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Kurzfassung

Informationen sind von entscheidender Bedeutung, sowiohlnidustrie und Betrden als
auch fir Privatleute. Automatische Verfahren zur Auswahl undovieitung von Informationen
ermdglichen es der Medienauswertung, deutlich mehr Medidtequabzudecken; insbeson-
dere durch einedhere Kosteneffizienz und durch Service rund um die Uhr.

Die vorliegende Arbeit untersucht, inwiefern die — bisldragipt&chlich manuell vorgenom-
mene — professionelle Medienauswertung automatisieersiitzt werden kann. Drei Haupt-
module sind hierzu notwendig: Spracherkennung, Thememsetierung und Themenklas-
sifizierung. Die Forschungsergebnisse imgich der einzelnen Module des Demonstrators
werden zusammen mit den erreichten Innovationen dargiefied L eistungs@higkeit sowohl
der Module als auch des gesamten Systems wird anhand varhdigfen Tests untersucht.

Der Schwerpunkt dieser Arbeit liegt auf deutschsprachigaohrichtensendungen. Mittels
visueller Indizierungsverfahren werden Themengrenzdtrenmsehnachrichten bestimmt. Ein
Spracherkenner wandelt die Audiosignale in Texte um, wehlatn einem Themenklassi-
fizierer auf das Vorkommen von vorgegebenen Theiitasrpiift werden. Es werden statis-
tische Klassifizierer wie Hidden Markov Modelle und Suppéettor Machines (SVMs) ver-
wendet. Ein Beitrag dieser Arbeit liegt in der Vorstellungweeuartigen Couplern zu SVMs,
die Vorteile gegeiiber bekannten Couplern besitzen.

Ein weiteres behandeltes Thema ist digllberwachte Themenfindung (Unsupervised Topic
Discovery), die in der Literatur fastagzlich unbeachtet bleibt. Sie erlaubt es, Stigher
ohne eine vorgegebene Themenliste oder ohne Trainingébleigu finden.



Abstract

Information is of strategic importance for business andegomental agencies, but also for in-
dividual citizens. The use of automatic methods for sebectind dissemination of information
would enable media monitoring companies to cover a mucletarriety of media sources by
working more cost efficiently and providing 24 hours coveragd availability.

This thesis investigates how professional media monigorvhich is currently a largely man-

ual process, can be automatically supported. Three mainule®dre necessary for automatic
media monitoring: speech recognition, topic segmentatma topic classification. The re-

search that was conducted on these three topics, and tHengsonovations are presented.
The performance of the individual modules, as well as thepteta system, is thoroughly

investigated.

The focus of this thesis are German news. Topic boundaresietermined using a novel
approach to visual indexing. A speech recogniser trangdhm audio signals into texts,
which are afterwards classified for the presence of pre-giéfiopics. For topic classification,
approaches with Hidden Markov Models, Neural Networks, Sagport Vector Machines
(SVMs) are investigated. One contribution of this thesithesintroduction of novel couplers
for SVMs with advantages over known couplers.

An additional topic covered in this thesis is Unsupervisegid@ Discovery, a field nearly
neglected in the literature. It makes it possible to find Weyds in texts without a pre-defined
topic list or training samples.
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Chapter 1

Introduction

Information is of strategic importance for business andegomental agencies, but also for
individual citizens. Nowadays, information is mainly oipeed by manually analysing (read-
ing, listening and watching) text resources, audio ando/digtabases, and current broadcast
multimedia sources (newspapers, magazines, radio, $elayinewswire, world wide web).
Media monitoring companies play an important role in dissation of information. They
determine stories that are of interest to their customeis natify them about relevant stories.
Currently, the complete work of determining stories has teadreied out manually. Employ-
ees of media monitoring companies have thousands of praofilesnd that describe the kind
of information customers are interested in.

The use of automatic methods for selection and dissemmationformation would enable
media monitoring companies to cover a much larger varietynetlia sources by working
more cost efficiently and providing 24 hours coverage andadibty.

1.1 Thesis outline

The subject of the presented thesis is a demonstrator oftamatic media monitoring system
that automatically scans TV broadcast news for specifictopt aims at assisting media mon-
itoring companies with the monitoring process. Wheneveictgpf interest are automatically
detected, the relevant customers can be alerted, e.g. i éloaever, because an automatic
system will never be completely reliable, the system’s ltsswill always have to be checked
by a human. The system presented here is the first of its kinG&man broadcast news.
While much related research has been carried out on the leeehaponents of the system,
e.g. on automatic speech recognition or topic classifinatiobroadcast news, those compo-
nents were never before integrated into a system spegjfidafligned for media monitoring
of German news. It must be emphasised that the system is andémaor and not a final
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product. Currently, it can only be applied to German newsabse the speech recogniser only
transcribes German.

This thesis deals both with the building blocks (modules)hef demonstrator, and with the
system and its performance as a whole. Research and deveibpmiie building blocks has
lead to several innovations, which will be presented in dspective chapters.

Figure 1.1 illustrates on a functional level how TV news liwast documents (mpeg files), or
plain, pre-segmented texts are processed by the systemal iocessing techniques are used
to segment a news show into scenes, suameascasteor report, and to detect story bound-
aries. The audio track is transcribed by an advanced auios@ech recogniser developed
for transcription of broadcast news. The system is alsoldep handling pure text data that
was already segmented into stories (e.g. acquired fromntieeniet). In this case, the topic
segmentation and speech recognition modules are bypassthe text is passed directly to
the topic classification module. Otherwise, for mpeg nevesvsh automatic transcription and
automatic topic segmentation is used for topic classificati

The topics found in one or several TV news shows, togethdr thié transcription and in-
formation about the times of the story boundaries, are atewento XML format. The files
can be accessed via a dedicated web browser interface lthas &b search the transcriptions
and the topic labels for specific words. The stories that Intite search query are displayed
line by line, together with the assigned topic, and a clicka@tory opens a window showing
the transcription data and the meta-data, e.g. the topéd,latart and end time of the story,
and programme name. The core modules of the presented meditornng system employ
state-of-the-art stochastic classifiers.

The most important challenges to the topic recognition nedte:

e The speech recogniser’s transcription is not perfect. &ajpe with interviews or re-
ports with background noise, it is sometimes hard even fondns to understand the
contents from the transcription. With some stories, it isa®sary to listen to the audio
to grasp the contents.

e The goal of the system is to find topic categories in spokemh@nts (audio or video
files with speech content). Stochastic classifiers rely eridht that the properties of the
training data match the test data. This condition is noyfaikt, since only summaries
were available as training data, i.e. the training data haddst data stem from different
domains.

e The majority of the stories in a news show are not related oraedia monitoring
customer, but are off-topic. However, off-topic trainingta is not available.
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TV news

broadcast
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(presegmented into
topics

or
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Topic Boundary Speech
Identification Recognition
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Classification "\ database

y
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web interface

Figure 1.1: Functional structure of the automatic media monitoring demonstrator. The main
workflow paths are printed in bold.

e The topics change rapidly over time. As the set of topics tddiected is assumed to be
fixed (see below), there are topics in the test sets that dngreasent in the training set,
and therefore cannot be detected.

e The final test set used across all experimental chapterssofiibsis is especially chal-
lenging (see below for details).

Two simplifying assumptions were made for this thesis:
e The set of topics is assumed to be fixed.

e Itis assumed that there is only one topic per story. Thisrapsion is nearly true for the
tested news shows; only two stories are annotated with rharedne reference topic.

These assumptions were given up for the Unsupervised Toisicolzery task described in
Chapter 10.

The outline of this thesis is as follows. Chapters 2 land 3 laythieoretical foundations for
the two most important implemented classification algongh Hidden Markov Models and
Support Vector Machines. Before presenting approaches getiments for the individual

modules, Chapter/4 introduces the measures that are usedltmtevthe performance both
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of the modules and of the whole system. The evolution fromreege speech recogniser to a
broadcast speech recogniser is presented in Chapter 5. €6alet@s with topic segmentation
of a TV news show. This segmentation aims at providing tdlyitceomogeneous stories. The
various approaches taken for the topic classification mesdaite covered in the following two

Chapters. Chapter 7 presents the methods based on HiddenwMddels, and Chapter 8

treats the Support Vector Machine classifier. To given arrésgion of the performance of
the combination of all modules, the overall system perfarogais measured in Chapter 9.
A private user normally does not want to explicitly specifg br her interests by means of
providing topics or profiles, but instead prefers to quidkitpwse news shows for interesting
stories. Chapter 10 extends the domain of the application fnmfessional media monitoring

to “monitoring for everybody”. The final chapter concludbsstthesis, summarises important
contributions, and gives an outlook. The storage of the thang results in an XML database

and the access to it are not covered in this thesis.

It should be noted that the term®cumentreportandstory are used interchangeably within
this work, since the automatic transcription of TV news is®i(also called news reports) is
stored in text format. Thus, the topic classifier deals va#t locuments, regardless of whether
they were produced by a speech recogniser or whether theyamginally plain texts.

1.2 Data sets

With a single exception, the data sets that were used faritigaand testing the system and its
components are in German. Two sources are predominant:aiyaoreated summaries of TV
and radio reports (not restrictednewsreports), and news shows from the two most important
German TV channels. The evaluations of the approacheseamuethis thesis are often done
with one (or more) preliminary test sets, and also with a fiesd set (the SVM classifier was
evaluated with a final test set only). The preliminary setiedibut the final test data always
consists of German TV news shows covering a period of two se€kctober 8th until 21st,
2001E (the evaluation of the speech recogniser uses data onlytfiersecond week). This
period is just four weeks after the attack of September 20081, and thus many reports are
about this attack and the actions taken in its aftermathgfample, the war in Afghanistan).
The result is that for some news shows, a great portion ofdperts is about the same topic.
Stories are therefore much longer than they would usuallylbbas to be emphasised that
the test set consists of “real life” data which reflect theursgments of a media monitoring
company.

1This period was defined by the European Union project ALERBetaised for its common test set.
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Hidden Markov Models

Hidden Markov Models (HMMs) are very popular and successfagsifiers widely used for
recognition of speech [38], handwriting [71] and gesturé][9A Hidden Markov Model is
a stochastic machine that consists of connected statesigae 2.1). Of itsn statesS =
{s1,$2,...,S,}, Only one is active at each time step. The active state atitiimelenoted by
q: € S and depends on the preceding active statg, only, not on more recent states (first
order Markov model). The sequence of visited states is @enoyQ = ¢1,¢2,...,qr. The
transition from state,_; to ¢; occurs with a given probability:

Q5 = p((]t = Sj|qt_1 = Si). (21)

All n x n transition probabilities are stored in the transition oitity matrix A = [a;;]. The
probability of statej being the initial state is

Wj:P(qlej), Zﬂ'jzl, ™ = [’71']']. (22)

Usually, it is assumed that a sequence of active states sllaegins at the first state
m=(1,0,0,...)" (2.3)

and ends at the last state. Each time a state is reached, f@rt vectoro is emitted with a
probability that depends on the active state omlynay be a continuous vector (continuous
HMMSs), or a single discrete number (discrete HMMS).
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continuous

>§<Q3
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VAN
Figure 2.1: HMM with different types of emission probabilities.
Continuous HMMs  In the case ofcontinuous HMMs the probability density function

describing the emission probability of an output veeias usually a weighted sum of multi-
variate Gaussian distribution (-):

K
k=1
1 1 T —1
N 1)) [ — —3(0—p)" E7" (o-p) 25
(o], ) TS (2.5)

The index;j denotes the staté, indicates the mixture component is the mean vector and
3 is the covariance matrix of the Gaussian distributignl-). M is the dimension of the
observation vectos. The emission distributions satisfy the probability coastts:

/bj(o) do=1,  bo)e0,1]. (2.6)
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The mixture weights fulfil

K
=0, Y =1 (2.7)
k=1

Semi-continuous HMMs  Semi-continuous HMMs are very similar to continuous HMMs.
The only difference is that with semi-continuous HMMs theu&sian components of the emis-
sion probability are not estimated separately for eacle stastead, a common codebookiof
Gaussian mixtures is used:

L
bi(0) = > a1, - N o]y, ). (2.8)
=1

Discrete HMMs  One common technique is to map continuous observation reetdalis-
crete symbols by means of a vector quantisation step. Easgdradtion is being replaced with
its nearest prototype vector which is chosen from a pre-défoodebook off prototype vec-
tors. As the number of prototypes is fixed and known a-pribis, sufficient to represent each
prototype by its indexn, 1 < m < J:

o— m. (2.9)

See Section 7.3.2 for details on vector quantisatiDiscrete HMMsmodel a stream of dis-
crete indicesn, as opposed to continuous HMMs which model a stream of cootis obser-
vationso. Consequently, the emission probabilities are also discret

bj(0) = bj(m) = P(mls;), Y bj(m)=1. (2.10)

m=1

Let the emission probabilities of all stat¢sof a HMM be represented by the symbBl
For continuous HMMsB contains — for each stage— the mean vectors and the covariance
matrices of the Gaussian distributions, and the mixturgtsi B = (b;(0)). In the case of
discrete HMMsB is an x J matrix: B = [b;(m)].

A Hidden Markov Model\ is defined by the parametetts A andB:

A= (m A, B). (2.11)
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2.1 Production probabilities

One important figure in the context of HMMs is the productigolmbility P(O|)), or the
probability that an observation sequer@e= (oy,...,or) was generated by the Hidden
Markov Model A\. The production probability plays an important role for gicting from
which model) a given observation sequen€ewas created, i.e. which class it belongs to
most probably. In other words, it is used for the classifaratwith HMMs.

As it is not known which state sequen€e= (¢, ..., qr) has produced® (this is why one
talks aboutHidden Markov Models), the production probability is the resultaofummation
over all possible state sequences, i.e. all possible wagagh the HMM are considered:

P(O|\) = ZP (0, Q). (2.12)

The summed term is the probability that a given HM\Voes through the state sequence
Q = (q1,-..,qr) and emitsD. The production probability can thus be expressed as [64]

T
P(O|A) = Z <7Tq1 ¢ (01) Ha% 1:0g, (01 > . (2.13)

Q t=2

The run-time of this calculation grows exponentially witketlength of the observation,
becausen” possible state sequences have to be calculated. A moreeffagdproach is the
forward-backward procedure described in Section 2.2.

2.2 Forward-Backward algorithm

As already mentioned, the Forward-Backward (FB) algorithovigies an efficient calcula-
tion of the production probability?(O|\). The FB procedure is the solution of the EM
(Expectation-Maximisation) algorithm applied to HMMs. &M algorithm [21] allows
to iteratively estimate model parameters so that they migeithe likelihood (which is, in the
case of HMMs,P(OJ\)). Itis used when data is hidden or missing that is relevanttfe
stochastic process (here: generation of observationshitMs) [86]. From the reference
labelling of the training data, it is only known which HMM hasoduced the data, but not
which state inside the HMM. As the state sequence is hiddemc@gthe nameliddenMarkov
Models), the EM algorithm is an ideal candidate for estioratf A. The missing data is char-
acteristic of the EM algorithm; if no data were missing dgrimaining, a normal maximum
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likelihood algorithm could be used, i.e. thehat maximises the log-likelihodd)) could
be found.

For continuous HMMs whose emission probabilitieso) are a mixture of Gaussian densi-
ties, the EM algorithm can also be applied to get the weighthe Gaussians: For a given
observatior, it is not known which of the Gaussians has contributed toctvieixtend too,
i.e. the weights are hidden. See [65] for details.

The main idea of the FB algorithm is to recursively calcufatavard probabilities

at(j) = P(01,09,...,04, ¢ = S;|A) (2.14)
and backward probabilities

Bi(i) = P(0Ot41,042, - -, O |Gt = Siy ). (2.15)

The calculation ofv,(j) Vt, j (similarly, 5,(i) Vt,) leads toT x n matrices. The forward
probability o, () indicates the probability to observe the vector sequence;, . . ., 0, and to
be, at timet, at states;. o,(j) is initialised at the first time step= 1

ai(j) = mbj(o1)  V1<j<n, (2.16)

and then recursively calculated from the previous time stegd

a(j) = <Z &tl(i)%) +bj(0y). (2.17)

The recursion ends at tinie.

The backward probability, (i) indicates the probability to observe the vector sequence
0/11,0:12,...,07, given that at time¢ the model was at statg. The backward algorithm’s
recursion proceeds backwards in tinias initialised at the last time step

Br(j) =1 Vi<j<n (2.18)

and computed from the following time stép- 1 as

Bi(i) = Z aijbj(0111)Bi41(j)  V1<i<n. (2.19)

Jj=1
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The production probability can be expressed as
P(O|\) = ar(n) (2.20)

(assuming that the state sequentalways ends at the last statg). Alternatively it can be
calculated incorporating the backward probabilities:

P(O[A) = Zﬂjbj(ol)ﬁl(j)a or (2.21)
=3 a(a0) 2.22)

The product of the forward and the backward probabilitydsethe probability tha© is ob-
served while being in statgat timet

a(7)Be(4) = P(O, g = s5[A). (2.23)

The latter two equations play an important role for parametémation with the Baum-Welch
algorithm (see Section 2.3.1).

The run-time of the Forward-Backward procedure grows:B¥, and thus linearly with the
length of the observation sequence.

Strictly speaking, the Forward-Backward algorithm as dbsdrabove is only valid for con-

tinuous HMMs. However, it is straightforward to change isuch a way that it can be applied
to discrete HMMs: the continuous observations and the eomgmobabilities have to be re-
placed by their discrete counterparts

Oy — My
O:(ol,...,oT)—>O:(ml,...,mT) (224)
bj(or) — bj(my).

2.3 Training

Before HMMs can be used to classify unknown observations; ga@ameters\ have to be
set. The corresponding procedure is referred teraiging and it is done by estimating an
optimal A from training observation sequend®s The optimisation criterion of the training is
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the maximisation of the likelihoo@(O|)), i.e. those parametebsare chosen that maximise
the likelihood:

~

A = argmax P(O|\). (2.25)
A

Two methods are known that implement this maximum-likedithaestimation: the Baum-
Welch algorithm, and the Viterbi training. Both will be deibad in the following sections.

2.3.1 Baum-Welch algorithm

The Baum-Welch algorithm [9] estimates the HMM parametersatively according to the
EM (Expectation-Maximisation) algorithm [21]. Here, werie the Baum-Welch algorithm
for discrete HMMs. In each iteration step, new model paranset are estimated from the
parameters of the model from the previous iteration step. It is guaradtéhat the likelihood
always increases between two iterations, until a local mar is reached:

P(O|\) > P(O|\). (2.26)

Let&, (i, j) be the a-posteriori probability of a state change frgio s;. With (2.22) and (2.23),
& (i,7) becomes

P(Qt = Siy qt+1 = Sy, O|)\)
P(ON)

&i(1,7) = P(q = i, g1 = 5|0, A) =
_ at(i)a;jbj(ot-&-l)ﬁt-‘rl(j). (2.28)
; AQEAG)

(2.27)

Let v.(j) be the a-posteriori state probability(j) = P(¢: = s;]O,\). Again, with (2.22)
and (2.23);,(j) becomes
, P(g = s;, 0|\ (g '
PIRAGIAG)

i=1

Moreover,

(i) = Z&(i,j). (2.30)
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With these definitions, the new paramet&tf discreteHMMs are estimated as [66]

= m(i) (2.31)
T-1
ft(%])
ay = T (2.32)
tzzl V(1)
S ) - 60p = m)
= R (2.33)
tzzl%(j)

The Kronecker functior(-) yields 1 if its argument is true, and 0 otherwise. The fornfata
a;; is the ratio of the expected number of transitions from state states;, divided by the
expected number of transitions out of stateb’,, is the ratio of the expected number of times
of being in states; and observing symbek, divided by the expected number of times of being
in states;. The formulae forcontinuousHMMs are similar and can be found in e.g. [64]. The
training of the HMM parameters can alternatively be perfednvith the Viterbi algorithm

presented in Section 2.4.2.

2.4 Classification

2.4.1 General approach

HMM classification inversely applies first-order Markov Masl. In order to classify an ob-
servation sequend® into one of K classes, it is assumed thatwas produced by a Hidden
Markov Model. Each clasg;, 1 < i < K is modelled by one HMM\; whose parameters
were already found (for example, by the Forward-Backwararilygm). The class oD is
predicted by finding the HMM\; that has generate@ with the highest posterior probability
(maximum a-posteriori classification):

g = argmax P(y;|O) = argmax P()\;|O). (2.34)

With the Bayes formula, this equation turns into

5 — argna POIP O

max ——pgy  — asmax POIA)P(L) (2.35)
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since P(O) is independent of the classP(O|);) is calculated from HMM),; using the
Forward-Backward algorithm (Section 2.2) or the Viterbialghm.

2.4.2 Viterbi algorithm

Calculating the production probabilit#(O|\) according to[(2.12), i.e. by going through all
possible state sequences, is prohibitively time consuniihg Viterbi algorithm/[89] approx-
imatesP(O|)\) by considering only the state sequerigethat contributes most to the sum

in (2.12)

P*(0[A) = max P(0.Q|)) = P(0.Q"|\). (2.36)

That is, the most probable state sequeftethat has produce@® is found. Eg.[(2.36) is
obtained similarly to the Forward-Backward algorithm us{@¢20). The only difference is
that the sum in the iteration of the forward probability (2.1s replaced by the maximum
operator. In each iteration step, the state which produeedraximum forward probability
can be saved in order to obtain the most probable state seg(¥n



Chapter 3
Support Vector Machines

An important classifier paradigm next to Hidden Markov Madile Support Vector Machines
(SVMs). Both are supervised learners, that is, their regmeparameters are estimated from a
training set. The class of each training example is givémcontrast to generative classifiers,
which model the distribution of the data of every class, S\V@&sn only the decision boundary
between classes, and are an example of discriminativaf@assWhile multi-class problems
can be straightforwardly implemented with HMMs, the basigrf of SVMs can only separate
two classes. They are not able to model dynamic data in the seagy as HMMs, but they
require less training data (because they are discrimmadind less parameter tuning. Another
difference is that SVMs classify one feature vector, whernd&Ms classify a sequence of
feature vectors.

SVMs date back to 1992 [13] and have proven to be very effi¢@rd wide variety of classi-
fication problems, such as document classification [43]epthn detection [59], handwriting
recognition [8], gene classification [14], and many others.

3.1 Linear hard-margin SVMs

In their basic form, Support Vector Machines are linearabyrclassifiers, that is, they find a
hyperplane that optimally separates two classes.

1This is different to unsupervised training, where clasglslare not available.

14
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3.1.1 The optimal hyperplane

For a given set of linearly separable data pointsc R and corresponding class labels
y; € {—1; +1}, a plane that separates the two classésand —1 can be expressed by the
equation

w-x+b=0. (3.2)
All points x that satisfy this equation lie on the plane. The normal wectdhe planew €

R is often called weight vector in the context of SVMs. Thengla distance from the origin
of the coordinate system equ 7 with b € R.

The discriminating hyperplane is fully characterised by $et{w, b}.

All data points that belong to clags = 1 should lie on one side of the plane, while all
{x;|y; = —1} should lie on the other side. Without loss of generality,ribemal vectomw can
be oriented in such a way that

w-x;+b>0 fory, =1 (3.2)

w-x; +b<0 fory; =-1 (3.3)
or

yi(w-x; +b) >0 (3.4)

If this inequality is fulfilled for allz, all data pointgx;} can be separated without error.

For a given linearly separable data set, there are manylgpestiscriminating hyperplanes.
SVMs find the optimal hyperplane, which is the one that seépare data with the maximum
margin. The margim is the distance between the hyperplane and the closest diataom
every clas(é It is the same for both classes, since otherwise the planédvie nearer to one
class than to the other. Those training data points whosamndis to the separation hyperplane
is ¢ are calledsupport vectorgsee Figure 3/1). The two planes in parallel to the separatio
hyperplane that touch the support vectei® of either class fulfil

w-x¥ +b=+c (3.5)

2This statement is only true for hard-margin decision furesi but not for soft margins.
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optimal hyperplane .
X

Figure 3.1: Hard margin hyperplane. Vectors in bold are support vectors.

with ¢ a constant.w andb can be scaled in such a way that= 1, without affecting the
orientation of the separating plane:

w-x® 4 b=+1. (3.6)

The distance of a point to the hyperplane is [30, p. 322]

wox b @3.7)
[[wl]
so the discriminating function
g(x)=w-x+0b (3.8)

is a measure of this distance and can therefore be used assammed confidence of the
classification. Its sign tells on which side of the separatigperplane a data poist lies
(compare((3.2) and (3.3)). Consequently, the decision fométx) € {—1,+1} of the linear
SVM, which hypothesises the class of a test data poiig

y = h(x) = sign(g(x)) = sign(w - x + b). (3.9)
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From (3.6),/(3.7) and (3.8), the distance of any supportorect’ to the optimal hyperplane is

5o oG 1 (3.10)

The margin of separation between the two classes is2hus

3.1.2 Calculating the optimal hyperplane

The position of the separating hyperplane is determineithgtine training phase of the SVMs
by solving an optimisation problem. Maximising the margin= ”fv—H is equivalent to min-
imising £ ||w]|, or minimising? lw]|*, since(-)? is monotonic increasing. To find the param-
eters{w, b} of the optimal hyperplane, one has to solve the followingngati optimisation
problem:

e Minimise

S Iwl* = sww (3.11)

e subject to zero training error

yi(w-x;+b) > 1 fori=1,...,N (3.12)

N is the number of labelled examplés;, y;} used for training. Note that a zero training error
is also described by

yi(w-x; +b) >0, (3.13)

but if this inequality is used as the constraint it is not jiglsgo find a minimum of, || w||: The
solution of the optimisation problemdw, b}, can be rescaled with sonle< A < 1 without
changing the optimal hyperplane. This still satisfies thestmint |(3.13) (becausg > 0),
but the length ofw has decreased. Hence, the solut{en b} is not the minimal one. Due
to rescaling,||w|| can be made arbitrarily small. Using constraint (3.12) tdmescaling and
makes it possible to find a minimum value fiow || [77]. At the same time, this constraint
guarantees that there are no training points inside theim@gmpare eq! (3.6)).
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The optimisation problem can be solved by introducing Lageamultipliersa; € R, o; > 0
and constructing the Lagrangidn

uwwW@:%HwW—EZ%@MW.&+w—4) (3.14)

L has to be minimised with respect to the primal varialesndb, and to be maximised with
respect to the dual variables [75]:

0 0
%L(w, b,a) =0, %L(w, b,a) = 0. (3.15)
This leads to
N
> agy; =0 (3.16)
=1
and
N
=1

The solution vectow is thus a linear combination of the training examples. Fosétraining
points that do not match the equality of (3.12), i.e. for whig(w - x; + b) — 1 > 0, the
correspondingy; in (3.14) must be 0; otherwise, the term(y;(w - x; + b) — 1) would make
L(w,b, ) smaller, and thus preverit from being maximised with respect . Only the
training points that satisfy;(w - x; + b) — 1 = 0 have a corresponding;, > 0; these training
points are the support vectors (Kuhn-Tucker theorem ohaiptition theory; compare (3.6)).
This means that only the support vectors contribute to thentation of the optimal hyper-
plane, all other training examples can be removed from #naitrg set without affecting the
solution.

Substituting[(3.16) and (3.17) into the Lagrangian (3.&4)k to the following dual formula-
tion of the optimisation problem:

¢ Find the Lagrange multipliers; that maximise

N

N N
W(a) = Z a; — % Z Z QOGY YK X (3.18)

i=1 i=1 j=1
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N
e subjecttoy; > 0and>’ a,y; = 0.
=1

This dual formulation has got the same solutions as the prpi@misation problem/ (3.11)

and(3.12). Its solution is characterised by the Lagrangiptiars «;, and not by the weight

vectorw and the biag as in the primal formulation. Optionallyy can still be calculated

using (3.17). To obtain the bids one support vectox®) must be arbitrarily selected and
inserted intay;(w - x*) + b) = 1.

Moreover, the objective functiol («) depends only on the labelled training data in the form
of a set of dot products. This fact makes it possible to dagstterns that are not linearly
separable (see Section 3.2).

The expansion (3.17) is used to write the decision functioteims of the labelled training
sample pairgx;, y;} and the solution coefficients of the optimisation problesmandb:

N
y = h(x) = sign (Z YiuX; - X + b) . (3.19)

=1

3.2 Kernels

The Support Vector Machine as it was presented this far iblenta separate non-linearly-
separable patterns. Cover's theorem on the separabilitpiéms [30] states that if such
patterns are transformed to a higher-dimensional spaeg,ibcome linearly separable with
high probability. Two conditions have to be met: First, trensformation must be non-linear.
Second, the dimensionality of the new space must be highggndn example is depicted in
Figure 3.2.

The non-linear mapping function is denoted byx) : R¥ — RL L > M. The high-
dimensional spac®’ is often referred to as th&eature space To clearly distinguish the
original space where the features reside from the spaceavtherfeatures are mapped to, this
thesis does not strictly adhere to this convention, buerathllsR” the mapped feature space

The mapping functio®(x) replaces all occurrences »fin the derivation of the linear SVM.
The decision function then becomes

g = h(x) = sign (Z yia; P(x) - D(x;) + b) . (3.20)

As the dimension of the mapped features may be very large em &finite, the costs of
computing the dot (or inner) produdt(x) - ®(x;) may become very large. However, one is
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Figure 3.2: A non-linear mapping ®(x) = (22,22, v2z122)7; @ : R? — R3 can make the
input data in R? linearly separable in R3. The original data is depicted on the left;
after applying ® the data becomes linearly separable (right). The hyperplane on
the left is the result of projecting back the hyperplane from the high-dimensional
space (right) into the original data space.

not interested in the mapped features themselves, but re#teralued dot product. For some
mapping function®, the dot product can be directly calculated without perfogihe feature
mapping by using a so-called kernel function:

]{Z(Xi7Xj) = CI)(XZ) . (I)(Xj). (321)

The objective functiod («) of the dual optimisation problem (3.18) then becomes

N N N

W(a) = Z o — % Z Z oy ik (X, X;). (3.22)

i=1 i=1 j=1

The decision function (3.20) can be expressed as

y = h(x) = sign (Z v - k(x,x;) + b) : (3.23)

SVMs that do not make use of kernel functions are called fi&88Ms; non-linear SVMs, on
the other hand, use kernels. Tablel 3.1 lists some frequas#y kernels together with their
parameters. The correct choice of a kernel, as well as tlrectoralue of the parameter(s)
of a kernel must be determined using model selection metliagsross validation (see Sec-
tion[8.4) or bootstrapping [23, 29]. Valid kernels, i.e.kels that satisfy equation (3.21), have
to be constructed according to Mercer’s theorem [30, 76].

When a kernel is used, the vecteris the normal surface vector of the separating hyperplane
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in the mapped feature space. The boundary that separateldises is linear in the mapped
feature space, but has non-linear shape in the originakspacannot be calculated from the
kernel functionk(x;, x;) alone, because the mappifrgnust be known (which usually is not
the case): with mapping, (3.17) becomes

N
W = Z ;Y P(x;). (3.24)

The vectorw is fortunately not necessary for classification (see (3,2%cause the dual for-
mulation of the optimisation problem (3.22) is solved. Tkadth ofw, however, can be
directly calculated from the kernel:

N N N N
||W||2 =W-w= Z%%‘P(Xi) Z oy P(x;) = Z Zaiajyiyj(l)(xi)q)(xj)
i=1 j=1 i=1 j=1
N

N
= Z ;oYY ik (X, X5 ). (3.25)

i=1 j=1

To put it in other wordsw can be calculated only for linear SVMs, but the lengtkwoéan be
calculated for both linear and non-linear SVMs.

Table 3.1: Some inner-product kernels for SVMs.

|Kernel name \ k(x;,%;) = | Parameters of the kerrel
Linear X; - X —
Radial-basis function (RBFyxp(—52s [|x; — x;]|) o

Polynomial (vx; - xj + co)P 7, ¢o, p( degree
Sigmoid tanh(yx; - x; + ) 8,72

a Mercer’s theorem is satisfied only for soriey [30].

3.3 Soft-margin decision functions

One way for SVMs to deal with non-separable training poiat®iallow for some points to
be on the wrong side of the separating hyperplane, i.e. tavalhta points; that violate the
zero training error condition (eq. (3.12))

yi(w-x;+b) > 1 fori=1,...,N. (3.26)
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optimal hyperplane .
X,

margin2J

Figure 3.3: Soft margin hyperplane. Vectors in bold are support vectors; the corresponding
values of &; and «; are stated.

In this case, the margin between the two classes is calet mmargin Two types of violations
may occur: (a) the data point lies on the right side of the hyle@e, but inside the margin
(b) the data point lies on the wrong side of the hyperplanehénsecond case, the data point
would be misclassified by the SVM.

In order to allow violating data points, the constraint @.is relaxed by introducing slack
variables for every training poin§; € R=%,i = 1,..., N:

For0 < ¢; < 1, the corresponding data point falls inside the margin, Iouhe correct side of
the hyperplane. Faf; > 1, it falls on the wrong side (see Figures|3.3 and 3.4).

The additional costs resulting from non-separability arerporated by an extra cost term
to the objective function (3.11)'>".&;. This sum measures the misclassification rate and
should therefore be minimised. is a real, pre-defined constant that specifies the trade-off
between the degree to which misclassified data should beteteand the complexity of the
discriminating surface. A larg€ will result in a complex surface that can separate the mgini
data very well (see Figure 3.4). As will be described in Sec8.6.2, a wide margin yields a
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Figure 3.4: The influence of parameter C' and slack variables ¢ in soft margin SVMs.

less complex decision surface than a narrow one.
The optimisation problem that now has to be solved is:
e Find the optimal weight vectow and biasb such thatw and the slack variable§

minimise

N
1
SWW c;@ (3.28)

e subjectto

It incorporates the — usually unknown — mapping functioriThe corresponding dual formu-
lation of the optimisation problem uses the kernel insteadl:o

¢ Find the Lagrange multipliers that maximise

N N N

ZO&@ — ; ZZO@O@?%@”IQ’(X@,Xj) (330)

i=1 i=1 j=1
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e subjectto

N
D aiy; =0 (3.31)
=1
0<a; <C fori=1,...,N (3.32)

It should be pointed out that this formulation is the sameoasife case of linearly separable
data, except for one detail: the are no longer bounded at only one side £ 0), but at two
sides:0 < a; < C. Those support vectors whose Lagrange multiplier saflisfy«; < C' must
have; = 0, i.e. they lie exactly on the margin at a distancd pfjw|| from the hyperplane.
Values ofa; = C' can only occur together witfy > 0. These data points will either lie inside
the margin, but be classified correctly & 1), or will lie on the wrong side of the hyperplane
(& > 1) [91] (see Figure 3.3). Just as for hard margin SVMs, thageitrg data points with
a; > 0 are called support vectors. Hence, not only those pointdithexactly on the margin,
but also those that lie inside the margin or on the wrong sfdée hyperplane are support
vectors. The latter are referred to as bounded supportngecitne dependence between the
a; and theg; are a consequence of the Karush-Kuhn-Tucker conditionsgmality. Details
can be found in e.g. [16] or [77].

3.4 Probabilistic SVMs

The Support Vector Machine as described above is only abjgddict the class of a data
point. Its decision valug(x) can be used as a measure of how sure the prediction is. The
drawback ofg(x) is that it cannot be compared across binary models, as wdkelseribed in
Section 8.6.3. Moreover, it is not normalised or bounded simgle decision value is difficult

to interpret (except for the fact thatx) = +1 means that the data point lies exactly on the
margin).

These drawbacks can be addressed with probabilistic SVkishwutput the posterior proba-
bility that a test poink belongs to, say, class +i{y = +1|x). The true value of the posterior
is not known, but has to be estimated. One very popular apprmeestimation was presented
by Platt [62]. He argues that the posterior can be approxichasing a sigmoid function with
parametersi and B:

1
1+ exp(Ag(x) + B)

ply = +1[x) = (3.33)
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wherep(y = +1|x) +p(y = —1|x) = 1. For estimationA and B must be optimised using the
decision valueg(x) of some training data points. Note that it does not make Sersstimate
these parameters based on the distafige instead of the decision value, because one is a
multiple of the other; the resulting posteriors will be tlzere.

Platt minimises the negative log likelihood of the trainohata using a model-trust algorithm.
An improvement of his algorithm was presented by [49] andsisdufor the experiments re-
ported on in this thesis. In order to distinguish betweerbahilistic and non-probabilistic
(conventional) SVMs, the latter will from now on be referredas non-probabilistic SVMs
and abbreviated npSVMs.

The sigmoid function (3.33) (given that its parameters vestimated) is only applied during
classification. First, the decision valyéx) of an unknown test point is computed with a
conventional SVM as described in the previous sections feoe(3.23)):

N
g(x) = <Z yiay - k(x,%;) + b) . (3.34)

Then, [(3.33) is used to get the posterior probability. Thn®YMs are just an extension of
conventional SVMs.

The class prediction of a probabilistic SVM (pSVM) does natke use of the decision func-
tion g(x), but of the posterior probability. It decides for class +b(f = +1|x) > p(y =
—1|x), otherwise it chooses class -1. Note that the decision taynof non-probabilistic
SVMs is atg(x) = 0; the boundary for probabilistic SVMs is at

ply = +1]x) = p(y = —1|x) = 0.5. (3.35)

For B # 0, p(y = £1|g(x) = 0) # 0.5, i.e. the decision boundaries of conventional and
probabilistic SVMs do not necessarily match.

Platt addresses the problem of the correct choice of thesgdtthat is used to estimate the
sigmoid parameterd and B. If the whole training set is used, some training points \wél
non-bounded support vectors (nbSV) and thus have a deaisioe of exactlyg(x) = +1.

The more nbSVs, the more valugd will be used to estimate the sigmoid parameters, and
so the more the parameters will be pushed (biased) agamshaingin. This will become a
problem for (a) non-linear SVMs (SVMs with a non-linear kel)n where usually a substan-
tial fraction of the training data will be nbSVs (b) linear B¢, where the dimensionality of
the input vectors is high compared to the number of trainmigts (since there will be at max-
imum, M + 1 nbSVs forM-dimensional data). The latter case (b) was overlooked aty.Rie
argues that for linear SVMs, especially with a snt@Jlthe bias is not severe. However, high-
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dimensional data together with linearly separable clagkgsan important role in the context
of text categorisation. Hence, avoiding a biased sigmoatusial for the work described in
this thesis.

Several ways to avoid biased estimation are suggested tiy P& best one is cross-validation
of the training data: The whole training set is divided irgay, five equally sized portions.
Four are used to train a SVM, i.e. to estimate a decision bayndetween the two classes.
From the remaining data, the decision valyés) are calculated using the just trained SVM.
It is very unlikely that for this datg(x) = 1, because it was not used to train the boundary.
This procedure (training of SVM and calculation @fx)) is repeated using the other four
combinations of the data chunks. In the end, the whole trgisiet has supplied decision
values, which are then used to estimate the sigmoid parasnétand B. This 5-fold cross-
validation method was (usually) used to create the expatsqaesented in this thesis.

3.5 Multi-class categorisation

The Support Vector Machine approach as described in theeadmmtions can only distinguish
two classes. However, many real-world problems are midsscproblems. Nevertheless,
introduction books to SVMs usually just ignore multi-clasgegorisation, or address it only
briefly.

Several approaches to deal with more than two classes avenkno
e Direct modification of the SVM optimisation problem.

e One-against-all The model for category = i is trained on all othef’ — 1 categories
k # i, whereK is the total number of categories € i < K). For testing (predict-
ing), the K decision values of the modelg,(x),k € [1,..., K| are computed. The
prediction result is the class that received the highessiecvalue:

y = predicted class- argmax g (x) (3.36)
k

e One-against-one For every combination of two disjoint classes, one SVM nhasle
trained. l.e.; — 1 models are trained that contain clags{i, 1}, {:,2},...,{i,i — 1}).
This amounts to a total oK' (K — 1)/2 models. The combination of the same number
of decision values in order to obtain one single predictiesuit is described in the
following section.
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e Directed acyclic graph (DAG). As in the one-against-one approadh,x — 1)/2 mod-
els are trained. For testing, it uses a rooted binary dideawyclic graph that has
K(K — 1)/2 internal nodes and( leaves guiding thex classes. Figure 3.5 depicts
a 4-class DAG.

Hsu and Lin [32] have compared these methods and conclutiehthiatter two methods are
most suitable for practical use. Here, the one-againstroethod is used, which is imple-
mented in the i bsvmsoftware package [1].

Figure 3.5: Directed Acyclic Graph for multi-class categorisation with SVMs, 4 class case.

3.5.1 Couplers for non-probabilistic SVMs

The step that combines thé(K — 1)/2 distinct decisions of the one-against-one approach
into one overall prediction is callecbupling This section discusses the standard coupler for
non-probabilistic (conventional) SVMs, the voting couplend presents two new couplers.
The following section deals with couplers for probabitsiVMs.

The predominantoting coupler increments by 1 the voting counter of the winningslaf
every binary classifier. The class with the highest numbewotds is the prediction result for
the multi-class problem. In spite of its simplicity, the wvaf coupler works well. However,
it does not incorporate any confidence measures of the balasgification, which reflect the
certainty of the system that its prediction is correct.
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A straightforward measure of confidence of a test vextisrthe value of the decision function
9:j(x), which is proportional to the distanck;(x) of x to the separating hyperplane of the
binary classifier(i, j): d;;(x) = % (wy; is the trained weight vector of the hyperplane).
The index;; denotes the binary S\J/M model trained on the class paijf). In order to test
the influence of confidence, two new coupletsgision valuenddistance were constructed
where the decision valugs;(x) and the distance$;(x) are added instead of 1. Whig; (x)
was used as confidence measure in other contexts (erroctog®utput codes [68]), the
author is not aware of publications that use the distance.

From a theoretical point of view, both the decision functigf(x) and the distancé;;(x)
have advantages: Because the decision fungtig) = 1 for data vectors that lie on the
margin, it yields confidence information scaled to the widftthe margin. Assume a test
vector with a fixed Euclidean distance to the separating fpfaee. If the margin is small,
I. e. the classes can not be separated easily, the vectdiendilitside the margin and return
a high confidence valug;;(x) > 1. If, for the same vector, the margin is large and the
two classes can be separated very well, the confidence valubenow. This behaviour
makes sense because for easily separable classes, thectestshould lie far away from the
hyperplane to get a high confidence measure. Thusz) reflects how far away the test vector
is from the margin. The advantage of the distance coupléaisthe geometric distandg;(x)
obtained with one binary classifiét, j) can be compared to the distanég,(x) of another
binary classifier(/, m), whereas the decision values can only be compared withébinary
classifier (see Figure 3.6) [34].

3.5.2 Couplers for probabilistic SVMs

This section describes several couplers for probabilBtidls. In the following discussion,
the following symbols will be used:

e p;: overall a-posteriori class probability, = p(y = i|x).

e /i;;: true pairwise a-posteriori class probability; = p(y = i|x,y =i orj) = Yy
i TPj

e 7;;. estimate ofy;,

Couplers take the estimated pairwise a-posteriori proii@Silthat are output by the pSVMs
(3.33) and transform them into overall a-posteriori prdlil:imf. Their class prediction output
7 is the class that received the highest a-posteriori prdibabi

§ = argmax p(y = i[x). (3.37)

3The voting coupler does not directly calculate the overaditprior, but it can be derived from the votes.
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(a) Classifier for classesand; with small margin. (b) Classifier for classeisand; with large margin.
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(c) Classifier for classdsandm.

Figure 3.6: The distance d(x) of a vector x to the separating hyperplane, and its decision
value g(x) are proportional to each other, but not equal. For a given hyperplane,
g(x) depends on the margin 26, but d(x) does not. The decision value is relative
to the margin (Figures (a) and (b)). When x is classified by two different binary
classifiers (i, j) and (I, m), the (euclidean) distances d;;(x) and dj,,, (x) can directly
be compared. But it is questionable whether the decision values g;;(x) and g;,, (x)
can be compared, since the margin of the two classifiers is (usually) different. This
is indicated by the missing margin in Figure (c): Without knowledge of the margin,
the decision value cannot be calculated.
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The workflow of a coupler can be represented by

{riti, = Apds, - @ (3.38)

Voting

The probabilistic voting coupler is analogous to the noolabilistic coupler: for a test using
the model of class pait, j) (wherel < i, j < K), itincrements the voting counté(:) of the
winning class by one. The winning class is determined by comparing thevisarposteriors:

. . hen/(: I(7)+1
it 1y > 0.5 then (z}) — (z? + Vi i (3.39)
< 0.5 thenl(j)— I(j)+1
The class with most votes is predicted:
g = argmax [ (i) (3.40)

2

The overall (not pairwise) posterior probability of clasg; = p(y = i|x), can be estimated
as the fraction of votes fardivided by the total number of votes:

pi = 21(i) /K (K — 1) (3.41)

The voting couplers for pSVMs and for npSVMs may lead to défe class predictions, be-
cause the npSVM voting coupler makes a decision using thisidecvalueg(x), and the
corresponding pSVM coupler uses the pairwise posteridogiyiity. As was pointed out in
Section 3.4, these two functions usually describe diffecéass boundaries.

The following four sections describe couplers that are mvddy and examined in Wu et.
al. [95]. Among these couplers, two are already known caspénd two are newly introduced
by them.

Method by Price, Kner, Personnaz, and Dreyfus

The method by Price, Kner, Personnaz, and Dreyfus [63] dersithat the sum of the overall
posteriors over all classes is 1, and re-writes the posgerio

K
1= pi=(_pi+p) —(K=2p (3.42)

J:gF
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Usingr;; ~ —£—, one obtains the;,

pitp;’
1 1
—~ Y — (K -2), (3.43)
Pi gz T

which then have to be normalised so that; = 1. This approach is referred to as PKPD.

Method by Hastie and Tibshirani

Hastie and Tibshirani [28] suggest minimising the Kullbaekbler distance between; and
Hijy

l(p) = Z n;;7i; log p=(p1,-,px)", (3.44)

m
oy Hij
wheren,; is the number of training vectors in classes j. They present an algorithm to find
the minimum ¥I(p) = 0) using an optimisation algorithm. According to [95], it Wiind a

unique global minimum. Instead of finding the true minimpim they find a vectop with

S 2 Es:i;és Tis

S (3.45)

whose elements are in the same order as thope (ne. p; > p; iff p; > p;). Itis sufficient to
know p in order to perform classification. Using the identity

pi +Dj Di Di +Dj
;= : N bETh 3.46
j% j;i}(—l pi +p; j;i}(_lrua ( )

and replacing; + p; with 2/ K andy;; with r;;, one obtains (3.45).

The coupler of Hastie and Tibshirani is abbreviatéd@. One of its characteristics is that it
requires an optimisation problem to be solved.

Markov coupler

The first new coupler presented by [95] is similar to the HTateu However, they do not
replacep; + p,; by 2/ K, hence they solve the system

Di + Dj

Jij#
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subject toy ., p; = 1, p; > 0. This can be rewritten as

_ S _ ) /(K =1) ifi#j
Qp = p, ;pi—l, Qij_{Zs:s#ns/(K—l) iz (3.48)

There is a finite Markov Chain whose transition matrix(Js hence this algorithm is called
a Markov coupler. The optimap can be obtained by solving the linear system (3.48) using
Gaussian elimination.

Minpair coupler
The minpair coupler, again a coupler first introduced by [@Blimises
1
5 STKY (riipi — rips)’ (3.49)
i=1 gy

subject tosz p; = 1,p; > 0. Wu et al. [95] show that this problem can be re-written as a
linear system and solved with standard methods like Gausdiimination.

The following two sections will introduce two new couplerat — unlike three of the above
mentioned couplers — do not require the solution of optititesgproblems or linear systems.
Both are based on the voting coupler (Section 3.5.2), buiitectonfidence information [34].

Vote-Probweight 1 coupler

Similar to our extensions to the npSVM voting coupler ddssdiin Section 3.5.1, we did not
add 1, butr;;(x) to the count for class I(7), if 7 is the winning class (otherwise;; is added
to the count for clasg, 1(j)):

f 1., > 0.5 then[(z») - I(z? + 7 ' (3.50)
< 0.5 thenl(j) — I(j)+rj

This coupler is calledrote-probwghtl

Vote-Probweight 2 coupler

The vote-probwghtl coupler does not reflect the fact thaptisdability that the data point
belongs to the losing class is greater than zero. Hence, emond new coupler,vpte-
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probwghtd, addsr;; to the count for class as well asr;; = 1 — r;; to the count for class
Je

1) — I() + 1y, 1() — I(j) +1ys. (3.51)

The advantage of the new couplers is that they have low imgtéational and run-time re-
quirements. In contrast to the HT, Markov and minpair cotgpl¢hey do not require the
solution of an optimisation problem or of a linear system.likinthe voting coupler, which
can lead to ties in the class predictions because two or nlagsas can have the same number
of votes, the new couplers will always predict only one claSections 8.6.3 and 8.6.4 will
discuss experiments using npSVM and pSVM couplers to se¢hehéhe newly proposed
couplers are competitive. These experiments on text/spdkeument data supplement the
experiments performed by Wu et al. [95]. They have testedbuwe mentioned pSVM cou-
plers (except, of course, the two newly introduced couplemsmany data sets, but not on
text data. In fact, this thesis incorporates the first thghoimvestigation of conventional and
probabilistic couplers on text classification.

3.6 SVMs and Structural Risk Minimisation

This section points out the relationship between SVMs aedpttinciple of Structural Risk
Minimisation (SRM), which is part of Statistical Learning dry. It will help to explain why
SVMs perform successfully for many classification applamad.

One characteristic of SVMs is that they incorporate an “biterg protection”. The error on
an unknown test set will usually not be much higher than therem the training set. The
reason is that the margin between two classes is maximisediotiowing paragraphs will
make this link clearer.

3.6.1 Statistical Learning Theory and Structural Risk
Minimisation

Statistical Learning Theory, also called Vapnik-Chervdaeiheory and introduced by Vap-
nik [88], deals with how to control the generalisation (oegliction) ability of a learning
machine. It provides a theory to formally describe thisighiln contrast to other methods,
which provide only heuristics.
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The principle of Structural Risk Minimisation (SRM) [77, 297]1links the complexity of
a learning machine to its prediction ability [17, p.45]. Tbemplexity can informally be
characterised as the variance of the decision boundargxemmple, a linear boundary is less
complex than a 5th degree polynomial. For decision funstiomear in parameters such as
polynomials, the complexity is the number of free paransgtey. in case of polynomials, their
degree). For other functions, the VC-dimension can be usad@sasure of complexity [17].
Other measures exist, for example annealed VC entropy shédtering dimension [77].

VC-dimension  The VC-dimension measures the complexity of a class of disgating
functions, not of a single function. Considerdata points with class labelsc {+1}. There
are2™ different class combinations (permutations)fepoints. A set of functions that is able
to separatall 2™ class combinations is said statternn points. The VC dimension of a set of
functions is defined as the highest number of pointthat it can shatter. This does not mean
that it can separateny m points, but that there exists at least one set:.qjoints that can be
separated. For example, in ardimensional space, the set of all possible linear hypagda
has a VC-dimension of + 1.

Risks Two different types of errors can occur in statistical léagn training error and test
error. The former is also callegmpirical risk Remp, While the latter is calledisk R. The goal
of machine learning is to find a functiof{x) that correctly classifies unseen examglesy)
so thatf(x) = y. In other words, & is to be found that minimises the rigk However, the
risk is not known; what is known is the empirical risk that dencalculated from the training
data alone:

1 o1
Remglf] = 7 2_ 511(x:) = wil. (3.52)

One can of course use a test set and compute the classifieataron it; but this is not the
true risk, just an error onnetest set out of many. The true risk is the error on all posgése
data, and therefore a purely theoretical measure.

Empirical Risk Minimisation and Structural Risk Minimisatio n Some machine
learning algorithms, like neural networks, try to chosg¢ enat minimises the empirical risk
and hope that the risk becomes minimal (Empirical Risk Misetion, ERM). One severe
danger of this approach is overfitting: the decision functmlapts so well to the training
data, i.e. becomes so complex, that it can hardly genematidevill produce a high test error
(see Figure 3.7 (a)). Model selection techniques like ewadislation have to be applied to
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avoid overfitting. On the other hand, if a simple decisionction is chosen by, for example,
restricting the decision function to be linear instead ofighkdegree polynomial, there will

be a high empirical risk. This issue is also known in classstatistics as the bias-variance
dilemma[77, 29]: In order to keep the variance (complexXity), the class of possible decision
functions has to be restricted, i.e. a high bias has to be $eghoA low bias allows functions

with many degrees, which then become complex. The challengeachine learning is to find

the right balance between over- and underfitting, betweas &ind variance. The empirical
risk is a bad indicator of whether optimal balance was a@tev

Structural Risk Minimisation provides a formal approachhis tlilemma. In order to estimate
an upper bound of the risk, a confidence interval texi, N, 7) is introduced that links risk
and empirical risk:

R[f] < Remplf] + ¢(h, N, 7). (3.53)

This inequality holds with a probability af — . h < N is the VC-dimension of the class of
functions that can be implemented by the learning machihe.cbnfidence term

o(h N.1) = \/h(log v 4 ]1\? —log(n/4) (3.54)

increases with increasing VC dimensibre N. The interaction of the elements of (3.53) is
depicted in Figure 3!7 (b). Note that (3153) does not makessible to compute the true risk
(which is, of course, unknown), but gives an upper bound etthe risk, which will probably
not be crossed. It turns out that this upper bound is veryawasive, the real risk is much
lower than the bound [44].

A simple hypothesis space with a small VC-dimension (&,dn Figure 3.7 (b)), will probably
not contain good approximating functions and will lead toighhtraining error. An overly
complex hypothesis space with a large VC-dimension (&,gin Figure 3.7 (b) ) may lead to
a small training error, but the second term in the right-hsidd of (3.53) will be large, so that
the test error might be high.

The SRM principle focuses on decreasing the VC dimensiorigvideieping the training error
zero (in case of separable training patterns without aslier low. It has to be emphasised
that SRM minimises the upper bound of the true risk, while EREU8®Ss on the empirical
risk alone. Hence, in contrast to ERM, SRM provides overfitpngtection by selecting the
complexity of the decision function in such a way that a mmmupper bound on the risk is
found.
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Figure 3.7: Risks in Empirical and Structural Risk Minimisation. ERM focuses on minimising
the empirical risk, hereby missing the minimum risk, whereas SRM minimises an
upper bound of the risk. The upper bound is the right hand side of eq. (3.53)

3.6.2 Linking SRM and SVMs

The VC dimension of the class of all linear boundaries imatimensional space is+ 1. If
one selects only a subset of these boundaries, the VC diaretiscreases: Linear hyperplanes
that satisfy[(3.12) (canonical hyperplanes) and whose im&at least)y, ord = 1/ ||w]|| >

d9, have a VC dimension that is bounded by

2
h < min (R—z,n) + 1.
9

R is the radius of the smallest sphere that contains all trgidata pointsy is the dimension
of the data space. In other words, an increasing margin edfebse the VC dimension. The
margin cannot be infinitely increased, because the traiamgr would eventually also start
to increase. The two terms of the upper bound of the risk {tigimd side of( (3.53)) have a
correspondence in the objective function of the SVM prohlem

(3.55)

(3.28)

%ww—i— CZ&

The minimisation of the first termyww = %Hw||2, maximises the margin, minimises the
VC dimension and thus minimises the confidence tex, NV, ). The sum in the second
termy . &, is an upper bound of empirical rigkemp [30, p. 327].

These considerations show that SVMs are constructed angdalthe principle of Structural
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Risk Minimisation. Minimal risk avoids overfitting, hence $) have a built-in overfitting
protection. What is more, the complexity of the decision loarg — in contrast to most other
classification approaches — doast depend on the dimensionality of the input data, as can be
seen in @é) Usually, no feature selection (using e.g. InformationrGaiy? criterion) or
feature transformation (e.g. PCA or LDA) is needed.

The automatic choice of best model complexity makes manmahg) of many parameters su-
perfluous. In contrast, for classifiers built according ®BRM, one has to set the complexity
of the decision function a-priori. This does not mean thaemwhsing SRM, one is exempt
from a-priori choosing parameters of the learning machifige best outlier tolerance coef-
ficient C or kernel parameters still have to be set outside the SVMikdmleural networks,
SVMs do not need initialisation of weights or coefficientadahence will always yield the
same decision boundary when trained with the same data.

3.7 Advantages of SVMs for text classification

One property of a text classification task is that it has goargd input space (i.e. high-

dimensional (but sparse) feature vectors). SVMs can hdadie dimension of data effi-

ciently. The VC-dimension of maximum-margin hyperplanessinot necessarily depend on
the number of features. If the training vectors are sepadtayethe optimal hyperplane, then
the expectation of the probability of committing an erroraotest example is bounded by the
ratio of the expectation of the number of support vectordheoriumber of examples in the
training set [88]:

E[number of support vectdrs

— 3.56
(number of training vectors)-1 ( )

E[P,.(erron] <

This bound depends neither on the dimensionality of theufeaspace, nor on the norm of
the vector of coefficients, nor on the bound of the input vectdlherefore, if the optimal

hyperplane can be constructed from a small number of suppotors relative to the training
set size, the generalisation ability will be high, even inrdgmite dimension space.

Additionally, using SVMs for text classification has the adtage that statistical feature sub-
set selection is not necessary (see [18, 43]), and SVMs werep to be effective for text
classification [42, 43].

4 Except for cases when the maximum margin is very small,heedata are hardly separable. Then, a different
choice ofC' might be favourable in order to enlarge the margin.
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Figure 3.8: A perceptron with a sum propagation function.

3.8 Comparison to perceptrons

Support Vector Machines and perceptrons share severapieg The purpose of this section
is to provide a comparison of both classifiers.

A perceptron is able to classify patterns from two lineadparable classes. The class of a
patternx, y(x) € {1,—1}, is predicted by weighting each component of the featuréovec
x € RM with @,, and adding a biak € R (see Figure 3.8):

M
FX) =) bt +b=W-x+D. (3.57)
m=1
The sign of this function (which is usually referred toaepagation functiopis the predicted
classy(x) of the patterrx:

§(x) = sign(f(x)). (3.58)

The weightsx and the bia$ are set during the training phase of the perceptron by ietgt
minimising the squared classification error of the trainadgterns [30].

It is therefore guaranteed that a perceptron is able to cityrelassify linearly separable train-
ing patterns, since the minimum of the squared error funasd for such training patterns.
However, the performance on previously unseen patternstdabe bad because there is no
direct mechanism to control the ability of a perceptron toagalise. The perceptron’s deci-
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sion plane that separates the two classessliesewherédetween the two class clouds formed
by the training patterns. In contrast, Support Vector Maekiare capable to generalise well,
because they minimise the upper bound of the generalisation (calledrisk in the context
of SVMs). The decision plane lies exactly in the middle oftive class clouds and separates
them with maximum margin. As is shown below, the formula usectlassification is sim-
ilar for perceptrons (or, more generally speaking, for lerdgyer Neural Networks) and for
SVMs. What is different is how the parameters are set duriaigitrg, or to put it in other
words, the objective function used for learning is differfr3].

N perceptrons can be arranged parallelly to form a single Isgeiral Network (whereV is
the number of training samples). The perceptrons’ outpretsammed and a bidss added.
The sign of this sum is again used for class prediction. The bf the individual perceptrons
is fixed to 0. Classification with this network is accomplishsthg

N
fx)=> Wix+b, (3.59)
y(x) = sign(f(x)) = sign(z WX +b). (3.60)

i=1

Comparison of this classification rule to the classificatioie of a linear SVM|(3.19) yields
that linear SVMs and a single layer of perceptrons predidghensame way, given that the
perceptrons’ weights are set to

There are extensions to the perceptron paradigm that maitmear classification possible by
using the kernel trick [13]. Thus, next to the similarity Wween linear SVMs and perceptrons,
there is also a similarity between non-linear SVMs and pgeroas.

As already pointed out, one of the differences between tbheypes of classifiers is the train-
ing phase. The weights of a perceptron are chosen to mintmessquared classification error
of the training data. Moreoverall training patterns are used for classification (3.60). In-con
trast, SVMs minimise the margin of separation between tlreddasses, and only a subset of
the training data, the support vectors, are used for claagoin.

As an aside it should be noted that apart from the perceptapagation function (3.57), other
types of functions exist. The sign function is often repthby the differentiable sigmoid
function. In Section 7.3.2, another type of Neural Netwaldescribed which is used for
vector quantisation.
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3.9 Conclusion

This chapter presented the theory of Support Vector Mashidgproaches for the classifi-
cation of linearly and non-linearly separable data, forakmation of posterior probabilities
and for coupling the results of binary models to obtain mciltiss predictions were treated.
Four new couplers were introduced and discussed. Finakystccess of SVMs for many
pattern recognition problems, especially text categbasahas been theoretically explained.

Among the advantages of SVMs are:

e Built-in overfitting protection: since SVMs are constructartording to the principle of
Structural Risk Minimisation, they aim to minimise the lowesssible test error, and
thus avoid overfitting to the training data.

e The complexity of the decision boundary between two class@sdependent of the
dimension of the input features.

e Few parameters (usually onty and kernel parameters) have to be adjusted, which
makes the learning and prediction process simple to handle.

e Using kernels, SVMs can handle non-linearly separable pait

These facts make SVMs good candidate classifiers for cleatsdn of texts and spoken doc-
uments.



Chapter 4

Methodology of performance
evaluation

The classification techniques presented in this thesisateedtiven. This means that a large
training set is used to estimate the parameters of the fitassi In addition, it is crucial to
evaluate a classifier's performance with a test set. Thergkepanciple of evaluation is to
compare the hypothesis of a classifier to the reference alasstation produced by humans.
In theory, the reference should be perfect and unambigubas;is why it is often referred
to as “ground truth”. However, annotations from differespple are likely to differ. Larson
et al. [45] report that two human reference annotators agoeeonly 70% of the documents.
Nevertheless, the existing methods for evaluation sticthéoconcept of a perfect reference
annotation.

This chapter presents the methods used to evaluate the @sodlithe media monitoring
demonstrator. The different types of patterns used in theotistrator — speech signals, video
signals, and automatic transcriptions — demand individugéhsures of performance, each of
which is covered in one of the following sections.

The approach of Unsupervised Topic Discovery (UTD) presgimt Chapter 10 on page 127
is inherently difficult to evaluate, since there is no fixedg-defined list of topics. Therefore,
UTD is not evaluated by a performance measure.

4.1 Evaluation of topic classification

The following evaluation methods assume that there is omyadass (topic) per document. In
this thesis, multi-label settings (where more than onesdassigned to each document) will
not be evaluated using a performance score.
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Table 4.1: Contingency table for evaluation of classifier performance.

Hypothesis Reference Topic i$; Reference Topic is naf
T tp fp
not7; fn tn

One straightforward way to evaluate topic classifiers (aid;ourse, classifiers on various
other domains) is to directly compare the reference clasaifgl truth) of each test document
to the category hypothesised by the classifier. The cormsstrate is the number of documents
for which reference and hypothesis match, divided by thal teumber of test documents.
This rate is used for evaluation of the HMM and Naive Bayesdaabassifiers presented in
Chapter 7 on page 80. It can be used for both binary and maksalata.

More sophisticated measures allow to describe differgmé@s of the performance. They are
presented below.

4.1.1 Measures for binary classifiers

When only two topic classes, andT; are present, the comparison of reference and hypoth-
esised topic of one document yields exactly one of four pbsstates which are listed in
Table 4.1 (contingency table). The tofiig is referred to asot7; in this table, so that it can

be used for the discussion of multi-class evaluation. The éements, or better counts, of the
table are:

e true positive Both reference and hypothesis claim

e true negativeBoth reference and hypothesis clamot 77.

e false positive The hypothesis mistakenly classifies the documeifit as

e false negativeThe hypothesis mistakenly classifies the documemicaq’; .
For every tested document, one of these four counts is isedgay one.

From the contingency table, several common performancesunes can be derived for the
binary class problem: precisiaf, recall R, miss rateM, false alarm raté" A, and error rate

ER are [98, 100, 52, 48]
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F= tp T Ip @y
= tp f fn (4-2)
M= {Cl-nfn “9
A= % (4.4)

N tp+ifvfi}f;+ fn (4:5)

tp is the number of true positives in the test get; fn, andtn are defined accordingly. Ob-
viously, M = 1 — R. All four rates can take values between 0 and 1. If the denatoin
equals 0, the corresponding rate is not defined. The missadseldlarm rates can also be seen
as probabilities of the classifier generating a miss or &falarm: Py;;,s = M, Pry = FA.
The false alarm rate is sometimes calfatlout, e.g. by [98] and [52, p. 270]. While also
precision and recall are likewise probabilities, the egpi@nprobability of recallor precision

is not used. Instead, precision and recall are implicitlyssdered probabilities.

The F}, measure is the harmonic mean of precision and recall,

_ 2PR
P+ R

1 (4.6)
A more general formulation makes it possible to adjust theixe weights between precision
and recall:

(3> +1)PR

Fy = :
T T ®P+R

4.7)

The F-measure is not a rate, therefore it is written withbatdercent sign (e.g. 92.4 instead of
92.4 %). Precision, recall, and tli¢ measure are widely used for evaluation of text classifiers.

4.1.2 Measures for multi-category classifiers

A multi-class problem with K(> 2) classes (i.e. more than two classes are present in the
document collection) has to be broken down into severalpipeoblems:
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e Binary problem 177 — notT;
e Binary problem 215 — notT;
[ J

e Binary problem K77 — not T}

Every binary problem is evaluated according to the scherasgmted above. There are two
ways to combine the binary results:

e Macro-Averaging treats each binary problem equally. One separate conitygeable
per category is calculated, i.e. precision, recall, etc. are calculdtedeach category.
The overall performance measure is averaged over the pegarg measures. For ex-
ample, the macro-averaged recall is computed as

R —li—J&L—_iim“ o
macro = 7~ = tp(i) —+ fTL(Z) K i=1 . |

tp(7) is the number of true positives among the test documentsevteerence label is
T; . The F; measure, being composed of precision and recall, can beorageraged in
two ways:

— One F; score is computed for each category, which are afterwarelaged. Ac-
cording to [99], this is the correct way.

— First, macro-averaged recall and precision are computebtheent’ is derived by
taking their harmonic average.

The first option was used to obtain the macro-averagesheasures in this thesis.

Macro-Averaging gives the same weight to the categorieepandently of their size.
Thus, given a very unbalanced data set, small topics may dnaa influence on the
final performance score. The TDT workshop series [6] (se¢i@e@.1.1 for details)
uses macro-averaging.

e Micro-Averaging. Only one global contingency table is kept for micro-avanggso
that the recall can be expressed as

2 i (tp(@) + fn(2))

Each class is weighted according to its number of documarttsei test collection, and
each document has got the same influence on the final measio®-A¥eraging thus
favours the performance on common categories. Yang [97Paadhims [42, 43] use
micro-averaging in conjunction with text classification.

Rmicro -
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As the test set used to evaluate the SVM classifier in thissimes got very unbalanced topic
sizes, as well micro-averaged as macro-averdgetdeasures are stated in Chapter 8.

Besides the aforementioned measures, variations exishkkarecision-recall breakeven point
[43], or detection costs introduced by the TDT workshop eaabn [6].

4.1.3 Measures for automatically segmented documents

All performance measures presented above assume that¢bmdots boundaries of the test
set are the true reference boundaries. In other words, fhe segmentation of the test set
was performed manually. Manual segmentation makes it lplestsi score the topic classifiers
independently of the performance of the topic segmentatiodule.

However, a realistic evaluation of the presented autonma¢idia monitoring system, which is
the key subject of this thesis, requires that the topic dlaaton approaches also be scored
with automatic topic boundaries. These boundaries wilahwtys be correct, so the reference
and the test boundaries will not always match.

For this thesis it was decided that if a test story whose topiothesis ig; has got a minimum
overlap ¢ 0 seconds) with a reference story about the same topic, thii€ouint as a true
positive. A minimum overlap seems very small, but is nevddass realistic. Professional
media monitoring will never let an automatic system makefitined decision about for which
customer a story may be interesting. The system’s outpuaiwmibys be taken as a suggestion,
and manual inspection will always follow. Therefore, if thgstem claims that there is an
interesting story at a certain time, a human will also chéxekdtories before and after this
story.

The TDT workshops take a different approach to match hymiglaand ground truth. For every
time slot of the true story, the hypothesised class is reabr@ihe majority decision of all time
slots is the final decision for the story. Thus, a hypothesstery withT; will have to cover a
great portion of a reference story abdyin order to be counted as a match.

4.2 Evaluation of automatic speech recognisers

The word error rate (WER) (or its complement, the word accuvd8y WA =1 — WER)is
the predominant performance measure of automatic speesgmsers [78]. It is defined as

Nsub+ Ngel + Nins . Nsub+ Ngel + Nins

WER = - .
N Ncorr + Nsub+ Ndel

(4.10)
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Neorrs Nsun, Ngel, and Nins are the number of correctly recognised, exchanged, dgletsitted)
or inserted words/V, is the total number of words in the reference transcriptibgnamic
programming is used to match reference and recognised words

4.3 Measures for topic segmentation

The performance of the topic segmentation module presemt€tiapter 6 on page 55 is re-
ported in terms of precision and recall. The precision rétene news show gives the relative
number of system boundaries that match the reference boasda

# boundaries correctly predicted

# of boundaries in prediction (4.11)

precision=

The precision decreases with more incorrectly insertechdaties. The recall rate gives the
relative number of reference boundaries that are detegtéaetboundary classifier system.

# boundaries correctly predicted

— . 4.12
# of boundaries in reference ( )

recall=

The recall rate is complementary to the relative number tdtdd (not detected) boundaries.
A tolerance range (tolerance window) of an a-priori definachber of seconds (4 or 15) is
applied when matching reference and system topic boursdarie

All results are created by counting the number of boundanigsediction and reference for
all shows (pooled), and finally calculating precision ancatefrom the pooled values. An-
other option is to calculate precision and recall indivibuéor every show and to average
the individual values. Thus, every show gets the same waigleppendent of its length. The
performance figures of both methods usually do not differmuc



Chapter 5

Speech recognition of broadcast
news

One of the key components of the media monitoring systeneiagtiomatic speech recogniser.
It transforms the audio signals of a news broadcast intq tiei process is called automatic
speech recognition (ASR) or automatic transcription. THeraatic transcription of broadcast
news (BN) is one of many domains to which a speech recognisdoeapplied. It is obvious
that one single recogniser will not perform equally well dhdmmains, rather it has to be
adapted to the specific domain. This chapter treats the ASiRulm@nd discusses the efforts
necessary to make a speech recogniser suitable for the BN Tagk different aspects are
covered: a) improving the error rate, and b) reducing menamy run-time requirements.
Evaluation is done based on a 30 minutes preliminary tesasdton a 3 hours final test set.

5.1 General remarks

The predominant method to automatically recognise spexdb,be more precise, utterances
like words, phones, on-phones, are Hidden Markov Models (see Chapter 2 on jpage 5). It
is assumed that the feature vectors of an utterance wertedrbg a HMM. Decoding (i.e.,
recognition) is performed by identifying the HMM (or seqeerof HMMSs) that have most
probably created the feature vectors (Section 2.4). Raba&wvritten several popular papers
on speech recognition with HMMs [66, 64].

One important tool used to improve recognition results cotasider the context a word usually
appears in. This is accomplished by incorporation oh.egram language model (LM). The
LM contains many possible worglgrams and, for each individualgram, the corresponding
probability that these: words appear in sequence. Angram LM also includes the lower
order n-grams (for example, a trigram also contains the bigramsthadunigrams). The

47



Chapter 5 Speech recognition of broadcast news 48

probabilities are estimated using a text corpus, but sincerpus typically does not contain

everyn-gram that may appear in speech to be recognised, discgumtsmoothing methods

(see Section 7.2.1) have to be applied to give unsegrams a probability greater than zero.
Discounting methods are not suitable for high-ordegrams because they would give too
much probability mass to unseen events.

Detailed information about speech recognition with Hiddésrkov Models can be found in

e.g. [64, 39].

5.2 Reduction of transcription errors

The following paragraphs deal with strategies of adaptirgpeech recogniser for the BN
domain in order to significantly reduce the number of errorganscription. The BN recog-
niser evolved by constantly checking every modification amgrovement to a preliminary
test set (Section 5.2.1). The final test set is only appliethéobest-performing recogniser
(Section 5.2.2).

5.2.1 Preliminary test set

Baseline system  The development of a speech recogniser for broadcast nesvstauded
with an existing recogniser trained on spontaneous speaathead sentences (mainly Verb-
mobil [90] data). This recogniser with its 95k dictionargarporates a large vocabulary con-
tinuous speech recognition (LVCSR) decoder. A suitable degostrategy especially for
long-range language models (tri- or fourgrams) in comlmatvith very large vocabularies
is the stack decoder [94, 93]. It performs Viterbi searcltc(idal2.4.2) for the most probable
hypothesis on the word level using the HMMs and thgram language models. The decoder
sets up a stack at each time frame, where each stack contsgnted list of word (end) hy-
potheses. After choosing a stack, all the stack s hypotlgtesxpanded simultaneously by
performing a single word recognition, resulting in new hjyyases that get pushed on the spe-
cific stacks at later time frames. The decoder offers sewtrategies for stack selection and
exclusion. Interestingly, among the several synchronmasraore advanced asynchronous
stack selection and inclusion strategies (time synchreniixed skips, conditional skips and
envelope mode, see [93]), one of the simplest approachesl (fiumber of skipped stacks)
turned out to be the most efficient procedure for the BN trapson task.

This recogniser serves as a baseline to which modificatiemsldped here can be compared.
The dictionary, which maps the grapheme representatiomaird to its phoneme representa-
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tion, consists of 95k entries. The recogniser incorporatiegram language model. Although
the acoustic triphone models have got a considerable tesolof 31,780 Gaussian mixtures
(Chapter 2 on pagel 5), the resulting transcriptions are Uneigar further processing. The
evaluation of this system on a preliminary test set comgjsif 30 minutes of broadcast speech
yield a word error rate (WER) of 79.9 % (System 1 in Table 5.1;S3eetion 4.2 for the def-
inition of WER). This result suggests that the broadcast newsgssing task has specific
requirements not met by the initial system.

Newspaper language model  The first step taken to adapt the recogniser to the BN do-
main was to develop a news related language model. A corpustliree German newspa-
pers,Siuddeutsche Zeitundrrankfurter Rundschaand TAZ, covering the period from 1996

to 2000 and consisting of 400 million words, was used to erearigram LM. Only tri- and
bigrams that appear at least 3 times are included in the LMoggetton with this newspa-
per LM, which reflects the statistics of written rather thanlen news language, achieved an
improved WER of 72.3 % (System 2).

Monophones trained on BN The incorporation of manually transcribed broadcast news
to train the phone models has a greater effect on the recogmpierformance. Even a mono-
phone system trained on 50 hours of BN outperforms the geardamore complex baseline
system [92]: Together with the newspaper language modelWER can be significantly
reduced to 30.9 % (System 4). This system incorporates et monophones and 17 non-
speech acoustic models (such as pause, silence, fillethboeaugh). It is interesting to note
that the monophone system with thaseline system’s LMinstead of the newspaper LM) has
a WER of 54.3 % (System 3). Thus, the newspaper LM could deerdesWER by 43 %
relative for the recogniser trained damoadcast newswvhile it was only able to decrease the
WER of thebaselinesystem by 10 % relative.

Dictionary improvements When checking the general dictionary used for the recognis-
ers described above, it was found out that the phonemisai@snnot always correct. After
removing phonemisation errors (which had only effect onrgmognition rate if the correc-
tions occurred among the 5000 most probable words), words adeled that appear frequently
in the manual transcription of the BN training data. Diffdrdictionary sizes between 94k and
105k were investigated, and it was found that a 98k dictipyalds the best recogniser per-
formance [36, 35]. The improved dictionary results in alslig better error rate of 29.1 %
(System 5).
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Language model interpolation As already stated above, a drawback of the newspa-
per language model is that it reflects written, but not spdaeguage. It becomes too much
adapted to the type of language used in the newspapers, amot cgtimally represent the sen-
tences spoken in broadcast news, which are not exactlytstedclike the written sentences.
In order to overcome this drawback, a language model traomeithe manual transcription of
the broadcast news has been created. However, not enouglaBs¢riptions were available
to generate a satisfactory language model. The solutiamdgsrmbine the newspaper and the
BN language models with linear interpolation [72]. The ipteated probability of am-gram

is calculated as

Pinterpolate((wh e 7wn> = A Pnewspapeéwla e >wn)+

(1 - )\) PBN transcription£w1, cee ,wn)_

The weight\ is chosen using the Expectation-Maximisation [21] (EM)oaithm.

Interestingly, although the LM size of the transcriptiossone order of magnitude smaller
than the newspaper LM (12 MB vs. 162 MB in compressed forniatpntributes more to
the interpolated language model than the newspaper MWM=(0.45). This indicates that
the broadcast LM contains the relevant information in a menciie concentrated way, and
that the newspaper LM contains a lot of information which fisyonor importance for BN
transcription. The monophone recogniser with the intexfgal LM is able to achieve a WER
of 25.5 % (System 6).

Triphone acoustic models The introduction of context dependent acoustic models (tri
phone HMMs) results in a further improvement. Since the N recognition requires an
open dictionary with an option for periodic updates, a fixett$ context HMMs would sooner
or later lead to a significantly degraded recognition penamce. This problem can be avoided
by a decision tree based triphone construction princigeahows a quite flexible synthesis of
unknown / unseen triphones if required. The knowledge atteuimpact of a certain context
combination to a phone can be coded in the structure of thisidedree, which in turn can
be estimated on the training data and the already availabl®phone models. The triphone
recogniser in conjunction with the interpolated LM has a WER.®2 % (System 7) [36].
The triphone acoustic models share 96,417 Gaussian mistun@onents.

Gender dependent models Further improvements could be made by additionally train-
ing the acoustic HMMs dependent of the gender. Only the mefihg mixtures, and the state
transition probabilities were updated [92]. The WER on theliprinary test set with these
models is 18.7 % (System 8).
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Table 5.1: Results of different speech recogniser systems on the preliminary test set.

|System [Dictionary| Language Model Acoustic Model Type| WER in %)

1|Baseling General General 3-gram Triphone 79.9
2| Baseling General |Newspaper 3-gram Triphone 72.3
3/BN General General 3-gram Monophone 54.3
4|/BN General |[Newspaper 3-gram  Monophone 30.9
5|BN Improved | Newspaper 3-gram  Monophone 29.1
6(BN Improved Interpolated Monophone 25.5
7| BN Improved Interpolated Triphone 19.2
8|/BN Improved Interpolated |Gender dep. 3-phones 18.7

5.2.2 Final test set

The final test set consists of approximately 3 hours of GerManews from the two channels

ARD and ZDF. They cover the week from October 15 until 21, 2G1d thus corresponds
to the final test sets used throughout this thesis (with thendifference that elsewhere, the
final test sets also cover the the preceding week).

On this test set, an overall WER of 32.7 % was observerd (sele BB). This result has
to be compared to the result in the last row in Table 5.1 wihlB.7 % WER. The basic
difference between the two data sets, indicated by therdiiterecognition results, is that the
evaluation set comprises also a number of longer news shigypgcally, these shows contain
extended interviews and reports, resulting in a higheragenoise level and a significantly
higher proportion of spontaneous speech. Regarding Tab|é & interesting to observe that
the measured WER on the ARD channel (31.6 %) equals almost the dEihed on ZDF
(32.8 %).

The results reported so far were always obtained with anoawack that has been manually
pre-segmented into speech and non-speech parts. An egaluéth automatic audio segmen-
tation of the final test set has also been performed (seelashrTable 5.2). For both channels
(ARD and ZDF), the automatic segmentation causes only a faggooox. 3 % absolute (com-
pared to the manual segmentation). Detailed informati@uathe audio segmentation can be
found in [37].
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Table 5.2: ASR Results (WER in %) on the final test set with manual and with automatic
segmentation of the audio track.

Channel
Audio SegmentatiopARD ZDF|Both
Manual 31.6 32.832.7
Automatic 345 35.135.9

5.3 Strategies for lower run-time and memory
requirements

The measures described until now have an effect on the nuaikmrtomatic transcription

errors. To make an ASR system feasible, also the run-timett@anemory requirements
have to be considered. Especially for a large vocabulangsysvith a large language model,
special methods have to be applied.

Tree organisation of lexicon Empirical studies have shown that in LVCSR systems with
vocabulary sizes of 20,000 words and more, usually 90 % o$é¢laech effort has to be spend
on the first two phonemes of a word. Thus, an important aspetttel context of increased
efficiency in BN processing is the tree organisation of thegecser lexicon within the single
word recognition network. This tree lexicon contributestiato the reduction of size and the
number of nodes to be expanded at each time step, becaudgtiheradundant computation
of paths for words with similar leading phones can be avaided

LM Caching With vocabulary sizes as used for the BN recognition tasksisting of
100,000 words, the associated trigram language models geowlarge. A standard tri-
gram language model has a typical size of 150-200 MB in a cesgad format(!), while a
four-gram language model may even have dimensions of 250 iMBn@ore. After uncom-
pressing the language models, loading the acoustic moddlgha trigram language models,
the recognition task may require 800-1000 MB RAM on a standamdx PC, hinting that
these requirements are almost doubled on 64 bit machinesstAtep to reduce this need is to
analyse which parts of a language model are important ing@ftheir frequency of access.
In contrast to the general assumption that unigrams appeaodeneously distributed over
time, especially in our media monitoring application thieeff could be observed that words
or phrases appear rather in bursts than homogeneously.ppleam@nce of such bursts is ob-
viously triggered by the different presented topics. Thistfied to the idea of using cached
disk-based language models, where only the currently aatguarts are kept in a FIFO (first
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in first out) buffer and the additional parameters get redoadf demanded. Of course, this
approach increases the disk traffic, which in turn increéisesun time by a factor of 1.5-2.

This increase is mainly affected by the size of the FIFO amdaterage story length of the
processed material. A huge FIFO applied to topically homeges material leads obviously
to a higher average number of buffer hits, which increasesefiiciency of the disk-based LM.

Using the cached LMs, the memory load was reduced from 800dB flecoding task based
on a trigram LM down to 120 MB without any losses in recogmitaccuracy. Regarding the
slow down of the recogniser, the feature of cached LMs shbeldonsidered as optional and
should be used only in cases where too few memory is availditavever, in these cases
the cache based LM outperforms a system with a conventioaaiory swapping by far and

guarantees a stable and predictable system behaviour.

The final speech recogniser (System 8 in Table 5.1) has gatl imee factor (RTF) of about

10 on a 800 MHz PC, i.e. the automatic transcription of a 10 teimews show takes 100
minutes. This RTF suits very well the given application (meaonitoring), but it would be

too high for example for on-line speech recognition of a catapuser.

5.4 Conclusion

The automatic transcription of broadcast news demandsadpeftorts to build the speech
recogniser. Among the numerous steps to adapt an existtogmeser to the BN transcription
task, two have the greatest impact on the word error rate:

¢ News language modelsThe incorporation of a trigram language model based onr writ

ten news (newspaper texts) reduce the word error rate fraf %4to 30.9 % when
used in combination with monophone models trained on brastdrews. This equals
to a reduction of 43 % relative. When the newspaper languagies interpolated
with a language model based on spoken news (manual tratigierid broadcast news),
the WER drops about 12 % relative (from 29.1 % to 25.5 %). Thespeywer LM has
less effect when used with the baseline recogniser, whiobtisptimised for broadcast
news.

e Monophone and triphone acoustic models trained on broadcastews Broadcast
news have quite a high degree of noise. Clean speech has a§Hhdréo, while speech
with background noise has a similarly large share of 41 %.[3 T training of mono-
phone acoustic models based on broadcast news brings atexlitaion of around one
third (79.9 %— 54.3 %). The introduction of triphones instead of monoplsdnether
cuts the WER by one quarter (25.5%19.2 %).



Chapter 5 Speech recognition of broadcast news 54

Other measures, for example improvements of the dictionaryender-dependent acoustic
models, also lead to the reduction of transcription erdausjust to a minor degree.

The representation of the dictionary as a tree, and themgahithe language model in a FIFO
are crucial to make the recogniser efficient in terms of roretand memory requirements.

The effort put into adapting an existing ASR system for tlascription of broadcast news
resulted into a significant reduction of the word error raif an initial 79.9 % to 18.7 %,
or by 77 % absolute. This system is therefore promising tivelegjood-quality transcriptions
for the subsequent topic classification module. Howevecaasbe seen on the final test set,
its performance degrades for non-clean speech. Topidfitasi®n results with the ASR tran-
scriptions will be presented in Section 7.3.4 on page 95, @n&won page 99 and Chapter 9
on page 122.



Chapter 6

Audio-visual topic segmentation

The topic detection module of the presented media mong@ystem requires pre-segmented
stories. Therefore, a news show has to be cut into topic hemexaus stories, i.e. topic bound-
aries have to be identified. This task is taken over by a separadule, the topic segmentation
module, which will be presented in this chapter. In addititve performance of the core algo-
rithm of the segmentation module will be investigated wébpect to a shot boundary detection
problem.

Apparently, usually any detection of story boundaries m&gua speech transcription before-
hand. In addition, it must be stressed that the consideratidhe acoustic clues does not
provide enough evidence to identify story boundaries: 40f%he story boundaries occur
without a speaker turn (40 % missed), while 90 % of the spetakaes occur when no topic
change is present (90 % false alarm). However, this is notdise for the audio-visual seg-
mentation presented in this chapter. The audio-visuay siegmentation module identifies the
topic boundaries based on mainly the video features of a seaws. One approach addition-
ally identifies audio boundaries (e.g. speaker changesin oo case the audio transcription is
used. Two approaches to topic segmentation were investigavsisual and anaudio-visual
algorithm. Both make use of features that are derived fronvitieo information of a news
show. The audiovisual algorithm additionally uses the audformation to detect speaker
boundaries. Both approaches use lattices; whereas the algoathm uses a lattice to repre-
sent a whole news show, the audio-visual one uses a lattobefitoe topic structures.

6.1 Introduction

A news lattice combines content classes and edit effeatsairstructure that describes a TV
news show. The lattice allows only certain sequences oketietasses and edit effects during
recognition. A sample lattice is depicted on page 67. Adattiescribes possible paths through
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a news show and thus incorporates a-priori knowledge irtodbognition process. The equiv-
alent in speech recognition would be a grammar, which allomlg certain combinations of
words.

The design of a news lattice is an important step when bugldimideo segmentation/indexing
system. There are certain video class sequences in news shatvappear very often, but
some sequences only appear once or twice. The questios:asiseuld rare sequences be
integrated into the lattice or not? Two contradicting aspeave to be considered: On the one
hand, the lattice should be simple in order to limit the nundi@llowed paths; otherwise, rare
paths might be evaluated more often than they really occdditinally, fewer paths allow
faster decoding. On the other hand, omitting too many ptespéths will not represent every
detail. One might expect a worse recognition rate with mammex lattices, as they allow
more paths, of which some do not represent the news showntiyrieing processed. One
goal of this paper is to find out whether this assumption holds

Lattice complexity not only affects the recognition resblit also the time needed to build up
the system: complex lattices need more time to be producedwnmore difficult to verify
manually. In this chapter, it will be investigated how gealgisimple) and complex news
models affect the segmentation result.

Another important module of a pattern recognition systethésfeature extraction. Features
for the topic segmenter were extracted form the news vidéott 12.5 frames (or features)
per second (fps), and at 25 fps. The number of samples, taav#ilable information, doubles

at 25 fps. Does this also result in better recognition ra@se important step that is common
to both the visual and the audio-visual algorithm is the sifastion of the news show into

content classes and edit effects.

The following sections explain the algorithms in more detBefore going into detailed de-
scription, it is helpful to define the following concepts:

e A TV station broadcasts audio and video signals through a fixed, limitedber of
electro-magnetic frequencies. As one frequency (or, torbeige, one band of continu-
ous frequencies) is referred to as a channel, the tér@nnelis used synonymously for
station.

e Most TV (and radio) stations transmit news broadcasts. Nawadcasts that appear
under the same name and at fixed times are cpliegrammes They repeat (presenting
different content) usually every day, or even more often.

e A news programme consists of a series of single shows. A shawis a single broad-
cast limited in time (usually 5 to 45 minutes) and can be ifiedtby its date, and start
and end time. They do not repeat.
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e A shotis a continuous strip of frames in a broadcast or video, sépdtbyedit effects
(cuts, dissolves, wipes, etc.).

One can clarify the above concepts by a relationship of sets:

shotse showe programme= channel

6.1.1 Definition of data sets

Two different data sets are evaluated in this chapter: anpiredry set and a final set.

Testset A The preliminary set of news shows (@@D consists of 9 Tagesschau news shows
from 1998, to amount to a total duration of 2:15 hours. Theyewecorded at 12.5 fps.

Testset B The final test set (s&) is made up of four different shows (Tagesschau, Tages-
themen, Heute, Heute-Journal) from two TV stations (ARD abBdFY For this set, training

of the topic segmenter was conducted on 39 different showdr@im Tagesschau, 12 from
Tagesthemen, 6 from Heute, and 6 from Heute-Journal) redard2000 at 25 fps.

6.1.2 TV news indexing

The topic segmentation system was built based on the TV neglexing system by Eick-
eler [26, 25]. His system is able to index TV news shows fromm@erman stationARD and
ZDF. It is limited to shows where only one newscaster appeaisntieans only news shows
up to a length of 15 minutes (ARD) or 5 minutes (ZDF) can be diass The indexing sys-
tem classifies each image frame of a news show into contesgeddike newscaster, report,
interview, begin, end, weather, and so on, and into edittffeke cut, dissolve, and so on.
The recognition rate of Eickeler's system is 96.8 % for ARDw&¢programme dependent)
and 88.8 % for ZDF shows (programme independent).

6.2 Topic segmentation

Eickeler's approach was extended in two ways in order toadéd@ic changes in TV news:

1The data set abbreviations of this chapter are not relatdttsame identifiers used in Chapter 7.
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1. After indexing a news show, rules are applied to deterriedopic boundaries.

2. New lattices were defined that model, in addition to thecstire of a news show, the
structure of a topic inside a show.

The extraction of the features from tlaesual part of a show, however, did not change.

6.2.1 Feature extraction

Two different types of features were extracted:

e Features based on visual information onhs(al featureg. Such feature vectors con-
sist of 12 components.

e Features based on video and audio informateund({o-visual featureg. These consist
of the 12 visual features plus one audio component indigatjpeaker or audio type
changes.

Visual features

The video images are stored in the YUV colour space, whereYtishannel contains the
luminance (grey level) of the image, and U and V are colounokés. These three values are
equivalent to an image representation in the RGB space, andeceonverted into RGB by a
simple matrix transformation.

For extraction of the visual features, 12 numerical values calculated for every image
(frame) of the video stream. Most of the visual features oglyhe difference image. Its pixels
d(x,y,t) state the difference of the luminance values at pfxel;) between two consecutive
image frames at timeand timet — 1.

d(z,y,t) = [[(z,y,t) = I(z,y,t + 1)|. (6.1)

I(x,y,t) is the luminance value of the pixét, y) of framet. The difference image is a good
indicator for movement.

The first 7 feature components are based on the differenageimBwo of them describe the
centre of movement(t) = (my, my)":

Zl‘d(l‘,y,t) Zyd(l’,y,t)
> d(r.y.1) ") = S a0

my(t) = (6.2)
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The variation in time of the centre of movement is also used:

Amy(t) = my(t) — my(t — 1) Amy(t) = my(t) — my(t —1). (6.3)

Two features indicate the average deviation of the centreation between two images:

xzyd(xvyvtﬂ(x_mx(t))l wzyd(xayatﬂ(y_m}’(t)”

o (t) = o, (1) = 6.4
©) > d(x,y,t) () >od(x,y,t) 64
‘/r7y x7y
A feature that is important for detecting cuts is the intgnsf motion [27]
> d(z,y,t)
. _ z,y
i(t) = v (6.5)

with XY the number of pixels in an image. Fra), a valuei’(¢) is computed to compensate
for flashes of photographers or short-time image disruptitirselects the smaller value of the
motion intensity for framest, ¢t + 1) and(t — 1,¢ + 2):

Z |d($,y,t - 1) - d(.@,y,t—i— 2)'
) . (6.6)

i'(t) = min (i(t), oY Se%

Another feature that is important for the detection of catthi difference histogram [27]. Its
intensity is

h(t) =) 1hy(t) = hy(t + 1)1 (6.7)

whereh,(t) is the number of times that the grey value g appears in thegraatimet. Again,
a filtering similar to[(6.6) reduces the effects of imageufiions:

W (t) = h(t) — mediar(h(t — 1), h(t), h(t + 1)). (6.8)
The median operator removes impulsive noise}'st) serves as an impulse detector.

The above mentioned features are not able to detect thelaissdit effect. This is accom-
plished by a special feature which is motivated by the faat tluring a dissolve, the value of
a pixel should be similar to the interpolated value of theghbouring pixel values of frames
t — 1 andt + 1. The denominator of (6.9) equals the difference of the pukated value and
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the true value at frame The numerator serves as a scaling factor.

B d(z,y,t)
s(t) = ; LIy (z,y,t — 1) + Iy (2,9, t + 1)) — Iy (z, 9, 1)

(6.9)

The last three feature components are the average values twid colour components U and
V and the average of the luminance Y.

ZI(I‘,y,t) ZIU(x7y7t) Z[\/((E,y,t)

mU(t) = oy mv(t) = W— (610)

my (t) = XY XY

XY
Iy(xz,y,t) and Iy(x,y,t) represent the colour componeritsand V' of the pixel (z,y) at

framet.

Audio features

Audio boundaries (e.g. speaker turns or changes from neeespto speech) are detected using
a slightly modified BIC criterion [33, 81, 87]:

The BIC algorithm takes a window of audio featurex,,...,x, and arbitrarily places a
boundary at position, resulting in two segments. It then decides whether it isanikely
that one single modé}, has produced the output, . . ., x,,, or that two different model8,;

andé,, have generated the two segments’ output. . x; and x;,; ... x, respectively. The
decision rule to check if there is a boundary at paiist

ABIC; <0 with 6.11)
n 1 n—1
AB[C,-:—§log|§3w!+§log\2f|+ 5 log | %] (6.12)
| M(M +1
+ oM + %)logn.

¥ denotes the covariance matrix of all window feature vectars. ., x,, X, andX, are
the covariance matrices of the features of the first and sesegment respectively)M is
the feature vector dimension. According to theory, the figveeight A should equal 1, but
practical applications show better results witk- 1.

If for a pointi, ABIC; < 0, then also for some poingssurrounding there will beABIC; <
0. The algorithm decides for the boundary to be at the poirtt e lowestA B/C' value.
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To detect all audio segments of a news show, the window iseshdver all feature vectors
with varying lengths, and varyingi. See/[87] for details.

Implementing the above described algorithm, it was notited sometimes segment bound-
aries are set too early, roughly one or two syllables befbesspeaker finishes his or her
utterance. Instead of considering the pairgt which the minimum ofA B/C' occurs as a
boundary, the point was chosen that lies in the middle of the adjacent two pointghéch
the ABIC value crosses the 0 line:

b= HTm with ABIC, =0, ABIC,, = 0,1 < k < m. (6.13)

This modification improves the segmentation accuracy addaes the number of boundaries
appearing too early.

As feature vectors for the BIC criterion, 39-dimensional mel-cepstral featugetors without
mean subtraction were used. The penalty weight was settd®.0. The resulting boundary
positions are rounded to the nearest video frame.

The audio boundaries detected by the BIC criterion are usecbtde an audio feature stream.
The audio feature stream is extracted in such a way thatanesfat which the audio boundary
occurs gets a maximum predefined feature value (e.g. 1.@reahk all other frames are ini-
tially assigned a value of 0. A predefined number of framesosuding each peak frame (25
to each side) are assigned values that decrease linearkyamdetrically with respect to this
frame. If two close audio boundaries cause an overlap of thature values, the maximum
value is taken. The resultis a 1-dimensional audio featweas that is added to the 12 video
features for use in the audio-visual topic segmentatiomcgmh.

6.2.2 Modelling and recognition

Content classes and edit effects were defined that are modsliéiMMs. For test seA,
the following six content classes are used: Begin, End, Nastsc Report, Interview (an
interview of the newscaster and the interviewed person)Vdedther Forecast. Four classes
are defined for the edit effects: Cut (a hard cut), Audio-Vistat (a hard video cut with an
audio boundary nearby; this effect is only used by the audioal approach), Dissolve, Wipe
and Window Change (a change of the "topic window” next to thesuaster; this effect is
used as separator between two news topics).
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Content classes and edit effects

For the reference labelling of the training videos ofBeimany more content classes and edit
effects were used. However, several classes do not apeegeftly enough to reliably train
separate models. The corresponding frames were used noatnather model (usually the
Newscaster model). For example, the most common configarafi frames represented by
the Newscaster model places the newscaster on the rightsidendf the image, together with
a topic window on the left side. However, to train this modelenes are also used in which
the camera has zoomed in on the newscaster, plus scenesthdpuoesitions of the newscaster
and the topic window are exchanged. Some edit effects, likiecke growing (or shrinking),
where the circle contains the new (or old) scene, appeamaesly and therefore could not be
trained.

The reduction in the number of different classes to trainamby makes the estimation of the
models more but it also reduces the complexity of news kdt{see below).

The following Hidden Markov Models were trained on the traghdata of seB (most models
are clarified by sample frames below them).

Content classes:

e Beginning (separately for ARD and for ZDF)
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e Intro (for ZDF only)

e Two newscasters

"

Newscasterl (during interview) (only for ARD)

Newscaster2 (during interview)

Interview (only for ZDF)

—
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e Chart/Diagram

=

Edit effects:

e Cut

AV-Cut (audio-visual cut): A visual cut with an audio cut (egpeaker turn) nearby.
Only used for topic-structure lattices.
Dissolve

o

u ‘ﬁ s B em B

Wipe Left to Right

b T
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e Window Change. The window behind the newscaster (on the sigh) contains infor-
mation (pictures, text) about the topic. A change in its eats indicates the beginning
of a new topic.

One set of models is created for every channel. The segrnmntatd classification of a news
show is the result of calculating the sequence of HMMs thattrpoobably has generated the
observed feature vector sequence. This is done using teegbWVitecoding algorithm described
in Section 2.4.2.

Lattices

A lattice is defined that combines the content classes an@dheeffects of a typical and
flexible news show structure. The lattices are listed in @#&bl on page 69, and some sample
lattices are depicted at the end of this chapter. Two diffeapproaches are taken to identify
the topic boundaries:

1. News Show Lattice + Rules; Visual Features.The first approach makes use of a
lattice that represents a whole news show and does not esrisjaic boundaries or the
topic structure that is in a news show. This type of latticeadednews show lattice
The recognition result is a classification of the news shdw &dit effects and content
classes and does not contain any information about topiodanes. Rules are then
applied to obtain the positions of the topic boundaries ftbenclassification. For ARD,
the following rules are applied:

o All edit effects except for the Window Change effect are igaabr
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e The following transitions are considered a topic boundary:
— Begin to Newscaster
— Report to Newscaster
— a Window Change which separates two Newscaster scenes
— a Window Change with a preceding Interview and a following Neaster
— Report to Weather Forecast
— Everything that appears after the Weather Forecast is éghdhus rejecting
unimportant previews of other news shows.

For ZDF, these transitions are assumed to be a topic boundary

Begin to Newscaster, to Report or to Chart

Zoom-Out of newscaster together with a Window Change
Window Change to Newscaster

Report to Newscaster

Wipe Left to Right after a Report

Wipe before Report, only for frames later than 3:20 minutes
Ignore the first boundary that was detected.

The position of the first boundary of the ZDF news programnaesl @lso of ARD) is
quite fixed, and varies only about 6 seconds. For this redberfjrst boundary could
be fixed to a specific time (ignoring all detected boundarefere it). However, this
only makes sense if the tolerance window that comparesemferand hypothesised
boundaries is enlarged. See Section 4.3 for the definitidolefance window.

Visual features (see Section 6.2.1) are used together hétnéws show lattice + rules
approach.

2. Topic Structure Lattice; Audio-Visual Features. The second approach defines a lat-
tice that is designed with the assumption that a news shoaniposed of several topics.
Topic boundaries are embedded into the lattice. It still el®d whole news show, but as
it also models the structure of topics within a show. Suchtacis calledtopic struc-
ture lattice The beginnings of topics are marked directly in the latti€bus the topic
boundaries are detected when decoding the videos with tieebValgorithm, and not
as a separated step (with rules) as the News Show Latticeagpr For this approach,
both visual and audio feature components are used.

Figurel 6.1 on the next page depicts a simple news show |atticiée Figure 6.2 on page 68
shows a more complex variant. A topic structure lattice jgicted in Figure 6.3 on page 69.

Four different groups of latticed.( — L4) were defined that vary in complexity (from simple
to complex), and in type (news show lattice or topic struetattice). For every channelf),
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Dissolve
Q Cut«D

Interview = Newscaster — Cut — Interviewed Person — Cut — Report = Interviewed Person — Newscaster

Dissolve

Window Wipe
Change

Cut
Newscaster ~ /

—3 Cut — Report —

/WIPE\

'~ Cut — Newscaster —> Cut/v

Begin — Cut — «
\ Interview =

Dissolve
<(‘7>

Weather _, &t —» Newscaster — Cut — Report Z— Cut —» Newscaster — Cut — End

Forecast

Figure 6.1: A simple news show lattice.

or even for every news programme,( L3) different lattice variants were created.; was
designed for and tested on ARD exclusively. The lattices vmea@ually created based on
setA or on the training set dB. Complex lattices try to capture more variations in the news
shows, while simple lattices only represent the basic &iras. However, even the complex
lattices do not account for every possible combinatiorgesthat would make them more time-
consuming to design and would allow paths that are very raeaind maybe occur only once,
possibly compromising overall performance.

Tablel 6.1 lists the lattices together with the number of saated arcs that are used for their
internal representation. Higher numbers indicate moreptexnlattices. For lattice groups
consisting of more than one lattice, the minimum and maxinmumber of arcs and nodes is
given. Lattice groug.; has an extraordinary high number of nodes and arcs, whiatlyZoe

to its internal representation and does not well reflectrite tomplexity: L; contains loops
which are passed a predefined number of times. For examgendm loop in the lattice
depicted in Figure 6.2 on the following page may be run 12 tori8s. The internal represen-
tation of this lattice transforms this loop into 18 conse@jtdiscrete elements (of which the
last 6 can be optionally skipped). Obviously, this explaind “brute force”) representation of
the loop leads to a higher number of nodes and arcs.
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Ed eff=+ Z— LRwipe Interview = — N1 — Cut — N2 — Cut —> [N1]
Dissolve

Figure 6.2: A complex news show lattice.

6.2.3 Experiments and results

Experiments were conducted on a preliminary set (datAlend on one final set (data $&t
see Section 6.1.1 for the specification of these sets). Thedat consists of training and test
news shows from different time periods; its test shows age ated for the evaluation of the
SVM topic classifier (Chaptér 3 on page 14) and of the media toong system (Chapter 9
on page 122). The reference boundaries were created by csmnmnd reviewed by another
person according to their personal judgement of where & tomindary is. The experiments
are evaluated using precision and recall (see Section AtBdalefinitions). A tolerance range
of 4 seconds (except where otherwise noted) was applied miagrhing reference and system
topic boundaries.
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up to 20
times
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Begin AVcut N_topic — » o T, @ Aveut —» ;’Veathﬁ: Aveut N AVCut End
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Cut
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Figure 6.3: A topic structure lattice.

Table 6.1: Number of nodes and arcs in the internal representation of the news show lattices.

Lattice # of lattices Nodes Arcs |Designed on
group in group training set
Ly 4 30-55 75-174 B
Loy 2 59-64  147-155 A
L3 4 793-2469 2037-6491 B
Ly 1 1121 2700 A

Test set A

For evaluation of the test sét the hold-out method was used, i.e. each show was tested with
a system trained on the other eight. As mentioned above, iffeyaht types of lattices that
model the sequence of content classes and edit effects wetke The results for sét are
listed in Table 6.2 [33].

Table 6.2: Topic segmentation results for set A.

Type of| News show lattice Topic structure lattice
algorithm| (visual features)| (audio-visual features)
Precision 88.2 % 64.8 %

Recall 82.2% 91.5%
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Test set B

More edit effects and video content classes than isgere defined for the final s& (see
Section 6.2.2). Only visual features, but no audio featwere extracted, since the audio
features did not improve performance. The number of neww/shper channel is listed in

Tabl€ 6.3.

Table 6.3: Number of TV news shows in the final test set.

|Channel Programme | Number of shows|

ARD  Tagesschau 13
ARD  Tagesthemen 2
ZDF Heute 12
ZDF Heute-Journal 5
Total 32 (11 hrs 08 mins)

The following aspects were investigated by the experimprgsented below:

e Feature density: 12.5 fps or 25 fps

e Latticel, — L,

¢ Different training sets for the models

e Tolerance window for matching reference and hypothesisgid boundary: 4 sor 12 s.

Feature density and lattice complexity A first series of experiments was conducted to
determine whether simple or complex lattices yield bettgfgymance. These experiments use
the News Show Lattice + Rules approach (Section 6.2.2). Alit fattices were used for de-
coding, together with features extracted with both 12.52,fps. The HMMs were trained on
setB. Since the reference labelling matches the training viée@$ fps, it had to be changed
to match it at 12.5 fps. Special attention has to be paid tcedfthat occur: for example, a
dissolve of length 3 frames at 25 fps appears as a hard cut@afd® Table 6.4 states the
segmentation results on channel ARD only. Almost all expents were also conducted on
ZDF news broadcasts (not listed). ZDF results are usualBb10 20 % (absolute) worse than
ARD results. The news shows from the ZDF channel are charseteby a greater variety
of content and effects, which makes them more difficult tavsegt. The longer programmes
of both ARD and ZDF ((Tagesthemen and Heute-Journal) have tgss rigid structure than
their shorter counterparts. There are also more contessetaor edit effects. For example,
two newscasters never appear in the Tagesschau, but thesgrappghe other programmes. As
Eickeler has observed [25], two newscasters pose a proldethd features used in his video
indexing system, and consequently also for the topic setatien system presented here.
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Table 6.4: Topic segmentation performance (in %) with different lattices and different feature
densities of channel ARD. The News Show Lattice + Rules approach is used. Mod-
els were trained on the training set of B.

Density| 25 fps 12.5fps
Lattice Prec.\ Recall Prec.\ Recall

L, 55.6| 46.2 || 61.3| 43.8
Lo 61.4| 53.8 | 60.2| 49.8
L 64.3| 40.9 | 61.9| 441
Ly 55.6| 37.8 ||58.2| 47.1

The Tagesschau (ARD channel) is the most important GermaneWé show with its market
share of 35 % [20]. It is the oldest, and by far most well-knd@g&rman TV news show. This
coincides with its rigid, quite fixed structure, and fewentnt classes and edit effects that the
other news programmes. Consequently, the topic segmeantatirks best for the Tagesschau
(see below for detailed recognition rates).

As to the question of best feature density (12.5 or 25 fpg)getis no clear answer. Depending
on the lattice, sometimes the one or the other result isbétmvever, the worst of all results
are always found among the 25 fps features. The reason mégtitad 25 fps features are
too “detailed”. As one frame is usually not much differerdrfr its surrounding frames (shot
boundaries are of course an exception), the doubling ofrtimuat of features does not mean
that more information is stored in the features. To put ittimeo words, the features extracted
at 25 fps are highly correlated. At 25 fps, additional edieets emerge that cannot be seen
at 12.5 fps (e.g. the already mentioned example that a giessdlich takes 3 frames at 25 fps
appears as a cutat 12.5 fps). Asiitis shown in Section 6/82jdtection of gradual transitions
is more difficult than the detection of cuts. This fact couddiver another explanation why the
worst results are always found among the 25 fps features.

As a consequence, 12.5 fps features should be preferredlowke frame rate additionally
has the advantage that the video material can be grabbeel laintbr frame rate, yielding less
amount of data (this aspect is of course irrelevant if theeidas already digitalised for other
purposes, because then it is likely to have the standard)5 fp

As for the different lattices, there is likewise no clear mén The precision rates at 12.5 fps
are nearly the same, and the recall rates vary only to a bligigher degree. Thus, it does not
pay in vast the effort needed to design complex news models.

Models trained on set A Some models trained on $tcontain frames which originally
had different reference labels. For example, the newscelsies was trained with newscasters
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at three different positions (with one being predomina@yuch a “label mapping” was not
performed in conjunction with s&. This is due to the fact that sBtconsists of much more
data (11 hours of two channels vs. 2 hours of one channel)th@tdnore programmes (two
for ARD, instead of one) were used.

Although much more training data was used forBgit might be that seA contains cleaner
and more pure models, i. e. models that are required to @lasss variance in the data. This
is substantiated by a second set of experiments. The mdulsvere trained on sét were
used to segment the test set of Betor 12.5 fps and latticé,, the precision for ARD rises
from 60.2 % (models trained on sAf see Table 6/4) to 64.0 %. The recall is substantially
increased from 49.8 % to 76.0%.

Table 6.5 (column “4 s Tolerance”) breaks down the resultthertwo programmes of ARD,

Tagesschau and Tagesthemen. Additionally, it containségenentation results on the two
ZDF programmes. Again, as was already observed above, gineeser performs worse on
ZDF; it also performs worse on the longer programmes (Tagesén and Heute-Journal, 30
minutes each) than the shorter programmes (Tagesschaunites) and Heute, 20 minutes).

Larger tolerance window The tolerance window of 4 s is very conservative: a predicted
boundary must not appear more than 2 seconds earlier or @delater than the real boundary
in order to be considered a match. The official evaluationttier TDT story segmentation
task [6] uses a window size of 15 seconds. As a consequeraegyea tolerance window than
4 s was considered. It turned out that a 15 s window producesy mmaulti-matches, i.e. a
reference boundary matches more than one hypothesiseddyujor vice versa). With a 12
s window, there are significantly less multi-matches witarheno degradation in precision
and recall. The evaluation result for this window size caodle found in Table 6.5. With
the larger tolerance window, the results for ARD could notrbproved much (by about 3 %
absolute). The results for ZDF increase by about 8 % absollitean be concluded that
the accuracy of the boundary postitions (with respect ta¢ference segmentation) is much
higher for ARD than for ZDF.

Topic Structure Lattice Several experiments were also conducted with 25 and 12.5 fps
using the Topic Structure Lattice approach. (see Sectidr2)s. One example for 12.5 fps
features and ARD data is listed in Table|6.6. It was createH laitice L, (this lattice was
also used for the News Show Lattice approach, where its topimdaries were ignored). It

is compared to the News Show Lattice experiment that usesddt, and likewise 12.5 fps
features. The figures for this latter experiment were takem fTable 6.5.
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Table 6.5: Topic segmentation performance (in %) with lattice Lo, 12.5 fps, News Show Lattice
+ Rules approach, models trained on set A. Two window sizes of tolerance for
matching true and hypothesised boundaries are investigated.

Channel Programme || 4 s Tolerance| 12 s Tolerance
Precision RecallPrecision Reca
ARD  Tagesschau 68.0 77.2| 71.0 79.0
ARD  Tagesthemen| 45.8 68.8| 50.0 72.4

ARD  Total 64.0 76.0| 67.5 78.1
ZDF Heute 50.0 55.4| 58.8 64.5
ZDF Heute-Journal 48.5 60.8| 54.6 67.9
ZDF Total 49.5 57.2| 57.3 65.7

Table 6.6: Comparison of a News Show Lattice approach to a Topic Structure Approach. Re-
sults in % for ARD shows, 12.5 fps features and models trained on set A

Lattice, Algorithm 4 s Tolerance | 12 s Tolerance
Precision RecallPrecision Reca
Lo, News Show Lattice + Rules 64.0 76.0| 67.5 78.1
L4, Topic Structure Lattice 49.5 70.5| 53.8 75.5

Although the two experiments were conducted with differiatiices, one can nevertheless
draw conclusions about the performance of the News Showckais. the Topic Structure
Lattice approach: As was mentioned above, the lattice higsaorery limited influence on the
segmentation performance. Just as for data\séte precision with a Topic Structure lattice
is significantly lower than with a News Show lattice. The tesaalso lower for the current
experiments, but it is higher for sBt For test sef\, one can conclude the News Show Lattice
approach is better than its alternative. This is also trusétB, because of the better balance
between precision and recall.

Performance on set A compared to set B

The best topic segmentation for the Tagesschau shows Bfls&$ got a precision of 71.0 %
and a recall of 79.0 % (Table 6.5). For the Tagesschau showstd, the performance is
88.2 % precision and 82.2 % recall. Thus, recall is nearlys#me for both datasets. Precision,
however, decreases substantially with tesBs@the reason is that test #&tontains unusually
long topics. Many stories are about the war in Afghanistashthe conflicts in the aftermath
of the attacks on September 9th, 2001. So there are fewer bopindaries than one would
expect, and stories are longer. This corresponds with thmeetation results, because the
lower precision means that there are more wrongly insereddaries.
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One aspect when comparing the performance of the topic segtim on test setd andB

is the time precision of the correctly hypothesised bouedar-or data seA, the size of the
tolerance window is nearly irrelevant. If a topic boundargorrectly detected, there is only a
difference of a few frames between the correct and the hgsetad boundary. This is different
for setB. As the increase in performance from a tolerance window ot@!12 s shows, the
difference between correct and predicted boundary is biggeest seB.

The decrease in performance between the two datasets bdhaccounted for by the ex-
ceptional character of test 9Bt not by the fact that the topic segmentation algorithms have
become “worse”.

6.3 Shot boundary detection

This section does not directly deal with the segmentatioa méws show into topics. Instead,
it deals with the detection of boundaries between shotstgpats). A shot is a homogeneous
part in a video file delimited by cuts or gradual transitions.

6.3.1 Video indexing for shot boundary detection

When a news show is classified into content classes (Newsc&sports, etc.) and into

edit effects (Cuts, Dissolves, etc.) with Eickeler's Videaléxing System [26, 25] (see Sec-
tion[6.1.2), the shot boundaries (among other things) aectidl. The performance on Cuts
is very good (very few cuts are inserted or deleted), but@ves are not equally well classi-

fied (78 % correct detection and 44 % false detection [25])e ffecision of shot boundary
detection is 96 %, and the recall is 95 %; these values havedizserved if the training- and

the test set shows come from the same programme (prograrepesident).

It is interesting to know how well this approach works for estiows from other programmes
(programme-independent identification). This issue wesadly investigated on a small set
of four ZDF shows|[26]. The TRECVID 2003 conference providesimable framework for
further examination, since it defines and distributes adstethtest set. This characteristic
allows the performance of the video indexing system to bepaoed to other approaches.

6.3.2 TRECVID 2003

TRECVID is a series of annual workshops that emerged from the' Rénhferences (see
Section 7.1.1). It is devoted to the research of automagjmsatation, indexing, and content-
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based retrieval of digital video. The TRECVID 2003 consistdhe tasks shot boundary
determination, story segmentation, high-level featuteaexion, and search. The shot bound-
ary task is to identify the shot boundaries with their looatand type (cut or gradual) in the
given video clip(s) [4].

The common test data for the shot boundary task consists oluEstof TV from the pro-
grammes ABC World News Tonight (4 shows of 30 minutes), CNN HeadNews (4 shows
of 30 minutes), and CSPAN (4 shows of 10 or 20 minutes, plus boe sf 40 minutes). ABC
and CNN broadcasts include studio scenes, indoor and ousdeaes, while the CSPAN files
are focused only on indoor scenes, such as congress debates.

Each show contains a manually created reference list oftehi@titions. A transition belongs
to one of the following categories: cut, dissolve, fade-tade-in, other. All except for the first
one are gradual transitions [84]. The CSPAN shows do not gostet transitions other than
Cuts. One exception is one CSPAN show (the 40 minutes one) wbittains four dissolves;
these were not detected by the system. For this reason, th&NC&#Rvs were not evaluated
with respect to gradual transitions.

Evaluation

Besides defining and making available a common test set, antafye of TRECVID is that
it provides common evaluation guidelines together with \&adaased evaluation tool. The
most important measures, precision and recall, are defirmatding to egs. (4.11) and (4/12).
When the reference and the hypothesised transitions areazethpgradual transitions can
only match gradual transitions, and cuts can only match clransitions between shots are
considered abrupt (a cut) if the transition’s duration iseBrfes or shorter. Otherwise, a tran-
sition is considered gradual. The size of the tolerance awinfbr matching abrupt transitions
is 0.33s For gradual transitions, there is no fixed windowe;sane frame of the reference
transition has to match at least one frame of the predictetsiion. These values are much
stricter than those used in the evaluation of the topic segatien (Section 6.2.3). Precision
and recall are calculated by the evaluation tool for eachdilel mean precision and recall are
calculated across all files.

6.3.3 Experiments

Experiments were performed with visual features (Secti@l§, and news show lattick,
designed for ARD. Models were trained on get
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Table 6.7: Performance (in %) of Eickeler's news indexing approach on the TRECVID 2003
shot boundary test set. The numbers in bold are used in Figures 6.4 and 6.5.
Empty entries: same value as in the corresponding “without” line.

ABC | CNN |CSPAN|| Mean
LH threshold TransitiontypgP R|P R| P R||P R
without Cut+Gradual |93 71/91 61 65 86|89 67
without Cut 93 7590 68 65 87|88 72
with Cut+Gradual 100 83|93 67
with Cut 100 83|93 72
not applicable Gradual 95 60/87 46/no eval{92 53

A first series of experiments extracted the shot boundar@s the recognition result and
directly compared them to the reference labelling. Resudt$isted in Table 6.7 (“without LH
threshold”). The mean precision and recall rates (last tlaans) are the output of the official
TRECVID 2003 evaluation tool over all test files. The columnsdach individual channel are
the result of averaging precision and recall of every sisbl@w (again, the official evaluation
tool was used to obtain the performance figures of the single/s). The evaluations figures
were calculated separately for abrupt transitions (ctasgradual transitions, and commonly
for both types.

The precision for ABC and CNN shows is about 90 % to 93 %, while ibmly 65 % for
CSPAN broadcasts. On the other hand, the recall for CSPAN igehitpan for the other two
programmes.

The two video files with worst evaluation results (two CSPANWE) were investigated. For
about two thirds of the wrongly inserted transitions, noappt reason can be deduced. For
the remaining insertions, three different sources of exene observed (note that the CSPAN
data contains only insertions of cuts, so the followingrigtrefers to cuts only).

1. Fade-in and fade-out of text overlay Among all falsely inserted shot boundaries, fade-
in and fade-out of text overlay have a share of 25 %.

2. Movement Five percent of all insertions contain movement. Suchsefahot boundary
detection usually takes place not only because of stronggment of the main object in
the scene: other factors can also result in such an insefionexample, zoom-ins or
zoom-outs also tend to generate an insertion.

3. Transitions detected too early or too late Some insertions are quite close to a true
transition. But because there is no frame overlap between, the matching is possible.
This situation not only generates an insertion, but alsdetide, which doubles the error
rate of the recognition system. This source accounts fonteib of errors.
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One way to cope with insertions is to reject detected tremmsitusing a confidence measure.
For reasons of simplicity, only a thresholding of the loglikood (LH) of the observed transi-
tion frames given the detected transition model was consideNormally, one would have to
compute a confidence value from the likelihood, becausadtisormalised. See Section 7.2.3
for a method to calculate confidence values.

The likelihood of cuts in CSPAN videos varies less than theliltood of the other two pro-
grammes. Inserted cuts have got a much lower likelihoodtitiecuts. Therefore, itis easy to
find a fixed threshold for CSPAN cuts. An attempt was also madiedca threshold for ABC
and CNN cuts, but use of a threshold lead to a worse performame@ecrease of insertions
is far behind the increase of deletions. As far as graduasitians are concerned, a likelihood
threshold which separated insertions from true transstmould not be found.

For this reason, a second set of experiments was conducteaiéh a cut of a CSPAN show
was rejected if its log likelihood was below -42 (see Tabl®) 6As a result, almost all inser-
tions in CSPAN vanish, and the precision rises from 65 % to 100T¥%e overall precision
rises from 89 % to 93 %.

The performance of the shot boundary detection is cleattgben cuts (recall of 72 %) than
on gradual transitions (recall of 53 %). The precision isudly the same regardless of the
type of transition.

Comparison to other approaches

The comparison to the results submitted to the TRECVID 200ksywp shows that the
precision of both cuts and gradual transitions attainedbyekperimental system is among the
highest, while the recall of cuts is in the middle of all penfi@ances. The recall (and precision)
of gradual transitions is one of the best. Only three to foougs delivered better results. The
results of the presented approach is drawn into the offiesllt figures (see large crosses in
Figure 6.4 for cuts, and in Figure 6.5 for gradual transijocach type of indicator represents
one group; as each participating group could submit mone ¢ime run, there is usually more
than one instance of each indicator type.

These are quite satisfactory results, given the fact tleavitheo indexing system was not ex-
plicitly built for shot boundary classification. Moreovéhe training data was taken from a
completely different channel, and similarly, the news sHattice was not designed on the
tested programmes. If a different lattice would be usedekample one with nearly no struc-
ture, but rather just content classes and edit effects irltamating order, one might expect
slightly better results.
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Figure 6.4: Performance in cut detection for the TRECVID 2003 shot boundary task. Results
of the presented system (large cross) added to the TRECVID 2003 participants’
results. Figure adapted from [84].

6.4 Conclusion

The numerous experiments presented in this chapter camickided as follows.

e The complexity of a TV news lattice is of minor importanceddies not need to capture
every little variance of the news shows.

¢ A final statement cannot be made about whether it is bettedttact features with 12.5,
or with 25 fps. Depending on the lattice, sometimes featwids 12.5 fps, sometimes
features with 25 fps yield better performance. 12.5 fps khba preferred because a)
the worst results were always found with 25 fps, and b) it éalthe feature data size
and the amount of necessary video files (compared to 25 fps).

e The News Show Lattice+Rules approach is superior to the T8piecture Lattice ap-
proach.

e The Video Indexing system shows good performance for progra independent shot
boundary segmentation. Few systems perform better on gradunsitions, and the
insertion rate of cuts is also one of the best. However, timet®u of deleted cuts should
be decreased (although several other approaches are yorsjample by introducing
a simple, basic news model which does not make wrong assomsgbout the structure
of the tested show.
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Figure 6.5: Performance in gradual transition detection for the TRECVID 2003 shot boundary
task. Results of the presented system (large cross) added to the TRECVID 2003
participants’ results. Figure adapted from [84].

The drawbacks of the presented topic segmentation appesach
¢ Different News Show lattices have to be designed, at leasifierent channels.

e Likewise, the rules have also to be defined separately fayehannel, even better for
every programme.

The performance of the topic segmentation approach on ARWws®very good given the
fact that only the visual information of a news show (withtext recognition in the video) is
used. Itis, however, sensitive to the programme and thenghaand degrades for ZDF news
shows. The fact that the precision is lower than the recahmmg that there are more inserted
topic boundaries than deleted ones, is not too bad: the ttgmsification module should have
less problems with over-segmented shows than with undgneeted shows having stories
of more than one topic in one segment. Nevertheless, it dHmipromising to combine the
visual topic segmentation with a topic segmentation thiaaged on the output of an automatic
speech recogniser [85, 11].



Chapter 7

Topic classification with Hidden
Markov Models

One of the key modules of an automatic media monitoring systehe topic classifier (com-

pare Figure 1.1). It decides whether a story is relevant tediamonitoring customer, and if
S0, to which customer it is relevant. A story might also bevaht for more than one customer.
But as this occurs very rarely, this thesis assumes thatyistmlevant for only one customer.

This chapter presents and thoroughly discusses two agpmséar topic classification. A third
one is treated in Section 3 and Section 8. The first approadusted here is a novel hybrid
approach that combines Hidden Markov Models (HMMs) and Hiedietworks (NNs). Its
performance will be compared to the widely-used Naive Bagpgtclassifier that serves as a
baseline system. The comparison of the two will be done ob&sés of data sets that contain

e Astraining data: always summaries of radio and TV broadcasts creatbemuy.

e Astestdata: radio or TV summaries, or automatic transcriptionRadio news created
by the ASR module presented in Section 5.

7.1 Introduction

7.1.1 The TDT workshop series

One of the most influential institutions in the field of topiessification is the TDT (Topic
Detection and Tracking) workshop series [3]. It started987.and has since been held every
year. Unlike other conferences, which do not provide a comnaia set or a common set of
tasks to be accomplished by the participants, both the detdhe tasks are specified by the
organisers. Data sets used for it are newswires, radio &dgi®n news broadcast programs,

80
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and WWW sources. The data languages are English, Mandarin &aimcA The following
taxonomy is used by the TDT series (mostly citing [6] and J60]

e Event “Something that happens at some specific time and place.tnpbes are: the
eruption of Mount Pinatubo on June 15th, 1991, specific ielest accidents, or crimes.

e Topic “A seminal event or activity, along with all directly relatevents and activities.”
An event is bound to a specific time, while a topic (usuallypgsists of more than one
event.

e Topic Tracking “The TDT topic tracking task is defined to be the task of assow
incoming stories with topics that are known to the system.opid is known by its
association with stories that discuss it."[6]

e Topic Detection “According to TDT, topic detection tasks detect and tragki¢e not
previously known to the system. It is characterised by a tddinowledge of the topic
to be detected” [6]. The goal is to detect clusters of stahes discuss the topics, but
not to find a topic name (label).

e New event detectionThis track used to be called First Story Detection. The geal i
to find the first story in a chronologically ordered streant thiacusses amvent not a
topic. It is not necessary to name the topic (or event) aateatiwith a story.

e Story link detection Determine whether two stories discuss the same topic.

The classification of topics of TV news reports, which is thjsect of this thesis, would
be called topic tracking in the language of TDT. One big foofishe TDT conferences
is the classification of spoken documents (radio and TV newadtasts). In contrast, the
Text REtrieval Conference (TREC) deals with information retleon large text collections,
such as newspapers. One participating group, the Cornelediiy, has been developing the
influential SMART retrieval system [15] for 30 years The SMRABystem was the first one to
introduce the vector space model (see Section 8.3.1).

7.2 Naive Bayes classification

This section presents a well-known classification appré@activn as Naive Bayes [23]. It as-
sumes that the words; in a document! appear independently of other words. The likelihood
of a document! = (wq, ws, . .., w,) given a topicl; can then be expressed as

P(d|T}) = P(wy,ws, ..., w,|T)) Naive:BayeSH P(w|T}). (7.1)
w; €
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The topic with the highest likelihood is the classificatiesult:

T = argmax P(d|T}). (7.2)
j
Alternatively, the topic can be chosen according to the maxn a-posteriori (MAP) principle
using the Bayes formula:

. P(d|T;)P(T})
T = argmax P(T;|d) = argmax ———2——~-2%
= argmax P(d|T;)P(T;). (7.3)
J

The assumption that words are independent is obviouslyraet but Naive Bayes performs
well in practice. With Naive Bayes, a topic can be modelled b'gg[amg. It has the advan-
tage of easy implementation, and is therefore often useddomarison to other classifica-
tion approaches ([42], [101], [68], [45]). It it used here the same reason. Rennie et al.
have presented an improved version of Naive Bayes, whichoappes the accuracy of SVM
classifiers/[67]. They represent the words by a normalisedDFFmeasure (compare Sec-
tion'8.3.2). Classes are modelled by all documetsin that class, giving better estimates
due to a larger training set. This tackles the bias of thesitatiboundaries that is introduced
if classes largely vary in number of training documents. Wheng independence assumption
is compensated for by normalising the weight of each (wdeks) pair. Their improvements
are, however, not implemented here.

7.2.1 Estimation of P(w;|T})

The most straightforward method to estim&tev; |7 ) is to count the relative number of words
that appear in the stories abdiit and then to divide it by the total number of words in these
stories. This estimate, which is a maximum likelihood eati&{52], has an inherent problem:
If a word w; does not appear in the training storiesIof then P(w;|T;) will be zero. A test
document that does contain will then result in a likelihood (7.1) of zero. This phenonoen

is known as the zero frequency problem.

Several approaches can be used to aytiid;|7;) = 0. They can be classified into discounting
methods (which change the words counts) and smoothing meifwchich change the prob-
abilities). Discounting methods add or subtract a small Ieia to the count of every term

1A unigram is the probability of a word occurring independentothers. A bi-gram, for example, is the
probability of a word appearing after another word.
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(and afterwards normalise the counts to form probabi)iti8mnoothing methods can again be
subdivided into two classes. One variant adjusts the piibtyadf every term by interpolation
with a background probabilityPen(w;|Tj) = AP(w;|T};) + (1 — X)P(w;). The other variant
adjusts the probability only of unseen words (backing-off)

7.2.2 Implementation of Naive Bayes

For the presented media monitoring system, the Naive Bay@sagh was implemented using
single-state discrete Hidden Markov Models. Each HMM medaele topicl; by estimating
the topic-conditional word probabilitieB(w;|T;). They are estimated with backing-off (see
Section 7.2.1) so that all unseen words get a minimum prdityabf 2 - ¢=¢,

During classification, the likelihood of a document is céded for all training topicd’; with

P(|Ty) = ] anP(wi|Ty). (7.4)

wiEd

The appearance of the first state self-transition prolgbili;, is due to the representation
as HMMs. This formula does not exactly equal the Naive Baye®tia (7.1), but keeps its
spirit. The topic with the highest likelihood (7.4) is chos&s the classifier’s prediction result.

7.2.3 Confidence

The Off-topic class (in other contexts also called General English [5#hazkground class)
needs special consideration, because it contains all thesthat do not belong to any other
topic. In theory, it contains an infinite number of assodadtories, but there is usually no
training data for it. Two approaches are used to tackle ttablpm:

1. Taking a large set of, or all available training data, asd i to train thebackground
model. It is hoped that the large variety in all training data raBethe variety in the
background class.

2. Compute @onfidencevalue for each classification result that tells how sure thssifier
is about its decision. This approach does not use a backgmodel. If the confidence
value is below a given threshold, the classification is tegcand the background (here:
Off-topig) class is assumed to be the correct class.

For the presented Naive Bayes approach, the confidence appn@s used. A background
model was trained together with the Support Vector Machiiassifier (see Chapter 8 on

page 99).



Chapter 7 Topic classification with Hidden Markov Models 84

The calculation of the confidence measure was implementddllas/s. The NV best topic
hypotheses for every story are computed (With= 30). The topic predictions are ranked
according to their log likelihoodlog(P(d|T;)). The confidence measure for the best topic
is calculated as the “distance” (i.e., the difference) sfldg likelihood to the averaged log
likelihoods of the other stories:

) =35 U(n) /(N —2)
Conf = (1) — lI(N) '

(7.5)

The denominator normalises the measure, which is necebsapuse the likelihoods (and
hence their difference) are not normalisédn) is the log likelihood of-th best result. This
confidence measure was proposed by Eedez et al. [31]. Among its advantages are that
there is no need for a background (off-topic) model, and ithean efficiently separate the
correct results from false alarms caused by off-topic esori

A confident classifier decision will result in a high likelib for the best topic, and a substan-
tially lower likelihood for the next best topics. The confide value according to (7.5) will
then be high. It will be low when the likelihoods are nearlyialy This enables one to set a
threshold so that topics with confidence values below thestiold are rejected, and the corre-
sponding story is assigned &ff-topiclabel. The threshold value can be a fixed value because
the confidence measure (7.5) is normalised. Obviously,hteshold cannot be determined
a-priori, but has to be determined from experiments.

Such an experiment can be found in Chapter 9 on page 122, wieeMaive Bayes approach
is compared to SVM classifiers. In Section 7.3.4, Naive Bayesinpared to the novel hybrid
HMM/NN approach.

7.3 Hybrid classification system

The following chapters introduce a novel approach to tofa@ssification that uses a combina-
tion of Hidden Markov Models (HMMs) and Neural Networks. b not extract the features
based on the words, as Naive Bayes, but on sub-word units.€Bbarés are quantised using
a Neural Network that was trained by maximising the mutudrimation between the topics
and the quantisation prototypes. The topics are modelldukWMs.

Many experiments with different configurations and pararsetwill be presented. For most
of them, the test set did not consist of the output of the aatanspeech recogniser, but of
manually written summaries.
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7.3.1 Feature extraction

The text source from which feature vectors are extracteduarenaries of TV news in German,
but it might also be the output of the automatic speech rdsegmodule (Sectian 5). In a pre-
processing step, numbers and punctuation marks are reraodeall characters are converted

to lower case. Then, a sliding windoW of sizew (typically w = 1..6) characters scans
the text. From each character C in the window, a 32-dimeasioinary feature vectax is
extracted (Figure 7.1). Exactly one componentgfgets a value of +1, the others are assigned
a value of 0 (in unipolar case) or -1 (in bipolar case). Theameepresenting ama’ has a value

of +1 at its first component, ‘& gets a +1 at the second component, and so on. The feature
vector of each text windowy,

Xw = [Xey Xoy -+ X0yl (7.6)

thus has a size af * 32 with w components being +1.

These vectors are calldthmes The resulting concatenated feature vector is made uf of
adjacent overlapping framesy = [xw, ... xw,|. Hereby, not only the context of a window
is considered, but also characters that are in the centigeoiindow are duplicated, which

improves the recognition result (see below).

Thus, in contrast to standard approaches, where the featmeebased on the words (e.g.
Naive Bayes in Section 7.2, or SVMs, [43]) our approach usedal®Is to represent feature
vectors generated frowharacter sequenceand is therefore independent of a word lexicon.
The idea behind using such feature vectors is that if chara@re wrongly recognised by
e.g. speech recognition (or OCR for other applications),distance between the vector of
the correct spelling and the vector with one wrong chardsttdre same whatever the wrong
character may be. Scanning with a window, provided its Sz@operly chosen, emphasises
the morphemes of the text, and thus the semantic informatoners. A morpheme is the
smallest unit of language that contains information, or mmgg For example, in the word
running, the morphemeun(n)indicates that the word has something to do with runninglevhi
ing tells something about its grammatical property.

7.3.2 Vector quantisation

To reduce the dimensionality (typically 64. 224) of the vectorsy, they are quantised using
J prototype vectors. Each of the prototype vectprsgets an index number (label of the
J-th partition)m;, 1 < j < J. Then, each vectaxy is represented by the number (label)
of its nearest prototype vectar;. A good choice of prototype vectors will map morphemes
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Figure 7.1: Overview of the architecture of the HMM topic classifier.

with single misrecognised characters, inserted chasaotewith a changed stem vowel to the
correct morpheme, and thus increase the robustness ofdteasy

Two methods were investigated for creating the prototyfé® first one clusters the feature
vectors of the training set using themeans clustering algorithm [51].

Neural network optimisation criterion

The second method trains a single-layer neural network (ghdehn layers). Its optimisation
criterion is to maximise the mutual information (MIJT';Me) between the prototype vector
labelsm and the topicg". T is the sequence of topids of the training data, and/y is the
sequence of the prototype labelsthat correspond to the feature vectors of the training data.
The prototype labein(x) of a feature vectox, i.e. the label of the prototype vector that is
nearest tak, depends on the choice of the neural network paramétehence the subscript

of Meg.

The choice of the mutual information as the optimisatiotecion can be motivated in two
ways:

e The vector quantisation results in an information loss.réitptypes with a high mutual
information between alt, and all7T" are used, this loss is reduced.

e Neukirchen et al. [55, 57] have shown that choosing the pyp&s (in other words, the
neural network paramete&) that yield the highest mutual information is equivalent to
choosing them in such a way that they maximise the likelihobthe training feature
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vectors given their respective classes (maximum likekhadterion), and also according
to the maximum a-posteriori (MAP) criterion:

N

Onr = argénapr@(x(nﬂT(n)) (7.7)

(x(m)|T(n))
P(x(n)) (7.8)

@MMI = arg(ranaxl(f; M@) = @ML = @MAP (79)

N

yge)
Orap = argmaxH
e n=1

Both the maximum likelihood and the maximum a-posteriotiecion are very popular
methods to choose correct parameters. The equation tkathea general ML and MAP
criteria to the specific case of the vector quantiser is [70, 5

pmnzﬁﬁ%@wwy (7.10)

The probabilities are subscripted Byif they depend on the choice 6f.

Neural network layout

The prototype vectorg,, ..., s are the weights of the neural network, i.e. its parameters
The optimisation criterion used to learn the VQ parametarsie formulated as

Ovq = argglax{f(f; Me)} = argglaX{H(T) — H(T|Me)}. (7.11)
As © is independent of the topic labels (7.11) can be rewritten as

Ovo = argénin {H(T|Mo)}. (7.12)
The optimal paramete@®y = {p1, po, ..., s} = {pa1, praos - -, fang, foas - - -, pyar } €2N

be determined by a gradient descent approach [12].is the neural network weight between
input nodem and output nodg, and at the same time the-th component of thg-th prototype
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m(x) = argmax; o;

Softmax

Figure 7.2: Neural network used for creation of VQ prototype vectors according to the maxi-
mum mutual information principle (Figure adapted from [56]).

vector ;. The gradient of (T|M@) with respect to a NN parametgr,, can be expressed

as [55]
OH (T |Ms)
8ujm
with

=D > 2 (@n(n) = jm) - 6a - Ai(x(n) (7.13)

Ai(x(n)) = zoi(x(n)) - <log P(T(n)|m;) = ) log P(T(n)|my) - 01<:(X(ﬂ))> :

x(n), 1 < n < N, is then-th out of N training samplesz,,(n) is them-th component of
the M-dimensional vectok(n). The output activation functiorf;(x), which describes the
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output of neuron when the feature vectot is presented to the input layer, is the (negative
and squared) Euclidean distance betweemd thei-th prototype w,:

M
Fi%) == (@m — pam)”. (7.15)
m=1
This function is motivated by the fact that the features Wwdlquantised to their nearest pro-
totype vector. The negative sign in (7.15) has the effedt tth& neuron whose prototype is
nearest to the input vector gets the highest activationaftop (7.13) is only valid for a single-
layer NN with a Euclidean activation function accordingal). The choice of the VQ label
that corresponds te (i.e., the result of the quantisation ®j could be made by applying the
winner-takes-altule to the internal neuron activations:(x) = mj, with j = argmax; f;(x).
Unfortunately, this rule is not differentiable and thus maibe used to determine the network
parameters using the gradient descent approach. Ther#fer@eurons’ outputg;(x) are
non-linearly transformed by a softmax function to yield thegput nodes; (x) of the network:
eCfi(x)
0i(x) = —. (7.16)
3 eCf5(x)
7j=1
The biggest double floating point number (8 bytes) that castbeed in a 32-bit Personal
Computer i2.1- ™. In order to take advantage of the whole range of double gakithout
overflow, the constant' is set to

500
C =

: (7.17)

Xi = Py

max;

with . being the initial values of the prototypes.

Network parameter training

In order to calculate the correct weights (prototypes) efribtwork, the gradient of the func-
tion to be optimised, eqd. (7.13), is used. In every iterasi@p, the weights,,,, are updated in
such a way that the mutual informatidl([f; M,) grows at a maximum rate (steepest ascend
of I(T; M,)). Neukirchen/[55] has shown that the Resilent Backpropagatiethod [69] is

a good optimisation algorithm that is able to quickly find dpgimal value in a few iterations.

In addition, it is quite insensitive to the setting of itsantal parameters (initial step width and
step width update coefficient).

Before the first iteration, the weights of the neural netwoakehto be initialised. A good
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choice is to use the prototypes created byihmeans clustering, as these usually represent a
reasonably quantised space and are far better than randatisation.

After a pre-defined number of iterations (usually 10), tharaknetwork training is finished
and the resulting network parameters are used as protoggiers to quantise any arbitrary
test feature vectat ;.

7.3.3 Topic modelling with HMMs

Each topic is modelled with a discrete HMM and using the iadiof the prototype vectors,
m(xgr), as observations. The HMM parameters are initialised byterhfi training and then
refined using Forward-Backward training. The classificatibanknown texts uses the Viterbi
algorithm. A varying number of HMM states, and variation ohmy other parameters were
examined. Details together with experiments are presentix following sections.

7.3.4 Experiments
Test and training set

As a text source for both test and training, written sumnsapieTV and Radio broadcasts in
German are used. Every summary was created by a profesaimhalmmarises the contents
of a topic-homogeneous report.

A topic was assigned to every summary. The topic of a sumnakmtifies the customer who
wants that specific media monitoring alert. A summary is gmtyduced from the broadcasts
if it is of interest to a media monitoring customer, thus ghare ndOff-topicsummaries (that
could be used to train data that is not relevant to any cusfometopic consists of one or a
few words and represent, for example, names of people or @aoieg, or events. There are in
the average 562 words per summary.

The following test and training sets were created:

e A: no stop word removal, no stemming, no text optimisatiédi.: 22 topics in 3037
texts for training and 1319 texts for testing.

e A2: 173 topics in 6039 texts for training and 2700 texts foritest

e B: deletion of 150 stop words, text optimisation (see follogvparagraph). 22 topics in
2956 texts for training and 1284 texts for testing.



Chapter 7 Topic classification with Hidden Markov Models 91

In the summaries of test set A, some words are separatedanoteibgle words because they
were entered in two different lines. Additionally, there aome special abbreviations. Thus,
the text basis is not optimal, but the text was not changedderato simulate in a rough
way errors which are made by automatic speech recognitiontelSt set B, which consists of
different texts, these errors were compensated for (cédbabptimisationn the list above).

There is no extra model for out-of-topic summaries, sinteeats topics were restricted to the
trained topics. All results were obtained with 10 iterafaf both thek-means algorithm and
the training of the MMI network (except where otherwise mjte

The recognition rates for the following experiments areestas the ratio of the number of
correctly classified summaries to the total number of testedmaries

Setting w and f

Initially, the best settings for the parameterénumber of characters that create one frame) and
f (number of overlapping frames) have to be found. Severabaoations ofw € {1,...,6}
andf € {1,3,5,7} were examined. It turned out thit= w = 3 performed best. For this
setting, classification results for the data sets mentiahede are listed in Table 7.1.

Table 7.1: Recognition results in % on the test sets A1,A2 and B. w = f = 3,.J = 200, 5 HMM
states for A1 and A2 and 10 states for B.

|k-means MMI test set

48.4 479 A1
321 31.3/A2
66.0 66.6/B

k-means clustering vs. MMI neural network

The application of the MMI (maximum mutual information) melinetwork to produce the
prototype vectors should reduce the information loss ereay the quantisation. However,
in almost all experiments, the classification rate did naetngfe much (aroungt1% absolute)
compared to thé-means approach. One exception is when keywords were ddteta the
test and training set (see below): the recognition rate avgut from 41.3 % (k-means) to 46.7
% (MMI network).

In the following sections, the behaviour of the MMI networkilvbe investigated in more
detail.
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Figure 7.3: Recognition result as a function of the number of states of the HMMs. f = w =
3, B =200, set Al.

Varying the number of HMM states

The number of states of the HMMs was varied from 1 to 20. FiguBedepicts the results for
set Al. Both thé:-means and the MMI approach yield a minimum recognition ahtestates.
They peak at 8/9 states. For test set B, a minimum recognifitthwas also observed at 4
states. The best number of states for this test set is at 3 $ta both thet-means and the
MMI system (not depicted here). If best recognition perfante is the goal, 10 states should
be used for the topic identification system. However, if tisigery important, one can use 5
states with only a slight decrease in recognition rate.

Changing the keywords

If the word(s) of the topic label (keywords) appear in thedea word search using stemming
might be enough to get good recognition results. As the ttiel word(s) might therefore

be important to indicate the topic, they are called keywandsis sub-section. However, the
keywords are not always present in the text, and even mongeech recogniser or an OCR
system might not correctly recognise all keywords. Heneebast topic classification system
has to cope with the fact that important words do not necigsgupear in the text, but need
to be induced.

To measure how well the new approach can cope with missingdels, they were removed
from the test and from the training set. In one case, the keyswyere removed only from the
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summaries used for testing, while in the second case they eideted in both the test and in
the training set.

Table 7.2 shows that the presence of keywords is quite impbrThe recognition results went
down without keywords. Remarkably, the MMI network could ashcompletely compensate
for their removal from both the training and the test set inebt recognition case.

Table 7.2: Results with omission of keywords. w = 3, f = 3, B = 200, noisy features, set Al.

| k-means MM keyword deletion |

48.4  47.9 none
38.9 37.5/test set only
41.3 46.7|test and training set

In another experiment, a space was inserted into the middieyovords longer than 7 char-
acters. The idea behind this is that compound words in Genuoasist of (sub) words that in
other languages are generally written as two or more difter®rds. As a speaker can com-
bine words to compounds in a nearly unlimited way, a speecbgraser will tend to decode
the sub-words only, and will emit them as separate words.if$extion of spaces is intended
to model this effect. The recognition rate went down by atbéf absolute when separating
the keywords (see Table 7.3).

Table 7.3: Recognition results for separation of keyword compounds. w = 3, f = 3, B = 200,
set Al, noisy features in keyword separation experiment only.

| k-means MM keyword separatioh

66.0 66.6/none
59.1 58.0jtest and training set

Duplicating characters

When using feature vectors that are made up of more than ame fig, the characters in the
centre of the window are duplicated. Consider for examplerelow size ofw = 3, a frame
number off = 3 and a text windowdbcde]. The feature vector then represents the characters
[abcbcdede], or oncea ande, twiceb andd and three times.

In Table 7.4, one can compare the resultsffor 3 (duplicated characters) arfd= 1 (single
characters). In both cases, the same 5 characters are @ovEne repetition of the centre
characters leads to an improved recognition result.



Chapter 7 Topic classification with Hidden Markov Models 94

Table 7.4: Effects of duplicating centre characters on set A1 and A2. J = 200, k-means quan-
tiser.

DataSeff=3,w=3 f=5w=1]
Al 48.4 45.5
A2 32.1 304

Noisy features

All equal text windows appearing several times in the teXtaad to more than one identical
feature vector. It turned out that it is better to add noiseh® vectors in order to avoid
singularities in the feature distribution. However, thgnsil-to-noise ratio should be chosen in
such a way that the clusters in the feature space do not pverla

Uniformly distributed noises with different amplitudes n@envestigated. Noise in the range
of [-0.005 . ..0.005] added to each component showed the best results (see Taple 7.

Table 7.5: Effects of adding noise to the features. f = w = 3, B = 200, set Al.

| k-means MMI Noise |

48.4 47.9 none
50.3  49.5([-0.005...0.005]

Using more prototype vectors

As the prototype vectors have to represent the informatiatis in the texts in the best possible
way, the right choice of the number of prototypes is impdrt&xperiments were made with
several number of prototypes on test set A1 whose resulissted in Table 7.6.

The k-means system shows its best recognition results for 500@types and decreases sig-
nificantly with more prototypes. The MMI system’s peak is @0Q prototypes. This indicates
that the number of important lexical morphemes in our tragréet is somewhere in the range
between 500 and 1000. The decrease in performance with anbigber of prototypes might
be due to over-fitting to the training set and the loss of thityako generalise. It is expected
that more prototypes will be useful if the number of topicH i increased in the future.

Observations on mutual information

The entropy of the topics in the training set of data set Alaéxyl (') = 4.26 bit (for
w =1, f = 3). During MMI estimation of the prototypes, the conditiomaitropy H (7| Me)
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Table 7.6: The influence of the number of quantisation prototypes. w = f = 3, 5 HMM states,
set Al.

| k-means MMI|# of prototypes

48.4  47.9/200
50.1 49.7/500
46.9 50.4{1000
46.7 47.312000

takes values of around 4.20 bit. The conditional entroplg tebw much extra information
on average is needed to communicate the topic label of arfeaan:tcE given the quantised
feature vector (i.e. the prototype nearest to the featwwvg52]. In other words, it measures
the information one gets from observifigwhen Mg is known.

The difference between the entropy and the conditionabpgtis the mutual information:

I(T;Me) = H(T) — H(T|Ms), (7.18)
for the given example
= 4.26 bit — 4.20 bit = 0.06 bit. (7.19)

These figures show that the conditional entropy is very hiynhmared to the entropy of the
topics, and that most information gets lost when creatiegpttototypes and quantising them.
The quantised feature vector and its topic are hardly reélathis makes sense, asitis very dif-
ficult to predict the topic of a whole story from one singlettea vector only. If this prediction
was easily possible, there would not be a need for complessifiers such as HMMs.

The MMI principle considers individual feature vectorst bloes not take into account that
only their combination, not one single feature, is chanmdstie of a topic. This leads to the
question whether it makes sense to put effort into incregiia mutual information of single
feature vectors. As one feature vector hardly allows toiptedtopic, the MI will always be
low; this is a consequence of the way of extracting the festuA different way of feature
extraction might be reasonable, which was realised in cajon with the SVM classifier
(see Sectioh 3 and Section 8).

Comparison to Naive Bayes

The performance of the hybrid HMM system was compared to thigd\Bayes system (Sec-
tion/7.2 on page 81). The data sets used for comparison doonttin Off-topic texts. Con-

2The topic label of a feature vector is the topic of the stohyeiiongs to.
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Figure 7.4: Mutual information I(T;Mg) during MMI network training. w = 1, f = 3, 6 HMM
States, J = 200.

sequently, the Naive Bayes approach was employed withodidence calculation and topic
rejection (see Section 7.2.3 on page 83). The training desetd aonsists of manually created
summaries. Two different test data sets were used: thedirsbasists of summaries (the same
source that was used for the training data), while the setastidet consists of automatic tran-
scriptions of radio news created by the ASR module (see @eB)i The topic boundaries for
all the data used here were manually created, i.e. are “boehdaries.

The results of the novel topic classifier and of the Naive Bdyaseline approach (see Sec-
tion|7.2) for the tested summaries are listed in Table 7.7 Nhive Bayes approach works
significantly better on test set B (optimal text), whereas @nly slightly better than the novel
approach on test sets A1 and A2 (non-optimal text).

Table 7.7: Comparison of the best classification rates of the novel hybrid system to the Naive
Bayes classifier on a test set consisting of summaries.

| k-means MMI Naive BayesTest set

50.3 495 50.4 Al
321 313 35.3 A2
66.0 66.6 78.0 B

For tests on the ASR output, 48 reports were selected froro reavs that were all on-topic,
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i.e. this test set contains only reports in which a media tooing customer is interested.
These 48 reports cover 10 topics from a period of 6 days. Tiferdnt training sets were

created. Both consist of summaries, but differ in number picta The period of the training

data covers 4.5 months and ends one day before the test géaitsl The first training set

covers 897 topics in 113,915 summaries, but only 6 of thepeapn the test set (due to the
fact that the topics rapidly change with time). The secoathing set is limited to those 6

test topics. Consequently, the test set was also limitedetgetld topics which are covered by
42 test stories (see Table [7.8). It is common practice foettauation of text classification

systems to choose the training and the test set in such a \@aghtty contain only the same
topics.

For the latter data set, Naive Bayes correctly classifies 6T tteostories, whereas the novel
approach is better and correctly classifies 76 % (see alde Tak). The Naive Bayes perfor-
mance seems to be disappointing, but it has to be kept in rhatdhe training and the test set
come from two different types of texts (hand-created sunesdor training, deficient ASR
transcriptions for testing). This is different from evaioas of Naive Bayes by others: there,
the training and the test set come from the same text type.

The rank of performance changes when the realistic dataiteit$/897 training topics is used
(with 10 test topics, of which 4 can never be detected): NBayes has a correct classification
rate of 42 %, whereas the novel approach is significantly &waigh 21 % classification rate.
These results show that the novel hybrid system can perfagthwith a limited number of
training topics, but it is bad when the number of topics riseis not very good at choosing the
correct topic from many topics, which consists a key propfmt media monitoring systems.
But it can cope better with error-prone ASR output for a liditeimber of topics.

It must be pointed out that the evaluation of the novel systeas performed only with a
prototype codebook created bymeans clustering, not by a MMI neural network. The reason
is that MMI training for 100,000 stories is not feasible: betraining features are too big to
fit into memory, or (if the features are read in sequentiallyg training takes too much time
(several days for only 10,000 stories on a 700 MHz PC). Thdtsesith prototypes created
by an MMI network would not differ much from the results frdfsmeans prototypes, as was
observed earlier in this Chapter.

7.4 Conclusion

This chapter has presented two algorithms for topic clasdiin based on HMMs. The first
one is the well-known, word-based Naive Bayes approach. usé& by many people as a
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Table 7.8: Number of correctly classified stories by the novel hybrid system and by the Naive
Bayes classifier on ASR test set.

Training Set Test Set
# Topics # Storieg# Topics # StoriesNovel System Naive Bayes
897 113,915 10 48 21 % 42 %
6 4,048 6 42 76 % 67 %

baseline, or reference system. The second algorithm is @l,ndvaracter-based HMM clas-
sifier. Its feature vectors are quantised into prototypasdhe created with a neural Network
according to the Maximum Mutual Information (MMI) princel

Many different experiments with different parameters @ tiovel system were conducted.
It could not outperform the Naive Bayes approach when testeauman-created summaries
(nearly error-free). But it was better at classification oFRAganscriptions (spoken documents)
when it had a limited choice from only few training topics.rRolarge number of topics, its

performance was worse. It can be concluded that it is seitabla topic classifier for a me-
dia monitoring system if only a rough discrimination betweepics (e.g. politics, economy,

sports, ...) is needed. For such a scenario, it performs toettar than Naive Bayes.



Chapter 8

Topic classification with Support
Vector Machines

This chapter presents the experiments and results of tégssitication of German and En-

glish news documents obtained with the Support Vector Malsiassifier (see Section 3).

It incorporates the first thorough investigation of coni@mtl and probabilistic couplers on

text classification. First, the German training and tesa @aé described. Then, the text pre-
processing and feature extraction steps are explainedialetdiscussion of the performed

experiments follows that also treats experiments on thelrdsed English corpus (Reuters
newswire data).

8.1 Data sets

8.1.1 Test data

The German test data consists of the automatic transaripfiGerman TV news shows, man-
ually segmented into repdﬂtsunless otherwise noted). It was taken from selected TV pews
broadcast by the two statioWsRD andZDF and covering the period from 8th until 21st Oc-
tober, 2001. One characteristic of the test data is that@f leports are about the conflict and
war in Afghanistan. Reports are therefore often longer thag tvould be in broadcasts until
one month earlier.

Around 90% of the reports were assignedCifitopiclabel, since they are not relevant to any
media monitoring customer. 25 topics appear in the tesogathich two do not appear in the
training set(s) used (see below). These two topics, withteskestory each, were re-labelled

1The termgeport andstoryare used synonymously.

99
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to Off-topic. Thus, there are 23 different topics in the test set, of wbialy 8 occur in more
than one report (includin@ff-topic. The topic labelling was adopted from the corresponding
summaries of the same period. The automatic transcriptes areated by the ASR system
described in Chapter 5 on page 47.

8.1.2 Training data

The German training data are a subset of manually createchaties of TV and radio broad-
casts. The summaries were written, and topics were assigrteéém by professional media
monitoring employees. The data covers the period of foukked&®m 10th September until
7th October, 2001. Words were not stemmed, and no stop waeds removed, but numbers
were deleted.

Three different training sets were create#t02(a), set03 andset04. Set03 covers those

7 topics (excluding OFHOPIC) that appear more than once in the test set. All summarie
belonging to one of these 7 topics were taken from the abovdiomed complete summary
set and used to forrBet03. Additionally, all those summaries which anet about these 7
topics were used to form the OFFOPIC training data.

In a similar wayset02 was created to cover all 23 topics appearing in the test sebna topic
had only two training stories, splitting it into five parts wd mean that not all parts contain all
topics. Therefore, it is not possible to perform five-foldss-validation wittrset02. Hence, a
new setset02a was produced by removing the offending topic.

The restriction of the training topics to match the testd¢sps motivated by the fact that in
many publications, classification systems are analysedersame way. However, one does
not a-priori know which topics will appear in the news broasts to be monitored. A more
realistic set isset04 which contains all topics which have two or more summariefis T
amounts to 827 topics in 21376 summaries. One minor changenade to theéestset when
used together with this training set: It turned out that ogort contains only three words.
This report was removed when used together w@to4.

Note that the termset02(a), set03 andset04 describe only the training data set. The test set
is equal (except the short test story that was removed wheshinsconjunction wittset04.
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Table 8.1: German data sets for training and testing the SVM classifier.

|Set || Classes in training sefraining docs Test doc$
set024 22 4825 443
set03 7 3065 443
set04 827 21376 442

8.2 Text preprocessing

Stop word removal and stemming may be used under the assumaitiat stop words are irrel-
evant for the classification task and that different wordseleon the same stem are equivalent
with respect to the classification task. As for the effectegs of stop word removal, there are
contradicting results in the topic classification literat{60]. Lo and Gauvain [50] report that
stemming, but not stop word removal improves their resatste TDT topic tracking task
(cf. Section 7.1.1). Leopold and Kindermann [46] have obsgithat for text classification
with SVMs, stop word deletion is not necessary. Joachimpdd8s not use stemming or stop
word removal with most of his SVM experiments. So the questioses whether stop words
should be removed and words should be stemmed.

Another aspect is that the test documents are the output atiemmatic speech recognition
(ASR) system. If a word is not included in the ASR vocabularyyill not be recognised or

it will be recognised as another word. This phenomenon imatly referred to as the out-of-
vocabulary (OOV) problem. The training documents for thissis are not the output from a
ASR system, but manually created summaries. Should th@rngadocuments be used only
with the words in the ASR vocabulary, or with all words ocaugrin the training corpus?

Experiments were conducted to answer the above questidmnsh are based on the data set
set02 (see Section 8/1) with SMART-Itc weighting scheme (seei6e®.3.2). Table 8.2
shows that using original word features or their stemmetiifea yields similar results. Like-
wise, eliminating stop words or OOV words does not affectgadormance much. Using the
original word features without any further processing gsethe best performance. So further
experiments will not perform the text preprocessing stefim{nating stop words, stemming
and eliminating OOV words) mentioned in this section.
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Table 8.2: Comparison of different text preprocessing combinations.

original text
without stop words X X
without OOV words X X
with stemming X X
F 90.32 89.96 90.20 89.96 89.81

8.3 Feature extraction

8.3.1 Vector space model

A very popular technique to extract features from text isjoresent them in a vector space.
Afinite set of terms/” = {¢,, ..., ty} contains every term that appears at least once in a given
set of documents (e.g. training or test documents). Folyedecument, ond -dimensional
feature vectox = (wy, ..., wr)? contains the weighw; of thei-th term¢;. Several formulae

to calculate the term weight will be presented in Section28.8Bhe expressiotermcan refer

to different linguistic units: words, word-grams, character-grams, syllables, . ... Usually,
words are used as terms, but Section 8.3.3 describes a neaaaphpo combine different
linguistic units.

The fact that every term is represented by a dimension ofwts implies that the terms are
represented as being mutually independent. This assumptibough not true, works well in
practice. Similarly, the Naive Bayes classifier makes theesgtlependence assumption, but
here it is realised in the classifier design, not in the featapresentation.

Another aspect of the vector space representation is thairtter of the terms in a document
is ignored. So a document will be projected onto a bag of wrediterms. For this reason,
this representation is frequently callbdg-of—terng. The vector space representation makes
it easy to compare two documents: The cosine between the aaantent vectors is a good
measure of similarity, which is why this representationfterm used in information retrieval.

8.3.2 Term weights

The following term weights are frequently used for text slisation and retrieval.

2Actually, it is mostly called bag-of-words, since almodtagproaches use words as basic text representation
unit.
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TF-IDF The TF-IDF weight is an old weighting scheme and was sucolgsfsed, for ex-

ample for document queries [74]. The inverse document &equ/ DF (¢;) can be
calculated as

Dl
IDF(t;) =1 . 8.1
The document frequendy F'(¢;) is the number of documents in which tetpoccurs at
least once|D| is the total number of documents. The TF-IDF term weight ohtg in
documenti is

TFIDF(t;,d) = TF(t;,d) - IDF(t,). (8.2)

TF(t;,d) is the term frequency of term) in documentd, i.e. the number of times,
occurs ind. The TF-IDF measure gives a high weight to terms that occurynianes

in documentd, applying the assumption that if a word repeats, it is imguarfor that
document. The role of the IDF component is to reduce the wéagherms that appear
uniformly throughout the document collection. Such terarsleardly help to distinguish
between different topics/ DF' is log-smoothed to prevent terms that appear in only a
few documents from receiving very high TF-IDF scores.

ITF The Inverse Term Frequency (ITF) is defined as [58]

r

ITF(t;,d)=1— —

(8.3)

with usuallyr = 1.

SMART-Itc According to Buckley et al. [15], the term weight T,om(t;, d) shows good
results in practice:

T Frew(ti,d) =log (TF(t;,d) + 1)

D
WTneW<ti7 d) = TFnew(tia d) -log (D|F(’tl))
WTnew(tm d)
VS, Wt )

(8.4) was used for the SMART retrieval system and is callez! teighting in [15], so
in this thesis, it referred to as the SMART-Itc weighting.

W norm tl? d

(8.4)

It has been defined in the literature whether the documepusahat is used to calculate the
above term weights is the training set, the test set, or tienwf both. Hence, experiments
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were conducted with all three alternatives. It turned oat the best results (measured with
F, see Section 4.1 for the definition of evaluation measuresgwbtained when both the
training and the test features are calculated using tha@nigadata as the underlying corpus.

The performance of the above mentioned term weights is s&zlin Section 8.6.1.

8.3.3 Combination of different linguistic units

According to T. Joachims, " a high level of redundancy is ardée property of text-classif-
ication tasks” [43]. This can be explained by the fact thavadis observed in many pattern
recognition applications that the exploitation of diffietenformation sources for the same
recognition task often leads to different errors in the ggution results, which are very often
complementary. This means that an appropriate exploitatidhese sources can effectively
reduce the error rate. Thus, the strategy of using such dashimnformation sources in com-
bination with Support Vector Machines was chosen.

The state of the art in Information Retrieval research is fwregent texts by one type of
terms. Normally, words are used as terms, but there are alsmaches which use sylla-
bles, phonemes [58], character n-grams and word n-gramsseTtypes of terms, which we
refer to as linguistic units, are always used exclusivelgwiver, from a theoretical point of
view, it should be promising to represent documents by mioae pne linguistic unit. This
will not only add redundancy, which is favourable for the aboeasons, but at the same time
it adds some new information which could help the topic ideition process.

Incorporation of several linguistic units will lead to a sificant increase in the size of the
vocabulary, because it will, for example, not only consisalbwords in the text corpus, but
also of all word 3-grams. Large feature vectors are indeeahaibap for many classification
algorithms, because high-dimensional features will taaudomplex decision boundaries be-
tween classes; the classifier is thus likely to overfit to taeing data and cannot generalise
well. This is also known as the curse of dimensionality [XBE number of training examples
has to grow exponentially with the feature dimension if thialdy of the model is to remain
constant. SVMs, however, do not suffer from the curse of dsianality. The complexity of
their decision boundaries (measured by the Vapnik-Chenkisalimension) is independent
of the feature dimension. SVMs are therefore the most pragislassifier in conjunction
with the different linguistic unit representation.

Two approaches were used to make use of different linguisiis. The first one concatenates
their different text representations, and then forms oaéufe vector from the combined text
(see Figure 8.1 a). The second one creates separate fagiewectors for every text represen-
tation, and afterwards concatenates the feature vectorstbig feature vector (Figure 8.1 b).
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Figure 8.1. Two methods of feature vector creation for SVM experiments. The text inside the
boxes was taken from the Reuters corpus evaluated in Section|8.6.6.

The following linguistic units are used [19]:

e words,
e character 3-grams (abbreviated ch3gram),
e soundex.

The soundex representation was originally developed ferfigld of genealogy to encode
names so that similar sounding, but differently spelled emamill have the same code. For

example, the nameSmithand Smythehave the same code S530. For English, the soundex

coding algorithm [102] is:

e All codes begin with the first letter of the word followed by lar¢e-digit code that
represents the first three remaining consonants. Zerobavdtdded to words that do not
have enough letters to be coded.

e The letters with similar sounding are coded with the samebarm

B,P,F,V— 1,
C,S,G,J,K Q,X, 22,

D, T—3,
L—4,
M, N — 5,
R — 6.
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e The letters A,E,1,0,U,Y,H and W are not coded.

e Words with adjacent letters having the same equivalent reurate coded as one letter
with a single number.

Such a sounding coding is a good idea for spoken documersifatasion in order to decrease
the effects of speech recognition errors.

The classification results of this novel feature represemapproach are presented and dis-
cussed in Section 8.6.1

8.4 Choice of C using cross-validation

To identify the best parameter setting for the SVM misclasation tolerance parametér
(Section 3.3), 10-fold cross validation was carried oue(8dgorithm/8.1 and [23]). The
training set is randomly split inte = 10 parts of equal size, where— 1 parts are used for
training a classifier which is then tested on the remainim, pehis procedure is repeated
times, so that every part is tested once. The classificatoaracy of such a run (wherg is
fixed) is computed, and the whole run is repeated for diffievalues ofC. The best setting of
C'is then assumed to be the one that produced the run with thegtigccuracy.

Creating a random split is not straightforward. One cannqueatially assign every story
to a (pseudo-)randomly chosen part, because this will engatts with a highly unbalanced
number of stories. A better approach is to swap every staity asrandomly chosen story that
appears after it, and then creating each part frgt consecutive stories (wheré is the total
number of training stories).

Two training sets were used to determine the best choic€'feet02 andset03. To identify
the region where the optimél might be, a first, coarse run was performed witlvarying on
a large scale:

Ce{27°,27% 271 1,21 2% .. 2%}

The resulting accuracies are depicted in Figure 8.2. Asdlewant regions of maximal accu-
racy cannot be identified here, a part of this figure is zoomednod displayed in Figure 8.3
(a) forset03 and (b) forset02 (dotted lines). A finer run was then performed to find a more
precise value of’, using

Ce{1,1.3,1.7,...,16,20,...,384,512}.



Chapter 8 Topic classification with Support Vlector Machines 071

Algorithm 8.1 n-fold cross-validation to get optimal setting Gf

Define the se€ over which the parameté&r will run.
Split the training set inta equal partitions.
for C eC
r:=0
fori:=1ton go through all partitions
Classify partitioni using system trained on the remaining
n — 1 partitions.
r := r + number of correctly classified samples
end
overall accuracy[C]=

end
The best setting of’ is
C' := argmax, overallaccuracy[C]

r
number of documents in whole training set

The results from the fine run are also depicted in Figure &Bd(§ne). The optimal value
of C for set02 lies around 1.3, foset03 it lies around 1.7. For all experiments, a value of
C = 1.3 was chosen.

Accuracy in %

551

45
1

Figure 8.2: Accuracies from 10-fold cross validation vs. C' (coarse run).

8.5 Character n-gram size and choice of kernel

For a character-based document representation, the ¢inea: of the n-grams has to be

determined. Mayfield [53] determined that character 6-grgield the best performance. Our
experiments, however, indicate that= 3 is best (determined using ITF term weighting).
Leopold et al. [47] have observed that the best length of erma {in their case, phonemes)
depends on the size of the class. Smaller classes are legttesented with shorter term units.
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Figure 8.3: Accuracy vs. C of the coarse (from Figure dotted lines) and the fine cross-
validation run (relevant part only).

This corresponds to the fact that most training classes iasdtie experiments of this thesis
are small.

Furthermore, the correct SVM kernel has to be chosen. lrgsts showed that for non-
probabilistic SVMs, a linear kernel is a good choice. Othemkls perform equally good
or worse. This also supports the findings by others [41] tixet document classification is
usually a linearly separable task.
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8.6 Experiments

8.6.1 Choice of term weighting scheme

A preliminary set of experiments was conducted to find outcllierm weighting scheme
best represents the documents (in terms of best classificegsult). The documents were
represented by word or by character 3-grams (ch3gram) gmaeby the combination of both
representations in order to see the effect of the combimapproach (see Table 8.3, where the
best text representation for every experiment is indichted bold figure). The texts based on
words and on ch3grams were concatenated, and then thedf@atttors were built.

Table 8.3: Results (F; measure) with different weighing schemes.

| Data Setf| word| ch3granjword+ch3gram

TF-IDF weighting
set02 | 82.8| 89.5 89.9
set03 [ 93.3| 94.0 94.8
set04 | 80.1| 79.4 79.8
ITF weighting
set02 | 88.6| 89.7 90.9
set03 || 94.1| 954 96.2
set04 || 79.3| 79.7 82.0
SMART-Itc weighting
set02 | 90.3| 90.6 90.7
set03 [ 95.7| 96.1 96.1
set04 | 88.0|/ 87.0 88.2

Two conclusions can be drawn from these experiments: firstpest weighting scheme for
all three tests is SMART-Itc. Second, the concatenationiféérént linguistic units yields,
in almost all cases, better results compared to using ogeistic unit alone. However, the
improvements are very small (about 1% absolute only).

A soundex representation does not help to improve the see@de Table 8/4). Using soundex
as the sole representation yields worse performance theg werd or ch3gram alone. Com-

bining soundex and 3gram representation is better tharrahBglone, but still worse than the

combination of words and ch3grams.
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Table 8.4: Results (F; measure) for soundex representation with SMART-ltc weighing.

| Data Sef sdx|sdx+ch3gramword+ch3gram

set02 ||88.4 90.2 90.7
set03 ||94.4 96.1 96.1
set04 ||82.2 87.6 88.2

8.6.2 Weighting of linguistic units

Different linguistic units will contribute to the classifiton result to a different degree. It
should therefore be favourable to weight more importantsuidi9]. As this cannot be ac-
complished with the feature extraction according to Figidea, the feature vectors have now
to be created separately from the different text repreientg then multiplied by a constant
weighting coefficient, and finally be concatenated (seeréi@il b). Results obtained with
the first method, and with the second method wvetfual unit weighting, are nearly identical
(they differ only between 0 % and 0.5 %, depending on the cbﬁ;a SThus the results from
the first and the second method can be compared with each other

The results for different word weights (the weight of chaead-grams was fixed at 1) are
included in Figures 8/4 to 8.G&lécvalgraph). The word weight which leads to the bést
measure is listed in Table 8.5 for each data set. In almosiaks, word weights not equal
to 1.0 perform best, but the increase in performance, compared,é@ = 1.0, is usually
not very high. The best word weights are in the range betvieeand3.0, usually greater
than1.0. One exception is the macro-averagédmeasure fosetO4 with its best value at
wword = 10. Hence, one can conclude that words carry more informatimutatopics than
character 3-grams, but the contribution of 3-grams musbaateglected.

Table 8.5: Best F; measures for different word weights wy,orq, Obtained with voted SVM.

micro-avg macro-avg
Data Sef max. F! | at wwora|| Max. Fi | at wworg
set02a 90.7 1.5 39.2 1.5
set03 96.1 |0.8,1.0| 71.2 3.0
set04 88.1 2,3 37.0 10

One striking fact is that classification performance deseseonly slightly when switching
from set02a (where the classifier has to choose among 22 classesgt@d with its 827
training classes.

3For micro-averaged’; measures.
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8.6.3 Couplers for non-probabilistic SVMs

As already described in Section 3.5, SVMs are binary classifi.e. they can only distinguish
between two classes. For multi-class categorisation, tieeagainst-one approach (see Sec-
tion[3.5) was applied. For non-probabilistic SVMs, Sect®h presents the standard voting
coupler and introduces the new decision value and distanggers that are used to combine
the K'(K — 1)/2 binary predictions.

The performance of these couplersset02a andset03 was evaluated (see also [34]). The
corresponding”; measures are depicted in Figures 8.4 and 8.5.

One problem arose when computing the distances based ofatisifiers ofset04 was that
some 259 out of 341, 551=0.1% ) binary SVM models had values gtv|| ~ 0. The distance

to the hyperplane of such a model will thus become very langkdistort the results. Indeed,
the distance coupler always predicted one single clasepamtiently of the test document,
but dependent on the word weight vectafoq. Typical, non-distorted summed distances lie
around 250, while distorted sums are ab®utl(0®! There are three approaches to tackle the
problem:

1. Very small||w|| indicate that some class pairs cannot be separated very®@redbsing
a kernel other than the linear one might help to improve théopaance.

2. An analysis of the binary classifiers and the training doent frequencies revealed that
261 out of 827 training classes have at least one binary maeitlela "singular” value
of |[w|| =~ 0. 181 out of these 261 classes consist of three or less tgadonuments.
This indicates that training topics with a very low numbeiasfociated documents are
the dominant cause for the observed numerical problemduéing documents whose
topic appears very infrequent should help. The disadvantdghis approach is that it
decreases the number of training classes, i.e. the numbapio$ that can be potentially
detected.

3. Ignore the distance results for the models Wigh| ~ 0. This approach, just as the first
one, does not not require reduction of the number of traitopics.

It is difficult to judge a-priori which of the three approashis best. For the first algorithm, a
RBF kernel was chosen with the standard parameters b&vm this kernel performs well
for probabilistic SVM. It however turned out that this apach cannot solve the problem at
hand.

To analyse the second approach, a new training set was @teatecontains only those topics
that appear in at least 4 documents. It covers 560 topics ,ir3B0documents. The test set
remained the same. The results on this test set were disdajmgpi just as inset04, only
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one single topic was predicted for all test stories. Furthsts with a decreasing number of
training topics were not performed, as only a significantiotidn of topics seems promising.

The third approach revealed to be the best one; the perfaenaalues seem virtually unaf-
fected by ignoring (i.e. not testing on) binary models wjth|| =~ 0 (see Figure 8.6).

The reason thdtw|| ~ 0 is that there are several features in the training set tlesassigned
to more than one class (by being separately listed withréiffeclass labels). This fact was ob-
served at a late stage when most experiments were alreagyetent as ignoring models with
zero||w|| doesn’t change the results, no experiments with a new trgiset were conducted.

When looking at the results of all data sets, one can see thatoting coupler is usually the
best one, both for micro and macro averaging. One excepdidimei micro-averaged results
of set02a: For highwyer, the distance coupler outperforms the voting coupler. Weertew
couplersdistanceanddecision valugend to perform better with highew,,.q, ONe exception
being the micro-averaged results s#t04. The voting coupler is only slightly affected by
changing the word weight.

8.6.4 Couplers for probabilistic SVMs

Experiments using probabilistic SVMs could only be perfechwith the data setsaetOZaM
andset03 (see also [34]). The training set 8&t04 contains several classes with only very
few training stories assigned, and can therefore not be tasegliably estimate the sigmoid
parametersd, B using cross-validation. Experiments eat02 andset03 were conducted
without using cross-validation, but the results signifibadiffer from those obtained with
cross-validation. As theory (see Section 3.5.2) suggésisdross-validation is the correct
way, experiments oset04 were discarded.

Two SVM kernels were tested for the seven couplers for pritisab SVMs described in
Section 3.5.2: linear and RBF. For the RBF kernel, the standaedvers of i bsvmwere
used. The sigmoid parametetsB were estimated by five-fold cross-validation of the tragnin
set. The results for the RBF kernel are depicted in Figuresr&IBa8. Forset02a and micro-
averaged; measures, the overall best coupler is pkpd. Vote-probwighti2e best for large
values ofwyerg, but cannot outperform pkpd. Gret03, vote-probwghtl performs best, but it
is not on top forall wyog. With macro-averaging, pkpd€t02a) and minpair, markov, and
pkpd (set03) show peak performance.

4Cross-validation cannot be performed set02, because it contains a topic with only two stories.s&t02,
these two stories are removed.
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Figure 8.4: Performance of three non-probabilistic SVM couplers on set02a.

One disadvantage of the voting coupler is that it sometirees (in 18 out of 443 test doc-

uments) produces the same posterior probability for maxa tine class. Its class prediction
is therefore sometimes ambiguous. For the tests preseateddne out of the tie classes is
chosen at random.

The linear kernel performed worse than the RBF kernel. Thisiieedan interesting result,
because for non-probabilistic SVMs, the best kernel wasiear one. To our knowledge, the
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Figure 8.5: Performance of three non-probabilistic SVM couplers on set03.

fact the best kernel changes when one changes from npSVM\WWIp&as not yet reported
in the literature. The detailed results for this kernel asedepicted here, but are included in

Table 8.6.

It is interesting to note that for npSVM couplers, the parfance increases with,,q Nearly
monotonically, but the same is not true for pSVMs. Here, fhaneasures tend to go up
and down. This may be a consequence of the biased estimdtiba posteriors: with high-
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Figure 8.6: Performance of three non-probabilistic SVM couplers on set04.

dimensional features, but relatively few training exarmsplaany features will lie on the mar-
gin, i.e. g(x) = 1, so the estimation will be biased towards the margin [62].s€nealidation
to estimate the sigmoid parametetsB can weaken, but not remove this effect.
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Table 8.6: Summary of best F; results for SVM classifiers (vpl,2 = vote-probwghtl1,2). The
best result of each line is printed in bold.

npSVM pSVM pSVM
linear kernel RBF kernel linear kernel

averaging|| coupler Fj [coupler Fy |coupler Fy
set02a

micro distance 90.9pkpd 91.3| minpair 90.9

macro voted  39.2pkpd 43.4/ minpair 43.7
set03

micro voted 96.1vpl 96.5| ht,markov,vp2 96.

macro voted  71.2minpair, markov, pkpd76.9|ht 73.6
set04

micro voted 88.1— — |— —

macro voted 37.0— — |— —

8.6.5 Statistical tests for significant difference of classifiers

Although the coupler with maximurf; value can be clearly identified, there are several cou-
plers with nearly the same performance. The question anikether the couplers’ difference
in performance is statistically significant. One widely @gted method to test for significant
difference is McNemar's test [22, 62] (also known)&stest): They? statistics is computed
for every coupler pair (with fixedv,og). x* depends on the number of test stories in which
two couplers agree or disagree (see Appendix A for detaflf)e computed valug?, which

is an estimate for the real, but unknown vaiie is greater thai.8, the two couplers can be
assumed to be significantly different; this assumption isenaith an error rate of 5%. Note
that in order to calculate the? statistics, one counts the overall number of correct orrirea
predictions, and not a per-topic average. This corresptmdse micro-averaged precision
measure, whereas the evaluation measure used Fgres the harmonic mean of precision
and recall. Hence, there are cases where the differenEglmétween two couplers is low, but
x? is high, and vice versa. Even more, cases were observed whereoupler had a higher
F) value, but they? statistics suggested that the other one was better.

McNemar's test was applied to the predictions of convemtidVMs, and to probabilistic
pSVMs with RBF kernel. For everwoq, the x? statistics between all coupler pairs was
computed. For the,q at which the best performance was observed (cf. Table 86)eB.7
lists those pSVM couplers that are significantly worse thanlest performing coupler. It
also notes the corresponding value. The best coupler is significantly better than only one
or two other couplers. In other words, it is not significardlfferent from four or five out of
seven couplers. Among the conventional SVM couplers, tesaa value coupler performed



Chapter 8 Topic classification with Support Vlector Machines 191

significantly worse than the distance and the voting coupléne latter two do not differ
significantly.

Taken together with the fact that there is no coupler thdias best, and that the best coupler
changes frequently when varying,.4 (See Figuress 8.7 and 8.8), it can be concluded that the
correct choice of a probabilistic coupler for spoken doconwassification is difficult. For
every setting (dataset, classifier parameters), anothgr@omight be better, but our results
indicate that the difference in performance between th@leosi is not necessarily significant.
The new couplers vote-probweightl, 2, and distance havadiantage that they are easy to
implement and have low run-time requirements. As for the [dS}uplers, this is also true
for the voting coupler. But the voting coupler will often letdties in class prediction, which
will almost never happen for the new couplers.

These facts indicate that the new couplers, except for theside value coupler, should be
preferred over the other known couplers.

Table 8.7: Significantly different couplers according to McNemar’s test. Results are listed only
for pSVM with RBF kernel. For every data set, the wyoq Was chosen that yielded
the best micro-averaged F; measure.

| data seff wworg| the best coupler ... is significantly better thagfy ... ]

set02a| 1.0 |pkpd minpair (6.1), vote (10.6)
set03 || 3.0 |vpl vote (5.9)

8.6.6 Experiments on the Reuters data set

To see whether the findings of this chapter hold also on ardifte widely used data set, the
most important experiments were repeated on an English Rexdepus. It was widely used

for text categorisation by many researchers, which mal@seof the most favourite standard
test collections. The set consists of the ten most frequategories of the Reuters-21578
corpus [2], ApteMod version. Although it does not contaiolegn text, but newswire text, it

can nevertheless be used for comparison, as classificdtigmoken documents and written
text are not very different. 5915 text documents were usettdming and 2307 for testing.

The bestF; measures on the Reuters data set for conventional SVMS, aqpbidMs with
linear and RBF kernel are listed in Table [8.8. The following ifiigs were observed:

e Giving weights to the word sub-feature vectors is favowrabl

e The decision value coupler is significantly worse than thengocouplers (conventional
SVMs).
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e The distance coupler is not statistically significantly sethan the voting coupler (when
measured with micro-averaging). It is even better than titeng coupler when mea-
sured with macro-averaging.

e There is no best coupler for pSVMs. The performance of maspless, including the
two new couplers, does not differ significantly.

e The bestF; measures were produced by pSVMs, not by conventional SVMs.

¢ In contrast to the findings on the German data set, the beseékiEr pSVMs was the
linear kernel, just like the best kernel for conventionalM®/ This indicates that the
fact that the best pSVM kernel on the German data set was the BBEIkdoes depend
on the data set and is not a general property.

Thus, all main findings of this chapter could be reproducetherReuters set.

Table 8.8: Summary of best F; results for SVM classifiers on the Reuters data set (vpl,2 =
vote-probwghtl,2). The best result of each line is printed in bold.

npSVM pSVM pSVM
linear kernel | RBF kernel linear kernel
averaging|| coupler F} |coupler Fj |coupler F
micro voted 94.2vp2 92.5 minpair; markov; pkpd94.5
macro dist 86.1vp2 84.6 pkpd 88.2

8.7 Conclusion

For the German data sets, Table!8.6 lists the best couplemnetntional SVMs with linear
kernel, and probabilistic SVMs with linear and RBF kernels.Bwoiicro and macro averaged
results are included. The best result of each line is primtdabld figures in order to be able
to compare npSVMs and pSVMs at one glance. In all cases, tdimpilistic SVMs yield the
best results. In three of four cases, this was accomplishiédtiae RBF kernel, in one case
with the linear kernel. For conventional SVMs, the votingupter is usually the best. For
pSVMs, there is no single best coupler that performs sigmifly better than the other ones.
As explained above, the probabilistic SVMs could not be deedet04 because it contains a
lot of training topics with very few stories each.

For the first time, the performance of conventional and plodiséic couplers on text classifi-
cation is investigated. The main findings of this chapterlmasummarised as follows:
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e Among the examined term weighting schemes, SMART-ltc slibtire best perfor-
mance. This scheme was also found to be the best for topiediug for topic detection

[7. p. 11].

e The combination of different linguistic units into one feead vector improves the classi-
fication rate. Giving more weight to the word sub-vectorsisurable.

e Among the couplers tested on non-probabilistic SVMs, thed@oupler is usually the
best one. The incorporation of confidence, as implementethéyew distance and
decision value couplers, surprisingly did not help to iasethe classifier performance.
On the other hand, the distance coupler does not perfornifisagntly worse than the
voting coupler.

e For probabilistic SVMs, there is no best coupler. Differseattings bring different best
couplers.

e The newly introduced coupledistance vote-probweight Jandvote-probweight 2o
not perform significantly different than the other coupldiscussed here. The advantage
of the probweight couplers over the other couplers is they tire easy to implement,
have low run-time requirements, and will not predict mom@tlone correct class (ties).

e The best classifier parameter settings are found among dbalpitistic SVMs, in most
cases using the RBF kernel (German data) or the linear kernglié data set).

e The best kernel for conventional SVMs (German and Engligla)dand for pSVMs
(English data only) is the linear kernel. For npSVMs and tle¥ran data, the RBF
kernel is usually a better choice. This latter result is @untteresting, because text
classification is usually thought to be a linearly separtdd&, and almost always linear
kernels are used (both for non-probabilistic and for prdistic [24] SVMs).



Chapter 9

Overall system performance

The experiments with the topic classifiers described in tleequing chapters dealt with op-
timal topic boundaries only. While this setting is ideal fontparing and analysing the topic
classifiers alone, it does not tell anything about the peréosrce of the combined system of
speech recognition, topic segmentation and topic claasific.

This chapter presents experiments on the whole system., Tthalso answers the question
whether the errors of the topic segmentation module havéanmugact on the topic classifica-

tion rate. If the segmentation did only insert, but nevertdraundaries, there might be a good
chance that the classifier will nevertheless perform webwelver, the segmenter also omits
true boundaries, so that the topic classifier’'s performaviltelefinitely degrade.

This chapter analyses two topic classifiers: Naive Bayes afd.She hybrid HMM/NN
classifier is omitted because it already turned out thatwasse than the Naive Bayes (see
Section 7.3). The presented results include the perforeahthe topic classifiers both with
manually and with automatically topic segmented test data.

9.1 Experiments with Naive Bayes

The Naive Bayes approach (Section|7.2) was implemented utitadackground model for
off-topic stories. TheOff-topiclabel is assigned to a story if the classifier’'s predictios Aa
confidence value below a pre-defined threshold (see Seco® for details).

The training and test set used for Naive Bayes experimes&t@d. As usual, the training data
consists of manually written summaries of TV and radio boaats which are topic-labelled.
There are 1051 different topics in 154,143 training sumasartm he test data consists of ASR
transcriptions of TV news shows created by the ASR moduls.tite same data that was used
for all SVM experiments (see Section 8.1), except for stemgnaind stop word removal. Both

122
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the training and the test data were stemmed, and stop womgsremoved. The tool used for
stemming is a Perl script by the University of Dortmund [6Tfe stop word list was manually
created and contains 149 entries.

Two stories in the test set contain a topic that was not tcaiaad consequently can never be
detected.

For datasetO1 with the baseline HMM classifier system, the confidence tiokkwas varied
in the range 0f0.5,...,0.98]. For every threshold value, thi§ measure (micro and macro
averaged) was computed. The results are depicted in Fi§utgs) and (b). Sub-figure (a)
shows the performance on a test set that was created withathamserted (i.e. “correct”, or
reference) topic boundaries. The topic boundaries of thtestt treated in sub-figure (b) were
created with the topic segmentation system presented rtehé.

The best combination of; micro and macro averaged values is listed in Table 9.1. For
both test sets, with automatically and with manually creatpic boundaries, the confidence
threshold can be set to 0.78.

Considering the fact that the classifier had to choose amoh{ tpics, the micro averaged
value of 83 % for the automatic topic boundary set is quitedgdtowever, the macro averaged
value of 6 % is disappointing.

In the experiment setting presented above Qffetopiclabel was merely assigned by rejection
based on the confidence value. A different experiment waduwiad without a confidence
measure, but where the classifier could directly assig®ffropiclabel because a model was
trained for it. Results, however, were worse than those vatifidence.

Table 9.1: Classification results of the baseline system on the data set01 for automatically and
for manually segmented topic boundaries.

| topic segmentatior] F; micro averaged F; macro averaged at confidence value

SVM
manual 88 37 -
automatic 86 16 -
Naive Bayes
manual 84 10 0.78
automatic 83 6 0.76 and 0.78
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Figure 9.1: Classification performance (measured by F3) vs. varying confidence measure
threshold for the baseline system. Data set is setO1, with manually (a) and auto-
matically (b) segmented topic boundaries.

9.2 Experiments with Support Vector Machines

For the SVM classifier, the training and test data has to beesepted in the vector space
model according to the feature extraction method preseant&ection 8.3. However, for the
training set ofset01, this results in a total feature file size of 632 MB. The tragnaf SVMs
based on such a big data set is very time consuming. It becewsgsinfeasible to train if
probabilistic SVMs are to be trained, because of the cradigation needed to estimate the
sigmoid function((3.33). Foset01, such training takes several days.
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Therefore, it was decided to take a data set that is commatabetOl, but has less training
stores. The data set that corresponds besetdl (which is used for the Naive Bayes eval-
uation) isset04. It has got 827 different training topics in 21,376 trainstgries (see Sec-
tion/8.1). The smaller number of training stories per togiesinot mean that the training of the
SVMs is less accurate (compared to Naive Bayes), since SVEI$ i@aver training examples
than the generative models of Naive Bayes. This latter fadtiesto the fact that SVMs only
estimate the decision plane between two classes, and sstdiktributions, and also because
SVMs do not suffer from the curse of dimensionality.

The SVM performance on data s&tt02a with its 22 topics compared teet04 does not
change in the same way as the increase in topic number wog@gest Therefore, one can
safely assume that the performance of SVMs on a 1051 topi¢tlsetsame number as in
set01) would not be much different.

The conventional SVM (npSVM) has a classification perforogeof 88.1 {; measure, macro-
averaged) on a manually (i.e. optimally) topic-segmesiet?4. The corresponding macro-
averaged; measure is 37.0. With the same data, but now the topic boiasdairthe test set
being determined by the topic segmentation module predent8ection 6, the topic classi-
fier's performance decreases: The micro-averageoheasure goes down from 88.1 to 85.1,
and the macro-averagedd measure from 37.0 to 15.2. These figures can also be found in
Tablg 9.1, together with their Naive Bayes counterparts.

9.3 Comparison and conclusion

When the SVM approach is compared to the Naive Bayes apprdaeltonclusion is that
SVM performs better. It is even significantly better when paming only the macro-averaged
measures. This means that SVMs do a much better job in asgigppics to on-topic stories,
i.e. to stories that are of interest to any media monitorimgt@mer. However, especially with
automatic story boundaries, the performance on on-topigest is still unsatisfactory. The
training and test set given are “real-life” data sets. Tfuees several exceptional challenges
have to be taken into account when analysing the classdicagisults:

e There are a lot of training topics (827 $et04), but the test set contains only 23 topics.
This is of course realistic, as only a small subset of thecfhat are to be monitored
will actually appear.

e The training and the test set come from two different domaitagnually written sum-
maries (i.e. nearly error-free text) make up the trainirigwhbile the test set is the output
of an error-prone automatic speech recogniser (ASR).
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e The ASR'’s output is not very good for reports which do not talee@ in a TV studio:
Often, even a human cannot identify the meaning of such adrgotion, because many
words are mis-recognised. Only when reading the transenigind simultaneously lis-
tening to the audio, the meaning of the story becomes clear.

Given these items, the micro-averaged performancé;of= 88 is good, as is the macro-
averaged value of; = 37 (for manual topic segmentation). The latter means that aseh
stories that are of any interest to a media monitoring custpabout one third is correctly
assigned — given the above challenges, this shows a goautpearice of the classifier. Even
more, a 100% performance is not needed, because everytyady the developed system
would of course be cross-checked by a human.

It turns out that the topic segmentation performance hasggit¢ a big impact on the macro-
averaged topic classification rate of the whole system. NHdsS(and even more, the Naive
Bayes) have problems in determining the correct topic of By stadt is split (by an imperfect
topic segmentation) into two or more parts. Hence, all warfda story are needed to cor-
rectly classify it. This coincides with the findings by Jomweh that most words of a story are
relevant [42].



Chapter 10

Unsupervised Topic Discovery

One challenge in the media monitoring application is thatttipics change rapidly. In the
data sets used for this work, there were often topics thatynemerged in the test set and
were therefore not present in the training set. With a fixes&eopics, such new events can
of course never be detected. One remedy is to continuouslgtaghe topic models, which
means retraining them at least every day. The choice of nenestused for training can be
done in an unsupervised way so that no person is involved B@¢h an approach is beyond
the scope of this work, since the set of topics is assumed tiodu

One common drawback of all mentioned approaches is thatrikey a pre-defined list of
topics to be detected. For the scenario of media monitovihgre the set of customers (those
that will receive the media alerts) is known beforehand séricted topic list is useful. How-
ever, for media monitoring for e.g. private customers whoaodibnecessarily have a fixed topic
profile, it would be better to find a different approach. On&apis not to provide any pre-
defined topic list at all, but to derive it from the data itselthis approach is almost totally
neglected in the literature, except from the work by SrezsavSista et al. [80, 83, 82]. The
advantage of this approach, called Unsupervised Topicabesy (UTD), is that there is no
need for a human-labelled training set, and that there isungalm interaction in the finding of
the topics.

The benefits of UTD for users is the assignment of a set of mgéulitopic labels to each story
(for example, in broadcast news), and the user can quickky$e the labels to find interesting
stories instead of having to watch each story. There is nd tepre-define what the user is
interested in, i.e. to define his/her topic profile. As theide@re not fixed, newly emerging
topics can be easily found. In contrast to the previous @rapivhere it was assumed that one
story has got only one topic label, in this chapter it is assdithat usually more than one label
is assigned to each story. Only the conjunction of sevepat t@bels for one story will allow
to get an idea of the contents of the story.

127
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10.1 Overview of Unsupervised Topic Discovery

The goal of Unsupervised Topic Discovery (UTD) is to assigmic labels for each text doc-
ument of a document collection without human interactiordoEument can consist of plain
text, for example from newspaper or news websites, or it @thb deficient output of a
speech recogniser. As throughout the rest of this thesstetmsdocumentand story are
used interchangeably.

According to Sista [82], “The unsupervised topic discovatiempts to replicate the human
[topic] annotation process”. In contrast to superviseddapassification, where a human
annotator assigns presumably true topics to the trainirguments, in UTD there are nor
training stories annotated by humans, nor a pre-definedflispics which should be detected.
Instead, a topic list is automatically derived from the doemt corpus. This step, called
Initial Topic Labelling also automatically annotates each document with sevepads A
training process uses these topic annotations to find atstatimodel for each topic, which
subsequently is used for re-classifying the documefitsal Topic Labelling. Before Initial
Topic Labelling, aPreprocessingtep, among other things, identifies phrases in the docment
These three steps are depicted in Figure|10.1, and will biaievggl in detail in the following
sections.

10.2 Preprocessing

The preprocessing steps follow largely the approach bya$82]. The following steps are
performed:

e Stemming
e Phrase creation
e Stop word removal

The name identification step used by Sista, which identifeeses of persons, places, and
organisations, is omitted due to lack of an appropriate. tdolyway, he reports that this step
has very little effect on the final topics. The text is themsteed using the Snowball algorithm
for German [5]. Snowball is a framework that allows the d@aand integration of stemmers
for many languages, or as the authors put it, it “is a smaligfprocessing language designed
for creating stemming algorithms for use in Information Retal.” Many stemming rules for
languages such as English (equivalent to the well-knowtePstemmer), German, Swedish,
or even Finnish were created and published on the Snowbakitee The German stemmer
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Figure 10.1: Overview of Unsupervised Topic Discovery.

tends to remove suffixes from the words more rigidly that tteensner from University of
Dortmund [61], i.e. the stemmed words are somewhat shorter.

Phrase creation

The next preprocessing step is to find phrases in the text amdbioe the words that make
up the phrases. A phrase consists of more than one word arf@ade a better description
than a single word. For example, the phrase “United Natiamshore descriptive than the
words “United” and “Nations” alone. The goal of the phraseation is to find meaningful
phrases, and then to combine them. After this step, the t&sricellor sch’rderﬁ will become

“chancellorschibder”.

1The output of the automatic speech recogniser consistsvefrloase words only.
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Only a sequence of words that substantially decrease tleeiplgsn length (DL) of the entire
corpus is transformed into a phrase. The description leisgtte number of bits that is needed
to represent the whole corpus in a computer memory. It ctangfdwo parts: the coded text,
where each word is represented by its numerical integek|jradel a code table (or vocabulary)
that contains the string of each word and the correspondidgx. The initial description
length is therefore (assuming 8 bits per byte, &id;) the number of characters in word;)

DL = size of vocabulary table size of coded text (10.1)
= D 8W) = D (W) log, p(Wr). (10.2)
W;ecorpus W;ecorpus

c(W;) is the number of time8l; appears in the corpus. Note that both the lower-easand
the upper-cas@/; refer to a word, but the meaning of the index is differentmeans the-th
word in a text or in a sequence, wheréésstands for the-th word in the vocabulary.

When two terms are merged into a phrase, the phrase has tolbdadanto the vocabulary
table. The new entry in the vocabulary does not contain tiregstepresentation of the whole
phrase, but just two indices which refer to the words in theapd. Assuming 32-bit integer
indices, the entry occupies 64 bit.

Phrases can also contain more than two words, but in oneegihghse combination step, only
two terms (words or an already existing phrase) are combifidet a three-word phrase, first
two words are combined into a phrase (e.g. “gerhardistdn’ — “gerhardschibder”), and in
the next step, the third word is merged with the initial plerashancellor gerhardchibder”
— “chancellorgerhardschibder”.

To get the change in description lengthD L(w,ws), when two termsuv, w, are merged into
one phrase, one has to add the change caused by remavabofl ofw,. The change in bits
caused by removal af; is symbolised by/;, the change in bits caused by removak@fis
symbolised byl,, whereT;, T, < 0. Note that not alkv; disappear, but only those which are
followed byw,. The easiest way to calculdlg is to count the bit change faill w,, and then
to subtract the bits for which, is not followed by ws,:

Ty =c(w) logy p(w)
— fe(wn) — c(wrwn)] log, (C“‘”) - CWW?)) | (10.3)

N — c(wywy)

In (10.3), the number of times, is not followed byws,, c¢(w;) — ¢(wyws), is divided by
the total number of terms in theew document corpus (after phrase merging). A descriptive
explanation off; is thatall occurrences ofv; are removed from the old text (before phrase
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merging), and that only those, are put back into the new text that are not followeddy 75
can be calculated in a similar way.

The number of bits for the new term, w,, the change in bits for all other terms, and the 64
bits for the new entry in the vocabulary also contributeM® L(w,ws). Empirical observa-
tions have shown that the change in bits for all other ternmiributes least ta\ D L(w; ws)
(ignoring the 64 bit constant). The exact formula foP L(w,w,) can be found in eq. (4-2)
in [82].

The algorithm for creating the phrases is very similar tae&sapproach [82, p. 91]:

Algorithm 10.1 Algorithm for creation of phrases.

1. Replace each term with its index in the vocabulary table

2. Compute the word count$w), phrase counts(w;w,) and the total number of terms in
the corpusV

3. CalculateA D L(w,w-) for each phrase that appears at least three times. Do ndécrea
phrases across document boundaries, and if one term is eatdpWord consisting of
one or two characters are also ignored for phrase creation.

4. If ADL(wyws) < threshold, replace the separate terms, with the phrasev;ws.
Update the vocabulary if a phrase was created.

5. Repeat steps 2 to 4 until no new phrases are created.

A good value for theA D L(w;w,) threshold is -10. Ignoring phrases that appear only once or
twice significantly speeds up the algorithm. After phrassation, 154 manually selected stop
words are removed from the documents.

10.3 Key term identification

The next step of the UTD algorithm is to identify so-calleg kerms, i.e. the most relevant
terms of a document. For each story, the corresponding kestare used as the initial topic
annotation for that story; the key terms are used as topaddbemselves. However, this topic
annotation is only able to find topic labels if the label appee a key-term in the story. But a
story may also have a meaningful topic, even if the corredmgrword does not appear in the
text. To overcome this drawback, a classifier is trained Wiehinitial topic labels as reference
labelling. The documents are then re-labelled by clasgifghem with the trained models.
This approach allows the detection of topics even if theegsponding term does not appear.
One way to get the key terms of a document is to assign a TF-I&i§hw(see section 8.3.2 on
page 102) to every term in a document. TF-IDF is a term impegaor relevance indicator; it
is a measure for the relatedness of the term to the conteatda¢ument.
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For every term of a document, its TF-IDF weight is computedoading to eq.[(8.2). For
each document, thé = 5 terms with the highest weight are chosen as initial topielab
for the document. These top-ranking terms are catleydterms It is not always possible to
select exactly key terms, since in several documents there are terms thatdumal TF-IDF
weights. If the(/ + 1)-th term has got the same weight as thth term, it also becomes a
key term. And so do the following terms with the same weighar &ample, if the 4-th to
7-th term (ranked according to their TF-IDF) have got the sam-IDF weight, then the top
7 terms become the initial topic labéls

If a top-ranking term appears only in one or two documentsctirresponding topic will have
only few training documents in the subsequent re-classibicasstep. Consequently, terms
which appear only one to three times in the document cotlactre skipped and do not become
initial topic labels.

10.4 Document re-classification

According to Sista’s observation, already the key termd,tharefore the initial topic weights
describe well a document. 92 % of the top-ranked key termsamect, while 81 % of the
4-th ranked and 68 % of the 5-th ranked key terms are corr@cfl@le 5-8]. But the initial
topic labels are restricted to those terms that appear isdhesponding document. A topic
label that would well describe a specific document will ndverchosen unless it appears as
a term in this document. To overcome this drawback, Sistgestg to train Hidden Markov
topic models using the initial topic labels and to re-clgsall documents using the trained
models. This approach is described in the following sectim alternative to Sista’s Hidden
Markov Model-based classifier is a SVM classifier (Chapter 3page 14), which will be
treated afterwards.

10.4.1 HMM topic classification

In contrast to the HMM topic classifiers presented in chaptan page 80, the HMM classifier
used for the UTD task is able to explicitly deal with multigtepic labels per document. It
is based on the assumption that every word in a story is geeby a different topic (see
Figure 10.2). When a story starts, a set of topics is chosdnanirobability of P(Set). This
set remains fixed for the story. Among tlié topics in the set (which always include the
background modeGeneral Languageone topic model (one single HMM stat€) is chosen

2 Sista’s algorithm always chooses the fog- 5 terms. Maybe he did not observe terms with identical weights
due to a much larger document collection (45,000 comparealighly 500 used here).
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with P(T;|Set). A word is then emitted with a probability @?(1V,,|T;). Before the next word
is emitted, again a topic has to be chosen. Thus, every wordrginate from an individual
topic model, independent of other words. The following ¢caists hold:

> P(T|Set)y=1  and (10.4)
T;eSet
> PW,IT) = 1. (10.5)
WneT;

The General Language model collects all words that are reatifsp of the other topics in the
set; a General Language topic label is added to the initiltaofeachstory.

TO: General Language
P(W,,IT))

e
o
—
p—s

Document
End

Document P(Set)

Start

>4

V

Figure 10.2: HMM Topic Set Model for UTD.

Estimation of model parameters

All documents, which are annotated with initial topic lafgbrm the training set to estimate
the HMM parameters. The parameters are chosen in such a atthdy maximise the like-
lihood P(d|Set) = (T]}, P(d;|Set))"'", where ad; is one of then documents that have the
Set of topics as reference labels.

From the training data, it is known which words are emittedt, ibis not known by which
HMM state (by which topic). The solution of the maximum likedod (ML) optimisation
problem is the EM algorithm (see Section 2.2). The hiddem @athe information about
which topic model (HMM state) has produced the observed svofda document; it is only
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known (from the set of topics assigned to the training dogus)avhich topic set has produced
the document.

Each topicSet can be considered a Hidden Markov Model with the parameters
e P(T;|Set) and
o P(W,|T;).

Unlike the usual HMM parameter estimation (chapter 2), whee transition and emission
probabilities are estimated separately for each HMM, hleeetdpic distributions? (W, |T;)

are calculated globally for all HMMs (henc&(W,,|T;), and notP(W,,|T;, Set)). Similarly, a
global transition probability”(7;|j € Set) is estimated (denoting the global (average) prob-
ability of a topic given that it occurs in an arbitrafet). The HMM-specificP (7}|Set) are
derived by scaling’(7}|j € Set) to sum to 1 for theSet of the HMM.

The EM parameter estimation is done according to Algoritlth21 Several remarks about it
have do be made. The denominator in (10.7) equals the pidipdbat the wordiV; has been
produced by th&'et of topics:

P(W,|Set) = Y P(T;|Set) P(W,|T;). (10.6)

T;eSet

The ratio in the same equation tells to what degree (betweamd(l) the topicl; (among
the topics in theSet) contributes to the wordll;. Since this contribution is summed over all
stories,C'(W;, T;) can be paraphrased as

C(W,,T;) =(average, relative contribution @f to 1V, )-
(# of stories.

The denominator in the calculation of the emission prolitzdsl(10.8) can be paraphrased as

(# of storieg - (size of vocabulary of;)-
(relative contribution off;, averaged over all words in the vocabularyloj.

The vocabulary of a topi€); consists of all words that appear in stories labelled @ithSista
uses a different denominator for (10.8) (namely, the totaldrcount in all stories labelled with
topic 7;), which makesP(T;|j € Set) not being a probability since it might get larger than 1.
Even more, there is no “word count” implied in the above emunat (just a vocabulary size,
which is something different). Therefore, we believe hisatainator is not justified.

To understand the need for a bigsn (10.9), let us consider the following, simplified example
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Algorithm 10.2 EM-Estimation of parameters of HMM topic models used for UTD
1. Initialisation . Initialise P(W;|7;) by counting number of occurrences of each
word in those stories that are labelled witlh, then normalise to form probabilities
(aneTj P(W,|T;) = 1).
SetP(T}|Set) as the ratio of number of stories labelled withto the total number of
stories, and normalise for each story.
2. Expectation Step Estimate the counts of all (word, topic) pairs with

B P(Tj|Set) P(W;|T))
CW, T;) = Z o P(T;|Set)P(W,|T;)

Vstories T,€Set

(10.7)

3. Maximisation Step. The HMM parameters, i.e. the transition and emission fribba
ties, are re-estimated. To get the emission probabilifrescounts” (W;, T;) have to be
normalised:

C(thTj)
2 C(Wi, T;)

Vwords W; that appear
in the stories fabelled With;

P(WiT;) =

(10.8)

The transition probabilities tell how much a topic conttdsito the creation of a story.
They are estimated using

by C(Wi, T;)

YwordsW; that appear
in the stories labelled witfl";

" (# of stories - (size of vocabulary of;)”

P(T;|j € Set) =b; (10.9)
b; is the bias of topid; according to (10.12).

4. Steps 2 and 3 (Expectation and Maximisation) are repdatesgtveral iterations.

5. Un-biased transition probabilities are computed uskitigq) and a bias df; = 1.
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Assume topid; emits only two different words, but these words are typidal,gso that rarely
any other topic emits them. The numerator of eq. (10.9) ntiggr be

> C(W;,T;) = # of stories (0.95 + 0.91), (10.10)
and this would have to be divided by

(# of stories) 2
to getP(7}|j € Set) (ignoring the bias coefficient):

P(T;|j € Set) = 0.93. (10.11)

This means that althoudh has only two significant words, a transition value of 0.93 ldou
wrongly suggest that it emits most of the words. Hence, thsthiis included that is large for
large topics, and small for small topics:

> oWy
Vwords W; that appear
in the stories labelled witd";
by = d . (10.12)
> 2 C(Wi, Ty)
vT; vwordsW; that appear
in the stories labelled witl’;

Restricting topic models to support words

Sista only keeps those words in the topic distributié$’|7") for which PI%‘K) > 1@ They
are calledsupport wordsUnfortunately it does not become clear how exactly the sigoport
words are removed. One way would be to set their likelihaBdg/|T") to 0, before or after
the EM estimation (Algorithm 1012). The more correct wayoislo it after EM estimation, but

it saves run time to do it before.

Due to the zero frequency problem (see section 7.2.1 on|p2get likelihoodsP(W|T')
have to be discounted or smoothed before calculating thtefos P(7'|d). For the presented
UTD experiments of this thesis, aft(1V|T") are interpolated with the unconditional word
probability:

Pren Wi|T;) = 0.75 - P(W;|T;) + 0.25 - P(W;). (10.13)

3In his thesis|[82], he writes that all words wi (m? > 1 arediscardegdbut this is obviously a misprint,
since it would mean that those words are removed that ardfispéy significant for a topic.
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The interpolation weights are set according to Schwart4.d78], who also describe the
HMM topic classifier used by Sista [83].

For our experiments, it turned out that the restriction ef tihpic models”(1//|T") to contain
only support words is only a matter of reduction of run timéeTinal topic labels are almost
identical, whether words are removed from the topic modetsot.

Re-classification

Each document is classified based on the trained topic HMRISt is assigned a set of topics.
Since the initial topic labelling step can also be seen asd &f classification, this HMM-
based final classification is referred to as re-classifinatio

Given the training assumptions and the document genenatamess in Figures 10.2 and 10.3,
each possiblé&et of topics should be considered, and f with the highest posterior proba-

bility, P(Set|d) should be assigned as the classification result. Howe\ere eire hundreds or

thousands of topics, therefore it is computationally isfeke to compute the posterior proba-
bility for all combinations of topics.

Fortunately, it is sufficient for UTD [82] to calculate onlie (log) posterior probability of a
single topic,P(7}|d), and then to assign thE& best topics as topic labels:

(10.14)

P(T;15 € Set)ﬁP(Wt\Tj))

log P(T|d) = log P(Tj) + ) ¢(10g P(W))

YWied

Document
End

Document
Start

Figure 10.3: Assumed document generation for HMM training (compare Figure 10.2).

This formula treats each topic individually, and implieatteach word in the test document
has been generated by the same, unique tBp{as depicted in Figure 10.4). This is a clear
violation of the assumptions made for training, namely #sath word is generated by another
topic state (as shown in Figure 10.3). Most words of a docuraenattracted by the General
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Document
End

Document
Start

aaaaa

Figure 10.4: Document generation assumption made by eq. (10.14)

Language state, which is not reflected in (10.14). To accfountords that areiot created by
Tj;, eq. (10.14), incorporates a filtering functigrwith

if 2 >0
ox)=14" "= (10.15)
0 ifz<0

Although the usage ob is theoretically justified, it implies significant problertisat were
overlooked by Sista. Due tg, only zero or positive log probabilities are added. Thetrigh
hand sum term is therefore necessarily positive (or zena) tlae termog P(7}) is usually not
negative enough to make the log posterior probability batieg Talking about probabilities,
and not log probabilities, this means that the posteriob@bdity can easily become greater
than 1! This contradicts one of the fundamental propertiggababilities, and it is question-
able whether the resulting probability is still some kind‘nbrmalised” and can directly be
used for topic ranking. Compare, for example, the likelihasdd in conjunction with confi-
dence measures (Section 7.2.3). Itis not normalised, antheaefore not be used as a ranking
measure. Nevertheless, Sista reports very good UTD rassitig his approach [82].

Even more, we have observed that duetdor many, if not most topics and documents, the
sum term (last term in eq. (10.14)) is zero. The posteriobabdity of a topic given the doc-
ument then becomes the a-priori probability of the topi(T;|d) = P(T;). The P(7}|d)
values, and hence the topic ranking (which is done accortdiitf 7;|d)) then becomes com-
pletely useless. Therefore, a filtering of the probabild#iia was not performed for our exper-
iments. The exponerttis introduced due to the wrong independence assumptiorsese to

3 = 0.35 according to [79].

For each storyl, the posterior probability of each topic is calculated adow to (10.14), and
the best topics are chosen as the final topic labets of
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10.4.2 SVM topic classification

An alternative to the HMM topic classification as describedhe previous section is the
classification with Support Vector Machines (SVMs, see Gérapton page 14). As the UTD
task incorporates more than two labels, but SVMs can onlywih two classes, the multi-
class problems have to be broken down into binary problerhe SVMs used for the topic
classification in Chapter 8 on pagel 99 train a separate modehfth class pair (one-against-
one, see section 3.5 on page 26). This approach to muls-cltegorisation is not feasible
for the UTD task, since each document has got more than oméngéaopic. When training
the binary model fo(7;, T;), all stories would have to be excluded that are labelled Wit

T; andT;. This would unnecessarily reduce the amount of trainingetpand maybe even
prohibit reasonable model training for some topic pairs¢esithere are not enough training
documents.

However, with an one-against-all approach (Section 3Ib);aaning stories can be used (see
also [43]). The model for topi@; is trained with all stories that are labell@das the positive
class, and as the negative class all stories that do notHamong their topic labels. Non-
probabilistic SVMs output the class with the highest decisralue as the class prediction,
but they do not provide a ranked list of best topics. One cdhilok of ranking the classes
according to the decision value that was achieved with tineesponding binary SVM model,
but as was pointed out in section 3.5.1 on page 27, the dacisilnes are not comparable
across binary models.

A better approach is to estimate posterior probabiliit€$; |d) with probabilistic SVMs (pSVMs,
Section 3.4), and then to rank the topics according to théepos probability. However,
pSVMs deliver only an (estimate of a) binary a-posterioaissl probabilityP(7;|d, modelT;)

for each model. An estimate fd?(7}|d) can be easily derived by normalising the binary
posteriors to form a probability: Divide alP(7;|d, modelT;) by the same constant =

> vz, P(Ti|d, modelT;) so that

1
=) P(Ti|d,modelT;) = 1,  then (10.16)
¢ YT
1
P(T;\d)  — P(T;|d, modelT,). (10.17)

The final topics for each documedhtaire the best topics ranked according to tHe(’;|d).

For the topic re-classification with SVMs, each documenej@esented in the vector space
model (see section 8.3.1 on page 102 for details). From the representation of a document,
a (sub-) feature vector is created; the same is done for theacter 3-gram representation.
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Both sub-features are concatenated to get the final featuterveThe word sub-vector is
weighted withw,,og = 1.5, since experiments in chapter 8 indicate that this choitendéads

to good results. The trade-off parameteérs set to 1.3, just as for the experiments presented
in chapter 8.

From a theoretical point of view, the SVM approach allowseaoker representation than the
HMM approach: there is no need for a filtering functipn As SVMs are discriminative
classifiers, and in contrast to generative HMMs that esenpaobability density functions
(pdf), they need fewer stories per class to train a model. é¥ew the estimated pdf allows
insight into the degree of contribution of certain words tsp&cific topic. This information
cannot be easily taken from the SVM models. The experimentisa following section will
compare the performance of both approaches.

10.5 Experiments

For the texts used for the UTD experiments, it was observattiie two values (1) size of the
vocabulary table and (2) size of the coded text contributeoat equally to the DL of the text
corpus.

10.5.1 Data sets

Tow different data sets were examined:

e ASR set The first set consists of the automatic transcription of ?¢droadcast news
from two weeks in October 2001. This is the same data set #sabéen used as test set
for the SVM topic classification experiments This is the salag set that was used as
test set for the SVM topic classification experiments (cbag).

e DLF set. The second set was extracted from the mail newsletter setiébDLF
(Deutschlandfunk)adio channel. It contains the manuscripts of the bi-hotivg-
minute radio news, is usually error free, and is segmenteordmg to topic boundaries.
591 stories were extracted from four broadcast manusqugtslay, covering the first
two weeks in December 2004. After stop word removal, 26,5afdw are left over.

Both sets cover two weeks, and have roughly the same numbé¢oradss The second set,
however, consists of (nearly) error free text, stories anemshorter (less than one minute),
and variance of story length is smaller than the ASR set. Thsequent experiments were
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usually conducted with both data sets. If no data set is @fglimentioned, the statements
and conclusions are valid for both sets.

Neither data set contains a reference topic labelling thatoe used to automatically evaluate
the UTD results. While the ASR set was labelled with topicguider media monitoring (see
the previous chapters), only few stories contain labelsdpifor theOff-topiclabel), and only
one label per story. Even more, these labels do not neclgstedirmuch about the content of
the story, but more about who might be interested in the stdrgrefore, this labelling cannot
be used for UTD.

Manual evaluation is very time consuming. Several peopenaeded to check every topic
created by the UTD algorithms, and if several runs with diffg parameters shall be evaluated,
this approach becomes infeasible. Sista [82] has chosestbfi@s to be evaluated, and let
humans judge whether a topic is true or has to be discardedvEoy topic rank, the precision
of the UTD topic annotation is calculated separately. Tihoaligfraction of true topics that
were found by the system) is not computed, since this wouddi manual annotation of the
stories, and it is not clear at which granularity the trueideshould be chosen (recall that
reference annotators are not restricted to choose from @ fixmber of topics, since there is
no pre-defined topic list).

All judgements made in this chapter about whether a topio@lgr not do not use a defined
evaluation measure, but are based solely upon manual timpet randomly selected stories.

10.5.2 Stemming

It has not been finally decided in the text classification camity whether stemming is useful
or not (compare Section 8.2). For text classification withvViywe observed that stemming
does not improve results. However, stemming of German wsthbundant grammatical mor-
phemes should be beneficial for the UTD task. Consider, fomeie a word that appears in
the document collection a few times in its singular form, angw times in its plural form.
The individual singular and plural forms might get a low TBHweight, whereas the stemmed
form (singular and plural reduced to a common stem) mighadegh weight. Moreover, the
individual forms may be excluded from the initial topic Jistnce they appear less often than
the minimum threshold for key term selection. The stemmenhfthen would be selected
since it appears often enough. These examples clarify whiyarkey term selection phase,
stemming might be useful.

To examine this claim, UTD was performed with and withoubstang (using the SVM clas-
sifier and the DLF data set). As far as key term selection iseored, there is a tendency that
stemming leads to better initial topics. However, this daejseon the story. For some stories,
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the initial topics do not differ much when created based emsted or non-stemmed texts.
Some stories even have better initial topics with non-stethtaxts. As a consequence, words
were always stemmed for the subsequent experiments.

10.5.3 Phrase creation

One free parameter that has to be chosen a-priori is thehtbiesf A D L(w;w,) which de-
termines how many term couples will be merged into a phrasgortinately, this threshold
has to be set dependent on the document collection. For dectwons, a threshold of -10 bits
seems appropriate for the data sets considered, wherewbstlh D L(w,w) is -541 bits for
the DLF set (phraseeblig triib, foggy-cloudy) and -509 for the ASR set (phrasawv york).

With a collection size of 45,000 documents, there are figgtadi D L (wqws) . One option
would be to set the threshold relative to the descriptiogtleof the whole corpus, but as our
observations have shown, this approach is not feasible.

10.5.4 Key term selection

The terms with the highest TF-IDF weight, are usually ablgite@ good hints about the con-
tents of a story, and allow a good description.

However, not all of the best-weighted terms are chosen aalitopic labels since they appear
only a few times throughout the document collectiah{ < 4, see Section 10.3). It turns out
that especially these infrequent terms allow the user tagetod insight into the document’s
contents.

A typical property of key terms is that they do not find a broapid label for a story, but each
term picks one out of several aspects; they are quite focu€etdly the conjunction of key

terms will indicate the contents of a story. One good exangplbe weather forecast. A user
would like to get a topic label likéorecastor weatherforecastbut this label does not appear
(nor does it as a final topic after re-classification). Indie¢he top key terms are only related
to weather, likewolk[en], grad, sonn[e], schaulerfigd[en] (clouds, degree, sun, rain, south).

The key terms, taken on their own without additional infotiora, do not provide a summary,
but they give a hint to the user. It is often helpful to have gase knowledge about e.g.
politics and the themes that are currently being discuggeen this knowledge, it is possible
to interpret the key terms so that they in fact deliver a sumpm@among the terms with a high
TF-IDF, those that appear in more than a few documents ates(mprisingly) more general
than the terms which appear only once or twice in the cobhecti
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It is not possible to set a fixed threshold on the number of pt&rms that are to be chosen
as topic labels. This is especially true for stories thaehalot of high-ranking terms with low
document frequencies (DF): A key term that appears only mmdwthree documents can tell
very much about their contents, and if there are 10 such kesteall should be kept as topics.
One reason is that those infrequent, top key terms often éeaetly the same TF-IDF, since
they appear equally often (both in the document (TF termd, iarthe document collection
(IDF term). Then, a fixed threshold, which keeps only, sagdierms although six have the
same TF-IDF weight, does not make sense.

Of course, not all topic key terms are valid and indicate ay&aontents. But wrong key
terms disrupt understanding of a story less than one woyléax As far as ASR texts are
concerned, due to errors in speech recognition, it occatdficiently transcribed words are
selected as keywords (e. dWACS — airbag3. Therefore, the list of key terms is worse for
the ASR set than for the DLF set.

Although the main conclusion of this section is that alsontewith a high TF-IDF and a DF
of 2 or 3 should be selected as initial topic labels, the foilhg re-classification experiments
are based on key terms withF" > 4. Inclusion of the remaining key terms would lead to
training of topic models based on 2-3 stories, which is a bad iespecially for estimation of
HMM emission probabilities.

For the DLF set, 1158 key terms (wifh. > 4) are selected as initial topics. The correspond-
ing number is higher for the ASR set (1261 initial topicsthaligh it contains slightly less
documents.

10.5.5 Re-classification with HMMs and SVMs

Most of the final topics obtained from the re-classificatioa eompletely different from the
initial topics, and they actually provide a much worse reprgation of the document. This is
true for both the SVM and the HMM classifier. There may be sav@round 10key terms
that are good, but anfnal topicthat is at rank 6 or lower is usually wrong. The precision of
the higher-ranking final topics is also significantly workart the precision of the key terms.
And more often than not, the final topic is wrong.

For example, one story from the ASR set about the unemployraenin the month of Septem-
ber has got the key ternseptember, arbeitslos, beaftgung, tausend, wirtschaffSeptem-
ber, unemployed, employment, thousand, economy). The tipéd labels (from the SVM
classifier) arefestgestellt, wolfsburg, infektion, mannheim, endspieltrag(asserted, [city

4The keyterms are stated here in their complete form, but @ Will output them in their stemmed version.
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Table 10.1: Sample ASR output text, initial topics, and the top six final topics as found by the
HMM and the SVM re-classifier.

ASR output (not stemmed)

unter den laden hatte die amerikaner geplant niemémad die jetzt mehr mitgéhl die angst vo
neuen terroranscagen die den usa noch einmal gewachsen aber dennoch diergase giehrhe
der amerikaner untef#izt die militaraktion vierundneunzig prozent Befvorten die angriffe auc
auf ganz da wir waren der neue und die herausforderungerksinglett in weiten haus wohl kau
mitleid direktor der bebrde fir heimat verteidigung vereidigt auch heran will den aneefik ver-
hindern nach mitteln zentraler punkt der erde sein oderdesrkalt ihr werden unterland verteidigen
ohne die einmaligen freiheiten und weil die beste verteidgist eine globale uiflen wie perfek
wo immer der terror auch auftauchen war der eatth fede der vier uhr erwartet weil dich herr in der
traumwelt wirden zukunft und dortifr &mter koordinieren die sich bereit ekl mit dem die lintfort
besclaftigen wird neun hektar der wir inssen vor allem Kiglichst viele geheimdienst informationen
zusammentragen im kampf gegen den terror ist werden machieindland ahriger wenn mittler;
weile die sicherheitsvorkehrungen veradh worden zahlreiche strassen die hier vor dem aussen-
ministerium in washington wurden gesperrt viele amerikavi# nach den angriffen auf afghanistan
verunsichert er werde dealer die die terroristen verfolgéer nicht eine vielfach klar wir werden
uns weiter verfolgen wir hatten werden paar&etas ganze kleine lang andauernder aufgabe die
terror treffen von weiteren anségen abteibh ah ah ich freue will er wir amerikanern nehmen die

verstirkten sicherheitsvorkehrungen in sport stadien oder #ieghohne murren hin wenn jeder hjer

wurde dass die mil#traktionen der amerikaner neue anagelin den usa ausen lonnten

Initial Topics (key terms)
verteid, sicherheitsvorkehr, verfolg, amerikan, mibitietion
Final Topics from HMM re-classification
palastinens, prozent, grad, wolk,sech, taliban

Final Topics from SVM re-classification
amerikan, militaraktion, verfolg, sicherheitsvorkehamnheim, sparkur

3= =7
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of] wolfsburg, infection, [city of] mannheim, final matchouwtribution). None of the initial
topics (key terms) is any more present in the final topics.ualty, the key terms describe
the story much better than the final topics. Interestingig ¢ity name Mannheim appears
among the top 10 final topics in almost all stories. Obvious$ySVM model is not very good.
Another example is given in Table 10.1.

The final topics from the HMM classifier are even worse thar8k#/ topics. Comparing the
topics of all documents, the topic list does not change veunghmi.e. more or less the same
topics appear in many documents.

One can attribute the bad performance of both classifietgeterhall number of stories used to
train the final topic models, which in turn results from theedirdocument collection used. For
example, for the DLF set and HMM re-classifier, the final tsmdu andgradare assigned to
(almost) every story. The model feduis trained with 27 sample stories, the model dwad

is trained on 20 stories. In contrast, the initial topeauftragtdoes not appear as final topic;
its model is trained on only 2 stories. This indicates thatéhs some relationship between
training size and appearance as final topic. This aspectmtisrfarther investigation in order
to draw well-founded conclusions.

With a document collection that is two orders of magnituagda (45,000 documents covering
12 months, or 125 (') documents per day), Sista [82] rephets36 % of the first-ranked final
topics are correct (as judged subjectively by a human et@ude-classification adds only a
small fraction of topics (about 9 %), compared to the initigdics. The precision of the initial
topics is lower, although it is not always statistically refgcantly lower. 92 % of the initial
first rank topics are correct (as opposed to 96 % final topios}he fourth rank, the precision
is 81 % versus 82 %.

Combining both results
e For a small document collection, re-classification sigaifitty worsens results

e For alarge collection, re-classification improves restiltg not necessarily statistically
significantly

one can conclude that unless the document corpus to be &ethaery, very large and there
is enough (run-)time available, re-classification showthbe performed.

As we have observed that the results with SVM re-classiboas better than with HMM re-
classification, it should be nevertheless worthwhile tockhe performance of SVMs on a
very large broadcast news corpus.
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10.6 Conclusion

This chapter introduced the task of Unsupervised Topic®isry. Its key characteristics are
that topics are assigned to the text documents of a colleatiaan unsupervised way, and
that the list of topics is not pre-defined, but is derived fribra collection. There is no need
for human interaction or topic labelling of training text$he UTD approach by Sista was
presented together with modifications which were justifiéslan alternative to his HMM re-
classification, an SVM classifier was suggested and invagsiily Experimental results based
on relatively small corpora of both ASR and clean broadceststexts were discussed.

The main conclusions to be drawn from this chapter are:

e The choice of the threshold value for phrase creation is heibois and depends on the
size of the document collection.

e The terms with highest TF-IDF weights (key terms) should ed.as final topic labels,
and only those withD F' = 1 should be discarded (but not those with any highéf).

e The restriction of HMM topic models to contain only supporngds (as suggested by
Sista) has very little effect on final topic classificationhi§ might also partly be due
to the fact that the HMM topic models used for the experimpnésented in this thesis
were quite poor.

e As the key terms can only be drawn from one document, speeolyméion errors may
have quite a big impact on the quality of the topic labels.

e For small corpora, the re-classification step delivers leadlts and should therefore be
omitted.
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Conclusion and outlook

The subject of this thesis is the development of a demonsti@tautomatic media monitoring
that automatically scans TV broadcast news for specificgopt is the first media monitoring
system for German news. Its goal is to filter out relevantissoirom a stream of broadcast
news.

In the course of development, new techniques were conceimddexisting techniques were
improved to create the modules of the demonstrator. Mangraxgents were conducted to
measure the performance of the various approaches.

In addition to the media monitoring task with its pre-defirdest of topics to be identified,
the problem of Unsupervised Topic Discovery was addresaddravestigated. It is nearly
unexplored, but is very attractive as it aims at identifyiagics (or key-words) which do not
have to be defined (by means of training data) in advance.rntrast to the media monitoring
approach, which only filters outertainstories, the UTD approach assigns key-wordsfio
stories.

Automatic speech recognition The automatic speech recognition of broadcast news
(Chapter 5 on page 47) demands special approaches. Recsgmisepecifically designed
for this task perform poorly. It turns out that by using oundaage model that is based on
newspaper texts instead of a general language model, tlteenar rate (WER) of the speech
recogniser is reduced by 43 % relative. The interpolatiothefnewspaper language model
with a language model based on the manual transcriptionazfdmast news causes a further
reduction of the WER by 12 % relative. Another effective meti®to use monophone and
triphone acoustic models trained on broadcast news. Comhparteiphone acoustic models
trained on spontaneous speech and read sentences, ounexjisireveal that an improvement
of one third (monophone broadcast news models) and of ormégeqiphone broadcast news
models) is achieved. Other measures, for example improvenoé the dictionary or gender-

147
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dependent acoustic models, also lead to the reduction médrgtion errors, but to a minor
degree. The representation of the dictionary as a tree dsawéhe caching of the language
model in a FIFO are crucial to make the recogniser efficieteims of run-time and memory
requirements.

The quality of the generated transcription depends much@presence of background noise.
Further improvements should therefore concentrate onetelg better transcriptions when
there is background noise.

Topic segmentation A novel, visual approach to topic segmentation of TV broatica
news (Chapter/6 on page 55) uses Hidden Markov Models (HMMgpi@sent content classes
(e.g. Newscaster, Report, Interview) and edit effects @ug, Dissolve, Wipe). These models
are combined into a lattice (hierarchical model) that rédldow a news show is built up
from content classes and edit effects. For topic segmentathe path through the lattice
is found that has most probably created the observed featupgence. This step creates a
series of content classes and edit effects. Rules that dégnleeginning of a new topic are
subsequently applied.

Our experiments show that more complex lattices capturiogenvariants of paths do not
necessarily yield better results. Lattices that captueesthucture of topics in addition to the
news show structure yield worse segmentation performahderns out that it is sufficient

to extract features at a reduced rate of 12.5 frames per desorce segmentation results
do not necessarily improve with 25 frames per second. Thmeetation module achieves
recognition rates of up to 88 % precision and 82 % recall. H@awnets performance varies
with station and programme. One drawback of the presentgdesgtation approach is that for
every station, possibly even for every news programme, séow lattices have to be defined.
In the future, besides vision, other modalities like autbataanscription should be exploited.

Topic classification For topic classification based on automatic transcriptioree meth-
ods were investigated in our work. The well-known Naive Bagy@sroach serves as a baseline
system (Section 7.2 on pagel 81). A novel method uses a Hid@ekavi Model classifier and
quantised feature vectors (Section 7.3 on page 84). Thetigadon prototypes are created
with a Neural Network trained according to the Maximum Mutmdormation principle. The
novel approach is superior to the Naive Bayes approach winas i limited choice from only
few training topics. Thus, it is suitable as a topic classiioe a media monitoring system if
only a rough discrimination between topics (e.g. politasonomy, sports, ...) is needed.

The third method, Support Vector Machines (Chapter 8 on p&)yei® frequently used for
text categorisation. However, this thesis investigateste first time probabilistic and non-
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probabilistic couplers for topic classification. Couplers ased to combine the results of two-
class Support Vector Machines for multi-class categadeatThe novel couplers suggested
in this thesis do not perform significantly different fromadsished couplers. Their advantage
is that they are easy to implement and have low run-time rements. As for the creation
of features, the combination of different linguistic unit$o one feature vector improves the
classification rate. Giving more weight to the word sub-sexts favourable.

Non-probabilistic Support Vector Machines for topic cléisation are usually thought to work
best with linear kernels. Interestingly, experiments enésd in this thesis reveal that RBF
kernels yield better performance with probabilistic SVMssome cases. Further research is
needed to tell whether this fact is only due to the examindd dat. The presented topic
classification module is not yet able to update the topic Hsoddben topics change or new
topics emerge. In the future, adaptation to topic altenstshould be considered.

Demonstrator system This thesis does not only investigate the individual mosloliethe
demonstrator, but the performance of the entire systensistomy of speech recogniser, topic
segmenter, and topic classifier, as well (Chapter 9 on pagk 2 SVM topic classifier
outperforms the Naive Bayes classifier. It achieves a mivevagedF; measure of 86 for
automatically segmented stories.

Unsupervised Topic Discovery The aforementioned topic classification methods rely
on the fact that training data must be provided for everydépibe detected. For the scenario
of media monitoring, where the set of customers (those thiatreceive the media alerts)
is known beforehand, a restricted topic list is useful. Fe@dm monitoring for e.g. private
customers who do not necessarily have a fixed topic profiéeJtisupervised Topic Discovery
approach is examined (Chapter 10 on page 127). It does notnyspre-defined topic list
at all, but derives the topics from the test data without hunmaeraction. This approach
is nearly neglected in research literature, except for tbekvoy Sista. Tests of his system
presented in this thesis are based on plain text and autmnatiscriptions, as opposed to
his plain text only corpus. The UTD approach consists ofdlsteps: preprocessing, initial
topic labelling, and final topic labelling (re-classifieat). In addition to his HMM classifier,
a SVM classifier is investigated. The most important conolustates that for small corpora,
the re-classification step delivers bad results and shbwlcttore be omitted. The results of
the initial topic labelling are promising, and it is cleaviprthwhile to further explore the field
of Unsupervised Topic Discovery.



Appendix A

McNemar’s statistical test

In order to compare the performance of two classifiers, oneda&ctly compare their evalu-
ation measures (e.g. accuracy,/grmeasure). But this method does not permit to claim that
one classifier does or does not perform significantly belien the other one. Consider, for
example, anF; measure of 93.4 for classifier A and 93.9 for classifier B. Obsfp classi-
fier B is better, but at the same time the difference in peréoree is so small that one would
hesitate to call it significantly superior.

Statistical tests make it possible to conclude whether tassdiers perform significantly dif-
ferent or not. A null hypothesis has to be defined, and thet¢éistwhether the hypothesis
can be rejected or not. This conclusion can only be made widrtain probability of errowy,
which is usually set a-priory to 0.05 [73].

The null hypothesis to be tested is: The two classifiers vallehthe same error rate on ran-
domly drawn test samples [22].

Compute the statistic

(|nor — niol — 1)?

~2
X
no1 + N1o

using the definitions from Table A.1. If the null hypothesiscorrect, the probability that?

Table A.1: Contingency table for calculation of the y? measure.

number of test samples m

classified by both A and B
= Moo

stumber of test samples m

classified by A but not by B
= No1

number of test samples m

classified by B but not by A
= N1o

stumber of test samples m

classified by neither A nor B
=N

150

S-



Appendix A McNemar’s statistical test 151

is greater tharxi 4, = 3.841 is less than 0.05. Thus, jf* is greater tharx{ o5, the null
hypothesis should be rejected; if it is smaller, the nulldtgsis cannot be rejected.



Symbols and abbreviations

Greek symbols

Qv
&i
A
A
Hig
P
¢

Lagrange multipliers (model parameters of SVMs)

Slack variables for soft-margin SVMs

Parameters of a Hidden Markov Model

Penalty weight of BIC criterion

true pairwise a-posteriori class probability (multi-daeSVM)

Function for mapping input vectors into high-dimensionzse (SVMs)
Confidence term for Structural Risk Minimisation

Roman symbols

A

;j
C

S8

d(z,y,t)

Transition matrix of a HMMA = [a;;]
Probability of transition from state; to s,
Coefficient used in softmax function
Error tolerance for soft-margin SVMs
Document

Difference of luminance of an image pixel between two contee images (audio-
visual topic segmentation)

Error rate

Number of adjacent frames used for feature creation (tdagsdication with HMMS)
Evaluation measure

False alarm rate

Number of false negatives in test set

Number of false positives in test set

VC dimension of a set of functions

Decision function of discriminative classifiers

\Voting counter for class (multi-class SVMS)
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J Number of prototype vectors used for vector quantisatioQ)V
K Number of Gaussian mixture components (HMMs)
K Number of classes
k(- ) Kernel function
M Dimension of data points (feature vectors)
M Miss rate
My Sequence of prototype labels
m; Index (label) ofj-th VQ prototype vector
m(x) Index (label) of the prototype vectgr that is nearest ta
n Number of states of a Hidden Markov Model
Number of training examples
P Precision
Pra Probability of the classifier generating a false alarm
Phriss Probability of the classifier generating a miss
S Set of states of a HMM
Q Set of visited HMM states) = ¢1, ¢, ..., qr
s Active HMM state at time
R Recall
Tij Estimate ofi;; (multi-class pSVM)
T Number of distinct terms (i.e. vocabulary size) of a docunoefection
T Topic
T Predicted topic (result of topic classification)
t; Term numbei
tn Number of true negatives in test set
tp Number of true positives in test set
T Sequence of topicE
w Number of characters in one frame (topic classification \WikhMs)
W; i-th word in the vocabulary
W; i-th word in a document
w; Weight ofi-th term in feature vectax
Wword Weight of feature sub-vector created from word represemtaif text

X Feature vector
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~

Y
Yn

Class prediction of a classifier
Class of data sample

Abbreviations

ASR
BN
ch3gram
DL
ERM
FB
HMM
LH

LM
LVCSR
MI

NN
npSVM
pSVM
SRM
SVM
TDT
TREC
UTD
VQ
WER

Automatic Speech Recognition
Broadcast News
character 3-gram
Description Length
Empirical Risk Minimisation
Forward-Backward
Hidden Markov Model
Likelihood
Language Model
Large Vocabulary Continuous Speech Recognition
Mutual Information
Neural Network
non-probabilistic (conventional) Support Vector dane
probabilistic Support Vector Machine
Structural Risk Minimisation
Support Vector Machine
Topic Detection and Tracking (Conference Series)
Text REtrieval Conference
Unsupervised Topic Discovery
Vector quantisation
Word Error Rate
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