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1. Introduction

Additive manufacturing enables complex lattice structures, which
would not be feasible with other manufacturing techniques, to be
easily produced. In this article, the design of periodic lattice struc-
tures, which can be built together by stacked repeating unit cells, is
targeted. One microscale unit cell represents a specific metama-
terial with the option of complex anisotropic elastic and elastoplas-
tic properties. In this article, only elastic stiffness is researched,
but the extension of the developed framework to nonlinear
mechanics such as yield strength and energy absorption is in

progress. This serves as one of the
reasons why metaheuristic optimization
methods[1–4] were selected instead of tradi-
tional sensitivity-based algorithms,[5,6] even
though there are some successful imple-
mentations for unit cell optimization using
derivative-based methods.[7–9]

The traditional design of periodic lattice
structures happens through the commonly
used standard cells such as body- and face-
centered cube, octet cell, or honeycomb.
In such a framework, the infill rate or
the predefined geometric parameters such
as diameter or thickness are optimized or
adjusted to targeted structural require-
ments. In this work, the main motivation
is designing lattice structures through indi-
vidually tailored lattice unit cells, which rep-
resent a metamaterial that perfectly matches
the requirements of a macroscopic problem.
Such topology-optimized microcells can out-
perform the standard cell, and due to the
high design freedom of additive manufactur-
ing techniques, such complex structure is

printable. The novel approach is extendable to a multiobjective for-
mulation composed of multiphysical design responses such as ther-
mal or acoustic properties or energy absorption. This would enable
to design multifunctional smart metamaterials in the form of
microstructures, which serves as the main motivation of the work.

Research on periodic cellular materials has a long history, but
its importance has increased in recent years due to advanced
manufacturing techniques. Basic lattice and foam unit cells and
corresponding mechanical capabilities are summarized in
refs. [10–12] For the homogenization of mechanical properties
analytical,[12] numerical,[13,14] and experimental methods[15] may
be used. These techniques enable the approximation of the effec-
tive structural properties of a beam-based lattice representative
volume element (RVE). In this work, finite element-based homog-
enization is used for the elastic characterization of the unit cells. A
low-fidelity Timoshenko beam-based model was established to
model the truss-based lattice geometry. This method replaces
the traditional, but computationally more expensive, solid tetrahe-
dral or hexahedral models. Numerical homogenization of lattice
cells through elastic beams has been partly covered in the litera-
ture. 2D models are common in research, first published by
Tollenaere and Caillerie.[16] Further studies were carried out by
Reis et al.,[17] Vigliotti,[18–20] and Park and Rosen.[21]

Ground structure optimization through a population-based
algorithm was first established by Zhang.[22] Further, truss-based
problems were approached through genetic and evolutionary
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Herein, a numerical multiscale tool is developed to design 3D periodic lattice
structures. The work is motivated by the high design freedom of additive
manufacturing technologies, which enable complex multiscale lattice structures to
be printed. A finite-element-based free-material optimization method is used to
determine the ideal orthotropic material properties of a 3D macrostructure space.
Subsequently, a population-based algorithm is established to design optimized
microscopic lattice unit cells with the desired structural properties. The design
variables are the coordinates of lattice skeleton nodes defined within the 3D lattice
unit cell space, and the connectivities between them resulting in a truss skeleton. For
the calculation of the mechanical properties of the individual lattice cells, an effective
Timoshenko beam-based finite element calculation method is developed. The
macroscale structure can be constructed by periodically filling the domain with the
customized unit cell representing a metamaterial. The method is demonstrated by
3D beam problems with compliance constraints. These macroscopic demonstrators
of the developed lattice structures were also 3D-printed. The benefit regarding the
weight-specific structural performance is validated through benchmarking with
periodic lattice design solutions using well-known standard lattice cells.
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methods by Su et al.[23] and Giger et al.[24] Bujny et al.[25,26] and
Raponi[27,28] researched energy absorption problems through
metaheuristic methods. All of the mentioned frameworks were
implemented in a macroscopic single-scale domain. In this article,
a metaheuristic method is implemented on the microlevel for the
optimization of unit cells, and they are built together to form a
macroscale structure. For the derivation of the target material
properties on the macroscale, a 3D sensitivity-based free-material
optimization method is used.[29–31] Further, free-material numeri-
cal schemes are presented in.[32–34] A similar method is imple-
mented in certain multiscale lattice-based methods.[35,36]

Multiscale lattice design methods were introduced by several
studies. A review of structural optimization trends from the field
of periodic lattice structures is summarized by Pan et al.[37] A truss
diameter-based method is presented by Gorguluarslan et al.,[38]

where the members of predefined standard cells are optimized.
In the work of Marschall et al.,[14] a multi-cell-graded lattice cell
method is implemented using predefined standard cells.
Another graded lattice approach is using the body-centered cube
to map the structural properties by varied member diameters. The
nonuniformly graded anisotropic cells form the macrostructure
achieving good lightweight performance.[35,39] Other methods of
two-scale elastic lattice structure design were explored through
high-fidelity optimization considering material property gamut
by Chen et al.[40] and Zhu et al.[41] In this article, a three-dimen-
sional multiscale method is presented where the microstructure is
tailored through a population-based algorithm allowing a multiob-
jective microscale design formulation to solve macroproblems.

2. Methodology

This work focuses only on the numerical simulation and design
optimization of periodic lattice structures. The presented
approach is independent of the choice of the printed material,
as well as of manufacturing technology. Therefore, a homoge-
neous and isotropic reference material, which is independent
of any 3D printing process-induced effects on the material qual-
ity and properties, is assumed. In this article, only lattice cells
with triple symmetry are considered. An exemplary unit struc-
ture is demonstrated in Figure 1.

2.1. Homogenization Method

A repeating unit cell of the whole structure, which is commonly
referred to as representative volume element (RVE), can be rep-
resented through its homogenized structural properties. In this
work, only beam-based lattice unit cell geometries are optimized.

For the estimation of the mechanical properties of the lattice
unit cell, a reduced-order numerical homogenization tool was
developed. A truss-based lattice unit cell geometry is modeled
by Timoshenko elastic beams. The homogenization method con-
sists of two steps. First, the truss skeleton is refined by multiple
beam elements. Second, the junction beams are selected for stiff-
ness upscaling to model the elastic effects of material concentra-
tion near the junction point of one or more trusses. During this
reinforcement step, the closed angle between the trusses as well
as the orientation vector with respect to the loading direction are
considered. The reinforced elastic parameter (Ereinf ) is modeled
as a function of these two properties. The parameters of the mod-
els are calibrated through a few unit cell analyses, where the
homogenized properties of the beam-based calculation are
compared with the results of solid-meshed analyses. The validity
range of the Timoshenko beam-based modeling framework in
terms of slenderness is derived through geometric parameter
variation of the calibration cells.

The beam-based reduced-order homogenization method is
summarized in Figure 2.

Periodic boundary conditions are then assigned to the beam
model, and the homogenization can take place in the six princi-
ple strain directions of the cell. The calculation is performed in
an Abaqus–Python framework, based on the homogenization
tool easyPBC.[42] Due to the beam-based FE model, additional
rotation boundary conditions are assigned to the opposing sur-
faces of the unit cell to capture the effect of the periodically adja-
cent cells. The outputs of the homogenization are the anisotropic
elastic properties of the modeled lattice unit cell.

2.2. Lattice Unit Cell Optimization

The quick homogenization scheme established in Section 2.1 is
integrated into the population-based unit cell optimization
framework (Figure 3). The two-step method first uses a genetic
algorithm (GA) to generally optimize the unit cell topology. In
this context, topology is used to only describe the way the sepa-
rate nodes are connected, without considering the specific posi-
tion of the nodes. The result of the GA ideally is an optimal
topology, with suboptimal node positions being permissible.
The design variables are the nodal locations and the connectivi-
ties (trusses) between them.

Then, a reduced degree of freedom optimization is done pos-
terior to the main GA loop in the form of a PSO algorithm, which
will find the optimal node position for the specific input topology.
The posterior PSO loop can be treated as a shape optimization of
the prior topology optimization in the GA. The approach is
implemented in a Python script responsible for genetic opera-
tions and optimization, evaluating each genotype through the
beam-based Abaqus–Python interface (Section 2.1).

The optimization starts with an initial random population.
The designs of the cells are controlled through various geometricFigure 1. 1/8th Cell mirrored across the three centre planes.
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settings (truss diameter, unit cell dimensions, maximum
number of nodes) and geometric hard constraints (minimum
connection length, minimum node-to-node distance, minimum
connection-to-connection distance, and minimum connection-
to-node distance). These setup options help to control the
design complexity, the infill ratio, and the slenderness of the unit
cell, which is crucial for an accurate Timoshenko-based
approximation.

During the GA, mating and mutation operations are coded for
the evolution of the cell topologies. The optimization objective is
weight-specific stiffness (Equation (1)) in the main direction.
That is combined with the cost functions of the other directional
stiffness ratios (Equation (2)) and the number of cell connections
(ccon) to reduce topology complexity.

f stiffness ¼
E1

ρinfill
(1)

cratio,i ¼

8>>>><
>>>>:

1þ Ej=Ek � ri
ri

� wi

� �3
Ej=Ek > ri

1þ ri � Ej=Ek

Ej=Ek
� wi

 !
3

Ej=Ek ≤ ri

(2)

As an alternative, the cost function of the other directional
stiffness values can be also formulated through their direct
magnitude (Equation (3)), instead of the dimensionless ratio
with respect to the dominant optimization direction as in

Equation (2). In the case of ratio-based Equation (2), the cost
function is insensitive to the stiffness magnitudes. The ratios
are formulated with respect to the dominant stiffness
property (Ek).

cdirect,i ¼

8>>>><
>>>>:

1þ Ei � Etarget,i

ri
� wi

� �
3

Ei > Etarget,i

1þ Etarget,i � Ei

Ei
� wi

� �
3

Ei ≤ Etarget,i

(3)

The overall fitness is combined together in Equation (4).
Of course, the fitness function can be also formulated with
the help of the magnitude-based cost formulation (cdirect,i) from
Equation (3).

f complete ¼
f stiffness

ccon � cratio1 � cratio2
(4)

Similar cost functions are also implemented for the control of
the shear modulus and Poisson’s ratios as well.

2.3. Integration to Structural Problems

To be able to integrate the lattice cells with tailored elasticity from
Section 2.2, a method was established to derive the optimal meta-
material parameters of the 3D macrodomain to be designed in
the form of a tailored lattice cell. Free-material optimization

multiple beamstruss topology stiffness adjustment

Figure 2. Discretization and reinforcement of a truss-based lattice.
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Figure 3. Unit-cell tailoring framework through population-based algorithm.
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(FMO) is a powerful approach for structural optimization in
which the design parametrization allows the entire elastic stiff-
ness tensor to vary freely at each point of the design domain.
The only requirement imposed on the stiffness tensor lies in
its mild necessary conditions for physical attainability in the con-
text that it has to be symmetric and positive semidefinite.[43]

In this article, two approaches are separated. The single-cell
method treats every finite element of the whole macrodomain
as a uniform material. The multicell approach allows the
combination of various lattice unit cells representing different
metamaterials.

2.3.1. Single-Cell Approach

The response that is used for the formulation of the objective is
stated in Equation (5). The design variables are summarized in
Equation (6). The Poisson’s ratios can be design variables, as well
as they can be kept fixed during the free-material optimization,
and therefore excluded from the design variables. In that case,
only the six stiffness moduli are varied, and Poisson’s ratios
can be a user-defined constant value. The Poisson’s ratios might
be excluded from the FMO process, as they are usually less
sensitive to the overall stiffness performance of the cell.
Furthermore, it is more challenging to target Poisson’s ratios
in the unit cell optimizer. For that reason, it is recommended
to run the unit cell optimizer without Poisson’s ratio targets.

f ðE1,E2,E3,G12,G23,G31Þ ¼ E1 þ E2 þ E3 þ G12 þ G23 þ G31

(5)

X ¼

E1

E2

E3

ν12
ν23
ν31
G12

G23

G31

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(6)

To fulfill the stability criterion of the material, the stability
constraints from Equation (7) must be activated during the
optimization.

qstab,a ¼ E1 � E2ν
2
12 ≥ 0

qstab;b ¼ E2 � E3ν
2
23 ≥ 0

qstab;c ¼ E3 � E1ν
2
31 ≥ 0

qstab;d ¼ 1� ν12ν21 � ν23ν32 � ν13ν31 � 2ν21ν32ν13 ≥ 0

(7)

The objective (Equation (8)) of the macrooptimization is the
minimization of the response from Equation (5), which is the
sum of the six principal elastic properties. This is based on
the assumption that lower stiffness targets can be achieved
through less material, which leads indirectly to a minimum vol-
ume design. The macroproblem is subjected to a compliance
constraint to formulate the optimization problem that is stated

in Equation (9). Here,Uc indicates the desired maximum admis-
sible displacement at certain locations of the domain as a mac-
roscale stiffness constraint.

min
X

f ðXÞ (8)

gcomp,iðXÞ ¼ UiðXÞ �Uc,i ≥ 0 (9)

E1;min
E2;min
E3;min
ν12;min
ν23;min
ν31;min
G12;min
G23;min
G31;min

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

≤

E1
E2
E3
ν12
ν23
ν31
G12
G23
G31

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

≤

E1;max
E2;max
E3;max
ν12;max
ν23;max
ν31;max
G12;max
G23;max
G31;max

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(10)

During the optimization of the material parameters, the
design variables are limited between a minimum and maximum
value. The upper bounds of the design variables should be
defined based on an approximated maximum achievable stiff-
ness limits. If the macroscopic stiffness problem cannot be
solved within the prescribed limit of elastic constants, either
stiffer printing material or a more complex and less slender unit
cell design is advised. The maximum achievable stiffness and the
approximated infill rate of the tailored cell can be controlled
through geometric (dtruss) and complexity (minimum connection
length, minimum node-to-node distance, maximum number of
nodes, maximum number of connections) settings, which
should be selected according to the targeted stiffness values.

2.3.2. Multicell Approach

As a second approach, multiregion-free material was established.
In this sense, every element of the design domain is an indepen-
dent optimization design variable (Xi) and every unit cell
converges to an individual metamaterial in terms of elastic prop-
erties. This modifies the objective function of the problem
slightly, as seen in Equation (11), where i indicates the element
index of the whole design domain.

min
X

FðXÞ ¼
Xm
i

f iðXiÞ (11)

Directly after the free-material optimization, a filtering algo-
rithm takes care of clustering the elements into nc subgroups.
Afterward, a postoptimization is executed on the elastic proper-
ties of the clustered metamaterials. This process results in nc
different metamaterials being constructed through the unit cell
tailoring tool from Section 2.2.

To cluster cells with similar stiffness properties into different
groups, the K-Means algorithm from the Python scikit-
package[44] is used in this work. The K-Means algorithm divides
the data points into k distinguishable groups according to
Equation (12). For this algorithm, it is necessary to specify the
desired number of clusters (nc) in advance. The flowchart of
the clustering algorithm can be seen in Figure 4.
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Start K-Means

Input:
Data Points: X

Nr. of Clusters: k
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Assign Data points to the 

nearest cluster

Step 3
Update cluster centroids

Converged ?
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Max. Iterations ?

Stop K-Means

Output:
Set of Clusters

False

True

Figure 4. Flowchart of data clustering using the K-Means algorithm.
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Figure 5. Flowchart of the multiscale lattice design framework.
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Xn
i¼0

min
μj∈Rn

ðjjxi � μjjj2Þ (12)

The overall design framework is summarized in the workflow
of Figure 5. The blue arrows represent the flow for the multicell
method with the built-in subclustering filter. The fixed custom
region method is indicated by the red arrows. If the whole design
domain is assigned to one single region, this corresponds to the
single-cell approach introduced in Section 2.3.1.

3. Results and Discussion

In this chapter, the capabilities and performance of the developed
design tool are demonstrated through two 3D static stiffness
problems. These problems are solved through various solutions
to demonstrate the potential of the developed lattice framework.

3.1. Clamped Beam

The first problem is a 3D beam under pressure on the top surface
and torsion on the tip of the beam. The design dimensions and
the loading scenario are detailed in Figure 6. The FE model is
shown in Figure 7.

3.1.1. Cell Derivation and Optimization

The single-cell FMO approach of the presented problem con-
verges to the stiffness properties in Table 1.

As the next step, the lattice unit structure is designed with the
unit cell optimizer with the cell size and truss diameter stated in
Table 2.

First, the GA is executed to find the best possible topology net-
work. The convergence of the algorithm is plotted in Figure 8.
With the result of the genetic algorithm, the subsequent PSO
searches for the best node positions for the topology of the cell
with the best fitness. Figure 9 shows the evolution of the fitness
of the cells during PSO over the generations. It can be seen that
the cumulative fitness of the best cells increases and converges
very quickly.

The elastic properties of the best design in the GA and the
PSO are stated in the second and third rows of Table 3. The
equivalent solid structure of the optimized cell is constructed
with the help of the Python-FreeCAD Tool in order to perform
3D FE analysis through a detailed tetrahedral mesh. The 3D CAD
model of the tailored cell can be seen in Figure 10. The equivalent
properties of the solid-meshed cell are shown in the last row of
Table 3. This can be treated as the reference homogenized
properties with very high accuracy. The overestimation of the
beam-meshed model indicates the inaccuracy of the calculation
through the developed Timoshenko-beam homogenization
framework from Section 2.1.

To achieve the targeted elastic properties derived from the
single-cell FMO optimization stated in Table 1, slightly higher elas-
tic properties are required. In this article, this is achieved by a
simple constant truss diameter upscaling. For this problem, the
initially determined dtruss ¼ 0.8 was scaled to dtruss ¼ 0.96 to fulfill
both macroscopic stiffness design constraints stated in Figure 6.

The final elasticity of the optimized and upscaled lattice struc-
ture can be seen in Table 4. Due to the deviations of the reduced
order Timoshenko beam-based homogenization, the values do
not exactly match the targeted metamaterial properties, but
the deviations are not significant, and the dominant elastic prop-
erties are almost equal to the targeted ones. The infill ratio of the
optimized cell is 27%.

3.1.2. Macroassembly of Cells

After the successful derivation of the metamaterial in the form of
a lattice unit structure, the design is constructed by filling the
unit cells into the 3D design space of the beam problem. This
happens with the help of a Python-FreeCAD tool. The design
is shown in Figure 11.

The constructed lattice assembly was also manufactured with
the help of a commercial SLA printer using resin. This demon-
strator can be seen in Figure 12.

3.1.3. Benchmark with Structures Through Standard Cells

To access the performance of the tailored cells on the presented
structural problem, alternative periodic lattice design variants
were constructed using some of the well-known standard cells.
These structures were designed with equivalent infill as the
developed design in Figure 11.

The four selected standard cells for the benchmarking are
shown in Figure 13. All these four standard cells are isotropic,
and their elastic properties within the same infill ratio (27%) are
listed in Table 5.

Figure 14 indicates the structural performance with respect to
the two targeted macroscopic stiffness constraints. It can be seen
that the tailored lattice cell exactly matches the required con-
straints, while the isotropic standard cells fail at least one of
the constraints. All of the four benchmarking design variants
cannot meet the displacement constraint, suggesting too weak
bending stiffness. The optimized cell shows a good performance
compared to the listed isotropic standard cells. However, this
benchmark is not fully complete, as more advanced anisotropic
or diameter-optimized cells could deliver an improved weight-
specific stiffness, which may be more similar to the presented
tailored cell. Nevertheless, the benefit of the tailored cell com-
pared to the isotropic cells from Figure 13 is clear and
satisfactory.

3.2. Clamped Beam Under Increased Load

Next, the same problem under increased loading is solved. Both
the pressure and the torsional moment are doubled, as stated in
Figure 15.

The optimized metamaterial has the elastic properties shown
in Table 6. The target stiffness values are doubled compared to
the previous problem (Table 1) as expected.

3.2.1. Cell Derivation and Optimization

In this analysis, a reduced truss diameter is selected to avoid the
deviation between the Timoshenko beam-based approximation
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and the actual equivalent properties. The most important unit
cell properties are summarized in Table 7. Also, a higher com-
plexity of the unit cell geometry was set up by the complexity soft
constraints of the unit cell optimizer, which allows more complex
truss topologies.

As the targeted stiffness properties have a higher magnitude,
it would be difficult to directly reach these values within the opti-
mization. For that reason, the ratios between the elastic
properties are optimized within the optimization loop, which
will be corrected through a posterior truss diameter upscaling.

This means that the fitness function of the unit cell tailoring
algorithm is formulated according to Equation (2). The targeted
ratios for the cost function are summarized in Table 8.

The homogenized stiffness properties of the optimized unit
cell can be seen in Table 9. Due to the modified unit cell settings,
there is a good agreement between the prediction of the reduced
order beam-based model and the solid reference model. The tar-
geted ratios were achieved pretty well, but the stiffness magni-
tudes are significantly below the desired values.

Figure 6. The clamped beam problem.

Figure 7. The 3D FE model meshed with cubic hexagonal elements.

Table 1. Derived material properties for the clamped beam problem.

Variable E1 E2 E3 G12 G23 G31

Value [MPa] 7896 1000 1068 2451 1000 2555

Table 2. Cell dimension settings.

Cell dimensions

RBeams xdim,18Cell
ydim;18 Cell

zdim;18 Cell

Value [mm] 0.4 2.5 2.5 2.5

Figure 8. Fitness evolution of the targeted unit cell through the genetic
algorithm (GA).

Figure 9. Fitness evolution of the targeted unit cell through the PSO
algorithm.

Table 3. Elastic properties of optimized structures through beam-based
and tetra-meshed homogenization.

E1 E2 E3 G12 G23 G31

Target [MPa] 8000 1000 1100 2700 1000 2700

GABM,R¼0.4 mm [MPa] 7177 568 571 2155 2521 2096

PSOBM,R¼0.4mm [MPa] 7444 571 574 2128 2524 2063

PSOSM,R¼0.4mm [MPa] 5724 462 471 1721 1690 1755
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For that reason, the truss diameter was scaled up to fulfill the
macroscopic stiffness requirements. The final metamaterial
properties, after the upscaling, are shown in Table 10. As a result
of the upscaling, the optimized ratios do not stay constant, as
there is a nonlinear relation between the change of diameter
and resulting orthotropic elastic properties. This results in an
unnecessarily exaggerated stiffness property in y and z

directions. This can be seen in the diagram of Figure 16.
The optimized cell before and after diameter upscaling can be
seen in Figure 17. The infill ratio of the cell is 45%, which is
significantly higher than the cell 27%) from the problem under
the lower loading from Section 3.1.

3.2.2. Macroassembly

The constructed macroscopic structure using the upscaled unit
cell is shown in Figure 18. The 3D-printed demonstrator of the

Figure 10. CAD model of the GA-PSO-optimized cell.

Table 4. Elastic properties for the optimized unit cell with an adjusted
truss diameter of 0.96mm.

Variable E1 E2 E3 G12 G23 G31

Value [MPa] 8876 1052 1088 2613 2633 2676

Z
Y

X

Figure 11. Assembly of unit structures forming the macroscopic design.

Figure 12. 3D-printed demonstrator of the problem.

BCC

Octet

BCC + Cubic

BCC + Cubic
 + Cross

Figure 13. Standard lattice unit cells used for the benchmarking with the
optimized unit cell.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 25, 2201385 2201385 (8 of 15) © 2022 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.aem-journal.com


design problem of the clamped beam with increased load can be
seen in Figure 19.

This problem of the clamped beam under increased load
showed the limitation of the developed lattice framework. The

magnitude of the stiffness properties with the initial diameter
was below the target metamaterial properties. The applied diam-
eter upscaling distorted the optimized ratios between the elastic
properties. For this problem with the increased load, a stiffer
base material would be ideal to reduce the need for the diameter
upscaling and to preserve the optimized ratios and therefore
design the target metamaterial more accurately.

Table 5. Diameter and orthotropic material parameters of the benchmark
unit cells under investigation.

Var. BCC BCCþ Cubic BCCþ Cubicþ Cross Octet

Dstruts 1.27 mm 1.07 mm 0.93 mm 0.82 mm

Ei 1672MPa 4742MPa 6000MPa 4210MPa

Gij 3154MPa 2467MPa 1965MPa 2648 MPa

νij 0.43 0.30 0.24 0.33

0%

20%

40%

60%

80%

100%

120%

140%

Optimized Cell BCC BCC+Cubic BCC+Cubic+Cross Octet

Compliance with the displacement constraint =

Compliance with the rotation constraint =

2.5

,

0.035

|Φ , |

Figure 14. Comparison of deformation constraints of the optimized cell
against benchmark cells.

30
 m

m

30 mm

200 mm

P = 1 MPa

M = 100 Nm 

cross-section

X

Z Tip

150 mm

Figure 15. The clamped beam under increased load.

Table 6. FMO-optimized elastic parameters for the clamped beam under
increased loading.

Variable E1 E2 E3 G12 G23 G31

Value [MPa] 15 564 1137 1070 4701 1000 5526

Table 7. Cell dimension settings for increased macroscopic load.

Cell dimensions

RBeams xdim;18Cell
ydim;18 Cell

zdim;18 Cell

Value [mm] 0.25 2.5 2.5 2.5

Table 8. Target stiffness ratios of the unit cell for the increased load case.

Target stiffness properties

Variable E1 E2 E3 G12 G23 G31

Target [MPa] 15 600 1200 1100 4800 1100 5600

Ratio [�] 1.00 0.08 0.07 0.31 0.07 0.36

Table 9. Elastic parameters of the optimized cell with a truss diameter of
the initial 0.5 mm.

Variable E1 E2 E3 G12 G23 G31

Target Value [MPa] 15 600 1200 1100 4800 1100 5600

Ratio [�] 1.00 0.08 0.07 0.31 0.07 0.36

CellBM;D¼ 0:5mm Value [MPa] 3766 284 520 1161 265 1321

Ratio [�] 1.00 0.08 0.14 0.31 0.07 0.35

CellSM;D¼ 0:5mm Value [MPa] 3192 321 529 1054 258 1032

Ratio [�] 1.00 0.10 0.17 0.33 0.08 0.32

Table 10. Elastic parameters of the optimized cell with the increased truss
diameter.

Variable E1 E2 E3 G12 G23 G31

Value [MPa] 18 347 6780 5119 5743 2156 4300

Ratio [�] 1.00 0.37 0.28 0.31 0.12 0.23

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Stiffness Ratios

Target BM, D=0.5 mm SM, D=0.5 mm SM, D=0.98 mm

E1 E2 E3 G12                G23  G31

Figure 16. Diagram with ratios for the target and the cells with 0.5 and
0.98mm diameters, calculated with the beam model (BM) and the solid
model (SM), respectively.
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3.2.3. Design Through Doubled Unit Cell Size

The posed problem with the increased loading was also solved in
a doubled cell size discretization scale as well. In this case, the
unit cell dimensions were selected as 10mm instead of 5mm,
and the truss diameter was similarly doubled (dtruss ¼ 1mm).
The unit cell optimization converged to a very similar topology
as the one observed in the previous optimization with the cell
size of 5mm in Section 3.2.1. This serves as a good proof for
the repeatability of the optimization and independence of the ini-
tial random population of the cell tailoring framework. The lattice
assembly using the larger cell is shown in Figure 20 and 21. The
resulting infill ratio also corresponds to the solution from the
smaller unit cell size (45%).

3.3. Clamped Beam Through the Multicell Approach

In this use case, the same problem is solved as in Section 3.2,
namely the clamped beam under increased loading. The multi-
cell method from Section 2.3.2 is used. For that reason, every
finite element within the design space is treated as an indepen-
dent design variable as in Figure 22.

The free-material optimization converged to the elastic prop-
erty distributions plotted in Figure 23. These elastic property
fields are used as input for the K-Means filtering to derive four

subclusters. The filter function was set up to force one of the
clusters to be fully filled solid unit. This leads to the distribution
of the clusters shown in Figure 24.

The three resulting metamaterials are then constructed with
the help of the unit cell optimizer. The unit cell dimension and
complexity settings are kept constant for these unit cell optimi-
zations. A cell size of 5 mm is used, with a truss diameter of
0.5mm. Ratio-based optimization is chosen with posterior diam-
eter upscaling. Diameter is kept constant for the three con-
structed cells. The final unit cells and the corresponding
metamaterial properties are summarized in Figure 25.

The unit cells were then constructed and merged together
with the Python-FreeCAD tool to generate the multicell design
assembly, which is shown in Figure 26. This figure also reflects
the difficulties of stacking the nonuniform adjacent cells
together. The 3D-printed demonstrator can be seen in
Figure 27.

The macroscopic constraints were fulfilled and even showed
slightly higher bending stiffness than the single-cell design from
Section 3.2. Nevertheless, the overall 45% infill percentage of the
design assembly remained the same as in the design solutions

Z
Y

X

D = 0.50 mm
Infill = 15 %

D = 0.98 mm
Infill = 45%

Figure 17. Scaling the diameter of the struts in the cell from 0.5 to
0.98mm to increase the magnitude of elastic properties.

Z
Y

X

Figure 18. Assembly of the tailored lattice cells.

Figure 19. 3D-printed demonstrator of the lattice assembly.

Z
Y

X

Figure 20. Assembly of the double-sized lattice cells for the clamped beam
problem under increased load.
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based on the single-cell approach in Section 3.2. This means that
for this particular use case no lightweight benefit was captured.
Using the multicell method may be beneficial for more complex
structural problems, where the elastic properties are more dis-
tributed within the design space or in case where the single-cell
method fails to deliver a sufficiently stiff unit cell to solve the
problem.

The workflow and the usability of the multicell method
were tested through the design demonstrator in Section 3.3.
The multicell design tool shows a robust behavior, even though
for this use case no structural or lightweight benefit was
observed.

3.4. L-Shaped Beam Problem

Finally, a 3D L-shaped problem, which is under a 3D load accord-
ing to Figure 28, is introduced. Single-cell method is applied to
find the ideal lattice unit structure to fill the design space. The FE
model is shown in Figure 29.

The single-cell FMO converges to an orthotropic elastic mate-
rial, which is used as the target in the unit cell optimizer algo-
rithm. The optimization is carried out as a ratio-based
orthotropic stiffness optimization. The targeted material proper-
ties and the equivalent properties of the best cell are listed in

Figure 21. 3D-printed demonstrator of the lattice assembly with doubled
cell size.

Figure 22. Design variables for the clamped beam problem using the mul-
ticell method.

0% 5%      10% 15%  20% 25%  30% 35%  40%   

E1 G12

E2 G23

E3 G31

Optimized Shear Moduli

in %

Optimized Young‘s Moduli

in %

Figure 23. Distribution of Young’s moduli and shear moduli as a result of
multicell free-material optimization (FMO).

Region 4
434 Cells (30 %)

Region 2
583 Cells (41 %)

Region 3
333 Cells (23 %)

Region 1 (Solid)
90 Cells (6 %)

Figure 24. Distribution of the elements into four regions as a result of
prefiltering and clustering.
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Table 11. The optimized ratios approximate the targeted ratios
very well, and the relations between the elastic parameters
remain similar after the rehomogenization through the detailed
tetra mesh. That proves the good approximation of the
Timoshenko beam-based homogenization. The magnitudes of
the stiffness values are not far from the targeted stiffness values;
therefore, a minor diameter upscaling is assumed to be needed.

The truss diameter was scaled up to dtruss ¼ 0.64mm to fulfill
the stiffness requirements stated in Figure 28. This rather minor
upscaling barely changed the optimized stiffness ratios, as
shown in Figure 30. Consequently, the resulting elastic stiffness
tensor of the metamaterial stays accurate, which leads to

Figure 25. The four different unit cells as a result of the multicell method.

Figure 26. Assembly of the four lattice cells following the multicell
approach.

Figure 27. 3D-printed demonstrator of the multicell lattice assembly.

Figure 28. The 3D L-shaped design problem with 3D loading on the tip.

Figure 29. The FE model showing the design space and element size.
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improved weight saving, when the metamaterial is used to fill the
3D design space.

The final unit cell with the upscaled diameter is shown in
Figure 31. The infill ratio of the cell is around 27%. The corre-
sponding macrodesign is shown in Figure 32. The problem of
the 3D L-shaped beam, solved through the developed single-cell
lattice tool, showed good performance. As the global stiffness

constraints were not so strict as in Section 3.2 for the clamped
beam problem, the used base material (Eref ¼ 70000MPa) was
sufficiently stiff to construct a well-performing unit cell, whereas
only a minor posterior diameter modification was required to ful-
fill the global structural requirements. In contrast, the clamped
beam under the increased load was harder to solve with the same
base material and beam slenderness setting, as a significantly
stiffer metamaterial was targeted. The cell was realized with a
good infill rate of 27.

4. Conclusion

4.1. Summary

In this work, a periodic lattice design tool that first derives the
ideal elastic material properties of the 3D stiffness problem
through the FMO algorithm is presented. Subsequently, the
developed unit cell optimizer is used to construct the best topol-
ogy for reaching that orthotropic target material. The optimizer
uses a population-based algorithm evaluating the elastic proper-
ties of the cell individuals through a reduced-order Timoshenko
beam-based calculation framework. The tailored cells are then
used to design the macroscopic component by filling the domain
with the unit cells. Single-cell and multicell filling methods were
developed to construct the macroscopic component.

These methods were demonstrated through multiple use
cases, where the elasticity of the printing material was fixed.
The clamped beam under reduced load was solved easily with
the single-cell approach. The developed lattice design was bench-
marked against a few alternative lattice designs using standard
cells. All these standard design solutions were outperformed
by the developed lattice cell in terms of structural lightweight per-
formance. The same problem under double loading was also
solved, showing more difficulty in cell construction due to the
higher stiffness requirements of the metamaterial. The same

Table 11. Elastic parameters of the optimized cell for the L-shaped
problem.

Variable E1 E2 E3 G12 G23 G31

Target Value [MPa] 3500 1100 6300 1100 1400 2500

Ratio [�] 0.56 0.17 1.00 0.17 0.22 0.40

CellBM;D¼ 0:5mm Value [MPa] 2383 574 4077 710 908 1617

Ratio [�] 0.58 0.14 1.00 0.17 0.22 0.40

CellSM;D¼ 0:5mm Value [MPa] 2559 637 3878 750 868 1469

Ratio [�] 0.66 0.16 1.00 0.19 0.22 0.38

0

0.2

0.4

0.6

0.8

1

E1 E2 E3 G12 G23 G31

Stiffness Ratios

Target BM, D=0.5 mm SM, D=0.5 mm SM, D=0.64 mm

Figure 30. Diagram indicating the ratios for the target material and the
cells with 0.5 and 0.64mm diameter, calculated with the BM and the
SM, respectively.

D = 0.64 mm
Infill = 27 %

Figure 31. CAD model of the optimized cell for the L-shaped design
problem.

Overall infill ratio: 31 %

Figure 32. Assembly of the optimized lattice cell for the L-shaped problem
following the single-cell approach.
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3D domain was also solved through the multicell approach. The
design workflow worked smoothly, but for this use case, a light-
weight benefit was not captured. Finally, the L-shaped beam
problem was presented through the single-cell method showing
smooth workflow and good design performance.

4.2. Outlook

The developed design tool was presented for linear elastic light-
weight problems. Nevertheless, lattice structures have a good
potential for attractive energy absorption properties as well.
The developed framework is extendable to other quantifiable
structural properties such as unidirectional strength and energy
absorption, enabling crashworthiness as an objective on the mac-
roscale to be considered. The evaluation of such nonlinear unit
cell responses is more difficult and requires future work; more-
over, further nonstructural design responses could be added to
the framework to target the development of a multifunctional
metamaterial.

The integration of other nonstructural responses, such as
wave propagation or thermal properties, might also be possible.
Such an approach would enable a compact multidisciplinary for-
mulation of the metamaterial optimization through truss-like lat-
tice cells. In this article, simple isotropic elastic printing material
was considered, and no process-induced effect on the printed
material was analyzed. In reality, printed material is affected
by imperfections of manufacturing technology. Nevertheless,
such a modified 3D-printed material card could be easily added
to the unit cell homogenization framework. Due to the various
geometric constraints of the unit cell optimizer algorithm,
printability design constraints could be also defined in the pop-
ulation-based cell tailoring algorithm. In this article, all these
functionalities were deactivated, as the exploration of the capabil-
ities of the design method was in focus.
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