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Abstract
Modern car development regarding passive safety strongly relies on finite ele-
ment simulations. Many simulations are required to assess the behavior of the
design regarding minor parameter variations that occur naturally in hardware
tests. This avoids costly revisions later in the design process when the first hard-
ware tests are conducted. However, due to the immense computational costs,
multiquery analyses such as robustness studies, optimization, and uncertainty
quantification are currently not feasible for large simulation models. Reduced-
order modeling uses already generated data to accelerate future simulations.
Using a data-driven method, a low-rank structure can be identified. The gen-
erated mapping subsequently expresses the governing equations regarding the
reduced variables. Projection-based model order reduction (MOR) is therefore
physics-based and has no black-box character as classical machine learning
models. The accuracy of the reduced-order model (ROM) heavily relies on
the dimensional reduction. Currently, proper orthogonal decompositionis most
commonly used. However, this linear method is variance-based and nonlinear
correlation cannot be resolved requiring more dimensions in the approxima-
tion. Effective hyperreduction depends on the dimension of the ROM. Hence,
we provide an overview of different strategies for parametric MOR in the
context of highly nonlinear solid dynamics, discussing potential benefits and
drawbacks. We show a successful application of the local reduced-order bases
approach to a crash problem and present first results of an autoencoder that is a
nonlinear-dimensional reduction.

1 INTRODUCTION

While virtual development using the finite element method (FEM) idealizes the model, hardware crash tests contain
numerous uncertainties, especially in the early design phase. These reach from differences in the hardware to deviations
in the test conditions. Engineers are therefore also interested in how the system response changes when varying the input
parameters; otherwise, the probability of failing the final examination is high. Methods investigating the system response
around a parameter point usually require numerous system evaluations that is currently infeasible for largemodels due to
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the long simulation times. Model order reduction (MOR) reduces the computational effort and therefore the simulation
time by using previous knowledge about the model. According to [1], MOR can be categorized into three different types:
data-fit models, projection-based models, and hierarchical models. Data-fit models are purely data-driven models that
learn correlations in the data, usually blind to the underlying physics. Gaussian process regression is a popular technique
in this field [2, 3]. Hierarchical models are physics-based models that rely on additional simplifications. These can be
physical and mathematical assumptions resulting in the application of linear theories, the use of coarser grids, or looser
residual tolerances. Fehr et al. [4], for example, reduced a gokart frame by dividing it into linear and nonlinear parts.
In this work, we focus on projection-based MOR. pROMs were first introduced in the field of turbulent flows [5] where

a low-rank structure was assumed in the flow field. Later, projection-basedMORwas transferred to other disciplines such
as control and solid dynamics. MOR is usually separated into an offline phase and an online phase. The offline phase is
associated with the construction of the ROM and the online phase with the ROM evaluation. The first part of the offline
phase is the dimensional reduction. The (truncated) proper orthogonal decomposition (POD) is the most commonly used
linear reduction method that creates a low-dimensional subspace based on the training data. Afterward, the solution of
the high-dimensional model (HDM) is restricted to lie in this subspace whereby a residual is formed. Depending on the
treatment of the residual, different pROMs can be formed. The interested reader is referred to Carlberg et al. [6] for a
discussion of residual minimization.
To achieve speedup, nonlinear models require an additional approximation layer termed hyperreduction. Hyperreduc-

tion approximates thenonlinear term,which otherwise still scaleswith the dimension of theHDM.Only if the nonlinearity
is of a particular type, for instance, of polynomial order [7, 8], a precomputation of the nonlinear operator in reduced space
is possible that makes hyperreduction unnecessary. However, systems in crash are not of this type and hyperreduction is
required. While different methods for hyperreduction exist, for example, the empirical interpolation method (EIM) [9]
and its discrete counterpart DEIM [10], energy-conserving sampling and weighting (ECSW), as proposed by Farhat et al.
[11], is the most popular method in solid dynamics. This is due to preservation of the Lagrangian structure of the problem
and the resulting stability properties [12].
To summarize, the speedup in crash models can be achieved by basically two mechanisms: hyperreduction and a prob-

ably larger timestep in the explicit time integration [11, 13]. So far, pROMs in crash were mainly applied to reproductive
examples [14]; however, the key to use them in the previously mentioned multiquery analyses is the variation of the input
parameters. Therefore, parametric pROMs are the subject of this publication. The key question is how to properly create
a parametric pROM, and more specifically, how to effectively reduce the dimension of the problem as the global POD
approach reaches its limits [3]. One approach for parametric MOR is manifold interpolation [15], however, only suitable
for linear models. The local reduced-order bases (lROB) approach [16] divides the set of training data first into subsets
using a clustering algorithm. These subsets, also named clusters, divide the state space into subregions, for each of which
an ROB is computed. In the online phase, as the solution evolves in time, the most suitable ROB is chosen. The lROB
method is easily extensible to ECSW [17], although special attention must be paid to problems including path-dependent
materials. Autoencoder (AE) is a global nonlinear approach and has recently been used by [18, 19]. In the AE ROM, the
reduced basis is replaced by the Jacobian matrix of the AE. Also, ECSW can be extended to be compatible with nonlinear
dimension reductionmodels [20]. Another unanswered question for models involving shell formulations is the treatment
of the different types of variables. As mentioned by Farhat et al. [11], displacements and rotations have different variable
characteristics. Bach [14] treated displacements and rotations separately; however, no investigation has been carried out
if a combined treatment is preferable.

2 METHODOLOGY

2.1 Governing equations

We first introduce the governing equations arising from the FEM when applied to the underlying equations of motion:

𝐌(𝜇)�̈� + 𝑓𝑖𝑛𝑡(𝑡, 𝑥, �̇�, 𝜇) = 𝑓𝑒𝑥𝑡(𝑡, 𝑥, 𝜇), (1)

where𝐌 ∈ ℝ𝑛×𝑛 is the mass matrix, 𝑥 ∈ ℝ𝑛 is the high-dimensional state vector, 𝑛 is the number of degrees of freedom
(DoF) in the system, �̇� =

d𝑥
d𝑡
is the derivative of 𝑥 with respect to time 𝑡, 𝑓𝑖𝑛𝑡 ∈ ℝ𝑛 and 𝑓𝑒𝑥𝑡 ∈ ℝ𝑛 are the internal and

external force vector, respectively, and 𝜇 ∈ ℝ𝑝 is the parameter vector containing the 𝑝 varied parameters. Typical car
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F IGURE 1 One-dimensional manifold embedded in three-dimensional space.

F IGURE 2 Global ROB approach (on the left side) versus local ROB approach (on the right side).

structures are thin-walled and described by shell formulations in the FEMmodels. Therefore, 𝑥 contains translatory and
rotatory DoF. In addition to Equation (1), we consider the variational form thereof, as it will be useful for the derivation
of the AE ROM. It reads:

𝛿𝑣𝑖(𝐌
𝑖𝑗�̈�𝑗 + 𝑓𝑖

𝑖𝑛𝑡
− 𝑓𝑖

𝑒𝑥𝑡) = 0, (2)

where 𝛿𝑣(𝑥) = 𝛿𝑣𝑖𝑁
𝑖(𝑥) is a continuous test function fulfilling the boundary conditions, and summation of pairwise

appearing indices is implied. The trial function has the same shape functions 𝑁𝑖(𝑥) as the test function and is given
as 𝑥(𝑡, 𝑥) = 𝑥𝑖(𝑡)𝑁

𝑖(𝑥). The scalar values 𝛿𝑣𝑖 are often termed virtual nodal velocities, Equation (2) can be considered
as power balance, and therefore, it is also known as the principle of virtual power. Since 𝛿𝑣𝑖 can be chosen arbitrarily,
Equation (2) is equivalent to Equation (1).

2.2 Model order reduction

We begin to motivate MOR by its underlying assumption that the solution of a high-dimensional system lies on a low-
dimensional manifold. Figure 1 shows an one-dimensional curved manifold embedded in a three-dimensional space.
Assuming that this line lies in a plane, it can be reduced to two dimensions using a linear dimensionality reduction.
However, nonlinear data require a nonlinear dimensionality reduction to fully reduce the manifold to its intrinsic dimen-
sion, which is one for this line. It is important to emphasize that we are considering dimensionality reduction without
approximation error in this illustrative example.
In contrast, Figure 2 shows linear dimensionality reduction to one dimension with precision loss, as a linear reduction

is not able to approximate this nonlinear data. On the left side of Figure 2, the global linear approach is depicted. To avoid
large errors,more dimensionsmust be retained. In contrast, on the right side, the lROB approach is depicted. Themanifold
is divided into multiple subregions, of which each is approximated by a linear subspace 𝐕𝑖 . Thereby, the dimension can
be chosen low, ensuring accuracy and enabling hyperreduction.
Next, we discuss how linear and nonlinear dimensional reduction is used to formulate the ROMs. They are stated

without further derivation as this would go beyond the scope of this work and is known in the literature. We begin with
POD,which is a linearmethod. The high-dimensional state vector𝑥 is represented as a linear superposition of deformation
modes,which are the columns of theROB𝐕 ∈ ℝ𝑛×𝑘, and the reduced amplitudes stored in the reduced state vector �̂� ∈ ℝ𝑘

with 𝑘 ≪ 𝑛:

𝑥(𝑡) ≈ �̃�(𝑡) = 𝐕�̂�(𝑡), (3)
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where �̃� ∈ ℝ𝑛 is the reconstructed state. Next, Equation (3) is inserted into Equation (1). The resulting residual is enforced
to be orthogonal to the ROB 𝐕 and we obtain the global linear ROM:

𝐕𝑇𝐌𝐕
⏟ ⏟ ⏟

�̃�

̈̂𝑥 + 𝐕𝑇(𝑓𝑖𝑛𝑡(𝐕�̂�, 𝐕 ̇̂𝑥, 𝜇) − 𝑓𝑒𝑥𝑡(𝑡, 𝐕�̂�, 𝜇)) = 0. (4)

Now, we transfer Equation (4) to the lROB case by considering a discrete timestep 𝑡 = 𝑡𝑛 and allowing the ROB 𝐕𝐧 to
depend on the current state 𝑥(𝑡𝑛) = 𝑥𝑛.

𝐕𝑇
𝑛𝐌𝐕𝑛

̈̂𝑥
𝑘𝑛
𝑛 + 𝐕𝑇

𝑛 (𝑓𝑖𝑛𝑡(�̃�𝑛, ̇̃𝑥𝑛, 𝜇) − 𝑓𝑒𝑥𝑡(𝑡𝑛, �̃�𝑛, 𝜇)) = 0, (5)

where ̈̂𝑥
𝑘𝑛
𝑛 is the reduced acceleration at time 𝑡𝑛 of cluster dimension 𝑘𝑛 and �̃� is the reconstructed state, which can be

calculated as the sum over all cluster states 𝑞𝑟
𝑛 ∈ ℝ𝑘𝑛 at time 𝑡𝑛 multiplied with the corresponding reduced basis 𝐕𝐧 ∈

ℝ𝑛×𝑘𝑛 :

�̃�𝑛 = 𝑥0 +

𝑛𝑐∑
𝑚=1

𝐕𝑟𝑞
𝑚
𝑛 , (6)

where 𝑛𝑐 is the number of clusters. When solving Equation (5), additional steps are required. At each time step, it has to be
checked whether a change in the subdomain is necessary. This involves computing the distance of the current state to all
cluster centers. If the distance to a cluster other than the one currently used is smaller, a cluster change is necessary. The
distance calculation has to be formulated in reduced dimensions as well. Otherwise, the computation of the norm would
scale with theHDMdimension, and no speedup can be achieved. However, the theory is beyond the scope of this work and
we refer to Amsallem et al. [16] for the complete theory. Finally, we introduce the ROMbased on nonlinear dimensionality
reduction. Anonlinear functionΓmaps a low-dimensional variable 𝑧 ∈ ℝ𝑟 with dimension 𝑟 to a higher-dimensional state
�̂� ∈ ℝ𝑘:

�̂�(𝑡) ≈ ̃̂𝑥(𝑡) = Γ(𝑧(𝑡)). (7)

To insert Equation (7) into Equation (4), we have to differentiate it twice with respect to time. Applying the chain rule
yields:

̇̂𝑥 =
𝜕Γ

𝜕𝑧
�̇�, (8)

̈̂𝑥 =
𝜕Γ

𝜕𝑧
�̈� +

𝜕2Γ

𝜕𝑧2
�̇��̇�, (9)

where 𝐉 =
𝜕Γ

𝜕𝑧
∈ ℝ𝑘×𝑟 is the Jacobian of the AE and 𝐇 =

𝜕2Γ

𝜕𝑧2
∈ ℝ𝑘×𝑟×𝑟 its Hessian. Next, according to the principle of

virtual power, we have to adjust the test function describing the admissible velocities. The velocities live in the tangent
space to the manifold that is prescribed by the columns of the Jacobian 𝐉. Combining the linear global ROMs admissible
velocities with the AE yields:

𝛿𝑣𝑖 = 𝑉𝑖𝑗𝐽(𝑧)
𝑗𝑘𝛿�̇�𝑘. (10)

Putting all the equations together and considering that the virtual latent velocities �̇�𝑘 are arbitrary, we obtain the final
ROM:

𝐉𝑇�̃�𝐉�̈� + 𝐉𝑇�̃�𝐇�̇��̇� + 𝐉𝑇𝐕𝑇(𝑓𝑖𝑛𝑡(𝐕Γ(𝑧), 𝐕𝐉�̇�, 𝜇) − 𝑓𝑒𝑥𝑡(𝑡, 𝐕Γ(𝑧), 𝜇)) = 0. (11)
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F IGURE 3 AE-based pROM using a linear outer layer and an AE to resolve the nonlinear correlations.

F IGURE 4 Crash box model in undeformed configuration.

The introduced ROMs are continuous in time and are integrated using the central difference method:

�̈�|𝑡=𝑡𝑛
= �̈�𝑛 ≈

�̇�
𝑛+

1

2 − �̇�
𝑛−

1

2

Δ𝑡
, (12)

�̇�|
𝑡=𝑡𝑛+

1

2

= �̇�
𝑛+

1

2 ≈
𝑥𝑛+1 − 𝑥𝑛

Δ𝑡
, (13)

⇒ �̈�𝑛 ≈
𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1

Δ𝑡2
. (14)

In addition, the unknown latent velocity �̇�𝑛 in the nonlinear term of Equation (11) at time 𝑡𝑛 is approximated by the
previous velocity �̇�𝑛−1∕2 at the half-time step to ensure an explicit scheme. The AE ROM equation (11) is illustrated in
Figure 3. First, the dimension is reduced using POD. Afterward, the nonlinear correlations are resolved using an AE.

3 RESULTS

3.1 Crash model

We use the crash box model as seen in Figure 4. The crash box is modeled by 1864 fully integrated shell elements and
is impacted by a rigid plate. The model is a slightly adapted version of the crash box model at dynaexamples.com and
will be sent on request. For the parametric setting, the thickness of the tube and the mass of the rigid plate are varied
between and 2.5 mm and and 162 kg, respectively. A total of 30 samples are drawn using Latin Hypercube sampling, of
which 27 are used for training and 3 are used to test the framework. The distribution of parameter points can be seen
in Figure 5. The test points are chosen to represent a crash box with high and with low deformation. In the following,

https://www.dynaexamples.com
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F IGURE 5 Sampling points in parameter space.

F IGURE 6 Total variance of the k-means clustering for a different number of clusters.

F IGURE 7 Assignment of snapshots to the clusters.

only the highly deforming test case is considered as experience has shown that it is the critical one. For the dimensional
reduction, snapshots are taken every 1.5 ms for each simulation of length 35ms resulting in 94 527 snapshots of dimension
𝑛 = 11 544.

3.2 Dimensionality reduction

Except for the reduced dimension, there are no hyperparameters in the global ROM. In contrast, with the lROB ROM,
the number of clusters must be selected first. We use the elbow method to choose a reasonable number of clusters by
observing the total variance of the k-means clustering. Figure 6 shows the total variance for different cluster numbers. We
select six clusters to construct the ROM. The clustering results are shown in Figure 7, where each row corresponds to a
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F IGURE 8 Approximation error of the dimensionality reduction.

training simulation of length 35 ms and each color corresponds to a cluster. K-means clustering is based on 𝐿2 distances
and the solution vector is the displacement vector. Therefore, a partition of the solution along the simulation time can
be observed.
Finally, the offline accuracy, which is the pure approximation quality of the dimensionality reduction, is assessed. The

error is defined as:

𝜖2 =
‖‖𝐔 − �̃�‖‖2

F

‖𝐔‖2
F

(15)

with the snapshot matrix 𝐔 ∈ ℝ𝑛×𝑛snaps , its approximation �̃�, the Frobenius norm ‖‖F, and the number of snapshots in
the cluster 𝑛snaps. Figure 8 shows the error for increasing approximation ranks 𝑘 for the global reduced basis and the
local reduced bases. First, a combined reduction is preferable as the added error to the displacements is still lower than
the approximation error of the rotations alone. Therefore, the depicted lROB error is regarding a combined treatment.
Second, except for basis 6, all local bases approximate the data better than the global basis. Basis 6 corresponds to the
cluster containing snapshots from the first approximately 6 ms, as can be seen in Figure 7. The AE can further reduce the
global data to 5 and 10 dimension maintaining a higher accuracy than the global linear basis.

3.3 ROM accuracy

Next, the ROMs are created using the results from the offline phase, and their accuracy is assessed. Only displacement
DoFs are considered for the online error calculation, as they are usually important for crash applications. We define the
online error as:

𝜖 =
⟨‖𝑢(𝑡) − �̃�(𝑡)‖2

2⟩
1

2

⟨‖𝑢(𝑡)‖2
2⟩

1

2

, (16)

where ⟨⋅⟩ is the temporal averaging operator defined as:

⟨𝑢(𝑡)⟩ =

𝑛∑
𝑖=1

𝑢(𝑡𝑖)

𝑛
, (17)

and 𝑢(𝑡) and �̃�(𝑡) are the FOM and ROM solution, respectively. In Figure 9, the error 𝜖 can be seen for different types
of ROMs for different dimension 𝑘. First, the result of the offline phase can be found here as well, that is, a combined
treatment of rotations and displacements is preferable. For 𝑘 = 60, the combined ROM is as accurate as the ROM with
60 dimensions for the rotations solely. It can be seen that the displacement ROM converges faster to small errors than
the rotation ROM. For higher ranks, the leading error sources are the rotations, as the error of the rotation ROM and the
combined ROM overlap. Second, the lROB ROM converges faster to smaller errors than the global ROMs. This mirrors
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F IGURE 9 ROM accuracy.

the better approximation quality of the local bases shown in Figure 7. Third, the AE ROM outperforms the global ROMs
for 10 dimensions. Also, the AE ROM with five dimensions has a lower error than the combined ROM for 𝑘 = 15.

4 CONCLUSION

In this work, three different types of dimensionality reduction are discussed, namely, globally linear, locally linear, and
globally nonlinear. The methods are chosen for their suitability for crash problems, which implies compatibility with
hyperreduction. While the focus of this work is not computational speedup, it is the approximation quality of dimen-
sionality reduction and the associated accuracy of the ROM for parametric problems in crash. An accurate mapping to
a low dimension enables hyperreduction, which will lead to speedup. We show that a combined treatment of rotations
and displacements yields an accurate mapping and mitigates the influence of the hard-to-reduce rotations. However, the
global ROM requires many dimensions to accurately predict the systems evolution making hyperreduction impractical.
The lROB ROM yields higher accuracy using less dimensions. Hyperreduction benefits directly, as the dimension of the
reduced basis directly influences size of the associated optimization problem. In addition, the optimization problem is split
into one even smaller problem for each cluster. The lROB ROM preserves linear properties such as a monotonic decrease
in error with increasing dimensions. Finally, the AE can resolve further nonlinear correlations. However, compared to the
lROB approach, it is more sophisticated and still in an early research stage with many unanswered research questions. To
conclude, the lROB approach is currently most promising and the best compromise between complexity and accuracy for
highly nonlinear parametric problems.
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