimal control is analyzed.

Finally, in chapter 9, the main content and the results obtained are summarized. Based
on the research results and actual engineering application scenarios, the further re-
search direction is proposed.



2 State of Technology

2.1 Spatial Kinematics and Rotations

2.1.1 Relative Kinematics and Rotation Matrices

The position vector of a certain point has different representations in different coordi-
nate systems, they can be transformed by the rotation matrix ;Rg.

7 = Rggr with Rg = Rg (2-1)

where | is the position vector in inertial coordinate and gr is the position vector in local
body coordinate. The absolute speed and absolute acceleration of the point must con-
sider the relative movement in the certain coordinate system as well as the movement
of the coordinate system, which can be written as

" = Rppr + Rgpt = Roor + 2Repl + Resf  (2.)

2.1.2 Spatial Angle Representation

Axis-Angle Representation

The Cartesian rotation vector is used to describe the rotation vector through the axis
and angle. The direction of the vector n represents the direction of the rotation axis,
and the norm of the vector 8 represents the angle of rotation along the rotation axis
[Die-2006]. Since the direction of the rotation vector is consistent with the rotation axis,
the expression of the vector in the two coordinate systems before and after the rotation
is the same, which is represented by ¢.

W =P =9 6 =|e|| n=¢/6 (2-3)

The rotation matrix under the axis angle representation can be obtained by Rodrigues'
rotation formula [Kov-2012].

sint9~_|_1—c056?~
g 272 &

Rg=1+

S

(2-4)
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The relationship between angular velocity or curvature and the derivative of angle can
be obtained by

()1 el =1 lel = snlel
lell” = lel

Cardan Angles and Euler Angles

||‘Sz
ASY!

(2-5)

Both the Cardan angle [Tup-1987] and the Euler angle [Pio-1966] are compounded by
successive elementary rotation around the x;, x; and xx axes. The angle vector with
i #j # k is called the Cardan angle; and with i = k # j is called the Euler angle. The
rotation sequence of the Cardan angle and Euler angle must be defined before use.

i 1% Xk Rg = 1R11R;,Rz
[->1-—2->B - - = == 26
o P ek = Ry, (DR (¢) R (910 (2-6)

The relationship between angular velocity or curvature and the derivative of angle can
be obtained by

z = kagg + Bgznggg + 3522§1QxiQZT with Q= [901 (p] (pk]T (2_7)

2.1.3 Derivative Laws of Rotation Matrix

Angular velocity is defined as the first derivative of the rotation matrix with time

B

[

W= IQBBQI B

= sRuRs (2-8)
where a is the skew symmetric matrix of vector a. Curvature is defined by the first de-
rivative of the rotation matrix along the x; axis

B !

[ &2
1E=

IEB = RggR BK = Bgll (2-9)

where here ()’ = d()/dx;. Normally, the angular velocity and curvature in the local
body coordinate can be written in the form of the derivative of angle.



2.2 Dynamics Modeling Method

s =1(0)¢ o =1 (0) ¢’

(2-10)

The specific formular is related to the spatial angle representation method.

2.2 Dynamics Modeling Method

2.2.1 Virtual Power Principle

The description of virtual power principle [Ger-1973] is, that for a balanced system, the
sum of the virtual power of the internal force between two elements is zero.

According to D'Alembert's principle [Vuj-1978], a dynamic system can be turned into a
static system by introducing inertial force. Furthermore, internal forces are introduced
to transform the flexible dynamics system.

Fine = —mit’ Fine = _gsﬁ
Mine = —]@ Mine = —KT (2-11)

Therefore, the virtual power of the rigid-flexible dynamics system consists of three parts:
virtual inertial power, virtual internal power and virtual external power [Jon-1990]. The
virtual power of the element can be written as

8pe = 8Pint + OPine + OPext = OPint + 6Pine + 8pext,g + (Spext,N
8pine,e =—p ]j 6iTidV 6pint,e = - Jj SngdV
v 14 (2-12)

Spext,e,g =p fff 5deVQ 8PexteN = thTE
v

According to the virtual power principle, the sum of the virtual power generated by all
the forces on the element should be zero. Since the sum of the virtual power produced
by the interaction force (1. F.) between the elements is zero, there is no need to consider
the interaction force, and the virtual power of the entire system is also zero.

Ope = 0 with LLF. op = Z Oope. = 0 without L. F. (2-13)
e



2 State of Technology

2.2.2 Minimum DoF Method (Lagrange’s Equation of Second Kind)

The mechanism is generally composed of multiple elements, and the interconnection
between the elements is called a constraint. There are generally two methods for dy-
namics modeling with constraints: the minimum degree of freedom method and the
multi-body dynamics method.

In the minimum degree of freedom method, the system generalized coordinates are
the minimum degree of freedom that can describe the state of mechanism. Through
the constraint, the generalized coordinates of the elements can be expressed by the
system generalized coordinates. Generally, the generalized coordinates, velocity and
acceleration of the element can be written as

g = qc(q) dqe = Tedq de =Todq +Tedg (2,14

The virtual power of the system can be written through the system virtual generalized
velocity. Since the system virtual generalized velocity can be arbitrary, the dynamics
equation of the system can be obtained, which is also called the Lagrange’s equation
of second kind [Hen-2017].

Tpe_ 79Pe _
o= ZSPe—Sd"ZT =02 D IGETY )
e 1e

2.2.3 Multibody Dynamics Method (Lagrange’s Equation of First Kind)

In the multi-body dynamics method, the system generalized coordinates are composed
by the element generalized coordinates without the consideration of the constraints.

=@ =1 0 L=0 (g

a=laf & - @]

3

Constraints @ will be written as binding force and introduced into the virtual power of
the system through Lagrange operator A [Bau-2010].

5p=z 8pe + 6PTA Z TT%+6—21—0

. =

_ 5d T<Z 77 2Pe 1)‘0 ” T 0% 0T T an)
" \L.=0q. " 9q7) T 2=0

The resultant dynamics equation is called Lagrange’s equation of first kind [Yus-1998].
6



2.3 Mechanics of Flexible Element

2.3 Mechanics of Flexible Element

2.3.1 Modeling Method based on Co-rotational Coordinate

The co-rotational coordinate is used to describe the base of deformation, which is con-
sidered as the position and posture of the element in the undeformed state [EIk-1995;
Cri-1990]. The difference between the actual state and the state in the co-rotational
coordinate is the deformation of the element.

B,*

r=r*4+u=rB+rB*+u with rB*=constant (2-18)

where r is the actual state after deformation and r* the state before deformation [Li-
2007]. r* can also be written through the co-rotational coordinate (base coordinate) r?
and the undeformed relative position vector to this point r%*. u represents the defor-
mation, which can be written through the deformation on the boundary u; of the ele-
ment and shape function N,,.

. . 13 boundary condition
(o —15) = Nu(1p — 7% + 1) with { B

I
I
=
S
I
[E

ry' known, constant (2-19)

The boundary condition can either be constant or relevant to the element coordinate.
Theoretically, the choice of co-rotational coordinate can be arbitrary. By determination
of the co-rotational coordinate, the overall small deformation condition and easy calcu-
lation requirement should be considered. Generally, the co-rotational coordinate can
be written through element coordinate. Therefore, r can be written as

r= (1= M) r®+ (P + M) + Maro =17 (2c) (2-20)

The strain will be calculated using the Green-Lagrangian strain tensor.

2.3.2 Modeling Method based on Absolute Coordinate

The position vector and angle vector of the point on the element is obtained directly
through the boundary state and the shape function.

r=N(gr')m =1r4d
I :I‘(B )I—a ! (—e) with Br* = BEB + BKB'* = BKB’* (2_21)

¢ = Ny(ar)eo = ¢ (4)



2 State of Technology

where pr® represents the undeformed position vector of the origin of the rigid body
base in the local coordinate system, which is generally set to 0; gr®* represents the
relative displacement in the local coordinate system between the undeformed point of
the element and the base origin, which is a fixed value.

For this modeling method, the strain cannot be obtained directly through the difference
of position before and after the deformation, but is defined according to the spatial
derivative of the position and posture vector [Gar-2003]. For the one-dimensional beam
element, the strain tensor is divided into translational and rotational part.

¢ =R';r' and gk® = §T§ with ()" =4a()/0s (2-22)

The translational strain is written as the derivative of position vector along the arc-
length. The rotational strain is expressed by the derivative of rotation matrix along the
arc-length.

2.3.3 Deformation and Strain Tensor

The deformation and strain are defined without the consideration of the large move-
ment and rotation of the element. There are different definition method for the defor-
mation tensor [Bon-2001; Blu-1989; Cia-2003; Hul-1990]

Table 2-1: Deformation Tensor

Formula

Deformation Gradient Tensor E=V o

The Right Cauchy-Green Tensors C=F'F

The Left Cauchy-Green Tensors B =FF"

The Finger Deformation Tensor £ - g_l - £—1£—T
c=B'=F"F"

The Cauchy Deformation Tensor

The strain describes the difference of displacement in local coordinate. For large de-
formation the Green-Lagrangian strain tensor (Green-St-Venant strain tensor) is often
used [Ped-2005; San-2020], which can be written as

1 1
£= E(g — g) 5 (Vr*rvr*r _) (Vr*u +Viu+Viuv,u),r=r"+u
1 aBTk aBTk 1 aBui aBu Bu aBu (2'23)
T8 =2\ Gpr agr ) T 2\0gr T opr T 9t 0



2.4 Optimal Control Theory

2.3.4 Stress Tensor

According to the coordinate system of the stress and its acting surface, the stress ten-
sor has different expression [Ca0-2018; Rot-1981; Sur-2016]

Table 2-2: Stress Tensor
Coordinate Coordinate Properties Formula
of Stress of Area
Cauchy Stress Current Current symmetric g
15t Piola-Kirchhoff Stress  Current Reference  asymmetric = ]g_f_TJ = det (g)
2" Piola-Kirchhoff Stress  Reference  Reference  symmetric S=JF'gF T =F"1

The 2" Piola—Kirchhoff stress tensor matches the Green—-Lagrange finite strain tensor.
Usually stress-strain laws are given by Cauchy stress and left Cauchy-Green defor-
mation tensor. However, by dynamics calculation the constitutive relationship is often
established based on Cauchy stress and the Green-Lagrangian strain tensor. The con-
stitutive relationship between the stress tensor and the strain tensor can be expressed
by a fourth-order tensor.

i (2-24)

IS
Il
=
110
)
ve]
="
=
ve]
[v7)
=

2.4 Optimal Control Theory

2.4.1 Classical Optimal Control Theory

The purpose of classical optimal control is to make the state of the system change from
the initial state to the final state while meeting the constraints within a specified time
[Lew-2012]. The optimal control problem can be written as follows

te
minJ = ®(xe, t.) +j L(x(®),u(t), t)de

st x() = fi(x(®),u(®),t) (2-25)
ge(x(0),u(®),t) <0
x(to) =% , u®eEU , x(H) X

Cost functional J is usually composed of running cost L and terminal cost @. The dy-
namics state function is considered as the equality constraint of the optimal control
problem. For special requirements such as obstacle avoidance, some inequality

9



2 State of Technology

constraints will be added. In addition, the control variables and the state variables of
the system have corresponding limits. Normally the nonlinear optimal control problems
have no analytical solution. Therefore, many approximate methods are proposed to
obtain sub-optimal solutions.

2.4.2 Non-linear Model Predictive Control

Model predictive control (MPC) is a real-time model-based feedback control method,
which consists of a sensor system, a model predictor, and a controller. The structure
of the MPC is shown as follows

W
LN Xest u
Predictive Modeli> Controller —»| Plant —y>

‘ X . Xsensor
Filter |«

Figure 2-1: Structure of Model Predictive Control

The predictive model is a mathematical model, which is used to simulate the different
states that may be produced by different control variables within a finite step time from
this moment. The controller will give the suitable control signal at the moment based
on these predicted states. The control signal will be input into the actual system (plant),
and through the sensor and filter the obtained state of true mechanism will again go
into the predictive model for the next predictive control loop.

10



3 Dynamic Models of different Types of Elements

3.1 Rigid Body Dynamic Model

3.1.1 Generalized Coordination and Generalized Velocity

The generalized coordinate of the rigid body can be defined by the position and posture
of only one point on the body. Therefore, the generalized coordinate and generalized
velocity can be written as

T T
ge =" 7] dge = [ po'] (3-1)

The chosen point is called origin point of the rigid body. The choice of origin point can
be arbitrary, and does not even need to be the actual point on the body.

3.1.2 Kinematics of Points on Rigid Body

The position, velocity and acceleration of any point on the rigid body can be determined
through the origin point and the relative position to the origin point. They can be formu-
lated as

=%+ Rgr® with Rg =R (‘P)

7= g0 - RB?%& (3-2)

#* = 70 — Rpf %% 5 + Rp@pf g

where zr° is the constant relative position to the origin point in body coordinate.

3.1.3 The Virtual Power of Rigid Body

The virtual inertial power of the rigid body can be expressed as

T .. .
8Pine = — f 87" i¥pd = —8dq¥ (Medde + Dodqe) (3-3)
i 2

where the mass matrix and damping matrix can be formulated as

11



3 Dynamic Models of different Types of Elements

Myotl —MyoRT 57 0 myRp@pl
M, = - —~ D, = |~ —~ = ]
=7 [meof BT 50° =70 @0 (3-4)
The virtual external gravity power can be written as
- 1
SPext = f 81 1gpd2 = —meoc | ~ocpr|19 = ~8d4e Vextg1g (3-5)
0 - ;LAY - - - -

There is no deformation in rigid body, so that the virtual internal power is zero. The
total virtual power of rigid body only consists of virtual inertial and external power.

8pe = OPine + OPint + OPext = OPine + 8pext,g
. . 3-6
= _Sd_qu (ged_Qe + ged_qe + Kext,glg) = _Sd_qg (MedQe + Ee) (3-6)

3.2 Two Nodes Strut Tie Dynamic Model

3.2.1 Assumption for Ideal Strut Tie Model

The strut tie model described in this part is an ideal strut tie model, which satisfies the
following assumptions:

1. Only the normal stress from axial tension and compression is considered, and
other internal forces that may exist in the real rod are ignored,;

2. the normal stress is evenly distributed with the length of the rod;

3. the cross section of the rod is symmetrical about the y- and z-axis of the sec-
tion local coordinate;

4. the density and total mass of the rod remain unchanged.

3.2.2 Generalized Coordinate and Generalized Velocity

According to the above assumptions, the generalized coordinates and generalized ve-
locity of the two nodes strut tie model can be expressed by the position vectors and
translational velocity of the two nodes.

12



3.2 Two Nodes Strut Tie Dynamic Model

T T

2T] dge = ge = [#*" #2"] (3-7)

9e = [IflT i

Since only the x-axis is determined (parallel to the line connected the two end nodes),
according to the third assumption the posture can be obtained only through the x-axis.

¢® = ¢°nf R =R (") (3-8)

where

sin B =

gxﬂx”/lcp,B cos @® = gin,/lyp

g"ﬂ"” lop = \/ g

According to the relationship between the translational velocities of the two end nodes,
the angular velocity of the rod and the velocity of the axial deformation can be obtained.

ng = gxny/

= gai[7] l]dge = T.dge

pw® = 1/||1£ | Rxsos (RS — gxn¥) [7] 1]dge = T,dqe (3-10)

=t —rt o= =0/l Resor = R(IM/2 001 (347

The angular acceleration of the rod can be written as

12T 7
[_x90 ( ||Ir12|| I— B‘U )gxch

where 712 = 72 — 7%,

dqe + Lpdde = Tpdqe + Todde  (3-12)

3.2.3 Kinematics and Deformation of Points on the Model

Since for the strut tie model only the axial deformation is considered, there is no relative
rotation with the local coordinate on any cross section. The position, velocity and ac-
celeration of any point on any section of the rod can be expressed as

13



3 Dynamic Models of different Types of Elements

ir =1r°+Rgct i = 7° + Rpp@®
ZBc =P= ¢ (3-13)

i = ¢ + Rgp@®t + Rpp@"p@" .t

According to the definition of strain in absolute coordinates, the axial strain of the rod
can be written as

€ = ||| = 1 = nfr - nin, (3-14)

The velocity and acceleration of the axial strain can be expressed as

€= Ir'TN dqe = N'T N'dge = TXdq,
”1_ ” ||1r ” - (3.15)
r _IT -
€ = gEN'T N'dge + 7" 17— (l _LiE 2>que 2 17dg. + 17 dq.
'l == [ S B —

Uy

The stress can be obtained from the constitutive relationship with strain. In order to
avoid the high-frequency oscillation of the rod caused by strain, the average stress is
used to replace the instantaneous stress by introducing smooth factor h. The average
stress in inertial coordinate can be expressed as

L ho h* [ h*
C=Ef=E\g+5E+— &) =Ec+E(ST +€T dge + E— I dge (3-16)

3.2.4 Discretization and Shape Function

In order to satisfy the second assumption, the first derivative of the position vector of
the center of any section on the rod should be constant. Therefore, its position vector
can be expressed by linear interpolation of position vectors of two end section. The
position, velocity and acceleration of this center point can be expressed as

& g% = gd_% e = gd_% (3-17)

Where N is the shape function, and its specific expression is

N=[1-O ¢ N =1/t ] (3-18)

14



3.2 Two Nodes Strut Tie Dynamic Model

with & = s/L. The first derivative of its position and velocity vector with respect to the
arc length coordinate s can be written as

2 N'qe 7 =N'ge (3-19)

3.2.5 The Virtual Power of Strut Tie Model

The virtual inertial power of strut tie model can be written as

OPine = — fff SIiT prdV = _‘Sd_qg‘ (Me,ineﬂe + ge,ined_qe)
v (3-20)
= _Sd_qu (ge,ine@e + Eine)

The mass matrix and damping matrix generated from the virtual inertial power can be
expressed as

|[+2m) D= (L) @

where J is the moment of inertia of section

J =diag(ly +1I; I, L)) [pw” = p@"pw” (3-22)

The virtual internal power with the smooth factor can be written as

L
8pint = _j 0€ 0Ads = —SdQeT (Me,intdqe + ge'intd—qe * 5 ge)
0 : (3-23)
= —8dqt (Me,intd‘?e + Ei“t)

The mass matrix, the damping matrix and the stiffness matrix obtained through the
virtual internal power can be expressed as

h2 h o h* ..
Me,int = ZEALIEIET Qe,int = EAL EIS IS + gz&z&

= = 3-24
e = (/DN N Eel o
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3 Dynamic Models of different Types of Elements

As the external force here only gravity is considered. The virtual power of gravity can
be written as

L
SPexty = f f f 5,17 \gpdV = 8dqTpA f NTds\g = —6dqT ey (3-25)
174 0o —

The virtual power of strut tie model is

8pe = 6Pine + OPint + Spext,g = _Sd_qu (ge@e + Ee)

) (3-26)
= _‘Sd_qg‘ [(ge,ine + ge,int) d_qe + (Eine + Fine + Eext.g)]

3.2.6 Body Parameter of Strut Tie Model after Deformation

According to the fourth assumption, the density p and the total mass m are assumed
to be constant under the deformation. When the cross section of the rod is circular with
outer diameter r, and inner diameter r;, the ratio of outer to inner diameter remains
unchanged, the section parameters after the deformation can be expressed as

m . m )
1, = r "= ,
Co el e - el o=t (820)

where r;” and ;" is the outer diameter and inner diameter before deformation.

3.3 Spatial Timoshenko Beam Dynamic Model

3.3.1 Generalized Coordination, Velocity and Co-rotational Coordinate

The generalized coordinate of the Timoshenko beam is defined by the position and
posture of the end section. The generalized velocity is defined as the translational ve-
locity and the angular velocity in the local coordinate system of the end section.
T T
Jo = [EI QZT] — [IflT (PlT IE2T (,DZT]
- o o T (3-28)

d_qez[d_qf d_qg]Tz[lflT 1Q1T IfZT 2Q2T]

The co-rotational coordinate describes the position of the element without deformation,

which means that, the deformation of any point on the element is based on the co-
16



3.3 Spatial Timoshenko Beam Dynamic Model

rotational coordinate. The co-rotational coordinate can be defined through the coordi-
nates of the two ends of the beam.

s = |r® QBT]T = a5 (qc) (3-29)

where 1B is the position vector of the origin point of co-rotational coordinate expressed
in inertial coordinate, and posture is represented by the Cartesian vector. The relation-
ship between the generalized velocity and acceleration of the co-rotational coordinate
and the generalized velocity and acceleration of the end-point coordinates can be ex-
pressed as

T
dgs = [#*" pw?"] = dap (g0 dde) = Tpdae

ds = [®" 50P"] = dis (ge dge dde) = Tpdde + Tadge

(3-30)

3.3.2 Assumptions and Formulation of Deformation

According to the Timoshenko beam assumption, the deformation of any point on the
section c is caused by the centroid translational deformation of the section zu¢ and the
section rotational deformation. The actual deformation of this point zu can be obtained
by the difference between the position vector before deformation ;,»* and the after de-
formation ,r.

"=+ Rect = r® + Re(pr™ + t) with Rg = B(QB)

3-31
="+ RgRycct = r® + Ry (BZr'C + gut + Bd,ccE) ( )

where gr™° is the relative position of cross-section c to the original point of co-rotational
coordinate, and .tT =[0 .y .z]is the relative position of any point on cross-section
c to the sectional center. gr™¢ and .t are constant for each cross-section. The hypoth-
esis of small rotational deformation is applied, so that the rotation matrix for axis-angle
rotation vector gi¢ and the deformation can be written as:

gd,c = E(Bﬂc) ~1+ Bg

U =Rg(r— ") = gu’ + (Bdc l) ot~ fccﬁ (3-32)
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3 Dynamic Models of different Types of Elements

The deformation coordinate Gd.c is defined as
T <T1T
qac = [ 59| (3-33)

The deformation coordinate at the end point can be expressed by the following formula

pu’ = Eg(lfe - IEB) —r"*
e — _e T — e , e=12
a° = ° (BER.) = o° (Rae) (3-34)

T
T T T T
— [ 1 2 2
9d,end = [BE BY BU BY ]

The velocity and acceleration of the end deformation coordinate can be expressed as

T T T T
— o1 1 ‘2 2 —
dqdend = ! @ BU | =

. 1T "ZT . ZT]

: § (3-35)
dqdend = [BEIT 1w BU 2

where .@® represent the angular velocity of the angular deformation Bge.

3.3.3 Kinematics of Points on Timoshenko Beam

The velocity and acceleration of the point on the beam after the deformation is depend
on the generalized velocity and acceleration of co-rotational coordinate and defor-
mation coordinate, which can be formulated as

o) [daf  dad]’
. 3-36
gl + (Do+ 0. [dab dad " ©°0

Where the translational part can be formulated as

=[1 ~Rs(st™ +52°) Rs 0]

~Rpo@® (o™ + 5L°) 2R3s@” O]

(3-37)

=l

gt:

And the rotational part around the  t-axis can be written as

18



3.3 Spatial Timoshenko Beam Dynamic Model

Hye=[0 —RecRic 0 —Red]
0 —(2§B BRdc"‘RchD' ) E] (3-38)

~B #pT
=[0 ~Rosa@"RacclRi,

IS

3.3.4 The Formulation of Strain and Stress

The strain at this point is defined using linear Green-Lagrange strains, which is defined
as the derivative of the deformation with respect to the coordinate.

1 aBui aBu]- 1 aBui aBU.j
B = BSi =S5\ 5 T3 )5\ 3 T35
2 anj ani 2 acx]- acxi

— c/ c/ c’
BExx = pU° — g0y + g Z

ngy = 1/2 (Bvc, - B(pC’cZ - BHC) (3-39)
BExz = 1/2 (g + g9y + g¥°)
Béyy = BEyz = BEzz = 0
where (x)" = d(*)/d .x and
put = [gu¢ pv¢ pwe]T B%C = [0 ¥ 0T (3-40)

Through the constitutive relationship between stress and strain, instantaneous stress
can be obtained as

- EB€1]' )
BYij — GBgij'iij (3-41)

3.3.5 The Virtual Power of Timoshenko Beam

The virtual internal power of the element can be expressed as

8Pine = fﬁ Z Z 8 5,50y AV = f HA@Z Z 8¢, 50y dA ds

(3-42)
T jo [Sqdc (_1Qdc ﬂZﬂd'C) ~ 8dd.c (gﬂa’c * g“gd’c)] ds

where
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3 Dynamic Models of different Types of Elements

H, = diag([EA GA/4 GA/4 G(I,+1,)/4 EI

Ely])
cal2 9x
B=0B=7l o (3-43)
H,=diag([0 0 0 0 GA/4 GA/4])
The integration by parts is used to deal with the first part of the integration
- T ’ L
8Pint = — SQd,c (EIQd,c + EZQd,c) o
(3-44)
J. SCIdC _1Qdc (23 - 22) gc’ic + g4gd,c] ds

The virtual inertial power of the beam element can be expressed as

Spi. = 5 v = das 1" dQB oy [222 ]\ 4
Pine = fff Ir FpdV = f dgq dqa. _Bc +:B,c d_CId,c s (3-45)

The mass matrix and damping matrix regarding to co-rotational coordinate and defor-
mation coordinate of cross-section ¢ can be formulated as

gB'C = pAgtTgt + plyﬂrTyﬂry + pIZﬂI"I‘ZﬂI‘Z
Dy = pAHTD, + plyHT Dy, + pLHT, Dy , (3-46)

The virtual external power of the Timoshenko beam caused by gravity ;g can be ex-
pressed as

L T L qu T
SPext = ]ﬂ 87" 1gpdV =j 8;7¢ pAds g =J Sl—
1% - 0 - 0

d_qd,cl HiigpAds  (3-47)

3.3.6 Discretization and Shape Function

To avid shear lock, one complex shape function is proposed [Baz-2003]. The defor-
mation coordinate of any cross section can be written as

9dc = gcgd,end (3-48)
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3.3 Spatial Timoshenko Beam Dynamic Model

The detailed description of the shape function is in the appendix. With this shape func-

tion, the integration part of internal power become zero [Luo-2008], so that the virtual
internal power can be written as

L
OPint = — Sgg,c (QQ&,C + gzgd,c) =

L
_SQEend QCT (glgé + QZQC)L) Qd,end (3-49)

Additionally, the relationship between deformation coordinate of end point, co-rota-
tional coordinate and generalized coordinate of the beam can be written as

dag Lo\ T,
lde cl l l - Ig gcl [gd.endl d_qe = gB,endzB,endd_Qe

d

dqg I 071 Is I 0
- | = - - dg.+ 1> =
ld_qd.c l l lg gcl l@l—" lg Ml

= d_B enddQe

Ly

dqe (3-50)
Zd,end -

=

N, end_B enddqe

The virtual total power of spatial Timoshenko beam can be written as

8Pe = Pine + OPine + 6pext,g =

~8dq7 (Medde + ) (3-51)

The generalized mass and force regarding to generalized coordinate can be written as

L
T
j EB end MB CNB endds _B end

Yo = Dend
F, = Dc.dqe +

(3-52)
Eint,e + Eext,e,g

where

ge:

5

L
T T 7
end f ﬂB,end (MB,cﬂB,endIB,end + QBCNB endIB end) d
0 — —_— = = =

L
Finte = Taena Ne (ﬂlﬂc’ + gzgc)| (3-53)

Eext.g = _EB.

[¢]
=
Q.
|
o
3
= |
k)
=
Q.
|
£
o)
o
(oW
%5
&
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3 Dynamic Models of different Types of Elements

3.4 Cubic Spline Beam Dynamic Model

3.4.1 Assumptions for Cubic Spline Beam

The cubic spline beam is a kind of exact geometry beam based on absolute coordinate,
which also satisfies the Euler-Bernoulli beam assumptions. The assumptions are as
follows:

1. The axis after deformation is smooth and continuous in the absolute coordi-
nate system, and satisfies the positions and posture of the two end points;

2. the axial deformation is smaller than the bending deformation, so the parame-
ters of the cross section remain unchanged after the deformation;

3. only the axial strain at the two ends of the beam is considered.

3.4.2 Generalized Coordinate and Generalized Velocity

According to the third assumption, in addition to the position and direction angle of the
end point, the generalized coordinates also include the norm of the first derivative of
the position to the arc length coordinate s to represent the axial strain of the end point.
Therefore, the generalized coordinates and generalized velocity of the cubic spline
beam are defined as follows:

T
=l @' =[c" ¢ Nl 2" o ]

T 3-54
dg, = [daf dgl]" =" w0 e o " el %

In general, the deformation in a single beam element is not large, so the relative rota-
tion angle between the two end-sections can be represented by the unique cardan
angle ;o2 through the respective rotation matrix.

Bcardan (1('012) — IBZ —

[

ng 1212=[1<p12 W2 e12T (3-55)

The order of the cardan angles from end section 1 to any section c is defined as follows

Z y X Z y X
1—> —> —> 2 1—>—>—> (3-56)
191211»0121‘.012 10 Y 10

According to the monotonicity of the sin function near O, the rotation angle along the x-

axis ;1% can be expressed as [Gao-2020]
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3.4 Cubic Spline Beam Dynamic Model

12

10 =sin™! (g}lgzgy/cos 11/)12) with 2 = —sin™? QZT1§2£>< (3-57)

Through the angular velocity and angular acceleration of the two end sections, the
angular velocity and acceleration of the relative rotation angle can be determined

2(‘) — 13}‘10) _l_Tcardanl(plz with Tcardan Tcardan (1¢12)
2(’) —RTRll(t) + Tcardan 912 2(‘) IBZTI(‘) _l_Tcardanlle
) U (3-58)
1‘P12 = Tcardan (_ 2~ 5331201)‘1_% = z(pud_%

T,
11 = = Tp12dqe + Tp12dqe

where
Lo-@10000 m.-ooolg
Tcardan:Tcardan( P12 <,0 ) (3-59)
T Tcardan 1 _~2RTR T_ TcardanT
:(pl 22_21:“) _gp12

3.4.3 Discretization and Shape Function

In order to ensure the geometric continuity of the cubic spline beam in the absolute
coordinate system, Hermite interpolation is used to determine the position of the center
of the section [Wan-2015]. Therefore, the position vector of section ¢ and its derivative
along the arc length coordinate can be written as

r@e = N2 g1y N2 2 4 Np O 1 g N2 O g2 (3-60)
where ()& = d®)(x)/ds®,s = 0,1,2, ... and
= e mk = e = o mt = e
ir I” 7 [[1Mx LA | FAS )Y T LA |} L5 17| X29x (3-61)
Velocity and acceleration can be written as

£ = NODdg, £ = NOhdg. + NODde (3.

where
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ﬂ(s) — [Nol(S)l Nll(S)l N()Z(S)l le(S)l]
L0 00 0 0
0 —f"R mi 0 0 0
2=lo 0o o1 0o o
~12 2
2 0 0 0 —f"R (3-63)
0 0 0o 0 0 0
0 _Hlfllllﬂnélgx _21@1(191 0 0 0
2=1o o 0 0 0 0
0 0 0 0 _”1['2”522@2@; —21@2(1&2

The direction of the tangential vector v’ reflects the x-axis of the section. In addition,
the x-axis of the section can also be defined by the rotation matrix of the section

mx = 1/’ || "¢ = RiR, (40D Ry (1¥) gx (3-64)

Therefore, the y-axis and z-axis components of the relative rotation angle to the section
1 can be obtained, which reflect the bending of the beam.

11!) = — Si]‘l_1 QZTB;TIEX 19 = SiI‘l_1 (QJE:LTIEX/COS 11/)) (3_65)

The x-axis component of the relative rotation angle reflects the torsion of the section
relative to section 1, which can be obtained by linear interpolation

19 =& with & =x/L (3-66)

Therefore, the relative rotation cardan angle from section 1 to section ¢ can be ex-
pressed as

1@2[1‘P W 101" 1£’:[1§0' VARG (3-67)

The velocity and acceleration of relative cardan angle and its derivative with respect to
the arc length can be written as
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3.4 Cubic Spline Beam Dynamic Model

19 = zAngled_Qe 19, = ZdAngled_Qe
1@ = Qngleﬂe + zAngled_Qe (3-68)

The detailed expressions are shown in appendix [Fan-2016].

3.4.4 Kinematics and Deformation of Points on the Beam

The angular velocity and angular acceleration of section ¢ can be written as

CQC = (gggwl + gdzAngle) d_qe = gwd_qe

| o | . o 3-69
= Lo+ (i + i — BIRIL: ), = i + Loz, )

in which

[1=

a=R(0)  L=I(e) L=1(e.0) «wi=I(w): @70

=3

According to the Euler Bernoulli beam assumption, the shear strain on the section is
ignored. The principal strain along the x-axis of section ¢ can be written as

1€ = €= ”ﬁ’C” -1
€ = = 1/| | "' N'Ddg. = T dge (3-71)

Bending and torsional strains are expressed by the curvature of the section

4

CE = Idlg

et = |LiTunngie + 1’ (10 19') Tange = oL dae = Tudge

(3-72)

3.4.5 The Virtual Power of Cubic Spline Beam

The virtual inertial power can be written as the summation of the translational and ro-
tational part. The virtual translational inertial power can be formulated as

L
8pine,tra = _pAf SItCTIECdS = _Sd_qg (Me,ine,traﬁe + Ee,ine,tra) (3-73)
0

where
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L
ge,ine,tra = pAgT ngdsg
) . (3-74)
Ee,ine,tra = Qe,ine,trad_qe = pAQT ﬂTﬂdS Qd_qe
= = J,== =

The virtual rotational inertial power can be formulated as

L
8Pine,rot = _pf SCQCT (]CQC + CQCZCQC> ds
0 I

(3-75)
= _Sd_qg‘ (ge,ine,rotﬂe + Ee,ine,rot)
where
L
ge,ine,rot = pf gcgzzmds
Lo (3-76)
Feinerot = Qe,ine,rotd_Qe = 'D_I I(;l; (lzw + cQQIw) ds d_‘le
— o = \= = =
The virtual internal power of the cubic spline beam can be expressed as
L L
8pint = _] 6c§TCQdS = _Sd_qgj IStrainTKscédS = _Sd_nge,int
0 o - (3-77)

IStrain

oy IKT]T K. = diag([EA G] EL, EL))

The virtual external power of the cubic spline beam caused by gravity ;g can be ex-
pressed as

L L
OPeseg = pA | 811Tds g = 6dalpAD” [ NTdsig = ~ddallg  (378)
0 - 0o — -

3.5 Super Truss Element Dynamic Model

3.5.1 Assumptions for Super Truss Element

In order to reduce the number of degrees of freedom of the truss element, three as-
sumptions are proposed, so that each beam in the truss element can be expressed by
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3.5 Super Truss Element Dynamic Model

the coordinates of the two end sections. These assumptions can be acceptable when
the truss is long and the deformation is uniform and small.

Assumption 1: Rigid End Section

When the truss is long, the deformation is mainly along the length of the truss, while
the deformation of the end section is relatively small. In reality, the truss is often
strengthened on the end section, making the stiffness of the end section larger, so the
end section of the truss can be considered as rigid. The rigid end section of the truss
means the position vector from the section node to any point on the end section in this
section coordinate is constant.

Assumption 2: Geometric Continuity of Main Beam

The position vector of the cross-section center of the main beam is assumed to be
geometric continuous after the deformation. Moreover, the arc-length derivative of po-
sition vector remains parallel to the normal direction of the cross-section.

Assumption 3: Rigid Connection

The rigid connection hypothesis refers to the relative rotation angles of different beam
elements connected to the same node in the local coordinate, which remain un-
changed before and after deformation. In reality, riveting or welding is often used to
connect the beam element, and the stiffness of the nodes will be strengthened, so this
assumption is in line with the actual situation.

In addition, all truss elements here are regular, which means the shape satisfies the
following conditions:

1. The end section of the truss element is a plane, and the two sections are par-
allel to each other and perpendicular to the virtual main axis;

2. All beam members are straight before the deformation

3.5.2 Parameterization of Super Truss Element
Truss Elements and Truss Order

The configuration of the sub-beams is defined by the connection form and the truss
order. The sub-beam connection form refers to the position of the internal nodes con-
nected by the sub-beam. Truss order refers to the ratio of the total length of the main
beam to the minimum element length divided by the sub-beams.
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Main Beam (M) Cross Section
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Figure 3-1: Definition of truss elements and truss order

The truss here is defined by nodes (cross section nodes, internal nodes), planes (cross
section, sub-beam planes) and beam elements (cross section beams, main beams,
sub-beams).

Parameters of Cross Section Nodes

According to the rigid end section assumption, only the position vector from the section
node to any point on the end section in this section coordinate should be defined.
Moreover, the posture of the section node can be expressed by the angle of the end
section.

Parameters of Cross Section Beams

The cross section beams in a certain cross section s can be defined by the cross-sec-
tion nodes. According to the definition of beam element above, it is required that the x-
axis of the beam must be parallel to the line connecting the two ends of the beam when
there is no deformation. In addition, the z-axis of cross section beam is defined to be
perpendicular to the cross section, which is the same as the x-axis of the cross-section
coordinate. Therefore, the rotation matrix of the nodes at both ends of the end beam
can be defined as
S

Rs = [(nx my mz] with gé = BiTgs = const. Vi,s (3-79)

where

ms = (= )/l =l Mz = Mx (3-80)
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3.5 Super Truss Element Dynamic Model

in which s € §;, k,l € C;,i € £. According to assumption of rigid end section or rigid
connection, the relative rotation matrix between the coordinate system of the nodes at
both ends of the cross-section beam and the coordinate system of the end section is
constant under deformation.

Parameters of Main Beams, Sub-beam Planes and Internal Nodes

Main beam is defined by the two cross section nodes of different end section. The x-
axis of the main beam is along the length of the main beam.

me = (%= ")/l = | (3-81)

in whichm € M, k € C;, | € C;. The sub-beams must be located on the surface formed
by the two main beams. According to the assumptions above, only the situation where
two main beams form a plane is discussed, which is basically the same in practical
applications. The direction of the sub-beam plane and the z-axis of the main beam in
this sub-beam plane is defined by its normal vector.

My ® = my® = k& = i 1k (3-82)

in which m,n € M, g € P. The main beams belonging to different sub-beam planes

will have different directions defined in each sub-beam plane. According to the rigid
connection assumption, the relative rotation between the end node of the main beam
and the cross-section node is constant.

_ m,g m,g . i _ pT _ .
gm,g—[ln_xm ny mn, ] with gr‘n,g—_igm,g—const. vi,m, g (3-83)

With the assumption of geometric continuity of the main beam, the direction of the
internal nodes on the main beam is the same as the direction of the main beam when
it is not deformed.

Parameters of Sub-beams

The sub-beam is defined by the main beam and the location of end nodes on the main
beam. The x-axis of the sub-beam is defined as the unit vector between the internal
nodes on two main beams. The z-axis of the sub-beam is defined as the normal direc-
tion of the sub-beam plane.

md = (P = )/ — m = k® (3-84)
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3 Dynamic Models of different Types of Elements

in which h € By, p € J,, q € J,. According to the rigid connection assumption, the rela-
tive rotation angle between the end point coordinate of the sub-beam and the corre-
sponding main beam coordinate is constant and must be along the normal direction of
the sub-beam plane.

gh = [Iﬂi1 Iﬂ; 122] with gfln’g = g;fl,ggh = const. Ym,g,h (3-85)

3.5.3 Dynamics Calculation of Super Truss Element

The dynamics calculation of the super truss element is composed of the following mod-
ules: cross section node, internal node, cross section beam, main beam and sub-
beam.

Start
Super Truss Element Mass&Force
ge.dge v
Calculate cross section node coordinate

Cross Section Node |

\ 4
Calculate Internal Node coordinate
Parallel Computing Internal Node
E ) 2 L 4 ) 4 f
‘ Calculate Main Beam Calculate Sub-Beam Calculate Cross Section Beam| |
E Mass&Force Mass&Force Mass&Force E
: MainBeamMass, SubBeamMass, CrossSectionMass, H
E MainBeamForce SubBeamForce CrossSectionForce E
) 4

Mass = MainBeamMass + CrossSectionMass + SubBeamMass
Force = MainBeamForce + CrossSectionForce + SubBeamForce

Mass,Force ¢

End
Super Truss Element Mass&Force )

Figure 3-2: Flow chart of dynamic calculation of super truss element

From the flow chart above, it can be found that the calculations of the cross-section
beam, the main beam and the sub-beams do not affect each other. Parallel computa-
tion can effectively reduce the single-step calculation time of the super truss element.

Generalized Coordinate and Generalized Velocity

According to the above assumptions and parameter definitions, the generalized coor-
dinates and velocity of the super truss element can be defined only by two end sections.
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3.5 Super Truss Element Dynamic Model

.=l @' =[" o7 7 | 12ec
B B - 3-86
dqe = [da: dgf] = [ " 2" Le?"] (3-86)

Cross Section Nodes

The position and the posture of the cross-section nodes will be calculated according
to the assumption of rigid end section.
=t + Ryrte

=
Il
[ES

(3-87)
The generalized velocity and generalized acceleration of the cross-section is com-
posed of translational and angular velocity, which can be written as

T . (3-88)

where

|
>
1=

‘w‘

Lo

[0 I {=o (3-89)

=3
1]
—

o llo
IES
o [
IR}

11O 11—

Internal Nodes

The internal node is defined by the main beam on the sub-beam plane to which the
internal node belongs. The coordinates of the end point of the main beam can be ob-
tained by the corresponding cross section node and the relative rotation angle to the
main beam in a certain sub-beam plane g.

.
Mg = 1 Rmg = RiRmg (3-90)

The generalized velocity and acceleration of the end point of the main beam is
T

T

dase = [ike  mior®|

= I ¢ Tkdde = Tmgxdde
T
: i T T Je +1
i = [y whol™'] = s (dde + £idae) = Lnpadle + Trngrcdas

(3-91)

where T, = diag ([g gn,gTD-
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3 Dynamic Models of different Types of Elements

Here the main deformation of the main beam is considered to be caused by bending.
Thus, the deformation in axial direction is ignored. The position vector, rotation matrix
as well as the generalized velocity and generalized acceleration can be obtained by
using cubic spline beam model, whose axis is also assumed to be geometric continu-
ous. Thus, the generalized velocity and generalized acceleration can be formulated as

gT]T m,g
dqg [ ] =Thg Imgdqe = T gdqe
—_ T _ m,g . ~m,g -
dqg [I g EQI%] - zprg zm'gd_e + (zp.g zm,g + zp.g zm,g) d_‘le (3-92)

in WhICh g and g can be obtained through cubic spline beam model.

The Jacobian matrix between generalized coordinate of super truss element and gen-
eralized coordinate of main beam can be written as

- [zgl,g,k Zr?lgl]T Im,g = [Zr?llglk Zr?llg»l]T (3-93)

Ting
Cross Section Beam Elements

According to the parameters of the definition of cross section nodes, the coordinate of
the end point of the cross-section beam is depend only on cross section node.

kK _ .k
s =1

7
Il

||

=

= (3-94)
The generalized velocity and acceleration of the end point can be expressed as

r -
é( Ili_as) l Iskakd e = Is,kdqe with Iskk = [
SWi ==
k-
sW

I
- = = 9 B (3-95)
T

dgs = [k ii] = Ik

I

dg e zs zkdq Zs, dee _.s,kd_Qe

According to the definition of end beam, the generalized coordinate, velocity and ac-
celeration of end beam can be expressed as
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3.5 Super Truss Element Dynamic Model

= R;R!

I[_:U

k _ i 1
s =T 1_s:17" Bs_glgs Rs

dq, = [ aq)"] = [k Tl doe = Lda, (3-96)
i, = [aa" aa"] = [ T dae+ [ 15" dg. = B+ o,

The mass matrix and force vector of the cross-section beam need to be calculated
through the generalized coordinates of the cross-section beam, and then converted to
the super truss element coordinate. The virtual power of the cross-section beam can
be written as

5p8 = ~5dq] (M3das + ) = ~5daf [LTMT,dqe + (LT MsTydg. + ITES )|

3-97
= -sdg? (Mzda. + ) o0

Main Beam Elements

Considering that internal nodes will transmit force and moment, it is necessary to seg-
ment the main beam according to the position of the internal nodes (sub main beam),
in order to meet the virtual power principle. The generalized coordinate of sub main
beam can be obtained directly using the generalized coordinate of internal nodes.

T
dgm =[5 Tq| dge = Tndge
. LT _ : (3-98)
=17 18] dde + (5 L] dae = Tndde + T,
The virtual power of sub main beam can be written as
spl = —8dah (MR ddm + E) = —8dq? (MPdg, + EM)
N (3-99)

= —8dqy [TA MR Tndde + (TIMETndqe + TRET )|

Sub-beam Elements

According to the internal nodes connected by the sub-beam and the constant relative
rotation between the end points of the sub-beam and the internal nodes, the general-
ized coordinates of the end points of the sub-beam can be obtained through the inter-
nal nodes. The generalized velocity and acceleration of the sub-beam endpoint can be
expressed as
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I 0
.pT T T p . p = =
daf = i7" fub'| = TpIpdae = Topdde with TP =| " pr
= on (3-100)
p_ | .pT T|" _ +p p _
dgf = [i" Pab"| = TP, Tpdde + TP, Tpdde = Tpdde + T pdae

inwhich p € M. Therefore, the generalized velocity and acceleration of sub-beam can
be written as

T
T T
d_qh = I:zh'p thq] d_qe = ghd_qe

T - _ ) (3-101)
Tia) dde+|Tip  Tia| dde = Tndde + Tnda,
The virtual power of sub-beam can be written as

Spé = —8dqy (g}llld_Qh + Eﬁ’) = —8dqe (ggd_% + Eeh)

, . (3-102)
8dq? | LT MAT, dde + (TT MiThda. + T A )|



4  Multi-Body Dynamics Method

4.1 Multi-Body Dynamics Function

According to the Lagrangian equation of the first kind, the dynamic equation with con-
straints can be written as follows

~N with @ = Bqu (4-1)

The mechanism must always satisfy its constraint equation when it is moving, so the
derivative of the constraint equation with respect to time must always be zero. When
the mechanism satisfies the constraints in the initial state, according to its constant and
zero time derivative, it can be ensured that the mechanism still meets the constraints
in the subsequent movement.

1l
o
1l
Il

@ =>0=0
=0

v =
@ 0=2=0 , if

|e S

0
0=d (o) = 0,B(ty) = 0 (4-2)

According to the above characteristics of the constraint, the multi-body dynamic equa-
tion can be written as

M

BT

Mdg+F +BA=0
dg=]@) o
BTdg+I =0

@ =B'dq
é =prdg+r 43

I~ 1=

=0

_‘1
A with

o |

| Q
v

The generalized mass matrix and generalized force vector with constraints can be for-
mulated in the following form. A represents the magnitude of the generalized constraint
forces in the certain constraint directions B.

B (4-4)
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4 Multi-Body Dynamics Method

4.2 Joint Configuration

A joint refers to a point that has a fixed relative position and angle with a certain gen-
eralized coordinate of the body. Joints are used to connect other bodies or bear gen-
eralized external nodal forces. The generalized coordinates of the joint can be repre-
sented by the position vector and the rotation matrix.

=P+ QBBEB] _ grB = const. .
R; = RgRP with {%B = const. ' BB = g(f ) (4-5)

The generalized velocity and generalized acceleration of a joint can be expressed by
the generalized coordinate of the body.

T 1T . T TT . :
dgy=[#1" '] =Tedas dg=[i" 1&"] =Tdds +Lsdgs (4-6)

where
T T T T 7T
qg = [IKB @® ] dgg = [, pw® | dgg = [ p@® |
I —Rpgi? . 0 —Rpp@P®pr® (4-7)
Ts=|" ~— - te=7 = =
FBT 0 R 2710 0

4.3 System Generalized External Forces

The virtual external nodal power of generalized external forces applied on the joints
can be formulated as

OPext = Z] Sd_q]T Eext,] = Sd_qT ZB zg ZIEB EITBEBXL] (4-8)

It should be noted, that the translational velocity is defined in inertial coordinate system,
while the angular velocity in body local coordinate system. This means the generalized
external force should be converted to the corresponding coordinate system.
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4.4 Formulation of Different Constraints

T TT )
Foxey=[,F1" ;M| with F)=RyF and ;M = R \M (4-9)

4.4 Formulation of Different Constraints

The constraint equation is established by the generalized coordinates of the two joints.
Py 2 (Ifllrgll: 1[12@]2) =0 (4-10)

The first-time derivative of the constraint equation in the joint coordinate system, the
body coordinate system and the global coordinate system can be written as

Dy1yz 2 Q]TL]zd_qllz = ggl,Bzd_quz = gqu =0

QB1 B2 = 511122112 B12 ET = ggl,BzzBu Ty, = glrgz,mzzmz (4-11)
where
dgy dqgp, Tgy Iu B1 0
d_CI]12 = d_Q]z d_QB12 = dq _B B]12 B12 — : 212 (4-12)

4.4.1 Fixed Constraint

Fixed constraint means that the positions and rotation angles of the two joints are ex-
actly the same. Therefore, there is no possibility of relative movement between these
two joints.

The position constraint and angle constraint can be written as

IKII_IKIZ =0

T
Pl - =0 =0 with ¢ = Rigi ,Vi#j€Xxy,2) (4-13)

The constraint equation and its first and second derivatives over time can be formu-
lated as
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4 Multi-Body Dynamics Method

n_ 2
Prix = IrE]lTBI]r_z me:gﬁﬁ(;d_qlu QFIXZEIFII,}(ZTQMZ tIrx  (4-14)
where
1 0 -1 0
- 0" ~g:RRRngx O —gxRiRpg:
Bz o -gIRLRug, 07 -glRMR.g,
O -gRLRg O -glRRug,
I U U (4-15)
o7 _3221_} o7 Q;{ngz
b Bty g g [
o7 _31;221@( o7 Qgglzgy_
D1z = n@" RjiRyz — R Ry 2@ Q_m = 12§]2§1T2§l:— RppRjp@"

4.4.2 Revolute Constraint

Revolute constraint means that two joints can only rotate relative to one another around
a body fixed axis. For the revolute constraint described here, the position vectors of
the two joints are the same, and the i-axis of joint 1 and the j-axis of joint 2 are the
same. Therefore, the two joints can rotate relatively around this axis. The position and

angle constraint can be written as

it =l

T
el = e’ = el e)?

—1 -] =p _] = 0 4 l”] E (X»Y» Z)l Vp ¢ l' E (le1 Z)

The constraint equation can be formulated as

e I
1T 2 TpT , )
Orey = | 1€ 18" | =|9pRIRRYi,p £ g€ (xy2),(pq) #i
T TpT
er el? | 19pRRrg;

(4-16)

(4-17)

The first and second derivatives of the revolute constraint over time can be written as
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4.4 Formulation of Different Constraints

Prev = ggEvd_qllz Prev = EEEV@HZ + IRev (4-18)
where
I 0 ! 0
TpT T ~
BRev = 0" -y Ry2Ry1gp of _Qg%@zgj
lQT —Jj Rjszlgq 0T ggl‘RITIEIZQNJJ
0 0 0 0 (4-19)
: 0T g'D,1 g, 0" g'Di, G
Twey = Brevddy> = [_ G=de = Ip229|dg),
19" gDxnge 0" gili2gj|

4.4.3 Prismatic Constraint

Prismatic constraint means that two joints can only slide relative to each other along a
fixed route. Here it is only considered, that the relative sliding route is a straight line. It
is also assumed that when the two joints are sliding, their rotation angles remain un-
changed, and the relative sliding direction is along e/* = e/?,i € (x,y,2z). Therefore,

the position and angle constraint of the prismatic constraint can be written as

T
(= 2) 1 el & (2t - 1?) 121{)1 =0, Vp#i€ (xy,2)

P - =0 (4-20)
The constraint equation of the prismatic constraint can be written as
(Illl - IEIZ)TBngp
T .
@er1 = | (i1 = 1) Rjugq| P Fa € &y, 2),(p@) #1i (4-21)

Ry Ry,

The first and second derivatives of the prismatic constraint over time can be written as

Ppg; = ggmd_qhz Ppri = ggmﬂnz + Ipri (4-22)

where
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4 Multi-Body Dynamics Method

GiRE —( - 1) Rug, -ghRE O
gIRE —(' = ) Rugy —glR}: o7
ggRlz o7 —g;rgﬁgugx o7 —Q};gﬁgjzgz
o ~9zRp2Rp1 gy 0" —gyRuR: 7,
O g O —glEiR.)
—gin@"RL DGy gin@"RL 0T ] (429)
—gan®@"Ri —Dadq gand'Bn 07
Ipg :BFT’RId_qu = o _ZTQZ@ o QEQHQZ dqyiz
o7 _;nglgy o7 nglzgz
o7 _31;221gx o7 Q;Fgugy

QrT1 = (Ifll - Iilz)Tgu + (1[11 - IEIZ)T§J111§]1

4.4.4 Spherical Constraint

Spherical constraint means that one joint can rotate at any angle around another joint.
For spherical constraints, only the position vectors of the two joints are required to be
same. Therefore, the constraint equation can be written as

Pspy = ) —ir* =0 (4-24)

The first and second derivatives of the spherical constraint over time can be written as

Dspy = ggEVd_QnZ Dspy = ggpﬂﬂuz + Ispn (4-25)

where

ESTPH =1 9 -1 9
Lspy = Bspudqz = @ 0 9 Odg,=0 (4-26)
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4.5 Solving Multibody Dynamics Equation

4.5 Solving Multibody Dynamics Equation

4.5.1 Baumgartner stability method

According to the above, the constraint equation keeps unchanged by making the sec-
ond derivative of the constraint over time equal to 0. However, due to the cumulative
error of numerical integration, the constraint equation will gradually deviate from zero.

In order to maintain the stability of the constraint equation during the integration pro-
cess, the Baumgartner stability method is applied. This method introduces the first de-
rivative of the constraint equation ¢ and the constraint equation @, so that the cumu-
lative error of the constraint equation is considered in the process of numerical inte-
gration, which keeps the constraint equation always 0 during the integration. Through
the Baumgartner stability method, the original I" can be replaced by I"*.

=0 - $+2aP+a’P=0
=0 with I*=TI+2aBd+ a?P (4-27)

where a and  are compensation coefficients, the recommended value of a is half of
the system's natural frequency, and the recommended value of § is 1.

4.5.2 State Space Representation

The dynamics equation is a second-order differential equation, which needs to be con-
verted into a first-order differential equation (equation of state) for easy calculation.
The new state variables defined here are as follows

i=[a" 44"’ (4-28)

Therefore, the state space representation of dynamics equation can be formulated as

i:

= f(x) (4-29)

[gl | 1(ed)

4l {-u(a) £ (.da)
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4 Multi-Body Dynamics Method

4.5.3 Runge-Kutta Integrator

Runge-Kutta Method is a high-precision single-step algorithm used to solve nonlinear
ordinary differential equations (ODE). The dynamic equation is generally a nonlinear
ordinary differential equation, and can be written as the following general formula

{x = f(x) + g(x)u = #(t. x,u)

xo = x(t = 0) = known (4-30)

According to Runge-Kutta Method, the solution of the ODE can be obtained by the
following iterative formula

( X1 = Xx + Atz bik;
i

(4-31)
Ki = ﬁ(tk + CiAttzk + Atz _ai,jkj,gk>,\7’i

]

The parameters a; ;, b; and ¢; can be obtained from butcher tableau. When q;; =
0,vi<j, itis the explicit Runge-Kutta Method, when 3a;; # 0,i < j is the implicit
Runge-Kutta Method.

€1 |11 Q12 - Qg
C2 [Qz1 Q22 -+ Oz c A
. . z b_’r
Cs | Qsq Qg -+ Qg =
by b, - b
Fiugre 4-1: Butcher Tableau

From the butcher tableau and formula, it can be found that k; is difficult to be obtained
directly for the implicit Runge-Kutta Method. Therefore, a first-order Taylor expansion
of k; at (ty, x, ux ) is applied.

Ki:#k-l_CiAt’ﬁt_i_AtZ ai,jkj#x"‘oz
- - = (4-32)
Fre = #(tro 20 we) #: = 0f/0t Fx = 0f/0x

Therefore, k; can be obtained by solving the following equation
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k= +MF +MEL > k= (l—A@)_l (# +acF)

ky o ﬁt a1,1£_ag ay,2 ﬁg o a1,s£_a£
N e e
lKSJ lcsﬁtj las,lﬁ{ as,zf_{ aS,Sﬁ)ﬁJ

Therefore, the iterative format of the general implicit Runge-Kutta method can be writ-
ten as

Xieer = x5 + Aty (1— At@)_l §+nc2g (1- Atﬂ_@)_1 F
& = [bil byl TR (4-34)

According to different Butcher Tableau, implicit Runge-Kutta can be divided into Lobatto,
Radau, Gauss, Kutta 4, etc.

In general, the implicit Runge-Kutta Method is more accurate and stable than the ex-
plicit method, which realize a larger time step. However, the solution is more difficult:

1. # and Fx is difficult to obtain for complex models;

2. The dimension of the above equation is s times larger than the dynamic equa-
tion.
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5 Rigid-Flexible Hybrid Multibody Dynamics
Program

5.1 Functions of the Program

5.1.1 Main Functions
Jacobian Matrix Calculation

Jacobian matrix is obtained through the symbolic package CasADi, which is mainly
used for optimal control and implicit ODE solver. In this program the Jacobian matrix
of mass matrix to generalized coordinates, the Jacobian matrix of generalized force
vector to generalized coordinates and generalized velocity can be calculated. In addi-
tion, the symbolic matrix relevant to symplectic solver can also be calculated.

Static Position Calculation

In this program two ways to get the equilibrium position are provided: dynamic solution
under damping and nonlinear equation solution. In the method of dynamics solution
under damping, a larger damping term is added to the system, so that the system
gradually approaches the equilibrium position from the initial state. The equilibrium
state obtained by this method has no initial error in the subsequent dynamics calcula-
tion.

In the method of solving nonlinear equations, the generalized speed of the mechanism
is set to 0, and the generalized coordinates will be changed to make the generalized
force to 0. Due to the differences between the nonlinear equation solver and the dy-
namics solver, it cannot be completely guaranteed that the mechanism will reach the
equilibrium position in the initial state of the dynamics solving process. However, during
the method of solving nonlinear equations, the equilibrium position of the mechanism
can be obtained more quickly. The error in the initial stage of dynamics solution is also
acceptable.

Dynamics Calculation

The calculation method of multibody dynamics has been described above. Here is a
detailed introduction to the pre-processing of the system, the definition of the inertial
coordinate system, the introduction method of driving force and the use of Baumgart-
ner stability method. The specific process can be seen as follows
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Start
Multibody Dynamics

Preprocessing

v

%

Set Frame State

Add System Damping

v

v

Determine Driving Force

Add Nodal Force including Driving Force

For All Bodies

v

Add Constraints

v

Determine Body State

Baumgartner Stability Method

v

v

Get Mass & Force of Body

Get First Order Derivative of state variable
with respect to time

v

—1 Convertto Generalized Mass & Force

&

Figure 5-1: Flow Chart of Dynamics Calculation

v

Start
Multibody Dynamics

5.1.2 Additional Modules and Auxiliary Modules
Dynamics System with Minimum Degree of Freedom

In addition to multi-body dynamics modeling for rigid-flexible hybrid models with large
degrees of freedom, in this program some rigid-body minimum-degree-of-freedom
models are also established such as folding boom system, multi-degree-of-freedom

pendulum models, etc.

® Sph.
@, U]
Vs
@
o
a b C d
Figure 5-2: Rigid-body Minimum-Degree-of-Freedom Models a) Folding Boom System b) Sin-

gle Jib Pendulum c) Double Jib Pendulum d) Triple Jib Pendulum
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5.1 Functions of the Program

Hydraulic System Module

Many mechanism models need to be driven by hydraulic systems. In this program,
models of hydraulic cylinder, throttle valve, back pressure valve, reversing valve, and
ideal hydraulic pump with compressible fluid are established, and overall hydraulic sys-
tems with different hydraulic connections is built. The co-simulation logic of hydraulic
system and mechanism dynamics system is shown as follows

9 ,{Mech S o
dq dsdt Hydraulic |dpdt
Hydr[—» Actuator
Fp | Hydraulic p
u | Force ¢

dqdt

un Hydraulic

Control System

\ 4

unm | Mechanical [FJ] Mechanical
Control System System ddp A >

A
gl X xdt

dg

Figure 5-3: Co-Simulation Logic of Hydraulic System and Mechanism Dynamics System

Since the lattice boom crane model does not involve the hydraulic model, the hydraulic
system is not explained in detail here.

Deep Reinforcement Learning based Optimal Control Module

Start
Reinforcement Learning ( Start )

Set Environment

/ Read Configuration File / v

Set Properties of Observations

Set Environment v
v Set Properties of Actions
Set Reinforcement Learning Agent v

v Set Reset Function
Train v

v Set Step Function
Simulation v

-

Reinforcement Learning

End
C End ) Set Environment

Figure 5-4: Deep Reinforcement Learning Framework for Optimal Control based on the Multi-
body Dynamics Model
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5 Rigid-Flexible Hybrid Multibody Dynamics Program

In this program a deep reinforcement learning framework for optimal control based on
the multi-body dynamics model is created. For dynamic systems, the observations are
generally continuous, and the action can be continuous or discrete according to actual
needs. The agent of reinforcement learning needs to be selected according to the at-
tributes of the observations and the actions. The reset function will reset the observa-
tions to the initial state or initial equilibrium state of the mechanism, and the step func-
tion will get the observation value at the next sampling time through the ODE solver of
the dynamic model.

Nonlinear Model Predictive Control Module

This program embeds “mpctools” developed by Rawlings Group for nonlinear MPC
control. The expansion package is based on the CasADi symbolic calculation. The
research and development of this module is not the focus of this article, so that it will
not be discussed here.

Model Recognition Module

This program also has an interface for model recognition. At present, only sparse iden-
tification of non-linear dynamics model has been established, and other model identi-
fication methods are still under study.

5.2 Data Input and Parameter Setting

This program realizes the separation of data and code for basic functions. According
to the configuration Excel file, the program can perform calculations for different oper-
ations on different models. The current complete parameter modules are divided into
two categories: dynamics model parameters and solving parameters.

5.2.1 Parameters for Dynamics Model

Almost all the rigid-flexible hybrid dynamics models here are created through multi-
body dynamic model, which includes body parameters, joint parameters, constraints,
and external nodal force parameters. In addition, the initial state of the mechanism and
plot configuration is defined in the Excel file.

The minimum degree of freedom model can also call the body parameters, external
nodal force parameters and display parameters in the configuration file. The parame-
ters are shown as follows
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5.2 Data Input and Parameter Setting

Table 5-1: Parameters for Dynamics Model
Body Type Model Type, Number of Degrees of Freedom, Section Type
Material Properties Density, Elastic Modulus, Poisson's ratio
Body Length of Beam Beam Length
Parameter (Round Tube) Outer Diameter, Inner Diameter
Section Size (Frame) Length, Width, Thickness
(Customized) Area, Moment of Inertia, Quality, Centroid position
Joint Con- Joint Quantity Joint Quantity
figuration Single Joint Joint Position, Joint Posture

Constraint Constraint Quantity Constraint Quantity
onstrain
Single Constraint  Number of Body 1 and 2, Number of Joint 1 and 2, Constraint Type

Initial State Position, Posture, Other Initial State

N Force Quantity Force Quantity

Force Single Force Number of Body, Number of Joint, Fx, Fy, Fz, Coordinate
Single Moment Number of Body, Number of Joint, Mx, My, Mz, Coordinate

Plot Parameter Joint Sequence, Interpolation Number, Plot Configuration

5.2.2 Parameters for Solving Route

The solving route can be set in the configuration file, including global gravity, statics
and dynamics parameters, result saving and post-processing methods.

Table 5-2: Parameters for Solving Route

Gravity Direction, Magnitude

Jacobian Matrix Do Calculation Jacobian Matrix

Static Manipulate Do Calculation Static Position, Start from Static Position
Position Nonlinear solver Algorithm, Step Tolerance, Function Tolerance, Max Iterations
ODE ODE Solver Solver Name, Solver Method, Order, Option

Setting Solving Parameter Start/End Time, Absolute/Relative Tolerance, Max Step
Display by  Time Display Do Display, Display Interval, Display Start Position
Computing Mechanism Display Do Display, Display Interval, Display Start Position
Result Do Save Result, Existence, Saving Dictionary

Plot Configuration Axes Size, Grid Configuration, Observation View
Postprocessing Postprocessing Method

Currently, only the above parameters can be modified through the configuration file.
The driving function, dynamics preprocessing function, additional system configuration
and other parameters still need to be modified in the program.
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5 Rigid-Flexible Hybrid Multibody Dynamics Program

5.3 Display and Analysis of Result

The post-processing of the final results can make it more intuitively to understand the
entire dynamic process and simply to analyze the results. In this program, there are
video generation function and general post-processing methods for specified experi-
mental groups.

5.3.1 Video Generation

When the mechanism is complicated, generating the state diagram of each time step
is a relatively time-consuming process, and it is not easy to repeat. Therefore, in this
program, it can be chosen to save the generated results as a video. The display speed
of the video can be consistent with the real calculation speed or proportional faster or
proportional slower, so that the real dynamic response of the mechanism can be di-
rectly observed.

5.3.2 Specified Analysis Method

According to commonly used experiments, some general post-processing methods are
designed. These standard experiments include the vibration of single beam, static
bending of single beam, etc. The display of strain and stress within the mechanism is
still under study.
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6 Optimal Control of Lattice Boom Crane

6.1 Quasi-Static Optimal Trajectory Tracking Strategy

The lattice boom crane model is a complex rigid-flexible model with large degrees of
freedom, which makes it difficult to meet the control requirement through the commonly
used optimal control methods. However, because the movement of the lattice boom
crane is realized by changing length of the luffing rope and hoisting rope, quasi-static
optimal control algorithm can be used. This method combines the optimal trajectory of
end point with the control variables through the quasi-static mapping relationship. The
generated control trajectory can track the optimal trajectory of the end point, thereby
achieving optimal control of complex systems. The specific implementation process is

shown as follows
Start
Quasi-Static Optimal Control

v v

Prepare the Mapping Relationship Get Optimal Trajectory of End Point
| |

v

Get Optimal Trajectory of Control Variables

End
Quasi-Static Optimal Control

Figure 6-1: Quasi-Static Optimal Trajectory Tracking Strategy

The quasi-static optimal control method is mainly divided into three modules: the es-
tablishment of a static mapping relationship, the generation of the optimal trajectory at
the end point and the generation of the optimal control trajectory.

6.2 Static State Mapping
To establish the static mapping relationship, it is required to calculate the relationship

between the control variable and the control object (position of the end point) under all
possible static states.
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6 Optimal Control of Lattice Boom Crane

Since the dynamics system is continuous, calculating relationship of all possible posi-
tions is not realizable. Here some discrete states are selected and the mapping rela-
tionship is obtained by fitting. The detailed process is shown as follows

Start
Prepare the Mapping Relationship
]
For All Possible Initial State

A 4 L 4

Calculate the
Equilibrium State

Calculate the
Control
Variables

| Get State of End Point
] |

v

Create the Discrete Mapping Relationship between
Control Variables and State of End Point

v

Obtain Smooth Continuous Mapping Relationship
Through Fitting

v
End
Prepare the Mapping Relationship

Figure 6-2: Static State Mapping

During the movement of the lattice boom crane, only the length of the luffing rope and
the rope is changed. The change in the length of the luffing rope is reflected in the
change in the angle of the main boom. In order to simplify the calculation of the state,
the angle of the main boom and the change in the length of the luffing rope are taken
as the characteristic state variables of the lattice boom crane.

Here the main boom angle is taken every 1 degree from 45 degrees to 85 degrees, the
liting rope length change is taken every 1m from Om to 20m. The calculated control
variables are the length of the luffing rope and the lifting rope in the initial state before
deformation. The coordinates of the end point in the equilibrium state are calculated
as the control object. The final experimental results can generate a discrete mapping
table, which is shown as follows
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6.3 NMPC for Optimal State Trajectory Generation

L13 Experiment Data L15 Experiment Data

p :

y

-20
0

20 0 40 20
xPos [m] 0 -20 zPos [m] xPos [m] 50" 49 zPos[m]
Figure 6-3: Discrete Experimental Data from Statics Calculation

In order to obtain a continuous mapping relationship, surface fitting needs to be per-
formed on discrete data points. There are two forms of surface fitting: spline surface
fitting and polynomial surface fitting.

The advantage of spline surface fitting is that its results are in good agreement with
experimental data, but it is also very sensitive to experimental errors. Polynomial sur-
face fitting can use different polynomial orders for the independent variables of each
dimensions. Here only polynomial surfaces below the 5" order are supported. The fit-
ting accuracy of the polynomial surface is not very high, but it can balance the error of
the experimental data and make the fitted surface smoother and more continuous. Ac-
cording to the static experiment set, a polynomial surface of order 2-2 is sufficient and
recommended.

6.3 NMPC for Optimal State Trajectory Generation

Discrete QR control is a commonly used optimal control method for planning the tra-
jectory to a certain target point [Arn-2005]. QR control takes the time optimization and
the minimum control cost into account. The cost function is composed of running cost
and terminal cost [Cow-2006].

Terminal cost is a quadratic function of the difference between the state at the last
moment and the target state. The running cost reflects two aspects, namely the differ-
ence between the current state and target state as well as the energy cost by applying
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6 Optimal Control of Lattice Boom Crane

control system. The QR controller requires that all the coefficient matrix must be posi-
tive definite. The discrete QR optimal control problem can be written as

min J (EO:ED"'!EN—Z'EN—l) = (EN - Ee)TP nd(&N - Ee)

+ Z: [(zk - ze)Tg (2t — xe) + gﬁﬁ_uk]

S.t. Xk+1 = ]:k(&klzk’tk)

Xmin < Xk = Xmax » Umin < Uk < Umax
X0, Xe known

(6-1)

The dynamic equation of discrete QR control requires a discrete iterative format. Here
4™ order Runge-Kutta integrator is used to transfer the continuous state space equa-
tion into discrete state space equation.

Due to the large number of time steps in the entire simulation time, the calculation will
consume a large amount of resource when considering all the time steps. Therefore,
the concept of predictive horizon is proposed to calculate the optimal control variable
only considering limit amount of time steps. The cost function, which is used to calculat
the optimal control variable at time step m with the consideration of h steps from cur-
rent time can be written as

min]m (Km; Un)Um+1 """y Um+h—2, Em+h—1) = (&m+h - &e)Tgend (£m+h - Ee)

m+h—-1 T (6_2)
+) [(zk—ze) Q(&—&Hzﬁ@k],Vm:l,---,N
k=m = =
The unconstrained optimal control solution can be obtained by
a]—m=0—>u* Vk=m,,(im+h—1)
w0 e 1 (6-3)

When the control variable is constrained, the optimal solution obtained by the above
formula does not necessarily satisfy the feasible range of the control variable. The
optimal condition changes from a partial derivative of 0 to taking the minimum value in
this range. When the cost function has no local minimum relative to the control variable,
the optimal control variable with constraints can often be obtained on the constraint
boundary [Lim-1999].
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6.4 Generation of Optimal Control Trajectory

Em&mﬂ‘...’?nil?h_z‘gmm_l]m = Jom (%> Wi U1+ U s he2s Ut ne1)
Ui, min» x < Ui min (6-4)
u;,i = ult,i' Ui min = ult,i < Ujmax
Ui, max x> Ui, max

For the above prediction window, only the optimal control variable uy, at the start time
of the prediction window is taken as the optimal solution at that moment.

6.4 Generation of Optimal Control Trajectory

Through the optimal trajectory of end point and the mapping relationship, the optimal
control trajectory can be obtained. However, since the optimal trajectory of the end
obtained from NMPC is discrete, the optimal control trajectory after mapping is also
discrete. It is necessary to convert the discrete control trajectory into a continuous op-
timal trajectory for dynamics calculation. The specific process is as follows

Start
Get Optimal Trajectory of Control Variables

Get Discrete Optimal Trajectory and
Continuous Mapping Relationship
Get Discrete Control Trajectory
Get Continuous Control Trajectory Function through Fitting

End
Qet Optimal Trajectory of Control VariableQ

Figure 6-4: Generation of Optimal Control Trajectory

Because in this model rope length is used as the control variable, it is required that the
change rate of the control variable with time is O in the initial and end stages. In order
to obtain a continuous function that meets the requirements and reduce the error from
the discrete data, the generated discrete control trajectory will be resampled, and add
5 steady-state control points will be added before and after the curve. The spline curve
will be used for the fitting of the optimal control trajectory.
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7 Detailed Modeling of Lattice Boom Crane

This lattice boom crane consists of a main boom, a derrick boom, a luffing cable mod-
ule, a sub-cable, a hoist cable and load. The model is created using rigid-flexible multi-
body dynamics method.

Rigid Body

Boom Head
Super Truss
Total 16 Element Strut Tie Model
Elements | (Type 3)
Luffing Rope ‘_ @
Module 1 Cubic Spline i
/ Rope éﬁ
Main — SuperTruss/ / ﬁ'ig ‘/@?D
Element . | 4 A \
Boom (Type 2) N ’ @\ !!‘l.% .
5 i < Super T Kl £
7 Derrick Boom N uper lruss 15
/ 'ih Element ’i}‘(
Hoist / k (Type 6) ﬂ
] Sk
Rope Sub Rope 9‘» Super Truss "‘"‘
L‘ir‘ 7 Element “i)“,‘
Super Truss /Y (Type 5) R (T AY
Eloment mﬁ / Super Truss ﬂﬁl*
> i
(Type 1) N b[’)}"f; Element ’r}v“‘ -
Pedestal v/ (Type 4) (D—— K
edestal Y
Load = [ ———— “Rigid Body
Figure 7-1: The Composition, Model Types of Elements and the number of the Elements of the

Lattice Boom Crane

7.1 Lattice Boom

The lattice boom crane described here is composed of two lattice booms: the main
boom and the derrick boom.

7.1.1 Main Boom

The main boom is composed of 227 beam elements. The main boom has 1362 de-
grees of freedom and requires 2724 state variables by using classical multi-body dy-
namics modeling method. Even if the fixed connections between these beam elements
are considered and part of the redundant degrees of freedom is eliminated, the main
boom still has 672 degrees of freedom and 1344 state variables, which also needs a
lot of calculations by solving dynamics equation. In the actual situation, the truss boom
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7 Detailed Modeling of Lattice Boom Crane

will be composed of some standard truss elements, so the super truss elements are
used to model these standard truss elements. The main boom is divided into 5 super
truss elements, and in 3 different types.

After using the super truss element and the elimination of the redundant degrees of
freedom caused by the fixed constraints, the degree of freedom of the main boom
becomes 36, and it needs 72 state variables (reduced by 97.4% and 94.6%). However,
because the super truss element needs to estimate the internal nodes of the truss
through the assumption of geometric continuity, the amount of calculation in single-
step is increased from 227 to 339 (increased by 49.3%).

Table 7-1: Properties of different Types of Super Truss Elements
Type 1 Type 2 Type 3
Structure Li
Type Triangular Prism Rectangle Shrink Rectangle
Type 4 Type 5 Type 6
Structure
Type Triangular Prism Rectangle Anti Triangular Prism

In addition, because the shape of the boom head is complex and the size is smaller
than other truss elements, the deformation of the boom head is not considered and it
is treated as a rigid body.

7.1.2 Derrick Boom

The derrick boom is composed of 126 beam elements. The derrick boom has 756 de-
grees of freedom and requires 1512 state variables by using classical multi-body dy-
namics modeling method. The degrees of freedom will reduced to 384 and state vari-
ables will be decreased to 768 after eliminating redundant degrees of freedom caused
by fixed constraints. Here 3 different types of super truss elements are established for
the derrick boom.



7.2 Rope and Rope Systems

The degree of freedom of the derrick boom becomes 24, requiring 48 state variables
after applying super truss elements (reduced by 96.8% and 93.8%).The amount of
calculation in single-step is increased from 126 to 190 (increased by 50.8%).

7.2 Rope and Rope Systems

7.2.1 Rope Model

The rope can be regarded as a kind of beam with special stress properties: the bending
and torsional stiffness are very small and is often ignored. Generally, the rope is not
subject to pressure, so only the tensile stress is considered. Therefore, the virtual
power of the internal force can be written as

8Pint = — f f Spéxx Max(goyy, 0) dV (7-1)
14

The rope model can be created through cubic spline beam, strut tie model or Timo-
shenko beam model. In order to meet the geometric continuity and smoothness under
the absolute coordinate system, the rope model here will be established based on cu-
bic spline beam.

7.2.2 Rope System

The lattice boom crane contains 3 rope systems: luffing rope module, hoisting rope
and sub-rope. According to the actual model, the luffing rope module consists of two
strut tie models and one rope element. The hoisting rope and the sub-rope each con-
sist of one cubic spline rope model.

7.3 Pedestal and Load

Generally, in addition to the plane freedom provided by the hoisting rope and luffing
rope, the entire boom system can also rotate along the vertical direction. Here the
boom system is built on a pedestal, and will rotate with the pedestal relative to the
inertial coordinate system. The rigidity of the pedestal is always relatively large and the
deformation is relatively stable. Therefore, here a rigid body model is used to simulate
the pedestal.

Since the sway of the load is also one of the research directions of lattice boom cranes,
in this model a small rigid body is added at the end of the hoisting rope to simulate the
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7 Detailed Modeling of Lattice Boom Crane

load. The position and posture of the load during the moving of the lattice boom crane
will be studied.

In summary, the entire lattice boom crane has 168 degrees of freedom and 336 state
variables before simplification through constraints. The detailed parameters of all the
model can be seen in the appendix.

7.4 Constraints and Drives

Spherical Joint
Fixed Joint @
Revolute Jointy @
Revolute Jointz @

Total 18
Constraints

\ . Total 3 \NZ

Drives
us

1"'/'

Figure 7-2: Locations and Types of Constraints and Drive Configuration displayed on the Cal-
culation Model

ui

7.4.1 Constraints

The lattice boom crane has original totally 18 constraints. The locations and types of
these constraints are shown as follows

Table 7-2: Locations and Types of Constraints for Lattice Boom Crane

Type Quantity Redundant DoF Relevant Elements (Elements Nrl/ Elements Nr2)

Fixed 7(-6) Each 6 2/3, 3/4, 4/5, 5/6, 6/7, 8/9, 9/10

Revolute-z 1 Each 5 0/1

Revolute-y 2 Each 5 1/2,1/8

Spherical 8(-4) Each 3 7/11, 11/12, 12/13, 13/10, 1/14, 10/14, 7/15, 15/16

Among them, the 6 fixed constraints connecting the super truss elements can be real-
ized by using public computing nodes, which can reduce the overall degree of freedom
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7.4 Constraints and Drives

by 36. Using same method, the spherical constraints in the rope model can also be
eliminated, which can reduce the overall degree of freedom by 12. The final lattice
boom crane model has 120 degrees of freedom, 240 state variables and 8 constraints.

7.4.2 Drives

In reality, the lattice boom crane is controlled through the hydraulic motor to change
the length of hoisting and luffing rope. The overall rotation of the crane is also realized
by the hydraulic motor. However, due to the complexity of the pulley rope model and
the hydraulic system, these systems are not considered in this model. Here the angle
of the pedestal and the length of the hoisting rope and the luffing rope are directly set
to control variables.

Table 7-3: Definition of Control Variables for Lattice Crane Model
Control Variable Unit Description
Uy rad  The z-axis relative rotation angle of Pedestal (Element 1)
U, m The length of luffing rope model (Element 13)
Us m The length of hoisting rope model (Element 15)

Because the change of the rope element length affects the Gaussian integral and the
calculation of stress and strain, the influence of the control variable on the system is
very complicated, and it is almost impossible to separate the control variable from the
state variable. In addition, the model of lattice boom crane is too complicated, and it is
difficult to implement many controllers that use symbolic calculations, which makes it
difficult for classical non-linear optimal control methods. Therefore, the quasi-static
control method is carried out to generate offline optimal control strategy for the lattice
boom crane.
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8 Analysis and Evaluation of Simulation Results

8.1 Cross-validation of Single Flexible Beam Element

A cross-validation method is used in order to verify the accuracy of the flexible beam
model. The beams with the same parameters are modeled with multi-segment Timo-
shenko beams and cubic spline beams. A number of experimental scenarios are de-
signed to judge the accuracy of the model through the model response. The parame-
ters of the beams used in the experiment are shown as

Tabelle 8-1: Parameters of Single Beam
Cubic Spline Beam Model Timoshenko Beam Model
Model Type Cubic Spline Beam (C-Beam) Timoshenko Beam (T-Beam)
Beam Type Segment Quantity 1 3 5 10 1 3 5 10
Degrees of Freedom 14 12
) Density 7800
Material )
_ Elastic Modulus 206000000000
properties ) i
Poisson's ratio 0.25
Length of Beam 15
Section Type Round Tube
Section size  Outer Diameter 0.15
Inner Diameter 0

8.1.1 Cantilever Beam Static Bending Test

The statics tests are set to verify the internal force of the beams. Since the bending
deformation is the main deformation form of the beam, a moment is added to the non-
fixed end of the cantilever beam. The relationship between the bending curvature of
the beams and the external moment can be approximated by

M = Elkx = KMgjrcle Mircle = 2mEl/L K = Mmax/Mcircle (8-1)

where M is the external moment applied to the end of the cantilever beam, M_;;q. rep-
resents the theoretical moment required to bend the beam into a circle, and K € [0,1]
represents the ratio coefficient between the maximum torque M., and M;qe- EI rep-
resents the bending stiffness of the bar section, L represents the length of the bar, and
K represents the curvature of the bar. The experimental results are as follows
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Due to the assumption of small deformation, the stiffness of the single T-beam will
become smaller and the geometric continuity of the connection of each section will be
lost under large deformation. Therefore, it is suggested the deformation of the T-beam
should not exceed 15 degrees. The deformation of single C-beam can be slightly larger,
but due to the monotonicity of the cardan angle by small rotation, the deformation can-
not exceed 90 degrees. The C-beam model can maintain the geometric continuity of
the entire beam.

8.1.2 Vibration Test of Cantilever Beam under Self-gravity

The undeformed flexible beam will vibrate under gravity. The amplitude of the vibration
can be used to verify the gravity effect. The vibration frequency can verify the relation-
ship between the mass matrix and the force vector.
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Vibration Test of Cantilever Beam under Self-gravity



8.1 Cross-validation of Single Flexible Beam Element

In the above figure, the end displacement perpendicular to the beam axis over time is
shown. The maximum deformation in z-direction is near to 0.85 meter, and the ampli-
tude of the vibration is almost 0.42 meter. The waveform is basically symmetrical along
the vertical axis of 0.42 meter. The other experimental results are relatively close ex-
cept the cubic spline beam with one segment. Using the cubic spline beam with one
segment the effect of gravity decreases and the frequency of vibration increases.
Therefore, itis generally recommended to use at least 2 segments of cubic spline beam
under small deformations.

8.1.3 Fixed Axis Rotation under Torque Control and Angle Control
Torque Control

The beams in this experiment are hinged at one end. The revolute constraint allows
the beam to rotate around a fixed axis (y-axis). A constant torque (10°) is applied to
the free end to accelerated the rotation of the beam. In this experiment, the z-direction
displacement at the end of the beam is measured, and the motion under different nu-
merical integration accuracy is studied.
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Figure 8-3: Fixed Axis Rotation under Torque Control
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8 Analysis and Evaluation of Simulation Results

The maximum average rotation speed in this experiment reached nearly 120 rounds
per minute. The flexible deformation is relatively small relative to the rigid rotation. Both
Timoshenko beam and cubic spline beam can have better accuracy in slow rigid ve-
locity. But the cumulative error becomes large due to calculation accuracy when the
number of segments is small and the rigid body moves faster. In addition, the Timo-
shenko beam has a slight hysteresis when it rotates at high speed.

Angle Control

Angle drive refers to the rotation of the fixed end of the cantilever beam around a cer-
tain axis (y-axis) according to a drive function. In this experiment, a cos-function is
designed to simulate the situation where the beam rotates to a certain angle and then
returns to the origin. The expression of the cos-function can be written as

2

Y = —%[1 — cos (g t)] P = —;—Osin (gt) (8-2)

The result is as follows
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Figure 8-4: Fixed Axis Rotation under Angle Control
It can be seen from the results that the beam elements have a flexible vibration part
on the basis of the original rigid motion, which is caused by the unbalance of the initial
state and the acceleration step of the driving function. The results of different models

are very similar except the cubic spline beam with one segment. In addition, there is a
slight hysteresis in the Timoshenko beam with one segment.

8.2 Simulation for Single Super Truss Element

The structure of the truss is diverse, and its dynamic response is also different. Here
super truss element in type 2 is selected as the research object.
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8.2 Simulation for Single Super Truss Element

8.2.1 Vibration Test of Cantilever Truss Boom under Self-gravity

The vibration of the super truss element under self-gravity is shown as follows

%107

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time [s]
Figure 8-5: Vibration Test of Cantilever Truss Boom under Self-gravity

The super truss element under self-gravity has a similar dynamics response to the
continuous flexible beam. Because the truss has a more optimal structure, the defor-
mation under self-gravity is smaller.

8.2.2 Fixed Axis Rotation under Torque Control and Angle Control
Torque Control

Under the constant end torque (10°), the dynamic response of the super truss element
with revolute constraint is shown as follows

20 T T T T T T T T T
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0 1 2 3 4 5 6 7 8 9 10
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Figure 8-6: Super Truss Element Fixed Axis Rotation under Torque Control

The experimental result curve is similar to the curve of continuous beam curve, so a
simplified model can be considered to simulate the rotation of the truss. And because
the flexible deformation is relatively small compared to this large rotation, it can even
be replaced by a rigid body model.

Angle Control
The cos- function above is used as angle drive function, and its dynamic response is
shown as follows
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Zend
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Figure 8-7: Super Truss Element Fixed Axis Rotation under Angle Control

Due to the large stiffness of the lattice structure, the deformation caused by gravity and
inertial force is smaller than the large displacement and large rotation.

8.2.3 Equivalent Stiffness and Mass
Equivalent Stiffness Test

If one end of the super truss element is fixed and apply force or torque is applied on
the other end, the displacement of the free end can reflect the stiffness of the truss
beam.

2 «10° Axial Stretch 15 X 107 Axial Compression
= ' = ' ' ' ' '
— — 10
w1 w
0 . . . 0 . . . . . .
0 0.05 0.1 0.15 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
€ €
— %108 x-Axis Twist . x108 x-Axis Twist
g 4 T T T T T j g 4 " i i
= =
2T 2 /
0 1 1 1 1 1 0 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 2 4 6 8
Ky €y %1073
—  x108 y-Axis Bending — %108 z-Axis Bending
E4F T g 4 T .
= =
s 2} s 2
0 1 1 1 0 1 1
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015
Hy &Z
Figure 8-8: Super Truss Element Equivalent Stiffness Test

It can be seen from the curve that the stresses and strains by axial force and bending
are linear. The torsion in the x-axis will cause the strain in the axial direction, which is
caused by the main beam rotating around the axis of super truss element instead of
its own axis. This also makes the equivalent torsional stiffness in x-axis of the truss not
constant. The continuous beam model cannot express this phenomenon.
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Equivalent Mass Test
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Figure 8-9: Super Truss Element Equivalent Mass Test

If the both end of the super truss element are set free and same force or torque is
added on both ends. The velocity change of the super truss element can be used to
determine the mass parameter. The angular velocity change can be seen as linear to
time. However, only the translational velocity change in x-Axis is linear to time. In fact,
due to the discontinuity and asymmetry of the truss, it is difficult to express the mass
matrix of the truss through a continuous beam model. Especially for non-rectangular
trusses, the determination of its equivalent mass will become very difficult.

8.3 Simulation for Lattice Boom Crane

8.3.1 Elementary Movement

In practice, the motions of the mobile cranes in the operation can be specified as three
kinds, lifting, slewing, and luffing. The slewing means the boom system and the turn-
table (super-structure) rotates along the vertical slewing axis. The luffing means to
change the distance between the payload and the slewing axis by changing the eleva-
tion angle of the boom. In order to make the movement of the crane relatively stable,
the crane will start from the equilibrium position. The driven function is a second-order
smooth continuous function, which can be written as
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where t, represents the total movement time, t; represents the acceleration time, t,
represents the time with constant speed, t; represents the deceleration time, and s,
represents the total displacement.

The initial equilibrium state of the crane is set with a turning angle of O degrees, the
original length of the luffing rope 7.0608m, and the original length of the hoisting rope
53.9937m.

Lifting Stage
The lifting stage requires the lifting rope to be shortened by 20m within 40s, including
5s acceleration time and 5s deceleration time. The result is as follows
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Figure 8-10: Position and Velocity of the Load by Lifting Stage of the Crane

It can be seen that the main movement trend is the lifting in the z-axis direction, and
there is a small vibration of the crane in x-axis. The vibration in the z-axis is quite small,
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8.3 Simulation for Lattice Boom Crane

with the vibration amplitude in the velocity curve is less than 0.05 meter per second.
The vibration is caused by the reduction in the length of the lifting rope, which provides
same pull force with less deformation.

The vibration in the x-axis is caused by the reduction in the mass of the lifting rope,
which change the equilibrium position of the main boom. The main boom will slightly
lift up and the x-position of the load will then change. The vibration will increase if the
lifting speed increases. There is no vibration or movement in the y-axis, which means
the lifting stage has no effect on the direction orthogonal to the crane plane.

Luffing Stage
In the luffing stage, the luffing rope extends 10m in 40s, with 5s acceleration time and

5s deceleration time.
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Figure 8-11.: Position and Velocity of the Load by Luffing Stage of the Crane

It can be seen that luffing will cause the vibration, which is mainly caused by the sway
of the load. The effect of flexible vibration of the crane is relatively small on the motion
of the load. The small flexible vibration is due to the smoothness of the driving function
and the large rigidity of the overall crane. In addition, due to the slow overall movement
speed of the crane and the optimization of the truss boom structure, the inertia of the

model has little influence.

However, the flexibility of the model caused the deviation of the mechanism state rel-
ative to the rigid body model. In order to reduce the away of the load, the change of
the length of the luffing rope should not be too fast.
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8 Analysis and Evaluation of Simulation Results

Slewing Stage
During the slewing stage, the crane will rotate 90 degrees along z-axis within 40s, with
5s acceleration time and 5s deceleration time. The result is as follows

Time-State Position

[6)]

X
7}/’-

o
N

Position [m]

'
[$)]

N
S

10 20 30 40
Timel[s]
Time-Velocity

o

05¢F

0 LN y

S
z
o5y \/ -

Velocity[m/s]

-10

0 10 20 30 40 ylml 457 45 x[m]
Time [s]
Figure 8-12: Position and Velocity of the Load by Slewing Stage of the Crane

From the result, the vibration in the x- and y-axis is most obvious. The vibration fre-
guency in both x- and y-axis is almost 15 seconds, which is the pendulum period with
the rope length 55 meters and acceleration of gravity 9.8 N/kg. This means the vibra-
tion is mainly caused by the sway of the load, and the flexible vibration from the crane
itself is not obvious. So the slewing speed of the crane should be limited to reduce the
centrifugal effect.

8.3.2 Combined Motion

In this section, the lifting state under the simultaneous action of multiple drives is de-
signed. The combined motion can be divided into 4 stages:

1. 0-10s: lifting stage

2. 10 - 20s: lifting + slewing stage

3. 20 - 30s: lifting + slewing + luffing stage
4. 30 - 40s: lifting + luffing stage
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Figure 8-13: Position and Velocity of the Load by Combined Motion of the Crane

In the only lifting stage, the position of the load changes smoothly, and the speed has
only a small vibration. The slewing of the crane has little effect on the vertical motion
of the load. The position of the load changes smoothly in the horizontal direction, but
speed begins to fluctuate greatly. The luffing motion of the crane has a greater influ-
ence on the vertical direction of the lifting, the fluctuation of the speed in the vertical
direction becomes larger, and there is a big vibration in the horizontal direction.

8.4 Quasi-Static Optimal Control of Crane

8.4.1 Quasi-Static Mapping

Under different loads, the static mapping relationship between the control variable and
the end position is different. Here the load with maximum weight of 400t is selected as
an example. The mapping relationship is shown as follows.

The solid surface is obtained from experimental data, and the transparent surface is
obtained through flat quadratic surface fitting. The fitted surface is used as the actual
mapping relationship to reduce the influence of experimental errors. From the fitted
surface, it is more intuitively to see the nonlinear relationship between the control var-
iables and the end point output variables
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Figure 8-14: Experimental Data and Fitted Surface as Actual Mapping Relationship

8.4.2 Optimal Trajectory of End Point

When designing the optimal trajectory, the maximum absolute velocity and maximum
absolute acceleration are considered. In order to make the trajectory more reasonable,
the possible position of the end point is also limited. The parameters of QR optimal
control are shown in the following table

Tabelle 8-2: Beschriftung der Tabelle im Hauptteil
Parameter Value
Initial Value xo=[-10 0 0 0]T
State Number ny =4
Variables Upper Bound Xmax =[-5 30 1 1]T
Lower Bound Xmin =[50 0 -1 —1]T
Number n, =2
Control T
; Upper Bound Umax = [0.2  0.2]
Variables T
Lower Bound Unin = [-0.2 —0.2]
Q Q=100xdiag(fl1 1 1 1]
Cost R R =diag([1 1]
Function Pend Peng =100 x diag([1 1 1 1])
Terminal Value xe=[-35 10 0 0]F
i Prediction Horizon N =400
Optimal ) )
Sampling Time t; =01
Control i ) i
Simulation Time te = 40

The generated optimal trajectory is as follows
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Figure 8-15: Optimal Trajectory of End Point from NMPC

From the curve, it can be seen that the end point initially accelerates to a maximum
speed of 1 meter per second with a maximum acceleration of 0.2 meter per second
squared, and then stabilizes at the maximum speed. When the position of the end point
is close to the target point, it will decelerate with the maximum acceleration. Due to the
consideration of the optimal time and minimum energy requirements, the deceleration
process will have a certain fine-tuning on the speed curve, but the amount of fine-
tuning reflected on the position curve is very small. The speed of the end point will
gradually become 0 and finally reach the target position.

Since the distances required to move in the x direction and the z direction are different,
the x axis direction first reaches the target x value, and then the z direction arrives. The
performance from the path is that the x and z directions move at the same time at the
beginning, and after reaching a certain point in time, the movement in the z direction
gradually stops. The second half of the path is the movement along the x direction.

8.4.3 Optimal Control Trajectory and Verification
Projection and Control Trajectory

From the projection of the optimal trajectory on the mapping surface, the quasi-static
control trajectory can be obtained. The control trajectory is shown as follows.

In order to reduce the error of the control curve caused by the error of the mapping
relationship, it is generally required the mapping curve to lie within the experimental
surface as much as possible. As shown in the left figure, most of the curves are in this
range, so the accuracy of the mapping relationship is high.
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8.4 Quasi-Static Optimal Control of Crane

The control data generated by the mapping relationship is discrete. In order to be used
in a solver with an indefinite time step, the generated data will be fitted. In order to
ensure the stability of the start and end stages of the control trajectory, in addition to
the 20 interpolation points taken at the same distance in the control data, 5 steady-
state control points are added at each end. Spline curve is used as the fitting method.

Verification through Experiment

In order to verify the quasi-static optimal control method, the generated continuous
control trajectory is applied to the crane model to obtain the dynamic response. The
results are as follows
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Figure 8-18: Theoretical Optimal Trajectory and Experimental Trajectory using Quasi-Static Op-

timal Control

According to the experimental results, the actual trajectory is basically close to the
theoretical trajectory with slight vibration. This proves that the quasi-static control
method can track the optimal path. The vibration is mainly caused by the inertia of the
crane and the load. To suppress vibration, feedback control of the crane is required,
such as PID [Kha-2014], real-time MPC etc [Sch-2014]. The feedback controller for
suppressing flexible vibration is the future research direction.
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9 Conclusion and Future Development

9.1 Conclusion

In this thesis the modeling and control method for lattice boom cranes is studied, and
some experiments are done for the verification.

In order to model the lattice boom crane efficiently and accurately, several flexible
models for dynamic calculation are proposed, such as spatial Timoshenko beam, cubic
spline beam, strut tie model. Super truss elements based on three assumptions are
proposed to simulate the lattice boom with the minimum number of degrees of free-
doms. To combine all relevant elements of the crane, the functions for different kinds
of constraint are established and the multibody dynamics method with Baumgartner
stability method is applied. In addition, different types of lattice boom, the detailed mod-
eling and driving approach of the lattice boom crane are also described.

According to the special control variables and control requirements of the lattice boom
crane, a quasi-static control method is designed. This method combines the static
mapping relationship with the target optimal trajectory to generate the optimal control
trajectory. The static mapping relationship is obtained through experiments and data
post-processing, which can reflect the relationship between the control object and the
control variable under slow motion. The optimal trajectory of the target is obtained
through the nonlinear model predictive control (NMPC). Because of the QR control
method applied in NMPC, the optimal trajectory satisfies the time optimal and minimum
control cost.

As the verification, some experiments are designed to verify the modeling accuracy of
each flexible model, such as static bending, vibration under self-gravity, controlled mo-
tion. Experiments on super truss elements can not only observe the dynamic response
of the model, but also reflect some characteristics that continuous beams do not have,
which provides a theoretical basis for further simplification. For the crane model, the
dynamic response of the crane in the motion of lifting, luffing and slewing is obtained
through the simulation. In addition, the control effect of the quasi-static optimal control
algorithm on the control of lattice boom crane is also verified.

In order to make modeling, control and experiment more convenient, in this thesis a
rigid-flexible hybrid multibody dynamics platform is established, which can do the stat-
ics and dynamics calculation of the complex mechanism.

79



9 Conclusion and Future Development

9.2 Future Development

Modeling Part

Although the super truss element can greatly reduce the number of degrees of free-
dom, it is still needed to calculate each member of the truss beam in each time step.
This makes the single-step calculation time of the ODE solver very large. Parallel com-
puting and other methods of accelerating computing to reduce computing time will be
studied in the future.

The parameterization method in this paper is only suitable for general simple truss
models. At present, in the direction of lighter and miniaturized machinery, more com-
plex truss models are widely used. These trusses may no longer meet the three as-
sumptions in this paper when they are deformed. Therefore, a completer and more
general truss model is urgently needed.

Control Part

The current control method is difficult to control the sway of the load swing during fast
movement. Therefore, it is necessary to increase the feedback structure into the con-
trol theory and carry out real-time adjustment by using real-time MPC or PID controller.

For the generation of the optimal trajectory at the end point, only the time and energy
optimization under barrier-free conditions are currently considered. However, there are
often many obstacles in actual work scenarios. The identification of obstacles and the
design of optimal trajectory to avoid obstacles need to be studied.
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Appendix A Mathematical Convention

A.1 Mathematical Convention

Skew symmetric matrix

0 —a (A-1)

aq 0 —das a
a= skew(g) = skew ([azD = [ as ]
- a3 _a'Z a1 O

Properties of cross product

™xN
S
Q
Il
|
1Q
e

ax(bxc)=b(a-c)—c(ab) = abc

ax(bx(gxa))=Qx(ax(bxa))=>dl§5a=5&5a (A-3)
-1 _
9X2=£®9=—(@T—Q@) bc (A-4)
A.2 Gaussian Numerical Integral
Standard format of Gaussian numerical integral
1 n
[ roac=3" wiireiin (a5)
_1 =
Table A-1: Weight and Integration Point of Standard Format of Gaussian Numerical Integral
Order Weight Integration Point
n=1 w=2 x=0
1 _ 1
n=2 E=[1] E_ﬁ[1]
1 Z V3 _01
= = = X =—



A Mathematical Convention

Order
n=4
n=>5
n==6 w
n=7 w
n=28 w
n=9 w

A-2

|

m:

Weight

18 — /30
1{18++30
36(18 + /30

18 — /30

322 — 13V70
322 + 1370
512
322 + 13x/%J
322 — 1370

[1.7132449237917037
3.607615730481388
4.679139345726909
4.679139345726909
3.607615730481388
11.713244923791703

11.2948496616886967
2.797053914892767
3.818300505051183
4.179591836734694
3.818300505051183
2.797053914892767
-1.294849661688696-

[1.0122853629037617
2.223810344533746
3.137066458778871
3.626837833783620
3.626837833783620
3.137066458778871
2.223810344533746
11.012285362903761

[0.8127438836157457
1.806481606948574
2.606106964029354
3.123470770400029
3.302393550012598
3.123470770400029
2.606106964029354
1.806481606948574

10.812743883615745-

Integration Point

&:
£=E
1
=70
£=E
1
=70

—./525+70V3

—./525—=70V3

i

525-70

w

gl

525+ 70V3

—.|245 + 14V7

i

|

[\
-~
(&
|

[N
S
3

7

==
o

3

245 — 14V7

245 + 14V7

:

[—9.3246951420315217

—6.612093864662646

—2.386191860831968
2.386191860831968
6.612093864662646

- 9.324695142031521 -

[—9.4910791234275867

—7.415311855993945

—4.058451513773977
0

4.058451513773977

7.415311855993945

- 9.491079123427586

[—9.6028985649753637
—7.966664774136270
—5.255324099163293
—1.834346424956495
1.834346424956495
5.255324099163293
7.966664774136270
- 9.602898564975363

[—9.6816023950762617
—8.360311073266357
—6.133714327005904
—3.242534234038089
0
3.242534234038089
6.133714327005904
8.360311073266357
L 9.681602395076261 -




A Mathematical Convention

Order

For non-standard Gaussian numerical integration

1
Y=70

1
Y=70

Weight

[0.66671344308687857
1.494513491505809
2.190863625159821
2.692667193099963
2.955242247147528
2.955242247147528
2.692667193099963
2.190863625159821
1.494513491505809
10.6667134430868785
10.55668567116173697
1.255803694649046
1.862902109277342
2.331937645919904
2.628045445102470
2.729250867779006
2.628045445102470
2.331937645919904
1.862902109277342
1.255803694649046

10.5566856711617369-

n

ub
dt =
b f(t) ‘ Zi

A.3 Cubic Hermite Interpolation

In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline
where each piece is a third-degree polynomial specified in Hermite form, that is, by its

) wlilf x[i]) with z[i]

x[i] +1
"~ 2(ub —Ib)

- 9.739065285171719
[—9.7822865814605707

-—9.782286581460570-

Integration Point

[—9.7390652851717197

—8.650633666889848
—6.794095682990241
—4.333953941292476
—1.488743389816309
1.488743389816309
4.333953941292476
6.794095682990241
8.650633666889848

—8.870625997680953
—7.301520055740494
—5.190961292068118
—2.695431559523450
0
—2.695431559523450
—5.190961292068118
—7.301520055740494
—8.870625997680953

+ b (A-6)

values and first derivatives at the end points of the corresponding domain interval.

y(x) = NPy(xo) + NYy(x,) + Niy'(xo) + N}y'(x,) with y' =dy/ox

which can also be written as

y(x) = Ny,

where y; = [y(xo) ¥'(x0) y(xe) ¥ (x)]".

y'(x) = N'7y(x) + N'3y(xe) + N'1y'(x0) + N'3" (xe) (A-7)
y"(x) = N"1y(xo) + N"3y(xe) + N"1y' (o) + N"2y" (xe)

y'@® =N  (ag)

A-3



A Mathematical Convention

The shape function can be written as

N=[NL NiL N2l N3l

NP = 1— 382 4 283 N = 382 — 283 (A-9)
Ni = L(E—28+8%) Ny = L(E -8

The first derivative of the shape function can be written as

N =[NSL NI NS N
N'§ = (=68 + 682)/L N'§ = (65— 68%)/L (A-10)
N'1=1-48+ 38 Nl =382 — 2¢

The second derivative of the shape function can be written as

N_” — [N”gé N”%é N”gé N”%é]

N"9 = (=6 + 12&) /12 Nt = (=4 + 68)/L (A-11)
N"§ = (6 —12§)/12 N"} = (6§ — 2)/L

A.4 Lagrange Polynomial

Lagrange polynomials are used for polynomial interpolation for a given set of points

(x1,¥1), (X2, ¥2), .., (X, yn), N € Z* with x; # x;,Vi,j € [1,N]. The interpolation value
can be written as

N ) N X — Xj
y(x)=z L)y with [;(x) = 1_[ (A-12)

i=1 Xi — Xj

= j=1,j#i J

The first derivative
N N
' )—ZN UGy, with I'(x) = Z ! 1_[ Y
Y= i=1 " Vi ' B X =X L 1 X — X (A-13)
k=1,k+#i j=1,j#i,j#k
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Appendix B Spatial Rotation and Kinematics

B.1 Derivative of Rotation Matrix

B.1.1 Angular Velocity
First derivative of rotation matrix respect to time

153 = IQBIEB = IEBBQB Bgl = _IEEIQB = _BQBIQE (B-1)
Angular velocity in different coordinate
52’ = pRi iR (B-2)

(s}

= I@BBEI

[

I

Relationship of angular velocity in different coordinate

BQB = BQIIQB IQB = 1§BBQ
o2 = oB1Z" R 12" = 1Bro3" o &9
B.1.2 Curvature
First derivative of rotation matrix respect to arc coordinate
1229 = IEBIEB = IgBBEB B@II = _1§£1§B = _BEBIEZ; (B-4)
Curvature in different coordinate
kB = R;sR kB = R, R;
1= 13BBY BX B LU (B-5)
Relationship of curvature in different coordinate
pk® = B&IEB KB = IQBBEB
BEB = B§II§BI§B IEB = I§BB§BB§I (B-6)

B-1



B Spatial Rotation and Kinematics

B.2 Spatial Angle Representation

B.2.1 Axis-Angle Representation

Rotation Matrix and Rodrigues' rotation formula

1—cos®@
0= o] ®7)

A

sin@ _
Rp=l+—F=0+—4

||‘Sz

The relationship between first derivative of angle and angular velocity and curvature

BQB =T¢

sk’ =Tg'
cosf —1 6 —sin@ (B-8)

I(p)=1+—p

T 2%

[

The second derivative of angle

g0’ =Ty +T¢ pw'® = pkPTQ + T +T'¢
pKB = p@PT' +Tg' +T¢’ pk® =T@" +T'¢’ (B-9)
The derivative of T can also be written as
Te'=T'¢ I'g =Ty’ (B-10)
where
. ) - (1-cos0)0 —3(1—sinB) _ 6Osinf+2(cos6—1) | _
1(p¢)=0¢"0 5 7- - 1|9
cos@—1. 6O-—sin6/._ _.
gLt (02 + 99)
) , 6 —sinf o , o o~ cosO-—1 | (B-11)
g(ﬂ’f): 93 (ﬂ 9P _g>_ gz 2
(1-cos6)0 —3(1—sin@) . Osin6+2(cos6—1) | _ |, r
+ 95 L 94 L1og'e



B Spatial Rotation and Kinematics

B.2.2 Tait-Bryan (Cardan) Angles

Sequence of the rotation

1Z 1Y 2X

[—1——2—"B (B-12)
0 Y ®
Elementary rotation matrix
1 0 0

0 cosgp —sing

R, (¢) = ,Rp(p) =
- - 0 sing cose

0 0 0 (B-13)
R(p,®) = ;Rs(p, ) = |0 —sing —cosp|p =T (p)¢@
o o 0 cosp —sing -
cosy 0 siny
Ry(¥) = 1R, () = [ 0 1 0 ]
o o —siny 0 cosy
' ' . . —siny 0 cosy . . (B-14)
Ry(¥,¥) = 1R, (v, %) = [ 0 0 0 ]w =T,y
o o —cosyp 0 —siny -
cos —sinf 0
R,(0) = |R,(0) = [sin@ cos 0 O]
- o 0 0 1
_ _ —sin@ —cos6 0] _ (B-15)
R,(0,6) = R(6,6) = [ cosf —sinf o] 6 =T,(6)0
o B 0 0 0 -

Rotation matrix

:IEB

e

cospcosB sinpsinycosO —cosesin@ cos@sinypcosf +singsinb
= |cosyPsin@ sin@sinysinf + cos@cosf cos@sinysinfd —singcos (B-16)
—siny sin@cosy cos @ cosy

= Igl 6) 1@2 @) 2@3 (¢)

Angular velocity and curvature can be written as



B Spatial Rotation and Kinematics

@ 0 0 @ —sinyp 6
gw = 0|+ gRy |Y| + gR22R, 0 =T¢p=| cospy+sinpcosyp 6
0 0 6 —singy + cosp cosp b (B-17)
@' 0 0
gk =10 |+ pRa ['| + pR22R1 |0 | =To'
0 — Lo IV
Derivative of angular velocity and curvature
p0=T¢ +T¢ o
e sk=T¢"+T¢ (B-18)

s =T¢'+T'¢ =T¢' +T¢’

where
1 0 —siny
I((p) =|0 cosep singpcosy
o 0 —sing cos@cosy
0 0 —cosyPy
Z(£,<p)= 0 —sinp¢@ cos@cosy@—singsinP
0 —cosp@ —sin@cosyp@—cossiny
0 0 —cosy Y’ (B-19)
T' (g, 9’) =10 —sinpe’ cos@cosyY e —sinpsinPyY’

0 —cospe' —sinpcosyp @' —cosesinyy’

0 —cosy O 0
=|—sinpp +cospcosPpd —singsinypd 0
—cospP —sinpcosPph —cospsin 0

[ 1~-

Generally, the rotation matrix corresponds infinite cardan rotation vectors. However,
for small rotation, the rotation matrix and the cardan rotation vector have a one-to-one

correspondence.

The small cardan vector can be written as

p=1lp v 0]
TR o TR -
Q= Sl.n_:l@ l/J = —Sn 1Q;Bng 9 = sin~! gy:ng (B 20)
cosy - cosyY

B-4



B Spatial Rotation and Kinematics

B.3 Kinematics of Co-rotational Coordinate

B.3.1 Co-rotational Coordinate

The generalized coordinate of flexible beam can be sometimes written as

i ir
Qe 1 l(pl d_Qe,l lgl
9e = de,2 ] 2 aq. = ld_%,z l = 72 (B-21)
¢° ZQZJ

The co-rotational coordinate can be written as

BZX

B B
=\ d = -
9B L a9p WP (B-22)

The generalized velocity and acceleration can be written as

dqp = Tpdqe dgp = Tpdqe + ZBdQe (B-23)

In order to make the calculation much simpler, the co-rotational coordinate is chosen
as the coordinate at the end point of the beam element. If the first end point is selected,
the relationship between the generalized coordinate and the co-rotational coordinate
can be written as

||'~IloIQ

d_CIB = ﬂe,l

A

(B-24)

O I~

15
Il
—
o llo ©
o
e—
Jer
Il
o

If the first end point is selected, the relationship between the generalized coordinate
and the co-rotational coordinate can be written as

o oo

]

o 1~ N
I

d_% = ﬂe,z
—l =0 (B-25)

153

Il
—
o llo'w

B-5



B Spatial Rotation and Kinematics

B.3.2 Deformation Coordinate

Generalized Coordinate
Generalized coordinate of any point on the beam element

rf=pr° +EB(B7”” + puc) e
qc = [_Cl B-26
0° <R =R(0")R (%) = RsR(su) ~ = 12 N
Generalized deformation coordinate of any point on the beam element
pU‘ = gg(ﬁc — rB) — pr’e gu°
s Rac=RER. 4T |sye (B-27)
Generalized Velocity
Generalized velocity of any point on the beam element
7= 1P+ R B‘UB(BT + 5u°) + Ryt
@ = Rj pw® + @° (B-28)
Generalized velocity coordinate of any point on the beam element
g’ = RE(,7¢ — 7F) — p@® (r™° + pu)
@€ = W = Ry pw® (B-29)
Generalized Acceleration
Generalized acceleration of any point on the beam element
6= P+ R B(UB(BT + 3U°) + Rppil® + Rpp@® p@® (51" + 5uc)
+ 2Rpp®" p1° (B-30)

+c — pT + B = C ~cpT
cw _Ed,cBQ + W - W Bd,cBQ

Generalized acceleration coordinate of any point on the beam element

B-6



B Spatial Rotation and Kinematics

pll® = gg(ﬁc — %) - BQB(BET'C + uc) + BQBBQB (a7 + puc)
— ZBngg(lfc — ) (B-31)

= C . C T - B ~cpT B
W= W — Ry pw” + DRy pw

B.3.3 Relationship between Global Coordinate and Deformation Coordinate

The deformation velocity can be written through generalized velocity of the beam ele-
ment and point on the beam.

d _[BEC _[RBE sE™C+sES RS
_qd,C_ CQC - O Q

2 dqp dqp
L] qucl _dc l l (B-32)

T
.

The deformation acceleration can be written through generalized acceleration of the
beam element and point on the beam.

. BEC qu qu
ﬂd,c:[zb]_’r +_dc

c dqc dqc
P ZBgBET _BgB (BrT,C + B% ) —ZB(JJBRT g (B-33)
:d'C Q Cﬁcﬂg‘c Q 9

The generalized velocity of point on the beam can be written through generalized ve-
locity of the beam element and deformation velocity.

_drc [dQB _1[d_QB
dqdc = d_qd,c

g, = [

Tiic= [1 Ry (577 +52) R 0 (B-34)

Tibe=[0 Bic 0 1]

The generalized acceleration of point on the beam can be written through generalized
acceleration of the beam element and deformation acceleration.

B-7



B Spatial Rotation and Kinematics
y _[Iﬁc]_T_l dgp N _drc dqp dQB +. dqp
—qc_ CQC i ﬁd,c dqu _d _dc dec
. ~ B-35
Tite =0 —Rssd (B_”+ iy ZBBM q 5
—[0 -8R}, 9 0]

p—1
Zd,qo,c

B.3.4 Deformation Coordinate at Boundary

The deformation coordinate of the end point can be written as

a1
9d.end = Qd,z] (B-36)
The deformation velocity of the end point can be written as
d_Qd,1 d_
ﬂd,end = dqq, = d,endzBe aq: | = d,endzBeBeged_qe = zd,endd_Qe
— 2
—RL g™t 4+ gt R 0 0 0]
:B B: B: :B - = = (B_37)
0 —Ri: 0 I 0 0 Tp
Tse =] . = = = 7, sl=|7
olie= g it 0 055 o #E7[]
0 —Ri» 0 0 0 I
The deformation acceleration of the end point can be written as
, . .7 1T
d_Qd,end = [d_qg,l d_qg,z] zzdenddq,e Id,endd_qe
. . T
zzd.end[d_qB dq _qz] +£d,end[ﬂ£ d_qlT d_qg]
=d endzBeBeIedqe + (d,endZBeBere +a endZBeBeze) d_‘le
ZBa)BRT —p@” (Bfr1+321) —2p wBRT 0 0 Q
B B N - ~| (B-38
.| e TR O T R
dendiBe =
=T |2,8"RE —5@® (s +sE2) 0 0 —2,@°R 0
0 Sog P L ]
. . T
Bele = [zg g]

B-8



Appendix C Detailed Dynamics Models of Different
Types of Elements

C.1 Rigid Body Dynamic Model

C.1.1 Generalized Coordination and Generalized Velocity

0 . 0 -0
_ |z _[r7 it
% = [gl . =1, ‘[zz €D

C.1.2 Kinematic
;%= 1%+ Rpr*

Ifk = Ifo + EBQBKOk = Ifo - BBfOkBQ

(C-2)
=70+ (ng + ngBQ) pr% = 0 — §B§OkBQ + ngBi()kBQ
C.1.3Virtual inertial power
T .. )
8Dine = — f 8% #*pdQ = —8dq] (Med_qe + Qeﬂe)
0 — —
Meorl _mtotBTBfOC
M, = - Py
= mtotBZO gT Bgo (C-3)
0 mtotEBQBf”OC
B=lo e Fie = L4
= v pWpl
with
fpd.() = M¢ot J ppi®prod0 = —50°
0 Q - - —
ok oc 0k ~0C (C-4)
pPpr " dd = Myt ppi " dQ = myye T
0 Q - -



C Detailed Dynamics Models of Different Types of Elements

C.1.4 Virtual external power

T
OPext = f 51£k zgpdﬂ = —5d_CIZZext,gzg
h =

I

|4 =-m oc
Zext,g tot BEOCBT

(C-5)

Eext,g = Kext,g 19

C.1.5 Virtual power principle for Rigid Body

OPe = 6Dine + ODint + OPext = ODine + 6pext,g
= —5d_q£ (geﬂe + Fine + Eext,g) = _Sd_qg (Meﬂe + Ee)

(C-6)

C.2 Spatial Timoshenko Beam Dynamic Model based on Co-

rotational Coordination

C.2.1 Generalized coordination

Ifl

_ 21] e
e = 2] | r?
(pZ

C.2.2 Co-rotational Coordination
IKB
9B = gB

Here we choose

&
Il
&

ir
. d_q1 . 1!
dq, = qu = 17"2 (C-?)
2w?
7P
445 =| 5 (C-8)

i
dgp =| 4
19 (C-9)

Il
[1=
—
RS
s}
~—~



C Detailed Dynamics Models of Different Types of Elements

C.2.3Timoshenko Beam Assumption

=1+ Rpct = 1P+ Rp(pr™ + 1)

It — IEC + R Ed,CCE — IrB + EB (BZT,C + Bl_'l'c + B{LCCE) (C'lo)
U= =" =Rg [BEC + (gd,c - é) cE]
BU = gglﬂ = put + (gdc - é) ct (C-11)
Small deformation assumption
Rac=R(sy¢)~ L+ sYP° (C-12)
~ U — gy + gy .z BU
pU = gUt + gt = BV — g9z = [8Y (C-13)
- BWE + gy BW
C.2.4 Kinematic
dqp
= et = (B Hre) | g,
Q. =Rpp®w”R, .+ RszR,; . .0¢
= :BB: :d,c :B:d'CC: (C_14)
=Tk =1 ~Bs(si™ +s2) R O
Hye=[0 —RectRac O —Rec]
At (H+H ) 4ds +(D+D ) 445
r=r Accl = (Lr T Myt ﬂd,c =t T 5t ) dgq,,
A. = Rpp@PRy . + RpRy &8¢ + Rpp@® @PRy . + 2Rp p@° Ry o B¢
+ RpRgc @0 B° (C-15)
D=1t =[0 —Rend® (o™ +5L°) 2B5p@” O]
Dre=[0 ~Ron@RacciRic O —(2Ron@Rac+Rec®)k
C.2.5 Strain

Because of the small deformation assumption

C-3



C Detailed Dynamics Models of Different Types of Elements

1 <6Bui n aBu]’> N 1<aBui n aBu]>

Bgij - E anj ani - 2 acx]' 6cxi
( _ aBu’ _ cr cr cr
Béxx = 5 = BU — g0y + YTz
c
1/0gu 0dpv 1 , , C-16
) ngy:§<acy+acx):§(3vc _B(pc CZ_BGC) ( )
10gu Jdpw\ 1 , ,
BExz = E(@cz + acx) - E(BWC T80y + 5Y)
\ BEyy = BEyz = BEzz = 0
C.2.6 Shape function
9a,c = gcﬂd,end ﬂ'd,c = gcg'd,end
Nc,u,ul Nc,u,qol ﬂc,u,uz Nc,u,qoz (C-17)
No=[t 2l =N v Nepgr Nepuo N,
= — — epul Leppr Xepuz Legp2

As it is assumed that no external force is applied on the element, and external virtual
work only contributes to the inhomogeneous terms, therefore, the homogeneous equa-

tions are obtained as

—Hygt + (Hs = Hy) gt + Hage = 0

( ku”C - O
=6 =0
WP =0
< o' =0 (C-18)
4EIZ " ! 12 1
<a? — WY =k — we—9p=0
4E1y " 1 " ’
\ﬁe +kvc—0=ky9 +kvc—9=0
Quc = gquce Quc = géIuce
% = gquce % = N:”(Iuce (C_lg)

To simplify the shape function, we define the following parameter

C-4



C Detailed Dynamics Models of Different Types of Elements

x 48E] 1
_x _ y -
$=1 Y= AG12 Py a, +1
_ 48El, g =1 (C-20)
% = UGI2 2T w, + 1
ku”c =0- u. = uukUce = fkuce
Nu,u — E Nlu,u — 1 Nllu'u — O (C'Zl)
p"'=0->¢= Ny o®e = $@e C.29
Ny =¢ Npp =1 Nyo =0 (C-22)
{ k'e—0"=0 5 {kvc = Ny yiVUce + Nyg0e
kygu + kvlc —0=0 0 = Nglvkvce + Nglgee
a
Now =By (=287 +3E 4 ay8) Ny =L (€3 + ~2¢)
, _B , a
Ny =Z(-68+ 65 +ay)  Nog=py (38 + (¢~ 2)E =)
143 ﬁ 17} ﬁ
N"yp =75 (—128 +6) N, o= y(6§+(ay—2)) (C-23)
6ﬁ
Ngy = — Ly &*=-9 Ng,g = 'By(3€2 + (“y - 2)5)
: 6f , B
N'gy=——7 (26— 1) N'gg =2 (6t +(ay ~ 2))
, 128 . 68
N'g, L3y N'ge = L_zy
{ W' et+tyP' =0 R {ch = NywiWee + Nw,l,l}lpe
k" —w'c—¢p =0 kWe = Ny wiWee t NW,I/J"‘/JE
a,— 2 a
=B (2 4384 wl) Ny =L (£ + S - T
P a
N'yw —BZ( 6&% + 68 + ay) Ny =—P; (3{2+(a2—2)f—?z)
! ﬂ 17} B
Nw = Z( 12¢ + 6) Ny = —f (68 +(a,—2)) (C-24)
6
pr 'BZ (52 f) Nlp,lp = :82(352 + (az - 2)5)
ﬁ
N'yw =77 2§ 1) Nu“,,_—(6€+(az 2))
! 12ﬁ2 6ﬁz
Nyw =3 Ny =71
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Nyw O 0 0 0 07
0 Ny 0 0 0 Ny
o0 0 N 0 Ny 0
N=lo o o N, 0 0
0 0 Ny 0 Nyy O
0 Nepy O 0 0 N
Nyw O 0 0 0 0
0 Ny, 0 0 0 Ny
o 0 Nuw 00 Ny, O
E=lo o 0o wN,, 0 0 (C-25)
0 0 Ny, 0 Ny, 0
0 Ng, 0 0 0 N
N'yw O 0O 0 0 0
0 N, 0 0 0 Ny
Lo 0o Ny, 0 Ny, O
E=lo o o w7, 0 0
0 0 Nyy 0 Ny, 0
0 N, 0 0 0 Nl

C.2.7 Internal Node with small deformation assumption

dqg
_ 1| L
CIC - zd,C [d_qd‘cl [Mzd end dqe - T d_qe (C'26)

qul - dqg |
+ 24,

. _ _1 —
ﬂc B zd,c de,c = de,c_
[ T T,
Ip Ip
=Tdg + (15} = |dee +T7ty = |]d (C-27)
e <:d,c gczd,end 49 T Zac gcgd,endl)—qe
= zcﬂ T Tdq.
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C.2.8 Virtual internal power
L

P = — fffZZ@BSl]BJ av = — f fZZ@BeuBa dA ds

0 A(
L (C-28)

== _f f (6BéxxEB€xx + SBéxyGBexy + 6BéXZGB€XZ)dA dS
0 A(s)

64d.c (ﬂs%c + Haqa c) ds

o — .

L
6pint - f‘quc _1qdc ﬁng,c) ds +
0

I~

= — 844, (ﬂlq&,c t gd,c) . (C-29)
f6Qdc —Hiqq. + (%‘@)Q&,a“‘é}ﬂd,e]ds
H = di GA GA G(I,+1,)
H, = diag(|EA — ———— EI, EI,
4 4
0 0 0 0 0 0
. , G4
4
GA _ C-30
Ho=10 0 0 0 == 0 Hy = Hy (C-30)
0000 0 O
0000 0 0
0000 0 0 I
g4=diag([0 000 — TD

8Pint = — 644, (ﬂlﬂé,c + ﬂz%,c)

Apply small deformation assumption

g'd,end = ﬂd,end = gd,endd_qe (C-32)

)

L . o (C-33)
| dend = zd,endgd,endgd,end

S
I
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C.2.9 Virtual inertial power

L
T
opme == ||| 07 ipav = = [ [[ 6+ Beet) (7 + Acet) pda ds
14 0

A(s)

= _ f 87T 7 A+ 68,7 A, f f tdA + f f tTdASQL T (c-3a)
Al As) N

f f t'807 A, ctdA | ds

A(s)

For symmetrical sections

T

|| cwta={ || e - Al-0 (C-35)

A(s) A(s) Az

L
T
5vme == || 0.7 ipav = - | j (2 + 2ect) (1 + Acct) pdAds
14 0 A(s)

g T s T T
- j [(SIZC FA+ 1,6 (gcgy) écgy + 1,6 (gcgz) écgz] pds(C-36)
0

L
ja d_QB dgp +D dqg
5 ﬂd,c _BC d dc == d dc

Ms,c = pAH{ Hy + ply HY yHyyy + plH 2 Hy.
Dy, = pAH{ D; + plyH'\ Dy + pL,H; Dy, (C-37)

dqg dqp £ 01[ das é 0 dqp
[ﬂd,cl [qd cl Bl [g Ncl lqd endl [0 ﬂcl [dqd endl

011 In Tp (C-38)
- - dq. dqe
gc zd,end - chd end
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d4s] [das] L Q[ dds ] _[L 2] dds
Pt I o I | o B A P
L 011 T ] I 07 Is
== <l ldae+|5 <17 |4
g gﬁ _zd,end_ _qe g gcl Id,end_ _CIe (C-39)
L 071 T ) Ty
== <l |dge+|, 5 |d
g gﬁ _zd,end_ _qe chd,end _qe
L
5 _MTZBT 'éQTMégd Qed
Pine =~ _qe Id,end fg Mc :BC Q Mc s Zdend 9.
L )12 A 2 4 L
L
I e T | T
S =
1O Mo \ = eena)] ™ = | Moo )
= —6dgZ (M,dde + Dedge )
L
u I Tf'é QTM ! Qd'EB
= S
= |Lnena] J 10 Nef =00 Ne] ™ |Laena
L . C-41
) @ngg”,w bl (Lo,
= . S
= zd,end J g gc = N.Tjena = gczd,end

C.2.10Virtual external power
L

5Pext—ﬂ 6171 gpdV = IU ir +Qcct) pdAds ;g = J(Sﬂ" pAds 19
0

L (C-42)
J‘S[ l ey IgpAdS
0
Apply small deformation assumption
Tp L0
T| = - = T T
8Dine = 6ﬂe [T l j IO N l H; pAds g = _5d_QeZext,gIg
=tenal &= = = B - (C-43)
0

= _5ﬂZEext,g
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1~

T L 0
= T
Kext,g _dendl J-IO ﬂcl ﬂt,DAdS
0 =

Fextg = Kext,g 19

C.2.11Virtual power principle for Timoshenko Beam
OPe = 6Dine + ODint + OPext = ODine + 6Dine + 5pext,g

= _5d_q£ [geﬂe dqe _mt + Eext,g]

C.2.12Small deformation assumption

pU‘ K pr’° gr""¢ + pu = pr’°

sY°—0 Roc~1

CZD'CNB%.CN[Q I]gcgdend
Mass Matrix
gB,c = PAgtTgt +pl, _ry_ry + plzﬂrTzﬂrz
Dyc = pAHID; + ply 1y Dy + pLHT.D,
L
R T AT
M = 1Tsena fg N| e lo N % | T ona
= g = = = = £
L .
5 ZBTfLQ'TM T 5 s 1),
= - - - .— + pu— s
= [Laena 5 0 N =N Tgena| = [NeLaena

C-10

(C-44)

(C-45)

(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(C-51)
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H ~[L —Rppf™ Rp 0]
I —sRsdy Ry O
ng&g —5°0xdx Sgx 0 (C-52)
HTﬁt= - - = -
= R A
0 0 0 0
By <[l Bag 0 g
0 0 0 0
r 8 %% 2 5 (C-53)
Bylry=lo 0 o o
0 ~99y O —99
Ho,~|0 ~Redz O —Rsg:|
0 0 0 0
9 _gzgz 9 _gzgz _
2 0
_g _gzgz g _gzgz_
Al —AsRsgy ARy O
AsngT _Aszgxgx+] Asgx ]
M. . = == == = = = )
0 J o J
Iy+IZ 0 0
l = _Iy:ygy - Iz:z:z = 0 I, 0 (C-56)
- - — - = 0 0 Iy
L
TR TR SR S RO
= " |Liena Of 0 New Neo| =290 Ney Neo| ™ |Taena
(C-57)
R
a gd,end —Bend Zd,end

Inertial Force
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Ty 1" ., Ty ) (C-58)
= zd‘end :Bend Td,end _qe
Loy L0 Ty
+”9 N| Boelo Mldslgendd—
J 10 N L
Do = PAHTD, + p B, Dy + ploHTDrs (c-59)
D= [0 ~SEnsB"3: 2Ran@® O] = Ryt [Q —5Fe 2 0
0 —sRpp@”§y  2Rpp@® 0]
0 —spfTp@”g, 250" 0 (C-60)
HDp, =~ = == = = =
R O P
0 0 0o 0
D.. =10 —R 0BG 0 —R,(2.08+ .@¢)q
=y = —BB= gy = =B B= = gy
=Rs[0 —5@" 0 (20" +.&°)|g,
=Rs[0 —5@" 0 —(2:0° +59°)| g,
=Bs|0 5@ 0 - (2@ +1Q Uedaena)lgy
0 0 0 0 - (©6
| a0 -gy(2:8° + E)
HyDy=lo ~ 0o o 0 h
0 -3,58°3, 0 -3y (28" + )3

C-12



C Detailed Dynamics Models of Different Types of Elements

Do=[0 ~Bus2’s 0 -Ra(22°+.2)z)

0 0 0 0
0 ~3:58°3: 0 —§:(2:8° + &%), (c-62)
H:Drz=|lg ~ o0 o 0 -
_g _ngngZ g _QZ(ZBgB-l'ch)gZ
DIBTfLQTMLQ_TBDLQIBd
—| = - = = N g Nl S
= " Taena] J 10 Nef \ZP4Q o] {Tyona]  Z4NQ Me] [Taena
Ts 1"(FrL 01 L 0 Ty
= - - - M - - d L
lzd,endl E)flg gCl = g gﬁl ’ Id,end
(C-63)
Loy Lo Ty
o | e I A Pl
J10 N 0 b,
EB ' M LB + D EB
= gd,end :Bend fd,end ZB,end zd,end
Loy L0
gB,end=jI§ N_cl QB,C [é M_cl ds (C-64)
/10 N LU
Gravity
(R R VAR
Lextg = P4 Li,ml / lg Ncl s (C-69)
Laena| J |0 N

C.3 Two Nodes Strut Tie Dynamic Model based on Absolute
Coordination

C.3.1ldeal Strut Tie Model Assumption

The strut tie model described in this part is an ideal strut tie model, which satisfies the

following assumptions:

C-13
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5. Only the normal stress from axial tension and compression is considered, and
other internal forces that may exist in the real rod are ignored;

6. the normal stress is evenly distributed with the length of the rod;

7. the cross section of the rod is symmetrical about the y- and z-axis of the sec-
tion local coordinate;

8. the density and total mass of the rod remain unchanged.

C.3.2 Generalized Coordinate and Generalized Velocity

According to the above assumptions, the generalized coordinates and generalized ve-
locity of the two nodes strut tie model can be expressed by the position vectors and
translational velocity of the two nodes.

rt : i
9e = Ifz d_Qe =fqe = 72 (C-66)

1=

Since only the x-axis is determined (parallel to the line connected the two end nodes),
according to the third assumption the posture of the rod can be determined only based
on the x-axis.

0" = o°nj Ry =R (¢") (c-67)
where
singf = gxnx”/ los cos @B = gin,/lyp
ng = gxnx/ Gt lps = \/ gen L (_;ﬂx)z (C-68)

According to the relationship between the translational velocities of the two end nodes,
the angular velocity of the rod and the velocity of the axial deformation can be obtained.

Bilz = gxﬂg[_é é]d_qe = zrd_qe
(C-69)

1
o0” = [y Beo (85 - gont) [7L Lldae = Tydae

where
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T T
2= 2 gl Ny = ngx gx,%o = g([z 0 0] ) (C-70)

The angular acceleration of the rod can be written as
(C-71)
where

-12 2

9Ty F =t =t (C-72)

C.3.3Kinematics and Deformation of Points on the Beam

Since for the strut tie model only the axial deformation is considered, there is no relative
rotation with the local coordinate on any cross section. The position, velocity and ac-
celeration of any point on any section of the rod can be expressed as

="+ Rpt
o\ e T B
r= If. + 5832 ct (C-73)
i = ¢ + Rppw® .t + Rpp@® p@® ot

According to the definition of strain in absolute coordinates, the axial strain of the rod
can be written as

=l -1 (C-74)

The velocity and acceleration of the axial strain can be expressed as

1 1
€= —,If’Tﬂ’ﬂe GNTN N dQe = TTdQe
o e = o
1 I I =
€ =7 _ZN’T N’ dQe ( = ) ’dqe B Tque Tﬂe
Il == ||1T = 11

The stress can be obtained from the constitutive relationship with strain. In order to
avoid the high-frequency oscillation of the rod caused by strain, the average stress is

C-15
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used to replace the instantaneous stress by introducing smooth factor h. The average
stress in inertial coordinate can be expressed as

2

_ _ h R [ g T
0 =E=E I£+§’€+E’€ =E;+E EIE +EIE d_CIe+EgIgd_Qe(C-76)

C.3.4 Discretization

In order to satisfy the second assumption, the first derivative of the position vector of
the center of any section on the rod should be constant. Therefore, its position vector
can be expressed by linear interpolation of position vectors of two end section. The
position, velocity and acceleration of this center point can be expressed as

o= Nge i7° = Ndq, 7= Ndge (C-77)

Where N is the shape function, and its specific expression is
N=[A-OL ¢l (C-78)
with & = s/L. The first derivative of its position and velocity vector with respect to the

arc length coordinate s can be written as

Cl! a ! - Cl
ir :Mge 1

1=
I
1=

4 (C-79)

with

=

Il
~] =

|
11~
|

I (C-80)

C.3.5The Virtual Power of Strut Tie Model

The inertial virtual power of strut tie model can be written as

C-16



C Detailed Dynamics Models of Different Types of Elements

5pine = - fff 61tT Iﬁpdv = —5d_qu (ge,ineﬁe + ge,ined_qe)
v (C-81)
= —6d_qu (ge,ineﬂe + Eine)

The mass matrix and damping matrix generated from the virtual inertial power can be
expressed as

l + 15 /Lp> Dy ine = —pLT; (:2,) +J'§p) (C-82)

21 1
Me,ine = pL <gl I_ 2_

wherel is the moment of inertia of section

| =diag(ly +1z Iz L] Jp@” = p@°] 50" (C-83)
The virtual internal power with the smooth factor can be written as
L
O0ine = = | 618 15Ads = ~5daZ (Mo inedde + Doinedds + Kot
0 (C-84)

= —5d_q£ (ge,intﬁe + Eint)

The mass matrix, the damping matrix and the stiffness matrix obtained through the
virtual internal power can be expressed as

h? h . R ..
My int = EAL =TT/ Dejne = EAL( 5T, T + LT
1. (C-85)
Ko =gy N" N EAjelL
= = =

As the external force here only gravity is considered. The virtual power of gravity can
be written as

L

Ovestg = ||| 887 igpav = odatpa | NTdsig = ~0dalFues  (c.gy
N
14

The virtual power of strut tie model is
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OPe = 6Pine + OPine + 6pext,g = _6d_qt7; (%Rﬁe + EB) (C-87)

where the total generalized mass and generalized force can be written as

ge = ge,ine + ge,int E, = Fine + Fint + Foxt g (C-88)

C.3.6 Body Parameter of Strut Tie Model after Deformation

According to the forth assumption, we assume the density p and the total mass m be-
fore and after the deformation remain unchanged. Here we assume the cross section
of the rod is circular with outer diameter r, and inner diameter r;, the ratio of outer
diameter to inner diameter remains unchanged. Therefore, the section parameters af-

ter the deformation can be expressed as

m . m .
o el et -t e[ - (C89)

where r; and ;" is the outer diameter and inner diameter before deformation.

C.4 Cubic Spline Beam Dynamic Model

C.4.1 Generalized coordinate

[ L] [ ]
gl 1w
oy | [ [l
9e = gz] - IKZ e = d_q2 = Ifz (C-90)
g2 Lw?
iz 21
Ry = RiiR; = §1§(1£12) 1£12 = [, W2 9127
T
12 — _ cin=1 4T 8z 1§2gy (C-91)
11,[) Sin Jdz 1§2gx 1(p12 = Sin 1W
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2w? = 1§1Q1 + £(1£12) 191

197 =17 (19") (20 — BIR1100") = Tprzde (c-92)
Tprz =17 (10%%) (Lz — RER:Lun)
207 = RIR116" + T (19'7) 192 ~ 107 RIR1 100" + RER1, 3" 10
+1(191%19%) 197
912 =17" (10") (207 - BIR110")
+17 (197) @R R 10" — KR @0
1 (10'%10%2) 10" (c-93)
=17 (19) (Lo — RER L ) dde
+17 (197) @ BB Ly — BIR 'L
~1(10"%12") Tpsa] dde = Tpradde + Tprzde
Tprz =17 (10"%) [o8°BER: Lo = BIR:@ L = L (1907210 Ly

C.4.2 Shape function

¢ =Nyt + N§r2 + Nir't + NEr'? =

IS

= N+ N3 + N[ e+ N2 2| 2 (C-94)
7€ = N i+ NZ 72+ NE (|| |k = e | iRy 10t)
+ Nf (||1f’2||1292c - ||1f’2||123c§22£2) = NDdq,
N =[N M NG NP
U 0 0 0 0 0
é _Hlfll_lllﬁ;lcﬂ1 IEalc 5 § 0
0 0o 0 1 0 0 (C-95)
0 0 0 0 —|lz*;a3R, nZ]
g o 00 o 0
é _If_’lﬂ1 Iﬂalc § § 0
o o o1 0o 0
0 0 0 0 -7k,
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(£ = NDdd, + NDdg,

D
0 0 0 0 0
0 —||1£’1||§11§1g~x —2/fxR 0" 0 0
~lo o 0 0 0
0 0 0 0 —[lr?||Re2@%gx —2,
e = N'(1)1£1 + N’(Z)IKZ + N,HlIf’l”Iﬂch + N’i“lflzlllﬂazc
e = M,Qd_‘k
N' = [N'cl)l N1l N'§I Nlﬂ]
' =N'Ddq. + N'Ddq,
e = N”é,zl + N”(Z)Ifz + Nl,ﬂl]flllllﬂ}c + N”i”lflznlﬂazc
7" =N"Ddq,
ﬂ” — [N”él)é Nuié N”(Z)é Nll%é]
C.4.3 X-axis
n, = ! r'c
el (T
1
Iﬂ;c - ”1£’C“ (é - IﬂxlﬂxT) IKHC
1 3 1
e = e (L o) 2 =g

C-20

||

N

I

1o 1o |©

EY

(C-96)

(C-97)

(C-98)

(C-99)

(C-100)

(C-101)

(C-102)

(C-103)

(£ - IﬂxlﬂxT) glgd_(k = znxd_qe (C-104)
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1

My = W[lnxl_x e+ (I_x T I+ M’ )Iﬂx
I
- (é - IﬂxlﬂxT) Ifnc]
1 (C-105)
N [ WD + (i "L+ ™) T
ir
— (L - e, N"D] g = Tynxdg
1 . T c
Mx = ” T'C” [(Zl_xlnx + My Ny )Ir (1_ M My )If ]
1
=Tl [(ZzﬂxzﬂxT + it )N'D
I= ) (C-106)
= (L ) D dae + o (1 - i) W' Dl

C.4.4 Angle
cos 1y cos 10
My = RiR,(10)Ry (11P) gx = Ry | cos 13 sin 19] (C-107)
- —sin Y
Bending angle
_ gyRI m
1 = —sin”! gTR] . 0 = sin == (C-108)
cos 1Y
The first derivative of s
1/)’ .gz Rl ,
=———n
! J1—sin? Y =
gT RT (C-109)

10" =

. (Iﬂx + mytan 1 ')
cos Y+/1—sin

First derivative with respect to t
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g:R{

_— & ) _ L
= —1 = in? (IEx + Iﬂxgllﬂ )
——j%fg;——(T + AR, T )d T7d
=- Inx T MxBa1ly1 ) 0Ge = 104,
1—sin? P = = =="7/— —

9

cos ;Y1 —sin? |0
gyRT (

cos ;P +/1—sin?

ZIQTﬂe

16 = (I_x_l 1w+ + i tan 11/)) (C-110)

1+ T + T tan 1) dge

Derivative to s, t

: g:R1 .
W =- T [IE;C + xRy 0!+ tan 13 14’]
1 —sin® - =
g7 R1 .
=- \/TW [zdnx + 1R Tt + iy tan 13 Lp] aq.
= Igzpd_ck
0 oR [ R,
"= i w' + 1
s T s g TR
+ (Iﬂ;c tan 1Y + n, sec® ;i 11/J’)11.b + m, tan P Y’ (C-111)
+ (tan 11»0, + tan 40 16") (1§x§1 1w+, + iy tan 1¢)]
gy

2 [Iﬂle_wl + Idnx
cosllp,/ —sin - ==

+ (i tan 1 + n, sec? 1P 1’ )Z/T; + ny tan 1y Iglp
+ (tan 1y Y + tan 16 ,6") (1@21201 + znx

+ My tan 1lp )] dQe - TTBd_Qe

Second derivative with respect to t
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P=———
! J1—sin? 1/1
e I_x 110) 1I_x 110)
w/1—smzll,b

1
(gz RY i, + 9z 7RI xR0 )

+ (Ir_'lx Ry 1@1) tan 3 11.0] =
g: Rl
_ 9= " - (C-112)
s 0 (L + 1R L) e
T
~ Ry @'RY ) RaLin

g:Ri [T (2 .
— =T + (2/i
J1—sin? Y = =
+ (1 + 7Ry 10 ) tan 9 T3 | dq, = T}dg, + T dg,

1é=ﬂﬂe+ﬂﬂe

TRT
> [Inx + ( 11 R11w R I_x) RiTin

7T =

— ,/ — sin? ;Y

+ (Iﬂx + nggnﬁ ) tan 1y ]
18" RY 7L R Ty

Tr = RIT,. + RT n, tan
) COSllpW[ 1inx T 21 12x 1Inb _____
— 2.&'RIT,, (C-113)
(2R1 My tan 1 — 2,@'RY i, tan 1 + RY n, sec® 1P 13
+ RT n, tan® 13 11/)) LZ
+ (—1@'RT . + RY ity + RT jny tan i ) tan 1077 |
_ 12 A P
19 =§10 1P = I 19
1 =§191% = fg};gﬂzd_% = qud_% (C-114)
.y 1 212 1 T T
19 = I 19" = ngz(plzd_qe = Id(pd_CIe
1(P 519012 = ggx’]_"(plque + 'ng_(pldee Igﬁe + I{;@e (C_115)
1w =he ¥ 101" 1@’ =Ly ¥ 0T (C-116)
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9] T8
1@ = 1711.1 = ZZ ﬂe = zAngled_Qe
61 |r7
9" | Tde
1£’ =Y = Zglp dqe = szngled_CIe (C-117)
191 [T
9 |Te Ty
19 = 11{{ = LZ ﬁe + L}; d_Qe = zAngleﬁe + zAngled_Qe
101 |13 T3
C.4.5Kinematic
1R = Ry =E(1£) cWg =Z(1£) 19
A . iy . C-118
1 =1 (s9) 1 =1 (s910) e
° = RL 100" + a1 = T,dge
T = RiTos + Lalange (419
d.w° . ~ L )
5? = 551&1 - cﬁéﬂglﬁl + L@ + Taip
(.B Sl +IdIA"gle)dqe . (Cc120)
+ (gdzAngle + ZdzAngle - = gw ) gwd_ck + zwﬂe
iy = Lillmgte + QZAnme - RIL:
e aCQC ~Cc ,.C
19 zgc ot +§ccg cW
R P O P (C-121)
cw =§cIQ = ot +cgcQ = ot
C.4.6 Strain
Axial stress
€=l —1=pe (C-122)
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C Detailed Dynamics Models of Different Types of Elements

€= ”IT,C” If’CTIf’C = gchlflc = ”Irfc“ Iflchlgd_qe = IsTd_qe (C-123)
Curvature
BK = z (1@) 18’
aBE ] P ' ! i !
5 =L(2)12 +1(:019) 10 =L(10) 0/ + L' (1019) 19 (c-120
= [g( 2) Taangie + gl 19, 12,) zAngle] dq. = Ikd_e
d.K
K= Rca_t_ + R @ ck
d.K Jdgk dgK . (C-125)
= =Rl k=——+ @k = —— — K.0°
dt De ™ at C: cx C:C_
C.4.7 Virtual Internal Power
€
£= [BE] (C-126)
TT
E= [ ] I ldqe _Stramdq (C-127)
EA 0 0 07r,
o 6 0 o [|sr
9=l0 0 EL 0 ||, |7 KE (C-128)
0 0 0 ELllsx,
OPine = _J. 5£ngs = _5ﬂ£.[£$trainT§£§ds = _5ﬂgﬂnt (C-129)
0 0
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C.4.8 Virtual Inertial Power
L

6pine,tra = _PAf 5ltCTI£CdS = _5d_qz (ge,ine,tra@e + gine,traﬂe)
0

L L
:—5dCIe PADTIM Nd SDﬁe+pAQ fﬂ Nd SDﬂe

o -
= —5@2; (ge,ine,trad_Qe Eine,tra) (C-130)

Eine,tra = Qine,trad_CIe

Me,ine,tra pA

113,
o\r-

1=
ﬂ

1=
U

95
IS

8Dinerot = —P ] 61QCTIZIQCdS = _pf 6CQCTBZI-[EC (CQC + CQCCQC) ds
0 B 0 T -
L

=-p f 5CQCT ([CQC + CQCZCQC) ds

0

= _6d_qg (ge,ine,rotﬂe + Eine,rot) (C-131)
L
ge,ine,rot = szﬂgwds Finerot = gine,rotﬂe

OPine = 5pine,tra + Spine,rot
= —5d_CIeT [(ge,ine,tra + ge,ine,rot) ﬁe + (Eine,tra + Eine,rot)] (C-132)

= —5d_q£ (ge,ineﬂe + Eine)

C.4.9 Virtual External Power

L
ey = pA | 87" ds 19 = 6datpAD” [ NT ds g = ~0dallig  (C139
0 0
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L —
e jN Fextg = Yerg (C-134)
= —pAD" | N
0

C.4.10Virtual power principle of Cubic Spline Beam
0Pe = OPine + ODint + OPext = OPine + 6Pint + 6pext,g
= —6d_q£ [(ge,ine,tra + ge,ine,rot) ﬂe + Eine + Eint + Eext,g] (C-135)

= —0dgZ (Medde + )

C.4.11Coordinate of Internal Node with no End Axial Strain Assumption
€= Ngp' + N§r? + N{r't + NEjr'? ~ Ngr' + N§ r? + N g + N ng
= Noyr' + Ng T2 + NiR1gx + NfRogx (C-136)

7€ = Ng 7t + N§ 72 4+ NiRy 1@ g, + NP Ry, @29,
= N(}Ifl + N02,1"2 - N111:91cB11(U1 - Nflﬁ?cﬂzzﬁz = NDdq,

I 0 "0 0
0 —@R 0 0 (C-137)
S A
0 0 0 —@lR
176 = Ng ' + Ng 2 + Nfﬂmélgx + Nfﬂzzézgx + N{Ry 1@ 1@1@:
+ leﬂzzézzgzgx
= No ' + N§ 72 — N{ jfizRy 0™ — NP I_xBZZw = NDdgq,
0 o 0 0
= = = = (C-138)
0 —Ry@g, 0 0
D=lo o o 0
Q 9 9 _BZZQZ ~x
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C.4.12Cubic Spline Body and Section Parameter Recognition

8pe = 6Dine + ODint + apext,g
L
~ —odq,"{ [ (DN pAND + L3I, ) ds d
) J L

L
C-139
+ f [_Stram K{:‘g - DTNT pAIg ( )
0
+ (DTNTpAND + If,p]T + IaT,CNCp]T )dqe] ds
With Gauss Interpolation
OPe = ODine + OPDint + 6pext,g
n
= —0dg,” Y w [(QTMpAIND +T20]T, ] dg.
i=1 - T T T
n
- 5d_qu z w {[IStrainTKeﬁ - QTMT pA!Ig
i=1 . o o -
+ (DTNTPAIND + T3pJT,, + T2.5°P) L, ) dac| } (C-140)
n o T T *
M=) w [(QTMPAIND +TIp]L, ) ]
o i=1 - T T T
n
=) w [( TNTBELND + TIBTL L l
i=1 x
C.5 Cubic Spline Rope Dynamic Model
C.5.1 Generalized coordinate
i
1) _ it da. = 44, i
qe = gz] =| 2 e = | 4q, (C-141)
'
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C.5.2 Shape function
7€ =Nor'+ N + N§r? + NEr'? = Ng

N =[N NI NG NI

76 = Ng i1+ NE™ + NG 2 + NE i = Ndge
i€ = No ' + Ni it + N % + Nf 2 = Ndg,

1 1 2 2
r'¢=Nort+N'yr't+ Nor?+N'ir'?=N'q,

N'=[NGL Nil NGL Niij

. 1. 1. 2 . 2 .
7€ =Nt + N'y " + NG + N'1,7'% = N'dq,

=

" 1. 1. 2 . 2 .. :
7€ = N'o /it + N’y #" + N'g,#% + N'y #'2 = N'dg,

e — arnrl 1 nl 11 n2 _.2 12 02 _ arn
=N + N3 r=+N'gr*+N"';r°=N"q,

N7 = [NBLN'HL NRLON'R]

ItIIC — Nlldqe

C.5.3 Strain
Axial stress
€= ||11'C|| -1
1 1
1€ = <] e = B IEICT!d_% = I, dq.
1= 1—

C.5.4 Virtual Internal Power
0 =EA;e

(C-142)

(C-143)

(C-144)

(C-145)

(C-146)

(C-147)

(C-148)

(C-149)

(C-150)

(C-151)

(C-152)
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O0me = = | 817 10ds = ~5daEA | 17 ieds = ~6dalEe

C.5.5Virtual Inertial Power

8Dine = _6d_qg¥e,ine@e ~ ODinetra = —PA j 51£CTIiCdS
0

L
= _5d_qe jg g S dQe = _‘Sﬂgge,ine,traﬁe
0

L
ge,ine ~ ge,ine,tra = pA J ngdS
0

C.5.6 Virtual External Power
L

L
Obextg = pA | 81" ds 19 = 8dalpA [ N7 ds 1g = ~0dalVerg
0 0

=—pA | NTds Foxtg =Verg

INS

O\P

C.5.7 Virtual power principle of Cubic Spline Rope

OPe = ODine + OPint + OPext = ODine + OPint + OPext g
= —6dq7 [ inedde + Fint + Foxtg| = —6dql (Medg, +
ge - ge Ee - Emt + Eext,g
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Appendix D Detailed Modelling Information of
Lattice Boom Crane

D.1 Body Element, Joint Configuration and Initial State

D.1.1 Frame and Pedestal

Frame is a virtual element and only the joints of the frame should be defined. In addition,
the initial state of the frame should always be zero.

Table D-1: Frame Parameter for Lattice Boom Crane Model
Model Type -
Element Number 0
Joint Quantity 1
oints
Joint 1 st =10 0 0]",3p;=[0 0 0]
T T

State variables Xp = [Q} ﬂ}] = [IZT BQT d_qu] with dqy; =0
Initial State Position r=[0 o0 o]

Posture sp=1[0 0 o]

The pedestal is regarded as a rigid body. The parameters of pedestal are shown as
follows

Table D-2: Pedestal Parameter for Lattice Boom Crane Model
Parameter Body 1
Model Type Rigid Body
Type Custom defined
Length 30
Section Size Mass 100
Moment of inertia 1000 x diag([1,1,1])
Centroid position [1;0;0]
Quantity 2
Joints Joint 1 sy =[0 0 0]" s9; =00 0 0]
Joint 2 gr;=1[11 0 o] sp;=[0 0 0]
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D Detailed Modelling Information of Lattice Boom Crane

Parameter Type 1

T T
State variables x,=[9c dac] =[r" 9" dac] with dg. =0
r=[0 0 o]

sp=1[0 0 o]

Initial State Position

Posture

D.1.2 Main Boom

The main boom consists of 5 super truss elements in 3 types.

Table D-3:

Main Boom Parameter for Lattice Boom Crane Model

Parameter

Structure
L
Super Truss Super Truss Super Truss
Modelliype Element Element Element
Element Number 2 3,45 6
Truss Order 3 6 3
Truss Length 5 15 5
Nodes on  x-Position 0,0 0,0,0,0 0,0,0,0
Cross y-Position 1.5,-1.5 1.5-15,-1.5,1.5 1.5,-1.5,-1.5,1.5
Section 1  z-Position 0,0 1.4,1.4,-1.4,-1.4 141.4,-14,-1.4
Nodes on  x-Position 0,0,0,0 0,0,0,0 0,0,0,0
Truss Pa- »
Cross y-Position 1.5,-1.5,-1.5,1.5 1.5,-1.5,-1.5,1.5 1.5,-1.5,-1.5,1.5
rameters ] -
Section1  z-Position 1.4,1.4,-14,-1.4 1.4,1.4,-1.4,-1.4 14,1.4,-14,-1.4
i Nodes Nr.1 1,2,2,1 1,2,3,4 1,2,3,4
Main Beam
Nodes Nr.2 1,2,3,4 1,2,3,4 1,2,3,4
Cross Sec- NodesNr.1 1,2 1,2;2,3;3,4;4,1 1,2;2,3;:3,4:4,1
tion Beam Nodes Nr.2 1,2;2,3;3,4;4,1 1,2;2,3;:3,4:4,1 1,2;2,3;3,4;4,1
SB Connection Form TP Typel Typel Typel
Type Round Tube Round Tube Round Tube
Main Beam ra 0.1 0.1 0.1
ri 0.08 0.08 0.08
) Type Round Tube Round Tube Round Tube
Section Cross Sec-
ra 0.1 0.1 0.1
Size tion Beam
ri 0.08 0.08 0.08
Type Round Tube Round Tube Round Tube
Sub-Beam ra 0.05 0.05 0.05
ri 0.04 0.04 0.04
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D Detailed Modelling Information of Lattice Boom Crane

Parameter
] Density 7800 7800 7800
Material i
) Elastic modulus 206000000000 206000000000 206000000000
Properties . .
Poisson's ratio 0.25 0.25 0.25

Only two joints are on the flexible beam, and located at the ends of the beam elements.
The initial state of the super truss elements consists of generalized coordinate and
generalized velocity. The generalized velocity at initial state is zero. The generalized
coordinate is shown as follows

Table D-4: Main Boom Initial State Parameter for Lattice Boom Crane Model
Initial State Body 2 Body 3 Body 4 Body 5 Body 6
0 —0.43578 —1. 7431 -3. 05045 —4.35779]
it 0 0 0
4980973 19. 9239 34, 86681 49.80973.
Point 1
0 0 0 ]
21 —rad(95°) —rad(95°) —rad(95°) —rad(95°) —rad(95°)
Generalized 0o
Coordinate [ 0. 43578] [ 1. 74311] [ 3. 0505] [ 4, 35779] |—4.79357'
2
T 0
4980973 19.92389 34.8668 49.80973 54.79071
Point 2
0 )
ﬂz —rad(95 ) —rad(95°) —rad(95°) —rad(95°) —rad(95°)
0 0 0 0 0 ]

D.1.3 Main Boom Head

Because of the complexity of the main beam head, it is regarded as a rigid body and
is configuration is shown as

Table D-5: Main Boom Head Parameter for Lattice Boom Crane Model
Parameter Body 7
Model Type Rigid Body
Type Custom defined
Length 2
Section Size Mass 1

Moment of inertia 1 x diag([1,1,1])
Centroid position [0.5;0;0]
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D Detailed Modelling Information of Lattice Boom Crane

Parameter Body 7

Quantity 13
Joint 1 sry=1[0 0 o] s9; =0 0 0]
Joint 2 s;=[0 0 —12] s9; =10 0 0]
Joint 3 s =175 0 —14]" s9; =0 0 0]"
Joint 4 sryp=[22 0 171" sp;=[0 0 0]
Joint 5 sy=[0 0 12]" sp;=[0 0 0]
_ Joint 6 sri=[0 13 1.2] sp;=[0 0 o]
Joints Joint 7 =0 -13 12]7 s9;=[0 0 0
Joint 8 sry=1[0 13 -12]" s9; =10 0 0]
Joint 9 sy =[0 —-13 -1.2]" zp;=[0 0 0]"
Joint 10 s =[1.75 1.4 —14]" s9; =10 0 0]"
Joint 11 gj =175 —-14 —14]" gp;=[0 0 o]
Joint 12 sty =122 15 171" s9; =00 0 0]"
Joint 13 sri =122 -15 171" sp;=[0 0 0]
State variables x. =[98 d_qg]T =[r" " d_qu]T with dg, =0
Initial State Position r=1[-47936 0 54.7907]"
Posture 59 =10 —rad(95°) 0]
D.1.4 Derrick Boom
The derrick boom consists of 3 super truss elements in 3 types.
Table D-6: Derrick Boom Parameter for Lattice Boom Crane Model
Parameter Type 4 Type 5 Type 6
Structure %K
[
SEEE SpEae SEEGE
Element Number 8 9 10
Type Round Tube Round Tube Round Tube
Main Beam ra 0.1 0.1 0.1
ri 0.08 0.08 0.08
) Type Round Tube Round Tube Round Tube
Section Cross Sec-
Size tion Beam rfa 01 01 01
ri 0.08 0.08 0.08
Type Round Tube Round Tube Round Tube
Sub-Beam ra 0.05 0.05 0.05
ri 0.04 0.04 0.04
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D Detailed Modelling Information of Lattice Boom Crane

Parameter

] Density
Material

Elastic modulus

Properties

Poisson's ratio

Truss Order

Truss Length

Nodes on

Cross

Section 1

Nodes on
Truss Pa-

Cross

rameters )
Section 1

Main Beam

Cross Sec-

tion Beam

x-Position
y-Position
z-Position
x-Position
y-Position

z-Position

Nodes Nr.
Nodes Nr.
Nodes Nr.
Nodes Nr.

SB Connection Form

Type 4
7800
206000000000
0.25
5
8
0,0
1.3,-1.3
0,0
0,0,0,0
1.3,-1.3,-1.3,1.3
11111111
1,2,2,1
1,2,3,4
1,2
1,2;2,3;3,4;4,1
TP Typel

N P NP

Type 5
7800
206000000000
0.25
6
13
0,0,0,0
1.3,-1.3,-1.3,1.3
111.1,-1.1,-1.1
0,0,0,0
1.3,-1.3,-1.3,1.3
111.1,-1.1,-1.1
1,2,3,4
1,2,3,4
1,2;2,3;3,4;4,1
1,2;2,3;3,4,4,1
Typel

The generalized coordinate in initial state is shown as follows

Table D-7:

Initial State

Point 1

Generalized
Coordinate

Point 2

D.1.5 Luffing Cable

!

o! I
1[2

@? I
System

Body 8
0
0
0
0

—rad (65°)l
0

0

[3.38095]
7.25046

0
—rad (65°)l
0

Body 9

0

[3.38095]
7.25046

0
[—rad(65°)l
0

0

[8.87498]
19.0325

0
[—rad(65°)l
0

Type 6

7800
206000000000
0.25

3

5

0,0,0,0
1.3,-1.3,-1.3,1.3
1111,-1.1,-1.1
0,0

1.3,-1.3

0,0

1,2,3,4

1,2,2,1
1,2;2,3;3,4;4,1
1,2

TP Anti Typel

Derrick Boom Initial State Parameter for Lattice Boom Crane Model

Body 10

0

[8.87498]
19.0325

0
[—rad(65°)l
0

0

[10.9881]
23.564

0
[—rad(65°)l
0

The luffing cable system consists of 3 elements, namely 2 strut tie models and 1 cubic
spline rope. The parameters of 2 strut tie models are shown as follows
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D Detailed Modelling Information of Lattice Boom Crane

Table D-8:

Strut Tie Model Parameter for Lattice Boom Crane Model

Parameter Type 11 Type 12
Model Type Strut Tie Model Strut Tie Model
Type Round Tube Round Tube
Section Size Length 1o 1o
Outer Diameter  0.05 0.05
Inner Diameter 0 0
Density 7800 7800
Material Properties Elastic modulus 206000000000 206000000000
Poisson's ratio 0.25 0.25

Generalized Coordinate

Point 1
Point 2

rt [-3551 0 56.656]7
Tt [2482 0 42.923]7

[2.482 0 42.923]T
[8516 0 29.190]7

The cubic spline rope is used to adjust the length of luffing cable system. The param-
eters of the cubic spline rope are shown as follows

Table D-9:

Luffing Rope Parameter for Lattice Boom Crane Model

Parameter Type 13

Model Type
Type
Section Size Lenoth )
Outer Diameter
Inner Diameter
Density
Material Properties Elastic modulus
Poisson's ratio
it
Point 1 21
Generalized Coordinate ”Itr,:”
1=
Point 2 92
|

D.1.6 Sub-Cable

Cubic Spline Rope

Round Tube

6.1453

0.05

0

7800

100000000000

0.25

[10.988 0 23.564]"
[0 —1.985 o0]"

=

[8516 0 29.190]"
[0 —1985 o0]”
1

The sub-cable is modeled as a cubic spline rope, whose parameter is shown as follows
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Table D-10:

Sub-Cable Parameter for Lattice Boom Crane Model

Parameter Type 14

Model Type

Section Size

Material Properties

Generalized Coordinate

D.1.7 Lifting Cable

Type
Length
Outer Diameter
Inner Diameter
Density
Elastic modulus
Poisson's ratio
it
Point 1 21
[z
r?
Point 2 22

(Pl

Cubic Spline Rope

Round Tube
23.5640

0.05

0

7800
100000000000
0.25

[11 0 o]7

[0 —rad(90°) 0]
1

[10.988 0 23.564]"

[0 —7rad(90°) 0]
1

The lifting cable is modeled as a cubic spline rope, whose parameter is shown as fol-

lows

Table D-11:

Lifting Cable Parameter for Lattice Boom Crane Model

Parameter Type 15

Model Type

Section Size

Material Properties

Generalized Coordinate

Type

Length

Outer Diameter

Inner Diameter

Density

Elastic modulus

Poisson's ratio

it

Point 1 21

||1£

e

Point 2 p?

22
[

“

Cubic Spline Rope

Round Tube
54.8342

0.05

0

7800
100000000000
0.25

[0 o o]"

0 -rad(95°) 0]
1

—0.43578 0 4.980973]"
0 -rad(95°) 0]
1

[
[
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D Detailed Modelling Information of Lattice Boom Crane

D.1.8 Load

The load is basically a rigid body. Simply it is treated a cylinder, whose total mass
nears to 400 tons. The parameter is shown as follows

Table D-12: Load Parameter for Lattice Boom Crane Model
Model Type Rigid Body
Type Round Tube
Section Size Length 2
Outer Diameter 2.82095
Inner Diameter 0
Quantity 2
Joints Joint 1 srp=1[0 0 o] s9; =10 0 0]
Joint 2 s;=1[2 0 o] s9; =0 0 0]"
State variables xo=[aF dqf] =[rT s@" dql|" with dg. =0
Initial State Position r=[-66788 0 2]"
Posture g9 =10 rad(90°) 0]

D.2 Constraint and Nodal Force

Constraints Configuration

There are totally 18 constraints for lattice boom crane. The configuration of constraints
is shown as follows

Table D-13: Constraint Parameter for Lattice Boom Crane Model

Nr. Body Nr. 1 Joint Nr. 1 Body Nr. 2 Joint Nr. 2 Constraint Type Reduced
Fixed
Revolute_y
Fixed
Fixed
Fixed
Fixed
Fixed
Revolute_y
Fixed
Fixed
Spherical

o
=
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S A N

=
o

-
o
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D Detailed Modelling Information of Lattice Boom Crane

Body Nr. 1 Joint Nr. 1 Body Nr. 2 Joint Nr. 2 Constraint Type Reduced

12 11 2 12 1 Spherical
13 12 2 13 2 Spherical N
14 10 2 13 1 Spherical v
15 1 2 14 1 Spherical
16 14 2 10 2 Spherical v
17 7 4 15 1 Spherical
18 16 1 15 2 Spherical

Among them, the fixed constraints, revolute constraints and the spherical constraints
can be realized by using public computing nodes, which can reduce the overall degree
of freedom. The final lattice boom crane model has 8 constraints.

Nodal Force

No external nodal force for lattice boom crane model. The structure of the nodal force
parameter table is shown as follows

Table D-14: Nodal Force Parameter for Lattice Boom Crane Model

\r Body Joint Force Moment

Nr. Nr. Fx Fy Fz F-Coordinate  Mx My Mz |M-Coordinate

The coordinate of force and moment can be chosen as “Inertial” or “Body”.

D.3 Solver Parameter

The solver parameter consists of several parts, which consider the global parameter,
solver, solving consequence and postprocessing method. The detailed information is
shown as follows

Table D-15: Solver Parameter for Lattice Boom Crane Model
Parameter Value
Jacobian Matrix Calculation Jacobian Matrix false
Direction of gravity 0;0; -1

Gravity Setting ) i
Gravity Magnitude 9.8
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Parameter Value

ODE Solver ode23tb
ODE Solver Method -
ODE Solver Order -
ODE Solver Option -
ODE Setting Calculation Time Start 0
Calculation Time End 100
Absolute Tolerance 0.01
Relative Tolerance 0.01
Max Step 0.01
ODE Output Function MechanisumPlot
Static Position Calculation Static Position true
Max Tolerance for Velocity and Acceleration le-9
Display Current Time true
_ ) Plot Mechanism by Computing true
Display by Computing
Plot Start Iteration 0
Plot Iteration Interval 100
Save Result true
Result Result Existence false
Result Saving Dictionary 1
Axes Size -30, 30, -30, 30, 0, 60
Plot Configuration Grid on, MINOR
Observation X-Z
Post Processing Post Processing Method none

D.4 Plot Parameter

The plot parameters of the elements describe the sequence of the joints for drawing
the elements and the configuration of the printed lines. For the flexible beam, it is also
needed to set the number of displayed interpolation points, which can more detailed
show the shape of the elements after the deformation.

Table D-16: Plot Parameter for Lattice Boom Crane Model

Parameter Body 1 Body 2 Body 3 Body 4 Body 5
Sequence 1,2 - - - -
Interpolation Number - 5 5 5 5
Configuration k.- b-, c-, g- b-, c-, g- b-, c-, g- b-, c-, -
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Parameter Body 6 Body 8 Body 9 Body 10 Body 11
Sequence - - - - -
Interpolation Number 5 5 5 5 2
Configuration b-,c-, g b-, c-, g- b-, c-, g- b-, c-, g- y-

Parameter
Sequence - - - - 1,2
Interpolation Number 2 5 5 5 =
Configuration y- r- r- r- k-
Sequence 6,7,9,8,6,12,13,7,13,11,9,11,10,8,10,12

Interpolation Number =
Configuration y-

Since the flexible beam has only two joints, it is not necessary to define the sequence
of the flexible beam.

Boom Head

Luffing Cable
Module

/
Main Boom = h
-

Hoist Cable

Load =——1pp

Figure D-1: Display of Lattice Boom Crane
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Appendix ESpecified Drive Function

E.1 Trapezoidal Velocity Three Stage Function

Acceleration phase t;

s —lat2
1= 51t

Uniform speed phase t,
52 = Vmaxt2

Deceleration phase t;

— 2
53 = Umaxtz + §a3t3

Relationship

t0:t1+t2+t3

Umax = A1t

Umax + a3t3 =0

1
So = $1 + Sy + S3 = Ealtl(zto - t1 - t3)

Assume sy, t,, t;, t3 are known

_ 25,
t;(2ty — tg — t3)

a;

a3:

25,

- t3(2ty — tg — t3)

For example: s, = 10m, t, = 40s, t; = 55, t3 = 55

(E-1)

(E-2)

(E-3)

(E-4)

(E-5)



E Specified Drive Function

Position

Position[m]
o o o
\
||

0 5 10 15 20 25 30 35 40
Time[s]
Velocity
T i
=02 -
S
% 0.1 =
Z 0 1 ] ] 1 1 1 1
0 5 10 15 20 25 30 35 40
Time[s]

Acceleration
T T T T T T

Acceleration[m]
o

-0.1
0 5 10 15 20 25 30 35 40
Timel[s]
Figure E-1: Trapezoidal Velocity Three Stage Function

E.2 Trigonometric Cosine Function (cos)

Trigonometric cosine function is used in the transition section from start value yg;4,+ to
end value y,,4 in the certain time span tg:,,+ t0 t.nq.- The function can be written as

YVstart t < tstart
_ ) Vstart + Yena . Ystart — Vend (t - tstart)T[
yn(t) = 2 2 Pttt Sl (E6)
k Yend, t > tena

0, t < tstart

. T Ystart — Yend . (t = tstar)T
:Vh(t) = _E Sin , tstart =St = tena (E-?)
Ustart — tena Ustart — tend
0, t>tong
0, t <tstare
.. ™ Ystart — Yend (t — tseard)™
Yp(t) =4 —— cos , torart <t < tona E-8
2 (tstart - tend)z tstart — tena star en ( )
0, t>tona

For example: ysiare = 10, Yena = 20, tstart = 5, tena = 15

E-2



E Specified Drive Function

Position
T

N
o
T

Position

N
o
1

| | | | | | | | |
10 12 14 16 18 20
Time
Velocity
T

o
N
EN
(<2}
o

o

Velocity

2 l L | | l l I I l
0 2 4 6 8 10 12 14 16 18 20

Time
Acceleration
T

Acceleration
o

0 2 4 6 8 10 12 14 16 18 20

Time
Figure E-2: Trigonometric Cosine Step Function

Also, the cosine function can be used to generate a smooth transition section from
value y, to value y, and then return to value y; in the certain time span t; to t,. The
value y, will be reached at (t; + t,)/2.The function can be written as

4T t< tl
_)yity:2 Yi— Y2 2m(t —tq)
yr(t) = 5+ cos e t,<t<t, (E-9)
4T t> t2
0, t<t,
. _ y1—y, . 2n(t—t;)
ye(t) =1 —m t—t, sin L=t t1<t<t, (E-10)
0, t>t,
0, t<t
o Y1i— Y2 2m(t —t;)
t) =1 —2m? , H<t<t -
V¢ (£) L ey Ll — 1 2 (E-11)
0, t>t,

For example: y; =10, y, = 20,t; =5, t, =15
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E.3 Hyperbolic Tangent Function (tanh)

The hyperbolic tangent function (tanh) can be written as

sinht et—e™t
tanht = =

cosht et+et (E-12)
ltin(} tanht =0 gim tanht =1

The hyperbolic tangent function can never reach 0 or 1 in practical situation. According
to the deviation from the limit value, different confidence interval coefficients and con-
fidence intervals are designed.

Table E-1: Confidence Coefficient of Hyperbolic Tangent Function
Nr. Confidence ¢ Coefficient A(c) Variable Interval Value Interval
1 90.0% 1.4765 [-1.4765; 1.4765] [0.100; 0.900]
2 95.0% 1.8368 [-1.8368; 1.8368] [0.050; 0.950]
3 99.0% 2.6476 [-2.6476; 2.6476] [0.010; 0.990]
4 99.5% 2.9980 [-2.9980; 2.9980] [0.005; 0.995]
5 99.9% 3.8088 [-3.8088; 3.8088] [0.001; 0.999]

The transition function from value y, to value y, in the certain time span t; to t, with
the confidence c can be written as

E-4
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Al2t — (t; + t,)]

1 1
y(t) = 5 (v +y2) + 3 (y, — y1) tanh . with 1 =2(c) (E-13)
2 U
: Y2 = V1 Al2t = (¢, + &5)]
t) = 1———| 1 — tanh? i
y( ) tZ — U ( tz - tl (E 14)
— A2t — (¢t + t5)] A2t — (t; + t,)]
y(t) = —42? i }’12 tanh L~ 221 - tanh? - 2
(t; — t1) t, =1 t, =ty
A2t = (6 +,)] (E-15)
= —41 nh y(t)
t; — 2~ U
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