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A B S T R A C T   

The paper presents a novel method for automatically creating semantic digital models for buildings in Manhattan 
environments from dense point cloud data. Unlike previous approaches, which rely solely on data-driven 
methods, our method integrates artificial intelligence with domain engineering knowledge to overcome chal-
lenges in indoor point cloud processing and geometry representation in complex layouts. A feature-based De-
cision Tree classifier extracts main building elements, utilized in a knowledge-based algorithm for 3D space 
parsing. On this basis, an optimization process generates parameterized floor plans, used to finally create 
volumetric digital models. The method was validated on datasets from the Technical University of Munich and 
Stanford University, achieving a mean accuracy of approximately 0.08 m for model placement and 0.06 m for 
estimating element parameters, which highlights its effectiveness for generating a building's semantic digital 
model. This approach underscores the potential of AI integration in digital twinning workflows for more auto-
mated solutions.   

1. Introduction 

1.1. Built environment and facility management 

Nowadays, the term built environment has emerged as a resonant 
term in Architecture, Engineering and Construction (AEC). The built 
environment is a crucial aspect of modern society that encompasses a 
broad range the physical structures and infrastructures including 
buildings, roads, bridges, etc. The significance of buildings in the built 
environment is undeniable, given their central role in shaping the ways 
in which people interact with their surroundings. However, buildings 
must be properly maintained to remain functional, safe, and aestheti-
cally pleasing. In this regard, Facility management (FM) serves as a 
crucial link between building maintenance and overall facility opera-
tions, providing a comprehensive approach that ensures the effective 
functioning and sustainability of buildings in the built environment. 

The traditional approaches for building facility management and re- 
design activities heavily depend on conducting regular physical in-
spections and using the documented drawings to identify maintenance 
issues and make re-purposing decisions. However, due to the ongoing 
changes within the built environment, these approaches can be time- 
consuming, costly and prone to containing outdated information [1]. 

Recently, the use of virtual digital twin (DT) models emerged as an 
innovative approach enabling well-informed decision-making through 
the quick and coherent provision of data in a geometrically-semantically 
visualized context [2]. According to the practical explored studies, a 
digital replica of building assets can improve communication, collabo-
ration, and decision-making for facility management and redesign pur-
poses [3–5]. DT models can be used to simulate various scenarios and 
assess potential monitoring requirements without physical inspections 
[6]. In addition, DTs possess the capacity to effectively meet the ever- 
changing demands of decision-making and condition monitoring by 
facilitating real-time updates and fostering collaborative efforts. 

Overall, the potential benefits of using DT models in facility man-
agement can be summarized as follow:  

• Visualization: examining the building space from various angles 
enhances comprehension of the building's systems and components, 
enabling detection and addressing of potential problems beforehand 
[7].  

• Maintenance and repair: a detailed record of a building's systems and 
components for simplifying planning and execution of maintenance 
to decrease emergency repair expenses [2]. 
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• Space management: effective overseeing and controlling space uti-
lization in a building, including occupancy rates, room bookings, and 
upcoming renovation plans [8].  

• Re-design: optimize and enhance existing designs by leveraging real- 
time virtual simulations (various prototypes with different configu-
rations, materials, and parameters) [7].  

• Refurbishment: detailed assessment for efficient refurbishment 
strategies and resource allocation by leveraging simulations and 
providing a shared platform for collaboration and decision-making 
[5].  

• Energy efficiency: simulating the building's energy performance to 
optimize energy usage and lowering operating expenses [9]. 

To support these applications, up-to-date digital representations of 
the buildings including both 3D geometry and semantics are crucial. 
However, currently, significant manual effort is required to create high- 
quality digital representations from raw surveying data. This becomes 
even more problematic when considering the need to repeat this process 
at regular intervals. Thus, there is an urgent need for end-to-end auto-
mation of the process to allow its cost-efficient and reliable execution. 
This paper contributes to providing the required technology. 

1.2. Semantic digital models in BIM and DT realms 

Today, Building Information Modeling (BIM) and Digital Twinning 
have emerged as transformative technologies within the domain of Ar-
chitecture, Engineering, Construction, and Operations (AECO), herald-
ing a new era for intelligent, data-driven infrastructure in built world. 
While BIM encompasses a thorough digital representation of the build-
ing's physical and functional characteristics, DTs further advance this 
concept by creating a real-time, virtual replica that faithfully mirrors the 
behavioral and performance aspects of the physical asset. 

Specifically, BIM comprises a comprehensive digital representation 
of a building's geometric, spatial, and functional characteristics, 
enabling collaborative simulation and management of the projects 
throughout their lifecycle. DTs transcend static representation, incor-
porating real-time data streams from sensors, Internet of Things (IoT) 
devices, and operational systems to construct a dynamic, virtual replica 
that faithfully mirrors the behavioral, performance, and interactive as-
pects of the physical asset. At the core of these advancements lies the 
development and utilization of digital semantic models that bridge the 
gap between static physical-geometrical information and dynamic, real- 
time insights. These digital models leverage ontologies, semantic an-
notations, and standardized data schemas to impart data with meaning 
and context, thereby fostering interoperability and enabling seamless 
information exchange across disparate systems. 

Over the past decade, the realization of semantic models has become 
achievable through the capturing of the built environment using multi- 
sensor remote sensing technologies. The raw data can be transformed 
into consumable information for human and machine interpretation 
using developed methodologies and techniques in the realms of com-
puter vision and computational modeling. The aim of this research paper 
is to propose a novel 3D reconstruction algorithm for the automatic 
creation of the digital building model. The resulting digital models foster 
BIM and DT development, facilitating seamless interoperability and 
unlocking the potential for intelligent and data-driven infrastructure. 

1.3. Problem statement 

With the increasing complexity of buildings and the dynamics in 
their use, the need for up-to-date information about buildings and in-
door environments for Operation and Management (O&M) has risen 
substantially [10]. DTs are a beneficial tool for digitally representing an 
asset's physical and functional properties and a shared data source for 
building information modeling (BIM) that provides a reliable basis for 
decision-making throughout the project life cycle. DTs using the 

efficient management of information and facilities have become an 
important tool in controlling costs and preventing waste in buildings' 
repair, maintenance, and energy resource consumption. 

The utilization of a DT model enables the continuous updating of 
assets at frequent intervals, effectively incorporating the time dimension 
into the elements. This allows for real-time monitoring, catering to the 
requirements of efficient facility management for engineers and the 
maintenance team. Given the rapid and dynamic nature of urban assets, 
the development of an automated process to update the digital models 
can be replaced with traditional time-consuming and expensive manual 
methods. Developing a robust and dynamic pipeline requires using 
different geometric and semantic data and utilizing modern machine 
learning approaches to solve a multi-modal problem, including 3D ge-
ometry analysis and regression, type classification, and prediction of 
future asset changes [11]. 

Recent advancements in the remote sensing domain allow capturing 
accurate, multi-scale built environments with various technologies such 
as laser-scanning, image recording, and radar on a diversity of platforms 
including UAVs, cars, planes and satellites. In this regard, laser scanners 
have become a critical component in the creation of realistic and dy-
namic digital models for built environments, owing to their ability to 
capture highly accurate point clouds of scenes providing rich geometric 
and semantic detail [12–15]. Despite advanced development in engi-
neering and technology, automatic or semi-automatic building digital 
model creation using point cloud data is still an open topic in the en-
gineering and design society which needs novel approaches. Indoor 
environments can be large-scale and consist of complex spaces. Also, 
indoor scenes have been consistently associated with challenges such as 
noise, clutter, and obstructions [1]. Most developed methods for 
creating digital models rely on data-driven approaches, which are sus-
ceptible to poor data quality and encounter numerous challenges in 
reconstructing meaningful objects and simulating their relationships. 
Thus, the creation of a dynamic digital model based on the BIM and DT 
concepts needs an understanding of the sophisticated relationships be-
tween assets in the built environment [16,17]. To address these issues, 
this research aims to develop a novel approach for the creation of high- 
quality semantic digital models with coherent geometry which foster the 
development building DT with Manhattan-world structures. The pro-
posed approach focuses on ensuring logical consistency between asset 
instances in the model, such as seamless connections between walls and 
slabs. This is achieved by incorporating semantic information and 
employing the parametric modeling technique to simulate their func-
tional geometric relationships according to the Manhattan-world 
structural design. 

1.4. Manhattan-world structures 

Manhattan-world structures are characterized by a grid-based layout 
wherein structural elements (e.g. walls, slabs, and etc.) are inter-
connected in an orthogonal and aligned configuration. Adherence to the 
principles of orthogonality extends beyond aesthetic considerations, 
significantly impacting the building's performance and the efficient, 
dynamic utilization of its spaces. The design of Manhattan-world 
structures strategically maximizes usable space within the building, 
particularly in the layout of typical apartments. 

In contemporary urban architecture, managers and urban planners 
increasingly value statistical analyses and objective observations per-
taining to the utilization of the Manhattan-world structures design 
approach. The reasons for this embrace include enhanced efficiency, 
spatial optimization, simplifying construction processes, and facilitating 
the resource utilization. 

Given the substantial number of educational and administrative 
buildings constructed with the Manhattan-world design, and the 
increasing trend of new buildings adopting this configuration, numerous 
efforts have been undertaken to develop 3D reconstruction methods for 
these structures using remote sensing data. While the geometric 
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representation of Manhattan-world structures may seem simple, the 
automatic creation of a digital model for a building with a Manhattan- 
world configuration necessitates the precise formulation of the orthog-
onal grid structure within a highly parameterized system. 

1.5. Contribution 

Raw remote sensing data serve as the foundation for the creation of 
digital models. However, the interpretation of unstructured point clouds 
and images for accurately identifying and classifying building elements 
and their geometrical representation is still a challenging task. While 
common data-driven methods facilitate deriving contextual information 
and geometric representations using point cloud data, they often limited 
to automation and require numerous parameter settings and individual 
configurations for different datasets. These challenges are particularly 
intensified in the segmentation and classification of the main structural 
elements within point cloud. Conventional methods, such as plane 
fitting using the RANSAC algorithm or Region Growing, require a re- 
evaluation of the default parameters when confronted with different 
building point cloud. Recently, the capabilities of AI methods have 
promised tremendous potential for enhance the level of automation in 
indoor scene understanding task. However, achieving high performance 
in creating building digital models using AI techniques requires the 
collection of huge amount of training data and incorporation of domain 
knowledge contributing to enhanced reconstruction and simulation of 
the building system. These include inferring the interactive relationships 
between the elements of the building structure along with the assump-
tions and pre-determined characteristics (e.g. spatial organization, 
aesthetic considerations and etc.) in the design and construction of the 
building structure in the real world. 

In this paper, we propose a novel framework for the automated 
creation of building digital models with rich semantic and coherent 
geometry from a dense laser-scanner point cloud dataset. The proposed 
method combines domain knowledge in design and construction with AI 
and optimization techniques capabilities to simulate the contextual 
relation between elements and improve their logical consistency. 
Thanks to applying the parametric modeling process, we are able to 
design a dynamic system with the ability to be manipulating the model 
by adjusting the value of parameters using inner predefined constraints 
which provide a basis for frequent geometric updates over the operation 
lifespan. 

The resulting digital models offer a semantic volumetric represen-
tation of building structure corresponding to the schematic design of 
Level of Development (LOD 200) that supports decision-making pro-
cesses in the operation and maintenance phases [18,19]. In the context 
of facility management, relying on extensively detailed digital models of 
buildings may not always be feasible or advantageous. In the BIM 
domain, the generalization concept has been developed to simplify the 
geometry of digital models while considering the LOD definition [20]. 
Geometry generalization involves simplifying the complex geometric 
representation of the model and abstracting it into simplified forms that 
still capture the essential structure of the building and its details. 
Meanwhile, the generalization concepts align with the LOD definition. 
The LOD framework provides a standardized scale for categorizing BIM 
models based on their level of detail, ranging from LOD100 (conceptual) 
to LOD500 (as-built) [21,22]. In this regard, a digital model in LOD(200) 
is a virtual volumetric model of a building system in which all graphical 
and non-graphical information including geometric property, and 
spatial relationships can be presented. By considering the LOD frame-
work, the generalization methods ensure that the resulting models are 
appropriate for facility management purposes and allow them to effec-
tively utilize digital models tailored to their specific operational needs, 
striking a balance between information richness and practicality. 

In particular, this paper presents the following contributions:  

• Designing a hybrid bottom-up, top-down approach for automatic 
building digital model creation.  

• Utilizing an Artificial Intelligence (AI) classification technique for 
extracting main structural elements (e.g. wall, ceiling and etc.) 
within an indoor point cloud.  

• Aligning the capabilities of AI in scene understanding with domain 
knowledge to overcome challenges in indoor 3D reconstruction.  

• Developing a knowledge-based method for 3D space parsing in large- 
scale indoor point cloud.  

• Reconstruction of the parametric building's floor plan using point 
cloud with low sensitivity to poor data quality.  

• Creation of dynamic parametric building digital models (LOD200) 
for flexible facility management and space analysis. 

The present paper is structured as follows: In Section 2, a literature 
review on the topic of building digital model creation using point cloud 
data is presented. Section 3 presents the developed methodology, which 
is described in detail from a theoretical standpoint. Section 4 showcases 
several case studies to demonstrate the feasibility of the proposed 
approach. Finally, Section 5 offers a discussion of the main findings of 
the study, along with future directions for research in the field. 

2. Background 

Over the past decade, there has been a significant increase in the 
utilization of advanced data acquisition techniques in the built envi-
ronment, leading to a growing trend of automatic creation of digital 
representations of buildings with coherent geometry and rich semantic 
information. A significant number of studies have extensively investi-
gated different facets of creating digital models of buildings under the 
term “Scan to BIM”. In this process, researchers utilize remote sensing 
data for creating digital models, which involves employing a range of 
sophisticated techniques encompassing data acquisition, processing, 
and modeling [10,23–26]. 

Xiong et al. [27] developed an automatic 3D reconstruction frame-
work that used the voxelized point cloud to recognize the patches such 
as walls, ceilings, or floors based on boundary limits. Ochmann et al. [1] 
developed an automatic data-driven approach for reconstructing para-
metric 3D models of the indoor environment, including the floor, ceil-
ing, and wall elements through volumetric 3D solid shapes. They 
employed a global optimization method to find and locate walls. How-
ever, their proposed method requires input data such as the availability 
of separate scans as an initial room segmentation. Later in [28], the 
authors proposed a novel method for reconstructing parametric, volu-
metric, and multi-story building models to improve their previous 
works. They define the modeling task as an integer linear optimization 
problem. 

In [29] the authors used the combination of geometrical features of 
planar surfaces and their topological relation (e.g., distances and 
parallelism) to reconstruct the geometric and semantics of indoor 
volumetric models. In [30] the authors presented a combination method 
consisting of shape grammar and a data-driven approach that uses a 
reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm to 
guide the automated application of grammar rules in the derivation of a 
3D indoor model. In [31] the authors proposed an automated framework 
for generating building models utilizing a voxelized point cloud. The 
proposed method initially employs the planar cuts algorithm, followed 
by voxel-based morphological operators to segment the point cloud 
corresponding to different floors and rooms. Subsequently, for each 
segmented room, the boundary voxels are extracted, and volumetric 
wall instances are generated through morphological skeletonization. 

In [32] the authors developed a multi-step automated approach for 
constructing 3D building models using point clouds. The method initi-
ates with a preprocessing step in which point cloud data undergoes a 
series of operations, including the segmentation of 3D spaces, separation 
of walls, and subsequent clutter removal. Following this, an edge 
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detection algorithm is employed to extract lines within a 2D image 
derived from projecting wall points onto a 2D plane (2D learning). 
Concurrently, a point cloud semantic segmentation algorithm is utilized 
to separate points into classes such as walls, doors, and windows (3D 
learning). Subsequently, the RANSAC plane fitting method is applied to 
separate wall instances, and the DBSCAN clustering algorithm is 
employed to cluster door and window instances. Finally, a bounding box 
is fitted to the points corresponding to each individual element. 

Hu et al. [33] employed a robot-assisted mobile laser scanning 
approach for the 3D reconstruction and semantic segmentation of indoor 
point clouds. The proposed approach initially integrates the Simulta-
neous Localization and Mapping (SLAM) algorithm with robot motion 
control and path finding to achieve 3D mapping and acquire compre-
hensive point cloud data. Subsequently, the ResPointNet++ is employed 
for semantic segmentation of the reconstructed point cloud and group 
the architectural and structural objects. 

In [34] the authors introduced a progressive model-driven approach 
for the 3D modeling of indoor spaces employing watertight predefined 
models. This approach initially segment spaces into rectangular and 
non-rectangular regions with an even number of sides. Subsequently, a 
point density occupancy map is used to enhance the level of detail in the 
intrusion and protrusion parts of Manhattan and non-Manhattan 
models. 

To enhance the evaluation criteria for reconstructed digital models 
using Scan-to-BIM approaches, Jarzabek-Rychard and Maas [35] intro-
duced an analytical method to estimate the level of geometric uncer-
tainty in reconstructed digital models. The proposed approach assesses 
the dependency between point cloud data and the resulting 3D model. 
This involves calculating correlations between surface parameters of 
segmented instances in the point cloud and their corresponding 

reconstructed elements surfaces in the digital model. For each instance, 
distinct confidence intervals are computed based on specific tolerance 
thresholds, providing a quantified measure of the probability associated 
with the accuracy of the reconstructed building elements. 

According to the [29,30], the process of creating a precise as-built 
digital model necessitates characterizing objects' shapes, relationships, 
and attributes. Therefore, the automatic creation process of digital 
models for building structures is typically divided into two major steps:  

• Indoor point cloud processing for data semantic enrichment.  
• Geometry provision for representation of parametric or non- 

parametric models. 

Fig. 1 provides a comprehensive overview of the current methodol-
ogies utilized for point cloud feature enrichment, along with the prev-
alent techniques employed for presenting geometric digital models. The 
corresponding aspects of these approaches will be elaborated in the 
subsequent sections. 

2.1. Indoor point cloud processing (semantic enrichment) 

Indoor point clouds are a crucial tool for creating precise and accu-
rate 3D models of indoor environments, which can be utilized for a 
variety of applications, including architectural design, construction 
planning, and virtual reality simulations. However, raw point cloud data 
is typically unstructured and challenging to interpret without proper 
labeling. The process of semantic enrichment, which involves assigning 
semantic labels to individual points or groups of points within the point 
cloud based on their geometrical/spectral attributes and features, is 
critical to transforming unstructured point cloud data into a 

Fig. 1. Overview of the existing approach for semantic enrichment and geometry provision tasks in building digital model generation.  
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comprehensible and valuable resource. Accurate labeling is essential for 
distinguishing between structural elements within the environment. 
Various algorithms and techniques such as clustering, semantic seg-
mentation, and classification can be employed to achieve accurate la-
beling through traditional methods or machine learning approaches. 
However, these techniques require careful parameter selection and 
tuning to ensure precise and accurate labeling. 

2.1.1. Bottom-up approach 
The bottom-up approach involves the labeling process starting from 

several seed points and is gradually extended to all points until a higher- 
level surface, volume, or model is generated [36]. These higher levels 
are commonly represented by meshes [37], voxels [38], and planes [39]. 
This approach utilizes typical features such as normal vectors, curva-
tures, and RGB channel values to express the differences between the 
geometrical and spectral details of surfaces. The labeling process in this 
approach is achieved through popular methods such as Region Growing 
(RG), Model-based, and Edge-based techniques. 

The process of Region Growing commences with a predetermined set 
of initial seeds and subsequently incorporates neighborhood points 
based on various criteria such as surface normal, curvature, co- 
planarity, or RGB values. This addition continues until certain prereq-
uisite conditions are met, including the detection of a non-surface point 
or the seed point reaching a distance threshold. Region Growing algo-
rithms can be applied to both structured and unstructured point clouds 
[40]. However, the algorithm tends to over-segment objects in the 
presence of non-trivial occlusions, thus posing a significant challenge 
when processing indoor building scenes. In [41] authors proposed a 
supervised Region Growing method for segmentation of unstructured 
point cloud using geometric features such as surface roughness and 
curvature. The proposed method utilizes a locally adaptive threshold 
based on a predefined parameter for the desired level of abstraction. 
This threshold is later used for considering the local context and aiding 
in seed finding during the region-growing steps. 

Model-based methods use mathematical expressions for primitive 
shapes such as spheres, cylinders, cones, and planes for clustering 
points. These methods are repeated iteratively to find bunches of points 
that have the highest correlation with the pre-defined shapes. The most 
well-known model-based method is the random sample consensus 
(RANSAC), which is used to detect planar surfaces (e.g. walls, floors, 
ceilings, etc.,) in the point cloud of buildings [42,43]. Although model- 
based algorithms are quite effective even in the presence of noise and 
outliers due to mathematical foundations, they also have problems 
overlapping multiple references around boundaries and require prior 
knowledge about the data. 

Edge-based segmentation methods characterize the objects based on 
the rapid changes in any geometrical or spectral feature of points. In 
[44,45] the authors proposed a method for representing surfaces by 
calculating the gradient of points and following the changes in the di-
rection of the normal vectors in a neighborhood. In [46] the authors 
employed Hough Transform-based methods and used normal vector 
values to detect 3D roof planes in laser scanner point clouds. Similar to 
the model-based approach, Hough-transform is robust toward noisy and 
cluttered data. However, due to its sensitivity to parameter dimensions 
and high computational requirements, it cannot be applied to shapes 
with too many parameters. 

2.1.2. Top-down approach 
The top-down approach begins by dividing a point cloud into 

compositional sub-problems based on elements' existing similarities and 
dissimilarity features. In the top-down approach, perceptions start with 
the most general and move toward the more specific. In [47], the au-
thors proposed a network based on pair-wise relationship rules such as 
parallel, equal height, above, under, and orthogonal for semantic map-
ping indoor building elements (e.g., walls, and floors). In [48], the au-
thors used a top-down approach to reconstruct the geometry of 

architectural buildings from laser scanning point cloud data. They first 
cluster the planar surfaces of buildings based on the analyzing confi-
dence rate and then create the polyhedron models by computing plane 
intersections and corners. 

In [49], the authors proposed a hierarchical segmentation model 
which combined the top-down approach with a recurrent neural 
network (RNN) to decompose point clouds into different shape seg-
ments. The top-down and bottom-up methods represent two distinct 
approaches, each with its own set of advantages and disadvantages. 
Depending on the problem, either approach can offer a practical solu-
tion. However, one of the critical challenges when implementing these 
approaches is accurately defining the problem and effectively breaking 
it down into subproblems. Regardless of the method used, a high-level 
prior knowledge about the problem is typically required, and applying 
these methods to address any problem necessitates adherence to a spe-
cific set of rules and reasoning. 

2.1.3. AI-based methods 
After the significant expansion of machine learning and deep 

learning concepts over the past decade, large-scale data classification 
and segmentation have emerged as the most recent areas of research in 
computer vision and the construction industry. In [50] authors proposed 
a Density Based Spatial Clustering algorithm (DBSCAN) to segment 
planar objects within indoor point cloud. The proposed bottom-up 
method utilizes the geometric and spatial features of points extracted 
from plane fitting through K-means unsupervised learning. This 
approach is employed to evaluate the semantic contents and classify 
planes belonging to the major building planar elements. Finally, a 
bagged decision tree classifier is used to predict the object class belong 
to the walls, ceilings, and floors and etc. 

Numerous network architectures have been specifically developed to 
effectively predict unknown labels in classification and segmentation 
problems while processing point clouds. Due to the unstructured nature 
of point clouds, voxelization deep learning methods were initially 
developed as a solution. These methods incorporate standard convolu-
tions and leverage both local and global features of points to enable 
segmentation and classification of the point cloud based on a combi-
nation of these features [51,52]. In [53], the authors used 3D Con-
volutional Neural Networks (CNNs) to solve a binary classification 
problem. Later, in [54], the authors used raw point cloud directly as 
input data and learned the local features of points by Multi Layer 
Perception (MLP) and symmetric functions. Meanwhile, some research 
investigated utilizing Kernel Point Convolution to operate point clouds 
for segmentation tasks [55]. In the proposed method, the network learns 
the local geometry by considering kernel points and applying them to 
the input points close to them. 

With the development of the graph concepts in the point cloud 
domain, graph-based convolutional methods were developed to reduce 
the computational cost and efficient use of neighborhood points' ge-
ometry [56]. The developed Graph-based networks use graph theory to 
find the spatial neighbors of each point and generalize CNN layers to 
adapt to the graph's structural data. To perform a semantic segmentation 
of an indoor point cloud, Armeni et al. first parsed the building envi-
ronment into individual spaces using density-based histogram analysis 
[57]. They then implemented an instance segmentation model to parse 
spaces into their structural and building elements. In [58], the authors 
implemented an Image-based deep network for scene segmentation by 
projecting points to an intermediate 2D grid structure using different 
viewpoints. In [59], Dai et al. developed a method for 3D semantic scene 
segmentation of RGB-D scans in indoor environments which combines 
and joins RGB values and depth geometry data in end-to-end network 
architecture in their proposed method. Recently, in [60], the authors 
developed an efficient semantic segmentation network called point 
transformer, which uses the self-attention layer with a combination of 
simple linear layers and MLP. The point transformer layer is invariant to 
permutation and cardinality and is thus inherently suited to point cloud 
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processing. 
Despite the significant progress made in the field of AI, the developed 

networks for scene-understanding tasks face several challenges that can 
impede their performance. One major challenge is the requirement for 
numerous distinct datasets for training the network to achieve optimal 
results, particularly in the context of indoor environments with cluttered 
scenes, which can be both costly and difficult to obtain. Additionally, 
most AI architectures rely solely on local and global features in the 
training phase and decision-making process, while ignoring critical en-
gineering construction knowledge such as general knowledge on 
building structures and the interaction of building elements. Incorpo-
rating such knowledge can serve as a key tool for overcoming obstacles 
and breaking down a general problem into smaller, more manageable 
tasks, ultimately leading to improved overall accuracy. 

2.2. Geometry provision (representation of parametric or non-parametric 
models) 

One of the fundamental prerequisites for achieving a DT is geometry 
provision, which involves representing the physical environment 
through three-dimensional models. The virtual model must exhibit to-
pological consistency and geometric accuracy and should facilitate 
bidirectional interaction with a customized geometric abstraction of the 
real world. In recent years, various methods have been employed in the 
literature to represent 3D models, each with its own set of advantages 
and disadvantages. However, the creation and representation of the 
building digital model from point clouds has remained an unresolved 
issue, and most previous work is designed for specific types of buildings 
and is limited to reconstructing specific kinds of objects. In this regard, 
the state-of-the-art is reviewed across four distinct methodologies, as 
follows: 

2.2.1. Implicit representation 
Implicit shape representation is a method conducted by defining 

surfaces and primitive shapes with mathematical equations in Euclidean 
space. Implicit methods use implicit functions such as F (x, y, z) to 
represent curves and surfaces with arbitrary constructive topology. They 
are only applicable to specific symmetric shapes among all real-world 
3D objects. In [61], the authors developed a dimension-independent 
algorithm based on the least-square method for fitting a shape (line, 
circle, conic, cubic, plane, sphere, quadric, etc.) to 2D and 3D space 
points. Kwon et al. [62] developed a real-time and accurate modeling 
algorithm to fit geometric primitives' shapes (such as planes, cuboids, 
and cylinders) to point clouds. In many studies, authors have recently 
tried to implement neural networks to learn a continuous implicit 
function representing shapes [63]. 

2.2.2. Boundary representation (B-rep) 
The boundary representation method is a way to represent a 2D or 

3D shape based on its vertices, edges, and loops and their topological 
relationship to form the object. In this method, vertices are described by 
their coordinates (x, y, z), and a parametric equation defines lines 
(straight or curved) or faces. In this regard, Xiong et al. in [27] devel-
oped an automatic 3D reconstruction framework that used the voxelized 
point cloud to recognize the patches such as walls, ceilings, or floors 
based on boundary limits. In the proposed approach, visibility reasoning 
is used to detect openings (windows and doorways) and holes in the 
surface. Finally, the building models generate by learning the unique 
features of points and their contextual relationships. In [64], the authors 
used histogram analysis to extract planar surfaces, such as walls, floors, 
and ceilings, from a laser scanner point cloud. Then, they implemented 
Hough transform to model candidate surfaces. They also used supervised 
learning by support vector machine (SVM) to detect opening parts. In 
[65], Stamati et al. developed an integrated approach based on 
morphology analysis techniques and the piecewise rational Bezier 
curves to extract features and boundaries from a 3D point cloud. In [42], 

the authors proposed an automatic approach for reconstructing and 
modeling architectural buildings. They first extract planes using the 
RANSAC algorithm and automatically create initial models by finding 
boundary polygons. They also extract local adjacency relations among 
parts of the polygons and use them to modify the fitted model through a 
snapping algorithm. 

2.2.3. Procedural modeling 
Procedural modeling is the method of 3D modeling geometries of 

solid shapes. The complete model of an object is represented by 3D 
primitive shapes (e.g., cuboids, cylinders, spheres, cones, etc.) or a 
combination of them using Boolean operations such as union, intersec-
tion, and difference. As one of the earliest investigations, Wang et al. 
[66] proposed a semiautomatic model-based approach for the 3D 
reconstruction of buildings using photogrammetric data. In their pro-
posed pipelines, after selecting an appropriate model from the pre-
defined library, a CSG (Constructive Solid Geometry) model is fitted to 
the data by implementing an optimization method. In [67], the authors 
proposed an automatic 3D reconstruction framework titled “Inverse 
CSG” to represent walls in indoor scenes with volumetric primitive 
shapes. Also, in [68], the authors presented an automatic method for 
representing 3D solid shapes of objects using point cloud data. In this 
method, a set of primitive shapes candidates are chosen, and then the 
target model is generated by the combination of a subset of candidates 
with corresponding Boolean operations using a binary optimization 
technique. 

2.2.4. Parametric modeling 
Parametric modeling involves the creation and representation of a 

dynamic geometric model system through dependencies and functions 
between parts/volumes. In contrast to solid modeling methods, the 
parametric modeling approach preserves a parametric format, allowing 
for the effortless modification of geometry by adjusting parameter 
values and incorporating metadata and semantic information. This 
adaptability proves particularly advantageous in the realms of BIM and 
digital twinning, where bidirectional links facilitate the updating of 
existing geometry based on input values [69]. It is considered a suitable 
method for digitally representing buildings and infrastructure, espe-
cially when frequent geometric updates are required over their service 
life. 

In [70,71], the authors developed a parametric modeling approach 
for the creation of the digital model of bridges. The proposed method 
involves using a semantic segmentation network to extract various 
structural elements, such as the deck, abutments, railing, and piers. 
Subsequently, metaheuristic algorithms are used to adjust the parameter 
values of each structural element, resulting in the extraction of a model 
from the point cloud data and the creation of 3D volumetric shapes. In 
the case of building digital model creation, perpendicularity or paral-
lelism of elements (e.g. walls, slabs etc.) or defining dimensional values 
such as length, distance, or angle could be a feasible example. In [1] the 
authors considered the parametric modeling of the building structure as 
a combination of model reconstruction and then set geometric rules for 
change the spaces layout and model modification. 

Despite its effectiveness and extensibility, the parametric modeling 
process can be more labor-intensive comparing to the other modeling 
methods. Procedural parametric modeling requires a high level of prior 
knowledge about the geometry of the elements to establish a set of de-
pendencies and topological integration between different parts and 
layers for adding geometric data to the target elements [69]. Moreover, 
an integrated parametric model require well-defined access points as 
crucial interfaces to accommodate received location-based queries and 
tailor the model to sub-views based on distinct use cases and LoDs [72]. 

2.3. Research gap 

The rise in building construction projects has necessitated the need 
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for smart asset management and sustainable decision-making in com-
plex environments. In response, the concept of DTs has been extended to 
indoor environments to support building management and planning 
during the operation phase. Despite the growing interest in DTs, a sig-
nificant research gap still remains in creating a digital representation 
model of indoor buildings from point cloud data. 

Indoor point cloud data can be acquired through various methods 
such as laser scanning and photogrammetry. Despite their individual 
benefits and drawbacks, the quality of the point cloud data can be 
influenced by a range of factors, including lighting, occlusions, and re-
flections, which can pose challenges to the digital representation of the 
physical world. Thus, it is crucial to establish standardized protocols for 
data processing to ensure accuracy and consistency in the digital 
models. Most methods for processing indoor point cloud data are based 
on a bottom-up approach where the data is divided into sub-individual 
parts (such as an object or surface instances) and then 3D volumetric 
models are fitted. Although semantic segmentation/classification is 
intertwined with the model fitting process, this may not be easily ach-
ieved due to various obstacles such as noise, obstruction, and clutter in 
spaces. The data-driven approaches are particularly sensitive to data 
quality, especially occlusion, and their performance may decline in the 
presence of challenges such as clutter or complex building layouts. 
Therefore, leveraging domain knowledge through the parametric 
modeling technique is hypothesized to be a promising tool for creating 
digital models of real-world assets with coherent geometry and rich 
semantics in a comprehensive manner. 

The parametric modeling approach enables the creation of accurate 
and detailed representations of assets, which can be used for various 
applications such as asset management, space planning, and renovation 
design. However, the design of appropriate parametric models and 

estimating the values accurately still have remained a challenge in 
representing the reliable digital model of indoor assets. In the realm of 
building digital modeling, extant literature expresses the parametric 
modeling process as a combination of model reconstruction and subse-
quently set geometric rules [1]. Also, in some research, parametric 
building modeling has been considered as the floor plan generation 
through a set of inputs and rules with the capacity to systematically 
generalize arbitrary constraints therein [73,74]. Nonetheless, an effi-
cacious approach ought to incorporate the tenets of parametric 
modeling in the model reconstruction process to enable the estimation of 
parameters accurately and to guarantee consistency between the 
different components of digital models. This paper discusses the utili-
zation of AI methods along with accumulated knowledge from con-
struction and design domains to create a potent solution for the 
prevailing challenges in the field. The objective is to develop an auto-
matic framework for the parametric modeling of a wide range of 
buildings under Manhattan world assumption, across different designs 
and layouts. Further insights into the proposed methodology will be 
expounded upon in the subsequent section. 

3. Methodology 

3.1. Overview 

This section delineates the proposed workflow for creating highly 
parameterized digital models of indoor environments which rely on 
integrating the top-down and bottom-up approaches. The overall 
methodology of the proposed approach is visually depicted in Fig. 2. 
First, multi-step preprocessing techniques are employed to eliminate 
outliers, minimize noise as well as separate different levels in multi-story 

Fig. 2. Overview of the proposed end-to-end method for building digital model creation.  
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building scenarios to facilitate the modeling process and ensure the 
resultant 3D models effectively reflect the indoor environment. Next, a 
bottom-up approach is implemented through a Decision Tree classifier 
model to identify the main building's structural elements (e.g. walls, 
ceiling, and floors) in the indoor scene point cloud. Subsequently, the 
derived information is utilized in a knowledge-based 3D space parser 
algorithm that converts complex indoor environments into individual 
subspaces. The top-down approach involves designing highly parame-
terized building models that mirror the typical topology of buildings, 
presenting human knowledge in building design and engineering. This 
approach leverages a model-based technique, coupled with an optimi-
zation process, to create the highly parameterized floor plan maps which 
present the current spatial layout of the environment. Then, based on the 
pre-defined geometric and semantic rules and constraints, the extruded 
3D models are fitted to the point cloud data using a high-dimensional 
optimization problem by employing simplex optimization methods. 
The modularized building models provide sufficient degrees of freedom 
to allow the modeling of a wide range of different real-world buildings 
(Fig. 3). 

3.2. Preprocessing 

The process of manually digitizing and reconstructing digital models 
of objects needs a significant investment of time and costs. In this regard, 
the development of algorithms for the automated creation of digital 
models is a highly important area of research. Laser scanning is the 
technology that can capture data for the creation of 3D models, thereby 
motivating researchers to develop fully automatic algorithms in this 
field. However, it is crucial to pay special attention to the preprocessing 
of input data before executing the main computing processes. Among 
the essential factors, the subsampling of the point cloud for improving 
the processing time and filtering of the noises and obstruction are the 
utmost important steps that require particular attention in preprocessing 
methods. 

Subsampling is a process of reducing the number of points in a point 
cloud while preserving the geometric structure and relevant information 
of the scene, which reduces the computational complexity of subsequent 

main operations. Subsampling can be achieved using various tech-
niques, such as random sampling, and grid-based sampling. In random 
sampling, a subset of points is selected randomly from the original point 
cloud. This method is straightforward and efficient but may result in 
non-uniform point distribution and loss of important features. 

Grid-based subsampling involves dividing the point cloud into a grid 
of equal-sized cells and selecting one point per cell. This method ensures 
a more uniform distribution of points but may result in the loss of fine 
details and features. Given that the proposed method employs model- 
driven approaches, the level of dependence on specific details is 
significantly reduced. Thus, a grid-based subsampling method is utilized 
to ensure the effectiveness of the proposed approach as well as to 
improve the time in the point cloud processing steps (Fig. 4). 

Noise and outliers are undesirable points that do not conform to the 
overall data distribution, and can arise from different sources such as 
sensor noise, environmental conditions, and moving objects. To remove 
these unwanted points from the dataset, statistical or neighborhood 
analysis methods can be used. One of the effective methods for filtering 
out noise and outliers is the Connected Components Segmentation (CCS) 
approach, which involves setting a distance threshold and then identi-
fying all connected points within the threshold as a separate segment 
[75] (Fig. 5). In this regard, noise and outliers often appear as small or 
isolated segments in indoor scenes, which can be easily identified and 
eliminated from the data. 

In the preprocessing of the multi-story building point cloud, the 
separation of different building levels is a crucial step for the accurate 
modeling and representation of its structural elements. While several 
data-driven methods have been developed to separate floors and ceilings 
in a multi-story building point cloud, these methods rely on histogram 
analysis of points density along the Z axis and then filtering peaks as the 
level separators [76]. However, the developed methods are applicable 
only to a specific range of buildings. They face different challenges in the 
presence of complex and specialized structural designs, such as varying 
the floor's heights and the inclusion of stairs or ramps that connect 
different floors. Addressing the corresponding problems needs selecting 
parameters and performing the steps manually. 

Consequently, there is a pressing need to develop more adaptable 

Fig. 3. Creation semantic digital building model through parametric design and model fitting.  
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techniques to address these limitations and overcome the challenges 
posed by unique structural conditions. In this study, we employ the 
property of the point's normal vector to separate the various levels of the 
building. Specifically, we utilize this characteristic to differentiate be-
tween the ceiling and the floor of each level. Surface normals (nx, ny, nz) 
are vectors that are perpendicular to the tangent plane at a specific point 
on the surface, and indicative of the surface's characteristics. In order to 
calculate the Normal vector values for a point on the surface in the point 
cloud space, the covariance matrix and eigenvector values of the nearest 
neighboring points are computed and analyzed [77]. This involves 
determining the covariance matrix c for a given point p by (1): 

c =
1
k
∑n

i=1
(pi − p).(pi − p)T (1)  

where k is the number of neighboring points, pi and p also refer to the 3D 
coordinates of the points being considered. Additionally, the eigen-
values and eigenvectors are determined by (2) where λ and v→ are ei-
genvalues and eigenvectors respectively. 

c. v→j = λj. v→j, j ∈ {0, 1, 2} (2) 

For a simple room's point cloud, the Normal vector features of both 

the ceiling and floor points have typically the highest values along the Z 
axis. However, to ascertain the direction of the Normal vector of the 
ceiling and floor in point cloud space, a designated viewpoint is utilized, 
which is often situated at the geometric centre of the points. This enables 
the distinction between the ceiling and floor points based on their 
respective vector directions, which are opposite (Fig. 6). 

In the context of a multi-story building scenario, the Verticality 
feature of points serves as a primary tool for the detection of horizontal 
planes (Fig. 7). The Verticality feature value is determined by computing 
the covariance matrix of neighboring points and normal vector value nz 
by (3) [78]. For horizontal points of ceiling and floor elements with the 
highest nz value, the corresponding Verticality feature value is equal to 
zero. 

Verticality = 1 − nz (3) 

Upon calculating the Verticality feature and extracting candidate 
points, the connected components segmentation (CCS) method with the 
parameters of a radius of about 25 cm and a minimum number of 5000 
points per segment is utilized to decrease the noise of furniture elements 
and separate the major segments representing ceiling and floor points 
candidates on different levels. Calculating the Normal vector value and 
identifying its direction requires determining unique viewpoints on each 

Fig. 4. Grid-based point cloud subsampling.  

Fig. 5. Filtering of the noise and outliers using the CCS method: (a) raw point cloud data, (b) the result of filtering noise and outliers.  
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Fig. 6. Normal vector characteristic: (a) the point cloud of a simple room, (b) calculation of normal vector values and separating ceiling and floor points.  

Fig. 7. Proposed method for level separation in multi-story building scenario: (a) original point cloud after the filtering process, (b) the verticality feature, (c) 
extracting major planar segments using the CCS method, (d) ceiling and floor point candidates in different level, (e) separating ceiling and floor points based on 
normal value and direction toward the viewpoints, (f) the point clouds of individual building levels. 

Fig. 8. Proposed workflow for semantic enrichment of indoor point cloud, a bottom-up approach for point-wise and space-wise semantic labeling.  
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building level. In this regard, the information of candidate segments is 
utilized and the middle points of two consecutive segments along the Z- 
axis are designated as viewpoints, and subsequently, the points are 
categorized according to the Normal vector direction. 

Finally, the ceiling points information is employed to crop and 
partition the individual level's point cloud. The proposed method for 
separating different levels within a multi-story building point cloud is 
distinct from other extant approaches in that it is not sensitive to the 
geometric intricacies and structural complexity and obviates the ne-
cessity of executing manual operations. 

3.3. Semantic enrichment 

3.3.1. Indoor point cloud classification 
Point clouds are a prevalent form of 3D data that can offer valuable 

geometric information about physical objects or scenes. However, the 
raw data collected from laser scanners can be complex, unstructured, 
and unordered. To support scene understanding and automated analysis 
in the geometry provision step, this data requires higher-level contextual 
information. Semantic enrichment is the process of adding semantic 
meaning to point clouds by labeling each point with contextual infor-
mation to make it more consumable for human or machine interpreta-
tion (Fig. 8). In this research, the process of semantic enrichment is 
handled by employing a Decision Tree classifier model and leveraging 
the geometric features to partition the raw point cloud into smaller 
classes based on spatial relationships and object type. 

Indoor environment scans have always been associated with the 
frequency of objects, complex layouts of spaces, clutter, and obstruction. 
The creation of a building's structure digital model requires accurate 
classification and extraction of the main structural elements. Due to the 
coplanarity as well as the coherent 3D distribution of the main structural 
element's points compared to the furniture objects, the use of appro-
priate geometrical features can lead to the accurate classification of 
point cloud data. To implement and train the classification model, first, 
Area 5 of the Stanford University 3D dataset (S3DIC) is selected and the 
point clouds are annotated into four classes including; wall, ceiling, 
floor, and furniture (Fig. 9) [57]. 

In the following, the geometric features such as Planarity, Verti-
cality, Normal value along the Z axis (nz), and surface variation are 
calculated for each point using a spherical neighborhood with a radius of 
0.25 m (Fig. 10). In this regard, the Planarity and change in Normal rate 
features are utilized to differentiate the main structural element points 
from furniture objects. Furthermore, Verticality and nz features are 
employed to distinguish the vertical walls of the building from the 
horizontal surfaces of the ceiling and floor. Similar to the surface normal 
vectors and Verticality features, the Planarity is calculated by analyzing 
the eigenvalues of the covariance matrix using (4). The surface variation 
is also computed by comparing the normal vectors of neighboring points 

and calculating the angular difference between them. 

Planarity =
λ2 − λ3

λ1
(4) 

To classify multi-class data, the decision tree is built by recursively 
splitting the data into subsets based on the values of the features until 
the subsets be homogeneous or the tree reaches a maximum depth. At 
each node of the tree, a decision is made based on a feature, and the data 
is split into two or more subsets, which are then passed down to child 
nodes. This process continues until a leaf node is reached, which con-
tains a prediction for the class label. The maximum depth parameter is a 
tuning parameter that affects the performance and interpretability of 
decision tree models and has a crucial role to balance between under-
fitting and overfitting to obtain a model that can accurately classify new 
data points. 

Fig. 11 shows the structure of a decision tree classifier with a 
maximum depth parameter equal to 3. Due to the complexity of indoor 
scenes and the use of different geometric features with similar values in 
the range of [− 1,1], the depth parameter is experimentally considered 
equal to 10 to effectively explore the relationships between the features 
and search for relevant states. 

To calculate the amount of uncertainty in data and determine the 
optimal split at each node of the tree, the criterion entropy is used. At 
each node, the algorithm calculates the entropy of the data based on the 
distribution of the target classes. It then splits the data into subsets based 
on the values of the features and calculates the entropy of each subset. 
The entropy criterion is less prone to bias when compared to other 
criteria (e.g. Information gain, Gini, Reduction in Variance, etc.), as it 
considers the distribution of the target classes in the data. For a dataset 
with N classes the entropy is calculated by (5): 

E(s) = −
∑c

i=1
pilog2(pi) (5) 

Where s is the current state, and pi is the probability of an event i of 
state s. 

The S3DIS dataset area 5 is divided into two sets, namely training 
and validation, with an 80/20 ratio, respectively. The common data 
partitioning ratios include 90/10, 80/20, and 70/30 subsets. The se-
lection of these ratios is based on fulfilling the requirements of adequate 
training data, effective generalization assessment, computational effi-
ciency, and the mitigation of data imbalance. The training set is used to 
train the Decision Tree classifier model aim to robust parameter 
learning, fostering the model's capacity to capture intricate patterns, 
while the validation set is utilized to evaluate the performance of the 
model on new, unseen data, mitigate overfitting and ensureing the 
comprehensive evaluation without compromising computational effi-
ciency. To evaluate the performance of the model, annotated reference 
data and the classified points are compared using the standard metrics of 

Fig. 9. Preparing point cloud dataset for training the Decision Tree Classifier model: (a) the point cloud of the Stanford University 3D dataset (S3DIS) Area 5 [57], (b) 
the annotated point cloud data. 

M. Mehranfar et al.                                                                                                                                                                                                                            



Automation in Construction 162 (2024) 105392

12

Precision, Recall, F-Score, and the results are reported in Table 1 based 
on Eqs. (6)–(8) where TP, TN, FP, and FN are True Positive, True 
Negative, False Positive, and False Negative, respectively. 

Precision =
TP

TP + FP
(6)  

Recall =
TP

TP + FN
(7)  

F-score = 2.
Precision.Recall

Precision + Recall
(8)  

3.3.2. 3D space parsing 
The skeleton of a building is delineated by pertinent data regarding 

its structural and architectural characteristics such as the area of interior 
spaces, the number of walls, openings, etc. When crafting an elaborated 
digital replica of a building, it becomes imperative to accord primacy to 

)b()a(

)d()c(

Fig. 10. Point cloud feature extraction: (a) Verticality, (b) Planarity, (c) Normal value along the Z axis (nz), (d) Normal change rate.  

Fig. 11. The structure of the decision trees model with a maximum depth of three for the classification task.  

Table 1 
Accuracy evaluation of classification model.   

Precision Recall F-Score 

Ceiling 0.90 0.92 0.91 
Floor 0.83 0.93 0.88 
Furniture 0.66 0.49 0.56 
Wall 0.79 0.87 0.83 
Overall accuracy = 0.79  
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the constituent rooms and spaces. The individual spaces play a pivotal 
role in facilitating the creation of an accurate and intricate virtual rep-
resentation of the entire building [79]. According to the literature, an 
enclosed interior space is characterized by fundamental structural 
components such as the floor, ceiling, and walls, which exhibit topo-
logical relationships with other adjacent spaces [1]. 

Inferring the prevailing topological relationships between spaces is 
necessary for accurate geometric modeling of complex spaces and their 
analysis in internal navigation applications [29]. The major existing 
approaches for partitioning 3D spaces rely on prior knowledge of space 
layout or the precise location of laser scanners, rendering them suitable 
only for small-scale environments [80]. Moreover, unsupervised seg-
mentation methods that employ features such as point density to 

delineate spaces typically produce results with over-segmentation de-
fects and other associated drawbacks [57]. 

Considering all the aspects and limitations of existing methods, we 
propose a knowledge-based approach to overcome constraints. The 
proposed methodology combines both top-down and bottom-up tech-
niques to enable effective partitioning of spaces within complex 3D 
environments. The proposed approach involves analyzing the intersec-
tion of wall and ceiling points to determine the central part of an 
enclosed space that is encompassed by walls (Fig. 12). 

In this regard, the algorithm initially removes the ceiling points that 
are in d distance from the wall points, resulting in a ceiling segment that 
is fragmented and dispersed at a significant distance from the walls. The 
appropriate value for d is based on the average thickness of interior walls 

(a) (b ) (c)

(d)

Fig. 12. Overview of the proposed algorithm for 3D space parsing: (a) ceiling and walls points on X-Y plane, (b) removing ceiling points at distance d from walls, (c) 
clustering remained ceiling points, (d) he result of 3D space parsing after applying the nearest neighbor method, along with the adjacency graph of 3D individual 
spaces (The ceiling points were removed to improve the visual representation). 

Fig. 13. The proposed workflow for geometry provision; the creation of the highly parametrised digital building model.  
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that are typically found in the specific type of buildings being examined. 
In the subsequent step, the remaining ceiling points undergo a density- 
based clustering procedure using the DBSCAN algorithm, which aims to 
generate distinct clusters [81]. DBSCAN is a well-suited technique for 
the clustering of sparsely distributed points as it identifies clusters as 
groups of points with high density within a particular range or neigh-
borhood radius, which are separated by regions of lower density. Lastly, 
a hierarchical nearest neighbor approach is utilized to label each 3D 
point in the point cloud space, encompassing the ceiling, walls, floors, 
and furniture, with the appropriate cluster assignment obtained from 
the preceding clustering procedure. The pseudo-code of the proposed 
method for 3D space parsing is shown in Algorithm 1. 

In indoor environments, individual spaces are typically separated by 
common walls or connected by openings such as doors and windows. To 
support various applications such as BIM, robotics, and path planning, 
an adjacency graph is constructed to represent the adjacency relation-
ships among all spaces, regardless of whether they are physically con-
nected. The adjacency graph, denoted as G (V, E), consists of vertices (or 
nodes) that correspond to individual spaces, and edges that denote ad-
jacency between two distinct spaces. To determine the adjacency re-
lationships, the distance between the point clouds of each space instance 
is computed using a neighborhood tolerance t, which enables the iden-
tification of adjacent spaces in the adjacency graph. 
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3.4. Geometry provision 

Parametric modeling is the process of generating an interactive 
digital model that operates on a set of predetermined values, algorithms, 
and rules known as ‘parameters'. The model is designed to have a flexible 
structure where different elements are interconnected through para-
metric rules, enabling any modification to the model to be automatically 
managed by internal logic arguments. When it comes to creating 
meaningful building objects and their relationships, traditional data- 
driven methods can encounter significant challenges [1,30]. 

However, a top-down approach that involves fitting a highly 
parameterized building model to observed data has emerged as a 
promising alternative which due to establishing parameters and rules 
that govern the relationships between building components, can create a 
more accurate and meaningful representation of the building. In the top- 
down approach, the building models are designed based on a typology of 
typical office and residential buildings, allowing for greater flexibility 
and adaptability to changes. This brings the potential to significantly 
advance the way of modeling building assets enabling a more effective 
management approach. Fig. 13 illustrates the proposed workflow for 
geometry provision. 

3.4.1. Floor plan mask creation 
In this research, the creation of the building digital model is handled 

through a top-down approach and the task of digital geometric repre-
sentation is considered designing a highly parameterized floor plan 

problem. The difference among the floor plans is primarily ascribed to 
the dimensions and the layout of spaces in the 2D plane, in which the 
position of walls and slabs in building space play important roles. In this 
regard, the information extracted from the space parsing step is utilized 
to create an initial floor plan mask. 

In the context of the Manhattan world, the spaces exhibit rectangular 
shapes that align with the coordinate axes. This phenomenon arises from 
the fact that the shortest path between two points within a Manhattan 
world is measured along the orthogonal axes, rather than through a 
straight line. This leads to a characteristic appearance of spaces that are 
“squared off” or “blocky” in nature. The aforementioned concept is 
harnessed via a model-based approach for designing a parametric 
floorplan mask (Fig. 14). 

Initially, a 2D bounding box is fitted to the points of individual spaces 
in the X-Y plane to serve as a generalized model of the space's footprint, 
featuring low geometric intricacy. To enhance geometric detail in more 
complex spaces such as those with L-shaped configurations etc., the 
method of utilizing the bounding box grid is employed. This technique 
involves the installation of a rectangular grid with the dimensions of L 
on the points, followed by the identification and removal of empty cells 
from the initial 2D bounding box model through polygon subtracting 
operations. By adjusting the parameter L, the level of detail in the final 
model can be tailored to the user's desired accuracy, in which smaller L 
values lead to increased geometric detail but higher processing times. 

The creation of building floor plans and the generation of its 3D 
structural models from the point cloud dataset have a formidable 

Fig. 14. The creation of the 2D geometric model of spaces with the parameter of L equal to 0.5: (a) fitting the 2D bounding box to the points in the X-Y plan, (b) 
install rectangular grid, identification, and removal of empty cells from the initial 2D bounding box model, (c) 2D geometric footprint model of spaces. 

Fig. 15. Generation of the 2D parametric floor plan mask of the building layout using the simplex Nelder–Mead optimization algorithm: (a) 2D model of individual 
spaces, (b) finding and placement of shared walls between spaces using optimization problem, (c) parametric floor plan mask model of the building layout. 
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challenge in identifying the position of common walls shared between 
spaces. Existing methods rely on a variety of assumptions and multiple 
distance and angle thresholds to locate parallel candidate planes that 
may belong to common walls. They are with significant challenges in 
accurately identifying these common walls due to the complexity of 
indoor scenes and the heterogeneity of building layouts and designs. 

To address the challenges, we define the process of determining the 
position of common walls shared between spaces and the creation of the 
parametric floor plan as an optimization problem (Fig. 15). Each 2D 
model of the individual spaces has two parameters Xc and Yc values, 
which are utilized for the precise placement of these models within the 
original point cloud. The optimal placement of 2D models in the point 
cloud should aim to maximize the number of points from the corre-
sponding space that are contained within the boundaries of the models. 

In this regard, the simplex Nelder–Mead optimization algorithm [82] 
is utilized to identify the best values of the Xc and Yc parameters for each 
space's 2D model by minimizing the objective function (1). During the 
optimization process, an important internal operation involves the se-
lection of adjacent edges in the 2D models of adjacent spaces as shared 
walls. This is achieved by utilizing the adjacency graph of spaces and 
replacing the selected edges with their respective middle line. This 
process is contingent upon the verification of the objective function (2) 
and is applied only if it does not lead to an increase in the value of the 
objective function (1). By replacing the adjacent edges with their 
respective middle line, the algorithm seeks to improve the overall 
quality of the solution while preserving the geometric and topological 
properties of the original layout. This approach provides a viable means 
of optimizing the layout of spaces and improving their functionality in 
various architectural and design contexts. 

Obj1 = min
∑n

k=1

(
Pspace(k) − Pmodel(k)

)
(9)  

Obj2 = select ei from {e1,…, en} ∈ S1 and ej from {e1,…, em} ∈ S2

(10) 

Where k is the number of individual spaces, Pspace(k) is the number of 
points belonging to the space k, Pmodel(k) is the number of points 
belonging to the space k within the boundaries of the corresponding 
model, ei, ej are the selected adjacent edges from the 2D models of two 
adjacent spaces, and {e1,…,en}, {e1,…,em} are all edges of the 2D models 
of two adjacent spaces S1, S2 respectively. 

3.4.2. Parametric design and model fitting 
Upon generating the initial floor plan mask, a sophisticated system of 

geometrical and mathematical rules and constraints is employed to 
establish internal relationships between the walls and slabs. These rules 
and constraints are rooted in the principles of building design and 
construction, and aim to optimize the functionality and aesthetics of the 
structure. For instance, buildings intended for office or educational 
purposes are often designed in adherence to the Manhattan world, a 
layout that prioritizes practicality and ease of navigation. As a result, in 
the case of such buildings, a restriction of perpendicularity and paral-
lelity between walls and slabs is imposed. The output of parametrization 
is a digital model in which the rules and restrictions are designed and 
applied so that any change in the internal parameters of a wall and slabs, 
such as the length and height, etc., will affect other related walls and 
elements (Fig. 16). 

The level of geometric accuracy needed for a digital model in facility 
management can vary depending on the specific use case and re-
quirements of the facility. A high level of geometric accuracy is desirable 
to ensure the model accurately represents the physical environment. 
Despite reliable topology, the initial parametric model may have inad-
equate geometric accuracy and imprecise parameter values. To address 
the problem, the Nelder-Mead optimization algorithm is employed once 
more to refine the rough model and bring it in closer alignment with the 
point cloud data and the real world (Fig. 17). To fit the volumetric model 
to the main structural element point cloud, the objective function of the 

Fig. 16. Designing the highly parameterized digital model of the building's structure; the process of changing the parameters.  

Fig. 17. The process of fitting the highly parameterized digital model to the 
point cloud dataset (the ceiling points were removed to improve the visual 
representation). 
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Points-To-Model distance is considered. The process entails computing 
the distance between points and the planes of the model to reconstruct 
precise geometric models. In this regard, a lower Points-To-Model 

distance value indicates better adaptation of the digital model to the 
point cloud data, resulting in the estimation of parameters more accu-
rately toward their actual values. 

One of the major technical challenges in the creation of digital 
models of indoor environments is accurately estimating the thickness of 
walls. This is particularly challenging due to the complexity of building 
geometries and the need to account for variations in wall thickness 
throughout the structure. The proposed method incorporates the 
thickness values of walls into the optimization problem as unknown 
parameters, treating the walls as boxes with varying dimensions of the 
thickness (t), length (l), and height (h) during the model fitting process 
which enables more flexible and accurate estimation of wall parameters. 

The design and optimization of parametric models for buildings 
involve a significant number of degrees of freedom which account for 
various geometric properties of the walls, including their length, 
thickness, height, and 2D location (Table 2). To estimate these unknown 

Table 2 
Encoding Unknown parameters of highly parameterized digital model of the 
building's structure.  

Parameters 

Elements Xcorner Ycorner Length Thickness Heigth 

Wall(1) P1 P2 P3 P4 P5 

Wall(2)   P6 P7 P8 

Wall(3)   P9 P10 P11 

...   ... ... ... 

RZ (the parameter of the rotation model around the Z axis).  

Fig. 18. Overview of the datasets and corresponding reconstructed digital models; (a) TUM CMS chair, (b) TUM - Floor (2), (c) TUM - Floor (3), (d) TUM - Floor (4), 
(e) TUM - Floor (5). 
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parameters accurately, they are included in the optimization problem as 
both explicit and implicit mathematical equations, subject to geometric 
constraints. The specific equations and values utilized in the optimiza-
tion problem can vary depending on the case study and the particular 
building being modeled. In the next section, the efficacy and depend-
ability of the proposed method are scrutinized through tests conducted 
on different case studies which offer insights into the performance of the 
proposed method and its potential applications in the domains of 
operation and management. 

4. Implementation and result 

4.1. Case study 

This research study presents a comprehensive evaluation of the 
proposed method for the creation of the building digital model by uti-
lizing distinct building datasets with varying architectural designs and 
layout appearances. The proposed approach is implemented in Python 
and MATLAB on a research computer (11th Gen Intel(R) Core(TM) i7- 
1165G7, with 16.0 GB memory). The evaluation metrics encompass 
various aspects of the proposed method, including its accuracy, effi-
ciency, and scalability, thereby offering a comprehensive analysis of its 
potential for practical implementation. 

The investigation involves the analysis of five distinct point cloud 
datasets, including two from the Technical University of Munich (TUM) 
in Germany and three from Stanford University in the United States 
(S3DIC) (Figs. 18–19). These datasets for Germany's sites have been 
captured by NavVis VLX laser scanner (www.navvis.com) and the US 
datasets were generated by Matterport scanner (www.matterport.com). 
The buildings represented in the datasets are primarily utilized for 
educational and research purposes, featuring various areas such as 

rooms, offices, hallways, and stairwells. A detailed summary of the input 
data's pertinent properties, including dimensional information, the 
number of points etc. are provided in Table 3. 

4.2. Preprocessing 

To facilitate the execution of the main steps of the proposed algo-
rithm, the datasets undergo preprocessing procedures prior to their 
utilization using the steps described in Section 3.2. In this regard, a grid- 
based subsampling approach with a 5 cm length is utilized to simplify 
dense point clouds. Additionally, the CCS method with a distance 
threshold of 0.25 m is employed to eliminate noise and outlier data in 
the point cloud space and separate the main building part from the raw 
point cloud. The TUM building (1) datasets is a multi-story building 
consisting of four floors. In order to separate the points belonging to 
each level, the proposed data-driven method is used (Fig. 6). First, the 
verticality and normal vector features are calculated for each point with 
a spherical neighborhood with a radius of 0.25 m. Next, in order to 
separate the major horizontal segments including the ceiling and floor 

Fig. 19. Overview of the datasets and corresponding reconstructed digital models; (f) S3DIC Area 1, (g) S3DIC Area 3, (h) S3DIC Area 6.  

Table 3 
Data used in this research.  

Datasets Length (m) Width (m) Number of points Clutter 

TUM CMS chair 25.51 59.73 534.136 Low 
TUM - Floor (2) 34.42 47.70 683.586 Moderate 
TUM - Floor (3) 44.67 48.62 675.294 Moderate 
TUM - Floor (4) 51.78 27.80 551.092 Moderate 
TUM - Floor (5) 24.31 10.22 88.625 Moderate 
S3DIC Area (1) 24.63 48.26 1.120.758 Low 
S3DIC Area (3) 29.23 25.71 484.874 Low 
S3DIC Area (6) 23.16 45.34 1.059.076 Low  

M. Mehranfar et al.                                                                                                                                                                                                                            

http://www.navvis.com
http://www.matterport.com


Automation in Construction 162 (2024) 105392

19

points, the CCS method with a distance threshold value of 0.25 m is 
used. Subsequently, after classifying the candidate points into classes of 
ceiling and floor using normal vector directions the derived information 
is used to separate the individual level's points. 

4.3. Experimental results of point cloud semantic enrichment 

The evaluation of the point cloud semantic enrichment approaches is 
involved two main steps of points classification using the decision tree 
classification model and 3D space parsing. For this purpose, the required 
features including Verticality, Planarity, Normal Z, and Normal change 
rate are calculated for each point in a 0.25 m neighborhood. Next, the 
pre-trained Decision Tree classifier model is applied to the datasets, and 
the main structural elements of the building are extracted. To evaluate 
the performance of the classification step, reference data are manually 
generated for each building point cloud and the comparison results 
between the reference data and the classified points are reported in 
Tables 4–5. 

For each dataset, the standard quality metrics of precision, recall, 
and F-score are calculated using Eqs. (8)–(10). According to the results, 
the average accuracy of classification for all buildings datasets is about 

80%. As previously mentioned, the objective of the classification step is 
to identify and extract the main structural elements of the building, such 
as ceilings, and walls, and utilize them in the proposed knowledge-based 
method for 3D space parsing. According to the result provided in 
Table 5, the accuracy of classifying walls in building environments is 
lower compared to ceilings and floors, reasoned by factors such as scene 
complexity and geometric feature similarity between wall points and 
furniture elements (Fig. 20). Addressing this issue requires the prepa-
ration of huge and diverse datasets while collecting such data for indoor 
environments is challenging and expensive. Therefore, leveraging 
existing knowledge of building design and element-space interaction is 
important for feature extraction and modeling tasks. 

To assess the performance of the method used for point cloud clas-
sification, a quantitative comparison is conducted between the Decision 
Tree method and other supervised learning methods, including Gaus-
sianNB (Gaussian Naive Bayes) [83] and SVM (Support Vector Machine) 
[84]. Each model is trained with annotated S3DIC area 5 data and is 
tested on each building datasets. 

GaussianNB utilizes the Gaussian distribution to model feature de-
pendencies and calculates the probability of an instance belonging to a 
specific class based on its feature values and the information gained 
from the training data. SVM classifies data by finding the optimal hy-
perplanes that maximally separate different classes in the feature space. 
Due to the nonlinear and complex relationship between normalized 
geometric features, the sigmoid kernel is used for training the SVM 
classifier model. 

According to Table 6, the Decision Tree model has achieved higher 
accuracy compared to other classification methods. While GaussianNB 

Table 4 
Accuracy evaluation of the point cloud classification (Precision, and Recall metrics).   

Precision Recall 

Datasets Ceiling Floor Furniture Wall Ceiling Floor Furniture Wall 

TUM CMS chair 0.98 0.95 0.39 0.88 1.00 0.98 0.34 0.88 
TUM - Floor (2) 0.88 0.95 0.29 0.95 0.99 0.74 0.38 0.95 
TUM - Floor (3) 0.78 0.81 0.26 0.75 0.95 0.85 0.48 0.42 
TUM - Floor (4) 0.80 0.89 0.16 0.87 0.99 0.79 0.24 0.77 
TUM - Floor (5) 0.89 0.89 0.34 0.98 0.98 0.94 0.58 0.88 
S3DIC Area (1) 0.86 0.80 0.59 0.84 0.93 0.91 0.51 0.83 
S3DIC Area (3) 0.89 0.85 0.64 0.76 0.94 0.92 0.46 0.86 
S3DIC Area (6) 0.84 0.78 0.62 0.82 0.92 0.91 0.51 0.82  

Table 5 
Accuracy evaluation of the point cloud classification (F-Score, and overall ac-
curacy metrics).   

F-Score Acc. 

Datasets Ceiling Floor Furniture Wall Overall 

TUM CMS chair 0.99 0.97 0.36 0.88 0.88 
TUM - Floor (2) 0.93 0.83 0.33 0.95 0.88 
TUM - Floor (3) 0.86 0.83 0.33 0.54 0.64 
TUM - Floor (4) 0.89 0.84 0.20 0.81 0.76 
TUM - Floor (5) 0.93 0.91 0.43 0.94 0.89 
S3DIC Area (1) 0.90 0.85 0.55 0.83 0.79 
S3DIC Area (3) 0.91 0.88 0.53 0.81 0.78 
S3DIC Area (6) 0.88 0.84 0.56 0.82 0.78  

Fig. 20. The result of points classification: conference room of the Stanford University Area (1) dataset: (a) original point cloud, (b) ground truth for the points 
classification, (c) the result of points classification using the Decision Tree classification model. 

Table 6 
Quantitative comparison of the overall accuracy of various supervised learning 
methods in the classification of indoor point clouds.  

Supervised learning methods Decision Tree GaussianNB SVM 

Overall accuracy 0.80 0.76 0.57  
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demonstrates strong performance of 76%, with only a 4% difference in 
overall accuracy compared to the Decision Tree model, SVM has reached 
the lowest accuracy at about 57%. Although the Decision Tree and 
GaussianNB handle data complexity differently, due to the nature of the 
SVM learning process, it is more sensitive to data imbalance. A sub-
stantial proportion of the training data corresponds to structural ele-
ments of walls, ceilings, and floors, posing challenges for the SVM model 
in capturing different nonlinear relationships and distinguishing be-
tween the classes of furniture and structural elements. Furthermore, 
despite the use of various distinct geometric features, there are still 
similarities between the geometric feature values of wall and ceiling 
elements and other furniture objects such as bookshelves and desks. 
These similarities can lead to more confusion in the model's learning 
process. 

To disjoint 3D spaces, the ceiling points situated 35 cm away from 
the wall element are eliminated. The distance threshold of 35 cm is 
selected based on the standard thickness of interior and exterior walls in 
educational building design using materials such as concrete, stone 
slabs, etc. Subsequently, the DBSCAN clustering technique is applied 
along with the nearest neighbor algorithm to group points in the 3D 
space into distinct clusters. This approach is employed to identify areas 
of dense point concentration in the 3D space and to create boundaries 
between these clusters, thus forming separate and disjointed 3D spaces. 
For determining the adjacency relationships between spaces in accor-
dance with the indoor layout, the distances between all segmented 
spaces are calculated. 

A neighborhood distance of 1 m is employed as a tolerance threshold, 
whereby any spaces within this distance are deemed to be adjacent. To 
assess the effectiveness of the proposed algorithm for 3D space parsing, a 
quantitative evaluation is conducted which involves comparing the 
statistical parameters of the algorithm's results with the information 
provided by the facilities department (Table 7). The evaluation metrics 
include the unsupervised clustering similarity metric Rand Index (RI) 
[85] and the number of individual spaces identified by the algorithm. In 
this regard, the overall accuracy for 3D space parsing is 93.5% which 
indicates the utility and performance of the proposed algorithm for 
partitioning 3D spaces in different indoor environments with diverse 
layouts and design. 

In the realm of 3D space parsing for large-scale and complex indoor 
environments, a key obstacle is the accurate separation of hallways from 
each other and mitigating the issue of over-segmentation. The proposed 
knowledge-based algorithm effectively addresses this challenge by 
seamlessly grouping and distinguishing individual hallways and corri-
dors as a unified space, without requiring any post-processing tasks 
(Fig. 21). The principal objective of creating digital models utilizing BIM 
concepts is to furnish both geometric and semantic data about an object 
in a simultaneous manner. In this regard, the segmented 3D spaces and 
corresponding wall instances can be utilized across various applications, 
including scan-to-BIM, 3D modeling, and navigation. 

4.4. Experimental results of geometry provision 

To design the highly parameterized building digital models, first, the 

2D floor plans that reflect the building layouts are generated. Individual 
space points are initially projected on the X-Y plane, and their corre-
sponding 2D models are extracted using the model-based approach 
outlined in Section 3.4.1. To compare the geometric detail in result 
models, the parameter of grid dimension in the corresponding model- 
based approach is considered with different values of 0.25, 0.5 and 1 
m. The extracted 2D models are then imported into the optimization 
process to determine their optimal placement within the point cloud 
space, thereby generating comprehensive floor plans for the datasets. 

In this regard, the geometric centre of the point cloud pertaining to 
each individual space is considered as the initial value for unknown 
parameters in the optimization process. This serves as a starting point for 
the iterative optimization algorithm, which aims to identify the most 
suitable spatial arrangement of the 2D models within the point cloud. 
Due to iteratively refining the placement of spaces based on predefined 
objective functions and constraints, the optimization process effectively 
generates cohesive and well-organized floor plans that accurately 
represent the spatial relationships and layout of the datasets. 

Subsequently, the initial floor plan models are extended into 3D 
volumetric-parametric models and subjected to geometrical and math-
ematical rules and constraints, including the requirement for perpen-
dicularity between elements such as walls, slabs, and ceilings. Finally, 
the highly parameterized building models are fitted to the point cloud 
through the optimization process and the best value for the parameters 
of the building model are extracted. Table 8 shows the values of pa-
rameters of optimization processes for creating highly parameterized 
building models. One of the notable challenges in the accurate creation 
of the digital model of an indoor environment lies in estimating the 
thickness of exterior walls. 

During the scanning process, these walls appear as single planar 
surfaces, and the optimization process typically yields thickness values 
of around 1–2 cm. To address this issue, a modification is implemented 
to the attributes of these walls and their thickness is considered with the 
minimum value observed in the thickness of the shared walls within the 
respective models. 

In order to evaluate the accuracy of the proposed method for creating 
digital building models, three evaluation metrics of the precision and 
consistency across different aspects, including geometry, semantics, and 
topology extents are examined. These metrics are calculated by 
comparing the reconstructed digital models with reference BIM models 
(Fig. 22). 

To assess the accuracy of the geometric representation and semantic 
properties within the digital models, a comparative analysis is con-
ducted between the parameters of reconstructed models and those of 
reference models. Initially, the corresponding walls and ceiling elements 
in both the reconstructed and reference models are identified by uti-
lizing the coordinates of their corresponding endpoints. For each indi-
vidual wall instance in the reference model, three rectangular buffers 
with the dimensional thresholds 5, 10 and 20 cm are considered and the 
corresponding closest wall instance in the reconstructed model is 
selected. For each model, the accuracy of matching between elements in 
the reference model and reconstructed model is measured by Eq. (11). 

Matching-score =

∑m
k=1(Recb)

∑n
k=1(Ref )

(11)  

where the 
∑n

k=1(Ref) is the number of elements in the digital reference 
model and 

∑m
k=1(Recb) is the corresponding elements in the recon-

structed digital model extracted using buffer with the threshold of b. 
Subsequently, for each paired element, the disparities in parameters 

such as length, height, thickness, and endpoint displacement are quan-
tified. This aids in assessing that in which extent the proposed meth-
odology accurately presents the spatial information of the environment, 
while also demonstrating the consistency in semantic properties 
assigned to various building components. Tables 9–11 present the sta-
tistical evaluation results using the standard measure of mean errors. 

Table 7 
Accuracy evaluation of 3D space parsing.   

Number of spaces Rand Index% 

Datasets Ground truth Our method  

TUM CMS chair 15 12 0.93 
TUM - Floor (2) 9 11 0.85 
TUM - Floor (3) 9 9 0.89 
TUM - Floor (4) 9 11 0.94 
TUM - Floor (5) 2 2 0.97 
S3DIC Area (1) 44 45 0.97 
S3DIC Area (3) 23 19 0.95 
S3DIC Area (6) 48 51 0.98  
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In this regard, the average accuracy of about 0.08 m in differences 
between the coordinate of elements endpoints and 0.06 m for estimating 
the parameters of elements highlights the efficiency of the proposed 
method in the creation of volumetric-parametric digital models for 
buildings with diverse designs and layouts from the single floor build-
ings to the multi-story scenario (Fig. 23). According to the results, the 
highest error is related to S3DIC Area (3) building because the data 
contain some rooms in non-manhattan shape and make the comparison 
between the reference model and the reconstructed digital models less 
precise. 

5. Discussion 

In the realm of built environment digital twinning, the principles rest 
upon the precise reflection of real-world assets and the establishment of 
a synergy between physical and virtual realities. In this regard, 

parametric-volumetric digital models play a pivotal role in the devel-
opment of DTs, offering dynamic representations, capturing intrinsic 
behaviors and relationships, and facilitating comprehensive simula-
tions. Recently, remote sensing data, including point clouds, has 
emerged as a primary tool for unveiling a nuanced understanding of 
physical environments and creating digital models. However, devel-
oping automated algorithms to convert raw remote sensing data into 
consumable digital models for human and machine interpretation still 
remains a challenging endeavor. This paper presents a novel automatic 
algorithm for the creation highly parameterised digital building model 
with rich semantics and coherent geometry. The main idea of the pro-
posed workflow is to combine the capabilities of bottom-up, and top- 
down approaches to overcome the limitations of common traditional 
methods in point cloud processing and model representation. The hybrid 
approach aligns the capabilities of AI methods in scene understanding 
with domain knowledge to improve automation and efficiency in the 
face of all real-world building designs. 

5.1. Comparison with other methods 

To assess the effectiveness of the proposed method in creating digital 
models comparing with other existing algorithms, a quantitative com-
parison is conducted between our proposed parametric modeling 
method and the 3D reconstruction method proposed by [32]. For 
implementation, the points belonging to the walls are first extracted 

Fig. 21. The result of 3D space parsing on Stanford University datasets Area (1) (bottom view): (a) original point cloud, (b) ground truth for 3D space parsing, (c) the 
result of the proposed method for 3D space parsing, (d) separation of individual hallways. 

Table 8 
The initial values of parameters for optimization processes.  

Parameters 

Problem Tolerance_X Tolerance_obj Iterations 

Floor plan generation 0.0001 0.0001 50 
Volumetric digital model fitting 0.0001 0.0001 50  

Fig. 22. The comparison between the reconstructed digital model and the reference BIM model of Stanford University datasets Area (1): (a) the evaluation of 
volumetric parameters, (b) the evaluation of wall coordinates. 
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using the classification model. Subsequently, the RANSAC plane fitting 
algorithm is employed along with the DBSCAN clustering method to 
separate points of individual wall instances based on their orientation. 
Finally, the Manhattan 3D box estimation method is utilized to generate 
the 3D model of the walls. For comparison, the resulting digital models 
are once again compared with the reference digital model with respect 
to the criteria outlined in Section 4.4. 

As can be seen in Table 12, our proposed method achieved precise 
accuracy compared to the 3D reconstruction method proposed by [32], 
in term of estimating the parameters of the wall instances. One of the 
challenges of proposed method in [32] is the utilization of data-driven 
3D box estimation to extract the parameters of the walls which is 
highly sensitive to the quality of the input data, as well as noise and 
clutter points. It also has some limitations in considering various dis-
tance threshold values for clustering the points of walls, which can 
impact the estimation of thickness for shared wall instances. In contrast, 
our proposed parametric modeling approach benefits from the optimi-
zation process and can overcome common challenges in point cloud 
processing. 

Table 13 provides comparison between the key features of proposed 
method and the most recent approaches [28–30,32,34,79,86] in 
creating semantic digital models of buildings. Each column of the table 
present a key feature and the potential of the proposed method in cre-
ation semantic digital models. 

As can be seen in Table 13, most of the developed methods can create 
volumetric models of walls and spaces. However, among these methods, 
only one is capable of accurately representing volumetric models and 
employing topological relationships between elements and spaces dur-
ing the reconstruction process. Furthermore, the majority of the pro-
posed modeling methods rely on non-parametric data-driven 
approaches. As mentioned earlier, these methods encounter significant 
challenges when dealing with common challenges in point cloud data, as 
well as in inferring and simulating topological relationships between the 
structural elements. These challenges pose obstacles to the automatic 

Table 9 
Accuracy evaluation of digital model reconstruction (grid dimension= 0.25m).  

Bufferth matching δ displacement δ length δ thickness δ height 

TUM CMS chair 
5 cm 78% 0.04 m 0.05 m 0.04 m 0.03 m 
10 cm 83% 0.06 m 0.07 m 0.04 m 0.04 m 
20 cm 95% 0.09 m 0.08 m 0.05 m 0.04 m 
TUM - Floor (2) 
5 cm 83% 0.05 m 0.06 m 0.05 m 0.07 m 
10 cm 89% 0.07 m 0.08 m 0.06 m 0.06 m 
20 cm 96% 0.08 m 0.08 m 0.05 m 0.06 m 
TUM - Floor (3) 
5 cm 76% 0.05 m 0.06 m 0.04 m 0.04 m 
10 cm 83% 0.10 m 0.06 m 0.04 m 0.05 m 
20 cm 88% 0.14 m 0.08 m 0.06 m 0.05 m 
TUM - Floor (4) 
5 cm 69% 0.05 m 0.04 m 0.05 m 0.03 m 
10 cm 75% 0.10 m 0.06 m 0.06 m 0.03 m 
20 cm 89% 0.14 m 0.07 m 0.05 m 0.03 m 
TUM - Floor (5) 
5 cm 100% 0.03 m 0.02 m 0.02 m 0.01 m 
10 cm 100% 0.03 m 0.02 m 0.02 m 0.01 m 
20 cm 100% 0.03 m 0.02 m 0.02 m 0.01 m 
S3DIC Area (1) 
5 cm 73% 0.05 m 0.05 m 0.05 m 0.05 m 
10 cm 80% 0.09 m 0.07 m 0.05 m 0.06 m 
20 cm 92% 0.14 m 0.11 m 0.07 m 0.06 m 
S3DIC Area (3) 
5 cm 69% 0.05 m 0.06 m 0.04 m 0.03 m 
10 cm 78% 0.10 m 0.07 m 0.04 m 0.03 m 
20 cm 88% 0.14 m 0.10 m 0.06 m 0.03 m 
S3DIC Area (6) 
5 cm 74% 0.05 m 0.06 m 0.05 m 0.04 m 
10 cm 87% 0.08 m 0.08 m 0.07 m 0.04 m 
20 cm 93% 0.12 m 0.11 m 0.08 m 0.04 m  

Table 10 
Accuracy evaluation of digital model reconstruction (grid dimension= 0.5m).  

Bufferth matching δ displacement δ length δ thickness δ height 

TUM CMS chair 
5 cm 54% 0.05 m 0.06 m 0.06 m 0.03 m 
10 cm 67% 0.07 m 0.06 m 0.08 m 0.04 m 
20 cm 80% 0.11 m 0.09 m 0.08 m 0.04 m 
TUM - Floor (2) 
5 cm 62% 0.04 m 0.06 m 0.04 m 0.03 m 
10 cm 74% 0.09 m 0.08 m 0.05 m 0.03 m 
20 cm 81% 0.15 m 0.09 m 0.05 m 0.03 m 
TUM - Floor (3) 
5 cm 57% 0.05 m 0.05 m 0.06 m 0.07 m 
10 cm 66% 0.10 m 0.07 m 0.07 m 0.07 m 
20 cm 74% 0.12 m 0.09 m 0.09 m 0.08 m 
TUM - Floor (4) 
5 cm 59% 0.04 m 0.05 m 0.04 m 0.03 m 
10 cm 67% 0.07 m 0.06 m 0.07 m 0.03 m 
20 cm 71% 0.12 m 0.09 m 0.08 m 0.04 m 
TUM - Floor (5) 
5 cm 100% 0.03 m 0.03 m 0.02 m 0.01 m 
10 cm 100% 0.04 m 0.03 m 0.02 m 0.01 m 
20 cm 100% 0.04 m 0.03 m 0.02 m 0.01 m 
S3DIC Area (1) 
5 cm 67% 0.05 m 0.06 m 0.04 m 0.03 m 
10 cm 75% 0.09 m 0.07 m 0.05 m 0.02 m 
20 cm 89% 0.15 m 0.09 m 0.05 m 0.03 m 
S3DIC Area (3) 
5 cm 49% 0.05 m 0.07 m 0.06 m 0.03 m 
10 cm 64% 0.10 m 0.09 m 0.08 m 0.04 m 
20 cm 72% 0.16 m 0.14 m 0.09 m 0.04 m 
S3DIC Area (6) 
5 cm 57% 0.05 m 0.04 m 0.05 m 0.04 m 
10 cm 68% 0.09 m 0.07 m 0.04 m 0.05 m 
20 cm 77% 0.14 m 0.10 m 0.04 m 0.05 m  

Table 11 
Accuracy evaluation of digital model reconstruction (grid dimension= 1m).  

Bufferth matching δ displacement δ length δ thickness δ height 

TUM CMS chair 
5 cm 31% 0.05 m 0.08 m 0.06 m 0.03 m 
10 cm 47% 0.10 m 0.11 m 0.06 m 0.05 m 
20 cm 69% 0.18 m 0.15 m 0.08 m 0.05 m 
TUM - Floor (2) 
5 cm 36% 0.04 m 0.10 m 0.05 m 0.02 m 
10 cm 45% 0.09 m 0.14 m 0.07 m 0.03 m 
20 cm 74% 0.17 m 0.21 m 0.07 m 0.03 m 
TUM - Floor (3) 
5 cm 41% 0.05 m 0.09 m 0.06 m 0.07 m 
10 cm 55% 0.10 m 0.14 m 0.06 m 0.07 m 
20 cm 69% 0.19 m 0.18 m 0.08 m 0.08 m 
TUM - Floor (4) 
5 cm 48% 0.04 m 0.08 m 0.04 m 0.04 m 
10 cm 57% 0.09 m 0.13 m 0.05 m 0.05 m 
20 cm 66% 0.16 m 0.19 m 0.05 m 0.05 m 
TUM - Floor (5) 
5 cm 100% 0.05 m 0.04 m 0.03 m 0.01 m 
10 cm 100% 0.04 m 0.05 m 0.03 m 0.01 m 
20 cm 100% 0.04 m 0.05 m 0.03 m 0.01 m 
S3DIC Area (1) 
5 cm 38% 0.03 m 0.14 m 0.05 m 0.03 m 
10 cm 40% 0.08 m 0.14 m 0.07 m 0.02 m 
20 cm 76% 0.16 m 0.14 m 0.08 m 0.03 m 
S3DIC Area (3) 
5 cm 24% 0.06 m 0.26 m 0.10 m 0.04 m 
10 cm 41% 0.08 m 0.23 m 0.07 m 0.03 m 
20 cm 66% 0.13 m 0.21 m 0.10 m 0.03 m 
S3DIC Area (6) 
5 cm 36% 0.04 m 0.25 m 0.02 m 0.04 m 
10 cm 60% 0.07 m 0.23 m 0.04 m 0.03 m 
20 cm 71% 0.15 m 0.23 m 0.06 m 0.03 m  
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reconstruction process of the semantic digital model. 
In this regard, our proposed hybrid bottom-up, top-down method is 

capable of inferring topological relationships between elements and 3D 
spaces and employ them in a parametric modeling approach results in 
the creation of highly parameterized digital model with coherent 

geometry. In this context, each wall instance within the reconstructed 
digital models possesses its distinct height, while the shared walls be-
tween adjacent spaces exhibit varying face heights (Fig. 24). This 
characteristic enhances the overall fidelity of the reconstructed digital 
models, aligning them more closely with the physical reality of real- 
world structures, where buildings often feature distinct spaces with 
varying height differentials in their ceiling elements. Also, thanks to 
employing of the optimization method in the 3D reconstruction process, 
our proposed method is able to effectively overcome the challenges in 

Fig. 23. Creation of the digital model of multi-level building scenario (TUM building (1) dataset): (a) original point cloud, (b) the highly parameterized digi-
tal model. 

Table 12 
Quantitative comparison of the results between the model reconstruction 
approach proposed by [32] and our proposed parametric modeling approach 
(grid dimension= 0.25m).  

Method δ displacement δ length δ thickness δ height 

[32] 0.06 m 0.11 m 0.08 m 0.05 m 
Ours 0.08 m 0.06 m 0.05 m 0.04 m  

Table 13 
Comparison of key features of the proposed method with five state-of-the-art 
methods.  

Method Volumetric 
walls 

Volumetric 
spaces 

Topological 
relation 

Parametric 
modeling 

Ochmann et al. 
[28] 

Yes Yes No No 

Nikoohemat 
et al. [29] 

Yes Yes No No 

Tran and 
Khoshelham 
[30] 

Yes Yes Yes No 

Cai and Fan 
[86] 

No Yes No No 

Wu et al. [32] Yes Yes No No 
Abdollahi et al. 

[34] 
No Yes No No 

Pan et al. [79] Yes Yes No No 
Ours Yes Yes Yes Yes  

)c()b()a(

Fig. 24. Accurate representation of wall height in the reconstructed digital model: (a) the reconstructed digital model, (b) the difference of the height within the wall 
instances, (c) the difference of the height in different faces of the wall instances. 

Table 14 
Overview of the essential parameters and assumptions employed during the 
creation of a digital model using the proposed method.  

Parameter Value 

Preprocessing:  
1. Grid-based point cloud subsampling distance 0.05 m 
2. Distance threshold for noise and outliers removal 0.25 m 
3. Neighborhood radius for geometric feature extraction 0.25 m 
Semantic enrichment:  
4. Neighborhood radius for geometric feature extraction 0.25 m 
5. Depth of Decision Tree model 10 
6. Ceiling to Wall points distance threshold (space parsing) 0.35 m 
7. Distance tolerance for the DBSCAN clustering 0.35 m 
8. Neighborhood distance for space adjacency matrix 1 m 
Assumptions:  
- The individual spaces are separated by common walls.  
- The minimum length and width of spaces are equal to 0.35 m.  
Geometry provision:  
9. Grid dimension for model-based space footprint extraction 0.25 m  

0.5 m  
1 m 

Assumptions:  
- The building's space layout represents the Manhattan world.  
- Walls are parallel, and the slabs are perpendicular to the walls.  
- Ceiling and walls can have different height levels.   
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point cloud data. 

5.2. Sensitivity to the parameters 

Table 14 presents an exhaustive enumeration of the diverse values 
assigned to parameters and assumptions employed in the creation of the 
digital models through the utilization of the proposed methodology. In 
order to assess the sensitivity of the developed algorithm to the assigned 
parameter values, a comprehensive evaluation is conducted by system-
atically testing various parameter values. This evaluation aim to inves-
tigate the impact of these parameters on the corresponding results at 
each step. 

Within the framework of semantic enrichment steps, a quantitative 

assessment is conducted to investigate the impact of the depth param-
eter on the learning process of the decision tree classification model. 
This examination further explores the subsequent effects of the param-
eter on the overall accuracy in the classification of the test datasets. As 
illustrated in the Fig. 25, increasing the depth parameter value from one 
to ten results in a notable improvement in the overall classification ac-
curacy, rising from 55% to 80%. However, the depth parameter value 
beyond ten leads to a gradual decline in overall accuracy, stabilizing at 
approximately 74%. These imply that, in accordance with the properties 
of the main structural elements within the indoor point cloud and the 
distinctive characteristics of each geometric feature calculated for 
element classification, the decision tree model achieves optimal per-
formance at a depth of ten. This optimal depth allows for the proficient 

Fig. 25. Evaluating sensitivity of the proposed algorithm to the assigned parameter in semantic enrichment steps: the impact of the’Depth of Decision Tree model’ 
parameter on the overall accuracy of test dataset classification. 

Fig. 26. Evaluating sensitivity of the proposed algorithm to the assigned parameter in semantic enrichment steps: the impact of the different Neighborhood radius for 
geometric feature extraction used in points classification using Decision Tree model. 
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categorization of selected geometric features, thereby facilitating the 
accurate classification of different classes based on their distinctive 
characteristics. 

To investigate the affect of the different neighborhood radius values 
for geometric feature extraction on the overall accuracy of classification 
using the decision tree model, various radius values ranging from 10 cm 
to 200 cm are examined. According to the Fig. 26, employing a neigh-
borhood radius of 25 cm yields the highest overall accuracy of about 
80% in the point cloud classification task. However, the overall accuracy 
obtained with other selected radius values is consistently high, aver-
aging at 78%. The most important factor in this context is the imbalance 
of data among classes. Specifically, a huge proportion of the point cloud 
data corresponds to planar surfaces of the structural elements, including 
the ceiling, floor, and walls of the building. These structural elements 
points can be accurately distinguished from points belonging to furni-
ture class by adjusting different neighborhood radius. The marginal 
superiority in overall accuracy achieved by the neighborhood radius of 
25 cm is also attributed to its enhanced precision in classifying points 
corresponding to small furniture elements which have different Normal 
change rate values comparing to the structural elements points. 

As mentioned in Section 3.3.2, the proposed algorithm for 3D space 
parsing step encompass crucial parameters of the ceiling to wall points 
distance threshold, along with the maximum distance tolerance for the 
DBSCAN clustering. In this regard, various values for both pertinent 
parameters are systematically examined to assess their impact on the 
overall Rand Index similarity value between the result of the proposed 
algorithm and reference data. According to the Fig. 27, a distance value 
of 35 cm produces the highest accuracy of about 93.5% in partitioning 
individual 3D spaces. In this regard, the initial selection of 35 cm as the 
default value for algorithm implementation was grounded in the 
average thickness of internal walls observed across all data. Departing 
from this value, by opting a distance parameter less than or greater than 
35 cm, leads to decreased accuracy due to challenges such as over- 
segmentation or merging of individual spaces. 

A required parameter for floor plan mask creation and subsequent 
parametric digital model creation is the grid dimension used for model- 
based space footprint extraction. The consideration of different values 
for the grid dimension parameter impact the quality and overall accu-
racy of the reconstructed digital model. To assess the influence of this 

parameter on the ultimate accuracy of the reconstructed digital model, a 
statistical analysis is conducted based on the values outlined in 
Tables 8–10. In this context, the grid dimensions are adjusted to 25, 50, 
and 100 cm, and subsequent digital models are reconstructed following 
the procedures detailed in Section 3.4. 

According to the Fig. 28, the grid size of 25 cm produced the highest 
accuracy, resulting in a displacement accuracy of about 7 cm and an 
element parameter estimation accuracy of 5 cm for the reconstructed 
digital model. Meanwhile, in alternative scenarios with grid dimensions 
of 50 cm and 100 cm, the attained accuracy closely approximate the 
optimal accuracy achieved with a 25 cm grid dimension. This un-
derscores the robustness of the proposed algorithm, indicating its min-
imal dependence on the initial parameter value. Furthermore, it 
highlights the exceptional performance of the employed optimization 
algorithm. Notably, despite a substantial disparity in grid dimension 
values between 25 cm and 100 cm, their overall accuracies differ by only 
3 cm. 

5.3. Limitations 

Despite thorough considerations, the proposed method is subject to 
certain limitations that hinder its ability to generate digital models with 
coherent geometry. 

The developed algorithm employs an AI-based decision tree classi-
fication network to separate wall and ceiling elements within the indoor 
point cloud. The effectiveness of this solution relies heavily on the 
performance of the trained model, which necessitates a huge amount of 
annotated data and computational power for optimal training. 

Moreover, the algorithm developed exhibits certain limitations when 
applied to buildings constructed with glass materials. The data collec-
tion process faces challenges in capturing accurate information from 
glass surfaces, making it difficult for the algorithm to recognize and 
process these data effectively. 

Due the consideration of ceiling to wall points distance threshold 
value equal to 0.35 in 3D space parsing step, the proposed method poses 
difficulties in accurately separating super-narrow hallways or emer-
gency exit ways. 

Additionally, the utilization of optimization processes during the 
geometry provision steps results in increased processing time for large- 

Fig. 27. Assessment the impact of the different values for ceiling to wall points distance threshold and distance tolerance for the DBSCAN clustering parameters on 
the overall Rand Index similarity value in 3D space parsing task. 

M. Mehranfar et al.                                                                                                                                                                                                                            



Automation in Construction 162 (2024) 105392

26

scale multi-story buildings, demanding substantial processing time and 
computing power. 

6. Conclusions 

The creation of digital building models using point clouds is an 
advanced and cutting-edge area of research in computer vision and the 
AEC industry which is always associated with significant challenges in 
automation and required accuracy. The proposed method is a novel 
framework for automatically generating digital building models which 
rely on integrating capabilities of AI techniques in scene understanding 
with the domain knowledge in building design and construction. 

Unlike existing data-driven approaches, our model-based proposed 
method produces high-quality digital models that accurately represent 
the semantics of the components and simulate proper relationships be-
tween them. Thanks to applying the parametric modeling process, we 
are able to consider the semantic connections between components, 
thereby enabling us to overcome prevalent obstacles and challenges in 
complex building point clouds such as noise and clutter within intricate 
indoor scenes. Due to the average accuracy of about 0.06 m in estimating 
models parameters, our proposed approach provides significant progress 
in the field of “Scan-to-BIM,” ultimately delivering high-quality digital 
models with high geometric accuracy and rich semantic information, 
providing various analysis possibilities for facility management and 
experts in the field. 

The basis of the proposed algorithm for the creation of parametric 
digital models relies on extracting primary semantic information from 
points and partitioning individual spaces. However, this approach may 
present challenges when dealing with buildings constructed using glass 
and mirror materials. In such cases, the laser reflections and scattering 
from vitreous surfaces result in scattered and disjointed points, 
impeding the efficiency of the algorithm in the classification of points. 
Furthermore, a significant issue arises in the identification and differ-
entiation between the fundamental structural walls and the movable 
partition walls within the building. These two types of structures share 
common geometric features, making it difficult to separate and distin-
guish them during the points classification process. Consequently, this 
leads to the division of more than individual spaces within the building 
and, subsequently, the generation of multiple excess walls in the model. 

Further investigations can be carried out on improving the accuracy 
of the proposed method particularly in point cloud semantic enrichment 
through AI techniques and extending the domain knowledge for 
parameterization of non-Manhattan structures. This can be conducted 
by formulating connections of oblique wall and slab instances. Addi-
tionally, there is potential to enrich the level of development and se-
mantic information of the result digital models by creating digital 
representations of additional structural-architectural elements (e.g., 
doors, windows, columns, etc.), enabling a more comprehensive repre-
sentation of the real-world environment. 
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