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Abstract—We propose a novel model- and feature-based ap-
proach to development of vehicle software systems, where the
end architecture is not explicitly defined. Instead, it emerges
from an iterative process of search and optimization given
certain constraints, requirements and hardware architecture,
while retaining the property of single-system illusion, where
applications run in a logically uniform environment. One of the
key points of the presented approach is the inclusion of modern
generative AI, specifically Large Language Models (LLMs), in
the loop. With the recent advances in the field, we expect that
the LLMs will be able to assist in processing of requirements,
generation of formal system models, as well as generation of
software deployment specification and test code. The resulting
pipeline is automated to a large extent, with feedback being
generated at each step.

I. INTRODUCTION

The costs of vehicle software development are rising at
a high rate. It is estimated that the development efforts for
various software components, including OS, middleware and
infotainment, but also implementation of functions and their
integration, will double in 2030 as compared to 2020 [1].

Classical software development paradigms are very rigid
and slow to adapt to the rising system complexity. V-model,
being the de facto industry standard, is very inflexible, lacking
early feedback mechanisms, and with costly scope adjust-
ments [2]. Combined with highly standardized architectures
like AUTOSAR [3], this leads to very long development
cycles. On the one hand, standardization and code reuse are
certainly advantageous. On the other hand, over-engineering,
complexity and steep learning curve are pointed out as the
main problems with these well-established frameworks [4].

Software-defined vehicles are becoming the new trend in
the automotive industry, where the functionality of the car
is defined, updated and modified mainly by changes in the

software. This trend affects both intra-vehicular networks [5]–
[7], as well as the internal car systems [8]. The increasing
demand for various features and software components means
that the OEMs are not able to provide the full software stack
anymore. Instead, third-party software is starting to play an
increasingly significant role [9].

One of the trending paradigms of software development,
hardware modeling and resource allocation is model-based
system engineering (MBSE) [10]–[13]. Coupled with the
principles of design by contract, where the obligations of all
interacting components are written down in a formal way,
MBSE becomes a powerful tool that enables software-defined
vehicles.

With the advent of Large Language Models (LLMs), new
automation possibilities are opening. We would like to lever-
age the generative power of modern AI to define a new soft-
ware development paradigm, which goes beyond the current
standards, and which will be easily extensible in the future.

The presented approach to software development draws
from agile principles, like feature-driven development (FDD),
test-driven development (TDD), and low-code, model-driven
development. Combining different techniques allows address-
ing the complexity of the problem, developing rapidly, and
providing necessary feedback that is used to improve the
overall system design. This fits well with the software-defined
vehicle paradigm, where the system keeps evolving by updat-
ing and modifying mainly the software components.

When using the proposed workflow, software designers and
developers should perceive the system as a single logical entity
– single-system illusion. Different software modules are not
bound to the underlying OS, middleware, or hardware topol-
ogy. The RACE project is an example of early designs that
show how such a system may look like [14]. This is in contrast



with the current systems, where the functions are spread to
many different ECUs, and are oftentimes implemented in a
way that accounts for the inter-component connections, which
breaks modularity.

In order to achieve the goal of providing a single-system
illusion, the various components of the software stack must be
clearly separated. Applications, middleware, OS and hardware
must be sufficiently modular to allow modifications of one
layer without the need to totally rewrite the others. Again,
RACE has shown how to clearly delineate applications from
the runtime environment [14], [15] and even how to hide spe-
cific safety mechanisms from the service-level developers [15].
However, the resulting system was strictly bound to the run-
time environment with a single message exchange paradigm
(publish-subscribe). We would like to go beyond and allow the
designers to choose their middleware without such constraints,
possibly even allow for multiple middlewares within the same
system. We also strive for a system where certain general
safety mechanisms, like process redundancy, watchdogs and
monitoring, or data integrity checks, are separated from the
applications and the runtime environment and where they can
be applied to other components as required.

The innovative aspect of the workflow which we propose, is
the use of modern AI, specifically LLMs, in the development
process. The goal is to use AI in synergy with model-driven
development approaches, where formal system information,
including the system model (so-called instance model) and
constraints in formal languages, is generated from the available
components’ (software and hardware) description, and from
the set of requirements, both functional (which functions to
include) and non-functional (safety, performance). Based on
the safety requirements, functions have different safety mea-
sures (redundancy, failure handling mechanisms) applied to
them. Formal verification is performed on the instance model
relying on a rule-based approach, such as Object Constraint
Language (OCL) [16]. This way, it is possible to prove that
logical connections between elements are correct while the
properties of distinct elements are within the desired bounds.

The generated model is used as a base for an automatic
resource allocation method, which takes into consideration
the hardware and software specifications as well as allocation
constraints. Flexibility of the optimization algorithm must be
emphasised, as it ought to support both test environments and
the target vehicle architectures. It must also be able to generate
an optimal configuration in the Pareto sense, i.e., based on
the chosen optimization criteria, like maximal performance or
minimal power consumption.

The resulting allocation matrix together with the instance
model become inputs to a code-generating system based
on generative AI. The functional model is combined with
information about the desired runtime environment, acceptance
criteria, and the list of available software functions from the
software catalog. The system outputs working code that can
be deployed to the desired architecture. The process of code
generation includes parametrization of deployment code, e.g.,
with connection details like addresses and ports, generation of

adapter code that translates data from function-specific formats
into middleware primitives, but also tests that will be used
for functional and non-functional verification. The synthesized
architecture can be verified in simulation against the non-
functional requirements, e.g., by using fault injection into the
stream, similar to RACE [15].

II. METHODOLOGY

The workflow was designed with the following principles in
mind: short development cycles, automated feedback at each
step, focus on modularity and flexibility, and automated gener-
ation of boilerplate code. A number of artifacts is produced as
a result of each step. All of these artifacts should be available
to the users in a human-readable form. However, they should
also have a machine-readable format, which can be used
for automatic verification. Verification at each step provides
early feedback, and should keep the development cycles short.
The software components at all levels of abstraction should
be modular to allow the AI tools to easily (re)generate the
boilerplate code as needed.

The proposed workflow is presented on Fig. 1. It consists of
two phases – the design phase, and the run-time phase. During
the design phase, formal descriptions of the desired system in
the form of models and constraints are generated, based on
the provided requirements, standards, available software and
hardware components etc. During the run-time phase, glue
code, tests and deployment descriptors are generated from the
model. The software is deployed and tested either on the test
bench, or on the target architecture.

A. Feature-driven and model-driven development

The developers should first and foremost focus on the
features that are supposed to be deployed to the target vehicle
hardware. At a very abstract level it can be achieved by writing
a set of requirements in natural language. A generative AI
in the form of LLM is used to process these abstract ideas
and put them against the available software functions, hard-
ware specifications, safety standards and vehicle abstraction
specifications. The LLM outputs an instance model, which
is based on the given metamodel and which abstracts the
target system, and formal constraints that are derived from
requirements. The generated instance model represents how
the function graph is connected, what the requirements are for
all nodes, as well as what properties the target hardware has.
At this point, the designers should not be concerned about
the details of virtualization, operating systems, or the precise
mapping between software and hardware.

Inputs:
• Metamodel – an abstract language of system description.

Metamodel does not describe any particular system. In-
stead, it is a template that must be populated, creating a
so-called instance model. One way the meta- and instance
models can be written is the Object Management Group
(OMG) standard. When it comes to implementation, we
rely on Ecore [17] within Eclipse Modelling Framework
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Fig. 1. Proposed workflow with generative AI in the loop. Steps are color-coded: 1) Inputs in orange, outputs in red - generation of the instance model and
formal constraints. The formal constraints are used for automatic verification of the instance models; 2) Inputs in red, outputs in blue - resource allocation,
which produces an allocation matrix and enhances the instance model with details about software-to-hardware mapping; 3) Inputs in blue, outputs in purple
- code generation. The tests generated during this step are used for automatic testing of the deployed system; 4) Yellow - validation and verification, which
is performed as part of the other steps, and is not a separate step as such.

(EMF), which provides the tools for metamodel design,
model instance creation and API for model instance
manipulation. Other modeling language, like SpesML,
may be used, depending on the desired toolchain.

• Requirements – a list of requirements for the system
in free-form text. Requirements contain basic system
description, constraints, etc. Although the process of
gathering, extraction and improving of the requirements
set is an interesting research problem on its own, we are
not going to address it in this document. However, we do
intend to assess the quality of models generated by the
LLMs using existing rule-based systems, and test cases
where requirements are contradictory or incomplete.

• Vehicle abstraction and standards – essential for defining
vehicular systems, for example, ISO 26262 [18], ISO
23150 [19], Vehicle Signal Specification [20].

• Function catalogue – a list of available software com-
ponents (functions), interface specifications, and require-
ments regarding computational power, power consump-
tion, etc.

• Hardware specification – specifications of the available
hardware. The specification could be in the form of a
graph, data sheet, or potentially another instance model.

Outputs:
• Instance model – an instance of the metamodel, which

describes the connections between all involved functions.
The function nodes are annotated with their requirements
in terms of safety, required power, etc. At this point in
the design phase, the hardware graph is included in the
model, but the details of mapping of software to the
hardware are missing. The model will be enhanced with
full mapping in the following step – resource allocation.
As in the case of the metamodel, we make use of Ecore
for the implementation, but other modeling languages
may also be used.

• Formal constraints – a set of logical constraints that must
be satisfied within a user-provided model instance. These
rules are typically derived from a reference architecture,
requirements or relevant ISO standards. In our approach,
we employ Object Constraint Language (OCL) to express
and enforce these verification rules.

Verification and feedback:
• Feedback includes testing that interfaces of different com-

ponents are compatible and meet the criteria specified in
the formal contract. Failure to adhere to this contract may
indicate that the chosen components are incompatible, or



that the interface specification is incorrect.
• Violations of formal constraints within the scope of

user-created specification (including component quantity,
property values, or inter-component relationships) will re-
sult in model verification failure. The system will provide
the user with natural language suggestions outlining nec-
essary modifications. To generate these suggestions, the
LLM will translate the verification results into actionable
guidance.

B. Resource allocation

During this step, the generated instance model and formal
constraints are translated into a format recognizable by the
chosen mapping and optimization algorithm. The algorithm
should be flexible to support various optimization criteria
to develop a Pareto-optimal solution based on the selected
goals (cost, performance, power use, etc.). Existing approaches
to mapping and optimization offer many possibilities: from
classical optimization techniques like integer linear program-
ming [21], [22] through genetic algorithms [23], [24], to the
use of graph neural networks [25]–[27].

Inputs:
• Instance model – model generated in the previous step.
• Formal constraints – formal constraints generated in the

previous step. They are derived from requirements and
contain restrictions and rules for resource allocation.

• Runtime environment specification – specification of
the chosen communication middleware (ROS, ZeroMQ),
available message passing paradigms, and virtualization
mechanisms (Docker, VM).

• Available safety mechanisms – abstract description of
safety mechanisms, like redundancy, failure masking by
voting, etc. These will later be instantiated according to
the chosen runtime environment and available software
components (functions).

Output:
• Allocation matrix – mapping between software and hard-

ware components.
• Enhanced instance model – instance model generated in

the previous steps, but enhanced with detailed software-
hardware mapping.

Validation and feedback:
• Similar to the previous step, validation includes testing of

the enhanced model against a set of OCL rules covering
redundancy aspects and safety-critical constraints.

C. Code generation and deployment

In this step, another instance of generative AI is used to put
all available pieces together into working code. Techniques
like discriminative reranking [28], [29], application of verifier
models [30], [31] or self-collaboration [32] may be applied
to improve the code quality. The generated code may include
(but is not limited to) glue code for various functions, like
adapters from function interfaces and middleware interfaces,

deployment files parametrized with proper addresses, ports and
including process redundancy, injection of test code into the
pipelines, and actual test cases [33], [34] based on acceptance
requirements.

Input:
• Allocation matrix – mapping of software to hardware

generated in the previous step
• Runtime environment specification – specification of

the chosen communication middleware (ROS, ZeroMQ),
available message passing paradigms, and virtualization
mechanisms (Docker, VM).

• Acceptance criteria – functional and non-functional cri-
teria used for the generation of test code and test cases.

Output:
• Deployment files – adapted to the particular architecture

and runtime environment
• Test cases – automatically generated test cases that can

be used to validate both functional and non-functional
requirements.

• Function code with proper wrapping (Docker) and
adapter code for data translation.

Verification and feedback:
• Execution of the acceptance tests, either in a simulated

environment, or on the target architecture.
• Feedback is divided into functional and non-functional.

Failures detected during execution of the functional test
could indicate bugs in the software modules or in the
integration code. Failures of the non-functional tests
may indicate that certain requirements were incorrect
or missing, or that the optimization criteria during the
allocation phase must be modified.

III. SCOPE, COMPLEMENTARY WORK, LIMITATIONS

In this document we are focusing on automatic generation
of software systems, integration and deployment code, and
mapping to hardware. However, there are many places where
complementary research can be conducted. The first issue
is completeness and consistency of the user requirements.
Although the instance model and formal constraints produces
by the LLM in the first step are verifiable, we do not know
how well the LLM will be able to handle conflicting and
incomplete requirements, and how it will impact the quality of
the generated artifacts. Another possible venue of research is
the hardware specification and representation. In the current
workflow it is assumed that this description is provided to
the LLM in the form of a graph (or a semi-formal textual
description), but it ought to be possible to generate the
hardware model automatically from the requirements, similar
to how we generate the software model. An example of Ecore
model instances creation relying on ChatGPT in presented in
[35].

Code generated by LLMs is far from perfect [36]. We
are planning on focusing on certain simple use cases and
building a proof-of-concept pipeline. Human supervision will



definitely be needed, especially to examine correctness of the
automatically generated verification code, like test cases. We
expect that in the near future, the quality of code generated by
LLMs will improve massively, which will allow us to generate
more complex systems, and to progressively remove the need
for human supervision.

IV. CONCLUSION

We propose a software development process that extends
beyond the current industrial standards. In this process, the
generative AI should become an integral part and progressively
take care of many menial tasks. The advantage of using AI
over classical tools for automatic translation is the generative
power of the models, as well as the ability to understand
natural language. Although the currently available LLMs have
many shortcomings, the progress in the field is blazingly fast,
and their rapid evolution suggests the potential to revolutionize
code generation in the coming years. Our proposed workflow
is designed for extensibility and adaptability, ensuring it re-
mains relevant amidst ongoing advancements in AI capabili-
ties, allowing an increasing number of stages of the process
to become automated.

V. GLOSSARY

contract
Design by contract is a software development
methodology that emphasizes the explicit defini-
tion of formal contracts between software compo-
nents [37]. These contracts specify preconditions
(what must be true before a component is used),
postconditions (what must be true after execution),
and invariants (conditions that must always hold
true). Design by contract can be enforced through
runtime assertions, unit tests, or even integrated into
a programming language’s syntax. This approach
enhances software reliability, eases debugging, and
facilitates code comprehension. 1, 3

Ecore Language of the metamodel used in Eclipse Model-
ing Framework. 2, 3

ECU Electronic Control Unit. It is an electronic device in
a vehicle that is responsible for a single function. 2

FDD Feature-Driven Development. It is a paradigm where
the software system is iteratively developed in a
series of steps, starting with an abstract model of
the system, followed by extraction of a set of desired
features, and ending with feature implementation and
integration [38]. 1

feature
Composed of one or more functions connected to-
gether using a certain runtime environment, usually
corresponds to a certain use-case. 1

function
A single, self-contained piece of software, that per-
forms a certain function. 1, 4

LLM Large Language Model. 2–5

MBSEModel-Based Systems Engineering is a formalized
methodology within systems engineering that em-
phasizes using models as the primary means of in-
formation exchange and system representation [39].
This contrasts with traditional document-centric ap-
proaches. MBSE centers on creating and leverag-
ing domain-specific models or metamodels, which
capture system requirements, design, analysis, and
verification elements throughout the development
lifecycle. 1

OCL Object Constraint Language. 4
OEM Original Equipment Manufacturer. 1
OMG Object Management Group. 2

RACE Centralized Platform Computer Based Architecture
for Automotive Applications. 1, 2

runtime environment
Communication middleware and virtualization mech-
anisms. 2

TDD Test-Driven Development is a software development
methodology that centers on the iterative creation of
unit tests prior to the implementation of functional
code [40] This approach mandates that a test case
specifying the desired behavior of a code unit be
written before the production code itself. As develop-
ment progresses, the test suite continuously executes.
New code is only written if it fulfills the requirements
outlined in a failing test. 1
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