
Technical University of Munich

The Role of Control Frequency for the
Stability and Closed-Loop Performance

of Uncertain Systems

A Thesis by

Ralf Römer

In Partial Fulfillment of the Requirements for the Degree

Master of Science
in Electrical Engineering and Information Technology

Supervisors: L. Brunke, Dr. S. Zhou, Prof. A. P. Schoellig

October 24, 2023

To my family.

Advisors: L. Brunke, Dr. S. Zhou, Prof. A. P. Schoellig Ralf Römer

The Role of Control Frequency for the Stability
and Closed-Loop Performance of Uncertain

Systems

ABSTRACT

Learning models or control policies from data have become powerful tools to improve
the performance of uncertain systems. While a strong focus has been placed on increas-
ing the amount and quality of data to improve performance, data can never entirely
eliminate uncertainty, making feedback necessary to ensure stability and performance.
In this thesis, we show that the control frequency at which the input is recalculated
is a crucial design parameter, yet it has hardly been considered before. We address
this gap by combining probabilistic model learning and sampled-data control. We use
Bayesian linear regression and Gaussian processes to learn a continuous-time dynamics
model and compute a corresponding discrete-time controller. The result is an uncertain
sampled-data control system, for which we derive robust stability conditions. We for-
mulate optimization problems to compute the minimum control frequency required for
stability and to optimize performance. Based on these, we can robustly control an un-
certain system at different control frequencies without adapting or relearning the model.
We leverage this to study the effect of both control frequency and data on stability and
closed-loop performance. We show through numerical simulations and real-world exper-
iments with a quadrotor that feedback and learning must each be employed to at least
some extent to stabilize the system. Control performance can be improved by increasing
either the amount of data or the control frequency, and we can trade off one for the
other. For example, by increasing the control frequency by 33% in the simulation, we
can reduce the number of data points by half while still achieving similar performance.
However, throughout all our experiments, a greater performance improvement can be
achieved by increasing the control frequency than by collecting more data. Therefore,
our results motivate considering fast feedback as a powerful alternative to the often
computationally expensive learning-based control approaches.

i

Contents

Abstract i

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 4
1.3 Contributions . 5
1.4 Outline of the Thesis . 6
1.5 Notation . 6

2 Preliminaries 8
2.1 Mathematical Background . 8

2.1.1 Confidence Regions for Multivariate Gaussian Distributions 8
2.1.2 Linear Matrix Inequalities and Generalized Eigenvalue Problems . 10

2.2 Probabilistic Machine Learning Methods 11
2.2.1 Bayesian Linear Regression . 11
2.2.2 Gaussian Process Regression . 14

2.3 Sampled-Data Systems . 16
2.3.1 Introduction . 17
2.3.2 Stability Analysis . 18

3 Probabilistic Model Learning for Sampled-Data Control 23
3.1 Problem Statement . 23
3.2 Bayesian Linear Regression for Linear Dynamics 24

3.2.1 Bounding the Posterior Variance 27
3.3 Gaussian Process Regression and Linearization for Nonlinear Dynamics . 29
3.4 Uncertainty Reparameterization . 31

4 Learning-Based Robust Sampled-Data Control 35
4.1 Problem Statement . 35
4.2 Robust Stability for the Learned Uncertain System 36

ii

Contents

4.3 Computing the Minimum Control Frequency 39
4.3.1 Simplifying the Optimization Problem 40

4.4 Performance Optimization . 42
4.5 Linking the Control Frequency to Data . 43

4.5.1 Uncertainty as a Disturbance . 44
4.5.2 Minimum Amount of Data for Stability at a Given Control Frequency 46

4.6 Extension to Online Learning and Impact on Stability 48

5 Evaluation 51
5.1 Simulation . 51

5.1.1 2D Quadrotor Model . 51
5.1.2 Setup . 53
5.1.3 Results . 53
5.1.4 Discussion . 57

5.2 Hardware Experiment . 58
5.2.1 Hardware: Quadrotor and Motion Capture System 58
5.2.2 Simplified Dynamics Model . 59
5.2.3 Data Collection . 60
5.2.4 Results . 61
5.2.5 Discussion . 67

5.3 Comparative Discussion of Simulation and Experiment 68
5.3.1 Oscillations . 69
5.3.2 Sufficiency of the Minimum Control Frequency 70

6 Conclusions and Outlook 72
6.1 Conclusions . 72
6.2 Outlook . 73

Bibliography 74

iii

List of Figures

1.1 Common approach to learning-based control that does not consider the
control frequency as a design parameter. 1

1.2 Framework for continuous-time model learning and sampled-data control
at a particular frequency. 2

1.3 Cost for different control frequencies and state trajectories for the moti-
vating example. 4

2.1 Illustration of the ellipsoidal and box-shaped confidence regions for two
different Gaussian distributions. 9

2.2 Example of Bayesian linear regression for learning a one-dimensional func-
tion. 13

2.3 Example of Gaussian process regression for learning a one-dimensional
function and its derivative. 16

2.4 Piecewise-continuous time delay introduced by sampling. 18

3.1 Variance of the learned parameters compared to the theoretical lower bound. 29

4.1 Illustration of the equivalence of the optimal solutions to (4.12) and (4.15). 42
4.2 Construction of the LKF for proving asymptotic stability for updating

the control frequency and the control gain online. 50

5.1 Schematics of the simulated 2D quadrotor system. 51
5.2 Minimum control frequency required to ensure robust stability for differ-

ent amounts of training data in simulation. 54
5.3 Simulated quadrotor trajectories for different control frequencies and dif-

ferent amounts of training data. 55
5.4 Illustration of the tradeoff between the control frequency and the amount

of data in terms of performance. 56
5.5 Standard deviations of the costs in Fig. 5.4. 57
5.6 The Crazyflie 2.1 quadrotor used for the experiments. 58
5.7 Measured trajectory data used for model learning. 60
5.8 Estimation of the unknown parameters with Bayesian linear regression. . 62
5.9 Validation of the chosen hyperparameter value for the observation noise

standard deviation. 64

iv

List of Figures

5.10 Minimum control frequency computed from different amounts of measured
training data. 65

5.11 Impact of the control frequency on tracking the desired setpoint for dif-
ferent amounts of data in the quadrotor experiments. 66

5.12 Impact of the amount of data on tracking the desired setpoint for different
control frequencies in the quadrotor experiments. 67

5.13 Simulation of the learned system with the same control gains and control
frequencies as in the experiments with and without input delay. 69

v

List of Tables

5.1 Physical parameters of the simulated 2D quadrotor dynamics model. . . . 52
5.2 Chosen means and variances of the prior distributions of the unknown

dynamics parameters. 61
5.3 Parameters of the learned uncertain model (3.17) of the dynamics (5.6)

after observing different numbers of training samples. 63
5.4 Costs of the measured trajectories. 65

vi

Acronyms

BLR Bayesian Linear Regression

GEVP Generalized Eigenvalue Problem

GP Gaussian Process

i.i.d Independent and Identically Distributed

LKF Lyapunov-Krasovskii Functional

LMI Linear Matrix Inequality

LQR Linear Quadratic Regulator

MCF Minimum Control Frequency

MPC Model Predictive Control

RMSE Root-Mean-Square Error

ZOH Zero-Order-Hold

vii

Chapter 1

Introduction

1.1 Motivation

Real-world systems such as robots can exhibit complex dynamics, making deriving ac-
curate models from first principles difficult. Therefore, many studies in recent years
have addressed learning unknown dynamics from measured data using machine learning
methods and designing a controller based on the learned model [1, 2, 3, 4], as illustrated
in Fig. 1.1. Much attention has been paid to the role of data [5] and increasing its
amount and quality [6]. However, no derived or learned model can perfectly capture
the dynamic behavior of a real-world system [7]. Therefore, feedback [8] is required to
guarantee stability and performance despite uncertainties.

The control frequency at which system measurements are fed back to recalculate the
control input is often set without taking the dynamics and uncertainty into account [1, 3],
neglecting that it represents a degree of freedom in the controller design. However, con-
sidering the control frequency as a design parameter can be advantageous, especially
for resource-constrained systems such as robot platforms (e.g., drones). For example,
knowledge of the minimum control frequency (MCF) required for guaranteed stability of
an uncertain system can help improve energy efficiency by reducing unnecessary compu-

System

Sampler

Controller

ZOH

Model Learning
Data

(Robust)
Controller

Design fc

(Uncertain) Model

Controller
Parameters

Figure 1.1: In digital control systems (blue shaded box), the sampler, controller, and
zero-order-hold (ZOH) operate at a certain control frequency fc. Many stud-
ies in recent years have revolved around using machine learning methods to
learn a dynamics model from data and then designing a model-based con-
troller from the learned model, however, without taking the control frequency
into account as a design parameter.

1

Chapter 1 Introduction

System

Sampler

Controller

ZOH

Probabilistic
Model Learning

Data

Robust
Sampled-Data

Controller Design
fc

Uncertain Continuous-Time Model

Control
Frequency fc

Controller
Parameters

Figure 1.2: We propose a framework (dashed-line boxes) to design a robust controller op-
erating at a desired frequency using an uncertain continuous-time dynamics
model learned from data using either Bayesian linear regression or Gaussian
processes.

tational demand and data transmission. In this work, we study the effect of both control
frequency and data on closed-loop performance.

Learning a discrete-time model of the unknown dynamics yields a model specific to a
particular sampling time. Analyzing the system’s behavior and stability for a different
controller sampling time based on this learned model is generally very difficult. Thus,
we consider learning a continuous-time model in this work. Designing a discrete-time
controller for a continuous-time system falls within the domain of sampled-data con-
trol [9]. We propose a framework combining probabilistic model learning with robust
sampled-data control, which is illustrated in Fig. 1.2. In contrast to the standard ap-
proach [1, 3], we can flexibly choose the control frequency without changing the model
or sacrificing theoretical guarantees with our framework, allowing us to investigate the
effect of varying only the control frequency.

Before discussing the related work, we present a simple toy example illustrating the
role of control frequency for uncertain systems. Therein, we consider two cases: The
controller design is based on a perfect or an inaccurate dynamics model.

Example 1.1. Consider a dynamical system with state x(t) ∈ R2 and input u(t) ∈ R
at time t ∈ R≥0 that evolves according to the linear continuous-time dynamics

ẋ(t) =
[
0 1
2 −1

]
︸ ︷︷ ︸

A

x(t) +
[
0
1

]
︸︷︷︸
b

u(t), x(0) = x0. (1.1)

The eigenvalues of A are λ1 = −1, λ2 = 2, i.e., the open-loop system with u(t) = 0
is unstable. We consider a discrete-time linear quadratic regulator (LQR) for stabiliz-
ing (1.1) to the origin. For this, (1.1) is discretized with a sampling time Ts assuming a
zero-order hold input, i.e., u(t) is kept constant during each time interval t ∈ [tk, tk+1),
k ∈ N0, where tk = kTs. Denoting the discrete-time state and input by xk = x(kTs) and

2

Chapter 1 Introduction

uk = u(kTs), respectively, we obtain the discrete-time dynamics

xk+1 = Adxk + bduk, (1.2)

where Ad = eATs and bd = A−1(Ad − I)b. Discrete-time LQR uses the linear state feed-
back law uk = −k⊤xk, where the control gain k ∈ R2 solves the discrete-time algebratic
Riccati equation [10], minimizing the infinite-horizon cost

J∞ = 1
2

∞∑
t=0

x⊤
k Qxk + Ruk(t)2. (1.3)

We set the weighting matrices to Q = I2 and R = 0.01. With the obtained discrete-time
controller, the continuous-time system evolution is calculated by numerical integration
of (1.1) with u(t) = uk for t ∈ [tk, tk+1), k ∈ N0. We evaluate the impact of the control
frequency fc = 1

Ts
on the closed-loop dynamics, considering the initial state x0 = [5, 1]⊤

and different sampling times Ts ∈ {0.05, 0.06, . . . , 1}. For each, we simulate the system
for a duration t ∈ [0, T], where T = 10, and calculate the continuous-time finite-horizon
cost.

J = 1
2

∫ T

t=0
x(t)⊤Qx(t) + Ru(t)2 dt. (1.4)

Here, a finite horizon is used to ensure boundedness of the cost. We also consider the
case of model mismatch, i.e., the controller is designed using an inaccurate discrete-time
dynamics model that is based on

Â =
[
0 1
1 −1

]
, b̂ =

[
0

1.5

]
, (1.5)

instead of A and b. The achieved costs for both cases are shown on the left in Fig. 1.3,
and the state trajectories for Ts = 0.4 are shown on the right in Fig. 1.3. It can be
seen that when the model is perfect, the control performance improves with increasing
control frequency but very slightly for fc > 5. In the case of model mismatch, the
control performance degrades significantly for small control frequencies. The system even
becomes unstable for fc < 2.13. In contrast, when using a high control frequency, the
achieved cost becomes very close to the controller designed with a perfect system model.
We also observe that if the control frequency is high enough, the performance in the case
of model mismatch can even exceed the performance achieved with a perfect model at
lower control frequencies.

This example shows that the control frequency strongly influences the stability and
performance of a control system, especially when the system dynamics are not precisely
known. Investigating the role of control frequency is, thus, especially important in
learning-based control, where there is typically a mismatch between the true and the

3

Chapter 1 Introduction

5 10 15 20

20

30

40

Control frequency fc

C
os

t
J

Perfect model
Model mismatch

0 1 2 3 4 5
−4

−2

0

x1

x
2

Figure 1.3: Left: Finite-horizon cost (1.4) for controlling system (1.1) with a discrete-
time linear-quadratic regulator at different control frequencies fc with
and without model mismatch. Right: Corresponding state trajectories
for fc = 2.5.

learned dynamics model.

1.2 Related Work

For quantifying the uncertainty associated with a learned dynamics model, prob-
abilistic methods such as Bayesian linear regression (BLR) [11, 12] or Gaussian
processes (GPs) [13] have become popular [4]. Compared to BLR, which assumes
linearity in a set of parameters, GPs offer the advantage of being a non-parametric
method. In [1, 2, 3], GP model learning is combined with robust control methods.
While these works demonstrate that the model uncertainty is related to the control
performance, the connection between model learning and the control frequency is not
investigated.

From an optimal control perspective [14], the control frequency or the sampling time
affects how fine the input trajectory can be discretized, i.e., the size of the solution
space for solving the optimal control problem. For example, the classic work [15] shows
through a sensitivity analysis that for discrete-time LQR with a small sampling time,
the cost increases approximately quadratically with the sampling time. In [16], the
impact of the sampling time on the stability and performance of unconstrained nonlinear
model predictive control (MPC) is analyzed. The authors show that the achieved cost
in the discrete-time case decreases monotonically with the sampling time and that the
continuous-time performance can be approximated arbitrarily well for a sufficiently small
sampling time.

Sampled-data systems offer the advantage that the controller’s discrete-time nature
can already be considered in the controller design without discretizing the model using a
certain sampling time. Numerous approaches have been proposed to analyze the stability
of sampled-data systems; see the recent surveys [17, 9]. Most of the works revolve around

4

Chapter 1 Introduction

the time-delay approach, which is explained in detail in [18]. Based on this approach,
stability conditions are derived, for example, in [19, 20, 21]. These conditions can also
guarantee robust stability for polytopic-type uncertainty. However, this quickly becomes
computationally intractable for increasing state and input dimensions for the uncertainty
set associated with a dynamics model learned from data.

Few studies have considered the control frequency in the context of model uncertainty.
In [22], the maximum sampling interval for stabilizing an unknown linear system is
computed from measured data following a direct data-driven paradigm. However, the
approach assumes bounded noise and involves a computationally expensive iterative
optimization scheme for controller design. GP-based feedback linearization with a data-
dependent delay for updating the control input is considered in [23]. The authors show
empirically that in terms of tracking accuracy, there can be a tradeoff between the
accuracy of the GP model and the computational delay. Taking a different perspective,
reducing the control frequency is discussed in [24] in the context of reinforcement learning
as a way to reduce the sample complexity and thus improve performance.

The extent to which high-frequency recalculation of the control input can compensate
for a lack of data has not yet been investigated.

1.3 Contributions

We propose a framework to design the control frequency based on the uncertainty asso-
ciated with a dynamics model learned from data as illustrated in Fig. 1.2 and study the
role of the control frequency compared to the amount of data. Taking a sampled-data
control approach, we robustly stabilize a partially unknown nonlinear continuous-time
system with a discrete-time controller. Our main contributions are:

• We propose a framework combining stochastic model learning using BLR and
GPs with sampled-data control to independently study the effect of the control
frequency and training data on the closed-loop performance.

• We derive robust stability conditions as matrix inequalities for a sampled-data
control system with learned uncertain dynamics. Based on these, we formulate
optimization problems for the computation of the MCF and performance opti-
mization. We show that the number of decision variables in the first optimization
problem can be reduced by one, reducing computational complexity. In addition,
we derive a lower bound on the number of training samples required to robustly
stabilize a system at a given control frequency. Our framework enables us to
robustly control an uncertain system at different frequencies based on the same
continuous-time model.

• We evaluate our framework in numerical simulations of a 2D quadrotor and hard-
ware experiments with a real quadrotor. Thereby, we show and analyze the tradeoff

5

Chapter 1 Introduction

between model uncertainty, affected by the amount of data collected, and control
frequency with respect to stability and performance.

We conclude the introductory chapter by outlining the structure of the thesis and
explaining the notation.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 reviews some mathemat-
ical concepts heavily used in this thesis and introduces probabilistic model learning with
BLR and GPs as well as sampled-data systems. The following two chapters are devoted
to the different components of our proposed framework and their theoretical analysis.
In Chapter 3, we discuss probabilistic learning of linearized dynamics for sampled-data
control and a necessary reparameterization of the model uncertainty. The design of a
robust sampled-data controller for the learned uncertain model is treated in Chapter 4.
Here, we start with deriving robust stability conditions and use these to formulate two
optimization problems regarding stability and performance, respectively. We then em-
ploy our framework in Chapter 5, first in numerical simulation of a 2D quadrotor and
then in experiments with a real quadrotor. Finally, we draw our main conclusions and
wrap up the thesis with some ideas for future work in Chapter 6.

1.5 Notation

We employ the following notation in this thesis:

• The sets of positive and non-negative integers up to n are denoted by In = {1, . . . , n}
and I0

n = {0, 1, . . . , n}, respectively.

• The identity matrix is denoted by In ∈ Rn×n, the one-vector by 1n ∈ Rn and
the one-matrix by 1n×m ∈ Rn×m. The zero-vector and zero-matrix are similarly
denoted by 0n ∈ Rn and 0n×m ∈ Rn×m, respectively. The dimensions are omitted
if they can be inferred from context.

• The i-th element of a vector a is denoted by ai. The element in the i-th row and
j-th column of a matrix A is denoted by Aij .

• The vector containing the diagonal elements of a square matrix A ∈ Rn×n is
defined as diag(A) ∈ Rn. Given a vector b ∈ Rn, B = Diag(b) ∈ Rn×n is defined
as the diagonal matrix with Bii = bi, ∀i ∈ In.

• In symmetric matrices, ∗ denotes transpose elements that can be inferred from
symmetry.

• Stacking two vectors a ∈ Rn and b ∈ Rm is denoted by (a, b) =
[
a⊤, b⊤]⊤ ∈ Rn+m.

6

Chapter 1 Introduction

• Operators (e.g., the square root) act element-wise if applied to vectors or matrices.

• Positive (negative) definiteness of a square matrix A is denoted by A ≻ 0 (A ≺ 0)
and positive (negative) semi-definiteness of A by A ⪰ 0 (A ⪯ 0).

• The Hadamard (element-wise) product of two matrices matrices A ∈ Rn×m

and B ∈ Rn×m is denoted by C = A ◦ B, where Cij = AijBij .

• The spectral norm of a real matrix A is denoted by ∥A∥2 =
√

λmax(A⊤A),
where λmax(·) denotes the largest eigenvalue.

7

Chapter 2

Preliminaries

This chapter summarizes the technical background for this thesis. After briefly treating
some relevant mathematical concepts, we discuss two popular approaches to probabilis-
tic model learning before finally introducing sampled-data systems and their stability
analysis.

2.1 Mathematical Background

This section introduces some important mathematical concepts and results that are
heavily used in Chapters 3 and 4, respectively.

2.1.1 Confidence Regions for Multivariate Gaussian Distributions

A robust treatment of randomly distributed model uncertainties or disturbances usually
requires the computation of bounded regions containing the random variables with at
least a given probability. In the following, we provide two formulations of such confidence
regions for the special case of Gaussian distributions.

Lemma 2.1 ([25], Lemma 2). Let d ∼ N (µ,Σ) be a random variable in Rn. Then, for
any p ∈ [0, 1),

Pr (d ∈ µ + E) = p, (2.1)

where E ⊂ Rn is an ellipsoidal set defined by

E =
{
d ∈ Rn

∣∣∣d⊤Σ−1d ≤ χ2
n(p)

}
, (2.2)

and χ2
n is the quantile function of the chi-squared distribution with n degrees of freedom.

Computing the axis-aligned bounding box of the ellipsoid (2.2) yields an alternative
representation of a confidence region.

8

Chapter 2 Preliminaries

−4 −2 0 2 4 6 8
−2

0

2

4

d1

d
2

Σ1, p = 0.9
Σ2, p = 0.9
Σ1, p = 0.99
Σ2, p = 0.99

Figure 2.1: Illustration of the ellipsoidal and box-shaped confidence regions for two Gaus-
sian distributions N

(
µ,Σ1

)
and N

(
µ,Σ2

)
with mean µ = [2, 1]⊤ and co-

variance matrices Σ1 =
[
4 0
0 1

]
and Σ2 =

[
4 −1.5

−1.5 1

]
for two different

confidence thresholds p.

Lemma 2.2 (adopted from [25], Lemma 1). Let d ∼ N (µ,Σ) be a random variable
in Rn. Then, for any p ∈ [0, 1),

Pr (d ∈ µ + B) ≥ p, (2.3)

where B ⊂ Rnd is a hyperrectangle or box defined by

B =
[
−
√

χ2
n(p)Σ11,

√
χ2

n(p)Σ11

]
× · · · ×

[
−
√

χ2
n(p)Σnn,

√
χ2

n(p)Σnn

]
. (2.4)

While the bounding box (2.4) is more conservative than the ellipsoid (2.2), it can some-
times be more computationally efficient to use as it provides one-dimensional confidence
intervals for each dimension of d. The two types of confidence regions are illustrated in
the following example.

Example 2.1. We consider two normal distributions N (µ1,Σ1) and N (µ1,Σ2) in R2

with the same mean µ = [2, 1]⊤ and different covariance matrices

Σ1 =
[
4 0
0 1

]
and Σ2 =

[
4 −1.5

−1.5 1

]
.

The corresponding ellipsoidal and box-shaped confidence regions for the confidence thresh-
olds p = 0.9 and p = 0.99, respectively, are depicted in Fig. 2.1. We observe the confi-
dence regions to grow when p is increased. Moreover, the off-diagonal elements of the
covariance matrix do not affect the bounding box, which is also evident from (2.4).

As demonstrated in the example, larger off-diagonal entries of the covariance matrix
increase the degree of over-approximation of the ellipsoidal confidence region by the
bounding box.

9

Chapter 2 Preliminaries

2.1.2 Linear Matrix Inequalities and Generalized Eigenvalue Problems

Consider an optimization problem whose decision or optimization variables are stacked
into a vector θ = [θ1, . . . , θm]⊤ ∈ Rm. Constraints of the form

A(θ) = A0 + θ1A1 + · · · + θmAm ≻ 0, (2.5)

where A0, . . . ,An are given symmetric matrices, are called linear matrix inequal-
ity (LMI) constraints [26]. The LMI (2.5) is convex in θ, as A(αθ + (1 − α)θ′) ≻ 0 for
all α ∈ [0, 1] if A(θ) ≻ 0 and A(θ′) ≻ 0. Hence, the feasible set of an LMI-constrained
optimization problem is a convex set, facilitating a numerical solution [27].

Many problems arising in control theory can be cast into LMI-constrained optimization
problems. An often encountered special type of such optimization problem is

min
θ,λ

λ

s.t. λB(θ) − A(θ) ≻ 0, B(θ) ≻ 0, C(θ) ≻ 0,
(2.6)

with optimization variables θ ∈ Rm and λ ∈ R, and symmetric matrices A, B and C that
are affine functions of θ. The problem (2.6) is also referred to as generalized eigenvalue
problem (GEVP) because it can be expressed as

min
θ,λ

λmax(A(θ),B(θ))

s.t. B(θ) ≻ 0, C(θ) ≻ 0,
(2.7)

where λmax(A,B) denotes the largest generalized eigenvalue of A and B, i.e., the largest
value λ such that det(A − λB) = 0. The objective function λmax(A(θ),B(θ)) is qua-
siconvex in θ. Therefore, GEVPs are quasiconvex optimization problems that can be
solved efficiently in polynomial time [26], for example, using the bisection method or
interior-point algorithms [27].

In special cases, nonlinear matrix inequality constraints can be transformed into LMIs,
making the optimization problem convex and thus easier to solve by utilizing the follow-
ing well-known result, which is stated, for instance, in [26].

Lemma 2.3 (Schur Complement). Given matrices A, B and C, the following equiva-
lence holds:

M =
[
A B

B⊤ C

]
≻ 0 ⇔ C ≻ 0, A − BC−1B⊤ ≻ 0. (2.8)

Here, A − BC−1B⊤ is called the Schur complement of the block C of M .

For a comprehensive treatment of LMIs and their use in control theory, refer to [26].

10

Chapter 2 Preliminaries

2.2 Probabilistic Machine Learning Methods

We introduce two probabilistic machine learning methods for approximating unknown
functions from input/output data: Bayesian linear regression (BLR) and Gaussian pro-
cesses (GPs). Both methods can incorporate prior information about the unknown
function but make different assumptions about its structure. To simplify notation, we
consider learning a scalar function g : Rnz → R. We assume the availability of noisy
training data collected through multiple evaluations of g, as formalized in the following.

Assumption 2.1. A training data set of noise-free training inputs and noisy training
targets

D =
{
z(i), y(i) = g(z(i)) + w(i)

}N

i=1
(2.9)

is available, where w(i) ∼ N (0, σ2
n), ∀i ∈ IN , is independent and identically distributed

(i.i.d) Gaussian noise.

2.2.1 Bayesian Linear Regression

BLR [11] is based on the assumption that the unknown function g is linear with respect
to a parameter vector θ ∈ Rm, i.e.,

g(z) = θ⊤ϕ(z), (2.10)

where the feature vector ϕ(z) =
[
ϕ1(z), . . . , ϕnθ

(z)
]⊤ consists of nθ scalar feature func-

tions ϕi : Rnz → R, i = 1, . . . , nθ. Under this assumption, the observed data (2.9) can
be written compactly in matrix-vector form as

y = Φ⊤θ + w, (2.11)

where the vector y =
[
y(1), . . . , y(N)]⊤ ∈ RN contains the observed targets, the matrix

Φ =
[
ϕ
(
z(1)), . . . ,ϕ

(
z(N))] ∈ Rnθ×N contains the feature vectors of the training inputs,

and w ∼ N
(
0, σ2

nI
)
. In standard linear regression, which also makes the linearity as-

sumption (2.10), the parameter vector θ minimizing ∥y−Φ⊤θ∥2 is obtained via compu-
tation of the pseudo-inverse of Φ⊤. In contrast, BLR additionally assumes a Gaussian
prior θ ∼ N (µθ, Σθ) on the parameter vector. As a result, w and θ follow a joint
Gaussian distribution [

w

θ

]
∼ N

([
0

µθ

]
,

[
σ2

nI 0

0 Σθ

])
. (2.12)

11

Chapter 2 Preliminaries

It follows from the linear transformation[
y

θ

]
=
[
I Φ⊤

0 I

] [
w

θ

]
, (2.13)

that y and θ are also jointly Gaussian distributed as[
y

θ

]
∼ N

([
Φ⊤µθ

µθ

]
,

[
σ2

nI + Φ⊤ΣθΦ Φ⊤Σθ

∗ Σθ

])
. (2.14)

The posterior parameter distribution can be obtained by Gaussian conditioning [28] of θ
on the observed data y, yielding

θ | D ∼ N (µθ|D, Σθ|D), (2.15)

where the posterior parameter mean and variance are given by

µθ|D = µθ + ΣθΦ
(
σ2

nI + Φ⊤ΣθΦ
)−1

(y − Φ⊤µθ) (2.16)

Σθ|D = Σθ − ΣθΦ
(
σ2

nI + Φ⊤ΣθΦ
)−1

Φ⊤Σθ. (2.17)

Remark 2.1. If no prior information on the parameter vector θ is available, corre-
sponding to Σθ = γI with γ → ∞, then (2.16) and (2.17) simplify to

µθ|D = Φ(Φ⊤Φ)−1y (2.18)
Σθ|D = 0, (2.19)

This corresponds to the well-known result for standard linear regression.

Consider the case that the data set (2.9) contains only a single observation, i.e.,
D = {(z, y)}. Then, the expressions (2.16) and (2.17) for the posterior mean and variance
become

µθ|D = µθ + Σθϕ(z)(σ2
n + ϕ(z)⊤Σθϕ(z))−1(y − ϕ(z)⊤µθ) (2.20)

Σθ|D = Σθ − Σθϕ(z)(σ2
n + ϕ(z)⊤Σθϕ(z))−1ϕ(z)⊤Σθ. (2.21)

The Sherman-Morrison formula [29] can be employed to rewrite (2.20) and (2.21), yield-
ing

µθ|D = Σθ|D

(
Σ−1

θ µθ + 1
σ2

n
ϕ(z)y

)
(2.22)

Σθ|D =
(
Σ−1

θ + 1
σ2

n
ϕ(z)ϕ(z)⊤

)−1
. (2.23)

The expressions (2.22) and (2.23) can alternatively be derived by applying Bayes’ rule

12

Chapter 2 Preliminaries

−5

0

5

10

y
ϕ(z) = [z, sin (z)]⊤ ϕ(z) = [z, z sin (z)]⊤

Training samples
g(z)
µ(z)

0 2 4 6 8 10
−5

0

5

10

z

y

0 2 4 6 8 10
z

Figure 2.2: Bayesian linear regression for learning the unknown function g(z) = z sin (z)
from N = 5 (top) and N = 10 (bottom) training samples for two different
choices of features. The shaded regions correspond to ± two standard devi-
ations.

and making use of the fact that the Gaussian distribution is the conjugate prior of itself;
see [11]. In addition to the posterior parameter distribution, many applications require
evaluating the predictive distribution of the function value at a query input z∗ ∈ Rnz .
As the prediction model (2.10) is linear, the predictive distribution is also Gaussian;
given by g(z∗) | D ∼ N (µ(z∗), σ2(z∗)) with mean and variance

µ(z∗) = ϕ(z∗)⊤µθ|D (2.24)
σ2(z∗) = ϕ(z∗)⊤Σθ|Dϕ(z∗). (2.25)

Next, we consider a simple example to highlight some key properties of BLR.

Example 2.2 (Bayesian linear regression). We aim to learn the unknown function
g(z) = z sin (z) from N training inputs, which are drawn uniformly from the inter-
val [0, 10] with observation noise variance σ2

n = 1. We consider two choices of fea-
ture vectors: ϕ(z) = [z, sin (z)]⊤ and ϕ(z) = [z, z sin (z)]⊤. The training data and the
learned functions are shown in Figure 2.2 for N = 5 and N = 10 training samples, re-
spectively. The second feature vector results in a more accurate approximation of g as its
second component is equivalent to g. We observe that more data reduces the prediction
uncertainty. The uncertainty can be made arbitrarily small if sufficient data is available.
We can also see that the prediction uncertainty increases quadratically with the feature

13

Chapter 2 Preliminaries

values, which is evident from (2.25).

2.2.2 Gaussian Process Regression

GP regression [13] is based on the assumption that the unknown function g is drawn
from a GP, denoted as g ∼ GP(m(·), k(·, ·)). A GP induces a distribution over functions
such that any finite number of function evaluations is jointly Gaussian distributed. The
prior mean function m : Rnz → R can incorporate prior knowledge in the form of an
approximate model, and the kernel k : Rnz × Rnz → R encodes information about the
structure of the unknown function. The mean function can be set to zero without loss
of generality. Under the GP assumption, the function value at a query point z∗ ∈ Rnz

and the observed targets, stacked into a vector y =
[
y(1), . . . , y(N)

]⊤
, have the joint

probability distribution [
y

g(z∗)

]
∼ N

(
0,

[
K̄ k(z∗)⊤

k(z∗) k(z∗, z∗)

])
(2.26)

where the gram matrix K̄ ∈ RN×N and vector k(z∗) ∈ RN are defined as K̄ = K + σ2
nIn,

where Kij = k
(
z(i), z(j)), and k(z∗) =

[
k
(
z(1), z∗), . . . , k

(
z(N), z∗)]⊤, respectively. By

conditioning g(z∗) on the training data, we obtain the posterior predictive distribution
g(z∗) | D ∼ N (µ(z∗), σ2(z∗)) with the predictive mean and variance

µ(z∗) = k(z∗)⊤K̄−1y (2.27)
σ2(z∗) = k(z∗, z∗) − k(z∗)⊤K̄−1k(z∗). (2.28)

The computational complexity of evaluating (2.27) and (2.28) is O(N3) due to the
inversion of the N × N matrix K̄. However, in practice, the inverse K̄−1 is often
precomputed, reducing the complexity of the mean computation to O(N) and of the
variance computation to O(N2) [13].

The kernel function is usually parametrized by a vector of hyperparame-
ters θ ∈ Θ ⊆ Rnθ , but we omit this dependence in the notation for brevity. A
popular choice of the kernel is the squared-exponential (SE) function

k(z, z′) = σ2
f exp

(
−1

2
(
z − z′)⊤ L−2 (z − z′)), (2.29)

where σ2
f > 0 is the output variance, and L = Diag(l) ∈ Rnz×nz contains the vector of

length scales l = [l1, . . . , lnz]⊤, which correspond to the rate of change or sensitivity
of g w.r.t. its input dimensions. The choice (2.29) is not restrictive in practice since
the corresponding space of sample functions of the GP contains all continuous func-
tions [30]. Other commonly used kernel functions include the Matérn kernel or the
rotational quadratic kernel [13]. A detailed discussion about the kernel selection and its

14

Chapter 2 Preliminaries

implications can be found in [31].
The true hyperparameters of the kernel are typically unknown in practice. The most

common approach for obtaining suitable values is through maximization of the marginal
log-likelihood of the training data (2.9), which can be achieved by solving

θ∗ = arg max
θ∈Θ

log p
(

y(1), . . . , y(N)
∣∣∣ z(1), . . . ,z(N),θ

)
= arg max

θ∈Θ
log N

(
0, K̄

)
= arg max

θ∈Θ
−1

2y
⊤K̄−1y − 1

2 log det K̄. (2.30)

A (potentially suboptimal) solution to this nonlinear optimization problem can
be computed using gradient ascent approaches, for instance, based on the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method [32].

In addition to the function value, predicting the derivative of g at a given input z∗

can be of interest. Since the derivative is a linear operator, the derivative of a GP is also
a GP [13]. This property allows the inclusion of derivative observations into the training
data but it can also be used to compute derivative predictions. From (2.26), we obtain y

∂g(z)
∂z

∣∣∣
z=z∗

 ∼ N

0,

 K + σ2
nI

∂k(z)
∂z

∣∣∣
z=z∗

∂k(z)⊤

∂z

∣∣∣
z=z∗

∂2k(z,z)
∂z∂z

∣∣∣
z=z∗

 . (2.31)

Similar to the prediction of the function value at z∗, predictions of the derivatives can
be obtained by conditioning the derivative of g at z∗ on the training data, which yields
∂g(z)

∂z

∣∣∣
z=z∗

∣∣∣ D ∼ N (µ′(z∗), Σ′(z∗)) with the derivative mean and variance,

µ′(z∗) = ∂k(z)
∂z

∣∣∣∣
z=z∗

K̄−1y (2.32)

Σ′(z∗) = ∂2k(z∗, z∗)
∂z∂z

∣∣∣∣∣
z=z∗

− ∂k(z)
∂z

∣∣∣∣
z=z∗

K̄−1
(

∂k(z)
∂z

∣∣∣∣
z=z∗

)⊤
. (2.33)

For the SE kernel (2.29), the partial derivative terms in (2.31) - (2.33) are straightforward
to calculate and given by

∂k(z)
∂z

∣∣∣∣
z=z∗

= L−2
[(
z(1) − z∗

)
k
(
z∗, z(1)

)
. . .

(
z(N) − z∗

)
k
(
z∗, z(N)

)]
(2.34)

∂2k(z, z)
∂z∂z

∣∣∣∣∣
z=z∗

= σ2
fL

−2. (2.35)

We conclude this section with a simple example illustrating the use of GPs for learning
an unknown function and its derivative.

Example 2.3 (Gaussian process regression). We consider learning the same unknown

15

Chapter 2 Preliminaries

−5

0

5

10

y
GP prediction

Training samples
g(z)
µ(z)

−10

−5

0

5

10
GP derivative prediction

g′(z)
µ′(z)

0 2 4 6 8 10
−5

0

5

10

z

y

0 2 4 6 8 10
−10

−5

0

5

10

z

Figure 2.3: Gaussian process (GP) regression for learning the unknown function g(z) =
z sin (z) and its derivative from N = 15 (top) and N = 30 (bottom) training
samples. The shaded regions correspond to ± two standard deviations.

function g(z) = z sin (z) as in Example 2.2, whose derivative function is given by
g′(z) = sin (z) + z cos (z). We employ the SE kernel, set the variance of the observation
noise to σ2

n = 0.52, and draw N training inputs randomly from a uniform distribution
over the set [0, 10]. Figure 2.3 shows the GP prediction (left) and the GP derivative
prediction (right) for N = 15 and N = 30 training samples, respectively. It can be seen
that increasing the amount of training data reduces the uncertainty in the predictions.
Moreover, in contrast to BLR, the model uncertainty is highest for inputs with a large
distance (as measured by the kernel function) from the training data. Compared to BLR
in Example 2.2, which makes more use of prior knowledge, more data is required to
obtain a good approximation of g(·) despite the observation noise standard deviation
being only half as large.

2.3 Sampled-Data Systems

Any real-world system evolves continuously, but a digital controller updates the control
input only at discrete points in time. This fact is typically neglected, and either fully
continuous or discrete-time models and controllers are used. However, a subfield within
control theory deals with combining a continuous-time process with a discrete-time con-
troller, called sampled-data systems. In this section, we introduce sampled-data systems,
focusing on their stability analysis.

16

Chapter 2 Preliminaries

2.3.1 Introduction

Consider a continuous-time linear time-invariant (LTI) system with state x(t) ∈ Rn and
input u(t) ∈ Rm at time t ∈ R≥0. The system evolves according to the dynamics

ẋ(t) = Ax(t) + Bu(t), (2.36)

where A ∈ Rn×n and B ∈ Rn×m are referred to as dynamics matrix and input matrix,
respectively. The input is only updated at discrete points in time tk ∈ R+

0 , k ∈ N0,
called sampling instants, where t0 = 0. We consider a linear control law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), (2.37)

where K ∈ Rm×n is the state feedback matrix. We make the following assumption about
the time interval between the sampling instants.

Assumption 2.2. The time between two consecutive samples satisfies tk+1 − tk ≤ Ts,
∀k ∈ N0, where Ts > 0 is an upper bound on the sampling interval.

Clearly, Assumption 2.2 captures common periodic sampling, i.e., tk+1 − tk = Ts,
∀k ∈ N0, as well as aperiodic sampling. Inserting the controller (2.37) into the dy-
namics (2.36) gives the continuous-time closed-loop system

ẋ(t) = Ax(t) + BKx(tk), ∀t ∈ [tk, tk+1), k ∈ N0. (2.38)

It is shown in [19] that if the continuous-time feedback u(t) = Kx(t) stabilizes the sys-
tem (2.36), then the discrete-time feedback (2.37) stabilizes (2.36) for all small enough Ts.
The most important question in designing a sampled-data controller is about the con-
ditions the control gain K and the upper bound on the sampling interval Ts have to
satisfy such that the system (2.38) is guaranteed to be stable.

The stability of system (2.38) can be analyzed from different perspectives [17, 9], for
example, via a time-delay modeling of the sampled-data system or by considering it a
hybrid system [33]. In this thesis, we focus on the time-delay approach [18] as it allows
us to eventually derive robust stability conditions for the uncertainty in a learned model;
see Section 4.2. The underlying idea of the time-delay approach is to rewrite (2.38) as
an LTI system with a time-varying delay

ẋ(t) = Ax(t) + BKx(t − τ(t)), (2.39)

where the delay function

τ(t) = t − tk, ∀t ∈ [tk, tk+1), k ∈ N0, (2.40)

is piecewise-continuous and satisfies τ̇(t) = 1 almost everywhere. As a result of Assump-

17

Chapter 2 Preliminaries

0 0.5 1 1.5 2 2.5 30
0.2
0.4
0.6
0.8

1

Time t

D
el

ay
τ
(t

)

Figure 2.4: Piecewise-continuous time delay introduced by employing a discrete-time
control law for a continuous-time system.

tion 2.2, the delay is bounded by τ(t) ∈ [0, Ts], ∀t ∈ R≥0.

Example 2.4. Consider the sampling sequence {tk}5
k=1 = {0.6, 1.5, 1.9, 2.7, 3}. The

corresponding evolution of the delay τ(t) is shown in Fig. 2.4 and has a sawtooth shape.

2.3.2 Stability Analysis

It is well known that delays in the feedback loop can have a destabilizing effect. Hence,
A+BK being Hurwitz is generally insufficient to guarantee stability of the system (2.39);
see [18]. However, deriving sufficient conditions for the stability of (2.39) is non-trivial.
In [19], the authors address this problem utilizing a transformation method, which has
been proposed in [34] in the context of delay differential-algebraic equations. It can be
used to write the system (2.39) in the equivalent descriptor form

ẋ(t) = y(t) (2.41a)

y(t) =

Ax(t) + BKx(t − τ(t)), if t ∈ [0, Ts)

(A + BK)x(t) − BK
∫ t

t−τ(t) y(s)ds, if t ≥ Ts.
(2.41b)

Given an initial condition x(t) = ϕ(t), t ∈ [−Ts, 0], where ϕ is a continuous function,
x(t) satisfies the original dynamics (2.39) for t ∈ R≥0 if and only if it satisfies (2.41).
The first equivalence in (2.41b) for t ∈ [0, Ts) directly follows from (2.39), and the second
equivalence can be shown by rewriting (2.39) as

ẋ(t) = Ax(t) + BKx(t − τ(t)) + BKx(t) − BKx(t)
= (A + BKx(t)) − BK(x(t) − x(t − τ(t)))

= (A + BKx(t)) − BK

∫ t

t−τ(t)
ẋ(s)ds.

The stability of the descriptor system (2.41) can be analyzed using the Lyapunov-

18

Chapter 2 Preliminaries

Krasovskii functional (LKF) [19]

V (t) = V1(t) + V2(t), (2.42)

where

V1(t) = x(t)⊤P1x(t) (2.43a)

V2(t) =
∫ 0

−Ts

∫ t

t+θ
y(s)⊤Ry(s)dsdθ, (2.43b)

where P1 ≻ 0 and R ≻ 0. While the term V1(t) is common in Lyapunov-based stability
analysis [35], the choice of the second term V2(t) may not be as obvious and will be
justified later. We define the augmented state x̄(t) = (x(t),y(t)) ∈ R2n of the descriptor
system (2.41). It can be shown that the LKF (2.42) satisfies

a∥x(t)∥2
2 ≤ V (t) ≤ b sup

s∈[−Ts,0]
∥x̄(t + s)∥2

2 (2.44)

for some a > 0, b > 0, and is therefore a valid Lyapunov functional candidate [19]. To
prove asymptotic stability, it must be shown that V̇ (t) ≤ 0 with equality holding only
for x̄(t) = 0. Computing the derivative of the first LKF term (2.43a) and inserting (2.41)
yields

V̇1(t) = ẋ(t)⊤P1x(t) + x(t)⊤P1ẋ(t)

= x(t)⊤((A + BK)⊤P1 + P1(A + BK)
)
x(t) − 2x(t)⊤P1BK

∫ t

t−τ(t)
y(s)ds

= x̄(t)⊤

P⊤
[

0 I

A + BK −I

]
+
[

0 I

A + BK −I

]⊤

P

 x̄(t)

− 2x̄(t)⊤P⊤
[
BK

0

] ∫ t

t−τ(t)
y(s)ds, (2.45)

where

P =
[
P1 0

P2 P3

]
, P2 ∈ Rn×n, P3 ∈ Rn×n. (2.46)

The second term in (2.45) satisfies

−2x̄(t)⊤P⊤
[
BK

0

] ∫ t

t−τ(t)
y(s)ds ≤ x̄(t)⊤TsZx̄(t) +

∫ t

t−τ(t)
y(s)⊤Ry(s)ds, (2.47)

19

Chapter 2 Preliminaries

where

Z =
[
Z1 0

Z2 Z3

]
, Z1 = Z⊤

1 ∈ Rn×n, Z2 ∈ Rn×n, Z3 = Z⊤
3 ∈ Rn×n, (2.48)

if the matrix inequality R [
K⊤B⊤ 0

]
P

∗ Z

 ⪰ 0 (2.49)

holds [19]. To see this, note that

−2x̄(t)⊤P⊤
[
BK

0

]
y(s) =

[
y(s)
x̄(t)

]⊤ 0 −
[
K⊤B⊤ 0

]
P

∗ 0

[y(s)
x̄(t)

]

and, as a result of (2.49), we have

[
y(s)
x̄(t)

]⊤ 0 −
[
K⊤B⊤ 0

]
P

∗ 0

[y(s)
x̄(t)

]

≤
[
y(s)
x̄(t)

]⊤ 0 −
[
K⊤B⊤ 0

]
P

∗ 0

[y(s)
x̄(t)

]
+
[
y(s)
x̄(t)

]⊤ R [
K⊤B⊤ 0

]
P

∗ Z

[y(s)
x̄(t)

]
︸ ︷︷ ︸

≥0

=
[
y(s)
x̄(t)

]⊤ [
R 0

∗ Z

] [
y(s)
x̄(t)

]
= y(s)⊤Ry(s) + x̄(t)⊤Zx̄(t).

Then, (2.47) directly follows from the fact that the delay is bounded by τ(t) ∈ [0, Ts]
due to Assumption 2.2. Computing the derivative of the second LKF term (2.43b) gives

V̇2(t) = Tsy(t)⊤Ry(t) −
∫ t

t−Ts
y(s)⊤Ry(s)ds (2.50)

= x̄(t)⊤
[
0 0

0 TsR

]
x̄(t) −

∫ t

t−Ts
y(s)⊤Ry(s)ds (2.51)

≤ x̄(t)⊤
[
0 0

0 TsR

]
x̄(t) −

∫ t

t−τ(t)
y(s)⊤Ry(s)ds, (2.52)

where the inequality holds due to τ(t) ∈ [0, Ts]. Adding (2.45) and (2.52) and making
use of the inequality (2.47), we obtain

V̇ (t) ≤ x̄(t)⊤Ψx̄(t), (2.53)

20

Chapter 2 Preliminaries

where

Ψ = P⊤
[

0 I

A + BK −I

]
+
[

0 I

A + BK −I

]⊤

P + TsZ +
[
0 0

∗ TsR

]
, (2.54)

provided (2.49) holds. The above derivation illustrates that V2(t) is chosen in order to
compensate for the delay-dependent term in V̇1(t). Clearly, V̇ (t) < 0 for all x̄(t) ̸= 0 if

Ψ ≺ 0, (2.55)

which leads to the following sufficient conditions for asymptotic stability.

Lemma 2.4 ([19], Lemma 2.1). Given a gain matrix K, the sampled-data system (2.39)
is asymptotically stable for all samplings satisfying Assumption 2.2 if there exist matrices
P1 = P⊤

1 ≻ 0, P2, P3, Z1, Z2, Z3 and R = R⊤ ≻ 0, all in Rn×n, that satisfy the
matrix inequalities (2.55) and (2.49), where P and Z are defined in (2.46) and (2.48),
respectively.

Lemma 2.4 can be used to analyze the stability of (2.39) for a given control gain K

and a given sampling time Ts. However, since the matrix inequalities (2.55) and (2.49)
are bilinear in P and K, Lemma 2.4 is unsuitable for designing a stabilizing controller.
This problem can be addressed by reformulating (2.55) and (2.49). For this purpose, we
define

P−1 = Q =
[
Q1 0

Q2 Q3

]
, ∆ =

[
Q 0

0 I

]
,

R̄ = R−1, Z̄ = Q⊤ZQ and Y = KQ1. Applying the Schur complement stated
in Lemma 2.3 to the term TsR in Lemma 2.3 yields

P⊤
[

0 I

A + BK −I

]
+
[

0 I

A + BK −I

]⊤

P + TsZ +
[
0 I

]
TsR

[
0

I

]
≺ 0

⇔

P⊤
[

0 I

A + BK −I

]
+
[

0 I

A + BK −I

]⊤

P + TsZ
0

TsI

∗ ∗ −TsR̄

 ≺ 0. (2.56)

Finally, multiplying (2.56) and (2.49) by ∆⊤ and ∆ on the left and the right, respectively,
yields the following constructive stability conditions.

Lemma 2.5 ([19], Lemma 2.3). The control law (2.37) asymptotically stabilizes
the system (2.36) for all samplings satisfying Assumption 2.2 if there exist matrices
Q1 = Q⊤

1 ≻ 0, Q2, Q3, Z1, Z2, Z3, R = R⊤ ≻ 0, all in Rn×n, and Y ∈ Rm×n, that

21

Chapter 2 Preliminaries

satisfy the matrix inequalities
Q2 + Q⊤

2 + TsZ̄1 Q3 − Q⊤
2 + Q1A

⊤ + TsZ̄2 + Y ⊤B⊤ TsQ
⊤
2

∗ −Q3 − Q⊤
3 + TsZ̄3 TsQ

⊤
3

∗ ∗ −TsR̄

 ≺ 0 (2.57)

Q1R̄

−1Q1 0 Y ⊤B⊤

∗ Z̄1 Z̄2

∗ ∗ Z̄3

 ⪰ 0. (2.58)

The stabilizing state-feedback gain is then given by K = Y Q−1
1 .

Remark 2.2 (Conservativeness). In [20, 21], less conservative stability conditions than
those in Lemma 2.5 are derived using a time-dependent LKF. However, these conditions
are computationally more expensive to evaluate and do not allow for an extension to
norm-bounded uncertainty, as performed for the conditions in Lemma 2.5 in Chapter 4.

Remark 2.3 (Polytopic uncertainty). Let A and B be unknown but contained in a
polytopic set with M vertices. This can be expressed as

[A, B] ∈ C := conv
({[

A(1) B(1)
]

, . . . ,
[
A(M) B(M)

]})
, (2.59)

where conv(X) ⊂ Rn denotes the convex hull of the set X ⊂ Rn. Then, robust stability
of (2.39) is guaranteed if (2.57) and (2.58) hold for all vertices of the polytope C.

We provide a simple example illustrating the relationship between the maximum ad-
missible sampling time and polytopic-type model uncertainty.

Example 2.5 (Sampled-data system with polytopic-type uncertainty). Consider the
LTI system

ẋ(t) =
[

1 0.5
θ1 −1

]
x(t) +

[
1 + θ2

−1

]
u(t), (2.60)

where θ1 and θ2 are uncertain, bounded parameters. In this case, the uncertainty poly-
tope in (2.59) has M = 22 = 4 vertices. If the parameters are bounded by |θ1| ≤ 0.2,
|θ2| ≤ 0.15, the LMIs (2.57) and (2.58) are feasible on all 4 vertices for all Ts ≤ Ts,max =
0.257. If the magnitude of the uncertainty increases to |θ1| ≤ 0.3, |θ2| ≤ 0.2, we obtain
Ts,max = 0.201. This shows that if the uncertainty about the system’s dynamic behavior
is larger, the sampling time must be reduced to guarantee stability, i.e., feedback has to
be applied more frequently.

This simple example illustrates a key benefit of the sampled-data system descrip-
tion: It allows us to relate the uncertainty in a continuous-time dynamics model to the
minimum frequency at which a discrete-time controller must recalculate the input to
guarantee robust stability.

22

Chapter 3

Probabilistic Model Learning for
Sampled-Data Control

In this chapter, we discuss learning the linearized dynamics of an unknown system from
noisy observations. We employ the probabilistic learning methods introduced in Sec-
tion 2.2 and derive confidence intervals for the uncertainty associated with the estimated
model.

3.1 Problem Statement

Consider a dynamical system whose state and input at time t ∈ R≥0 are given by
x(t) ∈ Rn and u(t) ∈ Rm, respectively. The system evolves according to the continuous-
time dynamics

ẋ(t) = h(x(t),u(t)) (3.1)

where h : Rn × Rm → Rn is the dynamics function, which we assume to be unknown.
For many physical systems, such as robots, an approximate dynamics model is available,
for example, derived from first principles. To take such prior knowledge into account,
we make the following assumption.

Assumption 3.1. The unknown function h in (3.1) is the sum of a known func-
tion f(·) =

[
f1(·), . . . , fn(·)

]⊤ and an unknown function g(·) = [g1(·), . . . , gn(·)]⊤, i.e.,
h = f + g, where f and g are continuously differentiable.

The unknown component g of the dynamics function accounts for unmodeled dynamic
effects, such as air drag or friction, which are often difficult to model accurately [7]. As
a consequence of Assumption 3.1, we can decompose the dynamics (3.1) into

ẋ(t) = f(x(t),u(t))︸ ︷︷ ︸
known

+ g(x(t),u(t))︸ ︷︷ ︸
unknown

. (3.2)

In the following, we stack the state and input compactly into the vector z = (x,u) ∈ Rnz ,
where nz = n + m.

23

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

We aim to learn the residual dynamics g from data. For this, as formalized in the
following, we assume the availability of measured data collected from system (3.2).

Assumption 3.2. A data set of noise-free training inputs and noisy targets

D =
{
z(i), y(i) = ẋ(i) − f

(
z(i))+ w(i)

}N

i=1
(3.3)

collected from system (3.2) is available, where the observation noise is i.i.d.
as w(i) ∼ N

(
0, diag

(
σ2

n,1, . . . , σ2
n,n

))
, ∀i ∈ IN .

We assume knowledge about a steady-state operating point ze = (xe,ue) of sys-
tem (3.2) satisfying

h(ze) = 0. (3.4)

The assumption that ze is known does not represent a significant restriction since any
unknown operating point ze satisfying (3.4) can easily be estimated by solving a non-
linear optimization problem involving f and an approximation of g, cf. [1]. As we
eventually want to design a sampled-data controller for system (3.2), and the theoretical
results for sampled-data systems are formulated for linear systems, we are interested in
the linearized dynamics of (3.2) around ze.

Problem 3.1 (Probabilistic Learning of Linear Dynamics). Given the data set (3.3),
an equilibrium ze satisfying (3.4) and a desired confidence level p̃ ∈ [0, 1), we aim to
compute a set C = A × B ⊂ Rn×nz , where A ⊂ Rn×n and B ⊂ Rn×m, such that the
linearization of the partially unknown dynamics (3.2) at ze satisfies

Pr
(

∂h(z)
∂z

∣∣∣∣
ze

∈ C
∣∣∣∣∣ D
)

≥ p̃. (3.5)

Solving Problem 3.1 requires making assumptions about the unknown residual dynam-
ics g. We consider two approaches in this chapter: In Section 3.2, we assume that g is
linear in z and learn a probabilistic estimate of the dynamics using BLR. In Section 3.3,
we assume that each component of g is drawn from a GP.

3.2 Bayesian Linear Regression for Linear Dynamics

We make the following assumption on the residual dynamics.

Assumption 3.3. The residual dynamics g in (3.2) are linear in z, i.e.,

g(t) =
[
Ag Bg

]
z(t) = Agx(t) + Bgu(t), (3.6)

for some unknown matrices Ag ∈ Rn×n and Bg ∈ Rn×m.

24

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

We use BLR as described in Section 2.2.1 to obtain a probabilistic estimate for each
component gi of g. For this, we define parameter vectors θi ∈ Rnz , i = 1, . . . , nz, as

θ⊤

1
...
θ⊤

n

 =
[
Ag Bg

]
. (3.7)

Then, we can write each component of g as

gi(z(t)) = θ⊤
i ϕi(z(t)), ∀i ∈ In, (3.8)

where the feature functions are given by ϕi(z(t)) = z(t), ∀i ∈ In. This linear model
corresponds to (2.10). We define prior Gaussian distributions on the unknown parameter
vectors denoted by

θi ∼ N
(
µθi

,Σθi

)
, ∀i ∈ In. (3.9)

If a prior dynamics model is available, it can be used to define the prior means µθi
.

Otherwise, we can simply set µθi
= 0, ∀i ∈ In. The prior covariance matrices Σθi

reflect the uncertainty about the prior model, and their diagonal entries should be set
to high values if no approximate model is available. As explained in Section 2.2.1, after
observing the data (3.3), we can compute the posterior parameter distributions

θi| D ∼ N
(
µθi|D,Σθi|D

)
. (3.10)

Here, the expressions for the posterior mean µθi|D and the posterior variance Σθi|D

follow from (2.16) and (2.17) as

µθi|D = µθ + Σθi
Φ
(
σ2

n,iI + Φ⊤Σθi
Φ
)−1

(ti − Φ⊤µθi
) (3.11)

Σθi|D = Σθi
− Σθi

Φ
(
σ2

n,iI + Φ⊤Σθi
Φ
)−1

Φ⊤Σθi
, (3.12)

where ti =
[
y

(1)
i , . . . , y

(N)
i

]⊤
∈ RN and Φ =

[
z(1), . . . , z(N)

]
∈ Rnz×N containing the

training targets and training inputs, respectively. Note that only the i-th components
of the training targets in D are used to calculate µθi|D and that the posterior variance
does not depend on the training targets. From the posterior distribution (3.10), we can
compute a probabilistic estimate of the linearization of the dynamics (3.2).

Theorem 3.1. Under Assumptions 3.1 and 3.3 and given the data set (3.3), for any
confidence level p ∈ [0, 1),

Pr
(

∂h(z)
∂z

∣∣∣∣
z=ze

∈ C
∣∣∣∣∣ D
)

≥ p, (3.13)

25

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

where C =
[
C − Ĉ,C + Ĉ

]
⊂ Rn×nz is defined by

C =
[
A B

]
= ∂f(z)

∂z

∣∣∣∣
ze

+

µ⊤
θ1|D
...

µ⊤
θn|D

 (3.14)

Ĉ =
[
Â B̂

]
=
√

χ2
nz

(n
√

p)

√
diag

(
Σθ1|D

)⊤

...√
diag

(
Σθn|D

)⊤

 . (3.15)

Here, χ2
nz

is the quantile function of the chi-squared distribution with nz degrees of
freedom introduced in Section 2.1.1.

Proof. Assumptions 3.1 and 3.3 imply that

∂hi(z)
∂z

= ∂fi(z)
∂z

+ ∂gi(z)
∂z

= ∂fi(z)
∂z

+ θ⊤
i , ∀i ∈ In.

Therefore,

(
∂hi(z)

∂z

∣∣∣∣ D
)⊤

∼ N
(
µ∂hi

(z),Σθi|D
)

, (3.16)

where µ∂hi
(z) =

(
∂fi(z)

∂z

)⊤
+ θi. By applying Lemma 2.2 to (3.16), we obtain that for

any p̃ ∈ [0, 1),

Pr
(

∂hi(z)
∂z

∈ µ∂hi
(z) + Bi

∣∣∣∣ D
)

≥ p̃,

where Bi is a box-shaped confidence region defined by

Bi = [−bi,1, bi,1] × . . . × [−bi,nz , bi,nz]

=

−

bi,1
...

bi,nz

 ,

bi,1
...

bi,nz

=
[
−
√

χ2
nz

(p̃)diag
(
Σθi|D

)
, χ2

nz
(p̃)diag

(
Σθi|D

)]
where bi,j =

√
χ2

nz
(p̃)
√(

Σθi|D
)

jj
, ∀j ∈ Inz , ∀i ∈ In. Under the assumption that the

parameter vectors are conditionally independent, the components of h and thus their

26

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

partial derivatives are also independent, and we have

Pr
(

∀i ∈ In : ∂hi(z)
∂z

∈ µ∂hi
(z) + Bi

∣∣∣∣ D
)

= Pr
(

∂h(z)
∂z

∣∣∣∣
z=ze

∈ C
∣∣∣∣∣ D
)

≥ p̃n.

The result follows by substituting p̃ = n
√

p.

From Theorem 3.1, defining an uncertain learned system capturing the true dynamics
with high probability is straightforward.

Corollary 3.1. Under Assumptions 3.1 and 3.3 and given the data set (3.3), for any
confidence level p ∈ [0, 1), the linearization of the true dynamics (3.2) at z = ze is
captured with probability of at least p by

x̃(t) =
(
A + Â ◦ Ω

)
x̃(t) +

(
B + B̂ ◦ Ψ

)
ũ(t), (3.17)

where x̃ = x − xe and ũ = u − ue are deviations from the equilibrium, A and B are
given by (3.14), Â and B̂ are given by (3.15), and Ω ∈ [−1, 1]n×n and Ψ ∈ [−1, 1]n×m

are uncertain matrices.

If the known part of the dynamics f is equal to zero or, more generally speaking, linear
in z, then its partial derivative is independent of z, and Corollary 3.1 holds globally for
any state-input pair z = (x,u).

3.2.1 Bounding the Posterior Variance

It is evident from (3.12) that any data point (z,y) ∈ D with z ̸= 0 reduces model
uncertainty. To relate the amount of data to uncertainty, we aim to find a lower bound
of the norm of the covariance matrix after observing M ∈ IN training samples. For this,
we denote the subset of D consisting of the first M samples by DM =

{
z(i),y(i)}M

i=1 ⊆ D
and consider the case that the data arrives sequentially. Then, it follows from (2.23)
that the parameter distribution after M observations can be calculated iteratively as

θi| DM ∼ N
(
µi,M ,Σi,M

)
, (3.18)

µi,j = Σi,j

(
Σ−1

i,j−1µi,j−1 + 1
σ2

n
z(j)y

(j)
i

)
(3.19)

Σi,j =
(
Σ−1

i,j−1 + 1
σ2

n
z(j)z(j)⊤

)−1
, ∀j ∈ IM , (3.20)

∀i ∈ In, where µi,0 = µθi
and Σi,0 = Σθi

. It is more convenient to work with the inverse
of the covariance matrix after M observations, called the precision matrix, which can be
written compactly as

Σ−1
i,M = Σ−1

i,0 + 1
σ2

n

M∑
j=1

z(j)z(j)⊤. (3.21)

27

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

Any bound on the uncertainty requires an assumption about the training data distribu-
tion. To keep the discussion general, we only make an assumption about the support of
the distribution.

Assumption 3.4. The training inputs in (3.3) are drawn from a distribution with com-
pact support Z ⊂ Rnz .

Consequently, there is an upper bound on the Euclidean norm of the training inputs,
which we denote by

r = max
z∈Z

∥z∥2. (3.22)

This allows us to derive a lower bound on the covariance matrix.

Lemma 3.1. Under Assumption 3.4, the posterior variance after M ∈ IN observations
can be lower bounded as

∥∥Σi,M

∥∥
2 ≥ σ2

n
σ2

n
∥∥Σ−1

i,0
∥∥

2 + rM
, ∀i ∈ In, (3.23)

where r is given by (3.22).

Proof. Due to the subadditivity of matrix norms, (3.21) implies

∥∥Σ−1
i,M

∥∥
2 ≤

∥∥Σ−1
i,0
∥∥

2 + 1
σ2

n

M∑
j=1

∥∥z(j)z(j)⊤∥∥
2. (3.24)

It is a standard result that given a vector d, the outer product of d with itself satis-
fies ∥dd⊤∥2 = ∥d∥2

2. Hence, we can make use of Assumption 3.4 to write (3.24) as

∥∥Σ−1
i,M

∥∥
2 ≤

∥∥Σ−1
i,0
∥∥

2 + Mr

σ2
n

.

Finally, the result follows from the fact that any invertible square matrix D satisfies the
inequality 1 = ∥I∥2 = ∥DD−1∥2 ≤ ∥D∥2∥D−1∥2.

We evaluate the tightness of the derived bound with a simple example.

Example 3.1. We consider learning the second row of a simple double-integrator

system ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), i.e., the true parameter vector is given

by θ = [0, 0, 1]⊤. We set the prior mean vector to µθ = [0, 0, 1]⊤ and the prior
covariance matrix to Σθ = I3. We draw N = 100 training inputs uniformly from the
set Z = {z ∈ R3| ∥z∥∞ ≤ 1} and set the noise variance to σ2

n = 1. Fig. 3.1 shows the
evolution of the norm of the parameter covariance ΣM obtained iteratively via (3.20)
for M = 1, . . . , N . We repeat the simulation with ten different data sets and provide the

28

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Number of data points M

∥Σ
M

∥ 2

∥ΣM ∥2
Lower bound

Figure 3.1: Evolution of the spectral norm of the parameter covariance matrix with an
increasing amount of training samples compared to the theoretical lower
bound (3.23).

lower bound calculated from Lemma 3.1 for comparison. On average, the value of the
bound is 0.207 times ∥ΣM ∥.

3.3 Gaussian Process Regression and Linearization for
Nonlinear Dynamics

Most real-world systems, particularly robots, do not exhibit linear dynamics but are
affected by highly nonlinear effects such as friction, Coriolis, and centripetal forces.
Therefore, we now take a more general approach to Problem 3.1 than in the previous
section. In particular, we assume each component of the residual dynamics function g

to be drawn from a GP with a known kernel function (see Section 2.2.2).

Assumption 3.5. The components of the residual dynamics g in (3.2) are drawn from
zero-mean GPs with SE kernel ki, i.e., gi(·) ∼ GP(0, ki(·, ·)), ∀i ∈ In, where

ki(z, z′) = σ2
η,i exp

(
−1

2(z − z′)⊤L−2
i (z − z′)

)
, (3.25)

where σ2
η,i > 0, Li = Diag([li,1, . . . , li,nz]), ∀i ∈ In.

This assumption is not restrictive in practice since the corresponding space of sample
functions of the GP contains all continuous functions [30]. Other possible kernel functions
include the Matérn kernel or the linear kernel [31].

Remark 3.1. The hyperparameters of (3.25) can be interpreted physically [36]:
The prior variance σ2

η,i indicates the confidence intervals [−γση,i, γση,i], γ > 0, within
which gi; the residual derivative of the i-th state xi, takes on values with high probability.
The length scales li,1, . . . , li,nz correspond to the notion that a change of li,j in the j-th
dimension of the stacked state and input z = (x,u) can result in a large change of gi.

29

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

Consequently, a large value of li,j implies that the j-th dimension of z has a small
impact on gi.

In practice, an initial guess is typically made for the hyperparameters, which should
take available prior knowledge about the residual dynamics g into account. Starting from
this initialization, suitable values for the hyperparameters can be obtained by maximizing
the marginal log-likelihood of the training data, as explained in Section 2.2.2.

As we are interested in the linearized dynamics around the operating point ze = (xe,ue),
we compute the derivative of the i-th GP around ze, denoted by

∂gi(z)
∂z

∣∣∣∣
ze

∼ N
(
µ′

i(ze),Σ′
i(ze)

)
, (3.26)

via (2.32) and (2.33). We obtain the derivatives of the GP mean and variance

µ′
i(ze) = ∂ki(z)

∂z

∣∣∣∣
z=ze

K̄−1
i y (3.27)

Σ′
i(ze) = ∂2ki(z, z)

∂z∂z

∣∣∣∣∣
z=ze

− ∂ki(z)
∂z

∣∣∣∣
z=ze

K̄−1
i

(
∂ki(z)

∂z

∣∣∣∣
z=ze

)⊤

, (3.28)

where the gram vector is given by ki(z) =
[
ki
(
z(1), z

)
, . . . , ki

(
z(N), z

)]⊤
∈ Rnz and

the gram matrix is given by K̄i = Ki + σ2
nInz ∈ Rnz×nz , where

(
Ki
)

jl
= ki

(
z(j), z(l)),

∀i ∈ In. Similar to Section 3.2, we can use (3.26) to compute a probabilistic estimate of
the linearized dynamics at the operating point.

Theorem 3.2. Under Assumptions 3.1 and 3.5 and given the data set (3.3), for any
confidence threshold p ∈ [0, 1),

Pr
(

h(z)
∂z

∣∣∣∣
z=ze

∈ C
∣∣∣∣∣ D
)

≥ p̃, (3.29)

where C =
[
C − Ĉ,C + Ĉ

]
⊂ Rn×nz is defined by

C =
[
A B

]
= ∂f(z)

∂z

∣∣∣∣
ze

+

µ′

1(ze)⊤

...
µ′

n(ze)⊤

 (3.30)

Ĉ =
[
Â B̂

]
=
√

χ2
nz

(n
√

p)

√

diag(Σ′
1(ze))⊤

...√
diag(Σ′

n(ze))⊤

 . (3.31)

Proof. The proof is very similar to that of Theorem 3.1 and therefore omitted.

It follows from Theorem 3.2 that the state derivative at the equilibrium can be prob-

30

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

abilistically bounded.

Corollary 3.2. Under Assumptions 3.1 and 3.5 and given the data set (3.3), for any p ∈
[0, 1), the linearization of the true dynamics (3.2) at z = ze is captured with probability
of at least p by

˙̃x(t) =
(
A + Â ◦ Ω

)
x̃(t) +

(
B + B̂ ◦ Ψ

)
ũ(t), (3.32)

where x̃ = x − xe, ũ = u − ue, A and B are given by (3.30), Â and B̂ are given
by (3.31), and Ω ∈ [−1, 1]n×n and Ψ ∈ [−1, 1]n×m are uncertain matrices.

Unlike Corollary 3.1, even when the known component of the dynamics f is lin-
ear, Corollary 3.2 can only be defined at the equilibrium, since the linearization of g

via (3.30) and (3.31) depends on ze. Despite the probabilistic bounds in Theorem 3.2,
computing the probability that (3.32) captures the true dynamics at a given state-input
pair (x,u) ̸= ze is generally very difficult. Nevertheless, the uncertain linearized sys-
tem (3.32) can be used for robust control design in practice, provided that the devia-
tions from the equilibrium are kept small in the sense that they do not result in a big
change of the derivative ∂h(z)

∂z . For any controller designed for the linearized system,
theoretical statements about the stability of the resulting nonlinear closed-loop system
would require a study of its domain of attraction [37].

In this section, we first learn the nonlinear residual dynamics g and then linearize the
system. As an alternative to this approach, linear methods such as BLR or the Kalman
filter could, in principle, be used to directly estimate the linearized dynamics (3.32). An
advantage of using GPs in this context is that their hyperparameters define a local region
around the equilibrium in which the system behaves approximately linearly, resulting in
a more accurate estimate of the local linearization of the dynamics [1].

3.4 Uncertainty Reparameterization

In Sections 3.2 and 3.3, we have obtained an uncertain linearized system of the form

˙̃x(t) =
(
A + Â ◦ Ω

)
x̃(t) +

(
B + B̂ ◦ Ψ

)
ũ(t). (3.33)

Ultimately, we aim to design a robust sampled-data controller for this system. However,
it is difficult to directly take the two Hadamard product terms in (3.33) into account for
robust stability analysis. To address this problem, we derive the following result.

Lemma 3.2. Let X =
[
x1 . . . xn

]⊤ ∈ Rn×m and Y =
[
y1 . . . yn

]⊤ ∈ Rn×m. Then, the

31

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

Hadamard matrix product X ◦ Y satisfies

X ◦ Y = (In ⊗ 11×n)Diag
(
vec
(
Y ⊤))

Diag(x1)

...
Diag(xn)

 , (3.34)

where ⊗ denotes the Kronecker product, and vec
(
Y ⊤) =

[
y⊤

1 , . . . ,y⊤
n

]⊤ ∈ Rnm is the
vectorization of Y ⊤.

Proof. The i-th row of X ◦ Y is given by

x⊤
i ◦ y⊤

i =
[
Xi1Yi1 . . . XimYim

]

= 1⊤
m

Yi1 0 . . . 0
0 Yi2 . . . 0
...

...
0 0 . . . Yim

Xi1 0 . . . 0
0 Xi2 . . . 0
...

...
0 0 . . . Xim

= 1⊤

mDiag(yi)Diag(xi), ∀i ∈ In.

Hence, the Hadamard product of X and Y can be written as

X ◦ Y =

1⊤

mDiag(y1)Diag(x1)
...

1⊤
mDiag(yn)Diag(xn)

=

1⊤

m 0⊤
m . . . 0⊤

m

0⊤
m 1⊤

m . . . 0⊤
m

...
...

0⊤
m 0⊤

m . . . 1⊤
m

︸ ︷︷ ︸

=In⊗11×m

Diag(y1) 0m×m . . . 0m×m

0m×m Diag(y2) . . . 0m×m

...
...

0m×m 0m×m . . . Diag(yn)

︸ ︷︷ ︸

=Diag(vec(Y ⊤))

Diag(x1)
Diag(x2)

...
Diag(xn)

 ,

which concludes the proof.

We use Lemma 3.2 to reparameterize the Hadamard product terms in (3.33). Denoting
the rows of Â and B̂ by â⊤

1 , . . . , â⊤
n and b̂⊤

1 , . . . , b̂⊤
n , respectively, we can rewrite

Â ◦ Ω = H1∆1E (3.35)
B̂ ◦ Ψ = H2∆2F , (3.36)

32

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

where

H1 = In ⊗ 11×n ∈ Rn×n2 (3.37)
H2 = In ⊗ 11×m ∈ Rn×nm (3.38)
∆1 = Diag(δ1,1, . . . , δ1,n2) ∈ Rn2×n2

, |δ1,i| ≤ 1, ∀i ∈ In2 (3.39)
∆2 = Diag(δ2,1, . . . , δ2,nm) ∈ Rnm×nm, |δ2,i| ≤ 1, ∀i ∈ Inm (3.40)

Ē =

Diag

(
â1
)

...
Diag

(
ân
)
 ∈ Rn2×n (3.41)

F̄ =

Diag

(
b̂1
)

...
Diag

(
b̂n
)
 ∈ Rnm×n. (3.42)

Here, all matrices except for ∆1 and ∆2 are known. By stacking ∆1 and ∆2 diago-
nally into a single matrix, we obtain the following result to reparameterize the model
uncertainty.

Lemma 3.3. The Hadamard product terms in (3.33) can be reparameterized as

Â ◦ Ω = H∆E (3.43)
B̂ ◦ Ψ = H∆F , (3.44)

where

H =
[
H1 H2

]
∈ Rn×(n2+nm) (3.45)

∆ =
[
∆1 0

0 ∆2

]
∈ R(n2+nm)×(n2+nm) (3.46)

E =
[

Ē

0nm×n

]
∈ R(n2+nm)×n (3.47)

F =
[
0n2×n

F̄

]
∈ R(n2+nm)×n, (3.48)

where H1, H2, ∆1, ∆2, Ē, and F̄ are given by (3.37) - (3.42).

Although the matrix ∆ in (3.46) is unknown, we know from its definition via (3.39)
and (3.40) that ∆⊤∆ ⪯ I. This property can be used for robust stability analysis, as
shown in Section 4.2. Using Lemma 3.3, we can rewrite (3.33) as

˙̃x(t) = (A + H∆E)x̃(t) + (B + H∆F)ũ(t). (3.49)

This represents an uncertain linear system with norm-bounded uncertainty capturing the

33

Chapter 3 Probabilistic Model Learning for Sampled-Data Control

true dynamics with high probability. In the next chapter, we consider robust sampled-
data control of (3.49).

34

Chapter 4

Learning-Based Robust Sampled-Data
Control

Having learned the linearized dynamics of a system with partially unknown dynamics
in Chapter 3, we now discuss robust sampled-data control of the learned system. This
perspective allows us to relate control frequency and data in different ways. In this
chapter, we derive stability conditions depending on the control frequency and the model
uncertainty and formulate an optimization problem for computing the minimum required
control frequency. Under additional assumptions, we also derive a lower bound on the
amount of data needed to control an uncertain system at a given frequency.

4.1 Problem Statement

In Chapter 3, we obtain for both linear and nonlinear residual dynamics an uncertain
linearized continuous-time system of the form

ẋ(t) = (A + H∆E)x(t) + (B + H∆F)u(t), (4.1)

where ∆ ∈ Rp×p is an unknown matrix satisfying ∆⊤∆ ⪯ I, and H ∈ Rn×p, E ∈ Rp×n,
and F ∈ Rp×m are known matrices, where p = n2 + nm. In this chapter, we investigate
the connection between the model uncertainty and the frequency at which the learned
system (4.1) is controlled. To this end, we employ the sampled-data system description
introduced in Section 2.3, as it allows us to control a system at different frequencies based
on the same (uncertain) dynamics model. We consider a linear discrete-time control law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), (4.2)

where K ∈ Rm×n is the state feedback matrix, and the sampling instants tk, k ∈ N0, sat-
isfy Assumption 2.2. Combining the continuous-time dynamics (4.1) with the discrete-
time controller (4.2) results in the uncertain learned closed-loop sampled-data system

ẋ(t) = (A + H∆E)x(t) + (B + H∆F)Kx(tk), ∀t ∈ [tk, tk+1), k ∈ N0. (4.3)

35

Chapter 4 Learning-Based Robust Sampled-Data Control

It is of fundamental interest at which control frequency feedback has to be applied
in (4.3) such that stability is guaranteed.

Definition 4.1. Let Ts,max be the largest value of Ts such that the system (4.1) with
the control (4.2) satisfying Assumption 2.2 can be robustly stabilized. Then, the MCF is
given by fc,min = 1

Ts,max
.

In other words, the MCF is the minimum rate at which the control input must be
recalculated based on current state measurements to guarantee stability despite model
uncertainty.

Problem 4.1. Compute the MCF defined in Definition 4.1.

Remark 4.1. Computing the MCF as defined in Definition 4.1 exactly is generally
intractable [9]. Therefore, the methods presented in this chapter provide only a lower
bound on the MCF. For simplicity, we nevertheless refer to the solution as MCF.

Without the uncertainty in (4.1) and under the assumption of periodic sampling, Prob-
lem 4.1 could easily be solved by discretizing (4.1) for increasing sampling times until the
resulting discrete-time system becomes uncontrollable. An approximate discretized dy-
namics model could be obtained for polytopic uncertainty using the approach described
in [38]. However, due to the norm-bounded uncertainty in (4.1), which does not allow
for a discretization of the system, Problem 4.1 represents a challenging problem.

In this chapter, we address Problem 4.1 by deriving conditions for the robust stability
of (4.3) and formulating an optimization problem based on these conditions to compute
the MCF. Then, we discuss optimizing the performance of sampled-data controllers for
different control frequencies.

4.2 Robust Stability for the Learned Uncertain System

Both Theorem 3.1 and Theorem 3.2 define a set C containing the dynamics matrix and
input matrix of the true linearized dynamics with high probability. By definition, the
set C represents a polytope with M = 2nnz vertices. As pointed out in Remark 2.3, the
stability conditions for sampled data systems derived in [19, 20, 21] can also guaran-
tee stability in the case of polytopic-type uncertainty. However, the number of vertices
to evaluate exponentially increases with the state and input dimensions. For exam-
ple, for a relatively small system with n = 3 states and m = 2 inputs, the stability
conditions have to be satisfied on all M = 215 = 32768 vertices of C to guarantee ro-
bust stability. This shows that the polytopic uncertainty approach to stability analysis
of (4.1) is computationally infeasible for an uncertain learned dynamics model except
for very low-dimensional systems. To overcome this problem, we derive robust stability
conditions that can take the norm-bounded uncertainty in the learned continuous-time
dynamics (4.1) into account in a computationally more efficient way than the polytopic

36

Chapter 4 Learning-Based Robust Sampled-Data Control

uncertainty approach. Before presenting the stability conditions, we provide a lemma
that is used in their derivation.

Lemma 4.1. [39] Let Θ⊤Θ ⪯ I. Then, for all constant matrices U , V of appropriate
dimension and all scalars ϵ > 0, it holds that

−ϵ−1UU⊤ − ϵV ⊤V ⪯ UΘV + V ⊤Θ⊤U⊤ ⪯ ϵ−1UU⊤ + ϵV ⊤V . (4.4)

Theorem 4.1. The control law (4.2) stabilizes the uncertain system (4.1) for all sam-
plings satisfying Assumption 2.2 if there exist matrices Q1 ≻ 0,Q2,Q3, Z̄1, Z̄2, Z̄3, R̄ ≻ 0,
all in Rn×n, Ȳ ∈ Rm×n and scalars ϵ1 > 0, ϵ2 > 0, that satisfy the matrix inequalities

Q2 + Q⊤
2 + TsZ̄1 Φ12 TsQ

⊤
2 0 ϵ1(Q1E

⊤ + Ȳ ⊤F⊤)
∗ −Q3 − Q⊤

3 + TsZ̄3 TsQ
⊤
3 H 0

∗ ∗ −TsR̄ 0 0

∗ ∗ ∗ −ϵ1I 0

∗ ∗ ∗ ∗ −ϵ1I

≺ 0, (4.5)

2Q1 − R̄ 0 Ȳ ⊤B⊤ 0 ϵ2Y
⊤F⊤

∗ Z̄1 Z̄2 0 0

∗ ∗ Z̄3 H 0

∗ ∗ ∗ ϵ2I 0

∗ ∗ ∗ ∗ ϵ2I

⪰ 0, (4.6)

where Φ12 = Q3 − Q⊤
2 + Q1A

⊤ + TsZ̄2 + Y ⊤B⊤. The state-feedback gain is then given
by K = Ȳ Q−1

1 .

Proof. The idea is to extend Lemma 2.5 such that stability of (4.3) is robustly guaranteed
despite the additional uncertain terms H∆E and H∆F compared to (2.38). First, we
replace A and B in the first LMI (2.57) in Lemma 2.5 by A + H∆E and B + H∆F ,
respectively, and obtain

Q2 + Q⊤
2 + TsZ̄1 Q3 − Q⊤

2 + Q1(A + H∆E)⊤+ TsZ̄2 + Ȳ ⊤(B + H∆F)⊤ TsQ
⊤
2

∗ −Q3 − Q⊤
3 + TsZ̄3 TsQ

⊤
3

∗ ∗ −TsR̄

= W +

0 Q1E

⊤∆⊤H⊤ + Ȳ ⊤F⊤∆⊤H⊤ 0

∗ 0 0

∗ ∗ 0

= W +

0

H

0

∆ [
EQ⊤

1 + F Ȳ 0 0
]

+

Q1E

⊤ + Ȳ ⊤F⊤

0

0

∆⊤
[
0 H⊤ 0

]
≺ 0, (4.7)

where W denotes the left-hand-side of (2.57). Applying Lemma 4.1 to the second and

37

Chapter 4 Learning-Based Robust Sampled-Data Control

third term of the right-hand-side of (4.7) leads to
0

H

0

∆ [
EQ⊤

1 + F Ȳ 0 0
]

+

Q1E

⊤ + Ȳ ⊤F⊤

0

0

∆⊤
[
0 H⊤ 0

]

⪯ ϵ−1
1

0

H

0

 [0 H⊤ 0
]

+ ϵ1

Q1E

⊤ + Ȳ ⊤F⊤

0

0

 [EQ⊤
1 + F Ȳ 0 0

]

=

0 ϵ1(Q1E

⊤ + Ȳ ⊤F⊤)
H 0

0 0

[
ϵ−1
1 I 0

0 ϵ−1
1 I

] [
0 H⊤ 0

ϵ1(EQ⊤
1 + F Ȳ) 0 0

]
, (4.8)

for all scalars ϵ1 > 0. Finally, inserting (4.8) into (4.7) and applying the Schur comple-
ment gives (4.5). In a similar way, we replace B in the second LMI (2.58) in Lemma 2.5
by B + H∆F , which results in

Q1R̄
−1Q1 0 Ȳ ⊤(B + H∆F)⊤

∗ Z̄1 Z̄2

∗ ∗ Z̄3

=

Q1R̄

−1Q1 0 Ȳ ⊤B⊤

∗ Z̄1 Z̄2

∗ ∗ Z̄3

+

0 0 Ȳ ⊤F⊤∆⊤H⊤

∗ 0 0

∗ ∗ 0

 ⪰ 0. (4.9)

The second term in (4.9) can be rewritten as
0 0 Ȳ ⊤F⊤∆⊤H⊤

∗ 0 0

∗ ∗ 0

 =

0

0

H

∆ [
FY 0 0

]
+

Y ⊤F⊤

0

0

∆⊤
[
0 0 H⊤

]

⪰ −ϵ−1
2

0

0

H

 [0 0 H⊤
]

− ϵ2

Y ⊤F⊤

0

0

 [FY 0 0
]

for all ϵ2 > 0. Application of the Schur complement yields

Q1R̄
−1Q1 0 Y ⊤B⊤ 0 ϵ2Y

⊤F⊤

∗ Z̄1 Z̄2 0 0

∗ ∗ Z̄3 H 0

∗ ∗ ∗ ϵ2I 0

∗ ∗ ∗ ∗ ϵ2I

⪰ 0. (4.10)

To replace the nonlinear term Q1R̄
−1Q1, we make use of the fact that R̄ = R̄⊤ ≻ 0

38

Chapter 4 Learning-Based Robust Sampled-Data Control

implies

(Q1 − R̄)⊤R̄−1(Q1 − R̄) = Q⊤
1 R̄

−1Q1 − 2Q1 + R̄ ≻ 0

⇒ Q⊤
1 R̄

−1Q1 ≻ 2Q1 − R̄. (4.11)

It follows from the application of the Schur complement that if (4.6) is satisfied,
then (4.10) is also satisfied, which concludes the proof.

Remark 4.2. The application of Lemma 4.1 and (4.2) is done to convexify the prob-
lem for computational tractability, but it should be noted that these steps introduce some
conservatism. Quantifying the degree of conservatism is generally difficult. One way to
quantify at least the impact of (4.2) would be to first find a feasible solution for (4.6)
and then gradually increase Ts until (4.10) is not satisfied anymore. However, the result
would depend on the considered system. As an alternative to (4.2), we could also as-
sume Q1 = αR̄ for some α > 0 similar to [19]. However, this would introduce another
decision variable to the stability conditions, increasing the computational complexity of
the optimization problems formulated in the following sections.

Theorem 4.1 allows us to analyze the stability of the uncertain system (4.1) for a
given value of Ts. In the following, we discuss the computation of the MCF based
on Theorem 4.1.

4.3 Computing the Minimum Control Frequency

Recall that the MCF is defined as the maximum value of Ts such that there exists a con-
troller (4.2) satisfying Assumption 2.2 that robustly stabilizes the system (4.1). With the
sufficient stability conditions stated in (4.1), the computation of the MCF fc,min = 1

Ts,max

and the corresponding stabilizing control gain K = Y Q−1
1 can be formulated as the op-

timization problem

min
Ts,Q1,Q2,Q3,Z̄1,
Z̄2,Z̄3,R̄,Ȳ ,ϵ1,ϵ2

1
Ts

s.t.

Z̄1 Z̄2 Q⊤
2 0 0

∗ Z̄3 Q⊤
3 0 0

∗ ∗ −R̄ 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

≺ − 1

Ts

Q2 + Q⊤
2 Φ12 0 0 Φ15

∗ −Q3 − Q⊤
3 0 H 0

∗ ∗ 0 0 0

∗ ∗ ∗ −ϵ1I 0

∗ ∗ ∗ ∗ −ϵ1I

(4.6),
Q1 = Q⊤

1 ≻ 0, R̄ = R̄⊤ ≻ 0, ϵ1 > 0, ϵ2 > 0,

(4.12)

39

Chapter 4 Learning-Based Robust Sampled-Data Control

where Φ12 = Q3 − Q⊤
2 + Q1A

⊤ + Ȳ ⊤B⊤ and Φ15 = ϵ1
(
Q1E

⊤ + Ȳ ⊤F⊤). If the
values of ϵ1 and ϵ2 are fixed, the first matrix inequality in (4.12) becomes a linear
fractional constraint of the form λM(s) + N(s) ≺ 0, where λ ∈ R and s ∈ Rns are the
optimization variables, and the matrices M and N depend affinely on s. Then, (4.12)
represents a GEVP similar to (2.6). As ϵ1 and ϵ2 must be kept fixed for (4.12) to be
convex and thus easy to solve, the optimization over ϵ1 and ϵ2 has to be performed
independently from the other optimization variables.

4.3.1 Simplifying the Optimization Problem

We can simplify the additional optimization over the scalar variables ϵ1 and ϵ2 by noting
the following:

Lemma 4.2. Let S∗ =
(
T ∗

s ,Q∗
1,Q∗

2,Q∗
3, Z̄∗

1 , Z̄∗
2 , Z̄∗

3 , R̄∗, Ȳ ∗, ϵ∗
1, ϵ∗

2
)

be an optimal solu-
tion to (4.12). Then, for any c > 0, S′ =

(
T ∗

s , 1
cQ

∗
1, 1

cQ
∗
2, 1

cQ
∗
3, 1

c Z̄
∗
1 , 1

c Z̄
∗
2 , 1

c Z̄
∗
3 , 1

c R̄
∗,

1
c Ȳ

∗, cϵ∗
1, cϵ∗

2
)

is also an optimal solution to (4.12).

Proof. Both solutions S∗ and S′ yield the same objective value 1
T ∗

s
. Therefore, it remains

to be shown that the feasibility of S∗ implies the feasibility of S′. We first consider the
second matrix inequality constraint (4.6) of (4.12). If S is a feasible solution, then it
holds that

2Q∗
1 − R̄∗ 0 Ȳ ∗⊤B⊤ 0 ϵ2Y

∗⊤F⊤

∗ Z̄∗
1 Z̄∗

2 0 0

∗ ∗ Z̄∗
3 H 0

∗ ∗ ∗ ϵ2I 0

∗ ∗ ∗ ∗ ϵ2I

⪰ 0,

⇔

2Q∗

1 − R̄∗ 0 Ȳ ∗⊤B⊤

∗ Z̄∗
1 Z̄∗

2
∗ ∗ Z̄∗

3

− ϵ−1
2

0 ϵ2Ȳ

∗⊤F⊤

0 0

H⊤ 0

[

0 0 H⊤

ϵ2F Ȳ ⊤ 0 0

]
⪰ 0, (4.13)

where we have applied the Schur complement. Replacing S∗ by S′ does not affect (4.13)
except for a multiplication by a factor of 1

c > 0. Proceeding in a similar way, the
same property can be shown for the first matrix inequality constraint of (4.12), which
concludes the proof.

The two solutions S∗ and S′ also yield the same stabilizing control gain

K∗ = Y ∗(Q∗
1)−1 = 1

c
Y ∗(1

c
Q∗

1
)−1

. (4.14)

As a consequence of Lemma 4.2, we can reduce the number of scalar decision variables
in the optimization problem (4.12) from two to one.

40

Chapter 4 Learning-Based Robust Sampled-Data Control

Corollary 4.1. The optimization problem (4.12) has the same optimal solution as

min
Ts,Q1,Q2,Q3,Z̄1,
Z̄2,Z̄3,R̄,Ȳ ,ϵ

1
Ts

s.t.

Z̄1 Z̄2 Q⊤
2 0 0

∗ Z̄3 Q⊤
3 0 0

∗ ∗ −R̄ 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

≺ − 1

Ts

Q2 + Q⊤
2 Φ12 0 0 Φ15

∗ −Q3 − Q⊤
3 0 H 0

∗ ∗ 0 0 0

∗ ∗ ∗ −ϵI 0

∗ ∗ ∗ ∗ −ϵI

2Q1 − R̄ 0 Ȳ ⊤B⊤ 0 ϵ−1Y ⊤F⊤

∗ Z̄1 Z̄2 0 0

∗ ∗ Z̄3 H 0

∗ ∗ ∗ ϵ−1I 0

∗ ∗ ∗ ∗ ϵ−1I

⪰ 0,

Q1 = Q⊤
1 ≻ 0, R̄ = R̄⊤ ≻ 0, ϵ > 0.

(4.15)

Proof. Lemma 4.2 states that the set of optimal solutions to (4.12) is not a singleton,
but of the form

S∗ =
{(

T ∗
s ,

1
c
Q∗

1,
1
c
Q∗

2,
1
c
Q∗

3,
1
c
Z̄∗

1 ,
1
c
Z̄∗

2 ,
1
c
Z̄∗

3 ,
1
c
R̄∗,

1
c
Ȳ ∗, cϵ∗

1, cϵ∗
2

) ∣∣∣∣ c ∈ R+
}

.

For the proof, we only consider the optimization with respect to the scalar opti-
mization variables ϵ1 and ϵ2, respectively ϵ, as (4.12) and (4.15) only differ in those
and are otherwise convex. We denote projection of S∗ onto the last two dimensions
by S∗

ϵ1,ϵ2 = {(cϵ∗
1, cϵ∗

2) | c > 0}. Setting c = 1√
ϵ∗

1ϵ∗
2

shows that a∗ =
(√

ϵ∗
1

ϵ∗
2
,

√
ϵ∗

2
ϵ∗

1

)
∈ S∗

ϵ1,ϵ2 .

Looking at the matrix inequality constraints in (4.15), we see that ϵ∗ =
√

ϵ∗
1

ϵ∗
2

corresponds
to the optimal value of ϵ in (4.15). Fig. 4.1 illustrates the idea of the proof. Graphically
speaking, Lemma 4.2 states that moving along straight lines through the origin in the
(ϵ1, ϵ2)-plane does not change the solution to (4.12). Therefore, the intersection of the
set E =

{
(ϵ1, ϵ2) ∈ R+ × R+

∣∣∣ ϵ2 = 1
ϵ1

}
with S∗

ϵ1,ϵ2 is nonzero, and (4.15) yields the same
optimal solution as (4.12), which concludes the proof.

The total number of decision variables in the optimization problem (4.15) can be
calculated as

1 + n(n + 1)
2 + n2 + n2 + n2 + n2 + n2 + n(n + 1)

2 + nm + 1 = 6n2 + nm + n + 2.

Remark 4.3. In principle, other choices for the set E, such as the straight
line El =

{
(ϵ1, ϵ2) ∈ R+ × R+ | ϵ2 = 1 − ϵ1

}
, are also possible. However, the grid

41

Chapter 4 Learning-Based Robust Sampled-Data Control

(
ϵ∗, 1

ϵ∗
)

S∗
ϵ1,ϵ2

E

0
0

ϵ1

ϵ 2
Figure 4.1: Illustration of the equivalence of the optimal solutions to (4.12) and (4.15).

Restricting the set over which ϵ1 and ϵ2 are optimized from R+ × R+ to E
does not change the optimal solution.

search performed over ϵ should take the shape of E into account. For example, a (coarse)
linear grid over the straight line El might not contain solutions where one of the two
variables ϵ1 and ϵ2 is orders of magnitude larger than the other, i.e., would be unsuitable
if S∗

ϵ1,ϵ2 has a very flat or steep slope.

4.4 Performance Optimization

In addition to stability, we also want to study the impact of the control frequency on
performance. To this end, we aim to optimize the system performance for a particular
sampling time Ts ∈ (0, Ts,max] and consider the minimization of the cost function [40]

J =
∫ τ1

τ0
x(tk)⊤QJx(tk) + u(t)⊤RJu(t)dtk, (4.16)

where τ1 − τ0 > 0 is the optimization period, and QJ ≻ 0 and RJ ≻ 0 are weight
matrices. Our goal is to minimize (4.16) while ensuring that the system is stable. By
inserting the control law (4.2) into (4.16), we can rewrite the cost as

J =
∫ τ1

τ0
x(tk)⊤

(
QJ + K⊤RJK

)
x(tk)dtk. (4.17)

To make the problem tractable, let

J ≤ J̄ = η

∫ τ1

τ0
x(tk)⊤Q−1

1 Q−1
1 x(tk)dtk. (4.18)

Then, we can replace the minimization of (4.16) by minimizing η and enforcing the
bound (4.18), which can be written as∫ τ1

τ0
x(tk)⊤Q−1

1

(
Q1QJQ1 + Q1K

⊤RJKQ1 − ηI
)
Q−1

1 x(tk)dtk ≤ 0. (4.19)

42

Chapter 4 Learning-Based Robust Sampled-Data Control

Using again the substitution K = Y Q−1
1 gives∫ τ1

τ0
x(tk)⊤Q−1

1

(
Q1QJQ1 + Y ⊤RJY − ηI

)
Q−1

1 x(tk)dtk ≤ 0. (4.20)

This inequality is satisfied for all optimization periods τ1 − τ0 if

Q1QJQ1 + Y ⊤RJY − ηI ⪯ 0. (4.21)

We employ the Schur complement to rewrite the nonlinear matrix inequality (4.21) as
an LMI

−ηI Q1 Y ⊤

∗ −Q−1
J 0

∗ ∗ −R−1
J

 ⪯ 0. (4.22)

Thus, optimization of the system performance can be achieved by solving

min
η,Q1,Q2,Q3,Z̄1,
Z̄2,Z̄3,R̄,Y ,ϵ1,ϵ2

η

s.t.

0 Q1 Y ⊤

∗ −Q−1
J 0

∗ ∗ −R−1
J

 ⪯ −η

−I 0 0

∗ 0 0

∗ ∗ 0

(4.5), (4.6)
Q1 = Q⊤

1 ≻ 0, R̄ = R̄⊤ ≻ 0, ϵ1 > 0, ϵ2 > 0.

(4.23)

The optimization problem (4.23) has a similar structure to (4.12), being a convex GEVP
for fixed values of ϵ1 and ϵ2. However, as Q1 and Y are directly related to the objective
value through (4.22), the optimization problem (4.23) does not allow for a reduction of
the number of decision variables like (4.12). Thus, (4.23) has 6n2 + nm + n + 3 decision
variables.

Remark 4.4. The upper bound J̄ on the cost J depends not only on η, but also on the
optimization variable Q1. Consequently, the solution to (4.23) is not guaranteed to mini-
mize J̄ , and thus J , in general. Nevertheless, the optimization problem (4.23) represents
a computationally tractable way to improve the performance of the robust sampled-data
controller compared to the conservative solution of (4.12), which only considers stability.

4.5 Linking the Control Frequency to Data

We now take the opposite perspective to Section 4.3 and aim to calculate the amount of
data required to be able to stabilize an uncertain system at a given frequency. This prob-
lem is generally harder to solve than (4.1), and we therefore have to make a simplifying

43

Chapter 4 Learning-Based Robust Sampled-Data Control

assumption compared to our previous setting.

Assumption 4.1. The input matrix of the linearized system is known, i.e., the true
linearized dynamics are captured with probability at least p ∈ [0, 1) by

x(t) = (A + H1∆1Ē)x(t) + Bu(t), (4.24)

where H1, ∆1, and Ē are defined by (3.37), (3.39), and (3.41), respectively.

4.5.1 Uncertainty as a Disturbance

We can define the uncertain component of the dynamics (4.24) as an additive disturbance

w(t) = H1∆1Ēx(t) (4.25)

and rewrite (4.24) as

x(t) = Ax(t) + Bu(t) + w(t). (4.26)

The disturbance w(t) can be upper bounded as follows.

Lemma 4.3. The disturbance w(t) defined in (4.25) satisfies the upper bound

∥w(t)∥2
2 ≤ n∥Â∥2

1,2∥x(t)∥2
2, (4.27)

where ∥ · ∥1,2 is a matrix norm induced by the vector one- and Euclidean norm, which is
defined for any matrix D =

[
d1 . . . dnc

]
as

∥D∥1,2 = max
i

∥di∥2. (4.28)

Proof. For any matrix D and vector d of appropriate dimensions, the spectral norm
satisfies ∥Dd∥2 ≤ ∥D∥2∥d∥2. Consequently,

∥w(t)∥2
2 = ∥H1∆1Ēx(t)∥2

2 ≤ ∥H1∥2
2∥∆1∥2

2∥Ē∥2
2∥x(t)∥2

2. (4.29)

We proceed by bounding the three spectral norm terms in (4.29) from above. Using the
expression (3.37) for H1, we obtain

∥H1∥2
2 = λmax

(
H⊤

1 H1
)

= λmax

1n×n 0n×n . . . 0n×n

0n×n 1n×n . . . 0n×n

...
...

0n×n 0n×n . . . 1n×n

 = λmax(1n×n) = n.

It directly follows from (3.39) that ∥∆1∥2 ≤ 1. To bound the third term in (4.29), we

44

Chapter 4 Learning-Based Robust Sampled-Data Control

calculate

Ē⊤Ē =
[
Diag(â1) . . . Diag(ân)

]
Diag(â1)

...
Diag(ân)

=

n∑
i=1

Diag(âi)2

=

∑N

i=1 â2
i1 0 . . . 0

0 ∑N
i=1 â2

i2 . . . 0
...

...
0 0 . . .

∑N
i=1 â2

in

 .

Since Ē⊤Ē is a diagonal matrix, the spectral norm of Ē is simply given by

∥Ē∥2
2 = λmax(Ē⊤Ē) = max

j∈{1,...,n}

N∑
i=1

â2
ij = ∥Â∥2

1,2.

Here,
∥∥Â∥∥1,2 is an induced matrix norm, which corresponds to the maximum Euclidean

norm of the columns of Â. The proof is concluded by inserting the derived expressions
for ∥H1∥2

2, ∥∆1∥2
2 and ∥Ē∥2

2 into (4.29).

In [41], the stability of (4.26) is analyzed using an LKF approach based on [19]. For
this, the disturbance is assumed to be bounded by

w(t)⊤w(t) ≤ α2∥∥H̃x(t)
∥∥2

2, (4.30)

where α > 0 is the bounding parameter and H̃ is a constant matrix with n columns.
This corresponds to the bound (4.27) with α =

∥∥Â1,2
∥∥ and H̃ = nI. Hence, we can

apply the stability conditions derived in [41] to (4.26) and thus to (4.24) to calculate the
maximum admissible disturbance magnitude.

45

Chapter 4 Learning-Based Robust Sampled-Data Control

Lemma 4.4 (Adopted from [41], Theorem 3). Given a scalar Ts > 0, if the GEVP

min
Q1,Q2,Q3,Z̄1,
Z̄2,Z̄3,R̄,Y ,γ

γ

s.t. Q1 = Q⊤
1 ≻ 0

Q2 + Q⊤
2 + TsZ̄1 Φ12 0 TsQ

⊤
2 nQ1

∗ −Q⊤
3 − Q3 + TsZ̄3 I TsQ

⊤
3 0

∗ ∗ −I 0 0

∗ ∗ ∗ −TsR̄ 0

∗ ∗ ∗ ∗ −γI

≺ 0

2Q1 − R̄ 0 Ȳ ⊤B⊤

∗ Z̄1 Z̄2

∗ ∗ Z̄3

 ⪰ 0,

(4.31)

where Φ12 = Q3−Q⊤
2 +Q1A

⊤+Ȳ ⊤B⊤+TsZ̄2, is feasible with optimal value γ∗(Ts), then
the control law (4.2) with control gain K = Y Q−1

1 robustly stabilizes the system (4.24)
for

∥∥Â1,2
∥∥ ≤ α∗(Ts) = 1√

γ∗(Ts)
.

4.5.2 Minimum Amount of Data for Stability at a Given Control Frequency

We consider the case that the uncertain model is obtained from data using BLR, as
described in Section 3.2. We are interested in the minimum amount of training samples
such that the uncertain system (4.24) can be stabilized at a given control frequency 1

Ts

under Assumption 2.2.

Theorem 4.2. Let α∗(Ts) be the maximum admissible disturbance magnitude obtained
by solving (4.31) for a given Ts, and let p ∈ [0, 1) be the desired confidence threshold.
Then, with a probability of at least p, the number of training samples in the data set (3.3)
required to guarantee stability via Lemma 4.4 at the frequency fc = 1

Ts
satisfies the bound

N ≥ Nmin = max
i∈In

σ2
n,i

(
χ2

n(n
√

p)
)

− (α∗(Ts))2n
5
2 σ2

n,i

∥∥Σ−1
i,0
∥∥

2

r(α∗(Ts))2n
5
2

, (4.32)

where r captures the size of the training input set and is defined in (3.22).

Before proceeding with the proof of Theorem 4.2, we present three results that are
used in the proof.

Lemma 4.5 ([42]). For any vector d ∈ Rn, the one-norm, Euclidean norm and infinity
norm satisfy the inequality

∥d∥∞ ≤ ∥d∥2 ≤ ∥d∥1 ≤
√

nd∥d∥2 ≤ nd∥d∥∞. (4.33)

46

Chapter 4 Learning-Based Robust Sampled-Data Control

Lemma 4.6. Let D ∈ Rn×n be a positive definite matrix and d = diag(D) ∈ Rn. Then,

∥∥√d
∥∥

2 ≥ 1
n

3
4

√
∥D∥2. (4.34)

Proof. We denote d = [d1, . . . , dn]⊤ and define the matrix Dd = Diag(d) ∈ Rn×n, which
only contains the diagonal elements of D. Since D is positive definite, we have di > 0,
∀i ∈ In. Let j = arg maxi di. It is straightforward to prove that dj = maxi,k |Dik| as
otherwise D would not be positive definite. Consequently, for any v ∈ Rn, we have

∥Dv∥2 ≤
√

n max
i

|(Dv)i|

=
√

n max
i

n∑
k=1

|Dikvk|

≤
√

n max
i

n∑
k=1

|Dik| max
k

|vk|︸ ︷︷ ︸
=∥v∥∞≤∥v∥2

≤
√

n∥v∥2n max
i,k

|Dik|

= n
√

n∥v∥2dj ,

where the first and the third inequality follow from Lemma 4.5. As a result,

∥D∥2 = max
∥v∥2≤1

∥Dv∥2 ≤ n
√

ndj .

Moreover, we have

∥∥√d
∥∥2

2 =
(√

d1
)2

+ . . . +
(√

dn

)2
= ∥d∥1 ≥ ∥d∥2 ≥ dj ≥ 1

n
3
2

∥D∥2, (4.35)

where the first inequality is due to Lemma 4.5. The result follows by applying the square
root to (4.35).

Lemma 4.7. Let D =
[
dr,1 . . . dr,n

]⊤ ∈ Rn×n. Then,

∥∥D∥∥1,2 ≥ 1√
n

max
i

∥∥dr,i

∥∥
2. (4.36)

Proof. We denote

D =

D11 . . . D1n

...
Dn1 . . . Dnn

 =

d⊤

r,1
...

d⊤
r,n

 =
[
dc,1 . . . dc,n

]
.

47

Chapter 4 Learning-Based Robust Sampled-Data Control

Then,

∥∥D∥∥1,2 = max
i

∥∥dc,i

∥∥
2 ≥ max

i,j

∣∣Dij

∣∣ = max
i

∥dr,i∥∞ ≥ 1√
n

max
i

∥∥dr,i

∥∥
2,

where the second inequality follows from the last inequality in Lemma 4.5.

Proof of Theorem 4.2. We prove this by contradiction. Assume that (4.32) does not
hold, i.e., N < Nmin. Then, we have

∥∥Σθi

∥∥
2 >

(α∗(Ts))2n
5
2

(χ2
n(n

√
p))2 , ∀i ∈ In, (4.37)

due to Lemma 3.1. Since a covariance matrix is always positive definite, we can ap-
ply Lemma 4.6 to show that (4.37) implies∥∥∥∥√diag

(
Σθi

)∥∥∥∥
2

>
α∗(Ts)

√
n

χ2
n(n

√
p) , ∀i ∈ In.

Then, due to Lemma 4.7 and the definition of Â in (3.15), we have

∥∥Â∥∥1,2 ≥ 1√
n

χ2
n(n

√
p) max

i

∥∥∥∥√diag
(
Σθi

)∥∥∥∥
2

> α∗(Ts).

Hence, we cannot guarantee stability via Lemma 4.4 if (4.32) is not satisfied, which
concludes the proof.

Although Theorem 4.2 only holds under certain rather restrictive assumptions, it
shows which quantities affect how many data points must at least be collected for stability
at a certain control frequency:

• Nmin is directly proportional to the observation noise variance and increases with
the confidence threshold p.

• Nmin decreases with the size r of the set from which the training inputs are drawn,
with the norm of the prior precision matrices Σ−1

i,0 and with the maximum admis-
sible disturbance α∗(Ts), i.e., the control frequency.

4.6 Extension to Online Learning and Impact on Stability

Since the methods presented so far in this chapter allow us to relate model learning to
the control frequency, naturally, the question arises whether we could change the control
frequency during operation when the learned model is updated online. In practice, the
computation time for solving GEVPs (4.12) and (4.23) would be an obstacle, and the
optimization problems would likely have to be reformulated such that they are somewhat
independent of the learned model itself and can be solved offline. However, the first

48

Chapter 4 Learning-Based Robust Sampled-Data Control

question we have to ask in this context is whether the stability of the system would be
affected by switching the control frequency and the control gain.

Assume that we have a finite collection of control frequencies fc,i = 1
Ts,i

and corre-
sponding controllers Ki, i = 0, . . . , M , where each pair (Ts,i,Ki) is via Theorem 4.1
individually guaranteed to stabilize the system (4.3). At time zero, we set Ts = Ts,0

and K = K0. The control frequency and the control gain are changed online at time
instants Ti, i = 1, . . . , M , i.e., the dynamics in phase i ∈ I0

M are

ẋ(t) = Ax(t) + BKix(tk), t ∈ [tk, tk+1) ⊆ [Ti, Ti+1), (4.38)

where t0 = T0 = 0. During phase i, i.e., for tk ∈ [Ti, Ti+1), we have tk+1 − tk ≤ Ts,i. We
assume for simplicity that the control frequency and the controller are only changed at
sampling instants, i.e., Ti = tk for some k ∈ N0 for all i ∈ IM .

We denote the LKF corresponding to the i-th phase by

Vi(t) = x(t)⊤P1,ix(t) +
∫ 0

−Ts

∫ t

t+θ
y(s)⊤Riy(s)dsdθ, (4.39)

where P1,i ≻ 0 and Ri ≻ 0. As pointed out in Section 2.3, the LKF (4.39) satisfies

ai∥x(t)∥2
2 ≤ Vi(t) ≤ bi sup

s∈[−Ts,0]
∥x̄(t + s)∥2

2, (4.40)

for some ai > 0 and bi > 0. Applying the stable combination of control gain Ki and
sampling time Ts,i implies that

V̇i(t) ≤ 0, ∀t ∈ [Ti, Ti+1), ∀i ∈ IM−1,

V̇M (t) ≤ 0, ∀t ≥ TM ,
(4.41)

with equality holding only for x̄(t) = 0. To analyze asymptotic stability of the system
for the sequence of different control frequencies and sampling times, we consider an
augmented Lyapunov function V (t) defined piecewise as

V (t) = V ′
i (t), ∀t ∈ [Ti, Ti+1), ∀i ∈ IM−1,

V (t) = V ′
M (t), ∀t ≥ TM ,

(4.42)

where

V ′
0(t) = V0(t),

V ′
i (t) = γiVi(t), γi =

V ′
i−1(Ti)
Vi(Ti)

> 0, ∀i ∈ IM .
(4.43)

Fig. 4.2 visualizes the construction of V . The idea is to scale the LKFs V1, . . . , VM by
factors γi, i = 1, . . . , M , such that the augmented LKF is continuous. Let us verify

49

Chapter 4 Learning-Based Robust Sampled-Data Control

T0 = 0 T1 T2

t

V0(t)
V1(t)
V2(t)

T0 = 0 T1 T2

t

V (t)

Figure 4.2: Construction of the LKF for proving asymptotic stability for updating the
control frequency and the control gain online.

that V is indeed a valid LKF. By design, it satisfies the inequalities

a∥x(t)∥2
2 ≤ V (t) ≤ b sup

s∈[−T̄s,0]
∥x̄(t + s)∥2

2, (4.44)

where a = min{a0, γ1a1, . . . , γM aM } > 0, b = max{b0, γ1b1, . . . , γM bM } > 0, and
T̄s = max{Ts,0, . . . , Ts,M} > 0, which are similar to (2.44). It follows from (4.42)
and (4.43) that V̇ (t) < 0 for all x̄(t) ̸= 0, which proves the asymptotic stability of the
system under the considered sequence of different control frequencies and controllers.
This insight can serve as a motivation to develop a scheme for changing the control
frequency online based on updating the learned model.

50

Chapter 5

Evaluation

We use our proposed learning-based sampled-data control approach to study the impact
of control frequency and data on stability and closed-loop performance in simulation
and real-world experiments. The chapter concludes with a comparative discussion of the
obtained results.

5.1 Simulation

In this section, we apply the methods discussed in Chapters 3 and 4 to a simulated
nonlinear quadrotor system. We first introduce the quadrotor’s dynamics model and
our simulation setup, then present our results and conclude with a brief discussion.

5.1.1 2D Quadrotor Model

We consider a quadrotor flying in the vertical x-z-plane, as illustrated in Fig. 5.1. The
position and velocity of its center of mass (CoM) are denoted by (x, z) and (ẋ, ż), re-
spectively, θ denotes the pitch angle and θ̇ its rate of change. As inputs, we consider
the thrusts (T1, T2) generated by the two propellers. Each propeller generates a torque
around the CoM acting with effective moment arm length d. Simple Newtonian mechan-

CoM
T1

T2

d

d

θ

y x

z g

Figure 5.1: Schematics of the simulated 2D quadrotor system.

51

Chapter 5 Evaluation

Parameter Symbol Value
Mass m 0.1 kg

Effective moment arm length d 0.1 m
Moment of inertia Iyy 8.3 × 10−5 kgm2

Gravitational acceleration g 9.81 m
s2

Table 5.1: Physical parameters of the simulated 2D quadrotor dynamics model.

ics yield the simplified equations of motion [43]

mẍ = −(T1 + T2) sin (θ)
mz̈ = (T1 + T2) cos (θ) − mg

Iyy θ̈ = (T2 − T1)d,

(5.1)

where Iyy = 1
12md2 is the moment of inertia about the body y-axis, and g = 9.81 m

s2 is
the gravitational acceleration. Here, we have omitted the dependence of position and
pitch angle, their derivatives, and the thrusts on time t ∈ R≥0. The dynamic parameters
of the quadrotor and their respective values chosen for the simulation are summarized
in Table 5.1.

Defining the state as x =
[
x, ẋ, z, ż, θ, θ̇

]⊤ ∈ R6 and the input as u =
[
T1, T2

]⊤ ∈ R2,
we can express the equations of motion (5.1) in state-space form similar to (3.1) as

ẋ = h(x,u) =

x2

− 1
m sin (x5)(u1 + u2)

x4
1
m cos (x5)(u1 + u2) − g

x6
1

Iyy
d(u1 − u2)

. (5.2)

This nonlinear system has infinitely many equilibria ze = (xe,ue) satisfying h(ze) = 0,
where xe = [xe, ze, 0, 0, 0, 0]⊤ and ue =

[mg
2 , mg

2
]⊤, which correspond to hovering at the

position (xe, ze). The linearization of (5.2) about any equilibrium is given by

˙̃x = ∂h(x,u)
∂x

∣∣∣∣x=xe
u=ue︸ ︷︷ ︸

A

x̃ + ∂h(x,u)
∂u

∣∣∣∣x=xe
u=ue︸ ︷︷ ︸

B

ũ, (5.3)

52

Chapter 5 Evaluation

where x̃ = x − xe and ũ = u − ue are deviations from the equilibrium, and

A =

0 1 0 0 0 0
0 0 0 0 g 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

, B =

0 0
0 0
0 0
1
m

1
m

0 0
d

Iyy
− d

Iyy

. (5.4)

5.1.2 Setup

As the quadrotor exhibits nonlinear dynamics, we employ GPs to learn a dynamics model
and then linearize it, as explained in Section 3.3. To illustrate the broad applicability
of the GP learning approach, we assume no prior knowledge about the dynamics is
available, i.e., h = g. We create a training data set consisting of N samples

(
z(i),y(i))

by drawing the training inputs uniformly from the compact set

Z =

(x,u) ∈ R8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
−5 m

s
0

−5 m
s

−π
2 rad

−5 rad
s

≤ x ≤

2 m
5 m

s
2 m
5 m

s
π
2 rad
5 rad

s

,

[
0
0

]
≤ u ≤

[
2 N
2 N

]

(5.5)

and calculating the targets as y(i) = h
(
z(i))+w(i) = ẋ(i) +w(i), where w(i) ∼ N

(
0,Σn

)
,

∀i ∈ IN . The covariance matrix of the observation noise is set to Σn = 0.12I. We set the
confidence threshold in Theorem 3.2 to p = 0.996 ≈ 0.94, which yields

√
χ2

nz

(
n
√

p
)

= 4.5.
Hence, the learned linearized dynamics capture the true dynamics at the equilibrium
with a probability of at least 94%. The simulations are performed in MATLAB. We
use the YALMIP toolbox [44] to define and simplify the GEVPs (4.15) and (4.23) solve
them using the MOSEK optimization software [45]. For the optimization with respect
to the scalar optimization variables, we define the grid G = {10−3, 10−2.7, . . . , 103} and
consider ϵ ∈ G in (4.15) and (ϵ1, ϵ2) ∈ G × G in (4.23).

5.1.3 Results

Minimum Control Frequency

First, we study the relationship between the amount of training data and the frequency at
which the learned system must be controlled to guarantee stability with high probability,
which is discussed in Section 4.3. To do this, we randomly draw 1000 training samples
from Z and learn the dynamics from data sets DN =

{
z(i),y(i)}N

i=1 containing the
first N ∈ {100, 150, . . . , 1000} samples. For each data set DN , we compute the MCF

53

Chapter 5 Evaluation

200 400 600 800 1,000
10

20

30

40

50

Number of data points N

f c
,m

in
in

H
z

Σn = 0.12I

Σn = 0.22I

200 400 600 800 1,000
0

0.5

1

Number of data points N

Su
cc

es
s

ra
te

Σn = 0.12I

Σn = 0.22I

Figure 5.2: Left: Minimum control frequency required to ensure robust stability for dif-
ferent amounts of randomly drawn training data. The error bars represent
± one standard deviation. Right: Proportion of datasets for which (4.12) is
feasible, i.e., for which a stabilizing controller can be found.

based on the learned uncertain model by solving the optimization problem (4.15). We
repeat this procedure 20 times to account for the randomness of data generation. For
comparison, we also consider a higher observation noise variance Σn = 0.22I.

The obtained mean and standard deviation of the MCF are shown on the left
of Fig. 5.2. In addition, we provide the proportion of data sets for which the optimiza-
tion problem (4.15) is feasible, i.e., for which a stabilizing controller can be found, on
the right of Fig. 5.2. If there is insufficient data, then (4.15) is always infeasible. A
stabilizing controller can be found for some of the training data sets with Σn = 0.12I

if at least N = 150 samples are drawn. This threshold increases to N = 350 for the
larger noise variance. From N ≈ 250 for the small and N ≈ 650 for the large noise
variance, (4.15) can be solved for all data sets. With an increasing amount of data,
the MCF decreases significantly, for example, from around 28 Hz to less than 10 Hz
for Σn = 0.12I. The variance for the MCF is zero for N = 350 and Σn = 0.22I because
in this case, (4.15) can only be solved for one data set. In general, however, more data
reduces the variance of the computed MCF.

Quadrotor Trajectories

We also investigate the impact of control frequency and model uncertainty on
the trajectories of the quadrotor system. For this, we set the initial state
to x(0) = [1.2 m, 0, 0.2 m, 0, 0, 0]⊤ and the desired hovering position to (xe, ze) = (1 m, 0).
To encourage aggressive control behavior, we set the weight matrices in the cost (4.16)
to QJ = diag([100, 1, 100, 1, 100, 1]) and RJ = 0.01I2, respectively. As discussed in Sec-
tion 4.2, robust stability of the linearized system is guaranteed with high probability
for all control frequencies fc = ξfc,min with ξ ≥ 1. We evaluate ξ = {1, 1.25, 1.5, 2}
with 20 randomly drawn training sets each and compute the optimized controller by

54

Chapter 5 Evaluation

1

1.1

1.2
x

(t
)

in
m

N =200, fc,min =25.2 Hz

fc = 25.2 Hz
fc = 31.5 Hz
fc = 37.8 Hz
fc = 50.4 Hz

0 2 4 6 8 10
0

0.1

0.2

Time t in s

z
(t

)
in

m
N =600, fc,min =11.2 Hz

fc = 11.2 Hz
fc = 14.0 Hz
fc = 16.8 Hz
fc = 22.4 Hz

0 2 4 6 8 10
Time t in s

Figure 5.3: Quadrotor trajectories for different control frequencies fc = ξfc,min, where
ξ ∈ {1, 1.25, 1.5, 2}, and different amounts of training data. The shaded areas
represent ± one standard deviation. Convergence to the setpoint significantly
improves, and variance reduces if the control frequency is increased from its
minimum value fc = fc,min.

solving (4.15). The system is simulated for a duration of 10 s for each combination of
control gain and control frequency.

Fig. 5.3 shows the trajectories of the quadrotor position obtained for N = 200 and
N = 600, respectively. The shaded areas represent ± one standard deviation. When
controlling the system at the MCF, it converges only slowly to the setpoint, and the
variance in the trajectories is significant for both values of N . Increasing the control
frequency from its minimum value leads to a substantial improvement in the transient
behavior and a reduced variance. Comparing the left and right plots, we observe that by
tripling N from 200 to 600 and keeping the frequency approximately the same (22.4 Hz
compared to 25.2 Hz), the desired x-position is reached about four times faster within
around 2.5 s compared to around 10 s. A substantial improvement in transient response
can also be seen for the z-position. This demonstrates that both the control frequency
and the amount of data impact the control performance. In the following, we study
these relationships in more detail.

55

Chapter 5 Evaluation

200 300 400 500 600 700 800 900 1,000
10

15

20

25

30

Model UncertaintyHigh Low

5.5

7.5

9.5

Number of data points N

C
on

tr
ol

fre
qu

en
cy

f c

6

8

10

12

14

C
os

t
J

Figure 5.4: Illustration of the tradeoff between the control frequency and the amount
of data in terms of performance. The white area indicates (N, fc) pairs for
which a stabilizing controller is only found in less than 50% of the cases. As
shown by the contour lines of the average cost, for an increasing amount of
data, similar performance can be achieved at a lower control frequency.

Control Performance

For a systematic analysis of performance, we optimize the controller via (4.23) for many
different control frequencies fc = 10 Hz, . . . , 30 Hz and simulate the regulation to hover-
ing at the location (xe, ze) = (1 m, 0) for five different initial conditions. We compute the
continuous-time quadratic cost for a horizon of 10 s using the weight matrices QJ and
RJ defined above. The simulation is repeated 20 times with randomly drawn training
data sets, and we consider N = 200, 225, . . . , 1000.

Fig. 5.4 shows the average cost and its contour lines for three different val-
ues J ∈ {5.5, 7.5, 9.5}. The corresponding standard deviation of the cost is depicted
in Fig. 5.5. The white area on the bottom left in Figures 5.4 and 5.5 represents (N, fc)
pairs for which (4.23) is infeasible in more than 50% of the cases and corresponds to
the results shown in Fig. 5.2. The contour lines of the cost in Fig. 5.4 illustrate there
is a tradeoff between data and control frequency in terms of the control performance:
As model uncertainty decreases through the addition of more data, a similar cost can
be obtained at a lower control frequency. On the other hand, the control frequency
strongly affects how much data must be available to achieve a certain performance.
For example, if we increase fc by 33% from 18 Hz to 24 Hz, only half the amount of
data (N = 400 instead of N = 800) is needed to get the same cost J = 5.6. Increasing
the control frequency for a given amount of data reduces the cost, for instance, by
42% when increasing fc by 29% from 14 Hz to 18 Hz for N = 350. It is evident from

56

Chapter 5 Evaluation

200 300 400 500 600 700 800 900 1,000
10

15

20

25

30

Number of data points N

C
on

tr
ol

fre
qu

en
cy

f c

1

2

3

4

5

St
an

da
rd

de
vi

at
io

n
of

th
e

co
st

Figure 5.5: Standard deviations of the costs corresponding to the means provided
in Fig. 5.4. The decrease in cost with the control frequency and the amount
of data observed shown in Fig. 5.4 is accompanied by an even greater reduc-
tion in standard deviation.

the contour lines’ shape that the sensitivity of the performance with respect to the
control frequency increases with the size of the training data set. We can also observe
from Fig. 5.5 that a decrease in the cost mean is accompanied by an even greater
reduction of the standard deviation, which is consistent with Fig. 5.3.

5.1.4 Discussion

Fig. 5.3 and Fig. 5.4 demonstrate that choosing a larger control frequency than the
MCF improves performance and reduces variance. Considering this, the MCF should be
seen as a lower bound that allows us to reduce the control frequency without sacrificing
stability if needed, for example, to save computation or communication resources on
quadrotors.

As illustrated in Fig. 5.2 and Fig. 5.4, the amount of data required for stability or
achieving a specific performance depends on the frequency at which we can run the
controller. A slight increase in control frequency can compensate for even a significant
lack of data. This insight provides a potentially cheaper alternative to collecting large
amounts of data from real systems, which is often expensive and tedious [7].

Stable regulation of the quadrotor is achieved for all simulated initial conditions, even
when operating at the MCF, as shown in Fig. 5.3. This is remarkable, as the computation
of the MCF via (4.15) is based on the linearized dynamics (4.1) and only considers
the uncertainty corresponding to the GP variance, not the error due to linearizing the
nonlinear system (3.1). One reason is that the stability conditions stated in Theorem 4.1
are sufficient but not necessary. Consequently, the computation of the MCF introduces
some conservatism that may compensate for the linearization error, as is the case for

57

Chapter 5 Evaluation

Figure 5.6: The Crazyflie 2.1 quadrotor used for the experiments. The motion capture
system tracks the five reflective markers attached to the body.

our example.

5.2 Hardware Experiment

We conduct hardware experiments with a quadrotor to study the role of control frequency
in a real-world scenario.

5.2.1 Hardware: Quadrotor and Motion Capture System

The Crazyflie 2.1 quadrotor is an open-source development platform developed by
Bitcraze [46]. We use the quadrotor depicted in Fig. 5.6 for all our experiments. It
has a total mass of m = 35 g and its four propellers can produce a maximum total
thrust of about 0.6 N, which is about 1.8 times the thrust required for hovering. The
maximum flight time is about 7 minutes with a fully charged battery, but we replace
the battery after about 2 minutes of flying to ensure constant behavior of the system.
The Crazyflie 2.1 has three onboard 3-axis accelerometer and gyroscope sensors to
measure its linear acceleration and angular velocity. In principle, these measurements
can be used to estimate the quadrotor’s position and orientation through numerical
integration. However, the quality of these estimates is generally low due to sensor noise
and the resulting integration drift.

Therefore, we employ a Vicon motion capture system [47] consisting of six cameras
to precisely track the quadrotor’s position and orientation. For this purpose, we attach
five spherical markers coated with reflective material to the Crazyflie’s body, as shown
in Fig. 5.6. Each motion capture camera measures the relative 2D coordinates of the
markers in its image coordinate system. Before tracking can begin, the Vicon system
needs to be calibrated to define a world frame in the experimental space and determine
the 3D coordinates of each camera in the world frame. We define the world frame
such that its z-axis points upwards. Calibration ensures the system can accurately
triangulate the markers’ position in 3D space from the 2D image coordinate pairs. Once

58

Chapter 5 Evaluation

the 3D positions of the markers on the quadrotor are determined, the Vicon software
calculates the quadrotor’s position and orientation in the world frame. The obtained
data is published on a ROS topic [48] at a frequency of 200 Hz, from where it can be
read, for instance, by a motion control algorithm.

In addition to the quadrotor’s pose, its velocity and attitude rates are required for
accurate motion control. An extended Kalman filter (EKF) is used to estimate these
values based on incoming measurements, including data from motion capture and the
onboard accelerometers and gyroscopes, the measurement model, and the model of the
system itself. Details on the employed state estimation method can be found in [49].

5.2.2 Simplified Dynamics Model

Our approach for controlling the quadrotor’s motion is based on the Crazyswarm ROS
package [50]. It features a cascaded control architecture consisting of an outer loop for
position control and an inner loop for attitude control, explained in [51]. We set the
desired x- and y-position and the desired yaw rate, i.e., the speed of rotation around
the z-axis, to zero, thus restricting the quadrotor’s motion to the vertical z-direction in
the experiments.

We can therefore define a simplified dynamics model with state x = [z − ze, ż]⊤ ∈ R2

and input u = T − Te ∈ R, where ze is the desired height, T is the total thrust produced
by the four propellers, and Te = mg is the thrust required for hovering. In addition to the
upper bound on the total thrust mentioned above, we specify a lower bound T ≥ 0.3 Te to
prevent the quadrotor from falling uncontrolled. Hence, the control input is constrained
by u ∈ [−0.7, 0.8]Te in our experiments. However, we want to operate within these
bounds as the sampled-data control approach considered in this thesis does not consider
input constraints.

We assume the simplified dynamics in z-direction to have a linear structure

ẋ = h(x, u) =
[

0 1
θ1 θ2

]
x +

[
0
θ3

]
u, (5.6)

where the first row follows from the definition of the state vector, and the second row
contains three unknown scalar parameters θ1, θ2 and θ3. In the case of θ1 = θ2 = 0
and θ3 ̸= 0, (5.6) corresponds to a simple double integrator system as considered, for
example, in Example 3.1. If we neglect air drag, time delays, or other disturbances, the
dynamics in z-direction can be modeled as mz̈ = T − mg based on Newton’s law. This
idealized model corresponds to (5.6) having a double integrator structure with θ3 = 1

m .
We consider this prior knowledge to define prior distributions on the parameters.

59

Chapter 5 Evaluation

0.5

1

1.5

Po
sit

io
n

in
m

zm(t)
∫

żm(t)dt

−0.5

0

0.5

Ve
lo

ci
ty

in
m s

d
dt zm(t) żm(t)

−2

0

2

A
cc

el
er

at
io

n
in

m s2

d
dt żm(t) d

dt żm(t) filtered

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

Time t in s

T
hr

us
t

in
N

Tm(t) Tm(t) filtered

Figure 5.7: The measured data consists of position zm(t), velocity żm(t) and thrust Tm(t).
The first plot shows the measured position and the integration of the mea-
sured velocity and the second plot shows the measured velocity and the
derivative of the measured position with respect to time. We obtain the
acceleration by differentiating the measured velocity and applying a median
filter, as illustrated in the third plot. The fourth plot shows the thrust, which
is also median-filtered. We use the red trajectories as training data for model
learning.

5.2.3 Data Collection

We define a sinusoidal reference trajectory for the z-position with a length of 30 s, a
period of 5 s and an amplitude that increases linearly from 0.1 m to 0.5 m during the

60

Chapter 5 Evaluation

Index i Prior mean µ
(0)
i Prior standard deviation σ

(0)
i

1 0 1 1
s2

2 0 1 1
s

3 1
m = 28.57 1

kg 10 1
kg

Table 5.2: Chosen means and variances of the prior distributions θ
(0)
i ∼ N

(
µ

(0)
i , σ

(0)
i

)
of

the unknown dynamics parameters in (5.6).

duration of the trajectory. We use a PID controller to track the reference trajectory,
which updates the desired attitude rates and total thrust at a frequency of 30 Hz. The
same frequency is used for recording the quadrotor position, velocity, and thrust.

The first two plots in Fig. 5.7 show the measured position zm(t) and velocity żm(t),
respectively, in red color. In addition, we provide the numerical integration of żm(t) in
the first plot and the numerical differentiation of zm(t) in the second plot. We observe
that the signals obtained through integration and differentiation do not deviate strongly
from the measured trajectories even after 30 s, demonstrating the high quality of the
velocity estimation with the EKF. To obtain the acceleration, we differentiate żm(t) with
respect to time. As the obtained signal contains spikes, we smooth it using a median
filter with a window size of five. Both signals are provided in the third plot in Fig. 5.7.
The fourth plot shows the measured thrust Tm(t), which we median-filter similar to the
acceleration. The acceleration and thrust signals have spikes at the beginning, which is
probably related to the fact that the quadrotor cannot immediately follow the sinusoidal
reference due to its inertia. We nevertheless keep this part of the measured trajectory, as
we want the model learned below to improve as much as possible with more training data.
So, we create a training data set D similar to (3.3) that consists of N = 900 samples
from the measured position and velocity and the filtered acceleration and thrust signals,
i.e., the training inputs and targets are given by

z(i) =
[
zm(ti), żm(ti), Tm,filtered(ti)

]⊤
,

y(i) = z̈m,filtered(ti),
(5.7)

i = 1, . . . , N , where the timestamp of the i-th observation is approximately ti ≈ i
30 s.

5.2.4 Results

Model Learning with BLR

We use BLR, as explained in Section 3.2, to learn probabilistic estimates of the unknown
parameters in (5.6) from the training samples (5.7). As can be observed from Fig. 5.7, the
measured trajectory signals are more informative towards the end due to higher signal
amplitudes, which yield larger feature values in the mean and covariance updates (2.22)
and (2.23), respectively. We account for this difference in data quality by randomly
reshuffling the training samples in D but continue with the same notation for clarity.

61

Chapter 5 Evaluation

−0.5

0

0.5
θ(i

)
1

in
1 s2

−1

0

1

θ(i
)

2
in

1 s

0 100 200 300 400 500 600 700 800 90020

25

30

Iteration i

θ(i
)

3
in

1 kg

Figure 5.8: Illustration of the learning curves for the unknown parameters in (5.6), which
are learned using iterative BLR. The plots show the estimated mean after i
training samples. The shaded areas correspond to ± two standard deviations.

For the prior distributions θi ∼ N (µi, σ2
i), i = 1, 2, 3, of the unknown parameters,

we choose the prior means and variances provided in Table 5.2 based on the idealized
double integrator dynamics model discussed above. The observation noise variance also
represents a hyperparameter to be chosen. We take the following approach, again making
use of prior knowledge: We calculate the difference between the observed training targets
and the targets that were to be expected from the prior parameter means in Table 5.2
and compute the standard deviation of the differences. We then double the obtained
value to account for the fact that the idealized prior model is itself subject to uncertainty,
yielding the total estimated noise standard deviation

σ̂n = 2

√√√√ 1
N − 1

N∑
i=1

(
µ(0)⊤z(i) − y(i))2 = 0.6570 1

s2 , (5.8)

where µ(0) =
[
µ

(0)
1 , µ

(0)
2 , µ

(0)
3

]⊤
is the prior mean vector. We update the parameter

estimates iteratively using the 900 training samples. The learning curves for the un-

62

Chapter 5 Evaluation

Iteration i A Â b b̂

50
[

0 1
−0.0587 0.1905

] [
0 0

0.1714 0.6865

] [
0

27.3400

] [
0

2.6707

]
100

[
0 1

−0.0826 0.2944

] [
0 0

0.1201 0.4160

] [
0

26.3659

] [
0

2.5588

]
300

[
0 1

−0.0591 0.2231

] [
0 0

0.0713 0.2513

] [
0

24.3175

] [
0

2.2544

]
500

[
0 1

−0.0489 0.1767

] [
0 0

0.0541 0.2013

] [
0

22.8195

] [
0

2.0605

]
900

[
0 1

−0.0477 0.1127

] [
0 0

0.0400 0.1505

] [
0

21.3777

] [
0

1.7705

]
Table 5.3: Parameters of the learned uncertain model (3.17) of the dynamics (5.6) after

observing different numbers of training samples.

known parameters are provided in Fig. 5.8 together with ± two standard deviations.
It can be seen that the estimated means of θ1 and θ2 converge to around zero after a
few hundred data points, and the corresponding uncertainty strongly decreases. The
uncertainty associated with θ3 behaves differently. Although being initialized with a
large value of 10 1

kg , the standard deviation drops sharply after observing the first data
point. From that point on, the uncertainty decreases slowly during the learning process.
We use Theorem 3.1 to compute an uncertain linear system of the form (3.17) from the
parameter estimates that captures the true dynamics at the equilibrium with a probabil-
ity of at least p = 0.99. Table 5.3 provides the learned system matrices after increasing
amounts of training data. As expected, the element-wise uncertainty terms in Â and b̂

decrease with more data.

Model Validation

Before designing robust sampled-data controllers based on the learned model, we val-
idate our choice of hyperparameters and check if the model overfits the training data.
We create a validation data set similar to the training data set shown in Fig. 5.7. We
start from a random initial condition x̂(0) =

[
ẑ(0), ˙̂z(0)

]⊤ = xm(t0), where t0 is drawn
randomly from

[
0, 1

30 , . . . , 25
]
s, on the validation trajectory. From this initial condition,

we apply the corresponding input sequence from the validation data set and predict the
state trajectory forward in time through numerical integration of the learned dynamics
using a Runge-Kutta fourth-order method [52]. The accuracy of the predicted trajectory
is evaluated for a prediction horizon of Tpred = M

30 s, where M ∈ N is chosen randomly
between 60 and 150 such that Tpred ∈ [2, 5] s, by calculating the root-mean-square er-
ror (RMSE) for the z-position

RMSE =

√√√√ 1
M

M∑
i=1

(ẑ(ti) − zm(t0 + ti))2. (5.9)

63

Chapter 5 Evaluation

200 400 600 800

0.1

0.15

Number of data points N

R
M

SE
in

m

σn = 0.5σ̂n σn = σ̂n σn = 2σ̂n

Figure 5.9: Validation of the chosen hyperparameter value σ̂n for the observation noise
standard deviation σn. We compare the measured validation trajectory to
the predicted trajectory that is obtained through numerical integration of the
learned model with the measured input sequence. Our choice for σn allows
the model to significantly improve through the addition of more data.

We consider 100 random initial conditions on the validation trajectory and calculate the
average RMSE.

The results are shown in Fig. 5.9. We observe the model keeps improving until all
900 data points are used for training, i.e., the training procedure does not result in
overfitting. We also consider different values than in (5.8) for the standard deviation of
the observation noise σn. Halving the noise standard deviation leads to overfitting, and
doubling it results in RMSE decreasing only very slowly. Therefore, our choice for σn is
suitable as it ensures the model can significantly improve with adding more data, which
is a prerequisite to fairly assess the impact of data.

Minimum Control Frequency

We compute the MCF by solving the GEVP (4.12) using the learned model af-
ter N ∈ {200, 205, . . . , 900} training samples. The results are shown in Fig. 5.10. We
observe that for σn = σ̂n, at least 225 samples are required for computing a stabilizing
sampled-data controller. The MCF strongly decreases when the model is updated with
more data and converges to around 3 Hz. For comparison, we also consider a 50% larger
standard deviation of the noise, i.e., σn = 1.5σ̂n. In this case, (4.12) is infeasible for less
than 475 data points, and the MCF converges to around 5 Hz. Next, we study stability
and performance with a learning-based sampled-data controller for different control
frequencies and data sets, assuming σn = σ̂n.

Quadrotor Trajectories

We consider the task of tracking a desired setpoint, which is defined as hovering
at ze = 0.4 m, and set the initial condition to hovering at z(0) = 0.7 m. We compute
sampled-data controllers for four different control frequencies fc ∈ {10, 15, 30, 60} Hz

64

Chapter 5 Evaluation

200 300 400 500 600 700 800 900

10

20

30

40

Number of data points N

f c
,m

in
in

H
z

σn = σ̂n
σn = 1.5σ̂n

Figure 5.10: Minimum control frequency required to ensure robust stability for different
amounts of training data. If we increase the standard deviation of the
observation noise by 50% compared to its estimated value (5.8), much more
data is required to be able to compute a stabilizing controller, and the
controller must operate at a higher frequency.

fc in Hz
10 15 30 60

250 unstable 5.27 4.30 3.08
N 500 unstable 5.22 3.53 2.99

750 unstable 4.61 3.38 3.19

Table 5.4: Quadratic costs of the quadrotor trajectories shown in Figures 5.11 and 5.12.
Increasing the control frequency leads to a greater decrease in cost than using
more data points.

by solving (4.23) with the learned models after 250, 500 and 750 training samples. To
encourage fast convergence to the desired setpoint, we set the weight matrices in the
cost (4.16) to Q = Diag([100, 1]) and R = 1, mainly penalizing deviations from the
desired position.

Fig. 5.11 consists of three plots showing the quadrotor’s position, each corresponding
to a specific number of training samples. In that way, the impact of the control frequency
on the tracking behavior is illustrated for different learned models. In all three cases,
the quadrotor cannot be stabilized at a control frequency of 10 Hz. This is unexpected
at first glance, as the calculation of the MCF shown in Fig. 5.10 suggests that an even
smaller frequency should be sufficient for stability if enough data is available. We dis-
cuss potential reasons for this discrepancy in Section 5.3. For the three higher control
frequencies fc ∈ {15, 30, 60} Hz, we observe that the height of the quadrotor decreases
faster if the control frequency is increased. This effect occurs for all three data sets and
is particularly strong for the smallest one.

Table 5.4 provides the quadratic costs of the tracking trajectories. Increasing the
control frequency by a factor of four from 15 Hz to 60 Hz reduces the cost on average
by 39%, whereas tripling the number of training samples from 250 to 750 only leads to

65

Chapter 5 Evaluation

0.4

0.5

0.6

0.7

Po
sit

io
n

z
(t

)
in

m

N = 250
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz
Setpoint

0.4

0.5

0.6

0.7

Po
sit

io
n

z
(t

)
in

m

N = 500
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz
Setpoint

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

Time t in s

Po
sit

io
n

z
(t

)
in

m

N = 750
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz
Setpoint

Figure 5.11: Impact of the control frequency on tracking the desired setpoint for dif-
ferent amounts of data. The transient behavior improves significantly if
the controller runs at a higher frequency. In our experiments, a control
frequency of 10 Hz is insufficient to stabilize the quadrotor, which does not
align with the results for the minimum control frequency required in theory;
see Fig. 5.10 .

a 10% average reduction in cost. For fc = 60 Hz, the cost even increases when using the
largest data set.

In Fig. 5.12, we group the tracking trajectories by the control frequency. We ob-
serve a significantly smaller change in the trajectories when using more data than when
increasing the control frequency; see Fig. 5.11. Remarkably, all trajectories obtained
for fc = 60 Hz show oscillations that become stronger the more data is used. This rep-
resents another difference compared to simulation in Section 5.1, where no oscillations
occur. We also investigate this behavior in Section 5.3.

66

Chapter 5 Evaluation

0

0.2

0.4

0.6

Po
sit

io
n

z
(t

)
in

m

fc = 10 Hz

N = 250
N = 500
N = 750
Setpoint

0.4

0.5

0.6

0.7

Po
sit

io
n

z
(t

)
in

m

fc = 15 Hz

N = 250
N = 500
N = 750
Setpoint

0.4

0.5

0.6

0.7

Po
sit

io
n

z
(t

)
in

m

fc = 30 Hz

N = 250
N = 500
N = 750
Setpoint

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

Time t in s

Po
sit

io
n

z
(t

)
in

m

fc = 60 Hz

N = 250
N = 500
N = 750
Setpoint

Figure 5.12: The transient response slightly improves with the amount of data, but the
improvement is much smaller than when varying the control frequency;
see Fig. 5.11. The steady-state offset decreases with a higher control fre-
quency.

5.2.5 Discussion

As shown in Table 5.3, the uncertainty Â associated with the dynamics matrix decreases
by a factor of around four to five when increasing the number of data points from 50

67

Chapter 5 Evaluation

to 900. In contrast, the magnitude of the uncertainty b̂ in the input vector decreases only
by around 34%. Still, as shown in Fig. 5.10, the model learned from all N = 900 data
points yields an MCF that is smaller by a factor of around 15 than for N = 220. This
illustrates that the MCF is mainly affected by Â in the considered scenario. One reason
for this is that the uncertainty b̂ associated with b is much smaller than the estimated
value of b, whereas the uncertainty in the dynamics matrix is of the same magnitude as
the estimate.

It can be seen from Fig. 5.11 or Fig. 5.12 that the quadrotor does not exactly reach
the desired height of 0.4 m even after 5 s. As seen from Fig. 5.12, the deviation generally
becomes smaller when using a higher control frequency. This behavior is likely because
the assumed hovering thrust Te, which directly affects the applied thrust T = Te + u,
is not exactly equivalent to the actual thrust required for hovering Te,true. If we as-
sume θ1 = θ2 = 0 in (5.6), then it is easy to show that the steady-state height of the
closed-loop system is given by

z = ze + Te,true − Te
θ3k1

, (5.10)

where k1 ∈ R is the first element of the control gain vector. Any difference between the
assumed and the actual hovering thrust leads to a constant offset between the actual
equilibrium of the closed-loop system and the desired hovering state. This offset can be
made smaller by increasing the value of k1. Increasing the control frequency gives the
optimization of the robust sampled-data controller via (4.23) more freedom to reduce
the cost, which results in higher control gains. Therefore, an indirect consequence of
increasing fc is a reduction of the steady-state offset.

5.3 Comparative Discussion of Simulation and Experiment

Compared to simulation, real-world experiments are usually affected by various addi-
tional and unmodeled effects, commonly referred to as “sim-to-real-gap” [53, 54]. In
this section, we compare the results reported in Sections 5.1 and 5.2, focusing on the
differences.

Simulation and experiment yield qualitatively similar results regarding the role of
control frequency and data. In both scenarios, a certain amount of training data is
needed such that a sampled-data controller for which robust stability is guaranteed for
the learned model can be found via the optimization problem (4.12). Adding more train-
ing data reduces the lower bound on the control frequency for which the optimization
problem (4.23) is feasible. The control performance improves with both the control
frequency and the size of the training data set, and the control frequency generally
has a more substantial influence on the achieved cost in the considered simulation and
real-world scenarios. Still, we identify two apparent differences between simulation and

68

Chapter 5 Evaluation

0.4

0.5

0.6

0.7

No input delay
Po

sit
io

n
z
(t

)
in

m
N = 250

fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

0.4

0.5

0.6

0.7

Po
sit

io
n

z
(t

)
in

m

N = 500
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

Time t in s

Po
sit

io
n

z
(t

)
in

m

N = 750
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

100 ms input delay

N = 250
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

N = 500
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

0 0.5 1 1.5 2
Time t in s

N = 750
fc = 10 Hz
fc = 15 Hz
fc = 30 Hz
fc = 60 Hz

Figure 5.13: We simulate the learned model with the same control gains and control fre-
quencies as those used to generate the trajectories in Fig. 5.11 and Fig. 5.12
without input delay (left) and with an input delay of 100 ms (right). With
input delay, we observe oscillations similar to the experiments.

experiment, which we discuss in the following.

5.3.1 Oscillations

As already mentioned, the tracking trajectories in the experiment exhibit oscillations for
a control frequency of 60 Hz, and the amplitude of the oscillations increases the more
data is used for model learning. In principle, one reason for this non-ideal behavior could
be the BLR model overfitting the training data. However, as demonstrated by Fig. 5.9,
overfitting does not occur with our choice for the observation noise variance.

A second possible explanation could be that the input constraints of the quadrotor

69

Chapter 5 Evaluation

mentioned in Section 5.2.1, which are not accounted for in the controller design, become
active during the experiments. However, the control input calculated with the sampled-
data control law (4.2) always stays within the constraint set even with the most aggressive
controller. We have ensured this by choosing the weight matrices QJ and RJ of the cost
and the difference of 0.3 m between the initial and the desired height accordingly.

As a third potential reason for the oscillations, we investigate delays in the control
loop. The stability conditions derived in Section 4.2 consider the delay introduced to the
system by the discrete-time feedback. However, we assume throughout Chapter 4 that
at the sampling instant tk, the control input immediately changes to u(tk) = Kx(tk),
i.e., input delays are not accounted for. A close inspection of the tracking trajectories
in Figures 5.11 or 5.12 shows that after setting the desired heightto 0.4 m at time zero,
it takes about 50 to 100 ms for the quadrotor to accelerate. This could be an indica-
tion of there being a non-negligible delay between calculating the desired thrust and the
propellers generating this thrust. To verify if input delays are responsible for the oscil-
lations, we conduct a numerical simulation with the dynamics learned from all 900 data
points with and without input delay. Here, we use the same control frequencies and
control gains as in the experiments. The simulation results are shown in Fig. 5.13,
grouped similarly as in Fig. 5.11. Without input delay, the behavior is the same as
in the simulation of the 2D quadrotor in Fig. 5.3, i.e., the transient response improves
with a higher control frequency but never exhibits oscillations. However, from an input
delay of 100 ms, oscillations that are very similar to those observed in the experiment
occur in the simulation. Therefore, we can state with high confidence that input delays
are at least to a large extent responsible for the oscillations at 60 Hz. That there are
no oscillations at the smaller control frequencies fc ∈ {15, 30} Hz is likely because the
corresponding controllers are more conservative and, thus, amplify the effects of the de-
lay less strongly. Multiple effects contribute to this delay, including the motion capture
system, the communication latency between the PC and the quadrotor, and the inertia
of the propellers, which prevents an instant change in the propeller speed. While our
simple simulation suggests the magnitude of the delay to be in the order of 100 ms in the
experiments, this value cannot be precisely determined without specific measurements.
However, in [55], the latency in the communication alone is specified as 22 to 46 ms for
an expensive quadrotor system, suggesting that 100 ms is a realistic estimate for the
total delay with the relatively cheap Crazyflie 2.1 quadrotors.

5.3.2 Sufficiency of the Minimum Control Frequency

The second notable difference is that in contrast to the simulation, the MCF provided
in Fig. 5.10 is too small to stabilize the quadrotor in the experiments. For example,
for 750 training samples, a control frequency of 3 Hz should, in theory, be sufficient to
robustly stabilize the system, but the quadrotor becomes unstable even when controlled
at a frequency of 10 Hz. This is even though the simplified dynamics (5.6) of the z-

70

Chapter 5 Evaluation

motion are approximately linear, unlike the nonlinear 2D quadrotor dynamics (5.1) in
the simulation.

In theory, the MCF guarantees robust stability of the system despite model uncer-
tainty. Hence, we can conclude that the uncertainty of the learned simplified dynam-
ics (5.6) does not capture the full uncertainty in the real quadrotor system, as otherwise,
the MCF would be sufficient for stability. The unstable behavior can be attributed to
the failing stabilization in the horizontal direction, which we run at the same frequency
as the z-position controller. We made this decision for the experiments as we wanted
all possible effects of varying the control frequency to come into play. However, as the
simplified dynamics model is learned only from data about the vertical motion (5.7),
the uncertainty associated with the learned model likely cannot fully capture the uncer-
tainty in the horizontal dynamics. We suggest two approaches to ensure the system can
be controlled at (roughly) the computed MCF. First, we could learn a full-dimensional
dynamics model of the quadrotor, for example, with GPs, which would also include the
horizontal dynamics and their associated uncertainty. Second, decoupling the control fre-
quencies of the vertical and the horizontal controller should lead to the overall system’s
stability being much less affected by the x-y-control and depending almost exclusively
on the z-controller and its frequency. Confirming these ideas would require testing them
in additional experiments, which is beyond the scope of this thesis.

71

Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this thesis, we consider the control frequency as a design parameter in learning-based
control of uncertain systems. We investigate if and how fast feedback can compensate for
a lack of knowledge about a system’s dynamic behavior. Since this analysis can neither
be performed with a fully continuous-time nor a fully discrete-time system description,
we adopt a sampled-data control approach. In Chapters 3 and 4, we develop a frame-
work combining GPs and BLR for probabilistic model learning of partially unknown
continuous-time dynamics with robust sampled-data control. To this end, we derive
sufficient conditions for robust stability based on the learned dynamics model. We for-
mulate two optimization problems: one to compute the MCF and the other to optimize
the control performance for a specific control frequency not smaller than the MCF. As a
result, we can vary the frequency with which an uncertain system is controlled without
having to adapt or relearn the model or sacrificing stability guarantees.

We use our framework to study the impact of control frequency compared to the
amount of training data in simulation and real-world experiments. In doing so, we show
that both the control frequency and the number of training samples must not fall below
a certain threshold so that the system can still be stabilized. On the one hand, if the
model uncertainty is too high, i.e., if the training data contains insufficient information,
no stabilizing controller can be found for any frequency. On the other hand, if the control
frequency is too small, the system cannot be stabilized regardless of the data, as shown
by the experiments. This demonstrates that feedback and system identification must
each be employed to some extent to control uncertain systems.

A major contribution is that we show and quantify the tradeoff between the control
frequency and data regarding stability and performance: A lack of data can, to some
extent, be made up for by a higher control frequency and vice versa. However, in the
scenarios considered, a greater performance improvement can be achieved by increas-
ing the control frequency than by collecting more data. We can conclude that despite
the recent advances in learning for control, fast feedback is crucial for achieving high
performance while satisfying robust stability guarantees.

In addition to allowing us to study the effects of control frequency and data inde-

72

Chapter 6 Conclusions and Outlook

pendently, our robust learning-based sampled-data control approach offers another ad-
vantage: It provides a theoretically justified way to flexibly select the control frequency
based on the uncertainty of the learned model. This can be leveraged, for example, to
reduce the real-time computational and communication demand on low-resource systems
such as quadrotors by running the controller only as fast as necessary.

Ultimately, any discussion about changing the control frequency is pointless if the
existing hardware has a fixed control frequency. Hence, our results motivate increasing
the availability of hardware components with flexible sampling rates.

6.2 Outlook

The theoretical analysis and experiments in this work can be continued in many di-
rections. An obvious next step would be to extend the proposed framework to include
tracking a reference trajectory while providing the same theoretical guarantees as for set-
point stabilization. For this purpose, one could, for example, investigate the combination
of sampled-data control with feedback linearization [23] or differential flatness [56]. Since
trajectory tracking is usually done over a longer period, the uncertain dynamics model
could then be updated online. This would, in principle, allow us to change the control
frequency during operation based on the updated model using the methods presented in
this thesis. However, the computation time for solving GEVPs prevents us from employ-
ing the methods proposed in Chapter 4 directly online, except for very small-dimensional
systems. Instead, we would need to formulate the optimization problems in such a way
that we can solve them in advance but use their solution online. This could be achieved,
for instance, by considering model uncertainty as a disturbance similar to Section 4.5.1
and precomputing thresholds for the magnitude of the disturbance for different control
frequencies. Online, only a scalar condition would then have to be evaluated. However,
a disadvantage of this approach would be that it introduces additional conservatism.

Another interesting direction for future research would be to consider a direct con-
nection between the amount of data or, more generally speaking, model complexity [57]
and the control frequency. This is of high practical relevance for many state-of-the-
art learning-based control methods such as GP-based model predictive control (GP-
MPC) [2]. With GP-MPC, the accuracy of the learned dynamics model increases with
the amount of inducing points of the GP. This amount, in turn, directly affects the
computation time for model inference and, thus, the rate at which the optimal con-
trol problem can be solved online. In general, for learning-based control approaches
that directly incorporate the learned model into the controller, the achievable control
frequency is directly coupled to the complexity of the model. For these approaches to
become more established outside of the academic world, it is essential to know to what
degree we should rely on learning and to what degree on feedback to make optimal use
of the available computational resources.

73

Bibliography

[1] Felix Berkenkamp and Angela P Schoellig. Safe and robust learning control with
Gaussian processes. In Proceedings of the European Control Conference, pages 2496–
2501, 2015.

[2] Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking. The Interna-
tional Journal of Robotics Research, 35(13):1547–1563, 2016.

[3] Alexander von Rohr, Matthias Neumann-Brosig, and Sebastian Trimpe. Probabilis-
tic robust linear quadratic regulators with Gaussian processes. In Proceedings of
the Learning for Dynamics and Control Conference, pages 324–335. PMLR, 2021.

[4] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig.
Safe learning in robotics: From learning-based control to safe reinforcement learn-
ing. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444,
2022.

[5] Armin Lederer, Alexandre Capone, Thomas Beckers, Jonas Umlauft, and Sandra
Hirche. The impact of data on the stability of learning-based control. In Proceedings
of the Learning for Dynamics and Control Conference, pages 623–635. PMLR, 2021.

[6] Abishek Padalkar et al. Open X-embodiment: Robotic learning datasets and RT-X
models. arXiv preprint arXiv 2310.08864, 2023.

[7] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: A survey.
Cognitive Processing, 12:319–340, 2011.

[8] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control theory.
Courier Corporation, 2013.

[9] Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge, Boda Ning, and Bao-Lin Zhang.
Sampled-data control systems with non-uniform sampling: A survey of methods
and trends. Annual Reviews in Control, 2023.

[10] Rudolf Emil Kalman. Contributions to the theory of optimal control. Bolet́ın de la
Sociedad Matemática Mexicana, 5(2):102–119, 1960.

[11] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. Springer, 2006.

74

Bibliography

[12] Lukas Brunke, Siqi Zhou, and Angela P. Schoellig. Barrier Bayesian linear re-
gression: Online learning of control barrier conditions for safety-critical control of
uncertain systems. In Proceedings of the Learning for Dynamics and Control Con-
ference, pages 881–892. PMLR, 2022.

[13] Carl Edward Rasmussen, Christopher KI Williams, et al. Gaussian processes for
machine learning, volume 1. Springer, 2006.

[14] Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. John
Wiley & Sons, 2012.

[15] Stuart M Melzer and Benjamin C Kuo. Sampling period sensitivity of the optimal
sampled data linear regulator. Automatica, 7(3):367–370, 1971.

[16] Karl Worthmann, Marcus Reble, Lars Grune, and Frank Allgower. The role of
sampling for stability and performance in unconstrained nonlinear model predictive
control. SIAM Journal on Control and Optimization, 52(1):581–605, 2014.

[17] Laurentiu Hetel, Christophe Fiter, Hassan Omran, Alexandre Seuret, Emilia Frid-
man, Jean-Pierre Richard, and Silviu Iulian Niculescu. Recent developments on the
stability of systems with aperiodic sampling: An overview. Automatica, 76:309–335,
2017.

[18] Emilia Fridman. Introduction to time-delay systems: Analysis and control. Springer,
2014.

[19] Emilia Fridman, Alexandre Seuret, and Jean-Pierre Richard. Robust sampled-data
stabilization of linear systems: an input delay approach. Automatica, 40(8):1441–
1446, 2004.

[20] Emilia Fridman. A refined input delay approach to sampled-data control. Auto-
matica, 46(2):421–427, 2010.

[21] Alexandre Seuret. A novel stability analysis of linear systems under asynchronous
samplings. Automatica, 48(1):177–182, 2012.

[22] Julian Berberich, Stefan Wildhagen, Michael Hertneck, and Frank Allgöwer. Data-
driven analysis and control of continuous-time systems under aperiodic sampling.
IFAC-PapersOnLine, 54(7):210–215, 2021.

[23] Xiaobing Dai, Armin Lederer, Zewen Yang, and Sandra Hirche. Can learning dete-
riorate control? Analyzing computational delays in Gaussian process-based event-
triggered online learning. In Proceedings of the Learning for Dynamics and Control
Conference, pages 445–457. PMLR, 2023.

75

Bibliography

[24] Alberto Maria Metelli, Flavio Mazzolini, Lorenzo Bisi, Luca Sabbioni, and Marcello
Restelli. Control frequency adaptation via action persistence in batch reinforcement
learning. In Proceedings of the International Conference on Machine Learning, pages
6862–6873. PMLR, 2020.

[25] Lukas Hewing, Andrea Carron, Kim P Wabersich, and Melanie N Zeilinger. On a
correspondence between probabilistic and robust invariant sets for linear systems.
In Proceedings of the European Control Conference, pages 1642–1647, 2018.

[26] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory. SIAM, 1994.

[27] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[28] Richard Arnold Johnson, Dean W Wichern, et al. Applied multivariate statistical
analysis. 2002.

[29] Jack Sherman and Winifred J. Morrison. Adjustment of an Inverse Matrix Corre-
sponding to a Change in One Element of a Given Matrix. The Annals of Mathe-
matical Statistics, 21(1):124 – 127, 1950.

[30] Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for Gaus-
sian process regression with application to safe control. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[31] David Duvenaud. Automatic model construction with Gaussian processes. PhD
thesis, University of Cambridge, 2014.

[32] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[33] Payam Naghshtabrizi, Joao P Hespanha, and Andrew R Teel. Exponential stability
of impulsive systems with application to uncertain sampled-data systems. Systems
& Control Letters, 57(5):378–385, 2008.

[34] Emilia Fridman. Stability of linear descriptor systems with delay: A Lyapunov-
based approach. Journal of Mathematical Analysis and Applications, 273(1):24–44,
2002.

[35] Jean-Jacques E Slotine and Weiping Li. Applied nonlinear control. Prentice Hall,
1991.

[36] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller op-
timization for quadrotors with Gaussian processes. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 491–496, 2016.

76

Bibliography

[37] Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, and Andreas Krause.
Safe learning of regions of attraction for uncertain, nonlinear systems with gaussian
processes. In Proceedings of the Conference on Decision and Control, pages 4661–
4666, 2016.

[38] Márcio F Braga, Vı́ctor CS Campos, and Luciano Frezzatto. Improved discretiza-
tion method for uncertain linear systems: a descriptor system based approach. In
Prceedings of the Conference on Decision and Control, pages 7069–7074, 2019.

[39] Lihua Xie. Output feedback h control of systems with parameter uncertainty. In-
ternational Journal of control, 63(4):741–750, 1996.

[40] Hak-Keung Lam and Frank HF Leung. Design and stabilization of sampled-data
neural-network-based control systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 36(5):995–1005, 2006.

[41] Mei Yu, Long Wang, and Tianguang Chu. Robust stabilization of nonlinear
sampled-data systems. In Proceedings of the American Control Conference, pages
3421–3426, 2005.

[42] Lawrence Narici and Edward Beckenstein. Topological vector spaces. CRC Press,
2010.

[43] Zhaocong Yuan, Adam W Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo
Panerati, and Angela P Schoellig. safe-control-gym: A unified benchmark suite for
safe learning-based control and reinforcement learning in robotics. IEEE Robotics
and Automation Letters, 7(4):11142–11149, 2022.

[44] Yalmip: A toolbox for modeling and optimization in MATLAB. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 284–289,
2004.

[45] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version
10.0., 2022.

[46] Crazyflie 2.1 — Bitcraze. URL https://www.bitcraze.io/products/
crazyflie-2-1/. [Online; accessed 01-October-2023].

[47] Vicon Valkyrie. URL https://www.vicon.com/hardware/cameras/valkyrie/.
[Online; accessed 01-October-2023].

[48] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. ROS: An open-source robot operating system.
In ICRA Workshop on Open Source Software, volume 3, 2009.

77

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.vicon.com/hardware/cameras/valkyrie/

Bibliography

[49] Mark W Mueller, Michael Hamer, and Raffaello D’Andrea. Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for quadrocopter state
estimation. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1730–1736, 2015.

[50] Crazyswarm ROS package. URL https://github.com/USC-ACTLab/crazyswarm.
[Online; accessed 20-October-2023].

[51] James A Preiss, Wolfgang Honig, Gaurav S Sukhatme, and Nora Ayanian.
Crazyswarm: A large nano-quadcopter swarm. In IEEE International Conference
on Robotics and Automation, pages 3299–3304, 2017.

[52] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae.
Journal of computational and applied mathematics, 6(1):19–26, 1980.

[53] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Sim-to-
real transfer of robotic control with dynamics randomization. pages 3803–3810,
2018.

[54] Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. A benchmark com-
parison of learned control policies for agile quadrotor flight. International Confer-
ence on Robotics and Automation, pages 10504–10510, 2022.

[55] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig, Michael
Sherback, and Raffaello D’Andrea. A platform for aerial robotics research and
demonstration: The flying machine arena. Mechatronics, 24(1):41–54, 2014.

[56] Adam W. Hall, Melissa Greeff, and Angela P. Schoellig. Differentially flat learning-
based model predictive control using a stability, state, and input constraining safety
filter. IEEE Control Systems Letters, 7:2191–2196, 2023.

[57] Lennart Ljung. Perspectives on system identification. Annual Reviews in Control,
34(1):1–12, 2010.

78

https://github.com/USC-ACTLab/crazyswarm

	Abstract
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions
	1.4 Outline of the Thesis
	1.5 Notation

	2 Preliminaries
	2.1 Mathematical Background
	2.1.1 Confidence Regions for Multivariate Gaussian Distributions
	2.1.2 Linear Matrix Inequalities and Generalized Eigenvalue Problems

	2.2 Probabilistic Machine Learning Methods
	2.2.1 Bayesian Linear Regression
	2.2.2 Gaussian Process Regression

	2.3 Sampled-Data Systems
	2.3.1 Introduction
	2.3.2 Stability Analysis

	3 Probabilistic Model Learning for Sampled-Data Control
	3.1 Problem Statement
	3.2 Bayesian Linear Regression for Linear Dynamics
	3.2.1 Bounding the Posterior Variance

	3.3 Gaussian Process Regression and Linearization for Nonlinear Dynamics
	3.4 Uncertainty Reparameterization

	4 Learning-Based Robust Sampled-Data Control
	4.1 Problem Statement
	4.2 Robust Stability for the Learned Uncertain System
	4.3 Computing the Minimum Control Frequency
	4.3.1 Simplifying the Optimization Problem

	4.4 Performance Optimization
	4.5 Linking the Control Frequency to Data
	4.5.1 Uncertainty as a Disturbance
	4.5.2 Minimum Amount of Data for Stability at a Given Control Frequency

	4.6 Extension to Online Learning and Impact on Stability

	5 Evaluation
	5.1 Simulation
	5.1.1 2D Quadrotor Model
	5.1.2 Setup
	5.1.3 Results
	5.1.4 Discussion

	5.2 Hardware Experiment
	5.2.1 Hardware: Quadrotor and Motion Capture System
	5.2.2 Simplified Dynamics Model
	5.2.3 Data Collection
	5.2.4 Results
	5.2.5 Discussion

	5.3 Comparative Discussion of Simulation and Experiment
	5.3.1 Oscillations
	5.3.2 Sufficiency of the Minimum Control Frequency

	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Outlook

	Bibliography

