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A B S T R A C T

Forecasting future demand is of high importance for many companies as it affects operational decisions. This is
especially relevant for products with a short shelf life due to the potential disposal of unsold items. Horticultural
products are highly influenced by this, however with limited attention in forecasting research so far. Beyond
that, many forecasting competitions show a competitive performance of classical forecasting methods. For
the first time, we empirically compared the performance of nine state-of-the-art machine learning and three
classical forecasting algorithms for horticultural sales predictions. We show that machine learning methods
were superior in all our experiments, with the gradient boosted ensemble learner XGBoost being the top
performer in 14 out of 15 comparisons. This advantage over classical forecasting approaches increased for
datasets with multiple seasons. Further, we show that including additional external factors, such as weather
and holiday information, as well as meta-features led to a boost in predictive performance. In addition, we
investigated whether the algorithms can capture the sudden increase in demand of horticultural products
during the SARS-CoV-2 pandemic in 2020. For this special case, XGBoost was also superior. All code and data
is publicly available on GitHub: https://github.com/grimmlab/HorticulturalSalesPredictions.
. Introduction

Predicting future demand to support corporate analysis and
ecision-making is a potential competitive advantage in many domains.
ne solution for forecasting customer demand are time series pre-
iction methods. With accurate estimations, company managers can
uickly react to changing market signals and consequently adjust their
rocurement and production plans. These possibilities may lead to
ncreased revenues when early adoption due to a rising demand is
pplied or decreasing costs as a response to a decline (Ivanov et al.,
019). This becomes even more relevant when dealing with goods that
ave a limited shelf life and can therefore only be kept in stock for a few
ays (Duan et al., 2012). Horticultural products are strongly influenced
y these issues.

Currently, there are no scientific publications regarding time series
rediction for sales of horticultural products, although total sales of
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ornamental plants are worth €9.4 billion in 2020 in Germany (Zen-
tralverband Gartenbau e.V, 2020). Horticultural sales are usually char-
acterized by a strong seasonality. In addition, sales cycles of certain
products are shaped by abrupt changes in both directions of rising
and decreasing numbers. Moreover, various external factors such as
holidays or regional events affect demand. In addition, some of these
factors, such as weather forecasts, are uncertain and only available for
a short period (Behe et al., 2012). Furthermore, the short shelf life of
horticultural products, particularly of cut flowers, is a challenge for
operational decisions. In practical operations, this may cause out-of-
stock situations with possibly missed sales as well as excess-stock cases,
which often lead to the disposal of products. Besides financial loss, the
latter induces environmental damage due to wasted resources during
production and transport.
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Classical forecasting methods such as Autoregressive Integrated
Moving Average and Exponential Smoothing are still widely applied
in research and industry. Despite their rather simple concept, they
often show a competitive performance. As demonstrated in several
publications and contests such as the M-Competitions, they are even
able to outperform more complex machine learning (ML) approaches,
e.g. Artificial Neural Networks (Kolassa, 2021; Makridakis et al., 2020,
2021). Thus, although ML algorithms are becoming more common in
the forecasting literature, it is not clear that they are superior, but
dependent on the application and data.

These horticultural product-specific aspects and unsolved questions
in forecasting encourage conducting research in this domain. Hence,
in this paper, we present a first-time comparison of ML-based and
classical time series prediction methods to forecast sales for products
such as potted plants, cut flowers and shrubs. We did not consider
non-herbal products merchandized in this industry, e.g. plant pots, and
edible products such as vegetables and fruits, which were already taken
into account by other researchers (Arunraj & Ahrens, 2015; Priyadarshi
et al., 2019; Sankaran, 2014; Shukla & Jharkharia, 2011). First, we
want to answer the question whether ML is superior compared to
classical forecasting approaches for horticultural sales predictions. Sec-
ond, we investigate potential improvements by multivariate concepts
making use of external factors, such as weather or holiday data, by
comparing with classical univariate methods. Third, we examine the
computational resource consumption of the applied methods, a critical
issue with the necessity of model refittings due to potentially changing
data distributions during the live operation of a forecasting system in
mind. In addition, we evaluate whether the models are able to capture
sudden change in data, such as strong increases in demand during the
SARS-CoV-2 pandemic in 2020.

To this end, we present a comparative study of nine state-of-the-
art ML and three classical forecasting methods. Regarding classical
forecasting approaches, we used the univariate techniques Exponential
Smoothing and Seasonal Autoregressive Integrated Moving Average
as well as the multivariate extension of the latter. Furthermore, we
show a comparison to Multiple Linear Regression models with different
regularizations. We included nonlinear ML methods such as Artifi-
cial Neural Networks as well as Long Short-Term Memory Networks.
Moreover, we applied the ensemble learner Extreme Gradient Boosting
(XGBoost), and a nonparametric Bayesian approach by implementing
Gaussian Process Regression. Furthermore, we implemented a setup
with a regular refit of the forecasting model in order to simulate a
potential scenario for a productive operation with a continuous update
of company-specific sales data and a potentially changing data distri-
bution in mind. Finally, we are able to provide initial insights in the
new forecasting domain of horticultural sales.

The remainder of this paper is organized as follows. In Section 2,
we provide an overview of related work. Afterwards, we describe the
materials and methods, see Section 3. In Section 4, we outline and
discuss our results, before we draw conclusions.

2. Related Work

In the following section, we summarize classical forecasting and ML
methods that can be used for predicting demand. Then, we describe
empirical comparisons and related work from similar domains, such as
the food and tourism sector.

2.1. Machine Learning-based and Classical Time Series Forecasting Meth-
ods

In Table 1, we provide an overview of the approaches discussed in
this paper. Classical forecasting methods use chronologically ordered
time series data and try to predict future sequences, usually by pro-
jecting statistical information recovered from historical data. Methods

can be divided into univariate and multivariate approaches, with the i

2

latter one using external information in addition to the time series
itself. Two common univariate methods are Exponential Smoothing
(ES) and Autoregressive Integrated Moving Average (ARIMA) (Box
et al., 2016; Holt, 1957; Winters, 1960). In its simple form, ES is
a weighted sum of past observations of a time series with weights
decaying exponentially. In contrast, modeling autocorrelations – the
correlation between a series and a lagged version of itself – is the key
idea of ARIMA. A common extension, SARIMA, involves seasonal parts
(Gardner, 2006; Hyndman & Athanasopoulos, 2018). Furthermore, a
multivariate version involving external factors called SARIMAX can be
formulated (Arunraj et al., 2016).

Sales forecasting can also be defined as a regression task for ML
methods. In ML, we can distinguish between Frequentist and Bayesian
formulations of various models with the latter one referred to as
probabilistic in this work. Here, Frequentist ML methods minimize the
empirical risk for a certain loss function including different regular-
ization terms to determine point estimates of the most likely model
parameters. Probabilistic approaches instead use Bayes’ theorem to
calculate a full posterior distribution over the parameters given the
data and a prior (Bishop, 2009; James et al., 2017). For regression
tasks, Multiple Linear Regression (MLR) is often used as a baseline.
Common approaches are Ridge, Lasso and Elastic Net Regression, which
involve different regularization terms in order to prevent overfitting
(Hoerl & Kennard, 1970; James et al., 2017; Santosa & Symes, 1986;
Tibshirani, 1996; Zou & Hastie, 2005). MLR can further be defined
in a Bayesian perspective as follows: 𝑝(𝑦|𝒙,𝒘) = N(𝑦|𝒙𝑻𝒘, 𝜎2), where
the target variable 𝑦 follows a Gaussian distribution with the mean
𝒙𝑻𝒘 (determined by the predictors 𝒙 and the weights 𝒘) and the
variance 𝜎2. If the weights of the model are constrained to a zero-

ean Gaussian prior, the solution is equivalent to Ridge Regression and
herefore called Bayesian Ridge Regression (BayesRidge). Automatic
elevance Determination (ARD) is related to it, but introduces an

ndividual variance for each weight (Bishop, 2009; James et al., 2017;
ipping, 2001). A widely applied approach in time series prediction
re Artificial Neural Networks (ANN) (Rosenblatt, 1958; Zhang et al.,
998). Especially Recurrent Neural Networks (RNN), such as Long
hort-Term Memory Networks (LSTM), are suitable for time series data,
ince they are able to capture temporal dependencies by definition
Hewamalage et al., 2021; Hochreiter & Schmidhuber, 1997). Sev-
ral publications and forecasting competitions indicate a superiority
f combined methods, e.g. achieved via ensemble learners (Bojer &
eldgaard, 2021; Petropoulos et al., 2018). XGBoost (XGB) is an en-

emble technique that uses gradient boosted regression trees. With this
pproach, decision trees are sequentially added in a greedy manner
ased on the gradient of the loss function in order to correct the
rrors made by the current ensemble (Chen & Guestrin, 2016). With
egard to the practical use of demand forecasts, the uncertainty of a
rediction value seems profitable. Providing those is a main advantage
f the nonparametric Bayesian method Gaussian Process Regression
GPR) (Williams & Rasmussen, 1996). The determining parameters
f a Gaussian Process are the kernel 𝑘(𝒙,𝒙′), which consists of the
ovariance value between any two sample points 𝒙 and 𝒙′ resulting

in a 𝑛 × 𝑛 matrix for a training set length of 𝑛 and the mean function
𝑚(𝒙). The assumption is that the similarity between samples reflects the
strength of the correlation between their corresponding target values.
Therefore, the function evaluation can be seen as a draw from a
multivariate Gaussian distribution defined by 𝑚(𝒙) and 𝑘(𝒙,𝒙′). Thus,

aussian Processes are rather a distribution over functions (Rasmussen
Williams, 2008; Roberts et al., 2013). More detailed descriptions can

e found in Appendix A.

.2. Time Series Forecasting Competitions and Related Domains

There are several publications regarding empirical comparisons of
orecasting approaches, e.g. the influential M-competitions that started

n 1982 (Bojer & Meldgaard, 2021; Hong et al., 2019; Lloyd, 2014;
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Table 1
Overview of classical forecasting and machine learning methods with their abbreviations and certain characteristics.

Category Algorithm Abbreviation Univariate Multivariate Probabilistic

Classical forecasting Exponential Smoothing ES ×
Seasonal Autoregressive Integrated Moving Average SARIMA ×
Seasonal Autoregressive Integrated Moving Average with external factors SARIMAX ×

Machine learning Lasso Regression LassoReg ×
Ridge Regression RidgeReg ×
Elastic Net Regression ElasticNet ×
Artificial Neural Network ANN ×
Long Short-Term Memory Network LSTM ×
Extreme Gradient Boosting (XGBoost) XGB ×
Bayesian Ridge Regression BayesRidge × ×
Automatic Relevance Determination ARD × ×
Gaussian Process Regression GPR × ×
Makridakis et al., 1982, 1993; Makridakis & Hibon, 2000; Makridakis
et al., 2018, 2020, 2021; Stepnicka & Burda, 2017). Nevertheless, these
competitions do not show a general superiority of a specific approach.
While the M4-competition did not yield advantages for single ML mod-
els, but for approaches combined with classical forecasting methods,
gradient boosted trees were superior for the recent M5-study with
strongly correlated time series and explanatory variables (Makridakis
et al., 2018; Seaman & Bowman, 2021). This is in accordance with
a recent review of several Kaggle forecasting competitions (Bojer &
Meldgaard, 2021). So in summary, combined respectively ensemble
methods were advantageous in many empirical comparisons without
yielding a generally superior technique.

Besides these broad forecasting competitions, there are publications
in similar domains such as food and tourism demand forecasting. Food
demand forecasting is a domain with similarities to horticultural sales,
especially when dealing with agricultural products such as vegetables
or fruits, which are also perishable and seasonal. Arunraj et al. showed
the superiority of SARIMAX supplemented with holiday and promo-
tional features over its univariate version SARIMA when predicting
sales of bananas in a retail store (Arunraj et al., 2014). A comparison of
several ML methods forecasting food sales of a Japanese supermarket
chain with an emphasis on the influence of meteorological data was
done in (Liu & Ichise, 2017). It yielded a better performance of a LSTM
compared to others, e.g. Random Forest. A recently published compar-
ative study on bakery sales predictions, including LSTM and gradient
boosted regression trees, indicated a superiority of ML algorithms (Hu-
ber & Stuckenschmidt, 2020). Besides that, the demand for ornamental
plants is characterized by a strong seasonality with abrupt changes in
requests and influenced by various external factors, such as the weather
and holidays. Thus, tourism is another domain, which shares similar
attributes. Athanasopoulos et al. compared the performance of several
univariate time series algorithms with their multivariate extensions
based on 366 monthly, 427 quarterly and 518 annual series. They con-
cluded that the first ones deliver better results, but also mentioned that
this is in contrast to other publications (Athanasopoulos et al., 2011).
Jiao and Chen provided a review of methodological developments in
tourism forecasting during the 2008 to 2017 time period. According
to them, econometric and time series models are still widely applied
and often lead to competitive predictions Besides that, they observed
a trend in enhancing time series with additional features as well as
an increasing use of ML methods. Furthermore, combining different
approaches often seems to yield better results than single ones (Jiao
& Chen, 2019). In summary, these findings in similar domains provide
some guidance for horticultural demand forecasting, but also do not
show a general superiority of classical or ML-based approaches.

3. Materials and Methods

In the next section, we provide insights into the data and its prepa-
ration. Afterwards, we describe the model selection and training. Fi-
nally, we outline the evaluation metrics and baselines. All code and
data is publicly available on GitHub: https://github.com/grimmlab/
HorticulturalSalesPredictions
3

3.1. Data Preparation

In the following, we provide an overview on the datasets. After-
wards, we summarize the feature engineering and data preprocessing
steps in detail.

3.1.1. Datasets
For our analysis, we used typical horticultural retail sales data

from Germany. We distinguished between five datasets based on two
data sources, as shown in Fig. 1. OwnDoc was manually created by a
daily documentation of sales numbers of tulips. These datasets have
scientifically interesting characteristics, such as a strong seasonality
in early spring with abrupt changes in demand. Regarding predic-
tions, we focused on private customer sales of tulips, subsequently
called SoldTulips. Records for the OwnDoc dataset begin on February
7, 2020 and last until May 11, 2020, as the tulip season usually ends
in mid-May. Thus, data exists for one seasonal cycle lasting about
three months. OwnDoc shows a detailed product aggregation level of
the target variable with the plant species and delivers quantities. As
indicated in Fig. 1, we generated two datasets based on OwnDoc. There
is a 16 day long documentation gap starting on April 10. Thus, we
derived a variant for which we only use values before that period
(OwnDoc_SoldTulips_short), whereas we imputed them for the long one
(OwnDoc_SoldTulips_long).

CashierData was created based on an electronic cashier system
providing a summary of all sales. These sales figures, which are aggre-
gated into product groups, were accumulated to daily turnovers. As we
focused on herbal products, we selected cut flowers (CutFlowers) and
potted plants (PotTotal) as target variables. Beyond that, CashierData
differs from OwnDoc regarding several properties. It ranges from De-
cember 2016 to August 2020 and as a result contains several seasonal
cycles. Additionally, due to the aggregation into product groups, we
can only see patterns of these whole clusters instead of individual
plants. Since CashierData is based on exports from an electronic cashier
system, for which a gapless logging is required by tax law, there
are no missing values. Furthermore, numbers in CashierData represent
the turnover in euros. For CashierData, we derived three datasets, see
Fig. 1. The first one reflects sales of CutFlowers over the whole period
(CashierData_CutFlowers). Besides this, we observe a sharp increase of
revenues for PotTotal in the first half of 2020, probably caused by the
SARS-CoV-2 pandemic. Therefore, we separated an alternative version
ending 12/2019 (CashierData_PotTotal_short) in addition to the one
ranging over the whole period (CashierData_PotTotal_long).

Table 2 shows characteristics for all datasets on a daily basis as well
as on a weekly one for all CashierData versions. As already mentioned,
CashierData does not contain missing values in contrast to OwnDoc.
Furthermore, the standard deviations and maximum values are high
compared to the mean, reflecting a dataset with strong variations. Due
to this and the practical usefulness of predictions, we resampled all
variants based on CashierData to a weekly cycle.

https://github.com/grimmlab/HorticulturalSalesPredictions
https://github.com/grimmlab/HorticulturalSalesPredictions
https://github.com/grimmlab/HorticulturalSalesPredictions


F. Haselbeck, J. Killinger, K. Menrad et al. Machine Learning with Applications 7 (2022) 100239

o
d

Fig. 1. Overview of all five datasets based on the two data sources OwnDoc and CashierData. OwnDoc_SoldTulips_short was derived due to a 16 day long period with missing
values, CashierData_PotTotal_short because of a strong sales increase in 2020.
Table 2
Characteristics for all datasets. Statistics are on a daily basis as well as weekly resampled for CashierData, with the weekly values shown below the daily ones.

Dataset Period Samples Target variable characteristics

Missing value
ratio

Mean Standard
deviation

Maximum

OwnDoc_SoldTulips_short 07.02.–09.04.2020 63 1/63 158.90 107.47 428.00
OwnDoc_SoldTulips_long 07.02.–11.05.2020 95 17/95 145.36 103.36 428.00
CashierData_CutFlowers 12/2016–08/2020 1359

195
0/1359
0/195

244.00
1700.47

244.74
719.31

2346.45
4828.85

CashierData_PotTotal_short 12/2016–12/2019 1115
160

0/1115
0/160

160.94
1121.58

210.41
1041.74

1605.30
5358.70

CashierData_PotTotal_long 12/2016–08/2020 1359
195

0/1359
0/195

189.55
1321.04

267.04
1384.95

1926.40
7529.25
3.1.2. Feature Engineering
All datasets have been enriched with certain features. To examine

whether external factors support the forecasting of horticultural sales,
we added daily weather and holiday information. Historical obser-
vations for the former were provided by the German Meteorological
Service. Regarding holiday information, we considered public as well
as school holidays. The included features and their explanations can be
found in Table 3.

Further, two categories of additional features were derived: (i)
calendric and (ii) statistical features, as summarized in Table 3. Cal-
endric features are date-based properties such as the weekday and
typically outstanding selling days, e.g. Valentine’s and Mother’s Day.
Furthermore, we created counters for these special days and public
holidays as sales might be higher close to such an event and lower
afterwards. Statistical features are, among others, lagged variants of
the target variables (both seasonal and non-seasonal). Moreover, we
added lagged weather information (mean temperature, precipitation
amount and sun duration), because the conditions prior to a date of
sale might be influential. Beyond that, we derived rolling statistical
values (both seasonal and non-seasonal), such as its mean over a fixed
period prior to a sales date. Finally, for daily data, we calculated rolling
statistical numbers for a specific weekday, e.g. the mean sales of the last
four instances. Eventually, we divided these features into four different
featuresets, see Table 3. We included raw features from external sources
for all four. Beyond that, sub2 was focused on calendric features and
sub3 on statistical ones. The full featureset contained all features.

3.1.3. Data Imputation and Dimensionality Reduction
Many algorithms cannot handle missing values, except for XGB.

Therefore, we applied different strategies for data imputation: Mean,
K-Nearest-Neighbors (KNN) and Iterative Imputation. The featuresets
sub3 and full introduce additional missing values at the beginning of
the dataset because statistical values such as lagged variables cannot
be calculated. We imputed these as well and did not drop samples as
the amount of lacking seasonal features would lead to a large infor-
mation loss. There are no missing values for CutFlowers and PotTotal
n CashierData and only few in the raw weather data. Moreover, we
id not insert new ones using featuresets sub1 and sub2 as both do not
4

contain statistical features. Therefore, the effect of different imputation
methods seemed negligible, and we only considered Mean Imputation
for these setups. In summary, we can distinguish five different feature
settings, including the univariate case, which were combined with the
data imputation approaches. Fig. 2a provides an overview of all setups
we considered.

To examine the effect of dimensionality reduction on the multi-
variate feature settings, we considered two variants: using the original
featureset or running a Principal Component Analysis (PCA) selecting
the components which explain at least 95% of the variance (Jolliffe &
Cadima, 2016). As shown in Fig. 2a, we did not include PCA for the
sub1 featureset due to the low dimensionality.

3.2. Model Selection and Training

We included all algorithms summarized in Table 1 to show a com-
parative study of ML and classical forecasting methods. ES and SARIMA
were selected as two common univariate techniques. SARIMAX was
included as a multivariate classical alternative for a fair comparison
with ML methods using additional features. MLR approaches were
taken into account as a baseline for regression problems. Furthermore,
ML methods able to capture nonlinear relationships were considered.
ANNs have proven their suitability for time series predictions (Zhang
et al., 1998). As temporal dependencies might be important, RNNs were
included and designed with LSTM cells as preceding research suggests
(Hewamalage et al., 2021). Beyond that, combined methods were
superior in many comparisons (Bojer & Meldgaard, 2021; Petropoulos
et al., 2018). Therefore, we included XGB. Eventually, with GPR, a
nonparametric Bayesian method with its inherent ability to model
uncertainty was selected. Furthermore, we applied normalization and
standardization methods such as the Yeo–Johnson power transforma-
tion (Yeo & Johnson, 2000) or logarithmic scaling as certain methods
are sensitive to input distributions. A summary of all hyperparameters
and transformations for all algorithms is shown in Appendix B (Ta-
bles B.1 to B.8). Hence, we randomly sampled parameter combinations
for model and preprocessing configuration.

We employed time series cross-validation with a regular model refit
in order to simulate a potential scenario for the productive operation
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Table 3
Overview of features and structure of the featuresets. Features are based on external sources or derived based on others. With regard to raw features from external sources, holiday
and weather information was added. Furthermore, calendric and statistical features were derived. Based on that, four multivariate featuresets were designed. Their structure can
be seen in the last four columns.

Source Category Feature Explanation Featureset

sub1 sub2 sub3 full

Features from external sources Raw features Public holiday Name of public holiday × × × ×
School holiday Name of school holiday × × × ×
Mean temperature Daily mean air temperature × × × ×
Mean humidity Daily mean relative humidity × × × ×
Precipitation amount Daily mean and total precipitation amount × × × ×
Precipitation flag Ratio of hours with precipitation and flag

for full day
× × × ×

Sun duration Daily mean and total sun duration × × × ×

Derived features Calendric features Date based features Day of the month, weekday, month, quarter × ×
Working day Flag showing if the day is a working day × ×
Special days Valentine’s and Mother’s Day added to

public holidays
× ×

Public holiday counter Counter for a public holiday starting seven
days before and ending three days after
with separate counters for Easter as well as
Valentine’s and Mother’s Day

× ×

Statistical features Lagged variables Lagged versions of target variables and
weather features mean_temp,
total_prec_height_mm and total_sun_dur_h

× ×

Seasonal lagged
variables

Seasonal lagged versions of same variables
as above

× ×

Rolling statistics Rolling mean, median and maximum within
a window for same variables as above

× ×

Seasonal rolling
statistics

Seasonal rolling mean, median and
maximum within a window for target
variables

× ×

Rolling weekday
statistics

Rolling mean, median and maximum within
a window calculated for each weekday on
target variables

× ×
Fig. 2. (a) Overview of the applied combinations of the five feature settings and the preprocessing methods. The overview shows the preprocessing methods combined for each
of the feature settings. For CashierData, certain imputation strategies are excluded for settings with no or few missing values. PCA was considered in multivariate cases and not
performed on featureset sub1 due to its low dimensionality. (b) Time series cross-validation. Visualization of the evaluation on a rolling forecasting origin, which we employ to
simulate a productive operation of a forecasting system with a continuous data update.
of a forecasting tool with a continuous update of company-specific
sales data and a potentially changing data distribution in mind. Fig. 2b
shows a visualization of this approach. First, we separated a training set
covering 80% of the whole dataset to select the best working hyper-
parameter combination. Then, we simulated an online scenario using
the remaining data. Whenever a new sample was available, we fore-
casted the next target value and refitted the model parameters keeping
the already optimized hyperparameters fixed. A model configuration
was evaluated by the average performance across the whole test set
according to the evaluation metrics described in Section 3.3 (Hyndman
& Athanasopoulos, 2018). For the best working solutions, we ran an in-
depth optimization selecting more parameter combinations on a denser
grid.

Beyond that, we compared the runtime needed by each algorithm.
For this purpose, we selected OwnDoc_SoldTulips_long with sub1 as
well as CashierData_CutFlowers with full to include opposing examples
5

regarding size. Furthermore, we randomly sampled 100 parameter
combinations for every algorithm. Then, we ran the whole optimiza-
tion for one training and prediction loop and calculated the average
computation time. All runs for these experiments were executed on the
same machine with four 4.0 GHz Intel i7-6700K CPUs, 62 GB memory
and two Nvidia GeForce GTX 1080 Ti GPUs used for ANN and LSTM
optimization.

The source code is written in Python 3.8 and published on GitHub:
https://github.com/grimmlab/HorticulturalSalesPredictions. A list of
all used packages and their versions can be found in this repository,
including libraries such as GPflow (Matthews et al., 2017), Matplotlib
(Hunter, 2007), NumPy (Harris et al., 2020), pandas (McKinney, 2010),
PyTorch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011),
SciPy (Virtanen et al., 2020), seaborn (Waskom, 2021) and statsmodels
(Seabold & Perktold, 2010). We used Docker to ensure a standardized

https://github.com/grimmlab/HorticulturalSalesPredictions
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working environment on different servers. A Dockerfile for its setup is
included in the repository.

3.3. Evaluation Metrics and Baselines

For evaluation, we used the scale-dependent metric Root Mean
Squared Error (RMSE) as well as the relative measures Mean Absolute
Percentage Error (MAPE) and Symmetric Mean Absolute Percentage
Error (sMAPE). With the forecast value 𝑦̂𝑖, the true value 𝑦𝑖 and the
ength of the evaluated set 𝑛, they are defined as follows:
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For all three evaluation measures, a lower value reflects a better
performance. In order to prevent division by zero when using MAPE,
we added a constant (0.1) to the denominator. MAPE values can get
large, if sales numbers are close to zero (common in datasets with
daily observations). This circumstance is less severe for sMAPE, because
it is divided by the mean of 𝑦𝑖 and 𝑦̂𝑖, but is still present as the
predicted value might also be close to zero in these cases. Furthermore,
due to the quadratic term, RMSE is sensitive to outliers. On the basis
of these weaknesses and the lack of a universal evaluation metric
for forecasting, it is common to assess the performance compared to
baseline methods (Hyndman & Koehler, 2006). To that end, we used
the ones described in Table 4.
Table 4
Baseline methods with length of training set 𝑇 and seasonal period m.

Historical Average (HA) 𝑦̂𝑡 =
1

𝑡 − 1

𝑡−1
∑

𝑡=1
𝑦𝑡

Random Walk (RW) 𝑦̂𝑡 = 𝑦𝑡−1
Seasonal Random Walk (seasRW) 𝑦̂𝑡 = 𝑦𝑡−𝑚

HA predicts the mean of all known values. RW predictions are equal
o the last value, whereas seasRW uses the known observations of the
ast season (Hyndman & Athanasopoulos, 2018).

. Results and Discussion

In the next section, we give an overview of our results followed by
more detailed analysis of the best performing algorithms. Afterwards,

he influence of different features as well as the runtime are analyzed.
inally, a discussion of the results is provided.

.1. Results Overview

For a full analysis of our experiments, we generated an overview of
he best results for all five datasets with respect to the three evaluation
etrics (15 comparisons in total) for all baselines, algorithms and

eaturesets, see Appendix C and Supplementary 1. Our results show
hat a baseline (RW, seasRW and HA) was never best overall. How-
ver, MLR approaches (LassoReg, RidgeReg, ElasticNet, BayesRidge
nd ARD) were inferior in several cases on both OwnDoc variants and
ashierData_PotTotal_long. If we exclude MLR algorithms, only in three
ut of the 15 comparisons, one of the baselines performed better than at
east one ML method, with two of these cases occurring on the smallest
ataset (OwnDoc_SoldTulips_short).

Following this comparison with baseline methods, we selected the
est performances of each algorithm, independent of featuresets and
reprocessing methods. The results are summarized in Tables D.1 and
.2, see Appendix D.1. Fig. 3a–e visualize them for all datasets (rows)
nd evaluation metrics (columns). In all comparisons, a ML-based
ethod performed best. The results of the ML and classical approaches
6

were rather comparable for OwnDoc, whereas the advantage of ML
techniques was larger for CashierData, probably due to the size of the
datasets. In total, XGB was the leading method in 13 out of 15 compar-
isons, outperformed by LSTM two times for CashierData_PotTotal_short.
Regarding univariate methods, SARIMA was competitive for both Own-
Doc variants and the SARS-CoV-2-influenced CashierData_PotTotal_long
dataset. Its multivariate extension, SARIMAX, achieved results close
to the best ones for both OwnDoc versions. Furthermore, GPR and
LSTM delivered competitive results in several cases, especially on all
CashierData variants. All MLR methods as well as ES fell behind in
most conditions, and ANN only kept up in a few instances. However,
in summary, we can conclude a superiority of ML-based approaches.

4.2. Best Performing Algorithms

We subsequently focused on the best performing algorithms, so
mainly ML-based methods. As described in Section 3.2, we conducted
a further optimization of the best performers on a denser grid of hyper-
parameters. The results of these in-depth runs and a comparison with
the results prior to them can be found in Tables 5 and 6. Overall, we
again observed a superiority of ML-based approaches. Improvements
based on the in-depth runs were rather small or mediocre with only
one change regarding the overall ranking: XGB outperformed LSTM on
RMSE for CashierData_PotTotal_short. In summary, XGB’s predominance
was extended, leading in 14 out of 15 comparisons after the in-depth
optimization.

With regard to OwnDoc variants presented in Table 5, we observed
that XGB was the clear winner. However, it was closely followed by
SARIMAX for the shorter dataset. Besides that, GPR and LSTM were
competitive for sMAPE. GPR was furthermore close for MAPE with two
second best performances.

Table 5
Top results for OwnDoc after in-depth optimization. A lower value reflects a better
performance. Results prior to in-depth optimization are given in brackets in case of an
improvement. The best results overall are printed in bold. In-depth optimization was
not done for SARIMA on OwnDoc_SoldTulips_short.

Algorithm OwnDoc_SoldTulips_short OwnDoc_SoldTulips_long

RMSE SMAPE MAPE RMSE SMAPE MAPE

SARIMA – – – 48.70
(52.02)

55.83 2366.01
(3675.31)

SARIMAX 58.06 52.58 85.75 48.45
(50.35)

52.37 203.34
(231.52)

LSTM 73.66 52.49 707.61 56.06 50.04 2884.77
XGB 57.11 50.89 34.21

(35.98)
43.48
(43.52)

48.65 52.87
(54.22)

GPR 68.14 52.27 67.99 56.05 52.43 65.84

Table 6 shows a similar overview for all CashierData variants. For
CashierData_CutFlowers, XGB was the top algorithm in all comparisons.
Besides that, the ensemble learner improved its performance on RMSE
for CashierData_PotTotal_short and consequently outperformed the pre-
vious best algorithm LSTM. However, the results of the LSTM were
comparable for this dataset. Regarding CashierData_PotTotal_long, XGB
performed best and GPR delivered the second-best results for RMSE and
sMAPE.

Beyond that, we show example plots of the best performing al-
gorithms in Fig. 4. Each of them displays the ground truth accom-
panied by the predictions of two of the top performing models. We
observed that several predictions are close to the ground truth, but
there are also problematic regions, e.g. the end of the test period
on both OwnDoc datasets. Partially, this is due to its limitation to
only one season. Because of this, we were not able to capture the
high sales on May 10 at the end of OwnDoc_SoldTulips_long. All algo-
rithms predicted low sales as it was a Sunday, but actually they were
high because it was Mother’s Day. Furthermore, the demand peaks of

CashierData_PotTotal_long during the SARS-CoV-2 pandemic were hard
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Fig. 3. Top results for each algorithm and dataset (rows) with respect to all evaluation metrics (columns). A lower value reflects a better performance. Classical forecasting and
machine learning approaches are separated by a small horizontal offset and a vertical line. The best outcome in each plot is marked by a horizontal dashed line. For the exact
values, see Tables D.1 and D.2 in Appendix D.1. MAPE values for both OwnDoc variants are plotted on a logarithmic scale as the results differ in a range from two- to four-digit
numbers.
7
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Fig. 4. Example plots of best performing algorithms. Predictions show selected examples of two of the top performers accompanied by the ground truth. The test periods are
highlighted in light gray. Missing values for OwnDoc_SoldTulips_long were iteratively imputed and are marked with a red background. In the legends, the evaluation measures
RMSE/sMAPE/MAPE are given in brackets. A lower value reflects a better performance. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
to forecast. Nevertheless, overall the plots confirm the promising results

of the evaluation measures as most of the curves show a prediction

close to the target.
8

4.3. Feature Analysis

We furthermore analyzed the performance influence of the different
featuresets, see Table 3 regarding their structure. For that purpose,
we focused on the top performing multivariate approaches SARIMAX,
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Table 6
Top results for CashierData after in-depth optimization. A lower value reflects a better performance. Results prior to in-depth optimization are given in brackets in case of an
improvement. The best results overall are printed in bold. In-depth optimization was not done for SARIMA on CashierData_CutFlowers and for ANN on the other two variants.

Algorithm CashierData_CutFlowers CashierData_PotTotal_short CashierData_PotTotal_long

RMSE SMAPE MAPE RMSE SMAPE MAPE RMSE SMAPE MAPE

SARIMA – – – 439.03 34.08
(35.05)

40.13 945.91
(979.10)

36.84
(37.03)

46.41
(56.59)

ANN 475.66
(485.60)

23.31
(23.43)

26.61
(32.19)

– – – – – –

LSTM 460.61 21.78
(22.57)

29.65 390.98 28.85 29.71
(31.11)

1037.11
(1064.14)

39.65
(38.96)

47.70

XGB 388.09
(390.96)

19.71
(20.03)

23.98
(24.52)

348.60
(392.31)

29.86
(31.50)

28.59
(30.70)

892.04
(898.56)

34.61
(35.35)

36.69
(42.45)

GPR 493.58 23.61 30.45 421.46
(424.50)

31.00
(31.88)

32.91
(34.42)

922.46 36.03 52.35
(54.20)
Fig. 5. Ten most important features of XGB according to the gain on selected examples of top performing configurations. The gain of a feature reflects the average improvement
across all its usages. A higher value corresponds to a greater importance. (a) OwnDoc_SoldTulips_long with full featureset, (b) CashierData_CutFlowers with sub2 featureset, (c)
CashierData_PotTotal_long with full featureset.
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LSTM, XGB and GPR. To ensure a fair comparison, we used the predic-
tions prior to the in-depth optimization, as this step was not done for
all configurations. We compared the best results achieved with each
featureset with respect to all evaluation metrics. An overview of the
results (Tables D.3 and D.4) as well as their visualization (Fig. D.1) can
be found in Appendix D.2. Based on this, we counted the number of
times a featureset led to the best result for each algorithm and dataset,
subsequently called a win. Table D.5 in Appendix D.2 summarizes this
analysis. Counting all datasets, the win percentages were divided as
follows: sub1 (raw weather and holiday features) 11.7%, sub2 (focus
n calendric features) 41.7%, sub3 (focus on statistical features) 21.7%
nd full (all features) 25.0%. However, the results varied depending on
he dataset and algorithm. We discovered that the full featureset was
uperior for OwnDoc with the best result in 12 out of 24 comparisons.
or GPR, sub2, sub3 and full were on a par, whereas full was superior
or the other three algorithms. Regarding CashierData, sub2 led to the
est result in 20 out of 36 cases (about 55%), followed by sub3 with
even wins, sub1 with six and full with three. If we exclude the Cashier-
ata_PotTotal_long dataset influenced by the SARS-CoV-2 pandemic, the
dvantage of sub2 was even clearer with 15 wins in 24 comparisons
about 62%). XGB worked best with sub3, but sub2 did so for the other
hree methods.

Beyond determining the top performing featuresets, we analyzed the
eature importance of XGB as this was the best predictor. We present
ne example for each target variable in Fig. 5. They indicate both a
enefit due to external factors such as weather and holiday data as
ell as derived features such as statistical values. In Fig. 5a, we can see

hat statistical quantities, both of the external factor weather and past
ales numbers, were relevant. The best RMSE for CashierData_CutFlowers
as achieved with the featureset sub2 (focus on calendric features),
9

or which we show the feature importance in Fig. 5b. We found out
hat calendric features were ranked high, e.g. the counters for the
ypical high sales days of Mother’s and Valentine’s Day. Furthermore,
he school autumn holidays seemed important as they correlate with All
aint’s Day on which religious traditions boost flower sales. Statistical
eatures were the most frequent category for CashierData_PotTotal_long.

As shown in Fig. 5c, the leading ones were the lagged sales numbers
of the previous week and of the same one in the preceding season.
Furthermore, delayed information of other product groups improved
forecasting. With the mean temperature, a weather property was part
of the leaderboard.

4.4. Runtime Comparison

Besides the prediction performance, the computational resource
consumption of an algorithm is an important characteristic, especially
with a regular model refit due to a changing data distribution in
mind. Therefore, we compared the runtimes as described at the end
of Section 3.2. The results are visualized in Fig. 6. In summary, the top
performer XGB was in both cases in the middle range of the ranking
and closer to the efficient methods, which is a further advantage. As
we observe in Fig. 6a, ANN and LSTM required the longest runtime
for OwnDoc_SoldTulips_long, followed by SARIMAX and GPR with about
80% less runtime than LSTM. The MLR approaches showed the lowest
values, whereas XGB was comparable to ES and SARIMA. SARIMAX
had by far the longest runtime for CashierData_CutFlowers, as shown
in Fig. 6b, followed by its univariate version and LSTM. ES and the
MLR approaches, except ARD, showed low runtimes. The results for
GPR and ANN were comparable and XGB was closer to the efficient
methods.
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Fig. 6. Mean runtime of one optimization based on 100 random hyperparameter settings for every algorithm. Plots are shown on a logarithmic scale with the exact runtime in
seconds above each bar. (a) OwnDoc_SoldTulips_long with sub1 featureset. (b) CashierData_CutFlowers with full featureset.
4.5. Discussion

In this paper, we show a first-time comparison of ML-based and
classical forecasting approaches for horticultural sales predictions. Most
of the methods outperformed simple baseline comparison partners.
Further, our results show a superiority of ML-based methods compared
to classical forecasting ones with the former delivering the lowest error
in each of the 15 comparisons. The ensemble learner XGB performed
best in 14 cases. We assume that its combination of multiple weak
learners is beneficial for capturing different effects, which improves
the quality and robustness of the final result. LSTM was first in one
out of the 15 cases. In summary, LSTM together with GPR were most
competitive compared to XGB. The performance of ML algorithms is
usually highly influenced by the amount of available data. CashierData
contains 1359 daily observations, which is about 14 times more than
the OwnDoc dataset. Nevertheless, XGB also delivered the lowest errors
for OwnDoc, but the advantage tended to be smaller. With only a few
xceptions, the advantage of ML techniques increased on the larger
ashierData datasets. We assume that, additionally to the dataset size,
ultivariate patterns and nonlinear relationships in the data, which
L models are rather able to capture, are more pronounced in these

atasets that contain several seasons.
One of the research questions of this paper is whether the applied

ethods cope with the sales increase during the SARS-CoV-2 crisis
n CashierData_PotTotal_long. We observed that the relative measures
MAPE and MAPE were larger compared to the other two CashierData
atasets. Beyond that, Fig. 4 suggests that the algorithms were limited
n capturing this phenomenon. However, with XGB, an ML approach
lso performed best for this special case. We assume that the regular
efit of the models is beneficial, as recent samples are taken into
ccount. Nevertheless, the samples which comprise this sudden change
re only a few compared to the whole train set. Therefore, the algo-
ithms tended to follow the majority of the training instances, which
eflect the sales prior to the SARS-CoV-2 pandemic. The comparably
ood performance of SARIMA might be caused by external factors
hat correspond to a different data distribution in the training set and
onsequently could even impede forecasting. But in general, our results
ndicate that external factors such as weather information as well as de-
ived features, e.g. statistical measures, lead to an improved forecasting
erformance as all superior methods were multivariate. This additional
nfo is especially useful for ML-based methods. However, regarding the
nfluence of different features, see Section 4.3, a configuration being
uperior for all algorithms and datasets could not be determined.

Beyond that, the runtime comparison in Section 4.4 shows that
ARIMAX – the most competitive classical approach – has poor scal-
bility on larger data- and featuresets. By contrast, XGB was efficient
10
in both cases. This is an additional advantage of the ML-based method
XGB, especially when considering regular refits of the model.

There are several publications on competitions including classical
forecasting and ML techniques, based on which a general superiority of
one of them cannot be concluded (Bojer & Meldgaard, 2021; Makridakis
et al., 2020, 2021) . Nevertheless, our conclusion that ML performs
better agrees with recent publications on food and tourism demand
forecasting (Huber & Stuckenschmidt, 2020; Jiao & Chen, 2019). Sev-
eral papers have shown a superiority of combined approaches (Bojer
& Meldgaard, 2021; Makridakis et al., 2020; Petropoulos et al., 2018).
Hence, our results with XGB performing best confirms previous work
for the new forecasting domain of horticultural sales. Beyond that, GPR
produced competitive results. For this reason and its advantage of pro-
viding prediction uncertainties, it might be interesting for horticultural
sales prediction and similar domains.

Besides this, we made certain simplifications for our analysis. First,
we used historical weather data as external information, but when
predicting the demand in production-ready systems, only short-time
weather forecasts are available. However, since historical weather fore-
casts were not retrievable for the whole period, this is a reasonable
approximation. Second, the datasets provide sales numbers, which do
not fully reflect the potential demand as out-of-stock situations (as an
indicator for a higher demand of customers) were not documented.
Third, we used holiday and weather data as external information, but
there could be additional features which might improve prediction
performances (e.g. promotional and communication activities of the
company).

This study is the first analysis of horticultural demand forecasting
based on typical retail data. So far, it is not obvious if our results
generalize, e.g. for companies of the whole value chain. Neverthe-
less, we provide first insights, which need to be further evaluated
before drawing more general conclusions. In accordance with litera-
ture, an ensemble method led to the best result. This suggests that
combined approaches might also be superior for horticultural demand
forecasting. Therefore, the integration of further combined methods,
e.g. those including ML-based as well as classical forecasting tech-
niques, is interesting for further research. Beyond that, we employed
a computationally expensive approach with a model refit when new
samples arrive. This seems reasonable for a first-time adoption with po-
tential changes in data and a productive operation of a forecasting tool
with a continuous update of company-specific sales data in mind. Nev-
ertheless, the necessity of model refits should be further examined with
multi-step-ahead forecasts and a periodical retraining. The focus of this
paper is on horticultural retail sales. It is interesting whether including
data of businesses along the whole value chain, e.g. from wholesalers
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or producers, might improve forecasts. Furthermore, as horticultural
companies are typically small and medium-sized, datasets are hetero-
geneous and rather small. Thus, novel approaches that combine data of
diverse sources and consequently benefit from the information derived
from several smaller datasets are an interesting research direction. This
might also be beneficial for other domains such as e.g. agricultural
producers or small and medium-sized food processing companies. The
influence of the SARS-CoV-2 pandemic resulted in a sudden rise in
demand for potted plants. Most of the algorithms were not able to deal
with this change of the data distribution. Therefore, research based on
methods enabling them to cope with such phenomena such as EVARS-
GPR could be useful for various applications (Grande et al., 2017;
Haselbeck & Grimm, 2021; Liu et al., 2020; Ni et al., 2012).

5. Conclusion

In this paper, we presented a first-time comparative study for hor-
ticultural sales predictions with nine state-of-the-art ML and three
classical methods. Our study was based on typical horticultural retail
data with distinct characteristics, e.g. regarding size and seasonality.
We employed a forecasting setup with a regular refit of the model
parameters in order to simulate a productive operation of a forecasting
system with a continuous data update and a potentially changing data
distribution. Our findings show a superiority of ML approaches, espe-
cially of the ensemble learner XGB. This advantage increased for larger
datasets containing multiple seasons. Beyond that, we experienced a
performance increase by including additional features, such as weather
or holiday data. Finally, we showed that the top performer XGB is
computationally efficient. Based on these first results, a plethora of
new research questions arise with a lot of potential for future research.
Especially the transfer and verification of these results within the same
sector are of general interest and might allow the generalization of our
conclusions.
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Appendix A. Time Series Forecasting Methods

A.1. Classical Forecasting Methods

Classical forecasting methods use chronologically ordered time se-
ries data and try to predict future sequences, usually by projecting
statistical information recovered from historical data (Hyndman &
Athanasopoulos, 2018). In Table 1 of the main document, we provide
an overview of the approaches discussed in this paper. Methods can
be divided into univariate and multivariate approaches, with the latter
one using external information in addition to the time series itself.
Two common univariate methods are Exponential Smoothing (ES) and
Autoregressive Integrated Moving Average (ARIMA) (Box et al., 2016;
Holt, 1957; Winters, 1960). Gardner (2006) gave a detailed overview
about the theoretical background of ES and its application (Gardner,
2006). In its simple form, ES is a weighted sum of past observations of a
time series with weights decaying exponentially. Therefore, recent val-
ues have more influence on the output. More elaborate versions include
linear or damped trend as well as seasonal components, which are char-
acteristics that many real-world time series possess. Both components
can be formulated in an additive or multiplicative way, depending on
the characteristics of the time series.

In contrast, modeling autocorrelations – the correlation between a
series and a lagged version of itself – is the key idea of ARIMA. Thereby,
autoregressive (AR) and moving average (MA) parts are calculated. The
first is a linear combination based on the time series itself, whereas the
latter is a weighted sum of past model errors. One of the algorithm’s
assumptions is stationarity of the input, so trend and seasonality should
be removed. One way to achieve this property is differencing prior
to optimizing the AR and MA parameters. This step is called the
‘‘integrated’’ part of ARIMA. The determining parameters are thus the
degree of differencing and the lags considered when constructing the

https://github.com/grimmlab/HorticulturalSalesPredictions
https://github.com/grimmlab/HorticulturalSalesPredictions
https://github.com/grimmlab/HorticulturalSalesPredictions
http://www.lrz.de
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AR and MA elements. A common extension, SARIMA, involves seasonal
parts. Their formulation is similar to the non-seasonal ones, but uses
the observations of previous seasons. Therefore, besides the arguments
of the seasonal differencing, AR and MA components, the length of
such a period needs to be defined (Hyndman & Athanasopoulos, 2018;
Shumway & Stoffer, 2000).

SARIMA is univariate by definition. Consequently, external factors
potentially providing useful information are not included. Hence, a
multivariate extension called SARIMAX exists. One way to implement
it is combining multivariate regression depending on external factors
and a SARIMA model, which is driven by the errors of the first one.
Usually, both elements are optimized jointly delivering a final output
after summation (Arunraj et al., 2016).

A.2. Machine Learning Methods

Sales forecasting can also be formulated as a regression task for ML
methods. These data-driven approaches are able to discover complex
relationships, which are more likely to be present in multivariate
datasets. Therefore, as stated in Table 1 of the main document, we only
consider ML approaches in such setups.

For regression tasks, Multiple Linear Regression (MLR) is often used
as a baseline. MLR models try to predict a target variable by building a
weighted sum of several features and an intercept. Typically, the sum
of squared errors between the observed and predicted value is opti-
mized with Ordinary Least Squares during training. With an increasing
number of features, this might lead to overfitting. To prevent this, we
can use regularized regression approaches by adding a penalty term to
the loss function. The goal of this is to learn models which generalize
better to unknown data. Common approaches are Ridge, Lasso and
Elastic Net Regression (Hoerl & Kennard, 1970; Santosa & Symes, 1986;
Tibshirani, 1996; Zou & Hastie, 2005). The first one – also called L2-
regularization – introduces a quadratic term penalizing the weights’
size. This usually leads to a lower influence of correlated features by
distributing the weight among them. However, Ridge Regression does
not push the weights of irrelevant features exactly to zero, but reduces
their influence. Lasso Regression uses L1-norm (the absolute value of
the weights instead of the quadratic ones) as penalty term. This leads to
the effect of forcing the weights of unimportant features to zero, which
can be seen as an automatic feature selection process (James et al.,
2017). Elastic Net Regression combines both L1- and L2-regularization
with an additional hyperparameter controlling the influence of each
one. Consequently, the variable selection effect of Lasso as well as the
grouping mechanism for correlated features of Ridge are included (Zou
& Hastie, 2005).

Moreover, we used ML methods because they can cover nonlin-
earities. A common approach in time series prediction, as shown by
Zhang et al. (1998), are Artificial Neural Networks (ANN) (Rosenblatt,
1958; Zhang et al., 1998). Their advantages, such as the ability to
model nonlinear and complex relationships in a data-driven way, make
them an appropriate alternative. As we work with time series data,
it seems obvious to use Recurrent Neural Networks (RNN), which are
able to capture temporal dependencies as they – intuitively speaking
– possess a memory of previous states. Hewamalage et al. presented
an overview of RNNs in time series forecasting (Hewamalage et al.,
2021). They concluded that RNNs are competitive and that Long Short-
Term Memory Networks (LSTM) show the best performance. Due to
their memory and gating mechanisms, LSTMs can capture long-term
dependencies and prevent the vanishing gradient problem (Hochreiter
& Schmidhuber, 1997). Based on these scientific findings, it is common
to design recurrent networks for time series forecasting with these cells.
However, the flexibility of ANNs and RNNs might lead to overfitting.
To prevent this, regularization techniques can be employed. A common
regularization method is dropout. With this approach, a specified share
of neurons are randomly ignored during each training iteration, leaving

a reduced network (Srivastava et al., 2014). Another regularization
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procedure is early stopping. Thereby, the loss on a validation set
(independent data) is monitored during training and if there is no
improvement for a certain period, the optimization gets terminated
(Bishop, 2009).

Many publications and forecasting competitions indicate a superi-
ority of combined methods, e.g. achieved via ensemble learners and
mechanisms such as Bagging or Boosting (Bojer & Meldgaard, 2021;
Petropoulos et al., 2018). XGB is an ensemble technique that uses gra-
dient boosted regression trees as weak learners. With this approach, de-
cision trees are sequentially added in a greedy manner based on the gra-
dient of the loss function in order to correct the errors made by the cur-
rent ensemble. This is in contrast to algorithms using Bagging, e.g. Ran-
dom Forests, which train several weak learners in parallel on boot-
strapped samples. Furthermore, Boosting algorithms showed a good
performance in forecasting competitions (Bojer & Meldgaard, 2021).
XGB is a sparse-aware and computationally efficient implementation
of this technique (Chen & Guestrin, 2016).

Besides the frequentist approach, for which we view probability as
the relative frequency of an event in an experiment, we can interpret
probability in a Bayesian perspective. Thereby, we define a prior belief
before considering evidence as we assume that certain hypotheses
are more plausible than others. Then, we take evidence into account,
e.g. observations in an experiment, leading to a posterior belief. This
is regularized by the prior, as we usually do not completely reject
our previous belief. For ML methods, we can define the prior as a
probability distribution over the model parameters and calculate their
posterior based on observations in a dataset. Therefore, in contrast
to a frequentist viewpoint with fixed parameter values, probability
distributions over the model parameters reflecting their uncertainty are
estimated (Bishop, 2009).

MLR can be defined in a Bayesian perspective as follows: 𝑝(𝑦|𝒙,𝒘) =
(𝑦|𝒙𝑻𝒘, 𝜎2), where the target variable 𝑦 follows a Gaussian distri-
ution with the mean 𝒙𝑻𝒘 (determined by the predictors 𝒙 and the
eights 𝒘) and the variance 𝜎2. If the weights of the model are

onstrained to a zero-mean Gaussian prior, the solution is equivalent
o Ridge Regression and therefore called Bayesian Ridge Regression
BayesRidge). Automatic Relevance Determination (ARD), also known
s Sparse Bayesian Learning or Relevance Vector Machine, is related to
t, but introduces an individual variance for each weight. If the variance
f a feature is low, the corresponding weight is likely to be close to zero
nd can be pruned leading to sparser solutions (Bishop, 2009; James
t al., 2017; Tipping, 2001).

With regard to the practical use of demand forecasts, the uncertainty
f a prediction value seems profitable. Providing those by its definition
s a main advantage of the nonparametric Bayesian method Gaussian
rocess Regression (GPR) (Williams & Rasmussen, 1996). To explain it,
t makes sense to go back to the linear model. This is defined as

𝑓 (𝒙) = 𝒙𝑇𝒘, 𝑦 = 𝑓 (𝒙) + 𝜖,

ith 𝒙 being the input vector, 𝒘 the vector of weights, the function
alue 𝑓 (𝒙) and observed target value 𝑦 with additive noise 𝜖 assumed
o follow a zero-mean Gaussian. Combined with the independence
ssumption of the observation values, we get the likelihood, which
eflects how probable the observed target values 𝒚 are for the different
nputs 𝑿 and weights 𝒘:

𝑝(𝒚|𝑿,𝒘) =
𝑗

∏

𝑖=1
𝑝(𝑦𝑖|𝒙𝒊,𝒘)

s usual for a Bayesian formulation, we define a prior over the weights,
or which we again choose a zero-mean Gaussian. With the defined
rior and the likelihood based on the observed data, we can use Bayes’
ule to get the posterior of the weights given the data:

𝑝(𝒘|𝑿, 𝒚) =
𝑝(𝒚|𝑿,𝒘)𝑝(𝒘)
𝑝(𝒚|𝑿)
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This is also called the maximum a posteriori estimate which – provided
the data – delivers the most likely set of weights 𝒘. As 𝑝(𝒚|𝑿) is inde-
endent of 𝒘, we can reformulate this equation expressing the posterior
istribution with a Gaussian defined by a mean and covariance matrix:

𝑝(𝒘|𝑿, 𝒚) ∼ N(𝒘,𝑨−1)

During inference, we marginalize out 𝒘 and as a result take the average
ased on all possible 𝒘 weighted by their posterior probability:

𝑝
(

𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝑿, 𝒚
)

= ∫ 𝑝
(

𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝒘
)

𝑝 (𝒘|𝑿, 𝒚) 𝑑𝒘

= N( 1
𝜎2

𝒙𝑇𝑇 𝑒𝑠𝑡𝑨
−1𝑿𝒚,𝒙𝑇𝑇 𝑒𝑠𝑡𝑨

−1𝒙𝑇 𝑒𝑠𝑡)

herefore, we do not only get an output value, but also an uncertainty.
o far, we reached the Bayesian formulation of linear regression with
ts limited expressiveness. To overcome this constraint to linearity, we
an project the inputs into a high-dimensional space and apply the
inear concept there. This transformation can be accomplished using
asis functions 𝜙(𝒙)∶R𝑑 → R𝑖 leading to the following model with 𝑖
eights 𝒘:

𝑓 (𝒙) = 𝜙(𝒙)𝑇𝒘

Conducting the same derivation as shown above results in a similar
outcome:

𝑝
(

𝑦𝑇 𝑒𝑠𝑡|𝒙𝑇 𝑒𝑠𝑡,𝑿, 𝒚
)

= N( 1
𝜎2

𝜙
(

𝒙𝑇 𝑒𝑠𝑡
)𝑇 𝑨−1𝛷(𝑿)𝒚,

𝜙
(

𝒙𝑇 𝑒𝑠𝑡
)𝑇 𝑨−1𝜙(𝒙𝑇 𝑒𝑠𝑡))

he need of inverting the 𝑖𝑥𝑖 matrix 𝑨 possibly causes computational
roblems if the dimension of the feature space 𝑖 becomes large. To solve
his, we can reformulate the above using the so-called ‘‘kernel trick’’.
his leads to the formulation of a Gaussian Process, which is completely
pecified by its mean and covariance function:

𝑓 (𝒙) ∼ 𝐺𝑃 (𝑚(𝒙), 𝑘(𝒙,𝒙′))

𝑚 (𝒙) = E [𝒇 (𝒙)] , 𝒌(𝒙,𝒙′) = E[(𝒇 (𝒙) −𝒎(𝒙))(𝒇 (𝒙′) −𝒎(𝒙′))]

𝑘(𝒙,𝒙′) consists of the covariance value between any two sample points
𝒙 and 𝒙′ resulting in a 𝑛𝑥𝑛 matrix for a training set length of 𝑛. The
assumption is that the similarity between samples reflects the strength
of the correlation between their corresponding target values. Therefore,
the function evaluation can be seen as a draw from a multivariate Gaus-
sian distribution defined by 𝑚(𝒙) and 𝑘(𝒙,𝒙′). Thus, Gaussian Processes
are a distribution over functions rather than parameters, in contrast to
Bayesian linear regression. For simplicity, the mean function is often set
to zero or a constant value. There are many forms of kernel functions,
which need to fulfill certain properties, e.g. being positive semidefinite
and symmetric. Furthermore, they can be combined, e.g. by summation
or multiplication. The choice of the covariance kernel function is a de-
termining configuration of GPR and its parameters need to be optimized
during training (Rasmussen & Williams, 2008; Roberts et al., 2013).

Appendix B. Hyperparameters

Subsequently, the hyperparameters and transformations we used
for all algorithms can be found. For every one, we randomly sampled
hyperparameter combinations for optimization. All tables show the
values used for the comparison before the best working solutions were
analyzed in an in-depth optimization. Beyond that, we used differ-
ent imputation strategies, from which KNN and Iterative Imputation
needed to be parametrized. We empirically determined k = 10 for KNN
and a maximum number of iterations of 100 for Iterative Imputation.

B.1. Exponential Smoothing (ES)
See Table B.1.
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Table B.1
Hyperparameters Exponential Smoothing.

Parameter Values Notes

seasonal_periods [7, 14, 21] Only for SoldTulips: period for
seasonality

trend [‘add’, None] Trend component
damp [False, True] Damp trend
seasonality [‘add’, ‘mul’, None] Seasonal component
remove_bias [False, True] Force average residual to zero
use_brute [False, True] Search starting values using

brute force or use a naive set
transf [False, ‘log’, ‘pw’] Transformation method

B.2. Seasonal Autoregressive Integrated Moving Average (with external
factors) (SARIMA(X))

See Table B.2.

Table B.2
Hyperparameters Seasonal Autoregressive Integrated Moving Average (with external
factors).

Parameter Values Notes

𝑝∕𝑞∕𝑃∕𝑄 [0, 1, 2, 3] Non-seasonal/seasonal lag for AR
and MA component

d/D [0, 1] Non-seasonal/seasonal
differencing

exog [False, True] Use exogeneous variables
(SARIMA or SARIMAX)

transf [False, ‘log’, ‘pw’] Transformation method

B.3. Regularized Regression (LassoReg, RidgeReg, ElasticNet)

See Table B.3.

Table B.3
Hyperparameters Regularized Regression.

Parameter Values Notes

normalize [False, True] Normalization prior to regression
alpha [10** x for x in range(−5, 5)] Constant multiplying the

regularization penalty term
l1_ratio Np.arange(0.1, 1, 0.1) Only for Elastic Net: ratio of

L1-regularization

B.4. Artificial Neural Network (ANN)

See Table B.4.

Table B.4
Hyperparameters Artificial Neural Network.

Parameter Values Notes

activation_function ReLu Activation function
after each neuron

optimizer Adam Optimizer for
hyperparameter
optimization

dropout_rate [0.0, 0.5] Rate for dropout layer
batch_size [4, 8, 16, 32] Batch size for training
learning_rate [1e−4, 1e−3, 1e−2,

1e−1]
Learning rate for Adam
optimizer

min_val_loss_improvement [100, 1000] Minimum validation
loss improvement for
early stopping

max_epochs_wo_improvement [20, 50, 100] Maximum epochs
without improvement
for early stopping

n_hidden [10, 20, 50, 100] Number of hidden
neurons of input layer

num_hidden_layer [1, 2, 3] Number of hidden layer
(including input layer)

B.5. Long Short-Term Memory Network (LSTM)

See Table B.5.
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Table B.5
Hyperparameters Long Short-Term Memory Network.

Parameter Values Notes

activation_function ReLu Activation function after each
neuron

optimizer Adam Optimizer for hyperparameter
optimization

dropout_rate [0.0, 0.5] Rate for dropout layer
batch_size [4, 8, 16, 32] Batch size for training
learning_rate [1e−3, 1e−2,

1e−1]
Learning rate for Adam
optimizer

min_val_loss_improvement [0.01, 0.1] Minimum validation loss
improvement for early
stopping

max_epochs_wo_improvement [20, 50, 100] Maximum epochs without
improvement for early
stopping

lstm_hidden_dim [5, 10, 50] Dimensionality of the hidden
state

lstm_num_layers [1, 2] Number of recurrent layers
seq_length [1, 4, sea-

sonal_periods]
Sequence length for input

B.6. Extreme Gradient Boosting (XGB)

See Table B.6.
Table B.6
Hyperparameters Extreme Gradient Boosting.

Parameter Values Notes

learning_rate [0.05, 0.1, 0.3] Learning rate / eta
max_depth [3, 5, 10] Maximum tree depth of a base

learner
subsample [0.3, 0.7, 1] Subsample ratio of a training

instance
n_estimators [10, 100, 1000] Number of gradient boosted trees
gamma [0, 1, 10] Minimum loss reduction for a

partition on a leaf node
alpha [0, 0.1, 1, 10] Weight for L1-regularization
reg_lambda [0, 0.1, 1, 10] Weight for L2-regularization

B.7. Bayesian Regression (BayesRidge, ARD)

See Table B.7.
Table B.7
Hyperparameters Bayesian Regression.

Parameter Values Notes

normalize [False, True] Normalization prior to
regression

alpha_1 [10** x for x in
range(−6, 1)]

Shape parameter for Gamma
distribution over alpha

alpha_2 [10** x for x in
range(−6, −4)]

Rate parameter for Gamma
distribution over alpha

lambda_1 [10** x for x in
range(−6, 1)]

Shape parameter for Gamma
distribution over lambda

lambda_2 [10** x for x in
range(−6, 1)]

Rate parameter for Gamma
distribution over lambda

threshold_lambda [10** × for × in
range(2, 6)]

Only for ARD: threshold for
pruning weights

B.8. Gaussian Process Regression (GPR)

The determining parameter for GPR is the kernel function. We
used different kernel functions as well as combinations of up to three
kernels (sums and products). The base kernels we used can be found in
the following list, which are formulated according to the used library
GPflow (Matthews et al., 2017):

• SquaredExponential()
• Matern52()
• White()
• RationalQuadratic()
14
• Polynomial(),
• Periodic(kernels=SquaredExponential(), period=seasonal_periods),
• Periodic(kernels=Matern52(), period=seasonal_periods),
• Periodic(kernels=RationalQuadratic(), period=seasonal_periods)]

urthermore, we used the subsequent hyperparameters.
able B.8
yperparameters Gaussian Process Regression.
Parameter Values Notes

mean_function [None, Constant()] Mean function used for Gaussian
distribution

noise_variance [0.01, 1, 10, 100] Noise variance added to diagonal
of kernel matrix

standardize_x [False, True] Standardize features
standardize_y [False, True] Standardize target variable

Appendix C. Results Overview Tables

The tables, which reflect an overview of the results of the compar-
ison performed in this paper, are published in supplementary fashion
as ‘‘Supplementary 1 - Results Overview Tables.xlsx’’. This file contains
several tabs, of which each one presents the results of one dataset.
These show an overview of the best optimization results with respect to
the three evaluation metrics of every algorithm for each experimental
setting. Every table is grouped in ‘‘Univariate Methods and Baselines’’ as
well as ‘‘Multivariate Methods’’. Besides that, every chart is structured by
the used featureset, imputation strategy and dimensionality reduction.
If a specific combination was not included in the comparison, the
related cell is filled in gray. The best results are printed in bold, and
the cells are highlighted with a green background.

Appendix D. Top Results Tables

The following tables show top results for several setups such as
the best performance of every algorithm on each dataset over all
featuresets and preprocessing methods, see Tables D.1 and D.2. As in all
subsequent tables, the best results are printed in bold and highlighted
in green. The results based on each feature- and dataset for the multi-
variate top performers are summarized in Appendix D.2. The evaluation
is based on the results before the in-depth optimization, as this second
optimization was not conducted for all configurations.

D.1. Top Results Overall

See Tables D.1 and D.2.

Table D.1
Top results overall for the OwnDoc datasets.
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Table D.2
Top results overall for the CashierData datasets.
Table D.3
Top results per featureset of the OwnDoc datasets.
D.2. Featureset-specific Top Results for SARIMAX, LSTM, XGB and GPR

To visualize the top results per featureset, we derived the stacked
bar plots shown in Fig. D.1 based on the information presented in
Tables D.3 and D.4. Furthermore, Table D.5 summarizes the featuresets
leading to the best result for each dataset.
15
Appendix E. Supplementary Data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mlwa.2021.100239.

https://doi.org/10.1016/j.mlwa.2021.100239
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Table D.4
Top results per featureset of the CashierData datasets.
Table D.5
Win counts for each featureset on every algorithm and dataset. A win is defined as a featureset leading to the best result for
one of the evaluation metrics. The wins of every featureset are summed up. The leading featuresets for every algorithm on
OwnDoc and CashierData are printed in bold and highlighted in green.
16
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Fig. D.1. Top results per featureset for SARIMAX, LSTM, XGB, GPR (columns) on every dataset (rows). The values achieved with every featureset are scaled by the worst result.
Smaller bars represent a better outcome with similar ones plotted with a small offset on the 𝑥-axis to ensure visibility. Bars might not be visible in case of a major difference to
the worst result, e.g. XGB’s MAPE for OwnDoc_Sold_Tulips_short.
17
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