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Abstract 
This thesis presents a new approach to automatically acquire accurate high-resolution range images 
in real-time. While this work focuses on scenes relevant for human-machine communication such 
as human faces or hands, the proposed technique can be used with arbitrary close-range scenes. 
Moreover, it is well suited for an integrated 2D-3D vision approach as it provides a color image of 
the scene along with the range data. 

The central part of the presented technique is a color coded light approach with a single static pro-
jection pattern. Existing methods using this technique are limited to scenes with neutral or uniform 
reflectance. This work concludes from an abstract scene model that employing local color edge 
patterns for encoding is a way to overcome this limitation. It furthermore establishes the properties 
a coded light projection pattern should ideally have so that an algorithm is able to reliably demodu-
late and decode it from an image. From these theoretical considerations it derives a corresponding 
new type of projection pattern that also permits a high lateral resolution of the range data. It proves 
that this pattern type permits detecting if the reflection of a local color edge pattern is disrupted in 
virtually all practically relevant cases. Next, it introduces an algorithm that exploits the properties 
of the projection pattern to robustly convert a color image of a scene illuminated by such a pattern 
into a range image. It finally describes a pseudo-random approach to generate the necessary com-
plex color edge patterns. 

The proposed coded light approach works well with most scenes, but has certain intrinsic weak-
nesses, e.g. at surface singularities. The thesis shows that stereo algorithms are typically well suited 
for obtaining range values for the parts of the scene where the coded light step fails; also that such 
algorithms are capable of operating in real-time in this case because these problematic regions tend 
to make up only a small percentage of the scene. A corresponding stereo algorithm that comple-
ments the coded light step is presented, yielding a two-stage ranging technique suited for arbitrary 
scenes. 

It is a precondition for range image acquisition that both camera and projector are calibrated. This 
work introduces an approach to camera calibration that extends Tsai’s well-known monoview cali-
bration method to one based on several views of a planar calibration target. It describes how the 
task of projector calibration can be solved with this approach. The experimental results given indi-
cate the technique has certain advantages over comparable state-of-the-art calibration methods and 
permits the accurate calibration of a coded light, respectively stereo system on the basis of a simple 
planar target. 

The thesis further performs a range error analysis based on a parameterized model of a triangula-
tion-system, including the complex case of a convergent geometric set-up. It develops exact as well 
as approximate formulas for the error in the measured coordinates as function of these parameters. 

A prototype system based on the presented ranging approach, integrated using low-cost off-the-
shelf components, is evaluated. Experiments show that it is able to acquire range maps of resolu-
tion 780 by 580 at up to 25 frames per second on a standard PC with an exemplary measurement 
accuracy of 0.2 mm standard deviation over a cubical working space of about 0.5 m side length; 
also that the method is robust against background illumination and works well with scenes that are 
strongly colored and textured. 

Finally, this thesis describes a face recognition system based on embedded hidden Markov models 
that works with color/gray level and range data; also a database of 2700 color and corresponding 
range images of a test population of 20 people acquired with a prototype system of the proposed 
approach. The evaluation of the face recognition system on the database demonstrates that using 
range data improves the performance of a standard face recognition technique significantly over its 
color/gray level only version. 
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List of Most Important Symbols and Abbreviations 
∆xl Error in the left image coordinate, respectively localization error (in the context of 

the structured light approach) 

∆xr  Error in the right image coordinate, respectively projection error (in the context of 
the structured light approach) 

∆x  Shorthand for ∆xl - ∆xr 

δ  Measurement error or uncertainty as n-dimensional vector 

δabs  Absolute error in a coordinate measurement 

δrel  Relative error in a coordinate measurement 

δx, δy, δz Error in a measured x, y or z coordinate, respectively 

δ(x)  Dirac impulse 

(θ, φ)  Spherical coordinates, where θ represents the polar, φ the azimuth angle 

(θi, φi)  Spherical coordinates of the illumination direction 

(θr, φr)  Spherical coordinates of the viewing direction 

κ  Radial distortion coefficient  

λ  Wavelength 

σ  Standard deviation of a random variable, respectively of a sample 

σ(k)  Codeword reading rule or function 

Φ  Radiant flux 

Ω  Solid angle or space angle 

ℜ2, ℜ3  Two and three-dimensional Euclidean space 

A=(aij)  Camera-projector (color-)coupling matrix of dimensions 3 by 3 

b Image plane distance; in the context of stereo vision or structured light also length 
of the baseline 

C  Image center (optical); in the context of an encoded pattern also symbol for the 
code of the pattern 

C’  Code of an edge pattern 

(cx, cy)  Position of the image center in image coordinates 

c  Codeword 

cσ(ip, jp)  Codeword for slide coordinates (ip, jp) under codeword reading function σ(k) 

c’  Derived codeword 

d Slide margin (in the context of the coded light approach), respectively disparity (in 
the context of stereo vision) 

dx, dy  Width and height of a sensor element of a camera 

E  Irradiance or irradiation 
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Ep Irradiance or irradiation caused by a projection device (in the context of the struc-
tured light approach) 

E0  Background illumination (in the context of the structured light approach) 

F  F-number or focal ratio of a lens 

f  Focal length 

fk  Effective focal length (i.e. the image plane distance) 

fr   Bi-directional Reflectance Distribution Function (BRDF) 

g  Object distance 

h  Hamming distance of two codewords, respectively minimal distance of a code 

I(x, y)  Image function 

Il(x, y)  lth component function of a vector-valued image function 

Ip(x, y)  Slide function 

Ip’(x, y)  Slide function describing the edge pattern associated with the slide Ip(x, y) 

Ip(i, j, k) Projection pattern, i.e. potentially time-varying slide 

(i, j) or (ii, ji) Discrete image coordinates 

(ip, jp)   Discrete slide coordinates 

k  Constant numeric (proportionality) factor 

L  Radiance 

M  Radiant exitance or emittance 

Nx, Ny  Image dimensions 

m, n  Image dimensions 

mp, np  Slide dimensions 

n  Index of refraction 

O  Optical center of a pinhole camera 

Q  Set of quantization levels 

Qp  Code Alphabet 

Qr  Radiant energy 

(p,q)  Shorthand notation for the surface normal (-p, -q, 1)T 

q  Code symbol 

qi  ith symbol of a codeword 

qp Size of code alphabet, respectively number of distinct graylevels, colors or pattern 
primitives of a projection pattern 

R=(rij)  Rotation matrix of the ℜ3 

Rx, Ry, Rz Euler angles 

R(p,q)  Reflectance map 

r  Radius (occasionally refers to a constant as well) 
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rij  Element of a rotation matrix 

(R, G, B) Tristimulus vector of a color 

r(λ), g(λ), b(λ) tristimulus or standard observer curves; respectively, r(λ) also describes the wave-
length-dependent reflectivity or spectral reflectance function of a scene patch 

S  Scene point or surface patch 

S’  Image point at which the scene point S is imaged 

s  Codeword length 

s(λ)  Spectral response or sensitivity curve of a sensor 

t  Number of distinct slides part of a projection pattern; also used as variable of time 

t=(tx, ty, tz) Translation vector of the ℜ3 

v, w  Window size where v is the height, w the width of the window 

XY   2D Cartesian, right handed coordinate system with an x and y axis 

XYi   Image coordinate system 

XYZ   3D Cartesian, right handed coordinate system with an x, y and z axis 

XYZc  Camera coordinate system 

XYZw  World coordinate system 

(x, y) or (xi, yi) Continuous image coordinates 

(xf, yf)   Frame coordinates 

(xd, yd)  Distorted continuous image coordinates 

(xp, yp)   Continuous slide coordinates 

(xs, ys)   Sensor coordinates 

(xu, yu)  Undistorted (i.e. ideal) continuous image coordinates 

(xc, yc, zc) Coordinates within the camera coordinate system XYZc 

(xw, yw, zw) Coordinates within the world coordinate system XYZw 

z(x, y)  Depth map 

zmin, zmax Minimal (standoff) and maximal possible range value 
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1 Introduction 

1.1 Motivation and Purpose of this Work 
Machine vision is a central component of human-machine communication. Traditionally, it is based 
on color or gray level images. Such images – more generally referred to as intensity images – are 
strongly influenced by the type of illumination, the illumination direction and the viewing angle. 
This dependency, well known from photography, poses a fundamental problem to any intensity-
based vision system. It particularly affects visual human-computer interfaces such as gesture or 
face recognition systems as they typically operate in real-world environments – e.g. cars or facto-
ries – where the above factors cannot be controlled. As a result, such interfaces are often too unre-
liable for every-day use. 

Visual interfaces based on range images, i.e. the three-dimensional surface data of their environ-
ment, avoid the above problematic altogether. They have the additional advantage that many tasks 
are much easier to solve given such spatial data than given intensity information only. At the same 
time, they face a new problem, namely that of obtaining the range images in the first place. Many 
researchers consider the effort required to solve this task, known as (non-tactile automated com-
puter) acquisition of range images or ranging for short, to outweigh the advantages of range data. 
In this context, Chellappa et al. [1995] remark with respect to face recognition: “Although range 
information is richer than the 2D intensity array, we feel that cost considerations will make range 
image based techniques less attractive for field use.” 

As Chellappa et al. point out, the challenge lies in obtaining range images with an effort and of a 
quality that is acceptable in practice. This task is relevant far beyond the scope of human-machine 
communication: range data is needed for many other applications such as robot navigation, indus-
trial surface inspection, volume measurement, or the creation of 3D models of real-world objects. 
This wide scale of uses explains why the acquisition of range images has been a primary objective 
of computer vision and related fields for many decades. 

Nevertheless, ranging is still an unsolved problem but for certain special cases. More accurately, it 
is an open question how machines can acquire accurate high-resolution range images of arbitrary, 
potentially moving scenes robustly, in real-time and with reasonable effort. This thesis attempts to 
answer this question. To that end, it develops a ranging method of its own. Its central part is a new 
approach to color coded light with a single static projection pattern that overcomes certain limita-
tions of comparable methods. This coded light approach works well with most scenes, but has cer-
tain intrinsic weaknesses, e.g. at singularities of the scene surface. For this reason, it is comple-
mented by a subsequent stereo vision step, yielding a new two-stage ranging technique that meets 
all of the above criteria. The proposed method actually allows an integrated 2D-3D vision approach 
as it obtains a color image of the scene besides the range data. 
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The evaluation of a prototype implementation of the proposed technique demonstrates that it solves 
the outlined problem for scenes up to a few meters away from the acquisition system, i.e. for the 
typical working space of a human-computer interface. 

The thesis further demonstrates for an exemplary visual human-machine interface, a 3D face rec-
ognition system, that employing range data can make such an interface more reliable than one 
based on intensity data only. To that end, it shortly describes a face verification system based on a 
standard face recognition technique that exploits both range and color images. It then presents the 
results of an evaluation of the system on a database of 2700 range and color images. These show 
that the use of range data allows reducing the false acceptance and false rejection rates of the sys-
tem significantly compared to a strictly intensity-based approach. 

1.2 Organization of this Work 
This work is organized as follows: 

The second chapter presents the physical and mathematical concepts needed for a discussion of the 
non-tactile automated computer acquisition of range data, starting out with the essential facts from 
the physics of radiation and focusing on the topic of reflection. It then explains what an intensity 
image is and how it is formed, based on classical models such as the pinhole or lens camera model. 

Given this fundament, chapter three presents the state of the art with respect to range imaging. It 
first uses the concepts introduced in chapter two to define essential terms such as range image or 
range image acquisition system. It establishes an abstract model of a range acquisition system and a 
common set of aspects of such systems as basis for a generic discussion and comparison of ranging 
techniques. A review of the most important range imaging methods then forms the core of the 
chapter. As mentioned above, 3D perception has received vast attention in the past; there is conse-
quently a great amount of previous work. For this reason, the chapter focuses on the approaches 
that have the potential of solving the problem given the constraints laid down: arbitrary scenes, 
real-time ability, high accuracy, robustness and moderate resource requirements. 

The fourth chapter introduces a new approach to range image acquisition. First, it precisely defines 
the problem to be solved and shows by reference to the state of the art that it is still unsolved. Next, 
it outlines the principles and key ideas of a solution. Its detailed description is structured into three 
parts: the coded light step, the stereo vision step and finally a set of optional features such as a 
scene color estimation component that might or might not be needed or applicable, depending on 
the application in mind. 

Chapter five evaluates a prototype system based on the proposed ranging approach. In this context, 
it treats the topic of accuracy in detail in the course of a theoretical error analysis. To that end, it 
identifies the factors that cause the measurement error in the first place. The chapter then intro-
duces a parameterized model of a triangulation system. It explores how the measurement error 
caused by these factors depends on the choice of set-up parameters, considering the general case of 
a triangulation system as well as the special case of a structured light system. The chapter con-
cludes with describing experiments conducted to asses the prototype’s accuracy, its frame rate and 
its ability to acquire range data of arbitrary scenes. 

Chapter six describes an exemplary application of the proposed range acquisition system to the task 
of face recognition. It briefly discusses the technique employed for face verification with range and 
color images. It then describes a database of range and color images recorded for the evaluation of 
the recognition algorithm, followed by a report on the results of the evaluation of the algorithm 
with the database. 

The final chapter lists the inferences made in the course of the work and summarizes the contribu-
tions of new knowledge made. It further discusses how future work could extend on the results of 
this thesis. 
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2 Fundamentals of Range Image Acquisition 
This chapter presents the fundamentals of range image acquisition. On their lowest conceptual 
layer, all non-tactile ranging approaches are based on receiving and processing radiation. For this 
reason, we need to understand what radiation is, how it propagates through space and how we can 
quantify it, shortly we have to obtain at least working knowledge of the physics of radiation (2.1). 
The next two sections deal with (digital) cameras seeing that some of the most important ranging 
approaches derive their data from intensity images taken with such cameras. Moreover, we will 
treat range image acquisition systems as a special type of camera that acquires spatial rather than 
brightness information of surfaces. Section 2.2 introduces the most important geometric camera 
models, section 2.3 the model of a sensor for digitizing images. In the latter context, we also dis-
cuss color sensors, and as prerequisite for that the concept of color. The chapter concludes with a 
summary of its main results (2.4). 

2.1 Physics of Radiation 
Radiation is defined as energy propagating through space. It is not a rare phenomenon but an es-
sential part of our everyday life that we perceive for example as light or sound. Radiation typically 
spreads in the form of three-dimensional waves or moving particles. Electromagnetic radiation may 
even be regarded as either form as it behaves partly like waves and partly like particles. However, 
the case of particle radiation is negligible for the purpose of this work, and we will use the terms 
radiation and (three-dimensional) wave interchangeably throughout unless explicitly stated other-
wise. 

As a first step in discussing radiation, we have to find a way to describe and measure it. The corre-
sponding branch of physics is called radiometry. The next section outlines its basic concepts and 
quantities (2.1.1). 

Image acquisition systems, whether for range or intensity data, collect radiation sent out from ob-
jects to form an image. Even though all objects of our world constantly emit radiation of their own, 
e.g. thermal radiation, we ignore this kind of emission for the scenes considered in this work. 
Namely, we always assume the presence of at least one separate source that emits radiation several 
orders of magnitude more powerful than the scene's own active emission. This implies the waves 
the acquisition system registers are not actively emitted by the scene itself, but by a different source 
and only reflected by the scene surface as visualized in figure 1. Consequently, it is essential to 
understand how radiation propagates through space and in particular which laws and models de-
scribe its reflection by a surface (2.1.2). 
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Figure 1: General case of range or intensity image formation. A source radiates on a scene surface 
that reflects a fraction of this radiation into the direction of the acquisition system. 

2.1.1 Basic Concepts and Quantities of Radiometry. 
As stated above, radiation is a form of propagating energy. Consequently, the most basic quantity 
in radiometry is the radiant energy Qr emitted by a source, measured in Joule. The definition of the 
radiant power emitted by a source, the radiant flux Φ, follows as radiant energy per time unit dt: 

 [ ]W
dt

dQr=Φ  (1) 

It is typically specified in Watt. The radiant flux Φ emitted by a surface per unit square is called its 
radiant exitance or radiant emittance M. The radiant flux Φ per unit square impinging on a surface 
is called irradiance or irradiation E. Radiant exitance and irradiance have a different interpretation, 
but the same definition as they both represent flux per surface unit dA, measured in Watt per m2: 

 [ ] [ ]22 −− Φ
=

Φ
= mW

dA
dEmW

dA
dM  (2) 

A source can radiate into the full sphere of directions. Things remain simple if it does so radially 
and uniformly in all directions, in which case we call it isotropic. However, the radiant flux of real 
world sources typically varies strongly with the direction. To deal with such an-isotropic sources, 
we need a way to represent directions in 3D space. To this end, we employ spherical coordinates, 
i.e. we specify a direction by its polar angle θ (co-latitude) and its azimuth angle ϕ (longitude) 
within some well-defined coordinate system. When dealing with planar surfaces such as infinitesi-
mal surface patches, we use in the following implicitly a local coordinate system whose polar axis 
corresponds to a surface normal and whose azimuth axis lies on the surface plane. 

We further need to extend the notion of an angle to three dimensions via the concept of a solid 
angle Ω (also called space angle). Its unit is the steradian, the straightforward extension of radians 
to the three-dimensional sphere. The International System of Units (SI) defines a steradian as the 
solid angle that has its vertex in the center of a sphere of radius r and cuts off an area of r2 of the 
surface of the sphere [NIST 2002]. Accordingly, the full sphere subtends 4π ≈ 12.56 steradian, and 
for a given surface S its size ΩS in steradian is the area of its projection on the surface of a sphere 
of radius r, normalized by r2. We obtain the latter analytically by integrating over the differential 
patches of the surface. Each of these infinitesimally small planar patches dA subtends the solid 
angle dΩ, implying the total surface S subtends the integral over all its patches (where α is the an-
gle between the surface normal of dA and the line connecting dA to the sphere’s origin): 

 [ ] [ ]srdddA
r

sr
r
dA

r
dAd

SSS ϕθθ
αα

∫∫∫ ==Ω==Ω sincos'cos
222  (3) 



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 5

O r

dA'

dA
α

A

B

C

 
Figure 2: The solid angle of a surface is the area of its projection on the surface of a sphere of ra-
dius r and origin O, e.g. the hatched area for the surface ABC, normalized by r2. For an infinitesi-
mal surface dA at distance r, this area corresponds to dA' = dA · cos(α), its solid angle to dA'/r2. 
 

Figure 2 illustrates these definitions. The concept of a solid angle allows defining the radiance L of 
a surface, its radiant flux per unit steradian and unit area: 

 [ ]21
22

cos'
−−

Ω
Φ

=
Ω
Φ

= msrW
dAd
d

dAd
dL

α
 (4) 

In this definition, only the effective (foreshortened) surface is considered. Its area is computed as 
product of the surface area and the cosine of the angle subtended by its normal and the direction of 
the solid angle. Using these definitions, we describe an an-isotropic source via L(θ, ϕ), its radiance 
in the direction (θ, ϕ). To obtain its radiant emittance MΩ into a given solid angle Ω, we integrate 
L(θ, ϕ) over this angle. The total exitance Mtot follows from integrating over the whole hemisphere. 

 ( ) ( )∫ ∫∫ =Ω=
Ω

Ω

π π

ϕθθθϕθθϕθ
2

0

2/

0
tot sincos,cos, ddLMdLM  (5) 

Again the foreshortening accounts for the cosine term, while the dΩ, respectively sinθ dθ dϕ term 
represents the infinitesimal solid angle. Analogously to L(θ, ϕ), we define E(θ, ϕ) as the irradiance 
per unit solid angle coming from the direction (θ, ϕ). 

We often have to consider the distribution of radiation over the spectrum. For this reason, we intro-
duce the spectral density distribution C(λ) of a radiometric quantity. Let C(λ, λ + dλ) be value of a 
quantity C considering only waves with a wavelength from λ to λ + dλ. We then define its spectral 
distribution C(λ) as the following limit (which is assumed to exist): 

 ( ) ( )
λ

λλλ
λ

λ d
dCC

d

+
=

→

,lim
0

 (6) 
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2.1.2 The Propagation of Radiation 
The propagation of radiation in 3D space is a complex subject, mostly due to the wave nature of 
radiation. Fortunately we can mostly ignore this wave nature and limit ourselves to geometric or 
ray optics, which deal with the rectilinear propagation of infinitesimal narrow bundles of radiation. 
This widely used approach facilitates the discussion of the propagation of radiation greatly. 

When radiation impinges on the surface of a material object, it is absorbed, transmitted or reflected. 
Usually all three effects occur concomitantly. The absorbed part is transformed into other forms of 
energy, primarily thermal energy. This leads to an increased temperature radiation of the object, yet 
as we ignore this type of radiation the absorbed fraction is effectively lost for our purposes. 

The transmitted fraction propagates through the object with a velocity that depends on the proper-
ties of the medium, e.g. on its electric and magnetic properties in case of electromagnetic radiation. 
This speed can vary drastically with different media: sound waves travel through steel with 5100 
m/s as compared to 342 m/s through air (at sea-level, 18° C and a frequency of 440kHz [Gerthsen 
1960]). If the speed of a wave changes when it enters a new medium, its propagation direction 
changes at the interface between the media as well. This fact is described by Snell’s law: 

 22112112 sinsinsinsin θθθθ nnorvv ==  (7) 

In the left form of Snell's law, v1 and v2 are the respective velocities of the wave in the two media 
while θ1 and θ2 represent the respective angles between the interface normal and the wavefront 
normal. For electromagnetic waves, the right form is more common. It uses the index of refraction 
n of the media, the ratio of speed of an electromagnetic wave in vacuum to the one in the medium. 
This index is not a constant, but a function of the frequency since the propagation velocity of radia-
tion for a given medium often varies with the frequency. 

Finally, the fraction of the radiation not absorbed and not transmitted is sent out again from the 
object surface, i.e. reflected. We formally describe the reflectance of a surface via its point-wise Bi-
directional Reflectance Distribution Function (BRDF) fr. The National Institute of Standards 
[NIST 2002] defines the BRDF fr of a surface point (or rather infinitesimal patch) dA as 

 
( )
( ) 


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srdE
dL

f
ii
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rriir

1
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,
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ϕθ
ϕθ
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i.e. as ratio of dL(θr, ϕr), the radiance of dA in the direction (θr, ϕr), to dE(θi, ϕi), the irradiance inci-
dent on dA from (θi, ϕi). This definition is illustrated in figure 3. Put another, less formal way, the 
BRDF describes how bright a surface appears viewed from one direction when illuminated from a 
certain other direction. It is often possible to reduce the four parameters of the BRDF to three as 
most surfaces can be rotated about their normal without altering the radiance, i.e. only the differ-
ence ϕr - ϕi is of relevance, not the separate angles [Horn 1986]. The only exceptions are surfaces 
with oriented microstructure such as e.g. the iridescent feathers of certain birds [Horn 1986] or 
some types of wheel rims [Klette et al. 1995]. If the BRDF of a surface is known as well as the 
light sources illuminating it, the surface’s radiance can be computed by integrating over all possible 
directions of incidence: 

 ( )
( )

∫ ∫=
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2
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π π
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44444 344444 21
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iiiiiirriirrr ddEfL  (9) 

The BRDF for a given material is either measured or derived from a reflection model. The former 
approach is obviously very cumbersome owing to the BRDF's many degrees of freedom. The latter 
method works out only for certain ideal surfaces such as the ones described next. 
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Figure 3: The BRDF describes the ratio of the radiance of a surface dA viewed from the direction 
(θr, ϕ r) to the irradiance incident from the direction (θi, ϕ i). 
 

The simplest case of reflection occurs at an ideally planar interface between two media. In that 
case, the basic law of reflection applies. It states that the angle of incidence θi equals the angle of 
reflection θr of the reflected beam of radiation, i.e. θi = θr. This type of reflection is called specular 
or regular reflection. The best example of a surface that exhibits almost exclusively specular re-
flection (for visible light) is an ordinary mirror. We can derive the BRDF of an ideally specular 
surface easily because its radiance is zero but for the direction (θi, ϕi - π). Consequently, the BRDF 
fr is proportional to the product of the two Dirac impulses δ(θr - θi) and δ(ϕr - ϕi - π). We determine 
the proportionality factor k (here as in the rest of this work k denotes a proportionality factor) by 
exploiting that with an ideal mirror no energy is lost, i.e. ignoring other light sources Mtot =  
dE(θi, ϕi), and by using the sifting property of the impulses: 
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 (10) 

By resolving the last line with regard to k, the BRDF of an ideally specular surface follows as: 
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Planar interfaces in the mathematical sense do not physically exist; planar is better read as "of neg-
ligible roughness relative to the incident signal’s wavelength". In industrial environments, polished 
and smooth surfaces that act as mirror for most wavelengths are predominant. In natural settings, 
rough surfaces are much more common. They exhibit mostly diffuse reflection described next. 
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If a surface is rough relative to the wavelength, the reflection of incoming waves is scattered in 
many directions; as a result, the integrity of an incident wave front is lost. This type of reflection is 
called diffuse or matte reflection. An example for diffuse reflection is the reflection of light on this 
page of paper. A perfectly diffuse surface appears equally bright from all viewing directions, i.e. its 
radiance is constant over all viewing directions: L(θr, ϕr) = k. If it furthermore reflects all imping-
ing radiation completely, it is called Lambertian reflector. The proportionality factor k for a Lam-
bertian reflector again follows from equating Mtot with Etot. To that end, we first compute Mtot as: 

∫ ∫∫∫∫ ====
2/
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The radiance and BRDF of a Lambertian reflector is obtained by equating Etot and Mtot: 
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If a point source of irradiance E illuminates a matte surface from the direction (θi, ϕi), the surface’s 
radiance is proportional to cos(θi) as Etot = E ⋅ cos(θi). This result is known as cosine or Lambert's 
law of reflection from matte surfaces. 

Of course, reflection is in general more complex than in the above ideal cases; real world surfaces 
do not reflect all incoming radiation; also their reflectance properties depend on the wavelength 
considered. So more realistic reflection models such as the Dichromatic Reflection Model ([Shafer 
1985], [Klunker et al. 1990]) incorporate the fraction of the incoming radiation reflected by a sur-
face and the wavelength as additional parameters. The DRM describes the reflection from a point 
on a dielectric non-uniform material as mixture of radiation reflected at the material surface, the 
surface reflection component, and of the radiation reflected from the material body, the body reflec-
tion component. Each component is separated into its spectral and its geometric reflection proper-
ties, i.e. is modeled as the product of a spectral power distribution and a geometric scale factor. 

According to the model, the surface reflection component has about the same spectral power distri-
bution as the incident radiation. It is perceived as highlight or gloss. The DRM does not specify a 
term for the geometric scale factor; any of the numerous ones proposed in the literature for non-
ideal specular reflectance can be used (e.g. [Phong 1975], [Horn 1977]; see [Nayar et al. 1991] for 
an overview). Details regarding the surface and the incoming radiation being unknown, all of them 
describe the reflection rather similarly: the reflection is maximal for the surface normal halfway 
between source and viewer, the so-called halfway vector, since the viewing angle is (θi, ϕi - π) for a 
surface with this normal. It then drops off sharply with increasing angle between the halfway vector 
and the normal of the considered scene patch, e.g. with some power of its cosine ([Phong 1975], 
[Horn 1977]) or the exponential of its negative amount [Torrance and Sparrow 1967]. The body 
reflection component represents the radiation that has penetrated the surface and entered the mate-
rial body, where it is scattered until it arrives again at the surface and exits the material. It provides 
the characteristic object color, as the radiation traveling through the body is increasingly absorbed 
at wavelengths characteristic for the material. Its geometric scale factor is usually modeled as ap-
proximation of a perfectly diffuse reflector. 

Even the complex DRM does not include phenomena such as fluorescent surfaces. Also real world 
surfaces are usually inhomogeneous, there is typically more than a single source of radiation, and 
some or all of the sources are uncontrolled. But for a single convex surface also mutual illumina-
tion has to be taken into account. Finally, the topic of this work is acquiring range images of un-
known scenes whose surface orientation, let alone reflection properties, are correspondingly un-
known as well. So a more sophisticated model would be of little use as all its parameters would be 
unknown anyway. We consequently proceed with a generically applicable qualitative understand-
ing of reflection and the factors that influence it rather than with an exact quantitative model. 
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Figure 4: A pinhole camera is defined by its optical center O and its image plane. It produces an 
image that is a perspective projection of the scene on the image plane with projection center O. The 
zc-axis of the camera coordinate system XYZc coincides with the optical axis, while the world co-
ordinate system XYZw is defined independently of the camera. 

2.2 Geometric Camera Models 
We use two models to describe the geometric aspects of a camera: The simple, but in many cases 
adequate pinhole camera model (2.2.1) and the more complex lens camera model (2.2.2). 

2.2.1 The Pinhole Camera Model 
A basic and widely used geometric camera model is that of a pinhole camera as depicted in figure 
4. A pinhole camera is defined by its optical center O and its image plane, also called retinal plane. 
Its optical axis follows as the straight line through the optical center that is perpendicular to the 
image plane. The intersection of the optical axis with the image plane is called (optical) image 
center C, the distance from O to C is termed (effective) focal length fk or image plane distance b. 
The image coordinate system XYi with origin C is a two-dimensional Cartesian coordinate system 
of the image plane. The camera coordinate system XYZc is a right-handed, three-dimensional Car-
tesian coordinate system of the space ℜ3. Its origin is the optical center O; its zc-axis coincides with 
the camera's optical axis and its xc- and yc-axis are parallel to the xi-axis and yi-axis of the image 
plane coordinate system. A scene point S with camera coordinates (xsc, ysc, zsc) is projected at a 
point S’ of the image plane with camera coordinates (xsi, ysi, -fk < 0) and image coordinates (xsi, ysi). 
The relationship between camera and image coordinates is given by the following equation, which 
is sometimes called perspective imaging equation: 
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With other words, a pinhole camera defines a perspective projection on the image plane with pro-
jection center O. Which implies that – without additional knowledge – it is inherently impossible to 
reconstruct the exact 3D form of an object from images taken with a single pinhole camera: Two 
objects of the same shape (e.g. two spheres), one twice the size and at twice the zc-distance to the 
camera compared to the other, give rise to identical images.  



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 10

Real-world cameras as described above acquire horizontally and vertically mirrored images. For 
convenience, we work in the following mostly with cameras with imaginary retinal planes located 
in front of the optical center. They acquire images that are un-mirrored, but otherwise identical to 
the ones of real-world cameras (i.e. described by equation 14 but for the negative signs). 

If the variation in depth over the scene is small in relation to the average distance scene-camera, we 
may use parallel or orthographic projection (with some scale factor k) as close approximation to 
the actual perspective projection. The corresponding parallel imaging equation is much simpler: 

 scsiscsi ykyxkx ==  (15) 

We occasionally employ an additional, arbitrarily chosen and camera independent coordinate sys-
tem of the ℜ3, the world coordinate system XYZw. As usual, we convert coordinates between two 
coordinate systems via a rotation, i.e. multiplication of a given vector with a rotation matrix R = 
(rij), and a subsequent translation, i.e. vector addition of the rotated vector with a translation vector 
t = (tx, ty, tz). Consequently, a point with world coordinates (xsw, ysw, zsw) is imaged at 
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In practice, pinhole cameras are simple to build and have for that reason been used since the 14th 
century [Bergmann and Schäfer 1987]. Even though the pinhole cannot be made arbitrarily small to 
avoid diffraction of the incoming light, they give sharp images without significant aberrations. 
They are nevertheless rarely used because the necessarily small pinhole generally subtends only a 
very small solid angle of a given surface and accordingly receives very little of its radiant emission. 
To obtain a measurable quantity of light, this has to be compensated with a long exposure time, 
which limits the use of pinhole cameras to scenes that are static during this time span. For this rea-
son, representative modern cameras use lenses described next rather than pinholes. 

2.2.2 The Lens Camera Model 
A lens camera is a special type of a pinhole camera, with which the conceptually infinitesimal pin-
hole is replaced with a finite-sized lens. In principle, the perspective image formation equation 14 
also applies to lens cameras, the most relevant difference being that lens cameras produce well-
focused images only of objects at a certain object distance g. The relation between g, the image 
plane distance b and the focal length f of the lens is given by the well-known (thin-) lens equation: 

 bgf 111 +=  (17) 

The aperture stop of a lens camera is an adjustable device that limits the lens aperture and thus the 
diameter of the bundle of incoming rays as shown in figure 5. The (effective size of the) aperture is 
commonly specified relatively via the f-number (also focal ratio, relative aperture or speed), de-
fined as the ratio of the focal length to the diameter of lens aperture and denoted by the symbol F. 

Figure 5 also illustrates that the image of a point S2 not at the object distance is a disc of radius r 
(whose outline is called blur circle) rather than a single point. The depth of field of a camera is the 
range of object-side distances for which the radius of the resulting blur circle is acceptably small 
(not to be confused with the corresponding image space range, the depth of focus). Clearly what is 
acceptable depends on the situation, but conventionally a blur radius of half the width of a sensor 
element is chosen as maximal permissible one. Given this radius rmax, the depth of field follows via 
the lens equation: it is the range of object distances g2 for which the image-plane distance between 
the top- and the bottom-most ray emerging from a point S2 does not exceed the permissible diame-
ter 2rmax. It suffices to consider points on the optical axis as elementary calculations show that the 
sum of the slopes of the two rays and consequently the diameter of the blur circle depends on the 
object distance only, not on the object height. 
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Figure 5: Lens with focal length f and effective diameter d. When focused at distance g1, the image 
of a point S1 located at g1 is an infinitesimal point while that of a point S2 outside of the focused 
plane is a disc of radius r > 0. 
 
Using the terms introduced in figure 5, we obtain as formula for the blur radius r: 
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Assuming g1 ≈ g2 and a large object distance (g1 >> f) as the standard case, respectively a small 
object distance as for microscopy (g ≈ f), the formula for the depth of field follows as: 
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Real-world cameras take images that differ from the ones ideal lens cameras would acquire. The 
deviations are called image aberrations and can be attributed to various causes, a major one being 
that the lens equation is only valid for rays close and approximately parallel to the optical axis. 
Bergmann and Schäfer [1987] differentiate between image degrading aberrations such as the coma 
and image deforming aberrations as e.g. chromatic aberrations and image distortion (figure 6). The 
former are less relevant for range measurements as they mostly affect the image quality – they 
typically cause blurring – and can be minimized with suitable optics. We can further ignore chro-
matic distortion as its effect is mostly negligible for the purpose of this work.  

(Symmetric) Radial distortion occurs with almost all lenses. It cannot be disregarded as it changes 
the retinal position at which a world point is imaged significantly. More precisely, radial distortion 
causes the imaging scale to change with the distance to the optical image center. It is caused by an 
asymmetric position of the aperture stop within a lens (system) [Bergmann and Schäfer 1987], 
[Luhman 2000]. Consequently, the type of change depends mostly on the location of the aperture 
stop: If it is located in front of the lens, the imaging scale grows with the image center distance. 
This type of radial distortion is referred to as pincushion distortion. Analogously, an aperture stop 
behind the lens causes the scale to drop off with the image center distance. Figure 6 shows the ef-
fect of the latter type of radial distortion, termed barrel distortion, on an image of a checkerboard. 
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Figure 6: Effects of chromatic aberration (resulting in blue, respectively red square fringes) and 
radial barrel-distortion on the color-image of a regular black-and-white checkerboard. 
 

[Slama et al. 80] describe the effect of radial distortion via the following infinite series: 
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In this equation as in the following, (xu, yu) represent the unobservable undistorted coordinates at 
which a point would be imaged if the lens were distortion-free and (xd, yd) the actually observed 
distorted image coordinates. For most purposes, including ours, the first term of the series describes 
the effect of radial distortion with sufficient accuracy. We associate for that reason barrel distortion 
with a positive, pincushion distortion with a negative distortion coefficient κ. 

2.3 The Camera Sensor Model 
2.3.1 Formation and Description of Digital Images 
The fundament of almost all electronic image sensors is the photoelectric effect. It causes electrons 
to be knocked out of certain surfaces when photons strike them. The number of freed electrons is 
proportional to the irradiance incident on the image plane (for a fixed spectral distribution). Conse-
quently, the photoelectric effect allows measuring irradiance by determining well-known electric 
quantities such as the electric charge. To obtain an image, a finite portion of the image plane of a 
camera is covered with suitable uniform sensor elements of size dx by dy. These elements are ex-
posed to the incident light during the exposure time. For each element, the freed electrons are col-
lected; the resulting charge is quantified and A/D-converted to a digital value, called pixel value I. 
Each (unit-less) pixel value I is proportional to the number of freed electrons and consequently to 
the irradiance E of its sensor element, as expressed by the following equation: 

 ( )∫= λλλ dsEkI )(  (21) 

In this equation, k is again a proportionality factor that encapsulates aspects such as the sensor size 
or the exposure time and s(λ) represents the sensor's spectral response or sensitivity curve. The 
latter describes the sensor-specific, wavelength-dependent relationship between incoming photons 
and freed electrons, respective generated charge.  

We now show with the help of figure 7 that the irradiance is in turn proportional to the scene 
brightness, or more precisely, to the radiance of the imaged scene point into the solid angle sub-
tended by the lens. We first note that the solid angles ΩI and ΩS subtended by dI, respectively dS, 
relative to the camera coordinate origin are equal as one is the perspective projection of the other. 
Equating the two yields the following expression for the ratio of dS to dI: 
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Figure 7: The irradiance at the image plane segment dI is proportional to radiance of the imaged 
surface patch dS. Redrawn from [Ballard and Brown 82] with adaptations. 
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The radiant flux Φlens emanating from dS and gathered by the lens is equal to the radiance of dS, 
multiplied by its foreshortened surface and the solid angle subtended by the lens of diameter d: 
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If we ignore losses in the lens, we can equate the radiant flux Φlens collected by the lens with the 
radiant flux arriving at dI. By substituting the term for the ratio of dS to dI into the definition of the 
irradiance, we obtain the following expression for the irradiance incident on the sensor element: 
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This implies that each pixel value is proportional to the radiance L of the imaged surface patch. Or 
rather, since the sensor elements are not infinitesimally small, but occupy a finite area, that each 
pixel value is proportional to the average radiance of the imaged surface patch. The smaller the size 
of this patch, the higher is the lateral resolution of the sensor. Since the patch size depends on the 
distance of the camera to the scene, we usually specify this lateral resolution as angular size, 
namely the arc tangent of the ratio of the sensor element size to the effective focal length. 

The amount of charge generated within a sensor element is physically limited with real-world sen-
sors; so the range of pixel values is restricted to a certain interval. The accuracy of the A/D-
conversion is finite as well. It accordingly suffices to use q ∈ N quantization steps, where q is typi-
cally a fairly low number such as 256; that is, we specify pixel values as integers in the range Q = 
[0, q - 1]. With Nx = n sensor elements along the xi-axis and Ny = m along the yi-axis, we represent 
a (grayscale) image as function I(i, j) that maps the 2D integer set [1, Nx] x [1, Ny] on the 1D inte-
ger interval Q, or alternatively as matrix I ∈ Qm x n. In situations where we can disregard their finite 
and discrete character, we also model images as continuous real-valued signals I(x, y), i.e. as map-
ping of the ℜ2 on ℜ. In the following, (i, j) refers to discrete, (x, y) to ideal continuous image coor-
dinates. Another consequence of the finiteness of real world cameras is that their field of view is 
limited, too. We specify it via the horizontal (vertical, diagonal, etc.) half angle of view βhor (see 
figure 8) calculated as arctan Nx·dx/2f or as the visible area for a given object distance. 
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Figure 8: With digital cameras, a finite part of the image plane is covered with Nx x Ny sensor ele-
ments of size dx by dy, resulting in a finite lateral resolution and field, respectively angle of view. 
 

Filters allow limiting the sensitivity of a sensor to a certain spectral interval of interest. In particu-
lar, they permit acquiring multi-spectral images by applying r different filters, e.g. one after another 
or by splitting the incoming radiation into r several beams and applying a distinct filter to each 
beam. Analogously to the definition of a grayscale image, we describe a multi-spectral image as r-
dimensional signal, i.e. as vector-valued function of the image coordinates on the codomain Qr: 

 ( ) λλλ dsEkjiIjiIjiIjiI ljilr ∫
+∞

∞−

== )(),()),,(),...,,((),( ,1  (25) 

where sl is the (effective) spectral response of the l-th sensor, i.e. the product of the sensor’s origi-
nal spectral sensitivity and the filter’s spectral transmission (ranging unitless from 0 to 1). An im-
portant example of multi-spectral imaging is human color vision. It is of special interest as sensors 
that emulate it are widely available and form the basis of the ranging method proposed in this work. 

2.3.2 The Concept of Color, Color Vision and Color Images 
Light is defined as the type of electromagnetic radiation capable of producing visual sensation in 
most humans. Its spectrum ranges from ca. (the exact interval differs from human to human) 390 to 
740 nm. Color is the aspect of visual perception that allows an observer to distinguish between two 
fields of light of the same size, shape, structure, duration and luminance [Wyszecki and Stiles 
1982]. Humans perceive color because their retina contains three different types of neurochemical 
receptors called cones, each of them sensitive to a particular spectral band: One peaking in the 
long- (red), one in the mid- (green), and one in the short (blue) visible range. How exactly our vi-
sion system translates the cone signals into color sensations is not completely understood. What is 
known – that color perception is non-linear, dependent on e.g. the surroundings and state of adapta-
tion of the viewer [Pratt 1991] – indicates that the underlying processes are very complex. 

In any case, for our purposes it suffices to measure color in some well-defined way. Doing so im-
plies relating psychological phenomena to physical phenomena [Grum and Bartelson 1980] and is 
for that reason quite different from other measurement processes. The most common approach to 
color measurement is to let humans compare and match colors, especially as Grassmann found out  
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Figure 9: The CIE 1931 photopic standard observer 2° field of view standard observer curves for 
the imaginary primaries. 
 

that in principle all colors can be matched by superimposing three so-called primary colors [Grum 
and Bartelson 1980]. This rule is also called the tri-chromatic theory of color. The only restriction 
on the choice of the primaries is that none of them may be a mixture of the two others. We are – for 
a given set of three primaries – for that reason able to specify a color by stating the intensities of 
the primaries necessary to match it. In this context, a negative intensity of a primary means the 
corresponding amount of the primary has to be added to the original color to achieve a match. 

The Commission Internationale de l'Eclairage (CIE) conducted extensive color matching experi-
ments using three monochromatic sources of spectral centroids 700.0 nm, 546.1 nm and 435.8 nm 
as primaries. For each monochromatic color in the visible spectrum, a large number of observers 
determined the radiances of the primaries necessary to match the color. The results of these ex-
periments are called the tristimulus or standard observer curves r(λ), g(λ) and b(λ) for a 2° field of 
view (as color perception changes with the field of view) and the aforementioned primaries. Ac-
cording to the tri-chromatic theory of color, the tristimulus values RGB of an arbitrary color follow 
from integrating over the product of the spectral irradiation distribution E(λ) of its source and the 
respective spectral tristimulus curve: 

 ( ) ( ) ( ) ( ) ( ) ( ) λλλλλλλλλ dbEkBdgEkGdrEkR ∫∫∫
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+∞
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However, it is not possible to directly match all monochromatic colors with the primaries the CIE 
originally used, i.e. some monochromatic colors result in partially negative tristimulus values. For 
this and some other reasons, the CIE introduced three imaginary primaries for which the corre-
sponding tristimulus values are strictly positive for the monochromatic colors of the visible spec-
trum  – imaginary because these primaries do not physically exist. Their calculated standard ob-
server curves x(λ), y(λ) and z(λ) are shown in figure 9. As before, we use these curves to obtain the 
matching dimensionless tristimulus values X, Y and Z of a given spectral irradiation distribution 
E(λ) by integrating the product of the distribution with the curve of interest over the spectrum: 
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Figure 10: The main factors determining the intensity image of a scene. 
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A color space is a way of organizing colors, i.e. the result of colorimetry is specified as a vector of 
a color space. So far we introduced two color spaces, namely the RGB and the XYZ color space. 
As color cameras emulate human color vision, most of them use three filter types modeled after the 
cone types. Hence they acquire their data principally within the RGB color space, or, more pre-
cisely, within their own, device dependent color space that is more or less similar to the RGB color 
space defined by the CIE. In view of that, we describe the response of a color camera as: 

 ( ) ( ) ( ) ( ) ( ) ( ) λλλλλλλλλ dbEkBdgEkGdrEkR cccccc ∫∫∫
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where the subscript c indicates that the spectral responses, let alone the proportionality factors, and 
thus the total response vector is a camera-dependent approximation to the actual RGB tristimulus 
vector. We correspondingly specify the resulting multi-spectral image type as I(x, y) =  
(Rc(x, y), Gc(x, y), Bc (x, y)), or shorthand (R(x, y), G(x, y), B(x, y)) if it is obvious from the con-
text that we intend to refer to the latter expression and not to the CIE tristimulus values. 

2.4 Summary 
This chapter introduced, among other things, the main factors that determine the intensity image of 
a scene. Figure 10 summarizes them as shown in figure 10: 

• The spectral power distribution of the radiation arriving at the scene. 

• The surface microstructure of the scene, including its spatial surface properties such as its 
roughness and its micro-orientation as well as its absorption characteristics (e.g. its color). 

• The orientation of the imaged surface patch, or, put another way, the scene geometry along 
with its spatial position and orientation relative to acquisition system and incoming radiation. 

• The optical and sensorial properties of the image acquisition system such as its focal length, 
the size of its sensor elements or its spectral response. 

These results explain why 3D vision systems have the potential of being more reliable than compa-
rable systems based on intensity images: While the latter are involuntarily affected by all listed 
factors, the former are in principle independent of them but for the one they are actually interested 
in, namely the scene geometry, position and orientation. 
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3 State of the Art in Range Imaging 
This chapter presents the state of the art with respect to (non-tactile) range imaging. In its first sec-
tion, it uses the concepts introduced in the previous chapter to give terms such as range image or 
range image acquisition system a precise definition (3.1); in that context it also develops an abstract 
model of a range image acquisition system. A prerequisite for discussing the various approaches to 
range imaging is a set of common aspects; section 3.2 establishes it. The central section of this 
chapter gives a review of the most important ranging methods (3.3). The chapter concludes with a 
summary of its main results (3.4). 

3.1 Basic Ranging Terms 
Following a proposal by Sanz [1989], we define a range image as set of several elements that rep-
resent a well-defined distance measurement between a common reference point and a point on an 
object’s surface. Its synonyms are range map, range data, surface data, 2½D image, 3D data, 3D 
image, topographic map, surface distance matrix, to name only a few. Some of these names have to 
be used with caution as they carry a different meaning in other contexts, respectively with some 
authors, but all of them have been used in the literature to refer to range images. 

We define a range (image) acquisition system simply by its ability to obtain range images, i.e. as 
any combination of hard- and software capable of acquiring range images of its visible spatial envi-
ronment at a given time [Sanz 1989]. Some of the numerous synonyms for such a system are 3D 
imaging system, 3D digitizer, rangefinder, range imaging system, range sensor, 3D-sensor, or 3D-
surface acquisition system. This work exclusively considers non-tactile range sensors; it models 
them as special digital pinhole cameras that acquire a certain distance value of surface points in-
stead of their brightness (figure 11). This approach allows reusing the terms introduced in the con-
text of pinhole cameras such as angular lateral resolution or effective focal length. Analogously to 
irradiance sensors, real-world range sensors have a nonzero sensor element size. As the former 
measure the average brightness, the latter acquire accordingly the average distance of an imaged 
surface patch rather than the well-defined distance of a surface point. To avoid mathematical sub-
tleties regarding the definition of an average distance value, we always assume the distance to vary 
only negligibly over an imaged surface patch and to take on a finite value at all times. 

We define a depth map z(x, y) as special type of range image that maps the image plane of a pin-
hole camera to the zc camera coordinate – the depth – of the imaged surface point. Clearly a depth 
map can take on values greater than zero only and we are able to reserve the value zero for points 
for which no depth value could be obtained. Range and depth data are geometrically equivalent – 
given range data, the corresponding depth map can be computed and vice versa; so unless stated 
otherwise, we do not distinguish between range and depth data, respectively sensors, in this work. 
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possible depth value and the depth of field is the distance between zmin and zmax. 
 

The above pinhole camera interpretation implies that imaged depth data undergoes a perspective 
projection. Its effect is best exemplified with some ideal body such as a sphere of radius r with 
camera coordinate center (0, 0, b)T. Its depth map, obtained by substituting the sphere equation into 
equation 14, is quite complex because of perspective foreshortening: 
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As pointed out before, we may approximate perspective with parallel projection if the depth varies 
only negligibly over a scene compared to the distance scene-camera. We will assume just that on 
some occasions as orthographic projection allows a much simpler mathematical treatment of cer-
tain problems, in some cases making them tractable in the first place. E.g. the above depth map 
simplifies under parallel projection, i.e. by substituting into equation 15 instead of 14, to: 

 222222),( ryxforyxrbyxz par ≤+−−−=  (30) 

In this context, it is important to note that it is principally impossible to derive exact range maps 
from intensity images acquired under parallel projection as they do not contain any depth informa-
tion by definition: translating a scene along the zc-axis does not affect its orthographic image at all. 
Consequently, at most relative depth data, that is a depth map that contains an unknown constant 
depth offset and an equally unknown scale factor, can be extracted from an image taken under par-
allel projection (given no further information).  

The above definition of a depth map as function allows drawing on mathematical concepts to char-
acterize scenes. We call a scene continuous (differentiable etc.) if its depth map as mapping of the 
ℜ2 on ℜ is a continuous (differentiable etc.) function, i.e. if z(x, y) ∈ C0. 

There are several further important terms relating to range sensors: For a given configuration, the 
standoff zmin of a range image acquisition system is the minimal possible depth of a scene point P it 
permits. We define the depth of field as the difference of the maximal acceptable depth zmax and the 
standoff, i.e. as zmax - zmin. The working space for a given configuration is the volume defined by 
the depth of field and the field of view, i.e. it corresponds approximately to the product of the two. 
The depth range of a range acquisition system is the distance between the minimal zmin and the 
maximal zmax over all configurations. Figure 11 illustrates some of these definitions. 
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3.2 Aspects of Range Acquisition Systems 
A prerequisite for discussing the pros and cons of various ranging approaches is establishing a 
common set of aspects. Of course, we will not consider each aspect for every implementation re-
ported in literature; we are more interested in general insights that relate to the underlying ranging 
principle. In our discussion, we focus on the following aspects: 

• (Relative Spatial) Resolution: We define the (relative spatial) resolution of a range imaging 
system as the number of its (potentially imaginary) sensor elements, i.e. as Nx x Ny. 

• Data Rate: The data rate follows as the product of the resolution with the number of images 
the system acquires per second, i.e. as pixels per second. Its inverse is called pixel-dwell-time. 

• Geometric Parameters: What are the depth range, the possible values of the standoff, the 
volume of its working space, etc.? 

• Accuracy: Accuracy and related aspects such as depth resolution are complex concepts dis-
cussed in detail in chapter 5. Also accuracy figures stated in the literature have to be taken with 
care: they are often on selected well-suited objects in controlled environments only, respec-
tively it is unclear how the authors define accuracy. So the subsequent general discussion uses 
a preliminary, broader understanding of accuracy and associates it with the order of magnitude 
(e.g. nano- or centimeters) of the approach-characteristic deviation of a given depth measure-
ment from the correct value, the ground truth, to be expected over a typical working space. 

• Robustness: We define robustness as lack of restrictions regarding the ambient conditions 
(illumination, heat, etc.) under which a rangefinder can operate. A perfectly robust system is 
one that functions under all conditions; a less robust system would be one that requires that all 
sources radiating on the scene to be controlled and which can therefore only be used indoors. 

• Scene Constraints: The scene constraints of a range acquisition system are the requirements a 
scene has to meet for the system to be able to image it. Due to their radiometric nature, all ap-
proaches discussed here implicitly require the scene surface to reflect at least some radiation 
into their direction. However, the systems differ significantly regarding any additional scene 
constraints. Some require a diffuse scene reflection, a single continuous surface, or impose the 
restrictive constraint of a static scene, while others cope with almost any kind of reflection and 
moving objects. 

• Safety: Does the system represent a potential danger to humans, especially to their eyes? 

• Hardware Requirements: What are the typical resource requirements in terms of hardware? 
Does the approach require highly specialized hardware or can it be implemented using standard 
components such as a digital video camera and a personal computer? 

3.3 Range Imaging Methods 
This chapter discusses the state of the art in range imaging. Ranging is by no means a novel con-
cept; bats [Griffin 1958] and porpoises [Kellogg 1961] have used (ultrasonic) rangefinders success-
fully for millions of years. In 1903, Hülsmeier [1904] demonstrated and later patented his Telemo-
biloskop, the first serviceable range acquisition system that fits our definition and that we would 
now classify as radar. Since then, many other ranging approaches have been proposed. Keeping in 
line with the topic of this work, we focus on approaches with the potential of acquiring accurate 
and dense depth data of unknown dynamic scenes in unconstrained environments rapidly, reliably 
and with reasonable effort in terms of resources. That is, we will not consider techniques such as 
shape from texture ([Stevens 1979], [Witkin 1981], [Blostein and Ahuja 1989]) that are principally 
unsuited for this task as they are limited to very special types of scenes (e.g. ones with a regular 
texture) or due to other principal fundamental downsides. As shown in figure 12, we employ two 
key aspects to classify the relevant ranging methods into broad categories: 
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Figure 12: Overview of range imaging methods. Italic print implies a method gives shape only. 

 

• Active ranging methods are methods that require a special source of radiation to be part of the 
range acquisition system. The opposite are passive methods that operate with the ambient ra-
diation present, i.e. which can do without a source of radiation of their own. 

• Multidirectional methods have to observe and/or radiate on a scene point from at least two 
points in space that are distinct relative to the scene point. They consequently suffer from the 
problem of occlusion or missing data: not all scene points might be visible from both points at 
the same time. Unidirectional or collinear approaches require only a single direction of view 
and/or illumination. Occlusion does for that reason not occur with them. 

3.3.1 Time-of-Flight Ranging 
The relationship between a signal’s average propagation speed v and the distance ∆s it travels dur-
ing a time interval ∆t is given by ∆s = v·∆t. Time-of-Flight (ToF) sensors exploit this equation by 
emitting a signal that travels at a known speed and by measuring the time that elapses until its echo 
is received. With v and ∆t known, the distance ∆s the signal traveled can be computed. The desired 
range value, which corresponds to the distance to the reflecting surface patch, follows as half this 
distance, i.e. as ½ ∆s. As with most ToF systems transmitter and receiver are mounted coaxially, 
we classify ToF as an active, unidirectional approach to range imaging. The signals types com-
monly used for it are ultra-sonic waves, radio-/microwaves and visible or near-visible light. The 
former two types have important applications (e.g. ultra-sonic waves: low-cost rangefinders for 
consumer products such as cameras, radio/microwaves: synthetic aperture radar, GPS), but are not 
well suited for range measurements with high angular resolution due to diffraction limitations. 
They are for that reason not discussed here. 

There are several different classes of ToF sensors (e.g. [Jähne 2002]). All of them are characterized 
by the fact that they modulate their carrier signal in some way and that they do not require coherent 
signals. 
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Figure 13: Principle of a Laser ToF rangefinder by Mengel et al. [2001]. 

 

The conceptually most straightforward ToF sensors use pulse-modulation, i.e. emit short signal 
pulses and determine the delay between sending a pulse and receiving its echo. Due to its short 
duration, such a pulse can have a high energy while still being eye-safe. This allows reducing the 
influence of ambient illumination, respectively achieving a high signal-to-noise ratio. However, 
generating such pulses requires an expensive light source capable of sharp rise and fall times. Also, 
due to the high propagation speed of light, the delay has to be quantified very accurately, e.g. for a 
ranging accuracy of ±1 mm to within ±33 ps. This is a very challenging task further complicated by 
the fact that the originally sharp pulses are often deformed by the reflection [Shirai 1987]. Conse-
quently, many researches explore alternatives to directly measuring the delay, a representative ex-
ample being the one by Mengel et al. [2001]: the latter suggest emitting a short, rectangular shaped 
laser pulse that is synchronized with the integration window of an image sensor (figure 13). After a 
travel time ∆t, the reflected pulse generates the sensor signal U(t). As discussed in section 2.3.1, its 
strength is proportional to the exposure time. Two distinct shutter times t1 and t2 give rise to the 
responses U1 and U2. Then the two points (t1, U1) and (t2, U2) uniquely determine the linear sensor 
signal and the abscissa of its zero-crossing represents the pulse travel time ∆t. This process is re-
peated with ultra-short exposure (integration) time, i.e. a very high frequency, to average out noise. 

Another class of ToF sensors employs continuous-wave (CW) modulation, i.e. emits a continuous, 
periodically modulated signal. The most common types of modulation are frequency- (FMCW), 
and amplitude-modulation (AMCW). The travel time and thus the depth is then determined indi-
rectly via the phase shift ∆φ between the in- and the out-going signal, i.e.  

 ( ) πλϕϕ 4⋅∆=∆z  (31) 

where λ is the modulation wavelength. Accordingly, the accuracy of a sensor depends mainly on 
the accuracy of the phase difference measurement and the modulation frequency. So the accuracy 
of CW-modulation techniques is typically higher than the one of methods involving direct time 
measurement, respectively less effort is needed to achieve a comparable accuracy. The disadvan-
tage of a modulation approach is that the phase difference can only be established within a range of 
±π. This implies the distance of the reflecting patch can only be determined up to half a modulation 
wave length, or, with other words, that the depth of field of CW sensors is limited. 

To overcome this shortcoming, pseudo-noise-modulation (PNM, e.g. [Klein 1993]) has been de-
veloped; in its case the amplitude is randomly modulated. This permits uniquely (or at least with a 
large ambiguity interval) determining the phase-shift due to the travel-time; PNM systems therefore 
combine the large depth of field of pulse modulation with the high accuracy of CW-modulation. 
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The following aspects are shared by all ToF sensors: With them, a detectable portion of the signal 
has to be reflected from the surface back to the receiver. In general, this requires a sufficiently dif-
fuse reflection of the signal – to receive the signal's specular reflection the surface normal would 
have to be approximately parallel to the incident direction of the signal. Their main advantage over 
triangulation methods introduced below is their unidirectional nature; they do not suffer from the 
missing-data problem. Also their accuracy depends only on the accuracy of the time, respectively 
phase measurement, and is consequently in principle independent of the distance to the object. The 
latter argument is somewhat imprecise, as of course the strength of the back-scattered signal and 
consequently also the accuracy decrease with growing object-distance. Nevertheless, the loss of 
accuracy with increasing distance is not nearly as pronounced as with triangulation systems. 

The main disadvantage of ToF sensors – from the viewpoint of this work – is their need for cus-
tom-made and consequently often expensive hardware. Many ToF rangefinders have for that rea-
son only a single or at most a few sensor elements and scan their field of view, e.g. via an rotating 
mirror. Their resolution and field of view is therefore often adjustable; their data rate can neverthe-
less be quite high (up to 107 pixels per second and more with some advanced systems) as it is 
mostly a matter of resources one is willing to spend. An inherent disadvantage of such mechani-
cally moving parts is that they typically lose accuracy over time due to mechanic wear. Lately, 
quite a few distinct low-cost ToF rangefinders with larger arrays of up to 100 000 pixels and frame-
rats up to 50 fps have been proposed, e.g. [Schwarte 1995], [Lange 2000], [Mengel 2001], [Canesta 
2002]. Such systems benefit from recent advances in CMOS technology that permit integrating 
more and more additional functionality on an inexpensive image sensor, respectively allow produc-
ing affordable sensor with very short shutter times. As of today, all of these devices still have cer-
tain major drawbacks (e.g. susceptibility to background illumination, problems with moving ob-
jects or noise in general) and are limited to centimeter accuracy at best, under noisy real-world 
conditions in combination with high data rates typically to even worse accuracy. 

3.3.2 Unidirectional Interferometry 
Unidirectional interferometry (e.g. [Jähne 2002]) is the study of interference patterns created by the 
interaction of several sets of waves for the purpose of length or range measurement. It is often re-
garded as special case of CW-modulation; respectively, CW-modulation can be interpreted as inter-
ferometric approach. In line with most of the literature, we nevertheless treat it as separate ranging 
approach and distinguish between the two related techniques by considering only these methods as 
interferometric that require coherent radiation and exploit the modulation inherent to the radiation. 

The standard signal type for interferometry is a laser, which implies the “built-in” modulation 
wavelength is in the range of 400 – 700 nm. As the phase difference can again only be determined 
up to ±π, the effective depth of field of a straightforward interferometric system is extremely small. 
Multi-interferometry with multiple reference signals of typically closely spaced wavelengths (e.g. 
[Dändliker et al. 1995]) can be used to widen this interval, but usually only to the milli- or centime-
ter range. Another way to increase the depth of field is white light interferometry (e.g. [Notni et al. 
1997]), also called low-coherence interferometry. It exploits that notable interference of light 
waves occurs only with coherent light. White light has typically a coherence length of a few wave-
lengths only. Corresponding systems send white light through two optical paths, one for measure-
ment, and one as reference. Only if the optical path difference of the two paths is smaller than the 
coherence length, interference occurs; it becomes maximal for a minimal path difference. So the 
sought depth value is found by shifting the scene along the measurement path, respectively varying 
the length of the reference path and determining the position of maximal interference. 

What has been said in the previous section about ToF rangefinders, especially about their hardware 
requirements, also applies to interferometric ones; the main difference is that the latter tend to 
achieve a much higher accuracy – typically fractions of the wavelength of light – over a much 
smaller effective depth of field. 
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Figure 14: The principle of Moiré interferometry. 

3.3.3 Moiré Interferometry 
Moiré interferometry or Moiré range imaging ([Takasaki 1970], [Sanz 1989], [Wechsler 1990], 
[Klette et al. 1996]) is another example of interferometry. With the most common set-up for this 
active, multi-directional ranging method, a scene is illuminated by a projector and imaged with a 
black-and-white camera. Two periodically spaced gratings – one placed in front of the projector, 
the other in front of the camera lens – create interfering light signals. Assuming orthographic pro-
jection, the range data is derived from the resulting interference pattern as follows: Let the intensity 
modulation of the first grating be described by the following up-shifted sine wave of period d 

 ( )dxyxT π2sin2121),( +=  (32) 

If the projector emits a constant illumination, the resulting modulated irradiance Ep(x, y) at height 0 
has the form k⋅T(x,y) as shown in figure 14. If the surface is sufficiently matte, the reflection of the 
illumination is proportional to the cosine between the illumination direction and the surface normal. 
We can equate the change in illumination due to the nonzero height ∆z of a given surface patch 
with that caused by a horizontal offset of ∆z⋅tan(α) at the zero height level. Consequently, we may 
describe the reflected illumination Er(x, y) as (assuming a negligibly varying albedo of the scene): 

 ( )( )( )( )dyxzxkyxEr ,tan2sin1cos),( ⋅++⋅⋅= απγ  (33) 

If the cosine term changes negligibly compared to the illumination, we can include it into the con-
stant factor k. Placing a second identical grid in front of the camera yields the following image: 
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The second term of the above product is due to the effect of the second grid on the image forma-
tion; the sum results from applying the identity 2 sin(x) · sin(y) = cos(x + y) - cos(x - y). The last 
term of the sum depends exclusively on the depth of the scene patch. If the first three terms are 
above the resolution limit of the camera, we can identify each iso-brightness contour with a contour 
of constant depth. Adjacent fringes of minimal and maximally brightness then differ in depth by 
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This permits extracting relative depth information from Moiré images starting out from an arbitrar-
ily chosen contour. This process is called phase unwrapping and requires a continuous scene sur-
face. It is not possible to tell the sign of the depth change between two adjacent iso-depth contours, 
i.e. to know which one is closer to the camera. A wrong decision with respect to the sign (or some 
other mistake) during unwrapping propagates into all subsequently unwrapped phases.  

The main appeal of Moiré ranging is that it allows a human observer to directly “see” range values: 
with Moiré interferometry an image exhibits a striped pattern where contours of minimal or maxi-
mal brightness represent surface curves of equal depth. Its relative spatial resolution depends in one 
dimension on the number of visible contours (i.e. on the period d and the scene) and on the resolu-
tion of the camera in the other. Moiré interferometry is principally suited for real-time ranging of 
moving objects because only a single image has to be acquired and evaluated; its data-rate can 
therefore be very high. As ambient illumination can affect the measurement drastically, it has to be 
controlled. All in all, even though Moiré interferometry gives highly accurate range data up to the 
micron range, it is rarely used as generic, automated ranging technique, primarily because of its 
ambiguous output and its special hardware requirements in form of the gratings. 

3.3.4 Depth-From-Focus and Depth-From-Defocus 
Depth-from-Focus (DfF) is a passive, unidirectional ranging method (e.g. [Horn 1968], [Wechsler 
1990], [Jähne 2002]). As discussed in section 2.2.2, only a single object-side plane of constant 
depth is in focus when acquiring an image with a lens camera. Points outside of this plane are im-
aged as blur circles. DfF methods acquire a series of images for distinct image plane distances, 
focal length settings or camera-scene distances. Determining for each point of the scene the image 
of best focus yields the point’s depth as the corresponding object distance. Of course, the scene has 
to have an appropriate visible structure whose blurring can be exploited. If it does not, a suitable 
pattern can be projected on it; depth-from-focus then becomes an active, but still unidirectional 
ranging approach. If camera and projector share the optical path, and if the depth of field is very 
small as with microscopy, only points in the focal plane are well-illuminated. So segmenting them 
becomes trivial. This is the principle of confocal microscopy, which also solves the problem of 
acquiring sharp intensity images of non-flat objects with a microscope. 

The variation Depth-from-Defocus DfD (e.g. [Rioux and Blais 1986], Ens and Lawrence [1993]) 
exploits the degree of blurring (e.g. the blur circle radii) for ranging. This can in principle be done 
given a single image, but for reasonably accurate results at least two images taken with different 
settings are needed whose relative blurring can be compared. Nayar et al. [1996] describe a corre-
sponding active approach that achieves 30 fps for a resolution of 256 by 240 pixels (which could be 
increased easily) and millimeter accuracy in for a (ranging) depth of field of 300 mm. Applying 
this approach to dynamic scenes again requires at least two lens-camera combinations that share the 
same optical path. Nayar et al. [1996] also need to project their illumination through this path. 

DfF is able to produce dense and highly accurate depth maps (up to microns) if the depth of field of 
a lens is very small. However, it requires a large number of image acquisitions. It is thus primarily 
suited – and employed – for obtaining highly accurate range images of static, microscopic scenes. 
DfD is well suited for real-time ranging with high-resolutions (implying a high data rate). Its accu-
racy, though, tends to be significantly worse than that of DfF. As stated above, with moving scenes 
it requires at least two cameras with a common optical path, i.e. a fairly complicated optical set-up. 
A fundamental disadvantage of both variations is a limited working space (unless the then neces-
sarily static scene or the camera are moved mechanically): According to equation 18, the principle 
cannot be applied to object distances much larger than the longest focal length of the system, be-
cause then the effect of defocusing quickly becomes almost imperceptible and the accuracy of DfF 
and DfD degrades correspondingly. 



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 25

p

q

1.0

p

q
0.1

0.2
0.3

0.1

0.9

0.2
0.3

0.8
0.7
0.6
0.5
0.4

p

q

p

q

 
Figure 15: Reflectance maps of a Lambertian surface illuminated from (0, 0, 1)T and from (1, 1, 1)T 
drawn as function plots and as iso-brightness contours. 

3.3.5 Photometric Stereo 
As discussed in section 2.1, there is often a strong dependency between the orientation of a surface 
and its apparent brightness. With both a remote viewer and a remote illumination, that is in the case 
of parallel projection, the viewing and illumination direction are approximately constant over a 
scene. If a scene has furthermore a fairly homogenous surface, the orientation is the sole factor 
determining how bright each surface patch appears in the image. In the following, we investigate if 
it is possible to exploit this brightness-orientation dependency for ranging. To this end, we first 
need to introduce the concepts of the gradient space and of the reflectance map. 

Given a (continuous) depth map and a scene point S with coordinates (x, y, z(x, y))T, the straight 
lines (x, y, z(x, y))T + λ(1, 0, ∂z(x, y)/ ∂x) T and (x, y, z(x, y))T + µ(0, 1, ∂z(x, y)/ ∂y) T lie in the 
tangent plane of S, provided the total derivative of the depth map exists for S. This follows directly 
from the definition of the (partial) derivative. The cross product of the directional vectors of the 
two straight lines is consequently normal to the tangent plane. We can therefore represent the sur-
face orientation of a patch imaged at (x, y) as this cross-product: 
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We define the two-dimensional gradient space as the set of all real-valued pairs (p, q), where (p, q) 
is the shorthand notation for the surface normal (-p, -q, 1)T. This allows expressing the condition 
“surface orientation determines brightness” as 

 ),()),(),,(()),(,),((),( qpRyxqyxpRyyxzxyxzRyxI ==−−= ∂∂∂∂  (37) 

where R is a mapping of the set of orientations into the set of brightness values. We call such a 
function R(p, q) reflectance map [Horn 1977]. Its range, the set of brightness values, is typically 
normalized in some way, usually to the dimension-less interval [0.0, 1.0], where 1 represents the 
maximal brightness. The simplest example of a reflectance map is a Lambertian surface illuminated 
by a point source from (-ps, -qs, 1)T. As shown in section 2.1.2, such a surface’s radiance is propor-
tional to the cosine between the illumination direction and the surface normal. With k as constant 
normalization factor, its reflectance map therefore follows as: 
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This equation is clearly not invertible; for all irradiance values but the maximum 1.0, the set of 
solution forms a conic section in the gradient space. Figure 15 shows Lambertian reflectance maps 
for two illumination directions with selected iso-brightness contours. A way to come to a unique 
solution for the remaining irradiances is to move the light source to several locations, i.e. to use 
several distinct reflectance maps. Each one gives a conic section in the gradient space. Unless they 
coincide, two conic sections intersect at two points only [Horn 1986]. By assuming a smooth sur-
face, it is usually possible to rule out the incorrect orientation. Alternatively, a third illumination 
direction directly yields the orientation uniquely, and one more robust against noise on top. In the 
special case of a matte surface, it also allows coping with locally varying albedo [Horn 1986]. 

This active, multidirectional approach called photometric stereo [Horn 1986], [Klette et al. 1996] 
can be applied not only to Lambertian, but to all scenes whose reflectance map contains suitable 
iso-brightness contours. Its relative spatial resolution is typically that of the camera used. Based on 
two or three images as above, it is only suited for static scenes. This constraint could be disposed of 
by using a different spectral interval for each illumination and a multi-spectral camera, at the cost 
of increasing the otherwise modest hardware requirements of photometric stereo. In any case, the 
reflectance map of the scene has to be known a priori. It is in some cases possible to obtain it ex-
perimentally, e.g. by analyzing an object of an identical material and with known surface orienta-
tion. However, – with the exception of some special cases – photometric stereo cannot deal with a 
locally varying albedo, let alone with non-constant reflectance properties as they occur with most 
scenes due to specular reflections or distinct surface materials. It also obtains the surface orienta-
tion only. Under the assumption of a smooth surface, the orientation information can in principle be 
converted to shape data. Klette et al. [1996] discuss several solutions to this problem. With all of 
them, the conversion is quite time-consuming, resulting in a fairly low data rate. Of course, due to 
the parallel projection, the output can at best be a depth map containing an unknown constant depth 
offset and an equally unknown scale factor. Even if we adapt photometric stereo to perspective 
projection, we cannot get rid of the latter. For this reason, we refrain from quantifying the accuracy 
of photometric stereo; it is certainly not the method of choice to obtain accurate depth maps in real-
world environments, especially as it furthermore requires a controlled illumination. 

3.3.6 Shape-from-Shading 
Photometric stereo requires at least two images of a scene, each taken with a distinct illumination 
direction. Yet humans are often able to conclude the shape of objects from a single photograph. 
The corresponding active or passive unidirectional ranging technique Shape-from-Shading (SfS, 
e.g. [Horn 1977], see [Zhang et al. 1999] for a survey and comparison of six algorithms) tries to 
reconstruct the shape of an object given a single image. As before, we assume constant viewing and 
illumination directions, that the surface orientation determines the brightness and that the reflec-
tance map is known. We have already seen that the reconstruction problem is ill-posed without 
further constraints; for a Lambertian reflectance map, we do not obtain a single solution for a given 
shading, but a conic section of the gradient space, for a linear one a straight line etc. We therefore 
assume the scene surface to be smooth. In that case, there are three different types of approaches to 
SfS: 

Propagation Approaches represent the earliest SfS methods [Horn 1977]. They propagate the shape 
information along characteristic curves starting out from surface points with known orientation. We 
can comprehend this principle best by considering a linear reflectance map R(p, q) = h(ap + bq), 
where h is known and invertible. From a given starting point S located at (x0, y0, z0)T, we take a 
small step into the direction θ = arctan(b/a). We then compute the directional derivative m of the 
depth map z(x, y) at the point S in that direction as 
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where the last term contains only known quantities. Elementary calculus tells us we can reconstruct 
a smooth function up to a constant given its derivative. Consequently, we are able to recover the 
1D depth map z(ξ) relative to the starting point z0 in the direction θ since we know its derivative: 
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Such a 1D depth map is called characteristic curve. Given an initial curve of known depth values 
that is nowhere parallel to the direction of the characteristic curves, we use its points as starting 
points for the latter and obtain the shape of the whole scene by combining all characteristic curves. 

It is possible to generalize the propagation approach from linear to arbitrary reflectance maps. In 
that case, we also need to know the orientation along the initial curve, i.e. we need p and q besides 
(x0, y0, z0)T

, the reflectance map R(p, q) and the image I(x, y). Given that, we compute Ix, the partial 
derivative of equation 37 with respect to x, by applying the chain rule for the partial derivative: 
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Analogously, we obtain Iy = sRp + tRq, where t is the second partial derivative of z with respect to 
y. We now have two equations, plus the image and the reflectance map gradient; we cannot gener-
ally solve for the three unknowns r, s and t with them, but we are again able to solve for a special 
direction ξ. Let's consider an infinitesimal step (dx, dy)T in the image plane in the direction of the 
gradient of the reflectance map, i.e. (dx, dy)T = (Rp, Rq)T·dξ. The change in p caused by this step is 
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In the same manner, we obtain Iy dξ for the change in q. This implies a small step in the direction of 
the reflectance map gradient corresponds to a change in orientation proportional to the image gra-
dient. This allows reconstructing the surface starting out from the initial curve and moving along 
these now arbitrarily shaped characteristic curves along the point-wise reflectance map gradient. 
Horn [1986] summarizes this fact with five ordinary first-order differential equations: 
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The disadvantage of propagation methods is that they propagate and thus accumulate errors; for 
that reason they have to be considered as unstable if the intensity data is noisy [Bakshi 1994]. In 
the latter, very common case, they cannot be relied upon to produce usable shape data. 

Local Methods ([Pentland 1984], [Lee and Rosenfeld 1985]) infer the orientation of surface patches 
by analyzing the perceived intensity and its first two derivatives over small neighborhoods. They 
are motivated in part by the theory that biological visual systems carry out such a local analysis of 
images. They assume local neighborhoods to have certain elementary geometries, typically that of 
a sphere, and Lambertian reflectance. Given these strong constraints, they operate without further 
knowledge, specifically without a reflectance map. They also cope well with non-linear transforma-
tions of the image irradiance as they are often introduced in the digital imaging chain, as long the 
transformations are smooth and monotonic. Finally, they usually forgo iterative computations and 
are consequently potentially faster than the other approaches. Their main disadvantage is that they 
add a further, strong constraint (for which surfaces do local patches approximate a sphere?) to the 
already heavy restrictions of shape-from-shading and further need to rely on noisy 2nd derivatives. 
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Global Minimization Methods ([Horn 1986], [Klette et al. 1996], [Zheng and Capella 1991]) de-
termine the shape of a scene by computing the shape that minimizes an error term also called en-
ergy or cost function. The latter is usually a weighted sum of a data or shading-consistency compo-
nent and a surface smoothness component such as (with p and q shorthand for p(x, y) and q(x, y)): 

( ) ( ) ( ) ( )∫∫∫∫ ∂∂∂∂∂∂∂∂ ++++−= dydxyqxqypxpdydxqpRyxIe 22222)),(),(( λ  (44) 

This approach of stabilizing an ill-posed problem by explicitly introducing consistency with a di-
rect model or a desired property, traditionally smoothness, as an additional quantitative objective 
for (usually least-square) optimization is referred to as regularization. Of course, choosing appro-
priate functionals and suitable weights for the regularizing term is both very important and tricky. 
Several additional or alternative expressions of the energy function have been proposed such as an 
integrability component enforcing zxy = zyx ([Zheng and Capella 1991]) or the unit normal con-
straint ([Horn and Brooks 1989]). In any case, the shape minimizing the weighted sum of the func-
tionals is calculated. This approach to SfS thus turns out to be an optimization problem and is 
solved using one of the classic general-purpose, typically iterative optimization techniques. A prob-
lem of the latter is that they – besides being computationally expensive - usually need good initial 
values; otherwise they tend to get stuck in some local minimum or to not converge at all. 

What has been said regarding the aspects, especially the constraints, of photometric stereo also 
applies to its sibling SfS. Moreover, for SfS mutual illumination and noise present an even greater 
problem. So Forsyth and Zisserman [1991] conclude that it is impossible to “obtain veridical dense 
depth or normal maps from a shading analysis”. Furthermore, all but local approaches require at 
least some reasonable initial values, which are generally not available. Horn [1986] discusses ways 
to obtain them; all of them have their major drawbacks and limitations. All in all, our conclusion 
concerning photometric stereo applies even more pronouncedly to SfS: it is an interesting area of 
research, but currently by no means a technique for obtaining accurate range data in practice. 

3.3.7 Shape from Motion 
If objects move relative to a camera or vice versa, it is under certain circumstances possible to de-
rive their shape from the resulting image sequence or, more formally, time-varying image I(x, y, t). 
The corresponding active, multidirectional ranging approach is called shape-from-motion or dy-
namic stereo ([Wong and Pugh 1987], [Klette 1996], [Negahdaripour 1998], [Jähne 2002]). 

The simplest case is that of a moving camera and a static scene [Roach and Aggarwal 1980]. Let’s 
assume it is possible to identify n > 0 scene points in each of the m > 1 images corresponding to m 
different points of view. This yields 3n - 1 + 6(m - 1) unknowns; 3n because each of the n scene 
point has 3 coordinates, 3n - 1 because one z coordinate can be fixed arbitrarily as in any case only 
dimensionless shape data can be obtained. Each of the m views results in 6 unknowns (3 rotation 
and 3 translation parameters, see section 2.2). By choosing the first viewpoint as reference point, its 
rotation and translation parameters can be set to an arbitrary value, so all in all the camera parame-
ters give 6(m - 1) unknowns. Each image provides 2n equations, i.e. the total number of equations 
is 2nm. In principle, already 5 points in two images (20 equations) suffice to determine the camera 
motion as well as the scaled coordinates of the scene points (20 unknowns), i.e. the shape. Of 
course, additional points will make the results more robust against noise or collinear equations. 

Clearly the fundamental problem is to track scene points over the distinct images. This task is 
called correspondence problem of shape-from-motion. It is notably more difficult than the one of 
static stereo vision discussed below as the epipolar constraint does not apply and the search space 
for correspondence is consequently two-dimensional. A popular approach to solve it is based on 
two concepts, the motion field and the optical flow. 
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The motion field is a time-varying vector field formed by assigning a velocity or local displace-
ment vector to each or selected image points in an image sequence. Such a vector connects the 
different images of a given scene point S. If S is imaged at the pixel (x, y) at the time ti and at  
(x’, y’) at the time ti+1, then the displacement vector at the time ti is given by (x’ - x, y’ - y). With 
other words, the motion field is the formal solution of the correspondence problem. 

What we see in the images, however, is the optical flow, the apparent motion of brightness patterns 
in time-varying images [Horn 1986]. Objects that move in the front of a camera can give rise to 
optical flow, but a varying illumination, moving objects outside of the scene that cast a shadow or 
other effects may do so as well. However, it is all that is available to solve the correspondence 
problem for unstructured scenes. The basic assumption of shape from motion is that the optical 
flow is caused by the object movement and approximately identical to the motion field. That being 
said, it becomes immediately obvious that shape-from-motion is inherently unreliable and inaccu-
rate. We therefore discuss a representative approach to determine the optical flow only briefly.  

Let’s consider the intensity of the image point (x, y) at time t. With u(x, y) and v(x,y) as the x, re-
spectively y component of the optical flow/motion field, it is by definition equal to the intensity at 
the point (x + udt, y + vdt) at the time t + dt. Expanding the resulting equation into a Taylor series 
and ignoring the higher, non-linear terms yields the following constraint on the optical flow: 
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where we obtain the latter expression by dividing the former equation by dt and exploiting the iden-
tity u = dx/dt, respectively v = dy/dt for an infinitesimal time span dt. We have thus established a 
linear dependency of u and v, i.e. not a unique solution for the optical flow, but one with only one 
degree of freedom. However, that is all we can obtain locally, a fact known as the aperture problem 
of the optical flow. As with shape from shading, we introduce a constraint to arrive at a solution, 
namely we assume the motion field and thus the optical flow to vary smoothly almost everywhere. 
Just as in the case of the global optimization approaches to shape from shading, we determine the 
optical low (u(x, y), v(x,y)) as the function minimizing the integral  
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where the first term enforces the constraint on the optical flow derived above and the second repre-
sents a smoothness component (of course there are again many other ways to formulate the energy 
function). With other words, we again choose regularization to stabilize an otherwise under-
constrained problem. This way we arrive at a solution, but one accompanied by the abovemen-
tioned problems and disadvantages of regularization. However, other than with shape from shad-
ing, there is a more or less realistic chance of coping with some degree of discontinuity of the opti-
cal flow, for instance at object borders, by using discontinuity-preserving regularization. There are 
two important approaches to this task (see e.g. [Jähne 2002]); the first is splitting up the integration 
area into several separate integration areas, each of which is smooth. Of course, determining such 
areas is a hen-egg problem that is typically solved via a complex iterative procedure. The second 
way to tackle this problem, called controlled smoothness, is to modify the smoothness term accord-
ing to criteria such as local signs of discontinuity. For example, if there is an edge indicator such as 
a zero crossing of the Laplace-filtered image, the algorithm might attenuate the smoothness com-
ponent proportional to the degree to which the depth discontinuity cues are present or even ignore it 
altogether.  

We again conclude that shape-from-motion is a promising research subject, but at the current state 
of the art not suited for reliably obtaining accurate range images in real-time. We refrain for this 
reason from giving figures regarding aspects such as the achievable accuracy or data rate. 
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Figure 16: The principle of triangulation: Given a triangle ABS, we can deduce the spatial position 
of the point S from the length of the basis AB and the two adjoining inner angles α and β (left). All 
other settings being equal, the depth error resulting from a given fixed error in the angle values 
decreases with growing baseline and increases with the object distance (right). 

3.3.8 Triangulation 
A triangle is defined by the length of one of its sides and two of its inner angles. We can exploit 
this fact for measuring distances or spatial coordinates of a point of interest S. To that end, we ob-
serve S from two known distinct positions A and B. These two points define a line (segment) AB, 
the so-called baseline, basis or separation. We then measure the angles enclosed by the line of 
view from each position to S and the basis as illustrated in the left part of figure 16. As the points 
ABS form a triangle, and as we know the length of the side AB and the two adjoining angles, the 
spatial position of S is determined uniquely. It can be computed easily, e.g. by intersecting the two 
lines of view. This simple measurement principle is called triangulation. It has been employed to 
measure distances e.g. for astronomy or geodesy for a long time. We are able to trace its use back 
to at least 1533 when Regnier Gemma Frisius proposed in his Libellus de Locurum to apply trian-
gulation to accurately locate places. 

We discuss the accuracy of ranging by triangulation in detail in chapter 5; for now, we observe 
with the help of figure 16 that the primary source of inaccuracy is an incorrect measurement of the 
two angles, given it should be possible to determine the baseline fairly accurately off-line. The 
depth error resulting from an incorrect angle depends on two factors, the object distance and the 
length of the basis: Figure 16 illustrates that, all other parameters remaining unchanged, the depth 
error decreases with growing separation and increases along with the object distance. So it seems 
that with respect to range accuracy, a triangulation system should be positioned as close as possible 
and should have a baseline as large as possible. One has to be careful with this reasoning as it ig-
nores certain aspects. However, we show in chapter 5 that it holds true for most cases of practical 
interest and we will consequently employ it as helpful rule of thump in the following. 

The inherent downside of any triangulation technique is the problem of occlusion or missing data; a 
system can obtain range data only for scene points visible from both vertices A and B. Therefore 
triangulation systems are intrinsically better suited for scenes with gradual changes in depth and 
less so for scenes with significant and frequent depth gaps. Clearly the occlusion problem aggra-
vates as the slope of the two rays of views become more dissimilar, that is with increasing baseline 
and as well with decreasing object distance. Consequently, we cannot reconcile accuracy and 
minimal occlusion because they are inversely related; there is no set-up that optimizes both aspects. 
It depends on the task at hand to which criterion we attach greater importance.  

In sum, we cannot give a fixed figure on the accuracy of a given triangulation-based system; it 
depends strongly on the chosen components, the set-up and the object distance. Also, accuracy 
cannot be considered by itself: a wide baseline makes a triangulation system very accurate, but at 
the same time occlusion effects render it unusable but for flat objects. 
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Figure 17: With stereo vision, images of a scene are taken from two or more distinct viewpoints; 
the spatial position of scene points such as S is then determined by locating the two image points S1 
and Sr where S is imaged and by intersecting the two resulting lines of view. 

3.3.9 Stereo Vision 
Precisely how humans manage to perceive objects in depth is still an open question. What is known 
is that we derive the three-dimensional structure of our world at least to some extent by comparing 
the images acquired with the left eye to the ones acquired with the right eye [Horn 1986]. The gen-
eralization of this process, the acquisition of two (or more) images of a scene from different points 
of view and their transformation into a three-dimensional scene model is called (static) stereo vi-
sion. It has piqued the interest of researchers from early on, not only because it provides us with 
some insight into the way we “see in three-dimensions”, but also because it is a useful passive mul-
tidirectional technique to acquire range data (e.g. [Marr and Poggio 1976], [Marr and Poggio 
1979], [Grimson 85], [Ayache 1991], [Cochran and Medioni 1992], [Faugeras 1993], [Zitnick and 
Kanade 2000], [Hirschmüller 2001], [Porr et al. 2002], [Lin 2002], see [Scharstein and Szeliski 
2002] for an up-to-date comparison and evaluation of 22 stereo algorithms).  

In this section, we discuss stereo vision from the latter perspective. We first outline its principle. As 
stereo vision is per se an ill-posed problem, algorithms have to impose constraints on the set of 
solutions to turn it into a well-defined one. We discuss the most common constraints before we 
move on to a review of existing stereo algorithms organized by their algorithmic principles. Next, 
we briefly consider some variants of stereo vision. We conclude the chapter with an evaluation of 
the principal advantages and shortcomings of stereo vision as ranging technique. 

3.3.9.1 The Principle of Stereo Vision 

The first step of all stereo vision algorithms is to acquire the images to be compared. Stereo sys-
tems obtain them by using several distinct cameras, a single moveable camera such as one mounted 
on a mobile robot or by employing mirrors. In the following, we assume two distinct cameras (bin-
ocular stereo) as the most intuitive and most frequently used set-up, but everything being said prin-
cipally applies to the other set-ups as well, including ones with more cameras. We further assume 
to know the internal optical and geometrical parameters of the camera(s) and their spatial position 
and orientation. Finally, we do not permit any movement between the acquisitions of the two im-
ages. To this end, either the two cameras have to be well synchronized, or the scene has to be static. 
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After the image acquisition, stereo algorithms register or match both images: they identify pixel 
pairs, one pixel from the first, the other one from the second image, that correspond to the same 
scene point. We call two such pixels a conjugate pair and refer to the task of matching as the cor-
respondence problem (of static stereo vision). Stereo algorithms typically approach it by designat-
ing one image as reference image and by solving it for its pixels or certain of its features. The cor-
respondence problem represents the core of stereo vision – if it is solved, the task of stereo vision is 
essentially solved and vice versa. It is, however, fundamentally difficult to solve, and in the general 
case machines can still not solve it infallibly on their own. This is despite the fact that it is essen-
tially a one-dimensional problem: Given an image point such as Sr, its conjugate pixel Sl in the 
other image is known to lie on the projection of the line of view of Sr onto the image plane of Sl 
(figure 17) for simple geometric reasons. This circumstance is often referred to as the epipolar 
geometry of stereo vision because each scene point together with the two optical camera centers 
defines an epipolar plane in space. Accordingly, we call the intersection of an epipolar plane with 
an image plane epipolar line; we are therefore able to rephrase that Sl is known to lie on the epipo-
lar line defined by Sr, a fact known as the epipolar constraint of stereo vision. 

Which other constraints reduce the complexity of the correspondence problem and how algorithms 
solve it follows below in detail. For now, let’s assume the system identified a conjugate pair. It then 
computes the coordinates of the pair's common scene point by intersecting the two lines of views, 
i.e. via ray-ray triangulation. This is most easily done if the system set-up adheres to the standard  
geometry shown in figure 17. In its case, the two cameras have the same effective focal length, 
orientation and position, the only difference being that the second camera is translated along the x-
axis common to both camera coordinate systems; the baseline b, the straight line connecting the 
two optical centers, is then a segment of this x-axis. With the standard geometry, the cameras ac-
quire rectified image pairs, i.e. images with which epipolar lines coincide with image rows (or col-
umns, but we focus on the former case in the following). The standard geometry is the set-up of 
choice if a scene is far away (relative to the baseline length). For close-range stereo, the cameras 
are usually rotated so that their optical axes converge and come closest within the center of the 
scene. This yields a more apt working space at the cost of non-rectified images. It is always possi-
ble to simulate the standard geometry for set-ups of practical interest by computationally trans-
forming images onto a suitable common virtual image plane. With other words, we may assume it 
without loss of generality. In its case, a conjugate pair provides three simple equations containing 
three unknowns, namely the coordinates (xs, ys, zs) of the imaged scene point S within the so-called 
cyclopean coordinate system, a coordinate system of a virtual camera exactly in-between and 
aligned with the two real ones: 
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Solving these equations for the three unknown coordinates xs, ys and zs yields: 
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With the standard geometry, the depth of a scene point is inversely proportional to the image plane 
distance xl - xr of its conjugate pair, the so-called disparity or parallax. We can easily convert the 
disparity into a depth value. Repeating this calculation for all matched items of the reference image 
transforms it into a – more or less dense – depth map. 

In a next step, most algorithms employ interpolation to obtain disparity estimates for the pixels for 
which they could not establish it directly. Almost any of the classical interpolation methods can be 
used as long as special care is taken at depth discontinuities; ideally, an approach should segment 
the depth map into regions of continuous disparity and perform a separate interpolation for each 
region. Unfortunately, there is no reliable, generic way to determine such regions. 
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3.3.9.2 The Constraints of Stereo Vision 

Stereo vision is – from a mathematical point of view – an ill-posed problem; algorithms have to 
impose constraints on the set of solutions to turn it into a well-defined one with a unique and stable 
solution. They derive these constraints – often implicitly – from a model of the world and thus the 
scene. For example, Marr and Poggio [1976] conclude from the cohesiveness of matter that “only a 
small fraction of the area of an image is composed of boundaries that are discontinuous in depth”. 
Constraints also contribute to an efficient solution of the correspondence problem, e.g. by narrow-
ing down the search space. Its constraints are consequently a central aspect of a stereo algorithm; 
the following list discusses the most common constraints besides the epipolar one: 

• Uniqueness: A given image item corresponds to at most one item in the other image. Lin 
[2002] differentiates between one-way (each reference item is assigned at most one match), 
asymmetric two-way (one-way uniqueness plus distinct reference items never share the same 
match) and symmetric two-way uniqueness (both images serve as reference images, both dis-
parity maps respect asymmetric two-way uniqueness). The classic contraindicating example for 
the uniqueness constraint given by Marr and Poggio [1976] is that of a pixel receiving light 
both from a fish and the bowl it swims in, i.e. that of (semi-) transparent objects. 

• Photometric Compatibility or Color Constancy: Two pixels form a conjugate pair only if 
they are photometrically similar, that is if their intensity or color values are sufficiently close 
according to some metric. As discussed in section 2.1, this assumption applies only to certain 
surfaces, i.e. it does not apply in general and can be completely off with specular reflection. 

• Geometric Similarity: Two conjugate features such as two line segments need to be geometri-
cally similar: that is, their length, their orientation etc. need to be reasonably close. This con-
straint does not hold in all cases: E.g. a reflection edge of the scene might very well show up as 
a single edge segment in the one image, but be split up into several separate segments in the 
other image because of occlusion or imaging noise.  

• Continuity or (Disparity) Smoothness: The disparity varies smoothly almost everywhere. 
Due to the discrete nature of images the meaning of smoothness (or continuity, the two are 
used interchangeably in the literature in this context) is not well defined; the two are best read 
as "varying fairly slowly, with a low frequency compared to the sampling frequency". 

• Figural Continuity: The disparity varies smoothly along image features such as edges. 

• Disparity Limit: Only matches resulting in a disparity within a given interval are permissible. 
This constraint is frequently used with close-range stereo as in its case only a certain range of 
depth/disparity values can realistically occur, e.g. because of known depth of field limitations. 

• Disparity Gradient Limit: The disparity gradient describes the rate of change of disparity 
from the cyclopean perspective. Given a conjugate pair (xl, yl) - (xr, yr), its cyclopean coordi-
nates are defined as ((xl + xr)/2, (yl + yr)/2). We define the disparity gradient Γ of two pairs (xl, 
yl), (xr, yr) and (xl2, yl2), (xr2, yr2) as their ratio of disparity difference to cyclopean distance: 
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number of psychophysical experiments, Pollard et al. [1985] conjectured that the human vision 
system imposes an upper limit on it. Such a limit effectively restricts the maximal tilt of a 
scene surface with respect to the viewer. For a given meaningful limit, it is easy to construct a 
scene that violates this constraint, e.g. by tilting a planar object adequately. 

• Ordering (Preservation): The spatial order of image items along epipolar lines is the same for 
both images: If the item A is to the left (to the right) of the item B in one image, it is also to the 
left (to the right) in the other image. This constraint tends to be violated e.g. with small objects 
residing in front of other objects. It always holds with a single continuous surface as scene. 
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3.3.9.3 Area-Based Stereo Algorithms 

The most direct approach to the correspondence problem – predicated upon the photometric com-
patibility constraint – is to correlate intensity or color values. In principle, an algorithm could at-
tempt to match each pixel with its photometrically most similar counterpart. However, the discrete 
and noisy character of real images renders such an approach unreliable. With continuity, adjacent 
pixels have by definition similar disparity. Clearly in that case groups of adjacent pixels tend to be 
much more distinctive than single pixels. The widely used area-based stereo algorithms presume 
distinctive enough to allow determining correspondence reliably: they compare and match local 
brightness patterns, usually regularly sized blocks (windows) of pixels. 

How should the window size be chosen? As a coarse rule, the smaller the window size, the less 
computational effort an algorithm has to spend for matching. So a small window seems to be the 
best choice if efficiency is of relevance. However, such windows often do not contain enough in-
formation to determine correspondence dependably; large windows are more likely to do so. At the 
same time for all but fronto-parallel surfaces the disparity changes over a given window, typically 
smoothly, but at object borders also abruptly. Area-based approaches tend to smooth this disparity 
variation and to respond to discontinuities with surface fattening or shrinkage: surfaces of high 
brightness variance extend across occluding boundaries into adjacent surfaces of lesser variation. 
Finally, even given otherwise perfect conditions, area-based approaches can end up with a false 
match because with a non-constant disparity the brightness distribution of one window is a spatially 
condensed/expanded/or more complexly transformed version of the other, respectively partially not 
related at all. All the latter effects become more frequent and severe with increasing block dimen-
sions. Most importantly, the latest effect implies that a large window size is not even a means to 
achieve a crude but reliable solution of the correspondence problem.  

All in all, there is no universal answer to the above question; the sizes recommended in the litera-
ture vary accordingly strongly. A resort is to use windows of variable dimensions that are adapted 
according to local intensity variations alone ([Levine et. al. 1973]) or in combination with local 
disparity estimates ([Kanade and Okumoti 1996]). However, this technique is computationally 
expensive, which wipes out the very benefit of an area-based approach, its efficiency. So Fusiello 
et al. [1997] chose the via media of employing several windows of distinct preset sizes. In any case, 
such modifications alleviate, but cannot solve the problems inherent to a window-based approach; a 
truly useful adaptive approach would need to know the disparity values, i.e. the solution to the 
problem it intends to solve. 

Irregardless of the chosen window size, all area-based algorithms quantify the similarity of window 
pairs by computing some kind of statistical correlation coefficient such as the sum of squared in-
tensity (or color) differences (Kanade et Okutomi [1996]), the sum of absolute differences (e.g. 
Hirschmüller [2001]) or the normalized cross correlation [Cochran and Medioni 1992]. Porr et al. 
[2002] operate in the frequency domain: they use Gabor filters, localized frequency filters, to corre-
late windows via the phase difference of their filter responses. The motivation for the latter ap-
proach is its parallel efficiency and its relevance to the study of human stereo vision given that such 
phase-based stereo computations are believed to take place in the visual cortex of mammals. 

To become more robust, some algorithms transform the blocks before computing correlation coef-
ficients; respectively, such transforms are part of the coefficient as with the normalized cross corre-
lation. Most such transforms are parametric, that is based on intensity distribution related statistical 
parameters, for instance the sample mean or the variance of a window. Less frequently used are 
non-parametric local transforms (Bhat and Nayar [1998] or Zabih and Woodfill [1994]) that do not 
rely on such distribution parameters. Examples are rank filters that sort the local intensity values 
and map a window on the ordinal rank of its central pixel or on a matrix whose entries represent the 
ordinal rank of the corresponding pixels. Such transforms tend to cope better with non-linear 
monotone intensity transformations between the two images, with outliers and with depth disconti-
nuities, at a higher computational cost.  
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To find a match for a given reference block, area-based algorithms calculate the correlation coeffi-
cient for a set of candidates narrowed down by constraints such as the epipolar or the disparity limit 
constraint. They then match the reference block with the counterpart of maximal correlation. If 
several maxima occur, they typically cull which of them receives the most support from the local 
neighborhood according to the hypothesized scene model, e.g. which results in the smoothest dis-
parity change. Given a match, the resulting disparity is either assigned to all pixels of the reference 
block or only to its central pixel. Most implementations ignore that some blocks might not have a 
match because of occlusion; only few are reported to try to identify such blocks and leave them 
unmatched. Exemplary methods for the latter approach are bi-directional matching, i.e. using both 
images as reference image and keeping only matches consistent between the two disparity maps, or 
discarding blocks for which even the best match has a low correlation coefficient. 

Some area-based approaches operate in a coarse-to-fine manner, i.e. apply the steps described 
above iteratively on an image pyramid created by (typically Gaussian) smoothing and subsequent 
sub-sampling of the original images at decreasing rate (e.g. [Koschan et al. 1996]). There are sev-
eral distinct strategies of dealing with the results of previous steps; matches are simply kept, used 
for guiding/constraining the next finer stage or only consulted if several equally likely match can-
didates occur at a finer stage. Reported advantages of this hierarchical approach are an increased 
robustness and efficiency – despite the overhead for creating the image pyramid. 

In summary, area-based methods suffer from a number of serious problems and are for that reason 
inferior to other, more sophisticated stereo algorithms (e.g. [Scharstein and Szeliski 2002]). Their 
functioning depends on the scene: They tend to produce rather poor results with scenes of signifi-
cantly non-Lambertian reflection, of strong disparity variation, with frequent depth gaps or with no 
or repetitive texture. However, they do work well with mostly fronto-parallel scenes of distinctive 
texture. Most importantly, they are very efficient, up to real-time capability, and result in dense 
depth maps; area-based methods are for that reasons primarily employed for applications such as 
teleconferencing where the combination of the latter two criteria outweighs accuracy aspects. 

3.3.9.4 Feature-Based Stereo Algorithms 

Feature- or token-based methods ([Marr and Poggio 1979], [Grimson 85]) do not rely on intensity 
distributions per se, but on image features such as edge pixels, corners, edge segments, contours, 
regions or objects. Matching thus takes place on a semantically higher, more abstract level, moti-
vated in part by the theory that human stereopsis operates this way. Also from a strictly result-
oriented standpoint, features exhibit certain advantages over uninterpreted intensity data: they oc-
cur less frequently and their appearance is less affected by effects such as a view-dependent reflec-
tion, changes in perspective and noise in general. Moreover, many attributes such as the edge polar-
ity (low-high vs. high-low transition) can be determined robustly even given noisy conditions. 

Naturally, feature-based methods start by extracting the features from the images. This is one of the 
basic tasks of image processing and related areas; for all listed features a number of detection meth-
ods exist, most of which can and have been used for stereo vision. A classic example is edge pixel 
localization by identifying zero-crossings of the Laplacian of a Gaussian. Next, a similarity meas-
ure is computed, with edge pixels e.g. by quantifying the difference of aspects such as the direction 
or scalar norm of the gradient, the sign of the intensity change, etc. Feature-based methods typi-
cally do not assign a match by simply looking at single similarity scores; they rather strive for a 
globally consistent match according to their scene model, e.g. by enforcing disparity smoothness or 
two-way uniqueness. Respectively, this consistency is inherent to certain features; e.g. with edge 
segments, inter-row consistency (figural continuity) of the matching follows automatically. 

Feature-based approaches often operate in a coarse-to-fine manner as well. To that end, the image 
is smoothed in various degrees, starting with a large filter width that typically results in a few edges 
only and proceeding iteratively to finer scales (e.g. [Grimson 85]). The strategies of combining the 
results from distinct stages are the same as with area-based approaches; so are the pros and cons. 
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For the reasons discussed above, feature-based algorithms tend to be more reliable than area-based 
methods. Given that most features such as edges can be located with sub-pixel precision, they typi-
cally also produce more accurate results. Of course, feature-based algorithms have their downsides 
as well, the primary being that the scene has to exhibit the sought-for features in the first place. 
Considering edges, many scenes will not exhibit reflectivity or shadow edges. Only abrupt changes 
in surface orientation give rise to orientation discontinuity edges: corresponding feature-based ste-
reo algorithms are for that reason better suited for polyhedral objects than for spherical ones. Also, 
edges need to have a certain orientation: edges parallel to the epipolar lines are rather useless for 
determining correspondence. Furthermore, specular and occlusion edges are highly viewpoint de-
pendent and thus not only useless, but also misleading. Finally, a major reason for the effectiveness 
of feature-based approaches – the relative scarceness of features – also implies they produce only 
sparse depth maps of a-priori unknown resolution since they obtain disparity values exclusively for 
detected and matched features.  

Researches have for these reasons tried to combine feature- with area-based approaches: they per-
form the matching using both photometric information and features (e.g. [Cochran and Medioni 
1992]), giving precedence to the latter and using them as anchors that guide the area-based correla-
tion of feature-less regions of the image. 

3.3.9.5 Cooperative Stereo Algorithms 

A central weakness of area-based stereo approaches is their local nature: they typically do not con-
sider that a match at one point might support or clash with another match at a distant image point 
because of global constraints such as (two-way) uniqueness, continuity or the disparity gradient 
limit. Feature-based algorithms consider such global aspects, but produce only sparse depth maps. 
Cooperative or the related relaxation stereo methods (e.g. [Marr and Poggio 1976], [Jiang and 
Bunke 1997], [Zitnick and Kanade 2000]) combine both aspects, i.e. provide dense output and ex-
ploit the global interdependency of matches following from the world model. They do so using a 
massively parallel interactive process motivated by and modeled after certain biological nervous 
systems that master complex tasks in real-time, believed to include the human vision system. 

This cooperative process operates in the three-dimensional discrete disparity space where each 
element (x, y, d) projects to the pixel (x, y) in the left and the pixel (x + d, y) in the right image. A 
match value function L assigns each element of the disparity space a real number that indicates the 
probability that its two associated pixels form a conjugate pair. L is initialized by evaluating one of 
the previously discussed correlation functions, e.g. by assigning (x, y, d) the inverse of the squared 
intensity difference of the left image point (x, y) and the right image point (x + d, y). The coopera-
tive process then iteratively updates the match value function: During each iteration, matches dif-
fuse support for (increase the match value of) those conjugate pairs consistent with them according 
to the world model and inhibit (decrease the match value of) those that are not. E.g. for symmetric 
uniqueness, the match (xl, yl, d) inhibits all other matches within an inhibition area Ψ, that is all 
disparity space elements of the form (xl, yl, d') and (x’, yl, d + xl - x’). And for continuity, the match 
supports nearby matches (xl', yl', d') within its excitation area Φ, e.g. within a fixed-sized box in the 
disparity space. Zitnick and Kanade [2000] propose the following update of the match function L: 
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where the consistent use of the photometric similarity term L0 ensures only reasonably similar pixel 
form conjugate pairs. This process iterates until convergence of the match value function. Then 
each pixel in the left image (x, y) is assigned the disparity for which (x, y, d) is maximal. Respec-
tively, the pixel is classified as occluded if this maximum is below a certain threshold in its case. 
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With a fixed local support area, cooperative algorithms tend to blur edges; a support area limited to 
smooth surfaces would be preferable, but determining such regions is a hen-egg problem. Due to 
their three-dimensional, iterative approach, cooperative algorithms are computationally more ex-
pensive than e.g. area-based approaches; they are not suited for real-time applications on today's 
hardware. Another disadvantage is that the initial matches established during the first iteration have 
to be reasonable; otherwise the algorithm might converge not at all, or in the worst case to an incor-
rect solution. In general, however, modern cooperative stereo algorithms tend to produce dense 
depth maps of a quality superior to that of area based approaches [Scharstein and Szeliski 2002]). 

3.3.9.6 Global Optimization Stereo Algorithms 

Global optimization stereo algorithms interpret the correspondence problem in the broader context 
of the classical task of non-linear optimization. Generally spoken, they try to find the disparity 
function that – as a whole – balances the data momentarily provided by the camera best with the 
static scene model. Computationally this is done by determining the function that minimizes a cost 
or energy function made up of several competing components. Which ones depends on the respec-
tive world model, but almost all cost functions contain a data or photometric consistency term (e.g. 
the squared intensity difference of a conjugate pair) and most a continuity or smoothness term (e.g. 
the squared Laplacian of the resulting disparity map). The following distinct approaches to formu-
late and solve stereo correspondence as optimization problem have been proposed in the literature: 

Dynamic Programming (DP, e.g. [Jiang and Bunke 1997]) represents a non-iterative optimization 
scheme of discrete, combinatorial nature. It rephrases the correspondence problem as the task of 
finding the set of ordered pairs (xl, xr) that minimizes the cost function, where each xl occurs ex-
actly once (asymmetric uniqueness, there are also formulations requiring symmetric uniqueness) 
and where xl > xl’ implies xr ≥ xr’ (ordering constraint). DP is a non-iterative technique and thus 
significantly faster than the other global optimization methods discussed below. It is limited to 
optimization within a single image row. For this reason, some implementations add a post-
processing stage of propagating results between distinct rows to refine the results and identify er-
rors which e.g. inevitably occur if the scene violates the ordering constraint. According to the 
evaluation by Scharstein and Szeliski [2002], even such enhanced DP approaches are reported to be 
notably less accurate than other optimization methods. 

Graph-Based or Maximum-Flow methods are a 2D optimization scheme of discrete, combinatorial 
nature. They reformulate the discontinuity preserving minimization of the stereo energy function as 
the task of finding the minimum cost-cut or maximum flow through a network graph [Boykov et al. 
1998]. Their main advantage over other 2D optimization methods is their performance; Boykov et 
al. [2001] develop an efficient approximation algorithm applicable to stereo that provably gives 
results within a constant factor of the global minimum of the cost function. However, according to 
a recent evaluation, current implementations still miss real-time capacity by a wide margin ([Schar-
stein and Szeliski 2002]). With respect to accuracy, they are among the best stereo algorithms. 

Regularization methods (e.g. [March 1988], [Roberts and Deriche 1996]) have already been dis-
cussed in the context of shape-from-shading and the optical flow; they are formulated in a similar 
manner for stereo correspondence using the smoothness constraint for (typically edge-preserving) 
regularization. The primary weakness of regularization as a way of solving stereo vision is – be-
sides aspects discussed before such as the need for a good initial guess – the problem of occlusion 
[Lin 2002]. The fact that some pixels do not have a match at all cannot be integrated easily in the 
generic framework of regularization. 

Layered Stereo algorithms (e.g. [Baker et al. 1998], [Lin 2002]) explicitly segment the scene into 
several distinct layers, each of which is modeled as a continuous surface. Most importantly, the 
layer model also includes a special tier for pixels that do not have a match because of occlusion. In 
this manner, layered stereo algorithms directly address the problem of discontinuities at object bor-
ders and the issue of occlusion. A welcome side effect of layered stereo is that it also provides a 
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segmentation of the scene into distinct continuous surfaces, respectively occluded areas. So the task 
at hand becomes twofold: Find an optimal decomposition of the scene into separate layers and at 
the same time an optimally smooth and consistent scene model. A way to algorithmically solve this 
is e.g. to minimize a now more complex energy function that also incorporates the task of segmen-
tation. Layered stereo algorithms tend to give about the best results of all stereo algorithms; how-
ever, they are also among the most time-consuming (up to several hours for a single stereo pair) 
because of their more complex problem formulation. 

3.3.9.7 Variants of Stereo Vision 

With axial stereo, one camera is positioned on the optical axis of the other, only closer to the scene. 
In practice, a small offset is used, since the frontal camera would otherwise obscure the view of the 
posterior. Clearly such a set-up minimizes, if not overcomes the problem of occlusion. However, 
e.g. Nguyen and Huang [1992] report a significant loss of accuracy over comparable lateral stereo 
systems. Axial stereo is for this reason barely used in practice and not further discussed here. 

Current passive stereo vision systems cannot cope with scenes that do not have any features, or 
exhibit regularly repeating patterns. Therefore active methods have been proposed. They illuminate 
the scene with a suitable pattern, e.g. a black-and-white one of sinusoidally varying intensity [Kang 
et al. 1995] or a colored one such as a rainbow spectrum [Koschan et al. 1996]. Such methods solve 
the problem of featureless, unstructured surfaces at least for scenes close to the acquisition system; 
of course the other aspects of stereo vision are not affected by actively illuminating the scene. 

3.3.9.8 Conclusions On Stereo Vision 

Today's stereo vision algorithms are able to produce depth maps of high resolution; most compute a 
depth value for every pixel of the reference image. Their relative spatial resolution depends conse-
quently primarily on the camera used. Their data rate varies strongly with the considered approach 
and its implementation; according to a recent benchmark test ([Scharstein and Szeliski 2002]) the 
computation time for a single disparity map (without rectification) varies from as low as a tenth of 
a second (for area-based stereo) up to many minutes (global optimization) for a single frame of 400 
by 400 pixels, with a roughly inversely proportional relationship between accuracy and efficiency.  

The difficulty of putting a figure on the accuracy of a triangulation system has been discussed be-
fore. Naturally this also applies to stereo vision systems; with them also another aspect becomes 
relevant: with increasing baseline, i.e. more divergent angles of view/perspectives, the correspon-
dence problem becomes more difficult. Most stereo systems are for that reason limited to a small 
separation; wide baseline stereo is often considered as a related, but nevertheless distinct approach 
of its own that is typically based on three or more cameras. Accordingly, the accuracy of standard 
binocular stereos tends to be on the low end of that of triangulation systems for simple set-up rea-
sons. The accuracy of stereo further depends on the algorithm considered as well as to a significant 
extent on the scene. If the scene complies with the world model of the algorithm (typically if it is 
opaque, smooth and approximately Lambertian) and has many distinct optical features, the accu-
racy of a first-rate stereo algorithm will be high; conversely, almost all stereo algorithms are less 
accurate if the scene is optically unstructured and fail with scenes that collide with their world 
model. Finally, their accuracy (particularly in the least-square sense) suffers from the fact that even 
the best stereo algorithms occasionally produce false matches where the stated depth value differs 
arbitrarily from the ground truth. Scharstein and Szeliski [2002] show the rate of false matches to 
be in the range of a few percent with state-of-the-art algorithms and realistically complex scenes. 

With respect to all other aspects, stereo systems compare favorably; their hardware requirements 
are modest, they have a wide dynamic range primarily restricted by the permissible baseline of a 
given set-up, their robustness is excellent and passive systems pose no danger or nuisance whatso-
ever to humans. In sum, their only major limitation is their current inability to reliably obtain accu-
rate high-resolution range data of realistic, potentially optically unstructured scenes in real-time. 
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Figure 18: The principle of the Structured Light Approach. 

3.3.10 Structured Light 
This section analyses the state of the art regarding the Structured Light Approach SLA ([Shiray 
1972], see [Battle et. al 1997] for a survey). We start with its principle, followed by a review of 
several ways of implementing it and conclusions. 

3.3.10.1 The Principle of the Structured Light Approach 

The SLA is an active, multidirectional ranging technique. We treat it as modification of stereo vi-
sion where a directional illumination device replaces one of the cameras of stereo. This device, 
which is abstractly modeled as digital pinhole projector, illuminates the scene with a light pattern, 
while the remaining camera acquires one or several images of the scene (called pattern images) as 
shown in figure 18. A point on the projection slide results in a projected ray, a straight line in a 
projected plane in 3D space. So given a suitable dot or line pattern, the projector can be said to 
illuminate the scene with light rays, respectively light planes. In the following, we focus on the 
more important case of light plane projection, yet everything said will mutatis mutandis apply to a 
light ray projection as well. Barring degenerate configurations, the intersection of a plane with a 
straight line is a well-defined single point in 3D space. Accordingly, if it is known which plane 
illuminates an imaged scene point, the point’s 3D coordinates are given by the intersection of this 
plane with the line of view of the camera, i.e. via plane-ray triangulation. With SL, the correspon-
dence problem of stereo vision is consequently replaced by the simpler task of locating and identi-
fying light planes in the pattern images, a task known as identification or indexing problem. 

There is no agreed way of formally describing SL systems. For this reason, we propose the follow-
ing formalism: We treat a slide as discrete image Ip(i, j) of resolution np by mp and of codomain Qp, 
where Qp is a set of qp elements representing distinct gray levels or colors. As a projection pattern 
may comprise t distinct slides, we represent it as time-varying slide Ip(i, j, k), where 1 ≤ k ≤ t,  
t ≥ 1. In the following, we interpret slide and pattern coordinates as elements of the vector spaces 
ℜ2, respectively ℜ3 (over the scalar field ℜ). Doing so gives access to the well-defined algebraic 
structure of these vector spaces and allows using canonical concepts such as the L-infinity-norm 
with coordinates. We call vectors of the ℜ2 (ℜ3) valid slide (pattern) coordinates if they are ele-
ments of the domain of Ip(i, j), respectively Ip(i, j, k), and invalid if they are not. 
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A pattern slide may contain arbitrarily oriented lines. Parallel lines avoid intersections, simplify the 
formal description of a pattern and are used exclusively throughout the literature. For this reason, 
we assume a pattern of np parallel vertical straight lines – also called stripes or columns to empha-
size the discrete nature of the slide – of slide equations ip = k (1 ≤ k ≤ np). The choice of vertical 
lines does not imply a loss of generality as we make no assumptions about the geometric set-up of 
the SL system (including the projector’s orientation) but the one that the camera’s optical center 
does not lie in any of the projected planes. A point and a straight line define a plane unless they are 
collinear. The projector’s optical center has a distance of fkp > 0 from the slide. We may for that 
reason equate light planes with pattern lines, in our case additionally with certain horizontal slide 
positions. That is, we can restate the identification problem as that of mapping image positions  
(ii, ji) on the slide coordinate ip of the plane illuminating the scene patch imaged at (ii, ji). 

Solving the identification problem is quite simple if each slide contains a single straight line only. 
If many planes are projected simultaneously, keeping them apart becomes significantly more diffi-
cult. In general, this is only possible if each projected plane is visually unique over time, i.e. with 
an encoded pattern. The following definitions give this term a well-defined meaning: 

• A codeword-reading-rule or codeword function σ is a mapping of the integers {1, …, s}, s > 0, 
on a subset of the ℜ3, namely the Cartesian product S = {-np + 1, …, -1, 0, 1, … np - 1} x  
{-mp + 1, …, -1, 0, 1, … mp - 1} x {1, .., t}. The first two elements of a vector from S are called 
its relative spatial slide coordinates; the third is referred to as its temporal pattern coordinate. 

• The range of a given codeword function is a set of s vectors of the ℜ3. Projecting each vector 
on its relative spatial slide-coordinates, applying the L-infinity norm to the s vectors of the ℜ2 
and determining the maximum d of the resulting s numbers is a well-defined operation. The in-
teger value d, 0 ≤ d ≤ min(np - 1, mp - 1), is called slide margin. A position on the slide (ip, jp) is 
called within the margin if ip ≤ d or jp ≤ d or np - d < ip or mp - d < jp; otherwise it is called cen-
tral. For valid central slide coordinates (ip, jp), the component-wise ℜ3 addition (ip, jp, 0) + σ(k),  
1 ≤ k ≤ s, yields again valid pattern coordinates. 

• For a valid central slide position (u, v), a codeword function σ defines a projection pattern Ip(u,v) 
of its own (via Ip(u,v)(i, j, t) = Ip(i, j, t) if (i, j, t) = (u, v, 0) + σ(k) for a certain integer k, where  
1 ≤ k ≤ s, undefined otherwise). It is termed subpattern of (u, v). 

• The codeword of a valid central slide position (ip, jp) under σ, denoted by cσ(ip, jp) ∈ Qp
s, is 

defined as the sequence q1 .. qs, where qi = Ip((ip, jp, 0) + σ(i)). Invalid positions or ones within 
the margin have by definition no codewords associated with them. The set of all codewords of 
a pattern is called its (block) code C; it is a subset of the code space Qp

s. In this context, the 
mapping of slide positions to codewords is called encoding schema cσ, the set Qp code alpha-
bet, its elements (code) symbols and the integer s codeword length. 

• A pattern Ip(i, j, t) is called encoded (under σ) if it comprises less slides than projected planes  
(t < np), and if the encoding schema is injective with respect to the horizontal position. For-
mally, this is expressed as: ip, ip’∈ {d + 1, … , np - d} ∧ jp, jp’∈ {d + 1, … , mp - d} ∧ cσ(ip, jp) = 
cσ(ip’, jp’) ⇒ ip = ip’. This allows associating a horizontal slide position and thus a light plane 
with a given codeword or subpattern (but not necessarily vice versa). It is important to note the 
difference between codeword and subpattern: with an encoded pattern both identify a plane, yet 
the former is a mathematical abstraction, the latter a physically existing signal block. 

• An encoded pattern is called redundantly encoded or h-error-detecting (h≥1) if two codewords 
that refer to distinct light planes have a Hamming distance (the count of positions in which the 
two words have distinct symbols) that is greater than h. 

Variants of the SLA that employ encoded patterns are accordingly called Coded Light Approach 
(CLA). In the following, we discuss several aspects that allow broadly categorizing the many dif-
ferent ways to exploit the SL/CL principle for ranging. 
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Projection Model (Perspective or Parallel Projection): Most SL approaches consider perspective 
projection, but some are based on the simpler parallel projection model. To approximate the latter, 
camera and projector have to be far away from the scene, somewhere between 20 [Asada et al. 
1988] to 30 [Wang et al. 1987] times its size. For larger scenes, this is quite unpractical. As dis-
cussed before, only the shape, that is the surface data scaled by an only approximately known fac-
tor and containing an unknown depth-offset, can be obtained with orthographic projection. 

Type of Illumination (Color or Gray Levels): A core aspect of a SL system is the type of its illumi-
nation. We distinguish between color (monochromatic or not) and gray level patterns (binary, that 
is black and white, or made up of more than these two gray-shades).  

Dimensionality of Encoding (1D or 2D): If the codeword function of an encoded pattern is injec-
tive, we call its encoding two-dimensional. In this case, a codeword can be uniquely associated 
with a slide position (ip, jp), i.e. with a light ray. As mentioned above, encoding of the horizontal 
position (1D encoding) suffices for triangulation. With 2D encoding, computing 3D coordinates 
amounts to intersecting an illuminating ray and a line of view (ray-ray triangulation), or rather de-
termining their closest approximation. The magnitude of the latter allows making out calibration 
problems or misidentifications, respectively represents a good indicator of ranging accuracy. Under 
the same token, 2D encoding allows checking whether an identified ray originates from the ex-
pected epipolar line and discarding the id if it does not. Finally, it is convenient for projector cali-
bration, e.g. for establishing the distortion of its lens, and simplifies considering the projector’s lens 
distortion during the triangulation step. However, straight 2D encoding roughly squares the number 
of necessary codewords over 1D encoding. The resulting decrease in relative spatial resolution or 
reliability tends to more than offset the listed benefits. 

Encoding Technique (None, Point-wise, Temporal or Spatial): We call an encoding with the trivial 
codeword function σ: {1} → {(0, 0, 1)} point-wise encoding. In its case, each codeword corre-
sponds to a distinct color (or gray level) and vice versa. Clearly such a pattern has no margin (i.e.  
d = 0) and requires employing at least as many different colors as light planes (qp ≥ np). In general, 
however, only very few distinct colors, if any, can be distinguished dependably in the pattern im-
age. For this reason, point-wise encoding is often considered too unreliable to encode a large num-
ber of light planes. Given only qp << np reliably discernable colors/gray levels, there are two fore-
most encoding techniques that overcome the limitations of a point-wise approach. 

Temporal or time-space encoding uses t > 1 distinct slides, i.e. a time-varying pattern. Typically, a 
codeword function of a temporally encoded pattern has the form σ(k) = (0, 0, k) for 1 ≤ k ≤ t. So 
the codeword length equals the number of slides (s = t). Identification is done by establishing for 
each image pixel the sequence of projected color/gray levels. Temporal encoding has one decisive 
disadvantage: To cope with moving scenes, to speed up the data acquisition and to make do with a 
simple projector, systems should be able to compute a depth map from a single snapshot of a scene. 
These capable of doing so are called one-shot systems. Formally, they are characterized by t = 1. 
Clearly it is by definition impossible to build a one-shot system on the basis of temporal encoding. 

Spatial encoding opens up a simple way of building one-shot systems. It increases the codeword 
length by employing spatially extended codewords. Its patterns are consequently characterized by a 
nonzero margin and subpattern size. Their formal description is complicated by the fact that in their 
case often several adjacent physical slide elements are grouped into conceptual units. The values 
such units take on are termed pattern primitives. Other than physical slide elements, primitives can 
have distinct shapes. Nevertheless, as long as the units are of uniform rectangular size, the above 
formalism still holds with the primitive abstraction. In this case, we simply treat a slide as being 
made up of primitives; its resolution of np by mp then refers to primitive units. As the resulting slide 
has the familiar lattice structure, and as its domain – the set of primitives – can be identified with 
the abstract set Qp, we are able to apply the above definitions without changes to spatial encoding. 
We only have to bear in mind that even with a slide margin of 0 on the pattern primitive layer such 
patterns may have a margin of d > 0 at the physical slide level. Unless stated otherwise, we de-
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scribe spatially encoded patterns in the following on the pattern primitive layer. Spatial encoding 
increases the number of potential codewords almost arbitrarily over point-wise while retaining its 
one-shot nature, yet at a price to be paid during decoding (with CL, solving the identification prob-
lem is also called decoding): The appearance and the spatial relationship of primitives as (if at all) 
visible in the pattern image can differ substantially from what has been originally projected, e.g. 
because of the scene texture or foreshortening. This makes the task of recognizing primitives, let 
alone subpatterns, in the pattern image potentially very demanding. As the patterns are composed 
of shapes of principally non-negligible size rather than dimensionless color or gray level points, 
only certain boundaries (or other conceptually infinitesimal features) of primitives should be used 
for triangulation for accuracy reasons. Which implies it is not possible to obtain a depth value for 
each image pixel; the non-interpolated relative spatial ranging resolution is subject to the number of 
suitable boundaries visible in the pattern image, which in turn depends on the pattern design and on 
the scene. As we cannot factor in the latter into a general discussion, we take the horizontal slide 
resolution np as measure for the resolution of the depth map, given it represents an upper bound on 
the number of observable vertical boundaries. It is important to note that due to the discrete nature 
of real-world cameras and projectors this restriction applies to some extent to other SL/CL tech-
niques as well. Finally, as the projected subpattern are not even approximately spatially dimen-
sionless, depth values can only be obtained for surfaces large enough to reflect them more or less 
integrally. Of course, the impact of this restriction – which roughly corresponds to the continuity 
constraint of stereo vision – depends on the (actual physical) size of the subpatterns. 

Type of Encoding (Unique, Periodic, Sparse): The more distant (according to a suitable metric of 
the space Qp

s such as the Hamming distance) codewords are, the more robust the recognition proc-
ess becomes. Yet in general the more redundant a code is, the less words it has, implying a trade-
off between robustness and a large number of codewords/a high relative spatial resolution (for a 
fixed space Qp

s). A way to reconcile these two conflicting objectives is periodic “encoding”, where 
codewords are repeated with a horizontal period p. Formally, this is expressed as Ip(i, j, t) =  
Ip(i + p, j, t). Periodic encoding permits a high resolution even with a robust code of few words. It 
does, however, create a ranging ambiguity – as several distinct light planes are encoded with the 
same codeword – that cannot be resolved unless certain scene constraints apply. With a low pattern 
frequency, a known limited depth of field (the disparity limit of stereo) might allow identifying the 
correct plane from the set of all planes associated with a given codeword (if all others exceed the 
disparity limit). In general, absolute range values can only be obtained for a globally continuous 
scene surface in combination with at least one unique codeword: all remaining ambiguities are then 
resolved by exploiting spatial adjacency relations relative to the latter (an id propagation similar to 
the phase unwrapping of Moiré interferometry). Interspersing at least one unique codeword into an 
otherwise non-encoded or periodically encoded pattern is called sparse encoding. 

Many SL/CL patterns consist of a single slide and are a function of the horizontal slide coordinate 
only, i.e. Ip(i, j, k) = I(i, 0, 0). With other words, the color/ gray level does not change over a verti-
cal line/stripe. We describe such patterns as one-dimensional function Ip(i) of the horizontal projec-
tion slide position, respectively Ip(x) if the slide resolution is conceptually infinitesimal. 

3.3.10.2 The Constraints of Structured Light 

Just as stereo vision algorithms, most SL systems (implicitly) impose constraints on the scene. The 
following list enumerates the most important ones besides those already known from stereo vision. 

• Reflectivity Smoothness: This is the analogue to the disparity smoothness constraint: The 
reflectivity of the scene changes smoothly (with a low frequency compared to the frequency of 
the illuminating pattern) almost everywhere. 

• Neutral Reflectivity: The reflectivity of the scene is neutral with respect to the wavelength. 

• Neutral Ambient Light: The ambient light, the illumination arriving at the scene that is not 
emitted by the projector, is approximately color-less. 
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Figure 19: Sinusoidal illumination (left) and line grid pattern (right). 
 

• Negligible Ambient Light: The ambient light is negligible compared to the projected pattern. 

• Global Continuity: The scene is globally continuous in the sense that between two imaged 
scene points an image path exists along which the scene depth changes continuously. 

• Local Planarity: The surface orientation changes only slowly almost everywhere, allowing 
small surface segments to be reasonably well approximated by a plane in 3D space. 

• No Movement: The scene is static, i.e. does not contain moving objects. 

• Limited Movement: Objects in the scene move with image plane velocities below a set limit. 

3.3.10.3 Structured Light without Encoding 

This section discusses approaches to SL that do not encode their pattern. The earliest such systems 
illuminate the scene with a single (typically laser) beam or stripe ([Schmaltz 1932], [Shiray 1972], 
[Agin and Binford 1973]). These light structures result in distinctive blobs or stripes in the pattern 
image, which can usually be detected and identified easily. Of course, only a few range values can 
be extracted from a single pattern image, making the approaches ineffective. To obtain a dense 
range image, the beams or stripes have to be swept across the necessarily static scene. This tends to 
be a slow process that typically requires expensive mechanically moving parts such as a deflection 
mechanism of one or two degrees of freedom, in which case the results suffer from mechanical 
imprecision and wear. Despite these drawbacks such systems are still widely used today (e.g. 
[Schmallfuss et al. 2002]), primarily because they are easy to implement, reliable, with suitable 
mechanics also very accurate and have a comparatively large depth of field. They are particularly 
well suited for scenes moving with precisely known constant speed such as objects on a conveyor 
belt, since this allows them to acquire dense depth maps without having to actively scan the scene. 

To speed up the acquisition and to avoid complex mechanics, projecting not just one, but many 
distinct light planes at once with a simple projector has been proposed. We distinguish between two 
corresponding un-encoded SL categories whose designations have mostly historical reasons:  

• Fringe pattern approaches interpret the illumination as continuous signal, exploit its intensity 
values for the range calculation and obtain depth values for all image pixels. They either pro-
ject a sinusoidal illumination of the form Ip(x) = Ip0 + A cos(2πx/d + ϕ) or a grid of equidistant 
parallel vertical lines (a line (grid) pattern). Figure 19 shows examples for both types. Fringe 
pattern approaches are, by and large, a topic of optical research. 

• Grid coding approaches understand the pattern as being composed of discrete shapes, locate 
these shapes in the image and compute depth values only for pixels part of a shape. They use 
the signal values only for localization, not for range calculation. They either project a line grid 
pattern or one of equidistant vertical and horizontal lines, i.e. a square grid pattern (figure 20). 
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Figure 20: Color pattern by Wust and Capson [1991] whose R, G and B components represent si-
nusoidal illuminations phase-shifted relative to each other (left). A square grid pattern (right). 
 

The basic idea of fringe pattern techniques is best understood by assuming parallel projection and a 
sinusoidal illumination impinging under an angle θ onto a reference plane parallel to the camera's 
image plane. Then a shift in height relative to the reference plane results in a phase shift of the ob-
served illumination, but affects neither its frequency nor its amplitude. Determining this phase shift 
for a scene point, a process called phase demodulation, yields its depth offset z relative to the refer-
ence plane, wrapped into a depth interval ∆z corresponding to a 2π phase interval. 

Phase shifting or stepping, also called phase measurement interferometry ([Creath 1988], [Halioua 
and Liu 1989], [Larkin and Oreb 1992]), is a popular way to demodulate the phase. In its case, the 
illumination is shifted, e.g. mechanically, by at least three discrete phase steps such as ϕ1 = π/4,  
ϕ2 = 3π/4, ϕ3 = 5π/4. This defines for each pixel a series of image intensities, e.g. with three steps 
the intensities I1, I2 and I3. With the aforementioned system geometry, these can then be related via 

( ) ( ) ( )( ) ] [ππθππθπ +−∈+=+=−− ,/tan2/2/tan2tanarctan/arctan 1232 dzdxdzxIIII  (50) 

where merely elementary trigonometric transformations have been applied. As the 3D space xc 
position of an imaged scene point is by definition known with parallel projection (xi = kxc), the 
depth is the only unknown of equation 50; resolving it for z determines the wrapped depth. Since 
solely the illumination is shifted, yet the imaged scene point remains fixed over a series, unwanted 
influences on the perceived brightness such as the local reflectivity or the ambient illumination are 
mostly cancelled out. There is a wide range of phase stepping algorithms that differ mainly in the 
number of phase steps, the formula for computing the phase/depth from the intensities and the as-
sumed geometric configuration. Their common disadvantage – and the reason they are not covered 
in more detail here – is the need to acquire at least three images, typically even more to limit the 
influence of noise. To overcome this drawback, Wust and Capson [1991] combine three phase 
shifted illuminations into a single color pattern whose R(x), G(x) and B(x) components represent 
three shifted sinusoids (figure 20), i.e. propose a one-shot phase shifting system. However, phase 
stepping relies on shifting the very same signal: the observed illumination should differ in phase 
only. With the combined pattern, this will typically not be the case, e.g. the red and the blue signal 
will differ in their dc components and amplitudes due to the reflectivity and sensor response being 
quite distinct for the two spectral bands. The approach thus requires a scene-dependent color cali-
bration to at least approximate the above prerequisite; of course it is even then limited to scenes of 
constant color. Huang et al. [1999] propose a similar pattern and end up with the same limitations. 
They do not perform a color calibration, but rather paint their scenes white and state that "meaning-
ful results can be obtained only on surfaces of neutral color content". One-shot phase shifting is 
principally problematic as the literature reports that with traditional phase shifting, i.e. given more 
favorable conditions, shifts are repeated up to 30 times (e.g. [Teschner 1996]) to get the better of 
noise. So it does not come as a surprise that Wust and Capson report a comparably low accuracy. 
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Other approaches to phase demodulation operate in the frequency domain, namely the closely re-
lated techniques of Fourier filtering [Hobson et al. 1997] and the Fourier transform profilometry 
[Takeda and Mutoh 1983]. Their main advantage over phase-shift methods is their one-shot nature. 
Their main problem is separating the sought phase from the unwanted amplitude modulation intro-
duced by a varying surface reflectivity. They solve it in the following way: Provided a surface’s 
slope is limited and its reflectivity and height distribution have a much lower frequency than the 
pattern's carrier frequency f0 = 1/d, the spectra corresponding to the integral multiples of f0 are well 
separated. It is then possible to isolate single spectra in the 2D FT image via band-pass filtering and 
to frequency-shift each of them to be centered at zero frequency. Transforming this modified spec-
trum back into the spatial domain yields, after some rather simple transformations, the phase distri-
bution of the image. Clearly doing so represents an elegant one-shot technique to demodulate the 
phase. Its central weakness is the above reflectivity smoothness and local planarity assumption: 
high frequency depth changes result in wide bandwidth image signals, in which case band-pass 
filtering becomes difficult and unavoidably passes noise as well. High-frequency variations in the 
reflectivity cause similar problems. 

With perspective projection, a height change modulates the observed illumination frequency in a 
way indirectly proportional to the distance scene-projector: the further away the scene, the lower 
this frequency and vice versa. Hung [1993] proposes to determine the local projection frequency 
(and thus depth) by computing the first derivative of the instantaneous phase. The approach is lim-
ited to special geometric set-ups that guarantee a strong perspective effect of the projection while 
avoiding it in the pattern image. It is rather unclear how it deals with locally varying reflectivity, 
especially as it relies on a noise-amplifying derivative. Only simulated results are given. 

The main advantage of fringe methods is their accuracy, given they determine phase shifts at up to 
1/1000 of the fringe period [Halioua and Liu 1989]. On top of that, they obtain the depth for every 
image pixel, i.e. they tend to achieve a high resolution of the depth map. At the same time they are 
very sensitive to noise, as noise in the observed intensity directly propagates into the computed 
range value. Moreover, they are typically not one-shot approaches, with all associated disadvan-
tages. The few one-shot variations require special types of surfaces (reflectivity smoothness, etc.) 
and are according to Creath [1988] significantly less accurate. A severe limitation is that all fringe 
methods obtain the wrapped phase/depth only. To obtain absolute range data, the mod 2π ambigui-
ties have to be resolved via phase unwrapping. Usually this is done by comparing the phase of ad-
jacent pixels and adding (subtracting) 2π at jumps from 2π to 0 (0 to 2π). Which requires that the 
phase does not change by more than π over adjoining pixels, i.e. a globally continuous surface of 
limited slope. Furthermore, at least one point with known absolute phase/height is needed as start-
ing point for the unwrapping. Clearly it is not always possible or convenient to insert such a refer-
ence point into a scene. With orthographic projection, an arbitrary point can be chosen as reference, 
yielding a height profile relative to this unknown starting position that is scaled by an equally un-
known factor. With perspective projection and in the absence of a reference point, so-called fringe-
tracking methods [Pearson 1996] insert a large meta-fringe into the pattern that allows correctly 
indexing the fringes, effectively turning the approach into a sparsely encoded one. Or the issue is 
solved indirectly by combining fringe approaches with ranging methods that are less accurate, but 
yield absolute range values; the former then serve the purpose of refining the results of the latter. 

Grid coding was originally proposed by Will and Pennigtion [1971] to segment an image of a 
polyhedron into its planar components of distinct orientation. The 2D Fourier transform of an im-
age of a planar area illuminated by a line pattern is a crossed set of harmonically related delta func-
tions. Separating the resulting spectral clusters and transforming them singly back into the spatial 
domain yields the sought decomposition (but for a certain remaining ambiguity).  

Determining the 3D form of a scene is difficult with grid coding due to the un-encoded pattern; it is 
in general impossible to identify which imaged line or quadrilateral matches up with which pro-
jected line, respectively square. Yet each such mapping (that respects the epipolar constraint) cor-
responds to a different surface. An algorithm needs significant a-priori knowledge to decide on the 
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right out of the many possible mappings, respectively 3D shapes. This becomes the more difficult, 
the more lines are projected, as then the more plausible shapes that differ only slightly are there to 
choose between. This implies a tradeoff between a high lateral resolution of the depth map and the 
probability of generating the correct one. Hu and Stockman [1989] project a square grid as in figure 
20 and try to derive the mapping of recognized to projected squares from a set of general geometri-
cal and topological constraints. Despite using a coarse grid (20 x 20 lines), they are in most cases 
still not able to settle on a single solution, but rather output several potential depth maps. 

As it is virtually impossible to obtain high-resolution depth maps of unknown scenes in the latter 
fashion, all following grid coding systems assume parallel projection. Then the illumination can be 
interpreted as set of parallel, equidistant planes in space, i.e. the ith vertical plane can be written as 
Avx + Bvy + z + Dv + id = 0 and the jth horizontal as Ahx + Bhy + z + Dh + jd = 0. Will and Pennig-
tion [1971] use a square grid pattern and determine for each imaged quadrilateral the transforma-
tion matrix that restores it back to the projected square; this matrix allows concluding the surface 
normal. Asada et al. [1985, 1986, 1988] project a line grid pattern and calculate the surface orienta-
tion for each point on an imaged line from the line’s image plane slope and distance to the next 
imaged line. Wang et. al. [1987] as all following authors choose a square grid pattern and derive 
the orientation for each grid intersection point from the image plane slopes of the horizontal and the 
vertical line. Shrikhande and Stockmann [1989] discuss two similar approaches, which both exploit 
the size and orientation of the quadrilateral sides as seen in the image. All these related approaches 
that analyze the deformation of imaged grid lines require the surface to be locally planar and exclu-
sively determine its orientation; only Wang et al. actually try to determine the surface shape by 
integrating from orientation to shape, with all the obvious disadvantages of such a method (inaccu-
racies add up, drastic errors occur if perceived lines do not break across jump boundaries, etc.). 

Wang [1991] discusses how to obtain intrinsic surface properties, i.e. ones independent of the co-
ordinate system, the viewer and the chosen surface representation such as the principal curvature. 
He computes these properties for a given square grid illuminated scene from the second derivative 
of the imaged grid line curves, which makes his technique very sensitive to noise. Moreover, his 
approach works only for surfaces that locally approximate certain elementary surface types, namely 
planes, spheres, cones and cylinders; which surface patch is of which type of shape has to be 
known in advance. Wang and Cheng [1992] show how the latter information can be derived from 
the intensity data (primarily by exploiting iso-brightness contours) given a controlled illumination. 

Proesmans et al. [1996a, b] select an arbitrary square grid intersection point as origin (for which 
they set i = j = 0). They “identify” the remaining light planes recursively via their position relative 
to this origin (assuming global continuity). Then for each grid point connected to the origin the 
illuminating plane is known, as are the point’s x and y coordinates due to the orthographic projec-
tion. Solving the plane equation for the remaining unknown z yields the depth value. Accordingly, 
even two depth values can be computed for each intersection point (one from the horizontal, one 
from the vertical plane), which are averaged. Only these averaged values are kept. Consequently, 
their range output resembles a 3D grid or mesh rather than a dense depth map. Unidentifiable inter-
section points lead to holes in the depth map. In the worst case, misidentifications occur, which are 
especially problematic as they propagate into all subsequently identified grid points. Their algo-
rithm also computes a grayscale image of the scene by "reading between the grid lines" [Proesmans 
et al. 1998] and non-linearly diffusing the intensity data over the areas occluded by the grid. 

The disadvantage of grid coding as a ranging technique – besides the downsides of parallel projec-
tion and the fact that most approaches do not even obtain shape data – is that errors with respect to 
localizing and/or identifying the grid lines can go unnoticed or even propagate as the regular pat-
terns have by definition no built-in error detection capabilities. Distinguishing between projected 
lines and texture is especially problematic if the latter is of high frequency. This implies the ap-
proaches inherently assume reflectivity smoothness besides global continuity, just as one-shot 
fringe pattern methods. Compared to the latter, they are somewhat more robust, yet achieve a lower 
relative spatial resolution as range values are obtained only for imaged grid lines. 
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Figure 21: Illumination created by a 2D linear wedge filter (left) and RGB phase shift pattern with 
monotonously increasing amplitude as proposed by Schubert [1996]. 

3.3.10.4 Coded Light Based on Point-Wise Encoding  

The most intuitive way of encoding is to exclusively use the data transmitted by a single projector 
pixel, respectively received by a single image pixel, i.e. point-wise encoding via the intensity or 
color of the illumination. As discussed above, corresponding CL approaches typically employ the 
trivial codeword function σ: {1} → {(0, 0, 1)}. The earliest such method due to Carrihill and 
Hummel [1985] utilizes the intensity ratio between two gray-level views of a scene to that end. One 
image is taken with constant illumination Ip(x, y, 0) = k, the other with the illumination passing 
through a 2D linear wedge filter. The transmittance of the latter decreases horizontally from 100% 
to 50% and is vertically constant, i.e. Ip(x, y, 1) = k - (kx)/(2np), resulting in the pattern of figure 21. 
For each image pixel, the ratio of the two intensity values is formed. In the absence of noise, this 
ratio identifies a plane of light, provided the reflected intensity is proportional to the projected. 

Alternative approaches attempt to exploit that the projected light and that reflected by the scene 
differ only in intensity, but not in the spectral composition if the employed colors are monochro-
matic (barring the unlikely cases of fluorescent or phosphorescent surfaces). In this case, the wave-
length appears to be a reliable means to per-pixel encode a large number of light planes. A practical 
way to create such a monochromatic color pattern is to diffract collimated white light with a grat-
ing, effectively generating a rainbow. The approach is accordingly called rainbow approach ([Ta-
jima 1987, 1990], [Häusler and Ritter 1993], [Geng 1995, 1996], [Smutny and Pajdla 1996]).  

Schubert [1996] combines the ideas of the phase-shift and the rainbow approach: He modifies the 
RGB phase shift pattern to one of monotonously increasing amplitude; consequently the amplitude 
uniquely encodes the illuminating plane. In this manner, Schubert gets rid of the periodic encoding 
of the traditional phase shift, respectively the need to find out the exact wavelength of the reflected 
light. However, without monochromatic light the reflected amplitude depends strongly on the scene 
color, limiting the approach to surfaces of neutral color. Also, as even more information is packed 
into the color signal, the technique is even more susceptible to noise than a stand-alone phase shift 
or rainbow approach. 

The approaches of this section have several advantages: Their patterns encode in principle a con-
tinuum of light planes, which allows generating depth maps of arbitrarily high relative spatial reso-
lution. The codeword function is trivial, so decoding is simple and efficient as it involves single 
image pixels only; it can easily be done in real-time. Dynamic scenes pose no problem but for the 
intensity ratio sensor. At the same time, any real-world implementation will unavoidably suffer 
from a number of major practical problems: The foremost is a strong susceptibility to noise such as 
imaging noise or mutual illumination, given it is necessary to distinguish between subtle nuances in 
the projected intensity, respectively wavelength. So Tajima and Iwakawa [1990] propose to aver-
age 10 color images to generate a single, less noisy pattern image and to further average the meas-
ured depth over 5 by 5 windows.  
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With respect to the rainbow approach, standard RGB color cameras are generally not well suited 
for recognizing the exact wavelength of monochromatic light. Häusler and Ritter employ a sophis-
ticated optical set-up to eliminate the green range from the spectrum as for this band the mapping 
of monochromatic colors to the camera's RGB system is the worst. Geng [1995] discusses that it is 
in most cases advisable to obtain two more images, one without and one with all-white illumination 
to cancel the effects of the background illumination and the intrinsic scene color. All approaches 
cannot cope with non-neutral ambient illumination. In short, to obtain usable range images with the 
methods of this section, measures have to be taken that completely offset their theoretical advan-
tages, with the exception of a few selected applications involving cooperative scenes and well-
controlled laboratory environments. 

3.3.10.5 Coded Light Based on Temporal Encoding 

Altschuler et al. [1979] and many others describe the temporal encoding of light planes on the basis 
of only two intensity levels, i.e. Qp = {black, white}. As discussed before, with temporal encoding 
the codeword function has typically the form σ(k) = (0, 0, k); the resulting set of potential code-
words is the set of binary sequences of length s = t such as 01001110. Schemata for encoding the 
planes are simple binary codes [Altschuler et al. 1979], a Hamming code [Minou et al. 1981] or the 
Gray code proposed by Potsdamer and Altschuler [1982] and implemented by Inokuchi et al. 
[1984] and Wahl [1984]; the latter is by far the most common choice as in its case codewords for 
adjacent planes differ in exactly one bit; the most likely errors, the ones occurring at the single 
resulting intensity transition between adjacent planes, are thus guaranteed to cause only minor 
ranging errors. Also, the frequency of its finest pattern is only half of that of straightforward binary 
coding. Regardless of the schema, the encoding translates directly to a projection pattern: a plane in 
the nth pattern is white if its nth code letter is 1, otherwise black. Implementing such a system is 
rather simple: Typically first two images are taken under all-white and without illumination. From 
these two images a space-variant threshold is derived, respectively pixels that do not exhibit a sig-
nificant intensity change (e.g. because of occlusion) are marked as invalid. Then the t pattern im-
ages are acquired, and its threshold is applied to each pixel of each image. This defines for each 
valid camera pixel a sequence of black and white, respectively 0s and 1s, that uniquely identifies 
the light plane illuminating the imaged scene point. Alternatively, Sato et al. [1986, 87] propose to 
project each pattern once as positive and once as negative and to determine the sign of the intensity 
difference between the resulting positive and negative images for every pixel. The threshold is then 
not only space-variant, but also adapted for each pattern. They report a more robust decoding at the 
price of a twofold number of slides and pattern images. As mentioned before, the discrete character 
of real-world cameras and projectors implies that projection slides and pattern images contain 
stripes rather than infinitesimal lines; only boundaries and to some extent stripe centers should be 
associated with planes and used for triangulation. So to obtain a precise depth value for every valid 
pixel, temporal encoding is often refined with a phase shift step, or a related technique such as a 
sub-pixel [Hattori and Sato 1996] or line shift [Guehring 2001] of the finest Graycode pattern. 

Several modifications have been put forward to speed up the above principle by using more than 
two gray levels. Horn and Kiryati [1998] present a theoretical framework for the design of patterns 
with qp ≥ 2 gray shades. It allows deriving the pattern/code resulting in the smallest mean squared 
expected identification error given one wants to project np distinct stripes, use t distinct slides and 
has to cope with a known fixed level of zeromean Gaussian noise. Respectively, determining this 
pattern for distinct values of t yields the minimal value of t needed to stay below a given error 
threshold. As finding such a code is an optimization problem of too large a dimensionality, they 
propose two sub-optimal solutions, namely filling the t-dimensional code space with space-filling 
Hilbert or Peano curves of finite order and placing N points on the curves at equal distances. Con-
ditional on the input parameters, their patterns utilize three or more distinct gray levels or converge 
to the binary Graycode, if 2t > np or the noise level is too high. Caspi et al. [1998] extend this prin-
ciple to colored patterns as color potentially allows using even more distinct levels per slide. 
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Figure 22: Pattern proposed by Le Moigne and Waxman [1984] (left). Griffin and Yee [1991, 
1994] propose the four primitives shown in the middle. A clipping from a resulting pattern is 
shown to the right, with an exemplary subpattern/four-neighborhood highlighted. 
 

Hall-Holt and Rusinkiewicz [2001] propose a time-varying encoding that allows limited move-
ment. They project a sequence of slides where the color of each of their 111 stripes varies over the 
slides between black and white, just as with classical binary temporal encoding. The key difference 
is that Hall-Holt and Rusinkiewicz exclusively focus on the boundaries between stripes, which can 
take on the following four values: Qp = {black-to-black (invisible), black-to-white, white-to-black 
and white-to-white (invisible)}. Tracking the status of a boundary over four frames yields a code-
word that identifies it uniquely. Yet this tracking is quite complicated as boundaries are sometimes 
invisible. To deal with this problem, the code design allows at most one invisible between two visi-
ble boundaries and ensures each boundary is visible at least every other frame. The tracking algo-
rithm then hypothesizes all potential locations of invisible boundaries and simply matches each 
visible boundary of a frame to the closest hypothetical or visible one of the previous image. Clearly 
this approach permits only a limited movement where the position of a boundary varies by less than 
half a stripe width over two frames (if it moves faster, the algorithm does not notice it, but produces 
erroneous data) and a mostly continuous surface. It furthermore makes a reflectivity smoothness 
assumption, as it otherwise could not extract the boundaries from a single pattern image. 

Binary temporal encoding copes very well with locally varying surface reflectance properties and 
background illumination. Especially when combined with phase shifting, it represents an excep-
tionally reliable and accurate ranging approach that is widely used in practice. It is, however, time-
consuming compared to single-shot approaches and requires static scenes and an expensive projec-
tor capable of switching between several slides without introducing a positioning error. The multi-
gray level or color variations reduce the number of patterns if circumstances in conjunction with 
the robustness requirements permit it. However, they rely on adapting the pattern to the scene, 
which in itself entails additional processing time. Consequently, their practical benefit is somewhat 
limited, and for most applications the more straightforward and robust binary approaches will be 
given preference. The tracking method by Hall-Holt and Rusinkiewicz trades the advantages of 
traditional methods with the ability to deal with restricted movement; currently the latter limit is 
rather severe. Clearly the idea’s relevance depends on the availability and cost of multimedia pro-
jectors capable of very fast slide switching. 
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Figure 23: Pattern by Ito and Ishi [1995] with black, gray and white squares as pattern primitives 
and with subpatterns of 12 primitives (left). Slit pattern with random cuts by Maruyama and Abe 
[1993] (middle). Beumier and Acheroy [1999] employ thin and thick stripes as primitives (right). 

3.3.10.6 Coded Light Based on Spatial Gray Level Encoding 

This section discusses one-shot (t = 1) CL approaches based on spatially encoded gray level pat-
terns. Recognizing projected grayscales in an image is difficult as a camera captures only the re-
flection of the illumination, whose brightness depends on the unknown scene reflectivity. Evi-
dently, gray levels are the easier to discern, the fewer of them are used; so almost all corresponding 
approaches described in the literature employ only the two levels black and white. Which, how-
ever, creates a new problem: typically adjacent pattern primitives of the same gray level cannot be 
discerned – e.g. how to tell two contiguous black squares apart from one in the presence of fore-
shortening? This implies the succession of black and white within a binary pattern is predetermined 
and cannot carry any information: Neighbors of a black pattern element have to be white and vice 
versa. So binary approaches have to use differently shaped primitives or sparse encoding. 

Le Moigne and Waxman [1984] project a pattern formed by two primitives, black squares and 
white ones with a black margin, or, from another point of view, a square grid of a resolution of ca. 
10 by 10 lines (figure 22). Since they use a geometric set-up corresponding to the standard geome-
try of stereo, projected horizontal lines remain horizontal in the image and can be detected easily. 
They are used for albedo normalization and thus help to segment the vertical lines, which alone 
carry the range information. The black squares serve as means of sparse encoding. Ids are propa-
gated starting out from these unique marks (there is at most one square per epipolar line) along the 
grid. Once identified, vertical lines are used for triangulation, yielding a very sparse range map. 

Morita et al. [1988] suggest using a M-array or Pseudo-Random Array (PRA) as pattern. In the 
context of CL, a PRA is defined as Qp-ary array P = (pij) of size mp by np where each v by w win-
dow occurs at most once (as usual, v refers to the height, w to the width of the window). The con-
cept is borrowed from fields such as cryptography and data communications (e.g. [MacWilliams 
and Sloane 1976]), where it refers to a typically binary array where each possible v by w window 
but the all-zero one occurs exactly once; it is related to the idea of De Bruijn and pseudo-random 
sequences discussed below and also to perfect maps, arrays where each such window including the 
all-zero one occurs once [Paterson 1994]. Its definition is extended to error detecting PRAs by re-
quiring the windows to have a minimal distance h > 1 [Morano et al. 1998]. In the terminology of 
this work, a PRA represents a 2D encoding with a codeword function that scans a local v by w 
window, i.e. σ(k) = (-w/2 + (k - 1)/v, -v/2 + (k - 1) mod v), where 1≤ k ≤ s = v⋅w. To implement 
their PRA-based approach, Morita et al. use a pattern of 32 by 27 black and white dots and a win-
dow size of 3 by 4. They first illuminate with a pattern of only white dots, then with one where 
some dots are blanked out, and locate the blanked dots by comparing the two resulting images, 
even though this implies their approach is not truly a one-shot one. From type and location of the 
dots, they construct a binary array that contains the imaged adjacency relations and match its win-  
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Figure 24: Vuylsteke and Oosterlinck [1990] use two distinct pattern primitives (0 and 1) which 
occur in a positive and a negative form (left) to form a PRA with unique 3 by 2 windows (see ex-
cerpt in the middle). A clipping from a resulting pattern image is shown to the right. 
 

dows with that of the PRA. Unmatched points are filled with a set of heuristics, even though the 
authors report that doing so can lead to erroneous results.  
Griffin and Yee [1991, 1992, 1994] employ a 2D-encoded pattern of size 32 by 32, based on the 
four primitives shown in figure 22. Each primitive and its four-neighborhood constitute a subpat-
tern, i.e. the approach relies on base-4 codewords of length 5. The authors connect adjoining primi-
tives with straight lines to simplify establishing their adjacency relations and propose template 
matching [1991] or an adaptive threshold [1994] to locate the pattern primitives in the pattern im-
age. The most interesting aspect of their work is a deterministic encoding schema (for non-error-
detecting 4-neighborhood codewords) that is optimal in the sense that every possible codeword 
occurs exactly once in the pattern [1992]. 
In a similar approach, Ito and Ishi [1995] utilize a 2D-encoded pattern of resolution 34 by 34 with 
squares of three distinct gray levels as primitives. Twelve adjacent squares form a cross-like sub-
pattern as shown in figure 23, implying base-3 codewords of length 12. Despite the large subpat-
tern size, respectively codeword length, their encoding is not error-detecting. It is not even an en-
coding according to the definition of this work as some arbitrary slide positions share the same 
codeword. Figure 23 shows a clipping from their type of pattern. Clearly it is generally difficult to 
discern three distinct gray shades reliably in a pattern image. For this reason, they propose to ac-
quire two additional images if there is background illumination or if the scene reflectance is not 
constant, which of course contradicts the principle of a one-shot approach. 
Vuylsteke and Oosterlinck [1990] propose a binary pattern in form of a chessboard as shown in 
figure 24. Its squares serve to locate the actual pattern primitives, which are smaller squares super-
imposed on the regular checkerboard. They use two pattern primitives, which each occur in a posi-
tive and a negative form. Positive and negative primitives alternate horizontally and vertically, i.e. 
the four neighborhood of a positive primitive contains only negative ones and vice versa. Their 
pattern represents in principle a 64 by 2 binary PRA with 3 by 2 windows (i.e. 1D encoding) that is 
repeated 32 times vertically, yielding a total resolution of 64 by 64. Repeating the PRA introduces 
the problem of determining whether a given row represents the upper or the lower row of the array. 
The authors solve it by exploiting the alternate appearance of their primitive forms: codewords are 
formed by reading positive ones first. E.g. the codeword resulting from the highlighted subpattern 
in figure 24 reads: 1+ 1+ 1+ 1- 1- 0-, i.e. 111110. A further advantage of their pattern design is that 
the positions of the primitives are associated with the intersection of horizontal and vertical check-
erboard square edges of alternating polarity. According to the authors, the latter can be detected 
easily and accurately by correlating the image with a reference pattern, making the approach fairly 
robust with respect to the scene texture. Its main shortcoming is the large size of its subpatterns and 
its low relative spatial resolution, both due to the necessarily large checkerboard squares. 
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Maruyama and Abe [1993] project a 1D-encoded pattern of ca. vertical 50 lines or slits with ran-
dom cuts (figure 23), i.e. Qp = {cut, non-cut}). They use a geometric set-up corresponding to the 
standard geometry of stereo vision where horizontal slide lines correspond to image rows. Code-
words are read by determining the succession of cuts and non-cuts along an image row; the authors 
do not specify a codeword length. Positive identifications are propagated vertically along the slits. 
In a similar approach, Beumier and Acheroy [1999] project a white slide with an unspecified num-
ber of thin and thick black stripes (figure 23), which replace the cuts and non-cuts of Maruyama 
and Abe. This idea seems to have been proposed earlier by Yonezawa and Tamamura [1978] in a 
Japanese-only paper. The disadvantage of the latter approach is that to recognize the width of a 
stripe in the pattern image the scene not only has to be continuous, but also needs to be locally pla-
nar; only then the foreshortening effect is locally constant and the relative width of stripes is pre-
served from the projection to the pattern image. Also employing stripes of distinct width results 
inevitably in large subpatterns and sparser than necessary range data, since at least the thick stripes 
have to be significantly larger than the minimal detectable size. 

The main point in favor of the methods of this section is their (in all cases at least conceptual) one-
shot nature, their efficiency and their ability to deal with colored scenes; their key problem is rec-
ognizing the pattern primitives in the pattern image. None of the proposed primitives can be relied 
upon to be discernable from the scene texture even with standard scenes; e.g. the scene displayed in 
figure 24 (taken from a real-world application, namely measuring the volume of parcels) seems 
likely to confuse all approaches of this section. So the methods either resort to additional images or 
im- or explicitly impose a reflectivity smoothness assumption, besides the continuity constraint 
inherent to spatial encoding. Also it is difficult to create a code of sufficiently many reasonably 
short words given the low transmission capacity of the typically binary patterns. This limits the 
approaches, especially those with 2D encoding, to a coarse relative spatial resolution; the highest 
stated in the literature is a low resolution of 64 by 64. The latter aspect also prevents the use of 
error-detecting codes that would make the systems more robust. 

3.3.10.7 Coded Light Based on Spatial Color Encoding 

This section discusses one-shot methods based on spatially encoded color patterns. In principle, the 
latter offer a tripled transmission capacity compared to gray level ones (if one interprets R, G and B 
as separate transmission channels). It is paid for with a strong dependency on the scene color: only 
if the latter is neutral, the reflected color resembles the projected one. With a strongly colored 
scene, the two can differ drastically as demonstrated by figure 25. The use of monochromatic col-
ors alleviates this problem to some extent, but there is currently no practical way to generate arbi-
trary projection patterns composed of monochromatic colors (for some close-range applications 
LEDs might provide sufficient light). 

The first color-coded light system by Boyer and Kak [1986] utilizes a pattern composed of 96 col-
ored vertical stripes. The horizontal concatenations of stripes 1 … s, of s + 1 … 2s etc. each repre-
sent a unique signature. The pattern is consequently not encoded in the sense of this work (at least 
not when considering the word length s) as only selected – as opposed to every possible –  
s-primitive-sequences are guaranteed to be unique. This creates the problem of how to find the 
beginning of such a sequence. For their experiments, Boyer and Kak choose a sequence length s of 
4 and employ stripes of the three colors red, green and blue. To recognize these colors in the pat-
tern image, they locate the signal peaks of the R, G and B color signals. Given the recovered color 
sequence along an image row, they compare all received sequences of length s to the codewords 
and note the matches. For each projected codeword, 0, 1 or m matches exist. Each match is then 
interpreted as crystal and enlarged as long as the projected and received colors match. Next, a heu-
ristically motivated, iterative process chooses the longest crystal and eliminates or trims all remain-
ing crystals that clash or overlap with it. The authors remark that this process can be "fooled by 
particular occlusive effects". As their approach is computationally inexpensive, it is well suited for 
real-time processing.  
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Figure 25: Pattern images obtained for the projection pattern proposed by Salvi [1998] for a neutral 
(left) and a colorful (right) scene. Comparing the identical clippings shows that the latter scene 
modulates the pattern reflection to the extent of the projected colors being no longer recognizable. 
 

Hügli and Maitre [1988] improve upon the approach by Boyer and Kak by changing the pattern to 
a truly encoded one, i.e. one where each sequence of s stripes forms a codeword. The resulting 
projection patterns, respectively code symbol sequences are also called pseudo-random, pseudo-
noise or m-sequences and play an important role in areas such as radar, cryptography and Monte 
Carlo simulation [Goresky and Klapper 2004]. Such pseudo-random sequences are closely related 
to De Bruijn-sequences [De Bruijn 1946]; a De Bruijn-sequence of order s over the alphabet Qp is a 
circular sequence of length qp

s
 where each possible substring of length s occurs exactly once; a 

pseudo-noise sequence is a De Bruijn-sequence without the all-zero subword [MacWilliams and 
Sloane 1976]; respectively, in the context of coded light, this definition is typically understood to 
refer to a sequence of undefined length were each substring of length s occurs at most once. 

Monks [1994] builds on the version of Hügli and Maitre. He chooses the pattern colors red, green, 
blue, yellow, magenta and cyan (qp = 6). With a codeword length of 3, he achieves a resolution of 
120 distinct light planes. The new aspect of his work is an enhanced decoding schema based on a-
cyclic directed graphs. It is based on the ordering constraint and thus of limited general applicabil-
ity; it seems to work well with human mouths, which is the only type of scene Monks considers. 

Paul and Stahnke [2000] use a similar pattern of 108 stripes; the main difference is that they adapt 
their four projection pattern colors to the scene. For this reason, they are able to cope with uni-
formly colored scenes despite directly exploiting – as all other approaches of this section – the re-
flected color signals. However, such a global adaptation of the projected colors still fails with 
scenes whose color varies significantly. Also a scene-dependent color adjustment is often unpracti-
cal and calls for a flexible multi-media projector. 

Griffin et al. [1992] describe a PRA of size 11 by 29 that uses red, green and blue circles as primi-
tives. Apart from this aspect, it is identical to their grayscale PRA described above. Davies and 
Nixon [1994, 1998] use this pattern where they change the colors to yellow, magenta and cyan. 
Their innovation is to apply a special Hough transform to locate the circles in the pattern image and 
to directly derive the local surface orientation from the elliptic shape of the imaged circles. 

Salvi et al. [1998] again adopt the approach by Griffin et al. [1992] to generate their pattern. They 
project two separate PRAs of size 27 by 1 and window dimensions of 3 by 1 at the same time. One 
of the arrays is made up of horizontal, the other of vertical stripes. They choose red, green and blue 
for horizontal and yellow, magenta and cyan for vertical stripes. As there is a large intervening 
space between the stripes, the two patterns can be superimposed as shown in figure 25. This way 
they achieve 2D encoding with doubling rather than squaring the number of codewords, however at 
the cost of a coarse resolution of 29 by 29 due to the big interspaces needed to avoid interferences 
of the two superimposed PRAs. 
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Morano et al. [1998] also propose employing PRAs to implement a coded light system. They com-
pute PRAs of size 45 by 45 for distinct choices of the remaining parameters, e.g. for h = 1 up to 4, 
qp = 3 up to 9 and windows sizes of 3 by 3 up to 4 by 5. For their real-world experiments, they 
employ circles of the three colors red, green, and blue (qp = 3). Even though they put forward using 
error-detecting codes, their small code alphabet prevents them from actually employing one for 
their experiments. 

Compared to gray level techniques, this section’s color-based one-shot methods share the continu-
ity assumption. The larger number of codewords possible with colored patterns allows them to 
achieve a higher resolution, respectively in some cases to employ error-detecting codes. However, 
they are restricted to neutrally colored scenes, with the exception of Paul and Stahnke [2000] who 
cope with uniformly colored scenes. This fundamental limitation, caused by directly relying on the 
absolute color signals, is very pronounced. Boyer and Kak [1986] require the color content of 
scenes to be "predominantly neutral". Griffin et al. [1992] state that their approach "works best 
with environments that are color neutral". Davies and Nixon [1998] paint their test scene white. 
Monks [1994] recommends white make-up. According to Salvi et al. [1998], their approach is lim-
ited to "pale and neutral scenes" and permits no ambient light. Morano et al. [1998] remark that 
color identification may be compromised if a scene has “complex reflectivity properties”. They use 
for that reason only three distinct colors and seem to employ objects of rather neutral color for their 
experiments. 

3.3.10.8 Conclusions on Structured Light 

When realized with a simple slide projector, SL has modest resource requirements. With the excep-
tion of laser-based systems, it is also a safe technique, though one limited to relatively small (up to 
a few meters) working spaces as the projection strength fades away relative to the background il-
lumination proportional to the squared distance projector-scene. Its variations differ widely regard-
ing all other aspects such as accuracy or data rate. The most important conclusions are: In the form 
of temporal encoding, SL is by far the simplest and reliable (and according to Nayar et al. [1996] 
most widely used) method to acquire accurate depth maps of high resolution of static scenes. This 
task can be considered practically solved but for special scenes such as strongly specular ones. 
Only one-shot approaches are currently suited for acquiring range images of unknown, arbitrarily 
fast moving scenes in uncontrolled environments. Most of them operate in real-time as they solve 
the identification problem very efficiently, if they solve it. However, un-encoded one-shot ap-
proaches acquire at most shape data. The ones based on black-and-white spatial encoding suffer 
from a reflectivity smoothness assumption, to a lesser extent from a continuity assumption and, 
most importantly, from a low relative spatial resolution. Color pattern approaches tend to have a 
higher resolution, but are limited to neutral or at most uniformly colored surfaces. So the task of 
acquiring accurate high-resolution range maps of arbitrary dynamic scenes with the SLA/CLA is, 
by and large, unsolved. 

3.4 Summary 
This chapter shows that there is a wide spectrum of approaches to range image acquisition; for 
most of them furthermore a wide number of variations exist. Despite this wealth of techniques, 
there is no single best approach to ranging; each of them has its intrinsic advantages and fundamen-
tal limitations. No method solves the problem of range image acquisition in a manner that covers 
the needs of 95 % of the applications such as e.g. today's CCD cameras do in the case of color or 
grayscale image acquisition. For this reason, a productive discussion of which approach should be 
chosen requires to first narrow down certain conditions and requirements – for which distance, 
accuracy, resolution etc. Accordingly, this is what we do in the beginning of the next chapter. On 
this basis we then utilize the concepts and insights of this chapter to develop a new approach to 
range imaging. 
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4 A New Approach to Range Image Acquisition 
This chapter develops a new approach to range image acquisition. First, it precisely defines the 
problem to be solved (4.1). Next, it outlines the principles and key ideas of the proposed solution 
(4.2). It structures the latter into three parts: the core principle (4.3), its extension (4.4) that yields 
better results, but requires more resources and finally a set of optional features (4.5) that might or 
might not be needed or pertinent, depending on the application in mind. 

4.1 Problem Statement 
The introduction described the main topic of this thesis as that of acquiring the high-resolution 3D 
structure of an arbitrary scene accurately, robustly and in real-time with reasonable effort. The con-
cepts of the previous two chapters allow re-stating the problem in a more precise form: The objec-
tive is to acquire range images with the following properties and given the following conditions: 

• (Relative Spatial) Resolution: The relative spatial resolution of the depth maps should be at 
least comparable to today's standard video cameras, i.e. be in the area of CCIR (ca. 780 x 580 
pixels) or RS-170 (ca. 750 x 480 pixels) systems. 

• Data Rate: The approach should work in real-time. As commonly accepted, we understand this 
as being able to provide range maps of the above resolution at the CCIR video frame rate of 25 
images per second with a time lag corresponding to at most one frame, i.e. to less than 40 ms. 

• Geometric Parameters: As we are mostly interested in human-machine interfaces, the work-
ing space should be sufficiently large to acquire images of faces or gestures, i.e. approximate a 
cube of 0.5 to 1 meter side length. 

• Accuracy: Accuracy is a complex aspect as it is influenced by many factors – the components 
used, the working space, the scene’s reflection properties etc. For this reason, we specify the 
required accuracy rather vaguely: the quality of the range data should allow solving tasks such 
as 3D face or 3D gesture recognition. We conclude from the typical dimensions of the features 
of face and hand that the standard deviation between measured and correct range value (the 
ground truth) should be notably less than a millimeter to this end. A more precise definition is 
not helpful in the context of a general problem statement, given that it would require a set of 
very specific follow-up definitions regarding the above factors. 

• Robustness: The technique should be able to obtain range data in an uncontrolled real-world 
environment, especially in the presence of uncontrolled background illumination of realistic 
levels and types; it should e.g. function outdoors. 

• Safety: The system should pose no danger whatsoever to humans. 
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• Scene Constraints: The approach should impose, if any, only few and minor scene constraints. 
Excluding dynamic scenes with objects in motion, strongly textured scenes, strongly colored 
scenes, or ones with frequent surface discontinuities (depth gaps) is not acceptable. 

• Hardware Requirements: The system should be exclusively based on today's low-cost off-
the-shelf hardware, and as little of it as possible.  

Comparing these requirements with the capabilities of the approaches discussed in the previous 
chapter leads to the following general conclusions: Contemporary shape-from-shading or -motion 
techniques miss the outlined criteria by far. Moiré interferometry and photometric stereo do not 
give actual 3D data (just dimensionless shape data) and are too sensitive to uncontrolled back-
ground illumination. Depth-from-defocus is better suited for the task. Applying it to dynamic 
scenes, however, requires significant hardware resources (several lenses that share the same optical 
path), especially given the targeted sub-millimeter accuracy over the targeted large working space. 
Current time-of-flight and interferometric systems require complex special-purpose hardware, have 
only a single or at most a few sensor elements and scan the scene rather than acquiring a single 
snapshot of it. They are for that reason not suited for acquiring high-resolution depth maps of 
strongly dynamic scenes. Stereo systems are not able to reliably obtain accurate high-resolution 
range data of unknown complex, potentially optically unstructured scenes in real-time. Finally, 
reasonably robust one-shot structured light systems that acquire 3D data, not just shape informa-
tion, either do not achieve an adequate resolution (with spatial encoding based on gray levels) or 
are limited to neutral or uniformly colored scenes (with spatial encoding based on color patterns). 

We conclude that we have not found an approach in the open literature that is able to solve the 
stated problem, despite the fact that it would have numerous uses. As pointed out in the introduc-
tion, this is undisputable considering there are many applications that require the exact 3D structure 
of objects such as shape inspection of industrial goods, gauging the size of objects in general or the 
creation of 3D models for virtual reality. 

4.2 Principle and Key Ideas of the New Approach 
This section outlines the principle and key ideas of the solution to the problem stated above. Which 
of the techniques discussed in the previous chapter (ignoring the ones already principally ruled out) 
could be improved or extended to that end? 

• Developing a high-resolution time-of-flight system for dynamic scenes appears to be a promis-
ing idea. These methods clearly have the potential of meeting the set objectives. However, 
building a corresponding range image sensor with hundred thousands of sensor elements calls 
for major hardware development, which is by far beyond the scope of this work and conflicts 
with the outlined hardware requirements. 

• Stereo vision is capable of meeting most, but not all of the set requirements. Passive stereo has 
major problems with optically unstructured surfaces. Active stereo solves this problem, yet is 
limited to a working space of a few meters (which is, however, in line with the requirements) 
and its active illumination might appear intrusive to humans. The main problem – and one that 
appears to be fundamentally difficult to solve – is implementing a stereo vision system with 
high resolution and accuracy as real-time system on today's off-the-shelf hardware. 

• Single-shot CL is quite similar to active stereo, but has certain key advantages compared to it: 
CL requires only a single camera. It is intrinsically faster because CL algorithms are able to 
solve the identification problem by analyzing small local neighborhoods in a single image 
rather than having to consider at least a good part of an epipolar line to work out the much 
more difficult correspondence problem. In addition, it is straightforward to make CL systems 
reliable via error-detecting encoding whereas all stereo systems occasionally produce mis-
matches where the range data is flat-out wrong. It shares the disadvantage of an active illumi-
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nation. Further relevant issues are: a low resolution (with gray level encoding) and that the 
seemingly necessary spatial encoding fails with surfaces to small to reflect the subpatterns in-
tegrally, with certain types of texture or in the case of color encoding also with surfaces of non-
neutral, respectively varying reflectivity. However, these problems seem minor compared to 
the efficiency issue of accurate hi-res stereo. 

In light of the above conclusions, we put forward the following two-stage ranging method: 

Coded Light Stage (see also [Forster et al. 2001a], [Forster et al. 2001b], [Forster et al. 2002] and 
[Forster et al. 2003]): A new approach to coded light based on spatial encoding represents the ini-
tial stage of the proposed ranging technique. Its purpose is to compute a first depth map of the 
scene, which can then be improved by the latter stages, if necessary. As it uses spatial encoding, the 
first stage is able to compute this map from a single snapshot of a scene; it consequently copes with 
dynamic scenes and is in principle capable of a 3D frame rate equal to that of the employed color 
camera. Moreover, a simple slide projector suffices to generate the necessary un-varying illumina-
tion. The higher transmission capacity of a color pattern permits combining small subpatterns – that 
is ones which take up only a few pixels in the pattern image when projected on suitable surfaces – 
with a code space large enough for high resolutions and error detecting codes. This would be diffi-
cult, if not impossible, with a gray level pattern. Of course, the disadvantage of a color pattern 
seems to be that decoding requires recognizing the projected colors in the pattern image, yet the 
reflected colors cannot be relied upon for that task: Perceived red might be due to projected red, but 
also to projected white and a red surface or projected green in combination with a red surface plus 
strong white ambient light. Existing color-coded systems exploit the perceived color anyway and 
simply avoid this problem by assuming a neutral scene reflectivity or by adapting the projected 
colors with uniformly colored scenes. 

To overcome this shortcoming, we develop a one-shot color-coded light technique that copes with 
a scene reflectivity that varies both spatially and spectrally. We first note that an intrinsic assump-
tion with spatial encoding – namely that most projected subpatterns are reflected rather integrally – 
corresponds to the assumption that depth and reflectivity of the scene vary smoothly almost every-
where, i.e. to a continuity and a reflectivity smoothness constraint. This implies we can exploit 
these two constraints without introducing new restrictions. Then, with reflectivity smoothness, the 
scene exhibits only occasionally reflectivity edges of its own. With continuity, there are only a few 
edges due to object boundaries or sharp changes in the scene’s surface orientation; it also implies 
that projected edges appear as edge segments in the pattern image and that spatial adjacency rela-
tions of the imaged segments will in most cases remain as projected. We consequently propose to 
use color edge segments as pattern primitives and local edge segment patterns as subpatterns. 

The resulting workflow is as follows: The first step is to detect and classify the imaged color edges 
resulting from projecting a suitable color pattern, the second to establish their spatial adjacency 
relationships. In principle, these two steps reconstruct the subpatterns visible in the pattern image. 
However, the received color signals will typically be noisy, especially with low cost single-chip 
RGB cameras and strongly colored scenes exhibiting a low reflectivity for some color bands. Also 
other sources – for instance certain changes in surface normal, object borders or the scene’s texture 
– will give rise to (unwanted and by assumption infrequent) color edges. The key idea to overcome 
these problems is to combine error detecting encoding with a detection algorithm optimized for 
robustness: The former creates a means to distinguish between edges that are projected and those 
that are not. The latter exploits it as much as possible. Precisely how this is done is a rather com-
plex process; it is described over the next sections in detail. Next, established subpatterns that 
translate (decode) into valid codewords are considered identified. Edge segments that are part of an 
identified subpattern are associated with known planes in 3D space. For these segments, the depth 
of the imaged scene patch is calculated via ray-plane triangulation. There will necessarily be cer-
tain interspaces in-between adjacent edge segments. For these interspaces, that is for all remaining 
pixels part of an identified subpattern, the depth is interpolated in a subsequent step. 
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Stereo Stage (also described in [Forster 2004]): The coded light stage relies on a continuity and a 
reflectivity smoothness assumption; it potentially breaks down if one of them does not apply, e.g. 
with surfaces to small to reflect subpatterns integrally or with certain types of texture. In most prac-
tically relevant cases, the corresponding problematic areas take up only a small part of a scene. 
Moreover, they typically exhibit a pronounced optical structure that is almost certainly not of a 
regular, repetitive nature due to the active illumination. The stereo stage tries to exploit that stereo 
algorithm are well suited for such optically structured surfaces. To that end, it uses a second cam-
era, i.e. a set-up as with an active stereo system. Initially, each camera-projector combination acts 
as independent CL system. This way each system obtains as many range values as possible with a 
method much faster and more reliable than stereo vision, but one that might not acquire range val-
ues for all parts of the scene. Next, each CL system shares its results with the other (mutual up-
date). Then a stereo algorithm attempts to compute depth values for the imaged parts of the scene 
where both CL systems failed. As these parts will in most cases occupy a relatively small area of an 
image only, and as the stereo algorithm can build on the results of the CL step, it can be expected to 
be sufficiently fast for real-time operation. Finally, the dense sub-pixel correspondence is estab-
lished for pixels located in-between color edges identified in both images. This yields the targeted 
high (non-interpolated) relative spatial resolution, which the coded light step alone cannot achieve 
for the reasons explained above. 

Optionally, we also solve certain problems not directly related to or unnecessary for range acquisi-
tion, but which might be useful or even essential for some applications. 

• Scene Reflectance Compensation: In some cases, it is possible to acquire an additional image 
of the scene under white illumination. This image allows determining the reflectance properties 
of each imaged scene patch and compensating their effect on the reflection of the projected pat-
tern; the resulting modified pattern image appears as if the scene had had a uniform and neutral 
reflectance. Of course, this makes the further processing easier and more robust as the pro-
jected and the imaged color then correspond; the disadvantages of the color compensation step 
are that it requires a projector capable of switching between two distinct projection patterns and 
a scene that is approximately static between the acquisitions of the two images. 

• Scene Color Computation: During the coded light step a color image of the scene is acquired, 
but one that is rather unsuited for further processing due to the irregular illumination. If the 
identification problem is solved, the spectral composition of the projected illumination is 
known for each patch of the scene. This information permits computing the local reflectivity of 
each patch, i.e. reconstructing the intrinsic color of the scene, should it be of interest. 

• Threshold Optimization: The choice of algorithm thresholds (including camera settings such 
as the exposure time) has a major impact on the performance of the proposed approach. Any 
modification of the set-up or a strong change in the ambient conditions might require an ad-
justment of the threshold. Ideally, the system should adjust them autonomously. With the CL 
approach, the total number of pixels part of an identified projected color edge segment repre-
sents a numeric quality indicator that allows directly comparing the goodness of different pa-
rameter sets. As the system employs error detection techniques, it is practically impossible that 
a bad choice of parameters introduces misidentifications. An algorithm can use this direct 
feedback to find the optimal choice of thresholds. Invoking it e.g. every n frames enables the 
system to cope with the above-mentioned situations without user interaction. 

In sum, the resulting combined approach (figure 26) has the potential of meeting all set objectives. 
It imposes no scene constraints but a reduced continuity and reflectivity smoothness assumption. 
Reduced in the sense that it does not require depth and reflectivity to vary smoothly almost every-
where as in the original formulation of the constraints, but rather only expects them to vary 
smoothly for a large part of the scene. Only few surfaces of practical interest conflict with these 
assumptions. Moreover, the combined approach minimizes the problem of occlusion: depth values 
can be computed if a scene spot can be seen by any two of the three system components. 
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Figure 26: High-level workflow of the proposed approach to range image acquisition. 
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4.3 The Coded Light Subsystem 
This section disusses all aspects of the proposed coded light subsystem. 

4.3.1 Calibration  
To obtain range values via ray-plane intersection, the geometric and optical parameters of both 
camera and projector – according to some suitable geometric camera and projector model – have to 
be known. Only then can image coordinates be associated with known straight lines (of view), re-
spectively projected light planes with known planes in 3D space. Determining these parameters is a 
process called camera, respectively projector calibration. As it is not practical to directly measure 
the parameters, they are estimated indirectly: For camera calibration, a target that contains marks of 
known world coordinates is imaged and the image coordinates of the marks are established. For 
projector calibration, a pattern with marks of known slide coordinates is projected and the world 
coordinates of the marks are determined. Both approaches yield a set of n observation vectors, each 
made up of image with matching world coordinates (xij, yij, xwj, ywj, zwj)1≤j≤n. The model parameters 
that fit best to this data, in our case in the least square sense, are then taken to be the desired cam-
era, respectively projector parameters. 

The approach to camera calibration taken in this work builds on and extends a well-established 
technique introduced by Tsai [1986, 1987]. The next sections present Tsai’s method and the one 
proposed by us, discuss the topic of projector calibration and conclude with experimental results. 

4.3.1.1 Tsai’s Camera Calibration Technique 

This work’s calibration technique is based on Tsai’s approach as the latter has certain key advan-
tages: 

• Autonomous Operation: The procedure does not require a good initial guess or any other kind 
of user intervention, i.e. it operates autonomously. Placing the calibration target in front of the 
lens and invoking the algorithm is all an operator has to do for camera calibration. 

• Simple Calibration Target: As a general rule, the systematic error of the calibration mark 
coordinates should be one order of magnitude smaller than the targeted 3D measurement accu-
racy [Tsai 1986]. Also the marks should fill the whole field of view. In our case, obtaining a 
3D calibration target that spans the targeted large working space and whose systematic error 
(e.g. due to mechanical instability such as distortion) is and remains over time in the area of 
0.01 mm is very difficult. A significant advantage of Tsai's technique is that it works well even 
with simple planar calibration targets, which can be constructed and shipped much more easily; 
they also tend to be mechanically more stable than their 3D counterparts. For this reason, we 
assume and exclusively use a planar calibration target. 

• Accurate Results: The literature states that the technique produces accurate results. 

Tsai’s camera model is the pinhole model of 3D-2D perspective projection with 1st order radial 
lens distortion as introduced in section 2.2. Today’s cameras transfer their data digitally to the 
processing unit; accordingly, effects such as synchronization problems that an analogous transfer of 
the image data could cause can be ignored. Consequently, the model has in total 10 parameters, 
namely four internal parameters, also called intrinsic or interior parameters 

• the effective focal length fk of the pinhole camera. 

• the 1st order radial lens distortion coefficient κ1 = κ. 

• the optical image center C = (cx, cy), defined as the intercept of the camera’s optical axis with 
the camera's sensor plane and assumed to coincide with the center of radial lens distortion. It is 
specified in pixels. 
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and 6 external parameters, which are 

• the three translation parameters, i.e. the entries of the three-dimensional translation vector t 
of equation 16 that describes the position of the camera relative to the world-coordinate system. 

• the three rotation parameters, i.e. the three Euler angles Rx, Ry and Rz equivalent to the 9 
elements of the rotation matrix R of equation 16 that describes the orientation of the camera 
relative to the world-coordinate system. 

The core idea of Tsai's approach is to find and exploit linear relationships that involve only a subset 
of the model parameters rather than directly operating in the full parameter space. The resulting 
algorithm operates in two stages; the first stage deals with deriving and solving such linear systems, 
while the second puts it all together and performs a non-linear optimization of the entire model. 

Stage 1a (Resulting parameters R, tx, ty): So far we more or less ignored that there are two distinct 
types of image coordinates: frame coordinates as e.g. supplied by the frame grabber or used for 
image processing, which have pixels as units and the top-left pixel as origin, and sensor coordi-
nates, which have millimeters as units and whose origin is the optical center of the camera’s retinal 
plane. Of course, the perspective imaging equation (equation 14) applies only to the latter. Origi-
nally, the observed positions of calibration marks are given in frame coordinates (xf, yf) only. Ac-
cordingly, they need to be transformed into physically meaningful sensor coordinates (xs, ys). This 
transformation involves the yet unknown optical image center. Tsai assumes that the arithmetic 
image center (cx’ = Nx/2, cy’ = Ny/2) is a reasonably close approximation to the optical one. The 
conversion of image to sensor coordinates is then done via 

 ( ) [ ] ( ) [ ]mmdycyymmdxcxx yfsxfs ⋅−=⋅−= ''  (51) 

where dx and dy are the physical dimensions of the sensor elements in millimeters. As discussed in 
section 2.2, the above coordinates are the actually observed, distorted sensor coordinates; so in the 
following we refer to them as (xd, yd) to distinguish them from the (so far unknown and non-
observable) ideal undistorted coordinates (xu, yu). The perspective imaging equation (equation 14) 
applies only to the latter. From this equation Tsai derives the following constraint: 

 ( )00 ≠=−⇒=∧= ccucuckcuckcu zxyyxzfyyzfxx  (52) 

Interpreting this constraint geometrically leads to the conclusion that the ideal image (xu, yu) of a 
point located at camera-coordinates (xc, yc, zc) and its zc-projection (xc, yc) are radially aligned: 
their outer vector or cross-product is zero. In contrast to the law of perspective projection, this ra-
dial alignment property also applies to the distorted coordinates as the effect of the distortion is – 
according to the camera model – exclusively radial as well. This follows analytically by combining 
equations 20 and 52: 

 ( ) ( ) ( )00...1...1 22 ≠=−⇒+−+=− ccdcdcdcdcucu zxyyxxryyrxxyyx κκ  (53) 

To exploit the radial alignment property, the x and y camera coordinates of the calibration marks 
are needed. As only their world coordinates (xw, yw, zw) are known so far, we have to transform the 
latter into camera coordinates (xc, yc, zc) via rotation and translation as in equation 16. Equation 53 
then reads: 

 ( ) ( ) 0131211232221 =+++−+++ xwwwdywwwd tzryrxrytzryrxrx  (54) 

As pointed out above, we assume a planar calibration target. We may choose its surface as the  
zw = 0 plane of the world coordinate system without loss of generality. Then zw becomes zero for 
all marks and its associated rotation parameters vanish. Separating known from unknown parame-
ters turns equation 54 into the following linear equation of only 5 unknowns: 
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Setting up the above equation for each calibration mark gives an overdetermined system of linear 
equations that can be solved in the least-square sense for the five unknowns provided that n is 
much larger than 5 (barring certain very unlikely degenerate cases). This yields the top-left 2 by 2 
sub-matrix of the orthonormal rotation matrix R scaled with the unknown factor ty

-1. Exploiting the 
orthogonality and normality of a rotation matrix allows determining the squared inverse of the scale 
factor, i.e. ty

2, uniquely (again but for very unlikely degenerate cases) as: 
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It remains to derive the sign of ty. To that end, we make the following two observations:  

• The choice of ty uniquely determines the remaining parameters r11, r12, r21, r22 and tx. Given 
these six parameters, the x and y camera coordinates of a calibration mark can be computed 
from its world coordinates. Reversing the sign of ty reverses the sign of the other five parame-
ters, i.e. if we obtain the camera coordinates (xc, yc) for given world coordinates (xw, yw, 0) 
with a positive, we get (-xc, -yc) with a negative sign of ty.  

• Each calibration mark is in front of the camera, i.e. zc > 0, actually zc > fk, and the effective 
focal length is positive, i.e. fk > 0. Then a point with a positive x (or y) coordinate in the cam-
era coordinate system is imaged at a positive image plane x (or y) coordinate and vice versa. 

These findings allow hypothesizing a positive ty, choosing a calibration mark that is imaged far 
away from the image center and transforming its world into (incomplete) camera coordinates. If the 
resulting camera coordinate xc has the same sign as xd and yc and yd match as well, the hypothesis 
is correct. Otherwise, it is wrong and the value of ty is set to –(ty

2)1/2. With ty, the top-left 2 by 2 
submatrix of R is determined. From the fact that a rotation matrix is orthonormal and in our case 
right-handed, the remaining entries of R follow straightforwardly. 

Stage 1b (Resulting parameters fk, tz): In a next stage, initial estimates of the effective focal length 
fk and of the remaining unknown translation parameter tz are computed. To this end, the results of 
stage 1 are substituted into equation 16:  
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The above equation involves the unknown undistorted sensor coordinates. At this point this prob-
lem is solved by simply ignoring the radial distortion, i.e. by assuming xd = xu, respectively yd = yu. 
Separating the known factors from the two remaining unknowns fk and tz yields for each calibration 
mark the following linear equation: 
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The resulting overdetermined linear equation system over all marks can be solved for the two un-
knowns unless the target plane is parallel to the image plane, in which case yd and yc are linearly 
dependent. Accordingly, Tsai recommends an angle between the two planes of at least 30°. It 
seems that an even larger angle would improve things further, but typically the resulting increased 
foreshortening amplifies the noise in the observed image coordinates, more than offsetting any gain 
from a certain tilt on. The solutions of the equation system represent preliminary values only as 
radial distortion cannot truly be disregarded. Nevertheless they are well suited as initial guess for 
the non-linear optimization coming next. 

Stage 2 (Resulting parameters are all 10 model parameters): In the final stage, the radial distortion 
κ, the exact solutions for the effective focal length fk, the translation parameter tz and the optical 
image center (cx, cy) are determined. Substituting what is known so far into equation 16, this time 
considering radial distortion, yields: 
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We can formulate an analogous equation for each observed y sensor coordinate. These two equa-
tions are also a function of the image center as it controls the transformation of image to sensor 
coordinates. All in all, this allows setting up the following non-linear error or cost function of the 
remaining five unknowns that describes the squared modeling error over all calibration marks: 
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Minimizing the error function yields the remaining five unknown parameters. Provided the optical 
is not too far away from the arithmetic image center and the radial distortion is not too strong (κ ≈ 
0), a very good initial guess for the parameter set is available. Accordingly, any of the classical 
non-linear optimization approaches such as steepest descent can be expected to give good results.  

Tsai’s technique as described in his papers ends with the above step. However, its implementations 
typically perform a second run of the algorithm where they use the obtained image center to con-
vert image to sensor coordinates in stage 1a and also consider radial distortion in stage 1b. In a last 
step, they explicitly consider the remaining model parameters (implicit in xcj, ycj and z’cj of equa-
tion 60) of the error function and carry out a non-linear optimization in the full parameter space. 
Horn [2000] points out that this is rather necessary as the linear equation systems of stage 1 did not 
minimize the squared modeling error, but their own algebraic error functions. The elements of the 
10-dimensional vector of minimal squared error are then taken as the camera's model parameters. 

4.3.1.2 An Improved Version of Tsai’s Camera Calibration Technique 

In general, Tsai’s technique yields accurate results. As all calibration methods, it is, however, con-
fronted with two disturbing factors, namely 

• a significant dependency between certain model parameters, for instance between the effective 
focal length and the camera’s distance to the scene. 

• noisy observation vectors; with low cost cameras as targeted in this work, this applies in par-
ticular to the frame/image coordinates. Respectively, a coplanar calibration target is typically 
built by printing a pattern on a sheet of paper and gluing it on some approximately planar ob-
ject. In our case, this process resulted in z world coordinates that depart up to ±0.05mm from 
the assumed flatness; even if these deviations are known, Tsai’s original approach does not 
consider such minor, but non-negligible non-coplanarity. Ignoring the actual z values effec-
tively turns them into high-amplitude, typically non-Gaussian and non-zeromean noise. 
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Figure 27: Exemplary views of the calibration target from distinct unknown positions as recom-
mended for the proposed multi-view calibration technique. 
 

Given only the limited information of a single snapshot of a planar calibration target, the interac-
tion of the above factors becomes a serious problem; it causes several slightly distinct parameter 
sets to describe the observed data equally well, or, with other words, it results in many local min-
ima of the cost function that are almost indistinguishable from the global one. Tsai’s algorithm 
tends for that reason to converge to a local minimum that represents a slightly erroneous parameter 
set, and to a somewhat different one for each calibration attempt on top. This is barely noticeable 
when considering points on the calibration plane from the point of view taken for calibration. Only 
far away in 3D space from this plane or from a distinct perspective the resulting calibration error 
becomes perceptible. Analyzing the repeat accuracy reveals the problem as well. Both effects are 
demonstrated experimentally below. 

To overcome this effect, we acquire m > 1 images of the planar calibration target from m distinct 
viewpoints as shown in figure 27 and establish the set of internal parameters that fits best over all 
views rather than only one. The m - 1 additional images from unknown viewpoints solely serve the 
purpose of stabilizing the parameter estimates. Acquiring them is no major effort as it suffices to 
move the target to a few unknown, but notably distinct positions and orientations, which is equiva-
lent to translating and rotating the camera. 
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The proposed approach is in principle closely related to the idea of bundle adjustment widely used 
in the field of photogrammetry (see e.g. [Luhmann 2000]). Corresponding photogrammetric cali-
bration methods are typically very accurate, but difficult to use. This is in part due to the fact that 
they tend to be more complex by design. For example, they often do not distinguish between cali-
bration of the camera(s) and 3D reconstruction of the scene, but combine both steps into a single 
computation. The advantage of this approach is that it uses the m points of view not only for cali-
bration, but also for determining the 3D coordinates of certain scene points (i.e. it performs triangu-
lation with up to m lines of view); consequently, it yields 3D data that is very accurate and that can 
easily be combined into a complete 3D model of the scene. A key difference between the proposed 
and photogrammetric approaches is that the latter typically require initial guesses and calibration 
marks that are not coplanar, for instance a 3D calibration rig such as two orthogonal planes. 

There seem to be only two calibration approaches similar to the proposed one – that is operating 
without initial guesses and relying on observing a simple model plane from several distinct un-
known viewpoints – discussed in the literature. The one by Triggs [1998] requires at least five dis-
tinct views, the one by Zhang [1998, 2001] can do with two views and appears to be more widely 
used; it is the calibration method of the popular, freely available Intel Computer Vision (ICV) li-
brary [Intel 2001]. It is for that reason used as reference and benchmark in the following. 

Zhang’s method operates as follows: Initially, it ignores lens distortion and computes for each view 
the homography between the model plane and its image that gives the least squared error. Even 
though this homography could be found with linear methods, Zhang determines it via non-linear 
minimization, probably because the latter approach is more robust against noise ([Faugeras 1993]). 
From the m > 1 homographies, a closed form solution for the intrinsic camera parameters (exclud-
ing distortion related ones) is derived from geometric constraints. Given the most relevant internal 
parameters, the extrinsic ones of each view follow easily. These results allow setting up an overde-
termined linear system to estimate the distortion parameters. Zhang’ original method considers two 
radial distortion coefficients, its ICV version also two tangential ones. Given estimates of all pa-
rameters, a non-linear optimization refines the complete model; again the minimization criterion is 
the squared modeling error. 

Clearly deriving initial estimates for all parameters from a linear image formation model is a proc-
ess that is more vulnerable to parameter interdependencies than a two-stage approach. Zhang’s 
results reflect this: for instance, he reports that the detected outer points lie consistently further 
away from the image center than the ones predicted by the initial linear model. Consequently, the 
linear estimation of the radial distortion yields a distortion of the wrong type (pincushion instead of 
the actual barrel distortion) because it tries to push the modeled outer points further away from the 
optical image center to bring observation and model closer together.  

It seems for this reason promising to combine Tsai’s robust two-stage single-view approach with 
m-view bundle adjustment. We show in the following that this can be done with relatively little 
effort. In the following, we describe the proposed changes to Tsai’s technique for each stage:  

Stage 1a (Resulting parameters cx, cy and R, tx, ty for each view): The first stage again exploits the 
radial alignment constraint. As explained above, doing so requires knowledge of the optical image 
center. Tsai’s solution is to hypothesize that the optical and the arithmetic image center are about 
the same. This assumption is a potential weakness of his method: even though it holds true in most 
cases, it is occasionally quite off. In our experience, this applies in particular to projection devices; 
for instance, the optical slide plane center of the LCD projector used in this work is located at pixel 
coordinates (512, 760), which is non-negligibly distinct from the arithmetic center (512, 384) de-
termined by the native projector resolution of 1024 by 768 pixels. 
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For this reason, we determine the optical image center in stage 1a to prevent latter stages from be-
ing guided into the wrong direction. Tsai proves in his paper that the overdetermined equation sys-
tem 55 has full column rank, i.e. a unique solution for each view. Equation 54 is a function of the 
optical image center as the image coordinates depend on it. This implies the function f(cx, cy) that 
maps optical image center coordinates on the squared residual error over all views is well defined: 
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where the rotation and translation parameters are the uniquely defined solution of the overdeter-
mined equation system resulting from the choice of the image center. The non-linear minimization 
of equation 61 typically yields a better estimate of the optical image center. It is, however, not 
guaranteed that a wrong choice of the optical center results in a greater squared residual error over 
all views than the correct one, i.e. that the above minimization actually converges to the intended 
solution. For this reason, the proposed algorithm is split up into two branches, where the first uses 
the result of the above optimization as preliminary image center, while the second uses the arithme-
tic image center as with Tsai’s original approach. The branch with the least residual error provides 
the final output. The only potential disadvantage of this approach is an approximately doubled exe-
cution time of algorithm, which is irrelevant in the case of a one-time off-line calibration. 

Stage 1b (Resulting parameters tz for each view, plus fk common to all views): The key idea of the 
modified algorithm is to find a linear relationship that relates a subset of the internal parameters to 
observations made from many distinct unknown viewpoints. To this end, we observe that we are 
able to modify equation 58 of Tsai’s approach accordingly because each viewpoint has its own z 
translation tzi, but all views share the same effective focal length. We may consequently set up the 
following overdetermined linear equation system of m + 1 unknowns: 
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where the first numeric subscript of a variable refers to the view index, the second to the calibration 
mark index. Solving the above system yields the focal length that fits best to all rather than to a 
single point of view. This modification solves one of the key problems of Tsai’s approach, namely 
the dependency between the estimated focal length and the spatial position of the camera and the 
resulting parameter instability. 

Stage 3 (Resulting parameters are all 4 + 6m model parameters): The third stage is the non-linear 
optimization of a cost function that involves all images and the complete parameter space. Com-
pared to Tsai’s approach, the dimensionality of this space increases from 10 to 4 + 6m. However, 
this high dimensionality is unproblematic given the very good quality of the initial guess. 
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Furthermore, we propose to no longer assume the world coordinates of the calibration marks to be 
zero, but rather to consider their actual z coordinates during optimization, should they be known. In 
total, the resulting error function then becomes rather complex: 
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An existing implementation of Tsai’s algorithm can be extended with comparatively little effort to 
include the presented modifications. It is important to note that the latter do not take away from the 
ease of use of Tsai’s original method; it suffices to move and rotate the calibration target by hand 
as nothing needs to be known or is assumed of the unknown positions as long as they are somewhat 
different from each other. Even if they are not, the algorithm degrades to Tsai’s original approach 
and still converges to an acceptably accurate solution. Respectively, if high calibration accuracy is 
not called for, it explicitly permits a single view approach. The only disadvantage of the proposed 
approach is the slightly longer time span needed to acquire several images instead of only one and 
to deal with the now significantly higher dimensionality of the search space, respectively to pursue 
both branches of the algorithm. As verified experimentally below, this effort is well invested given 
that the accuracy of the calibration method increases in many cases by a factor of about 10.  

In the following, we add the subscript c to the obtained model parameters of the camera (e.g. Rc for 
its rotation matrix) to avoid confusion with the results of the projector calibration discussed next. 

4.3.1.3 Projector Calibration 

For projector calibration, a pattern containing marks of precisely known slide coordinates is pro-
jected and the world coordinates of each projected mark are established. Consequently, projector 
calibration is in a way the opposite of camera calibration as in its case the slide coordinates are 
known and the world coordinates have to be established. It is not practical to measure the latter off-
line as with a camera calibration target. Rather, the projector illuminates the planar camera calibra-
tion target with its calibration pattern, where it is assumed that the position of the target relative to 
the camera is known from a previous camera calibration. Next, the camera image coordinates of the 
projected marks are established. This yields for each mark a camera line of view in the world coor-
dinate system, intersecting this straight line with the well-known calibration target plane yields the 
3D world coordinates of the projected marks. In combination with their known slide coordinates, 
this approach again produces 5-dimensional observation vectors. 

Employing a colored calibration pattern, e.g. one made of red squares on a white background, 
would simplify the task of distinguishing between the marks of the camera calibration target and 
the projected ones. As shown in figure 28, the implementation of this work nevertheless uses the 
corners of black squares as fiducial marks; while doing so makes detecting the projected marks 
more challenging, it also works with black-and-white cameras, i.e. represents a more general ap-
proach to projector calibration. 

Once the observation vectors are obtained, projector calibration is in no significant way different 
from camera calibration. So the multi-view calibration technique discussed in the previous section 
can be applied without any changes. In the following, we add the subscript p to the resulting pro-
jector model parameters (e.g. Rp for its rotation matrix) to avoid confusion with the results of the 
camera calibration.  
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Figure 28: Exemplary images of the camera calibration target illuminated by the calibration pattern 
as they are used for projector calibration. 
 

It is important to note that – other than most projector calibration approaches reported in the litera-
ture (e.g. [Mc Ivor 1994], [Monks 1994] or [Teschner 1996]) – the proposed technique also deter-
mines the distortion of the projector lens. Section 4.3.4.2 shows that considering the projector dis-
tortion is necessary to obtain an accurate structured light system but for the unlikely cases in which 
the projector lens does not exhibit significant distortion. 

As camera and projector share the same world coordinate system, coordinates can be transformed 
easily from the camera to the projector coordinate system and vice versa. E.g. the conversion of 
projector coordinates (xp, yp, zp) to camera coordinates (xc, yc, zc) is done as follows: 
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The only disadvantage of the proposed method of projector calibration is that the error of the cam-
era calibration propagates into the projector model. However, the next section shows that the cam-
era calibration produces very accurate results. The modeling error for points on the calibration 
plane has a standard deviation in the area of 0.03 – 0.06 mm in object space over the targeted large 
working space; the systematic component of this error seems to be significantly smaller. So this 
dependency is unproblematic; this assessment is confirmed by the high ranging accuracy of the 
triangulation system evaluated in chapter 5. 

4.3.1.4 Experimental Results 

This section describes calibration experiments with real data. As the execution time of the algo-
rithm is in the area of one second on a standard PC, and as calibration needs to be done only once 
at system set-up, the topic of efficiency is rather irrelevant for our purposes and neither evaluated 
nor discussed in more detail here. So the sole purpose of the experiments of this section is evaluat-
ing the accuracy of the proposed calibration methods, absolutely as well as relative to the state of 
the art. 
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The camera used for the experiments is a Basler 302fc off-the-shelf single-chip color (Bayer pat-
tern) camera of a resolution of 780 by 580 pixels. It transmits its data digitally via an IEEE 1394a 
(fire wire) interface. The employed lens is a standard TV lens of 12.5mm focal length (Cosmicar 
Pentax 12.5mm). Forster [2005] lists experiments with other camera-lens combinations that show 
that the results of this section are representative. 
The calibration pattern is made up of 5 by 9 black squares on a white background of size 600 mm 
by 400 mm. The resulting 140 square corners serve as fiducial marks for calibration. The squares 
have a side length of 20 mm and are spaced 70 mm apart along the longer, 90 mm apart along the 
shorter side of the plate. The squares were printed with an ink jet printer on white paper, which was 
then put on a glass plate. The exact positions of the square corners were measured with an accuracy 
of ±0.01 mm. It turns out that the deviations created by the limited accuracy of the ink jet printer go 
systematically up to 0.5 mm, the ones due to the non-flatness of the glass, respectively the glued on 
paper range from -0.10 mm to +0.06 mm; they are systematic as well. 
With a pinhole camera, a straight line in 3D space is imaged as 2D straight plane. Square edges of 
black squares on white background can be detected easily. With standard lenses, the effect of radial 
distortion is about constant over a few (10-30) pixels. In combination, this allows to least-square fit 
straight lines to the square edge segments detected in the image. Intersecting the resulting straight 
lines yields the sub-pixel square corner position. This approach locates black corners on a white 
background with a sub-pixel accuracy of ca. 0.05 to 0.1 pixels standard deviation using the above 
mentioned single-chip color camera/lens combination (the stated accuracy refers to the typical 
about 30° tilt of the calibration plane as this accuracy depends to some extent on the angle of view). 
With black-and-white cameras, the results are notably better, indicating the technique is in line with 
the state of the art with respect to target location accuracy. 
The proposed extension of Tsai’s algorithm was implemented, where the non-linear minimization 
problem is solved by a modified Levenberg-Marquardt algorithm with a Jacobian calculated by 
forward-difference approximation. Such an algorithm is part of the well-known Minpack-1 package 
[Moré 1980]; this Minpack-1 implementation of a modified version of the Levenberg-Marquardt 
algorithm has been used for all experiments of this section. 

We describe several distinct experiments with Tsai’s algorithm (Wilson’s freely available imple-
mentation), Zhang’s method (Intel Computer Vision library implementation) and our own imple-
mentation of the method proposed in this work. To evaluate the quality of each method, we take the 
following approach: We consider a calibration attempt as measurement of the model parameters. It 
is, as any measurement, affected by a statistical error, which is assessed by repeating the same 
measurement several times and by analyzing the distribution of the measured values. In this con-
text, we use the following indicator: 

• The (sample) standard deviation of parameters over repeated calibration attempts. To make 
this indicator more readable, we normalize it by the mean value, i.e. we specify the standard 
deviation as percentage of the sample mean. Its acronym is NSDev. 

If a measurement method has a small statistical error, it is also called precise. More important than 
the statistical is the systematic error. A measurement approach affected by a negligible systematic 
error is considered accurate, even if it is imprecise. Unfortunately, the systematic error is difficult 
to assess with the task at hand because the ground truth, the set of correct parameter values, is un-
known.  
Following a practice commonly accepted in the literature on camera calibration, we employ the 
following substitute indicators for the overall accuracy of a calibration method, i.e. the one includ-
ing both the stochastic and systematic error: 

• The modeling or image plane error is the distance, specified in image pixels, between the ob-
served image plane location of a calibration mark and that predicted by the calibrated model. 
The non-linear optimization minimizes the root of the mean squared (rms) error of this type. 
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 Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 NSDev [%] 
Image Plane Center  
Cx, Cy [pix] 

400.43 
305.46 

399.04 
303.53 

400.60 
305.24 

395.17 
301.09 

401.34 
305.13 

0.552 
0.542 

Focal Length [mm] 12.382 12.407 12.387 12.443 12.376 0.196 
Radial Distortion  
κ [1/mm2] 

4.768·10-4 4.769·10-4 4.760·10-4 4.808·10-4 4.748·10-4 0.442 

Translation 
Tx, Ty, Tz [mm] 

223.43 
566.30 
498.03 

224.08 
566.94 
498.88 

223.57 
566.35 
498.41 

225.36 
567.74 
499.89 

223.33 
566.42  
497.85 

0.334  
0.096  
0.146 

Rotation  
Rx, Ry, Rz [deg] 

-22.848  
27.849 
11.688 

-22.937 
27.891 
11.740 

-22.850 
27.845 
11.700 

-23.077 
28.015 
11.804 

-22.845 
27.814 
11.697 

0.392  
0.253  
0.367 

Image Plane Error 
rms, max [pix]  

0.057  
0.248 

0.058  
0.281 

0.059  
0.274 

0.058  
0.244 

0.060  
0.267 

 

Object Space Error 
rms, max [mm] 

0.033  
0.148 

0.034  
0.157 

0.035  
0.153 

0.036  
0.156 

0.036  
0.183 

 

Angle bet. Planes [deg] 35.432 35.515 35.430 35.691 35.404 0.296 

Table 1: Results of Tsai camera calibration repeated for 5 images from the same point of view 
taken under slight variations of theoretically irrelevant parameters such as the exposure time. 
 
 Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 NSDev [%] 
Image Plane Center  
Cx, Cy [pix] 

391.69 
308.54 

397.97 
305.20 

379.66 
304.20 

371.87 
288.52 

396.54 
308.74 

2.618  
2.468 

Focal Length [mm] 12.501 12.416 12.446 12.683 12.015 1.766 
Radial Distortion  
κ [1/mm2] 

4.916·10-4 4.807·10-4 4.877·10-4 4.838·10-4 4.741·10-4 1.239 

Image Plane Error 
rms, max [pix] 

0.060  
0.326 

0.046  
0.208 

0.050  
0.239 

0.075  
0.380 

0.092  
0.378 

 

Angle bet. Planes [deg] 45.378 38.221 26.412 29.014 17.546  

Table 2: Internal parameters resulting from repeating Tsai’s methods for 5 distinct points of view.  
 

• The object space error is the distance of closest approach between a calibration point in 3D 
space and the line of sight formed by back-projecting the measured 2D coordinates out through 
the camera model. 

• The 3D measurement error is the distance between correct and measured position in 3D space, 
obtained by calibrating two cameras or a camera and a projector and by determining the 3D 
coordinates of certain test points via stereo vision or the coded light approach. If the true posi-
tion of the test points is unknown, it can be estimated by e.g. by fitting a suitable model to the 
data first. 

In a first experiment, we apply Tsai’s technique to five images taken from the same viewpoint. 
Table 1 lists the resulting parameters and accuracy indicators. Clearly all parameters should remain 
stable; that they do have a sample standard deviation of between 0.2% and 0.7% of the sample 
mean indicates a reasonable precision. 

In a next step, we apply Tsai’s technique to five images taken from distinct viewpoints. This time, 
only the internal parameters should remain stable; however, the results (table 2) show that they 
have a standard deviation between 1.2% and 2.6% of the sample mean value, indicating a serious 
stability and thus precision or accuracy problem. Repeating the camera calibration several times for 
one of the viewpoints does not significantly change the resulting parameters; e.g. for the view of 
attempt 4, the focal length is consistently about 12.7 mm over several calibration attempts using 
distinct images, while it remains in the area of 12.0 mm for the view of attempt 5. Necessarily, at 
least one of the two results for the focal length is systematically erroneous. So we conclude that the 
technique is inaccurate. This is despite the fact that in all but one case the target plane has been 
sufficiently tilted with respect to the image plane 
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 Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 NSDev [%] 
Number of Views 5 4 5 6 5  
Image Plane Center  
Cx, Cy [pix] 

371.78 
289.40 

371.74 
289.68 

371.29 
289.62 

371.58 
289.77 

372.12 
289.90 

0.072  
0.057 

Focal Length [mm] 12.684 12.686 12.689 12.684 12.680 0.023 
Radial Distortion  
κ [1/mm2] 

4.865·10-4 4.877·10-4 4.810·10-4 4.827·10-4 4.806·10-4 0.597 

Translation 
Tx, Ty, Tz [mm] 

232.95 
571.65 
508.14 

233.16 
571.56 
508.46 

233.30 
571.56 
508.65 

233.18 
571.49 
508.42 

233.05 
571.50 
508.35 

0.051 
0.010  
0.033 

Rotation  
Rx, Ry, Rz [deg] 

-23.785  
28.792  
-12.132 

-23.769 
28.793 
-12.132 

-23.775 
28.812 
–12.136 

-23.772 
28.800 
–12.131 

-23.753 
28.780  
–12.124 

0.044  
0.036  
0.032 

Image Plane Error 
rms, max [pix]  

0.056  
0.266 

0.059  
0.286 

0.060  
0.276 

0.058  
0.260 

0.059  
0.269 

 

Object Space Error 
rms, max [mm] 

0.034  
0.158 

0.036  
0.158 

0.036  
0.153 

0.036  
0.145 

0.036  
0.161 

 

Angle bet. Planes [deg] 36.684 36.676 36.693 36.682 36.656 0.034 

Table 3: Results with the proposed camera calibration method repeated for 5 distinct images from 
the same point of view with slight variation of e.g. the exposure time (same images as for table 1). 
 

Finally, we determine the 3D measurement error. To that end, we move the calibration target to a 
position far away from the one it had during calibration. Next, we acquire a depth map of the target 
with a coded light system calibrated with Tsai’s method. We then perform a relative 3D measure-
ment by LS-fitting a plane in 3D space to the obtained surface points. The mean orthogonal dis-
tance of the measured coordinates to the fitted plane is about 0.6 mm in 3D space. The spatial dis-
tribution of the distance values shows that the measurement differs systematically from the ground 
truth: whole areas in the corners of the image deviate by about -1mm from the plane while the cen-
tral region of the image has an about constant distance of +0.6mm to the plane. With the improved 
calibration method described below, the error is reduced to a mean deviation of about 0.1 mm and a 
spatially uniform distribution of the distance values. 

In sum, Tsai’s coplanar technique gives results that model the image formation very well consider-
ing points on or near the target plane. This is indicated by the very small image plane and object 
space error for the calibration points. However, its estimates of the fixed focal length vary from 
12.0 to 12.7 mm over five attempts and remain systematically at 12.0, respectively at 12.7 mm 
when repeatedly calibrating from certain viewpoints. Also, a coded light system calibrated with 
Tsai’s technique produces non-negligible systematic ranging errors. That is, the technique is not 
accurate in the above sense. This insight comes as quite a surprise because the rms image plane 
error is small, which seems to point toward a high calibration precision and accuracy. 

We repeat the above experiments with the new calibration method. For each image, 3 to 5 addi-
tional images from other unknown viewpoints are used to stabilize the calibration. The key results 
for repeating a calibration 5 times for the same point of view (table 3) are as follows: The parame-
ters remain quite stable with a standard deviation between 0.01% and 0.07% of the mean value 
(excluding radial distortion). That is the factor 10 in precision compared to Tsai’s technique. Even 
more striking is that the actual results differ strongly between Tsai’s and our proposed extension. 
E.g. the mean focal length of the former technique is 12.412 mm, while our method yields a mean 
of 12.682 mm. This suggests at least one of the two methods is inaccurate. 

All the above effects are even more pronounced for the distinct-points-of-view experiment (table 
4): here the parameters remain again very stable with a standard deviation between 0.01% and 
0.07% of the mean (excluding radial distortion), which represents an improvement of about the 
factor 50 compared to Tsai’s technique. 
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 Attempt 1 
(1,2,3,4) 

Attempt 2 
(1,2,3,5) 

Attempt 3 
(1,3,4,5) 

Attempt 4 
(1,2,4,5) 

Attempt 5 
(2,3,4,5) 

NSDev [%] 

Number of Views 4 4 4 4 4  
Image Plane Center  
Cx, Cy [pix] 

371.84 
289.96 

371.42 
289.90 

371.34 
290.01 

371.83 
289.96 

371.34 
289.31 

0.063 
0.090 

Focal Length [mm] 12.680 12.683 12.683 12.680 12.685 0.015 
Radial Distortion  
κ [1/mm2] 

4.793·10-4 4.801·10-4 4.811·10-4 4.787·10-4 4.816·10-4 0.225 

Image Plane Error 
for the single view 
rms, max [pix] 

0.063  
0.330 

0.044  
0.198 

0.050  
0.224 

0.075 
0.380 

0.093  
0.401 

 

Angle bet. Planes [deg] 46.410 39.394 27.039 29.026 18.769  

Table 4: Internal camera parameters resulting from repeating the proposed multi-view extension of 
Tsai’s camera calibration for five distinct points of view (same images as for table 2).  
 

 

 Focal Length Cx Cy RMS over all 5 images 
Zhang 832.50 pix (fx) 303.96 pix 206.59 pix 0.335 pix 
Proposed Technique 831.65 pix 303.14 pix 206.32 pix 0.176 pix 

Table 5: Comparison between Zhang’s and our calibration technique, based on the data set made 
available by Zhang. Zhang’s results are taken from his paper [1998]. 
 
 Attempt 1 

(1,2,3,4) 
Attempt 2 
(1,2,3,5) 

Attempt 3 
(1,3,4,5) 

Attempt 4 
(1,2,4,5) 

Attempt 5 
(2,3,4,5) 

NSDev [%] 

Number of Views 4 4 4 4 4  
Image Plane Center  
Cx, Cy [pix] 

376.31 
289.57 

378.07 
290.11 

375.71 
290.27 

378.07 
290.11 

373.81 
290.25 

0.424  
0.087 

Focal Length [mm] 12.690 12.687 12.685 12.692 12.700 0.040 
Radial Distortion  
κ [1/mm2] 

4.913·10-4 4.799·10-4 5.177·10-4 5.262·10-4 5.621·10-4 5.588 

Image Plane Error 
for the single view 
rms, max [pix] 

0.093 
0.469 

0.084  
0.384 

0.082  
0.341 

0.132  
0.608 

0.109  
0.494 

 

Table 6: Results with Zhang’s calibration technique given the data also used for tables 2 and 4. 
 

We may for that reason safely conclude that our method is notably more precise. Also the 3D 
measurement error (evaluated in chapter 5) is much smaller and non-systematic with our approach. 
We hypothesize consequently that the results of our multi-view calibration are more accurate as 
well. Should that be the case, it is interesting to note that each of the then significantly erroneous 
parameter sets of tables 1 and 2 gives about the same rms image plane error than the corresponding 
about correct one of tables 3 and 4. This implies Tsai’s algorithm does not have a chance to find the 
latter as noise in combination with interdependency of parameters lets the wrong set appear as good 
or better according to its cost function. That is, the underlying problem is the data that can be ex-
tracted from a single point of view: it seems to be principally insufficient for accurate calibration. 

In our opinion, this result casts doubt on the concept of accurate single-view calibration based on a 
planar target. Especially since the observed data is as noise-free as it can realistically get with rea-
sonable effort and a low-cost camera: Neither the accuracy of the detected image coordinates of the 
fiducial marks nor that of their world coordinates leave much room for improvement. We conclude 
that the results given by Tsai’s coplanar method should not be considered highly accurate but for 
points close to the target plane. 
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Figure 29: Visualization of the image plane error by drawing a line from the detected image posi-
tion of a calibration mark into the direction of the one predicted by the model. The length of a line 
segment is proportional to the squared image plane distance between these two positions. The red 
lines are the errors of the proposed (table 4, attempt 2), the green lines of Zhang’s method (table 6, 
attempt 2). The clipping shows the central part of the camera calibration target (rotated by 90°). 
 

We repeat the above experiment with a second realistic scenario, namely that the position of the 
calibration marks has not been determined up to ±0.01mm as in our case; so the printer and non-
coplanarity problem would go unnoticed, and at least the former makes the world-coordinates sys-
tematically erroneous. The calibration results are not listed here in detail due to lack of space. As 
an exemplary result, the average focal length for the five views of table 2 is computed as 11.99 mm 
with Tsai’s method, while it is 12.625 mm with the modified one. Under the assumption that the 
correct value is 12.683 mm, our above conclusion becomes the more pronounced, the less accurate 
and precise the available data is. 

Next, we compare the proposed method with the state of the art in form of Zhang’s approach. 
Zhang makes one set of observation vectors (image plane and world coordinates of the fiducial 
marks for five images and calibration results) publicly available. This set is rather unsuited for our 
approach because the target plane subtends angles of 9, 10, 11, 11 and 24 degrees with the cam-
era’s retinal plane, respectively, which is far away from the required 30 degrees inclination. Never-
theless table 5 shows that the proposed method yields – given the identical observation vectors as 
input – almost the same values for the internal parameters as Zhang’s. It improves the rms image 
plane error to 0.176 pixel, i.e. by a factor of about 2 compared to the result published by the latter. 
This seems to indicate that it represents an improvement over Zhang’s method.  

This judgment is confirmed by a second experiment; in its case the observation vectors as used for 
table 4 are fed into Zhang’s ICV implementation, i.e. the two algorithms again operate on the same 
data. The corresponding calibration results are listed in table 6. They indicate that the proposed 
multi-view Tsai technique is more precise, that is to say its results are significantly more stable (as 
mentioned above, more experiments to substantiate this claim are described in Forster [2005]): The 
improvement factor ranges from 1 to 20, depending on the parameter considered. The root-mean-
square image plane error over the five calibration attempts is 0.10 pixel with Zhang’s, 0.065 pixel 
with Tsai’s modified technique, also indicating a better overall accuracy of the latter. 
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 Attempt 1 Attempt 2 Attempt 3 Attempt 4  Attempt 5  Attempt 6 
Number of Views 1 (Tsai) 1 (Tsai) 1 (Tsai) 4 3 4 
Image Plane Center  
Cx, Cy [pix] 

518.04 
761.08 

461.28 
785.35 

491.47 
758.85 

516.41 
764.43 

509.60 
756.73 

509.52 
757.46 

Focal Length [mm] 39.754 40.720 40.538 39.779 39.789 39.870 
Radial Distortion  
κ [1/mm2] 

5.028·10-5 3.587·10-5 5.145·10-5 5.150·10-5 4.791·10-5 4.751·10-5 

Image Plane Error 
for the single view 
rms, max [pix] 

0.132  
0.621 

0.259  
1.602 

0.134  
0.616 

0.133  
0.625 

0.269  
1.801 

0.132  
0.620 

Angle bet. Planes [deg] 28.055 46.783 29.338 28.104 45.429 28.867 

Table 7: Exemplary projector calibration results (internal parameters only). 
 
Figure 29 visualizes the image plane error associated with attempt 2 of tables 4 and 6 by drawing a 
line from the detected image position of a calibration mark into the direction of the one predicted 
by the model. The length of a line is proportional to the square of the image plane distance between 
these two points. The red lines visualize the image plane error after calibrating with the proposed, 
the green lines after calibrating with Zhang’s technique. Both techniques yield the expected appar-
ent random error pattern that is most likely largely due to the error of the square corner detection. 

Finally, table 7 gives results for projector calibration obtained with Tsai’s original approach (single 
point of view, left three entries) and the one of this work (3 to 4 points of view, right three entries). 
The results are consistent with the camera calibration results – again the parameters are much more 
stable with the modified version – and for that reason not discussed in detail. The only notable dif-
ferences between camera and projector calibration results are the asymmetric position of the optical 
slide plane center and the stronger radial distortion that reaches up to 10 pixels in the projector's y 
coordinate. Also the results are less precise, respectively less accurate than in the case of camera 
calibration. We attribute this mostly to the relatively poor quality of the projected calibration marks 
(compared to the printed ones), caused by depth-of-field limitations and chromatic aberration, 
which leads to a larger error in the detected image coordinates. 

All in all, the results of this section indicate that the calibration of the camera and, even if some-
what less so, of the projector are precise and accurate. So we expect the ranging error due to the 
calibration error to be negligible. Of course, this needs to be confirmed in the course of an evalua-
tion via actual 3D measurement experiments; this is done in chapter 5. 

Certain interesting aspects of camera and projector calibration are not covered in this chapter; e.g. 
simulated results would help understanding how robust the algorithms are against various types of 
noise. A comparison of real and simulated results obtained in the linear stages of the algorithms 
would highlight their respective qualities regarding the initial estimates and potentially allow deriv-
ing further improvements. Another interesting question is whether a more sophisticated distortion 
model would enhance the quality of the proposed method; during the experiments conducted so far, 
a model considering a second coefficient of radial distortion as well as tangential distortion in-
creased the execution time of the algorithm significantly, yet the accuracy only slightly). As the 
lack of space does not permit addressing these non-central questions in this work, they are pre-
sented in Forster [2005]. 
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λ≈8 [pix]

λ≈6 [pix]

λ≈5 [pix]
 

Figure 30: The eight corners of the RGB-cube (left). Red-signals along an image row resulting 
from imaging black-and-white line patterns of wavelength 8, 6 and 5 pixels, respectively (right). 

4.3.2 The Choice of Colors 
A key decision with a CL system is the choice of pattern colors, respectively gray levels. It is 
closely entwined with other core aspects such as the choice of encoding, the hardware used, the 
scene limitations imposed, etc. In our case, the proposed, noise-susceptible color edge approach 
dictates the selection of colors: to create edges of maximal contrast, only two signal levels per color 
channel can realistically be used. The pattern colors are accordingly the eight corners of the RGB-
cube (figure 30), that is the colors black, red, green, blue, yellow, magenta, cyan, and white. 

4.3.3 Encoding – The Projection Pattern 
4.3.3.1 Required Pattern Resolution 

How many light planes should the pattern encode? Of course as many as possible, to achieve a 
maximal non-interpolated relative spatial resolution of the depth map. Then again, the camera has 
to be able to resolve the reflection of the projection pattern into its separate light stripes (for sim-
plicity, we assume a stripe pattern in this section). For a comparable field of view, the resolution of 
cameras is typically lower than that of projectors: e.g. the granulation of a standard slide corre-
sponds roughly to a lateral resolution of 4000 by 4000 pixels, while a CCIR camera has one of ca. 
780 by 560 pixels. So for this and certain other reasons, the camera tends to be the limiting factor. 

We obtain a rough estimate (the many unknown factors such as the interfering scene texture or the 
blurring introduced within the imaging chain prevent a more precise modeling) of the camera’s 
stripe resolution by considering a pattern imaged as set of equidistant vertical white lines on a black 
background, i.e. one whose image changes along the rows only. The sampling theorem states that 
the pattern has to be sampled at least at twice its highest frequency. In practice, a higher factor of at 
least 2.8 is recommended [Albertz 1991]. The most common color pixel layout with single-chip 
color cameras, which is also used in this work, is the well-known Bayer pattern. In its case, at most 
every second pixel samples a given color component for a given row and component. This implies 
the stripes should be at least 6 pixels apart in the camera image if we want to at least get the base 
frequency of the projection pattern right (ignoring aliasing). That is, with the above resolution each 
channel resolves at most around 130, respectively 90 lines (depending on their orientation).  

A simple experiment confirms that this coarse estimate is about right: While all lines are recon-
structed fairly well when imaging line patterns with wavelengths of ca. 8 and 6 pixels, some lines 
go missing (red circle) in the channel image of a line pattern of wavelength 5 pixel (figure 30). 
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It would be theoretically possible to phase-shift the color channels relative to each other to achieve 
a higher total resolution over all three channels, but for reasons outlined below this is not practica-
ble. So in our case the camera resolves in total about 130 (90) color lines. This implies the projec-
tion pattern should contain at most that many color lines (assuming camera and projector have the 
same field of view). Simple geometric considerations show that the imaged frequency of the pro-
jected pattern also depends on the surface orientation of the scene and can be higher than the one 
projected. For this reason, a frequency somewhat below the upper camera limit, in our case about 
120 (80) lines, represents a good compromise. Considering we can equate a line, but also the inter-
stice between two lines with a light plane, the pattern should then encode about 2·120 = 240, re-
spectively 2·80 = 160 light planes. Of course, this represents a minimum requirement; the encoding 
should in principle be suited for larger numbers of light planes for cameras of higher resolution. 

4.3.3.2 Towards Optimal Patterns for Spatially Encoded Light 

This section discusses the properties a CL projection pattern (in this and the following sections the 
term CL exclusively refers to coded light based on spatial encoding) should ideally have besides 
the required resolution. To derive them, we look at CL systems from a digital communication, or, 
rather, coding system perspective. From this viewpoint the projector corresponds to a sender that 
channel-encodes a message and transmits it via the scene, the transmission channel, by modulating 
the illumination. The transmitted signal is composed of certain units, namely the pattern primitives. 
Between them and the code symbols exists (not necessarily, but in our case) a one-to-one corre-
spondence. The camera represents a receiving unit that demodulates and channel-decodes the in-
coming message, the reflection of the projected pattern. The following aspects characterize a CL 
system as coding system: 

• High Error Probability: Empirically, the likelihood that a transmitted code symbol p1 is in-
terpreted by the receiver as a different symbol p2 ≠ p1, i.e. that a symbol error occurs, is high, 
often in the area of 0.1 - 0.2 and greater. The corresponding probability distribution tends to be 
non-uniform: the probability of a given symbol being mistaken for a certain other depends 
strongly on the two symbols considered. This is obvious e.g. with colored symbols: clearly 
some color pairs (e.g. white and yellow) are more likely to be confused than others (e.g. yellow 
and blue) due to their respective distance in the signal space. 

• Bursty Transmission Channel: If a surface patch (i.e. a part of the transmission channel) ex-
hibits a low reflectivity for one or several color bands, the reflectivity smoothness assumption 
implies its neighbors are likely to do so as well. Consequently, errors often occur in bursts. 

• Two-Dimensional Transmission Channel: The channel transmits a two-dimensional signal 
s(x, y) rather than the conventional one-dimensional signal s(t). 

• Synchronization Problems: With most data transmission systems, the issue of synchroniza-
tion does not affect the (discrete channel) encoder and decoder; it is solved reliably at the 
modulation layer. For that reason, coding theory deals almost exclusively with symbol errors. 
With CL, it is unavoidable that some parts of the transmission are irreversibly lost. Equally in-
evitable are ghost symbols, i.e. code symbols that are received even though they have never 
been sent. No practical approach to modulation can solve this problem in all cases, e.g. if a part 
of the pattern is projected on a surface that is occluded from the camera’s view. In sum, with 
CL synchronization errors (also called clocking errors) occur potentially frequently and have 
to be taken into account during (de)coding. In this context, it is important to note that the mini-
mal distance of a code tells nothing about its robustness with respect to them: the two code-
words c1 = 0101 and c2 = 1010 have a maximal Hamming distance; assume c1 is part of a 
longer message, e.g. … 1111 0101 0111 … and that its leading 0 is lost due to synchronization 
issues. Then the sequence 1111 1010 111 … is received, containing c2 in place of the sent c1. In 
short, already a single synchronization error can result in an undetectable decoding error even 
if the two codewords involved are maximally distant according to their Hamming distance. 
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• The Information is in the Position Only: With CL, the transmitted message is known a-
priori; the spatial position of primitives in the received message is the sought-after information. 
Very importantly, this underscores again that synchronization is the key problem with CL: as 
long as it is possible to synchronize projected and received signal, that is to determine which 
received matches which transmitted primitive, in principle an arbitrary number of symbol er-
rors can be corrected. 

• Compact Codes are Good Codes: According to classical coding theory, the probability of an 
undetected symbol error can be made arbitrarily small by increasing the codeword length of a 
suitable code (see e.g. Shannon’s Theorem in [van Lint 1982]). This applies in principle also to 
CL patterns; yet in their case also the likelihood of irresolvable synchronization problems, e.g. 
due to jump edges of the scene, increases with the word length due to the resulting larger sub-
pattern size. A precise formulation of this interdependency requires knowledge of the scene, 
which is by definition unavailable with an all-purpose range sensor. Then again, we need some 
kind of guideline how to balance the above conflicting aspects. For this reason, we take on in 
the following a world model according to which objects tend to have a mostly continuous sur-
face (along the lines of “matter is cohesive” as by Marr and Poggio [1976]). In this world, the 
likelihood of a depth jump over a given image/slide area is roughly proportional to the squared 
sum of its maximal x and maximal y extent (for a given finite interval that includes all areas of 
practical interest). The exact point at which this effect makes more compact, less redundant 
subpatterns better than longer ones with better error detection capabilities depends on the 
parameterization of the world model. In any case, the model implies that the subpatterns should 
be as compact as possible. 

• Image Processing/Computer Vision Requirements: With CL systems, image processing, 
respectively computer vision aspects are crucial: The transmitted/projected primitives and their 
spatial adjacency relationships have to be recognized in the pattern image. With other words, 
the task of demodulation, i.e. of converting the received signal into words over the (channel) 
code alphabet, has to be solved by image processing/computer vision means. The encod-
ing/modulation has to make this task possible in the first place by creating a pattern that con-
tains suitable visible features and should support it as much as possible. 

• Incomplete Decoding Permissible: Even though it is impossible to request a retransmission, 
incomplete decoding is preferable over erroneous decoding. With other words: rather no data 
than incorrect data. Of course, incomplete decoding should happen as rarely as possible. 

• Ample Processing Power: In contrast to typical coding systems, en- and decoding efficiency 
is not a central issue with CL systems, nor do algorithms have to be implemented on minimal 
hardware resources. This is obvious with respect to encoding. With respect to decoding, a pow-
erful processing unit is needed for the CL algorithm in any case and is available for decoding. 
In short, there is no tight limit on the complexity of en- and decoding techniques. 

We conclude that a CL projection pattern should ideally cope with, respectively exploit all the 
above points. Clearly most of them are specific to the case of CL, and we have to find our own way 
of doing so. This is the topic of the following sections. 

4.3.3.3 A New Kind of Projection Pattern 

This section introduces a new kind of projection pattern for spatial encoding. Its design is guided 
by the aspects discussed in the previous sections of this chapter. The first of those is that the resolu-
tion of the pattern should be about m = 160 by n = 240, potentially greater. Furthermore, its code 
should have a large minimal distance to cope with the high symbol error probability and with the 
problem of burst errors. At the same time, its subpatterns should be compact and made up of only 
eight colors. Evidently these requirements can only be met with 1D encoding, considering that 2D 
encoding would require a code of at least about 160⋅240 = 38400 distinct codewords. 
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Figure 31: Example of a PRA (left) and the proposed pattern type (right), both with 3 by 3 win-
dows as subpatterns. The array entries are in both cases uniform squares that occur in 8 distinct 
colors. The numbers within the squares are for illustration only, i.e. not part of the pattern. 
 

Clearly the most difficult of the pattern design aspects is to ensure that pattern primitives, and con-
sequently the code symbols, can be located reliably and accurately by image processing means. 
Respectively, that it is possible to detect if one or several symbols are missing or ghost symbols 
occur. As pointed out before, this task can only be solved optimally by taking into account modula-
tion, image processing (demodulation) and coding aspects at the same time, even if doing so incurs 
a certain loss of generality. We consider for that reason in the following the intended type of 
(de)modulation during code design and vice versa. Doing so is by no means uncommon in coding 
theory; a corresponding approach is e.g. typically taken with orthogonal codes [Sweeney 1991]. 

As motivated in the previous sections, we propose employing edges as pattern primitives, more 
accurately edges of a RGB projection pattern that contains only the eight corners of the RGB cube 
as colors. With a conventional projector, we cannot directly specify an edge pattern, only indirectly 
via a color pattern that gives rise to the wanted edges. For this reason, we need to detail in the fol-
lowing the color pattern Ip along with the resulting edge pattern Ip’, even though we are only inter-
ested in the latter. Here as in the following symbols with the superscript ‘ should be associated with 
the edge pattern, those without a superscript with the conventional color pattern. Evidently, if an 
edge pattern is encoded, so is the color pattern that generates it, since identical color subpatterns 
give rise to identical edge subpatterns (but not vice versa). That implies that the intended approach 
automatically creates an encoded color pattern Ip with code C as well as the sought-after encoded 
edge pattern Ip’ with its code C’. Both are contained in the same physical transmission, but com-
posed of dissimilar pattern primitives and, on the coding layer, of distinctly sized alphabets. 

We first discuss the color pattern. Its primitives are eight uniform, distinctly colored squares, im-
plying qp = 8. For reasons explained above, the eight different colors are black, red, green, blue, 
yellow, magenta, cyan, and white. Its subpatterns are windows of v by w primitives, where a cer-
tain minimal size (v·w ≥ 4) and layout (w ≥ v ≥ 1) is assumed. We further require w to be odd if  
v = 1. An extension to other, non-rectangular subpattern geometries such as four-neighborhoods is 
straightforward, but not discussed here for the sake of simplicity. We form a codeword  
c = q1q2 … qs (qi ∈ Qp) of length s = v⋅w from a v by w window by reading its symbols from top to 
bottom, then from left to right, or, with other words, by concatenating its transposed columns from 
left to right. Formally, this is expressed via a codeword function that reads a local v by w window 
in this order, i.e. by defining σ(k) = (-w/2 + (k - 1)/v, -v/2 + (k - 1) mod v, 1), where  
1 ≤ k ≤ s = v⋅w. The slide margin has consequently the size w/2, i.e. d = w/2.  



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 79

Pattern Primitive Code Symbol Shorthand Symbol 

Black Square (0 0 0)T 0 

Blue Square (0 0 1)T 1 

Green Square (0 1 0)T 2 

Cyan Square (0 1 1)T 3 

Red Square (1 0 0)T 4 

Magenta Square (1 0 1)T 5 

Yellow Square (1 1 0)T 6 

White Square (1 1 1)T 7 

Table 8: Mapping of pattern primitives to code symbols. 
 

With its v by w windows, the pattern resembles a PRA as described in the literature; there are, 
however, several key differences, an obvious one being that it represents – other than a PRA – a 1D 
encoding. As its windows need to be unique with respect to the horizontal slide position only, we 
may periodically repeat the first v pattern rows in the vertical direction. As a result, exactly v code-
words are associated with each central slide x-coordinate ip. Since the vertical row period is v, it 
follows that if q1 … qs is a codeword, q2 … qvq1qv+2 … qv+1q2v+2 … qs-1 is the codeword of its lower 
neighbor, and so on up to the codeword of the (v - 1)th lower neighbor (equivalent to the first upper 
neighbor) qvq1 … qv-1q2vqv+1 …q2v-1q3v … qs-v+1. A second consequence is that the last s - v symbols 
of a given codeword are the first s - v symbols of its right neighbor. In this context, we call a code 
word c the right (left, upper …) neighbor of a given codeword ĉ if ĉ is the codeword of the slide 
position (ip, jp) and c the one of (ip + 1, jp) (respectively (ip - 1, jp), (ip, jp - 1) …), where vertical 
positions are read modulo v. That is, if e.g. v = 2, the upper neighbor is the lower one as well. 

All in all, the proposed approach trims down the number of required color pattern codewords from 
about m by n to v by n while still making use of both available degrees of freedom for encoding. 
As typically m ≈ n, but v ≈ 1, this represents a reduction to the square root of the number necessary 
with a PRA. Figure 31 illustrates and compares both approaches for a pattern with a window size of 
v = w = 3. In the figure, the eight distinct primitives are formally represented by the numbers 0 to 
7, i.e. Qp = {0, 1, 2, 3, 4, 5, 6, 7}. The left side shows a corresponding PRA as described in the 
literature. Its 3 by 3 windows each identify a position within the array, e.g. 631 427 615 is the 
unique signature of the top left window, respectively the slide coordinates (2, 2). The right side 
displays the equivalent version of the new pattern type. In its case, v = 3 distinct words, which are 
repeated with a period of v = 3, encode each horizontal position, e.g. the three words 075-124-675, 
750-241-756 and 507-412-567 all encode the horizontal slide position ip = 6. 

As mentioned above, the color pattern determines the resulting color edge pattern. We now discuss 
the relationship between color and edge pattern in detail. We employ a common code alphabet Qp 
to formally describe the two types of patterns and their associated codes. This alphabet corresponds 
to the set of elements of the vector space GF(3)3, where GF(3) is the finite Galois field with the 
three elements {0, 1, -1 (= 2)}. The non-surjective mapping of the color pattern primitives to code 
symbols is defined in table 8; the table also specifies a shorthand symbol for each primitive, which 
is e.g. used in figure 31. 
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With the obvious rules for addition and multiplication, GF(3)3 becomes a three-dimensional vector 
space over the scalar field GF(3). That is, adding and subtracting code symbols is a well-defined 
operation, e.g. the symbols (1 0 1)T

 and (-1 -1 1)T
 add up to the symbol (0 -1 0)T. We further intro-

duce the subsequent definitions: 

• We call a vector of the GF(3)3 positive if it does not have a component with the value -1. 

• We call the number of nonzero elements of a vector, respectively code symbol, its weight. 

• We assign each codeword c of the color pattern a function fc: {1, …, w} x {1, … , v} → GF(3)3 
that maps the window positions on the symbol displayed at this position, i.e. on the field 
GF(3)3. As with any vector-valued function, its component functions fc1, fc2 and fc3 are defined 
via fc(x, y) = (fc1(x, y), fc2(x, y), fc3(x, y)). 

• In the general case (v > 1), we define the derivative of a function fc of the above type as the 
function fc’: {1, … , 2w-1} x {1, … , v} → GF(3)3 ∪ {e} where 
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and where the directional x-derivative of a projection-pattern related function g(x) is given by 
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and its directional y-derivative by: 
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In the case of a stripe pattern (v = 1), we define the derivative of a function fc of the above type 
as the function fc’: {1, ... , w-1} → GF(3)3 where fc’(x) = f(x + 1) - f(x). 

• The preceding two constructions map each codeword c via the function fc on a regular  
v by 2w - 1 window specified by the function fc’. We again form a word c’ from this window 
by concatenating its transposed columns from left to right, this time omitting window elements 
with the value e. All in all, this uniquely defines the derived codeword c’ ∈ Qp

2vw -v-w of a given 
codeword c and consequently the derived code C’ of a color pattern Ip with code C. 

• We associate two derived symbols with a central slide position (ip, jp), namely the value of the 
directional x- and of the directional y-derivative (assuming v > 1) of the slide function Ip at  
(ip, jp). We call the former (symbol of the) vertical edge segment at (ip, jp) or edge segment from 
(ip, jp) to (ip +1, jp), the latter (symbol of the) horizontal edge segment at (ip, jp) or edge segment 
from (ip, jp) to (ip, jp + 1). 

• If a component of the directional x-derivative of the slide function Ip has the value 1 at (ip, jp), it 
follows that the corresponding component of the color pattern has a value of 0 at (ip, jp) and of 
1 at (ip + 1, jp). Similarly, a value of -1 allows concluding a component value of 1 at (ip, jp) and 
of 0 at (ip + 1, jp). This is an immediate consequence of the definition of the code symbols in 
conjunction with the definition of the directional x-derivative. Analogous inferences can be 
made given the value of the directional y-derivative. 
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Figure 32: Relationship between color code and derived code for the parameters v = w = 3. The 9-
symbol color codeword read from a given subpattern, i.e. a 3 by 3 window, is displayed to the left; 
the corresponding derived codeword of 12 symbols is shown to the right. 
 

We have thus established the relationship between an encoded color pattern and its edge pattern, an 
example of which is visualized in figure 32. It is important to note the following aspects of this 
relationship: 

• The mapping of codewords to derived words is not injective: different codewords can have the 
same derived codeword (short: derivative). More precisely, two codewords have the same de-
rivative if and only if they differ by a constant, i.e. if one of them can be created by adding a 
certain symbol q ∈ Qp to each of the other’s symbols. This implies that a codeword can be de-
termined given its derived codeword up to a constant. It also means that the edge pattern of an 
encoded color pattern is not necessarily encoded itself. 

• In the general case (v > 1), the last 2vw - 3v - w + 1 symbols of a given derived codeword are 
the first 2vw - 3v - w + 1 symbols of its right neighbor. With a stripe pattern, the last w - 2 
symbols of a derived word are the first w - 2 symbols of its right neighbor. 

• In the general case (v > 1), a derived codeword has more symbols than its codeword, namely 
2vw - v - w versus vw. This is a key aspect as it allows creating derived codes that have about 
the same physical subpattern size, yet a notably larger minimal distance than the code itself. 

With the derived pattern Ip’, neighborhood-relationships are more complicated than in the case of 
the color pattern Ip because traditional concepts such as four or eight neighborhoods do not apply. 
We introduce for that reason the following definitions: For a vertical edge at (ip, jp), we call the 
vertical edges at (ip, jp - 1) and at (ip, jp + 1) its non-consecutive neighbors; analogously, the non-
consecutive neighbors of a horizontal edge at (ip, jp) are the horizontal edges at (ip - 1, jp) and at  
(ip + 1, jp). Moreover, we call two edge segments consecutive (neighbors) if one of them is an edge 
from (ip1, jp1) to (ip2, jp2) and the other one is located at (ip2, jp2). All in all, an edge segment has con-
sequently six neighbors, two non-consecutive and four consecutive ones. Figure 33 illustrates these 
definitions for the vertical edge segment at (ip, jp). 

In the case of a stripe pattern, the neighborhood relationship is simple: there are only vertical edges, 
which have two (consecutive) neighbors, a left and a right one but for the left- and rightmost edge. 
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(ip,jp) (ip+1,jp)

 
Figure 33: Neighborhood of a vertical edge segment located at (ip, jp), marked with the bold arrow: 
Its two non-consecutive neighbors are marked with a black arrow, its four consecutive ones with a 
gray arrow. In the case of a stripe pattern, the situation is as within the encircled area: there are 
only vertical edges, which have two (consecutive) neighbors, a left and a right one. 
 

Finally, we need to discuss the issue of intrinsic edges, i.e. edges that are not projected, but part of 
the scene. They are more problematic than noise because they have the same appearance as pattern 
edges and can consequently alter local subpatterns systematically. So the en- and decoding has to 
take special care not to be confused by them. Precisely which effect can an intrinsic edge have on a 
subpattern? Clearly it can overwrite projected edge segments (and cause symbol errors) and/or add 
new edge segments (and cause synchronization errors). We can neglect intrinsic edges resulting in 
local edge segment patterns that deviate drastically from the expected roughly quadrilateral-based 
one and that can be detected for this reason. The vast majority of the remaining intrinsic edges are 
of one of the following two types visualized in figure 34: 

• Type I: An intrinsic edge that divides a color primitive into two roughly quadrilateral parts and 
thus splits a projected edge segment into two neighboring segments of the same symbol. 

• Type II: An intrinsic edge that overwrites at least two neighboring edge segments with a cer-
tain symbol q ∈ Qp. 

Using the definitions introduced so far, we propose a projection pattern Ip/Ip’ that meets the follow-
ing requirements R1-R5: 

(R1) The color pattern Ip is 1D encoded over the positive vectors of GF(3)3 such that each v by 
w window, respectively the resulting codeword, uniquely identifies a horizontal position 
(i.e. an ip coordinate) within the slide. 

(R2) Each derived codeword uniquely determines a horizontal position within the slide. 

(R3) Each symbol of a derived codeword has a weight greater than 1. 

(R4) Two codewords of the color code that refer to different horizontal positions within the array 
have at least a Hamming distance h > 1. 

(R5) Two derived codewords that refer to different horizontal positions within the array have at 
least a distance h’ of  (w - 1)/2 +1  for v = 1 

w   for v > 1 

The above definition is redundant for the sake of readability: E.g. R5 implies R2 and part of R1. 
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Figure 34: Two common types of intrinsic edges: Type I, displayed to the left, divides a color pat-
tern primitive (in the figure the central green square) into two roughly quadrilateral parts such that 
two edge segments of the same symbol result (q1 = q1’ or q2 = q2’). Type II (right) overwrites at 
least two neighboring edge segments with a certain symbol q ∈ Qp, i.e. such that q1’ = q2’ = q. 
 

We now show that the derived code of a pattern that complies with the above requirements has the 
following error detection capabilities (which, unless they contain the term always, implicitly as-
sume the described error is the only one affecting the codeword): 

(P1) In the general case (v > 1), at least w - 1 symbol errors are detected per derived codeword, 
with a stripe pattern at least (w - 1)/2. 

(P2) A single missing or a single ghost symbol per derived codeword is detected. 

(P3) Ghost symbols of weight 1 are always detected, irregardless of their number. So are symbol 
errors resulting in received symbols of weight 1. 

(P4) Errors due to edges of type I (provided the whole subpattern is visible in the pattern image) 
and type II are detected. 

(P5) Be q1 and q2 the symbols of two edge segments that are consecutive within the encoded 
pattern. There is at most one ghost symbol x such that both q1, x and x, q2 are consecutive 
that is not detected under all circumstances. The symbols q1, q2 and x each have weight 2. 

(P6) Even if all four edge segments forming a square are misidentified, no undetected decoding 
error results. 

The motivation for the above capabilities is obvious but for P5 and P6. P5 concerns a problem that 
particularly affects stripe edge patterns. Ghost symbols necessarily occur between two stripe bor-
ders as on the left side of figure 34 where the derived symbol q5 appears between q3 and q4. Of 
course, P2 guarantees that the resulting synchronization error can be detected, if it is the only one. 
But already a single further error might cause an undetectable error. P5 states that this is very 
unlikely to happen. First of all, q3, q4 and q5 all need to have weight of 2; even if they all do, q5 
needs to happen to be the one symbol out of the 12 of weight 2 that fits in-between q3 and q4. 

The motivation for P6 becomes obvious when considering two 3 by 3 windows of the color code 
that differ in their central square only. Then their derived codewords have a Hamming distance of 
4, so in principle an undetectable error might result if all edges of the central square are misclassi-
fied. Clearly, it is advantageous to avoid such constellations and to spatially distribute the redun-
dancy over all squares of a subpattern. P6 states that this is guaranteed with the proposed code. 
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The subsequent remarks and insights are useful for proving the properties P1 to P6. 

Be q1 = (a1 b1 c1)T and q2 = (a2 b2 c2)T symbols of consecutive edge segments. First, assume both 
symbols have a value of 1 in a certain component, say the first: a1 = a2 = 1. q1 is the symbol of the 
edge from (ip1, jp1) to (ip2, jp2). Be (r1 g1 b1)T the color symbol at (ip1, jp1), (r2 g2 b2)T the color symbol 
at (ip2, jp2). It follows from r2 - r1 = 1 that r2 = 1 and that r1 = 0. q2 is by definition the symbol of the 
edge from (ip2, jp2) to (ip3, jp3). Be (r3 g3 b3)T the color symbol at (ip3, jp3). It follows from  
r3 - r2 = 1 that r3 = 1 and that r2 = 0, which conflicts with the previous result stating that r2 = 1. This 
proves that the case a1 = a2 = 1 is not possible. The analogous reasoning shows the case a1 = a2 = -1 
is equally impossible. Of course, the proof applies to all three components. 

Each symbol of a derived codeword has a weight of 2 or 3. With other words, at most a single 
component of one of its symbols is zero. Then, for any two such symbols, there is always a compo-
nent that is nonzero with both of them. Consequently, for two consecutive edge segments of sym-
bols q1 and q2, there is always a component that has the value +1 with q1 and -1 with q2, respec-
tively -1 with q1 and +1 with q2 (the previous section rules out the remaining cases +1 and +1, re-
spective -1 and -1). This proves that symbols of consecutive edge segments are never equal. 

Be q1 = (a1 b1 c1)T and q2 = (a2 b2 c2)T symbols of non-consecutive neighbors, where q1 is the one of 
the vertical edge at (ip, jp) and q2 the one of its upper neighbor, i.e. the vertical edge at (ip, jp - 1). 
Assume q1 = q2. A symbol of a derived codeword has at least two nonzero components; we assume 
without loss of generality a1 = a2 ≠ 0 and b1 = b2 ≠ 0. This uniquely determines the corresponding 
components of the color-code symbols at (ip, jp) and at (ip, jp - 1) and implies they are equal in those 
two components. Consequently, the directional y-derivative at (ip, jp - 1) has at most weight 1, 
which conflicts with the pattern definition. This proves that the symbols of two non-consecutive, 
neighboring vertical edges are never equal as well. By rotating the pattern by 90°, we can reuse the 
proof for the remaining case of corresponding horizontal edges. 

All in all, we have proven that the symbols of neighboring edge segments are never equal. In the 
one-dimensional case (v = 1), this can be expressed as Ip’(ip) ≠ Ip’(ip + 1). This inequality does not 
only apply to the derived code, but also to the color code: two adjacent color symbols that are iden-
tical produce the derived symbol (0 0 0)T, which cannot be part of a valid derived codeword. These 
results are helpful for the following proofs of the error detection properties P1-P6: 

• Proof P1: This is an immediate consequence of the minimal distance of the code. 

• Proof P2: In the one-dimensional case, a missing symbol qj of a derived codeword c occurs 
either in the left or right half of a word (w-1 being even, these two halves are well-defined). In 
the former case, the symbols qjqj+1 … qw-1 are the beginning of ĉ, the jth right neighbor of c. qj-1 
and qj are the symbols of neighbors and consequently different. So qj-1qj+1 … qw-1 cannot be part 
of a derived codeword, as then one of its right neighbors would have to have the symbol se-
quence qj+1 … qw-1 in common with ĉ, i.e. a Hamming distance of less than (w - 1)/2 + 1. This 
proves that the error is detected. If j occurs in the right half, it shifts the positions of less than 
(w - 1)/2 symbols and consequently causes at most (w - 1)/2 symbol errors, which are detected 
according to P1. Exactly the same reasoning applies to the case of a ghost symbol; this would 
not be the case, however, if w-1 was odd, because then a ghost symbol occurring before the 
central symbol could potentially go unnoticed. For example, if w = 4 and if the ghost symbol x 
appears within the derived codeword abc, the resulting codeword axb is not guaranteed to be 
detected. In the two-dimensional case, a missing symbol or ghost symbol can cause maximally 
v, respectively w symbol errors as in both cases at most a single row or a single column of 
symbols is shifted. The synchronization error is consequently detected according to P1. 

• Proof P3: By definition, symbols of derived codewords have a weight of at least 2. 

• Proof P4: Edges of type I result in non-consecutive neighbors that are equal. Edges of type II 
give rise to consecutive neighbors that are equal. Consequently, both types of intrinsic edges 
result in an error that can be detected. 
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• Proof P5: Be q1 and q2 symbols of consecutive edges. Be x the symbol of a ghost edge occur-
ring between them such that all three edges are consecutive and that the synchronization error 
is not guaranteed to be detected. In each component where both q1 and q2 are nonzero, the 
ghost symbol needs to have a value of 0, because consecutive symbols can never have the same 
value in a certain component. We proved above there is at least one such component; clearly 
there may not be more for the ghost symbol to achieve the minimum weight 2. Consequently, 
all three symbols have a weight of 2. In one of the two remaining components, q1 has a value of 
zero and q2 of a ≠ 0. The only permissible value for the corresponding component of the ghost 
symbol is -a. In the other remaining component, it is just the other way round. So q1 and q2 
uniquely determine x, which proves there is only one possible type of problematic ghost sym-
bol.  

• Proof P6: This is guaranteed by R4 – two derived codewords that differ only in the four edge 
segments part of a single color square belong to color code codewords that have a Hamming 
distance of only 1. 

The proof of P2 shows that in the case of w being even a ghost symbol occurring before the central 
symbol of the codeword could theoretically cause an undetectable error. In combination with P5, 
this case is rather negligible in practice. For this reason, we consider in the following also choices 
where w is even, e.g. the case w = 4 and h’ = 2. 

We conclude: this section introduced a type of coded light pattern whose design is guided by the 
aspects of the previous sections, most notably the ones of section 4.3.3.2. It differs consequently 
strongly from existing work. With the proposed pattern type, image processing requirements re-
ceive the highest priority; they lead to the key decisions such as the choice of edges as pattern 
primitives. Nevertheless the remaining aspects are considered as well: the pattern type permits 
combining a high relative lateral resolution of the pattern with compact subpatterns. This is in part 
due to the fact that it is able to exploit both dimensions of the transmission channel for encoding. In 
reaction to the high error probabilities, it offers the capability to detect a large number of symbol 
errors as they occur e.g. with burst errors. Its design addresses in particular the importance of syn-
chronization, respectively the problem of synchronization errors. This includes the problem of sys-
tematic synchronization errors due to intrinsic edges. 

This section considers exclusively the topic of error detection; to be more precise, the subject of 
error detection in the most difficult case, namely the one where merely a single subpattern is re-
flected back into the pattern image. Of course, in most cases a larger coherent pattern clipping will 
be visible in the pattern image – each individual edge segment or symbol is then part of up to v·w 
distinct subpatterns, respectively codewords. Clearly this opens up numerous additional error de-
tection and error correction possibilities. How they can be exploited is discussed in the subsequent 
sections, primarily in section 4.3.4.1. 

To describe and develop the pattern, we made extensive use of the color pattern Ip and its code; 
doing so simplifies the formal description, respectively guarantees that there is a physically viable 
color pattern behind the sought-after color edge pattern. For the rest of this chapter, i.e. for the pur-
pose of demodulation and decoding, we exclusively work with the derived code C’. As pointed out 
before, this is because the pattern primitives and thus the symbols of the color code C cannot be 
directly distinguished from the scene reflectivity. Only the primitives of the color edge pattern can 
be retrieved to some extent by computing the derivative of the pattern image, irregardless of the 
scene color. Consequently, in the following terms such as codeword or code symbol always refer to 
the derived code. 

Of course, simply defining a code as the one of this chapter does no good unless we are able to 
generate instances of it that have a sufficient number of words. How this is accomplished is dis-
cussed in the next section. 
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4.3.3.4 Pattern Generation 

The construction of good codes is a central topic of coding theory and related areas of science such 
as cryptography. For certain simple encoded projection patterns, coding-theoretic results prove to 
be very useful: E.g. De Bruijn sequences can be generated by feedback shift registers for all 
choices of parameters that are practically relevant for CL [Golomb 1967]. Removing a single zero 
from the all-zero word of a De Bruijn sequence yields a pseudo-random sequence, i.e. well-known 
techniques to create pseudo-random sequences exist as well. There are straightforward methods to 
construct binary perfect maps for parameter sets subject to certain simple necessary conditions, see 
e.g. [Paterson 1994]. Even for certain types of perfect maps based on non-binary alphabets such 
generation methods exist: for instance, Griffin et al. [1992] describe a method to construct non-
error-detecting 2D-encoded pattern of the dimensions qp

3 by qp
2 with unique four-neighborhoods. 

Their pattern is consequently optimal, as each of the qp
5 possible codewords of length 5 over the qp 

symbols occurs exactly once, i.e. it represents a perfect map (rather something equivalent given 
each possible four-neighborhood rather than rectangular v by w window occurs exactly once). 

Yet in the general case, i.e. with complex non-binary and error detecting coded light patterns, the 
task is much more difficult, and there seems to be no straightforward way to apply advanced results 
from coding theory or related fields. This applies in particular to any attempt to deterministically 
construct a code meeting the complex requirements outlined in the previous section. For this rea-
son, we employ a non-deterministic method, i.e. a pseudo-random algorithm, to find instances of 
the proposed code/projection pattern. In principle, the following simple algorithm solves this task: 

 
Set largest pattern found Ipmax and maximal pattern width both to 0 
Beginning of outer loop: 
Randomly generate Ip = (qij) of size v by w (trivial as only R3 applies) 
 Beginning of inner loop: 
 Exit if termination criterion is met (e.g. time limit) 

Randomly generate v symbols qnew = q1 … qv until IpqnewT meets R1-R5 
If such a column vector can be found within a fixed number of tries 

Set current pattern to IpqnewT (Ip := IpqnewT) 
If current pattern width > largest width found so far 
  Set largest width found so far to current pattern width 
  Set largest pattern Ipmax to Ip (Ipmax := Ip) 
Go to beginning of inner loop 

 If no such symbol vector can be found, go to beginning of outer loop 
Return Ipmax, the largest pattern found 
 

An implementation of the above straightforward approach yields good results. The computational 
most costly step of the pseudo-random algorithm is checking whether adding a new word preserves 
the required minimal distance of both code and derived code. Doing so by computing the distance 
of the new word to each existing word requires about 2v⋅w⋅nc comparisons, where nc is the current 
number of codewords. For larger codes, this step is computationally expensive and slows down the 
algorithm considerably. 

The following two corollaries allow implementing the above step and thus the whole algorithm 
more efficiently. They use the concept of a subword of a codeword. Such a subword is formed by 
striking out letters from a given codeword: e.g. for the codeword 123, its subwords of length 2 are 
12, 13 and 23. Two subwords are of the same type if they are created from codewords by removing 
letters from identical positions. Clearly subwords of the same type have the same length, too.  
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E.g. for the two codewords 123 and 456, the subwords 12 and 45 are of the same type, but 1 and 12 
or 13 and 56 are of a different type. Consequently, the number of distinct types of subwords of 
length m of words of length s corresponds to the number of m-combinations of an s-set, i.e. the 
binominal coefficient of s and m, denoted in the following by bc(s, m). 

As a result, we may re-formulate the concept of the minimal distance of a code as follows: 

Corollary 1: A (block) code C of word length s has the minimal distance h if and only if each sub-
word of length s - h + 1 occurs at most once among all same-type subwords of the codewords. 

Proof: First, assume two subwords of length s - h + 1 of a code of word length s and Hamming 
distance h are identical. We can assume without loss of generality that both were formed by strik-
ing out the last h - 1 letters of two codewords c1 and c2. However, this results in the following con-
tradiction 

 ( ) ( ) ( ) hhqqqqcchh
s

i

s

hsi
iiii <+<+==≤ ∑ ∑

= +−=

00,,,
1 1

212121 δδ  (68) 

Conversely, assume a code has the above subword property. Be c1 and c2 two distinct codewords of 
distance ĥ < h. That is, s - ĥ ≥ s - h + 1 of their letters are identical. This conflicts with the assump-
tion that each subword of length s - h + 1 occurs at most once.  

For a given projection pattern, we define its color-pattern subwords of a certain type to be the set of 
all subwords of this type of its associated color pattern codewords. If the subword type involves 
striking out all leftmost v symbols of a word, we also include the subwords of imaginary code-
words whose s - v rightmost symbols are the s - v symbols of a leftmost codeword into this set. 

Corollary 2a: Adding a new column to a projection pattern of the proposed type preserves its mini-
mal distance h if and only if each length (vw - h + 1) subword (formed from the v new color-
pattern codewords) that involves at least one of the v new color symbols does not occur among the 
existing color pattern’s subwords of the same type.  

Proof: Assume the extended color pattern does not have the minimal distance h; according to corol-
lary 1, this implies there are two codewords c1 and c2 that have identical subwords c1’ and c2’ of 
length vw - h + 1. One of them has to be an existing codeword, say c1, and the other one, c2 has to 
be a new codeword. Assume c2’ does not involve any of the v new symbols; then c2’ is already a 
subword of the left neighbor of c2 (also of length vw - h + 1, but of another type). Analogously, c1’ 
is a subword of the latter type of the left neighbor of c1. According to the corollary 1, this would 
imply that the previously existing code does not have the minimal distance h. Consequently, c2’ 
involves at least one of the v new symbols. The other direction of the proof is an application of 
corollary 1. 

For a given projection pattern, we define its edge-pattern subwords of a certain type to be the set of 
all corresponding subwords of its associated edge pattern codewords. If the subword type involves 
striking out all leftmost 2v - 1 symbols of a word, we also include the subwords of imaginary 
codewords whose 2vw - 3v - w + 1 rightmost symbols are the 2vw - 3v - w + 1 symbols of a left-
most codeword into this set. 

Corollary 2a: Adding a new column to a projection pattern of the proposed type preserves its 
minimal distance h’ if and only if each length (2vw - v - w - h + 1) subword of the v new edge-
pattern codewords that involves at least one of the 2v - 1 new edge segment symbols does not occur 
among the corresponding edge-pattern subwords of the existing pattern. 

Proof: The proof is identical to the one for the color code. 
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Parameters Lowest Known Upper Bound 
on Word Count 

Maximal Word Count 
Generated 

v=1, w=4, h=2, h’=2 116 110 

v=1, w=5, h=2, h’=3 116 114 

v=3, w=3, h=2, h’=5 - 702 = 234⋅3 

v=3, w=3, h=2, h’=6 - 471 = 157⋅3 

v=3, w=3, h=2, h’=7 - 285 = 95⋅3 

Table 9: Exemplary results of the code generation algorithm for some practically relevant choices 
of parameters. 
 

In combination, the above two corollaries allow checking whether growing a pattern by one col-
umn preserves its minimal distances very efficiently. To that end, a look-up-table (LUT) is allo-
cated for each possible subword type of length s - h + 1 that takes subwords of this type as key. If 
the look-up returns 0 for a given subword, the word does not yet occur among the corresponding 
subwords of the previously existing codewords; otherwise, it does occur. Then, if the LUT is ini-
tialized to 0 and properly updated whenever new codewords are added, it allows checking whether 
a given subword is already used in Θ(1). Since there are bc(s, s - h + 1) - bc(s - v, s - h + 1) types of 
subwords, this allows an efficient implementation of the proposed algorithm if either s - h or h is 
small. 

E.g. for the parameters v = 1, w = 5, h = 2, h’ = 3, checking whether a new candidate preserves the 
minimal distance requires three look-ups to check h’ (there are three types of subwords of length 
two involving the new candidate; the color code distance h does not have to be checked because it 
follows from h’ = 3 that h > 1). With the straightforward implementation, each check would require 
about 400 comparisons (most of the checking is done for codes that have a large number of words, 
because only then finding a candidate requires many attempts; with the given example, the algo-
rithm does most of its checking against codes of about 100 words). Consequently, the proposed 
approach incurs in this case a significant speed-gain by a factor of about 100. This increase is rele-
vant because finding a good code takes a couple of days even with the improved version. 

Furthermore, several other heuristically motivated extensions are made to the above algorithm. 
Namely, the improved algorithm is given a certain amount t of time for backtracking: whenever it 
hits a dead end and still has some of this time left, it returns to the last junction that still has an 
unexplored path and follows it. Whenever it finds a code of a new record length, the time-limit t is 
increased exponentially. That is, an improvement resulting in a code whose length is close to the 
theoretical or some user-defined upper limit yields a very large time bonus, one far below this 
threshold only a small one. Finally, several heuristics attempt to improve the branching decisions 
over a purely random choice. 

The above algorithm has been implemented in LISP. Table 9 lists exemplary results for the practi-
cally most relevant choices of parameters, obtained on a Pentium IV 2.4 Ghz. Clearly the algorithm 
is able to generate projection patterns of the proposed type that have a reasonably high resolution 
and minimal distance. This also proves that such patterns exist, a fact that is by no means self-
evident. 
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4.3.4 Data Processing 
This section discusses how to convert an image of a scene illuminated with a pattern of the pro-
posed type into a depth map. 

4.3.4.1 Demodulation and Decoding 

The task of demodulation, i.e. of detecting the projected color edges and of establishing their spa-
tial relationship, is in principle straightforward: Edge detection in gray level images is one of the 
classical and best understood problems of image processing. There are accordingly a large number 
of established techniques, most of which are based upon differentiation in one or the other form. 
This also applies – even if to a somewhat lesser extent – to multi-spectral images with their vector-
valued image functions. A common way to deal with them (besides simply converting them to gray 
level images) is to treat their components individually. Doing so, however, gives rise to “the prob-
lem of how to combine them into one output” [Machuca and and Phillips 1983]; e.g. in the case of 
a gradient based method, the gradients of the separate components will often point into different 
directions. For this reason, alternative approaches introduce some kind of real-valued local measure 
of directional multi-spectral contrast or discontinuity, e.g. for a given point the squared Euclidean 
distance of its image value and the one at unit displacement in the direction of interest ([Cumani 
1991]). With the latter definition, for each pixel a well-defined direction w of maximal contrast 
exists barring degenerate cases; pixels for which the multi-spectral contrast exhibits a local direc-
tional maximum in the direction w are then considered edge points. 

However, all state-of-the-art edge detection approaches have the following disadvantages for the 
purpose of demodulating patterns of the proposed type. 

• Classical approaches detect all edges present; we are, however, only interested in certain types 
of edges, namely the projected ones. 

• Techniques based on multi-spectral contrast combine the information contained in the separate 
channels to a single result. Consequently, significant changes in one channel are able to drown 
out edges of small contrast in another channel. This effect is a major problem e.g. with surfaces 
of high reflectivity for one and low reflectivity for another band. With the proposed pattern, 
different channels behave distinctly by design; recovering this dissimilar behavior is crucial for 
demodulation and the effects such as the described need to be avoided. 

• For correct demodulation, the precise type of edge needs to be known, i.e. it is relevant which 
channels change in which way. Three channels, each of which can rise, fall and stay un-
changed, yield 26 different classes of edges. Such an edge classification is not part of any of 
the classical approaches. 

For these reasons, primarily the first one, we develop our own approach to edge detection. It splits 
up the task in two parts, namely edge pixel detection (the pixel-wise classification of all pixels of a 
given image into the two sets “part of an edge” and “not part of an edge”) and edge segment or 
contour detection (the classification of the edge pixels into disjunct sets according to their physical 
origin, in our case more specifically according to the projected edge that caused them, including the 
class “intrinsic edge that does not originate from a projected edge”). 

The proposed approach to edge detection is based on derivation; it is well known that edge detec-
tion via derivation is an ill-posed problem in the sense of Hadamard; for that reason the image 
needs to be regularized with a suitable filter, typically a Gaussian, preceding differentiation. Ac-
cordingly, the algorithm smoothes in a first step the three separate components Il(x, y), 1 ≤ l ≤ 3, of 
the color image I(x, y) with a Gaussian filter. As stated by Torre and Poggio [1986], the strong 
regularization properties of this filter guarantees the existence and continuity of the derivatives of 
the smoothed components Il(x, y). In the following I(x, y), respectively Il(x, y) refers to the filtered 
image. 



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 90

       
Figure 35: Color image (left) – Image formed by combining the three single-channel local extrema 
images via logical AND (middle) – Traced ridges of correctly identified edge pixels (right). 
 

With respect to further processing, we distinguish between a one- and a two-dimensional projection 
pattern. We start with the simpler former case.  

Edge Pixel Detection: After smoothing the algorithm performs the first stage of edge pixel detec-
tion in each of the three monochromatic channel images separately. In a given channel image Il, it 
establishes the local orientation v of the pattern stripes. There are two approaches to this task; the 
first is to compute the gradient direction w and to assume v to be orthogonal to w; the local orienta-
tion is thus well-defined in the 2D image plane as long as the gradient does not vanish. The second 
is to simply assume v to be the orientation of the projected light stripes, e.g. vertical for a pattern of 
vertical stripes. The orientation w is then set to the horizontal vector (1 0)T. With the latter ap-
proach, the algorithm might miss projected color edges whose imaged orientation deviates strongly 
from the projected one, i.e. edges projected on surfaces with certain position/orientation combina-
tions; at the same time, the second approach is computationally more efficient and, more impor-
tantly, not disturbed by intrinsic edges whose orientation differs strongly from v. 

In any case, the following vectors and functions are well-defined almost everywhere in the image: 

 ( ) ( ) ( )0w
www

ww
00

0 ≠===
∂

∂

∂

∂
2

2
' ),(

,
),(

,
yxI

tI
yxI

tI l
lw

l
lw  (69) 

The derivative Ilw(t) of Il(x, y) in the direction of w is computed and its local extrema, the transver-
sal zero-crossing of Il'(t), are established. The sub-pixel location of an extremum is chosen as the 
vertex of a parabola fitted to the extremum and its two unit-distance neighbors along w. Only these 
local extrema are kept for further processing, a step known as non-extrema suppression. Perform-
ing the above procedure for each channel independently yields three images that contain only local 
extrema, called single-channel local extrema in the following. Figure 35 illustrates this step. 

In a next stage, the three separate channel images are combined into a single one. To that end, sin-
gle-channel local extrema are grouped to multi-channel (local) extrema of the composite color 
signal: two or three single-channel local extrema, each from a distinct channel, are combined if 
they share the same direction and are spatially sufficiently close. The sub-pixel position of such a 
multi-channel local extremum is computed using a weighted average of the positions of its compo-
nents. The weight-factors are determined on the basis of the goodness of fit to the expected model 
and the signal’s distance to the noise level. Also, each multi-channel local extremum is classified 
into one of the 20 color edge classes that are of the multi-channel type. 
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Only multi-channel extrema are classified as edge pixels; single-channel local extreme values that 
are not part of a multi-channel one are ignored during further processing. With other words, a sec-
ond non-extrema suppression takes place. Since projected edges are known to have a minimum 
weight of two, i.e. to affect at least two color channels, and since the probability of a missed pattern 
related local extreme value is rather low (only a very small threshold is used), this step is a very 
effective first measure to filter out noise without loosing any of the sought-after information. 

Edge Segment Detection: Next, spatially adjacent edge pixels of the same class are traced to ob-
tain edge segments. A classical tracing step would filter out all remaining unwanted edge pixels 
except ones that form segments themselves, e.g. ones due to reflectivity edges. To cope with them, 
the algorithm solves the identification problem before tracing: It establishes the spatial adjacency 
relationship of edge pixel by determining sequences of w - 1 multi-channel extrema that share the 
same orientation w and lie along a line parallel to w. It then attempts to decode the resulting words, 
i.e. it checks whether the edge pixels, interpreted as code symbols according to their edge class, 
form a codeword when read from left to right along w. As proven in section 4.3.3.3, most errors 
can be detected, i.e. if a codeword is found, it is very unlikely to represents an undetected error. 

Only edge pixels that are part of a valid codeword are hypothesized to be the location of a projected 
color edge orthogonal to w; only they are used as starting points of the tracing operation. A well-
known problem with edge segment detection via tracing is streaking, the “breaking up of an edge 
contour caused by the operator output fluctuating above and below the threshold along the length 
of the contour” [Canny 1986]. A popular solution to overcome streaking is hysteresis, where two 
thresholds, a low and a high one, are used. Edge pixels above the high threshold are accepted, ones 
below the low threshold are rejected, and ones between the two thresholds are accepted only if their 
segment is connected to high-threshold edge pixels in both directions. 

In our case, streaking is less a question of the threshold, more one of fluctuating between a valid 
and an invalid codeword. So the algorithm uses an analogous approach where edge pixels of the 
same edge class as the starting point pass the low threshold and those also part of the same code-
word pass the high threshold. A third threshold is used to pick up occasional edge pixels misclassi-
fied into a class close (according to a suitable signal space metric) to the sought one. Beginning and 
end of a segment need to pass the high threshold as often, e.g. at the boundary between two objects 
of distinct height, edges of the same class, but originating from different projected edges, join 
seamlessly (see e.g. the boundary between hand and color chart in figure 36). Obviously two such 
edges cannot be distinguished by considering the segment by itself; the high threshold is crucial for 
resolving such situations. It is important to note that the proposed type of tracing is effectively an 
error correction step that is more reliable than replacing words that contain a detected error with the 
codeword that is closest according to some code space metric.  

Only edge pixels part of a ridge that exceeds a small minimal length are used for further process-
ing. This can be seen as another error detection step that even detects errors that result in seemingly 
valid codewords, i.e. ones that are undetectable in the classical sense: Undetected errors are 
unlikely per se, and it is even much more improbable that several of them form an edge segment. 

All things considered, the algorithm effectively determines color edges in the pattern image, yet not 
by a standard direct approach to edge detection, but rather using an approach designed to detect 
only color edge segments originating from the projected pattern. It does so by combining demodu-
lation and decoding into one operation rather than solving one after the other; this seems to be nec-
essary to solve the difficult task reliably even under noisy real-world conditions. Clearly the pro-
posed approach solves two key problems commonly associated with color-coded light: neither 
background illumination nor the scene color pose a major problem. Both of them represent a con-
stant factor, which has no impact on the derivative (but for decreasing the signal-noise ratio) and 
accordingly on the resulting edge segments. Figure 36 illustrates the ability to cope with colored 
scenes; it shows the output of the algorithm given a hand in front of a color chart as scene. It can be 
seen that almost all projected edge segments are recognized correctly. 
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Figure 36: Detected and correctly identified projected color edges (bottom) given an image of a 
color chart as input (top). 
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Figure 37: Remodeled subpattern layout to obtain closed contours for the exemplary parameters  
v = w = 3. 
 

In the case of a two-dimensional pattern (v > 1), the algorithm is necessarily more complex; the 
underlying basic idea is to attempt to detect closed contours in the image. It is for that reason ad-
vantageous to slightly modify the subpattern layout proposed in figure 32 to one that forms a closed 
contour. The slightly remodeled version is displayed in figure 37; in its case a subpattern of the 
derived pattern forms a closed contour of v - 1 by w - 1 primitives. It can be shown that none of the 
code’s error detection properties is lost because of the modification; its only disadvantage is that a 
v by w color primitive subpattern no longer uniquely defines its color edge subpattern, only in con-
junction with its left neighbor window. While this is formally somewhat awkward, it causes no 
practical problems. 

Despite the increased complexity, the 2D pattern algorithm operates similarly to the 1D one. It is 
again structured into the tasks of edge pixel and edge segment detection.  

Edge Pixel Detection: Edge pixel detection is virtually unchanged compared to the 1D pattern. 
The algorithm also performs non-extrema suppression in each color channel and subsequently com-
bines single-channel local extrema to multi-channel ones according to their orientation and spatial 
distribution. Only the latter are considered edge pixels and classified into one of the 20 multi-
channel edge classes. Figure 38 illustrates this operation. 

Edge Segment Detection: The edge segment detection starts by detecting small segments of edge 
pixels of the same class. All detected segments are classified as either horizontal or vertical; as it 
can be shown that projected horizontal segments remain approximately horizontal in the camera 
image (assuming the vertical separation of camera and projector is negligible), this classification is 
uncomplicated. Points at which at least two segments cross are considered corner points. While this 
step is in principle straightforward as well, the details of implementing it are not, because edge 
segments are rounded off at the square corners, crossing segments intersect in several pixels or in 
none at all due to the discrete nature of the image, the four segments that make up a typical corner 
intersect at many different image positions rather than one etc. The algorithm solves these issues by 
replacing each segment by a straight line segment that is a few pixels longer than the original seg-
ment, whose pixels are all neighbors in the four-neighborhood sense and that has a unique id. This 
effectively eliminates the case of missed intersections. Next, the typically quite many associated 
crossing points of each edge segment are reduced to only two corner points per segment, where 
each reduction is communicated to all participating segments. 
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Figure 38: Color image (left) – Image formed by combining the three single-channel local extrema 
images via a logical AND operation (middle) – Corner points and closed contours of correctly 
identified edge pixels (right). 
 

As a result, each edge segment is associated with one or two corner points, respectively each corner 
with two to four edge segments. This permits detecting the segments that form a closed contour. 
The neighborhood relationship of closed contour follows immediately given that each segment will 
typically be part of two such contours. Decoding then simply implies forming the word resulting 
from a subpattern, i.e. from blocks of v - 1 by w - 1 closed contours with their 2vw - v - w symbols, 
and comparing it with the codewords. In a last step, the decoding information is propagated from 
correctly identified subpatterns to nearby unidentified closed contours that meet certain criteria 
(closed contour of about the same size, small code space distance to the expected symbol, etc.). 
With other words, error correction is again done by exploiting the depth or disparity continuity 
constraint rather than via the classical coding-theoretic operation of error correction. Figure 38 
shows an example of the detected contours of correctly identified edge pixels. 

When comparing the two types of patterns, the following conclusions can be drawn: 

• The algorithm for a 1D pattern is simpler to implement and computationally more efficient; its 
resolution on the basis of reasonably compact subpattern is limited, but suffices for the objec-
tives of this work. Its error detection capabilities are adequate for the scenes targeted in this 
work. 

• The algorithm for a 2D pattern is more difficult to implement and computationally less effi-
cient, even though a well-optimized implementation should be able to keep the practical impact 
of this drawback minimal. The 2D approach opens up the way to very high resolutions, respec-
tively a higher redundancy with compact subpatterns. It is well suited for exploiting the abili-
ties of high-resolution color cameras such as today’s megapixel consumer cameras. 

• For a given camera, the achievable non-interpolated range image resolution of the 2D pattern is 
somewhat lower than that of the 1D pattern, because the squares need to have a side length of 
about 5 to 6 pixels to obtain a meaningful edge segment length, whereas with the 1D pattern 
the theoretical maximal resolution of about 3 to 4 pixels per stripe (see section 4.3.1.1) can be 
actually achieved in practice. 

With respect to further processing, there are no significant differences between the two types of 
patterns; for that reason, the remainder of this chapter does not distinguish between them. 
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Number of  
Iterations Mean Sample Standard 

Deviation Min Max Number of  
Samples 

0 +0.05 mm +0.69 mm -2.27 mm +2.58 mm 838911 

1 -0.01 mm +0.15 mm -2.11 mm +1.92 mm 838911 

2 -0.01 mm +0.15 mm -2.11 mm +1.92 mm 838911 

Table 10: Statistical parameters of the zw- distribution in a depth map of the zw = 0 plane for vari-
ous numbers of iterations of the iterative approach to compensating the projector’s distortion. The 
depth map after 0 iterations is shown in figure 39, the one obtained after one iteration in figure 40. 

4.3.4.2 Triangulation  

A SL system computes range values by intersecting projected light planes with lines of view of the 
camera, i.e. via plane-ray triangulation. At a first glance, this step seems to amount to one of the 
simplest problems of analytic geometry. Figure 39 illustrates that the task is more complicated. It 
shows the (world coordinate) depth image of the planar calibration target of size 600 by 400 mm. 
The target defines the zw = 0 plane in 3D space, consequently the map should have a value of 0 
everywhere but for small, zeromean deviations attributable to the unavoidable ranging noise. This 
is clearly not the case; in some regions the depth values go systematically up to 2mm, which repre-
sents an unacceptably large measurement error. Many range images that are acquired with a struc-
tured light system and that are displayed in the literature show a similar effect (e.g. [McIvor 1994]). 
The reason for this type of systematic ranging error is that the above ray-plane intersection ap-
proach ignores the radial distortion of the projector. 

Even if the projector’s optical slide center and its coefficients of radial distortion are known, there 
is no simple way to correct this distortion: Only the illuminating plane, that is the single projection 
slide coordinate ip is known, but not the ray (i.e. jp is missing); both coordinates would be needed to 
determine the radius and to compensate for radial distortion. We propose to consider the projector’s 
lens distortion with the following iterative approach. In a first step, a sort of average radial distor-
tion is considered by taking the plane defined by slide coordinates (ip, mp/3) and (ip, 2mp/3) as the 
projected one. Simple plane-ray intersection with this plane yields preliminary camera coordinates 
(xc, yc, zc) of the imaged scene point. These are converted via world to projector coordinates  
(xp, yp, zp). Back-projecting the latter on the slide plane results in ideal undistorted slide coordi-
nates, which can be transformed to distorted slide coordinates (ip’, jp’). Ideally, ip is close to ip’ and 
(ip, jp’) represents a very close approximation to the illuminating ray. This permits revising the 
plane equation by considering the radial distortion present at slide coordinates (ip, jp’). A second 
ray-plane triangulation then yields – typically much more accurate – 3D-space coordinates. 

There are several alternatives to the above approach: e.g. the epipolar constraint could be exploited 
by computing the epipolar line on the projection slide defined by the known camera image coordi-
nates; in that case no first depth estimate is needed. Intersecting the epipolar line with the ideal 
straight line (respectively distorted curve) corresponding to the identified light plane again yields a 
good estimate of the sought-after projection slide coordinate jp. In practice, all approaches give 
about the same results; it depends on the implementation which one is more efficient. 

Table 10 and figure 40 show that the above iterative approach enhances the ranging accuracy sig-
nificantly: already after a single iteration the resulting depth map has the expected properties (about 
zeromean, small root mean square error of σ = 0.15 mm). A second iteration does not improve 
things further. The remaining nonzero mean does not necessarily mean there still is an accuracy 
problem as the calibration target is known to be somewhat uneven. Also the calibration target, 
which is shown in figure 27, consists of black squares on a white background. Their contrast repre-
sents a worst case scenario for the algorithm that occasionally manages to disturb the location of 
stripe edges significantly. This explains the large maximal depth error of 14σ. 
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Figure 39: World-coordinate depth map of the zw = 0 calibration plane obtained without consider-
ing the projector’s radial distortion. Positive zw-values are mapped linearly to red-shades (0.00 mm 
as black, 0.70 mm as red), negative ones analogously to gray levels (0.00 as black, -0.70 mm as 
white). 
 

 
Figure 40: World-coordinate depth map of the zw = 0 calibration plane obtained by considering the 
radial distortion of the projector (one iteration). Visualization is identical to figure 39. 
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4.3.4.3 Interpolation 

As discussed before, computing depth values via triangulation is only possible for identified edge 
segments. There will necessarily be certain interspaces between adjacent edge segments. To obtain 
a dense range map, the depth needs to be interpolated for all remaining pixels part of an identified 
subpattern. It is important to note that the interpolation is only performed between edges that be-
long to the same projected stripe or square, i.e. that represent its left and right border. With other 
words, it is applied only to surface patches that are known to be continuous. Consequently, it does 
not cause the problems normally associated with interpolation; neither does it introduce artifacts 
into the range data, e.g. in the form of smooth transitions over depth gaps, nor wipe out small ob-
jects in the foreground. 
The distance between two consecutive stripe edges is typically 2 to 4 pixels; this very small gap is 
bridged with linear interpolation. The main motivation for choosing this simple method is its effi-
ciency. As performing linear interpolation is straightforward, it is not discussed here in detail. 

4.4 The Stereo Subsystem 
As motivated in section 4.2, we intend to employ a second camera, i.e. a set-up as with active ste-
reo systems (figure 41) to obtain range values for the image areas for which the coded light step 
fails and to improve the data quality in general. In order to do that, we first need to understand the 
potential weaknesses of the coded light step. Generally spoken, it breaks down if it cannot recog-
nize the reflected subpatterns in the pattern image. There are eight major reasons that might lead to 
this situation: 

• Surface Discontinuity: If the continuity constraint is violated, e.g. with small objects too small 
to reflect the subpatterns integrally, with depth jumps or at object borders. 

• Reflectivity Discontinuity: If the reflectivity smoothness constraint is violated. Reflectivity 
edges are for instance caused by certain types of texture. 

• Strong Crosstalk: If the crosstalk between the color channels is strong. In that case, edge pix-
els can still be detected, yet their classification and as a consequence the decoding fails system-
atically. 

• Limited Depth of Field: If the scene is outside of the depth of field of camera or projector. 
Especially the latter case occurs quite frequently as most projection devices have a rather lim-
ited depth of field given they are designed to illuminate planar surfaces. If the circle of confu-
sion becomes too large, the projected edges become too blurred to be detected. 

• Occlusion: If the imaged surface is occluded from the projector’s field of projection. 

• Orientation: If the imaged pattern frequency becomes too high, i.e. aliasing occurs. This oc-
curs with certain surface orientations and positions. As a result, the color edges are imaged as 
high-frequency, high amplitude noise. 

• Oversampling: If the imaged signal is saturated. This often happens in industrial environments 
where specular reflection is predominant. 

• Noise: If the reflection of the projection pattern does not exceed the noise level. In this context, 
the term noise level refers to the reflection of the projected pattern, not to the overall reflection; 
e.g. with a strong background illumination, the absolute strength of the imaged signal might  
be well above noise level even though its modulation due to the projected pattern is impercep-
tible. 
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Figure 41: The principle of the combined coded light/stereo vision approach. 

 

We hypothesize in the following that the areas where the above problems occur make up only a 
small part of the scene. At least the first three causes give rise to a pronounced optical structure in 
the pattern image, and one unlikely to be regular due to the pattern illumination. In the other cases, 
this is less likely, but nevertheless quite possible. So the idea of employing a stereo algorithm for 
the problematic areas is plausible. Its implementation is straightforward: 

Initially, each camera-projector combination acts as separate CL system and acquires a range im-
age. Then the two systems combine their respective results. A stereo algorithm identifies the prob-
lematic areas where both CL systems could not obtain range values and attempts to compute depth 
estimates for them. It is followed by an algorithm that establishes dense sub-pixel correspondence. 
All these steps are discussed below in detail. 

There seems to be no comparable system described in the open literature: combining coded light 
and stereo vision has nominally been proposed before, but in a way very distinct from the above 
one and with other objectives in mind. For instance, Chen et al. [1997] project the pattern proposed 
by Boyer and Kak [1985] on a scene imaged by two color cameras. However, their only motivation 
for doing so is to assign the scene a texture that accommodates the needs of stereo vision algo-
rithms. They explicitly do not attempt to decode the projected pattern, but employ a classical stereo 
algorithm based on dynamic programming. Consequently, the projector does not even have to be 
calibrated and, conceptually, their technique is an active stereo vision approach. Scharstein and 
Szeliski [2003] also employ a set-up with two cameras plus pattern projector and combine elements 
from coded light and stereo vision. However, their objective is to obtain the ground truth for stereo 
image pairs of complex scenes. This information is needed to evaluate the performance of stereo 
vision algorithms. To determine the ground truth, they use the classical temporally encoded Gray-
code approach. Accordingly, they solve the identification problem, but only as means to solve the 
correspondence problem: if it is known that a certain light plane illuminates the scene patch imaged 
at xl in the left image and the one imaged at xr in the right image (for a given fixed image row), it 
follows that xl and xr form a conjugate pair. Again, the projector does not have to be calibrated for 
this task. 
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Figure 42: Rectified images of an exemplary scene as seen from the left camera (left) and from the 
right camera (right) with an set-up as shown in figure 41. 

4.4.1 Rectification 
After their acquisition the images are rectified, that is they are re-projected on a common virtual 
image plane such that their rows and epipolar lines coincide. This virtual plane is not uniquely de-
fined; almost any plane parallel to the baseline can be used. The rectification methods discussed in 
the literature accordingly deal with the question of how to choose this plane. A common approach, 
which is also taken on in this work, is to pick out the virtual plane that minimizes the distortion of 
the projected images as well as their scale change. In any case, with a typical stereo set-up the dif-
ferences between the various plausible choices are rather negligible in practice. As the problem of 
rectification is effectively solved, it is not discussed further in this work. Figure 42 shows an exem-
plary pair of rectified images acquired with a geometric set-up as shown in figure 41, that is with 
one camera to the left, the other to the right of the projector, implying a horizontal-only separation. 

4.4.2 Mutual Update 
The purpose of the mutual update is for the two CL systems to share their respective results ob-
tained so far. For the sake of efficiency, the algorithm exchanges information about identified stripe 
edges rather than about obtained depth values: Given an identified stripe edge E of image A, it 
projects the corresponding 3D space edge into image B. If there is no identified stripe edge at or 
near this computed position, it adds E to image B. This step can introduce range values into image 
B that are correct – there is a surface at this position in 3D space – but that might not be visible 
from the point of view of camera B. The added stripe edges are for that reason marked with a flag 
that indicates that they might belong to surfaces invisible from the camera’s point of view. 

The mutual update is a very effective measure to overcome occlusion-related problems. Neverthe-
less, in the general case it cannot solve problems related to subpatterns that are visible, but whose 
reflection is corrupted due to one of the reasons mentioned above: most causes for failure such as 
reflectivity discontinuity are likely to affect both viewpoints. 
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Figure 43: Output of coded light step for the left image of figure 42 (left) and the right image of 
figure 42 (right). The range data is visualized by mapping the depth value of a given image point, 
measured in 10th of millimeter, to the gray value range of 0 to 255: g = (zc · 10.0) mod 256. One 
gray level period then corresponds to 25.6 mm. Points for which no depth value could be acquired 
are mapped to zero. The depth corresponds to the zc coordinate within the coordinate system of the 
rectified cameras. 

4.4.3 Stereo Step 
At the beginning of this step, the algorithm has already computed two more or less complete depth 
maps from two distinct points of view. Figure 43 shows an example for such a range image pair, 
computed from the pattern image pair of figure 42. Of course, any of the established types of stereo 
vision algorithm could now be used to complete the range image acquisition. For instance, it would 
be straightforward to use the results obtained so far as initial guess for a global optimization or 
layered approach to stereo vision as described in section 3.3.9. Tackling the task in this manner 
would, however, miss the point: the challenge to the stereo algorithm is to conserve both the reli-
ability and efficiency of the coded light algorithm. 

For this reason, we employ our own approach to stereo vision that is specifically targeted to the 
task at hand. For example, it should rather output no than erroneous range data. It operates as fol-
lows: It first performs contour tracing in each of the two depth maps using a special tracing routine 
that considers the depth value of adjacent points of the depth map. This yields two sets of closed 
contours for each image: 

• Inner Contours: Contours that enclose areas for which no depth values could be obtained. 
They delineate holes in a depth map, for example the eyes of the head of figure 43. 

• Outer Contours: Contours that enclose areas for which depth values could be obtained. They 
delineate objects in a depth map, for example the outline of the head without the neck of figure 
43. 
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Figure 44: Example for the inner contours found in the left and right depth map of figure 43. 

4.4.3.1 Area-Based Stereo 

The purpose of the area-based stereo algorithm is to compute range values for these parts of con-
tinuous surfaces for which one of the above-mentioned causes interrupted the CL algorithm. The 
candidates for such areas are the inner contours resulting from the above tracing operation. Accord-
ingly, the matching is first done on the contour level: Given an inner contour CA of image A, the 
algorithm attempts to find its corresponding contour in image B. So it computes for all inner con-
tours of image B that meet the epipolar constraint a score that quantifies its similarity to CA. This 
score considers aspects such as the two contour’s difference in position, circumference and the 
contour moments including the area. For each contour of the reference image, the one of the other 
image with the highest similarity score is selected as match, unless the score is below a certain 
threshold, in which case the contour is left without a match. 

Given two conjugate contours, a second matching is done on the pixel level. This low-level match-
ing step is based on the hypothesis that the areas enclosed by inner contours are continuous, i.e. that 
the ordering constraint applies to them. Consequently, dynamic programming is well-suited to effi-
ciently solve the correspondence problem – one image row after the other – for all pixels within 
two such conjugate areas. The details of this dynamic programming step are described in section 
4.4.4 in the context of a related task. 

If the total pixel matching cost (normalized by the number of enclosed pixels) for two supposedly 
conjugate contours is above a certain threshold, the areas are not matched at all. The same is done 
if the intensity variance within a contour is below another threshold – in most cases that means that 
there is an actual hole in the scene surface. A typical example for the latter case would be a bore-
hole. In its case, there will be no range values in both CL images, the two resulting inner contours 
will be very similar and their uniformly dark intensity distributions will match perfectly. Without 
the above threshold, the bore would accordingly be mistaken for a continuous surface. 
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Experimentally, it turns out that the matching on the contour level is very simple, reliable and fast, 
which is mainly due to the fact that the overall number of contours tends to be in the hundreds only 
with a typical scene. After considering the epipolar constraint, the number of candidate contours is 
typically in the tens at most. Figure 44 illustrates this fact. It shows all inner contours found within 
the head area for the two depth maps of figure 43: Clearly there are only a few of them, most of 
which have a distinctive shape, which is at the same time very similar for two conjugate contours. 

4.4.3.2 Feature-Based Stereo 

The feature-based stereo step attempts to match edge segments formed by edge pixels that could 
not be identified as projected color edges. Accordingly, it first detects such edge segments by trac-
ing edge pixels of the same class that are not part of any identified color edge. For each image, this 
yields a set of color edge segments. 

As with most classical feature-based stereo algorithm, a similarity measure is computed for each 
pair of segments. It considers factors such as the edge class, segment position and segment form. 
The correspondence of segments is then computed in the manner of a classical feature-based stereo 
algorithm. Such an algorithm is part of the state-of-the-art and for example described in section 
3.3.9.4. It is for this reason not discussed here in more detail. 

A more interesting aspect of the feature-based stereo is its attempt to improve the outer contours: 
the outlines of objects as computed by the coded light step are somewhat frayed because they nec-
essarily correspond to the borders of the last identified subpattern, not to the actual object borders. 
The feature based-stereo attempts to determine the latter by searching for and matching the edges 
due to the object boundaries. 

4.4.4 Dense Correspondence Step 
The coded light algorithm computes depth values for projected color edges only. Due to the active 
illumination, there will be many edges in the image, but by no means will every pixel of an image 
be an edge pixel. To achieve the targeted high, non-interpolated relative spatial resolution, the pro-
posed algorithm establishes the dense correspondence for pixels between neighboring identified 
edge segments that belong to adjacent projected edges and that are only a few pixels apart. It is able 
to safely assume that the depth varies smoothly between two adjacent segments; otherwise the two 
adjoining projected edges would not be nearby neighbors in the pattern image. 

Formally, the task at hand can be expressed as follows: Given the column interval [0, a], which is 
defined by two edges in the first image, and the corresponding column interval [0, b] of the other 
image, find the function d(x): {1, .. a-1} → {1, .. b-1} such that d(x) ≤ d(x+1), i.e. such that the 
ordering constraint holds, and such that the following cost function becomes minimal: 
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where y is the considered image row and Ikn refers to the kth color component of the nth image. 
The above task can be solved efficiently via the well-known technique of dynamic programming. 
The resulting function d(x) is then considered to be the solution to the corresponding problem.  

In practice, the described approach is modified slightly: the cost of matching two pixels is not 
computed over the squared intensity difference of the two single pixels only as in equation 70, but 
rather over two 5 by 5 window centered at the respective pixels. Also, to achieve sub-pixel accu-
racy, the actually found interval [0, b] is inflated by a constant factor, where currently a factor of 4 
is used. 
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Figure 45: Final depth map of the right camera (left) – Improvement over the depth map computed 
by the coded light step as shown on the right side of figure 43 (right). 
 

The dense correspondence step does not result in a major improvement with the components used 
in this work because in their case the gaps between edge segments are typically only about 2 to 4 
pixels wide. It does, however, open up a way to efficiently exploit cameras with a high resolution 
such as today’s affordable megapixel consumer cameras. With them, first a sub-sampled image is 
processed as usual; given these results, the dense correspondence is established using the original 
image of much higher resolution. This approach represents an efficient method to taking advantage 
of the current trend to ever higher camera resolutions, especially if no slide with a resolution that 
directly exploits the capabilities of such camera is available. 

Figure 45 illustrates the output of the system after the stereo vision step; respectively, it highlights 
the points for which the stereo step could obtain a range value while the coded light could not. 
Clearly the improvement over the coded light step is rather small, a result that can be considered 
fairly representative with simple scenes such as human heads. One underlying reason is that the 
stereo algorithm is currently configured very conservatively in order not to introduce false matches. 
However, the additionally acquired range values mostly refer to geometrically characteristic parts 
of the scene surface such as its singularities in 3D space. Obtaining them might be crucial for cer-
tain tasks; it depends on the application whether this gain is worth the additional hardware re-
quirements and increased computation time that accompanies the stereo vision step. 
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4.5 Optional System Components 
4.5.1 Scene Reflectance Compensation 
The objective of the scene reflectance compensation or reflection normalization step is to remove 
the effect of the scene’s reflection properties on the pattern image. This effect is often significant: 
e.g. a red scene reflects incoming white light as red (see e.g. figure 36) and abrupt changes in the 
surface orientation introduce unwanted edges into the pattern image. After the compensation the 
pattern image should appear as if the scene itself had had a uniform and spectrally constant reflec-
tivity function, i.e. each pixel is supposed to have the color and intensity proportional to the ray of 
projection illuminating the imaged scene patch. The compensation step needs an image taken under 
an all-white illumination (in the following called reference image) to determine the reflectance 
properties of each imaged scene patch. With other words, it requires a projector capable of switch-
ing between two distinct projection patterns and a scene that is approximately static between the 
acquisitions of the two images. It is for that reason an optional component of the proposed ap-
proach. This section builds on results obtained by Caspi et al. [1998] to solve a related problem 
with their approach to time-sequential color coded light using several distinct projection slides. 

Since almost all off-the-shelf color cameras use RGB-filters, we specify colors in the following 
within the RGB color space introduced in chapter 2, where we normalize the components of RGB 
tristimulus vectors to the interval [0, 1]. As before, we employ the subscripts c and p to distinguish 
between camera and projector-related quantities, respectively to express that both the projector and 
the camera implicitly use their device-dependent approximations of the CIE RGB color space. 

Let’s assume a constant projection pattern; such a pattern can be described via a single vector of 
the RGBP color space. We represent the spectral irradiance of a given scene patch S resulting from 
the pattern Ipl whose color is the lth unit vector of the RGBp as Epl(λ). Then the irradiance with the 
pattern (0, .. , xl, .. 0), 0 ≤ xl ≤ 1 is proportional to Epl(λ). Ideally, this relationship is linear, i.e. the 
proportionality factor is xl, but in general this will not be the case. We consequently introduce for 
each channel a monotonous function hl(x) that maps the interval [0, 1] onto itself; it allows describ-
ing the spectral irradiance radiated on S with the pattern (0, .., xl, .. 0) as the product of hl(xl) and 
Epl(λ). We consequently approximate the irradiance Ep given the projection color (xr, xg, xb) as: 

 ( ) ( ) ( )∑
=
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bgrl
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,,, λλ  (71) 

As discussed in chapter 2, an image value is proportional to the radiance of the imaged surface 
patch S into the solid angle of the lens. With coded light, we model this radiance as reflection of 
the projector illumination Ep and the background illumination E0 radiated on S. Substituting this 
into the sensor response equation 21 yields for the channel image Im the expression: 
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where r(λ) describes the normalized, wavelength-dependent reflectivity of the imaged scene patch. 
Caspi et al. [1998] propose to assume the reflectivity r to be constant within the support of the 
spectral responsivity of each camera channel filter. Doing so yields three corresponding constants 
rr, rg and rb. With them, equation 72 can be rewritten as: 

 ( ) ( ) ( ) ( ) ( ) ( )∫∫∑ ⋅⋅+⋅⋅⋅=
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llm 0
,,

 (73) 

Each integral of the left sum is independent of the projection pattern and the reflectivity of S; it can 
consequently be determined via an off-line color calibration: For the patterns Ipr, Ipg and Ipb, a scene 
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with known reflectivity, e.g. a gray level chart, is imaged. With each pattern Ipl’, the expression 
hl(xl) is nonzero only if l = l’. If there is no background illumination during calibration, all but one 
integral vanishes from equation 73. The equation can then be solved for this integral, its only re-
maining unknown. This process yields 9 constants aij that describe the coupling between a certain 
projected color and the response of a certain color channel of the camera. With these constants and 
ignoring the background light E0 for the moment, the expression for Im simplifies to: 

 ( ) ( ) ( )∫∑ ⋅⋅=⋅⋅=
=

λλλ dEskaarxhI plmmlmll
bgrl
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,,

 (74) 

Or in matrix form: 
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The matrix A = (aij) is approximately diagonal since arr, agg, and abb are much greater than its other 
entries for any properly color-balanced camera - projector pair. It is therefore invertible. 

Let’s assume the color of the projection pattern is unknown. Given the pattern image and the ma-
trix A, the only unknown factors of equation 75 are the pattern color and the reflectivity constants, 
yielding a total of six unknown factors. A single color image of the scene such as the pattern image 
gives only three equations; in the general case, the resulting system of equations is indeterminate 
and has no unique solution. This is the principal dilemma of approaches to coded light that are 
based on a single pattern image and need to know the projected color; even in a perfect environ-
ment without any uncontrolled illumination they still have to make assumptions regarding the re-
flectivity of the scene. They are therefore unable to produce acceptable results with scenes that 
significantly deviate from these assumptions. 

So to determine the projected color, a second image is needed. Taken with known constant illumi-
nation, it yields another three equations. The best choice for this illumination is a uniform white 
pattern, as then each hl(xl) is known to take on a value of 1, and equation 75 simplifies to: 
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Equation 76 can be solved for the reflectivity constants of an imaged scene patch given its RGBc 
tristimulus vector. The constants are substituted into equation 75 formulated for the image with the 
unknown projection color. If all three constants are nonzero, the values of hr, hg and hb can be de-
termined for S. In matrix form, this can be expressed as follows: 
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Since the functions hr, hg and hb are typically strictly monotonous, their inverses exist and the 
sought-after RGBP value of the pattern can be determined. This value does usually not correspond 
to an actually projected one due to noise. To estimate the projected value, the computed has to be 
mapped to one of the possible RGB-values, e.g. using a minimal-distance operator. If only two 
levels per RGB-channel are used for the projected light, as with the approach introduced in this 
chapter, the minimal distance operator simplifies to a threshold operation.  
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The outlined approach assumes the ambient light can be neglected, i.e. E0 << EP, within the expo-
sure time and the support of the camera channels. If it cannot be neglected, the effect of the back-
ground illumination can be determined by acquiring a separate image of the scene illuminated by I0 
only and by subtracting it from the reference and pattern image. However, I0 has to be approxi-
mately time-invariant and the scene static within the time span needed to acquire these images. 

The matrix A and the functions hl are determined via calibration routines. Clearly the actual entries 
of A depend on the camera (settings), the projector (settings) and the patch S. This is unproblematic 
as long as the light projected on a surface spot other than S or with changed settings has a spectral 
power distribution that differs from the calibrated one by a constant factor only. In that case, the 
“correct” matrix A’ would be identical to A up to an constant factor, i.e. A’ = k A. This factor con-
sequently cancels out in equation 77 because the inverse reflectivity matrix is implicitly scaled by k 
while the matrix A-1 is scaled by 1/k. It consequently suffices to determine the matrix A only once; 
it can then be used for any surface patch of an arbitrary scene, respectively with any geometric set-
up and independent of camera settings such as the shutter time. 

The above results lead to the following overall approach to the task of scene reflectance compensa-
tion: First, the camera-projector coupling matrix A is determined off-line. To apply the compensa-
tion step on-line, two images are acquired, one with the encoded, one with an all white projection 
pattern. The image resulting from the latter illumination is used to obtain the three reflectivity con-
stants of each imaged scene patch via equation 76. Given the constants, equation 77 and the de-
scribed further processing is applied to each pixel of the pattern image. In each case, this yields the 
color of the ray that illuminates the scene patch imaged at the considered pixel. Replacing the value 
of each pattern image pixel with this color effectively removes the effect of the scene’s reflection 
properties on the pattern image as intended. 

It is important to note that the above approach is based on certain assumptions besides the ones 
explicitly stated: 

• Imaging chain noise such as transport effects, the spatial averaging over the finite CCD array 
or blurring caused by the lenses can be neglected. 

• Projector noise such as a time-varying projection illumination or blurring caused by its lenses 
can be neglected. 

• The conversion of a sensor charge to a digital value is linear. 

• Scene dependent noise such as mutual illumination can be neglected. 

These assumptions imply certain important limitations of the model and as a result of the scene 
reflectance compensation approach; e.g. the first two imply – among other things – that both cam-
era and projector have to be focused properly. While this is rather obvious, other consequences are 
not: the assumption of a temporally constant illumination means that the compensation step cannot 
be used with the popular DLP-projectors that project the red, green and blue components of a pat-
tern one after the other unless some kind of synchronization mechanism is implemented. Moreover, 
while a suitable correction table allows linearizing the response of a camera to some extent, effects 
such as color clipping due to saturation cannot be corrected. This is a significant problem with 
scenes that exhibit specular reflection and consequently extreme contrast; with them also mutual 
illumination becomes a non-negligible factor. 

Figure 46 shows an example for the scene color compensation step. The topmost image shows the 
reference image of a color chart taken with an all-white projection pattern. The center image repre-
sents the pattern image acquired while the coded light pattern was projected. The bottommost 
shows the pattern image after compensating the scene’s local reflectance; it can be seen that in this 
image almost all imaged scene patches have the color of the illuminating projection ray but for a 
few patches in the blue and the black areas of the chart, i.e. in areas of very low reflectivity. 
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Figure 46: Scene color compensation – the intrinsic scene colors (top), the pattern image (middle) 
and the pattern image after compensating the scene color (bottom). 
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4.5.2 Autonomous Threshold Optimization 
The correct choice of thresholds has a significant impact on the performance of the proposed rang-
ing approach. In this context, the term threshold applies to parameters of the algorithm, e.g. the 
minimal amount of a local extreme value of the directional derivative to be considered an edge 
pixel, as well as camera settings such as its exposure time. Certain events require an adjustment of 
the thresholds, e.g. a major modification of the geometric set-up, the integration of a new compo-
nent such as a new camera or strongly varying ambient conditions. Ideally, the system should man-
age its thresholds without any user interaction and in real-time. 

The coded light approach of this work allows reliably measuring the quality of a set of thresholds 
by simply counting the number of pixels that are part of an identified projected color edge segment, 
in this section called edge pixels. Given the error detecting encoding and processing, it is practi-
cally impossible that a non-negligible number of false edge pixels occur. So an algorithm can use 
this indicator to find an optimal or at least near-optimal choice of thresholds. If camera settings are 
to be optimized, this requires a static scene; if only algorithm-related thresholds are to be adapted, 
this can be done given a single representative image. 

Optimizing the parameters can be formally described as the global optimization problem of finding 
the set of parameters that maximizes the number of edge pixels, i.e. of finding max f(x), x ∈ X, 
where f is the objective or cost function and X is the parameter space. Since maximizing f(x) is 
equivalent to minimizing -f(x), the task is in principle a classical optimization problem quite simi-
lar to the ones discussed before, e.g. in the context of shape-from-motion or static stereo vision. So 
all in all, the task at hand is straightforward; the only non-trivial aspect is the choice of the optimi-
zation method. In this context, the following aspects need to be considered: 

• Integral (Co-)Domain: All parameters are integers. 

• Multidimensional (Co-)Domain: The parameter space is n-dimensional, where n is typically 
somewhere between 5 and 8. 

• Constrained Optimization: The thresholds cannot take on every value: they are all bracketed 
by a minimum and a maximum. In combination with the previous aspect, this implies a finite 
parameter space. 

• Non-Linearity: Clearly f(x) is a non-linear function.  

• Efficiency: As an algorithm needs to perform a partial evaluation of one or several images for 
each evaluation of the cost function, the computing time is significant. At the same time, given 
the only 5 to 8 dimensions of the parameter space, storage space is irrelevant.  

• Near-Optimal Solution Acceptable: It is not necessary to find the global minimum; it suffices 
to find a local one where the cost function is close to its optimal value. Such a local minimum 
does not lead to any errors as it would in the case of stereo vision or camera calibration, only to 
a slightly suboptimal system performance. 

The integral (co-)domain implies derivatives are not available, respectively only coarse approxima-
tions of the derivative are obtainable. For this reason, most of the classical optimization methods, 
e.g. gradient-based ones, are not appropriate. Instead, we choose the well-known non-deterministic 
method of simulated annealing (see e.g. [Press et al. 2002]) well suited for combinatorial minimiza-
tion over a discrete parameter space. The annealing schedule is chosen according to the time con-
straints; at system start-up, when optimization is allowed to take up several seconds, the cooling is 
slow in accordance with the principle of simulated annealing. During operation, when optimization 
needs to be efficient, the cooling is much faster, even though this takes away from the strength of 
simulated annealing to some extent. Typically this is no problem as with a running system the re-
sults of the previous optimization tend to represent a very good initial guess. 
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Figure 47: Scene color estimated from the pattern image shown in figure 36. 

4.5.3 Scene Color Estimation 
During the coded light step a color image of the scene is acquired, but one that is rather unsuited 
for further processing due to the irregular illumination. For the part of the scene for which the iden-
tification problem could be solved, the spectral composition of the projected illumination is known. 
This section discusses in as far it is possible to compute the local reflectivity of an imaged patch 
under these circumstances, i.e. to reconstruct a color image of the scene that appears as if the illu-
mination had been uniformly white. 

As discussed in chapter 2 as well as in section 4.5.1, the value of an image pixel I is proportional to 
the radiance of the imaged surface patch S into the solid angle of the lens. With structured light, 
this radiance consists of the reflection of the projector illumination Ep on S and the background 
illumination E0 radiated on S by any other light sources present. Substituting this into the standard 
sensor response equation 21 yields the following equation for the value of a channel image Il (e.g. 
the red-component): 

 ( ) ( ) ( ) ( )( )∫
+∞

∞−

+⋅⋅=
2

0 λλλλλ dEErskI pmm  (78) 

where k is a constant, sm(λ) represents the spectral responsivity of the considered channel and r(λ) 
the unknown spectral reflectance function of the imaged scene patch, in the following informally 
called scene color. 

Given equation 78 and a correctly decoded subpattern, the projector illumination Ep(λ) is known 
for S. The scene color r(λ), actually a function of the wavelength, is modeled as a constant for a 
given pixel over the support of each channel filter. With a RGB camera as used in this work, r(λ) is 
again split up into three scene patch, respectively pixel-dependent constants rr, rg, and rb. Assuming 
an additive camera response, equation 78 can then be rewritten as: 
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The first integral is now scene independent; for a given camera, it depends on the projector illumi-
nation only. Consequently, the possible values of the integral can be determined via an off-line 
color calibration similar to the one described in section 4.5.1. For each of the eight distinct values 
of Ep, a scene with known reflectivity is imaged. Provided there is no background illumination 
during calibration, the second integral vanishes and equation 79 can be solved for the first integral. 
With a RGB camera, this process yields 24 constants kml that describe the coupling between a cer-
tain projected color and the response of a certain color channel of the camera. These constants are 
normalized by dividing them through the largest occurring constant (which is certainly nonzero). 
Then all constants are known to have a value between 0 and 1. 

Given a pattern image pixel and a patch with known projector illumination, equation 79 is solved 
again, this time for the unknown scene reflectivity constant rl: 
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Unfortunately, this equation contains a second unknown, namely the channel response to the back-
ground illumination. Simply ignoring it distorts the estimated scene color. Clearly the disturbing 
influence of the background illumination is the stronger, the smaller the constant kml. For this rea-
son, the scene color is only estimated if the constant kml is large (≥ 0.5) for a given projection color; 
in that case the remaining integral of equation 80 is simply dropped. For example, while projected 
green will cause a strong response in the green channel (kgg will be large), the responses of the red 
and blue channel to green will be weak (kgr and kgb will be small, i.e. < 0.5). So for projected green, 
only the green component of the scene color is estimated; the remaining constants are interpolated 
from adjacent stripes or squares. This approach effectively overcomes the problem of background 
illumination as well as that of noise, at the cost of a low sampling frequency. 

A second relevant aspect is the blurring introduced by the projector lenses. For instance, a white 
stripe between two blue stripes has a slightly bluish hue while one between two red stripes tends to 
have a reddish tint. For this reason, a correction factor is introduced that reflects the color of the 
pattern neighborhood in combination with a certain typical degree of blurring of the projected col-
ors. Each estimated reflectivity constant rl is multiplied by a corresponding correction factor. 

Figure 47 shows that the approach of this section yields a good estimate of the low frequency scene 
texture while the high-frequency information is lost in the direction orthogonal to the stripes. 

It is important to note that the above problem has in principle already been solved in a more general 
manner in section 4.5.1. Equation 75 would allow to directly solve for the scene color  
(rg rg rb)T given the known color of the illuminating ray of projection and the resulting camera re-
sponse for the imaged scene patch. However, it turns out that the above more specific approach has 
several advantages over the general one: by explicitly calibrating the response for the eight pattern 
colors rather than deriving them from a theoretic model avoids the inaccuracies inevitably intro-
duced by such a model. Also equation 80 is more robust against noise and background illumination 
than the matrix-equation approach of chapter 4.5.1. 
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5 Evaluation of a Prototype System 
This chapter analyzes and evaluates a prototype system based on the proposed ranging approach 
with respect to various aspects. Its focus is on accuracy as the most important aspect of a range 
image acquisition system; with a triangulation-based system, it is also the most complicated aspect 
because the error in the obtained 3D coordinates depends on a large number of parameters such as 
the spatial position and orientation of both camera and projector relative to the scene. To deal with 
the resulting complexity, we introduce in the following a parameterized model of such a system 
(5.1). Next, we define certain important accuracy-related terms, discuss which factors cause the 
measurement uncertainty in the first place, and establish – quantitatively as well as qualitatively – 
the relationship between the error caused by these factors and the choice of parameters (5.2). We 
then verify through a number of experiments that the resulting model predicts the actual range 
measurement error reasonably well (5.3). Finally, we experimentally determine the prototype sys-
tem’s frame rate (5.4) and its ability to acquire range data of arbitrary scenes (5.5). 
With respect to the distinct algorithmic components and configurations of the proposed approach, 
the focus of the evaluation is on the coded light step (based on a stripe pattern); this is motivated by  

• the circumstance that the coded light step typically acquires about 95% of the total range values 
(ignoring the intra-stripe interpolation of the stereo step)  

• the fact that extensive polishing, without which any implementation of a very complex algo-
rithm is off by a large constant factor from a truly representative performance, has only been 
applied to the coded light step due to lack of time 

• the intention to keep the scope of the evaluation within reasonable limits 

Unless stated otherwise, the results of this section are obtained with the following set-up similar to 
the one shown in figure 48: We use Basler 302fc single-chip Bayer-Pattern CCD RGB cameras to 
acquire color images of size 780 by 580 pixels and the digital IEEE 1394a (Firewire) bus and inter-
face to transfer them to a PC. Bayer-decoding of the camera-supplied data to RGB data and all 
other processing steps are done in software. The implementation runs on an off-the-shelf PC with a 
Pentium IV 2.4 Ghz processor (for the speed test, also one with a 3.2 GHZ processor is used) based 
on the Windows XP operating system without any special hardware. An Epson LCD 710 multime-
dia projector with a native resolution of 1024 by 768 pixels projects the pattern on the scene. 

The remaining parameters of the system are as follows: The camera’s lens is a standard TV lens. Its 
focal length is approximately 12.5 mm. A camera pixel is square with a side length of about 0.008 
mm. The projector has roughly the same ratio of focal length to pixel size, which permits using the 
same values for focal length and pixel size for both camera and projector. The projector is located 
at (300, 0, 0) and rotated by a convergence angle of ca. 20° around the y axis towards the left cam-
era (all values specified in the millimeter-based coordinate system of the left camera). 
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Figure 48: Exemplary prototype system based on the coded light step of the proposed ranging ap-
proach. A similar set-up – that is one without the housing to allow an arbitrary choice of the base-
line and the integration of a second camera – is used for the experiments of this section. The di-
mensions of the portable system shown are about 0.45 m x 0.25 m x 0.1 m. 
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Figure 49: Parameterized model of a structured light system – the special case of parallel optical 
axes of camera and projector (equivalent to the standard geometry of stereo vision). The figure 
shows an arbitrary XZc-plane slice through the 3D space. 
 

For comprehensibility, we focus in the following nominally on the case of a structured light sys-
tem, e.g. by calling one component camera and the other projector. It is important to note that the 
subsequent sections are nevertheless on triangulation systems in general: for instance, by simply 
considering the projector as a second camera, we can directly apply all results to the case of stereo 
vision (unless explicitly stated otherwise). 

5.1 A Parameterized Model of a Triangulation System 
In this section, we develop a parameterized model of a triangulation system, respectively structured 
light system. The following realistic assumptions are made regarding its geometric set-up and com-
ponents: 

• The y-axes of camera and projector are parallel. Simple geometric considerations show that 
this type of set-up is optimal with respect to ranging accuracy. Also, it can be realized in prac-
tice up to an imprecision that is negligible for the purpose of an error analysis.  
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Figure 50: Parameterized model of a structured light system – the general case of non-parallel opti-
cal axes of camera and projector that intersect under an angle θ > 0. 
 

• The pinhole camera model is a close approximation to the behavior of the lens camera and the 
lens projector. This implies for instance that imaging aberrations such as radial distortion can 
be ignored for the accuracy analysis; e.g. the basis for this specific assumption is that such ab-
errations can be corrected computationally or are negligible with suitable optical components. 

• The (effective) focal length f = fk is the same for both camera and projector. This assumption is 
unrealistic, but also unproblematic because for a given system we can e.g. rescale the camera 
image to simulate the special case of its focal length being equal to that of the projector. 

We use in the following exclusively the camera’s coordinate system XYZc as the model's coordi-
nate system seeing that it is the most intuitive choice. Respectively, with a standard geometry set-
up, we use a version of the camera coordinate system that is translated by (b/2, 0, 0) in camera co-
ordinates, namely the cyclopean coordinate system introduced in section 3.3.9. As the y-axes of 
projector and camera are parallel and we ignore radial distortion, we are able to limit our model to 
an arbitrary XZc-plane slice through the 3D space as shown in figures 49 and 50 (but for an analy-
sis of the error in the y-coordinates). Within this plane slice, the projector has its optical center Op 
at (b, zp). It illuminates the considered scene patch S located at (x0, z0) in the XZc-plane, respec-
tively at (x0, y0, z0) in 3D space, with the light plane of projector slide plane coordinate xr. S is im-
aged at the pixel xl.  
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Figure 49 shows a special case of this set-up: the optical axes of camera and projector are parallel, 
and the projector is located at (b, 0), i.e. just shifted along the x-axis of the camera coordinate sys-
tem relative to the camera. This special case corresponds to the standard geometry of stereo vision. 

In the general case shown in figure 50, the two optical axes are no longer parallel, but intersect at 
an angle θ (convergence or triangulation angle), 0° ≤ θ ≤ 90°. Furthermore, the projector is located 
at an arbitrary position (b, zp), i.e. it no longer resides on the camera’s x axis. Close-range triangu-
lation systems generally need to be set up with a significantly nonzero convergence angle to obtain 
a usable working space. With other words, unlike most of the literature on the accuracy of stereo 
vision, we cannot limit ourselves to the simple case of a standard geometry set-up. 

5.2 Theoretical Analysis of the Measurement Error with Triangulation 
5.2.1 Definition of Basic Terms 
As any real-world measuring device, a rangefinder acquires data that deviates to some extent from 
the correct value, the so-called ground truth. This deviation is also called measurement uncertainty, 
measurement error or sometimes somewhat misleadingly accuracy (the term inaccuracy would 
seem to be more appropriate). To be able to actually use a range acquisition system for real-world 
applications, its measurement uncertainty has to be known at least approximately. 

Formally, the measurement of the 3D coordinates of a given scene patch with ground-truth coordi-
nates (x0, y0, z0) represents a continuous, real-valued and three-dimensional random vector (x, y, z). 
Consequently, the measurement error δ is a continuous, real-valued and three-dimensional random 
vector (δx, δy, δz) itself, whose definition follows as: 

 ( ) ( ) ( )000 ,,,,,, zyxzyxzyx −== δδδδ  (81) 

The measurement error can be broken down into a systematic and a statistic component. Its ex-
pected value represents the systematic error of the measurement; its standard deviation is some-
times called the statistical error of the measurement. In contrast to the systematic error, the statisti-
cal can be averaged out by repeating a measurement over and over again. In this context, Jähne 
[2002] defines the depth resolution as the statistical error of the zc-coordinate, i.e. of the depth 
measurement, because one can argue that this error determines the minimal resolvable depth differ-
ence. It is important to note that this works assumes both errors are constant during the experiment 
and not e.g. random processes over a variable of time or temperature. 

It follows from the fact that the measurement error is a continuous random vector that the objective 
of an error analysis is to determine its probability density function (pdf), or at least its mean value 
and other key distribution parameters such as its standard deviation. Even for an unknown type of 
probability density function, the latter could be used to derive bounds on the probability of certain 
measurement errors (e.g. using the Chebyshev inequality). There are, however, two factors that 
make this task rather difficult in practice. 

The first is that multivariate random variables with their joint probability density functions are dif-
ficult to handle and not particularly easy to interpret, especially if their variables are dependent as 
they are in our case. To avoid having to deal with them, several one-dimensional alternatives sug-
gest themselves. Two examples are the absolute error δabs as the vector norm of the measurement 
error 

 ( ) ( )000 ,,,, zyxzyxabs −=δ  (82) 

and the relative (total) error δrel as the ratio of the absolute error to the norm of the ground truth 
vector (x0, y0, z0): 
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Suitable norms are e.g. the L2, which we use in the following, or the L-infinity norm of the ℜ3. 
Clearly both the absolute and the relative error represent continuous real-valued random variables 
with an intuitive interpretation.  

A further alternative is to consider the error with respect to a selected coordinate only. We define 
the continuous real-valued random variable δz as the error in the z coordinate (the depth or range 
error); the random variables δx and δy be defined accordingly. In the following, we mostly investi-
gate the variable δz. This will be justified a posteriori because we show that the other two variables 
δx and δy – and consequently the absolute and the relative error as well – depend approximately 
linearly on δz in our case. 

The second complicating factor is that with an area-scan, triangulation-based range acquisition 
system (and in particular one with a convergent geometric set-up) the accuracy changes signifi-
cantly over the working space. This conflicts with the intention to keep things simple, i.e. to be able 
to characterize a range acquisition system with an un-parameterized random vector δz or one that 
depends on a few key parameters describing the system geometry and components only. There are 
several strategies to deal with this situation: 

• The most direct approach is to minimize the number of parameters as far as possible, but to 
nevertheless model the measurement error as a random process over a parameter space that 
(ex- or implicitly) includes the spatial position of the considered scene patch. That is, to treat 
the error as a mapping of the parameter space to a set of random variables, each of them with 
its individual pdf. Then, given measured surface coordinates, one can hypothesize that they are 
reasonably close to the ground truth and accordingly obtain the pdf, statistic error etc. specific 
to the considered scene patch. 

• An alternative is to attempt to derive suitable approximations for certain standard set-ups, 
which consequently yield magnitude-of rather than precise values. 

• A third way is to choose the worst case uncertainty, defined e.g. as the position within the 
working space for which the standard deviation of δz is maximal, as the representative one; in 
fact, this approach needs to be taken if a certain application has strict accuracy requirements 
that need to be guaranteed over the whole working space. 

In this chapter, we focus on the first two strategies: we first derive an exact formula for the meas-
urement error and then simplify it via suitable approximations that apply to certain practically rele-
vant set-ups. In any case, before we can set out to determine the accuracy, we have to understand 
which factors cause the now well-defined measurement error in the first place. 
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5.2.2 Causes of Inaccuracy 
In our case, the following factors contribute to the uncertainty of range measurements: 

• Localization, Quantization, Image Processing or Image Resolution Error: An algorithm 
cannot locate light planes (here the border between two projected stripes or squares) with infi-
nite accuracy on the image plane, but only with a certain localization error ∆xl (specified in 
camera coordinate system units, i.e. in our case in millimeter, not in pixel units), even if it uses 
sub-pixel arithmetic. See figures 49 and 50 for an illustration of this definition. Among the 
many reasons for this localization error are the loss of the high frequency information due to 
the discrete sampling of the scene radiance (sampling theorem), blurring introduced through 
the camera lens (in particular with today’s consumer megapixel cameras with their small sen-
sors in combination with low-cost lenses), and electronic noise occurring within the imaging 
chain. With the proposed approach, the scene texture can as well contribute to this error.  

• Projection Error: A light plane emitted by the projector does not correspond to a 2D plane in 
3D space due to the non-negligible size of the slide pixels, rather to a cone. As previously dis-
cussed, we are able to circumvent this problem to some extent by using only the border be-
tween two slide pixels for triangulation as it approximates a light plane. However, even this 
border is not clearly defined because e.g. the projection slide is not flawless, the projector op-
tics introduce a certain amount of blurring, distortion and in particular chromatic aberration, 
and the irradiance of the light bulb is not constant, but itself a random variable that changes 
with the solid angle, over time etc. We can specify the location of this border on the projector’s 
retinal plane only with a certain uncertainty of ∆xr, specified in projector coordinate system 
units, i.e. in our case in millimeter. See figures 49 and 50 for an illustration of this definition. 

• Modeling Error: The calculation of 3D coordinates of a scene point is based on two ideal 
device models, in this work on the lens camera and lens projector model. These models are 
only an approximation of the real-world devices actually used (or vice versa, the real-world de-
vices are only approximations of the ideal devices their manufactures intended to produce). 
The unavoidable difference between model and reality causes an error in the range measure-
ment. 

• Calibration Error: Even without a modeling error, the (e.g. lens camera) model parameters 
can be determined with limited accuracy only with the known calibration methods since the 
calibration target is imperfect, the fiducial marks cannot be localized with infinite precision, the 
algorithm does not find the global minimum of the cost function etc. 

• Misidentification or False Match Error: A misidentified light plane results in 3D coordinates 
that are almost arbitrarily off. 

• Other Error Causes: Several other effects are able to introduce additional errors. E.g. move-
ment within the scene tends to introduce motion blur, especially if the shutter time is non-
negligible relative to the speed of movement. Changes in temperature or mechanical strain (in-
cluding a simple push or somebody walking by) might affect the set-up and introduce a poten-
tially time-varying, aggravating calibration error. This type of error is very relevant for any 
real-world application, especially as its effect is systematic and can become unlimitedly large. 
Furthermore, ambient illumination can cause errors, let alone software bugs or operating errors 
of the user. 

In the following analysis, we consider only the projection and localization error. This is motivated 
by our experience that those two dominate the resulting error over the modeling and calibration 
error, the misidentification error does practically not occur with the proposed system and the other 
error causes do not lend themselves to a generic analysis. 
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5.2.3 Exact Formulas for the Measurement Error 
We first derive the error in the separate coordinates resulting from a given localization error ∆xl 
and projection error ∆xr. We start out with the simple parallel set-up as shown in figure 49 and 
obtain – via equation 48 – the following expression for the depth error δz resulting from these two 
causes  
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Analogously, we obtain from equation 48 for the error in the measured x and y coordinates, δx and 
δy, the two expressions: 
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For the above formulas, we use the estimate d(d + ∆x) ≈ d2, whose application is marked by the 
symbol *. It is in fact a very good approximation in our case: e.g. for the typical set-up used 
throughout this work, the range values vary between 700 and 1200 mm and the baseline has a size 
of about 300 mm. As mentioned above, the pixel side length is about 0.008 mm for both camera 
and projector. Disparity values are consequently in the area of 3.0 mm or greater. A reasonable 
upper bound for the localization and projection error is about half a pixel, i.e. in camera coordinate 
units about 0.004 mm. For the minimal disparity value of 3.0 mm, the exact range error resulting 
from a combined localization error ∆x of 0.008 mm is 3.324 mm, the approximated one is 3.333 
mm. Only for much more remote scene points, i.e. ones resulting in a disparity of no more than a 
few pixels, the above approximations would become notably inaccurate. Area-scan SL systems are 
intrinsically limited to close-range acquisition; consequently such remote points are principally not 
of interest with them and we may safely apply the above approximation. 

To analyze a non-standard set-up as shown in figure 50, we first introduce an imaginary projector 
located at the same position (b, zp) as the actual projector, but whose optical axis is parallel to the 
one of the camera, i.e. one that would lead to a convergence angle of 0°. Be xr’’ the slide coordi-
nate of the real rotated projector and xr’ the one of its imaginary non-rotated counterpart. Be  
(xcr’’, zcr’’) and (xcr’, zcr’) the corresponding coordinates in the coordinate system of the actual and 
of the virtual projector, respectively. We obtain the slide coordinate xr’ by converting (xcr’’, zcr’’) to 
(xcr’, zcr’), i.e. by rotating (xcr’’, zcr’’) by the convergence angle, and by projecting the obtained 
point (xcr’, zcr’) on the retinal plane of the imaginary projector. Mathematically, this is expressed as 
follows: 
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Alternatively, we obtain the virtual slide coordinate xr’ by transforming the slide plane position 
(xr’’, -f) into coordinates of the imaginary projector, and by again projecting the resulting point on 
its retinal plane. This step yields a different, but of course equivalent expression for xr’, which has 
the advantage of involving slide coordinates only: 
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Figure 51: Effect of rotating the projector on the projection error (for a representative triangulation 
system as used in this work). 
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Equation 87 allows computing the non-convergent projection error ∆xr’ of the imaginary projector 
at (b, zp) that is equivalent to the error ∆xr’’ in the rotated slide plane: 
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The term (xr’’ + ∆x) in the right denominator cannot be approximated by xr’’, which makes equa-
tion 88 rather complex. Nevertheless the equation allows a scene-independent analysis of the effect 
of rotating the right camera, respectively the projector on the measurement uncertainty. Figure 51 
shows the normalized localization, respectively projection error, defined as the ratio ∆xr’/∆xr’’, for 
a set-up as used in this work and for several distinct convergence angles. It can be seen that from a 
convergence angle of 20° degrees on the effective error is no longer even approximately uniform, 
but increases with the x-coordinate and reaches up to the 2.7 fold for a convergence angle of 40°. 
That is, a given projection error of the rotated projector is equivalent to up to the 2.7 fold error of a 
non-rotated projector. We conclude that in the case of a rotated projector the ranging error no 
longer depends on the z-coordinate only as with a standard geometry set-up, but on the x slide (and 
consequently x world) coordinate as well. 
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All in all, the effect of the rotation on the accuracy is mostly a negative one (the ratio ∆xr’/∆xr’’ 
mostly takes on a value > 1) that worsens with increasing x-slide coordinate; with a set-up as in 
figure 50, the measurement uncertainty is accordingly the largest on the left (considering a  
zc = const. plane in 3D or straight line in 2D space). Simple geometric considerations show that this 
effect is not particular to our specific set-up, but applies to most practically relevant combinations 
of projection slide size and focal length. The reason for it is the change in the effective lateral reso-
lution of the rotated projector relative to a non-rotated one.  

The above effect implies for example that increasing the baseline by moving the projector along the 
x-axis does not necessarily have the expected strictly linear positive effect on the ranging accuracy 
as suggested by equation 84; this is because increasing the basis will typically require a stronger 
rotation of the projector to obtain a suitable working space, which has the above-mentioned mostly 
negative impact on the accuracy. 

As equation 88 allows reducing the case of a rotated projector to a set-up with a convergence angle 
of zero, the remaining case is the one of a non-convergent set-up with the projector located at  
(b, zp), where zp ≤ z (the case zp > z is of virtually no practical interest due to occlusion effects). 
With such a set-up, we obtain the following two formulas for the relationship between image, re-
spectively slide and camera coordinates: 
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Equation 89 is the equivalent of the standard-geometry equation 47. By resolving it for the un-
known z, we obtain 
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Equation 90 is the equivalent of equation 48 for a standard geometry set-up. From it, the formula 
for the range error due to ∆xl and ∆xr’ (respectively, via equation 87 the error due to the actual pro-
jection error ∆xr’’ of the rotated and translated projector) is derived as:  
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While equation 91 allows numerically computing the range error δz(xl, xr, b, zp, f, ∆xl, ∆xr’’, θ) 
from a given localization and projection error, it is no particular help in understanding the relation-
ship between the separate parameters and the accuracy as it is quite difficult to interpret. For this 
reason, the next section introduces several approximations that help to develop a better understand-
ing of this relationship. 
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5.2.4 Simple Estimates for the Measurement Error of a Structured Light System 
To obtain a simpler model of a SL system, this section introduces the approximation that the pro-
jection error is negligible (∆xr ≈ 0). Its application is in the following marked by **. In our experi-
ence, this assumption is more or less justified with most projection devices conventionally used for 
area-scan SL (as opposed to point- or line-scan SL systems that mechanically sweep a ray or plane 
of light over the scene). It applies for instance to today’s multimedia projectors that are manufac-
tured with very high precision despite being consumer products. It typically holds with specially 
designed filters that occasionally serve as SL projection slides and in particular with custom-made 
LCD projectors as used with high-end SL systems. 

Quantitatively, the assumption ∆xr ≈ 0 simplifies the expression for the error δx in the x-coordinate 
given a standard geometry set-up to: 
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Next, it implies we may neglect the loss of lateral resolution that is caused by rotating the projector. 
For a projector located at (b, zp), the expression for the depth error δz’’ then simplifies to: 
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where the symbol δz represents the depth error that would result with a corresponding normal ge-
ometry set-up.  

A geometrical interpretation of the consequence of negligible projection error, respectively an ana-
lytical interpretation of equation 93 leads to the following result: As a far as the projector is con-
cerned, the slope of the ray of projection illuminating the considered scene patch is the sole factor 
that determines the measurement inaccuracy; this is because it controls the angle under which line 
(or rather cone) of view and ray of projection intersect. With increasing ratio zp/b, respectively the 
flatter the slope of the ray is, the smaller is the resulting range error (all other things being equal). 
This relationship becomes very apparent in figure 52, which shows the error in the depth coordinate 
resulting from a given localization error for a given scene point and several distinct values of zp, 
respectively of the ratio zp/b. 

The latter point of view leads to another, even simpler approximate expression for the ranging error 
of a SL set-up that does not adhere to the standard geometry: let’s consider a scene patch whose 
illuminating ray of projection subtends an angle α with the camera’s z-axis. Given the ray is known 
to pass through the projector’s optical center (b, zp), it follows that it intersects the camera’s xc-axis 
at the point (b + zp/ tan(90° - α), 0) = (b + zp tan(α), 0). So from a ray-of-projection and conse-
quently accuracy standpoint, the projector might as well be located at (b + zp tan(α), 0). 

On the basis that projector lenses are almost never wide-angle lenses, we approximate the scene-
point dependent angle α with the convergence angle θ to obtain an even more general expression. 
With other words, we hypothesize that a projector located at (b, zp) is more or less equivalent to 
one located at (b + zp tan(θ), 0). So we may rephrase that positioning the projector at a nonzero  
z-coordinate zp corresponds to increasing the basis b by an offset of zp tan(θ)/b, respectively by a 
factor of 1 + zp tan(θ)/b. 
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Figure 52: Influence of the ratio of the projector’s z-position zp to the base length b on the meas-
urement error for several distinct values of zp and consequently of the ratio zp/b. It can be clearly 
seen that – all other things remaining unchanged – the depth error shrinks with growing ratio zp/b. 
 

All in all, we obtain the following estimate of the range error δz’’ with a non-standard SL setup:  
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It contains only the depth of the considered scene patch as working-space related parameter. We 
have consequently derived an approximation that allows reducing the complex case of a non-
standard SL set-up to the straightforward case of a standard geometry SL set-up via a simple cor-
rection factor. 

5.2.5 Stochastic Analysis of the Measurement Error 
The previous sections establish the relationship between a certain localization, respectively projec-
tion error and the measurement error for any given set-up. Their results allow a straightforward 
derivation of the probability density function fδz of the depth error from the density of the two er-
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rors because the depth error is a monotonous function of the difference of the two (for a constant 
depth). As commonly accepted throughout the literature on stereo vision (e.g. [Blostein and Huang 
1987], [Rodriguez and Aggarwal 1990] and [Chang et al. 1994]), we assume the localization error 
is approximately uniformly distributed over an interval [-dx/2, dx/2]. As suggested by the symbol, 
a typical choice for dx is the size of a pixel, respective sensor element; or, with sub-pixel arithme-
tic, a corresponding fraction thereof, sometimes called the effective pixel size. From the distribution 
hypothesis, the probability density function of the localization error follows immediately as f(x) = 
1/dx for this interval, zero otherwise. The expected value of the localization error is consequently 
zero, its variance dx2/12.  

For the reason mentioned above, we focus on the case of a structured light system. So we may ex-
ploit the assumption of a negligible projection error introduced in the previous section. Then the 
combined localization and projection error ∆x simplifies to the localization error ∆xr, i.e. ∆x = ∆xr. 
So given a ground truth of z = z0, we obtain for the smallest, respectively largest possible error in 
the z-coordinate, δzmin and δzmax, according to the above distribution hypothesis: 
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With these two constants, the probability density function of the depth error for a given depth z 
follows as the stair function fδz: 
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The expected value of the depth error is consequently zero, and its variance, respectively standard 
deviation follows as 
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It is now straightforward to determine e.g. the absolute measurement error of a standard-geometry 
SL system as 
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The formula for the relative error follows analogously. 

With the approximation of the previous section, the formulas for a non-standard set-up differ only 
by a constant factor from the above results; we obtain e.g. for the probability density function 
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and the variance, respectively standard deviation of the depth error 
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In the following, we use equation 100 to estimate the standard deviation of the depth error of a 
coded light system given its set-up parameters. 
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5.2.6 Conclusions Regarding the Accuracy – Set-Up Relationship 
The results of the previous sections allow a number of general conclusions regarding the relation-
ship between ranging accuracy and set-up of a triangulation-based acquisition system: 

• With a typical close-range system set-up, i.e. one of a rather small convergence angle, the error 
in each separate coordinate is about proportional to the squared depth of the considered scene 
patch. 

• With a typical close-range system set-up, the relative error in each separate coordinate is ap-
proximately linearly proportional to the depth of the considered scene patch. 

• With a typical close-range system set-up, the error in the z-coordinate dominates the error in 
the x and in the y coordinate, given the sensor size is usually much smaller than the focal 
length and consequently the ratio xr/f, respectively yr/f tends to be much smaller than one. Ac-
cordingly, we may approximate the absolute error with the one in the z-coordinate. As the con-
vergence angle becomes large, this relationship is reversed: from a certain point on, the error in 
the x-coordinate dominates; however, this situation is much less important in practice as corre-
sponding set-ups are rather useless due to occlusion effects. 

• In all cases, the error in the depth measurement is proportional to the total localization error. 
Increasing the relative spatial resolution – by either using a camera of higher resolution or a 
larger focal length – consequently reduces the depth error roughly linearly. 

• The error in the separate coordinates decreases linearly with the length of the baseline; from a 
certain point and with certain components, the effect of the often necessary stronger rotation of 
the right camera/projector needs to be considered, which tends to offset the accuracy gain for 
large baselines to some extent. 

• Positioning the projector of a SL system closer to the scene and rotating it towards the camera 
to an convergence angle of θ has approximately the same effect as increasing the baseline by a 
factor of (1 + zp tan(θ)/b). 

• With a SL system, the ellipsoid within which the measured value lies within a certain fixed 
probability (for a given ground truth point in 3D space) tends to have a distinct direction, 
namely it is oriented along the ray/plane of projection illuminating the considered scene point. 
So with a typical close-range system set-up, this ellipsoid is oriented along the zc axis, and the 
error in the z-coordinate dominates; with increasing convergence angle this ellipsoid rotates, 
and from a certain large convergence angle on, the error in the x-coordinate becomes predomi-
nant over the one in the z-coordinate. Again, the latter case is rather irrelevant in practice. 

• The negligible projection error gives SL an edge over comparable stereo vision systems as with 
the latter both coordinates xl and xr are affected by non-negligible uncertainty. 

It is important to note that all the above conclusions hold only within certain reasonable limits: of 
course neither a system with infinite baseline nor a SL system with a convergence angle of 90° will 
produce error-free depth data. Moreover, it does not suffice to simply consider accuracy by itself, 
because doing so leaves aspects such as the working space or occlusion effects out of the equation: 
a choice of parameters that is optimal with respect to accuracy often leads to unacceptable occlu-
sion effects. The high-level relationship between these aspects is as follows:  

Working Space: The working space is defined as the intersection of the field of view of the cam-
era and the field of projection of the projector. The working space can theoretically be infinite. 
However, in practice it will always be finite as the ratio of scene irradiance of the projector to am-
bient illumination decreases with the square of the distance scene-projector. Consequently, the 
reflection of the projection pattern back into the camera quickly converges to a value within the 
image’s noise level. As a rule of thumb, the accuracy decrease with increasing volume of the work-
ing space, that is accuracy and volume of working space tend to be inversely related. 
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Occlusion: We define occlusion as the percentage of image pixels for which the corresponding 
scene patch has not been illuminated by the projected light and no range value could be obtained 
for this reason. Occlusion effects are completely scene dependent and cannot be assessed in the 
course of a generic analysis. With flat objects, there will be no occlusion effects; at the same time, 
given the necessary nonzero baseline of a triangulation-based range acquisition system, it is always 
possible to construct a scene that is totally occluded. Obviously occlusion effects increase along 
with convergence angle and baseline; the more divergent the two lines of view, the more likely and 
severe the missing data problem. With other words, accuracy and occlusion are inversely related. 

5.3 Experimental Evaluation of the Range Error 
In this section, we present the experimental evaluation of the accuracy of the prototype ranging 
system. To begin with, we experimentally determine the main factor that causes the measurement 
uncertainty of the system, namely the localization error (5.3.1).  

Next, we analyze the range error itself. As mentioned above, we break down the measurement error 
into the statistical and the systematic error. We quantify the former error by comparing many dif-
ferent range images of a given static scene, i.e. by repeating the same measurement several times 
and analyzing the scatter of the range measurements. This is discussed in section 5.3.2. 

Quantifying the total error that includes a systematic component as well is much more difficult. To 
this end, we need suitable reference or ground truth data; the uncertainty regarding this data should 
– as a rule of thump – be 5 to 10 times smaller than the measurement error of the system to be 
evaluated [Luhmann 2000]. So given that we expect the latter to be in the area of 0.2 mm for the 
specified working space, the reference data should be known to within ±0.02 mm. In most cases, 
there is no large and complex test body available whose shape is known up to such a small meas-
urement uncertainty. Accordingly, the literature almost universally takes on an alternative approach 
and uses less realistic simple bodies of elementary geometry, in most cases planar objects (e.g. 
[Vuylsteke and Oosterlinck 1990]), for accuracy evaluation. For practical reasons, we adopt this 
approach as well and use a simple planar object to obtain numeric accuracy results. This is the topic 
of the remaining subsections 5.3.3 and 5.3.4. 

5.3.1 Experimental Determination of the Localization Error 
To determine the localization error experimentally, we position a planar object approximately par-
allel to the projector’s retinal plane, i.e. in a way such that it has an about constant depth in the 
projector coordinate system. The projector illuminates the plane with the encoded pattern, which is 
effectively a pattern of equidistant stripe edges. Then the projected stripe edges are approximately 
equidistant on the target plane. Next, we acquire an image of the object. In general, the planar ob-
ject and the camera image plane subtend an angle θ, that is the camera coordinate depth changes 
over the image plane and the stripe edges are not equidistant in the image due to perspective distor-
tion. Nevertheless, the distance between imaged edges is locally about constant provided the z-
distance between camera and plane is large and the angle θ is not too large. This circumstance per-
mits a statistical analysis of the unknown random variable “localization error”. Figure 532 shows 
the results of two corresponding experiments, more precisely the relative frequency (unit-less from 
0 to 1) of certain edge distance values (specified in pixel units) as they occurred during each ex-
periment. The first sample consist of 11580 measured values, which have a mean distance of 3.38 
pixel und a sample standard deviation of 0.14 pixel. The second sample consists of 5124 distance 
values, which have a mean distance of 4.46 pixel and a sample standard deviation of 0.18 pixel. 

Without sub-pixel arithmetic, one would expect a standard deviation of ca. 0.29 pixel. So we con-
clude from the observed standard deviation values (which include several other samples not listed 
here) that the employed sub-pixel arithmetic leads to an effective pixel size of about half the physi-
cal pixel size. We use this result over the next sections to predict the accuracy of the prototype. 
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Figure 53: Relative frequency of imaged edge distance values for two large samples. 

 

We hypothesize that each sample mean represents the respective ground truth; there is no reason to 
suspect that the localization error as such (i.e. not the one for a given fixed pixel-scene combina-
tion, but the many samples of the localization error over the whole image) has a major systematic 
component. The distribution of the sample values does not contradict the hypothesis of a uniform 
density function of the error. At the same time, contrasting the predicted with the actual distribu-
tions shows that there are certain factors such as the fixed-point sub-pixel arithmetic or the fact that 
the camera is a single-chip color camera that cause the actual results to deviate notably from the 
simple theoretical model. In this context, it is important to note that a more complex model that 
would seemingly explain the observed data better would not significantly change the key results of 
this chapter that are in any case estimates only; it would only make them harder to obtain. 

5.3.2 The Precision or Repeat Accuracy 
We quantify the statistical error of a range acquisition system by acquiring several range images of 
a given static scene, i.e. by repeating the same measurement over and over, and analyzing the scat-
ter of the depth measurements. Conducting corresponding experiments with the prototype system 
yields an error of a standard deviation in the area of 0.01 mm to 0.04 mm (for several distinct 
scenes, levels of background illumination etc.). This small error is due to the fact that for a given 
set-up and static scene the localization error has a large systematic component when considering 
isolated and fixed pixel/scene patch combinations. In this case, only the imaging noise and other 
minor factors such as the ambient illumination represent a statistical component that causes the 
observed very small scatter in the z-coordinate. So the statistical error in the classical sense is not a 
very informative quantity with the proposed system and accordingly not discussed in more detail.  
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Figure 54: The standard deviation of the z-distance between measured coordinates of a planar ob-
ject to that of the plane with the minimal squared z-distance to the measured data (for several dis-
tinct set-ups and distances, where each sample consists of about 200 000 measured values). 

5.3.3 Measured Shape of a Planar Object 
For the experiments of this section, we acquire a depth map of a planar object that is approximately 
parallel to the camera’s image plane, i.e. one located at an about constant depth. Subsequently, we 
perform a least-square fit of the acquired surface data to a 3D space plane z = Ax + By + D by de-
termining the set of parameters (A, B, D) that minimizes the following sum over all n obtained 3D 
coordinates: 

 ( )∑
=

−++
n

i d

cicici

i

zDByAx
1

2

4444 34444 21
 (101) 

We then analyze the scatter of the z-distances di of the measured coordinates relative to the result-
ing plane (a spot check using orthogonal rather than z-distances yielded about the same results). 
The planar object used is the calibration target, i.e. a sheet of glass of size 600 mm by 400 mm with 
a glued-on checkerboard pattern of 5 by 9 black squares on a white background. The target is 
known to be planar to within ±0.05 mm. A fixed region of the image (corresponding to about  
200 000 points in 3D space) that is visible in all images over all distinct set-ups is used to deter- 
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Set-Up 1 Set-Up 2 Set-Up 3 Set-Up 4 

Mean 
[mm] 

RMS 
[mm] 

Pred. 
RMS 
[mm] 

Mean 
[mm] 

RMS 
[mm] 

Pred. 
RMS 
[mm] 

Mean 
[mm] 

RMS 
[mm] 

Pred. 
RMS 
[mm] 

Mean 
[mm] 

RMS 
[mm] 

Pred. 
RMS 
[mm] 

700 0.23 0.29 647 0.09 0.13 635 0.05 0.08 933 0.13 0.18 

715 0.22 0.30 778 0.12 0.18 710 0.07 0.10 960 0.14 0.19 

810 0.29 0.39 871 0.16 0.23 756 0.10 0.11 990 0.15 0.20 

949 0.46 0.53 936 0.20 0.27 824 0.12 0.13 1040 0.17 0.22 

981 0.51 0.57 984 0.23 0.29 890 0.14 0.15 1095 0.21 0.24 

1080 0.73 0.69 1043 0.28 0.33 1005 0.17 0.19 1133 0.24 0.26 

1194 0.87 0.84 1079 0.32 0.35 1066 0.18 0.22    

Table 11: Actual and predicted statistical parameters of the zc-distribution in a depth map of a pla-
nar object for various distances and geometric set-ups (relative to a least-square fit 3D space plane). 
 

mine the plane equation; no point within this region is excluded from the plane fit to verify the 
claim that the proposed approach avoids false matches, that is misidentifications of light planes. 

We repeat this experiment for a number of different distances between plane and acquisition sys-
tem and with four distinct set-ups, where calibration and choice of optical settings is done only 
once for each set-up: 

• Set-Up 1: With the first set-up, the projector is located at the camera coordinates xp ≈ 160 mm,  
zp ≈ 0 mm, i.e. the separation of camera and projector is about 160 mm. The convergence angle 
is roughly 10°. 

• Set-Up 2: With the second set-up, projector is located at the camera coordinates xp ≈ 310 mm,  
zp ≈ 0 mm, i.e. the separation of camera and projector is about 310 mm. The angle between the 
optical axes of camera and projector is roughly 20°. This set-up corresponds roughly to the one 
used for the recording of the face database. 

• Set-Up 3: With the third set-up, projector is located at the camera coordinates xp ≈ 490 mm,  
zp ≈ 0 mm, i.e. the separation of camera and projector is about 490 mm. The angle between the 
optical axes of camera and projector is roughly 30°. 

• Set-Up 4: With the fourth set-up, the projector is located at the camera coordinates xp ≈ 310 
mm, zp ≈ 270 mm, i.e. the separation of camera and set-up is 310 mm. The angle between the 
optical axes of camera and projector is roughly 30°. 

Figure 54 and table 11 show the sample standard deviation (or Root-Mean-Squared (RMS) dis-
tance) of the z-distance values of the measured coordinates to the fitted plane. The presented ex-
perimental results lead to the conclusion that the depth accuracy is all in all rather high, typically in 
the area of a standard deviation of 0.1 to 0.4 mm. According to section 5.2, the error in the x- and 
y- is much smaller than the one in the z-coordinate, with our set-up only about 1/3 of it and less; 
with other words, it can be expected to be below 0.1 mm standard deviation. So we conclude (in 
this case only theoretically) that the prototype’s overall measurement accuracy over all three coor-
dinates is rather high.  

The experimental results also imply that the calibration accuracy is at least fairly high; otherwise it 
would not be possible to fit planes to the range data with such a low root-mean-square error as 
listed in table 11 (over the whole large working space and with a system calibration that remains 
unchanged over all plane fits of a given set-up). 
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 Mean Sample Standard Dev. Min Max 

Set-Up 1, z = 810 mm -0.02 mm +0.34 mm -1.58 mm +1.36 mm 

Set-Up 2, z = 871 mm -0.01 mm +0.17 mm -0.84 mm +0.77 mm 

Set-Up 2, z = 935 mm -0.02 mm +0.23 mm -1.32 mm +2.30 mm 

Table 12: Statistical parameters of the zw-distribution in a depth map of the zw = 0 plane for a few 
representative set-ups. 
 

Table 11 also lists the predicted standard deviation according to equation 100. In all cases, the error 
predicted by our model is close to, but consistently better than the actual one; this gap is barely 
noticeable with large z-distances. 

We interpret the latter result as follows: First of all, the model estimates the depth error reasonably 
well. In particular, the approximate formula for the accuracy of a convergent set-up with zp ≠ 0 
seems to be quite useful: e.g. the trendlines for set-up 3 and 4 are more or less identical, as pre-
dicted by the formula. Next, the data processing employs several low-pass filter operations (e.g. 
convolution with a 3 by 3 Gaussian filter) that happen to have a positive effect on the accuracy with 
a planar test target. Things would be different with an object of high-frequency geometry, or, with 
other words, the use of a planar test target overstates the accuracy of the prototype somewhat. Fi-
nally, the model’s main limitations – mostly due to the intention to make it scene-independent – are 
that it neither takes defocusing nor the scene texture into account. The amount of the former is sig-
nificant with the fixed-large-aperture projector used for the experiments and explains why the dis-
tance between predicted and actual error shrinks significantly with large, i.e. out-of-focus distances. 
The effect of the texture is completely scene dependent, yet not too problematic with the calibration 
target used for the above experiments. While its high-contrast black-and-white edges occasionally 
shift the position of a detected color edge quite a bit (leading to a large minimal and maximal er-
ror), there are simply not enough squares to have a noticeable effect on the standard deviation. 

5.3.4 Reconstruction of the Calibration Target 
The previous section evaluated the prototype’s relative accuracy; in this section we use the calibra-
tion target for testing the absolute accuracy of the system. It is the natural choice for this task given 
that it defines the XYw plane of the world coordinate system and its (world coordinate) depth map 
should for that reason map all pixels to 0.  

The experiments of this section use the same images as acquired for the experiments of the previ-
ous section to permit comparing the respective results. For each image, an external calibration is 
performed; afterwards the calibration target defines the world-coordinate system XYw or zw = 0 
plane. This circumstance permits directly analyzing the scatter of the measured z world coordi-
nates. The difference to the experiment of the previous sections is that the measured values are not 
transformed in any way; in particular no plane fit is performed. Figure 40 shows an exemplary 
resulting range image. Table 12 gives the corresponding statistical parameters; given the results are 
consistent with those of table 11, it lists only a few representative examples. 

We conclude from table 12: The sample mean is about zero as it should be; the slightly nonzero 
sample mean is unproblematic because the calibration target is known to be not exactly planar. In 
each case, the sample standard deviation is somewhat larger than the one shown in table 11. This 
might be due to the fact that for table 12 the whole image, that is the complete calibration target, 
was used as compared to only half of it for table 11, i.e. to the known slight systematic deviation of 
the test plane from planarity. In any case, the difference is in the area of 0.01 to 0.05 mm and con-
sequently rather negligible. The reason for the comparatively large minimal and maximal error of 
table 12 is given in the previous section. 



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 130

 

 
Figure 55: Test sequence talking head. The mapping of depth to gray level values is done as in 
figure 43, the only difference being that the coordinate system of the camera is used. 
 

 

 
Figure 56: Test sequence rotating fan. The mapping of depth to gray level values is done as in fig-
ure 55. 
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Sequence Head Fan Gesture 

Number of images 10 10 10 

Frames per second on 
2.4 Ghz PC 12.3 14.5 16.0 

Frames per second on 
3.2 Ghz PC 18.3 21.3 23.7 

Avg. nr of range values 192 000 142 000 83 000 

Table 13: Frame-rate (in frames-per-second) of the prototype system for several exemplary scenes. 

5.4 Experimental Evaluation of the Frame Rate 
This section discusses the frame rate of the 3D acquisition system. Even with a fixed choice of 
system components, this rate is not a fixed number, but depends to some extent on several addi-
tional factors, the primary one being the size of the scene in the camera image. Table 13 describes 
the frame rate achieved with the color coded light step (without the optional scene color compensa-
tion step) for a set of representative, pre-recorded image sequences on an off-the-shelf low-cost 2.4 
and 3.2 Ghz PC. Figures 55 and 56 show exemplary color and range images from these two se-
quences. According to table 13, the color coded light step misses the targeted 25 fps only by a nar-
row margin if the scene is rather small as in the case of the gesture sequence; if the scene fills most 
of the image, as e.g. with the talking head sequence, it still achieves about 18 fps (unless stated 
otherwise, all values refer to the results with the 3.2 Ghz PC). 

These exemplary results are consistent with our experience that the current prototype system deliv-
ers between 17 and 25 frames of dimension 780 by 580 per second, with 20 fps being a representa-
tive, 17 fps being the practical worst-case frame rate. The implementation is currently not consis-
tently optimized for speed; there is certainly significant room for improvement.  

If the optional scene color compensation is used, the frame rate of the prototype drops considera-
bly, namely to a value between 3.5 and 4 fps. This decrease is almost exclusively due to the fact 
that the software has to wait about 100 ms for the LCD projector to switch between the two distinct 
projection patterns. This problem could be solved easily by employing a more advanced synchroni-
zation mechanism. 

The implementation of the complex stereo algorithm has currently known efficiency limitations 
which could not be remedied in the course of this work due to lack of time; as a consequence, the 
full system, i.e. the one including the stereo step, currently achieves a frame rate of about 1-2 fps 
only. 

Empirically, the frame rate scales fairly linearly with the clock rate of the processor, as can be seen 
to some extent from table 13. We conclude that building a real-time system in the sense of section 
4.1 based on the proposed approach is possible and could be realized with some more effort already 
today, respectively by simply waiting for the next generation of processors in the near term. Of 
course, simply reducing the frame size would immediately turn the current prototype into a real-
time system. A corresponding experiment shows that the system consistently reaches a frame rate 
of over 30 fps if the image resolution is cropped to 640 by 400 pixels. 
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5.5 Experimental Qualitative Evaluation: Exemplary Scenes 
This section presents several exemplary range images acquired with the prototype of the proposed 
ranging technique. The purpose is to give a qualitative impression; no numeric evaluation is at-
tempted. 

• Figures 57 displays the rectangle-based 3D mesh of a human face with the matching pattern 
image to the right of it. The data was acquired with the coded light module plus the optional 
color compensation step. 

• Figures 58 and 59 show several point clouds of human faces as used for the 3D face recogni-
tion application described in chapter six. In each case, the underlying range image was ac-
quired with the coded light module plus the color compensation step. Each view is generated 
by rotating the point cloud corresponding to a single frontal range image of the person. 

• Figures 60 shows the rotated point cloud of a human hand acquired with the coded light step 
without the color compensation module in an outdoor environment on a sunny day. It demon-
strates that the prototype is capable of operating in real-world environments, including uncon-
trolled outdoor scenes. 

• Figure 61 shows the rotated point cloud of a human face acquired with the coded light module 
without the color compensation module. It shows the scene reflectivity as reconstructed from 
the pattern image with the approach of section 4.5.3. 

• Figure 62 shows a complete 3D surface model of a dwarf. The 360° model was put together 
from several separate range images acquired with the coded light module plus the color com-
pensation module. As the points of view were known for each image, the 3D model could be 
created by simply transforming the separate point clouds into a common coordinate system and 
computing a triangle mesh from the resulting point cloud. The latter step was carried out by 
Dehning [2004].  

• Figure 63 shows a (nearly) complete 3D surface model of an ear-impression as used for manu-
facturing custom-made hearing aids. The scan is made with a low-cost system based on the 
proposed ranging technique. It employs a consumer camera for image acquisition and a LED 
and a single interference slide to generate the encoded pattern. The system is described in 
[Forster et al. 2003b]. The 360° model was put together from several separate range images ac-
quired with the coded light module without the color compensation module. The combination 
of the several views to a single model was done by Pagoda Systems [2004]. 

• Figure 64 shows the image of a car wheel illuminated by the coded light projection pattern. 
Figure 65 displays the depth map resulting from this pattern image by evaluating it with the 
coded light algorithm without the color compensation module. Both images are acquired in a 
factory environment. They represent an example of a real-world application of the technique 
proposed in this work, the so-called task of wheel alignment [Forster et al. 2003c]. Its purpose 
is the adjustment of the angles of the wheels of a car, most importantly toe and camber, so that 
the wheels and the surface of the road, respectively the vehicle’s axis of symmetry, form cer-
tain angles determined at the undercarriage design stage. The objective of these adjustments is 
maximum tire life and a car that tracks straight and true with a centered steering wheel, respec-
tively one that travels only where it is steered. 
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Figure 57: Rectangular mesh as computed from the image of a face illuminated by the proposed 
encoded pattern. 
 

     
Figure 58: Several views of a 3D point cloud that represents a human face; the cloud and all views 
are generated from the same frontal range image. 
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Figure 59: Several point clouds of human faces corresponding to frontal range images. The top four 
views are all generated from the same range image. 
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Figure 60: Several point clouds of a human hand corresponding to a range images acquired in an 
outdoor scenario on a sunny day. The three views are all generated from the same range image. 
 

    
Figure 61: Pattern image of a human head (left); rotated point cloud generated from this pattern 
image (right). The texture of the point cloud is reconstructed from the pattern image with the ap-
proach of section 4.5.3. 
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Figure 62: Three distinct views of a complete 3D model of a dwarf obtained by combining several 
range maps acquired with the prototype (left: 3D model with superimposed texture, middle: trian-
gle mesh, right: shaded, texture-less 3D model). 
 



Lehrstuhl für Mensch-Maschine-Kommunikation der Technischen Universität München 

Frank Forster – Real-Time Range Imaging for Human-Machine Interfaces 137

 

 
Figure 63: Two views of a 360° scan of an ear impression. 
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Figure 64: Image of a car wheel illuminated by the projection pattern. 

 

 
Figure 65: The depth map resulting from figure 64. The range data is visualized by mapping the 
depth value of a given image point, measured in 100th of millimeter, to the gray value range of 0 to 
255: g = (zc · 100.0) mod 256. One gray level period then corresponds to 2.56 mm. 
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6 Face Recognition: An Exemplary Application 
This chapter describes the exemplary application of the proposed ranging technique to the task of 
3D face recognition, more precisely face verification. The focus of this chapter is on describing 
experiments that validate the idea of using range data for human-machine interfaces; no technical 
details on the face recognition algorithm are presented, given the underlying algorithm is consid-
ered state-of-the-art and its development was in any case not part of this work, but carried out by 
Tsalakanidou et al. [2004]. Thorough knowledge of biometry- and face recognition-related terms 
and concepts is assumed. 

We first motivate – on a high level – why it might be favorable to use 3D data instead (or rather, in 
addition to) color or gray level images of a human face (6.1). We then sketch the technique em-
ployed for face verification (6.2). Section 6.3 describes a 3D database acquired for the evaluation 
of the algorithms, followed by the results of the evaluation (6.4). 

6.1 Motivation for 3D Face Recognition 
Why use range data for face recognition? From a high-level point of view, the following general 
arguments are well-established throughout the literature on face recognition: 

• A recognition system based on range data cannot be deceived by photographs; an impostor 
needs to get hold of and reproduce the facial geometry associated with the claimed identity. 

• Range data simplifies the task of face detection and localization. 

• Range data is not affected by ambient illumination. 

• Range data is not affected by the pose of the user (but for occlusion effects). 

• Range data is not scaled by the unknown distance user-camera (but for a change of lateral reso-
lution and accuracy of the data, depending on the ranging technique and set-up used). 

• Range data gives access to 3D space-metric information not or not explicitly present in inten-
sity images such as distance, area, volume or curvature data. Clearly this information is very 
useful for face recognition as the human face has a very pronounced and characteristic geome-
try, e.g. the nose or the cavities of the eyes exhibit a very characteristic curvature. The classic 
intensity-based approaches are at most able to exploit image or relative distances, respectively 
need to rescale a face image such that e.g. the eyes have a certain norm pixel distance. 

The above advantages are not minor, but crucial ones; e.g. Zhao et al. [2003] conclude in their re-
cent literature survey on face recognition that illumination and pose represent “two key problems 
for any face recognition system”. 
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Figure 66: Topology of an embedded HMM for modeling the human face. 

6.2 The Method Used for Face Recognition 
Hidden Markov Models (HMMs, see e.g. [Rabiner [1989] or [Rabiner and Huang 1993]) represent 
a popular statistical machine learning/ pattern recognition technique. They are traditionally used to 
model and recognize time-sequential or, more generally, one-dimensional data such as speech. For 
two-dimensional data such as images, so-called pseudo-2D, planar or Embedded HMMs (EHHM) 
have been proposed [Kuo and Agazzi 1994]. EHHMs are a generalization of HMMs where each 
state of a standard HMM, then called super-state, is itself a HMM. As transitions between embed-
ded states belonging to different super-states are forbidden for computational complexity reasons, 
EHMMs do not have a truly two-dimensional structure, which explains the attribute pseudo-2D. 

Samaria [1994] and subsequently [Nefian 1999] proposed employing (E)HMMs for face recogni-
tion, motivated by the stable sequential structure of human faces: for frontal views, the significant 
facial features – hair, forehead, eyes, nose, mouth and chin – appear in a natural order from top to 
the bottom. Accordingly, most EHHM-based face recognition systems choose the super-states to 
correspond to these six regions, i.e. to model the face along the vertical axis, and the embedded 
states to model it along the respective horizontal axes. Transitions between super-states are only 
permitted in a top-down manner, between embedded states only from left to right; skipping a state 
is illegal with most implementations. Figure 66 shows an example of a corresponding type of 
EHMM for modeling the human face. 

To enroll a person into a face recognition system, a new EHMM is trained with one or several im-
ages of this person. The training follows the same steps as with standard HMMs, described e.g. in 
[Rabiner 1989], only that the Viterbi, the segmental k-means, the forward-backward and the Baum-
Welch re-estimation algorithm are replaced by respective extended versions able to deal with em-
bedded HMMs. Nefian [1999] describes the latter in detail. The observation sequence is generated 
from an image by scanning a sampling window with a certain, typically large overlap over it (from 
left to right and from top to bottom). From each extracted two-dimensional block a one-
dimensional observation vector is formed, by appending either its pixel values [Samaria 1994] or 
some coefficients resulting from a suitable transformation of the block. Popular examples for the 
latter case are Karhunen-Loeve [Nefian 1999] or Discrete-Cosine-Transformation (DCT) coeffi-
cients [Nefian 1999]. Given the trained EHHMs, verification is straightforward: it amounts to com-
puting the probability that the EHHM associated with the claimed identity leads to the presented 
face image, or rather to the observation sequence extracted from it. To calculate this likelihood, in 
most cases the embedded extension of the well-known Viterbi algorithm is used. 
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Today the use of EHHM for face recognition is part of the state of the art; this is e.g. reflected by 
the fact that the popular Intel Computer Vision library [Intel 2001] includes corresponding func-
tionality. We consequently limit our description to the most relevant aspects of the evaluated im-
plementation. 

Without doubt, its single most important aspect is that it is able to exploit range data. This proves to 
be helpful for the tasks of face detection and segmentation already; in fact, due to working space 
limitations of the acquisition system, typically only head and torso appear in the recorded range 
images. So the only non-trivial segmentation task is the one of separating the two. The described 
implementation solves it by separating the range image into two 3D space clusters and choosing the 
upper one to be the head (or, more formally, by taking advantage of a-priori knowledge of the body 
geometry). Given the segmented head, the algorithm locates the horizontally oriented axis of bilat-
eral symmetry between the eyes. To that end, it introduces a measure of symmetry for two image 
points by comparing their respective intensity gradients, i.e. a measure that does not consider the 
range data. It then computes for each plausible axis a total symmetry measure by summing up the 
individual symmetry measure over all points pairs 

• that lie on a certain straight line orthogonal to the candidate axis 

• where both pixels have a certain fixed distance to the candidate axis 

The axis that receives the highest total symmetry measure is taken to be the sought-after one. Next, 
the algorithm detects the corresponding vertical axis in an analogous way. It determines the center 
of the face as the intersection of these two axes. In a subsequent step, it centers a window of con-
stant aspect ration at this point and scales the window’s content according to the point’s depth. 

This scaled face window with the face centered at a certain fixed position is then supplied to the 
actual face recognition engine, which is implemented as follows: it is based on an EHHM struc-
tured into the six super-states listed above and 3, 7, 7, 7, 7 and 3 embedded states, respectively. As 
with most continuous HMMs, the observation probability density function of each state is ap-
proximated by a mixture of (in this case four) distinct Gaussian distributions; the covariance matri-
ces are chosen to be diagonal. To extract an observation sequence from a given RGB face window, 
the algorithm rescales it to a resolution of 128 by 128 pixels and transforms it into the YCrCb 
color-space; the motivation for choosing this color space is that it yielded the best results in a num-
ber of experiments. It then scans a sampling window of 12 by 12 pixels with an overlap of 10 by 10 
pixels over the YCrCb image. To transform a block into an observation vector, the algorithm ap-
plies the 2D DCT transformation to each block, where each color component is treated separately. 
For each block and component, only the 3 by 3 low-frequency DCT coefficients excluding the DC-
component, i.e. a total of eight coefficients, are kept. The observation vector of length 24 resulting 
from a 12 by 12 YCrCB block is formed by appending the DCT coefficients of the three color com-
ponents. The depth map is processed analogously by simply treating it as a grayscale image.  

For each enrolled person, two EHHMs are trained, one with the color and one with the depth data. 
To estimate the probability that a given image belongs to a certain identity, the likelihood (or an 
equivalent score) is computed that the observed color sequence occurs with the color EHHM 
trained for this identity. The same is done for the corresponding depth EHHM and the depth obser-
vation sequence. The two individual scores are then combined to a single one via the formula 

 ( ) ( )1log1log 1010 +⋅++⋅= depthdepthcolcoltot ScorewScorewScore  (102) 

where wcol and wdepth are the relative weights of the color and depth scores. The choice of the fusion 
technique as well as of the relative weights is motivated experimentally. The total score is the out-
put of the face recognition engine. 

As mentioned before, a more detailed description of the algorithm can be found in [Tsalakanidou et 
al. 2004]. 
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Figure 67: Exemplary images from the database showing images of the type frontal, expression, 
rotation, glasses and illumination, in that order, for the same person. 

6.3 The Face Database 
To evaluate both the 3D face recognition and the proposed range acquisition technique, a database 
was recorded in the course of this work. The specification criteria for this database orient to inter-
national guidelines such as the ones issued by the Biometrics Working Group ([BWG 2000, 2002]). 
The evaluation database contains 2,711 recordings of 20 individuals. A recording consists of a 
color image (571 x 752 pixels) and the corresponding depth map (571 x 752 pixels). The images 
were captured by the acquisition system of this work in an indoor office scenario; as the stereo step 
(section 4.4) was not yet functional at the beginning of the recording and, much more importantly, 
the coded light step suffices to acquire high-quality range images of human faces, the database was 
acquired with a single-camera, coded light-only system. 

The database contains two recording sessions per person, where the time span between the sessions 
was several weeks. The illumination conditions were somewhat different during each session due 
to daylight influences (via the office windows). Each session comprises the same 20 male individu-
als. Their age varied from 28 to 60. On average, 135 images per person were acquired. For each 
person, the database contains the following types of images: 

• Frontal Images: The database contains several “ideal” images taken under a pose angle of 0°, 
i.e. with an expressionless user looking directly in the camera, under standard illumination and 
without glasses. 

• Pose: The database contains at least two images with pose angles of +20° and -20°. The other 
recording settings are equal to the ones for frontal images. 

• Expressions: The database contains at least three so-called expression-images, where the user 
grins (with a closed mouth), laughs (with an opened mouth) or closes his eyes, respectively. 
The other recording settings are equal to the ones for frontal images. 

• Illumination: The database contains several images with significantly changed background 
illumination. To that end, common head-lamps were fixed on the left and right of the person. 
The other recording settings are equal to the ones for frontal images. 

• Eyeglasses: The database contains several frontal images of each person wearing glasses. 

• Enrolment: The database contains several frontal images with and without light expressions 
for the purpose of enrollment. 

Figure 67 shows an example for each image type (but for the enrolment type) for the same individ-
ual. Table 14 lists the number of images per session and type contained in the database. 
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Type Session 1 Session 2 Total 

Frontal 94 132 226 

Pose 228 246 474 

Expression 252 368 620 

Illumination 359 387 746 

Glasses 95 134 229 

Enrolment 204 212 416 

All 1,232 1,479 2,711 

Table 14: Number of images per session and type contained in the recorded database. 
 

Clearly the database has certain deficiencies for the purpose of a full-fletched evaluation of a bio-
metric system: it contains too few individuals, too few and too closely timed sessions and the popu-
lation of exclusively Caucasian male adults is not diverse at all. However, these shortcomings are 
acceptable because the purpose of the database is not the evaluation of the performance of the face 
recognition system compared to the state of the art. Such a technology evaluation would require 
testing competing algorithms on the database as well, which is by far beyond the scope of this 
work. Rather, its purpose is exclusively the evaluation of the effect of using range data in addition 
to color data for an exemplary human-machine interface.  

6.4 Evaluation Results 
This section describes the evaluation of the face recognition system of section 6.2 with the database 
of the previous section. During the evaluation, different algorithm variation - image type combina-
tions are assessed, namely the algorithmic variations color only, grayscale only, depth only, color 
plus depth and grayscale plus depth with the respective image types frontal, pose, expression, illu-
mination and eyeglass images. The motivation for considering distinct algorithmic approaches is as 
follows: the ones using color or grayscale only are taken to represent the baseline of this evaluation 
since they correspond to standard face recognition systems. Comparing the performance of the 
approaches based on depth, color plus depth or grayscale plus depth to this baseline should provide 
an indication in as far depth images improve the performance of face recognition systems. Respec-
tively, contrasting the results for different types of images gives certain hints as to the strength and 
weaknesses of the various algorithmic approaches. 

The most important aspect of a biometric system – and the only one evaluated in this section – is its 
error rate. There are two different errors a verification system can make: it can falsely accept an 
impostor or falsely reject an enrolled person, a so-called original. The respective error rates are 
called False Acceptance Rate (FAR) and False Rejection Rate (FRR). These two rates are not a 
fixed property of a biometric system, but depend on its parameterization. 

Why this is the case becomes obvious when considering that a face recognition algorithm as de-
scribed in section 6.2 outputs a score in response to an image together with a claimed identity. The 
verification system needs to make its accept- or reject decision on the basis of this score, which it 
typically does by applying a threshold to the score. 

With most biometric systems, this threshold is not global, but person-dependent. Considering a 
single original, we obtain for each choice of its threshold a certain FAR and FRR. So for each 
original i out of the n enrolled ones the two functions FARi(FRR) and FRRi(FAR) that specify the 
FAR for a certain FRR and vice versa are well defined (ignoring minor problems due to the dis-
crete nature of all these quantities, which can e.g. be solved by interpolation). 
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Figure 68: Characteristic curve of the face recognition system for several distinct variations of the 
EHHM-algorithm over all images (double logarithmic scale). Image taken from [Hiscore 2003]. 
 

The overall FAR for a given FRR is then calculated by computing the average individual FAR for 
this FRR over all n persons in the database: 

 ( ) ∑
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)(1  (103) 

The corresponding overall FRR for a given FAR value is calculated analogously by computing the 
average individual FRR for this FAR over all n enrolled persons: 
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The now well-defined relationship between its (global) FAR and the (global) FRR permits deter-
mining the Receiver Operating Characteristic (ROC) curve of a biometric system by plotting the 
FRR for all FAR values between 0.0 and 100 %, i.e. the FRR as function of the FAR. 

Figure 68 shows the result of the evaluation in form of such ROC curves; more precisely, it dis-
plays the ROC curves for several distinct variations of the EHHM-algorithm over all images in the 
database. Two left- and bottommost curves represent the approaches combining range with color, 
respectively grayscale data, while the three right- and topmost ones are the ROC curves of the 
color-, gray level- and depth-only variations. 
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Variation Frontal Pose Expression Illumination Glasses All 

Color Data Only 19 24 26 62 25 35 

Gray Level Data Only 20 27 30 39 27 31 

Depth Data Only 35 45 40 36 37 39 

Combination of Color 
and Depth Data 2 4 3 8 6 6 

Combination of Gray 
Level and Depth Data 2 8 4 6 7 6 

Table 15: The equal-error rates of the face recognition system for several variations of the algo-
rithm. All values are specified in %-units. 
 

It is often preferable to represent the system quality more concisely via a single value. A widely-
used corresponding indicator is the Equal Error Rate (EER). It is determined as follows: for each 
individual i there is a threshold setting that results in the FRR being equal to the FAR; the corre-
sponding person-dependent value of the FAR (or FRR) is denominated as EERi. The overall EER 
is then computed as the average equal error rate over all n originals:  
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Table 15 shows the equal error rate for all variations of the EHMM algorithm over all images as 
well as for certain image types. The evaluation results as represented by figure 68 and table 15 lead 
to the following conclusions: 

• The overall performance of the combined approach is fair, the one of the color, gray level and 
depth only approaches not convincing. 

• Color and grayscale data alone result in an about equal performance, where color is slightly 
better in most cases, but considerably worse in the case of the illumination images. 

• Range data alone results in the worst overall performance, but one that is at least not affected 
by strong illumination changes. 

• As could be expected, every algorithm variation gives the best results with frontal and the 
worst with glasses and illumination-type images. 

• For every image type, the combination of 2D and depth information improves the equal error 
rate of the 2D-only approaches (color, grayscale or depth) drastically. This is the key result of 
the evaluation. A relevant aspect here is that the color, gray level or depth only approaches 
have to use alternative strategies for certain tasks, e.g. the approaches operating without access 
to range data cannot rely on it for segmentation or scaling. However, the key difference be-
tween the latter and the combined approaches is the score fusion. This can be seen by e.g. con-
sidering the case of the ideal frontal color images, in whose case a color- or intensity-based 
segmentation is straightforward due to the dark background and no significant scale changes 
are present. 

A more detailed description of the evaluation result can be found in [HISCORE 2003]. The overall 
conclusions on the above results are given in the next chapter. 
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7 Conclusions 
The final chapter lists the inferences reached in the course of the work (7.1). It then discusses how 
future work could extend on the presented results (7.2). It concludes with stating the contributions 
of new knowledge made by this thesis (7.3).  

7.1 Conclusions 
This works solves the problem of range image acquisition as defined in section 4.1. Respectively, 
given the proposed technique is able to obtain the 2D intensity/color data of a scene along with the 
range data, it solves the problem of simultaneously acquiring range and color images of a scene.  

To this end, a new ranging approach has been developed in section four. Its centerpiece is a color 
coded light approach based on a single static projection pattern. As shown in chapters four and five, 
this approach overcomes certain key problem commonly associated with this technique. For in-
stance, it copes well with strongly colored and textured scenes. The principal mechanisms that al-
low achieving this are the use of local color edge patterns for error-detecting encoding, a corre-
sponding projection pattern design guided by image processing requirements and a specialized 
approach to data processing. The latter exploits the pattern’s error detection capabilities to detect 
only projected color edges and is moreover able to correct certain errors. These ideas work quite 
well in practice, as does the one of adopting a pseudo-random approach to generate the necessary 
color edge patterns. As a result, the coded light step is well suited to obtain range images of most 
scenes, including the primarily targeted ones, namely human faces and hands. This inference is 
underscored by the many examples presented throughout this work and the fact that a large 3D face 
database was acquired using the coded light step only. 

Nevertheless the coded light step has certain intrinsic limitations, e.g. when it comes to coping with 
surface singularities or some kinds of high-frequency texture. To overcome them, this work intro-
duces a stereo algorithm to obtain range values for the parts of the scene where the coded light step 
fails. In its case, the basic idea is that accurate real-time stereo vision becomes possible because 
these problematic parts typically have a distinct optical structure and tend to make up only a small 
percentage of the scene. The stereo step as presented in this work does not yet fully exploit the 
large potential of such a combined approach; this is by and large unnecessary with the scenes rele-
vant for human-machine communication as targeted in this work. Nonetheless it produces promis-
ing first results; we interpret them as proof that the underlying general idea is well-founded. 

All in all, we conclude with regard to the presented ranging approach: its coded light step repre-
sents an improvement of an in principle well-known technique to overcome its major shortcomings. 
The proposed way of combining coded light and stereo represents a new idea altogether. It has 
several principal advantages compared to standalone coded light or stereo vision: 
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• It obtains range data for scene patches where (spatially-encoded) single-shot coded light cannot 
work due to principal limitations, e.g. with patches that do not have the necessary size in the 
image or for which the projected pattern is unrecognizable due to their high-frequency texture. 

• It is more accurate at object borders compared to traditional single-shot coded light. 

• It allows achieving a higher resolution than traditional single-shot coded light (via the sub-pixel 
correspondence for areas between the boundaries of pattern primitives). 

• It is much faster, more accurate and more reliable – as it avoids false matches – than stereo 
vision algorithms; moreover, it works well with optically unstructured scenes. 

• It is less affected by occlusion than standalone stereo vision or coded light because it suffices if 
a scene patch is visible for any two of the three system components. 

Of the optional components not directly related to ranging, the scene reflectance compensation 
works well in practice and should be used if a high-quality color image needs to be acquired any-
way. This might be the case with certain applications because in its current state the scene reflec-
tance estimation is still quite a bit away from providing such a high-quality color image. The 
threshold optimization component is an interesting example of what else can be achieved by ex-
ploiting the error detection capabilities of the proposed pattern and solves an important problem 
relevant for any real-word application. 

We further conclude that the task of camera and projector calibration is solved; extending Tsai’ 
monoview camera calibration technique to one based on several views and applying it to projector 
calibration as well results in an overall calibration accuracy that should suffice for most purposes. 

The range error analysis of chapter 5 yields valuable insights regarding the relationship between the 
set-up parameters and the accuracy. Contrasting the predicted with the experimentally determined 
accuracy leads to the conclusion that the derived formulas are very useful, but should be treated 
with certain precaution; they forecast the magnitude of the uncertainty rather than its precise val-
ues. This is because the presented analysis needs to ignore certain factors that are quite relevant for 
the measurement uncertainty such as the scene texture or depth-of-field influences. 

The evaluation shows that the prototype system meets most objectives defined in section 4.1. Its 
representative ranging accuracy of 0.2 mm standard deviation over the large working space should 
be adequate for most tasks and could be improved easily by e.g. employing a megapixel camera. 
While the coded light step achieves 25 frames per second with certain scenes, its average rate is ca. 
20 fps and may even drop as low as 17 fps in some cases. Including the stereo algorithm the rate is 
currently only about 1-2 fps. However, these are limitations of the prototype, not of the approach. 
We estimate that a well-optimized implementation of the algorithms would lead to an immediate 
speed gain by a factor of at least two to three. The evaluation also allows the conclusion that the 
proposed technique is well suited for arbitrary scenes. There are, of course, certain restrictions: e.g. 
typically no data at all is obtained in the far-away background due to depth of field limitations. 

Other than the work on range image acquisition the 3D face recognition results of this thesis are 
mostly indicative; the evaluation shows that all variants of the presented face recognition algorithm 
do not represent a first-rate technique by today’s standards. This is in part due to the challenging 
evaluation database which was strictly separated from the development database as well to the fact 
that it is almost impossible to compete with current commercial systems that benefit from by now 
hundreds of man-years of work. Nevertheless a definitive outcome of the evaluation is that the 
range data acquired by the prototype system is per se useful. And its key result is that the perform-
ance of a standard 2D face recognition algorithm is considerably boosted by the use of range data. 
Whether, or to which degree this conclusion applies to other algorithms and application as well and 
which way is the best to exploit the possibilities opened up by range data is a topic of further re-
search, some examples of which are listed in the next section. 
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7.2 Future Research 
How could future work extend on the results of this thesis?  

1. A promising idea for future research is to exploit the real-time capability of the approach to 
improve the quality of the range data. At least with slowly moving scenes (i.e. ones with which 
the image position of a scene point changes only by a few pixel between consecutive frames), it 
should be feasible to establish correspondence between successive frames (i.e. to use dynamic 
stereo) and to recover the shape of objects at places where even the combined approach failed; 
respectively, such a dynamic stereo step could replace the static one of this work. A related 
topic is to combine 3D data from several consecutive range images to a more complete scene 
model, for instance via stitching. Another is to use the information from such consecutive 
frames to improve decoding; e.g. let’s consider a moving surface that reflects only a very small 
and consequently unidentifiable fraction of a projected subpattern S1 back into the camera at 
the time the first frame is acquired. In the next frame, the small surface is at a slightly different 
position in 3D space; so it is illuminated by and reflects a distinct non-decodable subpattern 
fragment S2. With slow movement, S1 and S2 must be close to each other on the pattern slide. 
In the best case, this information already suffices to identify the two fragments; otherwise addi-
tional frames could be consulted. Clearly such an approach is principally capable of decoding 
pattern fragments that are incomplete or corrupted when considering a single frame only. 

2. The visible active illumination of the proposed method is inconvenient for certain purposes. 
Future work might attempt to use an infrared one instead, either adopting a monochromatic or a 
multi-spectral approach. The advantages of the former are its modest hardware requirements: a 
conventional black-and-white camera and a simple slide projector with suitable cut-off filter 
would suffice. It would be a topic of future work to adapt the encoding and data processing 
techniques of this work to the monochromatic case. With a multi-spectral infrared approach, 
the encoding and the algorithm could remain unchanged. In its case, the difficulties would lie 
on the hardware side instead, i.e. with camera and projector. Recently, multi-spectral consumer 
cameras (for three distinct spectral bands) have become available whose spectral sensitivity can 
in principle be adjusted to arbitrary wavelength intervals [Foveon 2004]. They could for exam-
ple be used to acquire the multi-spectral infrared images besides less elegant beam-splitting ap-
proaches. The issue of how to project the pattern remains, but is clearly solvable. 

3. The stereo step in its current form does not fully exploit the potential of a combined CL/stereo 
approach as proposed in this work. Improving it, e.g. in order to deal with specular reflection or 
to get an at least low-accuracy estimate of the scene background, seems to be a promising area 
of future research. The same applies to using more than two cameras, i.e. developing a com-
bined CL/n-ary stereo approach. 

4. The proposed approach to range image acquisition has intentionally been kept general, i.e. it 
makes as few assumptions about the scene as possible. With most applications, the type of 
scene to be expected is known beforehand. For instance, an acquisition system part of a face 
recognition system needs to acquire depth maps of faces only, and it is irrelevant if the system 
does not work well with anything that is not a face. In such a case, exploiting very specific a-
priori knowledge, e.g. in the form of an application-specific scene model (such as a generic 
face model in the case of face recognition), or at least stronger constraints such as a global con-
tinuity assumption could significantly improve the performance of the approach. 

5. An affordable high-res real-time range acquisition system operating under real-world condi-
tions opens up the way to many applications. Examples from the field of human-machine inter-
faces are 3D gesture, face or hand recognition. Future work could develop corresponding ap-
plications based on the range acquisition system of this work and investigate systematically in 
as far range data permits overcoming the limitations of intensity-only approaches. 
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7.3 Summary of Contributions 
The following lists the contributions of new knowledge made by this thesis: 

1. Range Image Acquisition: Developed a new approach to obtain range images 

• of almost all practically relevant, dynamic scenes up to a few meters away from the ac-
quisition system 

• under real-world conditions, in particular with non-negligible background illumination 

• with high accuracy, e.g. in case of the evaluated prototype with an exemplary standard 
deviation of ca. 0.2 mm from the ground truth over a cubical working space of about 0.5 
m side length 

• of almost arbitrarily high relative lateral resolution, that is one which is – within certain 
limits – proportional to the resolution of the camera(s) used 

• in real-time, e.g. with up to 25 range images (of a resolution of 780 by 580 pixels) per 
second with the evaluated prototype system on a standard PC 

• that can be integrated using only low-cost off-the-shelf components such as one-chip 
color cameras 

Achieved this by combining the existing techniques of coded light and stereo vision to a new 
approach that avoids most drawbacks traditionally associated with them.  

2. Coded Light Approach: Developed a new approach to coded light; in more detail: 

• Demonstrated how color coded light based on a single static projection pattern can be 
used to acquire range maps of most practically relevant scenes; also that this technique 
is – contrary to what is stated in the literature – able to cope with strongly colored 
scenes, respectively significant ambient illumination. 

• Developed a suitable projection pattern to that end; more technically, concluded from an 
abstract scene model that encoding via local color edge patterns is a way to overcome 
the said limitations; established the properties a projection pattern should ideally have 
so that an algorithm is able to demodulate and decode it from an image even given ad-
verse conditions. Arrived in this context at certain conclusions that differ strongly from 
those of existing work, e.g. that synchronization of projected and received signal is the 
key issue with coded light. Derived a corresponding new type of projection pattern fur-
thermore allows a very high lateral resolution of the range data. Proved that this pattern 
type permits detecting if the reflection of a local color edge pattern is disrupted in virtu-
ally all practically relevant cases. 

• Contributed a pseudo-random algorithm that is capable of generating such complex 
codes, respectively projection patterns; established certain theoretical properties that 
simplify this task, respectively permit obtaining such codes in an acceptable time-span. 

• Introduced an algorithm to robustly convert a color image of a scene illuminated by the 
proposed pattern into a range image in real-time; achieved this not via a standard ap-
proach to edge detection, but one that exploits the pattern’s error detection capabilities 
to detect only projected color edges and that is moreover able to correct certain errors, 
i.e. to decode corrupted local color edge patterns. 

3. Stereo Vision: Established that stereo algorithms are typically well suited for obtaining range 
values for the parts of the scene where the coded light step fails; also that such algorithms are 
capable of operating in real-time if these problematic parts make up only a small percentage of 
the total scene. Presented a corresponding stereo algorithm to complement the coded light step, 
i.e. in total a two-stage ranging technique suited for almost all practically relevant scenes up to 
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a few meters away from the acquisition system. Introduced a technique to combine the range 
data obtained by two coded light systems that use different cameras, but share the same projec-
tor (i.e. with a two cameras - one projector set-up as with the proposed combined coded light/ 
stereo system). Described how a stereo algorithm can be used to increase the lateral resolution 
of a range map obtained with the coded light step by computing the dense sub-pixel correspon-
dence in-between color edge segments. 

4. Additional Functionality of the Range Image Acquisition System: Showed how the original 
scene reflectivity can be re-computed given a color image of a scene illuminated by a color 
stripe or color grid pattern, i.e. how to compute an image that appears as if the illuminating pat-
tern had been all white. Respectively, starting out from previous work, how to compensate the 
effect of the scene’s reflection properties on a color image, i.e. how to compute an image that 
appears as if each imaged scene patch had the color of the illuminating ray of projection. Intro-
duced a technique that permits a fully autonomous adaptation of the algorithm thresholds and 
camera settings to the current conditions, respectively scene properties, by exploiting the error 
detection capabilities of the approach. 

5. Camera and Projector Calibration: Developed a new camera calibration technique (by ex-
tending Tsai’s well-known monoview camera calibration technique to one based on several 
views) that works with a simple planar calibration target; carried out experiments that indicate 
the technique produces better results than comparable state-of-the-art calibration methods. 
Showed how to extend the above camera calibration technique to the task of projector calibra-
tion, yielding an accurate projector calibration technique and in sum a method to calibrate a 
structured light system with high accuracy. Presented experiments that confirm this inference. 
Demonstrated in this context that it is necessary to consider the radial distortion of the projec-
tor’s lens to obtain accurate range maps; introduced a new way to efficiently compensate this 
radial distortion. 

6. Theoretical Accuracy Analysis of Structured Light/ Triangulation Systems: Presented a 
parameterized model of a triangulation system; listed the causes that lead to the measurement 
uncertainty of such a system; carried out an analysis of the measurement error for a given set of 
parameters, including the complex case of a non-standard geometric set-up, whose results may 
e.g. be used to predict the standard deviation in the separate measured coordinates for a certain 
choice of set-up parameters. Presented several formulas (derived via approximation) that make 
the effect of the key parameters of a convergent, non-standard geometry – e.g. the choice of 
convergence angle and projector position – intuitively understandable and simple to estimate. 

7. Experimental Evaluation: Presented an experimental evaluation of a prototype implementa-
tion based on the proposed ranging approach that verifies most of the above claims. 

8. Face Recognition: Acquired a 3D and color face database with 2,711 recordings of 20 indi-
viduals with the proposed ranging method that – within certain limits – adheres to international 
guidelines for evaluating biometric techniques. Described experiments with the above face da-
tabase that indicate that the performance of a standard approach to face recognition – one based 
on embedded Hidden-Markov-Models – is significantly improved by the use of range along 
with intensity data (compared to an intensity-only version of the approach). 

9. Literature Survey: Introduced a common framework to formally describe all coded light sys-
tems described in the literature; used the parameters of this framework to systematically clas-
sify the existing work on coded light into clear-cut categories and characterized the principal 
(dis)advantages of each category and their causes. 
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