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Abstract

The Linear Fractional Transformation (LFT) is a general, flexible and powerful framework
to represent uncertain systems. Linear Fractional Representations (LFRs) are the basis
for the application of many modern robust control techniques (e.g., robust H∞ control
design, µ-synthesis/analysis). For several classes of uncertain systems, it is in principle
straightforward to generate equivalent LFRs. However, the resulting LFRs are generally
not unique, a theory for the generation of LFRs with minimal complexity does not exist
and the pure application of existing ad-hoc realization methods generally yields LFRs
of high complexity. LFR-based modern robust control methods are numerically highly
demanding and of high computational complexity, e.g., many methods require to solve
a large system of Linear Matrix Inequalities (LMIs). Therefore the application of these
methods is restricted to LFRs of reasonable complexity, otherwise the computation time
will be unacceptable or the methods may even fail.

To realize LFRs of low complexity, a three step procedure is employed in this thesis
consisting of (i) symbolic preprocessing of uncertain system models using improved and
newly developed decomposition techniques, (ii) object-oriented LFR realization based on
a newly developed generalized/descriptor LFT, (iii) numerical multidimensional order
reduction based on newly implemented numerical reliable and efficient routines.

All the techniques are implemented in version 2 of the LFR-toolbox for Matlab and
allow to realize an LFR of almost minimal complexity for one of the most complex
parametric aircraft models available in the literature. Using this LFR, a reliable LFR-
based robust stability analysis covering the whole flight envelope has been performed,
which was not possible with earlier generated LFRs of high complexity.

An LFR of minimal complexity is generated for a parametric vehicle model. Based on
this LFR, a µ-synthesis controller and a gain-scheduled Linear Parameter Varying (LPV)
controller are synthesized. Both controllers show better performance and are robust with
respect to a considerably larger parametric uncertainty domain than recently developed
controllers using the Parameter Space (PS) method.
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1 Introduction

1.1 Historical Remarks

Model uncertainty and robustness have always been a central theme in the field of auto-
matic control and the main motivation for using feedback control is to reduce the effects
of uncertainty, which may appear in various forms as disturbances or as imperfections in
the models used to design control laws [8].

r y u

d

e

n

K G

∆G

Figure 1.1: Simple block diagram of a controlled system

To facilitate the discussion, consider a simple representation of a controlled system
in figure 1.1, where K is the controller, G is the plant to be controlled, ∆G represents
additive plant model perturbations, r is the reference input, u is the plant input, d
describes external disturbances, n represents sensor noise, y is the signal that enters the
controller, the so-called measurement output and e is the tracking error [26].

Usually the controller K must be designed such that the following objectives and
constraints are fulfilled in some optimal form:

• Stability: The closed loop system must be stable

• Tracking: The tracking error e should be zero

• Disturbance rejection: The disturbance d should not affect the tracking error e

• Sensor noise rejection: The tracking error e should not be influenced by the
sensor noise n

• Avoiding actuator saturation: The actuator, which is assumed to be a part of
G should not be saturated by the input u

1



1 Introduction

• Robustness: All aforementioned objectives and constraints - or at least the sta-
bility requirement - should be fulfilled to an acceptable level, even if the real plant
may differ from the plant model G by an amount ∆G.

It is clear that all these requirements can only be fulfilled to some extent. Usually
different requirements pose different demands on the control action and the final controller
K will be a compromise solution. Therefore it is important to quantify all the objectives
and to weigh them in a suitable way. The robustness requirement generally reduces
the achievable closed-loop performance as the controller can not be tuned only for one
specific nominal plant model G, but the objectives must be satisfactorily fulfilled for
the real plant, which may lie in a set of plant models given as G + ∆G. In general,
model perturbations and uncertainties described by ∆G can never be avoided due to the
following facts:

• Unmodelled dynamics: Usually control design requires model descriptions of
reasonable size and complexity. In many cases linear, time-invariant models G of
reduced order are used for control design. High frequency dynamics or nonlinearities
are usually approximated leading to imperfections in the model.

• Time variance: Plant dynamics undergo changes during operation. Varying envi-
ronmental conditions (e.g., temperature changes or variation in the earth magnetic
field during one orbit of a satellite) or the wear caused by aging influence the plant
dynamics.

• Varying loads: Plant dynamics change depending on their load conditions. For
example the inertia and the position of center of gravity of an aircraft change
depending on the distribution of passengers, cargo and fuel.

• Manufacturing variance: If we consider a series of plants the control design
is usually performed for one or several prototypes of them. However, in a series
production there will always be manufacturing variances between the individual
plants and the controller must cope with these.

• Identification errors: Even if the model structure includes all dynamics of the
real process, there will always be errors in the identification of the model parameters
due to limitations of the identification hardware and methods.

Considering robustness of SISO systems to gain variations, a first systematic control
design approach was developed by Bode [16, 17]. At this time linear systems were de-
scribed using transfer functions or frequency responses and it was straightforward to
describe model uncertainties as deviations from some nominal frequency response. The
Bode diagram has proven to be very useful to graphically design controllers and measures
as gain and phase margins were introduced. A generalization of Bode’s work, considering
robustness to arbitrary plant variations, was developed by Horowitz [48], which founded
the Quantitative Feedback Design Theory (QFT) [49].

In the 1960s, the state-space theory became more popular. Systems were then described
by differential equations allowing new insights [52] and initiating the development of

2



1.2 Linear Fractional Transformations (LFTs) in robust control

many new control design techniques. The LQG method [51] is probably the best-known
development of this time. The control design problem for a linear system with Gaussian
disturbances is formulated as an optimization problem with quadratic constraints and
it admits an analytical solution. The controller structure consists of a Kalman filter
and a linear state feedback. In the case that all state variables can be measured, the
LQG design offers very strong robustness properties with at least 60◦ of phase margin
and infinite gain margin as shown in [70]. Unfortunately, this does not hold for the
output feedback case, where a Kalman filter is used to estimate the system states [33].
An obvious idea to achieve robustness was to modify the Kalman filter in some way to
recover the loop transfer of the case where all states are measured [69]. However, the
modified Kalman filter may be completely nonoptimal as far as disturbance rejection is
concerned. Conclusively, the classical approach of LQG controller design as described in
[51] is not the proper way to incorporate performance requirements, disturbance rejection
and robustness.

A paradigm shift in robust control was represented by the paper [89]. It was a starting
point of the so called H∞ theory, which has become very popular in control theory. It
allows to incorporate performance specifications, disturbance rejection and robustness
requirements into one optimization problem and allows to generalize the successful clas-
sical design techniques in the frequency domain from SISO to MIMO systems. Solutions
of the H∞ problem in state-space were presented in [35] marking a cornerstone in the
robust control theory.

1.2 Linear Fractional Transformations (LFTs) in robust
control

To perform robust H∞ controller synthesis it is essential to quantify the uncertainties in
the process model, to define a precise mathematical formulation and to describe how these
uncertainties enter into the system interconnection. In general two types of uncertainties
are considered:

• Model imperfections due to neglected nonlinearities or unmodelled dynamics are
usually represented as additive or multiplicative norm-bounded frequency domain
errors with arbitrary phase, which are related to process components or the whole
process. These are called unstructured uncertainties.

• Uncertainties in model parameters can be described more precisely. The process
model usually contains structural information of how the uncertain parameters
affect the process dynamics. This often allows to achieve better closed-loop perfor-
mance than in the unstructured uncertainty case. If the structural information is
ignored one may obtain a conservative approximation of the true error. Therefore
parametric uncertainties can be handled more systematically and they are denoted
as structured uncertainties.

In literature the terminology structured uncertainty is usually equivalent to parametric
uncertainty. However, considering a system consisting of at least two coupled components

3



1 Introduction

and each component admits an unstructured uncertainty description, then it is important
to note that at system level the overall uncertainty description also becomes structured,
although not parametric, uncertainty. Hence, in such cases one also may reduce con-
servativeness by considering this structure during robust stability/performance analysis
or robust controller synthesis and the terminology structured uncertainty does not only
stand for parametric uncertainty.

Mathematical models of uncertainties must be explicitly included in the process model.
In general the resulting overall model must be transformed/rearranged into a special
structure that admits the application of robust H∞ methods. Linear Fractional Trans-
formations (LFTs) are a general, flexible and powerful way to represent uncertainty in
systems. The idea of using LFT-based uncertainty descriptions (denoted as Linear Frac-
tional Representations (LFRs)) is to keep separated what is known from what is unknown
by expressing the process model as a feedback connection of a nominal plant and the un-
certainty description. An LFR defines a set of process models and the real process is
assumed to lie inside this model set. LFRs are suitable for the application of robust H∞
design methods.

LFT-based robust control was extensively studied during the last years (see [7, 29, 28,
13, 24, 77, 65, 72, 74, 92] and references therein). Successful applications can be found
in various areas, as aeronautics [58], missile control [67], control of flexible structures [9],
control of CD-players [31], high-precision positioning in IC-manufacturing [78] and many
others.

1.3 Motivation and Thesis Structure

In principle, it is straightforward to transform a linear plant model including unstructured
and structured uncertainties into an LFR. However, this transformation is not unique
and the blindfold application of ad-hoc methods [77] generally leads to LFRs of high
complexity. LFT-based robust control methods are numerically highly demanding and of
high computational complexity, e.g., many methods are based on solving a large system
of Linear Matrix Inequalities (LMIs) [19, 73]. Therefore the application of these methods
is restricted to LFRs of reasonable complexity, otherwise the computation time will be
unacceptable, the numerical errors will increase or the methods may even fail.

It is the aim of the present thesis to develop new techniques and to improve existing
methods for the realization of LFRs with reduced complexity for parametric plant mod-
els. A plant model may include many uncertain parameters and these generally enter the
model equations in a highly structured way. The same parameter may appear in many
parts of the model and parametric expressions can be very complicated (e.g., resulting
from rational parametric approximations of multidimensional tables in an aircraft model
[84]). Therefore it is crucial to employ systematic and structure exploiting techniques
to reduce the LFR complexity resulting from parametric uncertainty. Concerning un-
structured uncertainties, these are usually employed to describe general imperfections of
process components or the whole process and occur only once in a model description.
Hence, the transformation of models including unstructured uncertainties to an LFR can
generally be done by inspection and there is low potential to reduce the LFR complexity

4



1.3 Motivation and Thesis Structure

resulting from unstructured uncertainty. To simplify the presentation, the low order LFR
realization techniques developed in this thesis are presented exclusively for systems with
structured/parametric uncertainties.

In figure 1.2 the design process of LFT-based robust control is sketched. Starting
from a suitable representation of an uncertain parametric process model, the LFR con-
struction procedure consists of three steps and the resulting LFR may be used for robust
stability/performance analysis (e.g., µ-analysis [92], Integral Quadratic Constraint (IQC)-
based analysis [61],...) or robust controller synthesis (e.g., µ-synthesis, Linear Parameter
Varying (LPV) control,...).

Uncertain process model

Construction of LFR:

LFT-based robust control:
    stability/performance analysis 
    controller synthesis  

1. preprocessing of plant model
2. object-oriented LFR realization
3. order reduction of LFR

Figure 1.2: LFT-based robust control design process

The object-oriented LFR realization procedure (step 2) [77, 41, 42] is probably the most
flexible and powerful way to transform a parametric model into an LFR. It can easily be
automated and can be applied to arbitrary rational parametric uncertainties. However,
the sole application of this method does not consider any structure in the parametric
dependence of the model and may yield LFRs of high complexity (i.e., high order). To
overcome this limitation a preliminary preprocessing step [44, 24, 83, 43] can be performed
to find equivalent representations of the plant model that allow the generation of LFRs
with low complexity using the object-oriented LFR realization approach. In a final step,
order reduction can be performed to further reduce the complexity by removing redundant
parts of the LFR. Alternatively, the LFR may be simplified by calculating approximate
LFRs.

In this thesis, new techniques and improvements of existing methods for each of the
three steps of the LFR construction procedure are presented. The applicability of the
improved overall procedure is demonstrated by realizing LFRs of possibly minimal com-
plexity for highly complex parametric uncertain systems.

In chapter 2 the class of linear parametric models considered in this thesis is defined.

5



1 Introduction

Two ways how to derive such models from more general nonlinear parametric models are
presented. A new representation called generalized LFR is introduced to overcome a basic
limitation of the standard LFR to represent arbitrary rational parametric expressions.
Formulas for the related object-oriented LFR realization technique are developed. Finally,
procedures are presented for the realization of LFRs for generalized parametric state-space
systems.

Chapter 3 presents an overview of symbolic decomposition methods suitable as pre-
processing tools. New techniques are proposed and several enhancements of existing
symbolic preprocessing methods are shown. All these symbolic methods, together with
the generalized LFR and enhanced numerical order reduction techniques for LFRs are
supported by the newly developed version 2 of the LFR-toolbox for Matlab, which is
briefly described in chapter 4.

Chapter 5 describes the application of the developed low order LFR realization tech-
niques to the RCAM (Research Civil Aircraft Model), which is one of the most compli-
cated parametric models available in literature. The order of the generated LFR was
reduced by about 60% compared to former realizations reported in literature. This low
order LFR allows to apply µ-analysis techniques for the whole flight envelope, which was
not possible before with the high-order models. Closed-loop robust stability was analyzed
for 12 different controllers and some of them were indicated to not achieve closed-loop
stability for the uncertain plant model. This could be confirmed by a complementary
optimization-based worst-case search, where worst-case plant models leading to unstable
closed-loop systems were identified, for these cases.

In chapter 6 an LFR of minimal complexity is realized for an uncertain parametric
model describing the lateral dynamics of a vehicle. This LFR is employed for the re-
alization of two a robust vehicle steering controllers. One controller is generated using
the µ-synthesis technique and the second controller is an automatically generated gain-
scheduled controller based on robust Linear Parameter Varying (LPV) control design
techniques. Both controllers provide better robust performance properties than recently
developed controllers for this vehicle model.

6



2 Generalized Linear Fractional
Representation (LFR) for parametric
uncertain systems

2.1 From nonlinear to linear parametric models

Many physical dynamical systems can be described by a continuous-time, nonlinear,
parametric plant of implicit form

0 = f(ẋ, x, u, δ)

y = g(x, u, δ)
(2.1)

where f ∈ Rn and g ∈ Rp are vector functions, x ∈ Rn is the state vector with ẋ
as its time derivative, u ∈ Rm is the input vector and δ ∈ Rk is a vector of physical
parameters. The parameter values are bounded by their minimum and maximum values
and the admissible parameter value set is defined as

Π = {δ : δi ∈ [δi,min, δi,max], i = 1, . . . , k} (2.2)

Each parameter δi may be described in different units and the ranges of admissible val-
ues may differ by orders of magnitudes. For the application of LFT-based techniques for
robust stability analysis and robust controller synthesis (e.g. µ-analysis and µ-synthesis)
it is generally required that the uncertain parameters are normalized to lie in an k-
dimensional cube centered at the origin.

To perform the normalization of parameters, δi can be replaced by a rational parametric
function ni(δ̃i) such that δi = ni(δ̃i) with |δ̃i| ≤ 1. The function ni(δ̃i) is chosen such that,
δi,min = ni(−1), δi,max = ni(1), δi,nom = ni(0), where δi,nom ∈ [δi,min, δi,max] represents the
nominal value of the parameter δi. Hence the nominal system

0 = f(ẋ, x, u, δ)|δ=δnom

y = g(x, u, δ)|δ=δnom

can be represented as

0 = f(ẋ, x, u, n(δ̃))|δ̃=0

y = g(x, u, n(δ̃))|δ̃=0.

This is convenient because the nominal system corresponds now to a normalized system
where all parameters are zero, i.e., δ̃ = 0.

7



2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

In robust control applications, non-linear parametric models of the form (2.1) are useful
to perform parameter sensitivity studies (e.g., via simulations). However, the application
of LFT-based robust control synthesis and analysis techniques requires a linear descrip-
tion or approximation of the nonlinear plant (2.1). Such a description can be obtained
by applying Jacobian-based linearization or by reformulating the nonlinear plant in a
quasi-Linear Parameter Varying (LPV) form. Both methods are briefly described in the
following. For a comprehensive treatment see [68, 55, 59].

2.1.1 Jacobian-based linearization

Recall that a trim point ẋt, xtrim, utrim, ytrim, δtrim of the plant model (2.1) satisfies 0 =
f(ẋtrim, xtrim, utrim, δtrim), ytrim = g(xtrim, utrim, δtrim) and if ẋtrim = 0 it may be an equi-
librium point of (2.1).

Definition 2.1. The functions ẋtrim(δ), xtrim(δ) and utrim(δ) define a family of trim points
for (2.1) on the set Π if

0 = f(ẋtrim(δ), xtrim(δ), utrim(δ), δ), δ ∈ Π

ytrim = g(xtrim(δ), utrim(δ), δ).
(2.3)

The n + p nonlinear equations (2.1) must be solved (trimming) to determine n + p free
components of these vectors selected from a total of 2n + m + p components. Note, that
the values of the remaining n + m components are set to values defining specific trim
conditions.

A corresponding family of linearized parametric descriptor systems is defined by

E(δ)ẋδ = A(δ)xδ + B(δ)uδ

yδ = C(δ)xδ + D(δ)uδ

(2.4)

where

E(δ) = −∂f

∂ẋ
(ẋtrim(δ), xtrim(δ), utrim(δ), δ)

A(δ) =
∂f

∂x
(ẋtrim(δ), xtrim(δ), utrim(δ), δ)

B(δ) =
∂f

∂u
(ẋtrim(δ), xtrim(δ), utrim(δ), δ)

C(δ) =
∂g

∂x
(ẋtrim(δ), xtrim(δ), utrim(δ), δ)

D(δ) =
∂g

∂u
(ẋtrim(δ), xtrim(δ), utrim(δ), δ)

(2.5)

and where

ẋδ = ẋ− ẋtrim(δ), xδ = x− xtrim(δ), uδ = u− utrim(δ) and yδ = y − ytrim(δ). (2.6)

For each fixed value of δ ∈ Π the linearization (2.4) describes to local behavior of the
nonlinear plant (2.1) about the corresponding trim point.
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2.1 From nonlinear to linear parametric models

If the inverse of E(δ) exists it is possible to obtain an explicit parametric state-space
system of the form

ẋδ = Ã(δ)xδ + B̃(δ)uδ

yδ = C(δ)xδ + D(δ)uδ

(2.7)

where Ã(δ) = E(δ)−1A(δ) and B̃(δ) = E(δ)−1B(δ).
The main limitation of the Jacobian-based linearization is that in general there exists

no analytical solution for the functions ẋtrim(δ), xtrim(δ), utrim(δ), ytrim(δ). A common
practice is to simply substitute these functions with their numerical values at the cor-
responding trim point, computed for the nominal value of δ. The resulting Jacobian
matrices in (2.5) (obtained for example using symbolic differentiation) depend explicitly
on the parameters in δ. However, in this case all the information about the paramet-
ric dependence of ẋtrim(δ), xtrim(δ), utrim(δ), ytrim(δ) is lost and the validity of the linear
approximation (2.4) is strongly limited. To increase the validity of the linear model repre-
sentation, a more sophisticated way is to calculate polynomial or rational approximations
of these functions [84] based on physical knowledge of the parametric dependence in the
entries of the matrices in (2.4).

2.1.2 Quasi-LPV models

For gain-scheduling control design a linear plant description may be obtained by rewriting
the nonlinear model (2.1) in quasi-LPV form, if possible. The idea is to hide nonlinear
terms, that may also depend on state variables, in newly defined parameters that can be
measured and are employed as scheduling variables. This means that in various parts
of the model, state variables must be relabelled, while they remain dynamical variables
elsewhere. Consider for example the nonlinear system

ẋ = A(x, δ)x + B(x, δ)u

y = C(x, δ)x + D(x, δ)u,
(2.8)

with x(t) confined to some operating region X ⊂ Rn. It is clear, that the solutions of
(2.8) are a subset of the solutions of the system

ẋ = A(δ)x + B(δ)u

y = C(δ)x + D(δ)u,
(2.9)

with δ ∈ Π × X. Hence, it is possible to over-bound the nonlinear system (2.8) with a
quasi-LPV system (2.9). This may introduce some conservativeness as no a priori knowl-
edge of the arbitrarily varying parameters in δ is assumed and the explicit dependence
on the state variables is not exploited.

Both methods, the Jacobian-based linearization and the quasi-LPV approach achieve
linearity in the plant description, however this is done in quite different ways.

In general, for the realization of LFRs, only rational parametric dependence is allowed
in the entries of the linear plant descriptions and therefore finally all remaining nonlin-
earities in these matrices must be approximated by rational functions.
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2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

2.2 Standard LFT

This section introduces a new matrix function: the linear fractional transformation
(LFT).

Definition 2.2. Consider the partitioned matrix

M =

[
M11 M12

M21 M22

]
∈ C(p1+p2)×(m1+m2) (2.10)

and the two complex matrices ∆ ∈ Cm1×p1 and Ω ∈ Cm2×p2 . The upper LFT with respect
to M and ∆ is defined with

Fu(M, ∆) = M22 + M21∆(I −M11∆)−1M12 (2.11)

provided the inverse (I − M11∆)−1 exists. A lower LFT with respect to M and Ω is
defined as

Fl(M, Ω) = M11 + M12Ω(I −M22Ω)−1M21 (2.12)

provided the inverse (I −M22Ω)−1 exists. Furthermore, let

z = M11w + M12u

y = M21w + M22u

w = ∆z

(2.13)

and

z = M11w + M12u

y = M21w + M22u

u = Ωy

(2.14)

be the equation-based representations of the upper LFT and lower LFT, respectively.

The definition of upper and lower LFT should be clear from the diagram representations
of Fu(M, ∆) and Fl(M, Ω) in figure 2.1.

M11 M12

M22M21

M21

M11 M12

M22

∆

z

y

w

u
Ω

y

z

u

w

Figure 2.1: Diagram representations of Fu(M, ∆) and Fl(M, Ω)
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2.2 Standard LFT

The upper LFT describes the relation between y and u after closing the upper loop, i.e.
w = ∆z and y = Fu(M, ∆)u. Similarly, the lower LFT describes the relation between z
and w after closing the lower loop, i.e. u = Ωy and z = Fl(M, Ω)w. In the literature,
usually the upper LFT is used to represent uncertainty in plant models and therefore
this representation will be employed in the following. Furthermore, the short term LFR
(Linear Fractional Representation) will be used to denote the upper LFT representation
of an uncertain parametric model.

In an LFR, M22 typically stands for the nominal model (i.e., corresponds to ∆ = 0),
while M11, M12 and M21 describe the structure of how the uncertainty affects the nominal
model. Hence the LFR can be employed to represent an uncertain model as a feedback
interconnection of the model uncertainties described by ∆ and a nominal plant model.

Remark 2.1. The LFT is a direct generalization of the notion of state-space realizations,
since any LTI system can be represented as an LFR with

M =

[
A B

C D

]
, ∆ = 1

s
I, (2.15)

and the transfer function between y and u (see figure 2.2), is given by

Fu(M, ∆) = D + C 1
s
(I − A1

s
)−1B = D + C(sI − A)−1B.

1

s
I

ẋ x

u
BA

C D
y

Figure 2.2: LFR of state-space system

LFR realization problem: Given a p2 ×m2 real matrix G(δ) depending rationally on
k parameters grouped into the real vector δ = (δ1, . . . , δk). Find matrices M, ∆ such that

G(δ) = Fu(M, ∆) (2.16)

where M ∈ R(p1+p2)×(p1+m2) and

∆ = diag(δ1Ir1 , . . . , δkIrk
) (2.17)

with lowest possible order r, defined as r = p1 =
∑k

i=1 ri. Note, that the matrix ∆ has
block-diagonal structure, motivating the terminology of structured uncertainty.
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2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

Hence the ultimate goal is to find LFRs of minimal order. However, representing a
parameter dependent matrix as an LFR is basically equivalent to a multidimensional real-
ization problem [18], where a minimal realization theory is still lacking. For 1-dimensional
systems as (2.15) (or equivalently, systems with only one diagonal block in ∆) a minimal
realization can always be obtained by eliminating unobservable and uncontrollable parts
from the state-space representation (2.15). Unfortunately for multidimensional systems
similar techniques cannot be employed (see [18] and section 3.1 for a brief description).

Example 2.1. Consider the simple scalar parametric expression G(δ) = δi, which can
be directly realized as

δi = Fu(M, ∆) = Fu

([
0 1

1 0

]
, δi

)
(2.18)

and will be denoted as elementary LFR. Starting from elementary LFRs for uncertain
parameters, an object-oriented approach [77] can be employed to realize an LFR for a
rational parametric matrix G(δ). However, there is a basic limitation for the realization of
arbitrary rational matrices via standard LFRs. As an example, the expression G(δ) = 1/δi

cannot be represented as an LFR with ∆ of the form (2.17). This is equivalent to the case
that it is not possible to represent non-proper transfer functions as for example G(s) = s
in standard state-space form (2.15). One way to represent G(δ) = 1/δi as an LFR is to
use in (2.18) ∆ = 1/δi. However, G(δ) = δi + 1/δi does not have an LFR as both δi and
1/δi enter the expression.

In practice, to overcome the above difficulties, a normalization of uncertainties is per-
formed. Assuming, for example that δi ∈ [δi,min, δi,max] and δi,nom := (δi,max+δi,min)/2 6= 0,
then with δi,sl := (δi,max− δi,min)/2 one obtains δi = δi,nom + δi,slδi, with δi ∈ [−1, 1]. With
this normalization, G(δ) := 1/(δi,nom + δi,slδi) = 1/δi can be represented as

G(δ) = Fu

([
−δi,slδ

−1
i,nom −δi,slδ

−1
i,nom

δ−1
i,nom δ−1

i,nom

]
, δi

)
.

A negative aspect of this approach is that the normalization must be performed as
a preliminary symbolic operation before the LFR realization and this often leads to an
increase of the overall order of the LFR (see [24] and next example).

Example 2.2. Consider G(δ) = δ2
i and its normalized and expanded form G(δ) = δ2

i,nom+

2δi,nomδi,slδi +δ2
i,slδ

2

i . The object-oriented LFR realization procedure of [77] yields an LFR

of minimal order 2 for G(δ), whereas an LFR of order 3 is obtained for G(δ), where this

procedure generates an LFR by interconnecting a second order LFR for δ2
i,slδ

2

i with a first

order LFR for 2δi,nomδi,slδi and the constant term δ2
i,nom. The result is a third order LFR.

This simple example clearly illustrates that it is desirable to perform the normalization
as the last step in any LFR generation. This is particularly important when employing
symbolic preprocessing techniques as described in section 3 or in [24], as these techniques
may start with an expansion of the symbolic expressions in G(δ). Expanding normalized
symbolic functions usually yields large expressions, which may result in LFRs of high
order, as this artificially introduced complexity cannot be fully recovered by the symbolic
factorization and decomposition techniques.
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2.3 Generalized LFT

2.3 Generalized LFT

In this section the generalized LFT is introduced, which is a natural extension of the
standard LFT. It may also be called descriptor LFT in analogy to the generalized state
space realizations via descriptor systems [25].

2.3.1 Definition

The generalized upper LFT is defined with the partitioned matrix

M =

[
M10 M11 M12

0 M21 M22

]
(2.19)

as

Fu(M, ∆) = M22 + M21∆(M10 −M11∆)−1M12, (2.20)

where the square submatrix M10 is allowed to be generally singular but the inverse (M10−
M11∆)−1 must exist. For ∆ we assume the more general structure

∆ = diag(δ0Ir0 , δ1Ir1 , . . . , δkIrk
), (2.21)

where δ0 is a nonzero constant, which is set to 1 in the following. The equation-based
definition of the generalized upper LFT is given as

M10z = M11w + M12u

y = M21w + M22u

w = ∆z,

(2.22)

and the order of a generalized LFR (M, ∆) is defined as r =
∑k

i=1 ri. Note that the
standard LFR (2.11) corresponds to M10 = I and r0 = 0.

With the generalized LFR we can represent G(δ) = 1/δ as

1

δ
= Fu

 0 0 0 1 1
0 1 1 0 0

0 0 −1 0 0

 ,

[
1 0
0 δ

] . (2.23)

There is a clear analogy to generalized state-space systems, where for example the
differentiator G(s) = s is described in descriptor form as[

0 0
0 1

] [
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
1
0

]
u

y =
[
−1 0

]
x,

(2.24)

consisting of a combination of differential (ẋ2 = x1) and algebraic (x2 = u) equations
(DAE system).
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2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

Remark 2.2. In the generalized LFR the algebraic equations are formally described as an
additional dimension - the block Ir0 in ∆ - in a multidimensional system representation.
The generalized LFR may seem to be more complex as the standard LFR, as for example a
2-dimensional system representation (2.23) (two diagonal blocks in ∆) is used to represent
G(δ) = 1/δ. However, it will be shown that the object-oriented LFR realization procedure
based on generalized LFRs is actually simpler than for standard LFRs, as explicit matrix
inversions can be avoided. Furthermore, it will be shown that the artificially introduced
additional dimension (Ir0 in ∆) will usually vanish after a normalization of the generalized
LFR and finally a standard LFR is obtained. It is important to emphasize that the
generalized LFR allows to perform the normalization step as the last step in the LFR
realization procedure and this generally leads to LFRs of lower order as a preliminary
symbolic normalization is avoided.

2.3.2 Algebraic Properties

Since LFRs are similar to transfer-function matrix representations of linear state-space
systems, the basic matrix operations like addition/subtraction, multiplication, transpo-
sition, inversion as well as column/row concatenation correspond to similar operations
performed on the transfer-function matrices of linear systems. These are operations un-
derlying the methods used to generate LFRs of parametric matrices [77, 41, 42]. The
following results for generalized LFRs generalize similar results for standard LFRs. To
simplify notation, in the following lemmas, the partitioned matrix M is written as

M =

[
E A B

0 C D

]
,

where E = M10, A = M11, B = M12, C = M21 and D = M22.

Lemma 2.1. (without proofs) Let M1, M2 and M be partitioned matrices

M =

[
E A B

0 C D

]
, M1 =

[
E1 A1 B1

0 C1 D1

]
, M2 =

[
E2 A2 B2

0 C2 D2

]
and let ∆, ∆1, ∆2 be the corresponding uncertainty matrices.

(i) Parallel connection:

Fu(M, ∆) := Fu(M1, ∆1)±Fu(M2, ∆2),

with

M =

 E1 0 A1 0 B1

0 E2 0 A2 ±B2

0 0 C1 C2 D1 ±D2

 , ∆ =

[
∆1 0
0 ∆2

]
.

(ii) Series/Cascade connection:

Fu(M, ∆) := Fu(M1, ∆1)Fu(M2, ∆2),

14



2.3 Generalized LFT

with

M =

 E1 0 A1 B1C2 B1D2

0 E2 0 A2 B2

0 0 C1 D1C2 D1D2

 , ∆ =

[
∆1 0
0 ∆2

]
.

(iii) Column concatenation:

Fu(M, ∆) :=
[
Fu(M1, ∆1) Fu(M2, ∆2)

]
,

with

M =

 E1 0 A1 0 B1 0
0 E2 0 A2 0 B2

0 0 C1 C2 D1 D2

 , ∆ =

[
∆1 0
0 ∆2

]
.

(iv) Row concatenation:

Fu(M, ∆) :=

[
Fu(M1, ∆1)
Fu(M2, ∆2)

]
,

with

M =


E1 0 A1 0 B1

0 E2 0 A2 B2

0 0 C1 0 D1

0 0 0 C2 D2

 , ∆ =

[
∆1 0
0 ∆2

]
.

(v) Transposition:

Fu(Mtr, ∆tr) := Fu(M, ∆)T ,

with

Mtr =

[
ET AT CT

0 BT DT

]
, ∆tr = ∆T .

(vi) Consider [
A(δ) B(δ)
C(δ) D(δ)

]
= Fu


 Ẽ Ã B̃1 B̃2

0 C̃1 D̃11 D̃12

0 C̃2 D̃21 D̃22

 , ∆̃

 .

Then

Fu(M, ∆) := Fu

([
E A(δ) B(δ)

0 C(δ) D(δ)

]
, ∆

)
,

with

M =

 Ẽ 0 Ã B̃1 B̃2

0 E C̃1 D̃11 D̃12

0 0 C̃2 D̃21 D̃22

 , ∆ =

[
∆̃ 0
0 ∆

]
.

15



2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

Lemma 2.2. Similarity transformations: Let Q and Z be invertible matrices such that
Z∆ = ∆Z. Then

Fu(M, ∆) = Fu(M̃, ∆̃)

where

M̃ =

[
QEZ QAZ QB

0 CZ D

]
, ∆̃ = ∆

Proof.
Fu(M̃, ∆̃) = D + CZ∆(QEZ −QAZ∆)−1QB

with commutativity of Z and ∆ we obtain

Fu(M̃, ∆̃) = D + C∆Z(QEZ −QA∆Z)−1QB,

and moving Z and Q into the parenthesis finally yields

Fu(M̃, ∆̃) = D + C∆(Q−1QEZZ−1 −Q−1QA∆ZZ−1)−1B = Fu(M, ∆).

In the next lemma a more general class of transformations including similarity transfor-
mations are considered. To define this transformation the equation based representation
on a generalized LFR (2.22) is formally rewritten as[

0
y

]
=

[
A∆− E B

C∆ D

] [
z
u

]
,

where w is substituted by w = ∆z.

Lemma 2.3. Let Q and Z be invertible matrices such that Z∆ = ∆Z. Furthermore
Qk and Zk are matrices such that QkE = 0 and EZk = 0, i.e., im(QT

k ) ⊂ ker(ET ) and
im(Zk) ⊂ ker(E). Then[

0
y

]
=

[
A∆− E B

C∆ D

] [
w
u

]
=

[
Q 0
Qk I

] [
A∆− E B

C∆ D

] [
Z Zk

0 I

] [
w
u

]
.

(2.25)

Proof. The matrices Q and Z define a similarity transformation which was shown in
Lemma 2.2. Therefore in the proof only the trivial case Q = I and Z = I is considered.

First, the transformation related to Qk is proven and without loss of generality it is
assumed that Zk = 0. By definition QkEz = 0 and therefore Qk(A∆z + Bu) = 0. The
transformation in (2.25) simply describes an addition of Qk(A∆z+Bu) = 0 to the output
equation, i.e., [

0
y

]
=

[
I 0

Qk I

] [
A∆− E B

C∆ D

] [
z
u

]
=

[
A∆− E B

QkA∆ + C∆ QkB + D

] [
z
u

]
.
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2.3 Generalized LFT

and y = (QkA∆ + C∆)z + (QkB + D)u = C∆z + Du + Qk(A∆z + Bu) = C∆z + Du.
The dual result for a transformation with Zk, assuming that Qk = 0, follows by con-

sidering the transposed system[
0
y

]
=

[
∆T AT − ET ∆T CT

ZT
k ∆T AT − ZT

k ET + BT DT + ZT
k ∆T CT

] [
z
u

]
,

where by definition ZT
k ET z = 0 and therefore ZT

k (∆T AT z + ∆T CT u) = 0.

Lemma 2.4. Permutation: Let T be an orthogonal matrix, i.e. TT T = I. Furthermore
each row of T consists only of zeros except one element, which is 1. Then for a diagonal
matrix ∆

Fu(M, ∆) = Fu(M̃, ∆̃),

with

M̃ =

[
T T ET T T AT T T B

0 CT D

]
, ∆̃ = T T ∆T,

and ∆̃ is a diagonal matrix with the same entries as in ∆, but the order of the entries is
permuted.

Proof. The permutation property of the transformation should be clear and it is also
obvious that

Fu(M̃, ∆̃) = D + CTT T ∆T (T T ET + T T ATT T ∆T )−1T T B = Fu(M, ∆).

Lemma 2.5. Inversion: Suppose Fu(M, ∆) is a p× p invertible matrix with

M =

[
E A B

0 C D

]
then

Fu(Minv, ∆inv) := Fu(M, ∆)−1,

with

Minv =

 0 0 D C Ip

0 E B A 0

0 0 −Ip 0 0

 , ∆inv =

[
Ip 0
0 ∆

]
. (2.26)

Proof. To show that (2.26) represents a generalized LFR for the inverse system, the
product Fu(MI , ∆I) = Fu(M, ∆)Fu(Minv, ∆inv) is calculated using (ii) of Lemma 2.1
with

MI =


0 0 0 D C C D
0 E 0 B A 0 0
0 0 E 0 0 A B

0 0 0 −Ip 0 0 0

 , ∆I =

 Ip 0 0
0 ∆ 0
0 0 ∆

 . (2.27)
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2 Generalized Linear Fractional Representation (LFR) for parametric uncertain systems

Applying the transformation defined in Lemma 2.3 with

Q =

 Ip 0 0
0 I I
0 0 I

 , Qk =
[

0p 0 0
]
, Z =

 Ip 0 0
0 I −I
0 0 I

 , Zk =

 −Ip

0
0

 ,

to (2.27) yields Fu(MI , ∆I) = Fu(M̃I , ∆̃I) with

M̃I =


0 0 0 D C 0 0
0 E 0 B A 0 0
0 0 E 0 0 A B

0 0 0 −Ip 0 0 Ip

 , ∆̃I = ∆I . (2.28)

From a direct evaluation of Fu(M̃I , ∆̃I) it follows Fu(M̃I , ∆̃I) = Ip.

Note, that by using a generalized LFR, its inverse (see (2.26)) can be determined as a
generalized LFR in terms of the original matrices, without any explicit matrix inversion.

Corollary 2.1. If D is invertible, an alternative expression for Minv and ∆inv, involving
inversion of D may be obtained. Therefore one may write the explicit relation defined by
Minv, ∆inv as [

0 0
0 E

] [
z1

z2

]
=

[
D C
B A

] [
w1

w2

]
+

[
Ip

0

]
u,

y = −Ipw1,[
z1

z2

]
=

[
I 0
0 ∆

] [
w1

w2

]
.

(2.29)

From (2.29) it can be seen that z1 = w1 and one can solve for w1 as w1 = −D−1Cw2 −
D−1u. Substituting w1 in (2.29) finally yields Minv and ∆inv as

Minv =

[
E A−BD−1C −BD−1

0 D−1C D−1

]
, ∆inv = ∆.

It is well known that for any rational parametric matrix G(δ), it is possible to find
a left (right) polynomial fractional representation, with G(δ) = D−1(δ)N(δ) (G(δ) =

Ñ(δ)D̃−1(δ)), where N(δ), D(δ) (Ñ(δ), D̃(δ)) are multivariate polynomial matrices. It
is possible to express such fractional representations in terms of the underlying LFRs of
the factors. The following results are particularly useful when realizing LFRs for rational
parametric matrices in terms of polynomial factorizations.

Lemma 2.6. Let Fu(M, ∆) =
[

N(δ) D(δ)
]

be defined with

M =

[
E A BN BD

0 C DN DD

]

18



2.3 Generalized LFT

and assume that D(δ) is a p× p invertible matrix. Then

Fu(Mlf, ∆lf) = D−1(δ)N(δ),

with

Mlf =

 0 0 DD C DN

0 E BD A BN

0 0 −Ip 0 0

 , ∆lf =

[
Ip 0
0 ∆

]
. (2.30)

If DD is invertible, alternative representations of Mlf and ∆lf are

Mlf =

[
E A−BDD−1

D C BN −BDD−1
D DN

0 D−1
D C D−1

D DN

]
, ∆lf = ∆.

Proof. Using Lemma 2.5 and (ii) of Lemma 2.1, one obtains

Fu(MM , ∆M) = D−1(δ)N(δ),

where

MM =

[
EM AM BM

0 CM DM

]
=


0 0 0 DD C C DN

0 E 0 BD A 0 0
0 0 E 0 0 A BN

0 0 0 −Ip 0 0 0

 ,

∆M =

 Ip 0 0
0 ∆ 0
0 0 ∆

 .

Now, a similarity transformation is applied to MM , yielding a transformed matrix M̃M .
Consider the transformation matrices Q and Z given by

Q =

 Ip 0 0
0 I I
0 0 I

 , Z =

 Ip 0 0
0 I −I
0 0 I

 ,

with the identity matrix I of the same size as ∆. It is easy to see that Z∆M = ∆MZ,
thus applying Lemma 2.2 yields

M̃M =

[
QEMZ QAMZ QBM

0 CMZ DM

]
=


0 0 0 DD C 0 DN

0 E 0 BD A 0 BN

0 0 E 0 0 A BN

0 0 0 −Ip 0 0 0

 .

By evaluating Fu(M̃M , ∆̃M) directly, the expression reduces to Fu(Mlf, ∆lf).
The result for invertible DD can easily be derived from (2.30) or it can be proven

similarly as done in [14].
The following lemma (given without proof) is the dual result for a right fractional

representation.
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Lemma 2.7. Let Fu(M, ∆) =

[
N(δ)
D(δ)

]
be defined with

M =

 E A B
0 CN DN

0 CD DD

 ,

and assume that D(δ) is a p× p invertible matrix. Then

Fu(Mrf, ∆rf) = N(δ)D−1(δ)

with

Mrf =

 0 0 DD CD −Ip

0 E B A 0
0 0 DN CN 0

 , ∆rf =

[
Ip 0
0 ∆

]
.

If DD is invertible, alternative representation of Mrf and ∆rf are

Mrf =

[
E A−BD−1

D CD BD−1
D

0 CN −DND−1
D CD DND−1

D

]
, ∆rf = ∆.

2.3.3 Object-oriented LFR realization procedure for rational
parametric matrices

Using the results of section 2.3.2, one can readily build an LFR for an arbitrary rational
parametric matrix G(δ) along the lines of the following object-oriented procedure, where
the realization problem is decomposed into the elementary steps:

1. Build elementary LFRs of the form (2.18) for all distinct parameters δi, i = 1, . . . , k.

2. Generate an LFR of each rational matrix element gij(δ) from the LFRs of its nu-
merator and denominator polynomials by applying Lemma 2.6. The polynomial
realizations are constructed using object-oriented realization techniques based on
multiplication and addition/subtraction of LFRs (see Lemma 2.1) relying on effi-
cient multivariate polynomial evaluation schemes.

3. Use row and column concatenations for LFRs (see Lemma 2.1) to obtain an LFR
of G(δ) from the LFRs of the individual entries gij(δ).

4. employ Lemma 2.4 to reorder (M, ∆), such that ∆ is of the form as in (2.21).

Example 2.3. Using the object-oriented realization procedure, an LFR for G(δ) =[
δ2
δ1

δ2δ3 + δ4

]
, with g11(δ) = δ2/δ1 and g12(δ) = δ2δ3 + δ4 is realized as follows:

• realize elementary LFRs (Mi, ∆i), i = 1, . . . , 4, with δi = Fu(Mi, ∆i), where

Mi =

[
1 0 1
0 1 0

]
, ∆i = δi
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• employ (iii) of Lemma 2.1 to calculate an LFR for the column concatenation of the
numerator and denominator polynomial of g11(δ), i.e.

Fu(M5, ∆5) =
[
Fu(M2, ∆2) Fu(M1, ∆1)

]
,

with

M5 =

 1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0

 , ∆5 =

[
δ2 0
0 δ1

]
,

and apply Lemma 2.6 to (M5, ∆5) yielding g11(δ) = Fu(M6, ∆6), with

M6 =


0 0 0 0 1 1 0
0 1 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 −1 0 0 0

 , ∆6 =

 1 0 0
0 δ2 0
0 0 δ1



• apply (ii) of Lemma 2.1 to (M2, ∆2) and (M3, ∆3) to obtain (M7, ∆7) such that
δ2δ3 = Fu(M7, ∆7), with

M7 =

 1 0 0 1 0
0 1 0 0 1
0 0 1 0 0

 , ∆7 =

[
δ2 0
0 δ3

]

• apply (i) of Lemma 2.1 to (M7, δ7) and (M4, ∆4) to realize (M8, ∆8), with g22(δ) =
Fu(M8, ∆8), where

M8 =


1 0 0 0 1 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 1 0 0

 , ∆8 =

 δ2 0 0
0 δ3 0
0 0 δ4



• apply (iii) of Lemma 2.1 to (M6, ∆6) and (M8, ∆8) to obtain (M9, ∆9), with G(δ) =
Fu(M9, ∆9), where

M9 =



0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0 1 0 1 0 0


∆9 = diag(1, δ2, δ1, δ2, δ3, δ4)
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• finally reorder (M9, ∆9) to obtain (M10, ∆10) with G(δ) = Fu(M10, ∆10) and

M10 =



0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0 1 0 1 0 0


∆10 = diag(1, δ1, δ2I2, δ3, δ4).

An alternative realization approach of a rational parametric matrix has been proposed
in [14]. The LFR of G(δ) is built by starting with the symbolic calculation of a left (or
right) fractional representation G(δ) = D−1(δ) N(δ) with D(δ) and N(δ) multivariate
polynomial matrices. After obtaining [N(δ) D(δ)] as a standard LFR, the realization
of G(δ) follows by employing Lemma 2.6 (or Lemma 2.7). A potential weakness of
this approach is the lack of an efficient factorization algorithm with guaranteed minimal
degree of denominator factors. Since the degrees of denominators for problems with many
parameters and large matrix dimensions tend to be high, the orders of realizations are
frequently higher than those resulted employing the simple approach above.

2.3.4 Normalization

In section 2.1 the parameter set Π was defined (2.2), where each parameter is bounded by
a minimum and a maximum value, i.e. δi ∈ [δi,min, δi,max]. To perform the normalization

of parameters, δi can be replaced by a rational parametric function ni(δ̃i) such that

δi = ni(δ̃i) with |δ̃i| ≤ 1. The function ni is chosen such that, δi,min = ni(−1), δi,max =
ni(1), δi,nom = ni(0). Hence, the nominal plant model Gnom can be defined as Gnom :=

G(δnom) = G(n(δ̃))|δ̃=0.
It is important that the normalization does not increase the order of the LFR and

therefore the functions ni must admit a first order LFR. All these requirements are
fulfilled by choosing ni as the linear fractional transformation between δi and δ̃i as [23]

δi =
γi + αiδ̃i

1 + βiδ̃i

, i = 1, . . . , k, (2.31)

where the parameters γi, αi and βi are determined by

γi = δi,nom

αi =
δi,max(δi,nom − δi,min)− δi,min(δi,max − δi,nom)

(δi,max − δi,min)

βi =
(δi,nom − δi,min)− (δi,max − δi,nom)

(δi,max − δi,min)

The following result provides formulas to express G(n(δ̃)) in terms of the LFT for G(δ).
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Lemma 2.8. Let G(δ) = Fu(M, ∆) with

M =

[
E A B

0 C D

]
and let ∆ = Fu(N, ∆) be the LFR of the relation between the initial and normalized
parameters, where

N =

[
I AN BN

0 CN DN

]
,

with

AN = diag(0r0 ,−β1Ir1 , . . . ,−βkIrk
)

BN = diag(0r0 , Ir1 , . . . , Irk
)

CN = diag(0r0 , (α1 − γ1β1)Ir1 , . . . , (αk − γkβk)Irk
)

DN = diag(Ir0 , γ1Ir1 , . . . , γkIrk
) = ∆nom.

(2.32)

If (E − A∆nom) is invertible, then

Fu(M,Fu(N, ∆)) = Fu(M, ∆) = Fu(M̃, ∆̃),

where

M =

[
I A B

0 C D

]
, ∆ = diag(0r0 , δ̃1Ir1 , . . . , δ̃kIrk

),

with

A = AN + BN(E − ADN)−1ACN

B = BN(E − ADN)−1B

C = C(DN(E − ADN)−1A + I)CN

D = D + CDN(E − ADN)−1B.

(2.33)

Partitioning M as

M =

 Ir0 0 A11 A12 B1

0 I A21 A22 B2

0 0 C1 C2 D

 , (2.34)

the matrices M̃ and ∆̃ are given by

M̃ =

[
I A22 B2

0 C2 D

]
(2.35)

∆̃ = diag(δ̃1Ir1 , . . . , δ̃kIrk
). (2.36)

Proof. In the normalized LFR, ∆ is substituted by ∆ = Fu(N, ∆) and it is straightfor-
ward to derive (2.33) from the relation Fu(M, ∆) = Fu(M,Fu(N, ∆)). From the partic-
ular structure of AN , BN and CN it follows directly that the matrices A11, A12, A21, B1,
and C1 in (2.34) are null.
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Remark 2.3. A necessary condition for the normalization of a generalized LFR is
that (E − A∆nom) is invertible. This simply means that the nominal model Gnom =
Fu(M, ∆nom) = D + C∆nom(E − A∆nom)−1B is well-defined, and this condition must
always be fulfilled. It is essential to note, that when applying the normalization to a
generalized LFR, the arbitrarily introduced additional block Ir0 in ∆ can be removed
and the resulting LFR (2.35), (2.36) can be represented as a standard LFR. Therefore
the generalized LFR can be seen as a convenient means to avoid the preliminary symbolic
normalization of the parametric matrix G(δ). The normalization can be applied as the
last step in the LFR realization procedure and the final LFR will be a standard LFR.
Of course this only holds for an LFR of a rational parametric matrix G(δ). In the case
of general multidimensional dynamical systems, operators like the integration operator
1/s or the shift operator 1/z may be included in several dimensions (e.g., in the x and y
direction in 2-dimensional image processing applications) and for these operators a nor-
malization does not make sense. If the model is non-proper in these dimensions, it is not
possible to represent the system as a standard LFR.

Remark 2.4. In literature, the most common normalization with δi,nom = (δi,max +
δi,min)/2, i = 1, . . . , k is generally used. This implies that the nominal values are at the
center of the uncertainty intervals, which is generally not true. In this case one may
simply choose βi = 0, γi = δi,nom = (δi,max + δi,min)/2 and αi = (δi,max− δi,min)/2 in (2.32).

2.3.5 Special form of generalized LFT

In section 2.3.3 the object-oriented LFR realization procedure was proposed to generate
a generalized LFR for a rational parametric matrix G(δ). The outcome of this procedure
is an LFR, which can always be expressed in the partitioned form

M =

[
E A B

0 C D

]
=

 0r0 0 A11 A12 B1

0 I A21 A22 B2

0 0 C1 C2 D


∆ = diag(Ir0 , δ1Ir1 , . . . , δkIrk

) := diag(Ir0 , ∆),

(2.37)

with E as a block-diagonal matrix consisting of a r0×r0 zero block and an identity matrix
of size

∑k
i=1 ri.

Using the equation based description of the generalized LFT in (2.37), one has

0r0 = A11w1 + A12w2 + B1u (2.38)

z2 = A21w1 + A22w2 + B2u (2.39)

y = C1w1 + C2w2 + Du (2.40)

w1 = z1 (2.41)

w2 = ∆z2. (2.42)

Since w1 = z1, one may simply add the term Ir0w1 on both sides of equation (2.38). The
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corresponding LFR is defined by M and ∆ with

M =

[
E A B

0 C D

]
=

 Ir0 0 A11 + Ir0 A12 B1

0 I A21 A22 B2

0 0 C1 C2 D

 , (2.43)

and obviously Fu(M, ∆) = Fu(M, ∆). Since E is an identity matrix, this is a standard
LFT with a constant block Ir0 in ∆. The algebraic properties of Lemma 2.1, 2.2 and the
normalization described by Lemma 2.8 also hold for this special form of the generalized
LFT, where E = I is assumed.

Only the operations for inversion and the realization of left-/right fractional repre-
sentations must be adapted. The following corollaries are immediate consequences of
Lemmas 2.5, 2.6 and 2.7 for this special structure of the generalized LFT.

Corollary 2.2. Consider the LFR described by the partitioned matrix

M =

[
A B

C D

]
with D ∈ Rp×p and the uncertainty matrix ∆. Then Fu(M, ∆)−1 = Fu(Minv, ∆inv) with

Minv =

 D + Ip C Ip

B A 0

−Ip 0 0

 , ∆inv =

[
Ip 0
0 ∆

]
.

If D is invertible, alternative representations for Minv and ∆inv are

Minv =

[
A−BD−1C −BD−1

D−1C D−1

]
, ∆inv = ∆.

Corollary 2.3. Let Fu(M, ∆) =
[

N(δ) D(δ)
]

be defined with

M =

[
A BN BD

C DN DD

]
and assume that D(δ) is a p× p invertible matrix. Then

Fu(Mlf, ∆lf) = D−1(δ)N(δ)

with

Mlf =

 DD + Ip C DN

BD A BN

−Ip 0 0

 , ∆lf =

[
Ip 0
0 ∆

]
. (2.44)

If DD is invertible, alternative representations of Mlf and δlf

Mlf =

[
A−BDD−1

D C BN −BDD−1
D DN

D−1
D C D−1

D DN

]
, ∆lf = ∆
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Corollary 2.4. Let Fu(M, ∆) =

[
N(δ)
D(δ)

]
be defined with

M =

 A B

CN DN

CD DD

 ,

and assume that D(δ) is a p× p invertible matrix. Then

Fu(Mrf, ∆rf) = N(δ)D−1(δ)

with

Mrf =

 DD + Ip CD −Ip

B A 0

DN CN 0

 , ∆rf =

[
Ip 0
0 ∆

]
.

If DD is invertible, alternative representations of Mrf and ∆rf are

Mrf =

[
A−BD−1

D CD BD−1
D

CN −DND−1
D CD DND−1

D

]
, ∆rf = ∆.

2.3.6 Relation to Behavioral Representations

A behavioral representation for systems with structured uncertainty has been introduced
in [30], having the form

z = A∆z + Bw

0 = C∆z + Dw
(2.45)

This description will be referred to as output nulling representation (ONR). In this repre-
sentation, the vector z is the state and w includes all system variables like inputs, outputs
or some so-called latent variables. When manipulating such models there is no need for an
a priori choice of input and output variables. In contrast, the explicit generalized LFRs
are input-output type representations. Since conversions between the two representations
are straightforward (see below), both representations are suitable to represent arbitrary
expressions with rational dependency on uncertain parameters. However, as we will see
later, the capabilities of these representations to obtain low order LFRs (e.g., suitable for
LFT-based robust stability analysis) are quite different.

For the realization of the input-output dependence y = G(δ)u, consider the following
ONR

z = A∆z + B1y + B2u

0 = C∆z + D1y + D2u

which corresponds to (2.45) with B = [ B1 B2 ], D = [ D1 D2 ] and w = [yT uT ]T . Assum-
ing that D1 ∈ Rp×p, an explicit generalized LFR of G(δ) is the following one

y = Fu

 D1 + Ip C D2

B1 A B2

−Ip 0 0

 ,

[
Ip 0
0 ∆

]u (2.46)
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If D1 is invertible, a standard LFR is given by

y = Fu

([
A−B1D

−1
1 C B2 −B1D

−1
1 D2

−D−1
1 C −D−1

1 D2

]
, ∆

)
u (2.47)

Conversely, assume that we have for G(δ) an explicit generalized LFR of the form

y = Fu

 A11 + Ip A12 B1

A21 A22 B2

C1 C2 D

 ,

[
Ip 0
0 ∆

]u (2.48)

An ONR is given by

z =

[
A11 + Ip A12

A21 A22

] [
Ip 0
0 ∆

]
z +

[
0 B1

0 B2

] [
y
u

]
0 =

[
C1 C2

] [ Ip 0
0 ∆

]
z +

[
−Ip D

] [ y
u

] (2.49)

From the above relations it follows that the generalized LFR and the ONR are mathe-
matically equivalent formalisms to represent rational parametric matrices.

The basic aspect of generating LFRs is the efficient representation of interconnected
systems. When interconnecting two ONRs, a basic requirement is (see [86]), that the
two representations have the same signal space. To ensure this condition, the resulting
interconnected system typically contains latent variables and it may be necessary to
introduce additional variables to describe the interconnection constraints. The presence of
a large number of latent variables (very common for complex ONRs) makes the behavioral
approach less suitable for an efficient LFT-based model building. In contrast, object-
oriented approaches like that described in section 2.3.3 or in [77], produce explicit LFRs
with a ”minimal” amount of data. The following simple example will make this aspect
clear.

Example 2.4. For the input-output dependence y = (δ1 + δ2)u we build an ONR to
obtain via (2.47) an LFR suitable for µ-analysis. ONRs to represent yi = δiui for i = 1, 2
are given by

zi = ui

0 = δizi − yi

To represent y = (δ1 + δ2)u the interconnection constraints

u1 = u2(= u)

y = y1 + y2

must be fulfilled. To obtain the final ONR, we collect all states in z = [ z1 z2 ]T and all
variables in w = [ y y1 u1 y2 u ]T and write down the above equations in the standard
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ONR form

z =

[
0 0
0 0

] [
δ1 0
0 δ2

]
z +

[
0 0 1 0 0
0 0 0 0 1

]
w

0 =


1 0
0 1
0 0
0 0

[ δ1 0
0 δ2

]
z +


0 −1 0 0 0
0 0 0 −1 0
0 0 1 0 −1
−1 1 0 1 0

w

With ỹ = [ y y1 u1 y2 ]T as output variable and u as input variable, we apply now (2.47),
with

D1 =


0 −1 0 0
0 0 0 −1
0 0 1 0
−1 1 0 1


to obtain the explicit LFR


y
y1

u1

y2

 = Fu




1 0 0 0 1
0 1 0 0 1
0 0 1 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 ,

[
δ1 0
0 δ2

]
u.

To obtain the LFR of the input-output dependence y = (δ1 + δ2)u we simply omit the
output equations corresponding to the latent variables y1, u1, y2, yielding

y = Fu

 1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 ,

[
δ1 0
0 δ2

]u.

Note that the resulting LFR is just that one which is directly obtained by using LFR
manipulations as those described in sections 2.3.2, 2.3.5 and the possibly ill-conditioned
inversion of a usually large matrix D1 in (2.47) is avoided.

This simple example shows that because of the presence of latent variables, the ONRs
have a certain data redundancy, which is not present in standard or generalized LFRs.
The direct elimination of latent variables in ONRs is quite involved even for 1-dimensional
systems (see [27]) and it is probably an open problem in the general multidimensional
case.

Remark 2.5. The formulas for the normalization of parameters for a plant model in
LFT-form as described in section 2.3.4 also hold for the special form of the generalized
LFR by substituting E with I in (2.33). The resulting normalized LFR can be represented
as a standard LFR, without constant block in ∆.
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2.4 LFR realization for parametric descriptor system

In section 2.1, parametric descriptor systems of the form

E(δ)ẋ = A(δ)x + B(δ)u

y = C(δ)x + D(δ)u
(2.50)

were introduced and in this section, the application of the proposed object-oriented LFR
realization approach will be presented for these systems. We assume that the matrices
E(δ), A(δ), B(δ), C(δ), D(δ) depend rationally on δ, E(δ) and A(δ) are square matrices
and E(δ) ∈ Rn×n has a constant rank r ≤ n for all δ ∈ Π.

The transfer function matrix G(s, δ) (with s as the Laplace variable) of the descriptor
system (2.50) is given by

G(s, δ) = D(δ) + C(δ)(sE(δ)− A(δ))−1B(δ) (2.51)

where the pencil |sE(δ)− A(δ)| is assumed to be regular for all δ ∈ Π.

In the following, a general method is presented to determine a pair (M, ∆) such that

G(s, δ) = Fu(M, ∆)

with

M =

[
AM BM

CM DM

]
,

∆ = diag(In/s, Ir0 , δ1Ir1 , . . . , δkIrk
).

(2.52)

Note, in this LFR, the integration operator 1/s is also included in ∆.

The LFR realization for parametric descriptor systems has been addressed in [90, 76]
for the particular case when all system matrices depend polynomially on the components
of the parameter vector δ. Moreover, in [76] it was assumed, that E(δ) is invertible. In
what follows, it is shown that a generalized LFR for G(s, δ) can be constructed in the
most general case of rational parametric matrices, and without assuming the invertibility
of E(δ).

For the efficient realization of an LFR for G(s, δ), two cases are distinguished: (1) E(δ)
general (possibly non-invertible); (2) E(δ) invertible.

2.4.1 E(δ) general

The LFR for G(s, δ) can be built using the following steps:

1. Use the object-oriented LFR realization procedure of section 2.3.3 to obtain gener-
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alized LFRs for each system matrix of (2.50), that is, realize

A(δ) = Fu

([
AA BA

CA DA

]
, ∆A

)
,

B(δ) = Fu

([
AB BB

CB DB

]
, ∆B

)
,

C(δ) = Fu

([
AC BC

CC DC

]
, ∆C

)
,

D(δ) = Fu

([
AD BD

CD DD

]
, ∆D

)
,

E(δ) = Fu

([
AE BE

CE DE

]
, ∆E

)
.

2. Then G(s, δ) = Fu(M, ∆) with

M =



0 −DA −CA CB 0 0 0 DB

In DE + In 0 0 0 0 CE 0
0 BA AA 0 0 0 0 0
0 0 0 AB 0 0 0 BB

0 −BC 0 0 AC 0 0 0
0 0 0 0 0 AD 0 BD

0 BE 0 0 0 0 AE 0

0 −DC 0 0 CC CD 0 DD


∆ = diag(In/s, In, ∆A, ∆B, ∆C , ∆D, ∆E).

(2.53)

3. Employ Lemma 2.4 to reorder (M, ∆) such that ∆ is of the form as given in (2.52).

2.4.2 E(δ) invertible

In case of invertible E(δ) we can derive the following procedure:

1. Use the object-oriented LFR realization procedure of section 2.3.3 to obtain a gen-
eralized LFR, such that

[
N(δ) D(δ)

]
= Fu

([
A BN BD

C DN DD

]
, ∆

)
,

with

N(δ) =

[
A(δ) B(δ)
C(δ) D(δ)

]
, D(δ) =

[
E(δ) 0

0 Ip

]
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2. Apply Corollary 2.3 to obtain

D
−1

(δ)N(δ) =

[
E−1(δ)A(δ) E−1(δ)B(δ)

C(δ) D(δ)

]

= Fu

 DD + Il C DN

BD A BN

−Il 0 0

 ,

[
Il 0
0 ∆

]
= Fu

 A′ B′
1 B′

2

C ′
1 0n 0

C ′
2 0 0p

 ,

[
Il 0
0 ∆

] .

with l = n + p.

3. Then G(s, δ) = Fu(M, ∆) with

M =

 0n C ′
1 0

B′
1 A′ B′

2

0 C ′
2 0p

 , ∆ =

 In/s 0 0
0 Il 0
0 0 ∆

 .

4. Employ Lemma 2.4 to reorder (M, ∆) such that ∆ is of the form as given in (2.52).

The main advantage of the second LFR realization procedure is that the symbolic pre-
processing techniques described in chapter 3 can be applied to the concatenated symbolic
matrix

[
N(δ) D(δ)

]
(see step 1), which contains all matrices of the system. Hence,

the symbolic structure and common symbolic expressions of system matrices can be ex-
ploited in the preprocessing and it is expected that the resulting LFR is of lower order
than an LFR, which is realized using the more general procedure of section 2.4.1, where
each system matrix is realized separately.
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3 Symbolic techniques for low order
LFR modelling

As already mentioned in chapter 1, for the application of LFT-based robust control tech-
niques it is of paramount importance to obtain LFRs of least possible orders. Obviously
this aim is not a trivial task and the introduction of the generalized LFR in chapter 2
is one means to reduce the LFR order. In this chapter it will be shown, that symbolic
preprocessing is a powerful complementary tool to achieve low orders of the LFRs. For
a given parametric matrix G(δ), the symbolic processing allows to find equivalent repre-
sentations of this matrix, which automatically lead to lower order LFRs, when employed
in conjunction with the object-oriented LFR realization approach described in chapter
2. The object-oriented LFR realization is very flexible and can easily be automated.
However, a blindfold application of this procedure may yield LFRs of larger order than
the least possible one.

Example 3.1. Consider the standard LFR Fu(M, ∆) for the sum G(δ) = δ1 + δ2, which
is obtained using (i) of Lemma 2.1 as

M =

 0 0 1
0 0 1
1 1 0

 , ∆ =

[
δ1 0
0 δ2

]
. (3.1)

This LFR has a least order of two. However, applying the above construction to the
expression G(δ) = δ1 + δ1, one may realize it as an LFR of order two with M given in
(3.1) and ∆ = diag(δ1, δ1). Obviously, a first order LFR for G(δ) = δ1 + δ1 is possible
starting from an equivalent expression

G(δ) = 2δ1 = Fu

([
0 2
1 0

]
, δ1

)
.

From this very simple example it can be seen that the trivial symbolic simplification
of G(δ) = δ1 + δ1 to G(δ) = 2δ1 allows to reduce the LFR order by one, when the
object-oriented LFR realization technique is directly applied. Therefore it is clear that
the resulting order of the generated LFR depends crucially on the way the expressions
underlying the LFR realization are evaluated and the role of symbolic preprocessing is to
find simpler evaluation schemes of rational expressions and matrices which finally lead to
LFRs of lower order.

3.1 Limitation of numerical order reduction

In chapter 1 special order reduction techniques [29, 83] have been mentioned as an ad-
ditional means to reduce the order of an LFR. These are typically applied as a final (or
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3.1 Limitation of numerical order reduction

postprocessing) step of LFR modelling and are based on the application of similarity
transformations (see Lemma 2.2) to identify non-minimal parts of the LFR, which are
then removed (thus reducing the order of the LFR).

Consider again example 3.1 with M given in (3.1) and ∆ = diag(δ1, δ1). A similarity
transformation applied to M with

Q =

[
1 −1
1 1

]
, Z = 1/2

[
1 1
−1 1

]
,

yields Fu(M, ∆) = Fu(M̃, ∆) with

M̃ =

 0 0 0
0 0 2
0 1 0


and it is clear that (M̃, ∆) can be replaced by

M̃r =

[
0 2
1 0

]
, ∆r = δ1.

Hence, for the simple example 3.1, symbolic simplification and order reduction both
yield a least order LFR. However, in the multidimensional case (more than one uncer-
tain parameter included in G(δ)), there exists a basic limitation of the order reduction
techniques arising from the association of all δi with non-commuting operators, that is,
generally δiδj 6= δjδi is assumed.

Example 3.2. Consider the LFRs Fu(M1, ∆) = δ1δ2 and Fu(M2, ∆) = δ2δ1 with

M1 =

 0 1 0
0 0 1
1 0 0

 , M2 =

 0 0 1
1 0 0
0 1 0

 , ∆ =

[
δ1 0
0 δ2

]
.

The LFR of Fu(M3, ∆3) = Fu(M1, ∆1) − Fu(M2, ∆2) constructed by subtracting the
LFRs (M1∆) and (M2, ∆), is given by

M3 =


0 0 1 0 0
0 0 0 0 −1
0 0 0 0 1
0 1 0 0 0
1 0 0 1 0

 , ∆3 =


δ1 0 0 0
0 δ1 0 0
0 0 δ2 0
0 0 0 δ2

 .

Although Fu(M3, ∆3) = δ1δ2 − δ2δ1 ≡ 0, an order reduction of the LFR (M3, ∆3) can
not be achieved by using a block-diagonal (condition Z∆ = ∆Z in Lemma 2.2) simi-
larity transformation based order reduction methods, because there exists no similarity
transformation to transform (M1, ∆) into (M2, ∆).

33



3 Symbolic techniques for low order LFR modelling

Remark 3.1. In general, symbolic preprocessing and order reduction can be seen as
complementary tools, as the symbolic techniques described in the following are very
powerful but not perfect, i.e. in general they do not allow to obtain LFRs of minimal
order. Therefore in most applications (see for example chapter 5) it is usually possible to
further reduce the order of an LFR by a certain amount using order reduction techniques
in a postprocessing step.

Remark 3.2. Order reduction techniques for standard LFRs as described in [77, 29], can
be directly applied to the special form of the generalized LFR (see section 2.3.5), where
the constant block Ir0 in ∆ is simply considered as an additional system dimension.

3.2 Definitions

For the very simple examples above minimal order LFRs trivially result using elementary
symbolic simplifications. For more complicated parametric expressions or in the case
of parametric matrices, several ad-hoc or systematic symbolic pre-processing techniques
[64, 24, 83, 43, 44] ranging from simple polynomial factorizations to more complex ma-
trix decomposition algorithms are available. In several practical examples the symbolic
preprocessing appears to be the most effective step in generating low order LFRs.

Let δ = (δ1, . . . , δk) be the already defined parameter vector and denote by δ−1 =
(δ−1

1 , . . . , δ−1
k ) the vector of reciprocal variables. Three classes of matrices depending on

δ are considered, for which symbolic transformation techniques are discussed: R[δ]m×n -
the set of m×n matrices with multivariate polynomial entries; R(δ)m×n - the set of m×n
matrices with multivariate rational entries; and R[δ, δ−1]m×n - the set of m× n matrices
with multivariate Laurent polynomial entries. This last case is explicitly considered since
many aircraft and automotive related parametric models are described in terms of such
matrices (see chapters 5 and 6).

A multivariate Laurent polynomial g(δ) has the expanded form

g(δ) =
l∑

r=1

crδ
nr,1

1 δ
nr,2

2 . . . δ
nr,k

k , (3.2)

where cr are real coefficients and nr,1, . . . , nr,k ∈ Z for r = 1, . . . , l are integer exponents.
We can associate to this polynomial the order of the LFR which results when applying the
object-oriented LFR realization approach as described in section 2.3.3 to the polynomial
in the above expanded form. This order is given by

ord(g(δ)) =
l∑

r=1

k∑
s=1

|nr,s|

where we assumed that negative and positive powers of indeterminates contribute in
the same way to the order. This assumption is valid when employing the generalized
inversion formula of Corollary 2.2 to realize the reciprocal variables. If g(δ) is a general
multivariate rational function of the form

g(δ) =
a(δ)

b(δ)
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3.3 Single element conversions

where a(δ) and b(δ) are polynomials in expanded forms, the associated order is given by

ord(g(δ)) = ord(a(δ)) + ord(b(δ))

We can also associate to an m× n rational matrix G(δ) with elements gij(δ) the total
order

ord(G(δ)) =
m∑

i=1

n∑
j=1

ord(gij(δ)) (3.3)

which corresponds to realize G(δ) element-wise using row and column concatenations via
the object-oriented LFR realization approach.

The role of symbolic pre-processing in building low order LFRs of a given rational
matrix G(δ) is to find equivalent representations of individual matrix elements, entire
rows/columns or even the whole matrix which lead to LFRs of lower order than given
by (3.3). In the following several transformation techniques, which can be used for this
purpose are presented.

3.3 Single element conversions

Several conversions can be performed on single rational functions which can be useful
to obtain equivalent representations which lead automatically to reduced order LFRs
via an object oriented realization. These conversions can be performed either iteratively
with respect to selected single variables or can be performed simultaneously for several
variables in a specified order. Using such conversions, it may be possible to determine in
each case a least achievable order of the corresponding LFRs over all permutations of the
variables. However, performing such exhaustive searches leads generally to combinatorial
problems with exponential complexity. Therefore, unless the number of variables is small
(say below 10), exhaustive searches are impracticable. In what follows some of possible
conversions are illustrated by examples.

3.3.1 Horner form

The conversion of a multivariate polynomial to a nested Horner form is useful for an
efficient numerical evaluation of polynomials [53]. For a given polynomial the Horner
form may be employed for the following operations with minimal computational cost:

• evaluation of polynomials

• division by a linear factor (e.g., (δ1 − 1))

• calculation of derivatives

• reordering of powers of a linear factor

The basic idea in all these computations is to avoid the time consuming calculation of
powers of variables by appropriate factorizations. In addition to the reduced computation
time, rounding errors are reduced and large intermediate results are avoided [62].
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3 Symbolic techniques for low order LFR modelling

Example 3.3. Let g(δ) be a given polynomial in one variable as

g(δ) = a0 + a1δ1 + . . . + anδ
n
1 , (3.4)

with ai ∈ R. The Horner form of g(δ) is given by

g(δ) = (. . . (anδ1 + an−1)δ1 + . . . + a1)δ1 + a0. (3.5)

Assuming that ai 6= 0, the computational effort for the evaluation of g(δ) is reduced from
2n − 1 multiplications and n additions for evaluating (3.4) to n multiplications and n
additions for evaluating (3.5).

In addition to the numerical benefits, the Horner form is also very useful to generate low
order LFRs by applying it to the numerator and denominator polynomials of a rational
function as proposed in [83]. For the polynomial given in (3.4) the resulting order of the
LFR will be ord(g(δ)) = n(n + 1)/2 (see (3.3)), whereas the order of the LFR for the
Horner form (3.5) will be n, which is minimal. Hence, for a one-dimensional (univariate)
polynomial, the Horner form applied as symbolic preprocessing step allows to obtain a
minimal order LFR by applying the object-oriented LFR realization approach.

For multivariate polynomials with k parameters there exists no unique conversion to
nested Horner form and an exhaustive search for the least order of the corresponding
LFTs involves k! conversions. This approach is effective especially when a few variables
have significantly larger powers than the rest of variables. Thus, in the case of many
variables, exhaustive searches are meaningful only for the few variables with the highest
powers. The conversion to Horner form can be easily extended to multivariate Laurent
polynomials as well as can be generalized to multivariate polynomial matrices [60].

Example 3.4. Consider the polynomial

g(δ) = δ3
1 + δ2

1 + δ2
1δ2 + δ1 + δ2.

A realization of this polynomial without any preprocessing would lead to an LFR of
order 10. As the polynomial depends on two parameters the nested Horner form is
determined recursively with respect to each parameter. Depending on the ordering of the
two parameters, two different nested Horner forms are obtained:

g(δ) = (1 + (1 + δ1)δ1)δ1 + (δ2
1 + 1)δ2 (3.6)

g(δ) = δ2 + (1 + (δ2 + 1 + δ1)δ1)δ1 (3.7)

The form in (3.6) is obtained by starting with a Horner factorization for δ1 and the
resulting LFR will have order 6, whereas (3.7) is obtained for the opposite ordering and
the resulting LFR will have order 5.

The above example shows that in principle all possible Horner forms must be calculated
to obtain the LFR with the lowest order. However, already in the case of this simple
multidimensional polynomial the nested Horner form does not allow to find the least
order LFR, which is of order 4. Therefore more sophisticated factorization techniques as
described in section 3.5 may be applied.
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3.3 Single element conversions

3.3.2 Partial fraction decomposition

This conversion allows to represent a rational function in an additively decomposed partial
fraction form, where the individual terms have usually much simpler forms.

Consider the univariate rational function g(δ1) = n(δ1)/d(δ1). The partial fraction
form is obtained as follows [62]:

1. Factorize d(δ1) as
d(δ1) = (δ1 − a1)

p1 . . . (δ1 − am)pmc,

where c ∈ R is a real constant, ai ∈ C are zeros of d(δ1) with multiplicities pi.

2. Then g(δ1) can be represented as

g(δ1) = p(δ1) +
m∑

i=1

pi∑
j=1

Aij

(δ1 − ai)j
,

with p(δ1) as a polynomial in δ1. The Aij are determined by comparison of coeffi-
cients.

For multivariate rational functions an iterative realization procedure can be in principle
devised by performing the above procedure with respect to a selected order of variables.
In each step, the basic procedure is performed on all partial fractions computed at a
previous step. For a multivariate rational function with k parameters an exhaustive
search for the least order of corresponding LFRs involves k! conversions. The main
difficulty of employing this conversion is the need to symbolically compute the roots of
multivariate polynomials.

Example 3.5. Consider the rational function

g(δ) =
2δ2

1 − 7δ1 − 3δ2 + δ2δ
2
1 + δ2

2δ1 − δ2
2 + 3

δ3
1 + δ2δ2

1 − 4δ2
1 − 4δ1δ2 + 3δ1 + 3δ2

(3.8)

The partial fraction decomposition leading to the least order LFR is given by

g(δ) =
1

δ1 − 1
+

δ2

δ1 − 3
+

1

δ1 + δ2

This decomposition results for both orderings of variables and the resulting LFR has
order 5 instead of the expected order of 24 for a direct LFR realization of (3.8). Using
nested Horner forms of the numerator and denominator polynomials leads to an LFR
with order 11.

3.3.3 Continued-fraction form

The conversion to continued-fraction form is useful for an efficient numerical evaluation
of rational expressions [53] and can also be applied as symbolic preprocessing for rational
expressions.
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3 Symbolic techniques for low order LFR modelling

For a univariate rational expression g(δ1) the continued fraction form has the following
structure

g(δ1) = p(δ1) +
1

c1δ1 + d1 +
1

c2δ1 + d2 + . . .

,

with p(δ1) as polynomial expressions in δ1 and cj, dj ∈ R.
For a multivariate rational function g(δ), this conversion is usually performed for a se-

lected parameter δi and the resulting coefficients cj, dj depend generally on the rest of the
parameters. Although nested representations involving the representation of coefficients
in continued-fraction form are in principle possible to be computed, this computation
is however not straightforward and can be frequently replaced by conversions to Horner
form. The main advantage of this conversion is that it can be performed for arbitrary
rational functions. In particular, for any univariate rational function, this conversion
allows to obtain the least order LFR.

Example 3.6. The continued-fraction form of

g(δ) =
8δ2

1 − 8δ1 + 2δ3 + 2δ1δ2 − δ2 + 2

4δ2
1 − 4δ1 + δ3 + 1

(3.9)

with respect to δ1 is given by

g(δ) = 2 +
δ2

2

δ1 −
1

2
+

δ3

4

(
δ1 −

1

2

)


,

and allows to obtain an LFR of least order 4 instead of expected order 11. Note, that the
conversion of (3.9) to partial fraction form allows to obtain an LFR of order 6 and using
the nested Horner form for the numerator and denominator polynomial in (3.9) yields an
LFR of order 8.

3.4 Matrix conversions

3.4.1 Morton’s method

Any affine parameter dependent matrix G(δ) can be expressed as an affine combination

G(δ) = G0 +
k∑

i=1

δiGi, (3.10)

where Gi ∈ Rp×m, i = 0, . . . , k are constant matrices. Following (3.3) the resulting LFR
order for each term δiGi would be equal to the number of nonzero elements in Gi.
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3.4 Matrix conversions

Let Gi = LiRi be full rank factorizations of Gi, where Li ∈ Rp×ri and Ri ∈ Rri×m. The
method proposed in [64] rewrites G(δ) as

G(δ) = G0 +
k∑

i=1

LiδiIri
Ri (3.11)

and the resulting LFR can be directly realized as

M =


0 . . . 0 Ri
...

. . .
...

...
0 . . . 0 Rk

L1 . . . Lk G0

 , ∆ = diag(δ1Ir1 , . . . , δkIrk
).

The main advantage of this method in obtaining low order LFRs is that it exploits the
fact that frequently the constant matrices Gi have non-full ranks ri. Moreover, instead
of a maximum multiplicity of pm for δi in ∆ (if there are pm non-zero elements), only a
multiplicity of ri ≤ max(p, m) results. Note that for affine parameter dependent matrices,
an object-oriented LFR realization of G(δ) in the form (3.11) yields a minimal order LFT,
which is generally not the case for a direct object-oriented LFR realization of (3.10).

A straightforward extension of this method is considered in [21], where G(δ) ∈ R(δ)p×m

is a rational matrix and the coefficients in (3.11) are not the δi but rational expressions
ci(δ). Note, that in this case the resulting LFR is generally not of minimal order, as
common factors or dependencies between the different ci(δ) are not considered.

Example 3.7. Consider

G(δ) =

[
δ1 δ1

2δ1 2δ1

]
. (3.12)

A direct object-oriented LFR realization of (3.12) yields an LFR with order 4, whereas a
first order LFR is obtained for G(δ) in the following form

G(δ) =

[
1
2

]
δ1

[
1 1

]
.

3.4.2 Enhanced tree decomposition

An efficient technique applicable to multivariate polynomial matrices is the tree-decom-
position (TD) based approach proposed in [24]. This method exploits the structure of
a polynomial matrix to break it down into sums and products of ”simple” terms and
factors for which low order LFRs can be easily constructed. The TD approach involves
the following elementary operations:

Direct sum decomposition: Recall that (s1, . . . , sl) is a partition of the finite set
s = (1, . . . , k) ⊂ N, if

⋃l
i=1 si = s and si ∩ sj = ∅,∀i 6= j, 1 ≤ i, j ≤ l. δs denotes a

parameter vector including all parameters δi with index i ∈ s. G(δ) has a direct-sum
decomposition, if a nontrivial partition (s1, . . . , sl) of the parameter index set s exists
such that

G(δ) = G(0) + G1(δs1) + . . . + Gl(δsl
). (3.13)

39



3 Symbolic techniques for low order LFR modelling

Note that the direct sum decomposition reduces the original k-dimensional problem into
l independent problems of dimension less than or equal to k.

Affine factorization: Let δm be a common factor of the ith row (respectively column)
of G(δ). Then G(δ) admits the factorized representation

G(δ) = Qi(δm)R(δ)(= R(δ)Qi(δm)),

where Qi(δm) (respectively Qi(δm)) is an identity matrix with its ith diagonal element
substituted by δm. The LFR order of Qi is one and this factorization allows to reduce the
overall LFR order of G(δ) by at least y − 1, where y is the number of nonzero elements
in the ith row (column) of G(δ).

Weighted sum decomposition: If none of the above operations can be applied to
G(δ), the TD approach splits G(δ) as G(δ) = G1(δ) + G2(δ), where G1(δ) contains all
entries depending on one specific parameter δi and G2(δ) does not depend on δi. The
purpose of this operation is to prepare in the next step an affine factorization with respect
to δi of the term G1(δ), which may potentially lead to order reduction. In particular, one
wants to find the parameter δi for which the sum decomposition G(δ) = G1(δ) + G2(δ)
maximizes the order reduction obtained by the affine factorization of G1(δ). This sum
decomposition is called weighted-sum decomposition.

Algorithm 1 TD(G)

1: T = 0
2: G← Direct-Sum(G)
3: for S ∈ G do
4: if S not simple then
5: if S has affine row/column factor then
6: [Q,R]← Affine-Factor(S)
7: T = T+Realize-LFR(TD(Q)*TD(R))
8: else
9: [S1, S2]← Weighted-Sum(S)

10: [Q,R]← Affine-Factor(S1)
11: T = T+Realize-LFR(TD(Q)*TD(R)+TD(S2))
12: end if
13: else
14: T = T+Realize-LFR(S)
15: end if
16: end for
17: Output= T

Algorithm 1 shows a pseudo-code for the TD algorithm, where G denotes the set of
matrices including the additive terms obtained by a direct-sum decomposition (3.13),
Realize-LFR(G) describes the application of the object-oriented LFR realization proce-
dure to the parametric matrix G and ”simple” in line 4 of the algorithm means that the
object-oriented LFR realization procedure will yield a minimal order LFR for S.
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The TD approach can be employed to construct LFRs of general rational matrices
represented in polynomial fractional forms. It is well-known that any rational matrix
G(δ) ∈ R(δ)p×m can be expressed as a right or left factorization G(δ) = N(δ)D−1(δ)

or G(δ) = D̃−1(δ)Ñ(δ), respectively, where N(δ), D(δ), Ñ(δ), D̃(δ) are polynomial ma-
trices. Then, from the LFRs of the compound polynomial matrices [ NT (δ) DT (δ) ]T or

[ Ñ(δ) D̃(δ) ] one can easily determine the LFRs of G(δ) by direct formulas (see Lemmas
2.6 and 2.7).

The enhanced tree decomposition (ETD) method is an extension of the TD method to
the more general case of multivariate Laurent polynomial matrices G(δ, δ−1) ∈ R[δ, δ−1].
The enhanced method formally substitutes each reciprocal variable δ−1

i in the Laurent

polynomial matrix G(δ, δ−1) by a new variable, say δ̃i, and applies the standard TD

method to the resulting polynomial matrix G(δ, δ̃). Furthermore, Morton’s technique
(see section 3.4.1) is integral part of the ETD and is applied in all cases where affine com-
binations of the form

∑
ci(δ)Gi arise as intermediate results during the decomposition.

In practical examples (see chapters 5 and 6) it could be observed that this occurs very
often especially after the direct-sum decomposition steps. In addition to the resulting
lower orders of LFRs, the integration of Morton’s approach leads usually to significant
time savings. In the case of the RCAM example presented in chapter 5, a reduction of
about 20% of the LFR realization time has been achieved.

The TD approach as proposed in [24] requires an initial expansion of products into
sums of monomials for the multivariate polynomial entries gij(δ, δ

−1) of G(δ, δ−1). How-
ever, expanding a polynomial of the form (δ1 + δ2)

5(δ3 + δ4)
5 may yield an LFR of order

up to 360 instead of an LFR with minimal order 20, which can be obtained by a direct
LFR realization of the polynomial in factorized form. The implementation of the ETD
in [47] tries to avoid such expansions by performing direct sum decompositions and fac-
torizations first on the level of whole expressions and not only on the level of monomials
of a polynomial in expanded form as proposed in [24]. An example of a highly complex
parametric model of a fighter aircraft can be found in [32], where it is shown that ig-
noring the existing structure of polynomial expressions and expanding the multivariate
model equations increases substantially the order of the resulting LFR. Algorithm 2 shows
a pseudo-code for the ETD algorithm, where Sub-Reciproc(G) and Resub-Reciproc(G)
denote the substitution and re-substitution of reciprocal variables δ−1, respectively and
SVD(S̃) denotes the singular value decomposition of a numeric matrix S̃.

Example 3.8. To illustrate the importance of the integration of Morton’s method into
the TD approach, consider again G(δ) of example 3.7, with

G(δ) =

[
δ1 δ1

2δ1 2δ1

]
.

After two affine factorizations the TD approach will yield

G(δ) =

[
δ1 0
0 1

] [
1 0
0 δ1

] [
1 1
2 2

]
,

with a resulting LFR order of two, whereas in example 3.7 an LFR with order one was
obtained.
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Algorithm 2 ETD(G(δ, δ−1))

1: T = 0
2: G̃(δ, δ̃)← Sub-Reciproc(G(δ, δ−1))

3: G← Direct-Sum(G̃(δ, δ̃))

4: for S(δ, δ̃) ∈ G do

5: if S(δ, δ̃) not simple then

6: if S(δ, δ̃) = c(δ, δ̃)S̃ then

7: [L, Ir, R]← SVD(S̃)

8: T = T+Realize-LFR(L*ETD(c(δ, δ̃))∗Ir ∗R)
9: else

10: if S has affine factor then
11: [Q(δ, δ̃), R(δ, δ̃)]← Affine-Factor(S(δ, δ̃))

12: T = T+Realize-LFR(ETD(Q(δ, δ̃))*ETD(R(δ, δ̃)))
13: else
14: [S1(δ, δ̃), S2(δ, δ̃)]← Weighted-Sum(S(δ, δ̃))

15: [Q(δ, δ̃), R(δ, δ̃)]← Affine-Factor(S1(δ, δ̃))

16: T = T+Realize-LFR(ETD(Q(δ, δ̃))*ETD(R(δ, δ̃))+ETD(S2(δ, δ̃)))
17: end if
18: end if
19: else
20: T = T+Realize-LFR(S(δ, δ̃))
21: end if
22: end for
23: Output ← Resub-Reciproc(T )
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3.5 Variable splitting factorization

3.5 Variable splitting factorization

3.5.1 Scalar case

For multivariate Laurent polynomials g(δ, δ−1), a variable splitting (VS) technique can
be employed to express such a polynomial in a factored form, where the factors contain
disjoint subsets of δ and δ−1, respectively. It is easy to show that any Laurent polynomial
can be expressed as a product

g(δ, δ−1) = v(δs1 , δ
−1
s2

)T u(δs3 , δ
−1
s4

) (3.14)

where v(δs1 , δ
−1
s2

) and u(δs3 , δ
−1
s4

) are vectors depending on the parameter vectors δs1 , δs2

and δs3 , δs4 , respectively. The parameter index sets s, s1, . . . , s4 are chosen such that
s = (1, . . . , k), s = s1 ∪ s3 = s2 ∪ s4, s1 ∩ s3 = s2 ∩ s4 = ∅ and δs denotes a parameter
vector including all parameters δi with i ∈ s.

Typically, one chooses one of the factors, say v(δs1 , δ
−1
s2

), to have only entries expressed
by multivariate Laurent monomials. The VS factorization allows to transform the initial
realization problem into two realization problems, but each with fewer variables. This
technique is beneficial for cases, where scalar techniques as transformation to Horner form
do not allow a splitting of variables.

Example 3.9. Consider
g(δ) = δ1 + δ1δ2 + δ2

Using transformations to Horner form one obtains either g(δ) = δ1(1 + δ2) + δ2 or g(δ) =
δ1 + (δ1 + 1)δ2. Both representations allow to reduce the resulting LFR order from 4 to
3.

By choosing δs1 = δ1 and δs3 = δ2, we obtain the VS factorization as

g(δ) =
[

δ1 1
] [ 1 + δ2

δ2

]
which allows an additional decomposition such that

g(δ) =
[

δ1 1
]([ 1

1

]
δ2 +

[
1
0

])
yielding an LFR of minimal order 2.

The nice result of example 3.9 can be generalized in the following lemma.

Lemma 3.1. Consider the Laurent polynomial g(δ, δ−1) depending on two variables δ1, δ2,
that is, δ = (δ1, δ2). A VS factorization of the form

g(δ, δ−1) = v(δ1, δ
−1
1 )T u(δ2, δ

−1
2 )

allows to realize minimal order LFRs (Mv, ∆v), (Mu, ∆u) with Fu(Mv, ∆v) = v(δ1, δ
−1
1 ),

Fu(Mu, ∆u) = u(δ2, δ
−1
2 ) and the LFR (Mg, ∆g) obtained using (ii) of Lemma 2.1 is a

minimal order LFR for g(δ, δ−1).
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3 Symbolic techniques for low order LFR modelling

Proof. A Laurent polynomial g(δ, δ−1) of the form (3.2) can be VS factorized as

g(δ, δ−1) = v(δ1, δ
−1
1 )T u(δ2, δ

−1
2 ) =

[
c1δ

n1,1

1 . . . clδ
nl,1

1

]  δ
n1,2

2
...

δ
nl,2

2

 .

As negative and positive exponentials both contribute to the order of the LFR, the
minimal LFR orders ordv,min, ordu,min for v(δ1, δ

−1
1 ), u(δ2, δ

−1
2 ), respectively are given by

ordv,min = max
i

(ni,1, 0) + max
i

(0,−ni,1) (3.15)

ordu,min = max
i

(ni,2, 0) + max
i

(0,−ni,2), (3.16)

and the minimal order of an LFR for g(δ, δ−1) is given by ordg,min = ordv,min + ordu,min.

Without loss of generality it is assumed that the entries of u(δ2, δ
−1
2 ) are ordered, such

that n1,2 < . . . < nr,2 = 0 < . . . < nl,2 and u(δ2, δ
−1
2 ) can be represented as

u(δ2, δ
−1
2 ) =



δ
n1,2

2
...

δ
nr−1,2

2

δ
nr,2

2

δ
nr+1,2

2
...

δ
nl,2

2


=



0
...
0
1
0
...
0


+ δ−1

2


. . . + δ−1

2



1
0
...
...
...
...
0




. . .



+ δ2


. . . + δ2



0
...
...
...
...
0
1




. . .



(3.17)

Using the object-oriented LFR realization method proposed in section 2.3.2, it is obvious
that a minimal LFR can be obtained for u(δ2, δ

−1
2 ) given in the form (3.17). A minimal

order LFR can be found similarly for v(δ1, δ
−1
1 ). Applying (ii) of Lemma 2.1 yields an

LFR for g(δ, δ−1) with order ordg,min.
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3.5 Variable splitting factorization

3.5.2 Vector case

The VS factorization can be simply extended to parametric vectors of the form gvec =[
g1(δ, δ

−1) . . . gm(δ, δ−1)
]

= V T U as

gvec =

 v1(δs1,1, δ
−1
s2,1)

...
vm(δs1,m, δ−1

s2,m)


T  u1(δs3,1, δ

−1
s4,1) 0 0

0
. . . 0

0 0 um(δs3,m, δ−1
s4,m)

 , (3.18)

where vi(δs1,i, δ
−1
s2,i) and ui(δs3,i, δ

−1
s4,i), i = 1, . . . ,m, are parametric vectors.

A limitation of the simple vector extension of the VS factorization is that the factor U in
(3.18) does not allow to exploit any dependencies and common factors of the ui(δs3,i, δ

−1
s4,i)

for the reduction of the resulting LFR order. This may be simply improved by applying
the following condensation algorithm, which condenses the factors V and U of (3.18)
in cases where elements of V only differ by a constant factor c ∈ R. Therefore, we
introduce a matrix Pij,c, which is an identity matrix of appropriate dimension, where the
element pij, i 6= j is substituted by a constant c ∈ R and the jth row is removed. A left

multiplication of U with Pij,c yields Ũ , where c times the jth row of U is added to the ith
row of U and the jth row of U is removed. As an example, consider U = diag(u1, u2, u3).
Left multiplying U with P12,4 yields

P12,4U =

[
1 4 0
0 0 1

] u1 0 0
0 u2 0
0 0 u3

 =

[
u1 4u2 0
0 0 u3

]
.

Algorithm 3 Condensation Vec(V, U)

1: L=length(V )
2: if L > 1 then
3: for i = 1 to L− 1 do
4: for j = (i + 1) to L do
5: if V (j) = cV (i) then
6: Remove V (j) from V
7: U = Pij,cU
8: L = L− 1
9: end if

10: end for
11: end for
12: end if

After the application of algorithm 3, the condensed version of U may now have more
than one non-zero entry in a row. If these entries have common factors, a further reduction
of the resulting LFR order may be achieved.
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3 Symbolic techniques for low order LFR modelling

Example 3.10. Consider the VS factorization of the form (3.18) for the parametric
vector gvec given by

gvec =
[

2δ1δ2 + 2δ2 δ1δ2 + δ1δ3 + δ2

]
=


2δ1

2
δ1

1


T 

δ2 0
δ2 0
0 δ2 + δ3

0 δ2

 (3.19)

where a application of the ETD yields

gvec =

δ1


2
0
1
0


T

+


0
2
0
1


T




1 0
1 0
0 1
0 1

[ δ2 0
0 δ2

]
+


0 0
0 0
0 δ3

0 0


 ,

allowing to obtain an LFR of order 4 instead of order 8 for a direct realization of gvec

without symbolic preprocessing. However, applying algorithm 3 after generating the VS
factorization of the form (3.18) yields

gvec =
[

δ1 1
] [ 2δ2 δ2 + δ3

2δ2 δ2

]
and further application of the ETD yields

gvec =
[

δ1 1
]([ 1

1

]
δ2

[
2 1

]
+

[
0 δ3

0 0

])
,

allowing to obtain an LFR of minimal order 3.

3.5.3 Matrix case

The VS factorization for vectors can be simply extended to parametric matrices as

G =

 gvec,1
...

gvec,p

 = V U =

 V T
1 0 0

0
. . . 0

0 0 V T
p


 U1

...
Up

 . (3.20)

The matrix V has only one non-zero element in each column. In analogy the vector case
of the VS factorization, a condensation of the matrices V and U in (3.20) may be possible.
The condensed version of matrix V may have more than one non-zero entry in a column,
which can be further exploited to reduce the resulting LFR order. The condensation of
V and U is performed using algorithm 4, where P ji,c is an identity matrix of appropriate
dimension, where the element pji, i 6= j is substituted by a constant c ∈ R and the jth

column is removed. The ith row of U is denoted as U(i).

46



3.6 Lower-bound for LFR order

Algorithm 4 Condensation Mat(V , U)

1: L=rowlength(U)
2: if L > 1 then
3: for i = 1 to L− 1 do
4: for j = (i + 1) to L do
5: if U(j) = cU(i) then
6: Remove row U(j) from U
7: V = V P ij,c

8: L = L− 1
9: end if

10: end for
11: end for
12: end if

3.6 Lower-bound for LFR order

As already mentioned, in multidimensional-system theory there exists no solution for the
generation of a minimal order LFR for a multivariate parametric matrix. However, in or-
der to quantify the complexity of an LFR, which is obtained after application of symbolic
preprocessing, object-oriented LFR realization and exact numerical order reduction, it is
important to have at least a lower bound for the achievable minimal LFR order.

A simple procedure to determine a lower bound for the LFR order of a polynomial
parametric matrix G(δ) is to determine for each parameter δi the maximum power mδi

over all matrix entries gi,j(δ). A lower bound is then given by
∑k

i=1 mδi
. As an example,

a lower bound of s is obtained for the parametric vector G(δ) =
[

δs
1 δs−1

1 . . . δ1

]
,

where the maximum power of δ1 over all vector entries is s. In this case the lower bound
is exact and describes the minimal LFR order for this parametric vector. However, the
same lower bound is obtained for the parametric matrix G(δ) = diag(δs

1, δ
s−1
1 , . . . , δ1),

where the minimal LFR order is s(s+1)/2. This shows that for parametric matrices, this
method may result in a very bad estimate for the minimal LFR order, which comes from
the fact, that the structural information for the occurrence of the parametric expressions
in the matrix is not considered.

To overcome this problem the following procedure to calculate a more accurate lower
bound for the minimal LFR order is proposed:

1. Set counter i = 1.

2. Substitute all parameters in G(δ), except δi, with random values resulting in the
one-parametric matrix Gi(δi).

3. Construct a minimal order LFR (Mi, ∆i = δiImi
) for Gi(δi).

4. If i < k then increment i and go to step 3, otherwise got to step 5.

5. The lower bound is given by m =
∑k

i=1 mi.
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3 Symbolic techniques for low order LFR modelling

The proposed procedure can be easily implemented and for practical examples it yields
quite good estimates (see chapters 5 and 6). For the above mentioned matrix G(δ) =
diag(δs

1, δ
s−1
1 , . . . , δ1), the lower bound will now be exactly the minimal LFR order. The

following example shows, that in some cases a gap between the lower bound calculated
with proposed procedure and the exact minimal LFR order can not be avoided and to the
best of the authors knowledge there exists no method to exactly calculate the minimal
LFR order.

Example 3.11. Consider the parametric vector G(δ) =
[

δ1δ2 δ1 + δ2

]
. In this case

the procedure yields a lower bound of m = 2. However, there will exists no LFR of order
less than 3.
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4 Enhanced LFR-toolbox for Matlab

The LFR-toolbox is a Matlab toolbox for the realization of LFRs for uncertain system
models. With this toolbox, LFRs can be directly obtained from symbolic expressions or
via object-oriented manipulation of LFR objects.

The version 1 of the LFR-toolbox has been implemented by the author of [57] and
generates standard LFRs for systems with structured (parametric) or unstructured un-
certainties of real or complex type. The generation of low order LFRs is supported in
various ways. Special functions for symbolic preprocessing techniques as Mortons method
[64] for affine uncertainty representations and the tree decomposition [24] for polynomial
matrices are provided. Furthermore numerical multidimensional order reduction and ap-
proximation methods [29, 77] for LFRs are available. These algorithms rely on standard
minimal realization tools available in the Control Toolbox of Matlab.

The present version 2 of the LFR-toolbox [46, 45, 47] includes major enhancements,
which are mainly focused to improve the capabilities for low order LFR modelling. With
the support of the generalized LFR [42], described in section 2.3.5 it is now possible to
realize arbitrary rational expressions as LFRs. Furthermore, the new LFR object defi-
nition is more transparent, user friendly and supports additional types of uncertainties
to be directly compatible to other Matlab toolboxes like the µ-Analysis and Synthesis
toolbox [12], the LMI toolbox [37] and the Robust Control toolbox [11]. Significant en-
hancements of the computational efficiency and of numerical accuracy have been achieved
by employing efficient and numerically robust Fortran implementations of order reduction
tools via mex -function interfaces. The new enhancements in conjunction with improved
symbolical preprocessing lead generally to a faster generation of LFRs with significantly
lower orders.

Figure 4.1 shows the contributions of DLR (Deutsches Zentrum für Luft-und Raum-
fahrt) and ONERA (Office nationale d’Études et de Recherches Aérospatiales) to version
2 of the LFR-toolbox, which was developed within the common research project HA-
FUN (Handling of Flight Uncertainties). The contributions of the author including a
new implementation of the underlying Matlab LFR object, the related object-oriented
manipulation functions, symbolic preprocessing routines and numerical order reduction
routines are briefly described in the following sections. From ONERA side, interfaces
for graphical robust stability/performance analysis and interfaces to use LFR objects
within Simulink are provided. In addition, functions for the synthesis of automatically
gain-scheduled controllers based on eigenstructure assignment were developed.

For a list of all functions see appendix C.
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4 Enhanced LFR-toolbox for Matlab

4.1 Object definition

The core function lfr to create an LFR object is called inside almost all functions of the
toolbox. An LFR object L can be created with the command
L = lfr(A,B,C,D,blk);

where the first four input arguments specify the LFR system matrices A, B, C,D (sub-
matrices of M) and the fifth argument blk describes the block-diagonal structure of
∆. The argument blk is a structure array with two fields, names and desc, containing,
respectively, the names associated to the diagonal blocks of ∆ and the corresponding
uncertainty type description. The five input arguments can be recovered from the object
L as the fields L.a, L.b, L.c, L.d, and L.blk, respectively.

As an example, the fields names and desc of the structure description argument of an
LFR object with ∆ = diag(δ1I2, δ2) can be specified as

blk.names = {’d1’,’d2’};

blk.desc = [ 2 1 % row-dimension of blocks

2 1 % column-dimension of blocks

1 1 % real(1) / complex(0) blocks

1 1 % scalar(1) / full(0) blocks

1 1 % linear(1) / nonlinear(0) blocks

1 1 % time-inv.(1) / time-var.(0) blocks

1 1 % min/max(1)/sector(2)/freq.(>2) bound

2 2 % min/max(2)/sector(1)/freq.(>2) bound

-1 -1 % minimum value of bounds

1 1 ] ; % maximum value of bounds

where blk.names is a cell-array of two strings containing the names ’d1’ and ’d2’ given
to the two diagonal blocks of ∆, and the values in each column of the real array blk.desc

specifies the corresponding information describing each diagonal block (see below).

ONERA
LFT-based controller synthesis

interfaces for graphical stability 
and performacne analysis

interfaces for Simulink

new, user-friendly Matlab LFR-object
supporting generalized LFRs

efficient and reliable numerical 
algorithms for order reduction

symbolic preprocessing and model 
manipulations in Maple with 
interfaces to Matlab

DLR

Enhanced LFR-toolbox

Figure 4.1: Contributions to Enhanced LFR-toolbox
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4.2 Symbolic preprocessing

Each block in ∆ is uniquely identified by its name, which makes the manipulation
of LFR objects flexible and transparent. For example, additional uncertainties can be
easily added to an LFR object and the already defined block names can be modified
(e.g., by using the function set). The special names ’1/s’ and ’1/z’ are reserved for
the integrator block I/s (continuous-time systems) and the delay block I/z (discrete-time
systems), respectively. These blocks can be included in ∆ to represent standard linear
time-invariant systems (continuous- or discrete-time) as LFR objects. Furthermore the
special name ’1’ is reserved for a constant identity matrix block I in ∆. This block
plays a major role in representing arbitrary rational parametric expressions as LFRs. An
internal LFR object reordering (function reorderlfr) is performed after each LFR object
manipulation where the constant block (if exists) is placed in the first block diagonal
position of ∆, the integrator/delay block (if exists) is placed in the second block diagonal
position followed by all the uncertainty blocks in a lexicographic order.

For each name in the field names there exists a corresponding column in the field
desc, which describes the row/column dimensions and properties of this block. The LFR
object supports real or complex structured uncertainty (or dynamic) blocks and real
or complex full unstructured uncertainty blocks. These blocks can have the properties
linear/nonlinear and time-invariant/time-varying (in the case of nonlinear uncertainties
the property time-invariant means memoryless). Furthermore, the field desc includes
bound information for each uncertainty block, which can be described by min/max-values,
a sector bound (for nonlinear uncertainties) or a SISO frequency dependent bound.

For Matlab versions 6.1/6.5, conversions to LFR objects from LTI-objects of the
Control Toolbox, PCK-system representations of the µ-Synthesis Toolbox as well as con-
stant matrices, are automatically performed via the core function lfr. For Matlab
versions 7.0/7.1, conversions from umat, ureal, ucomplex and uss-objects of the Robust
Control Toolbox to LFR objects are supported. Furthermore, one may use the functions
lfr2mu, lfr2mubnd, lfr2mussv, lfr2mustab and lfr2lmip to generate the required
data structures for robust stability/performance analysis and controller synthesis using
the µ-Analysis and Synthesis toolbox or the LMI-toolbox under Matlab 6.1/6.5 or the
function lfr2rob for conversions to the objects supported by the Robust Control toolbox
under Matlab versions 7.0/7.1.

4.2 Symbolic preprocessing

All the methods for decomposition of multivariate rational functions and matrices de-
scribed in chapter 3 are supported by the function sym2lfr of the toolbox. The function
is called with several options.

Besides the Horner form, partial fraction form, continued fraction form and the ETD
the function also allows to choose code generation techniques for optimized evaluation
of polynomial/rational functions as symbolic preprocessing [83]. Therefore the Maple
function optimize from the codegen package is employed. A tryhard option can be
chosen to check all possible permutations for the Horner, partial fraction and continued
fraction forms and the LFR with the lowest resulting order is provided as output.

For the VS factorization the user can choose between a separate factorization of each
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4 Enhanced LFR-toolbox for Matlab

matrix element or a column/row wise application as described in section 3.5.3 (for row-
wise factorization). The resulting two factors (see (3.20)) are then further processed
with the ETD. The condensation of the factors as described in sections 3.5.2 and 3.5.3
is automatically performed. The sets δs,i for the definition of the VS factorization can
be determined automatically, manually or one may choose a tryhard option, where all
possible combinations are calculated and the LFR with the lowest resulting order is
provided as output.

When the ETD is chosen, a standard feature of the function sym2lfr is to split a
rational matrix G(δ) into a pure rational part G1(δ) and a Laurent polynomial part
G2(δ, δ

−1), such that G(δ) = G1(δ) + G2(δ, δ
−1). The matrix G2(δ, δ

−1) can be di-
rectly processed, whereas for G1(δ), a left (or right) fractional representation of the form

G1(δ) = D−1(δ)N(δ) (or G1(δ) = N(δ)D
−1

(δ)) is calculated and the ETD is applied to

the concatenated polynomial matrix
[

N(δ) D(δ)
]

(or
[

N(δ)T D(δ)T
]T

). Finally,
Lemma 2.6 (or Lemma 2.7) are used to obtain an LFR for G1(δ). It is possible to avoid
the splitting of G(δ) and to calculate a left (or right) fractional representation for the
whole matrix. However, the calculation of common denominators, which is necessary to
obtain the fractional representation, may result in more complex symbolic expressions
and this may increase the resulting LFR order.

To increase the efficiency of the symbolic calculations, many of the core functions are
directly implemented as Maple functions and executed within the efficient Maple kernel
via the Extended Symbolic Toolbox of Matlab.

4.3 Numerical order reduction

Efficient and numerically reliable tools for order reduction of LFRs are of primary im-
portance to ease the usability of such models. To achieve efficiency of computation,
numerical robustness and a high accuracy of results, the toolbox relies on Fortran based
robust implementations of algorithms for basic computations related to order reduction.
A language like Fortran allows to easily exploit all structural features of a computational
problem with low additional computational effort and minimum memory usage. Fortran
routines can be easily executed within the user friendly environment Matlab via external
functions, the so called mex -functions. Several mex -functions based on powerful Fortran
routines from the LAPACK-based [5] public domain control library SLICOT [15, 81] form
the order reduction computational kernel of the LFR-toolbox.

The LFR-toolbox provides several order reduction tools for exact or approximative
reduction of order. The exact 1-d order reduction technique [77] can be performed using
the function minlfr1 which is based on the efficient (O(n3) complexity, with n as the
order of a state-space system) SLICOT-based mex -function ssminr1 for the calculation
of minimal realizations. Note that a pure Matlab-based implementation using the
Matlab Control Toolbox function minreal would have a O(n4) worst-case complexity.
For a comparison of computation times see chapter 5.

The approximative 1-d order reduction [83] can be performed using redlfr1, which is

1The functions balsys, ssminr, sysred, sscof and partly minlfr have been implemented by A. Varga
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4.3 Numerical order reduction

based on the collection of model reduction tools available in SLICOT [81], covering the
balanced truncation, singular perturbation approximation and Hankel-norm approxima-
tion approaches. All these methods are implemented in a single mex -function sysred1

which is called by redlfr1 to cyclically reduce 1-d systems (assimilated to discrete-time).
With an appropriate scaling of the A matrix of the LFRs (necessary to ensure stability in
discrete-time sense), this function can be also employed to perform exact order reduction.

The function minlfr can be used for n-d order reduction [29]. In version 2 of the LFR
Toolbox this function has been completely re-implemented to improve efficiency. The
calculation of the n-d controllability/observability staircase forms relies on the O(n3)
complexity SLICOT-based mex -function sscof1 to compute controllability/observability
staircase forms using orthogonal transformations. Note that a pure Matlab-based im-
plementation using the Matlab Control Toolbox function ctrbf would have a O(n4)
worst-case complexity. For a comparison of computation times see chapter 5.

The SLICOT-based mex -function balsys is systematically called in all order reduction
functions to perform a system scaling of the LFRs as a preliminary operation within the
order reduction routines. As the LFRs resulting from the object-oriented realization
approach can have matrices with a wide range of values, this operation is essential before
computing numerically sensitive controllability staircase forms.

The order reduction functions can be applied manually at any stage of the LFR realiza-
tion or can be executed automatically after each object-oriented LFR manipulation (e.g.,
multiplication, addition, etc.). To set global options (e.g., to perform or not automatic
order reduction), the function lfropt can be used. This function basically defines a set
of global variables to control the order reduction and to set the associated tolerances.
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5 Robust stability analysis for the
RCAM

Figure 5.1: Airbus A300-600ST Beluga

In the GARTEUR (Group for Aeronautical Research and Technology in Europe) Action
Group 8 on Robust Flight Control [58] it was intended to to demonstrate to European
aircraft manufacturers, that significant improvements in the control design process can
be achieved by the application of modern robust control techniques. It was not the aim
to produce an optimal control law, but to show that modern robust control theory can
be applied to realistic problems and to show the limitations of these techniques.

One of the benchmark problems was the design of an autopilot for the final segments
of a landing approach for a fictitious transporter aircraft (closely related to the Airbus
Beluga, see figure 5.1), which is referred to as RCAM (Research Civil Aircraft Model).
The control laws had to be robust with respect to variation of the speed, weight, vertical
and horizontal position of center of gravity, time delays, nonlinearities and engine-failures.
Furthermore disturbance decoupling had to be guaranteed to track a predefined flight
path within certain tolerances.

The RCAM is given as a six degree of freedom nonlinear model, including nonlinearities
of actuators (saturations) and a model of disturbances as proposed by Aérospatiale (now
part of Airbus). The model, used for stability analysis has 5 inputs, 12 states and 15
measured outputs, which are described in the following tables.
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Table 5.1: RCAM input definition

Input Description Unit
u(1) aileron deflection rad
u(2) tailplane deflection rad
u(3) rudder deflection rad
u(4) throttle position of engine 1 rad
u(5) throttle position of engine 2 rad

Table 5.2: RCAM state definition

Input Description Unit
x(1) roll rate (in FB) rad/s
x(2) pitch rate (in FB) rad/s
x(3) yaw rate (in FB) rad/s
x(4) roll angle (Euler angle) rad
x(5) pitch angle (Euler angle) rad
x(6) heading angle (Euler angle) rad
x(7) x component of inertial velocity in FB m/s
x(8) y component of inertial velocity in FB m/s
x(9) z component of inertial velocity in FB m/s
x(10) x position of aircraft CoG in FE m
x(11) y position of aircraft CoG in FE m
x(12) z position of aircraft CoG in FE m

The notations FE, FB, FV denote the earth-fixed, body-fixed and vehicle-carried refer-
ence frames, respectively. For more details see [58].

The uncertain parameter vector δ of the RCAM is defined as δ = (m, V, Xcg, Zcg), where
m is the mass of the aircraft, V is the airspeed and the horizontal and vertical position
of the center of gravity are given by Xcg and Zcg, respectively. The corresponding ranges
of variation are summarized in Table 5.4.

The nominal values of the parameters are assumed to be centered within their variation
range, that is, Vnom = 80 m/s, mnom = 125000 kg, Xcgnom = 1.525 m, Zcgnom = 0.695 m.

In [84] an automated procedure for the generation of LFRs for the RCAM is presented.
Starting from a nonlinear, parametric description of the form (2.1), trimming and sym-
bolic linearization is performed to obtain an explicit, linear, rational parametric state
space system of the form (2.7). To increase the validity of the linear model, all entries in
the linear system matrices, that explicitly depend on the trim solutions xt(δ) and ut(δ) of
states and inputs, respectively, are further corrected by polynomial functions. Textbook
information was used to get hints about suitable parametric dependencies of the correc-
tion terms. With this approach the validity of the linear system description was increased
over the whole range of flight conditions and parameter variations. The corresponding
linear, rational parametric system matrices can be found in appendix D and represents
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5 Robust stability analysis for the RCAM

Table 5.3: RCAM output definition

Output Description Unit
y(1) x(2) rad/s
y(2) horizontal load factor in FB -
y(3) vertical load factor in FB -
y(4) z component of inertial velocity in FV m/s
y(5) x(12) m
y(6) air speed m/s
y(7) total inertial velocity m/s
y(8) angle of sideslip rad
y(9) x(1) rad/s
y(10) x(3) rad/s
y(11) x(4) rad
y(12) x component of inertial velocity in FV m/s
y(13) y component of inertial velocity in FV m/s
y(14) x(11) m
y(15) inertial track angle rad

Table 5.4: Parameter ranges of variation

Parameter Range Unit
m [100000, 150000] kg
V [70, 90] m/s
Xcg [1, 2.05] m
Zcg [0, 1.39] m

one of the most complicated parametric models available in literature.
In [58] the PUM (Parametric Uncertainty Modelling) Toolbox for Matlab [54] was

employed to develop LFRs for the RCAM. The PUM-Toolbox supports object-oriented
LFR realization and 1-d repeated order reduction [77]. Using this tool, two LFRs with
the following block structures ∆ = diag(mIr1 , V Ir2 , XcgIr3 , ZcgIr4) and total order r were
realized:

Table 5.5: Orders of LFRs realized in GARTEUR AG 08

Model {r1, r2, r3, r4} r
I {17, 0, 15, 3} 35
II {47, 109, 30, 7} 193

Model II was realized after application of the object-oriented LFR realization procedure
followed by 1-dimensional, exact, numerical order reduction, which results in an LFR of
order 193. For robust stability analysis using µ-analysis the total order of model II

56



5.1 LFR model realization for the element a29

was too large, which lead to numerical problems using the available µ-analysis software.
Therefore, in [58] it was decided to perform the stability analysis for RCAM only for
fixed nominal speed V = Vnom = 80 m/s. Substituting the uncertain parameter V with
its nominal value in the parametric system matrices allowed to realize model I, which
was of order 35. However, the results from stability analysis were overly optimistic, as
the variation in speed was not considered. This could be deduced as in parallel to the µ-
analysis, an optimization based worst-case search considering also variations in speed was
applied. For some controllers, that were developed in [58], the µ-analysis indicated robust
stability, whereas the worst-case search detected parameter combinations that resulted
in unstable closed-loop systems.

In the following section, the methods for low order LFR realization as described in the
previous chapters will be applied to realize an almost least order LFR for the RCAM. The
recent version 2 of the LFR-toolbox (see chapter 4 or [47]) will be employed to generate all
the following LFRs. The final LFR will include all uncertainties of the RCAM and it will
be of reasonable order for robust stability analysis using µ. The results of the µ-analysis
using the new low order LFR will be comparable to the worst case-search results, thus
showing that methods for low order LFR realization are of paramount importance for
successful application of µ-analysis, which then can be seen as a fast complement to the
time-consuming optimization-based worst-case search.

5.1 LFR model realization for the element a29

As a starting point, the effectiveness of the proposed methods for low order LFR realiza-
tion will be demonstrated by comparing different techniques for realizing an LFR for the
most complicated element a29 of the parametric system matrix A(δ). The expression of
a29 can be put into the form a29 = 0.061601 ã29

CwV
, where

Cw = mg
1
2

ρV 2S
,

ã29 =1.6726XcgC
2
wZcg − 0.17230X2

cgCw − 3.9324XcgCwZcg

− 0.28903X2
cgC

2
wZcg − 0.070972X2

cgZcg + 0.29652X2
cgCwZcg

+ 4.9667XcgCw − 2.7036XcgC
2
w + 0.58292C2

w − 0.25564X2
cg

− 1.3439Cw + 100.13Xcg − 14.251Zcg − 1.9116C2
wZcg

+ 1.1243XcgZcg + 24.656CwZcg + 0.45703X2
cgC

2
w − 46.850,

and S = 260m2 (wing planform area), g = 9.81m/s2 and ρ = 1.225kg/m3 (air density).
Note, that the expression of a29 is ”singular” in the parameters m and V and therefore
symbolic normalization is obligatory for generation techniques relying on standard LFRs.

Performing symbolic normalization and expansion of a29, the direct application of the
object-oriented LFR realization procedure yields an LFR of order 405. In [83] the same
procedure was applied followed by a splitting of a29 into a numerator and denominator
polynomial. The polynomials were realized individually and after division of the resulting
LFRs the final LFR was of order 293. This order reduction (from 405 to 293) resulted from
factorizations that were implicitly performed in Maple 5 by calculating the numerator
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5 Robust stability analysis for the RCAM

and denominator polynomials. It was tried to reconstruct the LFR with order 293 of [83],
but with the more recent version 8 of Maple, the same symbolic steps combined with the
object-oriented LFR realization yield an LFR of order 193.

When using the generalized LFR (including a constant block in ∆), the preliminary
normalization can be avoided. The generated LFR for the expanded expression of a29 has
a total order r of 69. This illustrates clearly that a preliminary normalization has often
the effect to increase substantially (almost seven times in this example) the order of the
generated LFR. Details about the models are summarized in Table 5.6.

Table 5.6: Initial LFR orders for element a29

Model {r1, r2, r3, r4} r
III {84, 240, 54, 27} 405
IV {49, 136, 72, 36} 293
V {31, 81, 54, 27} 193
VI {12, 30, 18, 9} 69

5.1.1 Enhanced numerical order reduction

To illustrate the enhancements of the numerical order reduction capabilities of version 2 of
the LFR toolbox (see section 4.3), numerical 1-d and n-d order reductions are performed
on Model V, using pure m-function based implementations (M) and mex -function based
implementations (MEX) of the order reduction tools. In Table 5.7 the computational
times resulted on a PC with a 1.2 GHz AMD ATHLON processor running MATLAB 6.5
under Windows NT are given.

Table 5.7: Order reduction results for Model V

Method Time [s] {r1, r2, r3, r4} r
1-d (M) 9.61 {5, 28, 2, 9} 44
1-d (MEX) 0.1 {5, 7, 2, 4} 18
n-d (M) 0.54 {5, 7, 2, 3} 17
n-d (MEX) 0.13 {5, 7, 2, 3} 17

A significant reduction of computational times for both the 1-d reduction (almost 100
times faster!) and the n-d reduction (more than four times faster) can be observed.
Note also that for this example, the 1-d reduction performed using the mex -file based
implementation led to a much smaller order than the pure m-file based implementation.

5.1.2 Comparison of low order LFR realization techniques

Without any symbolic preprocessing an LFR of order 69 (Model VI in Table 5.6) could be
generated using the object-oriented LFR realization procedure based on the generalized
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5.1 LFR model realization for the element a29

LFR. In Table 5.8, several results involving symbolic preprocessing as a preliminary step
before the object-oriented LFR realization are presented, where for each specific symbolic
method the resulting total orders without and with additional exact numerical n-d order
reduction [29] are given in the successive columns. For the partial-fraction form(Parfrac),
continued-fraction form (Confrac), Horner form and the VS factorization, all possibilities
(parameter permutations or combinations) are calculated (tryhard-option of sym2dlfr

function, see chapter 4) and the LFR with the lowest order is taken.
The total orders r without further exact numerical order reduction are ranging from

48 to 11, however it is very interesting to see that sometimes a symbolic method that
achieves a better initial LFR order does not allow to obtain a better result after the
exact numerical order reduction. As an example the ETD allows to directly realize
an LFR of order 23, which can be further reduced to order 14, whereas the continued
fraction form only yields an LFR of order 34 but this LFR can also be reduced to order
14. This shows that the symbolic preprocessing methods should always be evaluated in
combination with the exact n-d numerical order reduction. It is also very interesting that
the ETD technique, which is specially suited for Laurent polynomial expressions, clearly
outperforms the standard Tree Decomposition (TD), which is applied to a polynomially
factorized representation of a29 as proposed in [24].

Table 5.8: Reduced LFR model orders for element a29

Preprocessing r {r1, r2, r3, r4} r(red) {r1, r2, r3, r4}(red)
Parfrac 48 {9, 23, 7, 9} 24 {5, 9, 5, 5}
Confrac 34 {2, 5, 18, 9} 14 {2, 5, 4, 3}
Optimize 33 {4, 10, 18, 1} 16 {4, 9, 2, 1}

TD 31 {5, 13, 6, 7} 21 {3, 11, 4, 3}
Horner 26 {4, 7, 6, 9} 13 {4, 4, 4, 1}
ETD 23 {3, 6, 8, 6} 14 {3, 6, 3, 2}

VS+ETD 11 {2, 4, 3, 2} 11 {2, 4, 3, 2}

The best result is obtained by the combined VS and ETD approach. The VS factoriza-
tion of a29(δ) = v(δs1 , δ

−1
s2

)T u(δs3 , δ
−1
s4

) with δs1 = δs2 = {m, V } and δs3 = δs4 = {Xcg, Zcg}
yields

v(δs1 , δ
−1
s2

) =

 V
m
m
V 3

1
V

 , u(δs3 , δ
−1
s4

) =

 u1

u2

u3


with

u1 = −46.849 + 100.133Xcg − 14.2516Zcg

−0.2556X2
cg − 0.0710X2

cgZcg + 1.1243XcgZcg

u2 = 0.0022− 0.0103Xcg − 0.0073Zcg

+0.0017X2
cg − 0.0011X2

cgZcg + 0.0063XcgZcg

u3 = −0.0828 + 0.3060Xcg + 1.5189Zcg

−0.0106X2
cg + 0.0183X2

cgZcg − 0.2422XcgZcg

and the application of the ETD yields LFRs of order 6 for v(δs1 , δ
−1
s2

) and order 5 for
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5 Robust stability analysis for the RCAM

u(δs3 , δ
−1
s4

), resulting in an LFR of order 11 for a29(δ). Remarkably, the order 11, obtained
exclusively by symbolic pre-processing is smaller than ”least” orders about 15 achieved
by combining various symbolic and numerical order reduction tools in [83], starting from
initial realizations of orders up to 405. The order 11 LFR is also very close to the lower
bound for the LFR order for a29, which is 9 ({r1, r2, r3, r4} = {2, 4, 2, 1}). We conjecture
that 11 is already the minimal order.

5.2 LFR realization for the full RCAM

The parametric state space matrices A(δ), B(δ), C(δ), D(δ) of the RCAM are given in
appendix D and have only elements as Laurent polynomials in the indeterminates. Several
LFRs for the concatenated matrix

S(δ) =

[
A(δ) B(δ)
C(δ) D(δ)

]
are computed and the results are presented in Table 5.9. Without symbolic preprocessing
an LFR with order 400 ({108, 201, 69, 22}) is obtained using the object-oriented LFR
realization approach based on the generalized LFR.

Table 5.9: LFR orders for RCAM

Preprocessing r {r1, r2, r3, r4} r(red) {r1, r2, r3, r4}(red)
Optimize 370 {98, 181, 69, 22} 170 {41, 94, 25, 10}
Parfrac 312 {87, 164, 39, 22} 110 {36, 44, 17, 13}
Confrac 260 {64, 105, 69, 22} 103 {25, 48, 23, 7}
Horner 253 {67, 112, 52, 22} 106 {29, 45, 27, 5}

TD 137 {35, 61, 28, 13} 107 {35, 50, 17, 5}
ETD 109 {27, 45, 26, 11} 91 {24, 38, 21, 8}

VS+ETD 66 {16, 30, 15, 5} 65 {16, 30, 14, 5}

The partial-fraction, continued-fraction and Horner forms are based on single elements
of S(δ) and do not consider any dependencies between the matrix elements. However the
following numerical order reduction also yields quite good order reduction results. The
”Optimize” method, although suited for matrices, yields the worst results.

Again, the best result is obtained by employing the combined VS and ETD approach
in conjunction with the ”try-hard” option. The resulting LFR of S(δ) is of order 66 and
it is possible to exactly reduce this LFR to order 65, which is very close to the theoretical
least order bound of 56, calculated with the procedure described in section 3.6. In this
specific case, the VS factorization has been applied to the rows of S(δ) using the variable
splitting δs1 = δs2 = {Xcg, Zcg} and δs3 = δs4 = {m, V }.

For the RCAM, a ”try-hard” search using the combined VS plus ETD approach requires
120 distinct applications. With an average of approximately 180s for each decomposition
the whole approach takes about 6 hours on a Intel Xeon 2.8 GHz running Matlab 7.1
on a Linux computer. As the 120 decompositions can be calculated independently a
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5.3 Accuracy of low order LFRs

parallelization of the procedure is straightforward. At the DLR Institute of Robotics and
Mechatronics a Linux-Cluster with 30 PCs is available, which allowed to perform the
whole calculation within less than 15 minutes.

5.3 Accuracy of low order LFRs

For the very complex parametric model given by the RCAM, the combined VS and ETD
approach allows to obtain an LFR, where a further exact numerical order reduction is
almost unnecessary as the order of 66 can only be reduced to 65. For the a29 element, no
additional numerical reduction is possible. These are remarkable results as the symbolic
preprocessing can be applied without any loss of accuracy (floating-point numbers are
represented exactly in rational form), whereas numerical order reduction is always based
on tolerance dependent rank decisions. Therefore it is always beneficial for the accuracy
of the resulting LFR, if no numerical order reduction must be applied. To illustrate this,
the accuracies of the low order LFRs obtained with the combined VS and ETD approach
are compared with the accuracies of numerically reduced LFRs obtained with the Robust
Control Toolbox 3.0.1 of Matlab. This toolbox offers two kinds of numerical reduction
called ”basic” and ”full”. The ”basic” method is based on the 1-d order reduction method
of [77] and the Matlab function sminreal is repeatedly called to detect structurally 1-d
unobservable/uncontrollable parts. The ”full” method is also based on the 1-d order
reduction principle, but performs 1-d balancing and truncation, where all system parts
with Hankel singular values less than 1e-16 are truncated.

Table 5.10 presents the accuracies of the different LFRs. The accuracy is derived
as follows: substitute the symbolic vector δ in the symbolic matrix S(δ) with random
numerical values δrand and subtract the numerical matrix S(δ)|δ=δrand

from the related
numerical upper-LFT S ′(δ)|δ=δrand

= Fu(M, ∆)|δ=δrand
for 200 random parameterizations

δrand and the maximum of the 2-norms of the 200 samples is taken as accuracy, i.e.

e = max
i

(
‖S(δ)|δ=δrand,i

− S ′(δ)|δ=δrand,i
‖2
)
, i = 1, . . . , 200.

The notation ”n-d” (”Appr”) in Table 5.10 means exact n-d (approximate 1-d) order
reduction and using the functions minlfr (redlfr1) of the LFR Toolbox.

The numerical reduction method ”Basic” has almost no effect on the order of the
LFRs. The method ”Full”, which is applied after every step during the object-oriented
LFR realization yields a large loss of accuracy with an error e of more than 3 percent.
On the other hand, the LFRs obtained after symbolic preprocessing are almost of full
accuracy, e =7e-18 for a29 and e =6e-14 for S(δ), which is very important to have reliable
LFRs for the application of robust controller synthesis and stability/performance analysis.

It is interesting to see that if one may be confident with the low accuracy obtained
by the ”Full” method, almost the same accuracy can be obtained by applying numerical
approximation to the LFRs obtained after symbolic preprocessing. However, in this case
it is possible to further reduce the order to 7 and 48 for a29 and S(δ), respectively.
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5 Robust stability analysis for the RCAM

Table 5.10: Accuracy of LFRs for RCAM

Symbolic Symbolic Numerical r {r1, r2, r3, r4} e
model preprocessing reduction
a29 — Basic 61 {12,30,18,1} 1e-17
a29 — Full 12 {4,3,4,1} 4e-4
a29 VS+ETD — 11 {2,4,2,3} 7e-18
a29 VS+ETD Appr 7 {2,2,2,1} 1e-4
S(δ) — Basic 395 {108,201,69,17} 6e-14
S(δ) — Full 94 {24,42,19,9} 3.3e-2
S(δ) VS+ETD — 66 {16,30,15,5} 6e-14
S(δ) VS+ETD n-d 65 {16,30,14,5} 6e-14
S(δ) VS+ETD Appr 48 {13,22,11,2} 2.5e-3

5.4 Improved robust stability analysis using µ

In this section a µ-analysis approach for robust stability analysis is performed. In [58]
the RCAM served as a benchmark for the design of a robust controller for a civil aircraft
in the approach for landing. Thirteen controllers based on ten different controller design
methods were developed by ten companies/universities, see Tables 5.11 and 5.12. The
highly nonlinear controller MP-20 was excluded from the µ-analysis, as unpredictable
effects with numerical linearization were expected.

Table 5.11: Participating companies/universities

Acronym Company/Institute

CERT Centre d’Études et de Recherches de Toulouse
CUN Cranfield University
DLR Deutsches Zentrum für Luft- und Raumfahrt
DUT Delft University of Technology
LAAS Laboratoire d’Analyse et d’Architecture des Systèmes
LUT Loughborough University
NLR National Aerospace Laboratory
UCAM University of Cambridge
ULES University of Leicester
UNED Universidad Nacional de Educación a Distancia

As already mentioned, due to a lack of suitable symbolic preprocessing techniques and
efficient numerical order reduction methods, an LFR for the RCAM of order 193 was
derived in [58]. As the order of this LFR was too large for efficient and reliable stability
analysis based on µ, it was decided to neglect the variations in airspeed V leading to an
LFR of order 35, which was of reasonable size to perform µ-analysis. However, by the
comparison with the optimization based worst-case search in [58] it was already obvious,
that the results obtained from µ-analysis using the LFR of order 35 (without uncertainties
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5.4 Improved robust stability analysis using µ

Table 5.12: RCAM controllers

Controller Methodology Design Team
MS-11 µ-Synthesis DUT
MM-12 Modal multi-model synthesis CERT
CC-13 Classical control CUN
LY-14 Lyapunov technique LAAS
FL-15 Fuzzy logic control DUT
MO-16 Multi-model multi-objective optimization DLR
EA-18 Eigenstructure assignment LUT
MS-19 µ-Synthesis NLR
MP-20 Model-based predictive control UCAM
HI-21 H∞-synthesis ULES
EA-22 Eigenstructure assignment UNED
HI-24 H∞-synthesis DLR
MF-25 Model following control DLR

in V ) were overly optimistic, that is, for some controllers the value of µ was clearly less
than one but the worst-case search could find uncertain parameter values δ ∈ Π leading
to instability.

Using the low order LFR realization techniques described in this thesis a very accurate
LFR of low order 65 could be derived, which considers also uncertainties in V . This LFR
is of reasonable order to perform µ-analysis.

The overall structure for robust stability analysis is presented in figure 5.2, where r is
the reference signal y is the output and K is the controller, which is chosen from the set
of linearized controllers in Table 5.12.

r

K
0.01 ∆c

∆

y
RCAM

∆τ

Mτ Ga

Figure 5.2: Detailed structure for robust stability analysis for RCAM

For each input (u(1)−u(5)) of the RCAM an actuator model is defined and the dynamic
transfer matrix of the block Ga is given by

Ga =


6.667

s+6.667
0 0 0 0

0 6.667
s+6.667

0 0 0

0 0 3.333
s+3.333

0 0

0 0 0 0.6667
s+0.6667

0

0 0 0 0 0.6667
s+0.6667

 .
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5 Robust stability analysis for the RCAM

Furthermore an uncertain time delay τ ∈ [0.05, 0.1]s is assumed at each actuator input.
The delay is approximated with a first order Padé-filter as

e−τs ≈ 2− τs

2 + τs

and is reasonably accurate up to a frequency of ±10rad/s. Since τ is identical for each
actuator input, the uncertainty matrix ∆τ of the LFR (Mτ , ∆τ ) is given by ∆τ = τI5. In
addition a small extra complex perturbation is added. As it is assumed that ‖∆c‖∞ =
‖diag(δc1 , δc2 , δc3 , δc4 , δc5)‖∞ ≤ 1, the perturbation 0.01∆c is only 1% and may for exam-
ple account for unmodelled dynamics or gain and phase variations at the input of the
actuators. However, the main motivation for the introduction of these small complex
uncertainties is that the computation of the lower µ-bounds becomes tractable [11]. The
final interconnection structure for analysis is shown in figure 5.3, where

∆T = diag(mI16, V I30, XcgI14, ZcgI5, τI5, δc1 , δc2 , δc3 , δc4 , δc5),

with m, V, Xcg, Zcg, τ ∈ R and δc1 , δc2 , δc3 , δc4 , δc5 ∈ C.

∆T

z

y

P

K

u

w

Figure 5.3: Compact structure for robust stability analysis for RCAM

The results of the µ-analysis for controlled RCAM, using the very accurate, low order
LFR, are summarized in Table 5.13. In figures 5.4 and 5.5 the upper and lower µ-bounds
for the interesting frequency range from 10−1 rad/s to 101.5 rad/s are presented. In this
interval, 100 equidistant grid points are chosen over a logarithmic frequency scale. The
Robust Control Toolbox of Matlab [11] is used to perform the µ-analysis.

For comparison the µ-analysis and the optimization-based worst-case search results
from [58] are also included. The worst-case search repeatedly calculates the eigenvalues of
the linearized closed-loop system within an optimization based parameter search directed
to determine the minimum damping ζworst over all admissible parameter values. Each
calculation of the least damping involves the trimming of the nonlinear open-loop system
and the linearization of the closed-loop system.

In every case the µ-analysis from [58] led to lower values for the maximum of the
µ-upper-bound. These more optimistic results come from the fact, that the variation
in airspeed V was not considered. Even more important is that the µ-analysis results
from [58] indicate robust closed-loop stability for the controllers MS-11, EA-18, HI-24,
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Table 5.13: Robust stability analysis results for RCAM

Controller Dynamic µ-upper bound µ-upper bound ζworst ζskewµ

order of K from [58]
MM-12 9 0.50 0.36 0.26 0.25
MO-16 12 0.59 0.35 0.21 0.19
LY-14 39 0.74 0.57 0.08 0.055
EA-22 9 0.82 0.39 0.15 0.12
CC-13 11 0.85 0.51 0.04 0.035
FL-15 5 0.98 0.44 – –
MF-25 36 0.99 0.65 0.05 –
HI-24 26 0.99 0.94 -0.03 –
MS-11 62 1.15 0.49 -0.06 –
EA-18 5 1.26 0.83 -0.04 –
MS-19 35 1.94 1.36 -0.13 –
HI-21 36 2.28 1.53 -0.18 –

which was proven to be wrong from the worst-case search. The new µ-analysis results,
involving the accurate, low order LFR including variations in V , mainly coincide with
the worst-case search results. The closed-loop system with controller MM-12 yields the
lowest µ-upper-bound value and also the best damping value. The controllers MS-11 and
EA-18 are clearly indicated to not fulfill the robust closed-loop stability test. For the
closed-loop system with controller HI-24 a µ-upper-bound of 0.99 is obtained, which is
at the robust stability boundary and practically indicates an unstable system as already
shown from the worst-case search.

The last column in Table 5.13 represents results obtained with the Skew-µ toolbox for
Matlab [36]. Contrarily to the µ-Analysis and Synthesis toolbox, where the µ upper
bound, if less than one, guarantees that the eigenvalues of the controlled RCAM are
robustly located in the left half plane of the complex plane, the Skew-µ toolbox allows to
study the robust location of the eigenvalues within a truncated sector, which is defined by
a maximum allowable real part and a minimum damping. The last column in Table 5.13
represents the minimum damping value ζskewµ, which was increased until a skew-µ upper
bound value of one was obtained. For the controllers MM-12, MO-16, LY-14, EA-22
and CC-13, the values for ζskewµ are slightly below the values ζworst, which exactly meets
the expectations as the skew-µ results should serve as a guaranteed bound for the worst
damping.
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Figure 5.4: µ-analysis results for RCAM (1)
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Figure 5.5: µ-analysis results for RCAM (2)
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6 Robust vehicle steering control
design

In this chapter two approaches for the design of a robust steering controller to improve the
yaw dynamics of a passenger car are presented [40]. The controller helps to avoid danger-
ous yaw motions of an automobile, which may result from unsymmetrical perturbations
like side wind, unilateral loss of tire pressure or unilaterally icy road (µ-split braking).
In such situations the driver may react to slow, allowing large yaw motions, which are
then overcompensated by large steering angles and braking leading to instability and ac-
cidents. A controller can react very fast to yaw disturbances and may almost completely
compensate the perturbations. Hence, the driver is not scared by large yaw dynamics,
which avoids panic reactions and high workload. This is a topic of active research for
many years.

One approach is to use individual wheel braking [79, 80], another method is to command
additional steering angles [2, 3, 20] for compensation of the disturbing yaw moment. The
last approach is followed in this chapter and a steer-by-wire actuator is assumed, where
the commands to the steering actuator from the steering controller are added to the
steering commands of the driver commanded by the steering wheel. A main objective is
that the controller must be robust with respect to large variations in longitudinal speed,
road adhesion, mass, inertia and unstructured uncertainty accounting for unmodelled
dynamics. Furthermore, the control action should not be uncomfortable to the driver
and passengers.

Two different controllers are designed. One approach is performed using µ-synthesis,
yielding a controller which is robust to variations in longitudinal speed and road adhesion.
From a robust stability point of view, this approach is comparable to the results presented
in [3, 20], where in principle robust stability is only guaranteed for uncertain but constant
parameters. In reality, the control action to reduce yaw motion due to unsymmetrical
perturbations is usually required during manoeuvres as µ-split braking, where the speed
v of the vehicle is by no means constant. Therefore a second gain-scheduling control
design is performed, that guarantees robust stability in case of bounded variation rates
of v using Linear Parameter Varying (LPV) control design techniques. In all cases it
is assumed that the speed v and the yaw rate r can be measured and are available for
control. For some basic results about the used LPV approach see appendix B.

Major improvements compared to the results presented in [3, 20] are that paramet-
ric uncertainties in the mass and inertia of the vehicle model are explicitly considered
as structured uncertainties, which allows to improve the closed-loop performance. The
method presented in [3, 20] usually only allows to consider 2 uncertain parameters as
structured uncertainty and any additional uncertainty is considered as unstructured.
Furthermore the controller synthesis techniques employed in this thesis allow to achieve
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6.1 Single-Track model and steering actuator

robust performance for a considerably larger uncertainty region than presented in [3, 20].

6.1 Single-Track model and steering actuator

The vehicle model, which is used for control design is the classical linearized single-track
model [1]. A more complex vehicle model consisting of the linearized single-track model
with roll-augmentation is also presented in [1], and control laws for rollover avoidance
are designed. In this thesis the single-track model with roll augmentation is only used to
demonstrate the low-order LFR realization techniques and the simpler single-track model
is used for both LFR realization and control design.

y

r

lr

CG1

β

v

lf

δf

x

z

φ
CG2

m2g
h

CG1 y

m1g

Figure 6.1: Single-Track model with roll augmentation

The linearized equations of motion are given in descriptor form (2.50) with

E(δ) =


1 0 0 0
0 mv 0 −hm2

0 0 Jz 0
0 −hm2v 0 Jx,2 + h2m2



A(δ) =


0 0 0 1
0 −(cf + cr)µ −(cf lf − crlr)

µ
v
−mv 0

0 −(cf lf − crlr)µ −(cf l
2
f + crl

2
r)

µ
v

0
−cφ + m2gh 0 hm2v −dφ̇


B(δ) =

[
0 cfµ cf lfµ 0

]T
C =

[
0 0 1 0

]
, D = 0,

(6.1)

where m = m1 + m2. The system state vector and the input vector are given by x =[
φ β r φ̇

]T
and u = δf , respectively.

The steering actuator model [1] is shown in figure 6.2. The parameters of this position
controlled electric motor model are La = 0 (electric time constant neglected), Ra = 5 Ω,
Ja = 0.004053 kg m2, kf = 0.01625, Ka = 22.22, kme = kem = 0.9 Nm/A.

Note, in the following sections the name µ is used for the road adhesion parameter
but also to denote the structured singular value as described in appendix A. However,
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6 Robust vehicle steering control design

Table 6.1: Vehicle Data

Parameter Unit Description
(or Variable)
cf [kN/rad] front cornering stiffness
cr [kN/rad] rear cornering stiffness
cφ [kN m/rad] roll stiffness of passive suspension
dφ̇ [kN m s/rad] roll damping of passive suspension

g [m/s2] acceleration due to gravity
h [m] nominal height of CG2 over roll axis
Jx,2 [kg m2] roll moment of inertia, sprung mass
Jz [kg m2] overall yaw moment of inertia
lf [m] distance of front axle to CG1

lr [m] distance of rear axle to CG1

m1 [kg] mass of chassis
m2 [kg] sprung mass
µ road adhesion
v [m/s] magnitude of velocity vector
r [rad/s] yaw rate
β [rad] chassis side-slip angle at CG1

δf [rad] front wheel steering angle
φ [rad] roll angle of sprung mass

for each occurrence of µ the meaning should be clear from the context. Furthermore,
SI-units are assumed for all model parameters and for simplicity, the units are omitted.

6.2 LFR realization for roll-augmented single track model

For the single-track model with roll augmentation the parameters m1, m2, h, v, µ, Jx,2

and Jz are considered as uncertain.
The vehicle model (6.1) is given in descriptor form as,[

1 0
0 M(δ)

]
ẋ =

[
0 1

−K(δ) −D(δ)

]
x +

[
0

S(δ)

]
u

y = Cx

which is the direct representation in state space for a second order physical system model
described as

M(δ)ẍ + D(δ)ẋ + K(δ)x = S(δ)u.

A standard state-space description may be derived as

ẋ =

[
0 1

−M−1(δ)K(δ) −M−1(δ)D(δ)

]
x +

[
0

M−1(δ)S(δ)

]
u

y = Cx,

(6.2)
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Figure 6.2: Steering actuator model

where the symbolic inversion of M(δ) may yield very complex symbolic expressions in
the entries of the system matrices. It will be shown in the following that this arbitrarily
introduced complexity may yield LFRs of higher order compared to LFRs, that are
directly realized for the descriptor system representation of the vehicle model. Therefore
it can be seen as a good practice to avoid symbolic inversions before the LFR realization
and to employ the direct LFR realization methods for descriptor systems as described in
section 2.4.

In table 6.2 the resulting orders r of the LFRs, with

∆ = diag(Jx,2Ir1 , JzIr2 , hIr3 , m1Ir4 , m2Ir5 , µIr6 , vIr7),

which are realized from the standard state-space representation (6.2) of the vehicle model
are presented. All the models are realized without preliminary symbolic normalization
of (6.2) using the generalized LFR during the object-oriented LFR realization. Without
symbolic preprocessing an LFR of order 147 is derived, which can be reduced to order
61 using exact numerical order reduction. For this example, symbolic preprocessing
techniques as transformation to Horner form, partial fraction decomposition (Parfrac),
continued fraction decomposition (Confrac) and the Maple routine Optimize allow to
reduce the initial order from 147 to about 120. However, the resulting numerically reduced
LFRs are at least of order 99, which is larger than the order 61 obtained without symbolic
techniques. It seems that in these cases the symbolic preprocessing introduces constructs
that are disadvantageous in terms of the commutativity problem as described in section
3.1. The combined VS+ETD approach allows to directly derive an LFR of order 24,
which cannot be further reduced without loss of accuracy. The ETD approach, which
directly yields an LFR of order 27, which can be further exactly reduced to order 23.

In table 6.3 the order of the LFRs realized from the descriptor system representation
(6.1) of the vehicle model are presented. In this case the Horner, Optimize, Parfrac and
Confrac techniques do not allow to further reduce the initial order of 29 and in all cases
an LFR of order 14 is obtained after numerical order reduction. Only the ETD and
the combined VS+ETD techniques allow to directly derive an LFR of minimal order 12
without any further numerical order reduction. To show, that 12 is the minimal achievable
LFR order for the vehicle model one may simply calculate the lower bound for the LFR
order as described in section 3.6, which is 12.

In the case of a preliminary symbolic normalization and expansion of the rational entries
of the system matrices in standard state-space form (6.2) a direct object-oriented LFR
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6 Robust vehicle steering control design

Table 6.2: LFR orders for standard state-space vehicle model

Preprocessing r {r1, r2, r3, r4, r5, r6, r7} r(red) {r1, r2, r3, r4, r5, r6, r7}
– 147 {25, 3, 36, 25, 36, 10, 12} 61 {7, 1, 17, 7, 16, 5, 8}

Parfrac 127 {18, 3, 29, 23, 31, 13, 10} 115 {12, 2, 29, 20, 30, 12, 10}
Horner 127 {18, 3, 29, 23, 31, 13, 10} 115 {12, 2, 29, 20, 30, 12, 10}
Confrac 124 {17, 3, 29, 26, 31, 10, 8} 108 {12, 2, 20, 20, 30, 7, 8}
Optimize 112 {12, 3, 28, 23, 30, 9, 7} 99 {12, 1, 28, 20, 27, 6, 5}

TD 41 {7, 1, 11, 6, 4, 4, 8} 35 {5, 1, 10, 4, 4, 3, 8}
ETD 27 {4, 1, 4, 4, 3, 4, 7} 23 {3, 1, 4, 3, 3, 2, 7}

VS+ETD 24 {3, 1, 4, 4, 3, 2, 7} 24 {3, 1, 4, 4, 3, 2, 7}

Table 6.3: LFR orders for descriptor system vehicle model.

Preprocessing r {r1, r2, r3, r4, r5, r6, r7} r(red) {r1, r2, r3, r4, r5, r6, r7}
– 29 {1, 1, 6, 2, 7, 6, 6} 14 {1, 1, 3, 1, 2, 2, 4}

Parfrac 29 {1, 1, 6, 2, 7, 6, 6} 14 {1, 1, 3, 1, 2, 2, 4}
Horner 29 {1, 1, 6, 2, 7, 6, 6} 14 {1, 1, 3, 1, 2, 2, 4}
Confrac 29 {1, 1, 6, 2, 7, 6, 6} 14 {1, 1, 3, 1, 2, 2, 4}
Optimize 29 {1, 1, 6, 2, 7, 6, 6} 14 {1, 1, 3, 1, 2, 2, 4}

TD 17 {1, 1, 3, 2, 4, 2, 4} 15 {1, 1, 2, 2, 3, 2, 4}
ETD 12 {1, 1, 2, 1, 2, 2, 3} 12 {1, 1, 2, 1, 2, 2, 3}

VS+ETD 12 {1, 1, 2, 1, 2, 2, 3} 12 {1, 1, 2, 1, 2, 2, 3}

realization would yield an LFR of order 4145, which clearly shows the complexity, that
may be introduced by symbolic inversion and normalization. In contrast, the symbolic
normalization and expansion of the vehicle model in descriptor form (6.1) yields an LFR
of order 58.

6.3 LFR realization for single track model without roll
augmentation

The single track model without roll augmentation, which is used for control design, is
obtained from (6.1) by neglecting the rows and columns related to the states φ and φ̇,
yielding a second order system with the states β and r and input u = δf . The descriptor
system matrices for the single track model without roll augmentation are given as

E(δ) =

[
mv 0
0 Jz

]
, A(δ) =

[
−(cf + cr)µ −(cf lf − crlr)

µ
v
−mv

−(cf lf − crlr)µ −(cf l
2
f + crl

2
r)

µ
v

]
B(δ) =

[
cfµ cf lfµ

]T
, C =

[
0 1

]
, D = 0,

(6.3)

and
A(δ) = E−1(δ)A(δ), B(δ) = E−1(δ)B(δ), C = C, D = D (6.4)
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6.3 LFR realization for single track model without roll augmentation

represent the system matrices of a standard state-space representation. With nominal
parameter values cf = 8424.3, cr = 9570.7, lf = 1.25, lr = 1.32, m1 = m = 1296 and
Jz = 1750, the model may describe a mid-size passenger car. The parameters m, Jz, µ
and v are considered as uncertain.

In tables 6.4 and 6.5 the resulting orders r of the LFRs, with

∆ = diag(JzIr1 , mIr2 , µIr3 , vIr4),

which are realized from the standard state-space representation (6.4) and the descrip-
tor system representation (6.3) of the single-track model without roll augmentation are
presented.

Table 6.4: LFR orders for standard state-space vehicle model

Preprocessing r {r1, r2, r3, r4} r(red) {r1, r2, r3, r4}
– 19 {3, 4, 6, 6} 14 {1, 3, 4, 6}

Parfrac 16 {3, 3, 6, 4} 9 {1, 1, 4, 3}
Horner 16 {3, 3, 6, 4} 9 {1, 1, 4, 3}
Confrac 16 {3, 3, 6, 4} 9 {1, 1, 4, 3}
Optimize 16 {3, 3, 6, 4} 9 {1, 1, 4, 3}

TD 13 {1, 2, 3, 7} 8 {1, 1, 3, 3}
ETD 6 {1, 1, 2, 2} 6 {1, 1, 2, 2}

VS+ETD 6 {1, 1, 2, 2} 6 {1, 1, 2, 2}

Table 6.5: LFR orders for descriptor system vehicle model

Preprocessing r {r1, r2, r3, r4} r(red) {r1, r2, r3, r4}
– 13 {1, 2, 6, 4} 6 {1, 1, 2, 2}

Parfrac 13 {1, 2, 6, 4} 6 {1, 1, 2, 2}
Horner 13 {1, 2, 6, 4} 6 {1, 1, 2, 2}
Confrac 13 {1, 2, 6, 4} 6 {1, 1, 2, 2}
Optimize 13 {1, 2, 6, 4} 6 {1, 1, 2, 2}

TD 11 {1, 2, 3, 5} 7 {1, 1, 2, 3}
ETD 6 {1, 1, 2, 2} 6 {1, 1, 2, 2}

VS+ETD 6 {1, 1, 2, 2} 6 {1, 1, 2, 2}

The ETD and VS+ETD approaches allow to directly obtain an LFR with minimal
order 6, which is also obtained for the single-track model in standard state-space form.
Again, this clearly shows the superiority of these preprocessing techniques. The LFR of
minimal order 6 is used for the following robust vehicle steering control design.

In the case of a preliminary symbolic normalization and expansion of the rational entries
of the system matrices in standard state-space form (6.4) a direct object-oriented LFR
realization would yield an LFR of order 50. In contrast, the symbolic normalization and

73



6 Robust vehicle steering control design

expansion of the vehicle model in descriptor form (6.3) yields an LFR of order 17. The
TD approach combined with numerical order reduction yields an LFR of order 7, which
is the largest order after numerical order reduction. This results from the complexity,
that is introduced by the calculation of a polynomially factorized representation for the
rational single-track model, which is obligatory for the application of the TD.

6.4 Problem specification

The problem specifications are taken from [20], where uncertain parameters and their
corresponding ranges were defined. Furthermore, frequency dependent specifications for
the sensitivity function S and complementary sensitivity function T and specifications
for the locations of the closed-loop eigenvalues are given therein.

0.5

1

µ

10 30

v(m/s)

50

Figure 6.3: Parametric variation range

In figure 6.3 the operating domain of the vehicle in terms of longitudinal speed v ∈
[10; 50] and road adhesion µ ∈ [0.5; 1] is shown. In [20] a controller was designed, which
was robust with respect to µ and scheduled with v. In particular, robust performance
was achieved within the dashed blue polygon marked in figure 6.3. In this thesis, robust
performance is achieved for the whole rectangular uncertainty domain defined by v ∈
[10; 50] and µ ∈ [0.5; 1] (see dotted region in figure 6.3).

Furthermore, in [20] the mass m and the moment of inertia Jz are assumed to be
uncertain, with m ∈ [1296, 1696] and Jz ∈ [1750, 2100], respectively. As m and Jz do not
vary independently, it is assumed that they are linearly related, with

Jz = 616 + 0.875m. (6.5)

Hence, in the model equations, Jz is substituted according to (6.5) and a minimal order
LFR with ∆ = diag(mI2, µI2, vI2) is finally obtained and used for control design.

Note, that the control design method used in [20] usually only allows to consider two
parameters (µ and v) as structured uncertainties and therefore the variations in m and Jz

were considered as an additional unstructured uncertainty. In this thesis the variations
in m and Jz are considered as structured uncertainties, thus reducing conservativeness
and improving the performance of the closed-loop system.
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6.4 Problem specification

6.4.1 Controller Structure
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Figure 6.4: Overall controller structure

The overall controller structure is shown in figure 6.4. The driver input at the steering
wheel is denoted as δs, G = G(s, m, Jz, µ, v) is the parametric single track model, Ga is
the actuator model shown in figure 6.2 and K is the controller. Gd = G(s, 1496, 1925, 1, v)
is the single-track model at actual longitudinal speed, with constant µ = 1 (dry road),
m = 1496, Jz = 1925, which is used to generate the desired reference input rref = GdGaδs,
that should be tracked by the controlled vehicle, with e as the tracking error. The
input d describes disturbance, that should be compensated at a defined low frequency
range (see specification for the sensitivity function S in section 6.4.2) and n denotes
sensor noise, that should be compensated at high frequencies (see specification for the
complementary sensitivity function T in section 6.4.2). The steering wheel input δs is
directly forwarded/connected to the steering actuator Ga. In case of G = Gd and no
disturbance (n = d = 0) there should be no additional steering angle command δc from
the controller K.

6.4.2 Mixed sensitivity specifications and synthesis structure

The frequency dependent specifications describing the desired robust performance re-
quirements for the closed-loop system are defined in the following. The controller synthe-
sis is formulated as an H∞ mixed-sensitivity problem [38] for the tracking interconnection
as shown in figure 6.5, where only the feedback part of the interconnection in figure 6.4
is considered. The disturbances d and n are not explicitly included in figure 6.5, however
the desired rejection of these disturbances is accounted for by the formulation of the
mixed-sensitivity specifications.

The sensitivity function S, the complementary sensitivity function T and the control
sensitivity function R are defined as

S =
e1

rref

=
1

1 + GGaK
=

e

d
(6.6)

T =
e3

rref

=
GGaK

1 + GGaK
=
−e

n
(6.7)

R =
e2

rref

=
K

1 + GGaK
=
−δc

d
=
−δc

n
=

δc

rref

, (6.8)
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6 Robust vehicle steering control design

with e1, e2, e3, rref and d, n, e, δc, rref as shown in figures 6.5 and 6.4, respectively.
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Figure 6.5: Mixed-sensitivity synthesis structure

From equations (6.6)-(6.8) the design objectives for the feedback loop can be deduced.
For example, equation (6.6) shows, that the effect of the disturbance d on the error e
can be made ”small” by making the sensitivity function S small. On the other hand,
equation (6.7) shows that a small T reduces the effect of sensor noise n on the error
e. However, as S + T = 1 there is a conflict between disturbance rejection and sensor-
noise reduction as in the frequency range where a good disturbance rejection is achieved
(i.e., ‖S‖∞ � 1) the sensor-noise is ”passed-through” to the error e (i.e., ‖T‖∞ ≈ 1).
Therefore, a basic assumption is that n is significant in the high-frequency range, whereas
disturbance d should be rejected at low frequencies, which allows a trade-off in formulating
the specifications for S and T .

A further requirement on T is related to robustness to unstructured model uncertainty.
Assuming that the perturbed plant model has the form (1 + ∆)G with ∆ stable and the
closed-loop system is nominally stable. Then the perturbed closed-loop system is stable
if

det(I + (I + ∆)GGaK) = det(I + GGaK)det(I + ∆T )

has no right-half plane zeros. This generally amounts to requiring that ‖∆T‖∞ is small
or that ‖T‖∞ is small at frequencies where ∆ is significant, which usually is the case at
high frequencies.

The function R reflects the sensitivity of the controller to disturbances and noise over
the frequency range. A usual requirement is to have high-gains at low frequencies, where
disturbances are significant and uncertainties are small, and to avoid actuator saturation
by achieving sufficient controller roll-off at frequencies above the actuator/plant band-
width.

Summarizing the above statements, to achieve good performance it is necessary to
have ‖GGaK‖∞ � 1 → ‖S‖∞ � 1 and ‖K‖∞ � 1 in the low frequency range. Good
robustness and sensor-noise rejection requires to obtain ‖GGaK‖∞ � 1 → ‖T‖∞ � 1
in the high-frequency range.

The purpose of the mixed-sensitivity approach is to simultaneously fulfill performance
specifications for S, T and R. Therefore it is necessary to make the different specifications
comparable and to gather them into a matrix function that is suitable for H∞ synthesis.
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6.4 Problem specification

A very convenient way to reflect the different specifications is to employ appropriate
frequency dependent weighting functions WS, WT , WR, which are chosen such that the
specifications on S, T and R are fulfilled if the following inequalities hold:

‖WSS‖∞ ≤ 1, ∀ω (6.9)

‖WT T‖∞ ≤ 1, ∀ω (6.10)

‖WRR‖∞ ≤ 1, ∀ω. (6.11)

For example, the specification for the sensitivity function S can be translated into in-
equality (6.9) by choosing WS such that WS � 1 at low frequencies and WS is sufficiently
small at high frequencies.

Gathering the weighted sensitivity functions into one vector E, with

E =


ẽ1

rref

ẽ2

rref

ẽ3

rref

 =

 WSS
WRR
WT T


allows to formulate the mixed-sensitivity optimization problem as

min
K
‖E‖∞,

where ‖E‖∞ ≤ 1 means that all specifications for S, T and R are fulfilled.
The specifications for S and T are taken from [20], where WS was chosen as WS =

(s+12.6)/(1.8s+1.26), which requires ‖S‖∞ ≤ 0.1 at low frequencies. In [20] a controller
structure was chosen, which inherently offers infinite controller gain at s = 0 and therefore
the specification for S at low frequency will always be fulfilled. Choosing the same WS for
the controller structure as shown in figure 6.4, may yield a controller that allows an error
e, where only 90% of a constant disturbance d are rejected. This may not be considered
satisfactory. To improve performance, the weighting WS was chosen more demanding as

WS =
s + 11

1.8s + 0.11
,

thus requiring ‖e‖2 ≤ 0.01‖d‖2 at low frequencies. Due to Bode’s sensitivity integral
relation [91], the required small norm of S at low frequencies unavoidably results in a
norm larger than one at high frequencies, which shall be bounded with ‖S‖∞ ≤ 1.8. In
figure 6.6 the frequency dependent magnitude of the upper bound W−1

S for S is shown.
Robustness with respect to multiplicative unstructured uncertainty is formulated in

terms of a performance specifications for the complementary sensitivity function T . The
controller must be robust to 10% magnitude uncertainty at low frequencies, where the
model of the vehicle and actuator is reasonably accurate, and 500% uncertainty at high
frequencies, where unmodelled dynamics come into play. A transition frequency of 6 Hz
between low and high frequency uncertainty was chosen based on the knowledge of the
model’s accuracy. This specification is formulated as

WT = 5
s + 3.77

s + 188.5
.
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Figure 6.6: Magnitude of frequency dependent upper bound for S

Note, that in [20] a second specification on T is formulated to account for an unstruc-
tured uncertainty describing variations in m and Jz. Here, this is not included as these
variations are explicitly considered as structured uncertainties.

Finally, sufficiently small controller gains at high frequencies could be obtained by using

WR =
0.25s + 0.9

s + 90
.

6.4.3 Closed-loop eigenvalue specification

In [20] a specification on the location of the closed-loop eigenvalues was formulated, which
is defined as a convex region in the complex plane. In particular, the region D, where
the closed-loop poles should be located (see blue region in figure 6.9), is defined as the
intersection of three convex regions D1, D2, D3 defined as

D1 := {s ∈ C : Re(s) ≤ −2}

D2 :=

{
s ∈ C :

∣∣∣∣arctan
Im(s)

Re(s)

∣∣∣∣ ≤ θ = 1.0472 = arccos(D)

}
D3 := {s ∈ C : |s| ≤ 20π},

where D1 describes a shifted imaginary axis ensuring a limited settling time, D2 describes
a conic sector ensuring a minimum damping D = 0.5 and D3 describes a circle centered
at the origin ensuring that the natural frequency of any pole does not exceed 10 Hz.

For the mixed-sensitivity approach followed in this thesis it is in general possible to
formulate this pole placement specifications in terms of Linear Matrix Inequality (LMI)
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Figure 6.7: Magnitude of frequency dependent upper bounds for T

constraints [22] for the H∞-controller synthesis. However, the eigenvalues of the weighting
functions WS, WT and WR are also included in the set of closed-loop poles and as these
functions are simply multiplied to the outputs e1, e2, e3 of the synthesis structure in
figure 6.5, the controller K has no influence on the poles of the weighting functions.
Therefore these poles are fixed and cannot be placed into a desired region which limits
the choice of D. As an example, the weighting function WT has a pole at s = −188.5
and therefore the pole placement specification defined by the region D3 cannot be met.
The same holds for WS and region D1. Besides the weighting function poles, also the
poles of the scaling functions D (see (A.7)) are fixed and it may happen that even the
pole placement in the region D2 cannot be demanded. However, such a case was not
encountered during the control design. As a result, only the region D2 is considered as
constraint for the controller design in section 6.5.

Although the desired pole-placement in the region D cannot be a priori included as a
design specification, it will be shown that the final frequency weighted controller reduction
in section 6.5.2 yields a controller such that the closed-loop poles are almost located in
the region D. For the LPV controller design in section 6.6, no a priori pole placement
constraints are included, but also in this case the controller reduction step allows to
almost fulfill the desired pole-placement specifications.
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Figure 6.8: Magnitude of frequency dependent upper bound for R

6.5 µ-Synthesis

6.5.1 Synthesis procedure

In this section the µ-synthesis approach as described in section A.4 is applied to design
a robust controller for the vehicle. The control design is performed using the µ-Analysis
and Synthesis Toolbox Version 3.0.7 [12] and the LMI Control Toolbox Version 1.0.8 [37]
running under Matlab 6.5. The LMI Control Toolbox is used to formulate the desired
closed-loop pole placement specification and the function hinfmix is employed for LMI-
based H∞ synthesis under pole placement constraints. For efficiency the LMI solver from
the Sedumi package [75] is used instead of the Matlab solver. The already mentioned
sixth order LFR model, with ∆ = diag(mI2, µI2, vI2), obtained using the LFR-toolbox
and the linear actuator model (see figure 6.2) are used to describe the uncertain plant for
control design.

The overall synthesis structure as shown in figure A.5 is finally generated, where P
has the particular structure as shown in figure 6.10, with G = Fu(M, ∆), w = ∆z,
∆ = diag(mI2, µI2, vI2) and the fictitious performance uncertainty block is given as
∆p ∈ C1×3. As ∆p is not a square matrix, the µ-synthesis optimization problem (A.7) is
slightly reformulated as

min
K(s)

inf
DL(s),DR(s)∈H∞

‖DL(s)Fl(P (s), K(s))DR(s)‖∞, (6.12)

where

DL(s) = diag(D1(s), D2(s), D3(s), I3), DR(s) = diag(D−1
1 (s), D−1

2 (s), D−1
3 (s), I1),

80



6.5 µ-Synthesis

0

-30

-60

60

30

Im θ

-60 -30 0

Re
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with D1, D2, D3 ∈ C2×2. The resulting value of (6.12) is defined as γ.

The D-K-iteration procedure (see section A.4) was initialized with DL = I9 and DR =
I7. The controller synthesis in step two of the procedure was performed using the hinfmix
function of the LMI-Toolbox including a constraint to place the closed-loop poles in the
region D2. In step four of the procedure the fitting of the 12 dynamic entries of the scaling
matrices DL and DR was restricted to third order systems, allowing a maximum order of
36 for DL and DR. As the controller order is equal to the weighted plant order (order 7)
plus twice the order of the scaling matrix, a maximum order of 79 may be obtained for
K.

After eight iterations a controller of order nc = 33 was obtained, which guarantees
robust stability for the full uncertain parameter domain (µ-analysis for robust stability
yields µ = 0.79) and a robust performance value of γ = 1 was achieved. This indicates
that all the mixed-sensitivity performance specifications are robustly fulfilled.
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6.5.2 Frequency-weighted controller reduction

When using standard H∞ controller design techniques [91], the order of the controller is
the same as the generalized plant order. During the µ-synthesis procedure for the vehicle,
scaling matrices DL and DR of order 13 were generated and together with the weighted-
plant order of 7 a controller of order nc = 33 was derived. Obviously the controller is very
complex to be finally applied to a fourth order model consisting of the single-track model
plus actuator. Furthermore, H∞ control design tends to generate controllers K with
very fast dynamics, which causes implementation problems (one pole of the µ-synthesis
controller K has a pole with real part at -180 rad/s).

To overcome these problems, it is common practice to apply model reduction techniques
[6] to calculate a controller Kr with order nr < nc, such that the error em defined as

em = ‖K −Kr‖∞ (6.13)

is small. A drawback of this formulation is that the error em is considered equally over the
whole frequency range, thus possibly preserving also very fast and probably unnecessary
dynamics of the controller. More importantly, there is no direct relation between em and
the robust stability and performance properties of the closed-loop system and it may
happen that a small error em yields a quite remarkable degradation of the performance
value γ. When calculating Kr, it is more natural to preserve stability and performance
properties of the closed-loop system instead of finding an almost exact approximation
of the original controller K. Therefore a more sophisticated approach is to calculate Kr

by applying frequency-weighted controller reduction [4, 82] with the goal to keep the
closed-loop approximation error ec small, which is defined as

ec = ‖Wo(K −Kr)Wi‖∞, (6.14)

with

Wo =
GGa

I + GGaK
, Wi =

1

I + GGaK
.

The minimization of ec in (6.14) allows to directly enforce closed-loop stability and per-
formance.

Remark 6.1. The weighting functions Wo and Wi include the plant model G, which
depends on the parameters m, v, µ and the choice of these parameters may influence
the calculation of Kr. For the single-track model several parameterizations were checked,
and the best closed-loop performance (calculated using µ-analysis) was achieved for Wo

and Wi with G at m = 1296, v = 10 and µ = 1.

For the solution of the minimization problems in (6.13) or (6.14), the balanced trunca-
tion approximation (BTA) [63] and the singular perturbation approximation (SPA) [56]
are used as basis techniques to calculate Kr. For the vehicle controller, the best results
were achieved using the SPA method, which probably results from the exact steady-state
and good low-frequency approximation performed by this method.

For comparison two reduced order controllers Kr1 , Kr2 are calculated. Kr1 is calculated
using frequency-weighted model reduction with approximation error ec as formulated in
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6.5 µ-Synthesis

(6.14). Kr2 is calculated using standard model reduction with em as formulated in (6.13).
Furthermore the SPA method is used to calculate Kr1 and BTA is used for Kr2 . The mex -
functions conred and sysred [85] are used for frequency-weighted controller reduction
and standard model reduction, respectively. These functions are based on a collection of
order reduction tools available in SLICOT [15].

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
conred
sysred

Figure 6.11: Largest 10 Hankel singular values

Table 6.6: Comparison of reduced order controllers

Controller Method Order Natural frequency (Hz) γ
Kr1 conred/SPA 3 14.2 1.03
Kr2 sysred/BTA 3 15.8 1.09

The controller K has one slightly unstable pole at s = 0.05 rad/s, which is always
preserved in the reduced order controllers. For controller reduction, K is split as K =
Ks + Ku, where Ks and Ku denote the stable and unstable controller parts, respectively.
In figure 6.11 the ten largest Hankel singular values of the stable controller part Ks for
frequency-weighted (conred) and standard (sysred) order reduction are shown. From
this values it was decided to use a second order approximation of Ks in both the conred

and sysred case.
In Table 6.6 the properties of the reduced order controllers are presented in terms of

the resulting controller order, the maximum natural frequency of the controller poles and
the achieved closed-loop performance γ. Controller Kr1 is a slightly better approximation
of K at low frequencies and allows the largest deviations in the high frequency range (see
figure 6.12), which is anyway outside the bandwidth of the plant.
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Figure 6.12: Bode plot of controllers

Finally controller Kr1 is chosen as there is almost no performance degradation (γ = 1.03
compared to γ = 1 for K) and the maximum natural frequency of the controller poles is
1.6 Hz smaller than for Kr2 . The state-space matrices A, B, C, D of the controller Kr1

are [
A B
C D

]
=


0.05 0 0 26.01
0 −122.5 47.3 22.98
0 −118.3 −19.52 20.67

0.06 −15.31 2.09 3.125

 .

Remark 6.2. It is important to note, that a µ-controller was also synthesized for
a non-minimal LFR, with uncertainty matrix ∆ = diag(mI2, µI3, vI3) (instead of a
minimal order LFR with ∆ = diag(mI2, µI2, vI2)). The resulting controller yields a
degradation of the closed-loop performance index γ of more than 15%. This may be
caused by the considerably more involved generation of the scaling matrices DR(s) =
diag(D−1

1 (s), D−1
2 (s), D−1

3 (s), I1), DL(s) = diag(D1(s), D2(s), D3(s), I3) with

DR(s) =



∗ ∗ 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 0 0 0 1


,
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6.5 µ-Synthesis

where for each of the 22 frequency varying entries (marked by ∗), a low-order transfer
function must be generated to approximately fit a set of frequency grid-points for each
of these functions. Hence the transfer function scaling matrices DR(s) and DL(s) are
only an approximation to the optimal scalings at each frequency point. Compared to
only 12 frequency varying entries in DR(s) and DL(s) for a minimal order LFR, the
accumulated approximation error for DR(s) and DL(s) may increase for the non-minimal
LFR. Furthermore, the controller order, which is equal to order of the generalized plant
plus the order of the scaling matrices DR(s) and DL(s) may dramatically increase. This
clearly shows the importance of generating least order LFRs.

6.5.3 Frequency domain results

In this section, frequency domain results obtained with Kr1 are presented. Beginning with
the pole specifications, the closed-loop transfer function (without feed-forward controller)

T =
r

rref

=
GGaKr1

1 + GGaKr1

is considered and figure 6.13 shows the closed-loop poles for the parametric single-track
model at the vertices of the uncertain parameter domain. An exhaustive gridding ap-
proach has shown that the single-track model at the vertices of the parameter domain
yields the worst-case closed-loop pole locations with respect to the specifications as de-
fined in section 6.4.3. Therefore only the vertices are considered in figure 6.13. The
damping specification (minimum damping of 0.5), which was explicitly included as a
constraint for the controller design, is fulfilled for all closed-loop poles. The worst-case,
with a minimum damping of 0.618, is given for T (s, m, µ, v)|m=1296,µ=0.5,v=50. The spec-
ification on the natural frequency (maximum natural frequency of 10 Hz), which could
not be a-priori included as a constraint for the controller design, is usually violated for
the transfer functions T at µ = 0.5, with a maximum value for the natural frequency
of 14.1 Hz. However, this violation is acceptable and still may allow a real-time im-
plementation of the controller Kr1 . Finally, the third specification (maximum value of
-2 rad/s for the real part of the closed loop poles), which also could not be a-priori
included as a constraint for the controller design, is violated for the transfer functions
T (s, m, µ, v)|m=1296,µ=0.5,v=50 and T (s, m, µ, v)|m=1696,µ=0.5,v=50, with maximum real parts
at -0.99 rad/s and -1.3 rad/s, respectively. This specification was included to guarantee
a minimum settling-time for the closed-loop system. However, the simulation results in
section 6.7 show very good settling-time properties for these cases.

In figures 6.14, 6.15 and 6.16 the sensitivity, complementary sensitivity and controller
sensitivity functions together with their upper-bound specifications 1/|WS|, 1/|WT | and
1/|WR| are shown. The Bode diagrams of these figures present the sensitivity functions
for the single-track models at the vertices of the considered uncertain parameter domain,
which also include the worst-cases. It can be seen, that all the sensitivity specifications
are fulfilled for the considered uncertain parameter domain. Therefore, the robust per-
formance µ-analysis result of γ = 1.03 for the closed-loop system with Kr1 results from
the slight conservative upper-bound calculation of the µ-analysis.
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6 Robust vehicle steering control design

Considering robust stability only, the µ-analysis results shown in figure 6.17 yield a
maximum upper-bound of 0.79 for the structured singular value µ, which indicates enough
stability margin for the uncertain parameter domain under consideration.
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6.6 LPV-control design

In this section Linear Parameter Varying (LPV) control design methods as proposed in
[88, 87] are applied to the uncertain single-track model. In contrast to the method in
[20] and the µ-synthesis approach of the previous section, where robust stability and
performance is only guaranteed for model parameters that are uncertain but constant,
the LPV approach allows bounded variation rates of parameters that are measurable and
on-line available for control. For the single-track model, the uncertain parameters v, µ,
m and Jz are explicitly considered. However, as it may be hard to measure the road
adhesion µ, mass m and moment of inertia Jz on-line, only the longitudinal vehicle speed
v is assumed to be online measurable for control, whereas µ, m and Jz are considered to
be uncertain but constant. Providing robust stability and performance despite variations
in v is a very important property of the controller, as dangerous yaw disturbances are
caused for example by µ-split braking, where high variation rates of v may occur.

In principle, one may derive an LPV controller with no restrictions on the variation rate
of v. However, guaranteeing robust performance for arbitrary parameter trajectories v(t)
may be overly conservative (or even not possible) and may lead to poor performance of
the closed-loop system [10]. To improve performance, the LPV control design technique
proposed in [88, 87] is employed, where the variation rate of v is assumed to be bounded.
This corresponds to the real physics, where the longitudinal speed v does not change
arbitrarily fast. A drawback of this method is that the control design requires to solve an
infinite-dimensional convex feasibility problem, which can only be solved approximately
by searching for feasibility over a finite dimensional subspace. Therefore a finite gridding
of the single-track model with respect to v is performed and only this finite set of models
is considered for control design, which if successful, yields a controller with guaranteed
properties.

The resulting controller also consists of a finite set of grid-point controllers and the
state-space matrices of the grid-point controllers are linearly interpolated based on the
nearest grid-point plant model. This is in contrast to traditional gain-scheduling design
processes, where several equilibrium point controller designs are performed, followed by
the design of a scheduling procedure to interpolate between the point designs. For some
background on the employed LPV control design procedure see appendix B.

6.6.1 Synthesis structure

For the LPV controller synthesis, only the longitudinal speed v is assumed to be measur-
able and on-line available for control, whereas µ, m and Jz are supposed to be uncertain.
Hence, the resulting controller is scheduled with v and must be robust to uncertainties
in µ, m and Jz.

The LPV control design approach requires a gridding of G(s, v, m, Jz, µ) over the
measurable, varying parameter space v ∈ [10, 50]. Some trials have shown, that a
rather coarse, equally-spaced 3-point gridding, with v = vi ∈ {10, 30, 50} is sufficient
for the LPV controller synthesis. Therefore three models Gi(s, m, Jz, µ), i = 1, . . . , 3,
with Gi(s, m, Jz, µ) = G(s, v, m, Jz, µ)|v=vi

are calculated, where v is substituted with
the corresponding numerical grid-point value vi. For each Gi(s, m, Jz, µ), Jz is substi-
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6.6 LPV-control design

tuted according to (6.5), yielding Gi(s, m, µ) and LFRs (Mi, ∆) of minimal order 4,
with ∆ = diag(mI2, µI2) are generated such that Gi(s, m, µ) = Fu(Mi, ∆). Finally,
weighted mixed-sensitivity synthesis models Pi, i = 1, . . . , 3, with internal structure as
shown in figure 6.18 are calculated. As in the µ-synthesis approach, a scaling matrix

ẽ2

ẽ3

z

ẽ1

y

w

rref

u

Pi

WS

WR

WT

D
Mi

Ga

D−1

Figure 6.18: Structure of synthesis models for LPV-control design

D = diag(D1, D2) with D1, D2 ∈ C2×2 is employed to account for the structured uncer-
tainty matrix ∆ = diag(mI2, µI2). In contrast to the iterative update of D during the
µ-synthesis approach (D-K-iteration with synthesis model P as shown in figure 6.10),
the scaling matrix D is now a fixed integral part of the Pi (see figure 6.18). The it-
erative update of D is not considered as the related µ-analysis procedure may not be
straightforwardly applied for the closed-loop system controlled by the scheduled LPV
controller, which consists of linearly interpolated grid-point controllers. As a result, the
structured uncertainty matrix ∆ may not be optimally considered, which may reduce the
performance of the closed-loop system. However the results are very satisfactorily.

The stable, real, rational, proper, minimum-phase scaling matrix D = D(s) for the
LPV controller synthesis, is obtained by taking only the first two diagonal blocks of the
scaling matrix DL(s), which was generated during the µ-synthesis approach in section 6.5.
The dynamic order of D(s) is five.

6.6.2 Linear point designs

To determine the best achievable performance for the LPV-controlled system, three in-
dependent H∞ controllers, one for each plant Pi, using the interconnection of figure 6.18,
are synthesized. As for these designs, no dependence or variation of v is considered, the
resulting performance levels γ should serve as a lower bound for the gain-scheduled LPV-
controlled single-track model. The resulting values of γ are shown in Table 6.7, where
the best performance is achieved for low speed, which may have the physical interpreta-
tion that achieving robust performance for road adhesion values µ down to 0.5 is more
challenging for high-speed cases.
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Table 6.7: Performance of H∞ point designs

Model v γ
P1 10 0.85
P2 30 0.90
P3 50 0.93

To equalize the objectives across operating points, the performance input rref of the
Pi (see interconnection in figure 6.18) is normalized with the inverse of the achieved
H∞ norm γ. With this scaling each H∞ point design will achieve a γ of 1. Hence, the
performance γ obtained with the gain-scheduled LPV controller can be easily compared
to the point designs.

6.6.3 LPV design

The main motivation for synthesizing an LPV controller was to guarantee robust perfor-
mance in spite of bounded variation rates of the longitudinal speed v. To achieve good
performance, the admissible variation rate should be as small as possible. From physi-
cal considerations the variation rate v̇ of v is assumed to be bounded by v̇ ∈ [−10, 3],
which may correspond to a maximum deceleration of -10 m/s2 at µ = 1 and a quite high
acceleration of 3 m/s2 (corresponding to an acceleration from 0-100 km/h in 9.2 s).

In appendix B it is briefly shown, that the performance analysis and synthesis for
the rate-bounded LPV controller is based on parameter dependent scalings X(δ). For
computational tractability - approximating an infinite dimensional problem with a finite-
dimensional problem - it is necessary to define basis functions fi(δ) to describe the X(δ) =∑N

i=1 fi(δ)Xi matrices. Here, three basis functions were employed: the constant f1 = 1,
f2 = v and f3 = v2. Hence, the scalings X(δ) have the form

X(δ) = X0 + vX1 + v2X2.

In [87] there exists no recommendation how to choose these basis functions and only the
parametric dependence of the plant may give some hints. For example, if the plant model
G(s, δ) includes expressions as sin(δ1) one may also include a basis function fi = sin(δ1)
to describe X(δ).

The controller synthesis requires the solution of a large set of LMIs and is computation-
ally quite demanding (200 s on a Pentium 4, 1.7 GHz with Windows XP and Matlab
6.5). The proper coding of all the LMIs is cumbersome and error-prone. Therefore an
already developed, not publicly available LPV-synthesis toolbox from Gary Balas was
used to derive the gain-scheduled controller. The synthesis consists of a two step proce-
dure, where in the second step a further convex optimization step is performed to limit
the high-frequency controller poles. Finally, a gain-scheduled controller is derived, which
can be simulated using additional Matlab mex-functions. Due to the complexity of the
toolbox and a lack of documentation it was not straightforward to add additional LMI
constraints for the controller synthesis. Therefore especially the closed-loop pole specifi-
cations were not explicitly included and it can be seen, that for the resulting controller
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the minimum damping requirement is slightly violated. However, in the time simulations
(see section 6.7) there is no evidence of undamped behavior.

Finally, a controller consisting of three grid-point controllers, each of them of order 17,
is synthesized. Consider the concatenated matrices

Si =

[
Ai Bi

Ci Di

]
, i = 1, . . . , 3,

with Ai ∈ R17×17, Bi ∈ R17×1, Ci ∈ R1×17, Di ∈ R as the state-space matrices of the
three grid-point controllers for vi ∈ {10, 30, 50}. The state-space matrices A(v), B(v),
C(v), D(v) of the gain-scheduled controller are given as

[
A(v) B(v)
C(v) D(v)

]
=


(

30− v

20

)
S1 +

(
v − 10

20

)
S2, ∀ v ∈ [10, 30]

(
50− v

20

)
S2 +

(
v − 30

20

)
S3, ∀ v ∈ [30, 50]

It is remarkable, that the resulting H∞ performance γ for the gain-scheduled LPV
controller is 1.02, which indicates that the rate-bounded LPV controller almost exactly
recovers the performance of the H∞ point designs. Hence, by using the gain-scheduled
LPV controller, the variations in v do not have any adverse effect on the achievable
performance.

6.6.4 Frequency weighted controller reduction

Frequency weighted controller reduction techniques are applied to each of the three grid-
point controllers. All three controllers can be reduced to order 4 without loss of robust
performance. The maximum natural frequency of the controller poles is 15.6 Hz and
the minimum damping is 0.48. As in section 6.5.2, the same stability and performance
enforcing weighting functions Wo and Wi were employed to describe the reduction error
ec and the SPA-method was used to calculate the reduced order controllers. To allow
linear interpolation of the reduced order controllers, the state-space matrices of the re-
duced order controllers are transformed to block-diagonal form using well-conditioned
non-orthogonal similarity transformations. The concatenated representations S1,r, S2,r,
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S3,r of the state-space matrices of the reduced order grid-point controllers are

S1,r =


−46.92 185.44 0 0 35.34
−40.15 −46.92 0 0 −9.16

0 0 −0.06 0 6.30
0 0 0 −4.03 −1.81

0.76 10.36 0.95 0.83 2.45



S2,r =


−58.54 165.74 0 0 37.69
−26.91 −58.54 0 0 −12.04

0 0 −0.06 0 6.37
0 0 0 −2.78 −2.92

−2.63 13.41 0.99 1.23 3.48



S3,r =


−64.34 169.85 0 0 41.25
−22.56 −64.34 0 0 −13.58

0 0 −0.06 0 7.57
0 0 0 −1.69 −4.36

−3.73 14.55 1.05 1.25 3.95

 .

6.6.5 Frequency domain results

In figure 6.19 the closed-loop poles for the vertices of the parameter domain for m, v, µ
are shown. As no pole-placement constraints were explicitly included for control design,
the resulting closed-loop poles slightly violate the minimum-damping requirement, where
a minimum damping of 0.43 is obtained for µ = 1, v = 10 and m = 1296. A maximum
natural frequency of 15.1 Hz is reached for µ = 0.5, v = 10 and m = 1696, and for
µ = 0.5, v = 50, m = 1696 a closed-loop pole is located at −1.15 rad/s, which is larger
than the desired maximum real-part of −2 rad/s.

The specifications on the sensitivity, complementary sensitivity and controller sensi-
tivity functions are fulfilled for the vertices of the parameter domain as shown in figures
6.20, 6.21 and 6.22.
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Figure 6.21: Bode diagram of complementary sensitivity functions
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Figure 6.22: Bode diagram of controller sensitivity functions
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6.7 Simulation results

In this section, the simulation results for the closed-loop system as shown in figure 6.4
are presented, where K = K(s) for the µ-synthesis controller and K = K(s, v) for the
LPV- controller. The linear single-track model is taken as plant model G and Ga is
given by the actuator model as shown in figure 6.2. As variations in the mass m have
no qualitative effect on the simulation results, all simulations are performed for nominal
mass m = 1496.

Figures 6.23-6.29 represent the reaction of the controlled vehicle to a yaw disturbance
torque Mz step input, which may qualitatively describe a µ-split braking manoeuvre.
For simulation, the matrices B(δ) and D of the single-track model as given in (6.1) are
substituted by

B =


0 0

cfµ 0
cf lfµ Jz

0 0

 , D =
[

0 0
]

and the new input vector is given by u =
[

δf Mz

]T
. For comparison the results

obtained in [20] are also included in the plots and denoted as PS (Parameter-Space
design). The uncontrolled vehicle is denoted as OL (Open-Loop).

Figures 6.30-6.33 describe the tracking behavior of the closed-loop system, where a
steering wheel step response is shown. It is shown how the reference rref (see figure 6.4)
can be tracked for µ = 0.5. No comparison with [20] is given for these results as a different
reference model was used therein.

In detail, figures 6.23 and 6.24 show the low velocity (v = 10) simulations results for a
step input of a yaw disturbance torque at µ = 0.5 and µ = 1, respectively. For µ = 0.5
the best result is achieved using the LPV controller, where the maximum yaw rate r is
11% smaller than for the µ-controller. After 0.3 s the LPV controller achieves zero yaw
rate and the following negative yaw rate may further help to correct the vehicle motion.
For µ = 1 the maximum r is almost the same for all controllers. The LPV controller
shows the best convergence properties and the PS controller shows undamped behavior,
which may be uncomfortable to the driver.

For the high velocity cases shown in figures 6.25 and 6.26 the LPV controller and
the µ-controller clearly outperform the PS controller. For µ = 0.5, the PS controller
allows a maximum r, which is 19% and 33% larger compared to the µ-controller and
LPV controller, respectively. This case is probably the most demanding, as it describes
a manoeuvre at high speed on wet road. For µ = 1, the PS-controller allows a maxi-
mum r, which is 24% and 30% larger compared to the µ-controller and LPV controller,
respectively.

As during manoeuvres like µ-split braking a yaw disturbance torque is usually combined
with a variation of the velocity v, a maybe more realistic scenario is presented in figures
6.27, 6.28, 6.29, where a repeated yaw disturbance step torque Mz is combined with an
acceleration of v̇ = 3 or a full-braking with v̇ = −10. In all cases, the LPV controller,
which is explicitly designed to guarantee robust performance despite bounded variation
rates of v, clearly provides the best disturbance rejection. For yaw disturbance torques
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at velocities v > 15, the µ-controller generally achieves better disturbance rejection than
the PS controller.

The tracking results for the µ-synthesis and LPV controller are shown in figures 6.30-
6.33, where rref denotes the yaw rate of the reference model and OL denotes the yaw rate
of the vehicle without control. Both controllers show very good tracking performance.
In general the maximum tracking error e is about 10% smaller for the LPV controlled
vehicle, however the µ-controller achieves a better damping of the error, which results
from the larger damping value of the closed-loop poles (see figure 6.13 and 6.19).
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Figure 6.23: Yaw disturbance torque at v = 10, µ = 0.5
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Figure 6.24: Yaw disturbance torque at v = 10, µ = 1
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Figure 6.25: Yaw disturbance torque at v = 50, µ = 0.5
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Figure 6.26: Yaw disturbance torque at v = 50, µ = 1
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Figure 6.27: Repeated yaw disturbance torque at v(0) = 10, v̇ = 3, µ = 1
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Figure 6.28: Repeated yaw disturbance torque at v(0) = 30, v̇ = 3, µ = 1
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Figure 6.29: Repeated yaw disturbance torque at v(0) = 50, v̇ = −10, µ = 1
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Figure 6.30: Steering wheel step response at v = 10, µ = 0.5
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Figure 6.31: Steering wheel step response at v = 50, µ = 0.5
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Figure 6.32: Steering wheel step response at v(0) = 10, v̇ = 3, µ = 0.5
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Figure 6.33: Steering wheel step response at v(0) = 50, v̇ = −5, µ = 0.5
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6.8 Summary

Enhanced symbolic preprocessing techniques and object-oriented LFR realization based
on the newly developed generalized LFR were employed to obtain a minimal order LFR for
the parametric single-track model, where parametric uncertainties with respect to mass
m, moment of inertia Jz, road adhesion µ and longitudinal velocity v were assumed. Based
on this LFR, two controllers, a µ-synthesis controller and a gain-scheduled LPV controller
were designed. The mixed sensitivity specifications for the control design were taken from
[20], where a controller was synthesized based on the Parameter Space (PS) method. The
PS method is usually restricted to handle only up to two parameters (in our case µ and
v) as structured uncertainties. Therefore in [20], additional uncertainties with respect
to m and Jz were conservatively approximated as an unstructured uncertainty. For the
controllers developed in this thesis, all parametric uncertainties are explicitly considered
as structured uncertainties, which resulted in a better closed-loop performance.

The developed controllers are synthesized based on H∞ control design methods. A gen-
eral criticism about these methods is the high complexity/dynamic order of the resulting
controllers, which is equal to the order of the weighted plant. For the considered vehicle,
the orders of the µ-synthesis controller and the LPV controller were 33 and 17, respec-
tively. Furthermore, the employed Matlab implementations for H∞ control design tend
to generate controllers with very fast dynamics. However, at least for the vehicle control
design, all these problems could be simply alleviated by applying frequency-weighted con-
troller reduction techniques, reducing the order of the controllers to 3 for the µ-synthesis
controller and 4 for the LPV controller (compared to 3 for the PS controller). The maxi-
mum natural frequency of the closed-loop poles was limited to about 15 Hz, which clearly
allows real-time implementation of the controllers. All this could be achieved without
any degradation of closed-loop stability and performance.

The µ-controller and the LPV controller fulfill the mixed-sensitivity specifications for a
considerably larger uncertainty region than the PS controller. From the time simulations,
the LPV controller shows the best performance for all road, mass and velocity conditions.
At low speed, the time-responses with the PS controller show better performance than the
responses with the µ-controller, but at velocities larger than about 15 m/s the µ-controller
shows better performance than the PS controller. Especially for the most demanding
case, which is a manoeuvre at high velocity (v=50 m/s) on wet road (µ = 0.5), the LPV
controller and the µ-controller clearly outperform the PS controller.

The gain-scheduled LPV controller guarantees robust performance also for bounded
variation rates of v, which also results in better performance for such cases. All controllers
are designed to reject yaw disturbances, which in real-life situations (e.g., µ-split braking)
are usually combined with bounded variations rates of v. This motivates the usage of
the LPV controller, as at least from theory, the µ-controller and the PS controller do
not guarantee robust stability for non-constant parametric uncertainties. The stability-
guaranteeing scheduling policy for the LPV controller is directly obtained from the control
design and no heuristic switching strategy must be designed, which may affect robust
stability.

It is important to note, that the LPV controller and the PS controller need a mea-
surement of the longitudinal vehicle velocity v for the inner control loop. This is not the
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case for the µ-controller, which therefore needs less sensor information and allows a more
fault-tolerant/robust integration into the vehicle.
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This thesis deals with new methods and tools for the realization of low order Linear
Fractional Transformation (LFT) based representations, which are a standard form to
represent uncertainties, nonlinearities and varying parameters in modern robust control
theory [92]. The transformation of a parametric system into a Linear Fractional Repre-
sentation (LFR) is not unique and is equivalent to a multidimensional system realization
[18], for which a theory for the generation of representations with minimal order does
not exist. The pure application of simple ad-hoc methods [77] for LFR realization tends
to generate LFRs with large orders, which may limit/forbid the application of numeri-
cally demanding modern robust control techniques. To realize LFRs of almost minimal
complexity, a three step procedure is employed in this thesis consisting of (i) symbolic
preprocessing of parametric systems using improved and newly developed decomposition
techniques, (ii) object-oriented LFR realization based on a newly developed generalized
LFR, (iii) numerical multidimensional order reduction based on newly implemented nu-
merically reliable and efficient routines.

Symbolic preprocessing has the role to exploit structural information in the parametric
dependence of the system model and to find equivalent representations of the system
model, which are specially suited to generate low order LFRs in conjunction with the
object-oriented LFR realization step. Furthermore, symbolic methods perform without
any loss of accuracy, which is not the case for tolerance dependent numerical order re-
duction techniques. In this thesis newly developed methods as the Variable Splitting
(VS) factorization or the Enhanced Tree Decomposition (ETD) [44, 43] are presented
and an overview about existing techniques is given. All techniques are compared by real-
izing LFRs for a vehicle model (chapter 6) and one of the most complicated parametric
aircraft models (chapter 5) available in literature. A combination of the VS and ETD
techniques allows to directly realize a minimal order LFR (order 6) for the vehicle model
and a nearly minimal order LFR (order 66) for the aircraft model. Especially for the air-
craft model, the new methods clearly outperform existing techniques, which directly yield
LFRs with orders of at least 137. The impressive order reduction results obtained for
rather complex uncertain models show that symbolic preprocessing is the most important
step in obtaining low-order LFRs.

The object-oriented LFR realization [77] is the most flexible and efficient way to trans-
form a rational parametric system model into an LFR. However, employing standard
LFRs during this step generally requires to perform a preliminary symbolic normaliza-
tion of the system parameters, which may increase the order of the resulting LFR. A newly
developed generalized LFR [42, 41] is presented in this thesis, which allows to directly
realize LFRs for rational parametric system models and to perform the normalization
of parameters after the object-oriented LFR realization step. Therefore any unnecessary
increase of the LFR order is avoided.
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Numerical multidimensional order reduction [77, 29] is applied as the last step of the
LFR realization procedure and may allow to remove non-minimal system parts, result-
ing from the preceding steps. For the very complicated aircraft example in chapter 5,
numerical order reduction allowed a further marginal reduction of the order from 66 to
65. This shows that the newly developed symbolic preprocessing methods almost tap
the full potential in terms of achievable order reduction, while keeping the full accuracy
of the original system model. However, for other examples, numerical order reduction
techniques may considerably reduce the order and therefore these methods are employed
as a complementary third step in the overall low order LFR realization procedure. In
addition, numerical order reduction may be used to further reduce the order of an LFR
by calculating sufficiently accurate numerical approximations.

The newly developed Enhanced LFR-toolbox for Matlab [47] (chapter 4) fully sup-
ports all symbolic preprocessing methods as described in chapter 3. Most of the functions
are directly implemented in Maple and efficiently executed via the Maple kernel of the
Extended Symbolic Toolbox of Matlab. The toolbox also employs the generalized LFR
during the object-oriented LFR realization and provides numerically reliable and efficient
implementations for multidimensional numerical order reduction. The underlying sys-
tem manipulations are performed by calling efficient Fortran routines via mex-function
interfaces, allowing to reduce the computation times up to a factor of 100 compared to
standard Matlab tools. Hence, the LFR-toolbox provides a professional tool to fully au-
tomate the proposed three-step low-order LFR realization procedure. The LFR-toolbox
fully supports conversions between LFR-objects and objects from the Robust Control
toolbox, which also allows to employ the efficient order reduction routines from the LFR-
toolbox as a complementary tool to the standard Matlab order reduction routines.

The capabilities of the toolbox are demonstrated by realizing an almost minimal order
LFR for the complex parametric aircraft model called RCAM (chapter 5). This LFR
allows the application of µ-analysis to analyze robust stability for the whole flight en-
velope, which was not possible with earlier generated LFRs of higher complexity. The
µ-analysis results fully agree with results obtained via an optimization-based worst-case
search. Hence, µ-analysis based on low order and accurate LFRs represents a fast com-
plementary tool to asses robust stability.

A minimal order LFR could be realized for a uncertain parametric model representing
the lateral dynamics of a vehicle. Parametric uncertainties/parameter variations are
considered for the road adhesion, the longitudinal velocity, mass and moment of inertia of
the vehicle. Based on this LFR, two robust vehicle steering controllers were synthesized
to improve the yaw dynamics of the vehicle and to increase safety during dangerous
situations as µ-split braking. The controller specifications were taken from [20]. Both
designs robustly fulfill the specifications on the sensitivity, complementary sensitivity
and controller sensitivity functions for a considerably larger uncertainty region than the
Parameter Space (PS) controller synthesized in [20]. Without loss in robust stability and
performance, the high initial orders of the controllers could be remarkably reduced to
at least an order of 4 by using frequency weighted controller reduction techniques. One
design was performed using µ-synthesis, guaranteeing robust stability and performance
for constant uncertain parameters. As realistic dangerous driving situations as µ-split
braking are always combined with relatively high variations rates of the longitudinal
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vehicle velocity, the second controller design is based on Linear Parameter Varying (LPV)
techniques, guaranteeing robust stability and performance also for bounded variation
rates of the vehicle velocity. The resulting LPV controller is scheduled with the vehicle
velocity, which therefore requires an online measurement of the vehicle velocity. In the
time-simulations, the LPV controller shows the best closed-loop performance results for
all mass, road and velocity conditions and in most cases the µ-controller outperforms
the PS controller from [20]. A reason for this is that the two LFR-based control designs
performed in this thesis allow to non-conservatively consider all parametric uncertainties
as structured uncertainties, which is usually limited to 2 parameters for the PS method.
Compared to the PS controller and the LPV controller, the µ-synthesis controller does
not require a measurement of the vehicle velocity for the inner control loop and therefore
allows a more robust/fault-tolerant integration into the vehicle.

Future directions of this research may be concentrated on the improvements of symbolic
preprocessing techniques. Actually, to achieve the best results in terms of low order LFR
realization, most of the symbolic preprocessing methods provide a ”try-hard” option to
check all possible combinations/permutations of parameters. This may be very time-
consuming for complex models with many parameters (e.g., more than 10 parameters)
and therefore it will be important to develop a theory or guidelines, which allow to directly
find the best parameter combination/permutation.

For the symbolic decomposition of vectors and matrices, the VS factorization algorithm
includes heuristic ”condensation” algorithms that increase the order reduction capabili-
ties. Further improvements may be obtained by developing more sophisticated techniques.
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A Structured Singular Value (µ)
Framework

In this chapter a general framework for robust stability/performance analysis and robust
controller synthesis based on the structured singular value µ is briefly introduced. For
a detailed discussion see [92, 91]. The general interconnection structure for any linear
interconnection of input, outputs, disturbances, model perturbations and controllers is
illustrated in figure A.1, where e is an error vector, v are external inputs, y is the mea-
surement output to be used for control, u is the controller output, z and w are the input
and output to the uncertainty block ∆, P is the interconnection system and K is the
controller.

∆

z

e

y

P

K

u

v

w

Figure A.1: General Interconnection Structure

Uncertainties can be modelled either as exogenous disturbances (included in v) and
as model perturbations (included in ∆). While external disturbances can not destabilize
the plant, this is not the case for uncertainties represented as model perturbations.

As an example the interconnection system P for the uncertain controlled plant of
figure 1.1 is given by

 z
e
y

 = P

 w
v
u

 =

 0 0 0 0 I
I I 0 −I G
−I −I −I I −G




w
d
n
r
u

 ,

with v =
[

dT nT rT
]T

as the external input vector, w = (∆G)z and u = Ky.
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The interconnection system P is assumed to be a finite dimensional LTI (linear time
invariant) system of the form

P (s) =

 P11(s) P12(s) P13(s)
P21(s) P22(s) P23(s)
P31(s) P32(s) P33(s)

 . (A.1)

Closing the feedback loops for K and ∆ yields

e = Fu(Fl(P, K), ∆)v = Fl(Fu(P, ∆), K)v.

A.1 Definitions

The following notations and terminologies will be used in the following:

Definition A.1. Consider the general interconnection structure in figure A.1, where the
nominal closed loop system is given for ∆ = 0. Then, the closed-loop system is said to
have

• Nominal Stability (NS): if the nominal closed-loop system is stable

• Robust Stability (RS): if the closed-loop system is stable for all possible closed-
loop systems described by the uncertainty structure

• Nominal Performance (NP): if the performance requirements are met for the
nominal closed-loop system

• Robust Performance (RP): if the performance requirements are met for all
possible closed-loop systems described by the uncertainty structure

Definition A.2. Analytic functions: Let S ⊂ C be an open set, and let f(s) be a
complex-valued function defined on S, that is, f(s) : S → C. Then, f(s) is said to be
analytic at a point z0 ∈ S if it is differentiable at z0 and also at each point in some
neighborhood of z0.

Definition A.3. H∞ Space: The Hardy space H∞ describes all complex-valued func-
tions with complex argument that are analytic and bounded in the open right-half plane.
The H∞ norm is defined as

‖F‖∞ := sup
Re(s)>0

σ[F (s)] = sup
w∈R

σ[F (jω)],

where σ denotes the maximum singular value. The real rational subspace of H∞ is
denoted by RH∞, which describes all proper and real rational stable transfer functions.

Definition A.4. Well-posed: A feedback system is said to be well-posed if all closed-
loop transfer matrices are well-defined and proper. Well-defined means that the inverse
in the expression of the transfer matrix exists (i.e., (I −M11∆)−1 in (2.11) must exist for
all ∆ is a defined set).

118



A.2 Small Gain robust stability test

A.2 Small Gain robust stability test

In this section a stability test for a nominally stable system under unstructured uncer-
tainty is considered. For robust stability analysis it is assumed that the controller K(s) is
already designed and is integral part of the plant. Therefore, the general interconnection
structure of figure A.1 is reduced to the already presented LFT structure in figure A.2,
where

M(s) = Fl(P (s), K(s)) =

[
M11(s) M12(s)
M21(s) M22(s)

]
, (A.2)

with

M11(s) = P11(s) + P13(s)K(s)(I − P33(s)K(s))−1P31(s)

M12(s) = P12(s) + P13(s)K(s)(I − P33(s)K(s))−1P32(s)

M21(s) = P21(s) + P23(s)K(s)(I − P33(s)K(s))−1P31(s)

M22(s) = P22(s) + P23(s)K(s)(I − P33(s)K(s))−1P32(s)

and the transfer function between v and e is given as

Fu(M, ∆) = M22(s) + M21(s)∆(I −M11(s)∆)−1M12(s). (A.3)

∆

z

e M(s) v

w

Figure A.2: Robust stability analysis structure

It is assumed that ∆(s) ∈ RH∞ and the controller K(s) internally stabilizes the
nominal plant, that is, M(s) ∈ RH∞, and the nominal transfer function is given as
Fu(M, 0) = M22(s). Therefore, the transfer matrix (A.3) may only become unstable if
the inverse (I − M11(s)∆)−1 becomes unstable, which is summarized in the following
theorem.

Theorem A.1. (Small Gain Theorem) Suppose M ∈ RH∞ and let γ > 0. Then
the interconnected system shown in figure A.2 is well-posed and internally stable for all
∆(s) ∈ RH∞ with

(i) ‖∆‖∞ ≤ 1/γ if and only if ‖M11(s)‖∞ < γ

(ii) ‖∆‖∞ < 1/γ if and only if ‖M11(s)‖∞ ≤ γ
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Hence robust stability of the LFR (M(s), ∆(s)) requires that

‖M11(s)∆(s)‖∞ = sup
w∈R

σ[M11(jω)∆(jω)] < 1.

This means that no pole will travel from the left half- plane into the right half- plane
due to variations in ∆(s). The above theorem is necessary and sufficient only in the case
of unstructured uncertainty ∆(s). In the case of parametric uncertainty, where ∆(s) has
block-diagonal structure, the small gain test is only a sufficient stability criterion and
may be arbitrarily conservative. This comes from the fact, that in the above theorem
the norms of M11(s) and ∆(s) are calculated separately which does not consider any
structure in the product of these matrices.

A generalization of the small gain test for systems with structured uncertainty is pre-
sented in the next section.

A.3 µ-Analysis

As already mentioned in chapter 1, a plant model may consist of several components
(actuators, sensors, etc.) and each component may admit an individual uncertainty de-
scription, which can be of unstructured (∆j ∈ Cmj×mj) or structured (parametric diagonal
matrices ∆i = δiIri

, δi ∈ C) type. Building the overall plant model, which consists of
the component models and their related uncertainty descriptions, usually yields a system
with structured uncertainty, i.e. unstructured uncertainty at component level becomes
structured uncertainty at system level. Therefore, if the overall system model contains
at least two components that admit an uncertainty description, one obtains a structured
uncertainty for the overall system and the conservativeness of the related analysis or
controller synthesis results may be reduced by explicitly considering this structure.

A.3.1 Definition of µ

Let the set ∆ of uncertainty matrices ∆ be defined by

∆ = {diag(δ1Ir1 , . . . , δkIrk
, ∆1, . . . , ∆f ) : δi ∈ C, ∆j ∈ Cmj×mj} ⊂ Cn×n

and the norm-bounded subset B∆ of ∆ is defined with

B∆ = {∆ ∈∆ : σ(∆) ≤ 1}.
Note, to simplify notation, the full blocks ∆j are assumed to be square.

Definition A.5. For M11 ∈ Cn×n, µ∆(M11) is defined as

µ∆(M11) :=
1

min{σ(∆) : ∆ ∈∆, det(I −M11∆) = 0}
unless no ∆ ∈∆ makes (I −M11∆) singular, in which case µ∆(M11) := 0.

In words µ∆(M11) is the reciprocal of the smallest σ[∆] that can be found in the set
∆, that makes the matrix (I −M11∆) singular. If no such ∆ exists, µ∆(M11) is taken to
be zero.

The main difficulty with µ∆(M11) is, that µ∆(M11) can not be calculated directly.
However, one can calculate tight bounds, which are described in the next section.
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A.3 µ-Analysis

A.3.2 Bounds on µ

In section A.2 the Small Gain Theorem was presented as a necessary and sufficient condi-
tion for well-posedness (non-singularity) of the inverse (I−M11∆)−1, if ∆ ∈ Cn×n. Hence
for ∆ ∈ Cn×n, the following holds

µ∆(M11) = ‖M11‖∞ = σ(M11).

However, for ∆ ∈ ∆, where ∆ is a block-diagonal matrix, the small-gain test is only a
sufficient condition, such that

µ∆(M11) ≤ σ(M11)

and σ(M11) can be taken as an upper bound for µ∆(M11).
Furthermore, it can be shown [91] that a lower bound for µ∆(M11) is given by the

spectral radius ρ(M11) and therefore

ρ(M11) ≤ µ∆(M11) ≤ σ(M11).

By simple examples [91], it can be shown that the gap between these bounds can be
arbitrarily large. Tighter bounds can be obtained by applying transformations on M11

that do not change µ∆(M11), but reduce the gap between ρ(M11) and σ(M11).
To refine the upper bound, let D be a subset of Cn×n with

D = {diag(Dr1 , . . . , Drk
, d1Im1 , . . . , dfImf

) : Dri
= D∗

ri
> 0, dj ∈ R+}, (A.4)

such that for D ∈ D and ∆ ∈ ∆ the commutativity property D∆ = ∆D holds. Since
D−1

D = I one may simple introduce the scaling matrices into the LFT-structure (left
diagram in figure A.3) and due to commutativity of D and ∆ it follows (right diagram
of figure A.3) that

µ∆(M11) = µ∆(DM11D
−1).

D−1

D
e

∆

M(s)
D−1

D

v e
D

∆

M(s)
D−1

v

Figure A.3: Scaling for upper bound

More important is the fact, that the scaling D can be used to improve the upper bound,
that is,

µ∆(M11) ≤ inf
D∈D

σ(DM11D
−1) ≤ σ(M11),

and the calculation of D can be reformulated as a convex optimization problem, where a
global minimum can be found. However, the upper bound is not always equal to µ∆(M11)
[91], but it gives a tight estimate in many practical examples.
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A Structured Singular Value (µ) Framework

Example A.1. Consider

M11 =

[
0.5 100

0.001 0.1

]
, ∆ = diag(δ1, δ2), δi ∈ C,

where σ(M11) ≈ 100. Hence, from the small gain test, one may follow, that (I−M11∆)−1

is well-defined for ‖∆‖∞ = maxi=1,2(|δi|) < 0.01. The conservativeness of this result can
be seen by calculating the lower and upper bounds for µ and the optimal D-scaling using
the Robust Control Toolbox of Matlab [11]. Both the lower and the upper bound are
0.655, thus µ has the same value. The optimal scaling is given by D = diag(1, 316.23)
yielding

µ∆(M11) = σ(DM11D
−1) = σ

([
1 0
0 316.23

] [
0.5 100

0.001 0.1

] [
1 0
0 316.23

]−1
)

= σ

([
0.5 0.3162

0.3162 0.01

])
= 0.655.

With µ∆(M11) = 0.655, it follows that the inverse (I−M11∆)−1 is guaranteed to be well-
defined for |δi| < 1/0.655 = 1.527, i = 1, 2. Compared to the conservative result |δi| <
0.01, i = 1, 2 from the small gain test, this clearly shows the importance of considering
structure of ∆ in the analysis.

For a refinement of the lower bound, consider the set U ⊂ Cn×n of scaling matrices
with

U = {U ∈∆ : UU∗ = In}

where σ(U∆) = σ(∆U) = σ(∆) and µ∆(M11U) = µ∆(UM11) = µ∆(M11). Then a lower
bound is given by

max
U∈U

ρ(UM11) ≤ µ∆(M11). (A.5)

In [34] it was shown that (A.5) is even an equality, however the optimization problem
posed by the lower bound has multiple local maxima and it is generally hard to find
the global one. The power algorithm [66] implemented in the Robust Control Toolbox of
Matlab yields good results in many practical examples but is not guaranteed to converge
to µ∆(M11).

Remark A.1. In this section, the matrix ∆ was considered to be complex. In the case
of mixed real/complex uncertainties a less conservative upper bound can be obtained by
using so called D-G scalings. For more details the reader is referred to [11].

A.3.3 Robust stability

In the previous sections µ was introduced to asses well-definedness of LFRs consisting of
constant matrices. For uncertain dynamical systems one has M = M(jω) and the follow-
ing theorem is a generalization of the Small Gain Theorem for systems with structured
uncertainties.
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A.3 µ-Analysis

Theorem A.2. Suppose M(s) ∈ RH∞ and ∆ ∈ B∆. Then the interconnected system
shown in figure A.2 is well-posed and internally stable if and only if

sup
ω∈R

µB∆(M11(jω)) < 1.

Hence the frequency domain µ test requires to calculate the described lower and upper
bounds at each frequency ω. In practice a limited number of grid points along the
frequency axis is chosen and the bounds are calculated at these points. However, the
grid must be dense enough in order not to miss thin peaks in µB∆(M11(jω)) sometimes
caused by real uncertainties (δi ∈ R) [71].

Remark A.2. In general, a test for robust stability of a parametric dynamical system,
requires to calculate the eigenvalues of the system for all possible parameter combinations.
Therefore, very dense gridding or extensive Monte-Carlo tests must be performed for each
parameter, which may take a very long time. Furthermore, there would be no guarantee
that a worst-case (concerning stability) can be found due to the non-convexity of the
problem. A µ-upper bound less than one may guarantee robust stability a gridding is
performed only with respect to one variable, the frequency ω.

There exists an alternative robust stability test for LFRs based on the Popov criterion
[39, 50], which even avoids the hazards of a frequency sweep. This method is also applica-
ble is cases where the δi are sector-bounded nonlinearities. In case of linear uncertainties,
this test may yield more conservative results than the µ-test.

A.3.4 Robust performance

In H∞ control, performance is usually characterized in terms of the H∞ norm of the
transfer function from disturbance v ∈ Rq to the error e ∈ Rp, that is ‖Fu(M, ∆)‖∞ (see
(A.3)). Without loss of generality it is assumed that ‖Fu(M, ∆)‖∞ < 1 means that all
performance requirements are fulfilled. This can always be achieved by multiplying the
input v and the output e with appropriate weighting/scaling matrices.

Nominal performance (NS) (∆ = 0) is achieved if ‖M22(s)‖∞ < 1, which shows that
robust stability (µ-test for M11(s)) and nominal performance are tested with different
submatrices of M .

The main objective in control design will be to achieve the required performance also
in the presence of uncertainty, that is, to obtain robust performance. The robust per-
formance test can be reformulated as a robust stability test by associating a complex
unstructured uncertainty ∆p ∈ Cq×p with the performance norm (see figure A.4), that is,
v = ∆pe.

With the following definition of the augmented block structure

∆p :=

{[
∆ 0
0 ∆p

]
: ∆ ∈ B∆, ∆p ∈ Cq×p

}
,

the robust performance theorem can be formally stated:
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∆
z w

vM(s)e

∆p

Figure A.4: Interconnection structure for robust performance test

Theorem A.3. Suppose M(s) ∈ RH∞ and ∆ ∈ B∆. Then Fu(M, ∆) is well-posed,
internally stable and ‖Fu(M, ∆)‖∞ < 1 if and only if

sup
ω∈R

µ∆p(M(jω)) < 1.

A.4 µ-Synthesis

In analogy to the robust stability tests using the Small Gain Theorem or the µ-analysis,
the µ-synthesis can be seen as an attempt to generalize the H∞ control design method-
ology to systems with structured uncertainty.

u

v

wz

e

y

K

P

Figure A.5: Interconnection structure for controller synthesis

The robust H∞ synthesis problem involves finding a controller K satisfying the per-
formance requirements for the uncertain system. This is formulated as an optimization
problem: find a stabilizing controller K, which minimizes the H∞ norm of the transfer

function from the input vector w =
[

wT vT
]T

to the output vector z =
[

zT eT
]T

,
that is

min
K
‖Fl(P (s), K(s))‖∞, (A.6)

with Fl(P (s), K(s)) as in (A.2). However, the formulation in (A.6) may be overly con-
servative, as already in the case where ∆ consists of a single unstructured uncertainty,
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A.4 µ-Synthesis

that is, ∆ ∈ Cn×n, the H∞ optimization does not consider the block diagonal structure
of the set ∆p.

To address this limitation, the µ-synthesis approach combines the H∞ optimization
with the upper bound calculation of the µ-analysis by considering the optimization prob-
lem

min
K

inf
D,D−1∈H∞

‖DFl(P (s), K(s))D−1‖∞. (A.7)

As this two-parameter optimization problem is in general not solvable by convex, finite
dimensional methods, the idea of µ-synthesis is to split the problem into two simpler
problems, which can be solved. This is done by iteratively solving for D and K, the
so-called D-K iteration. When D is fixed, K is determined by standard H∞ control
design. For a fixed stabilizing controller K, pointwise, constant solutions Dω for D can
be obtained for a frequency grid by convex optimization (upper bound calculation in µ-
analysis) and the frequency varying D is generated by calculating a single real, rational,
proper, minimum phase approximation for all the Dω.

Given plant model P (s) (see (A.1)) with related uncertainty matrix ∆ ∈ B∆, the
µ-synthesis procedure can be summarized as follows:

1. Initialization: Set the counter k = 1, m0 = ∞ and initialize the scaling, e.g.,
Dk(s) = I.

2. H∞-synthesis: For output z and input w, find a stabilizing controller Kk(s), which
minimizes ‖Dk(s)Fl(P (s), Kk(s))D

−1
k (s)‖∞.

3. µ-analysis: Calculate the upper bound for µ∆p(M(jω)) pointwise for a predefined,
”sufficiently dense” frequency grid, yielding a constant Dω,k+1 for each frequency
point. If the maximum mk of these upper bounds across frequency is less than
1, than the robustness and performance requirements are satisfied and the final
controller is given by Kk. Furthermore, if mk is equal or greater than mk−1, then
stop the iteration and the final controller is given by Kk or Kk−1, respectively.

4. Generate Dk+1: Generate a real, rational, proper, minimum-phase, transfer ma-
trix Dk+1(s), which approximates the set of optimal, constant Dω,k+1 at each fre-
quency point. In general the approximation may result in a high order Dk+1(s),
which in turn may increase the order of the controller K in step 2, as twice the
number of states of the D-scale is added to the plant model (multiplication of the
plant with Dk(s) and D−1

k (s)) and the resulting H∞-controller is usually of the same
order as the scaled plant. Therefore, in practice the order of the D-scale is a-priori
limited to a reasonable size.

5. Increment k and go to step 2.

Remark A.3. Although the optimization problems to find D and K individually are
convex, the problem is not jointly convex in both D and K, and therefore the iteration
method may converge towards a local minimum instead of the global minimum. One
way to possibly avoid this problem is to repeat the iteration process for different initial
estimates of D. Furthermore, the low order, approximate solution for D may introduce
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some errors and the results are restricted to the frequency range under consideration.
However, in many practical examples the µ-synthesis was applied with great success, and
the resulting controller may be close to the global optimum. For structured uncertainty,
the µ-synthesis allows to reduce conservativeness compared to the standard H∞ synthesis,
which may be interpreted as an upper bound for the µ-synthesis.
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B Background on LPV control design

In this appendix some basic results for a quadratic Lyapunov approach to guarantee
closed-loop stability and performance for parameter dependent systems are briefly sum-
marized, which may help to understand the idea of the LPV control design procedure
used in Chapter 6. For a detailed discussion see [87].

B.1 Stability and performance of LPV systems

Consider the linear time-invariant system

ẋ = Ax + Bu

y = Cx.
(B.1)

Theorem B.1. [19](Exponential stability) System (B.1) is exponentially stable if and
only if there exists a matrix X = XT > 0 such that

AT X + XA < 0.

Theorem B.2. [19](Bounded Real Lemma) System (B.1) is exponentially stable and

‖C(sI − A)−1B‖∞ < 1

if and only if there exists a matrix X = XT > 0 such that

AT X + XA + XBBT X + CT C < 0. (B.2)

Using the Schur complement formula [19], the inequality (B.2) can also be written as AT X + XA XB CT

BT X −I 0
C 0 −I

 < 0,

which is denoted as a linear matrix inequality (LMI) in the variable X and represents
a convex constraint on X. The feasibility of this LMI and a solution for X can be
determined by solving a convex optimization problem. The same results can be applied
for parameter-dependent systems.

Lemma B.1. [87] Consider parameter dependent state-space matrices A(δ), B(δ), C(δ)
and suppose there exists a matrix X = XT such that AT (δ)X + XA(δ) XB(δ) CT (δ)

BT (δ)X −I 0
C(δ) 0 −I

 < 0,

for all δ ∈ Π. Then for every parameter trajectory δ(t) ∈ Π, the system is exponentially
stable and ‖C(δ)(sI − A(δ))−1B(δ)‖∞ < 1.
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B Background on LPV control design

The preceding lemma may be used for analysis of closed-loop parameter dependent
systems and it is also a starting point for the synthesis of parameter dependent controllers
for systems without rate bounded parametric variations. For the single-track model
considered in chapter 6, the parameter v does not change arbitrarily fast and therefore a
controller derived assuming a plant without rate bounded parametric variations may be
overly conservative. In [87] a generalization of the preceding lemma is presented, which
allows to exploit a priori known bounds on the parameter variation rate:

Lemma B.2. [87] Suppose that υ > 0. If there exists a continuously differentiable
function X(δ) with X(δ) > 0 and the two inequalities υ

dX(δ)

dδ
+ AT (δ)X(δ) + X(δ)A(δ) X(δ)B(δ) CT (δ)

BT (δ)X(δ) −I 0
C(δ) 0 −I

 < 0 (B.3)

 −υ
dX(δ)

dδ
+ AT (δ)X(δ) + X(δ)A(δ) X(δ)B(δ) CT (δ)

BT (δ)X(δ) −I 0
C(δ) 0 −I

 < 0 (B.4)

are fulfilled for all δ ∈ Π, then the system is exponentially stable for any trajectory
δ(t) ∈ Π, |δ̇(t)| ≤ υ and ‖C(δ)(sI − A(δ))−1B(δ)‖∞ < 1.

Note, that now X is itself a matrix function of δ, i.e. an unknown element of a function
space, so that the inequalities (B.3) and (B.4) are infinite-dimensional LMIs. One way to
approximately solve this convex optimization problem is to grid the plant model over the
varying parameter space (see [88]). Furthermore, the structure of X(δ) must be fixed.
This can be done by choosing suitable continuously differentiable basis functions fi(δ),
such that X(δ) =

∑N
i=1 fi(δ)Xi, where the fi(δ) may be chosen based on the parameter

dependence of the plant itself.

B.2 Robust LPV control design

Based on Lemma B.2 a procedure is proposed in [87] how to derive a parameter dependent
gain-scheduled controller K(s, δ). This requires that all parameters δ can be measured
and used for control. In general the parameter vector δ may be represented as δ =
(δm, δu), where δm is a vector of measurable parameters and δu is a vector of uncertain
parameters. Hence, only the parameters included in δm can be used for gain-scheduling,
i.e., K = K(s, δm). To achieve robustness with respect to the uncertain parameter vector
δu, a D-K iteration can be performed, which is sketched in the following procedure for a
given plant model G(s, δ) ∈ Cp×m.

1. Generate an LFR (M(δm), ∆(s, δu)) such that G(s, δ) = Fu(M(δm), ∆(s, δu)), with

∆(s, δu) =

[
In/s 0

0 ∆u(δu)

]
, ∆u(δu) ∈ Rr×r,

and initialize the scaling matrix, e.g. D(s) = Ir.
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B.2 Robust LPV control design

2. Partition M(δm) as

M(δm) =

[
M11(δm) M12(δm)

M21(δm) M22(δm)

]
=

 A(δm) B1(δm) B2(δm)
C1(δm) D11(δm) D12(δm)

C2(δm) D21(δm) D22(δm)

 ,

such that the equation based representation of the LFR (M(δm), ∆(s, δu)) is given
as

ẋ = A(δm)x + B1(δm)w + B2(δm)u

z = C1(δm)x + D11(δm)w + D12(δm)u

y = C2(δm)x + D21(δm)w + D22(δm)u

x = In/sẋ

w = ∆uz.

3. Apply the methods proposed in [87] to synthesize a gain-scheduled controller
K(s, δm) ∈ Ck×l, which solves the optimization problem

min
K(s,δm)

∥∥∥∥[ D(s) 0
0 Ip−l

]
Fl

(
G(s, δm), K(s, δm)

) [ D−1(s) 0
0 Im−k

]∥∥∥∥
∞

,

with

G(s, δm) = Fu

([
A(δm) B(δm)

C(δm) D(δm)

]
, In/s

)
,

B(δm) =
[

B1(δm) B2(δm)
]
,

C(δm) =

[
C1(δm)
C2(δm)

]
, D(δm) =

[
D11(δm) D12(δm)
D21(δm) D22(δm)

]
.

4. Generate a stable, real, rational, proper, minimum-phase transfer matrix D(s) ∈
Cr×r, with D(s)∆u = ∆uD(s), which solves the optimization problem

γ = inf
D(s)

∥∥∥∥[ D(s) 0
0 Ip−l

]
Fl

(
G(s, δm), K(s, δm)

) [ D−1(s) 0
0 Im−k

]∥∥∥∥
∞

.

Stop the procedure if γ < 1, otherwise go to step 3.
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C LFR-toolbox

In this appendix a list of the basic functions of the LFR-toolbox version 2 are presented.
Additional modules for Simulink interfaces, gain-scheduling design and interfaces to an
ONERA-toolbox for skew-µ analysis are not yet finished and listed.

Overloaded functions for LFR objects:

display - show contents of lfr-objects
size - show size information of lfr-objects
isempty - check if lfr-object is empty
get - get fields of an lfr-object
set - change block-names, block-bounds or object-fields
plus - addition of lfr-objects
minus - subtraction of lfr-objects
uminus - sign change of lfr-object
mtimes - product of lfr-objects
mpower - repeated product of lfr-objects
mrdivide - division of lfr-objects
inv - inversion of lfr-objects
horzcat - horizontal (column) concatenation of lfr-objects
vertcat - vertical (row) concatenation of lfr-objects
append - block-diagonal concatenation
blkdiag - block-diagonal concatenation
transp - transposition of lfr-objects
subsref - subscripted reference for lfr-objects
subsasgn - subscripted assignment for lfr-objects
feedback - feedback interconnection of lfr-objects
dcgain - steady-state gain
eval - evaluation from values in workspace
diff - differentiation of lfr-objects
eig - nominal eigenvalues of dynamic lfr-object
null - null-space of lfr-object
real - real part of lfr-object
imag - imaginary part of lfr-object
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LFR object generation:

lfr - core function for creation of lfr-object
lfrs - short-cut for realization of elementary real or complex lfr-objects
rlfr - generate random lfr-objects
bnds2lfr - generate lfr-object from min/max-bounds of a matrix
sym2lfr - generate lfr-object from symbolic expression
data2lfr - generate lfr-object from least mean-squares interpolation
gmorton - generalized Morton realization

Conversions:
lfr - conversion of various Matlab objects to lfr-objects
abcd2lfr - conversion from state-space to input-output form
lfr2abcd - conversion from input-output to state-space form
lf2lfr - realize lfr-object from left fractional factorization
rf2lfr - realize lfr-object from right fractional factorization
lfr2rob - convert lfr-object to related Robust Control toolbox object

Symbolic preprocessing:

sym2lfr - preprocessing and lfr-object realization of symbolic expressions
symtreed - standard tree decomposition
etd - enhanced tree decomposition
vs etd - VS factorization followed by a call of etd for each factor
loadmprocs - load Maple routines (necessary for etd)

Numerical order reduction:
minlfr1 - repeated 1-d order reduction
minlfr - order reduction based on n-d Kalman decomposition
redlfr1 - repeated 1-d approximation
balsys - mex-function for 1-d balancing of lfr-objects
ssminr - mex-function for 1-d minimal realization
sscof - mex-function for calculation of controllability staircase form
sysred - mex-function for 1-d approximation

Manipulation of uncertainty block:

uplft - closes (partially) the M-∆ loop
normalizelfr - normalize parametric uncertainty blocks
starplfr - star product
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C LFR-toolbox

Distances:
distlfr - calculate a lower bound for the distance between two lfr-objects
udistlfr - calculate an upper bound for the distance between two lfr-objects

µ-analysis:

lfr2mustab - from lfr-object to input arguments for mustab
lfr2mubnd - from lfr-object to input arguments for mubnd
lfr2mu - from lfr-object to input arguments for mu
lfr2mussv - from lfr-object to input arguments for mussv
ns rad - calculate non-singularity radius
wp rad - calculate well-posedness radius
min max - calculate min/max-values of a 1 by 1 real lfr-object

Miscellaneous:
aeblkchk - check regularity of lfr-object
remalgequ - remove non-dynamic modes of constant ∆-block
lfrdata - get all data of an lfr-object
plotlfr - plot gridding for SISO-entries of an lfr-object
upper lft sym - calculate upper-lft symbolically
lfrtol - set global tolerances for numerical order reduction

For some of the functions the Control toolbox (mainly for numerical order reduction),
the Symbolic toolbox (symbolic preprocessing), the Extended Symbolic toolbox (for en-
hanced tree decomposition), the µ-analysis and synthesis toolbox and the LMI toolbox
(both for µ-analysis) are required.
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D RCAM linear parametric system
matrices

A(δ) =



−117.05 1
Cw VA

0 50.807 1
Cw VA

0 0 0

0 0.70528Zcg−96.507+24.879Xcg

Cw VA
0 0 0 0

4.8192 1
Cw VA

0 −48.116 1
Cw VA

0 0 0

1.0 0 α 0 0 0

0 1.0 0 0 0 0

0 0 1.0004 0 0 0

0 −1.9860 b̃72−1.0VA
2α Cw

Cw VA
0 0 −9.8061 0

VA α 0 −VA 9.8061 0 0

0 −241.25+0.0040000Cw VA+VA
2Cw

Cw VA
0 0 −9.8100 α 0

0 0 0 0 0.000043244 0

0 0 0 −VA α 0 VA

0 0 0 0 −VA 0

0 −2.2278−0.054189Xcg+2.5880Zcg

Cw VA
0 0 0 0

0.061601 ã27

Cw VA
0 0.061601 ã29

Cw VA
0 0 0

0 0.061601 ã38

Cw VA
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−0.061601 ã77

Cw VA
0 −0.061601 ã79

Cw VA
0 0 0

0 −15.697 1
Cw VA

0 0 0 0

−0.061601 ã97

Cw VA
0 −0.061601 ã99

Cw VA
0 0 0

1 0 α 0 0 0

0 1 0 0 0 0

−α 0 1 0 0 0
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D RCAM linear parametric system matrices

B(δ) =

−0.97053
Cw

0 0.33355+0.00813Xcg−0.38821Zcg

Cw
301.18 1

CwVA
2 −301.18 1

CwVA
2

0 0.0219Zcg−2.9935+0.7717Xcg

Cw
0 2152.8+7478.4Zcg

CwVA
2

2152.8+7478.4Zcg

CwVA
2

−0.02032
Cw

0 −0.41990+0.15568Xcg−0.00813Zcg

Cw
5768.4 1

CwVA
2 −5768.4 1

CwVA
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −0.00077 b̃72VA

Cw
0 72517

CwVA
2

72517
CwVA

2

0 0 2.3545 1
Cw

0 0

0 −7.48317 1
Cw

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


with Cw = mg

1
2
ρV 2

AS
and

ã27 = 2.1451Xcg Cw
2Zcg + 0.058556Xcg Cw Zcg − 20.291Xcg Cw + 1.1425Xcg Cw

2

−0.90635Cw
2 − 9.5334 + 9.2389Cw + 18.030Xcg − 5.7399Zcg − 5.6075Cw

2Zcg

−0.97164Xcg Zcg + 5.7418Cw Zcg

ã29 = 1.6726Xcg Cw
2Zcg − 0.17230Xcg

2Cw − 3.9324Xcg Cw Zcg − 0.28903Xcg
2Cw

2Zcg − 46.850
−0.070972Xcg

2Zcg + 0.29652Xcg
2Cw Zcg + 4.9667Xcg Cw − 2.7036Xcg Cw

2 + 0.58292Cw
2

−0.25564Xcg
2 − 1.3439Cw + 100.13Xcg − 14.251Zcg − 1.9116Cw

2Zcg + 1.1243Xcg Zcg

+24.656Cw Zcg + 0.45703Xcg
2Cw

2

ã38 = 0.096425Xcg
2Cw − 0.086069Xcg

2 + 1.6082Xcg Cw − 16.591Xcg − 7.0577Cw + 18.418
ã77 = 1.5667Cw

2 − 16.241Cw + 65.449
ã79 = −201.39Cw + 121.84
a97 = 144.91Cw + 171.66
ã99 = 24.355Cw

2 + 6.0937Cw + 962.75
α = −0.041088Xcg Cw − 0.0053886Xcg + 0.17559Cw − 0.16287
b̃72 = 4.9092Xcg Cw + 0.73956Xcg − 21.270Cw + 19.721
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C(δ) =



0 1.0 0 0 0 0

0 −0.20245 b̃72

Cw VA
0 0 0.00040155 0

0 −24.593+0.00040000Cw VA

Cw VA
0 0 0 0

0 0 0 0 −VA 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1.0 0 0 0 0 0

0 0 1.0 0 0 0

0 0 0 1.0 0 0

0 0 0 0 0.000043244 0

0 0 0 −VA α 0 VA

0 0 0 0 0 0

0 0 0 −α 0 1

0 0 0 0 0 0

−0.0062794 ã77

Cw VA
0 −0.0062794 ã79

Cw VA
0 0 0

−0.0062794 ã97

Cw VA
0 −0.0062794 ã99

Cw VA
0 0 0

−α 0 1 0 0 0

0 0 0 0 0 1.0

1 0 α 0 0 0

1 0 α 0 0 0

0 V−1
A 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 α 0 0 0

0 1 0 0 0 0

0 0 0 0 1.0 0

0 V−1
A 0 0 0 0
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D RCAM linear parametric system matrices

D(δ) =



0 0 0 0 0

0 −0.0000785VAb̃72
Cw

0 7392.15
Cw V 2

A

7392.15
Cw VA

2

0 − 0.76281
Cw

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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