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Munich, Freising, Germany, 2Department of Dermatology and Allergy Biederstein, School of Medicine,
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The prevalence of food allergy is rising and is estimated to approach 10%. Red

meat allergy is the first known food allergy elicited by immunoglobulin E (IgE)

antibodies recognizing a carbohydrate. Due to the loss of function of the alpha

−1,3−galactosyltransferase (GGTA1) gene in humans, the disaccharide galactose-

a-1,3-galactose (a-Gal) cannot be synthesized and therefore became

immunogenic. IgE sensitization is elicited through the skin by repetitive tick

bites transmitting a-Gal. The underlying mechanisms regarding innate and

adaptive immune cell activation, including the B-cell isotype switch to IgE, are

poorly understood, requiring further research and physiologically relevant animal

models. Here, we describe a new animal model of red meat allergy using

percutaneous a-Gal sensitization of gene-edited GGTA1-deficient pigs. Total

and a-Gal-specific IgG, IgG1, IgG2, IgG4, and IgE levels were tracked. Further key

factors associated with allergic skin inflammation, type 2 immunity, and allergy

development were measured in PBMCs and skin samples. Significant increases in

a-Gal-specific IgG1 and IgE levels indicated successful sensitization to the

allergen a-Gal. Intracutaneous sensitizations with a-Gal recruited lymphocytes

to the skin, including elevated numbers of T helper 2 (Th2) cells. Finally, a-Gal-
sensitized pigs not only recognized a-Gal as non-self-antigen following a-Gal
exposure through the skin but also developed anaphylaxis upon antigen

challenge. Based on the similarities between the porcine and human skin, this

new large animal model for a-Gal allergy should help to unveil the consecutive

steps of cutaneous sensitization and aid the development of prophylactic and

treatment interventions.
KEYWORDS

a-Gal allergy, anaphylaxis to a-Gal, intracutaneous sensitization, red meat allergy,
translational pig model
Abbreviations: a-Gal, galactose-a1,3-galactose; AGS, alpha-Gal syndrome; GGTA1, gene encoding a1,3-

galactosyltransferase; IL, interleukin; i.v., intravenous; MCP-1, mast cell protease 1; PBMC, porcine

peripheral blood monocytes.
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Introduction

Food allergies affect at least 3%–6% of the world population and

can cause life-threatening symptoms (1). While the allergen itself is

often known, the various steps of sensitization and the underlying

immunopathogenic mechanisms, leading to severe allergic

responses, remain largely unknown. We therefore established the

pig as a new animal model to examine the underlying steps of

allergy development, focusing on the a-Gal allergy.
The a-Gal glycosylation (galactose-a1,3-galactose; a1,3-Gal; a-

Gal) is present on mammalian glycolipids and glycoproteins, except

in primates and old-world monkeys. In humans, the gene GGTA1,

which encodes the enzyme a1,3-galactosyltransferase being

responsible for the a-Gal glycosylation, is inactivated. Humans

are routinely exposed to a-Gal via food uptake, e.g., dairy products

or red meat (2, 3), or via a-Gal-producing bacteria in the digestive

tract (4, 5). Due to the missing central tolerance, this provokes an

immune reaction to the antigen and a-Gal-specific IgM and IgG

equates to 1% of all circulating antibodies in humans. However, an

oral tolerance to a-Gal is maintained, unless sensitization occurs. A

limited number of sensitized individuals then develop the a-Gal
syndrome (AGS) or red meat allergy (6, 7).

The development of the a-Gal syndrome can be divided into

two major phases—sensitization and re-exposure to the allergen.

Sensitization to a-Gal in humans causes local inflammation and

systemic allergy onset by IgE antibody production. Epidemiologic

correlations could clearly link a-Gal-specific IgE levels of patients to

bites of various tick species in the USA, Europe, Australia, Japan,

and Brazil (8–11). Alpha-Gal was shown to be present in the saliva,

salivary glands, hemolymph, and gastrointestinal tract of ticks (12–

14). Subsequent re-exposure to the a-Gal antigen after the

consumption of red meat or mammalian-derived products

provokes Urticaria or respiratory symptoms and/or mild to severe

gastrointestinal symptoms within 2–6 h (15). Moreover, immediate

life-threatening anaphylactic responses to intravenous injections of

pharmaceuticals carrying a-Gal glycosylations such as the chimeric

monoclonal antibody Cetuximab (16, 17) have been reported (18).

During sensitization to protein antigens, antigen-presenting

cells (APCs) such as dendritic cells (DCs) process and present the

antigen to naive T-helper cells (Th cells), which differentiate into

type 2 T helper (Th2) cells, driven by the master type 2 cytokine IL-

4 (19). Th2 cells together with T-follicular helper cells induce a

humoral immune response by causing immunoglobulin class-

switching of B cells to secrete IgE antibodies (20). IgE antibodies

are subsequently bound by high-affinity IgE receptors (FcϵRI) (21–
23), present at the surface of mast cells and basophils, which contain

inflammatory mediators such as histamine, cytokines, and

leukotrienes (24). After re-exposure of a previously sensitized

individual to the allergen, the antigen is recognized by the bound

IgE antibodies leading to cross-linking of FcϵRI receptors. This then
leads to an activation of an intracellular signaling cascade, which

results in degranulation and the release of mediators such as

histamine and mast cell protease 1 (MCP-1), triggering the

allergic response (23). This basic concept was established for

protein antigens, if it also applies to a type 2 response to

carbohydrates, and what decisive role the cutaneous immune
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system plays in this multistep process is largely unknown. To

understand and ultimately to prevent the development of red

meat allergy, predictive animal models are necessary that best

reflect the pathophysiology in humans. Mice have been an

essential model to examine the function of the host’s immune

system after tick bites (25) and to assess the role of immune cells

and cytokines, such as IL-4, during allergy development (26).

However, mice differ to humans in aspects important to

allergy research, such as the structure of the skin and the

diet (27). Pigs are more similar to humans with regard to

physiology, anatomy, and nutrition, and they too can be

genetically modified (28), i.e., to adjust cellular glycosylation

patterns (29). Importantly, the structure of the porcine skin is

comparable to the human skin, e.g., the thickness of the stratum

superficiale dermidis, the average thickness of collagen fibre

bundles, the density of the subepidermal capillaries, and the

overall microvasculature (30). Consequently, porcine skin has

become a substitute for human skin for a variety of applications

such as assessing biophysical parameters, diffusivity, permeability,

stratum corneum barrier functions, transepidermal water loss, and

dermal absorptions (30–32). As not only AGS but also other food

allergies require sensitization via the compartment skin (33–36),

a porcine allergy model will have wider applications.

In order to establish a porcine AGS model, a-Gal knockout pigs
were sensitized by intracutaneous a-Gal injections, mimicking the

tick bites. Th2-induced immune responses, and Ig subtype

switching were monitored. Finally, to confirm the model,

anaphylaxis was induced.
Materials and methods

Sensitization of pigs

Gene-edited GGTA1 knockout hybrid pigs (37) (German

Landrace and minipig cross, adult weight of 80–120 kg) obtained

intracutaneous injections of either 25 µg a-Gal BSA (NGP0203,

Dextra Laboratories, UK) or 25 µg BSA only (Probumin, vaccine-

grade bovine serum albumin, Millipore, Germany), four and three

pigs, respectively. Both a-Gal and BSA were 1:2 diluted with

Imject®Alum (Thermo Fisher, Germany) to a total volume of

500 µL and applied via 10 intracutaneous injections to an area of

5 cm × 5 cm in the neck. The location was chosen to avoid

scratching, which could result in unintended inflammatory

reaction. This was repeated twice a week for 3 weeks starting at 6

weeks of age (2 weeks after weaning) followed by two injections at 6

weeks and 9 weeks (Figure 1).

During the sensitization studies, pigs were fed commercially

available processed animal feed for pigs. Until week 4 of the

sensitization protocol, this was piglet feed (Feed 1), afterwards

adult feed (Feed 2). Both animal feeds were shown to be low in

a-Gal (Supplementary Figure S1), to prevent possible

immunization of the control animals via the feed. During the

immunizations, the core temperature was assessed with a digital

thermometer, and skin inflammations at the site of injections were

recorded. Blood samples were collected, starting 14 days prior to the
frontiersin.org
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first immunization and subsequent at day 0, 7, 14, 21, 42, 56, 63, and

84 (Figure 1).
Intravenous challenge

Four GGTA1 KO pigs, two previously sensitized with a-Gal
BSA and two injected with BSA as negative control, were challenged

by intravenous (i.v.) injection of 100 mg a-Gal BSA, in 200 µL PBS,

24 weeks after the first sensitization. Serum was collected during the

challenge experiment at five time points (0 min, 15 min, 30 min, 45

min, and 60 min) for quantification of porcine mast cell protease

(MCP‐1) and histamine levels. Blood pressures and heartbeat rates

were measured in 5-min intervals over 60 min.
Protein isolation

Protein isolation of porcine feed, unprocessed grain,

carrageenan, and animal tissues was performed using the Plant

Total Protein Extraction Kit (Sigma-Aldrich, Germany, suitable for

protein extraction from both animal and plant tissues) according to

the manufacturer’s instructions. WT pig tissue was either used

untreated, pressure cooked for 10 min, or fried with vegetable

oil for 10 min. The tissue was further processed to remove excess

oil and moisture and to enable subsequent protein extraction.

A total of 200 mg of the samples was ground to a fine powder in

liquid nitrogen. Protein concentrations were determined using
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Advanced Protein Assay Reagent (Sigma-Aldrich, Germany)

according to the manufacturer’s instructions. Each sample was

aliquoted into three wells of a 96-well plate, and the absorbance

was measured in triplicates at 595 nm. The OD values were

converted to mg/mL of a-Gal, based on an a-Gal BSA standard

curve (NGP0203, Dextra Laboratories, UK) ranging from 0.01 to

20 µg/mL.
Alpha-Gal ELISA

The 96-well plates were coated with 50 µL of isolated protein

solution from feed or porcine tissues and incubated overnight at 4°

C. Plates were washed with PBS and blocked with 1% BSA in PBS

for 1 h at RT, followed by incubation for 1.5 h at RT with a

biotinylated primary anti-alpha-gal monoclonal IgM antibody

(Clone M86, Enzo Life Sciences, Germany), diluted 1:50 in the

blocking buffer. Biotinylation of the M86 antibody was carried out

according to the manufacturer’s instructions for the Abcam

Lightning-Link Rapid Type A Biotin Antibody Labeling kit

(ab201795). Staining was performed using the ABC reagent kit

(Vectastain Elite ABC HRP Kit, Vectorlabs, USA) according to the

manufacturer’s instructions. Samples and the standard curve were

measured in triplicates. The OD values were converted to mg/mL of

a-Gal, based on an a-Gal BSA standard curve (NGP0203, Dextra

Laboratories, UK) ranging from 0.01 to 20 µg/mL. The standard

deviation was calculated using Excel and indicated as error bars in

the respective graph.
A

B

FIGURE 1

(A) Immunization strategy for percutaneous sensitization of pigs. In total, eight immunizations with a-Gal were performed over 9 weeks at days 0, 3,
7, 10, 14, 17, 42, and 63. For each immunization, a-Gal and BSA were 1:2 diluted with Alum to a total volume of 500 µL and applied via 10
intracutaneous injections to an area of 5 cm × 5 cm in the neck. Sampling was performed starting 2 weeks prior to the first immunization until 4
weeks after the last immunization. (B) Formation of a-Gal-specific IgG (sIgG) antibodies, IgG1, IgG2, and IgG4 subtypes (sIgG1, sIgG2, and sIgG4)
and a-Gal-specific IgE antibodies (sIgE) as determined by ELISA. Significant changes in antibody production between the a-Gal (blue) and control
group (red) could be detected after 13 weeks of immunization for sIgG1 and sIgE. N(a-Gal) = 4. N(Control) = 3.
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Indirect ELISA to measure alpha-Gal-
specific antibodies

To measure the level of antibodies in serum, 96-well Nunc

MediSorp ELISA plates (Thermo Fisher, Germany) were coated

with 50 µL of 1 µg/mL a-gal epitopes (Gala1-3Galb1-4GlcNAc-
BSA, Dextra, UK) and incubated overnight at 4°C. Each well was

washed four times with 200 µL PBS, incubated for 5 min, and

subsequently blocked with 100 µL 1% BSA-PBS for 1 h at 37°C.

Serum was serially diluted in PBS, and 100 µL was added per well

and incubated for 1 h at 37°C. Afterwards, each well was washed

four times with PBS. A total of 100 µL of the diluted primary

antibody (see Supplementary Table S1) was added to the wells,

incubated for 1 h at 37°C, followed by the addition of 100 µL of

biotinylated secondary antibody (Supplementary Table S1), and

again incubated at 37°C for 1 h. The plate was washed four times

with PBS, and 100 µL of VECTASTAIN ABC Reagent (Biotin-

Avidin-Peroxidase system, Vector Laboratories, USA) was added.

Staining was performed according to the manufacturer’s

instructions. The absorbance at 450 nm was measured with the

FLUOstar Omega photometer (BMG Labtech, Germany). The

measured OD450 value was normalized to the PBS control and the

standard curves. The determination of the most suitable serum

concentration for the detection of sIgE was based on the standard

curve, the correlation factor R2, and on an OD450 value between 1

and 2. The measured OD450 values were compared between the a-
Gal and BSA groups and the different time points using an ordinary

two-way ANOVA Tukey’s multiple comparisons test conducted on

GraphPad Prism.
Direct ELISA to measure total antibodies

The 96-well Nunc MediSorp ELISA plates (Thermo Fisher,

Germany) were coated with 50 µL of serum serially diluted in PBS

and incubated overnight at 4°C. Each well was washed four times

with PBS and blocked with 100 µL 1% BSA-PBS for 1 h at 37°C.

Primary antibodies were diluted with 1% BSA-PBS (Supplementary

Table S1), and 100 µL was added to the wells for 1 h at 37°C,

followed by 100 µL of biotinylated secondary antibody diluted in 1%

BSA-PBS (Supplementary Table S1) and incubated for a further 1 h

at 37°C. The plate was washed four times, and 100 µL of

VECTASTAIN ABC Reagent (Vector Laboratories, USA) was

added. Staining was performed according to the manufacturer’s

instructions, and the absorbance at 450 nm was measured with the

FLUOstar Omega photometer (BMG Labtech, Germany).
Histamine and MCP-1 ELISAs

Serum levels of porcine mast cell protease-1 (MCP‐1) and

histamine were quantified by commercial ELISA kits

(MyBioSource, MBS264821 or MCA635GA) with a multiskan EX

microplate reader (Thermo Fisher, USA) at 450 nm according to

the manufacturer’s instructions.
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Skin histology

Skin samples were fixed in 4% formalin for 24 h and embedded

in paraffin. Sections were stained with hematoxylin and eosin (HE)

or toluidine blue. For mast cell numbers, the mean of at least 10

high-power fields was determined. Inflammatory immune cells

were stained using antibodies listed in Supplementary Table S2

and counted using NIS-ELEMENTS software for analysis (Nikon

X-Cite 120 LED).
Flow cytometry

Single-cell suspensions of skin cells were prepared by digestion

with Collagenase IV (Sigma-Aldrich, Germany) for 30 min. Cells

were then filtered through a 40-µm strainer. Single-cell suspensions

of PBMCs or skin cells were stained with live/dead fixable viability

dye eFluor506 or eFluor780 (Thermo Fisher, Germany) in PBS for

10 min and washed with FACS buffer (PBS, 1% FCS). All

centrifugation steps were performed at 700×g for 1 min at 4°C.

Cells were stained for 20 min with surface/extracellular

fluorochrome-conjugated antibodies (Supplementary Table S2)

according to manufacturer’s instructions and washed twice with

FACS buffer. Cells were fixed with FoxP3/Transcription kit

(eBioscience, Germany) and washed twice in fixation/

permeabilization kit buffer. Fixed cells were stained for 20 min

with intracellular fluorochrome-conjugated antibodies

(Supplementary Table S2) and washed with fixation/

permeabilization kit buffer and FACS buffer. FACS analysis was

performed with a Cytoflex S (four lasers, 13 colors) flow cytometer

(Beckman Coulter, USA). Data were analyzed with FlowJo® Single-

Cell Analysis Software v10. Surface, and extracellular markers for

several immune cel l populat ions are summarized in

Supplementary Table S3.
Real-time PCR analysis

Total RNA was isolated from porcine skin by innuSPEED Tissue

RNA Kit (Analytik Jena, Germany) according to the manufacturer’s

instructions. mRNA levels were quantified by real-time PCR using

Fast SybrGreen MasterMix (Applied Biosystems, USA) and run on

an ABI 7500 thermocycler (Applied Biosystems, USA) according to

the standard protocol for SYBR Premix. Results were evaluated by the

cycle threshold method and normalized to the housekeeping gene

glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Statistical analysis

Statistical analysis was performed using GraphPad PRISM 7.01

(GraphPad Software). Data are shown as means ± standard errors.

The statistical differences between comparison groups were assessed

by an unpaired t-test. A p-value < 0.05 was considered

statistically significant.
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Results

Pigs with inactivation of GGTA1, deficient in a-Gal, have
previously been generated and characterized (29, 38). To avoid

unintended sensitization via an (inflamed) colon due to feed with

high of a-Gal contents (39), the piglet and adult feed products were

evaluated. For comparison, also non-processed and processed wild-

type porcine tissues, unprocessed grain (barley), and carrageenan

were included in the analysis. Amounts of a-Gal were calculated

using an a-Gal BSA standard curve. Both feeds sources showed very

low a-Gal levels (Supplementary Figure S1). In contrast to other

publications, showing stability of the a-Gal antigen after heat

denaturation (2), high temperatures significantly reduced the a-
Gal concentration in kidney samples (Supplementary Figure S1).
Repeated intracutaneous exposure to a-
Gal results in sensitization

Next, we wanted to assess if intracutaneous application of a-Gal
can mimic repeated tick bites in humans and resulted in

sensitization. In total, eight injections of a-Gal were administered

over a 9-week period (Figure 1A). To ensure that sensitization itself

does not cause anaphylaxis, core body temperature was monitored

at the same time. In mice, a drop of the core body temperature is a

common read-out for anaphylaxis (40). No significant drop was

detected in the a-Gal immunized pigs compared to the control

group. However, this test might not be indicative as—in contrast to

mice—large animals such as pigs can very likely compensate for a

drop in core temperature.

To monitor successful sensitization, blood samples were regularly

collected (Figure 1A) to determine total and a-Gal-specific Ig levels
by ELISA assays. The primary and secondary antibody combinations,

which had been optimized for porcine Ig detection, are outlined in

Supplementary Table S1. When measuring total Ig levels, significant

differences between control and sensitized animals were detected for

IgG, IgG4, and IgE levels at time points 9 weeks and 13 weeks
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(Supplementary Figure S2). For a-Gal-specific Ig levels only minor

changes were observed for sIgG, sIgG2, and sIgG4, while sIgG1

showed a significant increase already by week 3, which continued

until week 13. Importantly, a-Gal-specific sIgE levels were

significantly increased after the 13-week period, indicating

(Figure 1B) successful sensitization of the GGTA1 knockout pigs.
a-Gal-sensitized pigs show increased
immune cell infiltration of the skin

To further clarify the role of immune cells during sensitization

and allergy development, isolated PBMCs and skin tissues were

analyzed for the presence of Th, Th1, Th2, Th17, Th22, Treg, B, NK,

cytotoxic T cells, mast cells, macrophages, dendritic cells, and

neutrophils. Alpha-Gal-sensitized pigs had significantly higher

numbers of Th1 (CD4+, T-bet+) and Th2 (CD4+, Gata3+) cells in

the PBMC population compared to the control group (Figures 2A–

C). Cellular markers for staining and flow cytometry gating are

outlined in Figure 2D, and antibodies used for detection are shown

in Supplementary Table S2.

Four weeks after the last immunization (week 13), one pig from

each group was sacrificed. The similar structure of the human and

porcine skin was confirmed by histology (Figures 3A, B). Immune cell

infiltrations of the skin were assessed by flow cytometry.

Intracutaneous application of a-Gal led to an increased recruitment

of leukocytes, including elevated amounts of Th1, Th2, and Treg cells

and monocytes (Figures 3C, D). Toluidine Blue staining was used to

quantify mast cell numbers. These showed a considerable increase in

the skin of sensitized pigs compared to control animals (Figures 3E, F,

right). So far, no markers for immunohistology have been established

to detect porcine eosinophils and basophils. Therefore, Giemsa staining

of blood smears was used for detection (Figure 3F, left). Since allergic

inflammation and skin barrier dysfunction are associated with type 2

immunity, mRNA expression levels of various cytokines and alarmins

were measured in skin samples from sensitized and control pigs.

Although not significant, due to the limited number of sacrificed

animals, increased levels of the type 2 immune alarmins TSLP and IL-
A B

D

C

FIGURE 2

Immune cell populations in blood from a-Gal-immunized and control pigs at week 13 after the first immunization. (A) Overview of immune cell
populations, showing a significant increase in Th1 and Th2 cells in sensitized pigs. (B, C) Detailed analysis of immune cell populations according to
several markers which are used to identify several populations at once. (D) Markers used for porcine immune cell identification. N(a-Gal)=4. N
(Control)=3.
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33 and the type 2 cytokine IL-5 (Figure 3G) were detected in

sensitized pigs.
Re-exposure to a-Gal induces anaphylaxis

From human patients sensitized to a-Gal, it is known that

anaphylaxis can develop following intravenous application of

Cetuximab, a monoclonal antibody with a-Gal glycosylations on the

Fab fragment (18). We therefore aimed to validate if intravenous

exposure to the allergen also elicits anaphylaxis in pre-sensitized pigs.

Twoa-Gal sensitized and two control pigs were intravenously injected
with a-Gal BSA. The experimental setup is outlined in Figure 4A.

During anaphylaxis, the allergen is recognized by FcϵRI-bound IgE

antibodies on mast cells and basophils, activating an intracellular

signaling cascade, which results in degranulation and the release of

mediators such as histamine and mast cell protease 1 (41). The two a-
Gal-sensitized pigs showed a clear increase in histamine and mast cell

protease 1 (MCP-1) levels compared to the control pigs (Figures 4B,

C). As mentioned above, a change in core body temperature was not

deemed a reliable anaphylaxis test in pigs. Instead, we monitored the

systolic blood pressure and heart rate. Compared to control animals,

the a-Gal-sensitized pigs showed a significant drop in blood pressure,

which was compensated by an increase in the heartbeat rate
Frontiers in Immunology 06
(Figures 4D, E). These results show for the first time that a-Gal-
deficient pigs can be sensitized to a-Gal following intracutaneous

exposure and develop anaphylaxis upon re-exposure.
Discussion

We previously generated a-Gal-deficient pigs through an

inactivation of the GGTA1 gene (29, 38). As in humans, these

animals produce anti-a-Gal antibodies at steady-state, likely due to
a-Gal-expressing gut bacteria. But because of intestinal mucosal

tolerance, neither a-Gal-positive microbiota nor a-Gal-rich food

leads to adverse immune reactions. As possible for other food

allergies such as peanut allergy, sensitization is triggered in the

compartment “skin”—for AGS in humans through tick bites.

Here, we show that a-Gal-deficient pigs are a suitable

translational model to mimic human a-Gal/red meat allergy. To

sensitize animals, a common method is “tape stripping” by which

cellophane tape is repeatedly (up to 30 times) applied to the skin

and then peeled away to thin the stratum corneum without affecting

the underlying epidermis and dermis (42, 43). Subsequently, the

sensitizing agent is applied to the same area. To mimic tick bites

more closely and to provide a simplified method, we performed the

immunization of the pigs by intracutaneous injections instead of
A B

D E

F

G

C

FIGURE 3

General layers and structure of the human (A) and porcine (B) skin, revealing high similarities. Immune cell populations and cytokine expression
profiles were detected at the site of immunization in the porcine skin. (C) Flow cytometric analysis showing an increase in Th1, Th2 and Treg cells in
the a-Gal group. (D) Detailed immune cell profile of the porcine skin shows an increase in total lymphocyte population, Th1, Th2, Treg cells, and
monocytes in the a-Gal group. Shown is the mean of two animals of the a-Gal group compared to two animals of the control group (at least four
skin samples per animal). (E) Mast cell number in the skin of two a-Gal pigs compared to two control pigs. At least 10 sections per pig were
evaluated. (F) Giemsa staining of porcine eosinophils and basophils in blood smear. No molecular markers have been characterized yet to identify
these cell populations in pigs. Toluidine Blue staining of mast cells. (G) Expression levels of type 2 immune alarmins TSLP and IL-33 and the type 2
cytokine IL-5 in the a-Gal and control group.
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tape stripping. While both methods can be performed in the

absence of major stress to the animal, e.g., under short-term

anesthesia, tape stripping has the disadvantage that it causes local

inflammation of a much larger area compared to intracutaneous

injections, which may distort the immunological results.

During tick bites, antigens containing a-Gal epitopes are

transmitted via the tick saliva, and resident leukocytes, which are

interspersed throughout the epidermis and dermis of the skin, are

recruited to the bite site (44). Keratinocytes, mast cells, eosinophils,

DCs, and macrophages are the first to interact with the mouthparts

and the saliva of the tick to promote a local inflammatory response

(22, 45). In our model, we used a “synthetic” source for a-Gal,
namely, a-Gal-BSA, and alum to mimic the adjuvant effect of tick

saliva components such as prostaglandin E2 (PGE2). A shift towards

Th2 cell differentiation is induced, e.g., by TSLP, a key epithelial

cytokine leading to allergic responses by activating type 2 innate

lymphoid cells, basophils, and DCs. TSLP-activated DCs were shown

to prime naive T cells to produce the proallergic cytokines (IL-4, IL-5,

IL-13, and TNF-a) while downregulating IL-10 and IFN-g, thus,
assuming a role in initiating allergic inflammation (46) by promoting

a microenvironment for anti-a-Gal-sIgE production (47, 48) and
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thus favoring Th2 immune responses (49, 50). This can occur along

most barrier surfaces, e.g., the skin, gut, and lungs (51).

In response to the sensitization protocol established here, we

could detect an elevated levels of the type 2 immune alarmins TSLP

and IL-33 and the type 2 cytokine IL-5. Although not significant, it

was sufficient to induce an increase in Th2 cells, Treg cells, mast cells,

and monocytes in the skin. Th2 cells further activate eosinophils,

promote high antibody levels (52), drive the inflammatory responses,

and thus play a significant role in allergy development.

After sensitization, the pigs also showed an increase in Th1 cell

populations, both in the skin and blood. The main function of Th1

cells is the production of interferon gamma, IL-2, and tumor

necrosis factor to activate macrophages and other immune cells

of the cellular immune response (52). Although immune deviation

towards Th1 cells was considered for a long time to counterbalance

Th2 allergy development, as Th1 cells can antagonize Th2 cellular

functions, it could be shown that antigen-specific Th1 cells do not

prevent or protect Th2-mediated allergies but even promote

additional inflammatory responses (53).

Even though not formally proven for pigs, it can be assumed

that the type 2 response finally causes a B-cell isotype switch to the
A

B

D E

C

FIGURE 4

Anaphylaxis after intravenous a-Gal challenge. Results of the first experiments were confirmed and verified based on an independent biological
replicate each. Pigs 1 and 2, a-Gal BSA sensitized; Pigs 3 and 4, control pigs (BSA sensitized). (A) Timeline for i.v. injection and sample collection.
GGTA1-deficient pigs were injected with a-Gal-BSA and blood sampling occurred every 15 min, (B) histamine release after 30 min, and (C) mast cell
protease (MCP-1) levels after 60 min as determined by ELISA. (D) Systolic blood pressure and (E) pulse were determined 60 min after i.v. injection.
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production of IgE antibodies, which requires the type 2 cytokine IL-

4 to be initiated. We could detect significantly increased levels of a-
Gal-specific sIgE and sIgG1 in our sensitized pigs. In humans, anti

a-Gal-sIgE is associated with harmful allergic reactions, and

significantly elevated titers of anti-a-Gal sIgG1 antibodies have

been observed in AGS patients (54, 55).

One limitation of the porcine model is the current lack of some

tools and reagents that are already available for mouse and human

studies. For example, in mouse studies, where a-Gal bound to

murine serum albumin can be administered, untreated control

animals are being used. As no a-Gal bound to porcine serum

albumin was available, a-Gal bound to bovine serum albumin

(BSA) had to be used to sensitize the pigs, and control animals

had to be treated with BSA alone. This may have caused some

inflammatory reaction also in the control animals and obscuring the

effect of a-Gal in the sensitized animals.

Furthermore, there is no basophil activation test for the pig,

which is diagnostic in humans, where it can differentiate between

patients prone to an a-Gal allergic reaction from those sensitized

with no allergic symptoms (56, 57). This test quantifies basophil

degranulation, triggered by a specific antigen, through

measurement of activation membrane markers, e.g., CD63 and

CD203 (58, 59). Neither marker is so far available for pigs, but

the increasing interest in the pig as a biomedical model (60) and for

xeno-organ transplantation (61) may soon help to fill such gaps.

The pig is fast becoming an indispensable translational model

for biomedical research, including allergy research. The results

presented here show the generation of the first translational

porcine model for AGS. It enables dietary studies in a

physiologically relevant animal model. Both diet and the

microbiome play an important role in AGS. Pigs can be fed a

human diet, and a comprehensive pig gut microbiome gene

reference table has already been established (62). A total of 96%

of the functional pathways found in the human listings are present

in the pig, and the pig and human catalogues share five times as

many genes as the mouse and human catalogues (63). Finally, to

understand how the barrier functions can be disrupted is of upmost

importance, and allergy research will benefit from the physiological

similarity between porcine and human skin and the fact that the

porcine immune system is more similar to human than that of mice

(64). Pigs are clearly of relevance for food allergy research, and this

is now complemented by a new genetically engineered AGS model.
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