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Kurzfassung

Informationen sind von entscheidender Bedeutung, sowohl für Industrie und Beḧorden als
auch f̈ur Privatleute. Automatische Verfahren zur Auswahl und Verbreitung von Informationen
ermöglichen es der Medienauswertung, deutlich mehr Medienquellen abzudecken; insbeson-
dere durch eine ḧohere Kosteneffizienz und durch Service rund um die Uhr.

Die vorliegende Arbeit untersucht, inwiefern die – bislanghaupts̈achlich manuell vorgenom-
mene – professionelle Medienauswertung automatisiert untersẗutzt werden kann. Drei Haupt-
module sind hierzu notwendig: Spracherkennung, Themensegmentierung und Themenklas-
sifizierung. Die Forschungsergebnisse bezüglich der einzelnen Module des Demonstrators
werden zusammen mit den erreichten Innovationen dargestellt. Die Leistungsf̈ahigkeit sowohl
der Module als auch des gesamten Systems wird anhand von ausführlichen Tests untersucht.

Der Schwerpunkt dieser Arbeit liegt auf deutschsprachigenNachrichtensendungen. Mittels
visueller Indizierungsverfahren werden Themengrenzen inFernsehnachrichten bestimmt. Ein
Spracherkenner wandelt die Audiosignale in Texte um, welche von einem Themenklassi-
fizierer auf das Vorkommen von vorgegebenen Themenüberpr̈uft werden. Es werden statis-
tische Klassifizierer wie Hidden Markov Modelle und SupportVector Machines (SVMs) ver-
wendet. Ein Beitrag dieser Arbeit liegt in der Vorstellung von neuartigen Couplern zu SVMs,
die Vorteile gegen̈uber bekannten Couplern besitzen.

Ein weiteres behandeltes Thema ist die unüberwachte Themenfindung (Unsupervised Topic
Discovery), die in der Literatur fast gänzlich unbeachtet bleibt. Sie erlaubt es, Stichwörter
ohne eine vorgegebene Themenliste oder ohne Trainingsbeispiele zu finden.
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Abstract

Information is of strategic importance for business and governmental agencies, but also for in-
dividual citizens. The use of automatic methods for selection and dissemination of information
would enable media monitoring companies to cover a much larger variety of media sources by
working more cost efficiently and providing 24 hours coverage and availability.

This thesis investigates how professional media monitoring, which is currently a largely man-
ual process, can be automatically supported. Three main modules are necessary for automatic
media monitoring: speech recognition, topic segmentation, and topic classification. The re-
search that was conducted on these three topics, and the resulting innovations are presented.
The performance of the individual modules, as well as the complete system, is thoroughly
investigated.

The focus of this thesis are German news. Topic boundaries are determined using a novel
approach to visual indexing. A speech recogniser transforms the audio signals into texts,
which are afterwards classified for the presence of pre-defined topics. For topic classification,
approaches with Hidden Markov Models, Neural Networks, andSupport Vector Machines
(SVMs) are investigated. One contribution of this thesis isthe introduction of novel couplers
for SVMs with advantages over known couplers.

An additional topic covered in this thesis is Unsupervised Topic Discovery, a field nearly
neglected in the literature. It makes it possible to find key-words in texts without a pre-defined
topic list or training samples.
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Chapter 1

Introduction

Information is of strategic importance for business and governmental agencies, but also for
individual citizens. Nowadays, information is mainly obtained by manually analysing (read-
ing, listening and watching) text resources, audio and video databases, and current broadcast
multimedia sources (newspapers, magazines, radio, television, newswire, world wide web).
Media monitoring companies play an important role in dissemination of information. They
determine stories that are of interest to their customers, and notify them about relevant stories.
Currently, the complete work of determining stories has to becarried out manually. Employ-
ees of media monitoring companies have thousands of profilesin mind that describe the kind
of information customers are interested in.

The use of automatic methods for selection and dissemination of information would enable
media monitoring companies to cover a much larger variety ofmedia sources by working
more cost efficiently and providing 24 hours coverage and availability.

1.1 Thesis outline

The subject of the presented thesis is a demonstrator of an automatic media monitoring system
that automatically scans TV broadcast news for specific topics. It aims at assisting media mon-
itoring companies with the monitoring process. Whenever topics of interest are automatically
detected, the relevant customers can be alerted, e.g. by email. However, because an automatic
system will never be completely reliable, the system’s results will always have to be checked
by a human. The system presented here is the first of its kind for German broadcast news.
While much related research has been carried out on the level of components of the system,
e.g. on automatic speech recognition or topic classification of broadcast news, those compo-
nents were never before integrated into a system specifically designed for media monitoring
of German news. It must be emphasised that the system is a demonstrator and not a final

1



Chapter 1 Introduction 2

product. Currently, it can only be applied to German news, because the speech recogniser only
transcribes German.

This thesis deals both with the building blocks (modules) ofthe demonstrator, and with the
system and its performance as a whole. Research and development on the building blocks has
lead to several innovations, which will be presented in the respective chapters.

Figure 1.1 illustrates on a functional level how TV news broadcast documents (mpeg files), or
plain, pre-segmented texts are processed by the system. Visual processing techniques are used
to segment a news show into scenes, such asnewscasteror report, and to detect story bound-
aries. The audio track is transcribed by an advanced automatic speech recogniser developed
for transcription of broadcast news. The system is also capable of handling pure text data that
was already segmented into stories (e.g. acquired from the Internet). In this case, the topic
segmentation and speech recognition modules are bypassed,and the text is passed directly to
the topic classification module. Otherwise, for mpeg news shows, automatic transcription and
automatic topic segmentation is used for topic classification.

The topics found in one or several TV news shows, together with the transcription and in-
formation about the times of the story boundaries, are converted into XML format. The files
can be accessed via a dedicated web browser interface that allows to search the transcriptions
and the topic labels for specific words. The stories that match the search query are displayed
line by line, together with the assigned topic, and a click ona story opens a window showing
the transcription data and the meta-data, e.g. the topic label, start and end time of the story,
and programme name. The core modules of the presented media monitoring system employ
state-of-the-art stochastic classifiers.

The most important challenges to the topic recognition module are:

• The speech recogniser’s transcription is not perfect. Especially with interviews or re-
ports with background noise, it is sometimes hard even for humans to understand the
contents from the transcription. With some stories, it is necessary to listen to the audio
to grasp the contents.

• The goal of the system is to find topic categories in spoken documents (audio or video
files with speech content). Stochastic classifiers rely on the fact that the properties of the
training data match the test data. This condition is not fully met, since only summaries
were available as training data, i.e. the training data and the test data stem from different
domains.

• The majority of the stories in a news show are not related to any media monitoring
customer, but are off-topic. However, off-topic training data is not available.
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Figure 1.1: Functional structure of the automatic media monitoring demonstrator. The main
workflow paths are printed in bold.

• The topics change rapidly over time. As the set of topics to bedetected is assumed to be
fixed (see below), there are topics in the test sets that are not present in the training set,
and therefore cannot be detected.

• The final test set used across all experimental chapters of this thesis is especially chal-
lenging (see below for details).

Two simplifying assumptions were made for this thesis:

• The set of topics is assumed to be fixed.

• It is assumed that there is only one topic per story. This assumption is nearly true for the
tested news shows; only two stories are annotated with more than one reference topic.

These assumptions were given up for the Unsupervised Topic Discovery task described in
Chapter 10.

The outline of this thesis is as follows. Chapters 2 and 3 lay the theoretical foundations for
the two most important implemented classification algorithms, Hidden Markov Models and
Support Vector Machines. Before presenting approaches and experiments for the individual
modules, Chapter 4 introduces the measures that are used to evaluate the performance both
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of the modules and of the whole system. The evolution from a generic speech recogniser to a
broadcast speech recogniser is presented in Chapter 5. Chapter 6 deals with topic segmentation
of a TV news show. This segmentation aims at providing topically homogeneous stories. The
various approaches taken for the topic classification modules are covered in the following two
Chapters. Chapter 7 presents the methods based on Hidden Markov Models, and Chapter 8
treats the Support Vector Machine classifier. To given an impression of the performance of
the combination of all modules, the overall system performance is measured in Chapter 9.
A private user normally does not want to explicitly specify his or her interests by means of
providing topics or profiles, but instead prefers to quicklybrowse news shows for interesting
stories. Chapter 10 extends the domain of the application from professional media monitoring
to “monitoring for everybody”. The final chapter concludes this thesis, summarises important
contributions, and gives an outlook. The storage of the monitoring results in an XML database
and the access to it are not covered in this thesis.

It should be noted that the termsdocument, report andstory are used interchangeably within
this work, since the automatic transcription of TV news stories (also called news reports) is
stored in text format. Thus, the topic classifier deals with text documents, regardless of whether
they were produced by a speech recogniser or whether they were originally plain texts.

1.2 Data sets

With a single exception, the data sets that were used for training and testing the system and its
components are in German. Two sources are predominant: manually created summaries of TV
and radio reports (not restricted tonewsreports), and news shows from the two most important
German TV channels. The evaluations of the approaches covered in this thesis are often done
with one (or more) preliminary test sets, and also with a finaltest set (the SVM classifier was
evaluated with a final test set only). The preliminary sets differ, but the final test data always
consists of German TV news shows covering a period of two weeks: October 8th until 21st,
20011 (the evaluation of the speech recogniser uses data only fromthe second week). This
period is just four weeks after the attack of September 11th,2001, and thus many reports are
about this attack and the actions taken in its aftermath (forexample, the war in Afghanistan).
The result is that for some news shows, a great portion of the reports is about the same topic.
Stories are therefore much longer than they would usually be. It has to be emphasised that
the test set consists of “real life” data which reflect the requirements of a media monitoring
company.

1This period was defined by the European Union project ALERT tobe used for its common test set.
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Hidden Markov Models

Hidden Markov Models (HMMs) are very popular and successfulclassifiers widely used for
recognition of speech [38], handwriting [71] and gesture [96]. A Hidden Markov Model is
a stochastic machine that consists of connected states (seeFigure 2.1). Of itsn statesS =

{s1, s2, . . . , sn}, only one is active at each time step. The active state at timet is denoted by
qt ∈ S and depends on the preceding active state,qt−1, only, not on more recent states (first
order Markov model). The sequence of visited states is denoted byQ = q1, q2, . . . , qT . The
transition from stateqt−1 to qt occurs with a given probability:

aij = P (qt = sj|qt−1 = si). (2.1)

All n× n transition probabilities are stored in the transition probability matrixA = [aij]. The
probability of statej being the initial state is

πj = P (q1 = sj),
n
∑

j=1

πj = 1, π = [πj]. (2.2)

Usually, it is assumed that a sequence of active states always begins at the first state

π = (1, 0, 0, . . .)T (2.3)

and ends at the last state. Each time a state is reached, an output vectoro is emitted with a
probability that depends on the active state only.o may be a continuous vector (continuous
HMMs), or a single discrete number (discrete HMMs).

5
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a11 a22 a33
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discrete

continuous
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Figure 2.1: HMM with different types of emission probabilities.

Continuous HMMs In the case ofcontinuous HMMs, the probability density function
describing the emission probability of an output vectoro is usually a weighted sum of multi-
variate Gaussian distributionsN (·):

bj(o) = p(o|sj) =
K
∑

k=1

ck j · N (o|µk j,Σk j), (2.4)

N (o|µ,Σ) =
1

√

(2π)M |Σ|
e−

1

2
(o−µ)T Σ−1 (o−µ). (2.5)

The indexj denotes the state,k indicates the mixture component.µ is the mean vector and
Σ is the covariance matrix of the Gaussian distributionN (·). M is the dimension of the
observation vectoro. The emission distributions satisfy the probability constraints:

∫

o

bj(o) do = 1, bj(o) ∈ [0, 1]. (2.6)
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The mixture weights fulfil

ckj ≥ 0,
K
∑

k=1

ckj = 1. (2.7)

Semi-continuous HMMs Semi-continuous HMMs are very similar to continuous HMMs.
The only difference is that with semi-continuous HMMs the Gaussian components of the emis-
sion probability are not estimated separately for each state. Instead, a common codebook ofL

Gaussian mixtures is used:

bj(o) =
L
∑

l=1

cl j · N (o|µl,Σl). (2.8)

Discrete HMMs One common technique is to map continuous observation vectors to dis-
crete symbols by means of a vector quantisation step. Each observation is being replaced with
its nearest prototype vector which is chosen from a pre-defined codebook ofJ prototype vec-
tors. As the number of prototypes is fixed and known a-priori,it is sufficient to represent each
prototype by its indexm, 1 ≤ m ≤ J :

o→ m. (2.9)

See Section 7.3.2 for details on vector quantisation.Discrete HMMsmodel a stream of dis-
crete indicesm, as opposed to continuous HMMs which model a stream of continuous obser-
vationso. Consequently, the emission probabilities are also discrete:

bj(o) = bj(m) = P (m|sj),
J
∑

m=1

bj(m) = 1. (2.10)

Let the emission probabilities of all statesj of a HMM be represented by the symbolB.
For continuous HMMs,B contains – for each statej – the mean vectors and the covariance
matrices of the Gaussian distributions, and the mixture weights:B = 〈bj(o)〉. In the case of
discrete HMMs,B is an× J matrix: B = [bj(m)].

A Hidden Markov Modelλ is defined by the parametersπ,A andB:

λ = (π,A,B). (2.11)
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2.1 Production probabilities

One important figure in the context of HMMs is the production probability P (O|λ), or the
probability that an observation sequenceO = (o1, . . . ,oT ) was generated by the Hidden
Markov Model λ. The production probability plays an important role for predicting from
which modelλ a given observation sequenceO was created, i.e. which class it belongs to
most probably. In other words, it is used for the classification with HMMs.

As it is not known which state sequenceQ = (q1, . . . , qT ) has producedO (this is why one
talks aboutHidden Markov Models), the production probability is the result ofa summation
over all possible state sequences, i.e. all possible ways through the HMM are considered:

P (O|λ) =
∑

Q

P (O, Q|λ). (2.12)

The summed term is the probability that a given HMMλ goes through the state sequence
Q = (q1, . . . , qT ) and emitsO. The production probability can thus be expressed as [64]

P (O|λ) =
∑

Q

(

πq1
bq1

(o1)
T
∏

t=2

aqt−1qt
bqt

(ot)

)

. (2.13)

The run-time of this calculation grows exponentially with the length of the observationT ,
becausenT possible state sequences have to be calculated. A more efficient approach is the
forward-backward procedure described in Section 2.2.

2.2 Forward-Backward algorithm

As already mentioned, the Forward-Backward (FB) algorithm provides an efficient calcula-
tion of the production probabilityP (O|λ). The FB procedure is the solution of the EM
(Expectation-Maximisation) algorithm applied to HMMs. The EM algorithm [21] allows
to iteratively estimate model parameters so that they maximise the likelihood (which is, in the
case of HMMs,P (O|λ)). It is used when data is hidden or missing that is relevant for the
stochastic process (here: generation of observations withHMMs) [86]. From the reference
labelling of the training data, it is only known which HMM hasproduced the data, but not
which state inside the HMM. As the state sequence is hidden (hence the nameHiddenMarkov
Models), the EM algorithm is an ideal candidate for estimation ofλ. The missing data is char-
acteristic of the EM algorithm; if no data were missing during training, a normal maximum
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likelihood algorithm could be used, i.e. theλ̂ that maximises the log-likelihoodl(λ) [23] could
be found.

For continuous HMMs whose emission probabilitiesbj(o) are a mixture of Gaussian densi-
ties, the EM algorithm can also be applied to get the weights of the Gaussians: For a given
observationo, it is not known which of the Gaussians has contributed to which extend too,
i.e. the weights are hidden. See [65] for details.

The main idea of the FB algorithm is to recursively calculateforward probabilities

αt(j) = P (o1,o2, . . . ,ot, qt = sj|λ) (2.14)

and backward probabilities

βt(i) = P (ot+1,ot+2, . . . ,oT |qt = si, λ). (2.15)

The calculation ofαt(j) ∀t, j (similarly, βt(i) ∀t, i) leads toT × n matrices. The forward
probabilityαt(j) indicates the probability to observe the vector sequenceo1,o2, . . . ,ot and to
be, at timet, at statesj. αt(j) is initialised at the first time stept = 1

α1(j) = πjbj(o1) ∀ 1 ≤ j ≤ n, (2.16)

and then recursively calculated from the previous time stept− 1

αt(j) =

(

n
∑

i=1

αt−1(i)aij

)

· bj(ot). (2.17)

The recursion ends at timeT .

The backward probabilityβt(i) indicates the probability to observe the vector sequence
ot+1,ot+2, . . . ,oT , given that at timet the model was at statesi. The backward algorithm’s
recursion proceeds backwards in time.β is initialised at the last time stepT

βT (j) = 1 ∀ 1 ≤ j ≤ n (2.18)

and computed from the following time stept + 1 as

βt(i) =
n
∑

j=1

aijbj(ot+1)βt+1(j) ∀ 1 ≤ i ≤ n. (2.19)
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The production probability can be expressed as

P (O|λ) = αT (n) (2.20)

(assuming that the state sequenceQ always ends at the last statesn). Alternatively it can be
calculated incorporating the backward probabilities:

P (O|λ) =
n
∑

j=1

πjbj(o1)β1(j), or (2.21)

=
n
∑

j=1

αt(j)βt(j). (2.22)

The product of the forward and the backward probability yields the probability thatO is ob-
served while being in statej at timet

αt(j)βt(j) = P (O, qt = sj|λ). (2.23)

The latter two equations play an important role for parameter estimation with the Baum-Welch
algorithm (see Section 2.3.1).

The run-time of the Forward-Backward procedure grows byn2T , and thus linearly with the
length of the observation sequence.

Strictly speaking, the Forward-Backward algorithm as described above is only valid for con-
tinuous HMMs. However, it is straightforward to change it insuch a way that it can be applied
to discrete HMMs: the continuous observations and the emission probabilities have to be re-
placed by their discrete counterparts

ot → mt

O = (o1, . . . ,oT )→ O = (m1, . . . ,mT ) (2.24)

bj(ot)→ bj(mt).

2.3 Training

Before HMMs can be used to classify unknown observations, their parametersλ have to be
set. The corresponding procedure is referred to astraining, and it is done by estimating an
optimalλ from training observation sequencesO. The optimisation criterion of the training is
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the maximisation of the likelihoodP (O|λ), i.e. those parameterŝλ are chosen that maximise
the likelihood:

λ̂ = argmax
λ

P (O|λ). (2.25)

Two methods are known that implement this maximum-likelihood estimation: the Baum-
Welch algorithm, and the Viterbi training. Both will be described in the following sections.

2.3.1 Baum-Welch algorithm

The Baum-Welch algorithm [9] estimates the HMM parameters iteratively according to the
EM (Expectation-Maximisation) algorithm [21]. Here, we derive the Baum-Welch algorithm
for discrete HMMs. In each iteration step, new model parametersλ∗ are estimated from the
parametersλ of the model from the previous iteration step. It is guaranteed that the likelihood
always increases between two iterations, until a local maximum is reached:

P (O|λ∗) ≥ P (O|λ). (2.26)

Let ξt(i, j) be the a-posteriori probability of a state change fromsi tosj. With (2.22) and (2.23),
ξt(i, j) becomes

ξt(i, j) = P (qt = si, qt+1 = sj|O, λ) =
P (qt = si, qt+1 = sj,O|λ)

P (O|λ)
(2.27)

=
αt(i)aijbj(ot+1)βt+1(j)

n
∑

i=1

αt(i)βt(i)
. (2.28)

Let γt(j) be the a-posteriori state probabilityγt(j) = P (qt = sj|O, λ). Again, with (2.22)
and (2.23),γt(j) becomes

γt(j) = P (qt = sj|O, λ) =
P (qt = sj,O|λ)

P (O|λ)
=

αt(j)βt(j)
n
∑

i=1

αt(i)βt(i)
. (2.29)

Moreover,

γt(i) =
n
∑

j=1

ξt(i, j). (2.30)
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With these definitions, the new parametersλ∗ of discreteHMMs are estimated as [66]

π∗
i = γ1(i) (2.31)

a∗
ij =

T−1
∑

t=1

ξt(i, j)

T−1
∑

t=1

γt(i)

(2.32)

b∗jm =

T
∑

t=1

γt(j) · δ(ot = m)

T
∑

t=1

γt(j)

. (2.33)

The Kronecker functionδ(·) yields 1 if its argument is true, and 0 otherwise. The formulafor
a∗

ij is the ratio of the expected number of transitions from statesi to statesj, divided by the
expected number of transitions out of statesi. b∗jm is the ratio of the expected number of times
of being in statesj and observing symbolm, divided by the expected number of times of being
in statesj. The formulae forcontinuousHMMs are similar and can be found in e.g. [64]. The
training of the HMM parameters can alternatively be performed with the Viterbi algorithm
presented in Section 2.4.2.

2.4 Classification

2.4.1 General approach

HMM classification inversely applies first-order Markov Models. In order to classify an ob-
servation sequenceO into one ofK classes, it is assumed thatO was produced by a Hidden
Markov Model. Each classyi, 1 ≤ i ≤ K is modelled by one HMMλi whose parameters
were already found (for example, by the Forward-Backward algorithm). The class ofO is
predicted by finding the HMMλi that has generatedO with the highest posterior probability
(maximum a-posteriori classification):

ŷ = argmax
i

P (yi|O) = argmax
i

P (λi|O). (2.34)

With the Bayes formula, this equation turns into

ŷ = argmax
i

P (O|λi)P (λi)

P (O)
= argmax

i
P (O|λi)P (λi) (2.35)
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sinceP (O) is independent of the class.P (O|λi) is calculated from HMMλi using the
Forward-Backward algorithm (Section 2.2) or the Viterbi algorithm.

2.4.2 Viterbi algorithm

Calculating the production probabilityP (O|λ) according to (2.12), i.e. by going through all
possible state sequences, is prohibitively time consuming. The Viterbi algorithm [89] approx-
imatesP (O|λ) by considering only the state sequenceQ∗ that contributes most to the sum
in (2.12)

P ∗(O|λ) = max
Q

P (O, Q|λ) = P (O, Q∗|λ). (2.36)

That is, the most probable state sequenceQ∗ that has producedO is found. Eq. (2.36) is
obtained similarly to the Forward-Backward algorithm using(2.20). The only difference is
that the sum in the iteration of the forward probability (2.17) is replaced by the maximum
operator. In each iteration step, the state which produced the maximum forward probability
can be saved in order to obtain the most probable state sequenceQ∗.
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Support Vector Machines

An important classifier paradigm next to Hidden Markov Models are Support Vector Machines
(SVMs). Both are supervised learners, that is, their respective parameters are estimated from a
training set. The class of each training example is given1. In contrast to generative classifiers,
which model the distribution of the data of every class, SVMslearn only the decision boundary
between classes, and are an example of discriminative classifiers. While multi-class problems
can be straightforwardly implemented with HMMs, the basic form of SVMs can only separate
two classes. They are not able to model dynamic data in the same way as HMMs, but they
require less training data (because they are discriminative) and less parameter tuning. Another
difference is that SVMs classify one feature vector, whereas HMMs classify a sequence of
feature vectors.

SVMs date back to 1992 [13] and have proven to be very efficientfor a wide variety of classi-
fication problems, such as document classification [43], pedestrian detection [59], handwriting
recognition [8], gene classification [14], and many others.

3.1 Linear hard-margin SVMs

In their basic form, Support Vector Machines are linear, binary classifiers, that is, they find a
hyperplane that optimally separates two classes.

1This is different to unsupervised training, where class labels are not available.

14
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3.1.1 The optimal hyperplane

For a given set of linearly separable data pointsxi ∈ R
M and corresponding class labels

yi ∈ {−1; +1}, a plane that separates the two classes+1 and−1 can be expressed by the
equation

w · x + b = 0. (3.1)

All points x that satisfy this equation lie on the plane. The normal vector of the plane,w ∈
R

M , is often called weight vector in the context of SVMs. The plane’s distance from the origin
of the coordinate system equals|b|

‖w‖
, with b ∈ R.

The discriminating hyperplane is fully characterised by the set{w, b}.

All data points that belong to classyi = 1 should lie on one side of the plane, while all
{xi|yi = −1} should lie on the other side. Without loss of generality, thenormal vectorw can
be oriented in such a way that

w · xi + b > 0 for yi = 1 (3.2)

w · xi + b < 0 for yi = -1 (3.3)

or

yi(w · xi + b) > 0 (3.4)

If this inequality is fulfilled for alli, all data points{xi} can be separated without error.

For a given linearly separable data set, there are many possible discriminating hyperplanes.
SVMs find the optimal hyperplane, which is the one that separates the data with the maximum
margin. The marginδ is the distance between the hyperplane and the closest data point from
every class2. It is the same for both classes, since otherwise the plane would be nearer to one
class than to the other. Those training data points whose distance to the separation hyperplane
is δ are calledsupport vectors(see Figure 3.1). The two planes in parallel to the separation
hyperplane that touch the support vectorsx(s) of either class fulfil

w · x(s) + b = ±c (3.5)

2This statement is only true for hard-margin decision functions, but not for soft margins.
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x1

optimal hyperplane

margin2δ

g(x) = +1

g(x) = −1

Figure 3.1: Hard margin hyperplane. Vectors in bold are support vectors.

with c a constant.w and b can be scaled in such a way thatc = 1, without affecting the
orientation of the separating plane:

w · x(s) + b = ±1. (3.6)

The distance of a pointx to the hyperplane is [30, p. 322]

w · x + b

‖w‖ , (3.7)

so the discriminating function

g(x) = w · x + b (3.8)

is a measure of this distance and can therefore be used as a measure of confidence of the
classification. Its sign tells on which side of the separating hyperplane a data pointx lies
(compare (3.2) and (3.3)). Consequently, the decision function h(x) ∈ {−1, +1} of the linear
SVM, which hypothesises the class of a test data pointx, is

ŷ = h(x) = sign(g(x)) = sign(w · x + b). (3.9)
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From (3.6), (3.7) and (3.8), the distance of any support vector x(s) to the optimal hyperplane is

δ =
|g(x(s))|
‖w‖ =

1

‖w‖ . (3.10)

The margin of separation between the two classes is thus2δ.

3.1.2 Calculating the optimal hyperplane

The position of the separating hyperplane is determined during the training phase of the SVMs
by solving an optimisation problem. Maximising the margin2δ = 2

‖w‖
is equivalent to min-

imising 1
2
‖w‖, or minimising 1

2
‖w‖2, since(·)2 is monotonic increasing. To find the param-

eters{w, b} of the optimal hyperplane, one has to solve the following primal optimisation
problem:

• Minimise

1

2
‖w‖2 =

1

2
ww (3.11)

• subject to zero training error

yi(w · xi + b) ≥ 1 for i = 1, . . . , N (3.12)

N is the number of labelled examples{xi, yi} used for training. Note that a zero training error
is also described by

yi(w · xi + b) > 0, (3.13)

but if this inequality is used as the constraint it is not possible to find a minimum of1
2
‖w‖: The

solution of the optimisation problem,{w, b}, can be rescaled with some0 < λ < 1 without
changing the optimal hyperplane. This still satisfies the constraint (3.13) (becauseλ > 0),
but the length ofw has decreased. Hence, the solution{w, b} is not the minimal one. Due
to rescaling,‖w‖ can be made arbitrarily small. Using constraint (3.12) limits rescaling and
makes it possible to find a minimum value for‖w‖ [77]. At the same time, this constraint
guarantees that there are no training points inside the margin (compare eq. (3.6)).
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The optimisation problem can be solved by introducing Lagrange multipliersαi ∈ R, αi ≥ 0

and constructing the LagrangianL

L(w, b,α) =
1

2
‖w‖2 −

N
∑

i=1

αi (yi(w · xi + b)− 1) (3.14)

L has to be minimised with respect to the primal variablesw andb, and to be maximised with
respect to the dual variablesαi [75]:

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0. (3.15)

This leads to

N
∑

i=1

αiyi = 0 (3.16)

and

w =
N
∑

i=1

αiyixi. (3.17)

The solution vectorw is thus a linear combination of the training examples. For those training
points that do not match the equality of (3.12), i.e. for which yi(w · xi + b) − 1 > 0, the
correspondingαi in (3.14) must be 0; otherwise, the termαi (yi(w · xi + b)− 1) would make
L(w, b,α) smaller, and thus preventL from being maximised with respect toα. Only the
training points that satisfyyi(w · xi + b)− 1 = 0 have a correspondingαi > 0; these training
points are the support vectors (Kuhn-Tucker theorem of optimisation theory; compare (3.6)).
This means that only the support vectors contribute to the orientation of the optimal hyper-
plane, all other training examples can be removed from the training set without affecting the
solution.

Substituting (3.16) and (3.17) into the Lagrangian (3.14) leads to the following dual formula-
tion of the optimisation problem:

• Find the Lagrange multipliersαi that maximise

W (α) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjxixj (3.18)
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• subject toαi ≥ 0 and
N
∑

i=1

αiyi = 0.

This dual formulation has got the same solutions as the primal optimisation problem (3.11)
and (3.12). Its solution is characterised by the Lagrange multipliers αi, and not by the weight
vectorw and the biasb as in the primal formulation. Optionally,w can still be calculated
using (3.17). To obtain the biasb, one support vectorx(s) must be arbitrarily selected and
inserted intoyi(w · x(s) + b) = 1.

Moreover, the objective functionW (α) depends only on the labelled training data in the form
of a set of dot products. This fact makes it possible to classify patterns that are not linearly
separable (see Section 3.2).

The expansion (3.17) is used to write the decision function in terms of the labelled training
sample pairs{xi, yi} and the solution coefficients of the optimisation problem,αi andb:

ŷ = h(x) = sign

(

N
∑

i=1

yiαixi · x + b

)

. (3.19)

3.2 Kernels

The Support Vector Machine as it was presented this far is unable to separate non-linearly-
separable patterns. Cover’s theorem on the separability of patterns [30] states that if such
patterns are transformed to a higher-dimensional space, they become linearly separable with
high probability. Two conditions have to be met: First, the transformation must be non-linear.
Second, the dimensionality of the new space must be high enough. An example is depicted in
Figure 3.2.

The non-linear mapping function is denoted byΦ(x) : R
M → R

L, L ≫ M . The high-
dimensional spaceRL is often referred to as thefeature space. To clearly distinguish the
original space where the features reside from the space where the features are mapped to, this
thesis does not strictly adhere to this convention, but rather callsR

L themapped feature space.

The mapping functionΦ(x) replaces all occurrences ofx in the derivation of the linear SVM.
The decision function then becomes

ŷ = h(x) = sign

(

N
∑

i=1

yiαiΦ(x) · Φ(xi) + b

)

. (3.20)

As the dimension of the mapped features may be very large or even infinite, the costs of
computing the dot (or inner) productΦ(x) · Φ(xi) may become very large. However, one is



Chapter 3 Support Vector Machines 20

x2 x3

x1 x2

ð
Φ

Figure 3.2: A non-linear mapping Φ(x) = (x2
1, x

2
2,
√

2x1x2)
T ; Φ : R

2 → R
3 can make the

input data in R
2 linearly separable in R

3. The original data is depicted on the left;
after applying Φ the data becomes linearly separable (right). The hyperplane on
the left is the result of projecting back the hyperplane from the high-dimensional
space (right) into the original data space.

not interested in the mapped features themselves, but in thereal-valued dot product. For some
mapping functionsΦ, the dot product can be directly calculated without performing the feature
mapping by using a so-called kernel function:

k(xi,xj) = Φ(xi) · Φ(xj). (3.21)

The objective functionW (α) of the dual optimisation problem (3.18) then becomes

W (α) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjk(xi,xj). (3.22)

The decision function (3.20) can be expressed as

ŷ = h(x) = sign

(

N
∑

i=1

yiαi · k(x,xi) + b

)

. (3.23)

SVMs that do not make use of kernel functions are called linear SVMs; non-linear SVMs, on
the other hand, use kernels. Table 3.1 lists some frequentlyused kernels together with their
parameters. The correct choice of a kernel, as well as the correct value of the parameter(s)
of a kernel must be determined using model selection methodslike cross validation (see Sec-
tion 8.4) or bootstrapping [23, 29]. Valid kernels, i.e. kernels that satisfy equation (3.21), have
to be constructed according to Mercer’s theorem [30, 76].

When a kernel is used, the vectorw is the normal surface vector of the separating hyperplane
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in the mapped feature space. The boundary that separates theclasses is linear in the mapped
feature space, but has non-linear shape in the original space. It cannot be calculated from the
kernel functionk(xi,xj) alone, because the mappingΦ must be known (which usually is not
the case): with mapping, (3.17) becomes

w =
N
∑

i=1

αiyiΦ(xi). (3.24)

The vectorw is fortunately not necessary for classification (see (3.23)), because the dual for-
mulation of the optimisation problem (3.22) is solved. The length ofw, however, can be
directly calculated from the kernel:

‖w‖2 = w ·w =
N
∑

i=1

αiyiΦ(xi)
N
∑

j=1

αjyjΦ(xj) =
N
∑

i=1

N
∑

j=1

αiαjyiyjΦ(xi)Φ(xj)

=
N
∑

i=1

N
∑

j=1

αiαjyiyjk(xi,xj). (3.25)

To put it in other words,w can be calculated only for linear SVMs, but the length ofw can be
calculated for both linear and non-linear SVMs.

Table 3.1: Some inner-product kernels for SVMs.

Kernel name k(xi,xj) = Parameters of the kernel

Linear xi · xj —
Radial-basis function (RBF)exp(− 1

2σ2 ‖xi − xj‖) σ
Polynomial (γxi · xj + c0)

p γ, c0, p( degree)
Sigmoid tanh(γxi · xj + β) β, γ a

a Mercer’s theorem is satisfied only for someβ, γ [30].

3.3 Soft-margin decision functions

One way for SVMs to deal with non-separable training points is to allow for some points to
be on the wrong side of the separating hyperplane, i.e. to allow data pointsxi that violate the
zero training error condition (eq. (3.12))

yi(w · xi + b) ≥ 1 for i = 1, . . . , N. (3.26)
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x2

x1

optimal hyperplane

margin2δ

g(x) = +1

g(x) = −1
0 < αi < C, ξi = 0

αi = C, 0 < ξi < 1
αi = C, ξi > 1

Figure 3.3: Soft margin hyperplane. Vectors in bold are support vectors; the corresponding
values of ξi and αi are stated.

In this case, the margin between the two classes is called asoft margin. Two types of violations
may occur: (a) the data point lies on the right side of the hyperplane, but inside the margin
(b) the data point lies on the wrong side of the hyperplane. Inthe second case, the data point
would be misclassified by the SVM.

In order to allow violating data points, the constraint (3.12) is relaxed by introducing slack
variables for every training point,ξi ∈ R

≥0, i = 1, . . . , N :

yi(w · xi + b) ≥ 1− ξi for i = 1, . . . , N. (3.27)

For0 ≤ ξi ≤ 1, the corresponding data point falls inside the margin, but on the correct side of
the hyperplane. Forξi > 1, it falls on the wrong side (see Figures 3.3 and 3.4).

The additional costs resulting from non-separability are incorporated by an extra cost term
to the objective function (3.11),C

∑

i ξi. This sum measures the misclassification rate and
should therefore be minimised.C is a real, pre-defined constant that specifies the trade-off
between the degree to which misclassified data should be tolerated and the complexity of the
discriminating surface. A largeC will result in a complex surface that can separate the training
data very well (see Figure 3.4). As will be described in Section 3.6.2, a wide margin yields a
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Figure 3.4: The influence of parameter C and slack variables ξ in soft margin SVMs.

less complex decision surface than a narrow one.

The optimisation problem that now has to be solved is:

• Find the optimal weight vectorw and biasb such thatw and the slack variablesξi

minimise

1

2
ww + C

N
∑

i=1

ξi (3.28)

• subject to

yi(w · Φ(xi) + b) ≥ 1− ξi for i = 1, . . . , N (3.29)

It incorporates the – usually unknown – mapping functionΦ. The corresponding dual formu-
lation of the optimisation problem uses the kernel instead of Φ:

• Find the Lagrange multipliers that maximise

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjk(xi,xj) (3.30)
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• subject to

N
∑

i=1

αiyi = 0 (3.31)

0 ≤ αi ≤ C for i = 1, . . . , N (3.32)

It should be pointed out that this formulation is the same as for the case of linearly separable
data, except for one detail: theαi are no longer bounded at only one side (αi ≥ 0), but at two
sides:0 ≤ αi ≤ C. Those support vectors whose Lagrange multiplier satisfy0 < αi < C must
haveξi = 0, i.e. they lie exactly on the margin at a distance of1/ ‖w‖ from the hyperplane.
Values ofαi = C can only occur together withξi > 0. These data points will either lie inside
the margin, but be classified correctly (ξi < 1), or will lie on the wrong side of the hyperplane
(ξi > 1) [91] (see Figure 3.3). Just as for hard margin SVMs, those training data points with
αi > 0 are called support vectors. Hence, not only those points that lie exactly on the margin,
but also those that lie inside the margin or on the wrong side of the hyperplane are support
vectors. The latter are referred to as bounded support vectors. The dependence between the
αi and theξi are a consequence of the Karush-Kuhn-Tucker conditions foroptimality. Details
can be found in e.g. [16] or [77].

3.4 Probabilistic SVMs

The Support Vector Machine as described above is only able topredict the class of a data
point. Its decision valueg(x) can be used as a measure of how sure the prediction is. The
drawback ofg(x) is that it cannot be compared across binary models, as will bedescribed in
Section 8.6.3. Moreover, it is not normalised or bounded, soa single decision value is difficult
to interpret (except for the fact thatg(x) = ±1 means that the data point lies exactly on the
margin).

These drawbacks can be addressed with probabilistic SVMs, which output the posterior proba-
bility that a test pointx belongs to, say, class +1:p(y = +1|x). The true value of the posterior
is not known, but has to be estimated. One very popular approach to estimation was presented
by Platt [62]. He argues that the posterior can be approximated using a sigmoid function with
parametersA andB:

p(y = +1|x) =
1

1 + exp(Ag(x) + B)
(3.33)
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wherep(y = +1|x)+p(y = −1|x) = 1. For estimation,A andB must be optimised using the
decision valuesg(x) of some training data points. Note that it does not make senseto estimate
these parameters based on the distanced(x) instead of the decision value, because one is a
multiple of the other; the resulting posteriors will be the same.

Platt minimises the negative log likelihood of the trainingdata using a model-trust algorithm.
An improvement of his algorithm was presented by [49] and is used for the experiments re-
ported on in this thesis. In order to distinguish between probabilistic and non-probabilistic
(conventional) SVMs, the latter will from now on be referredto as non-probabilistic SVMs
and abbreviated npSVMs.

The sigmoid function (3.33) (given that its parameters wereestimated) is only applied during
classification. First, the decision valueg(x) of an unknown test pointx is computed with a
conventional SVM as described in the previous sections (compare (3.23)):

g(x) =

(

N
∑

i=1

yiαi · k(x,xi) + b

)

. (3.34)

Then, (3.33) is used to get the posterior probability. Thus,pSVMs are just an extension of
conventional SVMs.

The class prediction of a probabilistic SVM (pSVM) does not make use of the decision func-
tion g(x), but of the posterior probability. It decides for class +1 ifp(y = +1|x) > p(y =

−1|x), otherwise it chooses class -1. Note that the decision boundary of non-probabilistic
SVMs is atg(x) = 0; the boundary for probabilistic SVMs is at

p(y = +1|x) = p(y = −1|x) = 0.5. (3.35)

For B 6= 0, p(y = ±1|g(x) = 0) 6= 0.5, i.e. the decision boundaries of conventional and
probabilistic SVMs do not necessarily match.

Platt addresses the problem of the correct choice of the dataset that is used to estimate the
sigmoid parametersA andB. If the whole training set is used, some training points willbe
non-bounded support vectors (nbSV) and thus have a decisionvalue of exactlyg(x) = ±1.
The more nbSVs, the more values±1 will be used to estimate the sigmoid parameters, and
so the more the parameters will be pushed (biased) against the margin. This will become a
problem for (a) non-linear SVMs (SVMs with a non-linear kernel), where usually a substan-
tial fraction of the training data will be nbSVs (b) linear SVMs, where the dimensionality of
the input vectors is high compared to the number of training points (since there will be at max-
imum,M +1 nbSVs forM -dimensional data). The latter case (b) was overlooked by Platt. He
argues that for linear SVMs, especially with a smallC, the bias is not severe. However, high-
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dimensional data together with linearly separable classesplay an important role in the context
of text categorisation. Hence, avoiding a biased sigmoid iscrucial for the work described in
this thesis.

Several ways to avoid biased estimation are suggested by Platt. The best one is cross-validation
of the training data: The whole training set is divided into,say, five equally sized portions.
Four are used to train a SVM, i.e. to estimate a decision boundary between the two classes.
From the remaining data, the decision valuesg(x) are calculated using the just trained SVM.
It is very unlikely that for this datag(x) = 1, because it was not used to train the boundary.
This procedure (training of SVM and calculation ofg(x)) is repeated using the other four
combinations of the data chunks. In the end, the whole training set has supplied decision
values, which are then used to estimate the sigmoid parameters A andB. This 5-fold cross-
validation method was (usually) used to create the experiments presented in this thesis.

3.5 Multi-class categorisation

The Support Vector Machine approach as described in the above sections can only distinguish
two classes. However, many real-world problems are multi-class problems. Nevertheless,
introduction books to SVMs usually just ignore multi-classcategorisation, or address it only
briefly.

Several approaches to deal with more than two classes are known:

• Direct modification of the SVM optimisation problem.

• One-against-all. The model for categoryk = i is trained on all otherK − 1 categories
k 6= i, whereK is the total number of categories (1 ≤ i ≤ K). For testing (predict-
ing), theK decision values of the models,gk(x), k ∈ [1, . . . , K] are computed. The
prediction result is the class that received the highest decision value:

ŷ ≡ predicted class= argmax
k

gk(x) (3.36)

• One-against-one. For every combination of two disjoint classes, one SVM model is
trained. I.e.,i− 1 models are trained that contain classi ( {i, 1}, {i, 2}, . . . , {i, i− 1}).
This amounts to a total ofK(K − 1)/2 models. The combination of the same number
of decision values in order to obtain one single prediction result is described in the
following section.
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• Directed acyclic graph (DAG). As in the one-against-one approach,K(K−1)/2 mod-
els are trained. For testing, it uses a rooted binary directed acyclic graph that has
K(K − 1)/2 internal nodes andK leaves guiding theK classes. Figure 3.5 depicts
a 4-class DAG.

Hsu and Lin [32] have compared these methods and conclude that the latter two methods are
most suitable for practical use. Here, the one-against-onemethod is used, which is imple-
mented in thelibsvm software package [1].

Figure 3.5: Directed Acyclic Graph for multi-class categorisation with SVMs, 4 class case.

3.5.1 Couplers for non-probabilistic SVMs

The step that combines theK(K − 1)/2 distinct decisions of the one-against-one approach
into one overall prediction is calledcoupling. This section discusses the standard coupler for
non-probabilistic (conventional) SVMs, the voting coupler, and presents two new couplers.
The following section deals with couplers for probabilistic SVMs.

The predominantvoting coupler increments by 1 the voting counter of the winning class of
every binary classifier. The class with the highest number ofvotes is the prediction result for
the multi-class problem. In spite of its simplicity, the voting coupler works well. However,
it does not incorporate any confidence measures of the binaryclassification, which reflect the
certainty of the system that its prediction is correct.



Chapter 3 Support Vector Machines 28

A straightforward measure of confidence of a test vectorx is the value of the decision function
gij(x), which is proportional to the distancedij(x) of x to the separating hyperplane of the
binary classifier(i, j): dij(x) =

gij(x)

‖wij‖ (wij is the trained weight vector of the hyperplane).

The indexij denotes the binary SVM model trained on the class pair(i, j). In order to test
the influence of confidence, two new couplers,decision valueanddistance, were constructed
where the decision valuesgij(x) and the distancesdij(x) are added instead of 1. Whilegij(x)

was used as confidence measure in other contexts (error correcting output codes [68]), the
author is not aware of publications that use the distance.

From a theoretical point of view, both the decision functiongij(x) and the distancedij(x)

have advantages: Because the decision functiongij(x) = 1 for data vectorsx that lie on the
margin, it yields confidence information scaled to the widthof the margin. Assume a test
vector with a fixed Euclidean distance to the separating hyperplane. If the margin is small,
i. e. the classes can not be separated easily, the vector willlie outside the margin and return
a high confidence valuegij(x) > 1. If, for the same vector, the margin is large and the
two classes can be separated very well, the confidence value will be low. This behaviour
makes sense because for easily separable classes, the test vector should lie far away from the
hyperplane to get a high confidence measure. Thus,gij(x) reflects how far away the test vector
is from the margin. The advantage of the distance coupler is that the geometric distancedij(x)

obtained with one binary classifier(i, j) can be compared to the distancedlm(x) of another
binary classifier(l,m), whereas the decision values can only be compared withinonebinary
classifier (see Figure 3.6) [34].

3.5.2 Couplers for probabilistic SVMs

This section describes several couplers for probabilisticSVMs. In the following discussion,
the following symbols will be used:

• pi: overall a-posteriori class probability,pi = p(y = i|x).
• µij: true pairwise a-posteriori class probability,µij = p(y = i|x, y = i or j) = pi

pi+pj
,

• rij: estimate ofµij,

Couplers take the estimated pairwise a-posteriori probabilities that are output by the pSVMs
(3.33) and transform them into overall a-posteriori probabilities3. Their class prediction output
ŷ is the class that received the highest a-posteriori probability:

ŷ = argmax
i

p(y = i|x). (3.37)

3The voting coupler does not directly calculate the overall posterior, but it can be derived from the votes.
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(a) Classifier for classesi andj with small margin. (b) Classifier for classesi andj with large margin.

(c) Classifier for classesl andm.

Figure 3.6: The distance d(x) of a vector x to the separating hyperplane, and its decision
value g(x) are proportional to each other, but not equal. For a given hyperplane,
g(x) depends on the margin 2δ, but d(x) does not. The decision value is relative
to the margin (Figures (a) and (b)). When x is classified by two different binary
classifiers (i, j) and (l, m), the (euclidean) distances dij(x) and dlm(x) can directly
be compared. But it is questionable whether the decision values gij(x) and glm(x)
can be compared, since the margin of the two classifiers is (usually) different. This
is indicated by the missing margin in Figure (c): Without knowledge of the margin,
the decision value cannot be calculated.
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The workflow of a coupler can be represented by

{rij}Ki,j=1 → {pi}Ki=1 → ŷ. (3.38)

Voting

The probabilistic voting coupler is analogous to the non-probabilistic coupler: for a test using
the model of class pair(i, j) (where1 ≤ i, j ≤ K), it increments the voting counterI(i) of the
winning classi by one. The winning class is determined by comparing the pairwise posteriors:

if rij

{

> 0.5 thenI(i)← I(i) + 1

< 0.5 thenI(j)← I(j) + 1
∀i, j (3.39)

The class with most votes is predicted:

ŷ = argmax
i

I(i) (3.40)

The overall (not pairwise) posterior probability of classi, pi ≡ p(y = i|x), can be estimated
as the fraction of votes fori divided by the total number of votes:

pi = 2I(i)/K(K − 1) (3.41)

The voting couplers for pSVMs and for npSVMs may lead to different class predictions, be-
cause the npSVM voting coupler makes a decision using the decision valueg(x), and the
corresponding pSVM coupler uses the pairwise posterior probability. As was pointed out in
Section 3.4, these two functions usually describe different class boundaries.

The following four sections describe couplers that are covered by and examined in Wu et.
al. [95]. Among these couplers, two are already known couplers, and two are newly introduced
by them.

Method by Price, Kner, Personnaz, and Dreyfus

The method by Price, Kner, Personnaz, and Dreyfus [63] considers that the sum of the overall
posteriors over all classes is 1, and re-writes the posteriors:

1 =
K
∑

j=1

pj = (
∑

j:j 6=i

pi + pj)− (K − 2)pi. (3.42)
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Usingrij ≈ pi

pi+pj
, one obtains thepi,

1

pi

≈
∑

j:j 6=i

1

rij

− (K − 2), (3.43)

which then have to be normalised so that
∑

pi = 1. This approach is referred to as PKPD.

Method by Hastie and Tibshirani

Hastie and Tibshirani [28] suggest minimising the Kullback-Leibler distance betweenrij and
µij,

l(p) =
∑

i6=j

nijrij log
rij

µij

, p = (p1, . . . , pK)T , (3.44)

wherenij is the number of training vectors in classesi or j. They present an algorithm to find
the minimum (∇l(p) = 0) using an optimisation algorithm. According to [95], it will find a
unique global minimum. Instead of finding the true minimump∗, they find a vector̃p with

p̃i =
2
∑

s:i6=s ris

K(K − 1)
(3.45)

whose elements are in the same order as those inp∗ (i.e.p∗i > p∗j iff p̃i > p̃j). It is sufficient to
know p̃ in order to perform classification. Using the identity

pi =
∑

j:j 6=i

pi + pj

K − 1
· pi

pi + pj

=
∑

j:j 6=i

pi + pj

K − 1
µij (3.46)

and replacingpi + pj with 2/K andµij with rij, one obtains (3.45).

The coupler of Hastie and Tibshirani is abbreviatedHT. One of its characteristics is that it
requires an optimisation problem to be solved.

Markov coupler

The first new coupler presented by [95] is similar to the HT coupler. However, they do not
replacepi + pj by 2/K, hence they solve the system

pi =
∑

j:j 6=i

pi + pj

K − 1
rij (3.47)
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subject to
∑K

i=1 pi = 1, pi ≥ 0. This can be rewritten as

Qp = p,
K
∑

i=1

pi = 1, Qij =

{

rij/(K − 1) if i 6= j
∑

s:s 6=i ris/(K − 1) if i = j
. (3.48)

There is a finite Markov Chain whose transition matrix isQ, hence this algorithm is called
a Markov coupler. The optimalp can be obtained by solving the linear system (3.48) using
Gaussian elimination.

Minpair coupler

The minpair coupler, again a coupler first introduced by [95], optimises

1

2

∑

i=1

K
∑

j:j 6=i

(rjipi − rijpj)
2 (3.49)

subject to
∑K

i1
pi = 1, pi ≥ 0. Wu et al. [95] show that this problem can be re-written as a

linear system and solved with standard methods like Gaussian elimination.

The following two sections will introduce two new couplers that – unlike three of the above
mentioned couplers – do not require the solution of optimisation problems or linear systems.
Both are based on the voting coupler (Section 3.5.2), but include confidence information [34].

Vote-Probweight 1 coupler

Similar to our extensions to the npSVM voting coupler described in Section 3.5.1, we did not
add 1, butrij(x) to the count for classi, I(i), if i is the winning class (otherwise,rji is added
to the count for classj, I(j)):

if rij

{

> 0.5 thenI(i)← I(i) + rij

< 0.5 thenI(j)← I(j) + rji

. (3.50)

This coupler is calledvote-probwght1.

Vote-Probweight 2 coupler

The vote-probwght1 coupler does not reflect the fact that theprobability that the data point
belongs to the losing class is greater than zero. Hence, our second new coupler, (vote-
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probwght2), addsrij to the count for classi as well asrji = 1 − rij to the count for class
j:

I(i)← I(i) + rij, I(j)← I(j) + rji. (3.51)

The advantage of the new couplers is that they have low implementational and run-time re-
quirements. In contrast to the HT, Markov and minpair couplers, they do not require the
solution of an optimisation problem or of a linear system. Unlike the voting coupler, which
can lead to ties in the class predictions because two or more classes can have the same number
of votes, the new couplers will always predict only one class. Sections 8.6.3 and 8.6.4 will
discuss experiments using npSVM and pSVM couplers to see whether the newly proposed
couplers are competitive. These experiments on text/spoken document data supplement the
experiments performed by Wu et al. [95]. They have tested theabove mentioned pSVM cou-
plers (except, of course, the two newly introduced couplers) on many data sets, but not on
text data. In fact, this thesis incorporates the first thorough investigation of conventional and
probabilistic couplers on text classification.

3.6 SVMs and Structural Risk Minimisation

This section points out the relationship between SVMs and the principle of Structural Risk
Minimisation (SRM), which is part of Statistical Learning Theory. It will help to explain why
SVMs perform successfully for many classification applications.

One characteristic of SVMs is that they incorporate an “overfitting protection”. The error on
an unknown test set will usually not be much higher than the error on the training set. The
reason is that the margin between two classes is maximised; the following paragraphs will
make this link clearer.

3.6.1 Statistical Learning Theory and Structural Risk
Minimisation

Statistical Learning Theory, also called Vapnik-Chervonenkis Theory and introduced by Vap-
nik [88], deals with how to control the generalisation (or prediction) ability of a learning
machine. It provides a theory to formally describe this ability, in contrast to other methods,
which provide only heuristics.
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The principle of Structural Risk Minimisation (SRM) [77, 29, 17] links the complexity of
a learning machine to its prediction ability [17, p.45]. Thecomplexity can informally be
characterised as the variance of the decision boundary; forexample, a linear boundary is less
complex than a 5th degree polynomial. For decision functions linear in parameters such as
polynomials, the complexity is the number of free parameters (e.g. in case of polynomials, their
degree). For other functions, the VC-dimension can be used asa measure of complexity [17].
Other measures exist, for example annealed VC entropy or fatshattering dimension [77].

VC-dimension The VC-dimension measures the complexity of a class of discriminating
functions, not of a single function. Considerm data points with class labelsy ∈ {±1}. There
are2m different class combinations (permutations) form points. A set of functions that is able
to separateall 2m class combinations is said toshatterm points. The VC dimension of a set of
functions is defined as the highest number of pointsm that it can shatter. This does not mean
that it can separateany m points, but that there exists at least one set ofm points that can be
separated. For example, in ann-dimensional space, the set of all possible linear hyperplanes
has a VC-dimension ofn + 1.

Risks Two different types of errors can occur in statistical learning: training error and test
error. The former is also calledempirical riskRemp, while the latter is calledrisk R. The goal
of machine learning is to find a functionf(x) that correctly classifies unseen examples(x, y)

so thatf(x) = y. In other words, af is to be found that minimises the riskR. However, the
risk is not known; what is known is the empirical risk that canbe calculated from the training
data alone:

Remp[f ] =
1

N

N
∑

i=1

1

2
|f(xi)− yi|. (3.52)

One can of course use a test set and compute the classificationerror on it; but this is not the
true risk, just an error onone test set out of many. The true risk is the error on all possibletest
data, and therefore a purely theoretical measure.

Empirical Risk Minimisation and Structural Risk Minimisatio n Some machine
learning algorithms, like neural networks, try to chose af that minimises the empirical risk
and hope that the risk becomes minimal (Empirical Risk Minimisation, ERM). One severe
danger of this approach is overfitting: the decision function adapts so well to the training
data, i.e. becomes so complex, that it can hardly generaliseand will produce a high test error
(see Figure 3.7 (a)). Model selection techniques like cross-validation have to be applied to
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avoid overfitting. On the other hand, if a simple decision function is chosen by, for example,
restricting the decision function to be linear instead of a high-degree polynomial, there will
be a high empirical risk. This issue is also known in classical statistics as the bias-variance
dilemma [77, 29]: In order to keep the variance (complexity)low, the class of possible decision
functions has to be restricted, i.e. a high bias has to be imposed. A low bias allows functions
with many degrees, which then become complex. The challengein machine learning is to find
the right balance between over- and underfitting, between bias and variance. The empirical
risk is a bad indicator of whether optimal balance was achieved.

Structural Risk Minimisation provides a formal approach to this dilemma. In order to estimate
an upper bound of the risk, a confidence interval termφ(h,N, η) is introduced that links risk
and empirical risk:

R[f ] ≤ Remp[f ] + φ(h,N, η). (3.53)

This inequality holds with a probability of1 − η. h < N is the VC-dimension of the class of
functions that can be implemented by the learning machine. The confidence term

φ(h,N, η) =

√

h(log 2N
h

+ 1)− log(η/4)

N
(3.54)

increases with increasing VC dimensionh ∈ N. The interaction of the elements of (3.53) is
depicted in Figure 3.7 (b). Note that (3.53) does not make it possible to compute the true risk
(which is, of course, unknown), but gives an upper bound of the true risk, which will probably
not be crossed. It turns out that this upper bound is very conservative, the real risk is much
lower than the bound [44].

A simple hypothesis space with a small VC-dimension (e.g.h1 in Figure 3.7 (b)), will probably
not contain good approximating functions and will lead to a high training error. An overly
complex hypothesis space with a large VC-dimension (e.g.hm in Figure 3.7 (b) ) may lead to
a small training error, but the second term in the right-handside of (3.53) will be large, so that
the test error might be high.

The SRM principle focuses on decreasing the VC dimension, while keeping the training error
zero (in case of separable training patterns without outliers) or low. It has to be emphasised
that SRM minimises the upper bound of the true risk, while ERM focuses on the empirical
risk alone. Hence, in contrast to ERM, SRM provides overfittingprotection by selecting the
complexity of the decision function in such a way that a minimum upper bound on the risk is
found.
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Figure 3.7: Risks in Empirical and Structural Risk Minimisation. ERM focuses on minimising
the empirical risk, hereby missing the minimum risk, whereas SRM minimises an
upper bound of the risk. The upper bound is the right hand side of eq. (3.53).

3.6.2 Linking SRM and SVMs

The VC dimension of the class of all linear boundaries in ann-dimensional space isn + 1. If
one selects only a subset of these boundaries, the VC dimension decreases: Linear hyperplanes
that satisfy (3.12) (canonical hyperplanes) and whose margin is at leastδ0, or δ = 1/ ‖w‖ ≥
δ0, have a VC dimensionh that is bounded by

h ≤ min

(

R2

δ2
0

, n

)

+ 1. (3.55)

R is the radius of the smallest sphere that contains all training data points,n is the dimension
of the data space. In other words, an increasing margin will decrease the VC dimension. The
margin cannot be infinitely increased, because the trainingerror would eventually also start
to increase. The two terms of the upper bound of the risk (right hand side of (3.53)) have a
correspondence in the objective function of the SVM problem,

1

2
ww + C

∑

i

ξi. (3.28)

The minimisation of the first term,1
2
ww = 1

2
‖w‖2, maximises the margin, minimises the

VC dimension and thus minimises the confidence termφ(h,N, η). The sum in the second
term,

∑

i ξi, is an upper bound of empirical riskRemp [30, p. 327].

These considerations show that SVMs are constructed according to the principle of Structural
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Risk Minimisation. Minimal risk avoids overfitting, hence SVMs have a built-in overfitting
protection. What is more, the complexity of the decision boundary – in contrast to most other
classification approaches – doesnot depend on the dimensionality of the input data, as can be
seen in (3.55)4. Usually, no feature selection (using e.g. Information Gain or χ2 criterion) or
feature transformation (e.g. PCA or LDA) is needed.

The automatic choice of best model complexity makes manual tuning of many parameters su-
perfluous. In contrast, for classifiers built according to the ERM, one has to set the complexity
of the decision function a-priori. This does not mean that when using SRM, one is exempt
from a-priori choosing parameters of the learning machine:The best outlier tolerance coef-
ficient C or kernel parameters still have to be set outside the SVM. Unlike neural networks,
SVMs do not need initialisation of weights or coefficients, and hence will always yield the
same decision boundary when trained with the same data.

3.7 Advantages of SVMs for text classification

One property of a text classification task is that it has got a large input space (i.e. high-
dimensional (but sparse) feature vectors). SVMs can handlelarge dimension of data effi-
ciently. The VC-dimension of maximum-margin hyperplanes does not necessarily depend on
the number of features. If the training vectors are separated by the optimal hyperplane, then
the expectation of the probability of committing an error ona test example is bounded by the
ratio of the expectation of the number of support vectors to the number of examples in the
training set [88]:

E[Pr(error)] ≤ E[number of support vectors]

(number of training vectors)-1
(3.56)

This bound depends neither on the dimensionality of the feature space, nor on the norm of
the vector of coefficients, nor on the bound of the input vectors. Therefore, if the optimal
hyperplane can be constructed from a small number of supportvectors relative to the training
set size, the generalisation ability will be high, even in aninfinite dimension space.

Additionally, using SVMs for text classification has the advantage that statistical feature sub-
set selection is not necessary (see [18, 43]), and SVMs were proven to be effective for text
classification [42, 43].

4 Except for cases when the maximum margin is very small, i.e. the data are hardly separable. Then, a different
choice ofC might be favourable in order to enlarge the margin.
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Figure 3.8: A perceptron with a sum propagation function.

3.8 Comparison to perceptrons

Support Vector Machines and perceptrons share several properties. The purpose of this section
is to provide a comparison of both classifiers.

A perceptron is able to classify patterns from two linearly separable classes. The class of a
patternx, y(x) ∈ {1,−1}, is predicted by weighting each component of the feature vector
x ∈ R

M with w̃m and adding a biasb ∈ R (see Figure 3.8):

f(x) =
M
∑

m=1

w̃mxm + b = w̃ · x + b. (3.57)

The sign of this function (which is usually referred to aspropagation function) is the predicted
classŷ(x) of the patternx:

ŷ(x) = sign(f(x)). (3.58)

The weightsx and the biasb are set during the training phase of the perceptron by iteratively
minimising the squared classification error of the trainingpatterns [30].

It is therefore guaranteed that a perceptron is able to correctly classify linearly separable train-
ing patterns, since the minimum of the squared error function is 0 for such training patterns.
However, the performance on previously unseen patterns canstill be bad because there is no
direct mechanism to control the ability of a perceptron to generalise. The perceptron’s deci-
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sion plane that separates the two classes liessomewherebetween the two class clouds formed
by the training patterns. In contrast, Support Vector Machines are capable to generalise well,
because they minimise the upper bound of the generalisationerror (calledrisk in the context
of SVMs). The decision plane lies exactly in the middle of thetwo class clouds and separates
them with maximum margin. As is shown below, the formula usedfor classification is sim-
ilar for perceptrons (or, more generally speaking, for single-layer Neural Networks) and for
SVMs. What is different is how the parameters are set during training, or to put it in other
words, the objective function used for learning is different [13].

N perceptrons can be arranged parallelly to form a single layer Neural Network (whereN is
the number of training samples). The perceptrons’ outputs are summed and a biasb is added.
The sign of this sum is again used for class prediction. The bias of the individual perceptrons
is fixed to 0. Classification with this network is accomplishedusing

f(x) =
N
∑

i=1

w̃ix + b, (3.59)

ŷ(x) = sign(f(x)) = sign(
N
∑

i=1

w̃ix + b). (3.60)

Comparison of this classification rule to the classification rule of a linear SVM (3.19) yields
that linear SVMs and a single layer of perceptrons predict inthe same way, given that the
perceptrons’ weights are set to

w̃i = yiαixi. (3.61)

There are extensions to the perceptron paradigm that make nonlinear classification possible by
using the kernel trick [13]. Thus, next to the similarity between linear SVMs and perceptrons,
there is also a similarity between non-linear SVMs and perceptrons.

As already pointed out, one of the differences between the two types of classifiers is the train-
ing phase. The weights of a perceptron are chosen to minimisethe squared classification error
of the training data. Moreover,all training patterns are used for classification (3.60). In con-
trast, SVMs minimise the margin of separation between the two classes, and only a subset of
the training data, the support vectors, are used for classification.

As an aside it should be noted that apart from the perceptron propagation function (3.57), other
types of functions exist. The sign function is often replaced by the differentiable sigmoid
function. In Section 7.3.2, another type of Neural Network is described which is used for
vector quantisation.
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3.9 Conclusion

This chapter presented the theory of Support Vector Machines. Approaches for the classifi-
cation of linearly and non-linearly separable data, for theestimation of posterior probabilities
and for coupling the results of binary models to obtain multi-class predictions were treated.
Four new couplers were introduced and discussed. Finally, the success of SVMs for many
pattern recognition problems, especially text categorisation, has been theoretically explained.

Among the advantages of SVMs are:

• Built-in overfitting protection: since SVMs are constructedaccording to the principle of
Structural Risk Minimisation, they aim to minimise the lowest possible test error, and
thus avoid overfitting to the training data.

• The complexity of the decision boundary between two classesis independent of the
dimension of the input features.

• Few parameters (usually onlyC and kernel parameters) have to be adjusted, which
makes the learning and prediction process simple to handle.

• Using kernels, SVMs can handle non-linearly separable patterns.

These facts make SVMs good candidate classifiers for classification of texts and spoken doc-
uments.



Chapter 4

Methodology of performance
evaluation

The classification techniques presented in this thesis are data driven. This means that a large
training set is used to estimate the parameters of the classifiers. In addition, it is crucial to
evaluate a classifier’s performance with a test set. The general principle of evaluation is to
compare the hypothesis of a classifier to the reference classannotation produced by humans.
In theory, the reference should be perfect and unambiguous;that is why it is often referred
to as “ground truth”. However, annotations from different people are likely to differ. Larson
et al. [45] report that two human reference annotators agreed on only 70% of the documents.
Nevertheless, the existing methods for evaluation stick tothe concept of a perfect reference
annotation.

This chapter presents the methods used to evaluate the modules of the media monitoring
demonstrator. The different types of patterns used in the demonstrator – speech signals, video
signals, and automatic transcriptions – demand individualmeasures of performance, each of
which is covered in one of the following sections.

The approach of Unsupervised Topic Discovery (UTD) presented in Chapter 10 on page 127
is inherently difficult to evaluate, since there is no fixed, pre-defined list of topics. Therefore,
UTD is not evaluated by a performance measure.

4.1 Evaluation of topic classification

The following evaluation methods assume that there is only one class (topic) per document. In
this thesis, multi-label settings (where more than one class is assigned to each document) will
not be evaluated using a performance score.

41
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Table 4.1: Contingency table for evaluation of classifier performance.

Hypothesis Reference Topic isT1 Reference Topic is notT1

T1 tp fp
notT1 fn tn

One straightforward way to evaluate topic classifiers (and,of course, classifiers on various
other domains) is to directly compare the reference class (ground truth) of each test document
to the category hypothesised by the classifier. The correctness rate is the number of documents
for which reference and hypothesis match, divided by the total number of test documents.
This rate is used for evaluation of the HMM and Naive Bayes topic classifiers presented in
Chapter 7 on page 80. It can be used for both binary and multi-class data.

More sophisticated measures allow to describe different aspects of the performance. They are
presented below.

4.1.1 Measures for binary classifiers

When only two topic classesT1 andT2 are present, the comparison of reference and hypoth-
esised topic of one document yields exactly one of four possible states which are listed in
Table 4.1 (contingency table). The topicT2 is referred to asnotT1 in this table, so that it can
be used for the discussion of multi-class evaluation. The four elements, or better counts, of the
table are:

• true positive: Both reference and hypothesis claimT1.

• true negative: Both reference and hypothesis claimnot T1.

• false positive: The hypothesis mistakenly classifies the document asT1.

• false negative: The hypothesis mistakenly classifies the document asnot T1.

For every tested document, one of these four counts is increased by one.

From the contingency table, several common performance measures can be derived for the
binary class problem: precisionP , recallR, miss rateM , false alarm rateFA, and error rate
ER are [98, 100, 52, 48]
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P =
tp

tp + fp
(4.1)

R =
tp

tp + fn
(4.2)

M =
fn

tp + fn
(4.3)

FA =
fp

fp + tn
(4.4)

ER =
fp + fn

tp + tn + fp + fn
(4.5)

tp is the number of true positives in the test set;tp, fn, andtn are defined accordingly. Ob-
viously, M = 1 − R. All four rates can take values between 0 and 1. If the denominator
equals 0, the corresponding rate is not defined. The miss and false alarm rates can also be seen
as probabilities of the classifier generating a miss or a false alarm:PMiss ≡ M,PFA ≡ FA.

The false alarm rate is sometimes calledfallout, e.g. by [98] and [52, p. 270]. While also
precision and recall are likewise probabilities, the expressionprobability of recallor precision

is not used. Instead, precision and recall are implicitly considered probabilities.

TheF1 measure is the harmonic mean of precision and recall,

F1 =
2PR

P + R
. (4.6)

A more general formulation makes it possible to adjust the relative weights between precision
and recall:

Fβ =
(β2 + 1)PR

β2P + R
. (4.7)

The F-measure is not a rate, therefore it is written without the percent sign (e.g. 92.4 instead of
92.4 %). Precision, recall, and theF1 measure are widely used for evaluation of text classifiers.

4.1.2 Measures for multi-category classifiers

A multi-class problem with K(> 2) classes (i.e. more than two classes are present in the
document collection) has to be broken down into several binary problems:
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• Binary problem 1:T1 — notT1

• Binary problem 2:T2 — notT2

• . . .
• Binary problem K:TI — notTI

Every binary problem is evaluated according to the scheme presented above. There are two
ways to combine the binary results:

• Macro-Averaging treats each binary problem equally. One separate contingency table
per categoryi is calculated, i.e. precision, recall, etc. are calculatedfor each category.
The overall performance measure is averaged over the per-category measures. For ex-
ample, the macro-averaged recall is computed as

Rmacro =
1

K

K
∑

i=1

tp(i)

tp(i) + fn(i)
=

1

K

K
∑

i=1

R(i). (4.8)

tp(i) is the number of true positives among the test documents whose reference label is
Ti . TheF1 measure, being composed of precision and recall, can be macro-averaged in
two ways:

– OneF1 score is computed for each category, which are afterwards averaged. Ac-
cording to [99], this is the correct way.

– First, macro-averaged recall and precision are computed, and thenF1 is derived by
taking their harmonic average.

The first option was used to obtain the macro-averagedF1 measures in this thesis.

Macro-Averaging gives the same weight to the categories, independently of their size.
Thus, given a very unbalanced data set, small topics may havegreat influence on the
final performance score. The TDT workshop series [6] (see Section 7.1.1 for details)
uses macro-averaging.

• Micro-Averaging . Only one global contingency table is kept for micro-averaging, so
that the recall can be expressed as

Rmicro =

∑K
i=1 tp(i)

∑K
i=1(tp(i) + fn(i))

. (4.9)

Each class is weighted according to its number of documents in the test collection, and
each document has got the same influence on the final measure. Micro-Averaging thus
favours the performance on common categories. Yang [97] andJoachims [42, 43] use
micro-averaging in conjunction with text classification.
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As the test set used to evaluate the SVM classifier in this thesis has got very unbalanced topic
sizes, as well micro-averaged as macro-averagedF1 measures are stated in Chapter 8.

Besides the aforementioned measures, variations exist likethe precision-recall breakeven point
[43], or detection costs introduced by the TDT workshop evaluation [6].

4.1.3 Measures for automatically segmented documents

All performance measures presented above assume that the documents boundaries of the test
set are the true reference boundaries. In other words, the topic segmentation of the test set
was performed manually. Manual segmentation makes it possible to score the topic classifiers
independently of the performance of the topic segmentationmodule.

However, a realistic evaluation of the presented automaticmedia monitoring system, which is
the key subject of this thesis, requires that the topic classification approaches also be scored
with automatic topic boundaries. These boundaries will notalways be correct, so the reference
and the test boundaries will not always match.

For this thesis it was decided that if a test story whose topichypothesis isTi has got a minimum
overlap (> 0 seconds) with a reference story about the same topic, this will count as a true
positive. A minimum overlap seems very small, but is nevertheless realistic. Professional
media monitoring will never let an automatic system make thefinal decision about for which
customer a story may be interesting. The system’s output will always be taken as a suggestion,
and manual inspection will always follow. Therefore, if thesystem claims that there is an
interesting story at a certain time, a human will also check the stories before and after this
story.

The TDT workshops take a different approach to match hypothesis and ground truth. For every
time slot of the true story, the hypothesised class is recorded. The majority decision of all time
slots is the final decision for the story. Thus, a hypothesised story withTi will have to cover a
great portion of a reference story aboutTi in order to be counted as a match.

4.2 Evaluation of automatic speech recognisers

The word error rate (WER) (or its complement, the word accuracyWA, WA = 1−WER) is
the predominant performance measure of automatic speech recognisers [78]. It is defined as

WER =
Nsub+ Ndel + Nins

N
=

Nsub+ Ndel + Nins

Ncorr + Nsub+ Ndel
. (4.10)
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Ncorr, Nsub, Ndel, andNins are the number of correctly recognised, exchanged, deleted(omitted)
or inserted words.Nall is the total number of words in the reference transcription.Dynamic
programming is used to match reference and recognised words.

4.3 Measures for topic segmentation

The performance of the topic segmentation module presentedin Chapter 6 on page 55 is re-
ported in terms of precision and recall. The precision rate of one news show gives the relative
number of system boundaries that match the reference boundaries:

precision=
# boundaries correctly predicted

# of boundaries in prediction
. (4.11)

The precision decreases with more incorrectly inserted boundaries. The recall rate gives the
relative number of reference boundaries that are detected by the boundary classifier system.

recall=
# boundaries correctly predicted

# of boundaries in reference
. (4.12)

The recall rate is complementary to the relative number of deleted (not detected) boundaries.
A tolerance range (tolerance window) of an a-priori defined number of seconds (4 or 15) is
applied when matching reference and system topic boundaries.

All results are created by counting the number of boundariesin prediction and reference for
all shows (pooled), and finally calculating precision and recall from the pooled values. An-
other option is to calculate precision and recall individually for every show and to average
the individual values. Thus, every show gets the same weightindependent of its length. The
performance figures of both methods usually do not differ much.



Chapter 5

Speech recognition of broadcast
news

One of the key components of the media monitoring system is the automatic speech recogniser.
It transforms the audio signals of a news broadcast into text; this process is called automatic
speech recognition (ASR) or automatic transcription. The automatic transcription of broadcast
news (BN) is one of many domains to which a speech recogniser can be applied. It is obvious
that one single recogniser will not perform equally well on all domains, rather it has to be
adapted to the specific domain. This chapter treats the ASR module and discusses the efforts
necessary to make a speech recogniser suitable for the BN task. Two different aspects are
covered: a) improving the error rate, and b) reducing memoryand run-time requirements.
Evaluation is done based on a 30 minutes preliminary test set, and on a 3 hours final test set.

5.1 General remarks

The predominant method to automatically recognise speech,or to be more precise, utterances
like words, phones, orn-phones, are Hidden Markov Models (see Chapter 2 on page 5). It
is assumed that the feature vectors of an utterance were created by a HMM. Decoding (i.e.,
recognition) is performed by identifying the HMM (or sequence of HMMs) that have most
probably created the feature vectors (Section 2.4). Rabinerhas written several popular papers
on speech recognition with HMMs [66, 64].

One important tool used to improve recognition results is toconsider the context a word usually
appears in. This is accomplished by incorporation of ann-gram language model (LM). The
LM contains many possible wordn-grams and, for each individualn-gram, the corresponding
probability that thesen words appear in sequence. Ann-gram LM also includes the lower
order n-grams (for example, a trigram also contains the bigrams andthe unigrams). The

47
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probabilities are estimated using a text corpus, but since acorpus typically does not contain
everyn-gram that may appear in speech to be recognised, discounting or smoothing methods
(see Section 7.2.1) have to be applied to give unseenn-grams a probability greater than zero.
Discounting methods are not suitable for high-ordern-grams because they would give too
much probability mass to unseen events.

Detailed information about speech recognition with HiddenMarkov Models can be found in
e.g. [64, 39].

5.2 Reduction of transcription errors

The following paragraphs deal with strategies of adapting aspeech recogniser for the BN
domain in order to significantly reduce the number of errors in transcription. The BN recog-
niser evolved by constantly checking every modification andimprovement to a preliminary
test set (Section 5.2.1). The final test set is only applied tothe best-performing recogniser
(Section 5.2.2).

5.2.1 Preliminary test set

Baseline system The development of a speech recogniser for broadcast news was started
with an existing recogniser trained on spontaneous speech and read sentences (mainly Verb-
mobil [90] data). This recogniser with its 95k dictionary incorporates a large vocabulary con-
tinuous speech recognition (LVCSR) decoder. A suitable decoding strategy especially for
long-range language models (tri- or fourgrams) in combination with very large vocabularies
is the stack decoder [94, 93]. It performs Viterbi search (Section 2.4.2) for the most probable
hypothesis on the word level using the HMMs and then-gram language models. The decoder
sets up a stack at each time frame, where each stack contains asorted list of word (end) hy-
potheses. After choosing a stack, all the stack s hypothesesget expanded simultaneously by
performing a single word recognition, resulting in new hypotheses that get pushed on the spe-
cific stacks at later time frames. The decoder offers severalstrategies for stack selection and
exclusion. Interestingly, among the several synchronous and more advanced asynchronous
stack selection and inclusion strategies (time synchronous, fixed skips, conditional skips and
envelope mode, see [93]), one of the simplest approaches (fixed number of skipped stacks)
turned out to be the most efficient procedure for the BN transcription task.

This recogniser serves as a baseline to which modifications developed here can be compared.
The dictionary, which maps the grapheme representation of aword to its phoneme representa-
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tion, consists of 95k entries. The recogniser incorporatesa trigram language model. Although
the acoustic triphone models have got a considerable resolution of 31,780 Gaussian mixtures
(Chapter 2 on page 5), the resulting transcriptions are unusable for further processing. The
evaluation of this system on a preliminary test set consisting of 30 minutes of broadcast speech
yield a word error rate (WER) of 79.9 % (System 1 in Table 5.1; seeSection 4.2 for the def-
inition of WER). This result suggests that the broadcast news processing task has specific
requirements not met by the initial system.

Newspaper language model The first step taken to adapt the recogniser to the BN do-
main was to develop a news related language model. A corpus from three German newspa-
pers,Süddeutsche Zeitung, Frankfurter Rundschau, andTAZ, covering the period from 1996
to 2000 and consisting of 400 million words, was used to create a trigram LM. Only tri- and
bigrams that appear at least 3 times are included in the LM. Recognition with this newspa-
per LM, which reflects the statistics of written rather than spoken news language, achieved an
improved WER of 72.3 % (System 2).

Monophones trained on BN The incorporation of manually transcribed broadcast news
to train the phone models has a greater effect on the recognition performance. Even a mono-
phone system trained on 50 hours of BN outperforms the generaland more complex baseline
system [92]: Together with the newspaper language model, the WER can be significantly
reduced to 30.9 % (System 4). This system incorporates 50 different monophones and 17 non-
speech acoustic models (such as pause, silence, filler, breath, cough). It is interesting to note
that the monophone system with thebaseline system’s LM(instead of the newspaper LM) has
a WER of 54.3 % (System 3). Thus, the newspaper LM could decrease the WER by 43 %
relative for the recogniser trained onbroadcast news, while it was only able to decrease the
WER of thebaselinesystem by 10 % relative.

Dictionary improvements When checking the general dictionary used for the recognis-
ers described above, it was found out that the phonemisationwas not always correct. After
removing phonemisation errors (which had only effect on therecognition rate if the correc-
tions occurred among the 5000 most probable words), words were added that appear frequently
in the manual transcription of the BN training data. Different dictionary sizes between 94k and
105k were investigated, and it was found that a 98k dictionary yields the best recogniser per-
formance [36, 35]. The improved dictionary results in a slightly better error rate of 29.1 %
(System 5).
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Language model interpolation As already stated above, a drawback of the newspa-
per language model is that it reflects written, but not spokenlanguage. It becomes too much
adapted to the type of language used in the newspapers, and cannot optimally represent the sen-
tences spoken in broadcast news, which are not exactly structured like the written sentences.
In order to overcome this drawback, a language model trainedon the manual transcription of
the broadcast news has been created. However, not enough BN transcriptions were available
to generate a satisfactory language model. The solution is to combine the newspaper and the
BN language models with linear interpolation [72]. The interpolated probability of ann-gram
is calculated as

Pinterpolated(w1, . . . , wn) = λ Pnewspaper(w1, . . . , wn)+

(1− λ) PBN transcriptions(w1, . . . , wn).

The weightλ is chosen using the Expectation-Maximisation [21] (EM) algorithm.

Interestingly, although the LM size of the transcriptions is one order of magnitude smaller
than the newspaper LM (12 MB vs. 162 MB in compressed format),it contributes more to
the interpolated language model than the newspaper LM. (λ = 0.45). This indicates that
the broadcast LM contains the relevant information in a muchmore concentrated way, and
that the newspaper LM contains a lot of information which is of minor importance for BN
transcription. The monophone recogniser with the interpolated LM is able to achieve a WER
of 25.5 % (System 6).

Triphone acoustic models The introduction of context dependent acoustic models (tri-
phone HMMs) results in a further improvement. Since the taskof BN recognition requires an
open dictionary with an option for periodic updates, a fixed set of context HMMs would sooner
or later lead to a significantly degraded recognition performance. This problem can be avoided
by a decision tree based triphone construction principle that allows a quite flexible synthesis of
unknown / unseen triphones if required. The knowledge aboutthe impact of a certain context
combination to a phone can be coded in the structure of the decision tree, which in turn can
be estimated on the training data and the already available monophone models. The triphone
recogniser in conjunction with the interpolated LM has a WER of 19.2 % (System 7) [36].
The triphone acoustic models share 96,417 Gaussian mixturecomponents.

Gender dependent models Further improvements could be made by additionally train-
ing the acoustic HMMs dependent of the gender. Only the meansof the mixtures, and the state
transition probabilities were updated [92]. The WER on the preliminary test set with these
models is 18.7 % (System 8).
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Table 5.1: Results of different speech recogniser systems on the preliminary test set.

System Dictionary Language Model Acoustic Model Type WER in %

1 BaselineGeneral General 3-gram Triphone 79.9
2 BaselineGeneral Newspaper 3-gram Triphone 72.3
3 BN General General 3-gram Monophone 54.3
4 BN General Newspaper 3-gram Monophone 30.9
5 BN Improved Newspaper 3-gram Monophone 29.1
6 BN Improved Interpolated Monophone 25.5
7 BN Improved Interpolated Triphone 19.2
8 BN Improved Interpolated Gender dep. 3-phones 18.7

5.2.2 Final test set

The final test set consists of approximately 3 hours of GermanTV news from the two channels
ARD and ZDF. They cover the week from October 15 until 21, 2001,and thus corresponds
to the final test sets used throughout this thesis (with the minor difference that elsewhere, the
final test sets also cover the the preceding week).

On this test set, an overall WER of 32.7 % was observerd (see Table 5.2). This result has
to be compared to the result in the last row in Table 5.1 with its 18.7 % WER. The basic
difference between the two data sets, indicated by the different recognition results, is that the
evaluation set comprises also a number of longer news shows.Typically, these shows contain
extended interviews and reports, resulting in a higher average noise level and a significantly
higher proportion of spontaneous speech. Regarding Table 5.2, it is interesting to observe that
the measured WER on the ARD channel (31.6 %) equals almost the WERobtained on ZDF
(32.8 %).

The results reported so far were always obtained with an audio track that has been manually
pre-segmented into speech and non-speech parts. An evaluation with automatic audio segmen-
tation of the final test set has also been performed (see last row in Table 5.2). For both channels
(ARD and ZDF), the automatic segmentation causes only a loss of approx. 3 % absolute (com-
pared to the manual segmentation). Detailed information about the audio segmentation can be
found in [37].
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Table 5.2: ASR Results (WER in %) on the final test set with manual and with automatic
segmentation of the audio track.

Channel
Audio SegmentationARD ZDF Both

Manual 31.6 32.8 32.7
Automatic 34.5 35.1 35.9

5.3 Strategies for lower run-time and memory
requirements

The measures described until now have an effect on the numberof automatic transcription
errors. To make an ASR system feasible, also the run-time andthe memory requirements
have to be considered. Especially for a large vocabulary system with a large language model,
special methods have to be applied.

Tree organisation of lexicon Empirical studies have shown that in LVCSR systems with
vocabulary sizes of 20,000 words and more, usually 90 % of thesearch effort has to be spend
on the first two phonemes of a word. Thus, an important aspect in the context of increased
efficiency in BN processing is the tree organisation of the recogniser lexicon within the single
word recognition network. This tree lexicon contributes vastly to the reduction of size and the
number of nodes to be expanded at each time step, because the highly redundant computation
of paths for words with similar leading phones can be avoided.

LM Caching With vocabulary sizes as used for the BN recognition task, consisting of
100,000 words, the associated trigram language models growvery large. A standard tri-
gram language model has a typical size of 150-200 MB in a compressed format(!), while a
four-gram language model may even have dimensions of 250 MB and more. After uncom-
pressing the language models, loading the acoustic models and the trigram language models,
the recognition task may require 800-1000 MB RAM on a standardLinux PC, hinting that
these requirements are almost doubled on 64 bit machines. A first step to reduce this need is to
analyse which parts of a language model are important in terms of their frequency of access.
In contrast to the general assumption that unigrams appear homogeneously distributed over
time, especially in our media monitoring application the effect could be observed that words
or phrases appear rather in bursts than homogeneously. The appearance of such bursts is ob-
viously triggered by the different presented topics. This fact led to the idea of using cached
disk-based language models, where only the currently relevant parts are kept in a FIFO (first
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in first out) buffer and the additional parameters get reloaded, if demanded. Of course, this
approach increases the disk traffic, which in turn increasesthe run time by a factor of 1.5-2.
This increase is mainly affected by the size of the FIFO and the average story length of the
processed material. A huge FIFO applied to topically homogeneous material leads obviously
to a higher average number of buffer hits, which increases the efficiency of the disk-based LM.
Using the cached LMs, the memory load was reduced from 800 MB for a decoding task based
on a trigram LM down to 120 MB without any losses in recognition accuracy. Regarding the
slow down of the recogniser, the feature of cached LMs shouldbe considered as optional and
should be used only in cases where too few memory is available. However, in these cases
the cache based LM outperforms a system with a conventional memory swapping by far and
guarantees a stable and predictable system behaviour.

The final speech recogniser (System 8 in Table 5.1) has got a real time factor (RTF) of about
10 on a 800 MHz PC, i.e. the automatic transcription of a 10 minute news show takes 100
minutes. This RTF suits very well the given application (media monitoring), but it would be
too high for example for on-line speech recognition of a computer user.

5.4 Conclusion

The automatic transcription of broadcast news demands special efforts to build the speech
recogniser. Among the numerous steps to adapt an existing recogniser to the BN transcription
task, two have the greatest impact on the word error rate:

• News language models. The incorporation of a trigram language model based on writ-
ten news (newspaper texts) reduce the word error rate from 54.3 % to 30.9 % when
used in combination with monophone models trained on broadcast news. This equals
to a reduction of 43 % relative. When the newspaper language model is interpolated
with a language model based on spoken news (manual transcription of broadcast news),
the WER drops about 12 % relative (from 29.1 % to 25.5 %). The newspaper LM has
less effect when used with the baseline recogniser, which isnot optimised for broadcast
news.

• Monophone and triphone acoustic models trained on broadcastnews. Broadcast
news have quite a high degree of noise. Clean speech has a shareof 44 %, while speech
with background noise has a similarly large share of 41 % [37]. The training of mono-
phone acoustic models based on broadcast news brings about areduction of around one
third (79.9 %→ 54.3 %). The introduction of triphones instead of monophones further
cuts the WER by one quarter (25.5 %→ 19.2 %).
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Other measures, for example improvements of the dictionaryor gender-dependent acoustic
models, also lead to the reduction of transcription errors,but just to a minor degree.

The representation of the dictionary as a tree, and the caching of the language model in a FIFO
are crucial to make the recogniser efficient in terms of run-time and memory requirements.

The effort put into adapting an existing ASR system for the transcription of broadcast news
resulted into a significant reduction of the word error rate from an initial 79.9 % to 18.7 %,
or by 77 % absolute. This system is therefore promising to deliver good-quality transcriptions
for the subsequent topic classification module. However, ascan be seen on the final test set,
its performance degrades for non-clean speech. Topic classification results with the ASR tran-
scriptions will be presented in Section 7.3.4 on page 95, Chapter 8 on page 99 and Chapter 9
on page 122.



Chapter 6

Audio-visual topic segmentation

The topic detection module of the presented media monitoring system requires pre-segmented
stories. Therefore, a news show has to be cut into topic homogeneous stories, i.e. topic bound-
aries have to be identified. This task is taken over by a separate module, the topic segmentation
module, which will be presented in this chapter. In addition, the performance of the core algo-
rithm of the segmentation module will be investigated with respect to a shot boundary detection
problem.

Apparently, usually any detection of story boundaries requires a speech transcription before-
hand. In addition, it must be stressed that the consideration of the acoustic clues does not
provide enough evidence to identify story boundaries: 40 % of the story boundaries occur
without a speaker turn (40 % missed), while 90 % of the speakerturns occur when no topic
change is present (90 % false alarm). However, this is not thecase for the audio-visual seg-
mentation presented in this chapter. The audio-visual story segmentation module identifies the
topic boundaries based on mainly the video features of a newsshow. One approach addition-
ally identifies audio boundaries (e.g. speaker changes), but in no case the audio transcription is
used. Two approaches to topic segmentation were investigated: avisual, and anaudio-visual

algorithm. Both make use of features that are derived from thevideo information of a news
show. The audiovisual algorithm additionally uses the audio information to detect speaker
boundaries. Both approaches use lattices; whereas the visual algorithm uses a lattice to repre-
sent a whole news show, the audio-visual one uses a lattice todefine topic structures.

6.1 Introduction

A news lattice combines content classes and edit effects into a structure that describes a TV
news show. The lattice allows only certain sequences of content classes and edit effects during
recognition. A sample lattice is depicted on page 67. A lattice describes possible paths through

55
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a news show and thus incorporates a-priori knowledge into the recognition process. The equiv-
alent in speech recognition would be a grammar, which allowsonly certain combinations of
words.

The design of a news lattice is an important step when building a video segmentation/indexing
system. There are certain video class sequences in news shows that appear very often, but
some sequences only appear once or twice. The question arises: should rare sequences be
integrated into the lattice or not? Two contradicting aspects have to be considered: On the one
hand, the lattice should be simple in order to limit the number of allowed paths; otherwise, rare
paths might be evaluated more often than they really occur. Additionally, fewer paths allow
faster decoding. On the other hand, omitting too many possible paths will not represent every
detail. One might expect a worse recognition rate with more complex lattices, as they allow
more paths, of which some do not represent the news show currently being processed. One
goal of this paper is to find out whether this assumption holds.

Lattice complexity not only affects the recognition result, but also the time needed to build up
the system: complex lattices need more time to be produced and are more difficult to verify
manually. In this chapter, it will be investigated how general (simple) and complex news
models affect the segmentation result.

Another important module of a pattern recognition system isthe feature extraction. Features
for the topic segmenter were extracted form the news video atboth 12.5 frames (or features)
per second (fps), and at 25 fps. The number of samples, thus the available information, doubles
at 25 fps. Does this also result in better recognition rates?One important step that is common
to both the visual and the audio-visual algorithm is the classification of the news show into
content classes and edit effects.

The following sections explain the algorithms in more detail. Before going into detailed de-
scription, it is helpful to define the following concepts:

• A TV station broadcasts audio and video signals through a fixed, limited number of
electro-magnetic frequencies. As one frequency (or, to be precise, one band of continu-
ous frequencies) is referred to as a channel, the termchannel is used synonymously for
station.

• Most TV (and radio) stations transmit news broadcasts. Newsbroadcasts that appear
under the same name and at fixed times are calledprogrammes. They repeat (presenting
different content) usually every day, or even more often.

• A news programme consists of a series of single shows. A newsshow is a single broad-
cast limited in time (usually 5 to 45 minutes) and can be identified by its date, and start
and end time. They do not repeat.
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• A shot is a continuous strip of frames in a broadcast or video, separated byedit effects
(cuts, dissolves, wipes, etc.).

One can clarify the above concepts by a relationship of sets:

shots∈ show∈ programme∈ channel.

6.1.1 Definition of data sets

Two different data sets are evaluated in this chapter: a preliminary set and a final set.

Test set A The preliminary set of news shows (setA1) consists of 9 Tagesschau news shows
from 1998, to amount to a total duration of 2:15 hours. They were recorded at 12.5 fps.

Test set B The final test set (setB) is made up of four different shows (Tagesschau, Tages-
themen, Heute, Heute-Journal) from two TV stations (ARD and ZDF). For this set, training
of the topic segmenter was conducted on 39 different shows (15 from Tagesschau, 12 from
Tagesthemen, 6 from Heute, and 6 from Heute-Journal) recorded in 2000 at 25 fps.

6.1.2 TV news indexing

The topic segmentation system was built based on the TV news indexing system by Eick-
eler [26, 25]. His system is able to index TV news shows from the German stationsARDand
ZDF. It is limited to shows where only one newscaster appears; this means only news shows
up to a length of 15 minutes (ARD) or 5 minutes (ZDF) can be classified. The indexing sys-
tem classifies each image frame of a news show into content classes like newscaster, report,
interview, begin, end, weather, and so on, and into edit effects like cut, dissolve, and so on.
The recognition rate of Eickeler’s system is 96.8 % for ARD shows (programme dependent)
and 88.8 % for ZDF shows (programme independent).

6.2 Topic segmentation

Eickeler’s approach was extended in two ways in order to detect topic changes in TV news:

1The data set abbreviations of this chapter are not related tothe same identifiers used in Chapter 7.
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1. After indexing a news show, rules are applied to determinethe topic boundaries.

2. New lattices were defined that model, in addition to the structure of a news show, the
structure of a topic inside a show.

The extraction of the features from thevisualpart of a show, however, did not change.

6.2.1 Feature extraction

Two different types of features were extracted:

• Features based on visual information only (visual features). Such feature vectors con-
sist of 12 components.

• Features based on video and audio information (audio-visual features). These consist
of the 12 visual features plus one audio component indicating speaker or audio type
changes.

Visual features

The video images are stored in the YUV colour space, where theY channel contains the
luminance (grey level) of the image, and U and V are colour channels. These three values are
equivalent to an image representation in the RGB space, and can be converted into RGB by a
simple matrix transformation.

For extraction of the visual features, 12 numerical values are calculated for every image
(frame) of the video stream. Most of the visual features relyon the difference image. Its pixels
d(x, y, t) state the difference of the luminance values at pixel(x, y) between two consecutive
image frames at timet and timet− 1.

d(x, y, t) = |I(x, y, t)− I(x, y, t + 1)| . (6.1)

I(x, y, t) is the luminance value of the pixel(x, y) of framet. The difference image is a good
indicator for movement.

The first 7 feature components are based on the difference image. Two of them describe the
centre of movementm(t) = (mx,my)

T :

mx(t) =

∑

x,y

x · d(x, y, t)

∑

x,y

d(x, y, t)
my(t) =

∑

x,y

y · d(x, y, t)

∑

x,y

d(x, y, t)
. (6.2)



Chapter 6 Audio-visual topic segmentation 59

The variation in time of the centre of movement is also used:

∆mx(t) = mx(t)−mx(t− 1) ∆my(t) = my(t)−my(t− 1). (6.3)

Two features indicate the average deviation of the centre ofmotion between two images:

σx(t) =

∑

x,y

d(x, y, t) |(x−mx(t))|
∑

x,y

d(x, y, t)
σy(t) =

∑

x,y

d(x, y, t) |(y −my(t))|
∑

x,y

d(x, y, t)
. (6.4)

A feature that is important for detecting cuts is the intensity of motion [27]

i(t) =

∑

x,y

d(x, y, t)

XY
(6.5)

with XY the number of pixels in an image. Fromi(t), a valuei′(t) is computed to compensate
for flashes of photographers or short-time image disruptions. It selects the smaller value of the
motion intensity for frames(t, t + 1) and(t− 1, t + 2):

i′(t) = min



i(t),

∑

x,y

|d(x, y, t− 1)− d(x, y, t + 2)|

XY



 . (6.6)

Another feature that is important for the detection of cuts is the difference histogram [27]. Its
intensity is

h(t) =
∑

g

|hg(t)− hg(t + 1)| , (6.7)

wherehg(t) is the number of times that the grey value g appears in the image at timet. Again,
a filtering similar to (6.6) reduces the effects of image disruptions:

h′(t) = h(t)−median
(

h(t− 1), h(t), h(t + 1)
)

. (6.8)

The median operator removes impulsive noise, soh′(t) serves as an impulse detector.

The above mentioned features are not able to detect the dissolve edit effect. This is accom-
plished by a special feature which is motivated by the fact that during a dissolve, the value of
a pixel should be similar to the interpolated value of the neighbouring pixel values of frames
t − 1 andt + 1. The denominator of (6.9) equals the difference of the interpolated value and
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the true value at framet. The numerator serves as a scaling factor.

s(t) =
∑

x,y

d(x, y, t)

|1
2
(IY (x, y, t− 1) + IY (x, y, t + 1))− IY (x, y, t)| . (6.9)

The last three feature components are the average values of the two colour components U and
V and the average of the luminance Y.

mY(t) =

∑

x,y

I(x, y, t)

XY
mU(t) =

∑

x,y

IU(x, y, t)

XY
mV(t) =

∑

x,y

IV(x, y, t)

XY
. (6.10)

IU(x, y, t) and IV(x, y, t) represent the colour componentsU and V of the pixel (x, y) at
framet.

Audio features

Audio boundaries (e.g. speaker turns or changes from non-speech to speech) are detected using
a slightly modified BIC criterion [33, 81, 87]:

The BIC algorithm takes a window ofn audio featuresx1, . . . ,xn and arbitrarily places a
boundary at positioni, resulting in two segments. It then decides whether it is more likely
that one single modelθ1 has produced the outputx1, . . . ,xn, or that two different modelsθ21

andθ22 have generated the two segments’ outputx1 . . .xi and xi+1 . . .xn respectively. The
decision rule to check if there is a boundary at pointi is

∆BICi

!
< 0 with (6.11)

∆BICi = −n

2
log |Σw|+

i

2
log |Σf |+

n− i

2
log |Σs| (6.12)

+
1

2
λ(M +

M(M + 1)

2
) log n.

Σw denotes the covariance matrix of all window feature vectorsx1, . . . ,xn, Σf andΣs are
the covariance matrices of the features of the first and second segment respectively.M is
the feature vector dimension. According to theory, the penalty weight λ should equal 1, but
practical applications show better results withλ 6= 1.

If for a point i, ∆BICi < 0, then also for some pointsj surroundingi there will be∆BICj <

0. The algorithm decides for the boundary to be at the point with the lowest∆BIC value.
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To detect all audio segments of a news show, the window is shifted over all feature vectors
with varying lengthsn and varyingi. See [87] for details.

Implementing the above described algorithm, it was noticedthat sometimes segment bound-
aries are set too early, roughly one or two syllables before the speaker finishes his or her
utterance. Instead of considering the pointi at which the minimum of∆BIC occurs as a
boundary, the pointk was chosen that lies in the middle of the adjacent two points at which
the∆BIC value crosses the 0 line:

k =
l + m

2
with ∆BICl = 0, ∆BICm = 0, l < k < m. (6.13)

This modification improves the segmentation accuracy and reduces the number of boundaries
appearing too early.

As feature vectorsx for the BIC criterion, 39-dimensional mel-cepstral featurevectors without
mean subtraction were used. The penalty weight was set toλ = 3.0. The resulting boundary
positions are rounded to the nearest video frame.

The audio boundaries detected by the BIC criterion are used tocreate an audio feature stream.
The audio feature stream is extracted in such a way that the frame at which the audio boundary
occurs gets a maximum predefined feature value (e.g. 1.0), whereas all other frames are ini-
tially assigned a value of 0. A predefined number of frames surrounding each peak frame (25
to each side) are assigned values that decrease linearly andsymmetrically with respect to this
frame. If two close audio boundaries cause an overlap of their feature values, the maximum
value is taken. The result is a 1-dimensional audio feature stream that is added to the 12 video
features for use in the audio-visual topic segmentation approach.

6.2.2 Modelling and recognition

Content classes and edit effects were defined that are modelled by HMMs. For test setA,
the following six content classes are used: Begin, End, Newscaster, Report, Interview (an
interview of the newscaster and the interviewed person) andWeather Forecast. Four classes
are defined for the edit effects: Cut (a hard cut), Audio-Visual Cut (a hard video cut with an
audio boundary nearby; this effect is only used by the audio-visual approach), Dissolve, Wipe
and Window Change (a change of the ”topic window” next to the newscaster; this effect is
used as separator between two news topics).
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Content classes and edit effects

For the reference labelling of the training videos of setB, many more content classes and edit
effects were used. However, several classes do not appear frequently enough to reliably train
separate models. The corresponding frames were used to train another model (usually the
Newscaster model). For example, the most common configuration of frames represented by
the Newscaster model places the newscaster on the right handside of the image, together with
a topic window on the left side. However, to train this model,scenes are also used in which
the camera has zoomed in on the newscaster, plus scenes wherethe positions of the newscaster
and the topic window are exchanged. Some edit effects, like acircle growing (or shrinking),
where the circle contains the new (or old) scene, appear veryrarely and therefore could not be
trained.

The reduction in the number of different classes to train notonly makes the estimation of the
models more but it also reduces the complexity of news lattices (see below).

The following Hidden Markov Models were trained on the training data of setB (most models
are clarified by sample frames below them).

Content classes:

• Beginning (separately for ARD and for ZDF)

• End (separately for ARD and for ZDF)



Chapter 6 Audio-visual topic segmentation 63

• Intro (for ZDF only)

• Newscaster

• Two newscasters

• Newscaster1 (during interview) (only for ARD)

• Newscaster2 (during interview)

• Interview (only for ZDF)

• Report
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• Chart/Diagram

• Weather

Edit effects:

• Cut

• AV-Cut (audio-visual cut): A visual cut with an audio cut (e.g. speaker turn) nearby.
Only used for topic-structure lattices.
• Dissolve

• Wipe Left to Right

• Wipe (only for ZDF)
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• Window Change. The window behind the newscaster (on the rightside) contains infor-
mation (pictures, text) about the topic. A change in its contents indicates the beginning
of a new topic.

• Zoom-Out of Newscaster together with a Window Change (only for ZDF)

One set of models is created for every channel. The segmentation and classification of a news
show is the result of calculating the sequence of HMMs that most probably has generated the
observed feature vector sequence. This is done using the Viterbi decoding algorithm described
in Section 2.4.2.

Lattices

A lattice is defined that combines the content classes and theedit effects of a typical and
flexible news show structure. The lattices are listed in Table 6.1 on page 69, and some sample
lattices are depicted at the end of this chapter. Two different approaches are taken to identify
the topic boundaries:

1. News Show Lattice + Rules; Visual Features.The first approach makes use of a
lattice that represents a whole news show and does not consider topic boundaries or the
topic structure that is in a news show. This type of lattice iscallednews show lattice.
The recognition result is a classification of the news show into edit effects and content
classes and does not contain any information about topic boundaries. Rules are then
applied to obtain the positions of the topic boundaries fromthe classification. For ARD,
the following rules are applied:

• All edit effects except for the Window Change effect are ignored.
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• The following transitions are considered a topic boundary:
– Begin to Newscaster
– Report to Newscaster
– a Window Change which separates two Newscaster scenes
– a Window Change with a preceding Interview and a following Newscaster
– Report to Weather Forecast
– Everything that appears after the Weather Forecast is ignored, thus rejecting

unimportant previews of other news shows.

For ZDF, these transitions are assumed to be a topic boundary:

• Begin to Newscaster, to Report or to Chart
• Zoom-Out of newscaster together with a Window Change
• Window Change to Newscaster
• Report to Newscaster
• Wipe Left to Right after a Report
• Wipe before Report, only for frames later than 3:20 minutes
• Ignore the first boundary that was detected.

The position of the first boundary of the ZDF news programmes (and also of ARD) is
quite fixed, and varies only about 6 seconds. For this reason,the first boundary could
be fixed to a specific time (ignoring all detected boundaries before it). However, this
only makes sense if the tolerance window that compares reference and hypothesised
boundaries is enlarged. See Section 4.3 for the definition oftolerance window.

Visual features (see Section 6.2.1) are used together with the news show lattice + rules
approach.

2. Topic Structure Lattice; Audio-Visual Features. The second approach defines a lat-
tice that is designed with the assumption that a news show is composed of several topics.
Topic boundaries are embedded into the lattice. It still models a whole news show, but as
it also models the structure of topics within a show. Such a lattice is calledtopic struc-

ture lattice. The beginnings of topics are marked directly in the lattice. Thus the topic
boundaries are detected when decoding the videos with the Viterbi algorithm, and not
as a separated step (with rules) as the News Show Lattice approach. For this approach,
both visual and audio feature components are used.

Figure 6.1 on the next page depicts a simple news show lattice, while Figure 6.2 on page 68
shows a more complex variant. A topic structure lattice is depicted in Figure 6.3 on page 69.

Four different groups of lattices (L1 − L4) were defined that vary in complexity (from simple
to complex), and in type (news show lattice or topic structure lattice). For every channel (L2),
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Figure 6.1: A simple news show lattice.

or even for every news programme (L2, L3) different lattice variants were created.L4 was
designed for and tested on ARD exclusively. The lattices weremanually created based on
setA or on the training set ofB. Complex lattices try to capture more variations in the news
shows, while simple lattices only represent the basic structures. However, even the complex
lattices do not account for every possible combination, since that would make them more time-
consuming to design and would allow paths that are very rare that and maybe occur only once,
possibly compromising overall performance.

Table 6.1 lists the lattices together with the number of nodes and arcs that are used for their
internal representation. Higher numbers indicate more complex lattices. For lattice groups
consisting of more than one lattice, the minimum and maximumnumber of arcs and nodes is
given. Lattice groupL3 has an extraordinary high number of nodes and arcs, which is only due
to its internal representation and does not well reflect its true complexity:L3 contains loops
which are passed a predefined number of times. For example, the main loop in the lattice
depicted in Figure 6.2 on the following page may be run 12 to 18times. The internal represen-
tation of this lattice transforms this loop into 18 consecutive, discrete elements (of which the
last 6 can be optionally skipped). Obviously, this explicit(and “brute force”) representation of
the loop leads to a higher number of nodes and arcs.
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Figure 6.2: A complex news show lattice.

6.2.3 Experiments and results

Experiments were conducted on a preliminary set (data setA), and on one final set (data setB,
see Section 6.1.1 for the specification of these sets). The final set consists of training and test
news shows from different time periods; its test shows are also used for the evaluation of the
SVM topic classifier (Chapter 3 on page 14) and of the media monitoring system (Chapter 9
on page 122). The reference boundaries were created by one person and reviewed by another
person according to their personal judgement of where a topic boundary is. The experiments
are evaluated using precision and recall (see Section 4.3 for the definitions). A tolerance range
of 4 seconds (except where otherwise noted) was applied whenmatching reference and system
topic boundaries.
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Table 6.1: Number of nodes and arcs in the internal representation of the news show lattices.

Lattice # of lattices Nodes Arcs Designed on
group in group training set

L1 4 30-55 75-174 B
L2 2 59-64 147-155 A
L3 4 793-2469 2037-6491 B
L4 1 1121 2700 A

Test set A

For evaluation of the test setA, the hold-out method was used, i.e. each show was tested with
a system trained on the other eight. As mentioned above, two different types of lattices that
model the sequence of content classes and edit effects were used. The results for setA are
listed in Table 6.2 [33].

Table 6.2: Topic segmentation results for set A.

Type of News show latticeTopic structure lattice
algorithm (visual features) (audio-visual features)

Precision 88.2 % 64.8 %
Recall 82.2 % 91.5 %
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Test set B

More edit effects and video content classes than in setA were defined for the final setB (see
Section 6.2.2). Only visual features, but no audio featureswere extracted, since the audio
features did not improve performance. The number of news shows per channel is listed in
Table 6.3.

Table 6.3: Number of TV news shows in the final test set.

Channel Programme Number of shows

ARD Tagesschau 13
ARD Tagesthemen 2
ZDF Heute 12
ZDF Heute-Journal 5

Total 32 (11 hrs 08 mins)

The following aspects were investigated by the experimentspresented below:

• Feature density: 12.5 fps or 25 fps
• LatticeL1 − L4

• Different training sets for the models
• Tolerance window for matching reference and hypothesised topic boundary: 4 s or 12 s.

Feature density and lattice complexity A first series of experiments was conducted to
determine whether simple or complex lattices yield better performance. These experiments use
the News Show Lattice + Rules approach (Section 6.2.2). All four lattices were used for de-
coding, together with features extracted with both 12.5 and25 fps. The HMMs were trained on
setB. Since the reference labelling matches the training videosat 25 fps, it had to be changed
to match it at 12.5 fps. Special attention has to be paid to effects that occur: for example, a
dissolve of length 3 frames at 25 fps appears as a hard cut at 12.5 fps. Table 6.4 states the
segmentation results on channel ARD only. Almost all experiments were also conducted on
ZDF news broadcasts (not listed). ZDF results are usually 10% to 20 % (absolute) worse than
ARD results. The news shows from the ZDF channel are characterised by a greater variety
of content and effects, which makes them more difficult to segment. The longer programmes
of both ARD and ZDF ((Tagesthemen and Heute-Journal) have gota less rigid structure than
their shorter counterparts. There are also more content classes or edit effects. For example,
two newscasters never appear in the Tagesschau, but they appear in the other programmes. As
Eickeler has observed [25], two newscasters pose a problem for the features used in his video
indexing system, and consequently also for the topic segmentation system presented here.



Chapter 6 Audio-visual topic segmentation 71

Table 6.4: Topic segmentation performance (in %) with different lattices and different feature
densities of channel ARD. The News Show Lattice + Rules approach is used. Mod-
els were trained on the training set of B.

Density 25 fps 12.5 fps
Lattice Prec. Recall Prec. Recall

L1 55.6 46.2 61.3 43.8
L2 61.4 53.8 60.2 49.8
L3 64.3 40.9 61.9 44.1
L4 55.6 37.8 58.2 47.1

The Tagesschau (ARD channel) is the most important German TV news show with its market
share of 35 % [20]. It is the oldest, and by far most well-knownGerman TV news show. This
coincides with its rigid, quite fixed structure, and fewer content classes and edit effects that the
other news programmes. Consequently, the topic segmentation works best for the Tagesschau
(see below for detailed recognition rates).

As to the question of best feature density (12.5 or 25 fps), there is no clear answer. Depending
on the lattice, sometimes the one or the other result is better. However, the worst of all results
are always found among the 25 fps features. The reason might be that 25 fps features are
too “detailed”. As one frame is usually not much different from its surrounding frames (shot
boundaries are of course an exception), the doubling of the amount of features does not mean
that more information is stored in the features. To put it in other words, the features extracted
at 25 fps are highly correlated. At 25 fps, additional edit effects emerge that cannot be seen
at 12.5 fps (e.g. the already mentioned example that a dissolve which takes 3 frames at 25 fps
appears as a cut at 12.5 fps). As it is shown in Section 6.3.2, the detection of gradual transitions
is more difficult than the detection of cuts. This fact could deliver another explanation why the
worst results are always found among the 25 fps features.

As a consequence, 12.5 fps features should be preferred. Thelower frame rate additionally
has the advantage that the video material can be grabbed at the lower frame rate, yielding less
amount of data (this aspect is of course irrelevant if the video was already digitalised for other
purposes, because then it is likely to have the standard 25 fps).

As for the different lattices, there is likewise no clear winner. The precision rates at 12.5 fps
are nearly the same, and the recall rates vary only to a slightly higher degree. Thus, it does not
pay in vast the effort needed to design complex news models.

Models trained on set A Some models trained on setB contain frames which originally
had different reference labels. For example, the newscaster class was trained with newscasters
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at three different positions (with one being predominant).Such a “label mapping” was not
performed in conjunction with setA. This is due to the fact that setB consists of much more
data (11 hours of two channels vs. 2 hours of one channel), andthat more programmes (two
for ARD, instead of one) were used.

Although much more training data was used for setB, it might be that setA contains cleaner
and more pure models, i. e. models that are required to capture less variance in the data. This
is substantiated by a second set of experiments. The models that were trained on setA were
used to segment the test set of setB. For 12.5 fps and latticeL2, the precision for ARD rises
from 60.2 % (models trained on setA, see Table 6.4) to 64.0 %. The recall is substantially
increased from 49.8 % to 76.0%.

Table 6.5 (column “4 s Tolerance”) breaks down the results onthe two programmes of ARD,
Tagesschau and Tagesthemen. Additionally, it contains thesegmentation results on the two
ZDF programmes. Again, as was already observed above, the segmenter performs worse on
ZDF; it also performs worse on the longer programmes (Tagesthemen and Heute-Journal, 30
minutes each) than the shorter programmes (Tagesschau, 15 minutes, and Heute, 20 minutes).

Larger tolerance window The tolerance window of 4 s is very conservative: a predicted
boundary must not appear more than 2 seconds earlier or 2 seconds later than the real boundary
in order to be considered a match. The official evaluation forthe TDT story segmentation
task [6] uses a window size of 15 seconds. As a consequence, a larger tolerance window than
4 s was considered. It turned out that a 15 s window produces many multi-matches, i.e. a
reference boundary matches more than one hypothesised boundary (or vice versa). With a 12
s window, there are significantly less multi-matches with nearly no degradation in precision
and recall. The evaluation result for this window size can also be found in Table 6.5. With
the larger tolerance window, the results for ARD could not be improved much (by about 3 %
absolute). The results for ZDF increase by about 8 % absolute. It can be concluded that
the accuracy of the boundary postitions (with respect to thereference segmentation) is much
higher for ARD than for ZDF.

Topic Structure Lattice Several experiments were also conducted with 25 and 12.5 fps
using the Topic Structure Lattice approach. (see Section 6.2.2). One example for 12.5 fps
features and ARD data is listed in Table 6.6. It was created with latticeL4 (this lattice was
also used for the News Show Lattice approach, where its topicboundaries were ignored). It
is compared to the News Show Lattice experiment that uses lattice L2 and likewise 12.5 fps
features. The figures for this latter experiment were taken from Table 6.5.
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Table 6.5: Topic segmentation performance (in %) with lattice L2, 12.5 fps, News Show Lattice
+ Rules approach, models trained on set A. Two window sizes of tolerance for
matching true and hypothesised boundaries are investigated.

Channel Programme 4 s Tolerance 12 s Tolerance
Precision RecallPrecision Recall

ARD Tagesschau 68.0 77.2 71.0 79.0
ARD Tagesthemen 45.8 68.8 50.0 72.4
ARD Total 64.0 76.0 67.5 78.1

ZDF Heute 50.0 55.4 58.8 64.5
ZDF Heute-Journal 48.5 60.8 54.6 67.9
ZDF Total 49.5 57.2 57.3 65.7

Table 6.6: Comparison of a News Show Lattice approach to a Topic Structure Approach. Re-
sults in % for ARD shows, 12.5 fps features and models trained on set A

Lattice, Algorithm 4 s Tolerance 12 s Tolerance
Precision RecallPrecision Recall

L2, News Show Lattice + Rules 64.0 76.0 67.5 78.1
L4, Topic Structure Lattice 49.5 70.5 53.8 75.5

Although the two experiments were conducted with differentlattices, one can nevertheless
draw conclusions about the performance of the News Show Lattice vs. the Topic Structure
Lattice approach: As was mentioned above, the lattice has only a very limited influence on the
segmentation performance. Just as for data setA, the precision with a Topic Structure lattice
is significantly lower than with a News Show lattice. The recall is also lower for the current
experiments, but it is higher for setB. For test setA, one can conclude the News Show Lattice
approach is better than its alternative. This is also true for setB, because of the better balance
between precision and recall.

Performance on set A compared to set B

The best topic segmentation for the Tagesschau shows of setB has got a precision of 71.0 %
and a recall of 79.0 % (Table 6.5). For the Tagesschau shows ofsetA, the performance is
88.2 % precision and 82.2 % recall. Thus, recall is nearly thesame for both datasets. Precision,
however, decreases substantially with test setB. The reason is that test setB contains unusually
long topics. Many stories are about the war in Afghanistan and the conflicts in the aftermath
of the attacks on September 9th, 2001. So there are fewer topic boundaries than one would
expect, and stories are longer. This corresponds with the segmentation results, because the
lower precision means that there are more wrongly inserted boundaries.
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One aspect when comparing the performance of the topic segmentation on test setsA andB
is the time precision of the correctly hypothesised boundaries. For data setA, the size of the
tolerance window is nearly irrelevant. If a topic boundary is correctly detected, there is only a
difference of a few frames between the correct and the hypothesised boundary. This is different
for setB. As the increase in performance from a tolerance window of 4 sto 12 s shows, the
difference between correct and predicted boundary is bigger on test setB.

The decrease in performance between the two datasets can thus be accounted for by the ex-
ceptional character of test setB, not by the fact that the topic segmentation algorithms have
become “worse”.

6.3 Shot boundary detection

This section does not directly deal with the segmentation ofa news show into topics. Instead,
it deals with the detection of boundaries between shots (nottopics). A shot is a homogeneous
part in a video file delimited by cuts or gradual transitions.

6.3.1 Video indexing for shot boundary detection

When a news show is classified into content classes (Newscaster, Reports, etc.) and into
edit effects (Cuts, Dissolves, etc.) with Eickeler’s Video Indexing System [26, 25] (see Sec-
tion 6.1.2), the shot boundaries (among other things) are detected. The performance on Cuts
is very good (very few cuts are inserted or deleted), but Dissolves are not equally well classi-
fied (78 % correct detection and 44 % false detection [25]). The precision of shot boundary
detection is 96 %, and the recall is 95 %; these values have been observed if the training- and
the test set shows come from the same programme (programme-dependent).

It is interesting to know how well this approach works for news shows from other programmes
(programme-independent identification). This issue was already investigated on a small set
of four ZDF shows [26]. The TRECVID 2003 conference provides a valuable framework for
further examination, since it defines and distributes a standard test set. This characteristic
allows the performance of the video indexing system to be compared to other approaches.

6.3.2 TRECVID 2003

TRECVID is a series of annual workshops that emerged from the TREC conferences (see
Section 7.1.1). It is devoted to the research of automatic segmentation, indexing, and content-



Chapter 6 Audio-visual topic segmentation 75

based retrieval of digital video. The TRECVID 2003 consists ofthe tasks shot boundary
determination, story segmentation, high-level feature extraction, and search. The shot bound-
ary task is to identify the shot boundaries with their location and type (cut or gradual) in the
given video clip(s) [4].

The common test data for the shot boundary task consists of 5 hours of TV from the pro-
grammes ABC World News Tonight (4 shows of 30 minutes), CNN Headline News (4 shows
of 30 minutes), and CSPAN (4 shows of 10 or 20 minutes, plus one show of 40 minutes). ABC
and CNN broadcasts include studio scenes, indoor and outdoorscenes, while the CSPAN files
are focused only on indoor scenes, such as congress debates.

Each show contains a manually created reference list of shottransitions. A transition belongs
to one of the following categories: cut, dissolve, fade-out, fade-in, other. All except for the first
one are gradual transitions [84]. The CSPAN shows do not contain shot transitions other than
Cuts. One exception is one CSPAN show (the 40 minutes one) whichcontains four dissolves;
these were not detected by the system. For this reason, the CSPAN news were not evaluated
with respect to gradual transitions.

Evaluation

Besides defining and making available a common test set, an advantage of TRECVID is that
it provides common evaluation guidelines together with a Java-based evaluation tool. The
most important measures, precision and recall, are defined according to eqs. (4.11) and (4.12).
When the reference and the hypothesised transitions are compared, gradual transitions can
only match gradual transitions, and cuts can only match cuts. Transitions between shots are
considered abrupt (a cut) if the transition’s duration is 5 frames or shorter. Otherwise, a tran-
sition is considered gradual. The size of the tolerance window for matching abrupt transitions
is 0.33s For gradual transitions, there is no fixed window size; one frame of the reference
transition has to match at least one frame of the predicted transition. These values are much
stricter than those used in the evaluation of the topic segmentation (Section 6.2.3). Precision
and recall are calculated by the evaluation tool for each file, and mean precision and recall are
calculated across all files.

6.3.3 Experiments

Experiments were performed with visual features (Section 6.2.1), and news show latticeL2

designed for ARD. Models were trained on setA.
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Table 6.7: Performance (in %) of Eickeler’s news indexing approach on the TRECVID 2003
shot boundary test set. The numbers in bold are used in Figures 6.4 and 6.5.
Empty entries: same value as in the corresponding “without” line.

ABC CNN CSPAN Mean
LH threshold Transition type P R P R P R P R

without Cut+Gradual 93 71 91 61 65 86 89 67
without Cut 93 75 90 68 65 87 88 72
with Cut+Gradual 100 83 93 67
with Cut 100 83 93 72
not applicable Gradual 95 60 87 46 no eval. 92 53

A first series of experiments extracted the shot boundaries from the recognition result and
directly compared them to the reference labelling. Results are listed in Table 6.7 (“without LH
threshold”). The mean precision and recall rates (last two columns) are the output of the official
TRECVID 2003 evaluation tool over all test files. The columns for each individual channel are
the result of averaging precision and recall of every singleshow (again, the official evaluation
tool was used to obtain the performance figures of the single shows). The evaluations figures
were calculated separately for abrupt transitions (cuts),for gradual transitions, and commonly
for both types.

The precision for ABC and CNN shows is about 90 % to 93 %, while it is only 65 % for
CSPAN broadcasts. On the other hand, the recall for CSPAN is higher than for the other two
programmes.

The two video files with worst evaluation results (two CSPAN shows) were investigated. For
about two thirds of the wrongly inserted transitions, no apparent reason can be deduced. For
the remaining insertions, three different sources of errorwere observed (note that the CSPAN
data contains only insertions of cuts, so the following listing refers to cuts only).

1. Fade-in and fade-out of text overlay: Among all falsely inserted shot boundaries, fade-
in and fade-out of text overlay have a share of 25 %.

2. Movement: Five percent of all insertions contain movement. Such a false shot boundary
detection usually takes place not only because of strong movement of the main object in
the scene: other factors can also result in such an insertion. For example, zoom-ins or
zoom-outs also tend to generate an insertion.

3. Transitions detected too early or too late: Some insertions are quite close to a true
transition. But because there is no frame overlap between them, no matching is possible.
This situation not only generates an insertion, but also a deletion, which doubles the error
rate of the recognition system. This source accounts for about 5% of errors.
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One way to cope with insertions is to reject detected transitions using a confidence measure.
For reasons of simplicity, only a thresholding of the log likelihood (LH) of the observed transi-
tion frames given the detected transition model was considered. Normally, one would have to
compute a confidence value from the likelihood, because it isnot normalised. See Section 7.2.3
for a method to calculate confidence values.

The likelihood of cuts in CSPAN videos varies less than the likelihood of the other two pro-
grammes. Inserted cuts have got a much lower likelihood thantrue cuts. Therefore, it is easy to
find a fixed threshold for CSPAN cuts. An attempt was also made tofind a threshold for ABC
and CNN cuts, but use of a threshold lead to a worse performance: the decrease of insertions
is far behind the increase of deletions. As far as gradual transitions are concerned, a likelihood
threshold which separated insertions from true transitions could not be found.

For this reason, a second set of experiments was conducted inwhich a cut of a CSPAN show
was rejected if its log likelihood was below -42 (see Table 6.7). As a result, almost all inser-
tions in CSPAN vanish, and the precision rises from 65 % to 100 %. The overall precision
rises from 89 % to 93 %.

The performance of the shot boundary detection is clearly better on cuts (recall of 72 %) than
on gradual transitions (recall of 53 %). The precision is virtually the same regardless of the
type of transition.

Comparison to other approaches

The comparison to the results submitted to the TRECVID 2003 workshop shows that the
precision of both cuts and gradual transitions attained by the experimental system is among the
highest, while the recall of cuts is in the middle of all performances. The recall (and precision)
of gradual transitions is one of the best. Only three to four groups delivered better results. The
results of the presented approach is drawn into the official result figures (see large crosses in
Figure 6.4 for cuts, and in Figure 6.5 for gradual transitions). Each type of indicator represents
one group; as each participating group could submit more than one run, there is usually more
than one instance of each indicator type.

These are quite satisfactory results, given the fact that the video indexing system was not ex-
plicitly built for shot boundary classification. Moreover,the training data was taken from a
completely different channel, and similarly, the news showlattice was not designed on the
tested programmes. If a different lattice would be used, forexample one with nearly no struc-
ture, but rather just content classes and edit effects in an alternating order, one might expect
slightly better results.
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Figure 6.4: Performance in cut detection for the TRECVID 2003 shot boundary task. Results
of the presented system (large cross) added to the TRECVID 2003 participants’
results. Figure adapted from [84].

6.4 Conclusion

The numerous experiments presented in this chapter can be concluded as follows.

• The complexity of a TV news lattice is of minor importance. Itdoes not need to capture
every little variance of the news shows.

• A final statement cannot be made about whether it is better to extract features with 12.5,
or with 25 fps. Depending on the lattice, sometimes featureswith 12.5 fps, sometimes
features with 25 fps yield better performance. 12.5 fps should be preferred because a)
the worst results were always found with 25 fps, and b) it halves the feature data size
and the amount of necessary video files (compared to 25 fps).

• The News Show Lattice+Rules approach is superior to the TopicStructure Lattice ap-
proach.

• The Video Indexing system shows good performance for programme independent shot
boundary segmentation. Few systems perform better on gradual transitions, and the
insertion rate of cuts is also one of the best. However, the number of deleted cuts should
be decreased (although several other approaches are worse), for example by introducing
a simple, basic news model which does not make wrong assumptions about the structure
of the tested show.
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Figure 6.5: Performance in gradual transition detection for the TRECVID 2003 shot boundary
task. Results of the presented system (large cross) added to the TRECVID 2003
participants’ results. Figure adapted from [84].

The drawbacks of the presented topic segmentation approachare:

• Different News Show lattices have to be designed, at least for different channels.

• Likewise, the rules have also to be defined separately for every channel, even better for
every programme.

The performance of the topic segmentation approach on ARD shows is very good given the
fact that only the visual information of a news show (withouttext recognition in the video) is
used. It is, however, sensitive to the programme and the channel, and degrades for ZDF news
shows. The fact that the precision is lower than the recall, meaning that there are more inserted
topic boundaries than deleted ones, is not too bad: the topicclassification module should have
less problems with over-segmented shows than with under-segmented shows having stories
of more than one topic in one segment. Nevertheless, it should be promising to combine the
visual topic segmentation with a topic segmentation that isbased on the output of an automatic
speech recogniser [85, 11].



Chapter 7

Topic classification with Hidden
Markov Models

One of the key modules of an automatic media monitoring system is the topic classifier (com-
pare Figure 1.1). It decides whether a story is relevant to a media monitoring customer, and if
so, to which customer it is relevant. A story might also be relevant for more than one customer.
But as this occurs very rarely, this thesis assumes that a story is relevant for only one customer.

This chapter presents and thoroughly discusses two approaches for topic classification. A third
one is treated in Section 3 and Section 8. The first approach discussed here is a novel hybrid
approach that combines Hidden Markov Models (HMMs) and Neural Networks (NNs). Its
performance will be compared to the widely-used Naive Bayes topic classifier that serves as a
baseline system. The comparison of the two will be done on thebasis of data sets that contain

• As training data: always summaries of radio and TV broadcasts created byhand.

• As testdata: radio or TV summaries, or automatic transcriptions ofRadio news created
by the ASR module presented in Section 5.

7.1 Introduction

7.1.1 The TDT workshop series

One of the most influential institutions in the field of topic classification is the TDT (Topic
Detection and Tracking) workshop series [3]. It started in 1997 and has since been held every
year. Unlike other conferences, which do not provide a common data set or a common set of
tasks to be accomplished by the participants, both the data and the tasks are specified by the
organisers. Data sets used for it are newswires, radio and television news broadcast programs,

80
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and WWW sources. The data languages are English, Mandarin and Arabic. The following
taxonomy is used by the TDT series (mostly citing [6] and [60]):

• Event “Something that happens at some specific time and place.“ Examples are: the
eruption of Mount Pinatubo on June 15th, 1991, specific elections, accidents, or crimes.

• Topic “A seminal event or activity, along with all directly related events and activities.”
An event is bound to a specific time, while a topic (usually) consists of more than one
event.

• Topic Tracking “The TDT topic tracking task is defined to be the task of associating
incoming stories with topics that are known to the system. A topic is known by its
association with stories that discuss it.”[6]

• Topic Detection “According to TDT, topic detection tasks detect and track topics not
previously known to the system. It is characterised by a lackof knowledge of the topic
to be detected“ [6]. The goal is to detect clusters of storiesthat discuss the topics, but
not to find a topic name (label).

• New event detectionThis track used to be called First Story Detection. The goal is
to find the first story in a chronologically ordered stream that discusses anevent, not a
topic. It is not necessary to name the topic (or event) associated with a story.

• Story link detection Determine whether two stories discuss the same topic.

The classification of topics of TV news reports, which is the subject of this thesis, would
be called topic tracking in the language of TDT. One big focusof the TDT conferences
is the classification of spoken documents (radio and TV news broadcasts). In contrast, the
Text REtrieval Conference (TREC) deals with information retrieval on large text collections,
such as newspapers. One participating group, the Cornell University, has been developing the
influential SMART retrieval system [15] for 30 years The SMART system was the first one to
introduce the vector space model (see Section 8.3.1).

7.2 Naive Bayes classification

This section presents a well-known classification approachknown as Naive Bayes [23]. It as-
sumes that the wordswi in a documentd appear independently of other words. The likelihood
of a documentd = (w1, w2, . . . , wn) given a topicTj can then be expressed as

P (d|Tj) = P (w1, w2, . . . , wn|Tj) =
Naive Bayes

∏

wi∈d

P (wi|Tj). (7.1)
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The topic with the highest likelihood is the classification result:

T̂ = argmax
j

P (d|Tj). (7.2)

Alternatively, the topic can be chosen according to the maximum a-posteriori (MAP) principle
using the Bayes formula:

T̂ = argmax
j

P (Tj|d) = argmax
j

P (d|Tj)P (Tj)

P (d)

= argmax
j

P (d|Tj)P (Tj). (7.3)

The assumption that words are independent is obviously not true, but Naive Bayes performs
well in practice. With Naive Bayes, a topic can be modelled by unigrams1. It has the advan-
tage of easy implementation, and is therefore often used forcomparison to other classifica-
tion approaches ([42], [101], [68], [45]). It it used here for the same reason. Rennie et al.
have presented an improved version of Naive Bayes, which approaches the accuracy of SVM
classifiers [67]. They represent the words by a normalised TF-IDF measure (compare Sec-
tion 8.3.2). Classes are modelled by all documentsnot in that class, giving better estimates
due to a larger training set. This tackles the bias of the decision boundaries that is introduced
if classes largely vary in number of training documents. Thewrong independence assumption
is compensated for by normalising the weight of each (word, class) pair. Their improvements
are, however, not implemented here.

7.2.1 Estimation of P (wi|Tj)

The most straightforward method to estimateP (wi|Tj) is to count the relative number of words
that appear in the stories aboutTj, and then to divide it by the total number of words in these
stories. This estimate, which is a maximum likelihood estimate [52], has an inherent problem:
If a word wi does not appear in the training stories ofTj, thenP (wi|Tj) will be zero. A test
document that does containwi will then result in a likelihood (7.1) of zero. This phenomenon
is known as the zero frequency problem.

Several approaches can be used to avoidP (wi|Tj) = 0. They can be classified into discounting
methods (which change the words counts) and smoothing methods (which change the prob-
abilities). Discounting methods add or subtract a small number ǫ to the count of every term

1A unigram is the probability of a word occurring independentof others. A bi-gram, for example, is the
probability of a word appearing after another word.
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(and afterwards normalise the counts to form probabilities). Smoothing methods can again be
subdivided into two classes. One variant adjusts the probability of every term by interpolation
with a background probability:Pnew(wi|Tj) = λP (wi|Tj) + (1− λ)P (wi). The other variant
adjusts the probability only of unseen words (backing-off).

7.2.2 Implementation of Naive Bayes

For the presented media monitoring system, the Naive Bayes approach was implemented using
single-state discrete Hidden Markov Models. Each HMM models one topicTj by estimating
the topic-conditional word probabilitiesP (wi|Tj). They are estimated with backing-off (see
Section 7.2.1) so that all unseen words get a minimum probability of 2 · e−6.

During classification, the likelihood of a document is calculated for all training topicsTj with

P (d|Tj) =
∏

wi∈d

a11P (wi|Tj). (7.4)

The appearance of the first state self-transition probability, a11, is due to the representation
as HMMs. This formula does not exactly equal the Naive Bayes formula (7.1), but keeps its
spirit. The topic with the highest likelihood (7.4) is chosen as the classifier’s prediction result.

7.2.3 Confidence

TheOff-topicclass (in other contexts also called General English [54], or background class)
needs special consideration, because it contains all the stories that do not belong to any other
topic. In theory, it contains an infinite number of associated stories, but there is usually no
training data for it. Two approaches are used to tackle this problem:

1. Taking a large set of, or all available training data, and use it to train thebackground
model. It is hoped that the large variety in all training data reflects the variety in the
background class.

2. Compute aconfidencevalue for each classification result that tells how sure the classifier
is about its decision. This approach does not use a background model. If the confidence
value is below a given threshold, the classification is rejected, and the background (here:
Off-topic) class is assumed to be the correct class.

For the presented Naive Bayes approach, the confidence approach was used. A background
model was trained together with the Support Vector Machine classifier (see Chapter 8 on
page 99).
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The calculation of the confidence measure was implemented asfollows. TheN best topic
hypotheses for every story are computed (withN = 30). The topic predictions are ranked
according to their log likelihood,log(P (d|Tj)). The confidence measure for the best topic
is calculated as the “distance” (i.e., the difference) of its log likelihood to the averaged log
likelihoods of the other stories:

Conf =
ll(1)−∑N−1

n=2 ll(n)/(N − 2)

ll(1)− ll(N)
. (7.5)

The denominator normalises the measure, which is necessarybecause the likelihoods (and
hence their difference) are not normalised.ll(n) is the log likelihood ofn-th best result. This
confidence measure was proposed by Hernández et al. [31]. Among its advantages are that
there is no need for a background (off-topic) model, and thatit can efficiently separate the
correct results from false alarms caused by off-topic stories.

A confident classifier decision will result in a high likelihood for the best topic, and a substan-
tially lower likelihood for the next best topics. The confidence value according to (7.5) will
then be high. It will be low when the likelihoods are nearly equal. This enables one to set a
threshold so that topics with confidence values below the threshold are rejected, and the corre-
sponding story is assigned anOff-topiclabel. The threshold value can be a fixed value because
the confidence measure (7.5) is normalised. Obviously, the threshold cannot be determined
a-priori, but has to be determined from experiments.

Such an experiment can be found in Chapter 9 on page 122, where the Naive Bayes approach
is compared to SVM classifiers. In Section 7.3.4, Naive Bayes is compared to the novel hybrid
HMM/NN approach.

7.3 Hybrid classification system

The following chapters introduce a novel approach to topic classification that uses a combina-
tion of Hidden Markov Models (HMMs) and Neural Networks. It does not extract the features
based on the words, as Naive Bayes, but on sub-word units. The features are quantised using
a Neural Network that was trained by maximising the mutual information between the topics
and the quantisation prototypes. The topics are modelled with HMMs.

Many experiments with different configurations and parameters will be presented. For most
of them, the test set did not consist of the output of the automatic speech recogniser, but of
manually written summaries.
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7.3.1 Feature extraction

The text source from which feature vectors are extracted aresummaries of TV news in German,
but it might also be the output of the automatic speech recogniser module (Section 5). In a pre-
processing step, numbers and punctuation marks are removedand all characters are converted
to lower case. Then, a sliding windowW of sizew (typically w = 1..6) characters scans
the text. From each character C in the window, a 32-dimensional binary feature vectorxC is
extracted (Figure 7.1). Exactly one component ofxC gets a value of +1, the others are assigned
a value of 0 (in unipolar case) or -1 (in bipolar case). The vector representing an’a’ has a value
of +1 at its first component, a’b’ gets a +1 at the second component, and so on. The feature
vector of each text windowxW ,

xW = [xC1
xC2

. . . xCw
], (7.6)

thus has a size ofw ∗ 32 with w components being +1.

These vectors are calledframes. The resulting concatenated feature vector is made up off

adjacent overlapping frames:xR = [xW1
. . . xWf

]. Hereby, not only the context of a window
is considered, but also characters that are in the centre of the window are duplicated, which
improves the recognition result (see below).

Thus, in contrast to standard approaches, where the features are based on the words (e.g.
Naive Bayes in Section 7.2, or SVMs, [43]) our approach uses VQlabels to represent feature
vectors generated fromcharacter sequencesand is therefore independent of a word lexicon.
The idea behind using such feature vectors is that if characters are wrongly recognised by
e.g. speech recognition (or OCR for other applications), thedistance between the vector of
the correct spelling and the vector with one wrong characteris the same whatever the wrong
character may be. Scanning with a window, provided its size is properly chosen, emphasises
the morphemes of the text, and thus the semantic informationcarriers. A morpheme is the
smallest unit of language that contains information, or meaning. For example, in the word
running, the morphemerun(n) indicates that the word has something to do with running, while
ing tells something about its grammatical property.

7.3.2 Vector quantisation

To reduce the dimensionality (typically 64. . . 224) of the vectorsxR, they are quantised using
J prototype vectors. Each of the prototype vectorsµj gets an index number (label of the
j-th partition)mj, 1 ≤ j ≤ J . Then, each vectorxR is represented by the number (label)
of its nearest prototype vectorxR. A good choice of prototype vectors will map morphemes
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this is a sample text

00 … 10
10 … 00

10 … 00
01 … 00

01 … 00
00 … 01

Quantisation

Prototypes

created by

or k-means clusteringMMI neural net

xWx

xWx+1

xWx+2

xR

m(xR)

Figure 7.1: Overview of the architecture of the HMM topic classifier.

with single misrecognised characters, inserted characters or with a changed stem vowel to the
correct morpheme, and thus increase the robustness of the system.

Two methods were investigated for creating the prototypes.The first one clusters the feature
vectors of the training set using thek-means clustering algorithm [51].

Neural network optimisation criterion

The second method trains a single-layer neural network (no hidden layers). Its optimisation
criterion is to maximise the mutual information (MI)I(T̃ ;MΘ) between the prototype vector
labelsm and the topicsT . T̃ is the sequence of topicsT of the training data, andMΘ is the
sequence of the prototype labelsm that correspond to the feature vectors of the training data.
The prototype labelm(x) of a feature vectorx, i.e. the label of the prototype vector that is
nearest tox, depends on the choice of the neural network parametersΘ, hence the subscript
of MΘ.

The choice of the mutual information as the optimisation criterion can be motivated in two
ways:

• The vector quantisation results in an information loss. If prototypes with a high mutual
information between allm and allT are used, this loss is reduced.

• Neukirchen et al. [55, 57] have shown that choosing the prototypes (in other words, the
neural network parametersΘ) that yield the highest mutual information is equivalent to
choosing them in such a way that they maximise the likelihoodof the training feature
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vectors given their respective classes (maximum likelihood criterion), and also according
to the maximum a-posteriori (MAP) criterion:

ΘML = argmax
Θ

N
∏

n=1

pΘ(x(n)|T (n)) (7.7)

ΘMAP = argmax
Θ

N
∏

n=1

pΘ(x(n)|T (n))

P (x(n))
(7.8)

ΘMMI = argmax
Θ

I(T̃ ; MΘ) = ΘML = ΘMAP (7.9)

Both the maximum likelihood and the maximum a-posteriori criterion are very popular
methods to choose correct parameters. The equation that links the general ML and MAP
criteria to the specific case of the vector quantiser is [70, 57]

p(x|T ) =
p(x)

P (T )
PΘ(T |m(x)). (7.10)

The probabilities are subscripted byΘ if they depend on the choice ofΘ.

Neural network layout

The prototype vectorsµ1, . . . ,µJ are the weights of the neural network, i.e. its parametersθ.
The optimisation criterion used to learn the VQ parameters can be formulated as

ΘVQ = argmax
Θ

{I(T̃ ; MΘ)} = argmax
Θ

{H(T̃ )−H(T̃ |MΘ)}. (7.11)

As Θ is independent of the topic labels̃T , (7.11) can be rewritten as

ΘVQ = argmin
Θ
{H(T̃ |MΘ)}. (7.12)

The optimal parametersΘV Q = {µ1,µ2, . . . ,µJ} = {µ11, µ12, . . . , µ1M , µ21, . . . , µJM} can
be determined by a gradient descent approach [12].µjm is the neural network weight between
input nodem and output nodej, and at the same time them-th component of thej-th prototype
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Figure 7.2: Neural network used for creation of VQ prototype vectors according to the maxi-
mum mutual information principle (Figure adapted from [56]).

.

vectorµj. The gradient ofH(T̃ |MΘ) with respect to a NN parameterµjm can be expressed
as [55]

∂H(T̃ |MΘ)

∂µjm

=
N
∑

n=1

J
∑

i=1

2 · (xm(n)− µjm) · δik · Ai(x(n)) (7.13)

with

Ai(x(n)) =
C

N
oi(x(n)) ·

(

log P (T (n)|mi)−
J
∑

k=1

log P (T (n)|mk) · ok(x(n))

)

.

(7.14)

x(n), 1 ≤ n ≤ N , is then-th out ofN training samples.xm(n) is them-th component of
the M -dimensional vectorx(n). The output activation functionfi(x), which describes the
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output of neuroni when the feature vectorx is presented to the input layer, is the (negative
and squared) Euclidean distance betweenx and thei-th prototype,µi:

fi(x) = −
M
∑

m=1

(xm − µim)2. (7.15)

This function is motivated by the fact that the features willbe quantised to their nearest pro-
totype vector. The negative sign in (7.15) has the effect that the neuron whose prototype is
nearest to the input vector gets the highest activation. Equation (7.13) is only valid for a single-
layer NN with a Euclidean activation function according to (7.15). The choice of the VQ label
that corresponds tox (i.e., the result of the quantisation ofx) could be made by applying the
winner-takes-allrule to the internal neuron activations:m(x) = mj, with j = argmaxj fj(x).
Unfortunately, this rule is not differentiable and thus cannot be used to determine the network
parameters using the gradient descent approach. Therefore, the neurons’ outputsfi(x) are
non-linearly transformed by a softmax function to yield theoutput nodesoi(x) of the network:

oi(x) =
eC·fi(x)

J
∑

j=1

eC·fj(x)

. (7.16)

The biggest double floating point number (8 bytes) that can bestored in a 32-bit Personal
Computer is2.1 · e709. In order to take advantage of the whole range of double values without
overflow, the constantC is set to

C =
500

maxi

∥

∥

∥
xi − µ

∗
m(xi)

∥

∥

∥

, (7.17)

with µ
∗
m being the initial values of the prototypes.

Network parameter training

In order to calculate the correct weights (prototypes) of the network, the gradient of the func-
tion to be optimised, eq. (7.13), is used. In every iterationstep, the weightsµkm are updated in
such a way that the mutual informationI(T̃ ; Mθ) grows at a maximum rate (steepest ascend
of I(T̃ ; Mθ)). Neukirchen [55] has shown that the Resilent Backpropagation method [69] is
a good optimisation algorithm that is able to quickly find theoptimal value in a few iterations.
In addition, it is quite insensitive to the setting of its internal parameters (initial step width and
step width update coefficient).

Before the first iteration, the weights of the neural network have to be initialised. A good
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choice is to use the prototypes created by thek-means clustering, as these usually represent a
reasonably quantised space and are far better than random initialisation.

After a pre-defined number of iterations (usually 10), the neural network training is finished
and the resulting network parameters are used as prototype vectors to quantise any arbitrary
test feature vectorxR.

7.3.3 Topic modelling with HMMs

Each topic is modelled with a discrete HMM and using the indices of the prototype vectors,
m(xR), as observations. The HMM parameters are initialised by a Viterbi training and then
refined using Forward-Backward training. The classificationof unknown texts uses the Viterbi
algorithm. A varying number of HMM states, and variation of many other parameters were
examined. Details together with experiments are presentedin the following sections.

7.3.4 Experiments

Test and training set

As a text source for both test and training, written summaries of TV and Radio broadcasts in
German are used. Every summary was created by a professionaland summarises the contents
of a topic-homogeneous report.

A topic was assigned to every summary. The topic of a summary identifies the customer who
wants that specific media monitoring alert. A summary is onlyproduced from the broadcasts
if it is of interest to a media monitoring customer, thus there are noOff-topicsummaries (that
could be used to train data that is not relevant to any customer). A topic consists of one or a
few words and represent, for example, names of people or companies, or events. There are in
the average 562 words per summary.

The following test and training sets were created:

• A: no stop word removal, no stemming, no text optimisation.A1: 22 topics in 3037
texts for training and 1319 texts for testing.

• A2: 173 topics in 6039 texts for training and 2700 texts for testing.

• B: deletion of 150 stop words, text optimisation (see following paragraph). 22 topics in
2956 texts for training and 1284 texts for testing.
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In the summaries of test set A, some words are separated into two single words because they
were entered in two different lines. Additionally, there are some special abbreviations. Thus,
the text basis is not optimal, but the text was not changed in order to simulate in a rough
way errors which are made by automatic speech recognition. For test set B, which consists of
different texts, these errors were compensated for (calledtext optimisationin the list above).

There is no extra model for out-of-topic summaries, since all tests topics were restricted to the
trained topics. All results were obtained with 10 iterations of both thek-means algorithm and
the training of the MMI network (except where otherwise noted).

The recognition rates for the following experiments are stated as the ratio of the number of
correctly classified summaries to the total number of testedsummaries

Setting w and f

Initially, the best settings for the parametersw (number of characters that create one frame) and
f (number of overlapping frames) have to be found. Several combinations ofw ∈ {1, . . . , 6}
andf ∈ {1, 3, 5, 7} were examined. It turned out thatf = w = 3 performed best. For this
setting, classification results for the data sets mentionedabove are listed in Table 7.1.

Table 7.1: Recognition results in % on the test sets A1,A2 and B. w = f = 3, J = 200, 5 HMM
states for A1 and A2 and 10 states for B.

k-means MMI test set

48.4 47.9 A1
32.1 31.3 A2
66.0 66.6 B

k-means clustering vs. MMI neural network

The application of the MMI (maximum mutual information) neural network to produce the
prototype vectors should reduce the information loss created by the quantisation. However,
in almost all experiments, the classification rate did not change much (around±1% absolute)
compared to thek-means approach. One exception is when keywords were deleted from the
test and training set (see below): the recognition rate improved from 41.3 % (k-means) to 46.7
% (MMI network).

In the following sections, the behaviour of the MMI network will be investigated in more
detail.
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Figure 7.3: Recognition result as a function of the number of states of the HMMs. f = w =
3, B = 200, set A1.

Varying the number of HMM states

The number of states of the HMMs was varied from 1 to 20. Figure7.3 depicts the results for
set A1. Both thek-means and the MMI approach yield a minimum recognition rateat 4 states.
They peak at 8/9 states. For test set B, a minimum recognition rate was also observed at 4
states. The best number of states for this test set is at 10 states for both thek-means and the
MMI system (not depicted here). If best recognition performance is the goal, 10 states should
be used for the topic identification system. However, if timeis very important, one can use 5
states with only a slight decrease in recognition rate.

Changing the keywords

If the word(s) of the topic label (keywords) appear in the texts, a word search using stemming
might be enough to get good recognition results. As the topiclabel word(s) might therefore
be important to indicate the topic, they are called keywordsin this sub-section. However, the
keywords are not always present in the text, and even more, a speech recogniser or an OCR
system might not correctly recognise all keywords. Hence, arobust topic classification system
has to cope with the fact that important words do not necessarily appear in the text, but need
to be induced.

To measure how well the new approach can cope with missing keywords, they were removed
from the test and from the training set. In one case, the keywords were removed only from the
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summaries used for testing, while in the second case they were deleted in both the test and in
the training set.

Table 7.2 shows that the presence of keywords is quite important. The recognition results went
down without keywords. Remarkably, the MMI network could almost completely compensate
for their removal from both the training and the test set in 1-best recognition case.

Table 7.2: Results with omission of keywords. w = 3, f = 3, B = 200, noisy features, set A1.

k-means MMI keyword deletion

48.4 47.9 none
38.9 37.5 test set only
41.3 46.7 test and training set

In another experiment, a space was inserted into the middle of keywords longer than 7 char-
acters. The idea behind this is that compound words in Germanconsist of (sub) words that in
other languages are generally written as two or more different words. As a speaker can com-
bine words to compounds in a nearly unlimited way, a speech recogniser will tend to decode
the sub-words only, and will emit them as separate words. Theinsertion of spaces is intended
to model this effect. The recognition rate went down by around 7 % absolute when separating
the keywords (see Table 7.3).

Table 7.3: Recognition results for separation of keyword compounds. w = 3, f = 3, B = 200,
set A1, noisy features in keyword separation experiment only.

k-means MMI keyword separation

66.0 66.6 none
59.1 58.0 test and training set

Duplicating characters

When using feature vectors that are made up of more than one frame~oW , the characters in the
centre of the window are duplicated. Consider for example a window size ofw = 3, a frame
number off = 3 and a text window [abcde]. The feature vector then represents the characters
[abcbcdcde], or oncea ande, twiceb andd and three timesc.

In Table 7.4, one can compare the results forf = 3 (duplicated characters) andf = 1 (single
characters). In both cases, the same 5 characters are covered. The repetition of the centre
characters leads to an improved recognition result.
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Table 7.4: Effects of duplicating centre characters on set A1 and A2. J = 200, k-means quan-
tiser.

Data Setf = 3, w = 3 f = 5, w = 1

A1 48.4 45.5
A2 32.1 30.4

Noisy features

All equal text windows appearing several times in the text will lead to more than one identical
feature vector. It turned out that it is better to add noise tothe vectors in order to avoid
singularities in the feature distribution. However, the signal-to-noise ratio should be chosen in
such a way that the clusters in the feature space do not overlap.

Uniformly distributed noises with different amplitudes were investigated. Noise in the range
of [−0.005 . . . 0.005] added to each component showed the best results (see Table 7.5).

Table 7.5: Effects of adding noise to the features. f = w = 3, B = 200, set A1.

k-means MMI Noise

48.4 47.9 none
50.3 49.5 [−0.005 . . . 0.005]

Using more prototype vectors

As the prototype vectors have to represent the information that is in the texts in the best possible
way, the right choice of the number of prototypes is important. Experiments were made with
several number of prototypes on test set A1 whose results arelisted in Table 7.6.

Thek-means system shows its best recognition results for 500 prototypes and decreases sig-
nificantly with more prototypes. The MMI system’s peak is at 1000 prototypes. This indicates
that the number of important lexical morphemes in our training set is somewhere in the range
between 500 and 1000. The decrease in performance with a highnumber of prototypes might
be due to over-fitting to the training set and the loss of the ability to generalise. It is expected
that more prototypes will be useful if the number of topics will be increased in the future.

Observations on mutual information

The entropy of the topics in the training set of data set A1 equals H(T̃ ) = 4.26 bit (for
w = 1, f = 3). During MMI estimation of the prototypes, the conditionalentropyH(T̃ |MΘ)
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Table 7.6: The influence of the number of quantisation prototypes. w = f = 3, 5 HMM states,
set A1.

k-means MMI # of prototypes

48.4 47.9 200
50.1 49.7 500
46.9 50.4 1000
46.7 47.3 2000

takes values of around 4.20 bit. The conditional entropy tells how much extra information
on average is needed to communicate the topic label of a feature vector2 given the quantised
feature vector (i.e. the prototype nearest to the feature vector) [52]. In other words, it measures
the information one gets from observing̃T whenMΘ is known.

The difference between the entropy and the conditional entropy is the mutual information:

I(T̃ ;MΘ) = H(T̃ )−H(T̃ |MΘ), (7.18)

for the given example

= 4.26 bit− 4.20 bit = 0.06 bit. (7.19)

These figures show that the conditional entropy is very high compared to the entropy of the
topics, and that most information gets lost when creating the prototypes and quantising them.
The quantised feature vector and its topic are hardly related. This makes sense, as it is very dif-
ficult to predict the topic of a whole story from one single feature vector only. If this prediction
was easily possible, there would not be a need for complex classifiers such as HMMs.

The MMI principle considers individual feature vectors, but does not take into account that
only their combination, not one single feature, is characteristic of a topic. This leads to the
question whether it makes sense to put effort into increasing the mutual information of single
feature vectors. As one feature vector hardly allows to predict a topic, the MI will always be
low; this is a consequence of the way of extracting the features. A different way of feature
extraction might be reasonable, which was realised in conjunction with the SVM classifier
(see Section 3 and Section 8).

Comparison to Naive Bayes

The performance of the hybrid HMM system was compared to the Naive Bayes system (Sec-
tion 7.2 on page 81). The data sets used for comparison do not containOff-topic texts. Con-

2The topic label of a feature vector is the topic of the story itbelongs to.
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Figure 7.4: Mutual information I(T̃ ;MΘ) during MMI network training. w = 1, f = 3, 6 HMM
States, J = 200.

sequently, the Naive Bayes approach was employed without confidence calculation and topic
rejection (see Section 7.2.3 on page 83). The training data used consists of manually created
summaries. Two different test data sets were used: the first set consists of summaries (the same
source that was used for the training data), while the secondtest set consists of automatic tran-
scriptions of radio news created by the ASR module (see Section 5). The topic boundaries for
all the data used here were manually created, i.e. are “true”boundaries.

The results of the novel topic classifier and of the Naive Bayesbaseline approach (see Sec-
tion 7.2) for the tested summaries are listed in Table 7.7. The Naive Bayes approach works
significantly better on test set B (optimal text), whereas itis only slightly better than the novel
approach on test sets A1 and A2 (non-optimal text).

Table 7.7: Comparison of the best classification rates of the novel hybrid system to the Naive
Bayes classifier on a test set consisting of summaries.

k-means MMI Naive BayesTest set

50.3 49.5 50.4 A1
32.1 31.3 35.3 A2
66.0 66.6 78.0 B

For tests on the ASR output, 48 reports were selected from radio news that were all on-topic,
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i.e. this test set contains only reports in which a media monitoring customer is interested.
These 48 reports cover 10 topics from a period of 6 days. Two different training sets were
created. Both consist of summaries, but differ in number of topics. The period of the training
data covers 4.5 months and ends one day before the test periodstarts. The first training set
covers 897 topics in 113,915 summaries, but only 6 of these appear in the test set (due to the
fact that the topics rapidly change with time). The second training set is limited to those 6
test topics. Consequently, the test set was also limited to these 6 topics which are covered by
42 test stories (see Table 7.8). It is common practice for theevaluation of text classification
systems to choose the training and the test set in such a way that they contain only the same
topics.

For the latter data set, Naive Bayes correctly classifies 67 % of the stories, whereas the novel
approach is better and correctly classifies 76 % (see also Table 7.8). The Naive Bayes perfor-
mance seems to be disappointing, but it has to be kept in mind that the training and the test set
come from two different types of texts (hand-created summaries for training, deficient ASR
transcriptions for testing). This is different from evaluations of Naive Bayes by others: there,
the training and the test set come from the same text type.

The rank of performance changes when the realistic data set with its 897 training topics is used
(with 10 test topics, of which 4 can never be detected): NaiveBayes has a correct classification
rate of 42 %, whereas the novel approach is significantly worse with 21 % classification rate.
These results show that the novel hybrid system can perform well with a limited number of
training topics, but it is bad when the number of topics rises. It is not very good at choosing the
correct topic from many topics, which consists a key property for media monitoring systems.
But it can cope better with error-prone ASR output for a limited number of topics.

It must be pointed out that the evaluation of the novel systemwas performed only with a
prototype codebook created byk-means clustering, not by a MMI neural network. The reason
is that MMI training for 100,000 stories is not feasible: or the training features are too big to
fit into memory, or (if the features are read in sequentially), the training takes too much time
(several days for only 10,000 stories on a 700 MHz PC). The results with prototypes created
by an MMI network would not differ much from the results fromk-means prototypes, as was
observed earlier in this Chapter.

7.4 Conclusion

This chapter has presented two algorithms for topic classification based on HMMs. The first
one is the well-known, word-based Naive Bayes approach. It isused by many people as a
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Table 7.8: Number of correctly classified stories by the novel hybrid system and by the Naive
Bayes classifier on ASR test set.

Training Set Test Set
# Topics # Stories# Topics # StoriesNovel System Naive Bayes

897 113,915 10 48 21 % 42 %
6 4,048 6 42 76 % 67 %

baseline, or reference system. The second algorithm is a novel, character-based HMM clas-
sifier. Its feature vectors are quantised into prototypes that are created with a neural Network
according to the Maximum Mutual Information (MMI) principle.

Many different experiments with different parameters of the novel system were conducted.
It could not outperform the Naive Bayes approach when tested on human-created summaries
(nearly error-free). But it was better at classification of ASR transcriptions (spoken documents)
when it had a limited choice from only few training topics. For a large number of topics, its
performance was worse. It can be concluded that it is suitable as a topic classifier for a me-
dia monitoring system if only a rough discrimination between topics (e.g. politics, economy,
sports, ...) is needed. For such a scenario, it performs muchbetter than Naive Bayes.



Chapter 8

Topic classification with Support
Vector Machines

This chapter presents the experiments and results of topic classification of German and En-
glish news documents obtained with the Support Vector Machine classifier (see Section 3).
It incorporates the first thorough investigation of conventional and probabilistic couplers on
text classification. First, the German training and test data are described. Then, the text pre-
processing and feature extraction steps are explained. A detailed discussion of the performed
experiments follows that also treats experiments on the widely-used English corpus (Reuters
newswire data).

8.1 Data sets

8.1.1 Test data

The German test data consists of the automatic transcription of German TV news shows, man-
ually segmented into reports1 (unless otherwise noted). It was taken from selected TV news,
broadcast by the two stationsARD andZDF and covering the period from 8th until 21st Oc-
tober, 2001. One characteristic of the test data is that a lotof reports are about the conflict and
war in Afghanistan. Reports are therefore often longer than they would be in broadcasts until
one month earlier.

Around 90% of the reports were assigned anOff-topic label, since they are not relevant to any
media monitoring customer. 25 topics appear in the test set,of which two do not appear in the
training set(s) used (see below). These two topics, with onetest story each, were re-labelled

1The termsreport andstoryare used synonymously.

99
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to Off-topic. Thus, there are 23 different topics in the test set, of whichonly 8 occur in more
than one report (includingOff-topic). The topic labelling was adopted from the corresponding
summaries of the same period. The automatic transcription was created by the ASR system
described in Chapter 5 on page 47.

8.1.2 Training data

The German training data are a subset of manually created summaries of TV and radio broad-
casts. The summaries were written, and topics were assignedto them by professional media
monitoring employees. The data covers the period of four weeks from 10th September until
7th October, 2001. Words were not stemmed, and no stop words were removed, but numbers
were deleted.

Three different training sets were created:set02(a), set03 andset04. Set03 covers those
7 topics (excluding OFFTOPIC) that appear more than once in the test set. All summaries
belonging to one of these 7 topics were taken from the above mentioned complete summary
set and used to formSet03. Additionally, all those summaries which arenot about these 7
topics were used to form the OFFTOPIC training data.

In a similar way,set02 was created to cover all 23 topics appearing in the test set. As one topic
had only two training stories, splitting it into five parts would mean that not all parts contain all
topics. Therefore, it is not possible to perform five-fold cross-validation withset02. Hence, a
new setset02a was produced by removing the offending topic.

The restriction of the training topics to match the test topics is motivated by the fact that in
many publications, classification systems are analysed in the same way. However, one does
not a-priori know which topics will appear in the news broadcasts to be monitored. A more
realistic set isset04 which contains all topics which have two or more summaries. This
amounts to 827 topics in 21376 summaries. One minor change was made to thetestset when
used together with this training set: It turned out that one report contains only three words.
This report was removed when used together withset04.

Note that the termsset02(a), set03 andset04 describe only the training data set. The test set
is equal (except the short test story that was removed when used in conjunction withset04.
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Table 8.1: German data sets for training and testing the SVM classifier.

Set Classes in training setTraining docsTest docs

set02a 22 4825 443
set03 7 3065 443
set04 827 21376 442

8.2 Text preprocessing

Stop word removal and stemming may be used under the assumptions that stop words are irrel-
evant for the classification task and that different words based on the same stem are equivalent
with respect to the classification task. As for the effectiveness of stop word removal, there are
contradicting results in the topic classification literature [50]. Lo and Gauvain [50] report that
stemming, but not stop word removal improves their results for the TDT topic tracking task
(cf. Section 7.1.1). Leopold and Kindermann [46] have observed that for text classification
with SVMs, stop word deletion is not necessary. Joachims [43] does not use stemming or stop
word removal with most of his SVM experiments. So the question arises whether stop words
should be removed and words should be stemmed.

Another aspect is that the test documents are the output of anautomatic speech recognition
(ASR) system. If a word is not included in the ASR vocabulary, it will not be recognised or
it will be recognised as another word. This phenomenon is normally referred to as the out-of-
vocabulary (OOV) problem. The training documents for this thesis are not the output from a
ASR system, but manually created summaries. Should the training documents be used only
with the words in the ASR vocabulary, or with all words occurring in the training corpus?

Experiments were conducted to answer the above questions, which are based on the data set
set02 (see Section 8.1) with SMART-ltc weighting scheme (see Section 8.3.2). Table 8.2
shows that using original word features or their stemmed features yields similar results. Like-
wise, eliminating stop words or OOV words does not affect theperformance much. Using the
original word features without any further processing yields the best performance. So further
experiments will not perform the text preprocessing steps (eliminating stop words, stemming
and eliminating OOV words) mentioned in this section.
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Table 8.2: Comparison of different text preprocessing combinations.

original text
without stop words x x
without OOV words x x

with stemming x x
F1 90.32 89.96 90.20 89.96 89.81

8.3 Feature extraction

8.3.1 Vector space model

A very popular technique to extract features from text is to represent them in a vector space.
A finite set of termsT = {t1, . . . , tT} contains every term that appears at least once in a given
set of documents (e.g. training or test documents). For every document, oneT -dimensional
feature vectorx = (w1, . . . , wT )T contains the weightwi of thei-th termti. Several formulae
to calculate the term weight will be presented in Section 8.3.2. The expressionterm can refer
to different linguistic units: words, wordn-grams, charactern-grams, syllables, . . . . Usually,
words are used as terms, but Section 8.3.3 describes a new approach to combine different
linguistic units.

The fact that every term is represented by a dimension of its own implies that the terms are
represented as being mutually independent. This assumption, although not true, works well in
practice. Similarly, the Naive Bayes classifier makes the same independence assumption, but
here it is realised in the classifier design, not in the feature representation.

Another aspect of the vector space representation is that the order of the terms in a document
is ignored. So a document will be projected onto a bag of unordered terms. For this reason,
this representation is frequently calledbag-of-terms2. The vector space representation makes
it easy to compare two documents: The cosine between the two document vectors is a good
measure of similarity, which is why this representation is often used in information retrieval.

8.3.2 Term weights

The following term weights are frequently used for text classification and retrieval.

2Actually, it is mostly called bag-of-words, since almost all approaches use words as basic text representation
unit.
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TF-IDF The TF-IDF weight is an old weighting scheme and was successfully used, for ex-
ample for document queries [74]. The inverse document frequency IDF (ti) can be
calculated as

IDF (ti) = log

( |D|
DF (ti)

)

. (8.1)

The document frequencyDF (ti) is the number of documents in which termti occurs at
least once.|D| is the total number of documents. The TF-IDF term weight of term ti in
documentd is

TFIDF (ti, d) = TF (ti, d) · IDF (ti). (8.2)

TF (ti, d) is the term frequency of termti in documentd, i.e. the number of timesti
occurs ind. The TF-IDF measure gives a high weight to terms that occur many times
in documentd, applying the assumption that if a word repeats, it is important for that
document. The role of the IDF component is to reduce the weight for terms that appear
uniformly throughout the document collection. Such terms can hardly help to distinguish
between different topics.IDF is log-smoothed to prevent terms that appear in only a
few documents from receiving very high TF-IDF scores.

ITF The Inverse Term Frequency (ITF) is defined as [58]

ITF (ti, d) = 1− r

TF (ti, d) + r
(8.3)

with usuallyr = 1.

SMART-ltc According to Buckley et al. [15], the term weightWTnorm(ti, d) shows good
results in practice:

TFnew(ti, d) = log (TF (ti, d) + 1)

WTnew(ti, d) = TFnew(ti, d) · log

( |D|
DF (ti)

)

WTnorm(ti, d) =
WTnew(ti, d)

√

∑

j (WTnew(tj, d))2
. (8.4)

(8.4) was used for the SMART retrieval system and is called “ltc” weighting in [15], so
in this thesis, it referred to as the SMART-ltc weighting.

It has been defined in the literature whether the document corpus that is used to calculate the
above term weights is the training set, the test set, or the union of both. Hence, experiments
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were conducted with all three alternatives. It turned out that the best results (measured with
F1, see Section 4.1 for the definition of evaluation measures) were obtained when both the
training and the test features are calculated using the training data as the underlying corpus.

The performance of the above mentioned term weights is discussed in Section 8.6.1.

8.3.3 Combination of different linguistic units

According to T. Joachims, ” a high level of redundancy is a desirable property of text-classif-
ication tasks” [43]. This can be explained by the fact that itwas observed in many pattern
recognition applications that the exploitation of different information sources for the same
recognition task often leads to different errors in the recognition results, which are very often
complementary. This means that an appropriate exploitation of these sources can effectively
reduce the error rate. Thus, the strategy of using such redundant information sources in com-
bination with Support Vector Machines was chosen.

The state of the art in Information Retrieval research is to represent texts by one type of
terms. Normally, words are used as terms, but there are also approaches which use sylla-
bles, phonemes [58], character n-grams and word n-grams. These types of terms, which we
refer to as linguistic units, are always used exclusively. However, from a theoretical point of
view, it should be promising to represent documents by more than one linguistic unit. This
will not only add redundancy, which is favourable for the above reasons, but at the same time
it adds some new information which could help the topic identification process.

Incorporation of several linguistic units will lead to a significant increase in the size of the
vocabulary, because it will, for example, not only consist of all words in the text corpus, but
also of all word 3-grams. Large feature vectors are indeed a handicap for many classification
algorithms, because high-dimensional features will result in complex decision boundaries be-
tween classes; the classifier is thus likely to overfit to the training data and cannot generalise
well. This is also known as the curse of dimensionality [10]:the number of training examples
has to grow exponentially with the feature dimension if the quality of the model is to remain
constant. SVMs, however, do not suffer from the curse of dimensionality. The complexity of
their decision boundaries (measured by the Vapnik-Chervonenkis dimension) is independent
of the feature dimension. SVMs are therefore the most promising classifier in conjunction
with the different linguistic unit representation.

Two approaches were used to make use of different linguisticunits. The first one concatenates
their different text representations, and then forms one feature vector from the combined text
(see Figure 8.1 a). The second one creates separate feature sub-vectors for every text represen-
tation, and afterwards concatenates the feature vectors toone big feature vector (Figure 8.1 b).
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Figure 8.1: Two methods of feature vector creation for SVM experiments. The text inside the
boxes was taken from the Reuters corpus evaluated in Section 8.6.6.

The following linguistic units are used [19]:

• words,
• character 3-grams (abbreviated ch3gram),
• soundex.

The soundex representation was originally developed for the field of genealogy to encode
names so that similar sounding, but differently spelled names will have the same code. For
example, the namesSmithandSmythehave the same code S530. For English, the soundex
coding algorithm [102] is:

• All codes begin with the first letter of the word followed by a three-digit code that
represents the first three remaining consonants. Zeros willbe added to words that do not
have enough letters to be coded.

• The letters with similar sounding are coded with the same number:

– B, P, F, V→ 1,
– C, S, G, J, K, Q, X, Z→ 2,
– D, T→ 3,
– L → 4,
– M, N→ 5,
– R→ 6.
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• The letters A,E,I,O,U,Y,H and W are not coded.

• Words with adjacent letters having the same equivalent number are coded as one letter
with a single number.

Such a sounding coding is a good idea for spoken document classification in order to decrease
the effects of speech recognition errors.

The classification results of this novel feature representation approach are presented and dis-
cussed in Section 8.6.1

8.4 Choice of C using cross-validation

To identify the best parameter setting for the SVM misclassification tolerance parameterC

(Section 3.3), 10-fold cross validation was carried out (see Algorithm 8.1 and [23]). The
training set is randomly split inton = 10 parts of equal size, wheren − 1 parts are used for
training a classifier which is then tested on the remaining part. This procedure is repeatedn
times, so that every part is tested once. The classification accuracy of such a run (whereC is
fixed) is computed, and the whole run is repeated for different values ofC. The best setting of
C is then assumed to be the one that produced the run with the highest accuracy.

Creating a random split is not straightforward. One cannot sequentially assign every story
to a (pseudo-)randomly chosen part, because this will create parts with a highly unbalanced
number of stories. A better approach is to swap every story with a randomly chosen story that
appears after it, and then creating each part fromn/N consecutive stories (whereN is the total
number of training stories).

Two training sets were used to determine the best choice forC: set02 andset03. To identify
the region where the optimalC might be, a first, coarse run was performed withC varying on
a large scale:

C ∈ {2−5, 2−3, 2−1, 1, 21, 23, ..., 215}.

The resulting accuracies are depicted in Figure 8.2. As the relevant regions of maximal accu-
racy cannot be identified here, a part of this figure is zoomed out and displayed in Figure 8.3
(a) for set03 and (b) forset02 (dotted lines). A finer run was then performed to find a more
precise value ofC, using

C ∈ {1, 1.3, 1.7, . . . , 16, 20, . . . , 384, 512}.
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Algorithm 8.1 n-fold cross-validation to get optimal setting ofC.

Define the setC over which the parameterC will run.
Split the training set inton equal partitions.
for C ∈ C

r := 0
for i := 1 to n go through all partitionsi

Classify partitioni using system trained on the remaining
n− 1 partitions.
r := r + number of correctly classified samples

end
overall accuracy[C]= r

number of documents in whole training set
end
The best setting ofC is
C := argmaxC overall accuracy[C].

The results from the fine run are also depicted in Figure 8.3 (solid line). The optimal value
of C for set02 lies around 1.3, forset03 it lies around 1.7. For all experiments, a value of
C = 1.3 was chosen.
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Figure 8.2: Accuracies from 10-fold cross validation vs. C (coarse run).

8.5 Character n-gram size and choice of kernel

For a character-based document representation, the optimal size n of the n-grams has to be
determined. Mayfield [53] determined that character 6-grams yield the best performance. Our
experiments, however, indicate thatn = 3 is best (determined using ITF term weighting).
Leopold et al. [47] have observed that the best length of one term (in their case, phonemes)
depends on the size of the class. Smaller classes are better represented with shorter term units.
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Figure 8.3: Accuracy vs. C of the coarse (from Figure 8.2, dotted lines) and the fine cross-
validation run (relevant part only).

This corresponds to the fact that most training classes usedfor the experiments of this thesis
are small.

Furthermore, the correct SVM kernel has to be chosen. Initial tests showed that for non-
probabilistic SVMs, a linear kernel is a good choice. Other kernels perform equally good
or worse. This also supports the findings by others [41] that text document classification is
usually a linearly separable task.
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8.6 Experiments

8.6.1 Choice of term weighting scheme

A preliminary set of experiments was conducted to find out which term weighting scheme
best represents the documents (in terms of best classification result). The documents were
represented by word or by character 3-grams (ch3gram) alone, and by the combination of both
representations in order to see the effect of the combination approach (see Table 8.3, where the
best text representation for every experiment is indicatedby a bold figure). The texts based on
words and on ch3grams were concatenated, and then the feature vectors were built.

Table 8.3: Results (F1 measure) with different weighing schemes.

Data Set word ch3gramword+ch3gram

TF-IDF weighting
set02 82.8 89.5 89.9
set03 93.3 94.0 94.8
set04 80.1 79.4 79.8

ITF weighting
set02 88.6 89.7 90.9
set03 94.1 95.4 96.2
set04 79.3 79.7 82.0

SMART-ltc weighting
set02 90.3 90.6 90.7
set03 95.7 96.1 96.1
set04 88.0 87.0 88.2

Two conclusions can be drawn from these experiments: first, the best weighting scheme for
all three tests is SMART-ltc. Second, the concatenation of different linguistic units yields,
in almost all cases, better results compared to using one linguistic unit alone. However, the
improvements are very small (about 1% absolute only).

A soundex representation does not help to improve the results (see Table 8.4). Using soundex
as the sole representation yields worse performance that using word or ch3gram alone. Com-
bining soundex and 3gram representation is better than ch3gram alone, but still worse than the
combination of words and ch3grams.
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Table 8.4: Results (F1 measure) for soundex representation with SMART-ltc weighing.

Data Set sdx sdx+ch3gramword+ch3gram

set02 88.4 90.2 90.7
set03 94.4 96.1 96.1
set04 82.2 87.6 88.2

8.6.2 Weighting of linguistic units

Different linguistic units will contribute to the classification result to a different degree. It
should therefore be favourable to weight more important units [19]. As this cannot be ac-
complished with the feature extraction according to Figure8.1 a, the feature vectors have now
to be created separately from the different text representations, then multiplied by a constant
weighting coefficient, and finally be concatenated (see Figure 8.1 b). Results obtained with
the first method, and with the second method withequalunit weighting, are nearly identical
(they differ only between 0 % and 0.5 %, depending on the data set3). Thus the results from
the first and the second method can be compared with each other.

The results for different word weights (the weight of character 3-grams was fixed at 1) are
included in Figures 8.4 to 8.6 (decval graph). The word weight which leads to the bestF1

measure is listed in Table 8.5 for each data set. In almost allcases, word weights not equal
to 1.0 perform best, but the increase in performance, compared towword = 1.0, is usually
not very high. The best word weights are in the range between0.8 and3.0, usually greater
than1.0. One exception is the macro-averagedF1 measure forset04 with its best value at
wword = 10. Hence, one can conclude that words carry more information about topics than
character 3-grams, but the contribution of 3-grams must notbe neglected.

Table 8.5: Best F1 measures for different word weights wword, obtained with voted SVM.

micro-avg macro-avg
Data Set max.F1 atwword max.F1 atwword

set02a 90.7 1.5 39.2 1.5
set03 96.1 0.8, 1.0 71.2 3.0
set04 88.1 2, 3 37.0 10

One striking fact is that classification performance decreases only slightly when switching
from set02a (where the classifier has to choose among 22 classes) toset04 with its 827
training classes.

3For micro-averagedF1 measures.
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8.6.3 Couplers for non-probabilistic SVMs

As already described in Section 3.5, SVMs are binary classifiers, i.e. they can only distinguish
between two classes. For multi-class categorisation, the one-against-one approach (see Sec-
tion 3.5) was applied. For non-probabilistic SVMs, Section3.5 presents the standard voting
coupler and introduces the new decision value and distance couplers that are used to combine
theK(K − 1)/2 binary predictions.

The performance of these couplers onset02a andset03 was evaluated (see also [34]). The
correspondingF1 measures are depicted in Figures 8.4 and 8.5.

One problem arose when computing the distances based on the classifiers ofset04 was that
some (259 out of341, 551=̂0.1% ) binary SVM models had values of‖w‖ ≈ 0. The distance
to the hyperplane of such a model will thus become very large and distort the results. Indeed,
the distance coupler always predicted one single class, independently of the test document,
but dependent on the word weight vectorwword. Typical, non-distorted summed distances lie
around 250, while distorted sums are about8 · 108! There are three approaches to tackle the
problem:

1. Very small‖w‖ indicate that some class pairs cannot be separated very well. Choosing
a kernel other than the linear one might help to improve the performance.

2. An analysis of the binary classifiers and the training document frequencies revealed that
261 out of 827 training classes have at least one binary modelwith a ”singular” value
of ‖w‖ ≈ 0. 181 out of these 261 classes consist of three or less training documents.
This indicates that training topics with a very low number ofassociated documents are
the dominant cause for the observed numerical problems. Excluding documents whose
topic appears very infrequent should help. The disadvantage of this approach is that it
decreases the number of training classes, i.e. the number oftopics that can be potentially
detected.

3. Ignore the distance results for the models with‖w‖ ≈ 0. This approach, just as the first
one, does not not require reduction of the number of trainingtopics.

It is difficult to judge a-priori which of the three approaches is best. For the first algorithm, a
RBF kernel was chosen with the standard parameters oflibsvm; this kernel performs well
for probabilistic SVM. It however turned out that this approach cannot solve the problem at
hand.

To analyse the second approach, a new training set was created that contains only those topics
that appear in at least 4 documents. It covers 560 topics in 20,736 documents. The test set
remained the same. The results on this test set were disappointing: just as inset04, only
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one single topic was predicted for all test stories. Furthertests with a decreasing number of
training topics were not performed, as only a significant reduction of topics seems promising.

The third approach revealed to be the best one; the performance values seem virtually unaf-
fected by ignoring (i.e. not testing on) binary models with‖w‖ ≈ 0 (see Figure 8.6).

The reason that‖w‖ ≈ 0 is that there are several features in the training set that are assigned
to more than one class (by being separately listed with different class labels). This fact was ob-
served at a late stage when most experiments were already completed; as ignoring models with
zero‖w‖ doesn’t change the results, no experiments with a new training set were conducted.

When looking at the results of all data sets, one can see that the voting coupler is usually the
best one, both for micro and macro averaging. One exception is the micro-averaged results
of set02a: For highwword, the distance coupler outperforms the voting coupler. The two new
couplersdistanceanddecision valuetend to perform better with higherwword, one exception
being the micro-averaged results ofset04. The voting coupler is only slightly affected by
changing the word weight.

8.6.4 Couplers for probabilistic SVMs

Experiments using probabilistic SVMs could only be performed with the data setsset02a4

andset03 (see also [34]). The training set ofset04 contains several classes with only very
few training stories assigned, and can therefore not be usedto reliably estimate the sigmoid
parametersA,B using cross-validation. Experiments onset02 andset03 were conducted
without using cross-validation, but the results significantly differ from those obtained with
cross-validation. As theory (see Section 3.5.2) suggests that cross-validation is the correct
way, experiments onset04 were discarded.

Two SVM kernels were tested for the seven couplers for probabilistic SVMs described in
Section 3.5.2: linear and RBF. For the RBF kernel, the standard parameters oflibsvm were
used. The sigmoid parametersA,B were estimated by five-fold cross-validation of the training
set. The results for the RBF kernel are depicted in Figures 8.7 and 8.8. Forset02a and micro-
averagedF1 measures, the overall best coupler is pkpd. Vote-probwght2is the best for large
values ofwword, but cannot outperform pkpd. Onset03, vote-probwght1 performs best, but it
is not on top forall wword. With macro-averaging, pkpd (set02a) and minpair, markov, and
pkpd (set03) show peak performance.

4Cross-validation cannot be performed onset02, because it contains a topic with only two stories. Inset02,
these two stories are removed.
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Figure 8.4: Performance of three non-probabilistic SVM couplers on set02a.

One disadvantage of the voting coupler is that it sometimes (e.g. in 18 out of 443 test doc-
uments) produces the same posterior probability for more than one class. Its class prediction
is therefore sometimes ambiguous. For the tests presented here, one out of the tie classes is
chosen at random.

The linear kernel performed worse than the RBF kernel. This is quite an interesting result,
because for non-probabilistic SVMs, the best kernel was thelinear one. To our knowledge, the
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Figure 8.5: Performance of three non-probabilistic SVM couplers on set03.

fact the best kernel changes when one changes from npSVM to pSVM was not yet reported
in the literature. The detailed results for this kernel are not depicted here, but are included in
Table 8.6.

It is interesting to note that for npSVM couplers, the performance increases withwword nearly
monotonically, but the same is not true for pSVMs. Here, theF1 measures tend to go up
and down. This may be a consequence of the biased estimation of the posteriors: with high-
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Figure 8.6: Performance of three non-probabilistic SVM couplers on set04.

dimensional features, but relatively few training examples, many features will lie on the mar-
gin, i.e. g(x) = 1, so the estimation will be biased towards the margin [62]. Cross-validation
to estimate the sigmoid parametersA,B can weaken, but not remove this effect.
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Figure 8.7: Performance of seven probabilistic SVM couplers with RBF kernel on set02a.
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Figure 8.8: Performance of seven probabilistic SVM couplers with RBF kernel on set03.



Chapter 8 Topic classification with Support Vector Machines 118

Table 8.6: Summary of best F1 results for SVM classifiers (vp1,2 = vote-probwght1,2). The
best result of each line is printed in bold.

npSVM pSVM pSVM
linear kernel RBF kernel linear kernel

averaging coupler F1 coupler F1 coupler F1

set02a
micro distance 90.9pkpd 91.3 minpair 90.9
macro voted 39.2pkpd 43.4 minpair 43.7

set03
micro voted 96.1vp1 96.5 ht,markov,vp2 96.1
macro voted 71.2minpair, markov, pkpd76.9 ht 73.6

set04
micro voted 88.1— — — —
macro voted 37.0— — — —

8.6.5 Statistical tests for significant difference of classifiers

Although the coupler with maximumF1 value can be clearly identified, there are several cou-
plers with nearly the same performance. The question ariseswhether the couplers’ difference
in performance is statistically significant. One widely accepted method to test for significant
difference is McNemar’s test [22, 62] (also known asχ2 test): Theχ2 statistics is computed
for every coupler pair (with fixedwword). χ2 depends on the number of test stories in which
two couplers agree or disagree (see Appendix A for details).If the computed valuêχ2, which
is an estimate for the real, but unknown valueχ2, is greater than3.8, the two couplers can be
assumed to be significantly different; this assumption is made with an error rate of 5%. Note
that in order to calculate theχ2 statistics, one counts the overall number of correct or incorrect
predictions, and not a per-topic average. This correspondsto the micro-averaged precision
measure, whereas the evaluation measure used here,F1, is the harmonic mean of precision
and recall. Hence, there are cases where the difference ofF1 between two couplers is low, but
χ2 is high, and vice versa. Even more, cases were observed whereone coupler had a higher
F1 value, but theχ2 statistics suggested that the other one was better.

McNemar’s test was applied to the predictions of conventional SVMs, and to probabilistic
pSVMs with RBF kernel. For everywword, the χ2 statistics between all coupler pairs was
computed. For thewword at which the best performance was observed (cf. Table 8.6), Table 8.7
lists those pSVM couplers that are significantly worse than the best performing coupler. It
also notes the correspondinĝχ2 value. The best coupler is significantly better than only one
or two other couplers. In other words, it is not significantlydifferent from four or five out of
seven couplers. Among the conventional SVM couplers, the decision value coupler performed
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significantly worse than the distance and the voting coupler. The latter two do not differ
significantly.

Taken together with the fact that there is no coupler that is always best, and that the best coupler
changes frequently when varyingwword (see Figures 8.7 and 8.8), it can be concluded that the
correct choice of a probabilistic coupler for spoken document classification is difficult. For
every setting (dataset, classifier parameters), another coupler might be better, but our results
indicate that the difference in performance between the couplers is not necessarily significant.
The new couplers vote-probweight1, 2, and distance have theadvantage that they are easy to
implement and have low run-time requirements. As for the pSVM couplers, this is also true
for the voting coupler. But the voting coupler will often leadto ties in class prediction, which
will almost never happen for the new couplers.

These facts indicate that the new couplers, except for the decision value coupler, should be
preferred over the other known couplers.

Table 8.7: Significantly different couplers according to McNemar’s test. Results are listed only
for pSVM with RBF kernel. For every data set, the wword was chosen that yielded
the best micro-averaged F1 measure.

data set wword the best coupler ... is significantly better than (χ̂2) ...

set02a 1.0 pkpd minpair (6.1), vote (10.6)
set03 3.0 vp1 vote (5.9)

8.6.6 Experiments on the Reuters data set

To see whether the findings of this chapter hold also on a different, widely used data set, the
most important experiments were repeated on an English Reuters corpus. It was widely used
for text categorisation by many researchers, which makes itone of the most favourite standard
test collections. The set consists of the ten most frequent categories of the Reuters-21578
corpus [2], ApteMod version. Although it does not contain spoken text, but newswire text, it
can nevertheless be used for comparison, as classification of spoken documents and written
text are not very different. 5915 text documents were used for training and 2307 for testing.

The bestF1 measures on the Reuters data set for conventional SVMS, and for pSVMs with
linear and RBF kernel are listed in Table 8.8. The following findings were observed:

• Giving weights to the word sub-feature vectors is favourable.

• The decision value coupler is significantly worse than the voting couplers (conventional
SVMs).
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• The distance coupler is not statistically significantly worse than the voting coupler (when
measured with micro-averaging). It is even better than the voting coupler when mea-
sured with macro-averaging.

• There is no best coupler for pSVMs. The performance of most couplers, including the
two new couplers, does not differ significantly.

• The bestF1 measures were produced by pSVMs, not by conventional SVMs.

• In contrast to the findings on the German data set, the best kernel for pSVMs was the
linear kernel, just like the best kernel for conventional SVMs. This indicates that the
fact that the best pSVM kernel on the German data set was the RBF kernel does depend
on the data set and is not a general property.

Thus, all main findings of this chapter could be reproduced onthe Reuters set.

Table 8.8: Summary of best F1 results for SVM classifiers on the Reuters data set (vp1,2 =
vote-probwght1,2). The best result of each line is printed in bold.

npSVM pSVM pSVM
linear kernel RBF kernel linear kernel

averaging coupler F1 coupler F1 coupler F1

micro voted 94.2vp2 92.5 minpair; markov; pkpd94.5
macro dist 86.1 vp2 84.6 pkpd 88.2

8.7 Conclusion

For the German data sets, Table 8.6 lists the best couplers ofconventional SVMs with linear
kernel, and probabilistic SVMs with linear and RBF kernels. Both micro and macro averaged
results are included. The best result of each line is printedin bold figures in order to be able
to compare npSVMs and pSVMs at one glance. In all cases, the probabilistic SVMs yield the
best results. In three of four cases, this was accomplished with the RBF kernel, in one case
with the linear kernel. For conventional SVMs, the voting coupler is usually the best. For
pSVMs, there is no single best coupler that performs significantly better than the other ones.
As explained above, the probabilistic SVMs could not be usedfor set04 because it contains a
lot of training topics with very few stories each.

For the first time, the performance of conventional and probabilistic couplers on text classifi-
cation is investigated. The main findings of this chapter canbe summarised as follows:
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• Among the examined term weighting schemes, SMART-ltc showed the best perfor-
mance. This scheme was also found to be the best for topic clustering for topic detection
[7, p. 11].

• The combination of different linguistic units into one feature vector improves the classi-
fication rate. Giving more weight to the word sub-vectors is favourable.

• Among the couplers tested on non-probabilistic SVMs, the voted coupler is usually the
best one. The incorporation of confidence, as implemented bythe new distance and
decision value couplers, surprisingly did not help to increase the classifier performance.
On the other hand, the distance coupler does not perform significantly worse than the
voting coupler.

• For probabilistic SVMs, there is no best coupler. Differentsettings bring different best
couplers.

• The newly introduced couplersdistance, vote-probweight 1andvote-probweight 2do
not perform significantly different than the other couplersdiscussed here. The advantage
of the probweight couplers over the other couplers is that they are easy to implement,
have low run-time requirements, and will not predict more than one correct class (ties).

• The best classifier parameter settings are found among the probabilistic SVMs, in most
cases using the RBF kernel (German data) or the linear kernel (English data set).

• The best kernel for conventional SVMs (German and English data) and for pSVMs
(English data only) is the linear kernel. For npSVMs and the German data, the RBF
kernel is usually a better choice. This latter result is quite interesting, because text
classification is usually thought to be a linearly separabletask, and almost always linear
kernels are used (both for non-probabilistic and for probabilistic [24] SVMs).



Chapter 9

Overall system performance

The experiments with the topic classifiers described in the preceding chapters dealt with op-
timal topic boundaries only. While this setting is ideal for comparing and analysing the topic
classifiers alone, it does not tell anything about the performance of the combined system of
speech recognition, topic segmentation and topic classification.

This chapter presents experiments on the whole system. Thus, it also answers the question
whether the errors of the topic segmentation module have much impact on the topic classifica-
tion rate. If the segmentation did only insert, but never omit boundaries, there might be a good
chance that the classifier will nevertheless perform well. However, the segmenter also omits
true boundaries, so that the topic classifier’s performancewill definitely degrade.

This chapter analyses two topic classifiers: Naive Bayes and SVM. The hybrid HMM/NN
classifier is omitted because it already turned out that it isworse than the Naive Bayes (see
Section 7.3). The presented results include the performance of the topic classifiers both with
manually and with automatically topic segmented test data.

9.1 Experiments with Naive Bayes

The Naive Bayes approach (Section 7.2) was implemented without a background model for
off-topic stories. TheOff-topic label is assigned to a story if the classifier’s prediction has a
confidence value below a pre-defined threshold (see Section 7.2.3 for details).

The training and test set used for Naive Bayes experiments isset01. As usual, the training data
consists of manually written summaries of TV and radio broadcasts which are topic-labelled.
There are 1051 different topics in 154,143 training summaries. The test data consists of ASR
transcriptions of TV news shows created by the ASR module. Itis the same data that was used
for all SVM experiments (see Section 8.1), except for stemming and stop word removal. Both
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the training and the test data were stemmed, and stop words were removed. The tool used for
stemming is a Perl script by the University of Dortmund [61].The stop word list was manually
created and contains 149 entries.

Two stories in the test set contain a topic that was not trained, and consequently can never be
detected.

For dataset01 with the baseline HMM classifier system, the confidence threshold was varied
in the range of[0.5, . . . , 0.98]. For every threshold value, theF1 measure (micro and macro
averaged) was computed. The results are depicted in Figures9.1 (a) and (b). Sub-figure (a)
shows the performance on a test set that was created with manually inserted (i.e. “correct”, or
reference) topic boundaries. The topic boundaries of the test set treated in sub-figure (b) were
created with the topic segmentation system presented in chapter 6.

The best combination ofF1 micro and macro averaged values is listed in Table 9.1. For
both test sets, with automatically and with manually created topic boundaries, the confidence
threshold can be set to 0.78.

Considering the fact that the classifier had to choose among 1051 topics, the micro averaged
value of 83 % for the automatic topic boundary set is quite good. However, the macro averaged
value of 6 % is disappointing.

In the experiment setting presented above, theOff-topiclabel was merely assigned by rejection
based on the confidence value. A different experiment was conducted without a confidence
measure, but where the classifier could directly assign theOff-topiclabel because a model was
trained for it. Results, however, were worse than those with confidence.

Table 9.1: Classification results of the baseline system on the data set01 for automatically and
for manually segmented topic boundaries.

topic segmentation F1 micro averaged F1 macro averaged at confidence value

SVM
manual 88 37 –
automatic 86 16 –

Naive Bayes
manual 84 10 0.78
automatic 83 6 0.76 and 0.78
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(b) Automatic topic segmentation

Figure 9.1: Classification performance (measured by F1) vs. varying confidence measure
threshold for the baseline system. Data set is set01, with manually (a) and auto-
matically (b) segmented topic boundaries.

9.2 Experiments with Support Vector Machines

For the SVM classifier, the training and test data has to be represented in the vector space
model according to the feature extraction method presentedin Section 8.3. However, for the
training set ofset01, this results in a total feature file size of 632 MB. The training of SVMs
based on such a big data set is very time consuming. It becomeseven infeasible to train if
probabilistic SVMs are to be trained, because of the cross-validation needed to estimate the
sigmoid function (3.33). Forset01, such training takes several days.
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Therefore, it was decided to take a data set that is comparable toset01, but has less training
stores. The data set that corresponds best toset01 (which is used for the Naive Bayes eval-
uation) isset04. It has got 827 different training topics in 21,376 trainingstories (see Sec-
tion 8.1). The smaller number of training stories per topic does not mean that the training of the
SVMs is less accurate (compared to Naive Bayes), since SVMs need fewer training examples
than the generative models of Naive Bayes. This latter fact isdue to the fact that SVMs only
estimate the decision plane between two classes, and not class distributions, and also because
SVMs do not suffer from the curse of dimensionality.

The SVM performance on data setset02a with its 22 topics compared toset04 does not
change in the same way as the increase in topic number would suggest. Therefore, one can
safely assume that the performance of SVMs on a 1051 topic set(the same number as in
set01) would not be much different.

The conventional SVM (npSVM) has a classification performance of 88.1 (F1 measure, macro-
averaged) on a manually (i.e. optimally) topic-segmentedset04. The corresponding macro-
averagedF1 measure is 37.0. With the same data, but now the topic boundaries of the test set
being determined by the topic segmentation module presented in Section 6, the topic classi-
fier’s performance decreases: The micro-averagedF1 measure goes down from 88.1 to 85.1,
and the macro-averagedF1 measure from 37.0 to 15.2. These figures can also be found in
Table 9.1, together with their Naive Bayes counterparts.

9.3 Comparison and conclusion

When the SVM approach is compared to the Naive Bayes approach, the conclusion is that
SVM performs better. It is even significantly better when comparing only the macro-averaged
measures. This means that SVMs do a much better job in assigning topics to on-topic stories,
i.e. to stories that are of interest to any media monitoring customer. However, especially with
automatic story boundaries, the performance on on-topic stories is still unsatisfactory. The
training and test set given are “real-life” data sets. Therefore, several exceptional challenges
have to be taken into account when analysing the classification results:

• There are a lot of training topics (827 inset04), but the test set contains only 23 topics.
This is of course realistic, as only a small subset of the topics that are to be monitored
will actually appear.

• The training and the test set come from two different domains: Manually written sum-
maries (i.e. nearly error-free text) make up the training set, while the test set is the output
of an error-prone automatic speech recogniser (ASR).
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• The ASR’s output is not very good for reports which do not take place in a TV studio:
Often, even a human cannot identify the meaning of such a transcription, because many
words are mis-recognised. Only when reading the transcription and simultaneously lis-
tening to the audio, the meaning of the story becomes clear.

Given these items, the micro-averaged performance ofF1 = 88 is good, as is the macro-
averaged value ofF1 = 37 (for manual topic segmentation). The latter means that of those
stories that are of any interest to a media monitoring customer, about one third is correctly
assigned – given the above challenges, this shows a good performance of the classifier. Even
more, a 100% performance is not needed, because every prediction by the developed system
would of course be cross-checked by a human.

It turns out that the topic segmentation performance has gotquite a big impact on the macro-
averaged topic classification rate of the whole system. The SVMs (and even more, the Naive
Bayes) have problems in determining the correct topic of a story if it is split (by an imperfect
topic segmentation) into two or more parts. Hence, all wordsof a story are needed to cor-
rectly classify it. This coincides with the findings by Joachims that most words of a story are
relevant [42].
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Unsupervised Topic Discovery

One challenge in the media monitoring application is that the topics change rapidly. In the
data sets used for this work, there were often topics that newly emerged in the test set and
were therefore not present in the training set. With a fixed set of topics, such new events can
of course never be detected. One remedy is to continuously update the topic models, which
means retraining them at least every day. The choice of new stories used for training can be
done in an unsupervised way so that no person is involved [40]. Such an approach is beyond
the scope of this work, since the set of topics is assumed to befixed.

One common drawback of all mentioned approaches is that theyneed a pre-defined list of
topics to be detected. For the scenario of media monitoring,where the set of customers (those
that will receive the media alerts) is known beforehand, a restricted topic list is useful. How-
ever, for media monitoring for e.g. private customers who donot necessarily have a fixed topic
profile, it would be better to find a different approach. One option is not to provide any pre-
defined topic list at all, but to derive it from the data itself. This approach is almost totally
neglected in the literature, except from the work by Sreenivasa Sista et al. [80, 83, 82]. The
advantage of this approach, called Unsupervised Topic Discovery (UTD), is that there is no
need for a human-labelled training set, and that there is no human interaction in the finding of
the topics.

The benefits of UTD for users is the assignment of a set of meaningful topic labels to each story
(for example, in broadcast news), and the user can quickly browse the labels to find interesting
stories instead of having to watch each story. There is no need to pre-define what the user is
interested in, i.e. to define his/her topic profile. As the topics are not fixed, newly emerging
topics can be easily found. In contrast to the previous chapters, where it was assumed that one
story has got only one topic label, in this chapter it is assumed that usually more than one label
is assigned to each story. Only the conjunction of several topic labels for one story will allow
to get an idea of the contents of the story.
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10.1 Overview of Unsupervised Topic Discovery

The goal of Unsupervised Topic Discovery (UTD) is to assign topic labels for each text doc-
ument of a document collection without human interaction. Adocument can consist of plain
text, for example from newspaper or news websites, or it can be the deficient output of a
speech recogniser. As throughout the rest of this thesis, the termsdocumentandstory are
used interchangeably.

According to Sista [82], “The unsupervised topic discoveryattempts to replicate the human
[topic] annotation process”. In contrast to supervised topic classification, where a human
annotator assigns presumably true topics to the training documents, in UTD there are nor
training stories annotated by humans, nor a pre-defined listof topics which should be detected.
Instead, a topic list is automatically derived from the document corpus. This step, called
Initial Topic Labelling, also automatically annotates each document with several topics. A
training process uses these topic annotations to find a statistical model for each topic, which
subsequently is used for re-classifying the documents (Final Topic Labelling). Before Initial
Topic Labelling, aPreprocessingstep, among other things, identifies phrases in the documents.
These three steps are depicted in Figure 10.1, and will be explained in detail in the following
sections.

10.2 Preprocessing

The preprocessing steps follow largely the approach by Sista [82]. The following steps are
performed:

• Stemming

• Phrase creation

• Stop word removal

The name identification step used by Sista, which identifies names of persons, places, and
organisations, is omitted due to lack of an appropriate tool. Anyway, he reports that this step
has very little effect on the final topics. The text is then stemmed using the Snowball algorithm
for German [5]. Snowball is a framework that allows the creation and integration of stemmers
for many languages, or as the authors put it, it “is a small string processing language designed
for creating stemming algorithms for use in Information Retrieval.” Many stemming rules for
languages such as English (equivalent to the well-known Porter stemmer), German, Swedish,
or even Finnish were created and published on the Snowball website. The German stemmer
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Figure 10.1: Overview of Unsupervised Topic Discovery.

tends to remove suffixes from the words more rigidly that the stemmer from University of
Dortmund [61], i.e. the stemmed words are somewhat shorter.

Phrase creation

The next preprocessing step is to find phrases in the text and combine the words that make
up the phrases. A phrase consists of more than one word and canprovide a better description
than a single word. For example, the phrase “United Nations”is more descriptive than the
words “United” and “Nations” alone. The goal of the phrase creation is to find meaningful
phrases, and then to combine them. After this step, the text “chancellor schr̈oder”1 will become
“chancellorschr̈oder”.

1The output of the automatic speech recogniser consists of lower case words only.
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Only a sequence of words that substantially decrease the description length (DL) of the entire
corpus is transformed into a phrase. The description lengthis the number of bits that is needed
to represent the whole corpus in a computer memory. It consists of two parts: the coded text,
where each word is represented by its numerical integer index, and a code table (or vocabulary)
that contains the string of each word and the corresponding index. The initial description
length is therefore (assuming 8 bits per byte, andl(Wi) the number of characters in wordWi)

DL = size of vocabulary table+ size of coded text (10.1)

=
∑

Wi∈corpus

8 · l(Wi)−
∑

Wi∈corpus

c(Wi) log2 p(Wi). (10.2)

c(Wi) is the number of timesWi appears in the corpus. Note that both the lower-casewi and
the upper-caseWi refer to a word, but the meaning of the index is different.wi means thei-th
word in a text or in a sequence, whereasWi stands for thei-th word in the vocabulary.

When two terms are merged into a phrase, the phrase has to be included into the vocabulary
table. The new entry in the vocabulary does not contain the string representation of the whole
phrase, but just two indices which refer to the words in the phrase. Assuming 32-bit integer
indices, the entry occupies 64 bit.

Phrases can also contain more than two words, but in one single phrase combination step, only
two terms (words or an already existing phrase) are combined. To get a three-word phrase, first
two words are combined into a phrase (e.g. “gerhard schröder”→ “gerhardschr̈oder”), and in
the next step, the third word is merged with the initial phrase: “chancellor gerhardschr̈oder”
→ “chancellorgerhardschr̈oder”.

To get the change in description length,∆DL(w1w2), when two termsw1w2 are merged into
one phrase, one has to add the change caused by removal ofw1 and ofw2. The change in bits
caused by removal ofw1 is symbolised byT1, the change in bits caused by removal ofw2 is
symbolised byT2, whereT1, T2 < 0. Note that not allw1 disappear, but only those which are
followed byw2. The easiest way to calculateT1 is to count the bit change forall w1, and then
to subtract the bits for whichw1 is not followed byw2:

T1 =c(w1) log2 p(w1)

− [c(w1)− c(w1w2)] log2

(

c(w1)− c(w1w2)

N − c(w1w2)

)

. (10.3)

In (10.3), the number of timesw1 is not followed byw2, c(w1) − c(w1w2), is divided by
the total number of terms in thenew document corpus (after phrase merging). A descriptive
explanation ofT1 is thatall occurrences ofw1 are removed from the old text (before phrase
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merging), and that only thosew1 are put back into the new text that are not followed byw2. T2

can be calculated in a similar way.

The number of bits for the new termw1w2, the change in bits for all other terms, and the 64
bits for the new entry in the vocabulary also contribute to∆DL(w1w2). Empirical observa-
tions have shown that the change in bits for all other terms contributes least to∆DL(w1w2)

(ignoring the 64 bit constant). The exact formula for∆DL(w1w2) can be found in eq. (4-2)
in [82].

The algorithm for creating the phrases is very similar to Sista’s approach [82, p. 91]:

Algorithm 10.1 Algorithm for creation of phrases.
1. Replace each term with its index in the vocabulary table
2. Compute the word countsc(w), phrase countsc(w1w2) and the total number of terms in

the corpusN
3. Calculate∆DL(w1w2) for each phrase that appears at least three times. Do not create

phrases across document boundaries, and if one term is a stopword. Word consisting of
one or two characters are also ignored for phrase creation.

4. If ∆DL(w1w2) < threshold, replace the separate termsw1w2 with the phrasew1w2.
Update the vocabulary if a phrase was created.

5. Repeat steps 2 to 4 until no new phrases are created.

A good value for the∆DL(w1w2) threshold is -10. Ignoring phrases that appear only once or
twice significantly speeds up the algorithm. After phrase creation, 154 manually selected stop
words are removed from the documents.

10.3 Key term identification

The next step of the UTD algorithm is to identify so-called key terms, i.e. the most relevant
terms of a document. For each story, the corresponding key terms are used as the initial topic
annotation for that story; the key terms are used as topic labels themselves. However, this topic
annotation is only able to find topic labels if the label appears as a key-term in the story. But a
story may also have a meaningful topic, even if the corresponding word does not appear in the
text. To overcome this drawback, a classifier is trained withthe initial topic labels as reference
labelling. The documents are then re-labelled by classifying them with the trained models.
This approach allows the detection of topics even if the corresponding term does not appear.
One way to get the key terms of a document is to assign a TF-IDF weight (see section 8.3.2 on
page 102) to every term in a document. TF-IDF is a term importance or relevance indicator; it
is a measure for the relatedness of the term to the contents ofa document.
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For every term of a document, its TF-IDF weight is computed according to eq. (8.2). For
each document, theI = 5 terms with the highest weight are chosen as initial topic labels
for the document. These top-ranking terms are calledkey terms. It is not always possible to
select exactlyI key terms, since in several documents there are terms that have equal TF-IDF
weights. If the(I + 1)-th term has got the same weight as theI-th term, it also becomes a
key term. And so do the following terms with the same weight. For example, if the 4-th to
7-th term (ranked according to their TF-IDF) have got the same TF-IDF weight, then the top
7 terms become the initial topic labels2.

If a top-ranking term appears only in one or two documents, the corresponding topic will have
only few training documents in the subsequent re-classification step. Consequently, terms
which appear only one to three times in the document collection are skipped and do not become
initial topic labels.

10.4 Document re-classification

According to Sista’s observation, already the key terms, and therefore the initial topic weights
describe well a document. 92 % of the top-ranked key terms arecorrect, while 81 % of the
4-th ranked and 68 % of the 5-th ranked key terms are correct [82, Table 5-8]. But the initial
topic labels are restricted to those terms that appear in thecorresponding document. A topic
label that would well describe a specific document will neverbe chosen unless it appears as
a term in this document. To overcome this drawback, Sista suggests to train Hidden Markov
topic models using the initial topic labels and to re-classify all documents using the trained
models. This approach is described in the following section. An alternative to Sista’s Hidden
Markov Model-based classifier is a SVM classifier (Chapter 3 onpage 14), which will be
treated afterwards.

10.4.1 HMM topic classification

In contrast to the HMM topic classifiers presented in chapter7 on page 80, the HMM classifier
used for the UTD task is able to explicitly deal with multipletopic labels per document. It
is based on the assumption that every word in a story is generated by a different topic (see
Figure 10.2). When a story starts, a set of topics is chosen with a probability ofP (Set). This
set remains fixed for the story. Among theM topics in the set (which always include the
background modelGeneral Language), one topic model (one single HMM state)Ti is chosen

2 Sista’s algorithm always chooses the topI = 5 terms. Maybe he did not observe terms with identical weights,
due to a much larger document collection (45,000 compared toroughly 500 used here).
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with P (Ti|Set). A word is then emitted with a probability ofP (Wn|Ti). Before the next word
is emitted, again a topic has to be chosen. Thus, every word can originate from an individual
topic model, independent of other words. The following constraints hold:

∑

Ti∈Set

P (Ti|Set) = 1 and (10.4)

∑

Wn∈Ti

P (Wn|Ti) = 1. (10.5)

The General Language model collects all words that are not specific of the other topics in the
set; a General Language topic label is added to the initial labels ofeachstory.

T0

T1

T2

TM

Document
Start

Document
End

P(Set)

T
0
: General Language

P(Tj | Set)

P(Wn |Tj )

Figure 10.2: HMM Topic Set Model for UTD.

Estimation of model parameters

All documents, which are annotated with initial topic labels, form the training set to estimate
the HMM parameters. The parameters are chosen in such a way that they maximise the like-
lihood P (d|Set) = (

∏n
i=1 P (di|Set))

1/n, where adi is one of then documents that have the
Set of topics as reference labels.

From the training data, it is known which words are emitted, but it is not known by which
HMM state (by which topic). The solution of the maximum likelihood (ML) optimisation
problem is the EM algorithm (see Section 2.2). The hidden data is the information about
which topic model (HMM state) has produced the observed words of a document; it is only
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known (from the set of topics assigned to the training documents) which topic set has produced
the document.

Each topicSet can be considered a Hidden Markov Model with the parameters

• P (Ti|Set) and

• P (Wn|Ti).

Unlike the usual HMM parameter estimation (chapter 2), where the transition and emission
probabilities are estimated separately for each HMM, here the topic distributionsP (Wn|Ti)

are calculated globally for all HMMs (hence,P (Wn|Ti), and notP (Wn|Ti, Set)). Similarly, a
global transition probabilityP (Tj|j ∈ Set) is estimated (denoting the global (average) prob-
ability of a topic given that it occurs in an arbitrarySet). The HMM-specificP (Tj|Set) are
derived by scalingP (Tj|j ∈ Set) to sum to 1 for theSet of the HMM.

The EM parameter estimation is done according to Algorithm 10.2. Several remarks about it
have do be made. The denominator in (10.7) equals the probability that the wordWt has been
produced by theSet of topics:

P (Wt|Set) =
∑

Ti∈Set

P (Ti|Set)P (Wt|Ti). (10.6)

The ratio in the same equation tells to what degree (between 0and 1) the topicTj (among
the topics in theSet) contributes to the wordWt. Since this contribution is summed over all
stories,C(Wt, Tj) can be paraphrased as

C(Wt, Tj) =(average, relative contribution ofTj to Wt)·
(# of stories).

The denominator in the calculation of the emission probabilities (10.8) can be paraphrased as

(# of stories) · (size of vocabulary ofTj)·
(relative contribution ofTj, averaged over all words in the vocabulary ofTj).

The vocabulary of a topicTj consists of all words that appear in stories labelled withTj. Sista
uses a different denominator for (10.8) (namely, the total word count in all stories labelled with
topicTj), which makesP (Tj|j ∈ Set) not being a probability since it might get larger than 1.
Even more, there is no “word count” implied in the above equations (just a vocabulary size,
which is something different). Therefore, we believe his denominator is not justified.

To understand the need for a biasbj in (10.9), let us consider the following, simplified example:
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Algorithm 10.2 EM-Estimation of parameters of HMM topic models used for UTD.
1. Initialisation . Initialise P (Wt|Tj) by counting number of occurrences of each

word in those stories that are labelled withTj, then normalise to form probabilities
(
∑

Wn∈Tj
P (Wn|Tj) = 1).

SetP (Tj|Set) as the ratio of number of stories labelled withTj to the total number of
stories, and normalise for each story.

2. Expectation Step. Estimate the counts of all (word, topic) pairs with

C(Wt, Tj) =
∑

∀stories

P (Tj|Set)P (Wt|Tj)
∑

Ti∈Set

P (Ti|Set)P (Wt|Ti)
. (10.7)

3. Maximisation Step. The HMM parameters, i.e. the transition and emission probabili-
ties, are re-estimated. To get the emission probabilities,the countsC(Wt, Tj) have to be
normalised:

P (Wt|Tj) =
C(Wt, Tj)
∑

∀wordsWi that appear
in the stories labelled withTj

C(Wi, Tj)
. (10.8)

The transition probabilities tell how much a topic contributes to the creation of a story.
They are estimated using

P (Tj|j ∈ Set) = bj ·

∑

∀wordsWi that appear
in the stories labelled withTj

C(Wi, Tj)

(# of stories) · (size of vocabulary ofTj)
. (10.9)

bj is the bias of topicTj according to (10.12).
4. Steps 2 and 3 (Expectation and Maximisation) are repeatedfor several iterations.
5. Un-biased transition probabilities are computed using (10.9) and a bias ofbj = 1∀j.
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Assume topicTj emits only two different words, but these words are typical of Tj, so that rarely
any other topic emits them. The numerator of eq. (10.9) mightthen be

∑

C(Wi, Tj) = # of stories· (0.95 + 0.91), (10.10)

and this would have to be divided by

(# of stories)· 2

to getP (Tj|j ∈ Set) (ignoring the bias coefficient):

P (Tj|j ∈ Set) = 0.93. (10.11)

This means that althoughTj has only two significant words, a transition value of 0.93 would
wrongly suggest that it emits most of the words. Hence, the biasbj is included that is large for
large topics, and small for small topics:

bj =

∑

∀wordsWi that appear
in the stories labelled withTj

C(Wi, Tj)

∑

∀Ti

∑

∀wordsWi that appear
in the stories labelled withTj

C(Wi, Tj)
. (10.12)

Restricting topic models to support words

Sista only keeps those words in the topic distributionsP (W |T ) for which P (W |T )
P (W )

≥ 1.3 They
are calledsupport words. Unfortunately it does not become clear how exactly the non-support
words are removed. One way would be to set their likelihoodsP (W |T ) to 0, before or after
the EM estimation (Algorithm 10.2). The more correct way is to do it after EM estimation, but
it saves run time to do it before.

Due to the zero frequency problem (see section 7.2.1 on page 82), the likelihoodsP (W |T )

have to be discounted or smoothed before calculating the posteriorsP (T |d). For the presented
UTD experiments of this thesis, allP (W |T ) are interpolated with the unconditional word
probability:

Pnew(Wi|Tj) = 0.75 · P (Wi|Tj) + 0.25 · P (Wi). (10.13)

3In his thesis [82], he writes that all words withP (W |T )
P (W ) > 1 arediscarded, but this is obviously a misprint,

since it would mean that those words are removed that are specifically significant for a topic.
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The interpolation weights are set according to Schwartz et al. [79], who also describe the
HMM topic classifier used by Sista [83].

For our experiments, it turned out that the restriction of the topic modelsP (W |T ) to contain
only support words is only a matter of reduction of run time. The final topic labels are almost
identical, whether words are removed from the topic models or not.

Re-classification

Each document is classified based on the trained topic HMMs, i.e. it is assigned a set of topics.
Since the initial topic labelling step can also be seen as a kind of classification, this HMM-
based final classification is referred to as re-classification.

Given the training assumptions and the document generationprocess in Figures 10.2 and 10.3,
each possibleSet of topics should be considered, and theSet with the highest posterior proba-
bility, P (Set|d) should be assigned as the classification result. However, there are hundreds or
thousands of topics, therefore it is computationally infeasible to compute the posterior proba-
bility for all combinations of topics.

Fortunately, it is sufficient for UTD [82] to calculate only the (log) posterior probability of a
single topic,P (Tj|d), and then to assign theN best topics as topic labels:

log P (Tj|d) = log P (Tj) +
∑

∀Wt∈d

φ

(

log
P (Tj|j ∈ Set)βP (Wt|Tj)

P (Wt)

)

. (10.14)
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Figure 10.3: Assumed document generation for HMM training (compare Figure 10.2).

This formula treats each topic individually, and implies that each word in the test document
has been generated by the same, unique topicTj (as depicted in Figure 10.4). This is a clear
violation of the assumptions made for training, namely thateach word is generated by another
topic state (as shown in Figure 10.3). Most words of a document are attracted by the General
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Figure 10.4: Document generation assumption made by eq. (10.14).

Language state, which is not reflected in (10.14). To accountfor words that arenot created by
Tj, eq. (10.14), incorporates a filtering functionφ with

φ(x) =







x if x ≥ 0

0 if x < 0
. (10.15)

Although the usage ofφ is theoretically justified, it implies significant problemsthat were
overlooked by Sista. Due toφ, only zero or positive log probabilities are added. The right
hand sum term is therefore necessarily positive (or zero), and the termlog P (Tj) is usually not
negative enough to make the log posterior probability be negative. Talking about probabilities,
and not log probabilities, this means that the posterior probability can easily become greater
than 1! This contradicts one of the fundamental properties of probabilities, and it is question-
able whether the resulting probability is still some kind of“normalised” and can directly be
used for topic ranking. Compare, for example, the likelihoodused in conjunction with confi-
dence measures (Section 7.2.3). It is not normalised, and can therefore not be used as a ranking
measure. Nevertheless, Sista reports very good UTD resultsusing his approach [82].

Even more, we have observed that due toφ, for many, if not most topics and documents, the
sum term (last term in eq. (10.14)) is zero. The posterior probability of a topic given the doc-
ument then becomes the a-priori probability of the topic:P (Tj|d) = P (Tj). The P (Tj|d)

values, and hence the topic ranking (which is done accordingto P (Tj|d)) then becomes com-
pletely useless. Therefore, a filtering of the probability ratio was not performed for our exper-
iments. The exponentβ is introduced due to the wrong independence assumption and is set to
β = 0.35 according to [79].

For each storyd, the posterior probability of each topic is calculated according to (10.14), and
the best topics are chosen as the final topic labels ofd.
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10.4.2 SVM topic classification

An alternative to the HMM topic classification as described in the previous section is the
classification with Support Vector Machines (SVMs, see Chapter 3 on page 14). As the UTD
task incorporates more than two labels, but SVMs can only deal with two classes, the multi-
class problems have to be broken down into binary problems. The SVMs used for the topic
classification in Chapter 8 on page 99 train a separate model for each class pair (one-against-
one, see section 3.5 on page 26). This approach to multi-class categorisation is not feasible
for the UTD task, since each document has got more than one training topic. When training
the binary model for(Ti, Tj), all stories would have to be excluded that are labelled withboth
Ti andTj. This would unnecessarily reduce the amount of training stories, and maybe even
prohibit reasonable model training for some topic pairs, since there are not enough training
documents.

However, with an one-against-all approach (Section 3.5), all training stories can be used (see
also [43]). The model for topicTi is trained with all stories that are labelledTi as the positive
class, and as the negative class all stories that do not haveTi among their topic labels. Non-
probabilistic SVMs output the class with the highest decision value as the class prediction,
but they do not provide a ranked list of best topics. One couldthink of ranking the classes
according to the decision value that was achieved with the corresponding binary SVM model,
but as was pointed out in section 3.5.1 on page 27, the decision values are not comparable
across binary models.

A better approach is to estimate posterior probabilitiesP (Tj|d) with probabilistic SVMs (pSVMs,
Section 3.4), and then to rank the topics according to the posterior probability. However,
pSVMs deliver only an (estimate of a) binary a-posteriori class probabilityP (Ti|d, modelTi)

for each model. An estimate forP (Tj|d) can be easily derived by normalising the binary
posteriors to form a probability: Divide allP (Ti|d, modelTi) by the same constantc =
∑

∀Ti
P (Ti|d, modelTi) so that

1

c

∑

∀Ti

P (Ti|d, modelTi) = 1, then (10.16)

P (Tj|d)← 1

c
P (Ti|d, modelTi). (10.17)

The final topics for each documentd are the best topics ranked according to theirP (Tj|d).

For the topic re-classification with SVMs, each document is represented in the vector space
model (see section 8.3.1 on page 102 for details). From the word representation of a document,
a (sub-) feature vector is created; the same is done for the character 3-gram representation.
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Both sub-features are concatenated to get the final feature vector. The word sub-vector is
weighted withwword = 1.5, since experiments in chapter 8 indicate that this choice often leads
to good results. The trade-off parameterC is set to 1.3, just as for the experiments presented
in chapter 8.

From a theoretical point of view, the SVM approach allows a cleaner representation than the
HMM approach: there is no need for a filtering functionφ. As SVMs are discriminative
classifiers, and in contrast to generative HMMs that estimate probability density functions
(pdf), they need fewer stories per class to train a model. However, the estimated pdf allows
insight into the degree of contribution of certain words to aspecific topic. This information
cannot be easily taken from the SVM models. The experiments in the following section will
compare the performance of both approaches.

10.5 Experiments

For the texts used for the UTD experiments, it was observed that the two values (1) size of the
vocabulary table and (2) size of the coded text contribute almost equally to the DL of the text
corpus.

10.5.1 Data sets

Tow different data sets were examined:

• ASR set. The first set consists of the automatic transcription of 443TV broadcast news
from two weeks in October 2001. This is the same data set that has been used as test set
for the SVM topic classification experiments This is the samedata set that was used as
test set for the SVM topic classification experiments (chapter 8).

• DLF set. The second set was extracted from the mail newsletter sent by the DLF
(Deutschlandfunk)radio channel. It contains the manuscripts of the bi-hourlyfive-
minute radio news, is usually error free, and is segmented according to topic boundaries.
591 stories were extracted from four broadcast manuscriptsper day, covering the first
two weeks in December 2004. After stop word removal, 26,511 words are left over.

Both sets cover two weeks, and have roughly the same number of stories. The second set,
however, consists of (nearly) error free text, stories are much shorter (less than one minute),
and variance of story length is smaller than the ASR set. The subsequent experiments were
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usually conducted with both data sets. If no data set is explicitly mentioned, the statements
and conclusions are valid for both sets.

Neither data set contains a reference topic labelling that can be used to automatically evaluate
the UTD results. While the ASR set was labelled with topics useful for media monitoring (see
the previous chapters), only few stories contain labels (except for theOff-topiclabel), and only
one label per story. Even more, these labels do not necessarily tell much about the content of
the story, but more about who might be interested in the story. Therefore, this labelling cannot
be used for UTD.

Manual evaluation is very time consuming. Several people are needed to check every topic
created by the UTD algorithms, and if several runs with differing parameters shall be evaluated,
this approach becomes infeasible. Sista [82] has chosen 100stories to be evaluated, and let
humans judge whether a topic is true or has to be discarded. For every topic rank, the precision
of the UTD topic annotation is calculated separately. The recall (fraction of true topics that
were found by the system) is not computed, since this would need manual annotation of the
stories, and it is not clear at which granularity the true topics should be chosen (recall that
reference annotators are not restricted to choose from a fixed number of topics, since there is
no pre-defined topic list).

All judgements made in this chapter about whether a topic is good or not do not use a defined
evaluation measure, but are based solely upon manual inspection of randomly selected stories.

10.5.2 Stemming

It has not been finally decided in the text classification community whether stemming is useful
or not (compare Section 8.2). For text classification with SVMs, we observed that stemming
does not improve results. However, stemming of German with its abundant grammatical mor-
phemes should be beneficial for the UTD task. Consider, for example, a word that appears in
the document collection a few times in its singular form, anda few times in its plural form.
The individual singular and plural forms might get a low TF-IDF weight, whereas the stemmed
form (singular and plural reduced to a common stem) might geta high weight. Moreover, the
individual forms may be excluded from the initial topic list, since they appear less often than
the minimum threshold for key term selection. The stemmed form then would be selected
since it appears often enough. These examples clarify why inthe key term selection phase,
stemming might be useful.

To examine this claim, UTD was performed with and without stemming (using the SVM clas-
sifier and the DLF data set). As far as key term selection is concerned, there is a tendency that
stemming leads to better initial topics. However, this depends on the story. For some stories,
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the initial topics do not differ much when created based on stemmed or non-stemmed texts.
Some stories even have better initial topics with non-stemmed texts. As a consequence, words
were always stemmed for the subsequent experiments.

10.5.3 Phrase creation

One free parameter that has to be chosen a-priori is the threshold of ∆DL(w1w2) which de-
termines how many term couples will be merged into a phrase. Unfortunately, this threshold
has to be set dependent on the document collection. For our collections, a threshold of -10 bits
seems appropriate for the data sets considered, where the lowest∆DL(w1w2) is -541 bits for
the DLF set (phraseneblig trüb, foggy-cloudy) and -509 for the ASR set (phrasenew york).

With a collection size of 45,000 documents, there are five-digit ∆DL(w1w2) [82]. One option
would be to set the threshold relative to the description length of the whole corpus, but as our
observations have shown, this approach is not feasible.

10.5.4 Key term selection

The terms with the highest TF-IDF weight, are usually able togive good hints about the con-
tents of a story, and allow a good description.

However, not all of the best-weighted terms are chosen as initial topic labels since they appear
only a few times throughout the document collection (DF < 4, see Section 10.3). It turns out
that especially these infrequent terms allow the user to geta good insight into the document’s
contents.

A typical property of key terms is that they do not find a broad topic label for a story, but each
term picks one out of several aspects; they are quite focused. Only the conjunction of key
terms will indicate the contents of a story. One good exampleis the weather forecast. A user
would like to get a topic label likeforecastor weatherforecast, but this label does not appear
(nor does it as a final topic after re-classification). Instead, the top key terms are only related
to weather, likewolk[en], grad, sonn[e], schau[er], süd[en] (clouds, degree, sun, rain, south).

The key terms, taken on their own without additional information, do not provide a summary,
but they give a hint to the user. It is often helpful to have a certain knowledge about e.g.
politics and the themes that are currently being discussed;given this knowledge, it is possible
to interpret the key terms so that they in fact deliver a summary. Among the terms with a high
TF-IDF, those that appear in more than a few documents are (not surprisingly) more general
than the terms which appear only once or twice in the collection.
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It is not possible to set a fixed threshold on the number of top key terms that are to be chosen
as topic labels. This is especially true for stories that have a lot of high-ranking terms with low
document frequencies (DF): A key term that appears only in two or three documents can tell
very much about their contents, and if there are 10 such key terms, all should be kept as topics.
One reason is that those infrequent, top key terms often haveexactly the same TF-IDF, since
they appear equally often (both in the document (TF term), and in the document collection
(IDF term). Then, a fixed threshold, which keeps only, say, three terms although six have the
same TF-IDF weight, does not make sense.

Of course, not all topic key terms are valid and indicate a story’s contents. But wrong key
terms disrupt understanding of a story less than one would expect. As far as ASR texts are
concerned, due to errors in speech recognition, it occurs that deficiently transcribed words are
selected as keywords (e.g.AWACS → airbags). Therefore, the list of key terms is worse for
the ASR set than for the DLF set.

Although the main conclusion of this section is that also terms with a high TF-IDF and a DF
of 2 or 3 should be selected as initial topic labels, the following re-classification experiments
are based on key terms withDF ≥ 4. Inclusion of the remaining key terms would lead to
training of topic models based on 2-3 stories, which is a bad idea especially for estimation of
HMM emission probabilities.

For the DLF set, 1158 key terms (withDL ≥ 4) are selected as initial topics. The correspond-
ing number is higher for the ASR set (1261 initial topics), although it contains slightly less
documents.

10.5.5 Re-classification with HMMs and SVMs

Most of the final topics obtained from the re-classification are completely different from the
initial topics, and they actually provide a much worse representation of the document. This is
true for both the SVM and the HMM classifier. There may be several (around 10)key terms
that are good, but anyfinal topic that is at rank 6 or lower is usually wrong. The precision of
the higher-ranking final topics is also significantly worse than the precision of the key terms.
And more often than not, the final topic is wrong.

For example, one story from the ASR set about the unemployment rate in the month of Septem-
ber has got the key termsseptember, arbeitslos, beschäftigung, tausend, wirtschaft4 (Septem-
ber, unemployed, employment, thousand, economy). The finaltopic labels (from the SVM
classifier) are:festgestellt, wolfsburg, infektion, mannheim, endspiel,beitrag(asserted, [city

4The keyterms are stated here in their complete form, but the UTD will output them in their stemmed version.
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Table 10.1: Sample ASR output text, initial topics, and the top six final topics as found by the
HMM and the SVM re-classifier.

ASR output (not stemmed)
unter den laden hatte die amerikaner geplant niemand könne die jetzt mehr mitgefühl die angst vor
neuen terroranschlägen die den usa noch einmal gewachsen aber dennoch die ganz grosse mehrheit
der amerikaner unterstützt die miliẗaraktion vierundneunzig prozent befürworten die angriffe auch
auf ganz da wir waren der neue und die herausforderungen sindkomplett in weiten haus wohl kaum
mitleid direktor der beḧorde f̈ur heimat verteidigung vereidigt auch heran will den amerika für ver-
hindern nach mitteln zentraler punkt der erde sein oder fremder kalt ihr werden unterland verteidigen
ohne die einmaligen freiheiten und weil die beste verteidigung ist eine globale unfällen wie perfekt
wo immer der terror auch auftauchen war der euro fällt jede der vier uhr erwartet weil dich herr in der
traumwelt ẅurden zukunft und dort für ämter koordinieren die sich bereit erklärt mit dem die lintfort
bescḧaftigen wird neun hektar der wir m̈ussen vor allem m̈oglichst viele geheimdienst informationen
zusammentragen im kampf gegen den terror ist werden macht imwendland j̈ahriger wenn mittler-
weile die sicherheitsvorkehrungen verschärft worden zahlreiche strassen die hier vor dem aussen-
ministerium in washington wurden gesperrt viele amerikaner will nach den angriffen auf afghanistan
verunsichert er werde dealer die die terroristen verfolgenoder nicht eine vielfach klar wir werden
uns weiter verfolgen wir hatten werden paar gerät das ganze kleine lang andauernder aufgabe die
terror treffen von weiteren anschlägen abteil̈ah äh äh ich freue will er wir amerikanern nehmen die
versẗarkten sicherheitsvorkehrungen in sport stadien oder flughäfen ohne murren hin wenn jeder hier
wurde dass die miliẗaraktionen der amerikaner neue anschläge in den usa auslösen k̈onnten

Initial Topics (key terms)
verteid, sicherheitsvorkehr, verfolg, amerikan, militaraktion

Final Topics from HMM re-classification
palastinens, prozent, grad, wolk,sech, taliban

Final Topics from SVM re-classification
amerikan, militaraktion, verfolg, sicherheitsvorkehr, mannheim, sparkur
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of] wolfsburg, infection, [city of] mannheim, final match, contribution). None of the initial
topics (key terms) is any more present in the final topics. Actually, the key terms describe
the story much better than the final topics. Interestingly, the city name Mannheim appears
among the top 10 final topics in almost all stories. Obviously, its SVM model is not very good.
Another example is given in Table 10.1.

The final topics from the HMM classifier are even worse than theSVM topics. Comparing the
topics of all documents, the topic list does not change very much, i.e. more or less the same
topics appear in many documents.

One can attribute the bad performance of both classifiers to the small number of stories used to
train the final topic models, which in turn results from the small document collection used. For
example, for the DLF set and HMM re-classifier, the final topicscdu andgradare assigned to
(almost) every story. The model forcdu is trained with 27 sample stories, the model forgrad
is trained on 20 stories. In contrast, the initial topicbeauftragtdoes not appear as final topic;
its model is trained on only 2 stories. This indicates that there is some relationship between
training size and appearance as final topic. This aspect demands further investigation in order
to draw well-founded conclusions.

With a document collection that is two orders of magnitude larger (45,000 documents covering
12 months, or 125 (!) documents per day), Sista [82] reports that 96 % of the first-ranked final
topics are correct (as judged subjectively by a human evaluator). Re-classification adds only a
small fraction of topics (about 9 %), compared to the initialtopics. The precision of the initial
topics is lower, although it is not always statistically significantly lower. 92 % of the initial
first rank topics are correct (as opposed to 96 % final topics);for the fourth rank, the precision
is 81 % versus 82 %.

Combining both results

• For a small document collection, re-classification significantly worsens results

• For a large collection, re-classification improves results, but not necessarily statistically
significantly

one can conclude that unless the document corpus to be annotated is very, very large and there
is enough (run-)time available, re-classification should not be performed.

As we have observed that the results with SVM re-classification is better than with HMM re-
classification, it should be nevertheless worthwhile to check the performance of SVMs on a
very large broadcast news corpus.
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10.6 Conclusion

This chapter introduced the task of Unsupervised Topic Discovery. Its key characteristics are
that topics are assigned to the text documents of a collection in an unsupervised way, and
that the list of topics is not pre-defined, but is derived fromthe collection. There is no need
for human interaction or topic labelling of training texts.The UTD approach by Sista was
presented together with modifications which were justified.As an alternative to his HMM re-
classification, an SVM classifier was suggested and investigated. Experimental results based
on relatively small corpora of both ASR and clean broadcast news texts were discussed.

The main conclusions to be drawn from this chapter are:

• The choice of the threshold value for phrase creation is not obvious and depends on the
size of the document collection.

• The terms with highest TF-IDF weights (key terms) should be used as final topic labels,
and only those withDF = 1 should be discarded (but not those with any higherDF ).

• The restriction of HMM topic models to contain only support words (as suggested by
Sista) has very little effect on final topic classification. This might also partly be due
to the fact that the HMM topic models used for the experimentspresented in this thesis
were quite poor.

• As the key terms can only be drawn from one document, speech recognition errors may
have quite a big impact on the quality of the topic labels.

• For small corpora, the re-classification step delivers bad results and should therefore be
omitted.



Chapter 11

Conclusion and outlook

The subject of this thesis is the development of a demonstrator for automatic media monitoring
that automatically scans TV broadcast news for specific topics. It is the first media monitoring
system for German news. Its goal is to filter out relevant stories from a stream of broadcast
news.

In the course of development, new techniques were conceivedand existing techniques were
improved to create the modules of the demonstrator. Many experiments were conducted to
measure the performance of the various approaches.

In addition to the media monitoring task with its pre-definedlist of topics to be identified,
the problem of Unsupervised Topic Discovery was addressed and investigated. It is nearly
unexplored, but is very attractive as it aims at identifyingtopics (or key-words) which do not
have to be defined (by means of training data) in advance. In contrast to the media monitoring
approach, which only filters outcertainstories, the UTD approach assigns key-words toall
stories.

Automatic speech recognition The automatic speech recognition of broadcast news
(Chapter 5 on page 47) demands special approaches. Recognisers not specifically designed
for this task perform poorly. It turns out that by using our language model that is based on
newspaper texts instead of a general language model, the word error rate (WER) of the speech
recogniser is reduced by 43 % relative. The interpolation ofthe newspaper language model
with a language model based on the manual transcription of broadcast news causes a further
reduction of the WER by 12 % relative. Another effective method is to use monophone and
triphone acoustic models trained on broadcast news. Compared to triphone acoustic models
trained on spontaneous speech and read sentences, our experiments reveal that an improvement
of one third (monophone broadcast news models) and of one quarter (triphone broadcast news
models) is achieved. Other measures, for example improvements of the dictionary or gender-
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dependent acoustic models, also lead to the reduction of transcription errors, but to a minor
degree. The representation of the dictionary as a tree as well as the caching of the language
model in a FIFO are crucial to make the recogniser efficient interms of run-time and memory
requirements.

The quality of the generated transcription depends much on the presence of background noise.
Further improvements should therefore concentrate on delivering better transcriptions when
there is background noise.

Topic segmentation A novel, visual approach to topic segmentation of TV broadcast
news (Chapter 6 on page 55) uses Hidden Markov Models (HMMs) torepresent content classes
(e.g. Newscaster, Report, Interview) and edit effects (e.g.Cut, Dissolve, Wipe). These models
are combined into a lattice (hierarchical model) that reflects how a news show is built up
from content classes and edit effects. For topic segmentation, the path through the lattice
is found that has most probably created the observed featuresequence. This step creates a
series of content classes and edit effects. Rules that define the beginning of a new topic are
subsequently applied.

Our experiments show that more complex lattices capturing more variants of paths do not
necessarily yield better results. Lattices that capture the structure of topics in addition to the
news show structure yield worse segmentation performance.It turns out that it is sufficient
to extract features at a reduced rate of 12.5 frames per second, since segmentation results
do not necessarily improve with 25 frames per second. The segmentation module achieves
recognition rates of up to 88 % precision and 82 % recall. However, its performance varies
with station and programme. One drawback of the presented segmentation approach is that for
every station, possibly even for every news programme, newsshow lattices have to be defined.
In the future, besides vision, other modalities like automatic transcription should be exploited.

Topic classification For topic classification based on automatic transcription,three meth-
ods were investigated in our work. The well-known Naive Bayesapproach serves as a baseline
system (Section 7.2 on page 81). A novel method uses a Hidden Markov Model classifier and
quantised feature vectors (Section 7.3 on page 84). The quantisation prototypes are created
with a Neural Network trained according to the Maximum Mutual Information principle. The
novel approach is superior to the Naive Bayes approach when ithas a limited choice from only
few training topics. Thus, it is suitable as a topic classifier for a media monitoring system if
only a rough discrimination between topics (e.g. politics,economy, sports, ...) is needed.

The third method, Support Vector Machines (Chapter 8 on page 99), is frequently used for
text categorisation. However, this thesis investigates for the first time probabilistic and non-
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probabilistic couplers for topic classification. Couplers are used to combine the results of two-
class Support Vector Machines for multi-class categorisation. The novel couplers suggested
in this thesis do not perform significantly different from established couplers. Their advantage
is that they are easy to implement and have low run-time requirements. As for the creation
of features, the combination of different linguistic unitsinto one feature vector improves the
classification rate. Giving more weight to the word sub-vectors is favourable.

Non-probabilistic Support Vector Machines for topic classification are usually thought to work
best with linear kernels. Interestingly, experiments presented in this thesis reveal that RBF
kernels yield better performance with probabilistic SVMs in some cases. Further research is
needed to tell whether this fact is only due to the examined data set. The presented topic
classification module is not yet able to update the topic models when topics change or new
topics emerge. In the future, adaptation to topic alterations should be considered.

Demonstrator system This thesis does not only investigate the individual modules of the
demonstrator, but the performance of the entire system, consisting of speech recogniser, topic
segmenter, and topic classifier, as well (Chapter 9 on page 122). The SVM topic classifier
outperforms the Naive Bayes classifier. It achieves a micro-averagedF1 measure of 86 for
automatically segmented stories.

Unsupervised Topic Discovery The aforementioned topic classification methods rely
on the fact that training data must be provided for every topic to be detected. For the scenario
of media monitoring, where the set of customers (those that will receive the media alerts)
is known beforehand, a restricted topic list is useful. For media monitoring for e.g. private
customers who do not necessarily have a fixed topic profile, the Unsupervised Topic Discovery
approach is examined (Chapter 10 on page 127). It does not use any pre-defined topic list
at all, but derives the topics from the test data without human interaction. This approach
is nearly neglected in research literature, except for the work by Sista. Tests of his system
presented in this thesis are based on plain text and automatic transcriptions, as opposed to
his plain text only corpus. The UTD approach consists of three steps: preprocessing, initial
topic labelling, and final topic labelling (re-classification). In addition to his HMM classifier,
a SVM classifier is investigated. The most important conclusion states that for small corpora,
the re-classification step delivers bad results and should therefore be omitted. The results of
the initial topic labelling are promising, and it is clearlyworthwhile to further explore the field
of Unsupervised Topic Discovery.



Appendix A

McNemar’s statistical test

In order to compare the performance of two classifiers, one can directly compare their evalu-
ation measures (e.g. accuracy, orF1 measure). But this method does not permit to claim that
one classifier does or does not perform significantly better than the other one. Consider, for
example, anF1 measure of 93.4 for classifier A and 93.9 for classifier B. Obviously, classi-
fier B is better, but at the same time the difference in performance is so small that one would
hesitate to call it significantly superior.

Statistical tests make it possible to conclude whether two classifiers perform significantly dif-
ferent or not. A null hypothesis has to be defined, and the testtells whether the hypothesis
can be rejected or not. This conclusion can only be made with acertain probability of errorα,
which is usually set a-priory to 0.05 [73].

The null hypothesis to be tested is: The two classifiers will have the same error rate on ran-
domly drawn test samples [22].

Compute the statistic

χ̂2 =
(|n01 − n10| − 1)2

n01 + n10

using the definitions from Table A.1. If the null hypothesis is correct, the probability that̂χ2

Table A.1: Contingency table for calculation of the χ2 measure.

number of test samples mis-
classified by both A and B

number of test samples mis-
classified by A but not by B

= n00 = n01

number of test samples mis-
classified by B but not by A

number of test samples mis-
classified by neither A nor B

= n10 = n11
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is greater thanχ2
1,0.95 = 3.841 is less than 0.05. Thus, if̂χ2 is greater thanχ2

1,0.95, the null
hypothesis should be rejected; if it is smaller, the null hypothesis cannot be rejected.



Symbols and abbreviations

Greek symbols

αi Lagrange multipliers (model parameters of SVMs)

ξi Slack variables for soft-margin SVMs

λ Parameters of a Hidden Markov Model

λ Penalty weight of BIC criterion

µij true pairwise a-posteriori class probability (multi-class pSVM)

Φ Function for mapping input vectors into high-dimensional space (SVMs)

φ Confidence term for Structural Risk Minimisation

Roman symbols

A Transition matrix of a HMM,A = [aij]

aij Probability of transition from statesj to si

C Coefficient used in softmax function

C Error tolerance for soft-margin SVMs

d Document

d(x, y, t) Difference of luminance of an image pixel between two consecutive images (audio-
visual topic segmentation)

ER Error rate

f Number of adjacent frames used for feature creation (topic classification with HMMs)

F1 Evaluation measure

FA False alarm rate

fn Number of false negatives in test set

fp Number of false positives in test set

h VC dimension of a set of functions

h(x) Decision function of discriminative classifiers

I(i) Voting counter for classi (multi-class SVMs)
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J Number of prototype vectors used for vector quantisation (VQ)

K Number of Gaussian mixture components (HMMs)

K Number of classes

k(·, ·) Kernel function

M Dimension of data points (feature vectors)

M Miss rate

Mθ Sequence of prototype labelsm

mj Index (label) ofj-th VQ prototype vector

m(x) Index (label) of the prototype vectorµ that is nearest tox

n Number of states of a Hidden Markov Model

N Number of training examples

P Precision

PFA Probability of the classifier generating a false alarm

PMiss Probability of the classifier generating a miss

S Set of states of a HMM

Q Set of visited HMM states,Q = q1, q2, . . . , qT

qt Active HMM state at timet

R Recall

rij Estimate ofµij (multi-class pSVM)

T Number of distinct terms (i.e. vocabulary size) of a document collection

T Topic

T̂ Predicted topic (result of topic classification)

ti Term numberi

tn Number of true negatives in test set

tp Number of true positives in test set

T̃ Sequence of topicsT

w Number of characters in one frame (topic classification withHMMs)

Wi i-th word in the vocabulary

wi i-th word in a document

wi Weight ofi-th term in feature vectorx

wword Weight of feature sub-vector created from word representation of text

x Feature vector
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ŷ Class prediction of a classifier

yn Class of data samplen

Abbreviations

ASR Automatic Speech Recognition

BN Broadcast News

ch3gram character 3-gram

DL Description Length

ERM Empirical Risk Minimisation

FB Forward-Backward

HMM Hidden Markov Model

LH Likelihood

LM Language Model

LVCSR Large Vocabulary Continuous Speech Recognition

MI Mutual Information

NN Neural Network

npSVM non-probabilistic (conventional) Support Vector Machine

pSVM probabilistic Support Vector Machine

SRM Structural Risk Minimisation

SVM Support Vector Machine

TDT Topic Detection and Tracking (Conference Series)

TREC Text REtrieval Conference

UTD Unsupervised Topic Discovery

VQ Vector quantisation

WER Word Error Rate



Bibliography

[1] Libsvm. http://www.csie.ntu.edu.tw/˜cjlin/ libsvm/index.html.

[2] Reuters 21758 collection. http://www.daviddlewis.com/resources/testcollections/reuters21578/.

[3] TDT homepage. http://www.nist.gov/speech/tests/tdt/index.htm.

[4] TREC homepage. http://www-nlpir.nist.gov/projects/tv2003/.

[5] Snowball stemmer. http://snowball.tartarus.org, 1996. Perl Script for German Stem-
ming.

[6] The 2001 Topic Detection and Tracking (TDT 2001) Task Definition and Evaluation
Plan, 2001.

[7] A LLAN , J., CARBONELL, J., DODDINGTON, G., YAMRON, J.,AND YANG, Y. Topic
Detection and Tracking Pilot Study Final Report. InProc. Broadcast News Transcrip-

tion and Understranding Workshop(1998).

[8] BAHLMANN , C., HAASDONK, B., AND BURKHARDT, H. On-line Handwriting
Recognition with Support Vector Machines—A Kernel Approach. In Proc. of the 8th

IWFHR(2002), pp. 49–54.

[9] BAUM , L., AND SELL , G. Growth Transformations for Functions on Manifolds.Pacific

Math J 27(1968), 211–227.

[10] BELLMAN , R. E. Adaptive Control Processes. Princeton University Press, Princeton,
NJ, 1961.

[11] BESACIER, L., QUENOT, G., AYACHE, S.,AND MORARU, D. Video Story Segmenta-
tion with Multi-Modal Features: Experiments on TRECVID 2003.In 6th ACM SIGMM

International Workshop on Multimedia Information Retrieval (2004).

[12] BISHOP, C. Neural Networks for Pattern Recognition. Oxford University Press, 1996.

155



Bibliography 156

[13] BOSER, B. E., GUYON, I., AND VAPNIK , V. A Training Algorithm for Optimal Mar-
gin Classifiers. InComputational Learing Theory(1992), pp. 144–152.

[14] BROWN, M., GRUNDY, W., LIN , D., CHRISTIANINI , N., SUGNET, C., JR, M., AND

HAUSSLER, D. Support Vector Machine Classification of Microarray GeneExpression
Data, 1999.

[15] BUCKLEY, C., SALTON , G., ALLAN , J., AND SINGHAL , A. Automatic Query Ex-
pansion using SMART: TREC 3. InAn Overview of the Third Text Retrieval Confer-

ence (TREC 3)(1995), D. Harman, Ed., National Institute of Science and Technology,
pp. 69–80. Special Publication 500-225.

[16] BURGES, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery 2, 2 (1998), 121–167.

[17] CHERKASSKY, V., AND MULIER, F. Learning From Data. Concepts, Theory, and

Methods. Wiley, 1998.

[18] COOLEY, R. Classification of News Stories Using Support Vector Machines. InIJ-

CAI’99 Workshop on Text Mining(Stockholm, Sweden, 1999).

[19] DAI , P., IURGEL, U., AND RIGOLL , G. A Novel Feature Combination Approach for
Spoken Document Classification with Support Vector Machines. In Multimedia Infor-

mation Retrieval Workshop in conjunction with the SIGIR ACM International Confer-

ence on Research and Development in Information Retrieval(2003).

[20] DARSCHIN, W., AND GERHARD, H. Tendenzen im Zuschauerverhalten. Fernsehge-
wohnheiten und -reichweiten im Jahr 2003. InMedia Perspektiven 4/2004 und 4/2003.

(2003/04).

[21] DEMPSTER, A. P., LAIRD , N. M., AND RUBIN , D. B. Maximum Likelihood From
Incomplete Data Via the EM Algorithm. InJournal of the Royal Statistical Society,

Series B(1977), vol. 39, pp. 1–38.

[22] DIETTERICH, T. G. Approximate Statistical Test For Comparing Supervised Classifi-
cation Learning Algorithms.Neural Computation 10, 7 (1998), 1895–1923.

[23] DUDA , R. O., HART, P. E.,AND STORK, D. G. Pattern Classification, 2 ed. Wiley,
2000.

[24] DUMAIS , S., PLATT, J., HECKERMAN, D., AND SAHAMI , M. Inductive Learning
Algorithms and Representations for Text Categorization. InProc. Conference on Infor-

mation and Knowledge Management (CIKM)(1998), pp. 148 – 155.



Bibliography 157

[25] EICKELER, S. Automatische Bildfolgenanalyse mit statistischen Mustererkennungsver-

fahren. PhD thesis, Gerhard-Mercator-Universität Duisburg, 2001.
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