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Abstract
We investigate the relation between two discretizations of Koenigs nets: The classical
discretization of Bobenko and Suris, which defines discrete two-dimensional Koenigs nets
as nets where the intersection points of diagonals build a net of planar quadrilaterals,
and Doliwa’s discretization, where a Koenigs lattice is defined as net which has six
of its Laplace transforms on a conic at each quadrilateral. We prove that the nets
defined by intersection points of diagonals of a classical discretized two-dimensional
Koenigs net are exactly Doliwas lattices. We describe how a classical Koenigs net can
be constructed on a Doliwa lattice. Also we introduce an 8-point configuration – a
slight generalization of the Menelaus’ configuration in n = 4 – which can be used to
characterize both discretizations similarly.

Zusammenfassung
In dieser Arbeit untersuchen wir die Beziehung zwischen zwei Diskretisierungen von
Königsnetzen: Der klassischen Diskretisierung von Bobenko und Suris, die ein zweidi-
mensionales Königsnetz als Netz definiert, dessen Diagonalenschnittpunkte ein neues
Netz mit planaren Vierecken bildet und Doliwas Königsgitter, ein Netz bei dem an
jedem Viereck sechs Laplacetransformationen auf einem Kegelschnitt liegen. Es wird
bewiesen, dass die Netze aus Diagonalenschnittpunkten eines klassischen diskreten
zweidimensionalen Königsnetzes genau die Königsgitter von Doliwa sind. Es wird
gezeigt, wie man ein solches klassisches diskretes Königsnetz zu einem Königsgitter
von Doliwa konstruiert. Außerdem wird eine Beschreibung beider Diskretisierungen
mithilfe einer 8-Punkt Konfiguration gegeben, die eine Verallgemeinerung der Menelaus
Konfiguration in n = 4 darstellt.
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Chapter 1

Introduction

In this thesis we investigate (discrete) Koenigs nets, which are a part of (discrete)
differential geometry.
Differential geometry deals with objects like curves or surfaces – or more general: nets
– in space. These are described by parametrizations f : Rm → RN , which are assumed
to be sufficiently smooth. One defines notions like normals or curvature on the nets.
A big part of differential geometry is to investigate special classes of nets. The most
basic special class is the class of conjugate nets, which fulfill ∂i∂jf ∈ span(∂if, ∂jf)
for all u ∈ Rm and all 1 ≤ i 6= j ≤ m (∂i marks the i-th partial derivative). In
Chapter 2 we will take a short look at the class of Koenigs nets, which is a subclass of
two-dimensional (i.e. m = 2) conjugate nets. They have the additional property of
equal Laplace invariants (see Chapter 2), and can also be characterized by the existence
of a so called dual.

We will mainly be interested in discrete differential geometry, which deals with

Figure 1.1: A classical discrete Koenigs net with its diagonals (black) and its D-net (blue),
which will turn out to be a Doliwas Koenigs lattice.

modeling the notions of differential geometry on a discrete domain. Parametrization
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Chapter 1 Introduction

of discrete nets are maps f : Zm → RN . Every four points f(u), f(u+ ei), f(u+ ej)
and f(u + ei + ej) (u ∈ Zm, 1 ≤ i 6= j ≤ m) define a quadrilateral of such a net.
Again notions like normals or curvature can be defined with similar properties as in
the smooth case. Interestingly discrete differential geometry is richer than smooth
geometry in the following sense: The smooth objects can always be obtained as a
limit of the discrete objects. There is an obstruction in discretizing smooth notions:
There can be more than one suitable discretization. This thesis deals with such a case.
We are concerned with two different discretizations of Koenigs nets. To explain their
definitions we first need the notion of a Q-net. Q-nets are the discretized version of
conjugate nets. They are defined by the fact that every quadrilateral of the net is planar.

In Chapter 3 we are concerned with the two discretizations of Koenigs nets. One is
given by Bobenko and Suris[BS09]. They discretize the concept of duality. As in the
smooth case, a discrete Koenigs net is then a Q-net which admits a dual. We will
call this a classical discrete Koenigs net, since this discretization is the one which is
used the most in todays research. For m = 2 there is also a geometric characterization:
A Q-net is a classical discrete Koenigs net if and only if the intersection points of
diagonals form another Q-net. We will call the nets, which one gets by intersecting the
diagonals of a Koenigs nets, D-nets.
The other discretization of Koenigs nets is given by Doliwa[Dol03]. He calls a two-
dimensional Q-net a Koenigs lattice if and only if the six Laplace transforms at a
quadrilateral (introduced in Section 3.3) share a conic. We will call his discretization
Doliwas Koenigs lattice (The words net and lattice can be exchanged in most of discrete
differential geometry. We will use the word lattice only in the context of Doliwas
Koenigs lattice to avoid confusion).
We will define an 8-point configuration as a slightly generalized configuration of the
n = 4 case of Menelaus’ theorem (Section 3.1). It can be used to characterize both
discretizations in a similar manner.

In Chapter 4 we prove the main theorem of this paper. It states that the notions of
D-net and Doliwas Koenigs lattice are equivalent. Bobenko and Suris already mention
this in their paper, but they don’t provide a poof.
We show how a classical discrete Koenigs net can be constructed on a Doliwas Koenigs
lattice, such that the points of the lattice are the intersection points of diagonals of the
Koenigs net. We will find a (2N + 2)-parameter freedom in this construction.
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Chapter 2

Smooth Koenigs nets

Before looking at the discrete nets, we want to give some basic definitions for smooth
nets, as they give motivation for the corresponding discrete definitions. This chapter is
taken from [BS]. Nets are maps f : Rm → RN . To keep it simple, we will assume that
every such map is regular and smooth enough (all partial derivatives that are used
exist and are as linear independent as possible). For m = 2 we call the nets surfaces.
It is the only case where smooth Koenigs nets can be defined.
First we will introduce a very basic class of smooth nets, the class of conjugate nets.

Definition 2.1 (Conjugate net) A map f : Rm → RN is called a conjugate net if
for all pairs of indices 1 ≤ i 6= j ≤ m we have ∂i∂jf ∈ span(∂if, ∂jf).

Often functions cij : Rm → R are used to describe the linear dependency:

∂i∂jf = cji∂if + cij∂jf, i 6= j (2.1)

This is known as the Laplace equation of the net. Note that these equations need to
fulfill some compatibility condition ∂i(∂j∂kf) = ∂j(∂i∂kf). It can be expressed as the
system

∂icjk = cijcjk + cjicik − cjkcik, i 6= j 6= k 6= i. (2.2)

The existence of such functions which fulfill the Laplace equation is equivalent to f
being a conjugate net. Many interesting classes of nets are subclasses of conjugate nets.
One such class is the class of Koenigs nets. It is only defined for m = 2.

Definition 2.2 (Koenigs net) A map f : R2 → RN is called a Koenigs net if there
exists a scalar function ν : R2 → R+, such that

∂1∂2f = (∂2 log ν)∂1f + (∂1 log ν)∂2f (2.3)

Equivalently, a Koenigs net is a conjugate net with coefficients c12, c21, such that
the coefficients fulfill ∂1c21 = ∂2c12. This property is known as equality of the Laplace-
invariants of f . There is a second characterization, which is important to us:
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Chapter 2 Smooth Koenigs nets

Theorem 2.3 (Christoffel dual) A conjugate net f : R2 → RN is a Koenigs net
if and only if there exists a scalar function ν : R2 → R+ such that the differential
one-form df∗ defined by

∂1f
∗ = ∂1f

ν2 , ∂2f
∗ = −∂2f

ν2 (2.4)

is closed. In this case the map f∗ : R2 → RN , defined (up to translation) by the
integration of this one-form, is also a Koenigs net, called Christoffel dual to f.

We can reformulate this condition to

∂1f
∗ ‖ ∂1f, ∂2f

∗ ‖ ∂2f,

(∂1 + ∂2)f∗ ‖ (∂1 − ∂2)f, (∂1 − ∂2)f∗ ‖ (∂1 + ∂2)f.
(2.5)

We will see that this equation can be discretized to define a notion of duality in the
discrete domain.
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Chapter 3

Discretizations of Koenigs nets

3.1 Ratios of directed lengths and Menelaus’ theorem
We introduce ratios of directed lengths, as they are an important tool of Euclidean
geometry. They are used in many proofs regarding discrete Koenigs nets. First, we
need the notion of a directed length: Let A1, A2 and P be three distinct points on a
line and e1 be any unit vector along the line. Then we find unique γ and δ, such that:

A1 − P = γe1, (3.1)
A2 − P = δe1 (3.2)

We call γ and δ the directed lenghts of the respective line segments. They are just
the distances up to sign:

|γ| = |PA1|, |δ| = |PA2| (3.3)

The lengths are not invariant under the choice of the unit vector e1. However, their
ratio is:

Definition 3.1 (Ratio of directed lengths) Let A1, A2 and P be three distinct
points on a line and let γ and δ be defined as above. Then we call

q(A1, P,A2) := δ

γ
(3.4)

the ratio of directed lengths.

Figure 3.1: In pictures we will mark the direction of a ratio of directed lengths with an arrow
pointing from A1 to A2 or vice versa.
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Chapter 3 Discretizations of Koenigs nets

It is well-defined (i.e. invariant under choice of e1), since the absolute value is
well-defined anyway and for the sign the following holds: q(A1, P,A2) is negative if
and only if A1 and A2 "lie" on different sides of P .
Note that q(A1, P,A2) can, by definition, never take the values 0, 1 and ∞, since the
points are all distinct from each other. We can invert the direction of the ratio:

q(A1, P,A2) = 1
q(A2, P,A1) . (3.5)

If we know the ratio and two of the points, we can calculate the third point:

A2 = P + q(A1, P,A2)(A1 − P ), (3.6)
A1 = P + q(A2, P,A1)(A2 − P ), (3.7)

P = 1
1− q(A1, P,A2)A2 −

q(A1, P,A2)
1− q(A1, P,A2)A1

= 1
1− q(A1, P,A2)A2 + 1

1− q(A2, P,A1)A1

(3.8)

The most famous theorem using these ratios is Menelaus’ theorem.

Theorem 3.2 (Menelaus’ theorem) Let A1, A2, A3 be three points, which define
a triangle in some plane. Let P12, P23, P31 be points on the lines (A1A2), (A2A3),
(A3A1), respectively, such that none of them coincides with any Ai. Then:

q(A1, P12, A2) · q(A2, P23, A3) · q(A3, P31, A1) = −1 (3.9)

is equivalent to P12, P23, P31 being collinear.

This theorem can be generalized to arbitrary dimensions:

Theorem 3.3 (Generalized Menelaus’ theorem) Let A1, A2,... An be n points
in general position, i.e. they span a (n− 1)-dimensional affine space. For 1 ≤ i ≤ n let
Pi,i+1 be n points on the lines (AiAi+1), respectively, such that none of them coincides
with any Ai (indices are taken modulo n). Then:

n∏
i=1

q(Ai, Pi,i+1, Ai+1) = (−1)n (3.10)

is equivalent to Pi,i+1, 1 ≤ i ≤ n spanning a (n− 2)-dimensional affine space.

Proof is given in [BS]. Menelaus’ theorem is the n = 3 case.
In this paper we will use a configuration of points and lines, which is similar to the
configuration in the n = 4 case of the generalized Menelaus’ theorem. We call it 8-point
configuration.
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3.1 Ratios of directed lengths and Menelaus’ theorem

Figure 3.2: Menelaus’ theorem

Definition 3.4 (8-point configuration) Let A1, A2, A3, A4 be four points, which
define a quadrilateral. Let P12, P23 ,P34, P41 be points on the lines (A1A2), (A2A3),
(A3A4), (A4A1), respectively, such that none of them coincides with any Ai. We call
this configuration an 8-point configuration if

q(A1, P12, A2) · q(A2, P23, A3) · q(A3, P34, A4) · q(A4, P41, A1) = 1 (3.11)

The only difference to a configuration of Menelaus’ theorem is that we don’t require
A1, ..., A4 to be in general position. In this case general position means that the four
points are distinct from each other and are not planar. If A1, ..., A4 still appear to be
in general position (i.e. not planar) this definition is equivalent to P12,..., P41 being
planar, by the generalized Menelaus’ theorem. However, if A1, ..., A4 share a plane we
can’t apply the theorem and we need another geometric characterization. In this case
the quadrilateral P12,..., P41 is planar, even if it doesn’t lie in 8-point configuration.
We can find a geometric characterization which holds in both cases.

Theorem 3.5 (Geometric characterization of the 8-point configuration) Let
A1, A2, A3, A4 be four points, which define a quadrilateral. Let P12, P23, P34, P41 be
points on the lines (A1A2), (A2A3), (A3A4), (A4A1), respectively, such that none of
them coincides with any Ai. This defines an 8-point configuration if and only if

(P12P23), (A1A3) and (P34P41) are concurrent (3.12)

or, equivalently,

(P23P34), (A2A4) and (P41P12) are concurrent (3.13)
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Chapter 3 Discretizations of Koenigs nets

Figure 3.3: 8-point configuration (Together with the points Q = Q′ and R this is exactly
Desargues’ theorem)

Proof. (A1A3) and (P12P23) intersect in a point Q, since both lines share the plane
(A1A2A3). By the n = 3 case of Menelaus’ theorem, we have

q(A1, P12, A2)q(A2, P23, A3)q(A3, Q,A1) = −1. (3.14)

The same argument can be applied for the intersection point Q′ of (A1A3) and (P34P41)
to get

q(A3, P34, A4)q(A4, P41, A1)q(A1, Q
′, A3) = −1. (3.15)

Multiplication yields

1 = q(A1, P12, A2)q(A2, P23, A3)q(A3, P34, A4)q(A4, P41, A1)q(A3, Q,A1)q(A1, Q
′, A3)

= q(A1, P12, A2)q(A2, P23, A3)q(A3, P34, A4)q(A4, P41, A1) q(A3, Q,A1)
q(A3, Q′, A1) .

(3.16)

The points lie in an 8-point configuration if and only if q(A3, Q,A1) = q(A3, Q
′, A1),

which is equivalent to Q = Q′, since the ratio of directed lengths defines the third point
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3.2 Classical discretization of Koenigs nets

uniquely. This is equivalent to (P12P23), (A1A3) and (P34P41) being concurrent with
intersection point Q = Q′.

The equivalence to (P23P34), (A2A4) and (P41P12) being concurrent can be shown
exactly the same way. One can also prove the equivalence of both concurrent statements
with Desargues’ theorem. 2

3.2 Classical discretization of Koenigs nets

The classical definition of discrete Koenigs nets is given by Bobenko and Suris. This
chapter is based on their work in [BS09]. They discretize the notion of the existence
of a dual net, which was a characterization for smooth Koenigs nets. First we need a
discrete version of duality.

3.2.1 Duality of quadrilaterals

Figure 3.4: Dual Quadrilaterals

Definition 3.6 (Dual quadrilateral) Two quadrilaterals (A,B,C,D) and (A∗, B∗, C∗, D∗)
in a plane are called dual if their corresponding sides are parallel:

(AB) ‖ (A∗B∗), (BC) ‖ (B∗C∗), (CD) ‖ (C∗D∗), (DA) ‖ (D∗A∗), (3.17)

and their non-corresponding diagonals are parallel:

(AC) ‖ (B∗D∗), (BD) ‖ (A∗C∗). (3.18)
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Chapter 3 Discretizations of Koenigs nets

Lemma 3.7 (Existence and uniqueness of a dual quadrilateral) For any pla-
nar quadrilateral (A,B,C,D) a dual one exists and is unique up to scaling and trans-
lation.

The proof gives some geometric inside into the concept of dual quadrilaterals.

Proof. We show this by constructing a dual quadrilateral (A∗, B∗, C∗, D∗) and keeping
track of the freedom we have in the construction. This will show existence and
uniqueness. Let e1 and e2 be some unit vectors along the diagonals (AC) and (BD)
respectively. Let M = (AC) ∩ (BD) be the intersection point of the diagonals. M
exists, since the quad is planar. Also there exist unique coefficients α, β, γ, δ, such
that

A = M + αe1, B = M + βe2, C = M + γe1, D = M + δe2. (3.19)

We arbitrarily choose M∗, which is the intersection point of diagonals in the dual quad.
This corresponds to the freedom of translation. Now we know the diagonals of the dual
quad: The line through M∗ which is parallel to e2 and the line through M∗ which is
parallel to e1. Next, we choose A∗ on the corresponding diagonal. Since we know the
diagonal, we only have a real number λ as freedom. We choose it, such that

A∗ = M∗ + λ

α
e2. (3.20)

Choosing λ corresponds to the freedom of scaling. The rest of the construction is
uniquely determined:
B∗ is the unique point on the diagonal of the dual quad parallel to e1 which fulfills
(A∗B∗) ‖ (AB). In fact we find B∗ to be

B∗ = M∗ + λ

β
e1, (3.21)

since this point is on the diagonal and also fulfills (A∗B∗) ‖ (AB):

B∗ −A∗ = λ

β
e1 −

λ

α
e2 = −λ

αβ
(βe2 − αe1) = −λ

αβ
(B −A). (3.22)

The same argument can be used to find C∗ uniquely as

C∗ = M∗ + λ

γ
e2, (3.23)

since this point lies on the diagonal parallel to e2 and fulfills the condition (B∗C∗) ‖
(BC):

C∗ −B∗ = λ

γ
e2 −

λ

β
e1 = −λ

βγ
(γe1 − βe2) = −λ

βγ
(C −B) (3.24)

10



3.2 Classical discretization of Koenigs nets

Last we find D∗ uniquely as

D∗ = M∗ + λ

δ
e1, (3.25)

since this point lies on the diagonal parallel to e1 and fulfills the condition (C∗D∗) ‖
(CD):

D∗ − C∗ = λ

δ
e1 −

λ

γ
e2 = −λ

γδ
(δe2 − γe1) = −λ

γδ
(D − C). (3.26)

Now every parallelity except (D∗A∗) ‖ (DA) is fulfilled by construction. We can simply
check this last condition:

A∗ −D∗ = λ

α
e2 −

λ

δ
e1 = −λ

δα
(αe1 − δe2) = −λ

δα
(A−D). (3.27)

This implies that the constructed quadrilateral is indeed a dual.
We have proven that a dual quadrilateral can always be constructed and one has
freedom of translation and scaling in the construction. 2

3.2.2 Discrete Koenigs nets as nets admitting a dual
A discrete m-dimensional net is a map f : Zm → RN . It is practicable to use the so
called shift notation, when working with local properties of such maps: We write f ,
fi, fj and fij instead of f(u), f(u+ ei), f(u+ ej) and f(u+ ei + ej) for some u ∈ Zm

and lattice directions 1 ≤ i, j ≤ m (ei denotes the i-th vector of the standard basis).
These four points define a quadrilateral of the net. We will always assume the net to
be regular, i.e. no two points of a quadrilateral coincide.
For m = 2 the net is a discrete surface. We will mostly be concerned with this case.

Figure 3.5: Shift notation for a quadrilateral of a 2-dimensional net

Definition 3.8 (Q-net) A Q-net is a map f : Zm → RN , such that every quadrilateral
is planar, i.e. for all 1 ≤ i, j ≤ m the points f , fi, fj and fij lie in a common plane.

11



Chapter 3 Discretizations of Koenigs nets

This is the discretization of conjugate nets. Most discrete nets (for example Koenigs
nets) are Q-nets.

Bobenko’s and Suris’ characterization of Koenigs nets is given by discretizing the
property of a net having a dual:

Definition 3.9 (Discrete Koenigs net) A Q-net f : Zm → RN is called a discrete
Koenigs net if it admits a dual, i.e. a Q-net f∗ : Zm → RN , such that all elementary
quadrilaterals of the net f∗ are dual to the corresponding quadrilaterals of f :

fi − f ‖ f∗i − f∗, fj − f ‖ f∗j − f∗, (3.28)
fij − f ‖ f∗j − f∗i , fj − fi ‖ f∗ij − f∗ (3.29)

for all 1 ≤ i, j ≤ m. (3.30)

It might seem as if this definition is trivial, since we have proven that any quadrilateral
admits a dual. However, in general we can not find dual quadrilaterals for a net, such
that these fit together and build a new net. This is why the definition is not trivial.

Since we are mostly concerned with discrete Koenigs nets instead of smooth Koenigs
nets, we will omit the word "discrete".

3.2.3 Algebraic characterization of Koenigs nets

There is an algebraic characterization of Koenigs nets, which uses ratios of directed
lengths on the diagonals of two bipartite parts of the net.
We can split the lattice Zm into two bipartite parts: For any u ∈ Zm, consider the sum
of its entries |u| = u1 + u2 + ...+ um ∈ Z. It is either even or odd. We introduce the
two parts as

Zm
even = {u ∈ Zm| |u| is even} (3.31)

Zm
odd = {u ∈ Zm| |u| is odd} (3.32)

Note that every edge connects a point of Zm
even with a point of Zm

odd, whereas a diagonal
either connects a point of Zm

even with a point of Zm
even or connects a point of Zm

odd with
a point of Zm

odd.
A bipartite part together with the connecting diagonals forms a lattice. In the

case m = 2 this lattice has the same combinatorics as Z2. If we have a discrete net
f : Zm → RN , we get two subnets by restriction of f to one of the bipartite parts. We
interprete the corresponding diagonals of f as the edges of the subnet.
On a planar quadrilateral (A,B,C,D) we have an intersection point of diagonals

M = (AC)∩(BD). We will interpret the diagonal (AC) of the quad as the combination

12



3.2 Classical discretization of Koenigs nets

Figure 3.6: Six quadrilaterals of a discrete two-dimensional net(grey) and its two bipartite
parts (green and red), which form discrete nets themselves

of the two oriented diagonals −→AC and −→CA, and equivalently (BD) as the combination
of −−→BD and −−→DB. Then we can define the ratio of diagonal segments by

q(−→AC) = q(A,M,C), q(−→CA) = q(C,M,A), (3.33)

q(−−→BD) = q(B,M,D), q(−−→DB) = q(D,M,B). (3.34)

We can extend this to a be a map on the oriented diagonals of a Q-net or equivalently
on the oriented edges of the two subnets:

Definition 3.10 (Quantity q) Let f : Zm → RN be a Q-net and x ∈ {even, odd}.
On every oriented edge of the subnet f |Zm

x
the quantity q can be defined as the ratio

of the corresponding diagonal segments of f .
q is called closed if for any circle of directed edges the corresponding q’s multiply to
one.

This quantity q can be used to characterize a Koenigs net:

Theorem 3.11 (Algebraic characterization) A Q-net f : Zm → RN is a Koenigs
net if and only if the quantity q is closed on both Zm

even and Zm
odd.

Proof. We will only prove this for m = 2. Other dimensions can be proven similarly.
We will show three equalities:

A dual net f∗ can be constructed (3.35)
⇔ Duals can be constructed for any four quads sharing a point (3.36)
⇔ q multiplies to one around any quadrilateral of a subnet (3.37)
⇔ q is closed on both Zm

even and Zm
odd. (3.38)
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Chapter 3 Discretizations of Koenigs nets

Figure 3.7: Left: Construction of the dual. Start with the green quad, which is unique up
to scaling and translation. The rest is unique. The red quadrilaterals can be
constructed by assumption. Right: A circle of directed edges (blue) can be split
into elementary circles. Every black edge appears once in both directions.

For the first equality we only have to show that we can build the hole dual net
f∗ if we can build fitting duals for four quadrilaterals sharing a point. For a single
quadrilateral we can always find a dual, which is unique up to scaling and translation.
If we have a second quad which shares an edge with the first one, then we can find
a fitting dual quad by using the translation and scaling freedom in the choice of the
second dual quad: We need to scale and translate the second dual quad, such that
the edges which are dual to the common edge of the two original quads match again.
This means that the second dual quad is uniquely determined. We can iterate this
procedure in both lattice directions. Then we can use the assumption to construct the
rest of the dual net (see Figure 3.7).
Next we will prove the third equality, which says that q multiplying to 1 around any
circle of a subnet is equivalent to q multiplying to 1 around any quadrilateral of a
subnet. Any circle of directed edges can be split into elementary circles (quadrilaterals
with an orientation on the edges). See Figure 3.7. The product of the q’s on the circle
is the same as the product of the q’s of all of the elementary circles, since all "inside"
q’s cancel: All "inside" edges appear once in both directions and therefore their product
is 1 (see Equation 3.5). This already proves the equivalence.
We will proof the second equality by prescribing four quadrilaterals sharing a point, and
proving that the condition that duals can be constructed is equivalent to q multiplying
to 1 around the subnet quadrilateral contained in this construction (see Figure 3.8). In
the Proof of Lemma 3.7 we described a quadrilateral and its dual by quantities α,..., δ
and a scaling factor λ. Similarly, we can introduce the quantities αi,..., δi and a scaling
factor λi (i = 1, ..., 4) on all four quadrilaterals.
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3.2 Classical discretization of Koenigs nets

Figure 3.8: Four quadrilaterals of a Q-net, which share the point f . (f1f2f−1f−2) is an
elementary subnet quadrilateral (red).

We can choose the scaling factors freely, while the rest is determined by our given
Q-net quadrilaterals (and the choice of unit vectors, which is not so important here).
By the translation freedom we can make sure that all four dual quadrilaterals share
the point f∗, which is dual to f . Now we need to make sure that the edges shared by
two of the quadrilaterals can be dualized: The edge shared by F1 and F2 is (ff2). Its
dual is well-defined if the dual quads of F1 and F2 both scale this edge by the same
number. In the proof of Lemma 3.7 we found the scaling factors of the edges to be

−λ1
α1δ1

and −λ2
α2β2

. (3.39)

The dual of the edge is well-defined if these scaling factors are equal, i.e.
λ1
λ2

= α1δ1
α2β2

. (3.40)

On the other edges, we get similar conditions:
λ2
λ3

= α2δ2
α3β3

,
λ3
λ4

= α3δ3
α4β4

,
λ4
λ1

= α4δ4
α1β1

. (3.41)

The condition to find λi’s that fulfill all four equations turns out to be

1 = α1δ1
α2β2

α2δ2
α3β3

α3δ3
α4β4

α4δ4
α1β1

= δ1
β1

δ2
β2

δ3
β3

δ4
β4
. (3.42)

Also from the definition of ratios of directed lenghts we find

q(
−−→
f1f2) = δ1

β1
, q(
−−−→
f2f−1) = δ2

β2
, q(
−−−−→
f−1f−2) = δ3

β3
, q(
−−−→
f−2f1) = δ4

β4
. (3.43)
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Chapter 3 Discretizations of Koenigs nets

Now the condition reads

1 = q(
−−→
f1f2)q(

−−−→
f2f−1)q(

−−−−→
f−1f−2)q(

−−−→
f−2f1), (3.44)

which is exactly the condition that q multiplies to 1 around the quadrilateral (f1f2f−1f−2).2

3.2.4 Geometric characterization of two-dimensional Koenigs nets
We will extend the use of shift notation and write f−1 and f−2 instead of f(u − e1)
and f(u− e2) respectively.
We now introduce the important geometric characterization of two-dimensional Koenigs
nets:

Theorem 3.12 (Geometric characterization) Let f : Z2 → RN be a Q-net such
that for every point f = f(u) its four neighbours f±1, f±2 are not coplanar. Then
f is a discrete Koenigs net if and only if for every point f = f(u) the intersection
points of diagonals of the four quadrilaterals adjacent to f are coplanar, that is, if the
intersection points of diagonals build a Q-net.

Proof. This follows directly from Equation 3.44 and the generalized Menelaus’ theo-
rem. 2

The extra condition that f±1, f±2 are not coplanar is necessary for the generalized
Menelaus’ theorem to apply. However, we introduced the notion of an 8-point configu-
ration, which can be used to eliminate this extra condition.

Theorem 3.13 (Geometric characterization via 8-point configuration) Let f :
Z2 → RN be a Q-net. Then f is a discrete Koenigs net if and only if for every point
f = f(u) the intersection points of diagonals of the four quadrilaterals adjacent to f
lie in 8-point configuration on the quadrilateral (f1f2f−1f−2).

Proof. This follows directly from Equation 3.44 and Theorem 3.5. 2

It appears that the condition to be a Koenigs net can be formulated in terms of the
intersection points of diagonals. These points form a net as well.

Definition 3.14 (D-net) A map f : Z2 → RN is called a D-net if there exists a
Koenigs net g, s.t. f is the net defined by intersecting the diagonals of g.

It is obvious from the geometric characterizations that any D-net is already a Q-net.
However, we will see that not every Q-net is a D-net. We are interested in finding a
more direct characterization of D-nets, which allows to directly compute whether a
net is a D-net or not. We will do this by introducing another discretization of Koenigs
nets and showing its equivalence to the notion of D-nets.
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3.3 Doliwa’s discretization of Koenigs nets

Note that one has to be careful with combinatorics of the nets, since every point of a
D-net corresponds to a quadrilateral of a Koenigs net. From this perspective it makes
more sense to define a D-net on (Z2)∗, the space of quadrilaterals of Z2. For simpler
notation, we will keep Z2 as domain, while assigning a point (k, l) of a D-net to the
quadrilateral of a Koenigs net which contains the points (k, l) ,(k + 1, l), (k + 1, l + 1)
and (k, l + 1). The D-net is then characterized by the existence of a Koenigs net, s.t.
every point of the D-net is an intersection point of diagonals of the corresponding
quadrilateral of the Koenigs net.

3.3 Doliwa’s discretization of Koenigs nets

This section is based on the discretization of Koenigs nets given in [Dol03]. Doliwa’s
definitions only work for the case m = 2, i.e. for nets defined on R2 in the smooth case
and Z2 in the discrete case.
We will use the homogeneous coordinates of the projective space RPN . This is the set
of equivalences classes of RN+1 \ {0} together with the equivalence relation

x ∼ y ⇔ x = λy, x, y ∈ RN+1 \ {0}, λ ∈ R \ {0}. (3.45)

Every element of RPN is a 1-dimensional subspace of RN+1 without 0. We identify
RN (which is the Euclidean space we are working with) with the projective space RPN

by the bijection

x ∈ RN ↔ [(x, 1)] ∈ RPN , (3.46)

where [v] denotes the equivalence class of v ∈ RN+1 \ {0}.
Note the following facts about homogeneous coordinates:

• In homogeneous coordinates, every affine n-dimensional Euclidean space forms a
(n+ 1)-dimensional linear space without 0 (in RN+1 \ {0}).

• A point p is in the affine space spanned by other points p1,..., pk if and only if p
can be written as a linear combination of p1,..., pk

• In a (projective) plane, we can define a conic as the solution set of the equation
p>Ap = 0. Five points in general position define such a conic uniquely. Four
points define a pencil (1-dimensional linear system) of conics. Two lines which
should be tangent to a conic in given points also define a pencil of conics.

Next, we will give a characterization for smooth Koenigs nets in terms of homogeneous
coordinates. It is equivalent to the notion of Koenigs nets defined in Chapter 2. The
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Chapter 3 Discretizations of Koenigs nets

condition for a map f : R2 → RPN to be a conjugate net is the Laplace equation
written in homogeneous coordinates:

∂12f = a∂1f + b∂2f + cf, (3.47)

where a, b, c are real functions of R2 (i.e. R2 → R). To be able to continue working
with a, b, c one must fix representatives for the net f , because otherwise a, b, c are not
well-defined: Scaling f with some non-zero function results in a scaling of a, b, c in the
Laplace equation as well. Assume fixed representatives from now on.
One defines the Laplace transforms of a conjugate net f to be

l1 = ∂2f − af, l2 = ∂1f − bf. (3.48)

These are also conjugate nets R2 → RPN , which fulfill the following condition: The
x-tangent line of f coincides with the y-tangent line of l2 and the y-tangent line of
f coincides with the x-tangent line of l1 (see Figure 3.9). This also implies that the

Figure 3.9: The Koenigs net f with its x- and y-coordinate line and the corresponding
tangents (black). The Laplace transforms l1 and l2 with x- and y-coordinate line
respectively (red).

points f(x, y), l1(x, y) and l2(x, y) share a plane with these tangent lines for all (x, y).
In this plane we can use the notion of conics. There exists a pencil of conics in the
plane, such that all conics are tangent to both tangent lines. This means that the
conics have first order contact with the x-coordinate line of l1 and the y-coordinate
line of l2. The condition for f to be a smooth Koenigs net is now: There exists a conic
in the pencil which has second order contact with both coordinate lines.
A useful property of the Laplace equation of Koenigs nets in homogeneous coordinates
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3.3 Doliwa’s discretization of Koenigs nets

is that it can – by clever choice of representatives – be written as

∂12f = αf, (3.49)

where α is a real function of R2.

Doliwa discretizes this property for his definition of discrete Koenigs nets. The
condition of a map f : Z2 → RPN to be a Q-net can be rewritten in homogeneous
coordinates:

f12 = A1f1 +B2f2 + Cf, (3.50)

where A,B,C are real functions of Z2. The Laplace transforms discretize analogously:

Definition 3.15 (Discrete Laplace transforms) Let f : Z2 → RPN be a Q-net,
such that

f12 = A1f1 +B2f2 + Cf. (3.51)

Then we call the discrete nets defined by

L1 = f2 −Af, L2 = f1 −Bf (3.52)

the Laplace transforms of f .

In the discrete case the Laplace transformations are just the intersection points of
opposite edges of the quadrilaterals. To see this one needs to check the collinearities.

Lemma 3.16 The four points L1
1, f , f2 and L1 are collinear and the four points L2

2,
f , f1, L2 are collinear.

Proof. We can simply use the discrete Laplace equation to find

L1
1 = f12 −A1f1 = B2f2 + Cf = B2L

1 + (B2A+ C)f,
L2

2 = f12 −B2f2 = A1f1 + Cf = A1L
2 + (A1B + C)f. 2

That means we can calculate the Laplace transforms purely with incidence geometry:

L1
1 = (ff2) ∩ (f1f12), L2

2 = (ff1) ∩ (f2f12), (3.53)

where ∩ denotes the intersection of the two lines.

As in the smooth case, we will now look at conics in the tangent plane of f (In the
discrete case, the tangent plane is just the plane of the quadrilateral). Note that the
Laplace transforms L1, L1

1, L2 and L2
2 all lie in the tangent plane. We can check that
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Chapter 3 Discretizations of Koenigs nets

Figure 3.10: Laplace transforms

L1
11 and L2

22 lie in the tangent plane aswell: Shift the equations from the proof of the
above lemma once in the corresponding directions to obtain:

L1
11 = (B12A1 + C1)f1 +B12B2f2 +B12Cf ; (3.54)

L2
22 = (A12B2 + C2)f2 +A12A1f1 +A12Cf ; (3.55)

We know there exists a pencil of conics through the four points L1, L1
1, L2 and L2

2. We
discretize the notion of second order contact by the condition that the conic passes
through one more of the Laplace transforms in each lattice direction:

Definition 3.17 (Doliwas Koenigs lattice) Let f : Z2 → RPN be a Q-net. It is
called a Koenigs lattice if for every point of the net there exists a conic passing through
the six points L1, L1

1, L1
11, L2, L2

2, L2
22.

We saw that a smooth Koenigs net had a simpler Laplace equation than a normal
conjugate net. This holds for discrete Koenigs lattices as well:

Theorem 3.18 The Laplace equation of a Koenigs lattice f : Z2 → RPN can be gauged
into the canonical form

f12 + f = α1f1 + α2f2, (3.56)

with some scalar function α : Z2 → R.

This result indicates that the discretization makes sense. Proof can be found in
[Dol03].
There is also a geometrically simpler way to describe the Koenigs lattice, which uses
only incidence:
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3.3 Doliwa’s discretization of Koenigs nets

Theorem 3.19 Let f : Z2 → RPN be a Q-net. f is a Koenigs lattice if and only if at
every point the three lines (L2L1

11), (ff12) and (L1L2
22) are concurrent.

Proof. Pascals’ theorem tells us that six points P1, P2, P3, P4, P5 and P6 lie on a conic,
if and only if X = (P1P5)∩ (P2P4), Y = (P3P4)∩ (P1P6) and Z = (P2P6)∩ (P3P5) are
collinear.

Figure 3.11: Pascals’ theorem

Applying this to the points L1, L2
2, L1

11, L2, L1
1 and L2

22 yields

L1, L2
2, L

1
11, L

2, L1
1 and L2

22 lie on a conic (3.57)
⇔ f = (L1L

1
1) ∩ (L2

2L
2), f12 = (L2

2L
2
22) ∩ (L1

11L
1
1) and (3.58)

Y = (L1
11L

2) ∩ (L1L2
22) are collinear

⇔ (ff12), (L1
11L

2) and (L1L2
22) intersect in a point. (3.59)

2

Since incidence is equivalent in RN and RPN , we can omit the projectivization and
work with Euclidean coordinates again. In Euclidean space we know this configuration
to be an 8-point configuration.

Corollary 3.20 Let f : Z2 → RN be a Q-net. f is a Koenigs lattice if and only if
every quadrilateral f , f1, f2 and f12 has its Laplace transforms L1, L2, L1

11 and L2
22 in

8-point configuration on the quadrilateral.

Proof. Follows from Theorem 3.19 and Theorem 3.5. 2
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Chapter 4

Connection of both discretizations

4.1 Main theorem
Since classical discrete two-dimensional Koenigs nets and Doliwas Koenigs lattices are
both discretizations of smooth Koenigs nets, it seems natural that these notions have
some connection. We introduced the notion of D-nets as nets made of intersection
points of diagonals of classical discrete Koenigs nets. It is the main goal of this chapter
to show that the notion of a D-net is already equivalent to the notion of Doliwas
Koenigs lattice.

Theorem 4.1 (Equivalence of Doliwas Koenigs lattices and D-nets) A map f :
Z2 → RN is a D-net if and only if it is a Koenigs lattice of Doliwa.

We already know that for every Koenigs net we find a corresponding D-net. In the
proof of the theorem we will take a look at the construction of a Koenigs net upon a
D-net. We will find out that we have a (2N + 2)-degree of freedom in this construction.
This means that we can biject between D-nets (Doliwa lattices) and (2N+2)-parameter
families of Koenigs nets. Therefore, there are "more" classical Koenigs nets than Doliwa
lattices.

4.2 Proof of the theorem
We will prove the theorem by finding an algebraic condition for a Q-net to be a D-net
and proving that this condition is equivalent to the Q-net being a Koenigs lattice. In
this section f : Z2 → RN will be a prescribed Q-net and x : Z2 → RN will be the
Koenigs net we try to construct. We will find out that the condition on f for this to
work out is equivalent to the condition on f to be a Doliwa Koenigs lattice.
We will now take a look at the construction. Since the diagonal intersection points
are given, we will construct the diagonals and points of the Koenigs net. We need to
find two diagonals of the Koenigs net through each Q-net point, such that each four of
the edges meet in a point (the Koenigs-net point). The edges of Q-net and Koenigs
net don’t play a role in this construction.
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Chapter 4 Connection of both discretizations

Figure 4.1: Construction of a Koenigs net f (grey edges) on a given Q-net x (black). The
Koenigs net can be split into two subnets (green and red).

As in Section 3.2.3 we can split the Koenigs net into two bipartite parts, such that
each diagonal connects two points of the same part. The parts form nets themselves,
which we will again call the subnets of the Koenigs net.
Assume we can prescribe some starting point x1 in the construction. Then the four
adjacent diagonals are set. If we pick two points x2 and x4 on these corresponding
diagonals, the subnet quadrilateral might not close, because we don’t know whether
the lines (x2f3) and (x4f4) intersect in a point x3. If it exists we still need to make
sure that the Q-net points are in 8-point configuration on the constructed subnet quad
(see Theorem 3.13). We deal with this first obstruction in the next subsection. If you
construct further Koenigs net points from x1, notice that they will always be points
from the same subnet. There are no dependencies to the other subnet. This means we
can construct both subnets completely independent of each other. Therefore we only
consider one subnet in the remains of the proof. In the following subsection we first
construct one subnet quadrilateral, then find a condition to be able to construct four
subnet quadrilaterals sharing a point, and then prove that the condition being fulfilled
everywhere is enough to construct the hole subnet.

4.2.1 Construction of a subnet quadrilateral
Constructing a quadrilateral of the subnet is already nontrivial. For the construction
we need a quadrilateral of the Q-net f and we need to construct the subnet quad
"around" the Q-net quad, which means that every point of the Q-net quad lies on one
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edge of the subnet quad. Also the Q-net points must be in 8-point configuration on
the subnet quad. We will assume that any arbitrarily chosen point is distinct from all
other known points. We have N + 1 degree of freedom in this construction:

Lemma 4.2 For a given Q-net quadrilateral F we can construct a surrounding subnet
quad X uniquely if we prescribe one of the subnet edges, such that the edge contains
the corresponding Q-net point.

Figure 4.2: A Q-net quadrilateral F with one of its Laplace transforms L and a subnet
quadrilateral X, which has been constructed "around" F in 8-point configuration.

Proof. Let F = (f1f2f3f4) be the prescribed Q-net quadrilateral. One point in RN

(w.l.o.g. x1) can be chosen arbitrarily, then one neighbouring point (w.l.o.g. x2) can
be chosen freely on the line (x1f2). Now the rest is uniquely determined: x4 must be
on the line (Lx2) for F to be in 8-point configuration on X (see Figure 4.2). Therefore
x4 is the intersection point of (Lx2) and (x1f1). It exists, since both lines share the
plane (f1f2x1). In the plane (x2f3f4) we find x3 uniquely as intersection point of the
lines (x2f3) and (x4f4). 2

This construction is geometrically straight forward, but makes further constructions
complicated. We will make use of the quantity q on the Q-net points to get an
algebraic formular. We will prescribe ratios q1, q2, q3 and q4, which should fulfill (after
construction of the subnet quad X)

q1 = q(x1, f1, x4), q2 = q(x1, f2, x2), q3 = q(x2, f3, x3), q4 = q(x4, f4, x3). (4.1)

We will now check under which condition we can construct a quad X fitting these
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ratios. After choosing x1 we can calculate x2 and x4:

x2 = f2 + q2(x1 − f2), (4.2)
x4 = f1 + q1(x1 − f1). (4.3)

Now we have two possibilities to calculate x3:

x1
3 = f3 + q3(x2 − f3), (4.4)
x2

3 = f4 + q4(x4 − f4). (4.5)

The construction with the given q’s works if and only if x1
3 = x2

3. Plugging in the above
equations yields

(1− q3)f3 + q3x2 = (1− q4)f4 + q4x4, (4.6)

and even further:

(1− q3)f3 + q3(1− q2)f2 + q3q2x1 = (1− q4)f4 + q4(1− q1)f1 + q4q1x1, (4.7)

which is the condition that the quadrilateral closes. However if we want X to be a
subnet quad of a Koenigs net we can’t prescribe arbitrary ratios qi. In fact X is a
suitable subnet quad if and only if the hole construction is an 8-point configuration, i.e.
if

q(x4, f1, x1)q(x1, f2, x2)q(x2, f3, x3)q(x3, f4, x4) = 1. (4.8)

Comparing this with our choice of the q’s, we find that this is equivalent to

q3q2 = q4q1. (4.9)

For f to be a D-net quadrilateral it is therefore necessary to prescribe q’s, which fulfill
that condition. If we add this as an assumption, the closing conditions becomes

(1− q3)f3 + q3(1− q2)f2 = (1− q4)f4 + q4(1− q1)f1, (4.10)

which does not depend on any xi. The independence of xi means that for these given
q’s the subnet quad X will close for any starting point x1. Comparing this to Lemma
4.2 yields: We can choose x1 arbitrarily. Choosing x2 on the line (x1f2) is equivalent
to choosing q2. From the Lemma we know that the rest is unique. This means we can
choose one q and calculate the rest from the closing condition:

Lemma 4.3 Given a planar quadrilateral F and one ratio qi, we can uniquely solve
the closing condition

(1− q3)f3 + q3(1− q2)f2 = (1− q4)f4 + q4(1− q1)f1, (4.11)

such that q3q2 = q4q1 is fulfilled.
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It is difficult to explicitly solve this equation. In R3 one can use Cramer’s rule
to do that. In arbitrary dimensions it appears to be useful to write one fi as linear
combination of the other three before solving. This is always possible, since the four
points share a plane. We will use a similar trick to solve the equation.

Remark 4.4 Note that our closing condition is not very symmetric in the sense that
it includes the qi’s and fi’s in different manner. The reason is that the direction of the
qi’s is not chosen symmetrically. We can formulate a more symmetric closing condition
if we choose the direction of the qi’s cyclically:

q1 = q(x4f1x1), q2 = q(x1f2x2), q3 = q(x2f3x3), q4 = q(x3f4x4). (4.12)

Then the closing condition becomes

(1− q1)f1 + q1(1− q4)f4 + q1q4(1− q3)f3 + q1q4q3(1− q2)f2 = 0. (4.13)

It doesn’t look more symmetric at first glance, however by multiplying q2, then q3,
then q4, and making use of q1q2q3q4 = 1 we get the equivalent equations

(1− q2)f2 + q2(1− q1)f1 + q2q1(1− q4)f4 + q2q1q4(1− q3)f3 = 0, (4.14)
(1− q3)f3 + q3(1− q2)f2 + q3q2(1− q1)f1 + q3q2q1(1− q4)f4 = 0, (4.15)
(1− q4)f4 + q4(1− q3)f3 + q4q3(1− q2)f2 + q4q3q2(1− q1)f1 = 0. (4.16)

This shows that every qi and fi play the same role in the condition.

We will now return to the choice of qi’s as in Lemma 4.3 and explicitly solve the
equation for q2, q3 and q4 given q1. To do this we need to write some of the points of
F in coordinates relative to the others. We will use the Laplace transform L, which is
the intersection point of (f1f2) and (f3f4). Let e1 be a unit vector parallel to the line
(f3f4). Then we find scalars γ3, γ4, such that

f3 = L+ γ3e1, (4.17)
f4 = L+ γ4e1. (4.18)

Also we can describe L on the line (f1f2) by a ratio of directed lengths p1 ∈ R:

p1 = q(f1, L, f2). (4.19)

L can be calculated (see equation 3.8) as

L = 1
1− p1

f2 −
p1

1− p1
f1. (4.20)
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The quad closing condition becomes

(1− q3)( 1
1− p1

f2 −
p1

1− p1
f1 + γ3e1) + q3(1− q2)f2

=(1− q4)( 1
1− p1

f2 −
p1

1− p1
f1 + γ4e1) + q4(1− q1)f1.

(4.21)

Sorting this after e1,f1 and f2 yields

((1− q3)γ3 − (1− q4)γ4)e1+

( p1
1− p1

((1− q4)− (1− q3))− q4(1− q1))f1+

( 1
1− p1

((1− q3)− (1− q4)) + q3(1− q2))f2 = 0.

(4.22)

Since we assume everything to be in sufficiently general position, the three vectors e1,
f1 and f2 are linearly independent, which means that this is equivalent to the three
scalar equations

(1− q3)γ3 − (1− q4)γ4 = 0, (4.23)
p1

1− p1
(q3 − q4)− q4(1− q1) = 0, (4.24)

1
1− p1

(q4 − q3) + q3(1− q2) = 0. (4.25)

Solving these for q2, q3, q4 is some simple algebra, however it is a quite long computation,
which is why we won’t write down the hole process. It is important to note that the
solution always exists and is unique as long as we require the ratios to be unequal
to 0 or 1 (or infinity), which is justified, since these values correspond to two points
coinciding, which we excluded anyway. Solving yields

q2 = p1q1
1 + q1(p1 − 1) , (4.26)

q3 = (γ3 − γ4)(1 + (p1 − 1)q1)
γ3 − γ4p1 + γ3q1(p1 − 1) , (4.27)

q4 = (γ3 − γ4)p1
γ3 − γ4p1 + γ3q1(p1 − 1) . (4.28)

We know that the solution has to fulfill q2q3 = q1q4, which can now easily be checked.
From now on it suffices to construct the quantity q on the subnet, since the explicit

choice of a starting point x1 is not important. We need to find the quantity q, such
that the closing condition is fulfilled on any quad of the subnet. This results in a hole
N -parameter family of subnets, since we get a subnet for any arbitrary starting point
x1.
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4.2.2 Condition for four subnet quadrilaterals

The next step is to construct four quadrilaterals of a subnet, which share a point. From
the last chapter we know that it is enough to construct the quantity q on the four
quadrilaterals. If we find q’s, such that the quad closing condition is fufilled on all four
quadrilaterals we are finished.

Figure 4.3: Construction of four subnet quadrilaterals (blue) "around" the four Q-net quads
F1, F2, F−1 and F−2.

We name the quantities q, q1, q12 and q2 as shown in Figure 4.3. Also p−2, p1, p2
and p−1 should be defined by

p−2 = q(f, L2, f1), p1 = q(f1, L
1
11, f12), p2 = q(f12, L

2
22, f2), p−1 = q(f2, L

1, f).
(4.29)

We can choose q arbitrarily. We know from last section that q1 is then already unique
if the closing condition on F−2 should be fulfilled. We can calculate it to be

q1 = p−2q

1 + q(p−2 − 1) . (4.30)

We can use this q1 to uniquely determine q12, and from q12 we get q2 uniquely. Now
the condition for the construction to work out is that q2 and q need to fulfill the closing
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condition on F−1. The corresponding formulars are

q12 = p1q1
1 + q1(p1 − 1) , (4.31)

q2 = p2q12
1 + q12(p2 − 1) , (4.32)

q = p−1q2
1 + q2(p−1 − 1) . (4.33)

It is important to note that the q’s on the "outer" subnet edges exist and can be
calculated, however they don’t have any connection to the other three quadrilaterals,
which is why we don’t need to pay attention to them anymore. Plugging the formulars
into each other yields

q12 = p1q1
1 + q1(p1 − 1) = p−2p1q

1 + (p−2p1 − 1)q , (4.34)

q2 = p2q12
1 + q12(p2 − 1) = p−2p1p2q

1 + (p−2p1p2 − 1)q , (4.35)

q = p−1q2
1 + q2(p−1 − 1) = p−2p1p2p−1q

1 + (p−2p1p2p−1 − 1)q . (4.36)

This last equation is the condition we are looking for:

p−2p1p2p−1q = (1 + (p−2p1p2p−1 − 1)q)q (4.37)
⇔ 0 = q(1− q)(p−2p1p2p−1 − 1). (4.38)

If we note that q /∈ {0, 1}, this is equivalent to

1 = p−2p1p2p−1 (4.39)
⇔ 1 = q(f, L2, f1)q(f1, L

1
11, f12)q(f12, L

2
22, f2)q(f2, L

1, f), (4.40)

which is finally the condition that the four subnet quads can be constructed. Note that
the equation is independent of any qi, which makes this a condition directly on the
points of f . It is the condition that the Laplace transforms lie in 8-point configuration
on the quadrilateral (ff1f12f2). We now know that this equation needs to hold on
any quadrilateral of the Q-net f , for f to be a D-net. We don’t yet know why it is
already enough. The condition is the same as the condition for f to be Koenigs lattice
of Doliwa. It is exactly the condition described in Corollary 3.20. It is noteworthy
that we found the equation by looking at conditions on the quads F−2, F1, F2 and
F−2, while the equation we found is formulated on the quad (ff1f12f2).

4.2.3 Global construction of a subnet
We have to prove the following equivalence:

Four subnet quads sharing a point can be constructed everywhere (4.41)
⇔ Both subnets can be constructed. (4.42)
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4.3 Conclusion

The argument is exactly the same as in the proof of Theorem 3.11 (see Figure 3.7 on
the left): Start at some subnet quadrilateral. Construct subnet quads in both lattice
directions (The lattice directions of the subnet are different than those of the Q-net).
Then construct the rest by making use of the assumption that a forth quadrilateral
can always be constructed. With this procedure one can construct both subnets.
We have proven everything: f is a D-net if and only if both subnets can be constructed,
which is equivalent to f being a Doliwas Koenigs lattice.

�

4.3 Conclusion
We have proven the main theorem. We also know how to construct a Koenigs net on a
D-net. The freedom in the construction of a subnet was in the construction of the first
quadrilateral: Choose one point and one q arbitrarily. If we consider that we have two
subnets, we see that we have a (2N + 2)-parameter freedom in the construction of the
Koenigs net.
We have shown that both discretizations of Koenigs nets are closely related. We have
also shown that both discretizations have a characterization via 8-point configurations.
One can wonder how properties of the nets relate. For example: If two Koenigs nets
are dual to each other, how do the corresponding Doliwa lattices relate? How do the
Koenigs transformations of classical Koenigs nets and Doliwa lattices relate? These
questions might be answered in future papers.
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