
Faculty of Civil, Geo and Environmental Engineering

Chair for Computation in Engineering

Prof. Dr. rer. nat. Ernst Rank

Implementation of the Characteristic Based

Split algorithm for the Shallow Water Equa-

tions in a high order finite element frame-

work

Philipp Kopp

Bachelor’s thesis

for the Bachelor of Science program Environmental Engineering

Author: Philipp Kopp

Supervisor: Prof. Dr. rer. nat. Ernst Rank

Nils Zander, M.Sc.

Date of issue: 20 June 2014

Date of submission: 13 October 2014





Involved Organisations

Chair for Computation in Engineering
Faculty of Civil, Geo and Environmental Engineering
Technische Universität München
Arcisstraße 21
D-80333 München

Declaration

With this statement I declare, that I have independently completed this Bachelor’s thesis.
The thoughts taken directly or indirectly from external sources are properly marked as such.
This thesis was not previously submitted to another academic institution and has also not
yet been published.

München, October 13, 2014

Philipp Kopp

Philipp Kopp
e-Mail:philipp.kopp@tum.de





V

Contents

1 Introduction 1

1.1 Shallow water type of flows as a common problem in environmental engineering 1

1.2 General approaches to the solution of shallow water flows . . . . . . . . . . . 1

1.3 Overview of existing numerical solution methods . . . . . . . . . . . . . . . . 2

1.3.1 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.2 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.3 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Advantages of the finite element method . . . . . . . . . . . . . . . . . . . . . 5

2 Derivation of the shallow water equations 7

2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Hydrostatic pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Bottom and surface boundary conditions . . . . . . . . . . . . . . . . 8

2.2 Integration of the Navier-Stokes equations over the height . . . . . . . . . . . 9

2.2.1 The Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Integration of the mass conservation equation . . . . . . . . . . . . . . 10

2.2.3 Integration of the momentum equations . . . . . . . . . . . . . . . . . 10

2.3 Conservation laws on an infinitesimal control volume . . . . . . . . . . . . . . 13

2.4 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Bottom friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Sloped bottom topography . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Other source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The vector form of the shallow water equations . . . . . . . . . . . . . . . . . 18

2.7 Summary of properties related to the shallow water equations . . . . . . . . . 19

2.7.1 Comparison with high speed compressible gas flow . . . . . . . . . . . 19

2.7.2 Correspondence to the incompressible Navier-Stokes equations . . . . 19

2.7.3 Valid circumstances for the ‘shallow water‘ assumption . . . . . . . . . 20

3 Finite element approaches to the governing equations 21

3.1 Difficulties arising from the application of standard Galerkin methods to con-
vection dominated problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Loss of the best-approximation property . . . . . . . . . . . . . . . . . 23

3.1.2 Under-diffusive behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Different strategies for stabilizing the finite element solution . . . . . . . . . . 26

3.2.1 Upwind schemes in the finite difference method . . . . . . . . . . . . . 26

3.2.2 Petrov-Galerkin methods for the 1D convection diffusion equation . . 27



3.2.3 The Streamline-Upwind Petrov-Galerkin (SUPG) method . . . . . . . 28
3.2.4 The characteristic Galerkin scheme . . . . . . . . . . . . . . . . . . . . 30

3.3 The characteristic-based-split (CBS) algorithm . . . . . . . . . . . . . . . . . 33
3.4 Adaption of the CBS scheme to the shallow water equations . . . . . . . . . 33

4 Implementation of the characteristic-based-split algorithm 37
4.1 The high order finite element framework AdhoC++ . . . . . . . . . . . . . . 37

4.1.1 Organization of the code . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Integrated Legendre polynomials as a finite element basis . . . . . . . 38

4.2 Non-linear operations on solution fields . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Direct manipulation of the coefficient vector . . . . . . . . . . . . . . . 40
4.2.2 Least squares projection . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 The ground slope source term . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Implementation of boundary conditions . . . . . . . . . . . . . . . . . . . . . 43
4.5 The dry-wet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Estimation of the critical time step . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Shock capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Results 47
5.1 The dam break model problem . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Shock development despite an initial smooth Gaussian bell surface . . . . . . 48
5.3 Other validation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Wave entering a harbour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 53



1

Chapter 1

Introduction

1.1 Shallow water type of flows as a common problem in en-
vironmental engineering

In environmental engineering problems of large scale, fluid flow with little vertical influences
often arise. For example, in flood forecasting one might want to predict the water height at
some important infrastructure points as a consequence of a dam break upstream. In another
situation of long lasting super-regional rainfall, it might be to decide if it is necessary to
evacuate a village that is situated beside a big river. In many cases, the influxes upstream
are known by water level measurements (at water gauges) in connection with a water level
discharge relation. To estimate the peak height at the village, the reaction of the river must
be predicted. This can be modelled as a one dimensional shallow water flow. In another
problem type, the peak water level at the village might be given and the subject of interest
is a prediction of which areas are affected by the flood. As can be seen, the flow problems
in environmental engineering are very versatile, and it would be desirable to have a generic
method available for handling problems of the type described above.

1.2 General approaches to the solution of shallow water flows

There are different approaches to those kind of problems. A rough division can be made
into black-box and white-box concepts. While black-box methods relate input and output
variables by empirical laws, white box models try to completely describe the underlying
physics of the problem.

A drawback of black-box models is the limited ability to be adapted to different situations.
Additionally, the insight to the nature of the problems is in most cases very small. An example
of such a method would be the water level prediction at some point of interest through the
superposition of unit discharge hydrographs. A white-box approach would be the description
of the fluid flow in terms of physical conservation laws resulting in a system of differential
equations that has to be solved. For this kind of problem, the quantities that have to be
preserved are mass and momentum. Requiring their conservation on an infinitesimal control
volume results in the formulation of the famous Navier-Stokes equations for incompressible
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fluids. As there are no restrictions on the shape of the flow domain, this could represent the
generic tool mentioned in section 1.1.

However, in most real world cases it is not possible to derive an analytical solution for the
Navier-Stokes equations, due to complicated geometries, initial conditions, boundary condi-
tions or source terms. For this reason, numerical methods are applied, which can be very time
consuming. Fortunately, it turns out, that under the assumption of a hydrostatic pressure
distribution one space dimension of the Navier-Stokes equations can be eliminated without
much loss of accuracy. Of course this is only exact if the fluid is at rest, but for a typical engi-
neering accuracy in many cases it is sufficient that the horizontal scales are much larger than
the vertical scales (see section 2.7.3). The resulting system of partial differential equations
is called shallow water equations (or also Saint Venant equations, especially the 1-d version)
and is described in detail in chapter 2. Although the problem of finding analytical solutions
does not change by this modification, the reduction of one space dimension reduces the com-
putational cost of numerical solutions greatly. In this work, the shallow water equations are
solved with the finite element method, one of the most popular techniques for solving par-
tial differential equations. In particular the characteristic-based split algorithm, presented in
section 3.3, will be used to overcome problems arising from convective term in the shallow
water equations. To start with an overview of existing numerical procedures suitable for this
kind of problems, some popular methods are described in the following section.

1.3 Overview of existing numerical solution methods

There are many techniques for achieving an approximation to the analytical solution of the
governing equations of fluid dynamics. Besides the related finite difference method, finite
volume method and finite element method, alternative procedures like Lattice-Boltzmann
methods were also able to give excellent results. But as they follow a different approach
and this work is only concerned with the finite element method, the reader is referred to the
extensive literature on this topic.

1.3.1 Finite difference method

In the finite difference method, the continuous differential operators of the partial differential
equation are replaced by discrete difference operators. This requires a previous discretization
of the geometry, such that the difference operators can be written in terms of the grid points.
However, it is difficult to find difference operators for unstructured grids, so the method is
in most cases restricted to structured grids. For a simple approximation of the first order
derivative forward difference operators with first order accuracy

∂φ

∂x
≈ φi+1 − φi

∆x
(1.1)

or central difference operators with second order accuracy

∂φ

∂x
≈ φi+1 − φi−1

2 ∆x
(1.2)
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can be used, where φi denotes the unknown quantity at node i. As an example, the one
dimensional transport equation of the form

∂φ

∂t
+ U

∂φ

∂x
= 0 (1.3)

would become by substituting forward differences in time and central differences in space the
following difference equation:

φn+1
i − φni

∆t
+ U

φni+1 − φni−1

2 ∆x
= 0. (1.4)

Note, that this is an explicit time-integration, because the convective term U(∂φ/∂x) is
evaluated at t = n. If the evaluation would be at t = n + 1, it would be called an implicit
scheme. However, there are various other difference operators with higher order accuracy
or for approximating different derivatives, that have to be chosen independently for each
problem.

The resulting system of equations requires the solution to fulfill the differential equation on a
nodal basis. The solution process can be done by explicit methods like Gaussian elimination
or by iterative procedures like the conjugate gradient method. After the solution process sev-
eral post-processing techniques can be applied. The most important step missing is probably
the interpolation of the solution field in-between the nodes.

Although the finite difference method is not subject of this work, it is important to note
that transient finite element simulations often use a finite difference discretization in time.
Additionally, the first good results in solving the equations of fluid dynamics numerically were
achieved in a finite difference context by choosing upwind difference operators, as discussed
in chapter 3.2.

1.3.2 Finite volume method

The finite volume method is a procedure for numerical solution of fluid mechanics equations
which is currently the most commonly used method in commercial codes. The basic strategy is
to discretize the domain by dividing it into finite volumes and requiring the partial differential
equation to be satisfied in an integral over such a volume. In the next step, an integration by
parts is performed on the volume integrals such that they are converted into surface integrals
over the volumes faces. Now, those integrals are written in terms of the nodal degree of
freedoms and a global system of equations is formulated. The time integration can similar to
the finite element method be done by a finite difference time discretization.

One of the main problems of the finite volume method is that its accuracy is of order one
and an extension to high orders is not straightforward. As a result, good accuracy requires
high mesh refinement.

1.3.3 Finite element method

One of the most widely used procedures for solving partial differential equations especially
in structural mechanics and electrical engineering is the finite element method. There exist
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a variety of different procedures belonging to this family. However they share important
similarities, such as:

• Reformulation of the partial differential equation in a weak form
• Discretization of the continuous weak form by choosing two spaces spanned by a finite

amount of basis functions
• Assembly of the global stiffness matrix by summing up the individual element contri-

butions

The general procedure starts with formulating the weak form of the problem as

Find u ∈ X such thatB(u, v) = f(v) ∀v ∈ Y, (1.5)

where B(u, v) is a bilinear form corresponding to the homogeneous part of the differential
equation and f(v) a linear mapping corresponding to the source term. At this point an
integration by parts is often applied to transfer derivatives from u to v. As a result the
continuity demand on u is reduced (or ’weakened’). The uniqueness of the solution of the
weak form is given by the Lax-Milgram Theorem under the condition that X and Y are
Hilbert spaces [Babus̆ka, 1971].

In the next step, X and Y are substituted by the finite dimensional subspaces Xh and Y h,
such that the discretized solution û is represented by a set of basis functions N and their
corresponding coefficients ũ. Those coefficients are the unknowns which the finite element
method attempts to find. This is done by extracting the coefficients from the discretized
bilinear map B(û, v̂) with the consequence that B(û, v̂) does not anymore contain unknown
quantities and therefore can be computed. Now, the resulting linear system can be solved
for ũ.

An important family of finite element methods are weighted residual methods. In this case
the weak form is achieved simply by requiring the L2 inner product defined as

(a, b) =

∫
Ω
a · b dΩ (1.6)

of all v ∈ Y with the differential equation dependent on u ∈ X to vanish. A special weighted
residual method called (Bubnov-)Galerkin method discretizes X and Y with the same func-
tion space which results in an optimal approximation for self-adjoint problems [Zienkiewicz
et al., 2005]. More details on this property can be found in section 3.1.1.

The choice of the function space can be very different, for instance low order finite elements
are discretized with a piecewise linear ansatz. However, high order shape functions have a
few important advantages:

• Exponential convergence in the energy norm for smooth solutions (and for non-smooth
solutions at least equal convergence rate compared to low order finite elements)
• Better performance in case of large deformations
• Robustness with respect to locking effects
• Required for achieving good accuracy with blended elements

There are many possibilities for creating a high-order finite element basis, commonly used are
Lagrange polynomials, Legendre polynomials, integrated Legendre polynomials or NURBS
(Non-Uniform Rational B-Splines). Because of their orthogonality properties and good condi-
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tion number for finite element matrices, only integrated Legendre polynomials are considered
here. One main goal of this work is to explore the performance of the characteristic-based-spit
algorithm introduced in chapter 3 in combination with high-order shape functions. A more
detailed discussion about the integrated Legendre basis is given in section 4.1.2.

As indicated before, transient analysis with the finite element method is in most cases done
in combination with a finite difference time discretization. Although it might in some cases
be reasonable to use a space-time FEM formulation, generally the finite difference version is
preferred.

1.4 Advantages of the finite element method

There are a few key benefits that explain the huge success of the finite element method over
the last decades. An important point is the solid mathematical basis that allows systematic
research regarding, for example, error estimation. The second and probably most important
feature is the flexibility in handling different and complex geometries easily. Due to the defini-
tion of basis functions in a parameter space together with a local global mapping it becomes
very easy to apply a finite element procedure to basically any structured or unstructured
mesh. As a consequence, the number of degrees of freedom needed to describe some complex
geometry can be reduced greatly. In contrast to that, the finite difference method can only be
used efficiently with structured grids which is a big drawback for many practical engineering
applications. Additionally, for the finite element method introducing high order schemes is
straightforward and much easier compared to, for instance, the finite volume method. Also
the imposition of Neumann boundary conditions can be done naturally in the finite element
method while especially in the finite difference method the boundary conditions have to be
discretized with at least as high order of accuracy than the discretization on the domain.

To make use of those benefits it is strongly desirable to develop a finite element environment
for computing fluid dynamic problems. However this is not as straight forward as for typical
structural engineering formulations, as it will be shown in chapter 3.1.
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Chapter 2

Derivation of the shallow water
equations

There are two general ways to derive the shallow water equations. The first possibility is to
integrate the Navier-Stokes equations in their incompressible form over the water height and
take averaged values for the velocities. The second alternative is to consider conservation laws
for mass and momentum directly on an infinitesimal control volume. Because both strategies
are in some way physically meaningful they will be presented separately in this chapter.

2.1 Prerequisites

In this section, a short introduction on general notation, hydrostatic pressure and (surface-
and bottom-)boundary conditions will be given, because those subjects will be frequently
addressed in this chapter.

2.1.1 Notation

As the notation is important for the following sections, an overview of the quantities used in
this work is presented first. Figure 2.1 shows a schematic view of a shallow water problem,
where η is the water surface elevation and H the bottom level, both relative to a horizontal
reference level. Note that in figure 2.1 H would be negative. Defining H this way is slightly
different than often done in the context of the CBS algorithm (see, for example, in Zienkiewicz
et al. [2005]). However, it is more straightforward to think of a geodetic height that increases
with x3 than the other way round. Consequently the total water height is the difference
between surface and bottom: h = η − H. Another commonly used abbreviation is the
definition of U = u · h as the mass flow vector (to be precisely, as U does not contain the
density ρ, it is more of a volume flow).
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Figure 2.1: Notation

2.1.2 Hydrostatic pressure

The basic assumption in the shallow water theory is that the pressure distribution on a
vertical profile is hydrostatic. This means, that the pressure increases linearly with higher
fluid depth h. The constant factor is equal to the density ρ of the fluid times the gravitational
constant g. So the pressure distribution can be written as

p(h) = ρgh+ p0, (2.1)

where p0 is the atmospheric pressure acting on the water surface. However, this is only
completely exact if the fluid is at rest.

2.1.3 Bottom and surface boundary conditions

To derive the shallow water equations, some assumptions for the bottom boundary and the
water surface have to be introduced. Generally, it is assumed that the velocity normal to
the bottom is zero. The dot product of the (downside pointing) normal vector defined as
n = ( ∂H∂x1

, ∂H∂x2
,−1)T with the velocities u = (ub1, u

b
2, u

b
3)T gives the following condition:

ub1
∂H

∂x1
+ ub2

∂H

∂x2
− ub3 = 0, (2.2)

where the b superscript indicates evaluation at the bottom level. In combination with a no
slip assumption (ub1 = ub2 = 0) the bottom boundary condition reduces to ub3 = 0. However,
in some cases of flow over infiltrating ground a velocity in normal direction may occur.

On the surface, the relative normal velocity needs to vanish to make sure that no particles
leave the water continuum. As a result, the normal velocity must be equal to the time
derivative of the surface elevation. The formulation arising from this condition is:

∂η

∂t
+ n · u = 0.
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Note that it is possible to interchange ∂η
∂t with ∂h

∂t as the bottom height H is normally assumed
to be time invariant:

∂h

∂t
=
∂(η −H)

∂t
=
∂η

∂t
−
�
�
�7

0
∂H

∂t
=
∂η

∂t
.

Now, the surface condition can be written as:

∂h

∂t
+ us1

∂η

∂x1
+ us2

∂η

∂x2
− us3 = 0, (2.3)

with the s superscript indicating velocities on the water surface.

2.2 Integration of the Navier-Stokes equations over the height

The first and probably most popular way to derive the 2-d shallow water equations, as
presented in Vreugdenhil [1994], is to integrate the 3-d Navier-Stokes equations over the
height. As mentioned in chapter 1, this includes the assumption of a hydrostatic pressure,
introduced in section 2.1.2, as well as the application of bottom and top boundary conditions
described in section 2.1.3. To be able to start the integration, an introduction to the Navier-
Stokes equations for incompressible fluid flow is given first.

2.2.1 The Navier-Stokes equations

In three dimensions, considering a infinitesimal control volume and formulating the mass
balance

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0

and momentum balance

∂ui
∂t

+
∂(u1ui)

∂x1
+
∂(u2ui)

∂x2
+
∂(u3ui)

∂x3
= fi −

∂p

∂xi
+

1

ρ

(
∂τ1i

∂x1
+
∂τ2i

∂x2
+
∂τ3i

∂x3

)
(2.4)

leads to the Navier-Stokes equations (with i being the space dimension and fi being a volume
force acting in this direction). However, the system is not complete, as there are more
unknowns than equations and some constitutive law has to be defined to relate strain rates
and stresses. For example, assuming inviscid flow, the stress term vanishes and the Navier-
Stokes equations simplify to the Euler equations:

∂ui
∂t

+
∂(u1ui)

∂x1
+
∂(u2ui)

∂x2
+
∂(u3ui)

∂x3
= fi −

∂p

∂xi
. (2.5)

Alternatively, the stresses can be taken proportional to the strain rates. This would result
in equation 2.5 with an additional diffusion term. However, the derivation of the shallow
water equations starts commonly from equation 2.4, leaving the stresses unspecified in the
beginning. In the following integration over the height, the stresses acting on the vertical faces
of an infinitesimal volume (in this case τ2i and τ1i) are assumed to be zero. The boundary
stresses τ b3i and τ s3i arising from the integration of τ3i are then approximated by empirical laws,
describing the interaction of the fluid with the boundary. A justification of this assumption
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is that in real world situations the bottom and top influences are dominant [Zienkiewicz and
Taylor, 2000]. Additionally, in this form it is not possible to impose, for example, traction
boundary conditions.

2.2.2 Integration of the mass conservation equation

Starting with the mass conservation, the integration from bottom to surface yields:∫ η

H

(∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
dx3 = 0

⇔
∫ η

H

(∂u1

∂x1
+
∂u2

∂x2

)
dx3 + u3

∣∣s
b

= 0. (2.6)

For switching the integral and derivative operators the Leibniz rule for differentiation under
the integral sign (see, for instance, Zienkiewicz et al. [2005]) has to be applied:∫ b

a

∂

∂x
F (x, r)dr =

∂

∂x

(∫ b

a
F (x, r)dr

)
− F (x, b)

∂b

∂x
+ F (x, a)

∂a

∂x
, (2.7)

where a = a(x) and b = b(x). Applied to equation 2.6, the derivatives are moved outside the
integral and new boundary terms arise:

∂

∂x1

∫ η

H
u1 dx3 − us1

∂η

∂x1
+ ub1

∂H

∂x1
+

∂

∂x2

∫ η

H
u2 dx3 − us2

∂η

∂x2
+ ub2

∂H

∂x2
+ us3 − ub3 = 0.

Because the exact distribution of ui along the x3 direction is not known, a mean value is
taken, such that the integral of a velocity becomes:∫ η

H
ui dx3 = ui(η −H) = uih, (2.8)

where the overbar indicates a depth averaged quantity. Rearranging and inserting the bound-
ary conditions of equations 2.2 and 2.3 for ub3 and us3 it turns out that the boundary terms
cancel except for the time derivative. The resulting mass conservation of the shallow water
equations is:

∂h

∂t
+
∂(ū1h)

∂x1
+
∂(ū2h)

∂x2
= 0

2.2.3 Integration of the momentum equations

The first step in deriving the shallow water momentum equations is the assumption that
vertical velocities are small compared to horizontal velocities (and therefore the corresponding
acceleration terms negligible). Consequently, the vertical Navier-Stokes momentum equation
can be reduced to a hydrostatic pressure balance:

∂p

∂x3
+ ρg = 0 (2.9)



2.2. Integration of the Navier-Stokes equations over the height 11

Equation 2.9 can be integrated directly, resulting in the hydrostatic pressure distribution of
equation 2.1.

The next step is to integrate the horizontal momentum balances of the Navier-Stokes equa-
tions (see equation 2.4) from H to η. As the derivation is identical in x1 and x2 dimensions
for simplicity only the first momentum equation is considered:∫ η

H

(
∂u1

∂t
+
∂(u2

1)

∂x1
+
∂(u1u2)

∂x2
+
∂(u1u3)

∂x3
+

1

ρ

( ∂p
∂x1
− ∂τ11

∂x1
− ∂τ21

∂x2
− ∂τ31

∂x3

))
= 0 (2.10)

To transform the material derivative part∫ η

H

(
∂u1

∂t
+
∂(u2

1)

∂x1
+
∂(u1u2)

∂x2
+
∂(u1u3)

∂x3

)
dx3

=

∫ η

H

(∂u1

∂t
+
∂u2

1

∂x1
+
∂(u1u2)

∂x2

)
dx3 + (u1u3)

∣∣s
b
, (2.11)

again the Leibniz rule for differentiation under the integral sign, shown in equation 2.7, is
used to move the derivatives out of the integral. As before, the respective boundary terms
cancel. It is worth to take a closer look at those manipulations, because the details of this
step are often omitted in the literature.

An important difference compared to the mass conservation equation is that the momentum
conservation contains non-linear, second order velocity terms. Splitting u into a mean value
ū and a variation u′ with∫ η

H
ū dx3 =

∫ η

H
u dx3 and

∫ η

H
u′ dx3 = 0,

it is clear that, for example:∫ η

H
(u1u2) dx3 =

∫ η

H

(
ū1 + u′1)(ū2 + u′2

)
dx3 =

∫ η

H
(ū1ū2 +��

�*0
ū1u

′
2 +��

�*0
u′1ū2 + u′1u

′
2) dx3.

The mixed terms cancel as the integral of u′ (multiplied with a constant ū) is equal to zero,
but the so called differential advection term u′1u

′
2 is non-linear and does therefore (generally)

not vanish. Together with u′ = u− ū, this relation becomes:

∫ η

H
(u1u2) dx3 = hū1ū2 +

differential advection term ≈ 0︷ ︸︸ ︷∫ η

H
(u1 − ū1)(u2 − ū2) dx3 ≈ hū1ū2. (2.12)

As discussed in detail in section 2.8 of Vreugdenhil [1994], it is difficult to model those
additional terms and therefore they are mostly omitted. However, if the influences cannot be
neglected, a 3-d simulation might have to be considered.

Now, using ub1 = ub2 = ub3 = 0 as well as us3 = ∂η
∂t + us1

∂η
∂x1

+ us2
∂η
∂x2

both resulting from the
boundary conditions described in chapter 2.1.3 and substituting in the averaged velocities of
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equation 2.12, the terms of equation 2.11 can be developed as follows:∫ η

H

∂u1

∂t
dx3 =

∂

∂t

∫ η

H
u1 dx3 − us1

∂η

∂t
+ ub1

∂H

∂t
=
∂(hū1)

∂t
− us1

∂η

∂t
(2.13)

∫ η

H

∂(u2
1)

∂x1
dx3 =

∂

∂x1

∫ η

H
u2

1 dx3 − (us1)2 ∂η

∂x1
+ (ub1)2 ∂H

∂x1

=
∂(hū2

1)

∂x1
− (us1)2 ∂η

∂x1
(2.14)

∫ η

H

∂(u1u2)

∂x2
dx3 =

∂

∂x2

∫ η

H
(u1u2) dx3 − (us1u

s
2)
∂η

∂x2
+ (ub1u

b
2)
∂H

∂x2

=
∂(hū1ū2)

∂x2
− (us1u

s
2)
∂η

∂x2
(2.15)

(u1u3)
∣∣s
b

= us1u
s
3 − ub1ub3 = us1

∂η

∂t
+ (us1)2 ∂η

∂x1
+ us1u

s
2

∂η

∂x2
(2.16)

After inserting equations 2.13 - 2.16 into equation 2.10 and canceling the boundary terms,
the momentum balance becomes:

∂(hū1)

∂t
+
∂(hū2

1)

∂x1
+
∂(hū1ū2)

∂x2
+

1

ρ

∫ η

H

( ∂p
∂x1
− ∂τ11

∂x1
− ∂τ21

∂x2
− ∂τ31

∂x3

)
dx3 = 0

The pressure term can be developed in a similar manner using the hydrostatic pressure
distribution (see section 2.1.2) and assuming constant density in all directions:∫ η

H

∂p

∂x1
dx3 =

∫ η

H

∂

∂x1

[
ρg(η − x3) + p0

]
dx3

=

∫ η

H
ρg

∂η

∂x1
+
∂p0

∂x1
dx3

= ρgh
∂η

∂x1
+ h

∂p0

∂x1
.

As the derivation of the shallow water equations is frequently done considering only inviscid
flow (but still taking bottom and surface stresses into account, as mentioned in section 2.2.1),
the integral of the stress terms can be simplified:∫ η

H

(∂τ11

∂x1
+
∂τ21

∂x2
+
∂τ31

∂x3

)
dx3 = τ31

∣∣s
b

Together the momentum conservation part of the 2-d shallow water equations in x1 direction
is:

∂(hū1)

∂t
+
∂(hū2

1)

∂x1
+
∂(hū1ū2)

∂x2
+ gh

∂η

∂x1
+
h

ρ

∂p0

∂x1
+

1

ρ
(τ b31 − τ s31) = 0. (2.17)
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Figure 2.2: Mass balance on one dimensional infinitesimal control volume

2.3 Conservation laws on an infinitesimal control volume

The second and probably more straightforward way to derive the shallow water equations
as presented in Plumb [2003] is to directly apply mass and momentum equations on an
infinitesimal control volume. Because this is just an alternative way to the strategy described
in the previous chapter, for simplification reasons just the one dimensional case is considered.
Figure 2.2 describes an infinitesimal control volume with U being the mass flow. Now, the
mass conservation requires the condition

∂m

∂t
= ρU(x)− ρU(x+ dx) (2.18)

to hold. Substituting U = u · h and m = ρhdx into equation 2.18, the following expression
arises:

ρ
∂h

∂t
dx = ρu(x)h(x)− ρu(x+ dx)h(x+ dx) = −ρ∂(uh)

∂x
dx

Finally, after canceling ρ and dx, the 1-d shallow water mass conservation equation reads:

∂h

∂t
+
∂(uh)

∂x
= 0.

The momentum equations are derived in a similar manner. The terms contributing to the
momentum balance are:

• hydrostatic pressure on both sides
• mass in- and outflow (cancels in moving coordinates)
• atmospheric pressure on the water surface

as well source terms (including wind drag force and bottom friction) which are discussed in
section 2.4 and therefore not considered here. A summary of all terms can be seen in in figure
2.3, where influences due to mass flow are written in parentheses as they do not contribute
to the momentum balance in moving coordinates.

The net force resulting from the atmospheric pressure can be split in a horizontal part which
contributes to the momentum balance and a vertical part which does not cause any change in
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Figure 2.3: Momentum balance on one dimensional infinitesimal control volume

the motion of the fluid. The horizontal part can be extracted by multiplying the atmospheric
pressure p0 with the difference in the surface elevation ∆h = ∂h

∂xdx:

P0,h = p0
∂h

∂x
dx.

In the next step, the force arising from differences in the pressure acting on the left and right
side is calculated. The integral of the hydrostatic pressure (see section 2.1.2) is:

P =
ρgh2

2
+ p0h,

and thus the difference between the net forces on both side of the control volume gives:

Pleft − Pright =
1

2
ρgh(x)2 + p0h(x)− 1

2
ρgh(x+ dx)2 − p0h(x+ dx)

=
1

2
ρg
(
h(x)2 − h(x+ dx)2

)
+ p0

(
h(x)− h(x+ dx)

)
=

1

2
ρg
(
h(x) + h(x+ dx)

)(
h(x)− h(x+ dx)

)
+ p0

(
h(x)− h(x+ dx)

)
= −ρgh∂h

∂x
dx− p0

∂h

∂x
dx

Applying Newtons law of motion F = ma = mDu
Dt , the momentum balance for moving

coordinates or in other words in Lagrange formulation can be written as:

m
Du

Dt
= Pleft − Pright + P0,h, (2.19)
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with Du/Dt being the material derivative, defined as

D

Dt
=

∂

∂t
+ u

∂

∂x
.

Substituting the corresponding net pressure terms as well as m = ρh dx, equation 2.19 be-
comes:

ρh
Du

Dt
dx = −ρgh∂h

∂x
dx− p0

∂h

∂x
dx+ p0

∂h

∂x
dx

⇔ Du

Dt
= −g∂h

∂x
.

After applying the material derivative to change into a Eulerian coordinate system, the
resulting expression is the final 1-d momentum conservation equation:

∂u

∂t
+ u

∂u

∂x
= −g∂h

∂x
.

2.4 Source terms

As the shallow water equations are used to describe many different types of problems also on
different scales, there are a lot of source terms that could be considered. This ranges from
Coriolis force dominated oceanic flow to small scale flows in rivers with a high influence of
bottom friction and gravity. The most commonly used (and in this section presented) terms
are: wind drag force, bottom friction, gravity in combination with sloped bottom topography
and Coriolis forces.

2.4.1 Bottom friction

The bottom friction is of particular importance if the viscosity is assumed to be zero. In
combination with a sloped bottom, the total energy of the system would grow constantly and
a steady state would not be reached if no friction is considered. However, the exact value is
generally unknown and has to be estimated.

A commonly used empiric formula to determine the mean velocity of turbulent open channel
flows is the Manning-Strickler formula (see, for instance, Rössert [1999]):

u = kst ·
√
I ·R

2
3
h , (2.20)

where the Strickler coefficient kst is a empiric constant, I is the absolute bottom slope (i.e.
for 1% slope I would be 0.01) and Rh is the hydraulic radius. The hydraulic radius is defined
as the ratio of the cross section area and the wetted perimeter. In the case of shallow water
flow it can be reduced to just the water height h (because the horizontal scale is assumed to
be dominant). Table 2.1 shows a few examples for Strickler-coefficients for different types of
soil. To develop a shallow water model, that coincides with the Manning-Strickler formula,
first the force balance between gravity and friction is formulated:

τ b3i = ρghI. (2.21)
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material kst
sand 50
fine gravel 40
gravel 35
torrent with coarse gravel 25 - 28
torrent with moving coarse gravel 19 - 22
very rough rock 15 - 20
low vegetation 30 - 35
high vegetation 20 - 25
smoothed concrete 90
rough concrete 55
iron 96 - 120
iron, strongly rusted 67 - 80

Table 2.1: Strickler coefficients for different soil types [Rössert, 1999, 47,48]

Subsequently, the Manning-Strickler equation (2.20) is reformulated and substituted into
equation 2.21, leading to the following expression for the bottom friction source term:

τ b3i =
ρgui|u|
k2
sth

1
3

.

Note that the same result can be achieved by substituting C = ksth
1
6 into the Chézy expres-

sion, defined as

τ b3i =
ρgui|u|
C2

,

with the Chézy coefficient C [Weiyan, 1992].

However, this treatment of the bottom friction is just a vague estimation and in some cases
where higher accuracy must be achieved, different models might have to be implemented. An
overview of bottom friction models for free surface flows is given by Olivier et al. [2009].

2.4.2 Sloped bottom topography

Often, the bottom topography is not totally flat. In those cases, the gravitation has to be
taken into account. Substituting η = h+H into the pressure term of (2.17), the influence of
the bottom slope can be seen directly:

gh
∂η

∂x1
= gh

∂h

∂x1
+ gh

∂H

∂x1
,

where the second term can be interpreted as the horizontal component of the gravitational
force ρgh (equation 2.17 was divided by the density, so ρ doesn’t appear in the above equa-
tion).

Another possibility often used together with the CBS algorithm presented in section 3.3 is
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to use the alternative pressure term and its corresponding ground slope source term:

gh
∂η

∂xi
=

∂

∂x1

(
g
h2 −H2

2

)
+ g(h+H)

∂H

∂xi
(2.22)

Which can be validated by some simple manipulations using η = h+H:

∂

∂x1

[1

2
g(h2 −H2)

]
=

1

2
g
∂

∂x1

[
(h−H)(h+H)

]
=

1

2
g
[
(h−H)

∂

∂xi
(h+H) + (h+H)

∂

∂x1
(h−H)

]
=

1

2
g
[
h
∂h

∂x
−H∂h

∂x
+ h

∂H

∂x
−H∂H

∂x
+ h

∂h

∂x
+H

∂h

∂x
− h∂H

∂x
−H∂H

∂x

]
= gh

∂h

∂xi
− gH ∂H

∂xi
= gh

∂(η −H)

∂xi
− g(η − h)

∂H

∂xi

= gh
∂η

∂xi
− gη∂H

∂xi

2.4.3 Other source terms

It is also straight forward to include Coriolis forces f . These give after depth integration the
following source terms:

f1 = −hf̂ ū2

f2 = hf̂ ū1,

where f̂ is the Coriolis parameter [Zienkiewicz et al., 2005].

If a wind drag force is considered, an empiric expression similar to the one used for describing
the bottom friction needs to be applied. A commonly used model is:

τ si = γvi|v|

with γ being a constant model factor and v being a given wind velocity field (see, for instance,
Vreugdenhil [1994]).

2.5 Boundary conditions

As a system of partial differential equations is not complete by itself, specifying the right
boundary conditions is crucial. However, there are certain limitations for the application of
boundary conditions, depending on the type of flow on the boundary. For example, on a
region with super-critical inflow, all values (water surface elevation as well as both velocity
components) have to be specified. The physical interpretation is that no information can
be transported upstream (wave celerity > velocity), and thus there is no way that values at
the inflow boundary can be determined by their values downstream. On the other hand for
sub-critical inflow only 2 boundary conditions can be imposed, as the values are now indeed
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flow type number of boundary conditions

super-critical inflow 3
sub-critical inflow 2
sub-critical outflow 1
super-critical outflow 0

Table 2.2: Number of boundary-conditions for different flow types [Vreugdenhil, 1994]

dependent on the flow downstream. Table 2.2 shows the number of boundary conditions that
have to be imposed, dependent on the Froude number

Fr =
flow velocity

wave celerity
=

u√
gh
, (2.23)

which describes the flow type (Fr > 1 for super-critical and Fr < 1 for sub-critical flow).

Besides conditions on h and U, different other types of boundary conditions can be applied.
Especially the simulation of an open domain is in many cases necessary due to the limited
computational capacity. In this case, waves have to be able to leave the domain without
reflections. For more detailed information about advanced boundary conditions the reader is
referred to the different methods presented in the literature (see, for example, Vreugdenhil
[1994]). However, in section 4.4 it is shown that using the Manning-Strickler formula to set
outflow velocities is in many practical cases sufficient for simulating an open domain.

2.6 The vector form of the shallow water equations

The full 2-d shallow water equations are commonly written in a vector form of the type

∂Φ

∂t
+
∂Fi

∂xi
+ Q = 0,

with i = 1, 2 as well as

Φ =


h
hu1

hu2



Fi =



hui

hu1ui + δ1i
1

2
g(h2 −H2)

hu2ui + δ2i
1

2
g(h2 −H2)
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Q =



0

−hf̂ ū2 + g(h+H)
∂H

∂x1
+
h

ρ

∂pa
∂x1
− 1

ρ
τ s31 +

gū1|ū|
k2
sth

1/3

hf̂ ū1 + g(h+H)
∂H

∂x2
+
h

ρ

∂pa
∂x2
− 1

ρ
τ s32 +

gū2|ū|
k2
sth

1/3


,

where δij is the Kronecker Delta with the values 1 for i = j and 0 for j 6= 0, f̂ is the
Coriolis force, τ s3i is the surface traction and kst is the Strickler coefficient. Additionally, for
repeated indices the Einstein summation convention applies. Note that k2

sth
1/3 could also be

substituted by the square of the Chézy coefficient C2.

2.7 Summary of properties related to the shallow water equa-
tions

The shallow water equations are a special system of partial differential equations. The 2-d
version describes a 3-d incompressible fluid flow with a hydrostatic pressure assumption. This
section serves as a summary of the behavior of the shallow water equations and recapitulates
some important assumptions, that have been made during the derivation.

2.7.1 Comparison with high speed compressible gas flow

As that the shallow water equations describe a fluid flow of one dimension higher than
the dimensionality of the system of equations (so 3-d flow would be described by a 2-d
equation system), there is an additional direction where the fluid ‘can go‘ if the net pressure
increases. As a result, although the fluid is incompressible, the shallow water equations are
of a compressible type similar to the Euler equations for compressible flow. That means
that solutions can form shock waves similar to those observed in compressible gas flows.
An example of this phenomenon can be seen in figure 5.3 where the smooth Gaussian bell
initial condition forms a shock after some time. This kind of information is very important for
numerical solution procedures as it is generally difficult to approximate shocks without major
oscillations around the discontinuity. Strategies to handle such phenomena numerically are
discussed in section 4.7.

2.7.2 Correspondence to the incompressible Navier-Stokes equations

As pointed out in Vreugdenhil [1994], the derivation of the shallow water equations was done
by considering incompressible Newtonian flow. Consequently, the resulting solutions become
identical in the case of zero water surface fluctuations. As a consequence, for small deviations
of the surface height compared to the total water height, the 3-d Navier-Stokes equations for
incompressible flow with a frictionless fixed upper bound give similar results.
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2.7.3 Valid circumstances for the ‘shallow water‘ assumption

The basic assumption of a hydrostatic pressure (see section 2.1.2) is not generally valid for a
three dimensional fluid flow. For example, breaking waves involve a pressure distribution very
different from hydrostatic. It has to be examined under what circumstances this assumption
is valid. According to Vreugdenhil [1994], all horizontal scales have to be much larger than
all vertical scales where the factor of ‘much larger‘ is not exactly defined but a guiding value
could be about 20 times. Vertical scales are: water depth h, thickness of boundary layers,
variation of the bottom topography H and variation of the water surface η. Horizontal
scales include: size of the considered flow geometry, size of the bottom topography, distances
between variations of external influences and the wave length. So the quality of the shallow
water assumption can be estimated by comparing the the relevant vertical and horizontal
scales. Additionally, it is important to remember that the derivation was done including
the assumptions of constant density in all directions, time invariant bottom topography and
inviscid fluid flow.
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Chapter 3

Finite element approaches to the
governing equations

As seen in section 2, one major characteristic of the shallow water equations is the convective
term, which renders the problem non-self-adjoint. To study the behavior of different finite
element methods for fluid problems, the convection diffusion equation is commonly used as
a model problem. Using the summation convention for repeated indices, the steady state
problem is formulated as follows:

∂(Uiφ)

∂xi
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q = 0 in Ω (3.1a)

φ = φD at ΓD (3.1b)

n · kdφ
dx

= qn at ΓN (3.1c)

Applying the product rule to equation 3.1a yields:

Ui
∂(φ)

∂xi
+ φ

∂(Ui)

∂xi
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q = 0

which can be reduced to

Ui
∂(φ)

∂xi
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q = 0 (3.2)

if the divergence ∇· U = ∂Ui/∂xi of the velocity field equals zero (for flow fields resulting
from incompressible fluids). In many cases only the one dimensional version

U
dφ

dx
− d

dx

(
k
dφ

dx

)
+Q = 0 (3.3)

is considered.
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3.1 Difficulties arising from the application of standard Galerkin
methods to convection dominated problems

Applying the standard Galerkin approximation to the 1-d steady state convection-diffusion
equation, as described in section 1.3.3, the weak form∫

Ω
w
[
U
dφ

dx
− d

dx

(
k
dφ

dx

)
+Q

]
dΩ = 0 (3.4)

is discretized with
φ ≈ φ̂ = Nφ̃,

where N is the vector of basis functions and φ̃ is the vector of degree of freedom values.
After integrating the second term by parts, the weak form becomes:∫

Ω

(
ŵ U

dφ̂

dx
+
dŵ

dx
k
dφ̂

dx
+ ŵQ

)
dΩ +

∫
ΓN

ŵqn dΓN = 0. (3.5)

Inserting the Galerkin discretization yields to the compact matrix form

Kφ̃ = f

with

K =

∫
Ω
NTU

dN

dx
+
dNT

dx
k
dN

dx
dΩ

f = −
∫

ΓN

NT qn dΩ−
∫

Ω
NTQdΩ.

As shown by Donea and Huerta [2003], for the choice of standard linear basis functions the
discrete system arising from the Galerkin method is identical (except for the source term) to
the one arising from the finite difference method using central difference operators . Before
starting to analyze the finite element solutions for different combinations of U and k, the
element Péclett number is defined as

Pe =
Uh

2k

to determine if the problem is convection- or diffusion dominated. The higher the Péclett
number the more the problem is (locally) dominated by the convective term.

In chapter 2 of Donea and Huerta [2003], the steady convection-diffusion equation was solved
with the standard Galerkin method for different Péclett numbers and it was shown that the
solutions becomes inaccurate and oscillatory if Pe > 1 (see also figure 3.4).

A straight forward explanation for this phenomenon is that the value of φ at one point is in
the case of pure convection only dependent on the solution upstream. However, the numerical
influence of one node in the Galerkin method is equally distributed in both directions (in 1-d
case) as shown in figure 3.1. Consequently, the achieved solution is not optimal as the range
of the numerical influence is larger than the actual physical range of influence.
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Figure 3.1: Numerical influence in the finite element method

3.1.1 Loss of the best-approximation property

In problems in fluid mechanics, the existence of convective terms renders the corresponding
operator non self-adjoint. The purpose of this section is to follow a more mathematical
approach and investigate how the error of the Galerkin method behaves for these types of
operators.

The property of an operator being self-adjoint can be seen as generalization of a matrix (i.e.
a discrete operator) being its own transpose (and therefore symmetric).

Just as for the scalar product <·, ·> the transpose AT of a real valued matrix satisfies the
following identity:

<Av,w> = <v,ATw>

for the generalized inner product (·, ·), the adjoint A∗ is defined as the operator that makes
the statement

(Av,w) = (v,A∗w)

valid. Consequently if
(Av,w) = (v,Aw),

A is its own adjoint (i.e. self-adjoint).

Generally the procedure for obtaining the adjoint operator is to transfer the derivatives acting
on v by an integration by parts to w. If there is no more derivative acting on v, the operator
on w is the adjoint of A. For illustrating this procedure, the adjoint of the Laplace operator

A = ∆ =

(
∂2

∂x2

)
applied to the finite element solution u is computed. Starting from the weak form (meaning
the L2 inner product of A(u) with a test function v), the calculation can be done as follows
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(without loss of generality assuming homogeneous Dirichlet boundary conditions):

∫ x2

x1

v ·A(u) dx =

∫ x2

x1

v · ∂
2u

∂x2
dx =

∫ x2

x1

− ∂v

∂x
· ∂u
∂x

dx+
�
�
�
�>

0

v
∂u

∂x

∣∣∣∣x2

x1

=

∫ x2

x1

∂2v

∂x2
· u dx−

�
�
�
��>

0
∂v

∂x
u

∣∣∣∣x2

x1

=

∫ x2

x1

A∗(v) · u dx

with A∗ =

(
∂2

∂x2

)
= A,

where the boundary evaluation terms arising from the integration by parts cancel either due
to the Dirichlet boundary conditions (u(0) = u(1) = 0) or by the definition of v being 0 at the
Dirichlet boundary. This is valid as the definition of an operator is connected with a domain
and boundary conditions. With homogeneous Dirichlet boundaries (like in this example) the
domain of definition of A and its adjoint is:

D(A) = { u on Ω | u = 0 on ∂Ω }
D(A∗) = { v on Ω | v = 0 on ∂Ω }.

This example shows that the Laplace operator is self-adjoint as the two minus signs cancel.
However, applying the same procedure to the convective term of the convection-diffusion
equation ∫ x2

x1

v · U ∂φ
∂x

dx =

∫ x2

x1

−U ∂v
∂x
· φ dx+

�
�
�
�>

0

vUφ
∣∣∣x2

x1

a minus sign remains after canceling the additional term due to the Dirichlet boundary
conditions. Now it can be seen that

A =

(
U
∂

∂x

)
6=
(
− U ∂

∂x

)
= A∗,

and therefore the convection-diffusion equation as well as all fluid-dynamics equations that
contain a convective term are a non-self-adjoint problems.

It is also clear that if the bilinear form B is required to be symmetric (i.e. B(v, u) = B(u, v) )
the differential operator must be self-adjoint (for the Galerkin method):

B(v, u) = (v,Au) = (Au, v) = (u,A∗v) = (u,Av) = B(u, v),

which is only valid if A = A∗.

To explain why the Galerkin method fails for convection dominated problems, its optimality
in the case of self-adjoint problems is proven. In the process of this prove, it is pointed out
where the property B(u, v) = B(v, u) is needed. Starting from the discrete problem

Find û ∈ Xh such thatB(û, v̂) = f(v̂) ∀v̂ ∈ Y h (3.6)

as explained in Hughes [2000] (now using e = û − u as the discretization error) the best-
approximation property of the Galerkin method for self-adjoint problems is formulated as
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(proof follows afterwards):

B(e, e) ≤ B(Û − u, Û − u) for all Û ∈ Xh, (3.7)

meaning that the error in the energy norm defined as

‖e‖EΩ
=

√
1

2
B(e, e) (3.8)

is for any arbitrary element Û from the trial function space Xh bigger or equal to the error
e of the finite element solution. Now, because Y h ⊂ Y it is possible to substitute v̂ for v in
the continuous problem of equation 1.5, resulting in:

B(u, v̂) = f(v̂) ∀v̂ ∈ Y h (3.9)

Subtracting equation 3.9 from 3.6 the right hand size cancels, and the left side can be com-
bined due to the linearity of B:

B(û, v̂)−B(u, v̂) = 0 ∀v̂ ∈ Y h

⇔ B(e, v̂) = 0 ∀v̂ ∈ Y h, (3.10)

meaning that the error is orthogonal to Y h and because Xh = Y h also to the finite element
subspace (therefore 3.10 is often called Galerkin-orthogonality). Moving on by adding an
arbitrary v̂ ∈ Y h leads to:

B(e+ v̂, e+ v̂) = B(e+ v̂, e) +B(e+ v̂, v̂)

= B(e, e) +B(v̂, e) +B(e, v̂) +B(v̂, v̂)

= B(e, e) + 2B(e, v̂) +B(v̂, v̂)

in which the last step can only be done if B is symmetric (such that B(v̂, e) = B(e, v̂ )).
Because of equation 3.10 and the fact that B(v̂, v̂) ≥ 0, it follows that

B(e, e) ≤ B(e+ v̂, e+ v̂). (3.11)

Now, any Û ∈ Xh can be written as a combination of û and v̂ (because the spaces Xh and
Y h are equal in the Galerkin method) and therefore

e+ v̂ = û− u+ v̂

= Û − u

can be substituted into 3.11 and equation 3.7 be proven.

Summarized the Galerkin method does not perform optimal for non-self adjoint problems
because although the error is orthogonal for B(ê, v̂) it is not for B(v̂, ê) and as a consequence
the best-approximation property is lost. An error analysis on the finite element method
applied to the convection-diffusion equation is given by Babus̆ka et al. [1982].
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3.1.2 Under-diffusive behavior

Having pointed out that the Galerkin method is not optimal for convection dominated prob-
lems, it might be interesting to find out, in what way this will affect the behavior of the
solution. A detailed analysis on this field, given in Donea and Huerta [2003], shows that in
fact the standard Galerkin weighting introduces a truncation error with the form of a negative
diffusion. Consequently the corresponding problem for which the finite element solution is
optimal and in fact exact (for the 1-d convection-diffusion equation) is formulated as follows:

U
dφ

dx
−
[
k − k̄

]d2φ

dx2
+Q = 0,

with k̄ = α
sinh2Pe

Pe
k and α = cothPe− 1

Pe
.

Note: the derivation was done for equally sized elements with linear basis functions and the
Dirichlet boundary conditions u = 0 for both sides. It is important to emphasize at this
stage, that stabilizing techniques (some of which are introduced in the following chapter)
are trying to balance this lack of diffusion by different strategies. Therefore, if they would
perfectly succeed in doing this, no error would be introduced by the additional diffusion.

3.2 Different strategies for stabilizing the finite element solu-
tion

To achieve good result for convection dominated problem with the standard Galerkin method
some modifications have to be made. A lot of different approaches were developed in the
past but none of them really succeeded in dominating the field. While some methods like
the discontinuous Galerkin method are heading a different direction, others try to adopt the
Galerkin FEM by applying stabilization techniques. As a comprehensive description of those
methods would go beyond the scope of this work, only an overview of important procedures
is given in this section, following the works of Brooks and Hughes [1982], Zienkiewicz et al.
[2005], Donea and Huerta [2003] and Löhner et al. [1984].

3.2.1 Upwind schemes in the finite difference method

The first progress in stabilizing oscillations were made in the finite difference context. The
use of upwind differences with first order accuracy instead of central differences with second
order accuracy proved to produce stable solutions at the cost of a over-diffusive behavior. By
reducing the dependency of the solution to the node upstream, it was possible so simulate the
direction dependent information propagation of the convection-diffusion equation. Inserting

dφ

dx
≈ φ̃i − φ̃i−1

h
and

d2φ

dx2
≈ φ̃i−1 − 2φ̃i + φ̃i+1

h2

into equation 3.3 yields the upwind difference equation for node i

U
φ̃i − φ̃i−1

h
− k φ̃i−1 − 2φ̃i + φ̃i+1

h2
+Q = 0,
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Figure 3.2: Original Petrov-Galerkin weighting

which can be rewritten in terms of the element Péclett number after multiplication with h2/k
and some reordering:

(−2Pe− 1)φ̃i−1 + (2 + 2Pe)φ̃i − φ̃i+1 +
Qh2

k
= 0

With this discretization, exact nodal values are obtained for pure convection (Pe = ∞) and
pure diffusion (Pe = 0). For mixed problems the nodal values deviate from the exact solution
but no oscillations arise.

3.2.2 Petrov-Galerkin methods for the 1D convection diffusion equation

To combine the benefits of the finite element method with the stability of upwinding tech-
niques, discovered in the finite difference method, the family of Petrov-Galerkin methods was
developed. The basic straightforward idea is to take test functions from a different function
space than the trial functions to respects the directed dependency by heavier weighting of
the upwind region. As an example, for linear shape functions the new set of test functions
were achieved by adding an upwind part

ŵi = Ni + αŵ∗i ,

with the upwinding parameter α. Clearly, the additional part is dependent on the flow
direction sign(U) or U

|U| and to enable comparisons with the finite difference method its

integral is chosen to be h
2 : ∫ L

0
ŵ∗i dx = ±h

2
.

The first upwind weighting functions were ‘bubbles‘ as shown in figure 3.2, represented by
parabolas with value 0 at the nodes. However, this requires higher order shape functions and
therefore it is desirable to develop a formulation, that retains a C0 continuity demand. A
different choice, plotted in figure 3.3, takes the standard Galerkin hat function and adds a
portion of its derivative, resulting in the formulation

ŵ∗i =
h

2

dNi

dx
sign(U)
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Figure 3.3: Weighting with the shape function derivative for introducing asymmetry

This idea was later also used and generalized to higher dimensions by the SUPG method, in-
troduced in section 3.2.3. However, it is obvious that this weighting function is discontinuous.
Because the integral is well defined this doesn’t lead to difficulties as long as no integration by
parts is performed. In this case a smoothing procedure can be applied. Applied to equation
3.3 the nodal equation becomes:

[−Pe(α+ 1)− 1]φ̃i−1 + [2 + 2α(Pe)]φ̃i + [−Pe(α− 1)− 1]φ̃i+1 +
Qh2

k
= 0, (3.12)

which simplifies to the standard Galerkin method if α = 0 and is equivalent to the upwind
difference discretization if α = 1. Moreover, it has been shown in Donea and Huerta [2003]
that the exact solution for all nodes are obtained if the upwind parameter α is chosen as
follows:

α = αopt = coth|Pe| − 1

|Pe|
.

However, the presented method has serious drawbacks concerning treatment of source terms,
time dependent behavior and multidimensional generalizations. A comparison of the Petrov-
Galerkin method for different values of α with the standard Galerkin method is given in figure
3.4. It can be seen that similar to the upwind discretization in the finite difference method,
choosing α = 1 results in a very stable but over-diffusive solution.

3.2.3 The Streamline-Upwind Petrov-Galerkin (SUPG) method

Experimenting with upwind differences and Petrov-Galerkin formulations it was soon realized
that a nodal equation identical to 3.12 can be obtained by adding an additional balancing
diffusion to the original differential equation. This coincides with the under-diffusive behav-
ior of the standard Galerkin method as shown in section 3.1. As the implementation of an
additional diffusion is much easier than the implementation of the Petrov-Galerkin weight-
ing functions, special attention was devoted to this perspective. However, adding only an
additional diffusion leads to an inconsistency of the method because only one part of the
weak form has been modified. Additionally, in the multiple dimensional case the balancing
diffusion has to be directed upstream to prevent undesirable crosswind diffusion. The SUPG
method takes this into account and adds an additional upwind weighting term to the standard
test functions:

ŵi = Ni + αŵ∗i = Ni + α
h

2

U

|U |
· ∇Ni,
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Figure 3.4: comparison of the Petrov-Galerkin method for different values of α and Pe [Zienkiewicz
et al., 2005, p.35]
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Figure 3.5: discretization along the characteristics [Zienkiewicz et al., 2005, p.56]

where α is the upwind parameter, U
|U | gives the normalized flow direction, h2 scales the term to

the element size and∇Ni adds the asymmetry. Writing out the terms, the Streamline-Upwind
Petrov-Galerkin weighting function is

ŵi = Ni +
αh

2

U1(∂Ni/∂x1) + U2(∂Ni/∂x2)

|U|
.

Requiring the inner product with the discretized residual R(φ̂) to vanish, the weak form of
SUPG method becomes:∫

Ω
ŵR(φ̂) dΩ =

∫
Ω

(
Ni + α

h

2

U

|U |
· ∇Ni

)
R(φ̂) dΩ = 0

Note: a similar form is obtained by the Galerkin least squares (GLS) method in which the
additional term of the weighting function is equal to the discretized differential operator of
the original equation. For more information on this method see Donea and Huerta [2003].

3.2.4 The characteristic Galerkin scheme

One drawback of methods based on adding balancing diffusion to stabilize the Galerkin
finite element solution is that the upwind parameter α has to be determined. As this is
not trivial for complicated problems, Löhner et al. [1984] introduced a different approach for
time dependent problems that adds automatically balancing diffusion without the need of
determining an additional parameter. The basic idea is to introduce a change of variables
from the original independent variable x to the moving coordinates x′ with the relation

dx′ = dx− Udt (3.13)

(which is also called the characteristic equation) such that

dx′

dt
= −U and

dx′

dx
= 1 (3.14)
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because dx and dt are independent. Substitution of the moving coordinate system into the
time dependent convection-diffusion equation

∂φ(x, t)

∂t
+ U

∂φ(x, t)

∂x
− ∂

∂x

(
k
∂φ(x, t)

∂x

)
+Q(x, t) = 0

yields:
∂φ(x′, t)

∂t
+ U

∂φ(x′, t)

∂x
− ∂

∂x

(
k
∂φ(x′, t)

∂x

)
+Q(x′, t) = 0. (3.15)

As those partial derivatives are not known directly, the chain rule has to be applied:

∂φ(x′, t)

∂t
=
∂φ(x′, t)

∂x′ �
�
�7
−U

∂x′

∂t
+
∂φ(x′, t)

∂t �
�
�7

1
∂t

∂t
= −U ∂φ(x′, t)

∂x′
+
∂φ(x′, t)

∂t

∂φ(x′, t)

∂x
=
∂φ(x′, t)

∂x′ �
�
�7

1
∂x′

∂x
+
∂φ(x′, t)

∂t �
�
�7

0
∂t

∂x
=
∂φ(x′, t)

∂x′
. (3.16)

The diffusion term can be determined in a similar manner, i.e. by again applying the chain
rule to equation 3.16. Consequently, the convective term of equation 3.15 cancels after sub-
stitution. In this way, the problem reduces to the well known time dependent diffusion
equation:

∂φ(x′, t)

∂t
− ∂

∂x′

(
k
∂φ(x′, t)

∂x′

)
+Q(x′, t) = 0 (3.17)

for which the standard Galerkin approximation produces optimal results (this is often referred
to as the change from an Eulerian to a Lagrange perspective). As the deformations in flow
problems are generally expected to be very large, a mesh updating procedure will produce
huge element distortions and thus lead to serious difficulties. Instead, the characteristic
Galerkin procedure now introduces a time discretisation of equation 3.17 (as seen in figure
3.5):

1

∆t
(φn+1

∣∣
x
− φn

∣∣
x−δ) ≈ θ

[
∂

∂x

(
k
∂φ

∂x

)
−Q

]n+1∣∣∣∣
x

+ (1− θ)
[
∂

∂x

(
k
∂φ

∂x

)
−Q

]n∣∣∣∣
x−δ

(3.18)

which is explicit for θ = 0 and implicit for θ = 1. Equation 3.18 computes φn+1 by evaluating
φ at an yet unknown upstream position x − δ. This upstream evaluation is done by calcu-
lating the distance δ travelled during the current time step and using a Taylor expansion to
approximate the value of φn|x−δ.

Starting with δ, an exact value can be computed by taking

δ = Ū∆t

with Ū being the average velocity during the current time step. However, Ū is generally un-
known and has to be approximated, with different approaches leading to different stabilization
terms. One possibility would be:

Ū ≈ 1

2

(
Un+1 + Un

∣∣
(x−δ)

)
,
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where the yet unknown second term is again approximated by a Taylor expansion, neglecting
higher order terms:

Ū ≈ 1

2

(
Un+1 +

[
Un −∆t Un

∂Un

∂x
+O(∆t2)

])
≈ Un+1/2 − ∆t

2
Un

∂Un

∂x
.

However, in the CBS algorithm presented in the next section the explicit approximation is
used, in which case Ū is taken to be just Un, such that:

δ = Un∆t.

Knowing the distance δ, the quantities of equation 3.18 evaluated at x− δ are determined by
a Taylor expansion in space:

φn
∣∣
(x−δ) ≈ φ

n − δ ∂φ
n

∂x
+
δ2

2

∂2φn

∂x2
+O(∆t3)

[
∂

∂x

(
k
∂φ

∂x

)
−Q

]n∣∣∣∣
x−δ
≈
[
∂

∂x

(
k
∂φ

∂x

)
−Q

]n
− δ ∂

∂x

[
∂

∂x

(
k
∂φ

∂x

)
−Q

]n
+O(∆t2)

With θ = 1
2 , δ = Un∆t and substituting the Taylor expansions into equation 3.18 the scheme

can be written as:

φn+1 −
[
φn −∆t Un

∂φn

∂x
+ ∆t2

(Un)2

2

∂2φn

∂x2

]
=

∆t

2

[
∂

∂x

(
k
∂φn+1

∂x

)
−Qn+1

]

+
∆t

2

[
∂

∂x

(
k
∂φn

∂x

)
−Qn

]
− ∆t2

2
Un

∂

∂x

[
∂

∂x

(
k
∂φn

∂x

)
−Qn

]
After approximating quantities evaluated at t = n + 1 by their values at t = n and some
reordering, the one dimensional fully explicit characteristic Galerkin scheme becomes:

∆φ = φn+1 − φn =−

original differential equation︷ ︸︸ ︷
∆t

[
Un

∂φn

∂x
− ∂

∂x

(
k
∂φn

∂x

)
+Qn

]

+
∆t2

2
Un

∂

∂x

[
Un

∂φn

∂x
− ∂

∂x

(
k
∂φn

∂x

)
+Qn

]
︸ ︷︷ ︸

stabilizing term

(3.19)

in which it can be seen that the amount of stabilization is dependent on ∆t and U . However,
this does not give the same result as taking θ = 0 from the beginning of the derivation, as the
stabilizing diffusion and source terms would not have a factor of 1

2 . Writing equation 3.19 in
conservative form for multi-dimensions, omitting the n superscript and using a lower-case u
(for later compatibility) yields:

∆φ = −∆t

[
∂(ujφ)

∂xj
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q

]
+

∆t2

2
uk

∂

∂xk

[
∂(ujφ)

∂xj
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q

]
(3.20)
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It is also worth noticing that this method was also influenced by the strongly related Taylor-
Galerkin method presented in Donea [1984], which produces similar results and introduces
even less numerical dissipation compared to the present method [Quecedo and Pastor, 2002].

3.3 The characteristic-based-split (CBS) algorithm

In this section the general idea of the characteristic-based-split scheme will be discussed, the
direct application to the shallow water equations will follow in the next section.

Originally introduced by Zieniewicz and Codina [1995], the CBS algorithm makes an operator
split to separate the pressure from the momentum equations. Thus the velocity increment is
divided into a so called intermediate momentum increment ∆U∗

i and a pressure evaluation
part ∆U∗∗

i :
∆Ui = ∆U∗

i + ∆U∗∗
i (3.21)

There are two kind of splits available: In split A, the pressure is completely removed from
the momentum equations, while in split B it is evaluated at time t = n as a source type
quantity. In both cases the momentum equations include a convective term and thus need
special treatment. As the name of the CBS algorithm indicates, this is done by applying the
characteristic Galerkin scheme (see section 3.2.4) in the form of equation 3.20. For a general
system of conservation laws like the Navier-Stokes equations, the mass flow U is substituted
for the primary variable φ. Additionally, third order terms from the stabilization part are
neglected. After successful calculation of ∆U∗

i , the pressure increment is solved using the
mass conservation equation as well as equation 3.21. In the third step, the final increment of
U is achieved by computing ∆U∗∗

i and adding it to ∆U∗
i .

3.4 Adaption of the CBS scheme to the shallow water equa-
tions

For solving the shallow water equations with the CBS scheme, as introduced in Zienkiewicz
and Ortiz [1995], the equivalent pressure term shown in equation 2.22 is used and the viscous
terms are neglected. Thus omitting the overbar for depth averaged quantities the shallow
water equations in their conservative form are:

1

c2

∂p

∂t
+
∂Ui
∂xi

= 0 (3.22)

∂Ui
∂t

+
∂(ujUi)

∂xj
+
∂p

∂xi
+Q = 0

with

p =
1

2
g(h2 −H2) and c =

√
gh

Noting that
1

c2

∂p

∂t
=

1

c2

g

2

∂

∂t
(h2 −H2) =

1

gh

g

2

∂(h2)

∂t
=

1

2h
2h
∂h

∂t
=
∂h

∂t
.
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As mentioned in section 3.3, the solution of the momentum equations by the CBS scheme
involves evaluation of the pressure as a source type quantity in the first step. For clarity a
new auxiliary source term Q′ is introduced at this stage:

Q′ =
∂p

∂xi
+Q.

Thus, the intermediate momentum equations become:

∂Ui
∂t

+
∂(ujUi)

∂xj
+Q′ = 0.

Now, the characteristic Galerkin scheme of equation 3.20 can be applied, leading to the
following formulation (noting that the shallow water equations in this form do not contain
diffusion terms):

∆Ui = −∆t

[
∂(ujUi)

∂xj
+Q′

]
+

∆t2

2
uk

∂

∂xk

[
∂(ujUi)

∂xj
+Q′

]
,

= −∆t

[
∂(ujUi)

∂xj
+
∂pn+θ2

∂xi
+Q

]
+

∆t2

2
uk

∂

∂xk

[
∂(ujUi)

∂xj
+
∂pn+θ2

∂xi
+Q

]
,

where the pressure p is evaluated at time t = tn + θ2∆t:

pn+θ2 = pn + θ2∆p,

and all other quantities are evaluated at t = tn. Now following the procedure presented in
Morandi-Cecchi and Venturin [2006] by using split A, the momentum equations become

∆Ui = ∆U∗
i + ∆U∗∗

i (3.23)

with

∆U∗
i = −∆t

[
∂(ujUi)

∂xj
+Q

]
+

∆t2

2
uk

∂

∂xk

[
∂(ujUi)

∂xj
+Q

]
(3.24)

and

∆U∗∗
i = −∆t

[
∂pn+θ2

∂xi

]
+

∆t2

2
uk

∂

∂xk

[
∂pn+θ2

∂xi

]
(3.25)

evaluating the pressure at time t = tn + θ2∆t. After computing ∆U∗
i in the first CBS step

from equation 3.24, the second step is to determine the pressure increment ∆p by substituting

∂Un+θ1
i

∂xi
≈ ∂Ui
∂xi

+ θ1
∂(∆Ui)

∂xi
≈ ∂

∂xi
(Ui + θ1∆U∗

i )−∆t θ1
∂2pn+θ2

∂x2
i

(3.26)

(from equations 3.23 and 3.25 as well as neglecting third order terms) into the mass conser-
vation equation (3.22):(

1

c2

)
∆p

∆t
+

∂

∂xi
(Un + θ1∆U∗

i )−∆tθ1

(
∂2p

∂x2
i

+ θ2
∂2(∆p)

∂x2
i

)
= 0.
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After rearranging terms, the second CBS step becomes:(
1

c2

)
∆p−∆t2θ1θ2

∂2(∆p)

∂x2
i

= −∆t
∂

∂xi
(Un + θ1∆U∗

i ) + ∆t2θ1
∂2p

∂x2
i

(3.27)

In the third and last step, using equation 3.23 and 3.25 (this time including all terms, but
evaluating the stabilizing part at t = tn), the increment in U can be computed:

∆Ui = U∗
i −∆t

[
∂pn+θ2

∂xi

]
+

∆t2

2
uk

∂

∂xk

[
∂p

∂xi

]
. (3.28)

Now the three CBS steps are transformed into their weak form by multiplying with a test
function and integrating over the domain. Spatial discretization by a standard Galerkin
procedure with

U ≈ NŨ, u ≈ Nũ, p ≈ Np̃

leads to the following matrix form of the CBS algorithm for the shallow water equations (with
discretization matrices below):
CBS Step 1: Intermediate momentum equations (from equation 3.24):

M∆Ũ
∗
i = −∆t(CuŨ

n
i + MQ̃

n
i )− ∆t2

2
(KuŨ

n
i + fQi) (3.29)

CBS Step 2: Pressure equation (from equation 3.27):

(Mc + ∆t2θ1θ2H)∆p̃ = ∆tGi(Ũ
n
i + ∆Ũ

∗
i )−∆t2θ1Hp̃n −∆t fp (3.30)

CBS Step 3: Momentum equations (from equation 3.28):

M∆Ũi = M∆Ũ
∗
i −∆tGT

i (p̃n + θ2∆p̃)− ∆t2

2
Pu,ip̃

n (3.31)

where u and c subscript are indicating dependencies on the solutions fields and thus require
to be computed at each time step. To assign the matrix names some functionality, H can
be seen as diffusion/Laplace operator, Ku as stabilizing diffusion operator, C as convection
operator, G as divergence operator, P together with GT as gradient operators and M as mass
matrix. Note also that the switched signs in equations 3.29 to 3.31 compared to the continuous
formulation originate from an integration by parts. The boundary terms arising from this
were neglected by Morandi-Cecchi and Venturin [2006] and their justification it is not entirely
clear yet. As mentioned in Zienkiewicz et al. [2005], boundary terms from stabilizing diffusion
parts are neglected, but nevertheless there would be additional contributions originating from,
for example, the convective part in step 1.

The discretization matrices are defined as:

M =

∫
Ω

NTNdΩ H =

∫
Ω

∂NT

∂xj

∂N

∂xj
dΩ

Mc =

∫
Ω

NT
( 1

c2

)n
NdΩ Gi =

∫
Ω

∂NT

∂xj
NdΩ
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Cu =

∫
Ω

NT ∂

∂xj
(ujN)dΩ =

∫
Ω

NT

[
∂uj
∂xj

N +
∂N

∂xj
uj

]
dΩ

=

∫
Ω

NT

[(∂N

∂xj
ũj

)
N +

∂N

∂xj

(
Nũj

)]
dΩ

Ku =

∫
Ω

∂

∂xk
(ukN

T )
∂

∂xj
(ujN)dΩ =

∫
Ω

[
∂uk
∂xk

NT +
∂NT

∂xk
uk

]
·
[
∂uj
∂xj

N +
∂N

∂xj
uj

]
dΩ

=

∫
Ω

[( ∂N

∂xk
ũk

)
NT +

∂NT

∂xk

(
Nũk

)]
·
[(∂N

∂xj
ũj

)
N +

∂N

∂xj

(
Nũj

)]
dΩ

Pu,i =

∫
Ω

∂

∂xk
(ukN

T )
∂N

∂xi
dΩ =

∫
Ω

[( ∂N

∂xk
ũk

)
NT +

∂NT

∂xk

(
Nũk

)] ∂N

∂xi
dΩ

fQi =

∫
Ω

∂

∂xk
(ukN

T )NdΩ · Q̃i =

∫
Ω

[( ∂N

∂xk
ũk

)
NT +

∂NT

∂xk

(
Nũk

)]
N dΩ · Q̃i

Note that especially for Ku a time consuming nested sum over k and j has to be implemented.
The factor 1

c2
in Mc can be taken as an average over one element but for better accuracy

especially with higher order ansatz spaces it is evaluated at every integration point. The
source term was factored out for pre-computed values but generally for arbitrary source
terms a projection onto the ansatz space has to be done. The boundary term fp defined as
(overbar indicating prescribed boundary values)

fp =

∫
Γ

NT niŪi dΓ (3.32)

can be used to impose in- or outflow boundary conditions in a weak manner.

Once the three steps have been computed it is possible to recover the actual water height h
from the equivalent pressure term by the following relation (see equation 2.22):

h =

√
H2 +

2p

g
(3.33)

A problem that is encountered at this stage is, that recovering the height from the pressure
term as well as computing the velocities from the mass flow by

u =
U

h
(3.34)

are nonlinear operations and thus can not be represented by the same ansatz space. A more
detailed discussion of this problem is given in section 4.2.
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Chapter 4

Implementation of the
characteristic-based-split algorithm

The implementation of the CBS algorithm was done in three steps. To gain basic experience
with finite elements and in particular the presented algorithm, a 1-d version was written in
MATLAB R©. As this gave reasonable results, a new 2-d version of the code was then im-
plemented in the same environment with the restriction of low order quadrilaterals. Here
the behavior of the CBS algorithm in solving the full shallow water equations was analyzed
including source terms and boundary conditions. With this knowledge the high-order finite
element code AdhoC++ developed at the chair for Computation in Engineering was extended
to provide the CBS methodology for solving the shallow water equations. To give some infor-
mation related to the implementation, the framework is shortly introduced in the following
section.

4.1 The high order finite element framework AdhoC++

AdhoC++ is a framework written in C++ and primarily designed for solving problems of
elasticity and heat conduction. Being a research code, the first goal is not to optimize the
performance rather than providing a versatile structure allowing extensions without much
effort. In this section, first a short description of the code, together with the tasks that
needed to be done to implement the CBS algorithm, is given. Subsequently a more detailed
discussion on the high-order part of the framework follows.

4.1.1 Organization of the code

As shown in figure 4.1, the basic structure of the code involves a separation of physical de-
scription and discretization. Consequently, there was no need to change anything related
to the discretization during the implementation of the CBS algorithm, which of course in-
cludes high order ansatz spaces. Furthermore, a variety of post-processing features already
existed such that the only remaining task was to add new math models to compute the
system matrices from section 3.4 and to create a new problem class that implements the
CBS procedure. However, it was necessary to introduce a second computational mesh for
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Figure 4.1: Key classes of the AdhoC++ framework [Redmine page of AdhoC++, Chair for Com-
putation in Engineering, 2014]

the pressure/height field, because the problems the code was originally designed for involve
only solution fields with equal treatment for each field component. Although this represents
an additional memory consumption, the overall performance is not affected, as pressure and
velocities are computed separately.

4.1.2 Integrated Legendre polynomials as a finite element basis

As already mentioned, the integrated Legendre polynomials as presented in Babŭska and
Szymczak [1981] offer some remarkable features that makes them a favorable choice for a
finite element basis. Their derivative, the Legendre polynomials, given as

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n, x ∈ (−1, 1), n = 0, 1, 2, . . .

are orthogonal in [−1, 1]. Consequently, stiffness matrices arising from a integrated Legendre
basis contain a lot of zeros [Düster, 2008]. Additionally, the condition number of the stiffness
matrix improves drastically compared to the Lagrange basis functions, as figure 4.2 shows.
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Figure 4.2: Condition number of the local (left-hand side) and global (right-hand side) stiffness
matrix [Düster, 2008]

The hierarchic shape functions are given by

N1(ξ) =
1

2
(1− ξ)

N2(ξ) =
1

2
(1 + ξ)

Ni(ξ) = φi−1

with φj =
1√

2(2j − 1)

(
Lj(ξ)− Lj−2(ξ)

)
For more information see [Szabó and Babus̆ka, 1991]. The two-dimensional basis can now be
created by taking the tensor-product of the one-dimensional basis. This means basically that
every combination of the 1-d shape-functions serves now as a 2-d basis-function.

4.2 Non-linear operations on solution fields

During the solution process it is necessary to perform calculations other than addition and
scalar multiplication with a result that cannot be represented by the same finite element
ansatz-space. Examples are interchanging velocity and mass flow vectors (see also equation
3.34) as well as transforming between alternative pressure and water height. In this work,
two possible treatments are discussed: operating directly on the degree of freedom vector and
performing a least-squares projection. The latter is also important e.g. if initial conditions
are not discretized in terms of the finite element subspace and will therefore be discussed in
some detail.

Additionally, the two methods are compared by considering a simple example for one element
with linear shape functions

N(x) =
1

2

(
1− x, 1 + x

)
on Ω = [−1, 1]
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Figure 4.3: Product of linear shape functions approximated by multiplying the coefficients

and the multiplication operation U = u · h. The discretized solution fields are chosen as:

û = Nũ =
(
N1 N2

)(4
0

)
= 2(1− x) and ĥ = Nh̃ =

(
N1 N2

)(2
0

)
= 1− x (4.1)

with the exact solution

Uex = û · ĥ = 2(1− x)2 and

∫ 1

−1
Uex dx =

16

3
.

4.2.1 Direct manipulation of the coefficient vector

One possibility is to perform those non-linear operations directly on the degree of freedom
vectors. However, the deviation in the integrals of approximation and exact solution might
be very large and the resulting mass (or momentum) loss is definitely not desirable. The
application to the example discretization of equation 4.1 can be seen in figure 4.3. The
integral of the approximation ∫ 1

−1
Û dx =

∫ 1

−1
4(1− x) dx = 8

introduces an error of 50% compared to the exact integral. Moreover, for high order shape
functions, nonlinear operations on the degree of freedom vector might produce completely
wrong results. A problem encountered if integrated Legendre polynomials are used is that
for constant functions the coefficients of internal modes are equal to zero. Dividing by that
degree of freedom vector will then result in a division by zero. Consequently this procedure, if
any, should be used only for linear or Lagrange shape functions, although being very efficient.

4.2.2 Least squares projection

Better, but more expensive, is a least squares projection onto the ansatz space, which produces
an orthogonal and thus minimal error with respect to the L2 norm. The projection for a
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Figure 4.4: Product of linear shape functions approximated by least squares projection

general function f is stated as follows:

find f̂ ∈W such that (v, f̂) = (v, f) ∀v ∈ V
⇔ (v, f − f̂) = 0 ∀v ∈ V, (4.2)

with f̂ being the projection of f and (a, b) denoting the L2 inner product, defined in 1.6.
Now if V is taken to be the same as W , the error f − f̂ is orthogonal to the space W . With
the discretization f̂ = Nf̃, the least squares projection becomes:

Mf̃ = b

where M =

∫
Ω

NTN dΩ and b =

∫
Ω

NT · f dΩ

For example, in recovering the height from the alternative pressure by equation 3.33, f would
be:

f = h(Ĥ, p̂) =

√
(NĤ)2 +

2

g
Np̂.

Another benefit of least squares projections is that the integrals of the function f and its
projection f̂ over the domain are equal. As the fluid dynamics equations represent a system
of conservation laws this is a very important property. By substituting v = 1 into equation
4.2, it follows that

(1, f − f̂) = 0

and thus, by using (1.6) ∫
Ω
f̂ dΩ =

∫
Ω
f dΩ.

Of course this relation is only valid if 1 ∈ V , which is, however, typically true. The result
of the least squares projection f̂ = Ulq = 8/3 − 4x of the example given in equation 4.1 is
shown in figure 4.4.

Although this procedure might have a strong influence on the performance of the code, storing
the factorized mass matrix will avoid too much impact. Moreover, during the computation
of the right hand side on an element integration level, the shape functions N have to be
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computed only once and thus the projection will not take too much time compared to the
computation of the discretization matrices of the CBS procedure.

However, a problem where operating directly on the coefficients might perform better is the
approximation of discontinuities, such as the initial dam break condition. As can be seen in
the projection of the initial water surface in figure 5.7 this can lead to some oscillations.

4.3 The ground slope source term

As the slope of the bottom level contributes to the momentum equations it is important
to discuss the best way of approximating those derivatives. Supposing that the bottom
topography is discretized in terms of the finite element ansatz space as

H = NH̃, (4.3)

the straight forward and currently implemented way to proceed is to evaluate the derivative
by taking

∂H

∂xi
=
∂N

∂xj
H̃. (4.4)

If the original data was given as an arbitrary function it must be discretized for instance by
one of the methods presented in 4.2.

However, this way of computing the ground slope contribution might not be optimal with
respect to the three physical conditions of:

• flat water surface for quiescent flow over an irregular bottom
• force conservation during hydraulic jumps
• equal friction and bed slope for uniform flow.

It has yet to be tested how the ‘standard‘ method behaves and if nessesary an alternative
way to evaluate the bottom source term has to be found.

One possibility, introduced by Valiani and Begnudelli [2006], uses an alternative formulation:

−gh∂H
∂xi

=
∂

∂xi

(
1

2
gh2

)∣∣∣∣
η=η∗

where |η=η∗ means evaluation for a constant value for η, that is chosen as the element average
water surface level. It can be shown, that this method is indeed optimal with respect to the
above criteria. Consequently, for a standard finite element discretization, η∗ can be computed
as:

η∗ =
1

Ae

∫
Ωe

η̂ dΩe =

∫
Ωe

N · η̃ dΩe∫
Ωe

1 dΩe

However, as the CBS scheme uses the alternative pressure (see section 2.4), the bottom slope
source term is formulated slightly different and it has yet to be investigated how or if the
divergence form can be applied in this case.
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4.4 Implementation of boundary conditions

As mentioned in chapter 3, equation 3.32 can be used to impose flow boundary conditions
in a weak manner. In addition velocities need to be prescribed in the correction step of the
CBS algorithm [Ortiz et al., 2004]. For inflow boundaries it is also necessary to specify either
the tangential flow or the water height (for sub-critical flow), as table 2.2 shows.

The water surface can be set by simply constraining the equation of the second CBS step. For
this purpose common techniques can be used, such as the penalty method, Nitsche’s method
or just choosing the trial functions to satisfy the boundary values.

In order to simulate river flows, it is important to be able to model the outflow boundary.
A first approach would be to set equal values for in- and outflow, but this does certainly
not represent the reality, as the appearance of water level fluctuations will always lead to
slightly different discharge values. In numerical river hydraulics, this problem is commonly
solved by setting outflow values equal to the prediction of some empiric flow formula. It
is important that the empiric law, used for predicting outflow velocities, coincides with the
bottom friction model. If this is the case, in a steady state flow, where bottom friction and
gravity are balanced, the water level will then be linearly in the boundary region.

4.5 The dry-wet problem

One of the most challenging tasks in implementing the shallow water equations is definitely
handling drying and wetting areas.

A procedure recommended in Zienkiewicz et al. [2005] is to distort the boundary elements
according to the movement of the fluid, as presented in Lynch and Gray [1980]. However, if the
differences in the surface elevation become big, this produces huge deformations and requires
remeshing. Additionally, the implementation of such remeshing procedures is generally not
trivial and should be avoided if possible.

A better alternative is to includes dry areas in the solution process. According to Medeiros
and Hagen [2006], there are 4 basic categories of algorithms following this approach by:

• setting a thin film on the whole domain
• removing (deactivating) dry elements
• extrapolating the height
• allowing a negative depth

The last category can be excluded because for methods using an equivalent pressure, like the
CBS algorithm, the water height h is not allowed to be negative (Quecedo and Pastor [2002]).
This follows from the fact that if values of the equivalent pressure p are such that h would
be negative, the square root in equation 3.33 will contain negative values and thus produce
complex solutions. Additionally, h can not be equal to zero as equation 3.34 includes division
by h.

The first approach of setting h to a small value on the total domain gives reasonable results
for very small gradients of the water surface and would probably also work for some steady
state solutions. However, high accelerations due to large gradients of η led to oscillations in
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Figure 4.5: Standard element size computation for node i by orthogonal projection [Thomas and
Nithiarasu, 2004]

transition area between wet and dry regions. In combination with the small water height on
those dry regions the solution became negative resulting in complex values for h as described
above.

The remaining two approaches have not been tested yet and thus their compatibility with
the CBS algorithm can not be judged.

4.6 Estimation of the critical time step

As mentioned in section 3.2.4, the derivation of the characteristic Galerkin method includes
an explicit time discretization. As this scheme is used by the CBS algorithm to solve the in-
termediate momentum equations, the time step length can not be chosen arbitrary. However,
it is possible to formulate a critical time step condition only in terms of the flow velocity and
not dependent on the wave celerity [Zienkiewicz et al., 2005]:

∆t ≤ d

|u|
,

with d being the element size. The independence of the wave celerity is a big advantage when
problems with small Froude numbers (see equation 2.23) are computed. Note: At this stage
the notation in the literature differs as sometimes U (which corresponds to the mass flow) is
used instead of u. However, there is no justification for this choice and thus the velocity u
was taken.

Clearly, to calculate the critical time step the element size has to be determined first. While
this is easy for 1-d elements it gets more complicated in 2-d. Generally there is not a
single algorithm for estimating the element size, and different strategies are used for different
purposes and elements shapes. A a simple way to achieve good results for triangular elements
is to calculate the relevant size for some node i as the minimum of all surrounding elements
lengths [Thomas and Nithiarasu, 2004]. As shown in figure 4.5, the length is taken to be the
distance from node i to its orthogonal projection onto the opposite edge. A similar strategy
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Figure 4.6: Streamline element size computation for node i [Thomas and Nithiarasu, 2004]

could be used for quadrilaterals by considering the projections on two sides. However, it was
also shown in Thomas and Nithiarasu [2004] that an improved accuracy can be achieved if the
element size is computed in the streamline direction (see figure 4.6). A further advantage of
this procedure is that it represents a general methodology, independent of the element shape.
On the other hand, it is not possible to cache the element size as the velocity directions
typically change during the simulation and thus the computation has to be done for every
time step.

4.7 Shock capturing

As pointed out in chapter 2, the compressible behavior of the shallow water equations can
lead to shock waves. Unfortunately, this generally causes problems in numerical solutions
due to oscillations around the discontinuity. This type of oscillation can arise even if the
most accurate stabilizing diffusion method is applied [Zienkiewicz et al., 2005]. As the dam
break example, presented in section 5.1 (see figure 5.2), shows, the CBS algorithm produces
reasonable results, but nevertheless for some extreme situations a shock capturing strategy
has to be applied. Although normally some minor oscillations are acceptable, for the CBS
algorithm special care has to be taken, because due to the alternative pressure term negative
values for h are not allowed.

According to Donea and Huerta [2003], shock capturing techniques can be grouped in artificial
diffusion and high resolution methods. While the last group is generally more accurate
for complex flow situations, artificial diffusion methods convince through their simplicity
concerning theory and implementation. Therefore, in this work only the most popular method
from the first group, presented by Lapidus (1967), is presented. The simple idea is to add
diffusion proportional to the gradient of the considered quantity and the element size. For
the scalar convection-diffusion equation (see equation 3.3) the resulting additional diffusion
term would be:

k̃ = CLap h
2
∣∣∣∂φ
∂x

∣∣∣
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with k̃ being the additional diffusion, h the element size and CLap a coefficient to control
the influence of the method. CLap is usually set to values between 0 and 2 [Donea and
Huerta, 2003]. A multidimensional version shown in Zienkiewicz et al. [2005] includes a
certain amount of anisotropy:

k̃ij = CLap h
2 |ViVj |
|V|

with Vi =
∂φ

∂xi

for which in the case of the shallow water equations φ is substituted by h. However, it is
important to note that if a fine resolution is desired, alternatives have to be considered,
because this method tends to behave too dissipative. In [Donea and Huerta, 2003, 176], a
good overview of this field is given.

As the CBS algorithm performed well for most of the test cases presented in chapter 5 there
was no need for implementing a shock capturing procedure until now.
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Chapter 5

Results

In this chapter some of the results gained so far are presented. The test cases were computed
exclusively with AdhoC++ (see 4.1) including post-processing. The visualization of the height
fields was done with Paraview, making use of the Warp by Scalar function.

5.1 The dam break model problem

One of the most often considered model problems is the 1-d dam break problem. The name
comes from the fact that it models a dam that separates two different water levels and at
t = 0 suddenly disappears, or ‘breaks‘. The following propagation of a shock often serves
as a benchmark for the capability of a numerical scheme to handle such discontinuities.
Additionally an exact solution was given by Stoker [1957]. Figure 5.1 shows the initial setup
of the problem. For the simulation with the presented CBS algorithm the parameters were
chosen as: h1 = 2, h2 = 1, θ1 = 1, θ2 = 1, ∆t = 0.002 and a domain length of 5. The water
height was split such that H = −1, η1 = 1 and η2 = 0. Figure 5.2 shows the result at t = 0.2
for different ansatz orders. The combination of order and number of elements was chosen
such that the total amount of degrees of freedom is equal to 160. It can be seen that although
high order shape functions are generally suitable for smooth solutions, they perform at least
in this test as good as low order shape functions. In this example the best compromise might
be the choice of ansatz order 4.

Figure 5.1: 1-d dam break model problem [Hsu and Yeh, 2002]
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Figure 5.2: 1-d dam break problem computed with the CBS scheme

If the ratio of the both initial heights is larger, such that the gradient of the surface increases,
the oscillations at the discontinuity reach an unacceptable level. In this case it is indispensable
to apply shock capturing method, as presented in section 4.7.

5.2 Shock development despite an initial smooth Gaussian
bell surface

As discussed in section 2.7.1, the shallow water equations have a similar form compared to
the Euler equations for compressible fluids. To show the formation of shocks, similar to those
observed in the solution of Euler equations, a 2-d example with a perfectly smooth initial
Gaussian bell surface was computed. The results shown in figure 5.3 were obtained using a
square domain with length 10 and the following initial conditions:

η0(x1, x2) = 2.5 · exp

(
− (x1 − 5)2 + (x2 − 5)2

1.52

)
u0

1(x1, x2) = u0
2(x1, x2) = 0

H(x1, x2) = −1;

The number of elements in each direction was set to 100, the ansatz order to 2 and the time
step length to 0.008. It can be seen that the wave front moves slower than the top, because
the wave celerity is proportional to the height. As a result, the slope increases until it forms
a discontinuous shock, which can, of course, not be represented exact.
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Figure 5.3: Gaussian bell initial condition

Figure 5.4: Sub-critical flow over bump

5.3 Other validation examples

As the shallow water equations are capable of describing various phenomena, a few additional
examples were set up, to ‘confront’ the presented algorithm with other situations.

The first test case is a 1-d (almost) steady-state flow over a bump, that causes the water
level to decrease, as shown in figure 5.4. This happens because the energy height relative to
the ground is on the bump 0.5 m less than elsewhere. The validation can be carried out by
Bernoulli’s equation

H = h+
u2

2g
= h+

U2

h22g
,

which relates the energy height H with the flow depth h and the kinetic energy height v2/2g.
The example shown in figure 5.4 gave h1 = 3.45 m and h2 = 2.385 m which corresponds to
the energy heights of H1 = 3.8782 m and H2 = 3.281 m (by inserting h and U = 10 m into
Bernoulli’s equation). It can be seen that the difference in the energy height (H1 − H2 =
0.5972) is with an error of 0.097 m equal to the height of the bump (∆x = 0.5 m). This gives
an error of 2.96% relative to H2.
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Figure 5.5: Plot of solutions to Bernoulli’s equation for U = 10

Figure 5.6: Flow over bump followed by a beginning hydraulic jump (scaled by a factor of 10)

If Bernoulli’s equation is plotted for a constant value of U (often called specific discharge q),
it can be seen nicely how the fluid depth behaves for changes in the energy height. In figure
5.5, this was done for U = 10. By differentiating Bernoulli’s equation as

dH

dh
= 0,

it turns out, that the extreme value Hmin and its corresponding water depth hc can be
determined by:

hc = 3

√
U2

g
and Hmin =

3

2
hc.

It can also be seen in figure 5.5 that the energy of the fluid on the bump was very close to
Hmin in the test case.

If the energy of the fluid is not enough to pass the obstacle, the height increases until the
energy on the bump is exactly equal to Hmin and continues with a super-critical flow after-
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Figure 5.7: wave simulation by taking a dam break as initial condition

wards. If the flow is normally sub-critical, at some point after the bump, a hydraulic jump
appears, as the high amount of bottom friction slows the fluid down. In a second example,
shown in figure 5.6, this was tested with the CBS algorithm. The beginning hydraulic jump
and the differences in the water level can be seen nicely, however, the simulation becomes
instable in the next time steps, as oscillations lead to a negative height. This example shows,
that describing such phenomena requires the application of shock capturing methods (see
section 4.7).

Additionally, it was possible to validate bottom friction and ground slope terms, as the
simulation completely coincided with the initial conditions, set according to the Manning-
Strickler formula (see also section 2.4.1):

u =
U

h
= kst ·

√
I · h

2
3 or h =

(
U

kst

√
I

) 3
5

In both examples the bottom topography was parameterized by cubic polynomials, which
could be represented exactly in the test case when using ansatz order ≥ 3. Consequently,
discontinuities in the derivatives, usually arising from a first order approximation, were omit-
ted.

5.4 Wave entering a harbour

To show that the CBS algorithm is capable of handling real world scenarios, a complex
harbour shape was created to simulate a wave entering it. The wave was generated by using
a ‘dam break‘ initial condition near the left boundary, as seen in figure 5.7. As a result a long
wave with half of the initial height propagates in the direction of the harbour at an angle of
45◦ (see figure 5.8). The mesh consists of 20k elements with a linear ansatz. η at was chosen
at t = 0 as 1 on the left size of the ‘dam‘ and 0 otherwise. Additionally H was set to -1
and the time step length to 0.03. Because previous computations have shown instabilities at
sharp corners they were smoothed by a radius of 1 to get a stable solution.
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Figure 5.8: Long wave entering harbour
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Chapter 6

Conclusion

After a period of analysing the Characteristic Based Split algorithm it can be concluded
that the overall performance related to the presented benchmarks is satisfactory. Compared
to other schemes implementing some kind of balancing diffusion, accuracy and capability to
represent shock-waves proved to be at least as good. One advantage that should be empha-
sized is the flexibility of the algorithm to handle different problems with the same procedure,
meaning that the additional afford for implementing for instance compressible Euler equa-
tions or incompressible Navier-Stokes equations is manageable. Having a generally applicable
algorithm for the solution of fluid dynamics equations is definitely beneficial. Moreover, the
combination with high order shape functions turned out to give remarkable results, especially
for smooth geometries.

However, there are still some difficulties directly related to the CBS algorithm that do require
some investigation and if possible improvement. An important phenomenon often observed
at extreme points, such as corners, are sudden instabilities that lead to a total crash of the
simulation. In order to predict such instabilities, a more detailed analysis on the conditions
of their appearance has to be done. Additionally, it has to be investigated if there are any
possibilities to overcome the severe restriction of prohibiting negative height values. As other
schemes manage to avoid this, there might be a way to practically circumvent the negative
square root arising in those cases (see equation 3.33). In connection with that a robust
procedure for allowing moving boundaries has yet to be found. The method suggested by
[Zienkiewicz et al., 2005] to absorb boundary movement by repositioning element nodes is
not suitable for typical environmental engineering problems, as here large variations in the
‘wet‘ domain need to be expected.

Besides, the implementation of a complete package for solving shallow water problems is
not complete yet. Although basic functionality for treatment of boundary conditions is
already available, the implementation of source terms requires still further work. This includes
analysing the accuracy of the currently used bottom friction model from Manning-Strickler
as well as investigating the possibility to implement the divergence form of the bed slope
source term (see 4.3).

Regarding the goal of finding a robust finite element scheme for handling environmental en-
gineering problems the CBS algorithm is especially for situations without extreme conditions
that do not require moving boundaries a good choice. Furthermore, the combination with high
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order shape functions enables an exact representation of smooth geometries parameterized,
for example, by cubic splines or NURBS, arising from CAD applications. Thus the presented
method has indeed the potential to be successful in practical engineering applications.
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