
Lehrstuhl für Integrierte Systeme
Technische Universität München

Methodology for
System Partitioning of

Chip-Level Multiprocessor Systems

Winthir Anton Brunnbauer

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Ulf Schlichtmann
Prüfer der Dissertation:

1. Univ.-Prof. Dr. sc.techn. (ETH) Andreas Herkersdorf
2. Hon.-Prof. Dr.-Ing. Lajos Gazsi, Ruhr-Universität Bochum

Diese Dissertation wurde am 06.12.05 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Elektrotechnik und Informationstechnik am 05.07.06 an-
genommen.

"He who can properly define and divide is to be considered a god."

Plato (427-347 BC)
iii

Acknowledgements

The very beginnings of this work go back to the visions of Prof. Ingolf Ruge by
bringing networking applications and marketing together. To be at the leading edge of
technology, he arranged for the western outpost of the Lehrstuhl für Integrierte
Schaltungen located at and funded by Infineon Technologies NA Corp., San Jose, CA,
USA. I owe him special thanks for the opportunity to live and work in the Silicon Valley
and be a part of the research community.

After my return from the USA, Prof. Ruge’s successor, Prof. Andreas Herkersdorf,
accommodated me at his institute and accepted the supervision of my PhD work. This
knowledge and experience was a very valuable enrichment of this thesis. Thank you very
much for fostering me!

For his offer to act as the second examiner, I am very grateful to Prof. Lajos Gazsi. His
interest during the early stages of my PhD work inspired me that this topic is red hot.

I reminisce the "Munich Base" - the networking group of LIS with Thomas Wild, Nuria
Pazos and Jürgen Foag - and my PhD buddy Gordon Cichon during my time at the LIS
and Infineon. Unfortunately, he decided to change his plans and move back to Germany
sooner than planned.

During and especially in the end of my PhD time, I appreciated the intense supervision
of Thomas Wild. Thank you so much! Especially, I remember our daily field tests of video
conferencing between two continents. Moreover, I owe special thanks to Verena Draga,
Wolfgang Kohtz, Dr. Walter Stechele, and Doris Zeller for their support at LIS.

Many thanks to Charles Bry and Gunnar Hagen of Infineon Technologies NA Corp. for
taking care of me through economy ups and downs in the Silicon Valley.

I have appreciated the endless discussions about all the world and his brother with Sven
Haar, Roland Zukunft, Fabian Vogelbruch and Paul Zuber. I’m especially grateful to
Fabian and Paul to be accompanied by them during the last steps of my PhD work.

A special thank you to my proof-readers Charles Bry, Anton Lindner, Hubert
Mooshofer, Rainer Seidl, and Thomas Wild.

Many thanks to my parents, Otto and Margot Brunnbauer, for enabling me to pursue
this doctorate. In particular, I am very much obliged to my wife Anja and Rainer Seidl for
believing in me and motivating me during difficult times. This work is dedicated to them.

The financial support for this work by Infineon Technologies NA Corp. and Lehrstuhl
für Integrierte Systeme is gratefully acknowledged.

Winthir Brunnbauer
München, December 2005
v

Abstract

The steady reduction of structure size in microelectronics allows the production of
increasingly more complex and powerful integrated circuits. The increase of the
productivity gap requires the development of new suitable design methodologies in order
to increase the design productivity. By raising the entry level of automated design tools to
higher abstraction levels, the usage of prefabricated modules permits a briefer and more
efficient development of complex systems. Many design methodologies have been
proposed which support only limited implementation possibilities based on the architect’s
experience. Hitherto, such kind of design tools can especially be found at research
institutes.

The design of such integrated circuits, to find a suitable architecture meeting all
specifications, is a challenging and complex task. Single chips comprising the same
functionalities which have been implemented on boards are increasingly common, so-
called systems on chip (SoC). The allocation of microprocessors and dedicated hardware
on the SoC and the mapping of the different functionalities to hardware or software
resources is a nontrivial task. In order to identify the best suitable implementation which
meets the requirements, an extensive architecture exploration is necessary. Based on the
ratio of software and hardware, the performance flexibility of SoC can be adjusted with
respect to the application requirements.

This thesis addresses the partitioning of control dominated applications, in this case
from the networking domain. Hitherto, only few algorithms are known which support this
requirement during partitioning. Furthermore, the presented methodology partitions HW/
SW systems with special focus on the internal communication of complex SoC
architectures. This factor is increasingly recognized as a crucial factor for the efficiency of
SoC. The necessity to use an efficient design of suitable communication architectures
becomes important regarding potential system complexity.

A main contribution of this thesis is the extension of a constructive heuristic for the
partitioning of functionalities with the consideration of events lying in the future. In
particular, the consideration of inevitable imminent data transfers which may cause
blockings of communication resources can result in improvements of the performance. The
proposed variants of the improved partitioning methodology selects and assigns one task
after another to suitable resources based on list scheduling. The application modeling
carried out in this thesis utilizes annotated process graphs for the representation of
functionalities and estimations of worst case execution times (WCET) for the resource
library. With consideration of the current allocations of all resources, each task/resource
combination which is ready to be partitioned is evaluated. The highest dynamic task
priority decides about the selection of task and resource. A later change of the
accomplished assignments cannot be performed. In this way, very short runtimes of the
algorithms are possible even for large process graphs. However, these early assignments
vii

may affect the overall performance unfavorably.
Partitioning algorithms usually handle each functionality of design models as self-

contained which is individually assigned to a resource. Due to the granularity on the task
graph, for instance, a memory access is represented as one functionality distributed in two
nodes as design entity which is processed by one resource. However, partitioning
algorithms may use different resources for these two nodes. In order to avoid such
situations, a further contribution of this thesis is the enforcement of implementation
constraints on multiple tasks. With the help of Common Implementation Nodes (CIN)
grouped to clusters, various resources can be evaluated and one resource is assigned for all
CINs of this cluster. This processing of design models permits a flexible consideration of
design constraints.

On the basis of synthetic process graphs as well as a real-world example DiffServ, a
networking application on a router linecard, the performances of the partitioning
algorithms have been examined. Different scenarios of process graphs and target
architectures allow statements about the behavior and applicability of the partitioning
algorithms. The investigations of the variants of the constructive heuristic algorithms
introduced in this thesis exhibit considerable improvements for wide ranges of parameters
in relation to the conventional constructive algorithm. The provision for known inevitable
events during task priority calculation allows a reduction in scheduling latency up to
about 35%. However, the structure dependencies of the constructive algorithms on the
process graphs and the content of the target architectures significantly influence the
outcome. The improved algorithms cannot outperform the reference algorithm for all
scenarios. To compensate for the structure dependencies within clusters, the usage of all
CINs within a cluster for the priority computation instead of only the first CIN leads to
better results in most cases.

The dependency of the constructive partitioning algorithms on the structure of the
models becomes apparent with the evaluation of DiffServ. It has been shown that the
performance of the introduced algorithms cannot be forecasted in advance. However, the
short runtimes in the order of seconds allow the consecutive use of several variants of
constructive algorithms to determine the best result. Thus, constructive partitioning
heuristics can profit from the new approaches.
viii

Table of Contents

1 Introduction... 1

1.1 System-Level Design... 1

1.2 Design Flow... 7

1.3 Scope and Objective .. 13

1.4 Outline ... 14

2 Related Work .. 15

2.1 Exact Methodologies ... 16

2.1.1 Enumeration .. 16

2.1.2 Integer Linear Programming (ILP) ... 17

2.2 Heuristic Methodologies.. 19

2.2.1 Simulated Annealing (SA) .. 20

2.2.2 Tabu Search (TS) .. 20

2.2.3 Genetic/ Evolutionary Algorithms .. 21

2.2.4 Hierarchical Clustering ... 23

2.2.5 Greedy Algorithms.. 24

2.3 Features of Partitioning Algorithms .. 27

2.3.1 Consideration of Communication ... 28

2.3.2 Support of Conditions ... 28

2.3.3 Look-Ahead... 29

2.3.4 Clustering .. 30

2.4 Summary, Comments and Conclusions... 30
ix

3 Reference Algorithm... 33

3.1 Modeling.. 34

3.2 Constructive Heuristic by Xie et al.. 38

3.2.1 Partitioning Algorithm .. 38

3.2.2 Calculation of List Scheduling Priorities .. 41

3.2.3 Detection of Conditional Branches ... 42

3.2.4 Examples ... 44

3.3 Reference Constructive Algorithm.. 45

3.3.1 Algorithm Adjustments ... 45

3.3.2 Implementation ... 46

3.3.3 Improved Condition Support... 47

3.4 Performance Evaluation of the Reference Algorithm 49

3.4.1 Generation of synthetic test pattern... 49

3.4.2 Evaluation Environment and Tools... 52

3.4.3 Evaluated Partitioning Algorithms.. 54

3.4.4 Design Model and Architecture Assumptions 55

3.4.5 Results ... 56

3.5 Summary and Conclusions .. 59

4 Enhanced Constructive Algorithm.. 61

4.1 Partitioning Issues and Motivation for Improvement...................................... 62

4.2 Look-Ahead ... 65

4.2.1 Resource Selection .. 65

4.2.2 Sequencing of Task Scheduling .. 68

4.2.3 Algorithm Improvements for Resource Selection................................. 68

4.2.4 Algorithm Improvements for Sequencing of Task Scheduling............. 72

4.3 Clustering... 73

4.3.1 Different Design Objectives.. 74
x

4.3.2 Resource Sets for Common Implementation Nodes 75

4.3.3 Algorithm Improvements for Common Implementation Nodes........... 76

4.4 Performance Evaluation of Look-Ahead... 79

4.4.1 Design Model and Architecture Assumptions 79

4.4.2 Results ... 80

4.5 Performance Evaluation of Clustering .. 85

4.5.1 Modification of Evaluation Environment ... 85

4.5.2 Design Model and Architecture Assumptions 86

4.5.3 Results ... 87

4.6 Summary, Comments and Conclusions... 90

5 Real-World Application Practice .. 93

5.1 Architecture Exploration ... 93

5.2 Real-World Application .. 94

5.2.1 Internet Router Application Diffserv .. 95

5.2.2 Design Model and Architecture Assumptions 97

5.3 Evaluation of ECA... 98

5.4 Summary, Comments and Conclusions... 104

6 Summary, Conclusion and Outlook .. 105

6.1 Summary and Conclusion.. 105

6.2 Outlook .. 108

A Tools .. 109

A.1 Environment for Partitioning Algorithm Evaluation..................................... 109

A.2 Simulation Environment for Clustering .. 113
xi

B Performance Figures of ECA.. 117

B.1 Results of ECA Applied to Synthetic Design Models................................... 117

B.2 Results of Clustering Applied to Synthetic Design Models 119

B.3 Results of Real-World Application ... 120

Abbreviations and Acronyms .. 127

Bibliography.. 129
xii

List of Figures

 Figure 1.1: Design Complexity vs. Design Productivity by
the International Technology Roadmap of Semiconductors (ITRS)........ 2

 Figure 1.2: The Abstraction Pyramid According to [110].. 3

 Figure 1.3: Abstraction Levels [4], [10] ... 5

 Figure 1.4: A Schematic Representation of the Internet... 6

 Figure 1.5: Double Roof Model of Teich ... 7

 Figure 1.6: HW/SW System Design Flow, According to [3] 9

 Figure 1.7: System Synthesis and Architecture Exploration Loop........................... 11

 Figure 1.8: Combination of Allocation, Binding and Scheduling 12

 Figure 2.1: Types of Partitioning Algorithms... 15

 Figure 2.2: Feasible Region of ILP... 18

 Figure 2.3: Evolutionary Algorithms.. 22

 Figure 2.4: Genetic Operators on a Binary Coded Chromosome............................. 22

 Figure 2.5: Hierarchical Clustering .. 24

 Figure 2.6: List Scheduling Algorithm... 26

 Figure 2.7: List Scheduling Example ... 27

 Figure 3.1: Example for a Conditional Process Graph (CPG).................................. 35

 Figure 3.2: Simple Example for Scheduling of a CPG... 36

 Figure 3.3: Target Architecture as Defined in the Specification 37

 Figure 3.4: Outline of Partitioning Algorithm of Xie et al., [107] 39

 Figure 3.5: Static Urgency (SU) Calculation.. 39

 Figure 3.6: Scenario for Explanation of Urgencies .. 41

 Figure 3.7: An Example Condititional Process Graph ... 42

 Figure 3.8: Outline of Mutual Exclusiveness Detection of Xie et al., [107] 43

 Figure 3.9: Calculation of CPU Ready Time.. 44
xiii

 Figure 3.10: Scheduling Result for Example in Figure 3.7 .. 44

 Figure 3.11: Hole Filling of Empty Slots ... 46

 Figure 3.12: Outline of ReCA .. 47

 Figure 3.13: Outline of SU Calculation.. 47

 Figure 3.14: Traditional Conditional Branches .. 48

 Figure 3.15: Mutual Exclusion of Tasks... 48

 Figure 3.16: Example of a Task Graph Generated with TGFF 50

 Figure 3.17: Tool Chain for the Analyses of the Partitioning Algorithms 53

 Figure 3.18: Schedule Latency Depending on the Size of the CPG
Relative to ReCA ... 57

 Figure 3.19: Schedule Latency of Different Partitioning Algorithms
Depending on the Target Architecture Relative to ReCA 59

 Figure 4.1: Communication Issue... 63

 Figure 4.2: Importance of the Sequence of Task Scheduling................................... 64

 Figure 4.3: Binding Constraints for the Modeling of Memory Accesses
with the Help of Common Implementation Nodes (CIN)...................... 65

 Figure 4.4: Consideration of Inevitable Communication for Partitioning................ 66

 Figure 4.5: Consideration of Succeeding Data Transfers and Tasks
as Future Events ... 67

 Figure 4.6: Issues of Priority Determination .. 68

 Figure 4.7: Extension of ReCA for ECA.. 69

 Figure 4.8: Variants of ECA... 70

 Figure 4.9: Outline of ECA_LA1 ... 71

 Figure 4.10: Outline of ECA_LA2 ... 72

 Figure 4.11: Outline of the ESU Calculation.. 73

 Figure 4.12: Different Design Objectives for the Exploitation of Concurrency
or Acceleration of Functionality Supported by Clustering 75

 Figure 4.13: Different Implementation Possibilities .. 75

 Figure 4.14: Clustering with Common Implementation Nodes (CINs) 77

 Figure 4.15: Clustering Extension for ECA ... 78
xiv

 Figure 4.16: Calculation of look_ahead_cluster for Cluster_CIN......................... 78

 Figure 4.17: Calculation of look_ahead_cluster for Cluster_Sum 79

 Figure 4.18: Performance of ECA_LA1 Compared to ReCA
Considering Inevitable Data Transfers... 81

 Figure 4.19: Performance Analysis for the Multiprocessor Scenario
Relative to ReCA Based on the Parameter Set of Table 4.1.................. 84

 Figure 4.20: Required Outcome ... 86

 Figure 4.21: ReCA with Cluster_Sum Compared to Cluster_CIN............................. 88

 Figure 4.22: Performance Analysis of ECA with Cluster_CIN
Relative to ReCA with Cluster_CIN in a Multiprocessor Scenario....... 90

 Figure 4.23: Performance Analysis of ECA with Cluster_Sum
Relative to ReCA with Cluster_CIN in a Multiprocessor Scenario....... 91

 Figure 5.1: Target Architecture Evaluation .. 94

 Figure 5.2: Flow Diagram of DiffServ ... 95

 Figure 5.3: Target Architecture for DiffServ.. 98

 Figure 5.4: Target Architecture for DiffServ_Proc .. 99

 Figure 5.5: Target Architecture for DiffServ_1Acc ... 100

 Figure 5.6: Target Architecture for DiffServ_1AccMem....................................... 101

 Figure 5.7: Target Architecture for DiffServ_4Acc ... 102

 Figure 5.8: Target Architecture for DiffServ_4AccMem....................................... 103

 Figure 6.1: Overview of Heuristic Algorithms for Partitioning 106

 Figure A.1: Tool Chain.. 109

 Figure A.2: Desired Task Graph Shape for Clustering ... 113

 Figure A.3: Script Flow for Clustering.. 114

 Figure B.1: CPG of DiffServ... 122
xv

xvi

List of Tables

Table 1.1: Levels of Abstraction for HW Aspects and their Design Representations .. 3

Table 2.1: Example for Enumeration .. 16

Table 3.1: branch_info struct for Figure 3.7 ... 42

Table 3.2: Simulation Properties of CPGs and Target Architectures 56

Table 3.3: Runtime of the Algorithms with Regard to the CPG size.......................... 58

Table 4.1: Simulation Properties of CPGs and Target Architectures
for the Performance Evaluation of ECA.. 80

Table 4.2: Simulation Runtimes of ReCA and the Variants of ECA
in Comparison to the Dize of the Design Model 82

Table 4.3: Simulation Properties of Graph and Target Architecture
for the Performance Evaluation of ECA Extensions for Clustering 86

Table 4.4: Simulation Runtimes of ReCA with the Options
for Clustering Cluster_CIN and Cluster_Sum
in Comparison to the Size of the Design Model .. 89

Table 5.1: Different Scenarios for DiffServ.. 99

Table 5.2: Result of ECA in Scenario Diffserv_Proc ... 100

Table 5.3: Result of ECA in Scenario Diffserv_1Acc .. 101

Table 5.4: Result of ECA in Scenario Diffserv_1AccMem...................................... 102

Table 5.5: Result of ECA in Scenario Diffserv_4Acc .. 102

Table 5.6: Result of ECA in Scenario Diffserv_4AccMem...................................... 103

Table 5.7: Best Results of Variants of ECA for DiffServ
Compared to ReCA with Cluster_CIN .. 104

Table B.1: Performance of ECA_LA1 Compared to ReCA
Considering Inevitable Data Transfers (Figure 4.18) 117

Table B.2: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) without ESU
for the Multiprocessor Scenario in Figure 4.19 Relative to ReCA.......... 118

Table B.3: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) with ESU
for the Multiprocessor Scenario in Figure 4.19 Relative to ReCA.......... 118
xvii

Table B.4: Multiprocessor System with ReCA with Cluster_Sum of Figure 4.21.... 119

Table B.5: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_CIN without ESU of Figure 4.22 ... 119

Table B.6: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_CIN with ESU of Figure 4.22... 119

Table B.7: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_Sum without ESU of Figure 4.23 ... 120

Table B.8: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_Sum with ESU of Figure 4.23 .. 120

Table B.9: WCET Table of the Resources for DiffServ.. 121

Table B.10:Schedule Latencies for the Scenario DiffServ_Proc................................ 125

Table B.11:Schedule Latencies for the Scenario DiffServ_1Acc 125

Table B.12:Schedule Latencies for the Scenario DiffServ_1AccMem 126

Table B.13:Schedule Latencies for the Scenario DiffServ_4Acc 126

Table B.14:Schedule Latencies for the Scenario DiffServ_4AccMem 126
xviii

Chapter 1

Introduction

1.1 System-Level Design

For the last years, embedded system design has been a very significant object of
research. The development of electronic technology allows the integration of increasingly
complex circuits forming complete systems on a common die. This has imposed the need
for new techniques and tools to generate modern designs. In addition, the market pressure
demands for shorter development times and cost effective solutions.

In [50] and [51], technology roadmaps for the design of integrated circuits (ICs) have
foreseen systems including different types of processor cores and dedicated co-processors
to fit on a single die, so-called systems on a chip (SoC). The assignment of software
subprograms to multi-processor architectures is a nontrivial task. The design of distributed
intelligent chip-level multiprocessor systems is a topic of intense research; for example
[13], [21], [38], and [75].

In order to exploit these remarkable technological advances and be able to design such
complex systems correctly, designers must be able to specify, refine, verify, and synthesize
the components of an SoC correctly using design tools. Here, the gap between technology
and tool maturity and acceptance is increasing instead of decreasing. Figure 1.1 shows this
situation and the so called productivity gap: The number of available transistors grows
faster than the ability to design them meaningfully. To counteract this issue, significant
research activity is taking place in the area of embedded systems, especially in field of
hardware/software co-design.

The rising number of available transistors increases the complexity of ICs. To cope with
the number of design possibilities, a structured approach is required to produce the desired
solutions. Design models help to reduce the complexity of the design problem to
manageable structures by abstracting the representation of the components. Design models
with different levels of abstraction are used during the design of ICs to refine abstract
models toward the physical representation of the chip, [12]. [96] introduces a definition of
1

2 Chapter 1 Introduction
a scale for taxonomy together with a classification of the different models used in IC
design.

Design models represent different aspects of the circuits in the design flow of SoC.
Some design models precisely specify the layout of the circuits and the arrangement of the
transistors. Others estimate the power consumption which becomes increasingly important
for SoC. Mobile applications are very dependent on the power consumption due to limited
battery capacity. Even for server applications with permanent power supply, low power
considerations are important to determine the heat dissipation of the devices.

Other design models separately represent the functionality and the implementation
possibilities of the application in a very abstract form. Such design models may be used for
the HW/SW codesign entry of SoC and consist of behavioral and structural objects.
Behavioral objects comprise self-contained functionalities which may be derived from a
verbal description or a C program. Structural objects are computation resources executing
such behavioral objects.

The evaluation of design choices of ICs should move to the early phases of the design
process to reduce the time needed for modeling and simulation. The abstraction pyramid
according to [110] is illustrated in figure 1.2. The pyramid shows different levels of
abstraction for the design models. At a given level of abstraction, different solutions may
be explored and one solution is chosen. This selected solution is refined and acts as basis
for potential solutions at a lower level of abstraction. Here, the refined design model allows
different solutions to be explored, but also excludes the other solutions of the design space.
To obtain the appropriate implementation of the SoC, the solution of the high level needs
to be iteratively refined towards the lower levels by reducing the design space, [36]. The
higher the levels of abstraction used for design entry, the more alternative realizations can
be covered with the initial design model.

The cost of the model construction and evaluation is higher at the more detailed levels
of abstraction. However, the opportunities to explore alternative realizations is

 Figure 1.1: Design Complexity vs. Design Productivity by
the International Technology Roadmap of Semiconductors (ITRS)

Lo
gi

c
Tr

an
si

st
or

s
pe

r C
hi

p

Pr
od

uc
tiv

ity

Productivity
Gap

(T
ra

ns
is

to
r /

 M
an

-M
on

th
)

1.1 System-Level Design 3
significantly reduced at these levels. Hence, methodologies for modeling, simulation and
design of embedded systems at higher level of abstraction are of special interest. The
algorithms introduced in this thesis are located at the high levels of the abstraction pyramid
to explore the potentials of the created architectures.

Levels of Abstraction

In the following, the levels of abstraction for the design of hardware (HW) components
are introduced exemplarily. The overview of the levels of abstraction for HW design in
table 1.1 and the description of each level is followed by the application of the design
model to achieve productivity increase; [35], [37] and [89].

A description of embedded software (SW) development can be found in [81].

Levels Elements Timing Data Language

System Blocks,
Functions

No timing
(WCET)

Abstract,
Record

SystemC, C,
Graph

Representation

Architecture Macros,
Components

Cycles,
Transactions

Abstract,
Transactions

SystemC,
HDL

Register/ RTL ALU, MUX,
Registers

Clock Cycles Register values HDL

Gate Gates Delay Bits HDL

Transistor Transistors Signal slopes Signals Spice, Layout

Table 1.1: Levels of Abstraction for HW Aspects and their Design Representations

Ac
cu

ra
cy

C
os

t

Low

High

Le
ve

l o
f

Ab
st

ra
ct

io
n

O
pp

or
tu

ni
tie

s

Low

High

Approximate (performance)
Models

Executable Behavioral Models

Conceptual Models

Cycle-Accurate
Models

Synthesizable
VHDL

Alternative realizations (Design Space)

Explore

Explore

Explore

Explore

Refine

Refine

Refine

Refine

 Figure 1.2: The Abstraction Pyramid According to [110]

4 Chapter 1 Introduction
• The transistor level describes models which consist of transistors which are
the basic elements of integrated circuits. In the design models, these
transistors are characterized by transistor equations and parameters. The
layout of the transistors specifies the functionality of the IC. With circuit
simulation programs, such as Spice, the circuit can be evaluated before it is
manufactured.

• The gate level combines several transistors to handle logical functions, such as
AND and OR bit operations, or more common, NAND and NOR bit
operations. The models consists of netlists of gates. Gates are characterized by
propagation delays, setup and hold times.

• The register level, also known as Register-Transfer Level (RTL), uses
computational units containing logical functions, such as algorithmic and
logic units (ALU), multiplier units (MUL), and registers storing values. In
RTL models, a circuit can be described in hardware description languages
(HDL), such as VHDL, [95], or Verilog, [47], as a set of registers and a set of
transfer functions describing the flow of data between the registers.

• The focus of the architecture level is the allocation of components and their
interaction for a given architecture. Transaction-level modeling (TLM)
focuses on the communication as channels and transaction requests among the
resources of the architecture. SystemC, [88], is designed to support TLM.

• The system level focuses on the selection of implementation including the
choice of HW or SW for each behavioral object. The behavioral objects of the
model are designed considering independent of the implementation. In this
way, no implementation is preferred unintentionally. Graph based models
suitably represent the application for such decisions. The properties of each
resource are annotated to the model. System level design (SLD) tools support
the designer in determining the most appropriate solution. Such SLD tools are
mainly object of research at companies and universities.

Design models at system level are very suitable for the high level architecture
exploration. The algorithms introduced in this thesis use system level design models to
determine the appropriate implementation for each behavioral object.

Improvement of Productivity

The raise of abstraction levels over the last decades has enabled an improvement of
productivity. Figure 1.3 gives an overview of the design entry levels of abstraction for
starting designs and the automatization of lower levels over the last decades:

1.1 System-Level Design 5
The shift from the transistor level to the gate level has allowed logic verification. At the
gate level, integrated circuits can be checked as to their correct logical behavior. In
addition, the productivity of logic verifications is improved by focusing on the functionality
instead of the physical design.

At RTL, data is processed as register values instead of single logical bit operations
improving the design productivity. In HDL, the hierarchical structure of the design models
thus facilitates the handling and processing of data. Design verification improves the
overall yield of the IC design. Incorrect designs can be detected rather early. Therewith, the
verification productivity is enhanced.

The architecture level allows the evaluation of the interaction among the architecture
components. With the help of Transaction Level Modeling (TLM), the sequence and
interdependency of functions and the corresponding resource can be analyzed. In this way,
alternative system implementations can be validated before the SoC is completely
designed, manufactured and tested. Problematic solutions can be identified and
counteracted in an early stage of the design flow. The architecture productivity is improved
by the usage of already designed blocks which can be reused for other designs.

At System Level, the behavioral objects are modeled independent of specific
implementations. The selection of HW or SW should not be biased by specific modeling
constraints. SLD tools map behavioral to structural objects and evaluate potential
architectures. Supplementary changes of mapping decisions can be accomplished easily
without costly modifications of the entire design model. The codesign productivity can be
increased by evaluating more alternative realizations at high levels of abstraction than at
lower levels. Hence, a high level of the abstraction pyramid should be chosen for the design
entry.

However, each application domain has certain computation characteristics which need
to be taken into account in the design model at system level. For instance, networking
applications demand support of conditional branches to apply alternative networking
protocols on data packets, whereas video applications require support of iterations and

Logic
Verifications

Design
Productivity

 Verification
Productivity

Architecture
Productivity

Transistor-Level Model

Gate-Level Model

RTL Model

System Model

time

Level of Abstraction

CoDesign
Productivity

Architecture Model

1970‘s 1980‘s 1990‘s 2000‘s

HW Design

HW/SW Design

 Figure 1.3: Abstraction Levels [4], [10]

6 Chapter 1 Introduction
loops to allow the execution of video processing algorithms. For different processing
requirements, the appropriate models of computation, needs to be selected, [53].

Generic tools which can cover all application domains are difficult to extract. For
example, [11] a commercial tool was withdrawn from the market, because it covered only
specific application domains. The research activities in this area are located at research
groups and universities.

In this thesis, networking is selected as the applications domain. The design of new
devices such as network processors with multiple processor cores is challenging. SLD tools
can support the designer in finding the suitable solution. This thesis focuses on specific
SLD methodologies supporting the type of networking applications which are described
next.

Application Domain Networking

The Internet Protocol (IP) has been established to communicate with computers around
the world. This development highly influenced the way of information distribution and
communication. In the first ten years, research was mainly pursued for the development of
hardware equipment of the Internet backbone, the high-speed network spanned around the
world. Figure 1.4 gives an impression of the network structure of the Internet. With
increasing bandwidth available for the end-user, new end-user applications have shifted the
focus towards the edge of the network. Rich multimedia, Voice-over-IP, and secure data
transmission are a few applications which have more challenging performance and latency
demands than previous applications.

Network processors are mainly designed to be applied in the edge of the network and to
flexibly support new applications. It is a device similar to a microprocessor, except that it
has been optimized for use in applications involving network routing and packet

 Figure 1.4: A Schematic Representation of the Internet

1.2 Design Flow 7
processing. The synthesis of the design and the evaluation of the internal processing of such
network processors can be performed with the help of SLD tools.

Networking devices, such as Internet IP routers, comprise many functions which are
triggered depending on the incoming data. The various types of utilized network protocols
define the rules describing the transfer of data and communication between devices within
a network. For the analysis of such applications, conditional branches are essential to cover
the applied protocols in the design model. Networking as a control-dominated application
necessitates the differentiation of different execution branches within the design models.
Hence in this thesis, only SLD methodologies are considered which support conditional
branches.

1.2 Design Flow

IC design is intended to result in a piece of working silicon. Starting a design with high
level design models, a methodology is needed to transform them to lower levels of
abstraction towards the physical representation of the circuit.

Teich introduced in [89] and [90] a synthesis-oriented model called double roof. One
side of the roof represents those abstraction layers that are typically encountered in
hardware design, whereas the other side represents those layers that are typical to software
synthesis for embedded systems, see figure 1.5.

The upper roof represents the behavioral layer, whereas the lower roof stands for the
structural layer. According to Teich, synthesis is the refinement of a behavioral
specification into a structural specification at a certain abstraction level. The main synthesis
tasks are independent from the level of abstraction and may be classified as

• allocation of resources,

System

Module

Block

Architecture

Logic

Software Hardware

Behavior

Structure

...

 Figure 1.5: Double Roof Model of Teich

8 Chapter 1 Introduction
• binding behavioral objects to allocated resources, and

• scheduling of behavioral objects on the resources they are bound to.

In each synthesis step, the allocation provides potential resources for the execution of
behavioral objects or tasks. The binding process assigns tasks to resources. The scheduling
determines the sequence of the tasks and occupancy of the resources. The resulting
schedule finally indicates the performance characteristic of the considered architecture.

The successive refinement of the design models is performed towards the lower levels
of abstraction to design complex HW/SW systems. Starting with a behavioral description
of the system, system synthesis determines the complete system to be designed on the level
of networks of communicating subsystems (e.g., processors, ASICs (Application Specific
Integrated Circuit), dedicated hardware units, memories, buses, etc.), each realizing a part
of the behavioral system specification (e.g., algorithms, tasks). The improved algorithms of
this thesis can be located in figure 1.5 as the arrow transforming the behavioral system
model to the structural system model.

This structural model of the system is refined and serves as the behavioral model of the
HW architecture and the SW modules. Architecture models outline communicating
functional blocks that implement coarse granular arithmetic and logical functions. Module
models specify the interaction of function blocks that are mapped to a uni-processor or a
multi-processor architecture in software.

Furthermore, the structure models of the architecture level and the module level are
refined to serve as behavioral models for the logic level for HW and the block level for SW.
Logic models contain netlists of logic gates and registers that implement Boolean functions
and finite state machines. Block models typically include programs, functions, procedures
as encountered in high-level languages that are refined to the instruction-level of the target-
processor on which the code is to be executed.

HW/SW System Design Flow

As shown in Teich’s Double Roof model, system synthesis determines the most
appropriate implementation in HW or SW for each behavioral object. After these decisions
are made, the refinements of the design are made at lower levels of abstraction. Figure 1.6
depicts a representation of the HW/SW system design flow.

The reference for all further efforts to design an IC is the specification. It is a clear,
accurate, and detailed description of the objective and the technical requirements.
Specifications usually contain among other things the description of the desired
functionality, the required performance, and the information about maximum power and
area. Based on this specification, a design model of the application at system level is
created. The resource library contains information about the characteristics of all potential
resources. Common characteristics of the used resources are performance, power
consumption, area, etc..

1.2 Design Flow 9
A paradigm shift of the SoC takes place regarding the scope of the specification. The
specifications of integrated circuits have been contained single components with test rules
which are produced and verified by system vendors. Nowadays, the specification
increasingly defines the entire SoC and the responsibility for correctness is moved to the
chip manufacturer. Hence, tools to support the revision of concept and specification are
required.

System synthesis tools utilize design models and resource libraries and explore possible
solutions by using allocation and partitioning. During allocation, a selection of resources is
taken from the resource library. This allocation of resources is representing an architecture
and called target architecture. Applied to partitioning algorithms, the target architecture
comprises resources which may be used in the further design steps. The actual usage of the
resources is determined during partitioning. The used resources of the target architecture
form the SoC architecture. If the SoC architecture meets the requirements at this stage of
the design, it serves as the basis for the hardware synthesis, the software synthesis, and the
communication synthesis. Otherwise, the target architecture needs to be adjusted and
partitioned again to explore the next potential architecture.

Communication is very important for the result of system synthesis. If communication
is neglected during system level analysis, this disregard can result in unconsidered
bottlenecks and a degradation of the performance. At system level, separating
communication from computation is essential to cope with system design complexity, [59].
Design models need to be constructed without a specific implementation in mind in order
not to restrict potential design opportunities at an early stage. However, communication is
often linked with the behavior of the components so that it is very difficult to separate
communication from computation. The occurrence of communication significantly
interdepends with the system synthesis decisions. Considering communication to improve
partitioning algorithms is the objective of this thesis.

In the following, the further synthesis steps are briefly introduced.

System Synthesis
 (Allocation, Partitioning)

Specifications/
Modelling

HW Synthesis SW SynthesisCommunication
Synthesis

Netlist Executable Code

Resource
Library

 Figure 1.6: HW/SW System Design Flow, According to [3]

10 Chapter 1 Introduction
For HW synthesis, HDLs are used to describe the behavioral models. The used code may
be written at a higher level than RTL level allowing to hide much of the complexity from
the designer. The code can be synthesized into a low-level description for layout and
analysis. The result is a netlist which is a version of an electronic circuit consisting of all of
the circuit elements and their interconnections. This netlist is provided to the well
established design flow, [86]. Commercial tool suites supporting HW synthesis can be
found at [9] and [87].

The software synthesis is the process of taking a high-level description of functionalities
in form of a software program and turning it into a lower-level description. The compiled
program can be executed on the microprocessors of the target architecture. Examples for
embedded software design tools are [80] and [103].

Communication synthesis defines the interfacing of hardware and software components.
The aim of communication synthesis is to maximize efficiency of the communication
resources and to minimize the communications overhead delays while respecting
specification constraints. Gogniat et al., [41], propose an extended communication
synthesis method. In [68] through [71], Lahiri et al. present a methodology and efficient
algorithms for the design of high-performance system-on-chip communication
architectures.

The results and experiences of the hardware, software and communication synthesis are
fed back to the resource library. Thus, resource models can be described as precisely as
possible.

System Synthesis

In [36], Gajski defines system synthesis as the process of converting the functional
description of a black box into a structure of the black box that consists of connected
components from a given library. During this process, several different design decisions
have to be made. Such design decisions are the selection of components or the scheduling
of computations and communications. The design process consists of design decisions
causing model transformations to a structural model.

The evaluation of architectural decisions is depicted in figure 1.7 showing an
architecture exploration loop during system synthesis. It consists of allocating a target
architecture, partitioning the design model, and the evaluation whether the results are in
compliance with the specification. The partitioning algorithm determines the binding of the
behavioral objects to resources of the target architecture. In addition, a scheduling
algorithm determines the sequence and the occupancy of each resource.

The architecture exploration loop varies the target architecture and the available
resources in the case the requirements of the specification are not met. The evaluation of
the results controls the architecture exploration loop and decides what changes in the target
architecture and the algorithm constraints need to be performed.

In [35], Gajski et al. describe system partitioning as the procedure of implementing
system functionalities on system components. The functionality of a system is

1.2 Design Flow 11
implemented with a set of interconnected system components. In order to obtain such an
implementation, the system designer must solve two issues: selecting a set of system
components (allocation), and distributing the system’s functionality among these
components (partition). The allocation and partition must be chosen such that they will lead
to an implementation that satisfies a set of design constraints, for instance pertaining to
financial costs, performance, size, and power consumption given by the specification.
Partitioning is a central system design task for SoC and the principle of partitioning will be
exhibited in the following.

Gajski et al., [35], phrases the partitioning problem as:

Given a set of objects , determine a partition

 by assigning the objects to partitions with

 and such that , for all

, and the cost determined by an objective function Objfct(P) is minimal.

The objective function is an expression combining multiple metric values into a single
value that defines the quality of a partition with a return value called cost. Since many
metrics may be of varying importance, a weighted sum objective function can be used, e.g.:

(1.1)

By adjusting the coefficients k1, k2 and k3 in eq. 1.1, the diverse results of the
partitioning algorithm can compose a pareto curve, [38]. Solutions on a pareto curve can
only be improved in one objective by degrading at least one of the other objectives. In this
way, solutions for different objectives, such as high-performance or low power, can be
found. The algorithms introduced in this thesis focus on performance as criteria for the
object function. Other metrics can be considered in the architecture exploration.

Allocation

Evaluation

System Synthesis

Binding Scheduling
Partitioning

A
rc

hi
te

ct
ur

e
Ex

pl
or

at
io

n
Lo

op

 Figure 1.7: System Synthesis and Architecture Exploration Loop

O o1 o2 …on, ,{ }=

P p1 p2 …pm, ,{ }= ok ph→

1 k n≤ ≤ 1 h m≤ ≤ p1 p2 …pm∪ ∪ O= pi pj∩ ∅=

i j i j≠, ,

Objfct P() k1 area k2 latency k3 power⋅+⋅+⋅ Cost= =

12 Chapter 1 Introduction
Figure 1.8 shows an example of the interaction of allocation and partitioning with
binding and scheduling. The design model of the application may be given as task graph.
The introduction and description of task graphs are given in chapter 3. The target
architecture is allocated and composed of resources of the resource library. During binding,
behavioral objects of the design model are bound to resources of the target architecture. The
scheduling process determines the sequence of the behavioral objects and the occupancy of
the resources. The results of the scheduling may act as objective function for the binding
selection.

The determination of the appropriate solution during system synthesis is a non-trivial
task for partitioning algorithms. Concurrent execution of the behavioral objects and the
number of resources significantly influence the number of possible solutions. The number
of possibilities exceeds the mental capability of the designer to generate a solution meeting
specific requirements simply by inspection.

The knapsack problem is an example which illustrates the scenario best. The term
knapsack problem invokes the image of the backpacker who is constrained by a fixed-size
knapsack. The knapsack may only be filled with the most useful items. Every item has a
cost and value, so the most value for a given cost is sought.

The class of partitioning problems is known to be NP-complete; [14], [65]. All known
algorithms for solving these problems have the characteristic that as the problem size
increases, the number of steps necessary to solve the problem increases exponentially.
These problems can be solved in polynominal time on a nondeterministic machine, but for
which no deterministic polynomial time algorithm is known. To solve this problem, exact
solutions can be found using integer linear programming. When exact solutions prove too
costly to compute, heuristics can be used. Often the heuristic solution is close to optimal
and meets the requirement of the specification.

��������������
��������������
��������������
��������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

����������
����������Proc

����������
����������HW

Bus3

2

0

1

Resource
Library

Binding

Allocation

Scheduling
1 30

Proc HW

Proc

 Figure 1.8: Combination of Allocation, Binding and Scheduling

1.3 Scope and Objective 13
1.3 Scope and Objective

The objective of this thesis is the determination of a suitable high-performance
partitioning algorithm. Heuristic partitioning algorithms are very powerful at high levels of
abstraction and therefore considered in this thesis. Such types of algorithms can be applied
in the architecture exploration loop within the system synthesis design flow. The selected
algorithm focuses on performance as criterion for the binding decision. Networking as
application domain requires the partitioning algorithms to support conditional branches in
the design model.

The consideration of more information during the selection of the appropriate binding
and scheduling decision of the behavioral object can lead to an improved performance of
the partitioning heuristics. The overall performance can be improved by taking into account
future events caused by communication and the execution of behavioral objects. In this
thesis, communication is used intensively during partitioning to avoid bottlenecks and the
degradation of the performance.

Furthermore, the combined treatment of behavioral objects with similar characteristics
allows the usage of different levels of detail in the design model. Different implementation
realizations can be compared simultaneously. In addition, different design objectives of the
architecture can be used within one single design model. Different design objectives can
place special emphasis on the intended processing represented by the design model, such
as parallel processing or the acceleration of certain functionalities. This combined
treatment can reduce the modeling effort.

Approach

The selection of a suitable high-performance partitioning algorithm is the first step in
this thesis. Since exact solutions are too costly to compute, heuristics are used in this thesis.

[101] shows that iterative heuristics have significantly longer runtimes than constructive
heuristics. Supporting conditional branches for networking applications, the constructive
heuristic of Xie et al., [107], is selected as basis partitioning algorithm in this thesis. On the
basis for this task graph based algorithm of Xie et al., the Reference Constructive
Algorithm (ReCA) is derived with modifications in the scheduling algorithm and the
handling of conditional branches to allow the utilization of synthetic task graphs for
performance evaluation of potential networking applications. To allow the comparison of
the results, an ample number of different task graphs are necessary which represent the
same characteristics. The task graph generating tool "TGFF: Task Graph for Free," [24],
produces synthetic task graphs with similar characteristics regarding the structure of the
task graph and the contents of the resource library.

Besides the short runtimes of constructive heuristics, [101] also shows that the results of
constructive heuristics are worse than iterative heuristics. Communication is an important
element of information during partitioning to improve the performance of partitioning
algorithms. Hence, ReCA is improved by utilizing intensively events of communication and
succeeding behavioral objects lying in the future. The improved partitioning algorithm is

14 Chapter 1 Introduction
called Enhanced Constructive Algorithm (ECA). Three variants of ECA with different
considerations of future events are introduced. These various variants of ECA are compared
to ReCA with the help of TGFF.

To facilitate the generation of tasks graphs for real-world applications, the clustering of
Common Implementations Nodes (CIN) are introduced. These aggregated nodes within the
task graph represent a self-contained functionality which can be executed exclusively by a
specific set of resources of the target architecture. In this way, different implementation
possibilities can be compared in one single design model. For the evaluation of this feature,
composed task graphs are utilized to generate such clusters of CINs. Different task graphs
generated by TGFF are put together to simulate structures of the task graph used in real-
world applications.

Finally, a design model of a real-world networking application is used to evaluate the
performance capabilities of ECA. This design model is applied to several variants of ECA.

1.4 Outline

Chapter 2 gives an overview of different partitioning algorithms. One of the presented
algorithms is chosen to be the basis of the further work. In chapter 3, the Reference
Constructive Algorithm (ReCA) is derived from the selected algorithm of chapter 2. The
performance of ReCA is evaluated with the help of synthetic task graphs. Chapter 4
introduces the Enhanced Constructive Algorithm (ECA), the improvement of ReCA. The
consideration of future events and the clustering of CINs are introduced. Chapter 5 applies
ECA on a design model of a real-world networking application to show the effectiveness of
the algorithm improvements. Chapter 6 provides conclusions and an outlook on future
work.

Chapter 2

Related Work

This chapter introduces partitioning methodologies suitable for SoC design applied for
system synthesis. Partitioning determines the implementation for all behavioral objects of
a design model. The partitioning algorithms can be categorized in exact methodologies and
heuristics. Exact methodologies can determine optimal solutions. However, these
algorithms are very sensitive to the problem size. Representatives are enumeration and
integer linear programming (ILP). With an increasing problem size, heuristics allow a
faster runtime of the algorithm than exact methodologies by approximating the optimal
solution. The heuristic methods differentiate between iterative and constructive algorithms.
The iterative algorithms search the solution space, whereas constructive algorithm
construct a potential solutions in a single step. Figure 2.1 depicts an overview of common
partitioning algorithms..

In this thesis, the considered application domain networking requires special provisions
for the handling of conditional branches. This requirement is decisive for the selection of
the selected partitioning algorithm.

Partitioning Algorithms

Exact Heuristics
- Enumeration
- ILP Iterative Constructive

- Simulated Annealing
- Tabu Search
- Genetic/Evolutionary Algorithms

- Hierarchical Clustering
- Greedy Algorithms

 Figure 2.1: Types of Partitioning Algorithms
15

16 Chapter 2 Related Work
2.1 Exact Methodologies

These methods include enumerative search techniques and approaches based on integer
linear programming. Some examples should give a better understanding of the mode of
operation of the algorithms.

2.1.1 Enumeration

A system is specified by a set of time-critical behavioral objects and constraints
associated with each behavioral objects, such as timing. The assignment of the behavioral
objects to resources of the target architecture decides about whether all given constraints
are met.

The enumeration problem solving process starts with a feasible solution. Then, it sorts
Taken and Non-Taken items in Non-decreasing weight order. The next step recursively
examines all solutions by dropping and adding items in non-decreasing order. The
enumeration algorithm can be illustrated by the subset sum problem, [52]:

• Minimize and subject to with ,

and wi as the weight of the selected product.

• “Tolerance” level: If a feasible solution can be found that satisfies

, this solution is used and the exploration is terminated.

Applying the enumeration problem to the partitioning problem, xi would be comparable
to the usage of a specific binding with wi as the corresponding resource characterization. c
would be the timing constraint of the entire design. The following example should show the
procedure of finding a solution. Out of a list of binding items with a specific
characterization (weight), shown in table 2.1, a set of binding items should compose a
minimum total weight of c = 50 and with ε = 3 a maximum total weight of 53:

Binding
Item i

Weight wi Step 1 Step 2 Step 3 Step 4a Step 4b Step 5

1 25 x x x
2 20 x x
3 18 x x x x x
4 15 x x x x

Table 2.1: Example for Enumeration

wixi

i 1=

n

∑ wixi

i 1=

n

∑ c≤ xi 0 1,{ } i,∈ 1 …n,=

wixi

i 1=

n

∑ c ε+<

2.1 Exact Methodologies 17
Start with binding item 1, 3 & 5 as taken (marks with ’x’ in table 2.1), and 2 & 4 as not
taken:

Step 1. Set with item 1, 3 & 5 (Σ = 57): Solution is bounded (> 53)!
Step 2. Drop item 5, add item 4 (Σ = 58): Solution is bounded!
Step 3. Drop item 3, add item 4 (Σ = 54): Solution is bounded!
Step 4. Drop item 1, add item 4 (Σ = 47): Infeasible!

Additionally add item 2 (Σ = 67): Solution is bounded!
Step 5. Drop item 1, add item 2 (Σ = 52): Solution found!

Exploration terminated!

By trying out all possibilities, a solution may be found satisfying all design constraints.
A more relaxed tolerance level may allow to find a solution sooner than using a strict
tolerance level. However, an increasing number of binding items can cause the enumeration
problem to be impractical to solve.

An application of enumeration for hardware/software partitioning is the methodology of
D’Ambrosio et al., [20]. They use a tool based on enumeration to find implementations
with forms a pareto curve. This approach suffers from long run-times and should only be
considered if the estimation of costs and performance can be proven to be highly accurate,
and if the number of objects is rather small.

Li et al., [72], examine the problem of determining the bound on the running time of a
given program on a given processor. An important aspect of this problem is determining
the extreme case program paths. The explicit enumeration algorithm of program path
reaches its performance limit rather quickly since the number of feasible program paths is
typically exponential in the size of the program.

2.1.2 Integer Linear Programming (ILP)

Linear programming (LP) is a technique for finding the best of all possible solutions of
a system of linear equalities and inequalities describing design constraints. The criterion for
the best solution is the maximum or minimum value of a given linear function of bounded
variables, called the objective function. Such an objective function can include
implementation characteristics regarding, for instance, performance, area, or power.
Integer Linear Programming (ILP) restricts its possible solutions to integers in order to
reduce the runtime.

5 14 x x x x x
Total 92 57 58 54 47 67 52

Binding
Item i

Weight wi Step 1 Step 2 Step 3 Step 4a Step 4b Step 5

Table 2.1: Example for Enumeration

18 Chapter 2 Related Work
An Integer Linear Program is a problem that can be expressed as follows:

• Minimize the objective function cx

• subject to the constraints defined by A x b

with . x is the vector of variables to be solved for, A is a matrix of known
coefficients, and c and b are vectors of known coefficients.

Geometrically, see figure 2.2, the linear constraints define a convex polyhedron, which
is called the feasible region. Since the objective function is also linear, all local optima are
automatically global optima. The linear objective function also implies that an optimal
solution can only occur at a boundary point of the feasible region.

There are two situations in which no optimal solution can be found. First, if the
constraints contradict each other (), then the feasible region is empty and
there is no solution at all. In this case, the ILP is said to be infeasible. Alternatively, the
polyhedron can be unbounded in the direction of the objective function (),
in which case there is no optimal solution since solutions with arbitrarily high values of the
objective function can be constructed.

These constraints can model very general problems and can be solved as a sequence of
linear programs. However, it can be extremely hard to solve. Most problems are solved
using specialized procedures, such as branch and bound. Indeed, the most widely used
method for solving integer programs is branch and bound. Subproblems are created by
restricting the range of the integer variables. For binary variables, there are only two
possible values: setting the variable to 0, or setting the variable to 1. More generally, a
variable with lower bound l and upper bound u will be divided into two problems with
ranges l to q and q+1 to u respectively. Lower bounds are provided by the linear-
programming relaxation to the problem: keep the objective function and all constraints, but
relax the integer restrictions to derive a linear program. If the optimal solution to a relaxed
problem is (coincidentally) integer, it is an optimal solution to the subproblem, and the
value can be used to terminate searches of subproblems whose lower bound is higher.

 ≤

xi ℵ∈

��
��

��
��
��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

Feasible Region

E.g. Optimal Solution

 Figure 2.2: Feasible Region of ILP

x a x a 1+≥∧≤

x a x a 2+≥∧≥

2.2 Heuristic Methodologies 19
Theoretically, this can solve any ILP. Practically, it often takes lots of computational effort
and time.

As an example for ILP during architecture exploration, Schwiegershausen et al., [83],
presents a system level design methodology for the optimization of heterogeneous
multiprocessor systems. It starts from specification of the application scheme, explores the
design space based on a finite set of parameterized processor modules, and uses mixed
integer linear programming as mathematical framework.

Arató et al., [1], use ILP to find a solution for a partitioning problem. The constraints are
set to minimize the usage of hardware accelerators of a given target architecture while the
overall performance is satisfied by using software and processors. The algorithm yields
optimal solutions. However, the runtimes are very long even for small problems.

2.2 Heuristic Methodologies

Architecture exploration with the help of HW/SW partitioning is a very complex task.
Exact methodologies can deliver optimal solutions only for small problem sizes in a
practical time. For larger problems, heuristic methodologies offer the best trade-off, since
the approximation of the solution towards the optimum can already satisfy the requirements
without being optimal.

A heuristic is a technique designed to solve a problem that ignores whether the solution
is provably correct, but which usually produces a good solution or even solves a simpler
problem that contains or intersects with the solution of the more complex problem.
Heuristics are intended to gain computational performance or conceptual simplicity
potentially at the cost of accuracy or precision.

Partitioning heuristics can be categorized in two classes, iterative heuristic
methodologies and constructive heuristic methodologies:

• Iterative approaches start from given partitions and then modify the partitions
repeatedly with the intention of improving the partition result. The binding
and scheduling are performed consecutively. Typical representatives of this
methodology are simulated annealing, tabu search, and evolutionary
approaches.

• Constructive approaches group the functions gradually into the available
partition blocks until all functions are processed. A metric is used to evaluate
the merits of assigning the functions into various blocks. Binding and
scheduling are performed in a combined way. Representatives of this
methodology are hierarchical clustering and greedy algorithms.

20 Chapter 2 Related Work
Iterative Heuristic Methodologies

Iterative approaches modify the bindings and then evaluate the changes of the results.
For performance analysis, schedules are generated and form a criterion for further changes.
This iteration is performed until either a desired constraint is met or the maximum number
of iterations is exceeded. In the latter case, the outcome is the best solution out of all
iterations.

2.2.1 Simulated Annealing (SA)

As its name implies, the simulated annealing (SA) exploits an analogy between the way
in which a metal cools and freezes into a minimum energy crystalline structure (the
annealing process) and the search for a minimum in a more general system.

SA's major advantage over other methods is an ability to avoid becoming trapped at
local minima. The algorithm employs a random search which not only accepts changes that
decrease objective function, but also some changes that increase it. The latter are accepted
with a probability

(2.2)

where δf is the increase in f and T is a control parameter, which by analogy with the
original application is known as the system "temperature" irrespective of the objective
function involved.

Through equation (2.2), the annealing schedule determines the degree of uphill
movement permitted during the search and is critical to the algorithm's performance. The
principle underlying the choice of a suitable annealing schedule is easily stated - the initial
temperature should be high enough to "melt" the system completely and should be reduced
towards its "freezing point" as the search progresses.

Eles et al., [31], presents a heuristics for HW/SW partitioning of system level
specifications based on simulated annealing. Results show that the performance and the
runtimes of SA are outperformed by a tabu search based algorithm.

2.2.2 Tabu Search (TS)

The basic concept of tabu search (TS) as introduced by Glover, [39] and [40], is "a meta-
heuristic superimposed on another heuristic. The overall approach is to avoid entrapment
in cycles by forbidding or penalizing moves which take the solution, in the next iteration,
to points in the solution space previously visited (hence ’tabu’)". TS proceeds according to
the supposition that there is no point in accepting a new (poor) solution unless it is to avoid
a path already investigated. This insures new regions of a problems solution space will be

p e
δf
T
---- – 

 

=

2.2 Heuristic Methodologies 21
investigated in with the goal of avoiding local minima and ultimately finding the desired
solution.

A partitioning solution forms a local minimum in which always the same single change
of task bindings is performed. To avoid using again the steps performed already, the
method records recent moves in one or more tabu lists. The memory prevents the search
from revisiting previously visited solutions and explore the unvisited areas of the solution
space. In this way, oscillating behavior of the intermediate solutions can be prevented and
other potential minima may be found.

In [62], Kwok et al. present a local search-based partitioning algorithm that attempts to
design a scheduling algorithm of low complexity without sacrificing performance. The
proposed algorithm is called Fast Assignment using Search Technique (FAST). The
algorithm works by first generating an initial solution and then refining it using local
neighborhood search.

A fast local search algorithm based on topological ordering is presented by Wu et al.,
[106]. This is a compaction algorithm that can reduce the schedule length produced by any
DAG scheduling algorithm by determining the optimal search direction.

Wild, [101], introduces an iterative local search based method for mapping and
scheduling of process graphs. For the local search, a new neighborhood definition is used
which is based on the critical path of the graph. The corresponding extension leads to faster
convergence and better results of the search.

2.2.3 Genetic/ Evolutionary Algorithms

Genetic or evolutionary algorithms incorporate the idea of a multi-point search strategy
inspired from natural evolutionary processes. The motivation for this methodology is based
on Charles Darwin’s theory of the selection of better individuals, and Johann Mendel’s
theory of the generation of variants from selected individuals. Genetic or evolutionary
algorithms are search algorithms based on the mechanics of natural selection and natural
genetics. An iterative procedure maintains a population of structures that are candidate
solutions to specific domain challenges, see figure 2.3.

During each generation the structures in the current population are rated for their
effectiveness as solutions, and on the basis of these evaluations, a new population of
candidate structures is formed using specific "genetic operators" such as mutation,
inversion, and crossover to breed better models or solutions from an originally random
starting population or sample, see figure 2.4. Mutation is a simple change in the structure,
whereas inversion changes a segment of the structure. Crossover breaks and trades
segments of different solutions with one another. The use of evolutionary techniques to
diversify, combine and select options may improve performance, following the methods of
natural selection by coding options as genes.

Evolutionary algorithms can provide a number of potential solutions to a given
partitioning problem. The final choice is left to the user. Thus, in cases where the particular
problem does not have one individual solution, for example a family of pareto-optimal

22 Chapter 2 Related Work
solutions, as in the case of multi-objective optimization and scheduling problems, the
evolutionary algorithm is useful for identifying these alternative solutions by exploring the
design space.

Kwok et al., [63], propose an parallel genetic scheduling (PGS) algorithm. By encoding
the scheduling list as a chromosome, the PGS algorithm can generate an optimal scheduling
list which in turn leads to an optimal schedule. The genetic operators order crossover and
mutation are used to improve the scheduling lists.

Blicke et al., [5], introduce an approach to system-level partitioning for data flow-
dominant HW/SW systems based on an evolutionary algorithm. A graph-theoretic
framework is used to describe algorithms, sets of architectures and user-defined binding
constraints. The application of the design model is only shown for a small size of the
specification graph. Larger graphs increase the runtime significantly.

Evaluate Objective Function

Generate Initial Population

Selection

Mutation / Crossover / Inversion

Are
Criteria

met?
Best Individuals

Result

yes

no

Generate New Population

 Figure 2.3: Evolutionary Algorithms

1 0 1 0 1 0 1 0

1 0 0 0 0 1 1 1
1 0 0 0 0 0 1 0

Parent 1:

Parent 2:
crossover point

From parent 2Crossover:

1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0
Mutation of 3rd bitMutation:

1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0

Segment to be inverted

Inversion:

 Figure 2.4: Genetic Operators on a Binary Coded Chromosome

2.2 Heuristic Methodologies 23
Zitzler et al., [109], take [5], an evolutionary approach to multi-criteria optimization
called the Strength Pareto EA (SPEA). Its reuse of non-dominated solutions during the
execution can improve the performance of SPEA. Again, the graph size is rather small to
gain results in a practical timeframe. Thiele et al. uses SPEA, [109], for analysis network
processor applications in [15], [16], [17], [73], [91], and [92].

Dick et al. introduce different methodologies for different applications based on a
genetic algorithm, [25], [26], [27], and [28]. Its multi-objective optimization generates
pareto-optimal sets of architectures which trade off different cost. The scenarios introduced
are limited in size of the task graphs to allow practicable runtimes for the analysis of the
algorithm.

The iterative heuristics represent partitioning methodologies to find near-optimal
solutions in a practical timeframe. However, the problem sizes are quite small with dozens
of tasks to be partitioned. Constructive heuristics can generated solutions in a much quicker
way and allow the processing of larger task graphs.

Constructive Heuristic Methodologies

Constructive partitioning algorithms start grouping the functions gradually into the
partition blocks and result in a binding and scheduling solution. A metric is necessary to
evaluate the merits of assigning the functions into various partition blocks. Constructive
algorithms are able to deliver solutions in a quick manner compared to iterative algorithms.
However, the immediate selection of tasks for the partition blocks cannot be rescheduled
later on. Such selections may result in unfavorable choices for the overall design and may
cause impairments in performance.

Hierarchical clustering and greedy algorithms represent two methodologies of
constructive heuristics shown in the following.

2.2.4 Hierarchical Clustering

Hierarchical clustering (Johnson [55], Lagnese et al. [67], and McFarland et al. [74]) is
a constructive method for partitioning which constructs initial partitions for the use of an
iterative algorithm later on. The initial partitions are bound to the resources of the target
architecture. The method groups pairs of behavioral objects based on a closeness metric
between the objects. After each grouping step, the closeness metrics are updated. These
partitioning tasks are repeated until a termination condition is met. For instance, if all
objects are bound, or the closeness metrics of all objects drop below a given bound. The
algorithm is fully characterized after defining the following issues:

• The closeness function that provides the proximity values.

• The cut level in the cluster tree that is built upon the closeness values.

24 Chapter 2 Related Work
Gajski et al., [35], describes an hierarchical clustering algorithm. The core of the
algorithm compares the closeness metric of all nodes and merges the one with large values
until all nodes are processed. Figure 2.5 shows a simple example with four nodes
interconnected by edges whose closeness values between two nodes are annotated. The
algorithm looks for the largest closeness value and merge the correspondent nodes.

Node 1 and 2 are subsumed to a cluster and the edges are adjusted accordingly. To
approximate the closeness values between the new cluster and node 3 and 4, the average of
the previous closeness values is applied. In graph I., the closeness value between node 1
and 3 is 25, and node 2 and 3 is 15. The adjusted value between node 3 and the new cluster
is (25 + 15) / 2 = 20 in graph II. Out of the resulting graph, the largest closeness values is
selected and the merging continues until only one cluster exists. The result (figure 2.5, IV.)
is a cluster tree which maintains a history of the order in which the objects are merged to
generate a variety of possible partitions.

A cutline, here in figure 2.5 (V.) arbitrarily drawn, can determine a partition of node 1
and 2 in one cluster and node 3 and node 4 each in another. The line can be drawn at any
level of the cluster tree and also in a different angle. Each cluster may be bound to a
resource of the target architecture. Numerous possible partitions can be generated by such
lines, where each partition consists of groups whose objects are close to each another.

2.2.5 Greedy Algorithms

Greedy algorithms always take the best immediate or local solution while finding an
answer. Greedy algorithms determine the overall, or globally, optimal solution for some
optimization problems, but may find less-than-optimal solutions for instances of other
problems. If there is no greedy algorithm that always identifies the optimal solution for a
problem, many possible solutions need to be searched to find the optimum. Greedy
algorithms are usually quicker in processing, since they don't consider all details of possible
alternatives.

1

2 3

4

30
15

10

10 10

25 1

2 3

4
10 10

20 1

2 3

4
10

1

2 3

4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

I. II. III. IV.

1

2 3

4

1 2 3 4

V.

 Figure 2.5: Hierarchical Clustering

2.2 Heuristic Methodologies 25
Greedy algorithms are step-by-step recipes for solving problems. A greedy algorithm
might also be called a "single-minded" algorithm or an algorithm that selects all of its
favorites first. The idea behind a greedy algorithm is to perform a single procedure in the
recipe over and over again until it can't be done any more and see what kind of results it
will produce. It may not find the optimum solution, or, if it produces a solution, it may not
be the very best one, but it is one way of approaching the problem and sometimes yields
very good (or even the best possible) results in a short period of time.

Imagine a cashier who does not really consider all the possible ways in which to count
out a given sum of money. Instead, the required amount is counted out beginning with the
largest denomination and proceeding to the smallest denomination.

Suppose nine coins are given: five 1c (cent) coins, two 5c coins, and two 10c coins;
. To count out 16 cents, we start with a 10c coin,

then add a 5c coin followed by a 1c coin. This is a greedy strategy because once a coin has
been counted out, it is never taken back. Furthermore, the solution obtained is the correct
solution because it uses the fewest number of coins.

Unfortunately, greedy algorithm does not always produce the correct answer. Consider
what happens if a 15c coin is introduced. Suppose a change of 20 cents is asked to count
out from the following set of coins: . The greedy algorithm
selects the 15c coin followed by five 1c ones - six coins in total. Of course, the correct
solution requires only two coins provided the minimal number of coins is required. The
solution found by the greedy strategy is a feasible solution, but it does not optimize the
objective function.

The selection of the appropriate partitions and resources can be compared to the example
above. Heuristic list scheduling algorithms perform such operations of greedy partitioning
algorithms. They are widely used for their low-complexity and good performance. Usually,
performance is taken as the optimization function for partitioning. Within architecture
exploration, the main tasks of such constructive list scheduling algorithms are the following
three items:

• The identification of the potential tasks to be processed next.

• The selection of the most appropriate task/resource binding.

• The proper scheduling of the task.

List Scheduling manages a list of task which need to be scheduled, both the sequence of
consumed time slots in the schedule and the sequence of selecting tasks. This list is ordered
by priorities for each task which are the metric for the selection decision. The higher the
task priority, the earlier the task is to be scheduled. Figure 2.6 depicts the flow chart of a
list scheduling algorithm.

After the global priorities of each task are determined, all tasks are identified which are
ready to be scheduled next and taken into account for the selection of the next binding.
Originally, list scheduling algorithms determine the priority of all nodes before the
scheduling takes place. This selected sequence of the nodes is fixed and ordered by static

c1 … c9, ,{ } 1 1 1 1 1 5 5 10 10, , , , , , , ,{ }=

1 1 1 1 1 10 10 15, , , , , , ,{ }

26 Chapter 2 Related Work
priorities. Even if an unfavorable situation arises during the scheduling, a change in
priorities is not possible. The usage of the current schedule for priority updates during
partitioning allows an improvement of the performance. The situation based selection
allows the choice of the most favorable task. In this way, dynamic priority calculation can
cope with congested resources, especially communication resources.

However, a wrong decision in the sequencing of the tasks here can impair the overall
performance significantly. A task scheduled earlier with the highest priority at the time of
selection may block valuable resources and extend the total latency. When the selection is
done, the task is bound to the resource and no rescheduling is possible to fix issues later on
in the scheduling. A change of the binding and scheduling sequence here would require to
start the partitioning all over again.

With only a small set of tasks to be examined, fast analysis times can be achieved.
However, the binding decisions have to be done with only partial knowledge of the total
schedule. Therefore, the selection process of the task is very critical to the overall
performance.

Figure 2.7 shows the priorities of the single tasks and the sequence of binding and
scheduling (step A through D) with the help of a small example. The tasks 1 through 4 are
to be partitioned with the data dependency depicted in the task graph. With all four task to
be bound and scheduled, task 1 has the highest priority to be selected in step A. Task 2 is
planned to be selected next. After the partitioning of task 1 in step B, the priorities are
changed of the other tasks. Instead of task 2, task 3 is chosen next due to the consideration
of the current schedule.

Such changes of the task priorities allow the response to unexpected congestions of
resources. Especially, hardware accelerators are planned to be selected regardless of the
communication resource. With heavy data traffic on the shared bus, large latencies can

All Tasks
done

List of considered Tasks (Ready Task)

Bind this Task/Resource Combination

Entry this Task/Resource in the Schedule

Determine Task with Highest Priority (Earliest)

Determine Global Priority for each Task

Adjust Priorities with Actual Schedule

y

n

 Figure 2.6: List Scheduling Algorithm

Dynamic List
Scheduling

Add-on

Static List
Scheduling

2.3 Features of Partitioning Algorithms 27
occur which may impair the overall performance. In step C and D, task 2 and 4 are
partitioned.

Dynamic-list scheduling algorithms, such as the Force Directed scheduling (Paulin et al.
[77], Dutta et al. [30]), are able to utilize more information for the selection of the binding,
e.g. for performance objectives, the schedule is updated after each binding.

In [58] and [57], Kalavade et al. introduce an algorithm with an adaptive objective
mechanism based on a combination of global and local measures. Contradictory objectives,
such as hardware area minimization and latency constraints, are taken into account by a
global time-critical measure which selects an objective function in accordance with
feasibility. Local characteristics of the nodes are considered by classifying nodes into local
phase types.

Sih et al., [85], presents a compile-time scheduling heuristic called "Dynamic Level
Scheduling", which accounts for inter-processor communication overhead when mapping
communicating tasks onto heterogeneous processor architectures with limited or possibly
irregular interconnection structures. This technique uses dynamically-changing priorities
to match tasks with processors at each step, and schedules over both spatial and temporal
dimensions to eliminate shared resource contention.

Xie et al., [107], extend this approach of Sih et al. and introduce a partitioning algorithm
that efficiently handles conditional execution in multi-rate embedded system. They propose
a mutual exclusion detection algorithm that helps the scheduling algorithm to exploit the
resource sharing. Partitioning is simultaneously performed to take advantage of the
resource sharing among those mutual exclusive tasks. This algorithm is used, inter alios, by
Shin et al., [84], Wu et al., [105], and Vallerio et al., [94].

2.3 Features of Partitioning Algorithms

In this section, special aspects of partitioning algorithms are presented which increase
the applicability and the performance of the algorithms.

3
2
1

3rd
2nd
1st

4th4

Task Rank
Partitioning Step

1st
2nd

3th

1st

2nd 1st

2 3

1

4

Task
A B C D

1 3 42

 Figure 2.7: List Scheduling Example

28 Chapter 2 Related Work
2.3.1 Consideration of Communication

The consideration of communication is an very important factor of SoC design.
Simultaneous accesses on shared media can block resource connections and can result in
degradation of the performance. In particular, applications which are sensitive to latency
increase require special consideration of communication. In the following, some examples
of research work are presented which include communication during partitioning:

Kwok et al., [66] propose an algorithm that schedules the tasks as well as the
communication traffic by treating both the processors and communication links as
important resources. The algorithm adapts its tasks scheduling and mapping decisions
according to the given network topology. Such as tasks, messages are also scheduled and
mapped to suitable links during the minimization of the finish times of tasks.

In [46], Hu et al. present an algorithm which statically schedules both communication
transactions and computation tasks onto heterogeneous Network-on-Chip (NoC)
architectures. In NoC architectures, a chip consists of contiguous areas which are
physically isolated from each other but have special mechanism for communication among
each other. This work formulates the problem of concurrent communication and task
scheduling for heterogeneous NoC architectures.

2.3.2 Support of Conditions

Control-dominated applications, for instance, of the networking domain, necessitate the
differentiation of different execution branches. The support of conditional branches is
essential to model and simulate such applications in a realistic way.

Consideration of Conditions by Explicit Set of Conditions

Eles et al., [29], [32], and [33], present a list-scheduling algorithm for task graphs with
data and control dependencies. Its target is to derive a worst case delay by which the system
completes execution, such that this delay is as small as possible. For each set of conditions,
individual subgraphs and schedules are created which blank unused tasks. In this way, a
customized schedule for each condition set can be derived. However, the effort to generate
schedules for each condition set can be become quite large.

Consideration of Conditions by Mutual Exclusiveness

At high levels of granularity, the primary objective of the partitioning algorithm can be
to derive an estimation of overall latency in worst conditions. Hence, the critical path of the
workflow represents the most delayed execution. To consider all possible condition
situations, a tedious analysis of possible execution scenarios may be performed. However,
only the worst performing condition set will be considered.

To reduce analysis complexity, the selection of a conditional branch may be compared
to a switch-case instruction. In this way, only a single branch is selected and active at a

2.3 Features of Partitioning Algorithms 29
given time. With only one single branch active, such conditional branches exclude each
other mutually. Mutual exclusion allows the consideration of two or more independent
tasks to be assigned to the same resource for the same timeframe. By considering all
branches of one conditional fork simultaneously, the critical path can be identified.

Wakabayashi et al., [97], present a global list scheduling method based on condition
vectors. The proposed method exploits a more "global parallelism" which parallelizes
multiple nests of conditional branches and optimizes across the boundaries of basic blocks.

Juan et al., [56], propose an algorithm for comprehensive identification of mutually
exclusive operators to improve the quality of the design independent of description styles.

Xie et. al, [107] proposes an algorithm for supporting conditional branches within CPGs,
which detect mutual exclusion with the help of a branch labeling method. In this way,
mutual excluded tasks can be identified easily. However, only structured branch models are
supported.

Wild, [101], developed an approach which enables the treatment of graphs with control
dependencies which are common for the processing of data communication protocols. A
new procedure for the detection of the mutual exclusivity of graph nodes is defined. In the
scheduling step, this information is used for the efficient usage of the resources. This
extension is used for the partitioning algorithms in this work.

2.3.3 Look-Ahead

The constructive greedy algorithms shown in the previous sections perform partitioning
in a very quick manner with the side effect of non-optimal results. A further design step of
the dynamic list scheduling may be the consideration of future events.

Kwok et al., [61], propose a static scheduling algorithm for allocating task graphs to
fully connected multiprocessors called the Dynamic Critical-Path (DCP). It determines the
critical path of the task graph and selects the next node to be scheduled in a dynamic
fashion. The schedule is rearranged on each processor dynamically in the sense that the
positions of the nodes in the partial schedules are not fixed until all nodes have been
considered.

Winckler, [102], proposes a dynamic decentralized look-ahead scheduling algorithm
and a cooperation protocol. The information is utilized about the internal job structure
concerning future service requirements and system state information for dynamically
arranging schedules such that jobs can take advantage of inevitable waiting times of others.

Kalavade et al., [58] and [57], introduces a heuristic, called GCLP (Global Criticality,
Local Preference). The heuristic reduces the greediness associated with traditional list-
scheduling algorithms by formulating a global measure. The global measure also permits
an adaptive selection of the optimization objective at each step of the algorithm.

30 Chapter 2 Related Work
2.3.4 Clustering

Clustering is employed in heuristics to reduce the complexity of partitioning.
Functionalities are grouped to several clusters where each cluster is handled as one big
behavioral object.

With the term flexibility, Taubelt et al., [45], introduce a design dimension of an
embedded system that quantitatively characterizes its feasibility in implementing not only
one, but possibly several alternative behaviors. A hierarchical graph model is introduced
that allows to model flexibility and cost of a system formally with the help of clustering.

Cirou et al., [18], apply the clustering technique for heterogeneous systems and present
the algorithm "triplet". They use an effective scheduling technique which consists in
grouping tasks on virtual processors, called clusters, and then mapping clusters onto real
processors.

Dave et al. present a hardware-software co-synthesis technique for real-time distributed
embedded systems in [22] and [23]. The algorithm uses a new dynamic task clustering
technique which takes the dynamic the critical path and the existence of multiple critical
paths in the task graph into account during partitioning.

2.4 Summary, Comments and Conclusions

In this chapter, various partitioning algorithms are presented which may be applied in
system synthesis. Exact and heuristic methodologies are introduced to select an algorithm
for this thesis.

Exact methodologies, such as enumeration and integer linear programming (ILP), can
determine optimal solutions. The solution approaches of exact methodologies are very
time-sensitive to the problem size. Heuristics allow faster execution than exact
methodologies by evaluating a part of the entire solution space. Hence, the results can only
approximate the optimal solution. Iterative and constructive heuristics represent two
partitioning algorithm types. Although iterative heuristics provide near optimal results, the
execution of the iterative algorithms can take quite long compared to constructive
algorithms. However, constructive algorithms may produce impaired results due to their
task-by-task partitioning approach. A comparison of iterative and constructive heuristics is
shown in chapter 3.

The fast runtimes of constructive heuristics allow the designers to obtain solutions
immediately. To counteract the impaired performance of constructive heuristics, potential
modifications of the task priority calculation are very promising to improve the results. In
this thesis, a constructive heuristic is selected to serve as partitioning algorithm.

With the support of conditional branches, the methodology of Xie et al., [107], offers the
most favorable base to use for further examinations. The methodology supports the
abstraction level of system level design by having a task graph as functional representation

2.4 Summary, Comments and Conclusions 31
and annotated WCETs for architecture characterization. In addition, the constructive
heuristics supports conditional branches necessary for networking applications, and utilizes
heterogeneous resources for the target architecture. A detailed description of the algorithm
is given in the next chapter.

32 Chapter 2 Related Work

Chapter 3

Reference Algorithm

In the previous chapter, a variety of potential partitioning methodologies are introduced.
The constructive heuristics are considered in the following, since they provide a much
faster execution compared to exact algorithms or iterative heuristics. With respect to the
necessary support of conditional branches used in the modeling of networking applications,
the partitioning algorithm of Xie et al., [107], is selected as the basis of the used
partitioning algorithm in this thesis.

For performance evaluations, this algorithm is applied to synthetically generated design
models in a sufficient quantity to allow statements about the performance. TGFF, a tool
from Princeton University, [24], allows the creation of randomly generated and
reproducible task graphs. Since the structure of such synthetic task graphs is random, a
more improved handling of conditional branches is required than available in the algorithm
of Xie et al. to apply TGFF. For this reason, a Reference Constructive Algorithm (ReCA)
is introduced based on the algorithm of Xie et al. and the improved support of conditions
of [101].

ReCA acts as a reference of the introduced improvements to ReCA shown later in this
thesis. In the following, the way of modeling possible applications with the help of
conditional task graphs (CPG) is presented. After the algorithm of Xie et al. is illustrated,
the modification for ReCA are introduced. The partitioning algorithm is enhanced by more
flexible target architecture, more flexible communication structure, and the optimization of
the scheduling regarding performance. Subsequently, the performance of ReCA is
compared against well known iterative heuristics using tabu search for binding changes and
list scheduling for scheduling.
33

34 Chapter 3 Reference Algorithm
3.1 Modeling

In [35], Gajski et al. present some of the characteristics most commonly found in
conceptual models used by designers. The main characteristics are concurrency, state
transitions, hierarchy, programming constructs, behavioral completion, communication,
synchronization, exception handling, non-determinism, and timing. It is noted that different
classes of systems require specific subsets of these characteristics.

For embedded systems, the behaviors are defined by their interaction with their
environment. This interaction can be performed by sequencing between a set of modes.
Each mode may represent the current state or some computation. Such systems are
constantly responding to external events and computing their outputs as a function of their
inputs and their current state. Telecommunication systems are examples of embedded
systems. For the modeling of such embedded systems, the following characteristics need to
be considered:

• Behavioral Hierarchy: The process of decomposing a behavior into distinct
sub-behaviors, which can be either sequential or concurrent, may be
represented as either a set of procedures or a state machine.

• Non-Determinism: Within design models, more than one possibility for a
particular transition or task can be available. Not to limit the system by a made
choice, the designer can specify multiple options for the processing of
transitions and tasks. For instance, functional selections in a program
sequence, which will be chosen during run-time, describe a non-determinism
which can be used to model conditional branches.

• Concurrency: The support of concurrent behaviors of the design model is
important to allow parallel execution streams. Also, the concurrent behaviors
need to cooperate with each other in order to achieve the functionality
intended by the system as a whole.

• Synchronization of Execution Streams: At convergent branches, it needs to be
ensured that all preceding tasks are completed before the succeeding task can
be executed.

• Behavioral Completion: It is important to define states of behavioral
completion for performance comparability of different solution approaches
and to avoid infinite loops within design models.

Task graphs in design models are very suitable at representing the problems of system
synthesis. The characteristics of task graphs meet the requirements for embedded systems
mentioned above. Hence in the following, the design models are represented with the help
of tasks graphs.

The structures of task graphs specify the data and sequence dependencies of the
functionalities. The target architectures are characterized by WCETs (Worst Case

3.1 Modeling 35
Execution Times) as annotations of this task graphs. The communication architectures of
the design model are represented both in the task graphs by the graph vertices and in the
target architectures by communication structures.

Representation of Functionality

The functionalities of the considered application can be composed in a conditional
process graph (CPG), Eles et al., [29], [32], and [33]. A directed, acyclic and polar task
graph represents the dependencies of the system functions. The behavioral objects are
represented as graph nodes. To determine behavioral objects, the split within the whole
functionality is made, where communication is either necessary or reasonable, or where the
functionalities build conclusive units. The communication may be caused by either
switching over to another computational resource, or loading necessary data from the
memory. The communication or data transfers between the components of the target
architecture can be modeled within the task graph as either edges or separate
communication nodes. The nodes need to be designed to allow execution on one single
resource at a whole without interaction to other resources.

The execution of control domain applications depend on the processed data. The control
dependencies of the application are annotated as conditional branches within the CPG.
Different paths through the CPG can be taken which are designated by conditional edges.
Each node of the CPG can be the origin of conditional and unconditional edges. Figure 3.1
shows an example for a typical CPG. Node 1, 4, and 5 represent nodes with succeeding
conditional branches depending on Condition A, B, and C respectively. Note that the non-
determinism characterization of the design model does not yet select a specific branch,
however, only one conditional branch can be selected exclusively for execution. This
behavior can be compared to the switch-case instruction in the programming language C.
The handling and processing of these conditions will be described in section 3.2.3 and
section 3.3.3.

 Figure 3.1: Example for a Conditional Process Graph (CPG)

5

4

6

7 8

0

2

1

3

9 10

A A B B

C C

11

36 Chapter 3 Reference Algorithm
Eles et al., [33], introduce conditional process graphs as acyclic polar graphs
. Each represents one node. and are the sets of simple and

conditional edges respectively. and , where E is the set of all
edges. An edge from to indicates that an output of is an input of . The graph
is polar, which means that there are two nodes, called source and sink, that conventionally
represent the first and last processes. These nodes are introduced as dummy processes, with
no resource assigned, so that all other nodes in the graph are successors of the source and
predecessors of the sink, respectively.

CPGs represent networking applications in a suitable way. Networking applications do
usually not contain loops which cannot be unrolled to prevent the generation of acyclic
graphs. Depending on the contents of the data packet, a specific path through the task graph
is defined.

The worst case timing is the desired result of the analysis and determines whether the
performance requirements are met. The synchronization of execution streams prevent a
task from being executing unless all its incoming data transfers have been completed.
Figure 3.2 compares the different situations for each condition. After node 0 has completed
its execution, node 1 and 2 are started. Node 2 is done earlier than node 3. Nevertheless,
node 4 waits until all incoming data has been received to derive the worst case scheduling.

CPGs are useful representations of the applications and utilized in this thesis. Such
CPGs may also be combiend to larger task graphs to represent the processing of several
data packets. However, in this thesis only one instance of a CPG is used. In chapter 4, CPGs
are used for evaluation which are composed of different smaller CPGs creating a larger task
graph with specific characteristics.

Representation of the Resources

The implementation options of the single functionalities are itemized in the target
architecture. Resources provided in the target architecture can be classified in
computational or communicational resources. Computational resources are all kinds of
microprocessors, application specific HW accelerators, FPGA etc., in short all types of data
processing devices. Resources which support the communication on SoC are categorized
as communicational resources. Bus structures or point-to-point connections are examples
for interconnecting resources.

G V ES EC, ,() Pi V∈ ES EC
ES EC∩ ∅= ES EC∪ E=

eij Pi Pj Pi Pj

0
0

1 3
A:

t / T

t / T

3

1 2
A A

0 2 3
A:

 Figure 3.2: Simple Example for Scheduling of a CPG

3.1 Modeling 37
The computational resources are specified with the help of performance figures, so
called worst case execution times (WCET). At this level of abstraction, it is a common way
to characterize the performance of a resource by determining the upper bounds of the
execution latency for each functionality. The magnitude of the WCETs discriminates the
different types of computational resources. WCETs can be extracted by profiling
executable high-level models with the help of associated profilers. Other related work has
already covered this topic intensively, for instance, see Peters et al., [19], [78] and [79]. The
estimated latency values represented by WCETs are normalized figures referencing to
processing clock cycles or to a base time, such as µs or ns, and called time unit (T) in this
thesis.

Figure 3.3 shows the combination of target architecture and WCET in a simple example.
The given conditional process graph (CPG) provides the functionality which needs to be
processed. The target architecture provides various implementations and corresponding
resources for the processing of the tasks. The WCET table specifies the availability and the
performance for each resource and task. In this way, further resources can be added easily
to the analysis; or existing resources can be modified or erased. Here, task 2 cannot be
executed on the HW accelerator. Each task can only be bound to one resource at a time.
Different tasks can be executed in parallel on different resources as long as the sequence of
the tasks is according to the CPG.

If two consecutive tasks are selected to be processed on different resources, context
transfers of the processing units are necessary. A context transfer consists of suspending
one process from execution on one resource, recording its current state, transfer this state
to the other resource and starting the execution of the transferred process.

Representation of the Communication

Communication resources interconnect all computational resources of the target
architecture. Bus structures or single connections in between two resources, both
unidirectional and bidirectional, are the most common types of communication resources.
Connections via multiple buses or multi-hop communication can also be integrated in the
design model. However, these types of connections are not considered in this thesis.

 Figure 3.3: Target Architecture as Defined in the Specification

1

2

Acc.Proc.2
Proc.1 Proc.2

Task 1

Task 2

12

9

12

9

Target Architecture WCET TableCPG

Proc.1
Acc.

2

-

38 Chapter 3 Reference Algorithm
I/O and Memory accesses are represented by latencies caused during the processing of
the interfaces’ buffer management, or the load/store operation of the memory controller.
Since they have the same behavior during the analysis, I/O and memory can be assigned to
the computational class of resources. The corresponding data transfers contribute to the
occupancy of the shared communication resource.

For simplicity, only the total latency of the data transfer is used in the algorithms,
comparable to WCET. At this abstraction level of the analysis model, the buffer sizes are
considered as unlimited, since the scope of this work is not to determine these values, but
to analyze the interaction within the entire architecture.

On each communication resource, only one data transfer can be performed at a given
moment. If more than one resource wants to access the shared communication resource, an
arbitration mechanism has to decide which resource’ data transfer request is to be granted.
Here, the resource which ask for access first, becomes granted for the transfer first.

The representations of the functionality, the resources, and the communication form the
design model used in this thesis. The CPG and the WCET table contain all necessary
information to perform partitioning.

3.2 Constructive Heuristic by Xie et al.

In chapter 2, the algorithm of Xie et al., [107], was identified as a very suitable
partitioning algorithm that efficiently supports conditional branches in embedded systems.
An ME detection algorithm is presented that helps the scheduling algorithm to exploit
resource sharing. Binding and scheduling are performed simultaneously to take advantage
of the resource sharing among those ME tasks.

3.2.1 Partitioning Algorithm

The partitioning algorithm consecutively performs the binding and the scheduling for
each task of the CPG. The results may be evaluated within the architecture exploration
loop. The following pseudo code in figure 3.4 gives an outline of the functionality of the
scheduling algorithm introduced in section 2.2.5.

The calculation of the priorities for the list scheduling is performed in two steps. The
result of the first step for each task is called static urgency (SU) which represents global
priorities. Later on, this value is revised during scheduling and assigned as dynamic
urgency (DU) which considers the local situation of the schedule.

Static Urgency

The static urgency (SU) is calculated for each node based on the maximum
chronological distance of the considered nodes to the end node of the task graph, similar to

3.2 Constructive Heuristic by Xie et al. 39
priority assignment in some list scheduler. This figure can be compared to the HEFT
(Heterogeneous Earliest Finish Time) algorithm, [93]. The HEFT algorithm selects the task
with the highest priority at each step and assigns the selected task to a resource which
minimizes its earliest finish time. Figure 3.5 shows an example for a calculation of the SU

values. The weight for each task is calculated as the average WCET on available CPUs.
Data transfers are considered as additional latencies with fixed duration of 1T. Each longest
branch path is used to calculate the SU of each branch fork task.

The determination starts from the bottom of the CPG in a ALAP (as-late-as-possible)
scheduling manner. Since the resource 2 is not available for node 3, the SU value of node 3

 Figure 3.4: Outline of Partitioning Algorithm of Xie et al., [107]

1. for (task = each task of cpg)
2. calculate static_urgency(task)
3. create ready_list(list of ready task)
4. while (ready_list is not empty)
5. do
6. if (any ready_task is partitioned on ASIC)
7. schedule(ready_task; ASIC)
8. else
9. for (ready_task = each task of ready_list)
10. for (pe = each CPU)
11. calculate dynamic_urgency(ready_task, pe)
12. determine max dynamic_urgency
13. with (ready_taskmax; pemax)

14. schedule(ready_taskmax; pemax)

15. update(ready_list)
16. done

1 2

0

3

���������
���������Res1

��������
��������Res2�����������

�����������
����������
���������������������������������

Bus

9 22
5 21
2 -0

2 -3

��������
��������Res1

���������
���������Res2Task

WCET Table

8.52
6.51

11.50

23

Task SU

CPGTarget
Architecture

Resource
Library

Static
Urgency

Table = 8.5+1+ 2/1
= 2+1+ (5+2)/2
= 2+1+ (9+2)/2
= 2/1

 Figure 3.5: Static Urgency (SU) Calculation

40 Chapter 3 Reference Algorithm
contains only the WCET of 2T. Nodes 2 is assigned an SU value of 8.5T consisting of the
SU value of node 3, a data transfer of 1T, and the mean WCET of node 2. Similarly, node 1
results in an SU value of 6.5T composed of the SU value of node 3, a data transfer of 1T,
and the mean WCET of node 1. For the calculation of the SU value of node 0, the latency
of the critical path, here described by node 2, is used. The SU value of node 0 with 8.5T
consists of the SU value of node 2, a data transfer of 1T, and the WCET of node 0.

Dynamic Urgency

With SU values determined before the scheduling, the dynamic urgency (DU) revises
these priorities and takes actual scheduling and congestions into account. The DU is
defined as, [107]:

(3.1)

The DU depends on the following factors:

• SU implies the chronological distance of the critical path to the last node of the
CPG. High priority increases the chances of being preferred in the selection
process. The larger the SU value, the more critical the node to be processed
earlier than other nodes.

• tready(CPU) is the earliest processing start time for the considered task on the
considered CPU, e.g., cause by the earlier execution of preceding tasks.

• tready(Task) is the finish time of the preceding task. This value takes into
account the communication time of 1T for the data transfer from its
predecessor.

• The worst case execution time (WCET) is used of the considered Task on the
specific CPU.

The larger of the two tready values ensures that the data and the resources are available.
The highest DU value will be chosen to bind the corresponding task to the corresponding

CPU. This DU value conforms with the dynamic priority in list schedule algorithm
described in section 2.2.5.

DU Task CPU,() SU Task()
max tready Task() tready CPU(),{ }–
WCET Task CPU,()–

=

3.2 Constructive Heuristic by Xie et al. 41
3.2.2 Calculation of List Scheduling Priorities

To get a better understanding of the relevance of these addends of eq. (3.1), figure 3.6
should give an illustration of the various urgencies used with ReCA.

The left-hand side of the figure consists of a single CPG, a target architecture, and
corresponding WCETs. In this example, node 0 is already scheduled. It is to be determined
which ready tasks and which available resource are to be chosen next. Three node/resource
combinations are available:

• Node 1 can be processed on the microprocessor 1 or 2 ("Proc.1" or "Proc.2").

• Node 2 needs to utilize the microprocessor 2 ("Proc.2").

These three scheduling possibilities are shown in the middle of figure 3.6. Each schedule
expresses the allocation of the involved resources. The right-hand side of figure 3.6
illustrates the calculation of DU with the help of vectors. As the first potential solution,
node 1 would follow task 0 on processor 1. This situation does not require any data transfer.
SU represents the predetermined global priority and WCET the actual processing duration.
For the other two solutions with the processor 2 as selected resource, bus activity is
necessary since data needs to be transferred between the processors.

As a result, the DU1,Proc.2 vector has the greatest length which corresponds to the earliest
finish time of the three possibilities. In addition, this vector length represents the greatest
time buffer for the remaining tasks to be executed. Although the WCETs for node 1 differ
in a factor of 2.5., the length of the two resulting DU values of node 1 are similar. Data
transfers can cause an unexpected high increase in latency. The length of the transfer vector

����������
����������

����������
����������

����������
����������

�����������
�����������

����������
���������� !

Proc
1

Proc
2

Bus

/ -

- /

/ -
WCET

3

2

0

1
!/

WCET

Bus

Proc.2

Proc.1 0
�������������������������
�������������������������1

����������
����������
����������1

Bus

Proc.2

����������
����������
����������2

SU1

WCET DU1,Proc1

SU1

WCET

DU1,Proc2Transfer0 1

SU2

WCET
DU2,Proc2Transfer0 2

0 1

0 2

Node 1, Proc.1

Node 1, Proc.2

Node 2, Proc.2

 Figure 3.6: Scenario for Explanation of Urgencies

42 Chapter 3 Reference Algorithm
is automatically adjusted to the allocation of the involved resources regardless of the type
of resources.

3.2.3 Detection of Conditional Branches

Xie et al. introduces a branch labeling method to identify conditional branches in the
CPG. The available conditions are specially selected to ensure that only one conditional
branch per node can be chosen at a time. In this way, the conditional branches mutually
exclude each other for execution. In this way, the handling of conditional branches is
facilitated within task graphs.

Each node in the CPG is associated with a branch information structure as follows:
Level is the number of branch fork tasks that have to be executed before reaching this

tasks. Branch_label[i] is the name of the ith level branch fork task. Branch_cond[i] is the
condition value for the ith level branch.

Figure 3.7 depicts an example of the conditional process graph used by [107]. The
following branch-labeling recursion algorithm outline is applied and the results of
figure 3.7 are presented in table 3.1.

Node i Level Branch_label Branch_cond

A 0 N/A N/A
B 0 N/A N/A
C 0 N/A N/A
D 1 B B1
E 1 B B2

Table 3.1: branch_info struct for Figure 3.7

B
C

A

ED
G H I

J K

F
Conditional Branch
Regular Branch

 Figure 3.7: An Example Condititional Process Graph

3.2 Constructive Heuristic by Xie et al. 43
Mutual exclusiveness (ME) of two any task can be identified by the algorithm in
figure 3.8.

ME communication edges can be determined by using this scheme. For instance, the
communication edges B-D and B-E in figure 3.7 are ME and can be allocated to the same
communication link having overlapping execution time slots in the scheduling. Also, note
that two tasks on different branches might not be ME, for example node E and G.

The ME is reflected in the CPU ready time tready(CPU) for any partitioned task. The
algorithm determines tready(CPU) considering ME is shown in figure 3.8.

G 1 C C1
H 1 C C2
I 1 C C3
J 2 C, I C3, I1
K 2 C, I C3, I2
F 0 N/A N/A

Node i Level Branch_label Branch_cond

Table 3.1: branch_info struct for Figure 3.7

 Figure 3.8: Outline of Mutual Exclusiveness Detection of Xie et al., [107]

1. function ME(task1, task2)
1. {
2. L = min(task1.level, task2.level)
3. if (L = 0) then mutual_exlusive = false
4. // not ME such as task A and task I
5. if (L > 0) then
6. for all L levels (i)

7. if (task1.branch_label[i] task2.branch_label[i])

8. then mutual_exlusive) = false
9. // not ME such as task I and task E
10. if (task1.branch_label[i] = task2.branch label[i] &

11. task1.branch_cond[i] task2.branch_cond[i])

12. then mutual_exlusive = true
13. // ME such as task H and task K
14. else if (i+1 > L)
15. then mutual_exlusive = false
16. // not ME
17. end
18. return mutual_exlusive
19. }

≠

≠

44 Chapter 3 Reference Algorithm
3.2.4 Examples

Figure 3.10 depicts an example of a schedule of the CPG in figure 3.7 taken from [107].
The target architecture consists of two CPUs and a shared bus, which is not shown in the
schedule. Tasks G, H, and J are determined as ME. Hence, these three tasks may have
overlapping execution time slots on CPU 1. Similarly, task D and E are ME and can also
be scheduled at the same time slot. E and K belong to different conditional branches and
therefore are not ME. Task K needs to wait until E is processed.

The objective of this algorithm is to determine the worst case scheduling, which can be
identified as the task sequence A-C-I-J-F. This path has the longest execution duration.
This knowledge is very important during co-synthesis, which has to find out the
architecture that accommodates all cases.

In the next section, the Reference Constructive Algorithm (ReCA) is introduced based
on the algorithm of Xie et al. and serves for further evaluations.

 Figure 3.9: Calculation of CPU Ready Time

1. function PE_available_time(Task ready_task, CPU pe)
2. {
3. if (no task scheduled on pe)
4. return tready(pe) = 0

5. set sched_task = latest allocated task on pe
6. while (ME(ready_task, sched_task))
7. do
8. sched_task = sched_task.previous_task
9. end
10. return tready(pe) = sched_task.completion_time

11. }

CPU 2

CPU 1 C

A I

B

D
E K

H
G

J

F

 Figure 3.10: Scheduling Result for Example in Figure 3.7

3.3 Reference Constructive Algorithm 45
3.3 Reference Constructive Algorithm

The partitioning methodology of Xie et al. provides features necessary for the
partitioning of design model required in this thesis. However, this algorithm is mainly
focused on multi-processor systems. For the support of heterogeneous SoC architectures,
some modifications to the algorithm of section 3.2 need to be carried out. Two major
changes are the enhancement of ME detection and the treatment of components within the
target architecture. These modification are necessary to allow the evaluation of
performance with an ample number of synthetic task graphs. The modified partitioning
algorithm is called Reference Constructive Algorithm (ReCA) and used as reference in the
remainder of this thesis.

3.3.1 Algorithm Adjustments

The following enhancements are included in the ReCA:

• No hardware preference

The algorithm of Xie et al. focus on multi-processor systems and privilege
HW accelerators. ReCA does not differ between software and hardware
resources as computational units. There is no preference for non-CPU blocks.
HW accelerator blocks are treated as high-performance application specific
processors.

• More flexible Communication Structure

ReCA supports a flexible communication structure between computational
resources of the target architecture. An arbitrary number of busses can be
established between the resources. Also, it can be differentiated whether the
resources are allowed to write or read on several buses. In this way,
unidirectional connections can be created in the design model.

• Considering bus allocation and congestions of variable length data transfers

For multi-processor analysis, the duration of the transfers between the units
can become significant compared to the execution duration of the tasks.
Instead of simply adding one time unit to consider context transfers, an
estimation of time units depending on the amount of data is used for the
calculation of bus allocation. This value is specific to the edges of the CPG.

46 Chapter 3 Reference Algorithm
• All resources are considered in SU calculation.

The algorithm of Xie et al. only regards CPUs for the SU calculation. ReCA
considers all computational resource, since they also contribute to the total
latency of the application.

• Hole filling of empty slots in the entire schedule

To simplify the scheduling process of the algorithm of Xie et al., only the
latest scheduled task of the selected resource is considered to find the next
available time slot. ReCA removes this restriction. The entire time frame of the
schedule is examined to find the earliest possible slot fitting the processed
task. Figure 3.11 show an example of a task graph whose node 3 and 4 have
no data dependency. Since node 2 is executed later than node 1, ReCA can
schedule node 4 sooner than the algorithm of Xie et al.. In this way, a
compacting of the scheduling results in the improvement of performance by
utilizing unassigned slots in an earlier point of time in the schedule.

• Enhanced ME Detection for Arbitrary Connections

ReCA supports arbitrary communication structures within the model
introduced by Wild in [101]. ME can be detected without having a regular
structure of the graph which facilitates the generation of analysis models.
Graph generation tools, such as TGFF [24], can be applied without
considering the graph’s structure for conditional branches.

3.3.2 Implementation

According to figure 3.4, the following pseudo code of the partitioning algorithm,
figure 3.12, gives an outline of the functionality of the ReCA, and figure 3.13, an outline of
the updated static urgency calculation.

ReCA

Xie et al. 1 3 4

1 4 33 4

12 2

2

 Figure 3.11: Hole Filling of Empty Slots

3.3 Reference Constructive Algorithm 47
3.3.3 Improved Condition Support

Conditional branches are a principal characteristic in control-driven applications. For
the facilitation of the CPG processing, conditional branches are usually handled each as
single contiguous subsets of nodes without any interconnects to each other, such as in
[107]. Connections between these contiguous subsets are not allowed in this methodology,
see figure 3.14.

This constraint of the condition handling restricts the flexibility of the creation of design
models. Arbitrary interconnects are necessary, e.g., for error handling or premature
program termination require a break out of these single contiguous graph branches. Instead
of creating a special error handling for each graph branch, a common subset of tasks for

 Figure 3.12: Outline of ReCA

�
�
��

�
�
�1. calculate Static_Urgency for each node using all resources;

2. while(nodes are left to be mapped)
3. do
4. determine all ready_nodes
5. for (N = all ready_nodes)
6. for (R = all possible resources)
7. Dynamic_Urgency(N, R) = Static_Urgency(N)
8. - max(t_ready_data(N); t_ready_res(R))
9. - WCET(N, R)
10. (Nmax, Rmax) = determine max Dynamic_Urgency(N, R)
11. end
12. end
13. bind_and_schedule(Nmax,Rmax);
14. done

 Figure 3.13: Outline of SU Calculation

1. while (not all nodes are processed)
2. do
3. for all nodes(node)
4. if (node == last node)
5. SU(node) = average_WCET(node)
6. if (all successors are processed)
7. for all successors(sux)
8. SU’(sux) = SU(sux) + communication_latency
9. determine max(SU’(sux))
10. end
11. set SU(node) = max(SU’(sux)) + average_WCET(node)
12. mark node as processed
13. end
14. done

48 Chapter 3 Reference Algorithm
error handling is used by the application to achieve more efficiency. To support such
combination, changes in the handling of conditional branches need to be made.

Figure 3.15 depicts an other example of a conditional task graph. All conditional
branches are marked with a dotted line. Obviously, node 2 and 3 are ME because they are
derived from the same conditional node and cannot be reached by other nodes. Any two
nodes which originate from a common conditional node can be potentially designated as
ME. Similarly, node 7 and 8 are ME since both originate from node 5. Although node 8 can
additionally also be reached via node 6, this does not influence the ME of node 7 and 8.
Node 7 does not have any direct relationship or connection with node 6.

Whenever it is possible to reach two different nodes under a common condition
combination, these two nodes are not ME. For instance, node 9 and 10 cannot be identified
by inspection. To detect ME, all paths to these considered nodes in the task graph have to
be analyzed whether they allow overlapping allocation. A two step approach with an
annotation stage and an inspection stage enables this analysis, first introduced by [7] and
[101]. This improved condition support is used by ReCA.

B
C

A

ED
G H I

J K

F

Conditional Branch
Regular Branch
Connection not allowed

 Figure 3.14: Traditional Conditional Branches

1 4

0

32 5 6

87

9 Conditional Branch
Regular Branch

10

c1 c2

c3

‘1’ ‘2’ ‘1’ ‘2’

‘1’ ‘2’ME!

ME!

ME?

 Figure 3.15: Mutual Exclusion of Tasks

3.4 Performance Evaluation of the Reference Algorithm 49
3.4 Performance Evaluation of the Reference Algorithm

For the evaluation of the partitioning algorithms, a huge number of different task graphs
need to be provided to allow statements of the performance. A manual creation of task
graphs in a sufficient quantity is not feasible. Statements about the quality of the algorithms
which are statistically ensured cannot be provided. Moreover, task graphs are specified
with a large number of parameters. A limited number of manually generated task graphs
based on actual applications cannot cover all parameter in a sufficient way. Only restricted
statements about the partitioning algorithms can be made.

Hence, an approach is necessary to generate an ample number of synthetic task graphs
in a fast and reproducible way. Such sets of task graphs needs to be adequately
distinguishable to establish various classes of graphs properties. These classes of graphs
properties are used to evaluate different behaviors of the algorithms. In this way, the
performance can be predicted based on the respective parameters.

The synthetic design models represent a substitution of real-world applications which
may serve as benchmark for evaluation of the algorithms. Also, the characteristics of the
target architecture needs to be parameterized to substantiate the tests with different
scenarios in order to assess the performance. A complete inspection of all parameter
combinations is not feasible due to complexity. In a later chapter, a design model of a real-
world scenario with various target architectures is used to confirm the derived trends.

In the following, the task graph generation tool "Task Graph for Free" (TGFF), [24], is
introduced. The utilized parameters are used for the evaluation of the partitioning
algorithms. The evaluation environment and tools are introduced which uses the design
model and architecture assumption - the characterization of the graphs and the target
architecture for the evaluation. The results of the performance evaluation conclude this
section.

3.4.1 Generation of synthetic test pattern

The tool "Task Graph for Free" (TGFF) which was developed at Princeton University,
[24], is applied for the generation of CPGs. These CPGs are used as test scenario references
for various methodologies in the system synthesis research field. TGFF meets the
requirements mentioned above and facilitates the generation of pseudo-random CPGs and
parameters which specify the target architecture and the therein deployed blocks.
Figure 3.16 shows an example of an task graph generated with TGFF.

For the analysis of the partitioning algorithms, parameters of synthetic graphs need to
be designated. Due to the heterogeneity as well as the different levels of abstraction, the
CPGs of actual applications cannot simply be defined by a limited number of parameters.
The usage of such synthetic graphs is simply an aid for performance evaluation. With the
possibility of a multitude of possible tests and a variety of parameter values, the indication
of the performance of the considered algorithms may derive trends of their behavior.

50 Chapter 3 Reference Algorithm
The following research groups use TGFF for the evaluation of their algorithm, just to
name a few: Jeong et al., [54], Schmitz et al., [82], Shin et al., [84], Vallerio et al., [94], Xie
et al., [107], Zhang et al., [108], etc.

Characteristics of the CPG

For the characterization of the synthetic graphs, the following properties are considered
predominantly:

• Number of nodes

• Connectivity of the nodes and structure of the graph

• Amount of data transferred between nodes

• Number of conditional edges

For the reproduction of task graphs, these properties are suitable parameters to
distinguish between different classes of task graphs. The structure of the graph is an
essential property. However, it is difficult to specify the properties in numerical figures.
Possible candidates for parameters can be the number of start and end nodes of a task graph,
and the mean number of preceding and succeeding edges per node. In consideration of the
considered application of network packet processing, it is expedient that the graph consists
of one single start node and one single end node. The single start node represents the arrival
of an data packet or the provision of the data packet header. The single end node
demonstrates the storage of the information how to deal with the packet, or the forwarding

 Figure 3.16: Example of a Task Graph Generated with TGFF

3.4 Performance Evaluation of the Reference Algorithm 51
of the packet itself. Areas in the CPG with a different density of edges per node are not
possible due to the input of the graph generator.

Characteristics of the Target Architecture

Besides the structure of the CPG, the target architecture is the other important input for
the partitioning algorithms. A simultaneous generation of target architecture information
containing performance figures is preferable, because this information is tightly linked to
the nodes in the graph. The following parameters can be identified:

• Structure of the architecture

• Communication architecture

• Number of blocks/block types (resources)

• WCET of the tasks depending on the resources

• Implementation possibility of tasks on the resources

ReCA is able to process multiple buses of the target architecture. However for the
evaluation in this thesis, the communication architecture consists of only one shared bus
connecting all resources. Hence, the characteristics of the target architecture depends
merely on the number of diverse resources and the WCETs depending on the task and
resources. Furthermore, the implementation possibility decides about the feasibility of
tasks which can be executed on a specific resource. Microprocessors can usually process
all kinds of tasks, possibly with performance drawbacks, while application-specific
accelerators can only execute specific nodes of the CPG.

Generation of synthetic graph and architecture pattern

The main parameters of the graph generation with TGFF are the number of nodes and
the specification of the connectivity. With the given maximum number of preceding and
succeeding edges per node, the graphs are generated by adding further nodes at the ingress
and egress side of a first kickoff node recursively. Beginning with this first node, nodes are
appended to these nodes to the ingress and egress side until the desired number of nodes is
reached. For instance, on the ingress or egress side, the node with the largest difference x
of the maximum allowed and actual number of connections on the corresponding side of
the node is selected. A random number y of nodes with are appended on this node
connected by edges. In this way, the structures of the graphs are created by nodes and edges.

In addition, parameter values can be annotated to the nodes of the graph and are
represented by so-called tables. They are selected in a pseudo-random manner similar to
the graph generation. The application and interpretation of the parameters is left to the user
of the tool. Parameters of the graph and the target architecture is defined by both pre-set
and statistical values which are uniformly distributed and specified by the mean and the half
interval width. The relevant parameters for the analysis are primarily the amount of data for

y 0 x;[]∈

52 Chapter 3 Reference Algorithm
communication, as well as the feasibility and the WCET of the tasks subject to the
resources. Further information can be found in the TGFF documentation in [24].

For the generation of test data CPGs, following parameters are used:

• Number of Nodes (n)

• Number of maximum preceding (id) and succeeding (od) edges of the nodes

• Amount of data and corresponding latencies for context transfers.

The actual number of nodes within a CPG is not exactly n, but within the range of
[n;n+od-1] due to the way of implementation. Since od is quite small compared to n, the
deviation is negligible. Therefore, a specific value of the graph size should be understood
as a class size.

The following parameters characterize the component’s properties of the target
architecture used by TGFF:

• Number of resources per resource types

• Type of resources

• Corresponding WCET of each task with regard to each resource.

Previous work analyzes the characteristics of computational resources within SoC
architectures. Of special interest is the performance and the distribution of instruction
types. CommBench, a benchmark for evaluating and designing telecommunications
network processors introduced by Wolf et al. in [104]. The benchmark applications focus
on small, computationally intense program kernels typical for SoC with network
processors. Resource properties can be assigned to the distribution given in [104]. This
would allow to model these pseudo applications and to evaluate the partitioning algorithms
under proper scenarios. Later in this thesis, the design models are generated according to
CommBench.

3.4.2 Evaluation Environment and Tools

The simulation environment consists of a tool chain generating and modifying task
graphs with potential target architectures. Starting with a plain generic task graph,
information about conditional branches are included, and memory accesses are inserted in
the CPG. The prepared graphs are fed in the partitioning algorithm. Finally, the results are
compiled and presented.

Figure 3.17 gives an overview of the tool chain for the following analyses:

• tgff: Task Graphs For Free (TGFF), [24], generates pseudo-random task-
graphs and WCET figures for the target architectures.

3.4 Performance Evaluation of the Reference Algorithm 53
• tgff2occ: This graph format conversion tool converts the output of TGFF to
another format used by the constructive algorithm tool eca.
Furthermore, TGFF cannot sufficiently distinguish the computational
resources with regard to the implementation of the processes. Processors can
process any tasks performance-wise to a greater or lesser extent, whereas
application-specific resources are designed to support only a few task of the
task graph, but enable high-performance processing. For that reason, the ratio
of processible tasks for each resource can be specified during graph generation
by the tool occ2cpg. In this way, the feasibility of the application regarding the
resources can be represented.

• cond_cpg: With the help of this tool, branches of the graph can be assigned
conditional. Additionally to the percentage of total nodes becoming
conditional, it can be defined how many percent of the branches of a selected
node will be conditional.
TGFF is missing the feature to describe conditional branches within the
generated task graph. Therefore, a task graph modification tool designates a
percentage of nodes as sources for conditional branches. The number of ME
conditional branches or edges starting from these nodes can be set as well. The
selection of these nodes and branches is made randomly.

Parameters
Number of Nodes,
Size of Data Transfer,
Fan in/out,
Range of WCET
Number and Types of Resources

% Conditional Nodes
% Conditional Edges per Node

% Memory Access Nodes

Partitioning Algorithms part_algo

tgff

tgff2occ

cond_cpg

mem_cpg

evaluate

 Figure 3.17: Tool Chain for the Analyses of the Partitioning Algorithms

54 Chapter 3 Reference Algorithm
• mem_cpg: This tool appends memory nodes in the existing task graph. For that
purpose, designated links are split to insert a memory access node. In addition,
the memory is append to the target architecture as a further resource. In this
way, memory access can be modelled without major modifications of the
CPG.

• part_algo: This tool represent the implementation of the different partitioning
algorithms and ReCA.

• evaluate: The results of the algorithms will be summarized. The output figures
are the average improvement of the evaluated partitioning algorithm
compared to ReCA in percent, the ratio of improvements, and the ratio of
deteriorations of performance.

In the appendix B, the command options of the used tools are described.

3.4.3 Evaluated Partitioning Algorithms

For the performance evaluation of ReCA, other partitioning algorithms are necessary
which support conditional branches in their design model. In addition, the algorithms need
to process synthetically generated design models in a sufficient quantity to allow
statements about the performance.

The subsequent sections are following the partitioning algorithm evaluation of Wild,
[100] and [101], since the evaluated algorithms support conditional branches. Four iterative
heuristics with tabu search are compared against the reference algorithm, ReCA, introduced
in section 3.3:

• ReCA: The Reference Constructive Algorithm represents a constructive greed
heuristic algorithm based on the algorithm described in section 3.3.

• TS-One: Tabu Search (TS) ([39], [40]) which is already introduced in
section 2.2.2 searches the neighborhood of the current solution in the solution
space. To avoid oscillating effects between two solutions, a tabu list includes
all selected solutions and rejects already made decisions. With a predefined
number of iterations without improvement of the solution, the search is
terminated. Also, the exhaustion of all solution possibilities in respect of the
tabu list does not leave further solutions and results in termination of the
algorithm. This variant TS-One produces new solutions which differentiate in
one change of the binding; therefore the name TS-One. In this way, the
solution space can be analyzed seamlessly, however less directed.

3.4 Performance Evaluation of the Reference Algorithm 55
• TS-CP: The critical path (CP) variant of tabu search uses the tasks in the
critical path of the CPG to choose changes of the mapping. The CP illustrates
the longest execution path within the CPG and determines the overall latency
of the application. Hence, these tasks are very promising for changes in
mapping to improve the performance of the application.

• TS-ECP: In addition, the enhanced critical path (ECP) variant utilizes both
computational and communicational nodes of the critical path. In addition,
non-CP data transfers preceding data transfers of the critical path,
computational nodes of these non-CP data transfers, and computational tasks
preceding nodes of the critical path having already a delay. These delays are
so-called wait-times. The main objective of TS-ECP is to reduce these wait-
times.

• FAST: The "Fast Assignment using Search Technique" (FAST) algorithm is
introduced in [62] and revised in [64]. It acts as an alternative iterative
heuristic algorithm. The search algorithm is carried out in two nested loops
searching the critical path. The maximum number of iterations is limited by
two fixed parameters. The inner loop is specified by a margin parameter and
aborted early when no better solution is found.

3.4.4 Design Model and Architecture Assumptions

The following parameters describe classes of different design model and target
architectures. These classes of design model facilitate the evaluation of the partitioning
algorithms. The behavior and characteristic of the algorithms can be rated on the basis of
this design model classes.

The design model consists of 100 nodes in the average. Each node has 5 preceding nodes
and 5 succeeding nodes in the mean. Regarding conditional branches, 10% of the nodes
within the CPG are designated conditional. Out of these conditional nodes, 80% of the
succeeding edges are assigned as conditional branches.

The target architecture contains two type of resources. Resource type A represents
resources which can process all kinds of tasks, such as microprocessors. All instances of
resource type A are identical. Resource type B process only certain selected tasks of the
application (here 25%) with a mean speed-up factor of 5 faster than resource type A. These
selected tasks are arbitrarily chosen. Such resources may represent application-specific
accelerators. Each instance of resource type B represent a individual resource which has its
own characteristic. The computational resources are connected by a common shared bus.
The mean amount of transferred data accounts for 50 bits, if not overridden by the analysis
boundary conditions.

56 Chapter 3 Reference Algorithm
The following table 3.2 represents a typical set parameter for potential scenarios used
for the analysis later in section. The following constraints are applied to the tests as long as
no other constraints are given:

3.4.5 Results

In the following, the results of the evaluation are shown. With the help of TGFF, the
various algorithms are analyzed. The parameters described in section 3.4.1 are varied and
the impact is investigated. Since these parameters are describing too many potential
degrees of freedom of the application model to simulate and display completely, only a
limited range of values, each varied one at time, are examined.

The following result figures depict no absolute schedule latencies due to the synthetical
character of the graphs. Only the comparison of different algorithms is interesting. Hence,
all values are in relation to performance of the ReCA algorithm. To conserve the facility of
inspection, the figures simply consist of the mean of 60 different graphs. The calculations
are performed on an AMD Athlon XP 1700+ and Linux compiled with gcc and the
optimization option ’O3’. The execution durations are specified as absolute time values to
get the impression of calculation effort across.

Parameter Value Range

Design Model
Size of Graph 100

Number of Preceding Branches per Node 5

Number of Succeeding Branches per Node 5

Ratio of Conditional Nodes 10 %

Ratio of Conditional Edges originate from a Conditional Node 80 %

Target Architecture
Number of Resources on Resource Type A (homogenous) 2

Number of Resources on Resource Type B (heterogeneous) 5

Speedup of Resource Type B compared to Resource Type A 5:1

Ratio of executable Nodes on Resource Type A 100 %

Ratio of executable Nodes on Resource Type B 25 %

Number of Buses 1

Average Data over Bus 50 bits

Table 3.2: Simulation Properties of CPGs and Target Architectures

3.4 Performance Evaluation of the Reference Algorithm 57
Design Model Properties

In figure 3.18, the influence of the CPG size is depicted. Each working point is
determined by n results of the considered partitioning algorithm and set in to relation with
ReCA:

Reduction in Latency (3.2)

The fixed number of cycles within the search loop limits the achievable performance of
the FAST algorithm with an increasing CPG size. Tabu Search (TS-One) can perform
better, since the abort criterion is a complete neighborhood search and this results in a better
coverage of the solution space. Tabu Search with a critical path neighborhood (TS-CP)
performs about the same as the FAST algorithm. TS-CP is using nodes from the critical
path. Therefore, the solution space and the achieved performance are limited. With an
enhanced neighborhood and an increase of number of iterations, the TS-ECP can
outperform TS-CP. Since only a part of all possibilities are considered, the results of TS-
One cannot be reached. The degraded performance of the constructive algorithm (ReCA)
compared to the iterative algorithms lies in the simultaneous decisions of binding and
scheduling based on assumptions of the potential future scheduling which is not known yet.
Made decisions cannot be changed later on, and no rescheduling is possible. Iterative
algorithms can revise the binding step by step considering the entire scheduling. Hence, all
iterative partitioning algorithms perform better than ReCA.

In this context of the functionality of the algorithms, the consequences in respect of
runtime of the algorithms are shown in table 3.3. For the iterative algorithms besides on the
size of CPG, the runtimes particularly depend on the number of examined alternative
mappings. The trend of the size of neighborhood correspond to the figures in table 3.3. The

1
n
--- Latency Algorithm() Latency ReCA()–

Latency ReCA()
-- 

 

N
∑=

 Figure 3.18: Schedule Latency Depending on the Size of the CPG
Relative to ReCA

-12,5

-10

-7,5

-5

-2,5

0

0 50 100 150 200 250 300
Size of CPG

Sc
he

du
le

 L
at

en
cy

re

la
tiv

e
to

 R
eC

A
 in

 %
 .

TS-CP
FAST
TS-ECP
TS-One

58 Chapter 3 Reference Algorithm
analyzed mapping possibilities of TS-One and TS-ECP increase significantly, so do the
runtimes. The short runtimes of TS-CP compared to TS-ECP base upon the smaller solution
space.

The use of iterative algorithms based on local search is heavily limited due to the strong
correlation of graph size and runtime. The advantages in performance of the TS algorithms,
shown in figure 3.18, compared to FAST and particularly ReCA, which is able to process
much bigger CPGs due to shorter runtimes, are highly counterbalanced.

Architecture Properties

The following investigations have their emphasis on the number of processors and
accelerators of the target architecture. In figure 3.19, the simulation results for all the
presented algorithms with ReCA as reference are depicted. The axes show the numbers of
processors and accelerators and the mean scheduling latency in relation to ReCA.

Also for this analysis, TS-One and TS-ECP behave similarly. With an increasing number
of computational resources, the performance advances due to the increasing number of
alternative mappings by the increasing size neighborhood. On the other hand, the FAST
algorithm takes less mapping alternatives into account, the more resources are utilized. The
increasing solution space is processed more and more fragmentary. For TS-CP, no
consistent trends can be observed. Better performance can only be achieved with a high
number of processors and a low number of accelerators. An increase in the number of
accelerators, results in a higher bus usage and therefore worse performance. ReCA performs
about the same as the FAST algorithm with a low number of accelerators. An increasing
number of accelerators here, lowers the performance, since early decision cannot be revised
later on in the scheduling and causes unfavorable situations. In particular, the processed
data on the accelerators which needs to be sent back to the source resource is not regarded
sufficiently. Overall, the performance level of the constructive algorithm is worse than the
level of iterative algorithms.

Size of
CPG

Runtime

ReCA TS-One TS-CP TS-ECP FAST

50 0.01s 1.40s 0.36s 0.58s 1.71s
100 0.04s 13.43s 2.17s 5.84s 6.66s
150 0.13s 5.865s 6.16s 25.63s 17.17s
200 0.31s 187.71s 14.37s 81.87s 37.26s
300 1.20s 1198.45s 55.44s 810.97s 128.80s

Table 3.3: Runtime of the Algorithms with Regard to the CPG size

3.5 Summary and Conclusions 59
3.5 Summary and Conclusions

Based on the constructive greedy algorithm by Xie et al., [107], the Reference
Constructibe Algorithm (ReCA) is introduced in this chapter. The major modifications
compared to [107] are:

• No differentiation is made on types of computational resources.

• The bus allocation and congestions of variable length data transfers are
considered.

 Figure 3.19: Schedule Latency of Different Partitioning Algorithms
Depending on the Target Architecture Relative to ReCA

12
3

4
5

6

1 2 3 4 5 6

-25

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Number of
Resources

Type A
Number of

Resources Type B

12
3

4
5

6

1 2 3 4 5 6

-25

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Number of
Resources

Type ANumber of
Resources Type B

12
3

4
5

6

1 2 3 4 5 6

-25

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Number of
Resources

Type A
Number of

Resources Type B

12
3

4
5

6

1 2 3 4 5 6

-25

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Number of
Resources

Type ANumber of
Resources Type B

TS-ECP

TS-One TS-CP

FAST

60 Chapter 3 Reference Algorithm
• Empty slots are filled in the entire schedule during partitioning.

• All resources are considered in static urgency (SU) calculation for the global
priorities of the list schedule.

• A more flexible communication structure is allowed.

• Enhanced Mutual Exclusiveness (ME) Detection for Arbitrary Connections
replaces the existing method.

To assess the impact of these modifications, an evaluation setup with the task graph
generation tool TGFF is arranged. The analysis results show that the run-time of ReCA is
superior compared to the iterative heuristics. The larger the size of the CPG, the longer the
runtimes of iterative algorithms, even in orders of magnitude. The high speed of ReCA is
confirming the selection of a constructive algorithm for partitioning.

Nevertheless, the performance of ReCA is in need of improvement. The iterative
partitioning algorithms produce up to 23% shorter schedule latencies in the mean in this
scenario. The following chapter introduces enhancements of ReCA to augment the quality
of binding and scheduling choices and improve the performance. In this regard,
supplementary information is utilized during the determination of the priorities.

Chapter 4

Enhanced Constructive Algorithm

The advantage of constructive algorithms delivering a solution in a shorter analysis time
than recursive algorithms is shadowed by impaired results shown in chapter 3. To improve
the performance, ReCA is modified to include additional information in priority
calculation.

Two factors are accountable influencing the quality of the results: the resource selection
and the sequencing of tasks. By using more scheduling information of future processing
steps of the application during partitioning, the outcome of this algorithm can be improved.
This algorithm is called Enhanced Constructive Algorithms (ECA) in the following.

Analysis models with different levels of granularity can cause constructive algorithms
to generate forbidden results. Although two consecutive task are meant to be bound to the
same resource, the algorithm can utilize different resources during binding. The
preselecting of binding possibilities can solve such issues. Nodes having similar binding
constraints can be pooled to clusters of Common Implementation Nodes (CINs). In this
way, different resource sets composed of resources of the target architecture allow the
consideration of the interplay of various different resource types. Comparing different sets
of resources is a novel approach, since other partitioning algorithms allow only the
comparison of single resources. By using various sets of clusters for the same task graph,
different design objectives can be pursued during partitioning. Design objectives can place
special emphasis on the outcome of the analysis, such as parallel processing or the
acceleration of certain functionalities.

In the following, the enhancements of ECA with Look-Ahead (LA) are introduced,
applied and analyzed. The analysis environment of chapter 3 is utilized for the analysis of
ECA. Subsequently, the third enhancement - clustering - is introduced and analyzed. The
implementation is evaluated in a modified environment using compound task graphs
61

62 Chapter 4 Enhanced Constructive Algorithm
4.1 Partitioning Issues and Motivation for Improvement

In the previous chapter, the comparison of the partitioning algorithms shows that the
constructive approach is faster in processing partitioning compared to iterative algorithms.
The reason for this execution time advantage is the fact that each partitioned task cannot be
assigned to other resources or rescheduled. In this way, more favorable binding and
scheduling possibilities may not be achievable. The outcome confirms that it is necessary
to improve the quality of the results.

The two main components of partitioning are binding and scheduling, as introduced in
section 1.2. Constructive algorithms intertwine these two partitioning steps. The binding
component selects the task/resource combination to a given task first, and the scheduling
component evaluates the scenario and acts as allocation index. With the help of task
priorities, the most appropriate solution is chosen and the sequence of the task is set.

In this process, both the selection of the resource and the sequencing of task scheduling
are performed. The following sections analyze the issues of ReCA with regard to the
resource selection and sequencing of task scheduling.

Resource Selection

Constructive algorithms bind tasks to resources in respect of updated tasks priorities. For
ReCA, the tasks priority updates are based on the prevailing schedule. Although the usage
of the current schedule may improve the quality of the results, some situation still require
further considerations.

A target architecture with two computational resources, such as a processor and a
hardware accelerator, is given. An example of a simple CPG with annotated WCETs is
depicted on the left hand side of the figure. Task 0 and task 2 can be only processed on the
processor, whereas task 1 can utilize both resources. On the right hand side of the figure,
two schedules are shown. The data transfer latencies are annotated at the edges of the task
graph.

The upper half of figure 4.1 is the result of an algorithm considering only events in the
current schedule. Task 1 has two alternatives: Either processed on the processor with a
duration of 5 time units (T), or processed on the HW accelerator with a duration of 2T plus
a transfer latency of 2T. Taking the solution with the highest priority, the HW accelerator
is chosen to process task 1. To process task 2, a further data transfer of 3T is necessary.

The lower scheduling in figure 4.1 shows the result of an algorithm considering
potential future events in addition. With the recognition of the necessity of the subsequent
transfer after task 1, the processor is selected instead of the obvious faster HW accelerator.
By avoiding the communication on the shared bus, the schedule results in a shorter overall
latency. The consideration of future events in constructive algorithms can improve the
performance and quality of the results.

4.1 Partitioning Issues and Motivation for Improvement 63
Sequencing of Task Scheduling

In the preceding section, the constructive partitioning algorithm compares bindings of
single tasks to different resource to find the most appropriate partition. Even if the bindings
are selected in the first place, the sequence of task scheduling steps are important.

In an example shown in figure 4.2, the target architecture consists of two processors and
the binding of the tasks is already selected. The communication is not considered in this
example since it does not influence the effect to be shown. The only difference would be
additional latencies by data transfers in the scheduling. In the case task 1 and 2 have the
same task priority, list schedule algorithms do not differentiate between the handling of
task 1 and 2. In addition, the data dependencies of node 2 and 3 usually remains undetected.
By inspecting the CPG, it can be easily seen that processor 2 cannot start executing any
tasks unless task 2 is finished. The right-hand side of figure 4.2 shows the two different
scheduling possibilities of this given CPG. With task 1 first, the nodes 0, 1, and 2 are
processed in sequence, before processor 2 performs the remaining tasks. With task 2 first,
some parallel processing can be achieved. The earlier processing of task 4 reduces the total
duration.

Although all tasks are already bound to resources and the binding is completed, the
sequence of tasks selection is significant. This example should indicate that more
information is needed for each scheduling step to determine the most appropriate solution
and exploit the potential of the resources.

�����������
�����������
�����������

����������
����������
����������

!
2

3

Bus

Acc.

Proc.

105

Without Future Events

Proc Acc

Bus

3 / -

5 2/

2 / -
WCET 0

�������������������������
�������������������������
�������������������������1 2

����������
����������

����������
����������1

1

1

Bus

Acc.

Proc.

105

With Future Events

0
�������������������������
�������������������������1 2

���������������
���������������

����������
����������

����������
����������1

1

1

2

1

0
Acc. for Task 1

Proc. for Task 1

t / T

t / T

 Figure 4.1: Communication Issue

64 Chapter 4 Enhanced Constructive Algorithm
Clustering of Common Implementation Nodes

Some application specific features of design models require certain implementation
constraints. Partitioning algorithms usually consider nodes as self-contained behavioral
objects which may be individually bound to any available resource. If the design model is
specified on a more fine-grain level of detail, special considerations need to be taken to
avoid undesired conditions:

For instance, memory accesses are initiated by a certain resource which expect the data
to be received. In the design model, the tasks before and after such memory accesses
require to be bound to the same resource. Instead of having only one task to be processed
during partitioning, a group of two tasks now represents the self-contained function.
Functionalities composed of sub-tasks belonging together need to be understood as
contiguous nodes with common binding characteristics. These nodes need to be
collectively mapped to the same resource subset of target architecture. Such nodes are
called Common Implementation Nodes (CIN).

The middle of figure 4.3 shows an example of a memory access. The CINs of task 1 and
3 should be bound to either a processor or a hardware accelerator, while task 2 is bound to
memory representing a memory access. The four binding possibilities are placed around the
task graphs. On the left hand side, solution I.) and II.) are allowed combination, since task 1
and 3 are bound to the same resource. However, solution III.) and IV.) on the right hand
side mix up this requirement and create unacceptable solutions.

3

3

0Proc1

Proc2

1

5

Proc1

4

2

0

1 2

4 5

3

0Proc1

Proc2

2 1

54
Proc2

Task 1 first

Task 2 first

t / T

t / T

 Figure 4.2: Importance of the Sequence of Task Scheduling

4.2 Look-Ahead 65
4.2 Look-Ahead

This section considers further details of the two algorithm improvements, resource
selection and sequencing of tasks. The node priorities generated by list scheduling
algorithms, such as ReCA, are assumed to reflect the actual importance of the single tasks
regarding performance. However, these priorities are determined without an actual
scheduling, or with the mere knowledge of previously scheduled events.

During partitioning, the task priority calculation significantly depends upon the
prevailing schedule which has great influence on the binding selections. Moreover, slightly
different schedules can cause completely different results. Therefore, the appropriate tasks
need to be selected in a favorable sequence. The following algorithm extensions increase
the amount of information used for task priority calculation. Potential future events may
influence the partitioning decisions and increase the performance.

4.2.1 Resource Selection

The selection of the most appropriate resource is important to achieve satisfying results.
The kind of information used for priority calculation may influence the outcome of the
partitioning algorithm. In section 4.1, the influence of future events on performance is
shown which may improve the results of constructive algorithms. In the following, the
applicability of future events to improve the performance is evaluated.

2

22

2
CINs

Bus

1
3

Bus

Bus

Bus

1

I.)

II.)

III.)

IV.)
2

3

Proc. Acc.

1
3

1 3

13

Mem.

Proc. Acc. Mem. Proc. Acc. Mem.

Proc. Acc. Mem.

 Figure 4.3: Binding Constraints for the Modeling of Memory Accesses
with the Help of Common Implementation Nodes (CIN)

66 Chapter 4 Enhanced Constructive Algorithm
Figure 4.4 shows a situation with three tasks and two computational resources.
Resource 1 may be compared to a microprocessor while resource 2 with a better
performance may represent a HW accelerator. The middle task is about to be partitioned to
either resource. The execution latency of resource 1 is quite large compared to the latency
of resource 2. Obviously, the faster resource 2 is selected. This decision is made without
considering future events. By also considering mandatory future transfer latencies (here
tTransfer,2), the usage of resource 1, which is less performing and has a longer latency,
results in a better overall performance.

In the following, the priority calculation with and without regard to future events are
evaluated. List scheduling algorithms, such as applied in ReCA, use the following condition
for the selection of the faster resource of the target architecture, such as resource 2:

 . (4.1)

The following condition takes mandatory future data transfers into account. The
resource resulting in a better performance is selected, which is resource 1 in the example of
figure 4.4. In (4.2), the inevitable subsequent data transfer is also considered:

 . (4.2)

The combination of (4.1) and (4.2) results in

(4.3)

and is transformed to

. (4.4)

If (tTransfer,1 + tRes2) is greater than tRes1, the algorithm without future events also selects
resource 1 leading to no extra communication. If tRes1 - (tTransfer,1 + tRes2) is greater than
tTransfer,2, the algorithm with future events is selecting resource 2. So does the algorithm
without future events. In both cases, the algorithm without future events selects the same
resource.

tTransfer,1

tRes.2

tRes.1

tTransfer,2

Res.1

Res.2

Bus

Res.1 !

Res.1 !

Res.1/Res.2 ?

�������������
�������������

�������
�������

 Figure 4.4: Consideration of Inevitable Communication for Partitioning

tTransfer 1, tRes2+ tRes1<

tRes1 tTransfer 1, tRes2 tTransfer 2,+ +<

tTransfer 1, tRes2+ tRes1 tTransfer 1, tRes2 tTransfer 2,+ +< <

0 tRes1 tTransfer 1, tRes2+()– tTransfer 2,< <

4.2 Look-Ahead 67
Provided that tTransfer,1 and tTransfer,2 are equal, (4.4) reduces to:

(4.5)

Assuming a high tRes1/tRes2, the HW latency tRes2 can be neglected. Whenever the CPU
latency is less than double the communication latency, the algorithm with future events is
expected to perform well.

Future Events

The assumptions of potential future events influence the selection of task/resource
combinations. However, these selections affect the actual taking place of the assumed
future events. The prevailing schedule may prevent future events from being selected as
expected. The further the events occur in the future, the less certain their taking place
exactly as predicted.

In the following, only the immediate successors of a given task are considered which
represents immediate data transfers and tasks, see figure 4.5.

N is the number of immediate succeeding tasks and Ri the number of possible resources
for the ith immediate succeeding node. The total number of different combinations C to
execute the succeeding tasks is growing exponentially with the number of tasks

 or . (4.6)

Even for small numbers of tasks and resources, the probability to accurately predict the
events in the future is low. However if the succeeding tasks have to be bound to different
resources than the task to be partitioned, the corresponding data transfers can be predicted
and used to improve priority calculation. Hence, the algorithms for resource selection
introduced in the following solely consider the immediate succeeding transfers and the
succeeding tasks.

tRes1 tRes2– 2tTransfer<

0

1 N2 3 ...
Future Events

To be partitioned

 Figure 4.5: Consideration of Succeeding Data Transfers and Tasks
as Future Events

C Ri

i 1=

N

∏= C RN with R R1 R2 … RN= = = = =

68 Chapter 4 Enhanced Constructive Algorithm
4.2.2 Sequencing of Task Scheduling

The left task graph of figure 4.6 shows annotated global priorities which may be
calculated by the HEFT algorithm, [93]. The priorities represent the latency of the critical
path through the remainder of the task graph. This information is applied for selection of
the most appropriate task/resource combination. Although task 1 and 2 have the same
priority, the order of scheduling is significant to the result of the partitioning algorithm, as
shown in figure 4.2.

In order to avoid this ambiguity, the global priority is determined by taking all
succeeding branches into account. The effectiveness can be seen with task 2 which has a
greater global priority in the right task graph of figure 4.6. In this way, all succeeding
branches are regarded, and its priority is distinct.

In the next sections, the algorithm improvements for resource selection and sequencing
of task scheduling are presented.

4.2.3 Algorithm Improvements for Resource Selection

The utilization of additional information during partitioning may benefit the
performance of constructive algorithms. The consideration of potential future events and
the following modifications of the partitioning algorithm are introduced by the Enhanced
Constructive Algorithm (ECA).

Depending on each binding, constructive algorithms arrange for data transfers on
demand. The communication resource connecting all computational resources is usually
susceptible to become the bottleneck of the design due to lacking the planning of the
communication. Since only computational resources and necessary data transfers are taken
into account for priority calculation, the inevitable subsequent data transfers are neglected.
This may result in degraded performance, while restricted binding possibilities give
valuable information about potential communication bottlenecks.

3

1

5

Res.1

4

2

0

Res.2
(10)

(21)(21)

(32) (32)

(43)

WCETeach task = 10
Latencyeach transfer = 1

Global Task Priority Values

3

1

5

Res.1

4

2

0

Res.2

(10)

(21)(21)

(32)

(87)

(44)

 Figure 4.6: Issues of Priority Determination

4.2 Look-Ahead 69
To avoid such communication bottlenecks, ECA considers the additional offset
look_ahead. This offset may include all immediate future events, such as the immediate
succeeding transfer and the succeeding tasks. The implementation of ECA is based on
ReCA with the additional DU value update which takes look_ahead into account for the
priority calculation, see figure 4.7.

For the analysis of Look-Ahead (LA), three different versions of the ECA considering
future events are evaluated. One variant takes only inevitable data transfers into account,
while the other two variants regard the immediate succeeding tasks and the necessary data
transfers developing from the requirement of context transfers.

• ECA_LA1 considers all immediate mandatory data transfers to the succeeding
tasks. Whenever the task to be partitioned considers a resource which is not
available for the immediate succeeding tasks, the corresponding context
transfers are inevitable and the latencies of the data transfers are taken into
account in the calculation of DU. In case the same resource is available for
both the task to be partitioned and each succeeding task, the latency of the
context transfer for each succeeding task will be ignored for priority
calculation.

• ECA_LA2 determines the offset look_ahead based on the shortest latency of
the immediate succeeding data transfers and tasks. In this way, the fast
succeeding resource should stimulate the selection of the same fast resource
for the tasks to be partitioned. If the same resource is actually selected, the
succeeding context transfer is not necessary. Otherwise, the data transfer is
regarded in the look_ahead value. In addition, the execution latencies of the
tasks are also accounted.

 Figure 4.7: Extension of ReCA for ECA

1. calculate Static_Urgency for each node;
2. while(tasks are left to be mapped)
3. do
4. determine all ready tasks;
5. for (T = all ready_tasks)
6. for (R = all possible resources)
7. Dynamic_Urgency(T; R) = Static_Urgency(T) -
8. max(ready_data for T; R available) - WCET(T, R);
9. Dynamic_Urgency(T; R) -= look_ahead();
10. end
11. end
12. (Tmax,Rmax) = determine max Dynamic Urgency;
13. bind_and_schedule(Tmax,Rmax);
14. done

70 Chapter 4 Enhanced Constructive Algorithm
• ECA_LA3 analyzes the subsequent tasks in a similar manner as ECA_LA2.
Instead of determining the shortest latencies, the longest latencies of the
immediate succeeding data transfers and tasks are taken into account. In this
way, these succeeding events represent the worst case. To compensate for this
worst case, the fastest resource is chosen for the task to be partitioned.

Figure 4.8 compares the three versions of LA on the basis of a simple example. In the
upper part of the figure, a sample sub-CPG is given. The target architecture consists of two
resources. Resource 1 is a slow performing resource, while resource 2 can execute the tasks
faster. The sub-CPG on upper right-hand side depicts the implementation possibilities.
Task 0 needs to utilize resource 1, while task 1 can only be processed by resource 2. Task 2
can choose between both resources. In the lower part of the figure, the three versions of LA
are exemplified. The bold marked edges and nodes are taken into account for the
look_ahead value.

ECA_LA1: All Mandatory Transfers

This version of ECA identifies all subsequent mandatory data transfers. Mandatory data
transfers caused by bindings to different resources are the only information which is
assured depending on the selected resources. In target architectures with HW accelerators,
such data and context transfers can occur quite frequently, since these HW accelerators can
only process a fraction of the available tasks. Moreover at first sight, a shorter latency of
the fast resource may look more favorable. However at a second glance, using a more

�������������
�������������
�������������

�������
�������
�������

�������������
�������������
�������������

������
������
������

0 �������������
�������������
�������������Res.2�����������

�����������
����������
����������

�����������������������
�����������������������

ECA-LA1 ECA-LA2 ECA-LA3

1 2

0

1 2

0

1 2

0

1 2

������������
������������
������������

��������
��������
��������

�������
�������
�������

���������������
���������������
���������������
0

1 2

Considered Events Not Considered Events

�������������
�������������
�������������Res.1

slow fast

 Figure 4.8: Variants of ECA

4.2 Look-Ahead 71
favorable resource with a longer execution time can avoid bus congestion and can result in
a shorter overall latency as shown figure 4.1 on page 63.

The following pseudo code gives an outline of the functionality of the ECA_LA1.

After the correction factor look_ahead is initialized, all succeeding nodes are examined
and checked which resources are available. Whenever a succeeding task cannot be
executed on the same resource as the current task, a context transfer and data transfer has
to be performed. All mandatory transfer durations are summed up in look_ahead.

ECA_LA2: Succeeding Transfers and Tasks with the Shortest Latency

ECA_LA2 considers not only data transfers, but also latencies caused by succeeding
tasks. In comparison to the mandatory data transfers of ECA_LA1, the binding of the
succeeding task is not assured. Therefore, ECA_LA2 assumes that the best performing
combination of succeeding data transfer and task is chosen.

After the correction factor look_ahead is initialized, all succeeding nodes are examined.
All possible resources for these nodes are compared to the current node. Whenever a
succeeding task cannot be executed on the same resource as the current task, a data transfer
needs to be performed. The total duration for this potential resource of a succeeding tasks
is determined by the transfer duration and the WCET. Out of all total durations for this
particular node, the shortest one is obtained and transferred to look_ahead .

ECA_LA3: Succeeding Transfers and Task with the Longest Latency

ECA_LA3 is similar to ECA_LA2 except using the longest latency of the available
resources. The motivation is to select the fastest possible resource now to compensate for
less performing resources in the near future.

The pseudo code differs from the one of ECA_LA2, figure 4.10, in line 12 with the
expression: "set lat = determine max(latency_sux)".

 Figure 4.9: Outline of ECA_LA1

1. function look_ahead() // ECA_LA1
2. {
3. set look_ahead = 0
4. for all succeeding tasks of node(node_sux)
5. wcet_sux = WCET(node_sux, considered_resource)
6. if (wcet_sux is not available)
7. set look_ahead += comm_latency
8. end
9. return(look_ahead)
10. }

72 Chapter 4 Enhanced Constructive Algorithm
4.2.4 Algorithm Improvements for Sequencing of Task Scheduling

The global task priorities or Static Urgencies (SU) used by ReCA only consider the
latency of the critical path of subsequent events. The number of tasks which are about to be
performed by each task is not used. In the following, an extension to ECA is introduced to
take all succeeding processing paths of the CPG into account by modifying the SU
calculation.

Enhanced Static Urgency Calculation

The Enhanced Static Urgency (ESU) represents an indication of processing capabilities
necessary to perform the subsequent tasks. The SU value enables the comparison of two
nodes regarding their critical path to the final node. This gives already an idea of their
urgency to be scheduled as next task. However, branching is not considered in this priority
by SU. Since the worst case causes all tasks to be processed by one single resource, the
aggregation of all succeeding latencies represents a useful index.

Regarding the performance requirements, the difference to the SU calculation used by
ReCA is using the sum of all succeeding paths, instead of comparing all paths and using the
maximum latency. Figure 4.11 gives the outline of the ESU calculation.

 Figure 4.10: Outline of ECA_LA2

1. function look_ahead() // ECA_LA2
2. {
3. set look_ahead = 0
4. for all succeeding tasks of node(node_sux)
5. for all available resources(res)
6. if (res == considered_resource)
7. set comm_latency = 0
8. else
9. determine comm_latency
10. wcet_sux = WCET(node_sux, res)
11. set latency_sux = comm_latency + wcet_sux
12. set lat = determine min(latency_sux)
13. end
14. set look_ahead += lat
15. end
16. return(look_ahead)
17. }

4.3 Clustering 73
4.3 Clustering

Gajski et al. introduce specification requirements for embedded systems in [35]. The
hierarchy of behavior objects is one of these requirements to ease the conception phase by
hierarchically decomposing functionalities into a set of sequential and concurrent
behaviors. However instead of breaking down functionalities into tasks, a way of pooling
tasks with the same implementational constraints may be desired.

In this thesis, clustering is used as a possibility to enforce certain implementation
characteristics for a group or cluster of tasks; hence the name clustering. Dave et al. defines
the expression "cluster" in [22]: "A cluster of tasks is a group of tasks which are always
allocated to the same PE (processing element)." These clusters reduce communication and
therewith significantly speed-up the architecture synthesis process.

A different use of such clusters may help designers to allow design models with various
levels of detail. The support of different levels of detail within one design model allows
more flexibility during model creation. However, no information about potential clusters
of tasks is available in neither the task graph nor the WCET table.

Partitioning algorithms usually expect nodes of task graphs as self-contained behavioral
objects. Such self-contained tasks are individually handled and bound to resources. In
situations, such as data interaction to and from the memory which should be initiated and
handled by the same computational resource, undesired resource assignments may occur.

 Figure 4.11: Outline of the ESU Calculation

1. function ESU()
2. {
3. while (not all nodes are processed)
4. do
5. for all nodes(node)
6. if (node == last node)
7. SU(node) = average_WCET(node)
8. if (all successors are processed)
9. for all successors(sux)
10. SU’(sux) = SU(sux) + comm_latency
11. set SU(node) += SU’(sux)
12. end
13. set SU(node) += average_WCET(node)
14. mark node as processed
15. end
16. done
17. }

74 Chapter 4 Enhanced Constructive Algorithm
Such intermediate memory accesses between behavioral objects may be bound to different
resources by the partitioning algorithm.

Nodes with special implementation constraints can avoid undesired resource
combinations. Such nodes are called Common Implementation Nodes (CIN) in the
following. Grouped in a cluster, CIN are bound as a whole to any available resource.
Clusters and CIN may be applied for implementation trade-offs performed during
partitioning on the fly.

4.3.1 Different Design Objectives

Different implementation approaches may solve performance issues. Improvement in
performance can be achieved by accelerating tasks with HW accelerators, or by exploiting
parallelism distributing functions on multiprocessor systems. The exploration of various
implementation possibilities within one design model may be supported by design
objectives. Design objectives can place special emphasis on the outcome of the analysis,
such as parallel processing or the acceleration of certain functionalities. By clustering CIN,
design models may be annotated to accommodate different design objectives.

For these different design objectives, each implementation approach demands to map its
characteristic to an own analysis model resulting in different analysis models. Generating
analysis models for each different way of implementation is a very complex and time
consuming task. Hence, merging of these different design approaches in one single analysis
model would be preferable.

Resource sets help to compare various target architectures using the same analysis
model. Model annotations allow the partitioning algorithms to differentiate between the
various implementations. Nevertheless, minor modifications of the CPG are necessary to
align the common model for the different implementations, since each implementation
possesses a distinct internal structure processing the data in a different way.

Figure 4.12 shows the usage of a single analysis model with two different design
objectives. In the middle of the figure, a CPG illustrates the functionalities of a given
application. The left and right representation of the figure depicts the same CPG with
clusters of CIN which are bound to resources. With the design objective of concurrent
execution shown on the left representation, all CIN of the depicted clusters are bound to
corresponding resources and the corresponding schedule can be determined. For the right
representation, the design objective is applied to speed up the total performance by
accelerating certain functionalities. The target architecture represents the design objective
by having two different HW accelerators.

With the help of clustering, different design objectives can be applied and evaluated
based on a common design model.

4.3 Clustering 75
4.3.2 Resource Sets for Common Implementation Nodes

The previous sections introduce clustering for the binding to one single resource.
Extending the definition of cluster by Dave et al., the use of clusters is not only restricted
to the same processing element, but expanded to sets of resources. Various implementation
possibilities which are not limited to one single resource each are allowed. Such resources
of a target architecture specify a resource set for each implementation possibility provided
that the different level of granularity allows a common analysis model.

Resource sets may be utilized for the immediate comparison of implementation
possibilities during partitioning. Other partitioning methodologies require several design
models for the evaluation of each implementation possibility. An example of different
implementation possibilities are demonstrated in figure 4.13.

A given functionality, depicted as small squares, can be implemented with two different
resource sets. Implementation A is represented by resource 1, which may be a

Application

ProcAcc Proc

Application

Functionality

Application

Concurrency

Acc ProcAcc

Acc 2
Acc 1
Proc

Bus
Acc

Proc 2
Proc 1

Bus

Mapping & Scheduling

 Figure 4.12: Different Design Objectives for the Exploitation of Concurrency
or Acceleration of Functionality Supported by Clustering

Memory

Resource 2

Resource 1

Cluster of Functionality
bound to ResourceImplementation BImplementation A

Resource Set A Resource Set B

 Figure 4.13: Different Implementation Possibilities

76 Chapter 4 Enhanced Constructive Algorithm
microprocessor, and shared memory. Resource 2 and a local memory form implementation
B which may be a HW accelerator block. In this example, it can be seen that the cluster is
not only bound to one single resource, but to a group of resources belonging together. In
this way, the interaction between the tasks, for instance, bound to the processor and the
access to other resources, especially the memory, may be analyzed.

In the following, the algorithms for the selection of the resources needs to be extended
to cover clusters in the priority calculation.

4.3.3 Algorithm Improvements for Common Implementation Nodes

The partitioning of CIN belonging to a cluster gives information about the future
bindings of all other CIN of this cluster. This information of future bindings are used for
priority calculation. Hence, this section proposes an extension to ECA to compare different
resource sets for each cluster by considering special binding constraints.

An approach to consider different resources mutual exclusively for CIN is introduced in
[8]. The WCET table represents the target architecture with all available resources for each
behavioral object. Since no information about the desired relationships between tasks is
available, an additional CIN list per cluster is necessary to identify self-contained
functionalities forming a cluster of CIN. The additional information about the clusters help
to prevent undesired binding selections across the different implementations at the same
time.

Figure 4.14 shows two different implementation alternatives with a resource set each.
The given WCETs of the example represent the characteristics of the used resources.
Resource set "SW" with shared memory, which may represent a microprocessor, and
resource set "HW" using internal memory, may be an application-specific hardware
accelerator. The cluster of CINs contains all tasks representing the self-contained
functionality allowing these tasks to be bound to either resource set "SW" or
resource set "HW". Cluster1 = {0; 1; 2} indicates that all tasks in this example are affected.

Whenever one Common Implementation Node of a cluster is selected, the other CIN are
assigned to the same resource set. The selection of the resource set "HW" specifies that,
once one task of the cluster of CINs is mapped to the resource 2, all other tasks of the cluster
of CINs also have to be mapped to resource 2. Alternatively, if the resource set "SW" is
selected, the tasks may be bound to whatever component of the resource set "SW" is
available.

4.3 Clustering 77
In this way, particular resource constellations may be reproduced without restricting the
selection to one resource. Of course, the WCET table may be extended to allow the
availability of several components within one resource set for one behavioral object. This
mechanism makes it possible to compare different ways of implementation within the same
analysis model.

Algorithm Extensions of ECA

ECA is extended to properly process CIN of clusters with implementation constraints
and to take future binding restrictions into account. Figure 4.15 outlines the modifications
to ECA with bold expressions. If the considered cluster is already assigned, line 7 to 9 of
the pseudo code ignores all resources not belonging to the corresponding resource set to
enforce implementation constraints. The task priority calculation in ECA includes
additional information about CIN within the cluster. Line 14 and 15 determine the
parameter look_ahead_cluster which may include latencies of tasks and data transfers
of the considered clusters. The DU value is updated with the resulting value of the
parameter look_ahead_cluster.

The first CIN to be partitioned decides about the selected resource set. The WCET of the
first task may delude about the performance of the entire cluster using the resource set. All
other CINs of the cluster also need to be considered for the selection of the resource set to
represent the performance of the resource set properly.

For flexible design modeling, the shape of clusters within a task graph does not need to
be contiguous. Any CIN belonging to a specific cluster may be connected to any other tasks
of the task graph. Therefore, any calculated LA values based on contiguous CIN, such as

Res1 Mem Res2

12 - 1
- 2 -

10 - 1

Nodes

1
2
3

“HW”“SW”
WCET

Resource Set “SW” Resource Set “HW”

MemL

-
2
-

Cluster1

Memory

Resource 2

Resource 1

Cluster1 = {0; 1; 2}
Res_SetSW = {Res1; Mem}
Res_SetHW = {Res2; MemL}

1

2

3

 Figure 4.14: Clustering with Common Implementation Nodes (CINs)

78 Chapter 4 Enhanced Constructive Algorithm
the critical path, may not properly represent the intended latency. Based on this
consideration, two options are proposed in this following:

• The option Cluster_CIN depends on the first CIN of the cluster to decide
about the used component of the utilized resource set. This option merely
assures the implementation constraints. Since no further CIN is taken into
account, the implementation is simple with the value 0 for the parameter
look_ahead_cluster, see figure 4.16.

• The option Cluster_Sum takes all CIN of a cluster into account for priority
calculation. For all other CIN of the cluster, the available resource of the
resource set is selected. The WCETs of the CIN are added and the result is
assigned to the parameter look_ahead_cluster, see in figure 4.17.

 Figure 4.15: Clustering Extension for ECA

1. calculate Static_Urgency for each node;
2. while(tasks are left to be mapped)
3. do
4. determine all ready tasks;
5. for (T = all ready_tasks)
6. for (R = all possible resources)
7. if (T is CIN of a cluster &&
8. R is not contained in assigned resource_set)
9. skip R
10. Dynamic_Urgency(T; R) = Static_Urgency(T) -
11. max(ready_data for T; R available) - WCET(T, R);
12. calculate(look_ahead);
13. Dynamic_Urgency(T; R) -= look_ahead;
14. if (T is CIN of cluster)
15. Dynamic_Urgency(T; R) -= look_ahead_cluster();
16. end
17. end
18. (Tmax,Rmax) = determine max Dynamic Urgency;
19. bind_and_schedule(Tmax,Rmax);
20. done

 Figure 4.16: Calculation of look_ahead_cluster for Cluster_CIN

1. function look_ahead_cluster() // Cluster_CIN
2. {
3. set look_ahead_cluster = 0
4. return(look_ahead_cluster)
5. }

4.4 Performance Evaluation of Look-Ahead 79
4.4 Performance Evaluation of Look-Ahead

In the following section, the performance capabilities of the variants of ECA are
evaluated in relation to ReCA. Similar to chapter 3, classes of design models and
architectures are represented by parameter sets. TGFF, [24], generates task graphs and
target architectures based on these parameter sets. The used simulation environment is the
same as in chapter 3. Each working point in the result figures represents the mean
performance of the considered algorithm based on 100 synthetically generated task graphs
and associated target architectures.

After the design model and architecture assumptions are specified, a performance
evaluation of ECA_LA1 regarding inevitable communication events is carried out. Then,
the analysis of runtimes of the introduced algorithms, and the evaluation of the ECA
variants used in multiprocessor systems are performed.

4.4.1 Design Model and Architecture Assumptions

To achieve the performance required for certain high-performance applications in
networking, multiprocessor systems with dedicated hardware accelerators are increasingly
used on a SoC. The evaluations in this thesis focus on such multiprocessor architectures.

The considered design models consist of 100 nodes in the average. Each node has 5
preceding nodes and 5 succeeding nodes in the mean. Regarding conditional branches, 10%
of the nodes within the CPG are designated conditional. Out of these conditional nodes,
80% of the succeeding edges are assigned as conditional branches. The shared memory is
accessed by 15% of the nodes according to CommBench, [104].

The target architecture contains two type of resources. Resource type A represents
resources which can process all kinds of tasks, such as microprocessors. All instances of

 Figure 4.17: Calculation of look_ahead_cluster for Cluster_Sum

1. function look_ahead_cluster() // Cluster_Sum
1. {
1. set look_ahead_cluster = 0
2. determine cluster_list[] with T as member
3. set res_set = determine_resource_set(R)
4. for (next_task = all CIN of cluster_list)
5. determine shortest_WCET(next_task, res_set)
6. set look_ahead_cluster += shortest_WCET
7. end
8. return(look_ahead_cluster)
9. }

80 Chapter 4 Enhanced Constructive Algorithm
resource type A are identical. Resource type B process only certain selected tasks of the
application (here 25%) with a mean speed-up factor of 5 faster than resource type A. These
selected tasks are arbitrarily chosen. Such resources may represent application-specific
accelerators. Each instance of resource type B represents an individual resource which has
its own characteristic. The components of the target architecture are connected by a
common shared bus. The mean amount of data transferred over the common bus accounts
for 64 bytes, if not overridden by the analysis boundary conditions.

The following table 4.1 represents a typical set parameter for potential scenarios used
for the analysis later in section. The following constraints are applied to the tests as long as
no other constraints are given:

4.4.2 Results

Performance of ECA_LA1 with regard to Inevitable Communication Events

From section 4.2.1, equation eq. (4.5) expresses the condition in which ECA is assumed
to perform efficiently:

(4.7)

Parameter Value Range

Design Model
Size of Graph 100

Number of Preceding Branches per Node 5

Number of Succeeding Branches per Node 5

Ratio of Conditional Nodes 10 %

Ratio of Conditional Edges originate from a Conditional Node 80 %

Ratio of Memory Nodes 15 %

Target Architecture
Number of Resources on Resource Type A (homogenous) 2

Number of Resources on Resource Type B (heterogeneous) 4

Speedup of Resource Type B compared to Resource Type A 5:1

Ratio of executable Nodes on Resource Type A 100 %

Ratio of executable Nodes on Resource Type B 25 %

Number of Buses 1

Average Data over Bus 64 bytes

Table 4.1: Simulation Properties of CPGs and Target Architectures
for the Performance Evaluation of ECA

tCPU tHW– 2 t⋅ Transfer<

4.4 Performance Evaluation of Look-Ahead 81
This equation expresses that the additional longer latency of the slower resource should
be less than the double the data transfer provided that the data transfers to and from the
resource take the same amount of time.

With a HW speed-up factor of 5, the mean latencies of the processors and accelerators
relate to

. (4.8)

Eq. (4.8) inserted in eq. (4.7) results in the range where ECA is expected to perform
well:

. (4.9)

This estimation is evaluated with ECA_LA1, since its LA calculation exclusively
considers inevitable data transfers. In figure 4.18, the boundary of the made estimation is
depicted by the bold rectangle (A). The x-axis represents the mean processor latency of all
nodes in the CPG, while the y-axis stands for the mean transfers latency. The results are
illustrated in the z-axis as mean expectations of the ratio of the latency determined by ECA
to the latency determined by ReCA.

Two arrows show the region with increasing improvement capabilities. With increasing
latency of the data transfer, ECA selects the more favorable resources resulting in a shorter
overall-latency for the same design model. The variation of the WCETs and data transfers
latency generated synthetically allow ECA to achieve better results. More heterogeneous
target architectures induces more resource switching and may cause bottlenecks which may
be resolved by ECA. In this scenario, ECA exceeds 35% reduction in mean overall latency
compared to ReCA. This applies to the working point with a mean CPU latency of 50 time
units and a mean transfer latency of 50 time units. These values easily meet
equation eq. (4.9).

tCPU 5 tHW⋅=

tCPU 2.5 tTransfer⋅<

20 30 40 50 60 7050

150

250

-40
-35

-30

-25

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of
 R

eC
A

Mean Data Transfer Latency

Mean WCET
Res.Type A

 Figure 4.18: Performance of ECA_LA1 Compared to ReCA
Considering Inevitable Data Transfers

tRes.A 2.5 tTransfer⋅=

Degradation
ECA_LA1

82 Chapter 4 Enhanced Constructive Algorithm
Since the task graphs are manifold in shape and structure, ECA cannot perform well for
all scenarios and parameter sets. In the figure, there is an area where ECA produces worse
results than ReCA. In these cases, ECA selects a task and a resource which is favorable in
this situation, but it turns out that this selection is disadvantageous for the overall latency.
The parameter sets for performance degradation are outside of the proposed design space
by eq. (4.9).

Simulation Runtimes of ECA

The iterative heuristics shown in chapter 3 requires long simulation runtimes.
Especially, the handle of larger task graphs is not practicable. Table 4.2 shows the runtimes
for the introduced variants of the ReCA and ECA. The magnitude of the runtimes allow fast
execution of partitioning even for very large CPGs. The variances of the shown results are
caused by different sequences of comparing and scheduling the tasks.

ECA_LA1 performs with similar runtimes than ReCA. For each task to be scheduled, the
corresponding resources of the succeeding tasks are checked. ECA_LA2 and ECA_LA3
requires to find the shortest respective longest latency of the succeeding task. All task/
resource combinations of the succeeding tasks need to be evaluated. Hence, the runtimes
are increased in relation to ECA_LA1.

It can be observed that the calculation of ESU (Enhanced Static Urgency) consumes
more time than the calculation of SU. The calculation of SU compares different succeeding
path to determine the critical path, while ESU adds up all latencies. Nevertheless, the
difference of both ways calculating the SU value scarcely influence the overall runtimes.

Size of
CPG

Runtime

ReCA
ECA_... without ESU ECA_... with ESU

LA1 LA2 LA3 LA1 LA2 LA3

100 0.04s 0.04s 0.04s 0.04s 0.04s 0.04s 0.05s
200 0.31s 0.31s 0.32s 0.33s 0.32s 0.33s 0.34s
300 1.20s 1.20s 1.26s 1.24s 1.37s 1.42s 1.40s
500 6.94s 7.31s 7.63s 7.71s 8.05s 8.11s 8.22s
1000 71.34s 73.06s 75.40s 75.34s 80.52s 81.42s 81.38s

Table 4.2: Simulation Runtimes of ReCA and the Variants of ECA
in Comparison to the Size of the Design Model

4.4 Performance Evaluation of Look-Ahead 83
Variants of ECA applied to Multiprocessor Systems

This section compares the results of the different variants of ECA based on the parameter
sets of CPGs and target architectures, shown in section 4.4.1. Figure 4.19 depicts
performance figures of this environment setup for the three versions of ECA, ECA_LA1,
ECA_LA2, and ECA_LA3, in combination with and without ESU. Each chart represents the
results in percentage of the schedule latency of ReCA.

ECA_LA1 provides significant reductions of the scheduling latencies up to 35%. This
can be at the short WCETs of the less performing resource type A. With larger WCET of
resource type A, the improvement capabilities are reducing, since ReCA also selects
favorable resource more often.

By considering only inevitable data transfers, the eq. (4.5) can be written as

(4.10)

and with

(4.11)

be transformed to

. (4.12)

The higher the value speedup, the less important it becomes for influencing the
improvements of ECA_LA1. With a constant mean value of data transfer latency, eq. (4.12)
and the results show that the performance improvements of ECA_LA1 are hardly
influenced by the speed-up factor of resource type B. The influence of ESU is not
significant on ECA_LA1. The consideration of known immediate succeeding data transfers
is much more dominant than the resolution of priority ambiguity.

ECA_LA2 delivers degraded performance than ECA_LA1. The succeeding tasks are
assumed for priority calculation. Since the presumed assignments of future tasks may
change, the selected resource may become unfavorable in the overall schedule. With the
uncertainty of the expected schedule, the performance is about 7% less effective than
ECA_LA1. With ESU, the performance of ECA_LA2 can be improved. Since ESU
considers all succeeding paths, the importance of the single tasks is more accentuated. In
this way, more urgent tasks are processed earlier. With all immediate succeeding tasks and
data transfers of ECA_LA2, the ESU summing up all succeeding paths allows more
favorable selections of resources which allows up to 2% better results than not using ESU.

ECA_LA3 pursue a similar intention like ECA_LA2 by using the longest latency of the
succeeding tasks and data transfers. In this way, a fast performing resource was intended to
be selected by ECA_LA3. However, ECA_LA3 tends to select resources which avoid

tRes.A tRes.B– 2tTransfer<

tRes.B
tRes.A

speedup
---------------------=

tRes.A 2tTransfer
speedup

speedup 1–
------------------------------ 

 ⋅<

84 Chapter 4 Enhanced Constructive Algorithm
5
10

15 20
25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type BMean WCET of

Res. Type A

5
10

15 20
25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10 15

20 25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20
25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type BMean WCET of

Res. Type A

5
10

15 20
25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10 15

20 25 30

5010
015

020
025

030
0

-40
-35
-30
-25
-20
-15
-10
-5
0
5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

 Figure 4.19: Performance Analysis for the Multiprocessor Scenario
Relative to ReCA Based on the Parameter Set of Table 4.1

ECA_LA1

ECA_LA2

ECA_LA3

with ESU

with ESU

with ESU

4.5 Performance Evaluation of Clustering 85
communication on the shared bus. By considering slow performing resource for future
events, ECA_LA3 also selects slow resources for the considered task. Hence, the overall
performance of the algorithmic improvements are marginal. In this example similar to
ECA_LA2, ESU can improve the mean of schedule latency reduction by up to 3.5%.

The algorithmic modifications of ECA may also cause confusion in the scheduling
sequence and resource assignment and may result in worse performance than ReCA. For
ECA_LA3 without ESU, such an area of degradation starts early in comparison to the other
algorithms with a worst performance of a schedule latency extension of +1.8% compare to
ReCA. ECA_LA3’s low performance can be mitigated by ESU to avoid degradation by the
enhancement. Nevertheless due to the weak performance of ECA_LA3, only ECA_LA1 and
ECA_LA2 are allowed for further investigations.

4.5 Performance Evaluation of Clustering

For the evaluation of clustering, the simulation environment needs a modification.
During the creation of task graphs, TGFF creates CPGs with arbitrary connections among
the nodes. To facilitate the generation of self-contained groups of tasks, clusters of CINs
may be inserted in the main task graph in the form of small sub-CPGs. The self-contained
functionalities are represented by a cluster of CIN with one start node within a cluster
receiving all necessary input data and one end node passing on the processed data to the
succeeding tasks. In this way, the integration of self-contained functionalities is facilitated
and the way of refining the design model by a designer may be represented.

After the introduction of the modified analysis environment, the utilized parameter set
is presented. The performance capabilities of the clustering variants are analyzed showing
the advantages of using the Cluster_Sum. Then, the LA variants of ECA are evaluated in
combination with the two clustering algorithmic modifications.

4.5.1 Modification of Evaluation Environment

The generation of task graphs with self-contained functionalities represented as clusters
of tasks requires a multi-stage procedure. Instead of generating the task graph at once,
smaller self-contained functionalities task graphs are created and inserted in the main task
graph, [60]. In this way, the refinement of single functionalities with more details can be
represented.

Figure 4.20 shows an example of a task graph including two clusters of tasks which are
executable on corresponding accelerators. Here, task 1, 2, and 3 incorporate cluster 1.
These tasks can be processed either on the processor or the accelerator 1. For cluster 1, the
input data are provided from tasks 0 by a data transfer, if a context transfer is necessary,
and the output data are provided to task 8. No data transfers to and from the inside of the

86 Chapter 4 Enhanced Constructive Algorithm
cluster are supported to facilitate the generation and the analysis in this thesis. However,
the algorithm may process arbitrary connected CINs.

For this example, the analysis environment generates three task graphs: a main task
graph including task 0 and 8, and two task graphs representing cluster 1 and 2. These three
graphs are merged and applied to ECA.

4.5.2 Design Model and Architecture Assumptions

Similar to the analysis of ECA in section 4.4.1, the parameter are set for the analyses of
the performance of ECA. The size of the task graphs is doubled to accommodate four
clusters of tasks each with a size of 30 nodes. The target architecture again consists of
homogeneous resources type A, such as microprocessors, and four resources type B, for
instance dedicated hardware accelerators, with a speed-up of 5:1. The ratio of conditional
nodes is 10%.

Properties Value Range

Design Model
Size of Total Graph 200

Number of Clusters 4

Size of each Cluster 30

Number of Preceding Branches per Node 5

Number of Succeeding Branches per Node 5

Ratio of Conditional Nodes 10 %

Ratio of Conditional Edges originate from a Conditional Node 80 %

Ratio of Memory Nodes 15 %

Table 4.3: Simulation Properties of Graph and Target Architecture
for the Performance Evaluation of ECA Extensions for Clustering

302
201
20

403

Node

WCET Table

Proc 1

Acc 1

Acc 2

706
605
504

807

58

10
6
-

13

-
-
-

-
-

-
-
-

-

17
15
12

20
-

5 6

4

7

1110

12 13

1

0
15 5

2

3

8
3 17

4

2

Cluster1

Cluster2

Cluster1
Cluster2

90
80
10

100

Proc 2
130
120
110

140
20

 Figure 4.20: Required Outcome

4.5 Performance Evaluation of Clustering 87
4.5.3 Results

For the evaluation of the performance capabilities of clustering for introduced
constructive partitioning heuristic, ReCA is extended by the clustering functionality with
the two options Cluster_CIN and Cluster_Sum. In this way, the effects of clustering can be
analyzed without blending the effects of taking immediate succeeding events.

Consideration of Clustering

The cluster enhancements for ECA, Cluster_CIN and Cluster_Sum, are compared in
figure 4.21. The x-axis represents the average WCETs of the resource type A while the
speed-up factors of the resource type B are plotted on the y-axis. The results are depicted
along the z-axis as ratio of the latency of ReCA with Cluster_Sum in relation to ReCA with
Cluster_CIN.

The curve shows that Cluster_Sum produces results with up to 15% of schedule latency
reduction in this scenario especially for short WCETs of resources type A. However for
larger WCETs of resource type A, the performance improvements of Cluster_Sum are not
that distinct.

The resource selected for the first CIN of a cluster is mandatory for the entire cluster.
Cluster_CIN relies on the first CIN to determine the appropriate resource and does not take
other CINs of the cluster into account. If this choice is unfavorable, other following CIN
need to use this same resource. In this way, the overall performance may be impaired.

By reducing the priority of the CINs of a cluster, the process of partitioning the entire
cluster is delayed. Cluster_Sum is taking all CINs of the cluster into account for the task
priority update. Other tasks that are not contained in the cluster are processed earlier by the
partitioning algorithm and can use the resource first which would have been allocated
otherwise by the cluster. Later in the scheduling process, the CIN are bound to another
resource being more favorable for the overall performance.

Target Architecture
Number of Resources on Resource Type A (homogenous) 2

Number of Resources on Resource Type B (heterogeneous) 4

Speedup of Resource Type B compared to Resource Type A 5:1

Ratio of executable Nodes on Resource Type A 100 %

Ratio of executable Nodes on Resource Type B 25 %

Number of Buses 1

Average Data over Bus 64 bytes

Properties Value Range

Table 4.3: Simulation Properties of Graph and Target Architecture
for the Performance Evaluation of ECA Extensions for Clustering

88 Chapter 4 Enhanced Constructive Algorithm
Similar to ECA, the results are not significantly affected by the speed-up factor of the
resource type B. ReCA with Cluster_CIN always selects the resource with shorter WCETs.
ReCA with Cluster_Sum behaves in the same way. Hence, no significant difference in the
results can be demonstrated.

Simulation Runtimes of Clustering

The runtimes for the options of clustering are similar to the runtimes of ECA, see
table 4.4. However, the following factors influence the runtime of the algorithms: the
limited number of available resources for CINs, the calculation of the parameter
look_ahead_cluster, and the number of tasks ready to be scheduled.

Although the parameter look_ahead_cluster needs to be determined anytime a CIN
is ready to be scheduled, the number of such CINs is small for CPGs with a low quantity
of nodes. The number of cycles in which certain tasks are compared with other tasks is
small. Moreover, the algorithms with cluster options show shorter runtimes for small CPGs
than ECA, because the preselection of a resource within a cluster renders the evaluation of
the other resources unnecessary.

For larger CPGs, the main reason for longer runtimes is the larger number of tasks to be
scheduled. Each time a CIN is compared, the parameter look_ahead_cluster needs to be
determined over and over again until the CIN is partitioned. Here, the reduced number of
resources per CIN cannot compensate the longer runtimes.

5
10

15 20 25 30

5010
015

020
025

030
0

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

Cluster_Sum

 Figure 4.21: ReCA with Cluster_Sum Compared to Cluster_CIN

4.5 Performance Evaluation of Clustering 89
Applying LookAhead on Cluster_CIN

Figure 4.22 shows the results of using ECA with Cluster_CIN applying ECA_LA1 and
ECA_LA2 in relation to ReCA with Cluster_CIN. The charts show that neither variants of
ECA can achieve improvements compared to ReCA with Cluster_CIN.

ECA_LA1 avoids communication on the shared bus by selecting the same resource of
the preceding node, especially for short WCETs of resource type A. Since the fast
performing resources of type B are only available for clusters, only resources of type A are
chosen for execution. Hence, the overall latency is impaired by slow performing resources
compared to ReCA. ECA_LA2 exhibits similar performance figures.

ESU influences the outcome in the same way than not using clustering. The results of
ECA_LA2 can mitigated by improving the schedule of tasks not belonging to a cluster by
up to about 2% of schedule latency. Also, ECA_LA1 and ESU hardly show any differences
in results.

Applying Look-Ahead on Cluster_Sum

In figure 4.23, the results of using ECA with Cluster_Sum are depicted applying LA with
ECA_LA1 and ECA_LA2 compared to ReCA with Cluster_CIN. The charts show that with
the usage of Cluster_Sum improvements of up to 15% can be achieved.

It can be observed that all variants of ECA with Cluster_Sum exhibit improved results
up to about 3.5% for mid-range WCETs between 100T to 200T. For the given scenarios,
ECA_LA1 cannot achieve the same performance than in figure 4.19. The design model
consists of two slow-performing homogeneous resources for all tasks and four fast-
performing heterogeneous resources which are allotted to clusters. Between the two
homogeneous resources, no inevitable data transfers takes place between consecutive
computational tasks outside of clusters which ECA_LA1 would take advantages of.

Some nodes of the design model represent memory accesses. These tasks can
exclusively be assigned to a dedicated memory resource. If a future event is such a memory
access, the succeeding data transfer will be inevitable. For such cases, ECA_LA1 can

Size of
CPG

Runtime

Cluster_CIN Cluster_Sum

100 0.02s 0.03s
200 0.12s 0.19s
300 0.58s 0.66s
500 7.34s 7.40s

1000 109.84s 109.94s

Table 4.4: Simulation Runtimes of ReCA with the Options
for Clustering Cluster_CIN and Cluster_Sum

in Comparison to the Size of the Design Model

90 Chapter 4 Enhanced Constructive Algorithm
improve the overall latency up to 2%. ECA_LA2 can also process the design models
efficiently. However, the consideration of speculative events cannot outperform ECA_LA1.
Especially for large WCETs of resource type A, the algorithm cannot select the most
appropriate resources and results in worse schedule latencies.

4.6 Summary, Comments and Conclusions

This chapter proposes enhancements for the Reference Constructive Algorithm (ReCA).
Two main partitioning decisions can be identified as the resource selection per task and the

5
10

15 20 25 30

5010
015

020
025

030
0

-5

0

5

10

15

20

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30

5010
015

020
025

030
0

-5

0

5

10

15

20

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30

5010
015

020
025

030
0

-5

0

5

10

15

20

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30

5010
015

020
025

030
0

-5

0

5

10

15

20

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

 Figure 4.22: Performance Analysis of ECA with Cluster_CIN
Relative to ReCA with Cluster_CIN in a Multiprocessor Scenario

with ESU

with ESU

ECA_LA1

ECA_LA2

4.6 Summary, Comments and Conclusions 91
sequencing of task scheduling. To improve the selection of the binding decisions, an
Enhanced Constructive Algorithm (ECA) is introduced with an improved priority
calculation including future events. Such future events are taken into account by a Look-
Ahead (LA) parameter. LA is introduced to regard inevitable data transfers and to compare
task/resource combinations including succeeding tasks. Three different variants of ECA are
presented:

• ECA_LA1 only considers mandatory data transfers.

• ECA_LA2 selects the resources with the best performance for the immediate
succeeding tasks.

• ECA_LA3 selects the resources with the longest latency for the immediate
succeeding tasks.

5
10

15 20 25 30

5010
015

020
025

030
0

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30

5010
015

020
025

030
0

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30

5010
015

020
025

030
0

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

5
10

15 20 25 30
5010

015
020

025
030
0

-20

-15

-10

-5

0

5

%
 S

ch
ed

ul
e

La
te

nc
y

of

R
eC

A
 w

ith
 C

lu
st

er
_C

IN

Speed-up of
Res. Type B

Mean WCET of
Res. Type A

 Figure 4.23: Performance Analysis of ECA with Cluster_Sum
Relative to ReCA with Cluster_CIN in a Multiprocessor Scenario

with ESU

with ESU

ECA_LA1

ECA_LA2

92 Chapter 4 Enhanced Constructive Algorithm
The analyses confirm that ECA_LA1 performs better than ECA_LA2 and ECA_LA3.
ECA_LA1 takes only known events into account for priority calculation, whereas
ECA_LA2 and ECA_LA3 speculate about the binding information of future events.
ECA_LA2 only selects shortest latency while ECA_LA3 allows worse resources by using
the longest latency. Improvement in performance of up to 35% can be achieved by the
algorithm enhancements using LA. However, the multitude of binding and scheduling
possibilities and the dependency of the partitioning algorithms on the structure of the
design model limits the predictability of the performance capabilities of ECA.

With the use of the Enhanced Static Urgency (ESU), the results of ECA_LA2 and
ECA_LA3 can be improved in the given scenarios. However, the combination of ECA_LA1
and ESU does not show significant improvements.

Clustering allows the designer to enforce Specific modeling and implementation
constraints. In particular, communication events are necessary to be performed on the
shared media by one implementation which allows the comparison to an alternative
implementation using different resources.

Different clusters of nodes can facilitate the usage of different design objectives during
partitioning. By using one task graph as analysis model, the design objective may be
adapted to, for instance, parallel processing or acceleration of functionalities with the help
of clustering significant nodes of the task graph.

Common Implementation Nodes (CINs) allow to differentiate between various
implementation possibilities represented as resource sets. Each resource set contains a
number of resources exclusively used for the tasks of a cluster, if selected. Hence, a flexible
characterization with different resources for each implementation possibility is feasible.

Two extensions to cover clustering with ECA are introduced: Cluster_CIN and
Cluster_Sum. The first extension simply ensures using the same resource set for all tasks
of a cluster. The other extension considers all CINs within the cluster to adjust the priority
calculation of the nodes. Using Cluster_Sum results in an improvement of the performance
up to 15%.

The combination of Cluster_CP with the variants of ECA shows that improvements can
be achieved for wide ranges of scenarios. However for large WCETs, ECA cannot select
the most appropriate resources and can result in worse performance than ReCA.

In the next chapter, a real-world example is used to confirm the results obtained in this
chapter. By varying the architecture, the performance of the algorithms is evaluated.

Chapter 5

Real-World Application Practice

In the previous chapter, ECA has been evaluated using synthetic task graphs to derive
the performance of the algorithm in respect to characteristic task graph properties. TGFF
has produced a huge number of synthetic CPGs with random and irregular structure
representing similar characteristics. However, these graphs hardly reflect actual
applications. This chapter shows the practice of ECA on a real-world networking
application. The used networking application is an internet router application with packet
forwarding functionality using DiffServ methodologies, [6] and [76].

The analysis model with CPG and target architecture is introduced. The performance of
ECA is evaluated by applying the algorithm to different architectures. Starting with a small
subset, the target architecture is extended in four stages to its full extent. Due to the missing
predictability, the different target architectures are used in a real-world application practice
to test the performance of the introduced algorithms.

5.1 Architecture Exploration

Today’s networking applications require both characteristics high-performance and
cost-efficiency. In order to identify the most suitable implementation which meets the
requirements best, an extensive exploration is necessary. A by-inspection generation of the
SoC architecture is not feasible due to the general complexity of real-world examples and
especially communication mutual dependencies which can arise.

Concurrent communication on the SoC can cause congestions which may slow down the
overall performance. Communication bottlenecks are not easy to predict, since the
communication depends on the processing of the data. Therefore, a more detailed look into
the communication is required during architecture exploration.
93

94 Chapter 5 Real-World Application Practice
In this chapter, an architecture exploration is used for the evaluation of the partitioning
algorithms by adding and changing resources of the target architecture. Figure 5.1 shows
different possibilities to adapt the target architecture to different design objectives. Starting
from a reference target architecture in the middle of the figure, the performance and
suitability of this target architecture is evaluated. Depending on the application, HW
accelerators can improve the overall performance significantly. Alternatively, applications
with intensive memory accesses can require local memory for the processing unit to avoid
congestions of the communication resource and an impairment of performance. Other than
extending the resource sets, a DMA (direct memory access) controller can stress the
architecture by generating background traffic on the shared bus to evaluate the behavior at
different bus loads. This resource stores and retrieves data packets to and from the memory
in networking applications without the interaction of microprocessors.

In this thesis, the influence of the number of HW accelerators and the presence of local
memory on the performance of the algorithms is analyzed.

5.2 Real-World Application

To evaluate the utilizability for real-world applications, an example is taken from the
networking domain. The networking application and the system environment are explained
next. With this information, a CPG is derived in the following.

Memory

HW Accelerator

Processors

DMA

Reference

Local Memory or
Shared Memory

Background Load on Bus

Different Number of
HW Accelerators

(Tighly / Loosely Coupled)

I/O

 Figure 5.1: Target Architecture Evaluation

5.2 Real-World Application 95
5.2.1 Internet Router Application Diffserv

The ingress packet processing of a router line card should serve as verification of the
introduced algorithms. Thereby, the design model for this evaluation comprises the
processing of the header after the storage of the packet in a data memory and before the
packet is enqueued in the subsequent switching network.

For the system environment, an Ethernet network is assumed. The application comprises
Ethernet switching as well as all necessary tasks to process IP packets. Beside fundamental
routing functionality, DiffServ functionalities according to [6], [48], and [76] are included,
especially the classification of the packets, policing with metering and marking, and
accounting functions. In this model, only time-critical functions belonging to the "fast
path" ([2]) are considered. These functions are applied to packets which are forwarded
immediately. Management and control functions which are less time-critical and define
"slow path" are disregarded. These tasks are usually processed on a central card due to
limited performance on the line card anyway.

Figure 5.2 depicts an overview of the described application DiffServ. The single
functionalities are shown as blocks. Some of these functionalities are particularly relevant
in respect of achievable overall performance. Particularly, routing decisions with next-hop
(NH) look-ups are very significant. Such a lookup determines the next router on the
packet’s way to the destination. Aside, packet classification can have significant impact of
performance. The priority of the packet and the allocation to specific traffic streams are
important features of packet classification.

Start

End

Frame Recognition
Encapsulation

Ethernet
Switching

Queuing

Hash Lookup Host Forwarding
Verification

NH Lookup

Classification

Packet Modification

NH Lookup

Classification

Policing

Discard Packet

Accounting

Packet
Modification

Protocol ?

Packet
Accepted?

Classification
Rejection?

B
A

B

A

B

A

y n

IPv4 IPv6
else

y
n

n

y

 Figure 5.2: Flow Diagram of DiffServ

96 Chapter 5 Real-World Application Practice
Routing

Within the Internet, IP packets are forward from one router to the next one in a hop-by-
hop behavior. Each router determines the next leg to the next router independently by
selecting the appropriate egress interface. The protocols how to determine the route are not
subject of this work.

From a routing table, the nexthop lookup determines the next router along the packet’s
path and the dedicated router interface. With concept of CIDR (Classless Interdomain
Routing), the entry which has the longest prefix match is taken for routing. In this way, the
number of routing list entries can be reduced. Destination networks with consecutive
address space can be treated with just one entry. It can be assumed that the longer the prefix
match, the closer the destination.

The nexthop lookup is the most complex component of the IP packet processing in
routers and limits the achievable performance. For this reason, this topic is subject of
research regarding the time for a lookup, memory requirements, necessary preprocessing,
and the possibility to modify the data base. [43] gives a broad overview of current
algorithms.

For the considered example here, the nexthop lookup described in [98] is used. This
algorithm is based on a binary search of hash tables in which the entries are ordered by
prefix length. A nexthop lookup needs 5 memory accesses for IPv4 and 7 memory accesses
for IPv6. Since the worst case situation is considered, it is assumed that each lookup needs
the maximum number of accesses. The routing table is serviced by the slow path which
provides, modifies and stores the routing information in the shared memory. The
maintenance of this list is not considered in the following design model.

Packet Classification

A fundamental element of the DiffServ concept is the classification of incoming packets
into particular traffic flows. These flows are categorized into diverse Classes of
Service ([6]). Also called "per hop behavior", Class of Service guarantees the specific
properties like packet loss, latency, or jitter among the service class and relative to other
classes.

Classification is performed on the basis of specific header fields and results in a class
identifier (Class ID) assigning the packet to a certain class of service. The first
classification rule which fits header fields designates the Class-ID for that packet. Analyzed
header fields for classification are source and destination address, the type-of-service field
(TOS), the protocol field, and the source and destination port numbers derived from the
transport layer. In addition, the number of the physical ingress interface is used in the
considered algorithm.

Many algorithms were proposed for the multi-field classification. Besides hardware
based solutions, e.g., with ternary CAM (Content Addressable Memory), different
algorithms have been proposed in recent years. These algorithms can be differentiated in
fundamental search algorithm, geometric or heuristic methods. Assessment criterions of

5.2 Real-World Application 97
these algorithms are the duration of the classification process, the memory requirements,
the number of supported fields, the size of the rule set, and its flexible extensibility. An
overview of ongoing proposals for classification algorithms is given in [44].

For the networking example, the RFC (Recursive Flow Classification) algorithm is used
that is described in [42]. With the help of complex preprocessing, this algorithm constructs
a data structure in the memory which delivers the result of the classification after
incremental memory accesses and linear combinations of the lookup results. The choice of
parameters for the RFC algorithm needs to be balanced between the number of memory
accesses and the size of memory.

Policing

For policing, it is assumed that each packet with its user (IP address) can accurately be
classified in a unique Class ID which is used for forwarding. Policing parameter are defined
as a leaky bucket with an average data rate and a maximum burst rate. Whenever the
allowed data rate is exceeded, the packet may be discarded. The determination and
modification of the policing parameters are performed by a controller in the slow path. For
that reason, policing parameter updates is not considered in the application graph.

5.2.2 Design Model and Architecture Assumptions

Based on the functionality and the performance figures of the networking application
just described, a design model in the form of a CPG is created. The target architecture
consists of resources which may be found in networking devices. This CPG and target
architecture are primarily meant to evaluate the performance of ECA in respect to a real-
world application. In the following evaluation, the design model remains unchanged while
specific target architectures are selected to emulate a potential architecture exploration.

Conditional Process Graph

The CPG of DiffServ consists of 152 nodes with 18 nodes describing conditional edges.
This results in 12% of all nodes with conditional branches. The mean amount of processed
data transferred between the nodes is 56 bits. The 103 nodes can be sped up by dedicated
hardware accelerators grouped in 6 clusters. This result in a mean overall acceleration
factor of 5 compared to the available processors. Appendix C shows the CPG and the target
architecture used in this chapter.

Target Architectures

The target architecture of the processor types is bus-based with the following abstract
resources: Two embedded processors with different properties represent a fast core and a
slow core which allow all tasks to be processed. Several accelerators provide efficient
processing for nexthop lookups, classification, policing, and general table lookups. The

98 Chapter 5 Real-World Application Practice
system also includes interfaces both receiving the unprocessed packet from the framer and
forwarding the processed packet to the switching network. Additionally, two independent
memories hold data, one for entire packets, the other for the storage of lookup tables and
other data like packet descriptors, accounting information, and policing parameters. In
addition to that two independent memories, local data memory is provided to all
accelerators.

In figure 5.3, the shaded blocks of the target architecture are considered during the
analysis. The other blocks are used for the reception of the packets and their storage in
memory, as well as queuing and forwarding. These functions are not taken into account in
this example.

The WCET values represent the performance of the processors and HW accelerators by
an upper limit of the possible execution duration. In this model, up to four accelerator
blocks representing potential commercial intellectual property (IP) modules are applied in
the target architecture for different functionalities: a lookup-engine, a classifier, a next-hop
lookup engine and a resource manager.

5.3 Evaluation of ECA

The performance of the variants of ECA with the clustering options are compared in
respect of the various target architectures. In the following, the partitioning algorithms
utilizes the same CPG of DiffServ with five different implementation possibilities as target
architectures. The numbers of HW accelerators and the usage of local memory are the
distinctive features:

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

Packet
Memory

Data
Memory

Switch/
Interface
Queuing

Line/
Interface
Framer

Proc.Proc. Acc. Acc. Acc. ����������������
����������������
����������������
����������������

Acc.

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������

��������������������
��������������������
��������������������
��������������������

Local
Data

Memory

Local
Data

Memory

Local
Data

Memory

Local
Data

Memory

 Figure 5.3: Target Architecture for DiffServ

5.3 Evaluation of ECA 99
Each of these target architectures is applied to ECA_LA1 and ECA_LA2 in combination
with or without ESU. The options Cluster_CIN and Cluster_Sum assure that the
accelerators are accordingly used by the CIN. As reference, ReCA with Cluster_CIN is
applied. The runtime of each algorithm never exceeds 1 second due to the size of the task
graph with 152 nodes.

DiffServ_Proc

This target architecture consists of two different processors and one shared memory, see
figure 5.4. All tasks can be processed by either processor with different latencies. Table 5.2
shows the results of the different versions of ECA.

It can be observed that no variant of ECA can achieve improvements compared to ReCA.
Nevertheless, ECA_LA2 performs better than ECA_LA1, and ESU can mitigate the
impaired results by differentiating dynamic priority values. Also, Cluster_Sum can
alleviate unfavorable selections of resources.

ECA_LA2 performs best of all variants with a schedule latency increase of 0.6%. With
only two computational resources with similar performance available, ECA_LA2 with ESU
and the clustering option Cluster_Sum can select the resources in the most appropriate
order with the least loss in performance.

ECA_LA1 cannot perform as in chapter 4 due to missing inevitable data transfers to fast
computational resources. Since the only inevitable data transfers are to and from memory

Scenarios No. of
Processors

Shared
Memory No. of Accelerator for

Local
Memory
of Acc.

DiffServ_Proc 2 x - -
DiffServ_1Acc 2 x 1: Classification -

DiffServ_1AccMem 2 x 1: Classification x
DiffServ_4Acc 2 x 4: Classification, Next-hop

Lookup, Lookup, Management
-

DiffServ_4AccMem 2 x 4: Classification, Next-hop
Lookup, Lookup, Management

x

Table 5.1: Different Scenarios for DiffServ

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������

Data
Memory Proc.Proc.

 Figure 5.4: Target Architecture for DiffServ_Proc

100 Chapter 5 Real-World Application Practice
and necessary for all compared resources in this scenario, no blocking communication
resource can be identified.

DiffServ_1Acc

Figure 5.4 depicts the target architecture of DiffServ_Proc with the extension of one
application-specific accelerator for the functionalities of classification. All tasks which
belong to classification may be executed on the accelerator. However, all memory accesses
still needs to be performed with the shared data memory.

Table 5.3 shows the results evaluating the algorithm with the target architecture of
DiffServ_1Acc. ReCA does not use the accelerator, because the processors are more
favorable for the first CIN due to bus congestions. Although the option Cluster_Sum
utilizes the accelerator, the latencies are longer than the one obtained by ReCA except for
ECA_LA1 without ESU. This algorithm can improve the schedule latency by 1.0%.

By not using the accelerator and avoiding communication for the data transfer to the
accelerator, ECA_LA1 without ESU and Cluster_CIN can achieve the best result in this
scenario. ECA_LA1 can utilize the processor with the slow core in more efficient way than
ECA_LA2.

% Schedule Latency of
ReCA with Cluster_CIN Cluster_CIN Cluster_Sum

ECA_LA1 without ESU +3.7% +3.0%
ECA_LA1 with ESU +3.5% +1.9%

ECA_LA2 without ESU +2.2% +2.8%
ECA_LA2 with ESU +1.7% +0.6%

Table 5.2: Result of ECA in Scenario Diffserv_Proc

�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

��������������������
��������������������
��������������������
��������������������

Data
Memory Proc.Proc. Acc.

 Figure 5.5: Target Architecture for DiffServ_1Acc

5.3 Evaluation of ECA 101
DiffServ_1AccMem

In order to analyze the results of the partitioning algorithms with respect to
communications, a local data memory is appended to the accelerator from DiffServ_1Acc.
This memory is connected directly to the accelerator on a separate connection. The data for
the processing of classification is already loaded in the local memory. For the simplicity of
the analysis model, the separate link has the same characteristics as the shared bus.

The allocation of the accelerator is the same as in the scenario DiffServ_1Acc. However,
the algorithms ECA_LA1 and ECA_LA2 with ESU and Cluster_Sum can reduce the
schedule latency by 13.3% by using the faster accelerator. The separate connection to the
the local memory has a utilization of 18% which relieves the shared bus and allows to
achieve this performance figure.

The other variants of ECA do not select the accelerator for all available clusters.
Nevertheless, almost all variants can achieve improvements in performance. Again, the
local memory allow the shared bus to be relieved and the schedule to be shortened.

% Schedule Latency of
ReCA with Cluster_CIN Cluster_CIN Cluster_Sum

ECA_LA1 without ESU -2.0% -1.0%
ECA_LA1 with ESU +2.0% +0.6%

ECA_LA2 without ESU +0.3% +0.3%
ECA_LA2 with ESU +2.4% +3.5%

Table 5.3: Result of ECA in Scenario Diffserv_1Acc

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

��������������������
��������������������
��������������������
��������������������

Data
Memory Proc.Proc. Acc.

��������������������
��������������������
��������������������
��������������������

Local
Data

Memory

 Figure 5.6: Target Architecture for DiffServ_1AccMem

102 Chapter 5 Real-World Application Practice
DiffServ_4Acc

This target architecture is an extension of DiffServ_1Acc by three further accelerators: a
generic lookup engine, a next-hop lookup engine, and a resource manager. All memory
accesses need to be performed through the shared data memory.

For this scenario, ECA_LA2 without ESU and Cluster_CIN performs best with an
improvement of 0.7%. By using only the generic lookup engine accelerator, similar
behavior than in the scenario DiffServ_1Acc can be observed. The result is achieved by
avoidance of communication to and from the accelerators.

ECA_LA2 without ESU and Cluster_Sum uses all four accelerators. However, the
performance is the worst of the scenario. By using the accelerators, the communication
latencies to and from the shared memory are not altered. The context transfers from the
processors to the several accelerators are delayed which results in the observed
performance.

% Schedule Latency of
ReCA with Cluster_CIN Cluster_CIN Cluster_Sum

ECA_LA1 without ESU -2.2% -4.3%
ECA_LA1 with ESU -3.1% -13.3%

ECA_LA2 without ESU +0.1% -3.4%
ECA_LA2 with ESU -4.9% -13.3%

Table 5.4: Result of ECA in Scenario Diffserv_1AccMem

% Schedule Latency of
ReCA with Cluster_CIN Cluster_CIN Cluster_Sum

ECA_LA1 without ESU -0.6% +1.7%
ECA_LA1 with ESU +2.9% +2.9%

ECA_LA2 without ESU -0.7% +4.0%
ECA_LA2 with ESU +1.7% +3.5%

Table 5.5: Result of ECA in Scenario Diffserv_4Acc

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

����������������
����������������
����������������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

Data
Memory Proc.Proc. Acc. Acc. Acc. ����������������

����������������
����������������

Acc.

 Figure 5.7: Target Architecture for DiffServ_4Acc

5.3 Evaluation of ECA 103
DiffServ_4AccMem

This target architecture is based DiffServ_4Acc and extended by four local memories for
each accelerator. Again, each local memory is connected to the accelerators via separate
links having the same properties as the shared bus. For each local memory, it is assumed
that the data necessary for processing is already loaded. For the coherence of the memories,
the "slow path" management and control functions are responsible for updates. However,
these functions are not considered in this work.

ECA_LA1 with ESU and Cluster_Sum achieves the best result for DiffServ_4AccMem.
This algorithm uses all accelerators and its local memories, and balances the load of the
processors. In this way, it can reduce the latency by 15.1% compared to ReCA.

With the local memory of the accelerators, the connections to the local memory relieve
the traffic load of the shared bus. Cluster_Sum uses the accelerators and provide about 10%
shorter overall latencies than using Cluster_CIN by binding all accelerators.

In all cases, the usage of ESU improves the results. In this scenario, ambiguities of task
priorities can be clarified by assigning higher priorities to tasks with more succeeding
branches.

% Schedule Latency of
ReCA with Cluster_CIN Cluster_CIN Cluster_Sum

ECA_LA1 without ESU +1.6% -13.9%
ECA_LA1 with ESU -4.0% -15.1%

ECA_LA2 without ESU +3.1% -9.6%
ECA_LA2 with ESU -5.8% -13.3%

Table 5.6: Result of ECA in Scenario Diffserv_4AccMem

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������

Data
Memory Proc.Proc. Acc. Acc. Acc.

����������������
����������������
����������������
����������������

Acc.

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������

��������������������
��������������������
��������������������
��������������������

Local
Data

Memory

Local
Data

Memory

Local
Data

Memory

Local
Data

Memory

 Figure 5.8: Target Architecture for DiffServ_4AccMem

104 Chapter 5 Real-World Application Practice
5.4 Summary, Comments and Conclusions

In this chapter, the variants of ECA are applied to the design model of a networking
application DiffServ. In comparison to the CPGs generated by TGFF, the represented
functionality and the structure of this design model is based on a real-world application.
The target architecture consists of two processors, one shared memory, a common bus, four
accelerators. Each accelerator is equipped with local memory which is connected directly
to the accelerators via a separate bus.

For the evaluation of ECA, the selection of target architectures is based on a potential
architecture exploration. Five different subsets of the target architecture reproduce
architecture instances starting with only two processors and one shared memory. By adding
accelerators and optional local memory for specific functionalities, the behavior of the
variants and options of ECA is analyzed.

For each target architecture, the best algorithms for the most schedule latency reduction
is listed in table 5.7. ECA_LA1 with ESU and Cluster_Sum can archive the best
improvement with 15.1% compared to ReCA. The range of the observed results match the
results with synthetic task graphs of chapter 4.

Depending on the presence of local memory in the target architecture, Cluster_Sum and
ESU produces the best results by selecting all available resources to reduce the scheduling
latency. In the other cases, Cluster_CIN without ESU avoids communication and achieves
better results than Cluster_Sum.

The outcome of the algorithms is very dependent on the structure of the analysis model.
Minor changes in the design model and the target architecture can result in contingent
behavior and output of the algorithms. The observed results of table 5.7 also exhibit that for
each scenario a different algorithm performs best. However, the short runtimes of the
algorithms allow the execution of several variants and options to obtain the best solution.

Scenarios Algorithms with best performance Reduction of
Schedule Latency

DiffServ_Proc ECA_LA2 with ESU and Cluster_Sum +0.6%
DiffServ_1Acc ECA_LA1 without ESU and Cluster_CIN -2.0%

DiffServ_1AccMem ECA_LA1 with ESU and Cluster_Sum,
ECA_LA2 with ESU and Cluster_Sum,

-13.3%

DiffServ_4Acc ECA_LA2 without ESU and Cluster_CIN -0.7%
DiffServ_4AccMem ECA_LA1 with ESU and Cluster_Sum -15.1%

Table 5.7: Best Results of Variants of ECA for DiffServ
Compared to ReCA with Cluster_CIN

Chapter 6

Summary, Conclusion and Outlook

6.1 Summary and Conclusion

In this thesis, a methodology of a constructive heuristic for partitioning of process
graphs as a part of system synthesis has been introduced. This constructive heuristic utilizes
future processing steps of the application for resource selection and scheduling.
Communication is intensively taken into account for priority calculation to avoid
bottlenecks on shared buses. The modeling of networking applications necessitates the
handling of conditional branches to include various networking protocols in one design
model. The support of mutual exclusion of tasks within the design models allows the
representation of the worst-case scenario without applying all alternatives of conditional
branches. Thus, this partitioning algorithm is suitable for the design of networking
applications.

The performance of constructive heuristics depends on the priority calculation of the list
scheduling algorithm. These priorities account for two factors: the resource selection and
the sequencing of task scheduling. By using additional future processing steps of the
application for the priority calculation, the performance of the algorithms could be
improved. The consideration of such events allows the selection of more appropriate
resources and more favorable scheduling of the tasks.

Clustering of Common Implementation Nodes (CIN) can enforce special
implementation provisions during partitioning. For instance, the evaluation of memory
accesses of interrelated behavioral objects require to use the same resource. Moreover,
resource sets may extend the implementation possibilities to several components instead of
a single resource in a common model.

Various partitioning approaches are available to refine high level design models towards
lower levels of abstraction. Exact methodologies can provide optimum solutions for small
problems. However, the determination of optimum solutions requires long runtimes of the
algorithms which limits the problem to small sizes. With increasing problem sizes,
105

106 Chapter 6 Summary, Conclusion and Outlook
heuristics can determine solutions in a practicable timeframe. By approximating the
optimal solution, the results of heuristic algorithms may be sufficient to meet the
application requirements. Compared to iterative heuristics, constructive heuristics allow
very short execution time to determine solutions.

For the considered application domain networking, a partitioning algorithm had to be
selected which can handle large design models. Moreover, fast runtimes, the support of
conditional branches, the consideration of communication during partitioning, and the
support of heterogeneous target architectures are prerequisites. Figure 6.1 gives an
overview of the characteristics of the potential partitioning heuristics introduced in
chapter 2 and the introduced algorithms of this thesis.

The constructive heuristic of Xie et al., [107], complies with the requirements above and
has been selected as the basis of the considered partitioning algorithm in this thesis. The
algorithm processes design models in the form of conditional process graphs (CPG) and
utilizes estimations of worst-case execution times (WCET) which capture the properties of
the target architectures. In this thesis, the algorithm of Xie et al. has been enhanced to allow
synthetic CPG in combination with conditional branches to be used for evaluation. The
resulting Reference Constructive Algorithm (ReCA) contains no different treatment of
resources, variable length of data transfers within a more flexible communication structure,
hole filling of empty slots during scheduling for low latency scheduling, and a
generalization of conditional branches for arbitrary connections within the CPG.

The evaluation of chapter 3 has shown that ReCA performs much faster than iterative
algorithms. However, ReCA cannot achieve the performance of this type of algorithms. To
compensate for this performance impairment, the Enhanced Constructive Algorithm (ECA)
has been introduced. Its improved priority calculation includes inevitable future events. In

 Figure 6.1: Overview of Heuristic Algorithms for Partitioning

Partitioning Algorithms

D
av

e
et

 a
l.,

 [2
2]

, [
23

]
"C

O
SY

N
",

"C
O

H
R

A"
El

es
 e

t a
l.,

 [3
1]

, [
32

],
[3

3]
"C

on
d.

Pr
oc

.G
ra

ph

Ka
la

va
de

 e
t a

l.,
 [5

7]
"D

yn
.L

ev
el

 /
G

C
LP

Kw

ok
 e

t a
l.,

 [6
1]

"D
yn

am
ic

 C
P

Sc
he

du
lin

g"
Si

h
et

 a
l.,

 [8
5]

"C
om

pi
le

-ti
m

e
Sc

he
du

lin
g"

Va
lle

rio
 e

t a
l.,

 [9
4]

"G
ra

ph
 T

ra
ns

fo
rm

at
io

ns
"

W
ild

, [
10

1]
"E

nh
an

ce
d

C
P

Sc
he

du
lin

g"
W

u
et

 a
l.,

 [1
05

]
"S

ch
ed

.&
M

ap
p.

 O
f C

TG
"

Xi
e

et
 a

l.,
 [1

07
]

"A
llo

c.
 &

 S
ch

ed
. O

f C
TG

"
Zi

tz
le

r e
t a

l.,
 [1

09
]

"E
vo

lu
tio

na
ry

 A
lg

or
ith

m
s"

Br
un

nb
au

er
"R

eC
A"

Br
un

nb
au

er
"E

C
A"

Iterative
Constructive
Dynamic List Scheduling
Look-Ahead
Conditional Branches
Considering Comm. Latencies
Considering Memory Latencies
Hierarchy, Clustering
Multiprocessorsystems
Appl. Spec. HW Accelerators
Flexible Comm. Architecture

6.1 Summary and Conclusion 107
this thesis, three versions of Look-Ahead (LA) for immediate succeeding events have been
introduced. ECA_LA1 only takes inevitable future data transfers into account. ECA_LA2
also includes the fastest succeeding tasks, while ECA_LA3 considers the slowest
performing tasks which succeeds immediately. In addition, the calculation of Static
Urgency (SU) has been modified to improve the sequencing of the tasks scheduling by
Enhance Static Urgency (ESU).

With clustering, a group of nodes or functionalities, here so-called CINs (Common
Implementation Nodes), can be constrained to specific implementation possibilities. In this
way, different levels of granularity can be used which facilitates the model generation. In
addition, the same task graph can serve for different design objectives with various
implementation possibilities. For instance, exploiting parallelism with multi-processor
systems, or improving the performance of single functionalities by application-specific
hardware accelerators may be the focus of the architecture evaluation.

The performance has been evaluated with both synthetic design models generated by
TGFF, [24], and a design model of a real-world example DiffServ, a networking application
on a router linecard. The mandatory support of conditional branches in a design model
limits the number of partitioning algorithms which allow the processing of synthetic task
graphs.

The results show that the algorithmic improvements of ECA can provide significant
better solutions compared to ReCA by looking ahead the potential schedule and utilizing
future events for priority calculation. However, some parameter sets cause ReCA to
perform better than ECA. Among the variants of ECA, ECA_LA1 performs best. The known
data transfer events allow the precise estimation of the subsequent latencies and allow to
avoid communication bottlenecks. ECA_LA2 cannot achieve the same performance as
ECA_LA1, since assumptions of the succeeding events are used for prediction. The variety
of binding and scheduling possibilities of the succeeding tasks complicate the prediction of
the actual assignment. ECA_LA3 uses the longest latency for the immediate succeeding
data transfers and tasks as LA value which causes the selection of the slowest resource for
the considered task. In this way, data transfers and potential communication bottlenecks
can be avoided. The overall performance of ECA_LA3 exhibited much lower performance
than the other two variants mostly caused by the selection of slow resources. Hence, only
ECA_LA1 and ECA_LA2 have been considered for further investigation.

ESU can resolve task priority ambiguities for ECA_LA2 and ECA_LA3 and lead to better
results. It takes the structure of the process graphs into account compared to the critical path
through the process graph. Since the LA value of ECA_LA1 considers only inevitable data
transfers and no succeeding tasks, ESU does not show significant influence on ECA_LA1
in the considered scenarios with synthetic task graphs.

Clustering with the algorithm Cluster_Sum leads to good results in most cases. The
usage of all CINs within a cluster for the priority computation is more favorable instead of
only the first CIN with the algorithm Cluster_CIN. Depending on the WCET distribution
of the corresponding CIN in the cluster, Cluster_CIN can achieve similar performance if
the WCET of the first CIN represents the latency characteristic of the entire cluster.

108 Chapter 6 Summary, Conclusion and Outlook
A significant drawback of the introduced algorithm is the dependency on the structure
of the design model and the properties of the target architecture. The variants of ECA have
shown improvements in the mean over a huge number of design models and target
architectures. However, the results of DiffServ have shown that each variant of the
algorithms performs different on the diverse target architectures.

For various design models and target architectures, each variant behaves differently and
needs to be evaluated individually. The performance of the algorithmic improvements of
ECA cannot be predicted. However, the very fast runtimes of ReCA and ECA allow the
processing of large task graphs and the subsequent usage of different variants for the same
scenario without noticeable delays.

6.2 Outlook

In this thesis, a new constructive heuristic for partitioning has been introduced which
intensively takes communication into account to avoid communication bottlenecks. The
algorithms exclusively utilizes latencies for the performance optimization. The
consideration of other criteria, such area, cost, and power of the used resources, requires
more complex partitioning algorithms with multidimensional optimization. The introduced
constructive algorithms of this thesis may provide an initial solution to such extended
algorithms.

In the introduced real-world practice, one single data packet was processed by DiffServ.
For the evaluation of timely overlapping data packets, a design model with an accordant
number of independent instances of the introduced CPG of DiffServ has to be applied. To
handle such design models, ECA needs to be extended to process multiple data packets
accordingly. As a first step, the replication of several CPGs can be merged into a new CPG
with according delays representing the arrival times. The processing of such a new CPG
requires the correct assignment of task priorities to ensure the appropriate sequence of
parallel CPG instances.

The provision of methods and tools for the creation and evaluation of suitable VLSI
architectures is a crucial task to reduce the productivity gap, [51]. This thesis provides a
contribution to system synthesis with a fast partitioning algorithm supporting applications
with control dependencies. Many challenges still lie ahead to rise the entry level of chip
design to higher levels than today by providing suitable exploration and synthesis tools.

Appendix A

Tools

A.1 Environment for Partitioning Algorithm Evaluation

Figure A.1 gives an overview of the tool used for the analysis of ReCA and ECA whose
usage is described in the following:

Parameters
Number of Nodes,
Size of Data Transfer,
Fan in/out,
Range of WCET
Number and Types of Resources

% Conditional Nodes
% Conditional Edges per Node

% Memory Access Nodes

Partitioning Algorithms part_algo

tgff

tgff2occ

cond_cpg

mem_cpg

evaluate

 Figure A.1: Tool Chain
109

110
tgff

Task Graphs For Free (TGFF), [24], is designed to provide a flexible and reproducible
way of generating pseudo-random task-graphs for use in scheduling and allocation
research. This includes the areas of embedded systems, hardware/software co-design,
parallel or distributed hardware or software studies, as well as any other area which requires
problem instances consisting of directed acyclic graphs (DAGs) of tasks, i.e., task-graphs.
It also generates associated resource parameters in accordance with the user's
parameterized graph and database specifications and thereby allows the generation of
graphs tailored to particular domains.

usage: tgff file[.tgffopt]

In the following, an excerpt of the instructions of TGFF used in this work is given. The
file is a command file with .tgffopt extension describing a scenario with a CPG with
40 nodes and a target architecture with two processors, two accelerators and a shared bus.
The transfer and task types are used to randomized the values in the WCET tables:

Graph Data // Comment
tg_label Graph // Name of the task graph, here "Graph"
tg_cnt 1 // Number of graphs generated
period_mul 1 // Multiplier for periods in multirate systems
task_cnt 40 5 // Number nodes: 40 + 5 nodes
task_degree 5 5 // Maximum number of transmits

// (fan in, fan out) per task, here up to 5
// connections on the ingress and egress side

task_type_cnt 100 // Number of different task types
tg_write // Write the task graphs to .tgff file
Transfer
trans_type_cnt 100 // Number of transmit types
table_label Data // Label used for tables, here "Data"
table_cnt 1 // Number of tables, here 1 bus.
type_attrib bits 51.0 50.0 1.0 1.0 // Name, average, jitter, multiplier,

// Round to (0.0 means no rounding)
// Transfers: 51 50 bits

trans_write // Write transmission event information
Processors
table_label Res // Label used for tables, here "Res"
table_cnt 2 // Number of tables, here 2 processors.
type_attrib feasibility 20.0 20.0 1.0 1.0, WCET 80.0 30.0 1.0 1.0

// Feasibility: 20 20 (100% of all tasks)
// WCET: 80 30 time units

pe_write // write processing elements information

 ±

 ±
 ±

 111
ASICs
table_label Res // Label used for tables, here "Res"
table_cnt 2 // Number of tables, here 2 ASICs.
type_attrib machbar -10.0 20.0 1.0 1.0, dauer 20.0 16.0 1.0 1.0

// Feasibility: -10 20 (25% of all tasks)
// WCET: 20 16 time units

pe_write // write processing elements information
eps_write // write task graph as PostScript

The parameter Feasibility is used by tgff2occ in the next step. The random number
identifies the mean availability of the considered resouce for the execution of the tasks
within the CPG. A non-negative value indicates the task to be available.

tgff2occ

This graph format conversion tool converts the output of TGFF to another format used
by the constructive algorithm tool eca.

usage: tgff2occ file[.tgff]

The output of tgff2occ consists of a file describing the CPG, the resources and the
communication structure:

-example.cpg (Information of Conditional Process Graph)
<Number of Nodes in the CPG>

<Number of Predecessors of considered Node>
<Node Number Predecessors> <Coming from a Conditional Branch?>

:
<Number of Successors of Node of the considered Node>

<Node Number Successor> <Bits to transfer> <Conditional>
:

:

-example.res (WCET of Resources for all Nodes)
<Number of Resources>

<WCET for Res1>:<WCET for Res2>:... // For each considered node
 : (for all Nodes)

-example.com (Description of Communication Architecture)
<Number of Busses>

<Bandwidth in bits> <> <> <> // Additional Info not considered yet
<Number of Resources writing on the bus> - <Res1> <Res2> ...
<Number of Resources reading on the bus> - <Res1> <Res2> ...
:

 ±
 ±

112
cond_cpg

With the help of this tool, branches within a task graph can be assigned as conditional
branches. Out of all nodes of the CPG, the percentage cond_node_share of nodes are
selected to originate conditional branches. Out of each selected node, the percentage
cond_edge_share of all succeeding edges is selected to actually become conditional. The
rest of the edges remain unconditional.

usage: cond_cpg name[.cpg] cond_node_share [int %] \
cond_edge_share [int %] seed

mem_cpg

This tool inserts memory nodes in the existing task graph. In this work, only one type of
memory is used. A memory resource is append to the target architecture as a further
resource.

usage: mem_cpg name[.cpg] no_of_memory_nodes seed

part_algo: eca

The tool eca represent the implementation of the ReCA and ECA algorithms introduced
in chapter 3 and 4 using in the tool chain.

usage: eca -[options] <sample>

With the following options used in this work:
1..3 - Variants of Look-Ahead (default = 0)
a - omit analysis; printing just the results
A - print resource allocation
v - Verbose; printing all kinds of messages during processing
p - progress; printing progress of sub function
P - printing critical path
S - Using Enhanced SU (ESU); SU sum of all branches
G - Turn off all cluster DU calculation
g - No consideration of clustering
i - ignore Communication-Architecture (only one bus); no *.com necessary

 113
evaluate

The outcome of the algorithms will be summarized. The output figures are the average
improvement of the corresponding version of ECA compared to ReCA in percent, the ratio
of improvements, and the ratio of deteriorations of performance.

usage: evaluate_results relevance_limit (in percent, int) in_value (int) \
n_variants n_resources

The parameter relevance_limit allows to extract results exceeding <relevance_limit> %
of the reference algorithm. Tese task graphs can be examined later on. The parameter
in_value is used in the output to differentiate between different algorithm evaluated by the
tool. n_variants and n_resources are necessary parameters for the formatting of the result
data.

A.2 Simulation Environment for Clustering

For the generation of CPGs suitable to analyze clustering, a modified tool chain is
necessary. The generation of task graphs with self-contained functionalities represented as
clusters of tasks requires a multi-stage procedure. Instead of generating the task graph at
once, smaller self-contained functionalities task graphs are created and inserted in the main
task graph, [60], see figure A.2. In this way, the refinement of single functionalities with
more detail can be represented.

302
201
20

403

Node

WCET Table

Proc 1

Acc 1

Acc 2

706
605
504

807

58

10
6
-

13

-
-
-

-
-

-
-
-

-

17
15
12

20
-

5 6

4

7

1110

12 13

1

0
15 5

2

3

8
3 17

4

2

Cluster1

Cluster2

Cluster1
Cluster2

90
80
10

100

Proc 2

130
120
110

140
20

 Figure A.2: Desired Task Graph Shape for Clustering

114
According to the tool chain for ECA in figure A.1, figure A.3 depicts the interworking
of the single scripts and tools to create an appropriate CPG. create_csv is the main

simulation control script which is also responsible for the formatting of the results in the
csv (comma separated values) format.

parameter.template contains all parameters of the CPG and the target architecture
generation for each sub CPG. This script calls the script sim_script which performs the task
graph generation similar to the CPG generation for ECA.

The graph modification tool graph_tool, [60], combines all generated CPGs to one large
task graph. The process of merging the CPGs can be automated by scripts. The created final
CPG is then provided to eca. The results of eca are gathered and sorted by create_csv. This
output can be charted by a spread sheet program, such as Microsoft Excel.

create_csv

parameter.template

sim_script

TGFF

tgff2occ

cond_cpg

mem_cpg

main.tgffopt

TGFF

tgff2occ

cond_cpg

mem_cpg

graph_tool.script

graph_tool

eca

ip1.tgffopt Further
Clusters

evaluate_results

Tool / Script

Parameter File

Call

Generation

 Figure A.3: Script Flow for Clustering

 115
In the following, the commands of graph_tool are presented with an example how a final
CPG is created.

Commands of graph_tool Remark
c g create new graph\n
c n <count> create nodes
c e <start_node> <end_node> <transfer> create edges
c r <count> create resources
c i <orig.resource> <factor> create ip-module
r n <#> remove node <#>
r e <start_node> <end_node> remove edge
r r <#> remove resource <#>
d n <#> <count> duplicate node <#>
d g {<#>,<#>, ... ,<#>} <count> duplicate group of nodes
d r <resource> <count> duplicate resource
e r <#> {<wcet>:<wcet>: ... :<wcet>} edit resource at node <#>
e e <start_node> <end_node> u||c||<transfer> edit edge
e s <seed> edit seed
i g <#> <name> insert graph at node <#>
i r <number> insert resource
n normalize
s n <#> show node <#>
s m show matrix
s r show resources
s g show groups
s a <file name> pipe all 'shows' in file
l <graph name> load graph
w [graph name] write graph
x <script filename> execute script file
h help
q quit

116

Appendix B

Performance Figures of ECA

The evaluation results produced in this thesis are tabularly presented in this appendix.
The following results are determined with eq. (6.1). Each working point is computed by n
results of the considered algorithm and set in to relation with ReCA.

Reduction in Latency (6.1)

The following tables show the results of the corresponding algorithms in relation to the
mean WCET of processors and the mean latency of data transfers as reduction in schedule
latency compared to ReCA.

B.1 Results of ECA Applied to Synthetic Design Models

Mean Latency of Data Tranfers

20 30 40 50 60 70

M
ea

n
L

at
en

cy
of

 R
es

ou
rc

es
 T

yp
e

A 50 -8,6% -19,8% -24,8% -28,3% -27,3% -29,5%
100 -3,8% -12,6% -19,4% -22,3% -26,1% -29,6%
150 -0,9% -8,3% -14,4% -17,7% -23,3% -25,9%
200 -1,0% -5,8% -11,7% -16,0% -19,9% -21,3%
250 +0,1% -3,6% -8,1% -12,3% -15,8% -19,1%
300 +0,4% -2,1% -5,3% -10,1% -14,8% -16,4%

Table B.1: Performance of ECA_LA1 Compared to ReCA
Considering Inevitable Data Transfers (Figure 4.18)

1
n
--- Latency Algorithm() Latency ReCA()–

Latency ReCA()
-- 

 

N
∑=
117

118
Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A
50 -31.0% /

-22.6% /
-5.7%

-29.3% /
-20.7% /

-6.8%

-32.8% /
-22.4% /

-4.5%

-33.9% /
-22.7% /

-6.5%

-32.7% /
-22.4% /

-3.5%

-31.8% /
-24.6% /
.-2.7%

100 -22.5% /
-11.9% /
-2.1%

-22.4% /
-11.4% /
-2.4%

-22.7% /
-11.0% /
-1.4%

-20.9% /
-10.4% /

-1.7%

-21.5% /
-9.9% /
-2.0%

-23.6% /
-11.2% /
-2.7%

150 -16.3% /
-7.4% /
-0.6%

-14.8% /
-5.7% /
-0.1%

-14.7% /
-5.9% /
0.0%

-14.7% /
-6.2% /
+0.2%

-14.8% /
-6.0% /

0%

-15.2% /
-6.4% /
+0.8%

200 -10.3% /
-4.1% /
+1.1%

-10.5% /
-3.5% /
+1.0%

-9.8% /
-3.6% /
+1.2%

-9.4% /
-3.9% /
+1.4%

-9.1% /
-3.9% /
+1.2%

-10.1% /
-4.2% /
+0.7%

250 -8.0% /
-3.6% /
+0.8%

-7.4% /
-2.4% /
+2.2%

-8.5% /
-3.0% /
+1.0%

-7.6% /
-3.3% /
+1.3%

-6.5% /
-2.3% /
+1.2%

-7.3% /
-3.0% /
+2.2%

300 -5.6% /
-2.9% /
+1.4%

-6.0% /
-2.4% /
+1,7%

-4.9% /
-1.8% /
+1.8%

-5.7% /
-2.6% /
+1.4%

-4.5% /
-2.1% /
+1.2%

-5.0% /
-2.2% /
+1.6%

Table B.2: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) without ESU
for the Multiprocessor Scenario in Figure 4.19 Relative to ReCA

Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A

50 -30.4% /
-23.8% /

-7.0%

-30.7% /
-21.5% /

-6.4%

-33.8% /
-23.1% /

-6.0%

-33.4% /
-24.9% /

-7.1%

-33.3% /
-23.0% /

-4.3%

-30.6% /
-24.6% /
.-4.6%

100 -22.6% /
-12.0% /

-3.8%

-22.9% /
-13.0% /

-3.7%

-22.8% /
-12.2% /

-3.7%

-21.3% /
-11.2% /

-3.1%

-22.5% /
-11.6% /
-3.5%

-22.8% /
-12.1% /

-3.6%
150 -16.1% /

-8.7% /
-2.3%

-14.7% /
-7.3% /
-2.6%

-14.7% /
-7.6% /
-1.8%

-15.7% /
-7.7% /
-2.8%

-14.9% /
-7.0% /
-1.5%

-15.3% /
-7.5% /
-1.7%

200 -10.3% /
-5.4% /
-0.9%

-10.4% /
-5.6% /
-1.2%

-9.9% /
-5.2% /
-1.1%

-9.6% /
-4.8% /
-0.7%

-9.7% /
-5.2% /
-0.6%

-10.3% /
-5.2% /
-1.4%

250 -8.0% /
-5.0% /
-1.5%

-6.6% /
-3.5% /
-1.2%

-7.7% /
-4.8% /
-0.7%

-7.8% /
-4.9% /
-1.0%

-6.4% /
-3.8% /
-0.4%

-7.4% /
-4.5% /
-0.6%

300 -4.7% /
-3.9% /
-0.8%

-5.2% /
-3.3% /
-0,7%

-4.7% /
-3.6% /
-0.2%

-5.3% /
-3.8% /
-1.0%

-4.4% /
-3.1% /
-0.3%

-5.7% /
-3.3% /
-0.2%

Table B.3: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) with ESU
for the Multiprocessor Scenario in Figure 4.19 Relative to ReCA

 119
B.2 Results of Clustering Applied to Synthetic Design Models

Mean Data Transfer Latency

20 30 40 50 60 70
M

ea
n

L
at

en
cy

 o
f

R
es

ou
rc

es
 T

yp
e

A 50 -13.6% -15.2% -11.3% -11.9% -14.3% -13.9%
100 -7.3% -4.9% -4.7% -5.1% -6.7% -5.1%
150 -2.3% -1.1% -1.2% -1.7% -1.5% -1.2%
200 -0.5% -0.8% -0.4% -1.0% -0.9% -0.4%
250 -0.3% +0.2% -0.1% -0.1% -0.2% -0.1%
300 -0.3% -0.1% -0.2% -0.0% -0.1% +0.1%

Table B.4: Multiprocessor System with ReCA with Cluster_Sum of Figure 4.21

Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A 50 +28.9% /
+29.4%

+27.3% /
+26.6%

+30.5% /
+29.9%

+27.4% /
+26.9%

+30.8% /
+31.4%

+27.7% /
+26.9%

100 +11.6% /
+13.5%

+13.3% /
+13.7%

+11.2% /
+13.3%

+11.7% /
+13.6%

+12.7% /
+14.5%

+13.7% /
+14.7%

150 +5.4% /
+8.2%

+5.8% /
+7.5%

+5.1% /
+7.9%

+5.2% /
+7.6%%

+4.7% /
+7.3%

+5.2% /
+7.5%

200 +2.7% /
+4.7%

+2.4% /
+5.0%

+2.8% /
+4.9%

+1.3% /
+3.8%

+1.6% /
+4.3%

+2.0% /
+4.0%

250 +1.2% /
+3.4%

+0.7% /
+3.1%

+0.4% /
+2.9%

+0.4% /
+3.5%

+0.3% /
+3.1%

+0.3% /
+3.1%

300 +0.5% /
+2.8%

+0.2% /
+2.3%

+0.1% /
+2.3%

+0.3% /
+2.6%

+0.1% /
+2.8%

+0.4% /
+2.8%

Table B.5: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_CIN without ESU of Figure 4.22

Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A 50 +24.8% /
+25.0%

+24.1% /
+24.1%

+28.8% /
+29.0%

+24.6% /
+24.7%

+30.3% /
+29.4%

+27.4% /
+26.5%

100 +13.8% /
+12.7%

+13.0% /
+12.4%

+12.3% /
+12.0%

+12.7% /
+11.6%

+13.8% /
+12.4%

+14.0% /
+13.7%

150 +6.5% /
+6.1%

+6.3% /
+6.2%

+6.2% /
+6.1%

+6.1% /
+5.4%

+6.0% /
+5.8%

+6.2% /
+6.0%

200 +3.5% /
+3.2%

+3.3% /
+2.9%

+4.0% /
+3.6%

+2.4% /
+2.3%

+2.6% /
+2.3%

+2.5% /
+2.1%

250 +1.6% /
+1.5%

+1.2% /
+1.1%

+1.1% /
+0.9%

+1.3% /
+1.1%

+1.3% /
+1.1%

+0.7% /
+0.8%

300 +1.1% /
+0.9%

+1.0% /
+0.8%

+0.5% /
+0.5%

+0.7% /
+0.7%

+1.0% /
+0.7%

+0.8% /
+0.7%

Table B.6: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_CIN with ESU of Figure 4.22

120
B.3 Results of Real-World Application

In this section, the task graph of DiffServ and the according WCET table is introduced.
This model acts as analysis model for the introduced algorithms of this thesis representing
a real-world application.

Design Model

The model used for the real-world application analysis is shown in this chapter. The
CPG of DiffServ can be found in figure B.1. It consists of 152 nodes and 18 nodes originate
conditional branches.

Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A 50 -12.5% /
-12.1%

-14.2% /
-13.5%

-11.7% /
-10.7%

-12.0% /
-11.2%

-15.0% /
-14.0%

-14.3% /
-14.0%

100 -9.1% /
-9.0%

-8.3% /
-5.9%

-6.8% /
-6.8%

-7.7% /
-5.7%

-9.1% /
-8.2%

-7.8% /
-7.4%

150 -3.7% /
-3.0%

-3.3% /
-2.4%

-2.1% /
-2.2%

-4.1% /
-2.4%%

-3.3% /
-3.6%

-3.0% /
-4.0%

200 -1.4% /
+0.5%

-1.5% /
+0.3%

-1.6% /
+0.5%

-1.6% /
-0.2%

-2.0% /
-0.4%

-0.5% /
-0.2%

250 -0.4% /
+1.8%

+0.1% /
+1.7%

-0.1% /
+2.1%

-0.3% /
+2.6%

+0.2% /
+2.6%

-0.2% /
+2.4%

300 -0.1% /
+1.7%

+0.4% /
+2.4%

0.0% /
+2.7%

+0.2% /
+2.5%

+0.1% /
+2.1%

+0.2% /
+2.9%

Table B.7: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_Sum without ESU of Figure 4.23

Speed-up of Resources Type B

5 10 15 20 25 30

M
ea

n
L

at
en

cy
 o

f R
es

ou
rc

es
 T

yp
e

A 50 -13.2% /
-13.0%

-13.9% /
-14.4%

-11.5% /
-11.2%

-12.0% /
-11.6%

-14.5% /
-14.3%

-14.2% /
-14.7%

100 -9.9% /
-9.9%

-7.4% /
-7.7%

-5.5% /
-5.6%

-6.6% /
-7.2%

-8.7% /
-8.9%

-8.3% /
-8.8%

150 -1.9% /
-2.5%

-2.4% /
-3.1%

-1.6% /
-2.2%

-2.4% /
-3.3%%

-3.5% /
-3.0%

-2.4% /
-2.6%

200 -0.6% /
-1.1%

-0.9% /
-1.4%

-1.3% /
-1.5%

-1.6% /
-1.8%

-0.7% /
-1.3%

+0.1% /
-0.6%

250 +0.3% /
+0.2%

+0.5% /
+0.3%

+0.2% /
0.0%

+0.9% /
+0.6%

+0.9% /
+0.7%

+0.5% /
-0.3%

300 +0.4% /
+0.3%

+0.9% /
+0.7%

+0.8% /
+0.7%

+0.7% /
+0.5%

+0.6% /
+0.2%

+1.2% /
+1.1%

Table B.8: Performance of (ECA_LA1 / ECA_LA2 / ECA_LA3) and
Cluster_Sum with ESU of Figure 4.23

 121
In table B.9, the resource implementation library is depicted for each node in the CPG.
Along with the WCET, a brief description of the functionality is given.

N
um

be
r

D
es

cr
ip

tio
n

Pr
oc

es
so

r
1

Pr
oc

es
so

r
2

Sh
ar

ed
 M

em
or

y

L
oo

ku
p-

E
ng

in
e

L
oo

ku
p-

E
ng

in
e

M
em

or
y

C
la

ss
ifi

er

C
la

ss
ifi

er
M

em
or

y

N
ex

t-
ho

p
L

oo
ku

p

N
ex

t-
ho

p
L

oo
ku

p
M

em
or

y

R
es

ou
rc

e
M

an
ag

er

R
es

ou
rc

e
M

an
ag

er
M

em
or

y

0 Start Node 1
1 Memory 10
2 Recognize Frame 4 6
3 Type 6 8
4 LLC PDU Differentiation 8 10
5 Switching Decision 6 8
6 Dummy Task 1 1
7 VLAN Tag set 3 4
8 Unicast 2 2
9 Prepare Lookup Hash etc. 15 20 1
10 Lookup 4 1
11 MAC Address 2 2 1
12 ARP Lookup 20 25 1
13 Memory Access 1 1
14 MAC Address in ARP Cache 2 2 1
15 ARP Procedure 50 50
16 Store MAC Address 2 2
17 Storing 8
18 Update Packet Descriptor 4 4
19 Enqueue Packet Address for Free-List 6 6
20 Fetch Address for Free-List 2 2
21 Lookup 4
22 Descriptor enlist current packet in Free-List 4 4
23 Storing 8
24 Header Check 6 6
25 IP Header Correct 22 30
26 Check Options 3 4
27 Decrement TTL 3 4
28 Examine Dest-Address 5 5
29 Extract Protocol Header 6 6
30 Flow ID Calculation 10 20
31 Create Chunks 18 27 1
32 Lookup 2 1
33 Lookup 2 1
34 Lookup 2 1
35 Lookup 2 1
36 Lookup 2 1
37 Lookup 2 1
38 Lookup 2 1
39 Lookup 2 1
40 Lookup 2 1
41 Create New Chunks 9 12 1
42 Create New Chunks 9 12 1
43 Create New Chunks 9 12 1
44 Lookup 2 1
45 Lookup 2 1
46 Lookup 2 1
47 Create New Chunks 9 12 1
48 Lookup 2 1
49 Dummy 2 2 1
50 Packet Memory Access 4
51 Update IP Packet 30 45
52 16 bit Prefix Generation 4 4 1
53 Lookup 2 1

Table B.9: WCET Table of the Resources for DiffServ

122
 Figure B.1: CPG of DiffServ

 123
54 New Prefix 6 6 1
55 Lookup 2 1
56 New Prefix 6 6 1
57 Lookup 2 1
58 New Prefix 6 6 1
59 Lookup 2 1
60 New Prefix 6 6 1
61 Lookup 2 1
62 Route available? 4 4
63 Hop-Info Evaluation 10 10
64 Fetch Src-IP/MAP Address 2 2
65 Memory Access 3
66 Memory Access 2
67 Generate ICMP Message incl. Checksum 30 45
68 Store ICMP Message 6
69 Decrement HOP Count 3 4
70 Examine Dest-Address 16 16
71 Extract Protocol Header 6 6
72 Create Chunks 36 48 1
73 Lookup 2 1
74 Lookup 2 1
75 Lookup 2 1
76 Lookup 2 1
77 Lookup 2 1
78 Lookup 2 1
79 Lookup 2 1
80 Lookup 2 1
81 Lookup 2 1
82 Lookup 2 1
83 Lookup 2 1
84 Lookup 2 1
85 Lookup 2 1
86 Lookup 2 1
87 Lookup 2 1
88 Lookup 2 1
89 Lookup 2 1
90 Lookup 2 1
91 Create New Chunks 9 12 1
92 Create New Chunks 9 12 1
93 Create New Chunks 9 12 1
94 Create New Chunks 9 12 1
95 Create New Chunks 9 12 1
96 Create New Chunks 9 12 1
97 Lookup 2 1
98 Lookup 2 1
99 Lookup 2 1
100 Lookup 2 1
101 Lookup 2 1
102 Lookup 2 1
103 Create New Chunks 9 12 1
104 Create New Chunks 9 12 1
105 Lookup 2 1
106 Lookup 2 1
107 Create New Chunks 9 12 1
108 Lookup 2 1
109 Flow ID Calculation 30 40
110 Header Update IP Packet 4
111 Priority/Flowlabel, Hopcount 20 25

N
um

be
r

D
es

cr
ip

tio
n

Pr
oc

es
so

r
1

Pr
oc

es
so

r
2

Sh
ar

ed
 M

em
or

y

L
oo

ku
p-

E
ng

in
e

L
oo

ku
p-

E
ng

in
e

M
em

or
y

C
la

ss
ifi

er

C
la

ss
ifi

er
M

em
or

y

N
ex

t-
ho

p
L

oo
ku

p

N
ex

t-
ho

p
L

oo
ku

p
M

em
or

y

R
es

ou
rc

e
M

an
ag

er

R
es

ou
rc

e
M

an
ag

er
M

em
or

y

Table B.9: WCET Table of the Resources for DiffServ

124
112 Creation of 64 bit Prefix 6 6 1
113 Lookup 2 1
114 New Prefix 6 6 1
115 Lookup 2 1
116 New Prefix 6 6 1
117 Lookup 2 1
118 New Prefix 6 6 1
119 Lookup 2 1
120 New Prefix 6 6 1
121 Lookup 2 1
122 New Prefix 6 6 1
123 Lookup 2 1
124 New Prefix 6 6 1
125 Lookup 2 1
126 Route available? 4 4
127 Evaluation of Hop-Info for Egress Port 10 10
128 Fetch Src-IP/MAP Address 2 2
129 Memory Access 3
130 Memory Access 8
131 Generation of ICMP Message incl. Checksum 48 60
132 Storing of ICMP Message 10
133 Create Address for Flow 2 4 1
134 Fetch Counter 4 1
135 Update Counter 10 15 1
136 Conforming? 3 3 1
137 Dummy 1 1 1
138 Storing of Counter and Compliance Time 2 2 1
139 Dummy 1 1 1
140 Policy Differentiation 2 2 1
141 Tag Packet 3 3 1
142 Storing Descriptor 2 2 1
143 Create Address for Flow 2 3 1
144 Fetch Counter 2 1
145 Fetch Conforming Counter 2 1
146 Update Counter 2 2 1
147 Storing Counter 2 2 1
148 End Node 1
149 Dummy Node 1 1 1
150 Dummy Node 1 1 1
151 Dummy Node 1 1 1

N
um

be
r

D
es

cr
ip

tio
n

Pr
oc

es
so

r
1

Pr
oc

es
so

r
2

Sh
ar

ed
 M

em
or

y

L
oo

ku
p-

E
ng

in
e

L
oo

ku
p-

E
ng

in
e

M
em

or
y

C
la

ss
ifi

er

C
la

ss
ifi

er
M

em
or

y

N
ex

t-
ho

p
L

oo
ku

p

N
ex

t-
ho

p
L

oo
ku

p
M

em
or

y

R
es

ou
rc

e
M

an
ag

er

R
es

ou
rc

e
M

an
ag

er
M

em
or

y

Table B.9: WCET Table of the Resources for DiffServ

 125
Results

The results of the DiffServ design model for the various scnearios are given. The overall
latency is given in time units (T).

DiffServ_Proc Overall Latency
ReCA without ESU Cluster_CIN 1433

Cluster_Sum 1466
with ESU Cluster_CIN 1466

Cluster_Sum 1491
ECA_LA1 without ESU Cluster_CIN 1496

Cluster_Sum 1487
with ESU Cluster_CIN 1494

Cluster_Sum 1471
ECA_LA2 without ESU Cluster_CIN 1475

Cluster_Sum 1483
with ESU Cluster_CIN 1468

Cluster_Sum 1451

Table B.10: Schedule Latencies for the Scenario DiffServ_Proc

DiffServ_1Acc Overall Latency
ReCA without ESU Cluster_CIN 1482

Cluster_Sum 1499
with ESU Cluster_CIN 1492

Cluster_Sum 1494
ECA_LA1 without ESU Cluster_CIN 1452

Cluster_Sum 1467
with ESU Cluster_CIN 1511

Cluster_Sum 1492
ECA_LA2 without ESU Cluster_CIN 1486

Cluster_Sum 1487
with ESU Cluster_CIN 1517

Cluster_Sum 1534

Table B.11: Schedule Latencies for the Scenario DiffServ_1Acc

126
DiffServ_1AccMem Overall Latency
ReCA without ESU Cluster_CIN 1482

Cluster_Sum 1401
with ESU Cluster_CIN 1425

Cluster_Sum 1279
ECA_LA1 without ESU Cluster_CIN 1450

Cluster_Sum 1418
with ESU Cluster_CIN 1436

Cluster_Sum 1285
ECA_LA2 without ESU Cluster_CIN 1483

Cluster_Sum 1431
with ESU Cluster_CIN 1410

Cluster_Sum 1285

Table B.12: Schedule Latencies for the Scenario DiffServ_1AccMem

DiffServ_4Acc Overall Latency
ReCA without ESU Cluster_CIN 1502

Cluster_Sum 1548
with ESU Cluster_CIN 1530

Cluster_Sum 1538
ECA_LA1 without ESU Cluster_CIN 1493

Cluster_Sum 1528
with ESU Cluster_CIN 1545

Cluster_Sum 1546
ECA_LA2 without ESU Cluster_CIN 1491

Cluster_Sum 1562
with ESU Cluster_CIN 1527

Cluster_Sum 1554

Table B.13: Schedule Latencies for the Scenario DiffServ_4Acc

DiffServ_4AccMem Overall Latency
ReCA without ESU Cluster_CIN 1441

Cluster_Sum 1240
with ESU Cluster_CIN 1365

Cluster_Sum 1235
ECA_LA1 without ESU Cluster_CIN 1465

Cluster_Sum 1240
with ESU Cluster_CIN 1384

Cluster_Sum 1223
ECA_LA2 without ESU Cluster_CIN 1486

Cluster_Sum 1303
with ESU Cluster_CIN 1358

Cluster_Sum 1249

Table B.14: Schedule Latencies for the Scenario DiffServ_4AccMem

Abbreviations and Acronyms

ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
CIN Common Implementation Nodes
CP Critical Path
CPG Conditional Process Graph
ECA Enhanced Constructive Algorithm
ECP Enhanced Critical Path
FAST Fast Assignment using Search Technique
HDL Hardware Description Language
HW Hardware
IC Integrated Circuits
ICMP Internet Control Message Protocol
IP Internet Protocol
IP Intellectual Property
LA Look-Ahead
LLC Logical Link Control
MAC Medium Access Control
ME Mutual Exclusiveness
NOC Network on Chip
OAM Operation and Management
PDU Protocol Data Unit
ReCA Reference Constructive Algorithm
RTL Register-Transfer Level
SLD System Level Design
SoC Systems on a Chip
Src-IP Source IP (Addresse)
SW Software
T Time Unit
TGFF Task Graph For Free
TLM Transaction Level Modeling
127

128
TS Tabu Search
TTL Time-to-Live
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLAN Virtual Local Area Network (IEEE 802.1Q)
WCET Worst Case Execution Time

Bibliography

 [1] P. Arató, S. Juhász, Z. Mann, A. Orbán, D. Papp, "Hardware-Software Partitioning
in Embedded System Design," Proc. of the IEEE International Symposium on
Intelligent Signal Processing (ISPACS’03), pp. 197-202, September 2003.

 [2] J. Aweya, "On the Design of IP Routers Part1: Router Architectures", Journal of
Systems Architecture, Vol. 46, No. 6, S. 483-511, 2000

 [3] J. Becker, "Hardware/Software Codesign", Lecture Notes, Institut für Technik der
Informationsverarbeitung, University of Karlsruhe, Germany.

 [4] V. Berman, "Raising the Level of Abstraction for Design and Verification:
SystemC and System Verilog in a Multilanguage Environment", DesignCon 2005,
February 2005.

 [5] T. Blicke, J. Teich, L. Thiele, "System-Level Synthesis Using Evolutionary
Algorithms," Design Automation for Embedded Systems Journal, Kluwer
Academic Publishers, vol. 3, no. 1, pp. 23-58, January 1998.

 [6] S. Blake, et al., "An Architecture for Differentiated Services", RFC2475,
Dezember 1998

 [7] W. Brunnbauer, T. Wild, J. Foag, N. Pazos, "A Constructive Algorithm with Look-
Ahead for Mapping and Scheduling of Task Graphs with Conditional Edges",
EuroMicro Symposium on Digital System Design 2003, pp. 98-103, September
2003.

 [8] W. Brunnbauer, T. Wild, A. Krug, "Consideration of IP-Modules during Mapping
and Scheduling of Task Graphs", Austrochip 2003, October 2003.

 [9] Cadence Design Systems, Inc., http://www.cadence.com/

 [10] Cadence Design’s Platform Application Note, Cadence, February 2003

 [11] Cadence Design’s Cierto Virtual Component Co-design (VCC)

 [12] L.P. Carloni, F. De Bernardinis, A.L. Sangiovanni-Vincentelli, M. Sgroi, "The Art
and Science of Integrated Systems Design", Proc. of the 32nd European Solidstate
Device Research Conference (ESSDERC’02), pp. 19-30, September 2002.

 [13] W.O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, Y. Sungjoo, A.A. Jerraya, L.
Gauthier, M. Diaz-Nava, "Multiprocessor SoC platforms: a component-based
design approach," IEEE Design and Test of Computers, vol. 19, no. 6, pp. 52-63,
November 2002

 [14] W.L. Chapman, J. Rozenblit, and A.T. Bahill, “System design is an NP-complete
problem,” The Journal of Systems Engineering, INCOSE, vol. 4, no. 3, pp. 222-
229, 2001.
129

130
 [15] S. Chakraborty, T. Erlebach, S. Künzli, L. Thiele, "Schedulability of event-driven
code blocks in real-time embedded systems," Proc. of the 39th Design Automation
Conference (DAC’02), pp. 616-621, June 2002.

 [16] S. Chakraborty, S. Künzli, L. Thiele, "A General Framework for Analysing System
Properties in Platform-Based Embedded System Designs," Proc. on Design,
Automation and Test in Europe (DATE'03), pp. 10190-10195, March 2003.

 [17] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, P. Sagmeister, "Performance
evaluation of network processor architectures: combining simulation with
analytical estimation," Computer Networks, vol. 41, no. 5, pp. 641-665, April
2003.

 [18] B. Cirou, E. Jeannot, "Triplet: A Clustering Scheduling Algorithm for
Heterogeneous Systems," ICPP Workshops, pp. 231-236, 2001.

 [19] A. Colin, S.M. Petters, "Experimental Evaluation of Code Properties for WCET
Analysis," Proc. of the 24th IEEE Real-Time Systems Symposium (RTSS’03), pp.
190-199, December 2003.

 [20] J.G. D’Ambrosio, X. Hu, "Configuration-level hardware/software partition for
real-time embedded systems," Proc. of the 3th Int. Conference on Hardware
Software Codesign (CODES/CASHE’94), pp. 34-41, September 1994.

 [21] J.A. Darringer, R.A. Bergamaschi, S. Bhattacharya, D. Brand, A. Herkersdorf, J.K.
Morrell, I.I. Nair, P. Sagmeister, and Y. Shin, "Early analysis tools for system-on-
a-chip design," IBM Journal of Research and Development, vol. 46, no. 6, pp. 691-
707, November 2002.

 [22] B.P. Dave, G. Lakshminarayana, N.K. Jha, "COSYN: Hardware-Software Co-
Synthesis of Embedded Systems," Proc. of the 34th Design Automation
Conference (DAC’97), pp. 703-708, June 1997.

 [23] B.P. Dave, N.K. Jha, "COHRA: hardware-software cosynthesis of hierarchical
heterogeneous distributed embedded systems," IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 10, pp. 900-919, October
1998.

 [24] R.P. Dick, D.L. Rhodes, and W. Wolf, "TGFF: Task Graphs for Free," Proc. of the
5th Int. Conference on Hardware Software Codesign (CODES’98), pp. 97-101,
March 1998, Available at http://www.princeton.edu/~cad/projects.html.

 [25] R.P. Dick, N.K. Jha, “MOGAC: A Multiobjective Genetic Algorithm for
Hardware-Software Cosynthesis of Hierarchical Heterogeneous Distributed
Embedded Systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 10, pp. 920-935, October 1998.

 [26] R.P. Dick and N.K. Jha, “CORDS: Hardware-Software Co-Synthesis of
Reconfigurable Real-Time Distributed Embedded Systems,” Proc. of the Int.
Conference on Computer-Aided Design (ICCAD'01), pp. 62-68, November 1998.

 131
 [27] R.P. Dick and N.K. Jha, "MOCSYN: Multiobjective Core-Based Single-Chip
System Synthesis," Proc. of Design, Automation and Test in Europe (DATE’99),
pp. 263-270, March 1999.

 [28] R.P. Dick and N.K. Jha, “COWLS: Hardware-Software Co-Synthesis of
Distributed Wireless Low-Power Client-Server Systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 1, pp. 2-
16, January 2004.

 [29] A. Doboli, P. Eles, "Scheduling under Data and Control Dependencies for
Heterogeneous Architectures," Proc. of the Int. Conference on Computer Design
(ICCD’98), pp. 602-608, October 1998.

 [30] R. Dutta, J. Roy, R. Vemuri, "Distributed Design-Space Exploration for High-
Level Synthesis Systems," Proc. of the 29th Design Automation Conference
(DAC’92), pp. 644-650, September 1992.

 [31] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, "System Level Hardware/Software
Partitioning Based on Simulated Annealing and Tabu Search", Design Automation
for Embedded Systems Journal, Kluwer Academic Publishers, vol. 2, no.1, pp. 5-
32, January 1997.

 [32] P. Eles, K. Kuchcinski, Z. Peng, P. Pop, A. Doboli, "Scheduling of Conditional
Process Graphs for the Synthesis of Embedded Systems," Proc. on Design,
Automation and Test in Europe (DATE'98), pp. 132-138, February 1998.

 [33] P. Eles, A. Doboli, P. Pop, Z. Peng, "Scheduling with Bus Access Optimization for
Distributed Embedded Systems," IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 8, no. 5, pp. 472-491, October 2000.

 [34] D.D. Gajski, R. Kuhn, "New VLSI Tools - Guest Editors' Introduction," IEEE
Computer, vol. 16, no. 12, pp. 11-14, December 1983.

 [35] D.D. Gajski, F. Vahid, S. Narayan, J. Gong, "Specification and Design of
Embedded Systems," P T R Prentice Hall, Englewood Cliffs, NJ, USA, 1994.

 [36] D.D. Gajski, "System-Level Design Methodology of SoC Designs", Slides of
Tutorial 3, 9th Asia and South Pacific Design Automation Conference
(ASPDAC’04), January 2004.

 [37] S.H. Gerez, "Algorithms for VLSI Design Automation," John Wiley & Sons Press,
West Sussex, 1998.

 [38] T. Givargis, F. Vahid, J. Henkel, "System-level Exploration for Pareto-optimal
Configurations in Parameterized Systems-on-a-chip", Proc. of the Int. Conference
on Computer-Aided Design (ICCAD'01), pp. 25-30, November 2001.

 [39] F. Glover, "Tabu Search – Part I," Operations Research Society of America
(ORSA) Journal on Computing, vol. 1, no. 3, pp. 190-206., August 1989.

 [40] F. Glover, "Tabu Search – Part II," Operations Research Society of America
(ORSA) Journal on Computing, vol. 2, no. 1, pp. 4-32, February 1990.

132
 [41] G. Gogniat, M. Auguin, L. Bianco, A. Pegatoquet, "Communication synthesis and
HW/SW integration for embedded system design," Proc. of the 6th International
Workshop on Hardware/Software Codesign (CODES’98), pp. 49-53, March 1998.

 [42] P. Gupta, N. McKeown, "Packet Classification on Multiple Fields", Proc. ACM
SIGCOMM 1999, S. 147-160, September 1999.

 [43] P. Gupta, "Algorithms for Routing Lookups and Packet Classification",
Dissertation, Stanford University, December 2000.

 [44] P. Gupta, N. McKeown "Algorithms for Packet Classification", IEEE Network,
Vol. 15, No. 2, S. 24-32, March 2001.

 [45] C. Haubelt, J. Teich, K. Richter, R. Ernst, "System Design for Flexibility," Proc.
on Design, Automation and Test in Europe (DATE'02), pp. 854-861, March 2002.

 [46] J. Hu, R. Marculescu, "Energy-Aware Communication and Task Scheduling for
Network-on-Chip Architectures under Real-Time Constraints," Proc. on Design,
Automation and Test in Europe (DATE'04), pp. 234-239, Febuary 2004.

 [47] IEEE Standard Verilog Hardware Description Language, IEEE Standard P1364-
2005, http://www.verilog.com/IEEEVerilog.html

 [48] IETF (The Internet Engineering Task Force) Working Groups, Differentiated
Services (diffserv), http://www.ietf.org/html.charters/diffserv-charter.html

 [49] IETF (The Internet Engineering Task Force) Working Groups , Integrated Services
(intserv), http://www.ietf.org/html.charters/intserv-charter.html

 [50] ITRS International Technology Roadmap for Semiconductors 2001 Edition.

 [51] ITRS International Technology Roadmap for Semiconductors 2003 Edition.

 [52] R. James, B. Storer, "Methods for Solving Subset Sum Problems," Presentation
Slides, Department of Management, University of Canterbury, Christchurch, New
Zealand, http://www.mang.canterbury.ac.nz.

 [53] A. Jantsch, "Models of Embedded Computation," Invited contribution in
Embedded Systems, CRC Press, to appear in 2005.

 [54] B. Jeong, S. Yoo, S. Lee, K. Choi, "Hardware-software cosynthesis for run-time
incrementally reconfigurable FPGAs," Proc. of the 5th Asia and South Pacific
Design Automation Conference (ASPDAC’00), pp. 169-174, January 2000.

 [55] S.C. Johnson, "Hierarchical clustering schemes," Psychometrika, pp. 241-254,
September 1967.

 [56] H.-P. Juan, D. Gajski, V. Chaiyakul, "Condition Graphs for HighQuality
Behavioral Synthesis," Technical Report #94-32, Department of Information and
Computer Science, University of California, Irvine, August 1994.

 [57] A. Kalavade, E.A. Lee, "A global criticality/local phase driven algorithm for the
constrained hardware/software partitioning problem," Proc. of the 1th Int.

 133
Conference on Hardware Software Codesign (CODES’94), pp. 42-48, September
1994.

 [58] A. Kalavade, E.A. Lee, "The Extended Partitioning Problem: Hardware/Software
Mapping, Scheduling, and Implementation-bin Selection," Design Automation for
Embedded Systems Journal, Kluwer Academic Publishers, vol. 2, no.2, pp. 125-
163, January 1997.

 [59] K. Keutzer, S. Malik, R. Newton, J. Rabaey and A. Sangiovanni-Vincentelli,
"System Level Design: Orthogonalization of Concerns and Platform-Based
Design", IEEE Transactions on Computer-Aided Design of Circuits and Systems,
vol. 19, no. 12, December 2000, pp.1523-1543.

 [60] Andreas Krug, "Unterstützung von IP-Modulen in Verfahren für die Abbildung
und das Scheduling von Prozessgraphen", Diplomarbeit (Master’s Thesis),
September 2003.

 [61] Y.-K. Kwok, I. Ahmad, "Dynamic Critical-Path Scheduling: An Effective
Technique for Allocating Task Graphs to Multiprocessors," IEEE Trans. on
Parallel and Distributed Systems, vol. 7, no. 5, pp. 506-521, May 1996.

 [62] Y.-K. Kwok, I. Ahmad, J. Gu, "FAST: A Low Complexity Algorithm for Efficient
Scheduling of DAGs on Parallel Processors," Proc. of the Int. Conference on
Parallel Processing (ICPP'96), vol. II, pp. 150-157, August 1996.

 [63] Y.-K. Kwok, I. Ahmad, "Efficient Scheduling of Arbitrary Task Graphs to
Multiprocessors Using A Parallel Genetic Algorithm," Journal of Parallel and
Distributed Computing, vol. 47, no. 1, pp. 58-77, November 1997.

 [64] Y.-K. Kwok, I. Ahmad, "FASTEST: A Practical Low-Complexity Algorithm for
Compile-Time Assignment of Parallel Programs to Multiprocessors," IEEE Trans.
on Parallel and Distributed Systems, vol. 10, no. 2, pp. 147-159, February 1999.

 [65] Y.-K. Kwok, I. Ahmad, "Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors," ACM Computing Surveys, vol. 31, no. 4, pp.
406-471, December 1999.

 [66] Y.-K. Kwok, I. Ahmad, "Link Contention-Constrained Scheduling and Mapping of
Tasks and Messages to a Network of Heterogeneous Processors," Cluster
Computing, vol. 3, no. 2, pp. 113-124, 2000.

 [67] E.D. Lagnese, D.E. Thomas, "Architectural partitioning for system level synthesis
of integrated circuits," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, no. 7, pp. 847-860, July 1991.

 [68] K. Lahiri, A. Raghunathan, S. Dey, "Fast performance analysis of bus-based
system-on-chip communication architectures," Proc. of the Int. Conference on
Computer-Aided Design (ICCAD'99), pp. 566-573, November 1999.

 [69] K. Lahiri, A. Raghunathan, G. Lakshminarayana, S. Dey, "Communication
architecture tuners: a methodology for the design of high-performance

134
communication architectures for systems-on-chips," Proc. of the 37th Design
Automation Conference (DAC’00), pp. 513-518, June 2000.

 [70] K. Lahiri, A. Raghunathan, S. Dey, "Efficient Exploration of the SoC
Communication Architecture Design Space," Proc. of the Int. Conference on
Computer-Aided Design (ICCAD'00), pp. 424-430, November 2000.

 [71] K. Lahiri, A. Raghunathan, S. Dey, "System-level performance analysis for
designing on-chip communication architectures," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 6, pp. 768-
783, June 2001.

 [72] Y.-T.S. Li, S. Malik, "Performance Analysis of Embedded Software Using Implicit
Path Enumeration," Proc. of the 32th Design Automation Conference (DAC’95),
pp. 456-461, June 1995.

 [73] A. Maxiaguine, S. Künzli, L. Thiele, "Workload Characterization Model for Tasks
with Variable Execution Demand," Proc. on Design, Automation and Test in
Europe (DATE'04), pp. 1040-1045, February 2004.

 [74] M.C. McFarland, T.J. Kowalski, "Incorporating bottom-up design into hardware
synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 9, no. 9, pp. 938-950, September 1990.

 [75] D. Mohanty, R. Mahapatra, G. Choi, “A Design Space Exploration Framework in
Multiprocessor SoC Codesign", Proc. of the Workshop on RTSS Embedded
Systems, December 2001.

 [76] K. Nichols et al., "Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers", RFC2474, Dezember 1998

 [77] P.G. Paulin, J.P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis
of ASIC’s," IEEE Transactions on Computer-Aided Design, vol. 8, no. 6, June
1989.

 [78] S.M. Petters, G. Färber, "Making Worst Case Execution Time Analysis for Hard
Real-Time Tasks on State of the Art Processors Feasible," Proc. of the 6th Int.
Conf. on Real-Time Computing Systems and Applications (RTCSA'99), pp. 442-
449, Dezember 1999.

 [79] S.M. Petters, "Comparison of Trace Generation Methods for Measurement Based
WCET Analysis," Proc. of the 3rd Int. Workshop on Worst-Case Execution Time
Analysis, (WCET’03), pp. 61-74, July 2003.

 [80] QNX Software Systems, http://www.qnx.com/.

 [81] A. Sangiovanni-Vincentelli, G. Martin, "Platform-Based Design and Software
Design Methodology for Embedded Systems", IEEE Design & Test of Computers,
vol. 18, no. 6, pp.23-33, November 2001.

 135
 [82] M. Schmitz, B. Al-Hashimi, P. Eles, "Energy-Efficient Mapping and Scheduling
for DVS Enabled Distributed Embedded Systems," Proc. on Design, Automation
and Test in Europe (DATE'02), pp. 514-521, March 2004.

 [83] M. Schwiegershausen, P. Pirsch, "A system level design methodology for the
optimization of heterogeneous multiprocessors," Proc. of the 8th International
Symposium on System Synthesis (ISSS’95), pp. 162-169, September 1995.

 [84] D. Shin, J. Kim, "Power-aware scheduling of conditional task graphs in real-time
multiprocessor systems," Proc. of the Int. Symposium on Low Power Electronics
and Design (ISLPED’03), pp. 408-413, August 2003.

 [85] G.C. Sih, E.A. Lee, "A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures," IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 2, pp. 175-187, February 1993.

 [86] M.J.S. Smith, "Application-Specific Integrated Circuits," Addison Wesley
Professional, 1997.

 [87] Synopsys, Inc., http://www.synopsys.com

 [88] SystemC Community, http://www.systemc.org/

 [89] J. Teich, "Digitale Hardware/Software-Systeme- Synthese und Optimierung,"
Springer-Verlag Berlin Heidelberg, 1997.

 [90] J. Teich, "Embedded System Synthesis and Optimization," Invited paper for the
Proceedings of the Workshop on System Design Automation (SDA’00), VDE-
Verlag, pp. 9-22, March 2000.

 [91] L. Thiele, S. Chakraborty, M. Gries, S. Knzli, "Design Space Exploration of
Network Processor Architectures," First Workshop on Network Processors at the
8th International Symposium on High Performance Computer Architecture
(HPCA8), February 2002.

 [92] L. Thiele, S. Chakraborty, M. Gries, S. Künzli, "A framework for evaluating
design tradeoffs in packet processing architectures," Proc. of the 39th Design
Automation Conference (DAC’02), pp. 880-885, June 2002.

 [93] H. Topcuoglu, S. Hariri, M.-Y. Wu, "Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing," IEEE Trans. on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 260-274, March 2002.

 [94] K. Vallerio, N.K. Jha, "Task graph transformation to aid system synthesis," Proc.
of the Int. Symposium on Circuits and Systems, pp. 695-698, May 2002.

 [95] IEEE Standard VHDL Language Reference Manual, IEEE-SA Standards Board,
January 2000.

 [96] VSI Alliance System-Level Design Development Working Group, VSI Alliance
Model Taxonomy Version 2.1 (SLD 2 2.1), July 2001.

136
 [97] K. Wakabayashi, H. Tanaka, "Global Scheduling Independent of Control
Dependencies Based on Condition Vectors," Proc. of the 29th Design Automation
Conference (DAC’92), pp. 112-115, June 1992.

 [98] M. Waldvogel, G. Varghese, J. Turner, B. Plattner, "Scalable High Speed IP
Routing Lookups", Proc. of ACM SIGCOMM 1997, S. 25-37, 1997.

 [99] T. Wild, W. Brunnbauer, J. Foag, N. Pazos, "Integrating On-Chip Communication
in HW/SW-Partitioning of Networking Systems-on-Chip", Proc. Int. Workshop on
IP-Based SoC Design, December 2001.

 [100] T. Wild, W. Brunnbauer, J. Foag, N. Pazos, "Mapping and Scheduling for
Architecture Exploration of Networking SoCs", Proc. 16th Int. Conference on
VLSI Design, January 2003.

 [101] T. Wild, "Ein rekursives Verfahren zur Abbildung und zum Scheduling von
Prozess-Graphen mit Kontrollabhängigkeiten", PhD Thesis, Lehrsuhl für
Integrierte Schaltungen, Techische Universität München, July 2003.

 [102] A. Winckler, "A Distributed Look-Ahead Algorithm for Scheduling
Interdependent Tasks," Proc. of the Int. Symposium on Autonomous Decentralized
Systems (ISADS’93), pp. 190-197, March 1993.

 [103] Wind River, Inc., http://www.windriver.com/

 [104] T. Wolf, M.A. Franklin, "CommBench - a telecommunications benchmark for
network processors," Proc. of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’00), pp. 154–162, April 2000.

 [105] D. Wu, B. Al-Hashimi, P. Eles, "Scheduling and Mapping of Conditional Task
Graph for the Synthesis of Low Power Embedded Systems," IEE Proceedings on
Computers and Digital Techniques, vol. 150, no. 5, pp. 303-312, September 2003.

 [106] M.-Y. Wu, W. Shu, J. Gu, "Efficient Local Search for DAG Scheduling," IEEE
Trans. on Parallel and Distributed Systems, vol. 12, no. 6, pp. 617-627, 2001.

 [107] Y. Xie, W. Wolf, “Allocation and scheduling of conditional task graph in
hardware/software co-synthesis“, Proc. on Design, Automation and Test in Europe
(DATE'01), pp. 620-625, March 2001.

 [108] Y. Zhang, X. Hu, D. Z. Chen, "Task scheduling and voltage selection for energy
minimization," Proc. of the 39th Design Automation Conference (DAC’02), pp.
183-188, September 2002.

 [109] E. Zitzler, L. Thiele, "Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach," IEEE Transactions on Evolutionary
Computation, vol. 3, no. 4, pp. 257-271, November 1999.

 [110] V.D. Zivkovic, P. Lieverse, "An Overview of Methodology and Tools in the Field
of System-Level Design", in F. Deprettere, J. Teich, S. Vassiliadis (Eds.),
"Embedded Processor Design Challenges, Systems, Architectures, Modelling, and
Simulation - SAMOS", pp. 74-88, September 2002.

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	1.1 System-Level Design
	1.2 Design Flow
	1.3 Scope and Objective
	1.4 Outline

	Related Work
	2.1 Exact Methodologies
	2.1.1 Enumeration
	2.1.2 Integer Linear Programming (ILP)

	2.2 Heuristic Methodologies
	2.2.1 Simulated Annealing (SA)
	2.2.2 Tabu Search (TS)
	2.2.3 Genetic/ Evolutionary Algorithms
	2.2.4 Hierarchical Clustering
	2.2.5 Greedy Algorithms

	2.3 Features of Partitioning Algorithms
	2.3.1 Consideration of Communication
	2.3.2 Support of Conditions
	2.3.3 Look-Ahead
	2.3.4 Clustering

	2.4 Summary, Comments and Conclusions

	Reference Algorithm
	3.1 Modeling
	3.2 Constructive Heuristic by Xie et al.
	3.2.1 Partitioning Algorithm
	3.2.2 Calculation of List Scheduling Priorities
	3.2.3 Detection of Conditional Branches
	3.2.4 Examples

	3.3 Reference Constructive Algorithm
	3.3.1 Algorithm Adjustments
	3.3.2 Implementation
	3.3.3 Improved Condition Support

	3.4 Performance Evaluation of the Reference Algorithm
	3.4.1 Generation of synthetic test pattern
	3.4.2 Evaluation Environment and Tools
	3.4.3 Evaluated Partitioning Algorithms
	3.4.4 Design Model and Architecture Assumptions
	3.4.5 Results

	3.5 Summary and Conclusions

	Enhanced Constructive Algorithm
	4.1 Partitioning Issues and Motivation for Improvement
	4.2 Look-Ahead
	4.2.1 Resource Selection
	4.2.2 Sequencing of Task Scheduling
	4.2.3 Algorithm Improvements for Resource Selection
	4.2.4 Algorithm Improvements for Sequencing of Task Scheduling

	4.3 Clustering
	4.3.1 Different Design Objectives
	4.3.2 Resource Sets for Common Implementation Nodes
	4.3.3 Algorithm Improvements for Common Implementation Nodes

	4.4 Performance Evaluation of Look-Ahead
	4.4.1 Design Model and Architecture Assumptions
	4.4.2 Results

	4.5 Performance Evaluation of Clustering
	4.5.1 Modification of Evaluation Environment
	4.5.2 Design Model and Architecture Assumptions
	4.5.3 Results

	4.6 Summary, Comments and Conclusions

	Real-World Application Practice
	5.1 Architecture Exploration
	5.2 Real-World Application
	5.2.1 Internet Router Application Diffserv
	5.2.2 Design Model and Architecture Assumptions

	5.3 Evaluation of ECA
	5.4 Summary, Comments and Conclusions

	Summary, Conclusion and Outlook
	6.1 Summary and Conclusion
	6.2 Outlook

	Abbreviations and Acronyms
	Bibliography

