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Abstract

This paper introduces an innovative approach to
enhance distributed cooperative learning using
Gaussian process (GP) regression in multi-agent
systems (MASs). The key contribution of this
work is the development of an elective learning al-
gorithm, namely prior-aware elective distributed
GP (Pri-GP), which empowers agents with the
capability to selectively request predictions from
neighboring agents based on their trustworthiness.
The proposed Pri-GP effectively improves indi-
vidual prediction accuracy, especially in cases
where the prior knowledge of an agent is incor-
rect. Moreover, it eliminates the need for com-
putationally intensive variance calculations for
determining aggregation weights in distributed
GP. Furthermore, we establish a prediction error
bound within the Pri-GP framework, ensuring the
reliability of predictions, which is regarded as a
crucial property in safety-critical MAS applica-
tions.

1. Introduction
In the context of multi-agent systems (MASs), distributed
learning entails a collaborative approach where one or more
groups of agents join forces to improve their understanding
and knowledge of complex tasks, such as robotic swarm
navigation (Stirling et al., 2012), underwater vehicle re-
source exploration missions (Yan et al., 2019; 2020), and air
drone search and rescue operations (Alotaibi et al., 2019),
etc. To address the inherent challenges posed by uncertain
dynamics or environmental conditions in dynamic systems,
distributed learning integrates supervised machine learn-
ing techniques enabling agents to learn cooperatively. This
approach leads to more effective and robust learning capabil-
ities compared to traditional single-agent models (Provost
& Hennessy, 1996).

*Equal contribution. 1Robert Koch Institute, Berlin, Germany
2Technical University of Munich, Munich, Germany 3Freie Uni-
versität Berlin, Berlin, Germany. Correspondence to: Zewen Yang
<yangz@rki.de>.

Extended work (Yang et al., 2024a).

1.1. Related Work

Specifically, Neural Networks (NNs) emerge as the pre-
vailing methodology approximating complex mappings or
functions in MASs (Dai et al., 2019). To learn the unknown
patterns jointly, the NN weights are shared among neighbor-
ing agents, facilitating the attainment of optimal parameter
values (W. Wang & Peng, 2017; Gao et al., 2020). Several
research endeavors have been dedicated to system identifica-
tion within the framework of addressing uncertainties (Jafari
& Xu, 2018; Dai et al., 2021). However, as the complexity
of NN models increases with additional hidden layers and
neurons, the practicality of sharing all NN weights within
constrained communication bandwidth becomes unfeasi-
ble. This challenge further leads to significant delays in the
learning process, rendering it impractical and resulting in
the MAS dynamics potentially unstable. Though only ex-
changing the predictions, the inherent challenge arises from
the inadequacy in precisely quantifying prediction uncer-
tainties, thereby impeding its applicability in safety-critical
tasks.

An alternative supervised machine learning approach, Gaus-
sian process regression (GPR) (Rasmussen & Williams,
2006), has been widely used in the realm of safety-critical
control systems, primarily owing to its distinctive attributes.
Under the Bayesian inference framework, GPR not only
provides probabilistic predictions, where the prior model
can be updated continuously accommodating the incorpora-
tion of observations (Schürch et al., 2020), but also offers
error bounds endowed with robust guarantees (Lederer et al.,
2019). In contrast to NNs-based methods, GP models are
only required to share their individual predictions with con-
nected counterparts (Yin et al., 2023). Even if the agent
lacks access to the complete training dataset, collabora-
tive improvements in prediction quality can be achieved
by aggregating predictions from neighboring agents. The
synergy of aggregated predictions from neighboring agents,
as detailed in prior research (Yang et al., 2021; Lederer
et al., 2023; Yang et al., 2024b), underscores the effec-
tiveness of this approach in achieving improved prediction
quality within the multi-agent framework. Moreover, to
improve the efficiency of cooperative learning with GPs,
the event-triggered mechanism is introduced in (Dai et al.,
2024a;b). However, the mentioned literature above based on
distributed GP (Tresp, 2000b; Deisenroth & Ng, 2015) im-
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poses a constraint in the sense that it mandates the exchange
of information with all neighboring agents, offering no flex-
ibility for agents to selectively determine which neighbors
to collaborate with. The agent needs to aggregate the pre-
dictions from the neighbors, thus each agent is compelled
to compute predictions for all of its neighboring counter-
parts, potentially incurring a substantial increase in compu-
tational overhead. For example, the product of GP experts
(POE) methods (Cao & Fleet, 2015) and Bayesian com-
mittee machine (BCM) methods (Tresp, 2000a; Liu et al.,
2018) rely on the posterior variance of GP requiring O(N2)
calculations. This concern becomes particularly salient in
scenarios characterized by limited computational resources
at each agent’s disposal or when the expeditious generation
of predictions is imperative. Furthermore, the rigidity of
this collaborative setup raises noteworthy issues, especially
in cases where the prior knowledge is erroneous. This is
ignored by most distributed GP approaches, for instance,
the mixture of GP experts (MOE) approach (Tresp, 2000b),
where the aggregation weight is just the reciprocal of the
total number of the GP models. In such instances, a uni-
form collaboration approach may yield suboptimal results,
as it does not accommodate the possibility that an individual
agent may possess superior predictive capabilities compared
to its collaborators.

1.2. Contribution

To address these challenges, we propose a novel approach
where agents are empowered with the capability of request-
ing predictions exclusively, allowing them to actively se-
lect their collaborators from among their neighbors. This
elective learning method leverages the error between prior
knowledge and real observations, called prior-aware elec-
tive distributed GP (Pri-GP), which can let the agent smartly
choose the neighbors who are worth trusting. Therefore,
it not only reduces the heavy computation required by the
neighbors but also improves the individual agent’s predic-
tion in the distributed cooperative learning framework avoid-
ing aggregating the potentially misleading prediction from
the neighbors whose prior knowledge is significantly wrong.

The contribution of this paper is that an elective distributed
cooperative learning algorithm for MASs with distributed
GPR is proposed. The primary innovation lies in the pro-
posal of an error metric that leverages prior errors, which
possesses broader applicability beyond its immediate ap-
plication and can be seamlessly integrated into various ma-
chine learning methodologies. In particular, the proposed
Pri-GP approach offers a remarkable degree of flexibility by
circumventing the necessity of computing variance for the
determination of aggregation weights, a process commonly
associated with a computational complexity of O(N2) in
distributed GP techniques. Additionally, we provide a pre-
diction error bound using the Pri-GP framework, thereby

ensuring the reliability of predictions, a crucial aspect, par-
ticularly in the context of safety-critical applications.

The structure of the paper: In Section 2, we present the
preliminaries and the problem setting. The proposed Pri-GP
algorithm is expounded upon in Section 3. The effectiveness
of Pri-GP is demonstrated through comprehensive compar-
isons with state-of-the-art approaches in Section 4. Lastly, a
summary of the paper is provided in Section 5.

In Section 2, we state the preliminaries and problem set-
ting. Then, the proposed Pri-GP is detailed in Section 3.
The effectiveness of our methods is demonstrated through
comparisons with state-of-the-art approaches in Section 4.
Lastly, Section 5 summarizes the paper.

2. Preliminaries and Problem Setting
In this section, we introduce the notation used through-
out the paper and elaborate on the graph theory utilized
for describing the MAS network in Section 2.1. Subse-
quently, Section 2.2 outlines the primary objective, followed
by Gaussian process regression as the machine learning
technique employed for inferring the unknown functions in
Section 2.3.

2.1. Notation and Graph Theory

We use the notation R+/R0,+ to denote positive real num-
bers without/with zero and denote natural numbers with-
out/with zero as N/N0, respectively. Unless otherwise spec-
ified, the identity matrix is I , and a matrix or vector con-
sisting of elements 1 is denoted by 1, with appropriate sizes
as needed. The Euclidean norm of a vector or matrix is
represented as ∥ · ∥, the cardinality of a set N as |N |, and
the element-wise absolute operator for vector input v as |v|.
To characterize the communication network of the dis-
tributed MAS, an undirected graph G = (V, E) is employed
among S agents, S ∈ N. The node set V = {1, . . . , S}
represents the index of the agents, and E ⊆ V × V signifies
the set of edges between nodes, where an edge (i, j) ∈ E
indicates that agent i and agent j exchange their informa-
tion between each other. The self-loop included adjacency
matrix of G is denoted by A = [aij ] ∈ RS×S , where
all diagonal entries aii = 1, other elements of the matrix
aij = aji = 1 if (i, j) ∈ E and aij = 0 otherwise. More-
over, we let the set of neighbours of agent i represent as
Ni = {j ∈ V : (i, j) ∈ E} and the set N̄i comprises agent
i along with its neighbors, meaning it contains agent i itself
and all the agents in Ni.

2.2. Problem Description

In this work, we delve into the investigation of a distributed
MAS comprising a total of S individual agents. The pri-
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mary objective of these homogeneous agents is to identify
the identical functional characteristics of their dynamical
systems

ẋ = f(x), (1)

considering f(x) = [f1(·), · · · , fm(·)]T, where for each
dimension, fd(·) : X → R, ∀d = 1, · · · ,m and X ⊂ Rm

is a m ∈ N dimensional compact domain. These agents
actively engage in communication with one another through
a network, herein referred to as G. Concurrently, each agent
has the collection of observational data set Di with the sub-
script i indicating the specific agent within the set V , which
are subsequently harnessed for the purpose of estimating
the unknown functions. It is noteworthy that each agent
possesses its own distinct set of prior knowledge pertain-
ing to these unidentified functions, which is represented
as f̂(·) considering the same mapping relationship of f .
To facilitate the utilization of this prior knowledge and the
learned functions for describing the system’s dynamics, we
introduce the following assumption.
Assumption 2.1. The functions f(·) and f̂(·) exhibit local
Lipschitz continuity within the compact domain X, char-
acterized by a Lipschitz constant denoted as Lf ∈ R, i.e,
∥∇f(x)∥ ≤ Lf for all x ∈ X.

This assumption is frequently encountered in the context of
nonlinear systems (Khalil, 2002), which serves the guaran-
tee of the existence and uniqueness of solutions for nonlinear
autonomous systems. In practice, this assumption merely
necessitates the system’s continuity, with the subsequent es-
tablishment of Lipschitz continuity being a derived property
within the bounded region denoted as X. Consequently, it
can be contended that this assumption imposes no onerous
constraints on the system under consideration.

It is important to highlight that in this paper, we have cho-
sen to work with a one-dimensional estimation, i.e., a scalar
function, where d = 1. This simplification in dimensionality
has been adopted for the sake of keeping our notations con-
cise and straightforward. However, it should be noted that
the outcomes derived in this work can be readily extended
to higher dimensional functions achieved by employing
techniques such as the Kronecker product and multi-output
learning methods.

To describe the training data set of the agent i compris-
ing streaming data pairs, we denote it as Di with Ni ∈ N
training data pairs. This data set is represented as Di ={(

x
(p)
i , y

(p)
i

)}
p=1,...,Ni

, where each pair consists of a train-
ing input xi ∈ X and a corresponding training output
yi ∈ R, and satisfies the following assumption.

Assumption 2.2. The data pair
{(

x
(p)
i , y

(p)
i

)}
that is ob-

tained by agent i ∈ V , such that the noise ς
(p)
i ∈ R of

y
(p)
i = f

(
x
(p)
i

)
+ ς

(p)
i follows a zero-mean, independent

and identical Gaussian distribution, i.e., ς(p)i ∼ N (0, σ2
n),

∀p ∈ N with σn > 0.

As outlined in Assumption 2.2, it is assumed that each agent
independently collects their own dataset without sharing it
among others. While this assumption necessitates precise
and complete measurements of the system states, a require-
ment commonly encountered in MASs when employing
data-driven methodologies, it is possible to effectively ad-
dress the measurement noise associated with the variable
x. This can be achieved through various techniques, such
as Taylor expansion, as demonstrated in prior works like
(Mchutchon & Rasmussen; Kim et al.), or by incorporat-
ing noise handling directly into the kernel function, as dis-
cussed in (Wang et al., 2022). It is worth noting that there
are broader considerations related to noise distribution re-
laxation, we refer to (Chowdhury & Gopalan; Maddalena
et al.). However, these aspects lie beyond the scope of this
paper.

In the development of a distributed learning framework for
the MAS, the estimation of the unknown function f(·) at
time tk ∈ R0,+ of the i-th agent is considered as

f̃i(x(tk)) =

S∑
j=1

ωijϕij

(
x(tk),Dj , f̂j(x(tk))

)
, i ∈ V,

(2)
where k ∈ N is indicating the specific instance of pre-
diction, and the cooperative estimation function ϕij(·, ·, ·)
corresponds to the prediction mechanism employed by each
agent. Specifically, when i ̸= j, it characterizes the predic-
tion generated through the neighbor agent j with its training
data set Dj and prior knowledge function f̂j(·). While i = j,
it represents the prediction of agent i itself using its own
prior and training data set.

Therefore, the primary focus of this paper revolves around
the development of a collaborative estimation function tai-
lored to augment individual predictions of an unknown func-
tion in an elective manner, which can enhance the predic-
tions without necessitating the aggregation of predictions
from all neighboring agents, thereby mitigating the compu-
tational burden imposed on these neighbors. Importantly,
this elective strategy takes into account the varying accuracy
of prior knowledge possessed by agents, which is illustrated
in Section 3.

2.3. Gaussian Process Regression

In this paper, Gaussian process regression, a supervised
machine learning technique, is employed to perform in-
ference on the unknown function f(·). A Gaussian pro-
cess GP(f̂(·), κ(·, ·)) is utilized to establish a probabilistic
model characterized by two fundamental components: the
prior mean function f̂(·), and the kernel function, denoted
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as κ(·, ·) : X × X → R0,+, which satisfies the following
assumption.

Assumption 2.3. The kernel function κ(∥x − x′∥) =
κ(x, x′) is chosen as stationary, monotonically decreasing,
and Lipschitz continuous with a specified Lipschitz constant
denoted as Lκ.

The adoption of a Lipschitz continuous kernel emerges
as a judicious selection when dealing with continuous
unknown functions within a confined domain. The kernel’s
monotonic decrease, as reflected in its behavior, implies a
diminishing strength of association between the training
data and the evaluated point as their Euclidean distance
increases. Therefore, a common choice of kernel function
is ARD exponential kernel formulated as

κ (x,x′) = σ2
r exp

(
− 1

2

m∑
j=1

lj
2(xj − x′

j)
2
)
, (3)

where x = [x1, x2, . . . , xm] ∈ X. σr ∈ R+ and lj ∈ R+

are hyper-parameters.

We consider the agent i ∈ V within the MAS to be equipped
with a GP model characterized by hyperparameters de-
noted as θ = {σr, ls, s = 1, 2,. . .,m}. Additionally, the
agent possesses a fixed training dataset denoted as Di with
Ni ∈ N0 training data pairs under Assumption 2.2 and holds
different prior of the unknown function f̂i(·) satisfying As-
sumption 2.1. Agent i performs predictions at discrete time
points denoted as tk. These predictions are represented
as the posterior mean prediction and associated prediction
variance (Rasmussen & Williams, 2006) at the query point
x(tk), which are formulated as

µi

(
x(tk)|f̂i(x(tk)),Di

)
= f̂i(x(tk)) (4)

+K
(
x(tk),Xi

)
K(Xi)

−1
(
Y T
i − f̂i(Xi)

T
)
,

σi

(
x(tk)|f̂i(x(tk)),Di

)
= κ(x(tk),x(tk)) (5)

−K
(
x(tk),Xi

)
K(Xi)

−1K
(
x(tk),Xi

)T
,

respectively, where

K(Xi) = K
(
Xi,Xi

)
+ σ2

nI, (6)

K(Xi,Xi) =
[
κ
(
x
(a)
i ,x

(b)
i

)]
a,b=1,...,Ni

(7)

K
(
x(tk),Xi(tk)) =

[
κ
(
x(tk),x

(1)
i

)
· · ·κ

(
xtk ,x

(Ni)
i

)]
,

(8)

Xi =
[
x
(1)
i · · ·x

(Ni)
i

]
,Yi =

[
y
(1)
i · · · y

(Ni)
i

]
, (9)

and the concatenated prior mean value is defined as
f̂(Xi) =

[
f̂
(
x
(1)
i

)
, . . . , f̂

(
x
(Ni)
i

)]
.

Therefore, each agent i can use the posterior mean to iden-
tify the unknown f(·) at x(tk) by Equation (4), the in-
dividual estimation function ϕii

(
x(tk),Di, f̂i(x(tk))

)
=

µi

(
x(tk)|f̂(x(tk)),Di

)
. To simplify our notation, we de-

note µi(x(tk)|f̂i(x(tk)),Di) as µi(x(tk)) in the subse-
quent sections of this paper. Having established the GPR
as our foundational tool, the subsequent section is dedi-
cated to the formulation of our elective distributed learning
approach.

3. Elective Distributed Learning with
Prior-Aware GPR

To assess the reliability of the collaborators, we introduce
the prior estimation error in Section 3.1. This metric serves
as a quantitative measure for gauging the trustworthiness of
neighboring agents in the MAS. Building upon this quan-
titative foundation, we proceed to formulate an elective
distributed learning algorithm, as outlined in Section 3.2.
Additionally, to bolster the safety and guarantee of the learn-
ing scenario, we establish a prediction error bound within
the Pri-GP framework in Section 3.3.

3.1. Prior Error Quantification

In multi-agent systems, each agent possesses a finite training
dataset, which naturally leads to a scenario where predic-
tions for points lying beyond the training data domain or
in sparsely sampled regions become highly reliant on prior
knowledge. Consequently, the accuracy of these predic-
tions is predominantly influenced by the quality of the prior
information in the Bayesian framework. This situation un-
derscores the potential challenges arising from incorrect or
inadequate prior knowledge. Therefore, there arises a com-
pelling need for a systematic mechanism to assess the degree
of inaccuracy associated with prior knowledge, particularly
in the presence of observed true values for predictions. To
formally quantify the disparity between the prior estima-
tion and observed data, we introduce the concept of prior
estimation error denoted by

ei(x(tk)) = f̂i(x(tk))− y(tk). (10)

Given the availability of system observations, we system-
atically log the associated errors. To establish the evolving
cumulative error over time, we define the average accumu-
lated historical prior estimation error as

εi(tk) =
1

k

k∑
l=1

|ei(x(tk−l))|. (11)

This metric serves as a pivotal instrument in characterizing
the deviation between prior expectations and empirical ob-
servations, thereby enhancing our capacity to evaluate and
interpret the reliability of the models, which is illustrated in
the following lemma.

Lemma 3.1. The variable εi(tk) reflects the prediction
error on the training data set Di, and the measurement
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error. In particular, εi(tk) is written as

εi(tk) =
1

k
1T|Gk(ξk + ςk)|, (12)

where Gk = (I + σ−2
n K(Xi,Xi)). The aggregated er-

ror denotes ξk = [ξ0, · · · , ξk]T with ξp = f(x(p)) −
µi(x

(p)),∀p = 1, · · · , k. The noise vector ςk collects all
measurement from t = t0 to tk, i.e., ςk = [ς(0), · · · , ς(k)]T ,
where the individual noise ς(p),∀p = 1, · · · , k, follows As-
sumption 2.2.

Proof. Considering the prediction of each sample in
Di using (4), the aggregated prediction µi(Xi) =
[µi(x

(0)), · · · , µi(x
(Ni))]T is written as

µi(Xi) =f̂i(Xk)
T

+K(Xi,Xi)K(Xi)
−1

(
Y T
k − f̂i(Xi)

T
)

=
(
I −K(Xi,Xi)K(Xi)

−1
)
f̂i(Xi)

T

+K(Xi,Xi)K(Xi)
−1Y T

k . (13)

Then, the aggregated deviation between the measurements
y(p) and the prediction µi(x

(p)) denoted by

Y T
k − µi(Xk) = σ2

nK(Xi)
−1

(
Y T
k − f̂i(Xk)

T
)

= G−1
k

(
Y T
k − f̂i(Xk)

T
)
, (14)

which is also equivalent to

Y T
k − f̂i(Xk)

T = Gk

(
Y T
k − µi(Xk)

)
due to the non-singular Gk. Note that Y T

k − µi(Xk) is
divided into two parts with prediction error ξk and mea-
surement error ςk, i.e., Y T

k − µi(Xk) = ξk + ςk. More-
over, reformulating (11) as εi(tk) = k−11Tei(Xk) with
ei(Xk) = [ei(x(t0)), · · · , ei(x(tk))]T , the accumulated
prior estimation error εi(tk) is written as

εi(tk) =
1

k
1T|Y T

k − µi(Xk)| (15)

and then the result in (12) is derived.

Remark 3.2. Lemma 3.1 shows the accumulated historical
prior estimation error encodes the joint effects of the predic-
tion and measurement. Moreover, the coefficient matrix Gk

indicates the correlation of the training data by K(Xi,Xi).
As the value of Gk is influenced by the number of training
samples, to eliminate the effects from the size of the data set
and normalize the prediction performance of the GP model,
the mean of the absolute value for the prediction and mea-
surement error is considered by applying k−11T. Therefore,
εi(tk) is a reasonable metric to evaluate the performance of
the GP models without heavy variance computation.

However, one must consider that the historical estimation
errors can exhibit significant disparities, ranging from sce-
narios where an agent possesses an ideal prior knowledge
resulting in zero error, to instances where an agent’s prior
information is grossly inaccurate, leading to exceedingly
substantial errors. Consequently, there arises a necessity to
standardize these errors to a suitable range. In this context,
it becomes imperative to normalize them within the inter-
val [0, 1], i.e. the min-max normalization for accumulated
historical estimation error, which is expressed in

ε̃i(tk) =
εi(tk)− εmin,i(tk)

εmax,i(tk)− εmin,i(tk)
, (16)

where εmax,i(tk) = maxi∈N̄i
εi(tk) and εmin,i(tk) =

mini∈N̄i
εi(tk). The variable ε̃i(tk) serves the dual purpose

of standardizing error magnitudes and facilitating threshold-
based decision making. It not only simplifies the comparison
and analysis of errors across different scenarios or datasets
but also streamlines the establishment of thresholds for ac-
ceptable errors, which is used for designing the elective
strategy.

3.2. Prior-Aware Elective Cooperative Learning

Through the incorporation of the quantifiable term ε̃, we
introduce an elective learning function denoted as αij lever-
aging the average accumulated historical estimation errors
(16). Essentially, it informs us about the degree of trust in
the GP models and the circumstances in which the agent
i requires calculations for prediction from its neighboring
agent j(j ∈ N̄i), including itself. This inclusion is particu-
larly relevant when agent i seeks to calculate predictions at
query point xi(tk) utilizing its local GP model. The elective
function for agent i is designed as

αij

(
tk, S̄i

)
=

{
aij ε̃j(tk) < ε̄i(tk)

0 otherwise
, j ∈ N̄i, (17)

where ε̄i(tk) is the S̄i-th largest value of the set
{ε̃i(tk)}i∈N̄i

associated with the agent i. This elective func-
tion signifies that the agent i exclusively selects cooperative
predictions from a subset Si(tk) = {j|αij(tk, S̄i) > 0, j ∈
N̄i} of N̄i. Specifically, the subset Si defines the number
of |Si| = |N̄i| − S̄i trustworthy agents in the set N̄i for
the aggregation prediction. Therefore, this elective function
affords the agent the capability to determine the number of
collaborators, including itself, that it wishes to engage in
computing joint inferences for the unknown function.

By employing the proposed elective function in conjunc-
tion with the normalized accumulated historical error (16),
we formulate the elective prior-aware aggregation weight
function for the i-th agent designed by

ω̃ε
ij(tk) = φij

(
∪j∈N̄i

αij(tk, S̄i)h
ε(ε̃j(tk))

)
, j ∈ N̄i,

(18)
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which can be simplified as

ω̃ε
ij(tk) = φij

(
∪j∈Si

hε(ε̃j(tk))
)
, j ∈ Si, (19)

according to the definition of Si, where φij(·) is a propor-
tional function

φij(∪s∈Si
wis) =

wij∑
s∈Si

wis
. (20)

Since smaller estimation error ε̃j(tk) indicates more reliable
performance for GP model j with larger ω̃ε

ij(tk), the positive
function hε(·) : R+ → R+ is designed as monotonically
decreasing, i.e., ∀ε̃i, ε̃j ∈ R+ with ∀ε̃i ≤ ∀ε̃j it holds
hε(∀ε̃i) ≥ hε(∀ε̃j). Moreover, when hε(·) is well-defined,
i.e., not tend to be infinite, when the input is close to 0. With
the above requirements, the function hε(·) can be designed
as

hε(ε̃j(tk)) =
σhi

√
2π

exp
(
− 1

2

(
ε̃j(tk)−ε̄i(tk)

σhi

)2) , (21)

where the scaling factor σhi
∈ R+ is the standard deviation

value of the Gaussian distribution in the denominator of
Equation (21). The rationale behind utilizing the function
(21) instead of Equation (16) as the weighting scheme lies in
the fact that the parameter σhi is a trainable variable, afford-
ing the flexibility to optimize the distribution of aggregation
weights. More importantly, an additional crucial considera-
tion is the necessity to prevent singular values from arising.
Notably, the elective aggregation weight function Equa-
tion (18) presents an advantageous feature wherein the com-
putation of aggregation weights does not impose a signifi-
cant computational burden, as these weights are determined
based on the prior estimation errors of collaborators. How-
ever, it is well-established that the posterior variance in GPR
serves as an indicator of prediction uncertainties (Deisenroth
& Ng, 2015). This metric quantifies the confidence degree of
predictions with respect to the training dataset, as employed
in the concept presented in (Yang et al., 2021). In light of
this, we incorporate this notion with Equation (20) to design
the elective weight based on the variance ω̃σ

ij(tk) of GP as

ω̃σ
ij(tk) = φij

(
∪j∈N̄i

αij(tk, S̄i)h
σ(σj(x(tk)))

)
(22)

where hσ(•) : R→ R is •−2. Therefore, considering both
the elective weights (18) and (22), we combine them by
using the following method

ωij(tk) = ρ(ω̃ε
ij(tk), ω̃

σ
ij(tk)), (23)

where ρ(·, ·) : R × R → R is designed as a function that
can balance the impact between the aggregation weights
based on prior estimation error and the weights based on
posteriors.

Remark 3.3. The design of the function ρ(·) is restraint
under the condition

∑
j∈N̄i

ω̃ij(tk) = 1. A valid choice of
ρ can be

ρ(ω̃e
ij(tk), ω̃

σ
ij(tk))=φij

(
∪j∈N̄i

(
ω̃ε
ij(tk)

)c(
ω̃σ
ij(tk)

)1−c
)
,

(24)

where 0 ≤ c ≤ 1 ∈ R0,+ serves as a means to modulate
the influence of the first and second input variables in a
proportional manner. Consequently, the manipulation of the
factor c affords us the ability to finely adjust the relative
significance of two key metrics. This choice of ρ guarantees∑

j∈N̄i
ωij(tk) = 1 considering the definition of function

φij in (20).

It is essential to acknowledge that the aggregation weights
in Equation (22) entail increased computational demands
on the collaborating agents, along with a higher volume
of information exchange to convey the posterior variances.
Nevertheless, these adjustments yield a richer source
of predictive information from the collaborators. This
augmentation has the potential to enhance predictions with
Equation (24) under fine-tuned hyperparameters. However,
Pri-GP provides a valuable avenue for achieving such
adaptability, particularly in situations where computational
resources are constrained, considering the calculation of
variance infeasible due to its inherent complexity O(N2)
or resulting in substantial processing delays, circumstances
under which the POE method may prove ineffective.
Remark 3.4. Owing to the inherent characteristics of
Bayesian learning methodologies, the posterior distribution
continually refines itself with the assimilation of additional
training data, thereby mitigating the influence of the prior
distribution. Nevertheless, our approach offers a broader
perspective on quantifying the model’s confidence, tran-
scending the limitations of localized query points within the
training data domain. Moreover, even in scenarios where all
predictive regions have been fully explored and observed,
it becomes feasible to set the factor c = 0 in Equation (24).
The Pri-GP transitions into an elective POE, where the de-
termination of aggregation weights relies solely on posterior
variance. When c = 1, it signifies that the weighting scheme
exclusively relies on the prior-aware aggregation weights
in Equation (18). Furthermore, it is pertinent to underscore
that expeditious acquisition of aggregation weights can be
facilitated by bypassing the computation of variance alto-
gether.

As the aggregation weight function defined above, Equa-
tion (2) can be written as

f̃i(x(tk)) =
∑
j∈N̄i

ωij(tk)ϕij

(
x(tk),Dj , f̂j(x(tk))

)
=

∑
j∈N̄i

ωij(tk)µj(x(tk)), i ∈ V. (25)

6
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Algorithm 1 Pri-GP Algorithm

Require: S ≥ 2 {number of agents}
1: for i = 1 : S do
2: for j ∈ N̄i do
3: εij(tk), ε̃ij(tk), αij(tk, S̄i) ← Equation (11),

Equation (16), Equation (17)
4: if αij(tk, S̄i) ̸= 0 then
5: if c = 1 then
6: ω̃ε

ij(tk)← Equation (19)
7: Calculate ωij(tk) = φij(ω̃

ε
ij(tk), 1)

8: else if c ̸= 1 then
9: ω̃σ

ij(tk), ωij(tk) ← Equation (22), Equa-
tion (23)

10: end if
11: Calculate ϕij

(
x(tk),Dj , f̂j(x(tk))

)
12: end if
13: end for
14: f̃i(x(tk))←Equation (25)
15: if y(tk) ̸= ∅ then
16: ei(x(tk))← Equation (10)
17: end if
18: end for

Therefore, to obtain the aggregated prediction, the ex-
changed information necessitates the sharing of two crit-
ical components: firstly, the posterior mean for prediction;
secondly, the cumulative historical estimation error for the
computation of the aggregation weights. To facilitate a bet-
ter understanding of the algorithm’s operation, we provide
a pseudo-code representation of Pri-GP in Algorithm 1.

3.3. Prediction with Probabilistic Guarantee

Before analyzing the prediction performance for the MAS
with the proposed prior-aware elective distributed learning,
we first quantify the prediction error bound for a single
GP model with prior information, which is shown in the
following lemma.
Lemma 3.5. For an unknown function satisfying Assump-
tion 2.1, a GP model is given with a training data D =
{X,Y } set containing N = |D| ∈ N samples under As-
sumption 2.2. Moreover, choose the kernel function κ(·)
satisfying Assumption 2.3 and a Lipschitz continuous prior
mean function f̂(·) with Lipschitz constant Lf̂ ∈ R+. Pick
the grid factor τ ∈ R+ and δ ∈ (0, 1), then the prediction
error with prior information is uniformly bounded by

|µ(x)− f(x)| ≤ η(x) =
√
βσ(x) + γτ, ∀x ∈ X (26)

with a probability of at least 1 − δ, where γ = Lf +

Lf̂ +
√
βLσ2τ +

√
NLk∥K(X)−1

(
Y T
k − f̂(X)T

)
∥ and

the Lipschitz constant of the posterior variance Lσ2 =
2Lκ

(
1 + N

∥∥K(X)−1
∥∥maxx,x′∈X k (x, x′)

)
. The con-

stant β = 2
∑m

j=1 log
(√

m
2τ (x̄j − xj) + 1

)
−2 log δ, where

x̄j and xj denote the maximum and minimum of the j-th
dimension of x in the domain X, i.e., x̄j = maxx∈X xj and
xj = minx∈X xj .

Proof. To prove the uniform error bound in X, we first
define the discrete domain Xτ based on the grid factor τ ,
such that for each element x ∈ X there exists an element
x′ ∈ Xτ satisfying ∥x − x′∥ < τ . The domain Xτ is
finite, whose cardinality is bounded according to (Dai et al.,
2023a;b) as |Xτ | ≤

∏m
j=1

(√
m

2τ (x̄j − xj) + 1
)

. Moreover,
employing Lemma 5.1 in (Srinivas et al., 2012), the uniform
error bound within Xτ is written as

Pr{|µ(x′)− f(x′)| ≤
√
βσ(x′),∀x′ ∈ Xτ} ≥ 1− δ

(27)

considering β = 2 log(|Xτ |/δ). Then, due to fact that
∥x− x′∥ ≤ τ , the prediction error within the domain X is
bounded by

|µ(x)− f(x)| ≤ |µ(x)− µ(x′)|+ |f(x)− f(x′)|
+ |µ(x′)− f(x′)|

≤
√
βσ(x′) + Lfτ + |µ(x)− µ(x′)|

≤
√
βσ(x) +

√
βLστ + Lfτ + |µ(x)− µ(x′)|, (28)

for all x ∈ X. While the Lipschitz constant for the posterior
mean additionally depends on the prior mean, i.e.,

|µ(x)− µ(x′)| ≤ |f̂(x)− f̂(x′)|
+ |

(
K(x,X)−K(x′,X)

)
K(X)−1

(
Y T
k − f̂(X)T

)
|

≤
√
NLk∥K(X)−1

(
Y T − f̂(X)T

)
∥∥x− x′∥

+ Lf̂∥x− x′∥. (29)

Apply (29) into (28), then the uniform error bound in (26)
for X is derived, which completes the proof.

Based on Lemma 3.5, we derive the overall prediction error
bound of the MAS.

Theorem 3.6. Consider a MAS with S agents using the
Pri-GP algorithm to infer the unknown function f(·) under
Assumption 2.1. Equip a GP model on each agent i with the
kernel function satisfying Assumption 2.3 and a Lipschitz
continuous prior f̂(·) with Lipschitz constant Lf̂ ,i. More-
over, let each agent has its individual data set Di satisfying
Assumption 2.2. Pick τ ∈ R+ and δ ∈ (0, 1) , then the
overall prediction error denotes

∥f̃(x)− f(x)∥ ≤ ∥[η̃1(x1), · · · , η̃S(xS)]
T ∥, (30)

with probability of at least 1 − ∑S
i=1 |Si|δ, where the

aggregated function and prediction denote f̃(x) =

7
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[f̃1(x1), · · · , f̃S(xS)]
T , f(x) = [f(x1), · · · , f(xS)]

T ,
and

η̃i(xi) =

∑
j∈Si

hε(ε̃j(tk))
chσ(σj(x(tk))

1−cηj(xi)∑
j∈Si

hε(ε̃j(tk))chσ(σj(x(tk))1−c
.

(31)

Proof. Due to the property of function φ(·), the prediction
error for the i-th agent is written as

|f̃i(xi(tk))−f(xi(tk))|
=

∣∣∣ ∑
j∈N̄i

ωij(tk)
(
µi(x(tk))− f(xi(tk))

)∣∣∣
≤

∑
j∈N̄i

ωij(tk)|µj(x(tk))− f(xi(tk))|

≤
∑
j∈N̄i

ωij(tk)ηj(xi(tk)), (32)

where the second inequality is derived from Lemma 3.5.
Consider the definition of ωij(tk) in (23), the aggregation
weight is rewritten as

ωij(tk) =
(ω̃e

ij(tk))
c(ω̃σ

ij(tk))
1−c∑

s∈N̄i
(ω̃e

is(tk))
c(ω̃σ

is(tk))
1−c

(33)

With (18) and (22), one has

(ω̃e
ij(tk))

c(ω̃σ
ij(tk))

1−c (34)

=
αij(tk, S̄i)hε(ε̃j(tk))

chσ(σj(x(tk)))
1−c(∑

s∈Si
hε(ε̃j(tk))

)c(∑
s∈Si

hσ(σj(x(tk)))
)1−c .

Apply (34) into (32), then the result in (31) is derived with
the probability of at least 1−|Si|δ using union bound. More-
over, employing union bound again for different agents, the
overall prediction error bound in (30) is obtained.

4. Numerical Evaluation
To effectively elucidate the efficacy of our proposed algo-
rithms, we commence by employing an approximated sine
function as a demonstrative vehicle expounding upon the
fundamental principles of Pri-GP1, as explicated in Sec-
tion 4.1. Furthermore, we showcase the proficiency of our
novel algorithms in identifying the dynamics characterizing
autonomous systems in Section 4.2.

4.1. Function Approximation

In this subsection, we investigate the MAS comprising 4
agents, each equipped with an identical dataset but possess-
ing distinct prior knowledge represented as f̂ . The rationale

1The code is available at https://github.com/
Zewen-Yang/Pri-GP.

behind this experiment is to facilitate an in-depth analysis
of the impact of varying prior knowledge on predictions
when employing an individual learning strategy. Further-
more, we aim to draw comparisons with different distributed
learning methodologies showing the proposed algorithms
are superior to others.

The target function for approximation in this scenario is
chosen as sin(2x). We set the prior function of agent
1 to f̂1(x) = 0 considering the agent does not have any
knowledge of the unknown function, which is a general as-
sumption. Moreover, let agent 3 have the accurate function
f̂3(x) = sin(2x) as the target function and the 2-nd agent
and the 4-th agent as f̂2(x) = −1 and f̂4(x) = cos(2x),
respectively. The adjacency matrix of the communication
graph of this MAS is

A =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 .

Let S̄1 = S̄2 = S̄3 = S̄4 = 2, and the 8 identical training
input are randomly selected obeying uniform distribution
over the range [0, 2π). And set the hyperparameters of the
kernel function are chosen as σr = 1, lj = 0.2, j = 1, 2, 3
and the noise variance of the noise is σn = 0.1 for all
agents. The curves presented in Figure 1 show the results of
function approximation. It becomes apparent that the curve
using individual learning with Gaussian Processes (IGP),
i.e., the agent predicts the unknown function independently,
closely approximates the prior function in the absence of
training data. This observation underscores the significant
influence of prior knowledge on predictions when no data
are available.

To facilitate a more nuanced comparison of our proposed
methods with existing approaches, we provide the predic-
tion error, denoted by ∆e = |f̃(x) − f(x)|, of all agents
with violin plots in Figure 2 to analyze the distribution of
prediction errors. Furthermore, the average of the 1000 pre-
diction errors regarding each agent is illustrated Table 1. It
is evident that Pri-GP methods outperform the other meth-
ods, which have the lowest sum of average prediction errors.
Notably, while the overall prediction errors for the MAS
letting c ̸= 1 may appear less favorable when compared to
c = 1, a closer examination reveals that agent 2, in particu-
lar, benefits from Pri-GP with c = 0.5. The BCM method
manifests heightened errors that can be attributed to that
BCM tends to disproportionately accentuate the influence
of prior variance within the aggregation weights. Moreover,
it is crucial to note that the similarity in results of the POE,
POE, and GPOE methods arises from the identical training
datasets employed by all agents. In order to explore the
impact of distinct training datasets, a more intricate scenario
is examined in Section 4.2.
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Table 1. Average prediction errors (×10−2).

Methods Agent 1 Agent 2 Agent 3 Agent 4

Pri-GP (c=1) 0.044 22.25 0.048 0.032
Pri-GP (c= 1

2 ) 0.734 22.13 0.515 0.958
POE 16.64 24.24 17.83 20.87
GPOE 16.64 24.24 17.83 20.87
BCM 38.48 41.12 37.38 45.09
RBCM 22.26 25.31 21.08 23.11
MOE 16.64 24.24 17.82 20.87
IGP 22.26 42.70 0.002 43.65
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Figure 1. True, prior and posterior curves.

4.2. Dynamical System Identification

To further demonstrate the capability of Pri-GP in the identi-
fication of dynamical systems, this subsection endeavors to
exemplify the performance of Pri-GP with a 3 dimensional
nonlinear system

ẋ = s(y − x),

ẏ = rx− y − xz,

ż = xy−10 sin(z)− 10x− 0.5(1 + exp(−xy/10))−1︸ ︷︷ ︸
f(χ)

,

where we assume the unknown component of the system
as represented by f(χ) : R3 → R, where χ = [x, y, z]2.
The MAS comprises 8 agents, each equipped with unique
datasets with 100 training data satisfying the conditions
specified in Assumption 2.2 randomly distributed in the
space [−10, 20] × [−25, 30] × [0, 60] (see Figure 4a). All
agents begin in the same initial states, which are randomly
determined within the range [0, 1]. These simulations are
conducted 100 times for Monte-Carlo simulations, with a
time step of 0.01, and each simulation continues for 150
time steps. The hyperparameters of the kernel function
are chosen as σr = 1, lj = 1000, j = 1, 2, 3 and the noise
variance of the noise is σn = 0.1. Furthermore, the selection

2For additional results of the simulations, refer to Appendix A.
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Figure 2. Violin plots of prediction errors for different methods.
The red line is the mean value and the top/bottom horizontal blue
bar is the maximal/minimal value.
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Figure 3. Communication graph.

of diverse prior functions in the MAS are as follows

f̂1(χ) = −10sin(z)− 10x− 0.5(1 + exp(−xy/10))−1,

f̂2(χ) = 0,

f̂3(χ) = −10sin(z)− 10x− 0.5(1 + exp(−xy/10))−1,

f̂4(χ) = −10sin(z),
f̂5(χ) = −10x,
f̂6(χ) = 10y − 0.5(1 + exp(−xy/10))−1,

f̂7(χ) = −0.5(1 + exp(−xy/10))−1,

f̂8(χ) = −10cos(z).

The communication graph G of this MAS is shown in Fig-
ure 3, and similar to Section 4.1, each agent discharges one
neighbor leading S̄1 = S̄3 = 4, S̄2 = S̄4 = S̄5 = S̄8 = 3,
and S̄6 = S̄7 = 2. The trajectories of the dynamical system
using POE and Pri-GP (c = 0.5) for one trail are depicted
showcasing the spatial states of agents in Figure 4b, where
the initial state is [0, 1, 1.05]. In the case of POE, there is no
agent that closely follows the true system trajectory, while
Pri-GP (c = 0.5) enables all agents to accurately identify
the system dynamics. Only the trajectory of agent 8 slightly
differs from the trajectory of the real system. This differ-
ence in performance can be attributed to Pri-GP having an
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Figure 5. Mean prediction error with standard deviation.

inferior prior function and different neighbors. Additionally,
it may be influenced by the fact that the training data points
of agent 8 are barely aligned with the true trajectory.

Table 2. Average values of minimum, mean, median, and maxi-
mum over the 150 iterations.

Methods Min. Median Mean Max.

Pri-GP (c=1) 0.884 2.974 3.277 8.996
Pri-GP (c= 1

2 ) 2.331 4.882 5.104 10.46
POE 72.47 112.82 114.93 178.74
GPOE 79.91 122.60 124.33 189.42
BCM 77.80 118.75 121.42 190.68
RBCM 79.96 122.66 124.40 189.50
MOE 75.73 114.02 116.31 181.60
IGP 87.96 137.18 141.10 236.12

Figure 5 presents a comparative analysis demonstrating the
superior performance of the two Pri-GP methods across the
entire experimental process. The solid lines represent the
mean predictions obtained from 100 simulations, while the
light-shaded areas denote the standard deviation for each
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Figure 6. The box plots of mean prediction errors.

method. It is evident that all alternative approaches exhibit
comparable large prediction errors. Furthermore, the box-
plots illustrating the mean prediction errors are presented in
Figure 6, wherein the red lines represent the mean values,
and the + symbols denote outlier points. Table 2 provides a
summary of average values, including minimum, mean, me-
dian, and maximum, derived from 150 iterations. Notably,
Pri-GP demonstrates optimal performance when the param-
eter c is set to 1, with c = 0.5 emerging as the second-best
option among the alternatives, which underscores the effec-
tiveness of the proposed algorithm in inferring unknown
functions for dynamical systems.

5. Conclusion
In summary, Pri-GP emerges as a robust and promising so-
lution for enhancing distributed cooperative learning within
MASs. It introduces a novel approach that not only sig-
nificantly improves prediction accuracy but also addresses
the computational burden is distributed GPR by empower-
ing agents to selectively request predictions from trusted
neighbors. It offers several advantages, including improved
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prediction accuracy, reduced computational complexity, and
the establishment of prediction error bounds, making it a
valuable tool for applications where trustworthiness and re-
liability are paramount. The simulation results support the
efficacy of Pri-GP, underscoring its superiority over existing
methods in various scenarios, thus validating its potential
utility for advancing the capabilities of MASs across a spec-
trum of domains, from safety-critical systems to resource-
efficient distributed networks.
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A. Additional Results
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Figure 7. System trajectories of Pri-GP (c = 0.5) and Pri-GP (c = 1.0).
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Figure 8. System trajectories of POE and GPOE.
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Figure 9. System trajectories of BCM and RBCM.
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Figure 10. System trajectories of MOE and IGP.
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Figure 11. The box plots of minimum prediction errors.
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Figure 12. The box plots of median prediction errors
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Figure 13. The box plots of maximum prediction errors.
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