Distributed System Design
with
Message Sequence Charts

Ingolf Heiko Kruger

Institut fur Informatik
der Technischen Universitat Munchen

Distributed System Design
with
Message Sequence Charts

Ingolf Heiko Kriger

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen

Universitat Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Manfred Paul
Prifer der Dissertation:
1. Univ.-Prof. Dr. Manfred Broy

2. Univ.-Prof. Dr. Martin Wirsing
Ludwig-Maximilians-Universitat
Miinchen

Die Dissertation wurde am 28. Marz 2000 bei der Technischen Universitéat
Miinchen eingereicht und durch die Fakultat fiir Informatik am 20. Juli 2000

angenommen.

Abstract

The methodical mastery of interaction scenarios is a key factor for capturing and modeling
system requirements of distributed, reactive systems. Message Sequence Charts (MSCs)
and variants thereof are well-accepted as a graphical description technique for interaction
scenarios. MSCs emphasize the inter-component coordination aspect of typically partial
system executions; this complements the usually complete behavior description for indi-
vidual components, as given by state-oriented automaton specifications.

The topic of this thesis is the seamless, methodically founded integration of MSCs into the
development process for distributed, reactive systems.

The comparison of several MSC dialects and automaton models is followed by the defini-
tion and analysis of the formal syntax and semantics for the MSC notation used in this
thesis. The stream-based system model, underlying the semantics definition, enables the
integrated consideration of interaction-oriented and state-oriented system specifications;
it also serves as the basis for the introduction of effective refinement notions for MSCs.
Next, different MSC interpretations — in the range from scenario specification to complete
behavior descriptions to the specification of unwanted behavior — are formally defined. In
addition, the application of MSCs for the description of safety and liveness properties is
analyzed.

Finally, two transformation procedures, supporting the transition from interaction scenar-
ios to complete behavior specifications for individual components, are presented. The first
one schematically extracts relational assumption/commitment specifications from MSCs.
The second one turns MSCs syntactically into corresponding state automata. On the one
hand this makes the component properties defined by MSCs accessible to formal analysis;
on the other hand this constructively bridges the gap between interaction requirements
and component implementations.

Kurzfassung

Die methodische Beherrschung von Interaktionsszenarien ist ein Schliisselfaktor bei der Er-
fassung und Modellierung von Systemanforderungen fiir verteilte, reaktive Systeme. Mes-
sage Sequence Charts (MSCs) und Varianten davon haben sich als grafische Beschreibungs-
technik fiir Interaktionsszenarien etabliert. MSCs betonen den komponenteniibergreifen-
den Koordinationsaspekt eines typischerweise partiellen Systemablaufs; dies erganzt die
komponentenlokale, jedoch meist vollstandige Verhaltensbeschreibung, wie sie durch zu-
standsorientierte Automatenspezifikationen gegeben ist.

Gegenstand der vorliegenden Arbeit ist die durchgangige, methodisch fundierte Integration
von MSCs in den Entwicklungsprozef fiir verteilte, reaktive Systeme.

Nach einer vergleichenden Betrachtung verschiedener MSC-Dialekte und Automatenmo-
delle wird die formale Syntax und Semantik der in dieser Arbeit verwendeten MSC-
Notation definiert und analysiert. Das der Semantikdefinition zugrundeliegende, strom-
basierte Systemmodell ermoglicht die integrierte Betrachtung interaktions- und zustands-
orientierter Systemspezifikationen und dient als Basis fiir die Einfiihrung effektiver Ver-
feinerungsbegriffe fiir MSCs. Im Anschlufl daran werden unterschiedliche MSC-Interpreta-
tionen — von der Szenarienspezifikation iiber die vollstandige Verhaltensbeschreibung, bis
hin zur Spezifikation von Fehlverhalten — formal definiert. Zusétzlich wird die Anwendung
von MSCs zur Beschreibung von Sicherheits- und Lebendigkeitseigenschaften untersucht.

Um den Ubergang von Interaktionsszenarien zu vollstandigen Verhaltensspezifikationen
fiir einzelne Komponenten methodisch zu unterstiitzen, werden schliefSlich zwei Transfor-
mationsverfahren angegeben. Das erste extrahiert relationale Assumption/Commitment-
Spezifikationen auf schematische Weise aus MSCs. Das zweite wandelt MSCs syntaktisch
in korrespondierende Zustandsautomaten um. Dadurch werden einerseits die durch ein
MSC definierten Komponenteneigenschaften einer formalen Analyse zuganglich, ander-
erseits wird die Liicke zwischen Interaktionsanforderungen und Komponentenimplemen-
tierungen konstruktiv iiberbriickt.

Acknowledgments

First and foremost my sincere thanks to Professor Manfred Broy, who has invited me to
work in his research group, and has provided me with the opportunity of carrying out
the research leading to this thesis. His encouragement, guidance, and advice during the
selection of the topic, as well as during the work on it that followed, were very valuable; he
also commented on and suggested enhancements of draft versions of this thesis. Moreover, I
am very grateful to Manfred Broy for the stimulating and challenging research environment
he has established. I consider it a rare privilege to have the chance of working together, and
of exchanging ideas with so many excellent colleagues and friends within a single research
group.

My thanks also go to Professor Martin Wirsing, who, when asked, immediately accepted
to serve on my dissertation committee; he also gave very useful feedback on draft versions

of this document. I enjoyed, and significantly profited from the various discussions we had
on MSCs and related topics.

I am especially indebted to Katharina Spies. She patiently read almost the entire thesis
during its various stages of maturity, and kindly provided valuable suggestions for im-
provement; moreover, she was a never-failing source of encouraging comments. Thank
you, Katharina! Michael von der Beeck and Bernhard Schétz also read substantial parts
of the thesis, discussed its contents with me, and proposed several changes; I am much
obliged to them for this, as well as for their being ready to listen and respond to the many
questions I had. Furthermore, I am grateful to Ekkart Rudolph for reading and comment-
ing on the section about MSC-96; the insight into ITU’s MSC standard he shared with me
significantly helped me to improve my understanding of “the idea behind” MSC-96 and
MSC 2000.

[am very grateful to Manfred Broy, Radu Grosu, and Thomas Stauner for the inspiring
and challenging collaboration on topics in the context of MSCs. This joint work has helped
me shape and validate many of the ideas I present in this thesis.

I experienced the SYSLAB project as an excellent research environment for applying the
concepts discussed in this thesis within the framework of systematic, object-oriented de-
velopment techniques. I thank Ruth Breu, Franz Huber, Bernhard Rumpe, and Wolfgang

Schwerin not only for interesting discussions, especially in the context of our joint work on
the methodic foundation of the UML’s description techniques, but also for the fun it was
working with them.

Max Breitling was always willing to discuss topics related to my work, even if it meant
diving deeply into the corresponding formulae; thank you for this, and also for being the
great office mate you are. I am also grateful to Peter Braun, Heiko Lotzbeyer, Stephan
Merz, Jan Philipps, Alex Pretschner, Chris Salzmann, Alex Schmidt, Oscar Slotosch, as
well as to all the other members of our research group for the active exchange of ideas on
work-related areas and beyond.

Within a cooperation project with Siemens ICN I had the challenging opportunity to
transfer some of my ideas into industrial practice. I am most grateful to the members
of Professor Cornelis Hoogendoorn’s group at Siemens ICN for the excellent atmosphere
within the project; in particular, many thanks are due to Cornelis Hoogendoorn, Heinz
KoBmann, Axel Pink, and Kurt Stadler for our valuable discussions on the practical ap-
plication of MSCs.

Despite my less than adequate responsiveness to their suggestions with respect to the other
interesting, challenging, and fun sides of life, many friends and colleagues have provided
inspiration, words of cheer, and pleasant diversions on many occasions. In addition to
being terrific friends, Markus Kaltenbach and Bernd Finkbeiner even found the time and
patience to discuss issues of semantics, logics, and automata with me. Thanks to you all
for all your help and companionship!

My parents Eva and Winfried Kriiger have always lovingly supported, challenged, and
encouraged me in my studies and my goals in general. I am profoundly grateful for all you
have done for me!

Finally, and most importantly, my very special thanks go to Stephanie Pittner for her love
and patience, even across geographical distance. Whenever I needed it most, you were
there to provide emotional support, encouragement, and motivation. Your contagious
warm-heartedness and sense of humor have turned days of hard work into days of pleasure
and joy. Thank you!

Contents

1.

Introduction

1.1. Message Sequence Charts: Ready for Seamless System Development?

1.2. Background and Motivationo
1.2.1. System Classes
1.2.2. The Challenge: Developing Distributed Software Components
1.2.3. System Views and Description Techniques
1.2.4. Seamless System Development — What Do we Need for it?

1.3. Contributions and Outline of this Thesis

1.4. Roadmaps through this Thesis

1.5. Related Work oo

MSC Notations — Introduction and Comparison

2.1. Introduction

2.2, MSC-96 e
2.2.1. Basic MSC Notation
2.2.2. MSC Composition and Structuring
2.2.3. Miscellanea

co =3 ot Ot N e

11
14
16
18

23
24
25
26
32
46

11

2.3.1. OMSCs 50
2.3.2. Sequence and Collaboration Diagrams 54
2.33. EETs 61
2.3.4. Imterworkings 65
2.3.5. HySCs o 70
2.3.6. LSCs o 70
2.3.7. MSC 2000 72
2.4. Comparison and Prospective Enhancements 73
2.5. Related Work o 7
2.6. SUMMATY v ot 78
State-Based Description Techniques for Component Behavior 81
3.1. Introductiono 82
3.2. Automata in the Development Process 85
3.3. Overview of Automaton Models 88
3.3.1. Moore/Mealy-Automata 88
3.3.2. Statecharts, ROOMCharts 91
3.3.3. w-Automata, I[/O-Automata, “Spelling” Automata 99
3.4. Related Work 103
3.5, Summary ... e 103
YAMS - Yet Another MSC Semantics 105
4.1. Introduction 106
4.2. System Model and Mathematical Preliminaries 108
4.2.1. Notational Conventions 108
4.2.2. System Structure L 110
4.2.3. System Behavior o 111
4.3. Abstract Textual Syntax 112

4.4. Denotational MSC-Semantics 115
4.5. Discussion of the Semantics 000 131
4.5.1. Well-Definedness L 131
4.5.2. General Observations 132
4.5.3. The Relationship between Sequential Composition and Interleaving 133
4.5.4. MSCs versus Temporal Logic 135
4.5.5. Adequacy of the Syntax and its Semantics 136

4.6. HMSCs 139
4.7. Example: the ABRACADABRA-Protocol 146
4.7.1. Informal “Requirements Specification” 147
4.7.2. “Roadmap” for the Major Use Cases 148
4.7.3. Successful Communication o000 149
4.7.4. Conflict and Conflict Resolution 149
4.7.5. Adding Progress/Liveness 150
4.7.6. Adding Preemption 151

4.8. Related Work 152
4.9, Summary 152
. MSC Refinement 155
5.1. Introductiono 156
5.2. Binding Referenceso 160
5.3. Property Refinemento 161
5.3.1. Refinement Rules L. 162
5.3.2. Compositionality 166

5.4. Message Refinement 167
5.4.1. Refinement Rule 171
5.4.2. Problems With Message Refinement 172

5.5. Structural Refinemento 176
5.5.1. Refinement Rule 183
5.5.2. Relationship With MSC-96’s Instance Decomposition 183

5.6. Related Work 184
D7, SUMMATY oo e 184

il

6. MSCs for Property-Oriented System Specifications 187

v

6.1. Introductiono 188
6.2. MSC Interpretations 193
6.2.1. Existential MSC Interpretation 194
6.2.2. Universal MSC Interpretation 196
6.2.3. Exact MSC Interpretation 197
6.2.4. Negation: Unwanted Behaviors 200
6.3. Property Specification with MSCs: Safety and Liveness 202
6.3.1. Safety and Liveness oo 202
6.3.2. MSC Properties 204
6.4. Related Work 211
6.5. Summary 212
From MSCs to Component Specifications 215
7.1. Introduction 216
7.2. Relational Component Specifications 221
7.2.1. Basic Definitionso 221
7.2.2. Causality, Realizability, and Nondeterminism 223
7.2.3. Composition 224
7.2.4. Component Refinement 226
7.2.5. Component Properties, Safety and Liveness of Components 228
7.3. From MSCs to A/C-Specifications 230
7.3.1. A/C Specificationso 231
7.3.2. MSCs and Interaction Interfaces 234
7.3.3. From MSCs to A/C Specifications, 237
7.3.4. MSC Refinement Revisited 241
7.3.5. Discussion Lo 244
7.4. From MSCs to Automaton Specifications 245
7.4.1. Automaton Syntax and Semantics 246

7.4.2. Translation Scheme o000
7.4.3. Example: the ABRACADABRA-Protocol
T7.4.4. Extensions
7.4.5. Methodological Issues L.

Work . . .o

7.5. Related

7.5.1. A/C Specifications, Automaton Models
7.5.2. Work on the Transformation of MSCs to Automaton Specifications

T7.6. SUMMATY

. Summary and Outlook

8.1. Summary

8.2. Outlook

. Syntactic And Semantic Extensions
A.1. Instance Start and Stop

A.2. Timers
A.3. Message
A.4. Actions
A.5. Gates

. Proofs

Parameters and Parametric MSCs

B.1. Properties of the MSC Semantics,
B.1.1. Independence of Absolute Time
B.1.2. Properties of the MSC Operators
B.1.3. Well-Definedness of the Semantics

B.1.4. Sequential Composition versus Interleaving

B.2. Property Refinement Rules,

B.3. MSCs for Property-Oriented System Specifications
B.3.1. Exact MSC Interpretation
B.3.2. Safety and Liveness oo

B.4. From MSCs to Component Specifications
B.4.1. Time Guardedness Of MSCs
B.4.2. Join Consistency

295
296
298

303
303
304
305
309
310

311
312
312
313
321
323
324
328
328
329
355
355
356

Bibliography

vi

359

CHAPTER 1

Introduction

The topic of this thesis is the methodical usage of Message Sequence Charts (MSCs) in
the development process for distributed, reactive systems. In this chapter we motivate
our interest in MSCs beyond their traditional application domain, i.e. the specification
of interaction scenarios. In particular, we emphasize the following issues as important
prerequisites for a seamless integration of MSCs into the overall development process: a
thorough understanding of the semantics of MSCs and the properties they express, the
availability of effective refinement and abstraction techniques, and transformations from
MSCs to individual component specifications. Furthermore, we list the major contributions
of this thesis, give its outline, and mention related work.

Contents

1.1. Message Sequence Charts: Ready for Seamless System De-

velopment? L L e e e e e e e e e e e e
1.2. Background and Motivation
1.3. Contributions and Outline of this Thesis 14
1.4. Roadmaps through this Thesis 16
1.5. Related Work o oo iiiio oo 18

1. Introduction

1.1. Message Sequence Charts: Ready for Seamless
System Development?

Message Sequence Charts (MSCs, for short) and similar notations for component interac-
tion have gained wide acceptance for scenario-based specifications of component behavior.
Due to their intuitive notation MSCs have proven useful as a communication tool between
customers and developers of distributed systems, thus helping to reduce misunderstandings
in early development stages; their predominant use today is in the requirements capture
phase of the software development process.

In this section we give a concise overview of what distinguishes MSCs from other description
techniques, as well as of what their role in the development process currently is and what
it could be. Moreover, we summarize the contributions of this thesis with respect to a
seamless integration of MSCs into an overall software and system development process.
For a more detailed discussion of the background and context of this work we refer the
reader to Sections 1.2 through 1.5.

What are MSCs?

Figure 1.1 shows an example of an MSC. It depicts a certain section of the communication
among the four components W, X, Y, and Z within an imaginary distributed system. In
this figure, labeled axes represent components, whereas labeled directed arrows indicate
message exchange from the source (at the arrow’s tail) to the destination component (at
the arrow’s head). Time advances from the top to the bottom of the figure; this induces
a temporal order on the depicted messages. Intuitively, Figure 1.1 captures a situation
where Y and Z, in turn, send the message subscribe to X. Then, X receives message update
from W. Subsequently, X sends message notify to Y and Z (in that order). Upon receipt
of message notify, component Y sends message request to W, and receives message reply in
return.

msc simpex
W X Y Z
[]] [
__ subscribe
- subscribe
update _ |
notify
notify |
. request
reply .
— —— — —

Figure 1.1.: Simple MSC

1.1. Message Sequence Charts: Ready for Seamless System Development?

This simple example already allows us to illustrate one of the strengths of MSCs. They
contain information on the distribution structure, as well as on the interaction behavior
of the system under consideration. This combination helps make explicit the coordination
aspect of system behavior, beyond the local scope of individual components. MSCs, such
as the one in Figure 1.1, show one particular interaction pattern (or scenario) among the
depicted components. In this sense, MSCs complement other forms of specification that
capture the complete behavior of individual components.

The central contribution of this thesis is that we provide means for bridging the gap be-
tween scenarios of component coordination and the specification of individual component
behavior. To put the methodical transition from scenarios to component specifications on
solid, formal grounds we also contribute a thorough semantics definition, as well as effec-
tive refinement notions for MSCs; moreover, we give a detailed analysis of the properties
expressed by MSCs throughout the development process.

The Role of MSCs in the Development Process

Over the past years several MSC-like description techniques have emerged (cf. Chapter
2). Despite their syntactic and semantic differences the common strength of all of these
notations is the representation of component cooperation and coordination for achieving
a certain goal in the system under consideration. The benefit added by MSCs to any
portfolio of description techniques is that an MSC enables the visualization of only the
relevant (partial) behavior of each depicted component with respect to the specific task
or goal at hand. This is in contrast to other description techniques that stress complete
behavior of individual components, such as automaton models (cf. Chapter 3).

In other words, MSCs represent projections of the complete system behavior on (part of)
a certain task or service. The projection contains the relevant components together with
their relevant behavior for the task under consideration. Instead of having to study the
complete behavior descriptions of several individual components simultaneously to get an
overview of what happens when the system executes the task, we can zoom in directly on
the particularly interesting segment of each participating component’s behavior by means
of an appropriately chosen MSC.

Clearly, the representation of coordination and cooperation by means of interaction is of
value within any development phase, be it analysis, specification, design, or implementation
(cf. Section 1.2.4).

MSCs have traditionally been very popular as a means for documenting or illustrating
interaction patterns or scenarios. In Chapter 6 we give a precise definition of the term
“scenario”; for the remainder of this introduction it suffices to consider it as a synonym
for a representation of a certain part of system behavior. Scenarios typically cover one (or
a small number) of the possibly many different behaviors a system can display.

The usage of scenarios for capturing requirements has been suggested and studied exten-
sively in the literature (cf. Section 1.5). Thus, MSCs — as a description technique for

1. Introduction

representing interaction scenarios — can be advantageously applied during the analysis
phase of the development process. During the design phase, scenarios sometimes serve as
more detailed representations of the major services (or “use cases”) of the system under
consideration (cf., for instance, [JBR99]). Another common application for MSCs is the
visualization of concrete system executions. Here, an MSC depicts the interactions among
the system’s components logged over a certain time interval during a run of the system.
This can provide insight into the behavior of an already existing system. The same idea
underlies the usage of MSCs for the validation of specifications or implementations. Test-
case- and counter-example-representation by means of MSCs have also been proposed and
studied in the literature (cf. Section 1.5).

What all of these applications of MSCs have in common is that they treat MSCs as rep-
resentations of scenarios only. However, as we will see in Chapter 2, several MSC dialects
offer means for composing scenarios, allowing elaborate specifications of system behavior.
This is a first step towards a constructive application of MSCs in the development process.
Here, the aim is not only to capture or document requirements and system traces by means
of MSCs, but also to manipulate the captured requirements by refining them (to make the
specification more and more specific), or even to use MSCs directly for the construction of
corresponding component specifications and implementations.

Treating them as a “full-fledged” description technique from which there is even a direct
transition to individual component specifications assigns a much more prominent role to
MSCs, as compared to the one they have traditionally played.

Are MSCs Ready for Seamless System Development?

This new role of MSCs calls for their seamless integration into the overall software and
system development process. Seamlessness, in this context, means that we aim at using
MSCs — in addition to their traditional applications mentioned before — for any one of the
following development tasks:

e scenario elicitation: the capturing of interaction requirements in the form of scenar-
ios,

e scenario composition or scenario completion: the composition of different scenarios
to transit from particular instances of behavior to complete behavior descriptions,

e scenario refinement. the adjustment of the level of detail of a scenario,

e scenario transformation: the derivation of other forms of specifications, in particular
those for individual components, from scenarios.

Clearly, this requires a much more thorough understanding of MSCs than is needed if they
only represent exemplary patterns of behavior. In this thesis we set out to establish a more
seamless integration of MSCs into the development process by addressing the following four
major topics:

1.2. Background and Motivation

e Precise and Expressive MSC Syntax and Semantics:
Guided by existing and well-accepted notations (cf. Chapter 2) we define a precise
syntax and semantics for the MSC dialect we use in this thesis. This dialect, which
provides the required expressiveness for capturing and composing scenarios, allows us
to use MSCs as a formal description technique throughout the development process.

¢ MSC Refinement:
We provide effective abstraction and refinement mechanisms that allow us to switch
easily between the levels of detail within a given specification.

e MSCs for Exemplary and Complete System Behavior:
We precisely define various interpretations of MSCs; these interpretations enable the
application of MSCs for the specification of exemplary scenarios, as well as for the
description of complete component behavior.

¢ MSC Transformation:
We define transformation procedures that allow us to generate component implemen-
tations from a specification of interaction requirements in the form of MSCs.

As a result, we will identify MSCs as an intuitive, sufficiently expressive, graphical descrip-
tion technique enabling us to capture, design and implement the interaction requirements
of distributed systems.

The remainder of this introduction has the following structure. Section 1.2 contains a
discussion of the context, as well as of further motivation of our work. We present a more
detailed overview of the contributions, as well as an outline of this thesis in Section 1.3.
Section 1.4 contains several roadmaps for reading this thesis; each roadmap corresponds
to putting the reading focus on one of the four topics mentioned above. A brief discussion
of related approaches appears in Section 1.5.

1.2. Background and Motivation

Mastery of the specification, design, and implementation of distributed systems is an im-
portant prerequisite for the development of by now ubiquitous products. These products
range from technical systems (such as home appliances, cars, and entire production lines)
to business applications (such as enterprise-wide supply-chain management systems, op-
erating over the Internet). In the following paragraphs we briefly discuss the background
and motivation behind our interest in the usage of MSCs in this context.

1.2.1. System Classes

To put our understanding of the target domain for the development techniques and meth-
ods we suggest on more solid grounds, we briefly define the system class we aim at. To

1. Introduction

that end, we consider two major classifying coordinates: reactive versus transformational,
and technical versus business systems. Our underlying assumption is that the systems
we deal with are potentially distributed, i.e. composed of logically or physically separate
components, as opposed to monolithic systems.

Once started, a reactive system operates continually as follows: if present, it accepts input
from its environment, and produces (corresponding) output. Reactive systems never halt,
although the output of these systems may well be always empty from a certain point in
time onward. This system class includes the electronic control units (ECUs) in cars, as well
as heart pacers, to name just two examples. Transformational systems, on the other hand,
do not operate continually. Given a collection of input values they start execution, run for
a certain (finite) amount of time, produce their result, and then stop execution. Examples
of transformational systems are compilers, and database report generators. We consider
transformational systems as special cases of reactive systems: from a certain time onward
the system neither receives inputs, nor does it produce outputs (but keeps on “running”).

The focus of technical systems is the control of technical processes; examples are the ECUs
of a car, telecommunication switches, video cassette recorders (VCRs), and heart pacers.
Embedded systems, a subclass of technical systems, have become of particular importance
over the past ten years. An embedded system is a unit of hardware and software, connected
to its environment via sensors and actuators; it controls technical processes in the envi-
ronment, typically without immediate interaction with the user. As examples we mention
digital clocks, cellular phones, washing machines, VCRs, and ECUs. Sometimes technical
systems must process continuous instead of digital data, or must interact with their envi-
ronment continuously, instead of at discrete time points. In this state of affairs, we speak
of hybrid systems.

Flight and hotel reservation systems are classical examples of business systems. Here, the
focus is on (mass) data storage and manipulation instead of on the control of technical
processes.

In certain cases there is a significant overlap between technical and business systems.
Telecommunication switches, for instance, often contain software and hardware for con-
trolling the technical switching process, but also provide a billing functionality with the
corresponding database accesses. In view of the increasing interconnections between indi-
vidual systems we expect the boundaries between technical and business systems to vanish
further.

In the remainder of this thesis we focus on the general class of distributed, reactive systems.
This allows us, in particular, to target all kinds of systems in the range from technical to
business systems with the techniques we propose. We do not focus on data transmission
and manipulation as part of component interaction, although we also briefly discuss how to
handle this aspect in our approach. Furthermore, we restrict ourselves to digital systems,
and touch hybrid systems only briefly in our discussion of related work.

MSCs address both component distribution, and component communication; therefore,
they are an interesting candidate for capturing and manipulating requirements of reactive
systems.

1.2. Background and Motivation

1.2.2. The Challenge: Developing Distributed Software Components

Distributed computer systems have gained significant importance in our everyday lives
over the past few decades. Today’s upper class cars, for instance, contain networks of
60 to 80 electronic control units (ECUs) controlling safety-critical systems, such as motor
management, airbags, and the anti blocking system (ABS), as well as comfort systems,
like driver information systems, communication, radio, heating, and even seat control,
to name just a few examples. Another — very prominent — distributed system of yet
larger scale is the Internet with its millions of interconnected computers cooperating to
run the TCP/IP protocol stack to enable applications such as email, and the World Wide
Web (WWW). Even standard software on today’s desktop computers displays a significant
degree of functional or code distribution.

In each of these examples the crucial aspect, which enables the distributed systems to
achieve and supply their functionality, is the cooperation of the individual system com-
ponents: the ECUs in a car share signals, say, to prevent chair adjustments at high car
speeds; the nodes of the Internet execute the relevant networking protocols to transport
the application data.

Therefore, an important step of the development process for distributed systems is to
describe how the components achieve their cooperation. In the case of the Internet, for
instance, the cooperation of the different nodes of the network is fixed by the specification
of the TCP/IP protocol. Each node follows that protocol to connect to, and exchange data
with its partner nodes. More generally, the cooperation of the components in a distributed
system is determined by the way the components communicate with one another, or, in
other words, by the components’ interfaces.

As a promising aid in the task of designing and implementing distributed systems com-
ponent oriented development has become an important approach over the past few years.
Here, the development focus is not only on providing the required functionality per compo-
nent under development, and on encapsulating the inner workings of how this functionality
is achieved. In addition, each component is equipped with an interface defining how the
component’s functionality can be accessed. Such an interface typically consists of two
parts. The syntactic part defines the names of the services that the component provides,
as well as the types of parameters it accepts when the services get invoked. The semantic
part describes how the component reacts upon a service invocation. Together, the syntactic
and the semantic part of a component’s interface describe what communication protocol
the environment must observe to cooperate with the component.

Middleware technologies such as CORBA, Java RMI, JavaBeans, and COM/DCOM pro-
vide the technical infrastructure for distributed component implementations. Each of these
bases on a standard way of specifying the syntactic interface of the distributed components.
Typically this consists of simple lists of service names and parameter types. The semantic
component interface is, in general, only available through the executable implementation
of the component.

1. Introduction

For the development of distributed systems, however, the semantic component interfaces
are essential if we aim at producing predictable and correct overall system behavior. Indeed,
the design of semantic component interfaces — which involves capturing and refining the
component’s interaction requirements — so that all system components together can achieve
the required functionality, is one of the decisive steps in distributed system development.

Academia and industry offer numerous approaches whose intention is to support the spec-
ification of semantic component interfaces; these approaches range from purely mathemat-
ical formalisms — invented with the intention of proving the correctness of systems with
respect to their specifications — to purely pragmatic system descriptions in prose — without
intention and hope for formal reasoning about the system under development.

Recently, graphical description techniques (of which MSCs are only one example) have
emerged as a possible link between purely formal and purely pragmatic development
methodologies; the promise here is that the graphical representation of system require-
ments and designs admits easier communication among developers, as well as better means
for manipulation and reuse of requirements, specifications, and designs. A prerequisite for
keeping this promise is, however, that the graphical description techniques, and the prop-
erties they allow the developer to represent are well-understood; otherwise the saying “a
picture says more than a thousand words” can quickly turn into “a picture has more than
a thousand different interpretations”, which contradicts the intention of better communi-
cation and less erroneous specifications and designs right away.

In the remainder of this thesis we will study the use of MSCs as a graphical description
technique for semantic component interfaces in distributed, reactive systems; this includes,
in particular, a thorough definition and analysis of the semantics of MSCs and of the
properties that MSCs express. The focus of MSC specifications is on the interaction among
components. Clearly, this is only one of several important aspects of component-oriented
development. In the following, we briefly discuss how MSCs complement other system
views and description techniques. This gives a first impression on the role that MSCs play
in an overall portfolio of specification techniques for distributed systems.

1.2.3. System Views and Description Techniques

The importance of software has increased dramatically over the past thirty years. Today,
software plays the role of an enabling technology in virtually all product fields. Car man-
ufacturers, for instance, can offer most of the advanced functionality of their models only
because the software of the corresponding ECUs controls the technical processes “behind
the scenes”. Instead of tuning a car’s mechanical or electric parts, the mechanic today
plugs in a computer, and tunes the software of the corresponding ECU. Electronic com-
merce — to mention a second example — in the form we know it today was only possible
because of the existence of software solutions connecting the virtual markets with every
Internet-enabled device.

1.2. Background and Motivation

The gain in importance was accompanied with an increase of functional complexity, of size,
as well as of interconnection. The software part of current telecommunication switches has
several millions of code lines. The same holds for enterprise-wide supply chain management
systems in the business domain. Even seemingly small embedded systems, such as cellular
phones, contain a substantial amount of software for sending and receiving short messages
and faxes, for a database of phone numbers, for games, and — of course — for handling the
mobile-phone network-protocols.

As an approach to dealing with the complexity of software, in particular during the analysis,
specification, and design phases of the development process (see also Section 1.2.4), view-
oriented modeling techniques and notations have emerged; popular examples are the UML
[Rat97, RJB99], CaTarLysis [DW98], ROOM [SGW94|, SDL [EHS98], Syntropy [CD94],
OMT [RBP*91], and the Booch method [Boo94]. Each of these proposes managing the
complexity of software development by separating the two major modeling concerns: sys-
tem structure and system behavior. For both, a variety of special-purpose textual and
graphical description techniques, which highlight either the structural or the behavioral
system aspects, has been developed. Each model, represented in one of the description
techniques, conveys one particular view (sometimes also called a projection) on the overall
system. If no confusion can arise we use the terms model and view interchangeably in the
following.

Structure

Under the structural system aspects most of the mentioned modeling techniques and no-
tations subsume the specification of the data structures on which the system operates,
as well as the system’s decomposition into (separate) components and their relations or
connections. Typically, this includes the specification of syntactic component interfaces.

System structure diagrams (cf. Figure 1.2; labeled nodes represent distinct components,
directed arrows represent uni-directional communication paths) model component distri-
bution and interconnection.

cl cr

Control RM

LM

Figure 1.2.: System structure diagram

Common description techniques for data structures are entity /relationship- or class dia-
grams (cf. Figure 1.3; labeled nodes represent classes, lines represent associations between
the classes).

1. Introduction

Title ————4 TextElement

Body

l [
Text SContent

l l
Chapter Section

Figure 1.3.: Class diagram

Behavior

For the description of system behavior most development methods differentiate between
the specification of the behavior of individual components, and the collaboration or coor-
dination of multiple components.

The most prominent description techniques for individual component behavior in state-
oriented systems are automaton models such as statecharts [Har87, HP98] (cf. Figure 1.4
(a)). They allow the developer to specify the relationship between state changes, their
triggering events, and the actions taking place during a transition between two states.

msc locking
Control LM RM

i] i] —

COMPOSITE Idn

y

CONT _
“illed _ rdn

y

(a) (b)
Figure 1.4.: Automaton (a) and Message Sequence Chart (b)
In recognition of the importance of the coordination aspect of distributed system behav-
ior, the specification of interaction-oriented behavior specifications for multiple components

has received an increasing amount of attention over the past decade. Graphical descrip-
tion techniques such as MSCs [IT96, IT98|, event traces [Boo94, SHB96|, and Sequence

10

1.2. Background and Motivation

Diagrams [Rat97, RJB99] have been developed to complement the local view on system
behavior provided by automata (cf. Figure 1.4 (b)). MSCs and their relatives allow the
developer to describe patterns of interaction among sets of components; these interaction
patterns express how each individual component behavior integrates into the overall system
to establish the desired functionality. Typically, one such pattern covers the interaction
behavior for (part of) one particular service (or scenario) of the system.

Thus, automata and interaction-oriented description techniques span two different coor-
dinates of the modeling task. Automata represent projections of the complete system
behavior onto individual components, whereas MSCs represent projections of the complete
system behavior onto particular (possibly partial) services.

In this thesis we focus on behavior specification. In particular, we study interaction-
oriented collaboration specifications, and their relationship with state-oriented specifica-
tions for individual components in detail; we consider structural aspects only to the extent
necessary for understanding interaction-oriented specifications.

Clearly, however, the separation of concerns induced by view-oriented development ap-
proaches is not without problems. Difficulties arising in the various phases of typical
development processes, as well as steps towards solving these difficulties are the topic of
the following section.

1.2.4. Seamless System Development — What Do we Need for it?

The definition of a precise semantics, of effective refinement and abstraction techniques,
as well as of constructive transformations between models are important prerequisites for
a seamless usage of graphical description techniques within the development process.

Software and system development processes typically consist of several phases, ranging
from the capturing of requirements to the implementation and deployment of the final
product. Only in rare cases can we expect such a development process to move linearly from
requirements capture to implementation. More realistically, we will encounter iterative
approaches in practice that visit some phases multiple times; sometimes entire phases are
absent from concrete processes.

Figure 1.5 illustrates an iterative development process for the phases analysis, specification,
design, and implementation. Under analysis we subsume everything related to capturing
functional and nonfunctional requirements of the system under consideration. This can
include, for instance, determining the major system components, as well as their major
interaction patterns. The specification phase hosts the construction of a model for the
system, such that the model meets the requirements captured during analysis. During the
design phase the model becomes more specific. This can happen by means of refinement
steps selecting one of a set of possible solutions for a certain problem. To name just one
example for a design step, we mention the commitment to a specific form of communication

11

1. Introduction

among system components. Implementation turns a model, obtained from the design
phase, into an executable system.

Figure 1.5.: Typical development process

There are many other, much more detailed presentations of development processes (cf., for
instance, [JBR99, Kru99a, V97, SGW94, Boo94, Boe88, Roy87] and the references therein).
However, for our purpose of illustrating the major difficulties arising in the combination
of iterative, phase-oriented and view-oriented software development, the simple process of
Figure 1.5 suffices.

The aim of software and system development along a process as sketched above is to obtain
an implementation meeting the requirements captured during analysis. However, there are
several obstacles in our way towards this goal. The first occurs right at the starting point of
the process: how can we be sure of having captured all necessary requirements correctly?
Once we have gathered the requirements, and are reasonably confident in their quality,
how can we ensure that the models we construct during specification and design indeed
meet the captured requirements?

If we adopt a view-oriented development approach we face further challenges. How can we
establish the consistency of models representing different views? Determining the consis-
tency of a service call (appearing in an automaton specification) with respect to a static
service interface (as specified by a corresponding class diagram) is effectively manageable.
The situation becomes more involved if we relate, say, interaction-oriented behavior spec-
ifications, which involve multiple components, with automaton specifications of individual
components. How can we guarantee that each individual component can effectively par-
ticipate in the interaction pattern under consideration?

In the following paragraphs we mention a few steps contributing to a seamless integration
of description techniques into the development process.

Precise Semantics A helpful prerequisite for systematic view-oriented software develop-
ment is a thorough understanding of the description techniques as such; every description

12

1.2. Background and Motivation

technique should have a precise, comprehensible meaning to avoid inconsistencies. In par-
ticular, an artifact should express unambiguous properties, constraints, or requirements
during the entire development process. Only under this premise can we be sure to capture
correct requirements with our view-oriented specifications.

The availability of a precise semantics is also crucial for subjecting models to verification
technologies as provided by model checking and theorem provers. The purpose of applying
these technologies could, for instance, be to prove the conformance of two different models
(obtained either through different design steps, or from different system views) with respect
to the same set of requirements.

Effective Refinement and Abstraction Techniques During the design phase we add
more and more details to the model obtained from specification. In a view-oriented specifi-
cation the system properties will be captured by means of multiple documents in a variety
of description techniques. To increase the level of detail of one such property, we want to
work with the description technique in which it is represented. Assume we have specified a
certain system requirement by means of an MSC. To make this requirement more specific,
we would welcome a set of effective refinement techniques for MSCs. This would allow us to
adjust the level of detail without having to resort to other forms of behavior specification,
such as automaton models. Similarly, the existence of adequate abstraction techniques can
significantly increase the clarity and scalability of a specification.

Transformation between Models If we establish the consistency between different mod-
els constructively, we entirely avoid a particularly annoying discontinuity in the develop-
ment process, viz. errors introduced by switching representations. Successful examples of
this approach are compiler generators (which transform annotated grammars into parsers),
as well as code generators in current development tools (which transform class diagrams
and automaton models into prototypic source-code in the selected target programming-
language).

As we have mentioned in Section 1.1, MSCs are particularly popular during the require-
ments capture and specification phase of the development process. Automata, on the other
hand, are most popular during specification and design. Therefore, a “property preserving”
transformation scheme from MSCs to automata could support development steps within
and across development phases.

The combination of a thorough understanding of a description technique (based on a
precise semantics), the existence of effective refinement and abstraction techniques, as
well as constructive transformations from models in the description technique into other
models significantly adds to the seamless integration of the description technique into the
development process; this is accompanied by an increased traceability of requirements
across the entire process, which opens the door for the application of quality assurance
and validation technologies, such as verification and testing.

13

1. Introduction
1.3. Contributions and Outline of this Thesis

Motivated by our observation that MSCs have the potential of supporting the specification
and design of semantic component interfaces for reactive, distributed systems, we present
the following contributions towards the seamless integration of MSCs into an overall soft-
ware and system development process:

e we define and analyze a formal semantics for MSCs that

— integrates the notions of interaction and state into a single mathematical frame-
work,

— enables the definition of multiple relevant MSC interpretations,

— has increased expressiveness compared to the standard semantics of MSC-96;

e we define effective refinement notions for all aspects addressed by MSCs: system
properties, messages, and component structure;

e we investigate the use of MSCs as scenarios and as a description technique for com-
plete component behavior;

e we analyze, in detail, the properties we can specify with MSCs to obtain an under-
standing of the relationship between MSCs and other description techniques;

e we show how to transform MSCs into individual component specifications.

We develop these results along the following outline:

In Chapter 2 we give a thorough, yet informal introduction to the graphical syntax and
semantics of several MSC-like description techniques. We compare these notations with
respect to their underlying concepts, aims, expressiveness, and positioning within the de-
velopment process. As a result we identify several deficits of existing MSC dialects; these
deficits hinder the seamless usage of MSCs during system development. Most MSC dialects
provide no means for combining overlapping interaction patterns, i.e. patterns showing the
same components in different roles within the same overall sequence of interactions. An-
other problematic area is the specification of exceptional cases by means of MSCs; most
MSC dialects lack proper notation and semantics for this. The most fundamental problem
we observe, however, is the lack of methodical integration supplied with the notations:
questions about how to refine MSC specifications, about how to interpret MSCs with re-
spect to other system views, and about what properties MSCs express with respect to the
system under consideration are rarely addressed in the MSC dialects we compare.

In Chapter 3 we consider Moore and Mealy Machines, statecharts and ROOMCharts, as
well as w- and I/O-automata as representatives of state-based description techniques for

14

1.3. Contributions and QOutline of this Thesis

reactive systems. This discussion highlights the role of automata as a means for specifying
the complete behavior of individual components.

Chapter 4 contains a thorough foundation of the semantics of the MSC dialect used in this
thesis. The semantics bases on a precise, mathematical system model for reactive systems,
which allows us to integrate the notions of interaction and state in MSC specifications.
With a few exceptions, the syntax of the chosen MSC dialect adheres to the ITU standard
MSC-96 [IT96, 1T98]. To solve the deficits identified in Chapter 2, we go beyond the
standard syntax and semantics, and add several composition operators for MSCs. These
operators allow us to deal systematically with overlapping and exceptional interaction
patterns. Moreover, we can use them to add liveness and fairness constraints to MSC
specifications.

The definition and investigation of effective refinement notions for MSCs is the topic of
Chapter 5. Because MSCs address both behavioral and structural system aspects, we em-
phasize three separate forms of refinement: property refinement, message refinement, and
structural refinement. Property refinement allows us to add detail to an MSC specifica-
tion by reducing the set of behaviors represented by an MSC. This includes, for instance,
removing alternatives and narrowing loop bounds. Message refinement allows us to adjust
the level of detail of individual messages within MSCs. If needed, we can refine a single
message into an entire protocol. Similarly, we can adjust the level of structural detail
displayed in an MSC by means of structural refinement. This refinement notion allows us
to make the hierarchical distribution structure of individual components explicit.

In Chapter 6 we take a closer look at what kinds of properties we can specify by means of
MSCs. This adds to our understanding of the various roles played by MSCs throughout the
development process. In a first step, we define and discuss four MSC interpretations with
respect to the system under development: the existential, universal, exact, and negative
interpretation. The existential interpretation forms the basis for using MSCs as scenario
specifications: the depicted behavior can, but need not occur. An MSC under universal
interpretation specifies behavior that must occur eventually in any system execution. The
exact interpretation fixes the system’s behavior to match precisely what the MSC specifies;
this interpretation is the foundation for using MSCs as a description technique for complete
component and system behavior. The specification of forbidden or undesirable behavior
is the purpose of MSCs under the negative interpretation. In a second step, we focus on
the distinction between safety and liveness properties in specifications for reactive systems.
We analyze how safety and liveness properties propagate through MSC specifications. As
a result we obtain that our MSC dialect specifies essentially liveness properties. Therefore,
we can use these MSCs to complement safety-oriented specification techniques.

In Chapter 7 we develop another central result of our work. We present two transformation
schemes for constructing individual component specifications from collections of MSCs.
The first one yields assumption/commitment (A/C) specifications, which highlight the
separate responsibilities of a component and its environment; we show how to extract A/C
specifications schematically from an MSC. The other, more pragmatic one, produces state-

15

1. Introduction

oriented automata. The component specifications we obtain satisfy — by construction —
all the requirements captured by the MSCs. This establishes a smooth transition from
MSCs to individual component specifications. The schematic A /C specifications cover the
entire MSC syntax and semantics from Chapter 4, and make the semantic interfaces of
individual components within MSC specifications accessible to formal reasoning. As an
application, we investigate the implications of property refinement steps on MSCs with
respect to the individual components. The construction of automaton-specifications from
collections of MSCs gives us a pragmatic method for obtaining “jump-start” models of
individual component behavior from interaction patterns. The automatic derivation of
early component prototypes and test drivers is just one example for applications of this
constructive method.

Chapter 8 contains an assessment of what we have achieved in this thesis, as well as a
discussion of future work.

Details of the semantic extensions to the core MSC semantics of Chapter 4, as well as the
proofs of the propositions we make in Chapters 4 through 7 appear in the Appendix.

1.4. Roadmaps through this Thesis

Chapters 4 through 7 contain the central results of our work. The detailed discussion of
MSC dialects and automaton notations in Chapters 2 and 3 serve mostly as background
information with respect to the methodical role of MSCs and automata, and as reference
material on the syntaxes and intentions of the respective approaches. Readers who are
familiar with the notational aspects of MSCs and automata are invited to skip Chapters 2
and 3, and to review the corresponding contents only “on demand”.

The four major topics we deal with, i.e. MSC semantics, MSC refinement, MSCs for prop-
erty specification, and the transformation from MSCs to component specifications, yield
four different reading-paths through this thesis besides the usual sequential one (cf. Figures
1.6 through 1.9). Below, we give a brief overview of these alternative paths.

MSC Semantics For readers whose main interest is our syntactic and semantic treatment
of MSCs we recommend studying the Chapters 2 and 4.

Y s Fl e Bl e 1

Figure 1.6.: Roadmap for studying MSC semantics

16

1.4. Roadmaps through this Thesis

MSC Refinement For our treatment of MSC refinement we suggest to study Chapter 4
to get an impression of the underlying semantic model, followed by Chapter 5 where we
introduce the refinement notions as such. To compare our refinement notions with the
ones of MSC-96 and Interworkings, respectively, we propose also reading the correspond-
ing sections of Chapter 2. For the relationship between MSC refinement and individual
component refinement we refer the reader to Chapter 7 (especially Section 7.3.4).

Figure 1.7.: Roadmap for studying MSC refinement

MSCs for Property Specifications Readers interested in various MSC interpretations,
as well as in the kinds of properties (with respect to the safety /liveness classification) MSCs
allow us to describe, the most relevant chapters are Chapter 4 (for the semantic bases of
MSC interpretations and properties), and Chapter 6. For background information on the
contrast between properties specified via MSCs, and properties of individual components
we refer the reader to Chapter 7.

Figure 1.8.: Roadmap for studying property specification by means of MSCs

Transforming MSCs into Component Specifications Our exposition of the transfor-
mation from MSCs into relational component specifications in Chapter 7 is based on the
syntax and semantics definition in Chapter 4, and on the “exact” MSC interpretation from
Chapter 6.

Figure 1.9.: Roadmap for studying the transformation of MSCs into component specifica-
tions

Because the transformation from MSCs into automaton specifications is purely syntactic its
treatment in Section 7.4 is to a large extent independent of the concrete MSC semantics
and interpretation. For concentrating on the syntactic transformation the reader might

17

1. Introduction

want to skip Chapters 4 and 6, which provide the formal background for establishing the
consistency between the MSCs and the resulting automata.

The automaton model we study in Chapter 7 shares features with several well-known au-
tomaton models, such as Mealy-, and w-automata. To prepare the rather concise treatment
of automaton syntax and semantics in Chapter 7 we refer the reader to Chapter 3.

1.5. Related Work

In the following, we give a brief overview of approaches from the literature at defining
syntax and semantics of MSCs, at integrating them into development processes, and at
their transformation into individual component specifications. At the end of this section
we list the previously published material on which this thesis is partly based. In Chapters
2 through 7 we discuss the relationships with our work in more detail.

MSC Syntax and Semantics

Over the past 15 years, several notations for component interaction have been suggested
in the literature. [IT96, IT98] defines the standard syntax and semantics for MSC-96. The
semantics is given in a process-algebraic setting. In his PhD. thesis [Ren99] one of the
contributors to [IT98] gives a thorough and accessible introduction to the history, syntax
and semantics of MSC-96. In [GRG93, AHP96, MR94, MR96, Leu95, Fac95, SHBIG6,
BHKS97a, Ber97, KW98] the authors define and discuss various semantics of MSC dialects.
The underlying semantic models include Petri nets, partial order models, process-algebraic
terms, variants of state machines, predicates over message traces, and timed rewriting
logic. The focus of work is mainly the assignment of a semantics to individual MSCs, the
discussion of different communication primitives, the detection of inconsistencies within
MSCs, and the exploration of extensions to the standard MSC syntax and semantics.
Standard MSCs, timing diagrams (cf. [SD93]) and statecharts (cf. [Har87, HP98]) have
inspired the work on the MSC dialect LSC [DH99]. Here, the authors distinguish several
interpretations for MSCs (similar to our discussion in Chapter 6), which allow, in particular,
the definition of liveness properties. Some of these references (cf., for instance, [Fac95,
Leu95, SHB96, Ber97, BHKS97a]) also place the integration of MSCs into development
processes (see below) in the center of concern.

The UML [Rat97, RIJB99] adopts Sequence Diagrams, a notation similar to Object Message
Sequence Charts (OMSCs, cf. [BMR196]) for the specification of component interaction.
The syntax of OMSCs is, in turn, based on a small subset of [IT96]. However, besides
some context conditions, UML does not provide a thorough foundation of the meaning of
Sequence Diagrams, let alone their integration with other description techniques.

18

1.5. Related Work

MSCs and Development Methods

The role of MSCs for capturing particular instances of behavior (scenarios), as opposed to
complete component and system behavior, is in the center of concern of most contributions
in the area of view-oriented system development. Refinement notions for MSCs and similar
notations are rare; this is often a direct consequence of using MSCs for scenarios only.

Development methods and processes such as OMT [RBP791], Objectory [JCJO92], Booch
[Boo94], ROOM [SGW94|, Syntropy [CD94], and CATALYSIS [DW9S8] suggest the use of
(interaction) scenarios as a means for requirements capture in object-oriented analysis and
design. In OMT, Objectory, and Booch variants of interaction diagrams express exem-
plary interaction scenarios. While Syntropy concentrates on statecharts as the description
technique for scenarios, ROOM mentions standard MSCs explicitly. However, because the
precise relationship between scenarios and complete actor behavior is left unspecified in
ROOM, the former’s integration into the development process is rather loose. In CATAL-
vsis, an extended variant of the UML’s Sequence Diagrams (SDs, cf. [RJB99]) serves for
capturing and refining use cases and operations. Here, the authors also state refinement no-
tions similar to what we call message and structural refinement in Chapter 5. The authors
of [FS97] and [Dou98] also describe the use of SDs in object-oriented system development.
They mainly suggest SDs as a means for exemplary interaction descriptions. Yet, [Dou98§]
makes use of state information within SDs to relate state-based and interaction-based com-
ponent specifications. In the “unified software development process” [JBR99] the authors
recommend using SDs during the design phase of the development process. The purpose
of the SDs here is to give a more detailed representation of the use cases identified during
requirements capture and analysis. The authors also mention the advantages of SDs for
determining an adequate decomposition of the overall system into interacting subsystems,
as well as for identifying the corresponding subsystem interfaces.

Similar to the Syntropy approach, the author of [K1e98| uses transition systems as the basis
of defining the semantics of scenarios. The author also distinguishes between existential
and universal interpretations of scenarios as a specification technique, and provides prop-
erty refinement rules (in the sense of Chapter 5) for the underlying transition systems to
facilitate a scenario-based development process. Scenario and use case specification and
refinement is also the topic of [MR96] and [BC96], respectively. In [WK96] the authors
use rewriting logic as a formal basis for an extension of the method suggested in [JCJO92].
[WKO96] includes, in particular, the definition of a formal notion of model refinement, based
on bisimulation. As one application of this refinement notion the authors discuss the bind-
ing of message parameters to concrete values.

The authors of [HSG194] use regular grammars and corresponding state machines to rep-
resent scenarios for individual components in sequential systems. A similar approach,
independent of a particular graphical syntax, appears in [RKWO95]; here the focus is on the
synthesis of multiple use case descriptions during requirements analysis that can also serve
as a preparation for verification and testing. Within the ESPRIT project CREWS (Co-
operative Requirements Engineering With Scenarios, cf. [RA98, ARS98, ATS99| and the

19

1. Introduction

references therein) scenarios and their transition to requirements specifications are consid-
ered. Although the authors also mention notions of scenario composition, and even touch
on the issue of refinement, the focus of their work is mainly the rather informal capturing
and managing of scenarios in natural language; this is in contrast to our aim of using
MSCs as an intuitive, yet formal description technique seamlessly within the development
process.

In [BHKS97a] we have investigated a variant of MSCs named extended event traces (EETs,
cf. [SHB96)) as a means for specifying communication in software architectures. One of the
applications of this work is providing a foundation for the usage of MSCs in pattern de-
scriptions [GHIJV95, BMR96], which employ MSCs as a description technique for scenario
documentation. The author of [Pae97] uses state transition diagrams as a basis for the
specification of actor roles in software architectures. These roles are, in a sense, projections
of the EETs used in [BHKS97a] onto individual actors. An approach to using scenarios
in a form similar to the UML’s Sequence Diagrams and EETs for capturing interaction
requirements for object-oriented systems appears in [Bre99].

Several contributions deal with the combination of MSCs and validation technologies, such
as testing and verification. [GHN93, NGH93|, [SKGH98] and [GKSH99] are only a few
examples of a large body of work on using MSCs for the specification of test cases. The
author of [Hau97] presents transformations from a subset of standard MSCs to temporal
logics with the aim of performing model-checking of the resulting formulae against system
properties also specified in temporal logic. [BAL96| describes a tool prototype supporting
the use of High-Level MSCs (cf. [IT96]) in scenario-based design of concurrent systems.
Furthermore, the authors suggest to interpret MSC specifications with model-checking
tools. The work by Holzmann et al. (cf. [Hol95, Hol96, AHP96]) is based on a partial order
semantics for an MSC dialect. The semantics definition provides the option to “plug-
in” various communication models (such as asynchronous, FIFO, and synchronous). This
allows the authors to define and to detect race conditions between messages. Based on
the ideas contained in [Hol95, Hol96, AHP96| a toolset has been developed that allows
checking MSC specifications for race conditions automatically (cf. [UBE99]); in its most
recent version this tool also addresses the construction of component specifications from
MSCs. The model checker SPIN [Hol97] uses MSCs to illustrate counter-examples for
falsified properties.

From MSCs to Component Specifications

As we have mentioned above, the traditional and most frequently cited role of MSCs
in the development process is the specification of particular interaction scenarios among
several components. The methodical transition from collections of scenarios to complete
component behavior is still an active area of research.

[BGH"98] (an extension of our work in [BHKS97a|) contains a discussion of such a transi-
tion in the context of object-oriented system development. The authors suggest to capture
interaction requirements by means of EETSs, and to compose individual EETs to obtain

20

1.5. Related Work

the complete interaction behavior of the system components under consideration. Scenario
elicitation, combination, and validation by means of MSCs is also mentioned in [SGW94]
as a means for capturing, specifying, and designing protocol classes in ROOM models.

In [BK98| (and in Chapter 7 of this thesis) we use “interaction interfaces” as behav-
ior specifications of components, connected via directed channels, to assign meaning to
MSCs. The focus of that text is on the derivation of schematic assumption/commitment
(cf. [MC81, Pan90, Bro95]) specifications from a given interaction interface; this paves the
way for the semantic integration of state-based with interaction-oriented description tech-
niques. [Bro98| and its extension [Bro99b] present transformation schemes from MSCs to
defining equations for components. This not only defines a semantics for basic MSCs (by
composition of the functions resulting from the defining equations for all components) but
also complements the generic assumption/commitment specifications of [BK9S].

The constructive transformation of MSCs into state-based automaton specifications for in-
dividual components is the topic of [KM93, KMST96, KSTM98], [LMRIS|, [Fei99], [HK99],
and [BGK99, KGSB99]. The approaches differ mainly in the amount of guidance (in
the form of design-knowledge about the state-oriented behavior of the components) the
developer can contribute to the transformation procedures, the syntactic and semantic
scope of the MSCs used, the necessity and potential for optimization of (intermediate)
results, and the complexity of the transformation. In Chapter 7 we extend the work in
[BGK99, KGSB99|, and compare all of these approaches in detail.

Previously Published Material

The material covered in this thesis is based, in part, on our contributions in [BGH"97,
BHKS97a, BHKS97h, BGH98, BK98, BGK99, GKS99a, GKS99h, KGSB9Y, Krii99b,
RBK99a, RBK99b, GKSO00].

21

1.

22

Introduction

CHAPTER 2

MSC Notations — Introduction and Comparison

To obtain an intuition of the properties we can express with MSC specifications we discuss
and compare several MSC dialects in this chapter. Our introduction to the different no-
tations is example-oriented to convey their corresponding visual appearance. We identify
potential for improvements of the existing MSC notations with respect to our goal of a
seamless integration of MSCs into the development process.

Contents
2.1. Introduction et 24
2.2, MSC-96 o i i e e e e e e e e e e e 25
2.3. Other MSC Dialects oo 50
2.4. Comparison and Prospective Enhancements 73
2.5. Related Work o o i 7T
2.6. SUMMATY . .« v v v v v v vttt t e e e e e e e e e e e e e e e e 78

23

2. MSC Notations — Introduction and Comparison

2.1. Introduction

Several graphical description techniques for component interaction have emerged over the
past decade. In this chapter we discuss several of these dialects to get an impression of the
existing syntaxes, their application domains, as well as their semantic foundations.

We start our discussion with MSC-96, whose origin is the specification of interaction sce-
narios in the telecommunications domain. Our interest in this notation is triggered by its
rich syntax and the corresponding formal semantics definition, which cover not only finite
interaction scenarios, but also infinite behavior; moreover, MSC-96 provides means for
structuring MSC specifications, going beyond what most other notations offer. Therefore,
we give a thorough introduction to MSC-96’s syntax, and let it serve as the “reference
notation” during the discussion of the other MSC dialects. We also briefly mention the
extensions introduced by MSC 2000, the successor to MSC-96.

The specification of (tele)communication protocols is one of the application domains for
MSCs with the longest tradition. However, the increasing interest in interaction scenarios
and use cases in object-oriented analysis and design have spawned several dedicated MSC
dialects. These dialects typically cover finite interaction patterns only, but integrate special
syntax for method calls and control flow. We have selected Object Message Sequence Charts
and the UML’s Sequence Diagrams as representatives of this class of MSC notations.

The remaining MSC dialects we cover in this chapter (Eztended Event Traces, Interwork-
ings, Hybrid Sequence Charts, and Life Sequence Charts) are not only syntactic variations
of what MSC-96, Object Message Sequence Charts, and Sequence Diagrams provide. As
opposed to MSC-96 message parameters have a formal semantics within Extended Event
Traces; this allows integrating formal constraints on the data values of messages into in-
teraction specifications. Besides being predecessors to MSC-96, Interworkings contribute
a mentionable notion of completeness to interaction specifications. Life Sequence Charts
stress the distinction between partial and complete interaction specifications further and
provide syntax and semantics for expressing this distinction. Life Sequence Charts and
Hybrid Sequence Charts are the only MSC dialects in our selection that assign a formal
semantics to individual component’s states as part of interaction patterns. Hybrid Se-
quence Charts also contribute syntax and semantics for preemption specifications to the
MSC notation.

In the following sections we introduce all of these notations in more detail. The style of
presentation is example-oriented, i.e. for most notational elements we give a corresponding
example in the respective graphical notation. This way, we not only convey the notational
features of the different MSC dialects, but also give an impression of their “look-and-feel”.
By intention we do not judge intensively on the design choices made or syntactic and
semantic constraints imposed by the authors of the respective description technique. The
purpose of this chapter is to expose the syntactic and semantic “features” of several MSC
dialects, and to identify the potential for improvement we address with our own MSC

24

2.2. MSC-96

notation in Chapter 4. For a brief summary and a comparison of the MSC dialects we
refer the reader to Section 2.4.

As the running example for this chapter we consider the interaction behavior in a much
simplified central locking system (CLS) for car doors (cf. [KGSB99]). We assume that this
system consists of three major components: a controller, a lock motor for the left door
lock, and a lock motor for the right door lock. The purpose of the CLS is to activate the
left and right motors according to a signal from the car user. If the controller receives a
“lock” signal from the user then it initiates the locking of the car by sending both motors
a “down” signal. Similarly, if the controller receives an “unlock” signal from the user then
it initiates the unlocking of the car by sending both motors an “up” signal. The MSCs
occurring in Sections 2.2 and 2.3 depict these interactions in several variations. For the
explanation of some syntactic elements we modify the CLS slightly to include another
component for logging traces of the actions performed by one of the motors.

Because Chapter 4 contains a thorough formal semantics definition of the MSC dialect
used in the remainder of this thesis, we explain the semantics of the MSC dialects in this
chapter only informally. Conversely, this chapter also serves as a source for examples for
the much more concise definitions in Chapter 4.

Readers who are familiar with the graphical syntax of one or all of the mentioned MSC
dialects, or are more interested in the formal semantics definitions, are invited to skip
Sections 2.2 and 2.3. Instead, they might want to consult Section 2.4, which contains a
brief comparison of the dialects, before continuing with Chapters 3 and 4.

The remainder of this chapter has the following structure. In Section 2.2 we treat MSC-96
in detail. This establishes the foundation for the discussion of the other MSC variants in
Section 2.3. As mentioned above, Section 2.4 contains a comparison of the syntactic and
semantic “features” of the MSC dialects discussed in Sections 2.2 and 2.3. We mention
related work in Section 2.5, and give a summary of this chapter in Section 2.6.

2.2. MSC-96

Message Sequence Chart is the name of a description technique for component interaction
recommended by ITU [IT96, IT98]. The version of this recommendation we cover here is
called MSC-96; it introduces both a graphical and a textual syntax for MSCs. For the
purposes of this section we concentrate on the graphical syntax.

The intended use of MSCs is to provide an “overview specification of the communica-
tion behavior for real time systems, in particular telecommunication switching systems”
(cf. [IT96]). In fact, MSCs have their roots in the development of telecommunication sys-
tems using the “Specification and Description Language” (SDL, cf. [EHS98]). We refer the
reader to [Ren99] for a detailed overview of the history of MSC-96.

25

2. MSC Notations — Introduction and Comparison

The basic assumption underlying the use of MSC-96 is that the system under development
consists of a set of components, communicating by means of asynchronous message passing.
There is no notion of a global clock; the components (or instances, as [IT96] and [IT9§]
call them) operate time-asynchronously.

Compared to other MSC notations (see also Section 2.3), MSC-96 is a rather baroque
language; it provides constructs for specifications in the range from simple interaction pat-
terns to complete component behavior. We introduce these constructs along the following
structure. In Section 2.2.1 we discuss the basic notational elements of MSC-96: instance
axes, message arrows, environment frame, actions, and conditions. These constructs suffice
for the specification of simple interaction patterns. MSC-96 also enables the capturing of
alternative, repeated, and parallel interaction patterns. We deal with these constructs for
structuring and composing MSC specifications, as well as with reference expressions (a
substitution mechanism), gates (a means for splitting information among several MSCs),
and High Level MSCs (a hierarchic notation for MSC composition) in Section 2.2.2. In
Section 2.2.3 we describe miscellaneous notational elements for expressing instance creation
and deletion, timing constraints, instance decomposition, and incomplete messages.

We refer the reader to [IT96, IT98, Ren99] for a detailed presentation of MSC-96’s syntax
and semantics, including all syntactic options we avoid here for reasons of brevity.

2.2.1. Basic MSC Notation

We start with the most basic MSC constituents: instance axes and message arrows. These
two ingredients reappear in almost all graphical notations for component interaction. MSC-
96 complements them by symbols for specifying component conditions and component
actions. In the following paragraphs we discuss all of these concepts, as well as the ones
MSC-96 provides for defining the ordering of events within MSCs.

Instances and Messages

Figure 2.1 shows an elementary MSC in graphical form. It displays a sequence of inter-
actions among three instances that are represented by vertical axes. An axis starts and
ends with a non-filled and a filled rectangle, respectively. The non-filled rectangle is the
“instance head symbol”, the filled rectangle is the “instance end symbol”. Labels at the
top of each axis indicate the corresponding instance’s name. Here, the instance names
are Control, LM, and RM. Arrows, directed from the sending to the receiving instance,
denote communication. The label on an arrow denotes the message exchanged by the two
instances. In our example, the message labels are ldn, rdn, Imr, and rmr. The frame
around the instances is part of the MSC; it represents the environment. The name of
the MSC, given after the boldface keyword msc, serves as an identifier for referencing the
entire MSC. In this case, the name of the MSC is locking.

26

2.2. MSC-96

msc locking
Control LM RM
— — —
ldn
rdn |
Imr
rmr
— —— ——

Figure 2.1.: Simple MSC

[IT98] defines the semantics of MSCs formally in a process-algebraic setting. Intuitively,
the meaning of an MSC is the sequence of messages obtained by reading the MSC from
top to bottom. Because — according to the documents defining the standard [IT96, IT98]
— there is no global clock, there may exist an individual time scale for each instance
depicted in an MSC. Moreover, communication happens asynchronously; there may be a
delay between the sending and the receipt of a message. Therefore, for any message the
authors of the semantics document [IT98] distinguish between two events: the sending of
the message, and its receipt. If the name of a message is m, we denote the corresponding
send and receive event by s.m, and r.m, respectively. As a consequence of the absence of
a global clock the events on different instance axes are not ordered per se. The ordering
is established by several rules in the MSC-96 semantics; we mention these rules informally
along with the introduction of the respective syntax elements.

The following four restrictions, imposed by the MSC-96 standard, induce a partial order
on the events occurring within an MSC:

1. every send event precedes its corresponding receive event;
2. on any location on an instance axis at most one send event may occur;

3. at most one receive event may be at the same location as a send event on the same
axis; the receive event precedes the send event;

4. the events on a single axis are totally ordered according to their occurrence from top
to bottom.

The semantics of an MSC, according to [IT98], is the set of all sequences of events that
correspond to the messages depicted in the MSC and obey these rules. MSC-96 offers two
constructs to relax the ordering imposed by these restrictions: coregions and generalized
orderings. We will discuss these advanced concepts later in this section.

27

2. MSC Notations — Introduction and Comparison

MSC locking of Figure 2.1 induces the partial event order shown in Figure 2.2 (a). An
arrow from one event to another denotes the precedence of the event at the tail of the
arrow over the event at the arrow’s head. The events occurring on any particular instance
axis of the MSC are totally ordered. Events on different instance axes can be unrelated,
as r.ldn and r.rdn show in this example.

s.rdn | s.Imr || r.ldn || r.rdn

| s.Imr || s.rdn || r.rdn | rldn s.rmr

sldn —— = r.ldn

| r.mr || r.rdn || s.Imr || s.rmr || rldn |

arcn | cron LX)

| r.rdn || r.mr || s.rmr || s.Imr |

rimr =——— slmr

(a) (b)

Figure 2.2.: Partial event order and MSC semantics

Obtaining the semantics of the MSC in Figure 2.1 proceeds as follows. We collect all
possible sequences of the eight send and receive events, such that in each sequence the
events obey the partial order from Figure 2.2 (a). Figure 2.2 (b) shows all of these sequences
graphically. Here, the labeled nodes represent the events occurring in the MSC. An arrow
from one node to another denotes that the event corresponding to the source node occurs
before the event corresponding to the destination node. Each sequence of events obtained
by following the graph from its top to its bottom, and collecting the events along the
way, yields one element of the semantics of the MSC. In total there are 19 different paths
through this graph.

This large number of different interpretations for such a simple MSC seems, at first sight,
irritating. It stems from the many possible interleavings of send and receive events ac-
cording to both the absence of a global clock, and the asynchronous message passing, as
required by the semantics document [IT98].

28

2.2. MSC-96

Environment Frame

The environment frame of an MSC serves as a representative for the origin or destination
of arrows whose source or destination, respectively, is outside the scope of the MSC. This
allows us, for instance, to leave the concrete sender or receiver of a message unspecified.
To denote message exchange with the environment we position the corresponding arrow’s
head or tail at the frame. As an example, consider Figure 2.3. Here, instance Control
exchanges the messages [dn, rdn, Imr, and rmr with the environment.

msc locking’

Control
[—

ldn

Y

rdn

Y

Imr

rmr

Figure 2.3.: Instance Control exchanges messages with the environment

Events on the environment frame are unordered. In the example of Figure 2.3 the events
r.ldn, r.rdn, s.Imr, and s.rmr can occur in an arbitrary order, whereas the other events
must occur in the following sequence: s.ldn, s.rdn, r.lmr, and r.rmr.

Besides modeling communication with (possibly) anonymous environment instances, the
environment frame also allows breaking up a single MSC into two, such that the source
and the destination of arrows can end up in different MSCs. We will come back to this
purpose of the environment frame later in this section, in connection with MSC-96’s gate
concept.

Conditions

MSC-96 offers condition symbols as a means for indicating that one or more instances fulfill
a certain condition before or after they participate in an interaction sequence. Graphically,
a condition is a labeled angular box placed on the instance axes of the components fulfilling
the condition. As an example for an MSC with conditions, consider MSC locking from
Figure 2.4 (a).

MSC-96 distinguishes three kinds of conditions, according to how many instances of an
MSC they cover. Local conditions cover exactly one instance axis, nonlocal conditions
cover more than one instance, but not necessarily all of them, and global conditions cover

29

2. MSC Notations — Introduction and Comparison

msc locking msc locking
Control LM RM Control LM RM
i] i 1] ?] i I] i I] ;]
C UNLD > OFF UNLOCKED
Idn Idn _
rdn -
DOWN
rdn | LOWER LOWER
. mr . mr
T < DOWN i
- rmr - rmr
{ LCKD > OFF LOCKED

(a) (b)

Figure 2.4.: MSCs with conditions and actions

all instances. The intuition behind nonlocal and global conditions is that the covered
instances all fulfill the stated condition. The MSC of Figure 2.4 (a) has two nonlocal
conditions labeled OFF. Figure 2.4 (b) shows two global conditions labeled UNLOCKED
and LOCKED.

Semantically, conditions serve only one purpose in MSC-96: they are the basis for com-
posing MSCs within High Level MSCs (see Section 2.2.2); besides that, conditions do not
contribute to the meaning of an MSC. Although MSC-96 does not assign much meaning
to conditions they have many useful applications. For instance, the developer may use
conditions to mark phases of a communication protocol within an MSC; used in this way,
conditions can enhance the readability of an MSC specification. Another application is
expressing information on the control and data state of an instance by means of appropri-
ately labeled conditions. We will exploit this possibility extensively in Chapter 7, where
we discuss the transition from interaction-based to state-based description techniques.

Actions

To specify that an instance performs some local activity (such as state changes through
assignments), MSC-96 provides the concept of actions. Their graphical representation is a
labeled rectangle attached to the instance performing the action. Semantically, an action
represents a local event of its corresponding instance. Action events contribute to the total
event ordering along an instance axis, and, hence, indirectly to the partial ordering of all
events occurring in an MSC. As a simple example for the specification of actions, consider
the MSC of Figure 2.4 (b); here, both LM and RM perform the local action LOWER after

30

2.2. MSC-96

receiving the message ldn and rdn, respectively. The two action symbols represent two
different local events of the instances LM and RM.

Event Ordering Mechanisms

The ordering of events induced by an MSC is defined by the rules we have given above.
There are situations, however, where these rules are either too strong, or too weak to
express the desired interaction sequences succinctly with MSCs. Consider, for instance, the
MSC of Figure 2.1. Its semantics states that the messages Imr and rmr arrive at instance
Control exactly in the following order: Imr precedes rmr. Hence, this MSC alone cannot
describe situations in which lmr arrives at Control after rmr. MSC-96 provides coregions
for weakening, and general orderings for strengthening the standard event ordering.

Coregions

A coregion, whose graphical representation is a vertical dashed line delimited by short
horizontal lines, is part of an instance axis. All events located on a coregion are unordered.

msc locking msc locking
Control LM RM Control LM RM
[] [] — [] [] —
ldh Idn
rdn | rdn _
—+ Imr — Imr
| |
1A rmr 1A rmr
L — — L I —

Figure 2.5.: MSCs with coregions and general orderings

As an example, consider the MSC of Figure 2.5 (a). Here, the two events r.lmr and r.rmr
are located on Control’s coregion. Hence, these two events are unordered.

General Orderings

A general ordering establishes a precedence between two events in an MSC that would be
unordered otherwise. It is represented graphically by a (possibly bent) line between the
two events under consideration. Attached to the line is an arrow head that points from the
event occurring first to the one occurring second. To distinguish general ordering symbols
from message arrows, the former’s arrow head’s position must not be at the end of the line
connecting the two events.

31

2. MSC Notations — Introduction and Comparison

As an example, consider the MSCs from Figures 2.5 (a) and (b). In Figure 2.5 (a) the
events 1.ldn and s.rdn are unordered, whereas the general ordering of Figure 2.5 (b) states
that event r.ldn must precede event s.rdn.

The general ordering of Figure 2.5 (b) relates two events on different instance axes. We may
use general orderings also for ordering events within coregions. To increase the readability
of such specifications MSC-96 allows an alternative way of drawing instance axes. Here,
the axis is in fact a column, as wide as the instance head and end symbols. The incoming
and outgoing arrows end and start, respectively, at the border of the column. This allows
us to draw the generalized ordering symbols within the column.

msc locking’

Control
—)

|
Imr ' ldn

rmr B | rdn

——

y

Y

Y

Figure 2.6.: MSC with general ordering within a coregion

Figure 2.6 shows an example of a general ordering of events on an instance. The axis of
instance Control appears in column form; it is covered by a coregion.

Ordering arrows may connect orderable events (such as send, receive, and action events;
cf. [IT98, Ren99]) only. Semantically, we can think of ordering arrows as being “regular”
message arrows, labeled with distinct, anonymous messages.

2.2.2. MSC Composition and Structuring

The syntactic and semantic elements of MSC-96 introduced so far already suffice to model
simple interaction sequences, and to give hints under which conditions these may occur.
Often, however, we are interested not only in depicting one interaction sequence, but
in alternatives or repetitions within interactions. We could, of course, draw individual
MSCs for each possible combination of message exchanges, and accompany this with an
explanation of how these different pictures relate. For typical systems this would lead to
very large numbers of MSCs very quickly.

As a remedy, MSC-96 provides various concepts for composing and structuring MSC spec-
ifications:

e Inline expressions support the specification of alternative, repeated, and parallel
interaction patterns within a single MSC.

32

2.2. MSC-96

e References allow reuse of interaction patterns among MSCs; the referencing MSC
“imports” the interaction pattern of the referenced MSC.

e High Level MSCs depict alternative, repeated, and parallel interaction patterns by
relating MSC references; this enables specification of “roadmaps” through sets of
MSCs.

e (ates facilitate the decomposition of MSCs.

Inline Expressions

MSC-96 provides the notion of inline expressions to represent alternative, optional, parallel,
and repeated parts within an MSC. The graphical syntax of an inline expression is a
rectangle whose upper left corner indicates the expression’s type. Every inline expression
covers at least one instance, and makes a statement about the events within the rectangle.

Alternative Inline Expression Figure 2.7 (a) depicts two alternative message exchanges
within an alt-inline expression box. The dashed line separates the two alternatives. In
general, the box may hold any positive, finite number of alternatives, with a dashed line
between any two consecutive alternatives. An alternative box specifies the choice among
several paths through the MSC; each alternative yields a separate path. In the example of
Figure 2.7 (a) we specify the occurrence of events r.lmr and r.rmr in arbitrary order.

msc locking
msc locking
Control LM RM
—— —— —— Control LM RM
ldn [) [) —
rdn _ ‘
> par J
at) ldn
I o
B . mr
- rmr o~ ||
L me | B rdn -
R 11 o rmr
I I I I I]

Figure 2.7.: MSCs with alternative and parallel inline expressions

MSC-96 offers a notational shortcut, called optional region, for alternative boxes with two
alternatives, where one of the alternatives is empty; an empty alternative does not contain
any events. The graphical syntax for an optional region is an inline expression box labeled
with the keyword opt.

33

2. MSC Notations — Introduction and Comparison

Parallel Inline Expression To express concurrency among a set of interaction sequences
MSC-96 offers the parallel inline expression operator. Its graphical syntax is similar to the
one of the alt-inline expression, except that the parallel operator’s label is the keyword
par. In the regions, which are separated by dashed lines, we now depict the interaction
sequences occurring mutually independently. Note that the par-inline expression specifies
the absence of event ordering only across, not within the operand regions.

Consider the example in Figure 2.7 (b). It specifies the independence of the send and receive
events in the set {s.ldn, r.ldn, s.lmr, r.Imr} from those in the set {s.rdn, r.rdn, s.rmr, r.rmr}.
Yet, the events within each of the two sets are partially ordered, according to the rules
given in Section 2.2.1.

Loop Inline Expression MSC-96 allows specification of repeated interaction patterns by
means of the loop-inline expression. Depending on its format the loop-label determines
the number of possible repetitions:

e loop< l,u>: let [,u € IN. If [< u, then the interaction sequence may occur at
least [and at most u times. If u < [, then the semantics of the loop-expression is
equivalent to that of the empty MSC. If [€ N, and u = inf (short for infinity) then
the number of occurrences of the interaction sequence is bounded only from below

by .

e loop< [>: if we have [€ N, this is a notational shortcut for loop< [,! >, which
specifies that the interaction sequence occurs exactly [times. If [= inf, then the
interaction sequence occurs infinitely often.

e loop: this is a notational shortcut for loop< 1,inf >; the interaction sequence may
occur an arbitrary number of times.

As an example, consider the MSC in Figure 2.8. Here we have specified that the interaction
sequence must occur at least once and at most five times.

msc locking
Control LM
e [—
loop<1,5>)
ldn
. mr
— —

Figure 2.8.: MSC with repetition

34

2.2. MSC-96

MSC Documents and Reference Expressions

Typical specifications of realistic size consist of more than one MSC, even given the pres-
ence of the inline expressions we have introduced above. The collection of MSCs that
a specification consists of forms an MSC document. Figure 2.9 shows an example of
the graphical representation of an MSC document named LU. It consists of the keyword
mscdocument, followed by the document’s name, both enclosed within a frame. The idea
is that all MSCs belonging to a specification appear in the same document. The developer
must establish the containment relationship between an MSC and its document; MSC-96
does not provide graphical syntax for this purpose. In the textual syntax, however, this
relationship is explicit (cf. [IT96, IT98]). The names of all MSCs within the same MSC
document must be unique.

mscdocument LU

Figure 2.9.: MSC document frame

References The interaction depicted in one MSC may occur in the same or a similar way
also in other MSCs. To facilitate reuse of MSCs within the same MSC document MSC-96
provides a referencing mechanism. As an example consider the MSCs lockingL, lockingR,
and locking from Figures 2.10 and 2.11. We assume that they all belong to the same MSC
document. MSC locking references the MSCs lockingL and lockingR. The graphical repre-
sentation of an MSC reference is a box with rounded corners, labeled with the referenced
MSC. To obtain the semantics of an MSC with references we have to substitute the events
of the referenced MSC, in the order specified there, for the reference box in the MSC under
consideration. Note that the placement of the reference symbols may establish an ordering
of the events on an instance’s axis; see instance Control in Figure 2.11 for an example.

msc lockingL msc lockingR
Control LM Control RM
— — — —
ldn | rdn
L Imr . mr
— — — ——

(a) (b)

Figure 2.10.: Communication between Control, LM, and RM

35

2. MSC Notations — Introduction and Comparison

msc locking

LM Control RM

lockingL

lockingR

Figure 2.11.: MSC with references to lockingl and lockingR

An MSC containing references must fulfill three conditions:

1. references must be acyclic, i.e. no MSC may refer to itself, be it directly or indirectly;
this ensures termination in the substitution process.

2. the reference box must overlap all instance axes that occur in the referenced MSC;
it may also overlap instance axes that do not occur in the referenced MSC.

3. if the MSC contains at least two references, then all instance axes shared by at least
two of the referenced MSCs must be present in the referencing MSC; this ensures

that we can always assign an order to the events on axes that occur in referenced
MSCs.

Reference Expressions Besides simply giving the name of the referenced MSC we may
label reference boxes with expressions denoting alternatives, repetition, and parallelism,

similar to the inline expressions we have discussed above. Examples of such expressions
are (A alt Balt C) and (loop <1,inf > (A par B)), where A, B, and C are MSC names.

Furthermore, we can perform substitutions on the referenced MSC to change the names of
instances and messages. This serves the purpose of adapting the referenced MSC to the
context of the referencing MSC.

MSC locking of Figure 2.12 shows an example of references with substitutions. Its semantics
is equivalent to the one of MSC locking in Figure 2.11.

36

2.2. MSC-96

msc locking
LM Control RM
msc lockingX] []
Control X lockingX
——— ——— subst X by LM
subst m by ldn
m . substn by Imr
L n
‘ lockingX
subst X by RM
I I sbs m by rdn

substn by rmr

Figure 2.12.: MSC with references and substitutions

High Level MSCs (HMSCs)

The syntactic constructs we have introduced so far allow us to specify both simple and
complex sequences of interactions. By means of the referencing mechanism we can de-
compose large interaction patterns into manageable parts. This is a first step towards
increasing the comprehensibility of large MSC specifications. It does not suffice, however,
for conveying the “big picture”, i.e. the way all the MSCs that form a specification relate
or compose; we still have to find and follow all references within an MSC document to
obtain the sequences of interactions occurring in the system under specification. In addi-
tion, the instance axes appearing in all MSCs add to the complexity of the pictures we
draw. If we wish to represent, say, three successive phases of a communications protocol as
connect, transmit, and disconnect, we do not want to reveal right from the beginning in the
development process into what components the system decomposes, and what the exact
interactions among these components are. Instead, we would like to say something like “an
execution of the system consists of an infinite sequence of steps; each step consists of three
consecutive phases: connect, transmit, and disconnect”. This high level specification of
the protocol references neither components, nor messages. However, none of the syntactic
elements we have studied up to now allows us to specify interaction sequences on this high
level of abstraction.

MSC-96 introduces High Level MSCs (HMSCs) as a notational alternative to the plain
MSCs we have discussed so far, to address these problems. An HMSC is, in essence, a
directed graph whose nodes reference (H)MSCs; the graph describes a “roadmap” through
the MSCs referenced in the nodes. An edge from a node labeled with MSC X to a node
labeled with MSC Y in the graph indicates that part of the interaction behavior of the
system consists of a sequencing of the interactions specified in X and those specified in Y.
The edges determine how we must “paste together” the MSCs referenced in the nodes to

37

2. MSC Notations — Introduction and Comparison

obtain the interaction sequences of the system.

More precisely, each node of an HMSC is any one of the following

e a start node,

e an end node,

a reference node,

a parallel node,

a connection node,

a condition node.

We will introduce each of these node classes informally, in turn. We also briefly relate
HMSCs and plain MSCs so that we can translate the former into the latter.

Start, End, and Reference Nodes Each HMSC has exactly one start node, whose
graphic representation is a downward outlined triangle. The start node indicates the
beginning of any interaction sequence we can derive from the HMSC; it has no incoming
edges. An end node, whose graphic representation is the horizontal mirror image of the
start symbol, terminates paths through the HMSC; it has no outgoing edges. Interaction
sequences obtained by following any path through the HMSC end when we reach an end
node. Reference nodes are similar to the MSC reference symbols we have already discussed.
Their labels may be MSC reference expressions as before; they also have the same graphic
representation.

Consider the HMSC [2u from Figure 2.13. It consists of a start node, two MSC reference
nodes, and the end node. The arrows indicate valid paths through the graph. In this case
there is exactly one path through the HMSC. It begins at the start node, passes through
the MSC references for locking and unlocking — in this order — and stops at the end node.
Intuitively, we obtain the semantics of this HMSC by pasting the interactions of MSC
unlocking, in their specified order, under those of MSC locking, and by determining the
resulting MSC’s semantics according to the event ordering rules introduced above.

MSC-96 calls the composition form used in MSC [2u “weak sequential composition”. As-
sume given an arbitrary HMSC with an arrow from a reference node labeled A to a reference
node labeled B. In the composite HMSC there is a semantic difference between events on
common instances of A and B, and events on instances appearing in only one of the two
referenced MSCs. On common instances A’s events precede B’s events. Events on instances
of A that differ from B’s instances are independent of events in B. Similarly, events on
instances of B that are not also instances of A are independent of events in B.

38

2.2. MSC-96

msc locking msc unlocking
Control LM RM Control LM RM
1 — 1 [] [] —
Ick | unick
ldn lup
rdn _ rup >
Imr Imr
- rmr o rmr
— E— — E— E— —
msc 12u
msc loru

msc LU msc LIF
N4
N\
locking
{ locking j [unlocking}
unlocking Y |

Figure 2.13.: Plain and HMSCs

The start node, and all reference, parallel, condition, and connection nodes of an HMSC
can have an arbitrary number of outgoing edges. In fact, all nodes but the end node must
have at least one outgoing edge. A node with more than one outgoing edge indicates
existence of an alternative path through the HMSC. As an example consider MSC loru of
Figure 2.13. Here the start node has two outgoing edges; the first leads to a reference to
MSC locking, the second leads to a reference to MSC unlocking. Intuitively, the semantics
of this HMSC is the set of interaction sequences obtained by following any one of the two
possible paths through the graph. Note the similarity of this construct and the alt-inline
or -reference expression.

MSC-96 allows cycles in HMSC graphs. This corresponds to an infinite or unbounded
repetition of the interactions determined by the nodes along the path forming the cycle.
Figure 2.13 shows an example of an infinite repetition in HMSC LU. This HMSC has
a start but no end node. Intuitively, its semantics consists of an infinite sequencing of
the interactions represented by HMSC [oru. Note the similarity of this construct and the
loop<inf >-inline expression. An unbounded repetition appears in HMSC LIF of Figure
2.13. This corresponds to the loop< 1, inf >-inline expression.

39

2. MSC Notations — Introduction and Comparison

Parallel Nodes Besides sequential composition, alternatives, and repetition, HMSCs also
allow us to specify independence of the events of entire MSCs. For that purpose MSC-96
introduces the parallel node. Its graphic representation is a box. A parallel node may
contain any number of HMSCs. Intuitively, the events occurring in the HMSCs within a
parallel node are mutually independent.

Consider the HMSC [lpu from Figure 2.14. It contains a parallel node, which, in turn,
contains two HMSCs; each of these consists of only one reference to MSC lockingL and MSC
lockingR, respectively. HMSC Ipu specifies that the events defined in lockingL and lockingR
are unrelated. Note the similarity of this construct and the par-inline and -reference
expression.

msc Ipu
msc lockingL msc lockingR
Control LM Control RM
—/— —— []]
ldn | rdn
[lockingL j [IockingR}
. mr . rmr
]]]]

A

Figure 2.14.: HMSC with parallel node

Connection Nodes Edges in HMSCs may only connect nodes. To facilitate readability of
HMSCs, MSC-96 introduces connection nodes, whose sole purpose is to form the starting
or ending point of edges within the graph. This helps to reduce the number of incoming
and outgoing edges, in particular, of reference nodes. The graphic representation of a
connection node is a non-filled circle.

— -

-

-

Y

Figure 2.15.: HMSC fragments with connection nodes

40

2.2. MSC-96

Consider the HMSC fragments of Figure 2.15 as an example. The reference node to the
left has three incoming and three outgoing edges, whereas the reference node in the middle
has only one incoming and one outgoing edge. The two connection nodes serve as join and
fork points, respectively.

To reduce the number of symbols needed in an HMSC further, MSC-96 allows us to omit
the connection nodes, and to connect the lines directly, if no confusion can arise. An
example appears in Figure 2.15, to the right.

Condition Nodes A condition node, graphically represented exactly as the condition
symbol in simple MSCs, restricts the MSCs that may precede and succeed it in an HMSC.
[IT96] defines a plethora of corresponding requirements. The semantics definition [IT98],
however, assigns no meaning whatsoever to condition nodes.

A much simplified (and thus nonstandard) version of the restrictions stated in [IT96],
applicable to the combination of a condition node and a reference node whose label is an
MSC name, has two constituents:

e if there is an arrow from a condition node labeled C'to a reference node labeled X,
then X must start with a global condition labeled C;

e if there is an arrow from a reference node labeled X to a condition node labeled C),
then X must end with a global condition labeled C.

We refer the reader to the literature mentioned above for the full-fledged set of restriction
rules. Figure 2.16 shows an example of an HMSC with two condition nodes and one
reference node; this HMSC obeys the requirements posed before.

msc lockingL msc lwc
Control LM

T T e

UNLOCKED !
Idn lockingL
Imr
LOCKED

|

— —

Figure 2.16.: HMSC with condition nodes

41

2. MSC Notations — Introduction and Comparison

Mapping HMSCs to MSCs As we have mentioned in the previous paragraphs, the con-
structs provided by HMSCs correspond directly to similar constructs in simple MSCs.
Therefore, we obtain the semantics of an HMSC simply by converting it into a correspond-
ing plain MSC. In Chapter 4 we present such a conversion in detail.

Gates

References and HMSCs provide means for decomposing MSC specifications into smaller
parts. Each part contains an interaction pattern we can study and understand on its own.
This works fine as long as the sources and destinations of all message and ordering arrows
are within the same MSC, as was the case in the examples we have introduced in Figures
2.10 through 2.12.

The situation changes, however, if the need for splitting arrows between MSCs arises.
Consider, for instance, MSC G in Figure 2.17. If we want to decompose G into two parts,
where one contains only instances W and X, and the other contains only instances Y and
Z, we need a way of describing how the messages n and ¢ continue outside the sub-MSC
containing the corresponding send event.

msc G
w X Y Z
[— [— [— [—
m |-
n |-
- p
- q
L r
I I I I

Figure 2.17.: How to decompose this MSC horizontally?

As a solution to this problem MSC-96 offers the concept of gates. Gates come in two forms:
message gates and order gates. Intuitively, message gates allow us to specify “entry” and
“exit” connection points for messages exchanged by instances within an MSC and their
environment. Order gates serve a similar purpose: they allow us to include the events of a
referenced MSC into the general ordering of its environment. In the following paragraphs
we discuss message and order gates in more detail. We start out with message gates in
combination with the most basic form of MSC reference expressions: MSC names. After
that we also consider more complex reference expressions such as alternatives and loops.
Finally, we show how message and order gates relate.

Message Gates Attaching a text label to the point of entry or exit, respectively, of a
message arrow at the environment frame specifies a message gate. Figure 2.18 shows the
definition of two gates: gand h. We call g a message-out-gate, because of its correspondence
with an outgoing message. Analogously we call h a message-in-gate.

42

2.2. MSC-96

msc lockingL

Control
——

Idn

Y

Imr

A

Figure 2.18.: MSC with definitions for message-out-gate g, and message-in-gate h

Gates and References The names of gates defined within an MSC reoccur in a cor-
responding MSC reference. To indicate how a message attached to a message-out-gate
continues outside the referenced MSC, we specify the name of the corresponding gate at
the reference symbol (this constitutes an actual gate definition), and start a message arrow
from this actual gate to the desired destination; the message arrow must have the same
label as in the referenced MSC. Similarly, to indicate how a message attached to a message-
in-gate continues outside the referenced MSC, we specify the name of the corresponding
gate at the reference symbol; we use this actual gate as the destination of a message arrow
starting at the desired origin within the referencing MSC. The MSCs of Figure 2.19 show
examples for both situations.

To yield a valid MSC reference the name of the actual gate and the name used in the gate’s
definition must coincide. In addition, the labels of the corresponding message arrows within
the referencing and the referenced MSC must be identical. In particular, the gate and the
message attached to it in the referencing MSC must both be present and attached to each
other in the referenced MSC.

msc locking msc locking
LM Control LM Control
— — — —
ldn__[}ockingL L Imr o [ockingL
g h
—— ——

Figure 2.19.: MSC references with actual gate g and h, respectively

In both MSCs of Figure 2.19 we have made use of only one of the gates defined in Figure
2.18. This leaves open the question what happens to, say, MSC lockingL’s gate h and its
corresponding message in Figure 2.19, left. MSC-96 defines that gates of a referenced MSC
without connection to arrows in the referencing MSC propagate to the referencing MSC;
thereby, all unconnected gates of referenced MSCs become gates of the referencing MSC.

43

2. MSC Notations — Introduction and Comparison

As a result, the MSC of Figure 2.19, left, has an invisible message-out-gate h.

A message arrow that either originates from the environment frame, or has the environment
frame as its destination without an explicit gate definition implicitly defines an anonymous
message-in- or message-out-gate, respectively. Anonymous gates always propagate to the
referencing MSC.

Message arrows whose one end connects to a gate may, with their other end, connect to
any one of the following:

e an instance within the MSC; this is the situation we have illustrated in the examples
of Figures 2.18 and 2.19.

e another gate of
— a referenced MSC; Figure 2.20 shows an example of this kind of connection.

This is the solution we need to decompose MSC G of Figure 2.17 horizontally.

— the environment frame; an example of this also appears in Figure 2.20, where
message logDwn connects to the environment via gate f. As mentioned above,
this yields an anonymous gate definition.

msc lockingL msc IckLog
LM Control RM
— — ——
Idn h notifyLck .
notifyLck - g logDwn _ .
Imr |
E— E— E—
msc locking

LM Control

Figure 2.20.: Connecting references via gates

44

2.2. MSC-96

Gates and Reference Expressions As we have introduced above, reference expressions
may be far more complex than simple MSC names. Examples are alternative- or parallel-
reference expressions, such as (A alt B alt C), or (A par B) for given MSCs A, B, and C.
MSC-96 extends the rules for valid MSC references in the presence of multiple MSCs within
the same reference expressions in the following way: if the head or tail of a message arrow
for message m connects to an actual gate of the reference expression, then at least one
of the referenced MSCs must define the corresponding message-in- or message-out-gate,
respectively, for message m. The set of gates of an MSC reference expression results from
performing set union on the sets of gates of the referenced MSCs.

The combination of gates and non-basic reference expressions easily leads to complex and
difficult to comprehend interpretations for MSCs. As an example consider the MSC frag-
ment of Figure 2.21, left. Here, message m connects to gate g of reference expression (A
alt B). The rules defined above state that A or B, but not necessarily both, must define
message-in-gate g and the corresponding message m. If, say, B does not define this gate,
then this MSC fragment specifies that m may or may not arrive at its destination. Sim-
ilarly, the MSC fragment in Figure 2.21, right, specifies that message n is sent infinitely
often, and arrives exactly once.

Figure 2.21.: Gates with alt- and loop-reference expressions

Gates and Inline Expressions Mostly for technical reasons and as a notational shorthand
MSC-96 allows gates not only to attach to references, but also to inline expressions. How-
ever, because reference expressions also allow us to express alternatives, repetition, and
parallelism, we can transform directly between an inline expression whose constituents are
simple MSC references, and an MSC reference expression corresponding to the type of the
inline expression. Therefore, there is no significant difference between the use of gates
together with either reference or inline expressions; we refer the reader to [IT96, Ren99]
for the details.

Order Gates Message gates allow us to specify how messages within and outside of a
referenced MSC relate. Order gates serve a similar purpose. They allow us to specify how
events — such as message send and receive, and action events — within and outside of a
referenced MSC relate. Order gates provide a mechanism to integrate the event ordering
within a referenced MSC into the event ordering of its environment. MSC-96’s treatment

45

2. MSC Notations — Introduction and Comparison

of order gates is entirely analogous to that of message gates. The only difference is that
order gates relate ordering arrows, instead of message arrows. Everything else we have said
about message gates transfers directly to order gates.

2.2.3. Miscellanea

For most of the syntactic elements we have introduced so far MSC-96 offers several pre-
sentation alternatives. Message arrows, for instance, may be bent to indicate message
overtaking. The authors of [IT96, IT98, Ren99| discuss all of these alternative syntactic
forms in detail.

In the remainder of this section we round up our treatment of MSC-96 by discussing the
specification of lost and found messages, instance creation and stop, timers, and instance
decomposition.

Lost and Found Messages

MSC-96 allows us to specify incomplete messages, i.e. messages for which a send event but
no corresponding receive event, or a receive event but no corresponding send event occurs.
A lost message never arrives at its destination and no instance ever sends a found message.
The graphical representation for a lost message is a message arrow starting at an instance
axis or at a message gate (a lost message has a corresponding send event), and ending at
a filled black circle. The graphical representation for a found message is a message arrow
ending at an instance axis or at a message gate (a found message has a corresponding
receive event), and starting at a non-filled black circle. To indicate the intended receiver of
a lost message or the expected sender of a found message, we may attach that instance’s
label to the circle of the lost or found message symbol, respectively.

46

Figure 2.22.: Lost and found messages (a), and instance creation and stop (b)

msc locking
msc locking
Control LM RM
[— [[] Control
ldn - —— LM
_ (ImD) S g S—
rdn "
RM rdn
Imr ~
LM . Imr
B rmr
I I I ——

2.2. MSC-96

As an example consider the MSC of Figure 2.22 (a). Here, rdn is a lost message whose
intended receiver is RM, while Imr is a found message whose expected sender is L.

Instance creation and stop

So far we have assumed that the instances depicted in MSCs existed at least long enough to
partake in the specified interactions. We did not make assumptions about what brought an
instance into existence, how long that existence lasted, and what caused the destruction
of an instance. Although MSC-96 does not directly address all of these issues with its
graphical syntax, it provides a means for specifying instance creation and stop. An instance
can send and receive messages only after its creation and at most until its existence stops.
Creation and deletion of any instance may occur at most once. The graphical representation
of instance creation is a dashed message arrow, called “createline”, from the creating
instance to the head symbol of the created instance. The createline may but need not have
a formal parameter list within parentheses. The idea is that the freshly created instance
may use the values of these parameters for its own initialization. The instance head symbol
of the freshly created instance need not be at the top of the MSC; rather, its typical vertical
location is about the same as the vertical location of the createline’s send event. To indicate
termination of an instance graphically, we use a cross instead of an instance end symbol
at the end of an instance axis.

In the example of Figure 2.22 (b) instance Control creates instance LM, and transmits
the parameter ImID to it. After two interactions with its creator, LM stops. Note the
asymmetry between instance creation and instance stop: creation of LM is under Control’s
control, while LM itself controls its termination.

Timers

Timing constraints form an important part of specifications for technical systems. MSC-96
provides no quantitative notion of time, i.e. we can neither reference nor relate the exact
times at which events occur. The only way of introducing time into an MSC specification
is through using timer events. A timer is a clock that, once started, runs until a certain
amount of time has elapsed; it then signals this fact to the instance which started the clock.
Correspondingly, MSC-96 defines three timer events: set, reset, and time-out. Intuitively,
“set” corresponds to initializing and starting a timer, “reset” sets the timer back to its
initial value and restarts it, and “time-out” indicates the timer’s expiration. The graphical
representation of a timer set event is an hourglass symbol; it is connected by a line to the
axis of the instance issuing the set event. The location at which the line ends at the instance
axis indicates the relative order of the set event with respect to other events on the same
axis. We can attach a label to the hourglass symbol to indicate the timer’s name. This is
useful if we use multiple timers within the same MSC document. Together with the timer’s
name we can informally indicate its duration, i.e. the initial value of the timer, in the form

47

2. MSC Notations — Introduction and Comparison

of a text label in parenthesis. Because MSC-96 does not have any quantitative notion of
time, such durations find no correspondence in the semantic treatment of timers; they have
only informal documentational value. A timer reset event has a cross as its representation;
again, a connecting line between the instance causing the reset and the cross indicates
when the reset occurs. The only event caused by the timer itself is the timeout event.
Its graphical representation is an hourglass symbol from which an unlabeled solid arrow
emerges. The arrow’s head connects to the instance axis on which the timeout event occurs.
The position of the arrowhead determines when the timeout event occurs with respect to
all other events on the same instance axis. Reset and timeout events may also carry the
corresponding timer’s name. All timer events with respect to a certain timer occur on
a single instance axis; put another way, at most one instance relates to any timer in an
MSC document. We refer the reader to [IT96, Ren99| for the syntactic details of timer
specifications.

msc locking
Control LM RM

— — [—

ldn |
S(d9) rdn - T(dt)
Imr
47
» rmr
E—— E—— —

Figure 2.23.: MSC with timer events

The MSC of Figure 2.23 shows two timers and all possible timer events. Instance RM sets
timer 7T with an initial value of dt. The timeout of T occurs before RM sends message
rmr to instance Control. Instance Control sets timer S with an initial value of ds. Then it
resets timer S after it has received message Imr.

Instance Decomposition

Besides references and gates MSC-96 provides another construct for introducing abstrac-
tions into plain MSCs: instance decomposition. A decomposed instance represents a set
of instances that exchange messages among one another and with the environment. In
the MSC containing the decomposed instance only the interactions with the environment
appear; the instances it subsumes and their interactions remain hidden. This form of ab-
straction mainly serves to indicate structural containment relations. The idea is that the
decomposed instance “contains” the instances into which it decomposes, be it logically or
physically.

48

2.2. MSC-96

The graphical representation of a decomposed instance X is an instance axis whose head
contains the keyword decomposed. Within the same MSC document we must also specify
an MSC named X showing the instances and interactions subsumed by X. Figure 2.24
shows an example of a decomposed instance and its associated MSC. Here instance CLS
decomposes into the three instances Control, LM, and RM. Messages Ick and rdy are the
only messages from MSC CLS that also appear in MSC IckUC.

msc CLS
msc IckUC Control LM RM
[] []
CLS
User decomposed Ick o
ldn |
Ick -
: o rdn
rdy - Imr
|- Bl
— — - rmr
rdy

Figure 2.24.: MSC with decomposed instance CLS

The messages sent and received by a decomposed instance must reappear in its associated
MSC as messages sent to and received by the environment, respectively; the source or
destination of such messages may be any of the instances subsumed by the decomposed
instance.

If the head of the decomposed instance indicates its corresponding MSC’s name, after the
keywords decomposed as, the instance’s and the MSC’s name may differ. MSC-96 poses
two restrictions on any decomposed instance X and its corresponding MSC Y-

1. the event ordering of Y must respect the event ordering on X’s axis, i.e. if we consider
only the events in MSC Y corresponding to events on X’s axis, the ordering of the
former and the latter must coincide;

2. neither inline expressions nor reference symbols may occur on X’s axis.

49

2. MSC Notations — Introduction and Comparison
2.3. Other MSC Dialects

Triggered by the increasing significance of interaction and collaboration specification sev-
eral MSC-like notations have emerged over the past few years. In the following sections we
give a coarse overview of some of these notations, and indicate their major application ar-
eas. The set of notations we cover comprises Object Message Sequence Charts, the UML’s
Sequence Diagrams, Extended Event Traces, Interworkings, Hybrid Sequence Charts, Live
Sequence Charts, and MSC 2000.

Readers who prefer a succinct comparison of these MSC dialects to the example-oriented
syntax presentation we give here, are referred to Section 2.4. Understanding of the material
covered in subsequent chapters does not crucially depend on detailed knowledge about these
syntaxes.

2.3.1. OMSCs

The authors of [BMR96] introduced Object Message Sequence Charts (OMSCs) to de-
scribe interaction patterns in object-oriented software architectures. The basis of OMSCs
are MSCs (see Section 2.2). Because of their intended application, however, the syntac-
tic elements of OMSCs differ significantly from those proposed in the MSC-96 standard.
Moreover, OMSCs do not provide any formal semantics; the topic of [BMRT96] is their
use for explanatory purposes, neither their semantic foundation, nor their integration into
the development process. Because the method call, and often also the yielding of control
between caller and callee, is of major concern in object-oriented designs the developers of
the OMSC notation offer specific syntactic support for these modeling tasks.

OMSCs provide the following modeling elements:

e labeled axes, representing part of the existence of an object (this corresponds to
instance axes in MSCs);

e labeled arrows, indicating message exchange, method calls and returns (this corre-
sponds to the message arrows within MSCs, although MSC-96 does not offer syn-
chronous and return arrows);

e object activities, denoting phases where an object is active, i.e. where it executes
the body of a method, function, or procedure (there is no corresponding concept in
MSC-96);

e object creation arrows, denoting the point from which on an object exists (this cor-
responds to the createline of MSCs);

e object deletion symbols, denoting the end of an object’s existence (this corresponds
to instance stop in MSCs);

50

2.3. Other MSC Dialects

e process boundary symbols, denoting what set of objects belongs to what process of
the system under design (there is no corresponding concept in MSC-96);

Elements from MSC-96 absent from OMSCs are the environment frame, conditions and
actions, inline and reference expressions, coregions, general orderings, gates, lost and found
messages, timers, and hierarchy. In particular, the lack of repetition and referencing con-
structs restricts the use of OMSCs to representing interaction scenarios of rather limited
size. The major difference between MSC-96 and OMSCs is that OMSCs introduce the no-
tion of control flow into the specification of interaction descriptions. This has gained them
significant popularity especially among software engineers who use scenarios to describe
sequences of method calls with corresponding returns. Because OMSCs support depicting
focus of control, method calls, and returns, the authors of the UML [Rat97, RJB99] se-
lected them as the basis for Sequence Diagrams (see Section 2.3.2). The lack of a formal
semantics for OMSCs hinders their application in rigorous modeling environments.

In the following paragraphs we briefly introduce the graphical syntax of OMSCs.

Object Axis The graphical representation of (part of) an object’s existence is a solid
vertical line, which we call the object’s axis. The object’s name appears in a box to which
the object axis connects from below. We call this box together with the label it contains
the “object symbol”. The object symbols of objects existing already before the depicted
interaction scenario starts align at the top of the diagram. Figure 2.25 shows an axis for
each of the three objects Control, LM, and RM.

’ Control ‘ ’ LM ‘

Ick T
— ldn

»
|

A

rdn

A

i

Figure 2.25.: OMSC for the “locking” use case

Arrows Arrows in OMSCs represent interaction among objects. The OMSC notation
offers three kinds of arrows:

1. message arrows,
2. return arrows,

3. combined message and return arrows.

o1

2. MSC Notations — Introduction and Comparison

Message arrows are solid lines with full arrowheads, directed from the sender to the re-
ceiver of the corresponding message. The name of the message appears as a label above the
arrow. Often, messages in OMSCs denote method calls; they can, however, also express
asynchronous message exchange as in MSCs (see below). Return arrows, which have a
much smaller arrowhead than message arrows, and are unlabeled, indicate the return cor-
responding to a method call (see below). Combined message and return arrows, which have
arrowheads at both ends, represent both the call upon a method and the corresponding
return; the large arrowhead indicates the direction of the call, the small arrowhead indi-
cates the direction of the return. Figure 2.25 shows three messages representing method
calls: Ick, ldn, and rdn. An example of a combined arrow representing message ldn occurs

in Figure 2.26.
Ick

—>

Idn

|

Figure 2.26.: OMSC with message/return parameters, and object creation/deletion

Method calls can have parameters; their labels appear as a comma-separated list in a rect-
angular box. The parameter box attaches from above to the message arrow. Similarly,
returns may carry return values; their labels appear as a comma-separated list in a rect-
angular box attaching from below to the return arrow. Figure 2.26 shows the example of
message parameter d1y and return parameter act. To indicate transfer of object references
[BMR 96| suggests to use italics for the corresponding parameter or return value label.
To indicate the transfer of responsibility! for an object parameter or return value from the
source to the destination of a message or return, respectively, [BMR*96] suggests to use
boldface for the corresponding parameter or return value label.

Object Creation and Deletion An unlabeled message arrow whose arrowhead ends at
another object symbol denotes object creation; the object from which the message arrow
originates creates the object at whose symbol the arrow ends. The graphical representation
of an object’s deletion is a large cross at the end of the object’s lifeline. To specify that
another object causes the object’s deletion we draw a message arrow from the former to

LBMR*96] does not elaborate on the meaning of the term “responsibility”; one possible interpretation
is that an object has responsibility for another if the former causes deletion of the latter.

52

2.3. Other MSC Dialects

the center of the cross. Otherwise the object on whose lifeline the deletion symbol appears
controls its deletion itself. Figure 2.26 shows creation and deletion of object LM by object
Control.

Object Activities The basic unit of interaction in most object-oriented systems is the
method call. Typically, when an object calls upon a method, the receiver starts some
computation, issues method calls itself, and processes the corresponding results. After
these activities have finished the callee returns the result of the computation to the caller.
To visualize phases of object activity, and to link the messages sent and received by an
active object to fulfill a certain task or to handle a method call, the OMSC notation
provides object activities; their graphical representations are vertical boxes on the object’s
axis. The activity’s extent denotes how long the corresponding object is active. Consider
again the OMSC of Figure 2.25. It shows three object activities. The longest belongs to
Control. It shows that to process method Ick object Control performs two method calls.
Each of the called objects becomes active upon receipt of the corresponding method call,
indicated also by means of activities.

Activities to Express Control in Sequential and Concurrent Systems In sequential
systems at most one object can proceed, i.e. is active, at any point of time. The active
object “has control” of the execution. If one object calls upon a method of itself or of
another object, the caller typically yields control to the callee, so that the callee can
process the request. The caller blocks until it receives control back from the callee. In
such systems activities express the focus of control over time. Method calls start activities,
and returns end them. The authors of [BMR96] include the blocking phase, i.e. the time
during which the caller waits for its callee, into the caller’s activity. Put another way, they
consider an object active even if it waits for the result of one of its own method calls.

In concurrent systems multiple threads of control may exist. Here, each activity can cover
the entire axis of its corresponding object. The use of activities helps determine the amount
of concurrency needed in the implementation of an interaction sequence. Figure 2.25,
for instance, displays an interaction sequence where sequential method calls suffice as the
basis for implementation: no object is active after performing the return corresponding to a
method call. Otherwise, i.e. if there exists no binding between an object’s activity, incoming
method calls, and returns, this suggests using a multi-threaded object implementation.

Recursion If an object calls upon one of its own methods, we stack another object activa-
tion symbol slightly to the right of the one from which the method call originates. Figure
2.27 shows this via the example of Control’s log message.

Process Boundaries Thick angled lines can divide an OMSC into vertical regions. Each
such region then corresponds to a separate process of the system under development. This

53

2. MSC Notations — Introduction and Comparison

Ick

— Idn

|

|10

B

Figure 2.27.: OMSC with recursion and process boundary indicator

helps to introduce structure into the otherwise flat OMSCs. Moreover, the authors of
[BMR 96| consider messages across process boundaries as asynchronous (with the excep-
tion of remote procedure calls). Other arrows denote method calls with the concrete type
of interaction (synchronous, asynchronous, or either of the two) left implicit. Figure 2.27
indicates that objects Control and LM reside in different processes of the system.

2.3.2. Sequence and Collaboration Diagrams

Among the set of notations offered by the Unified Modeling Language (UML, cf. [Rat97,
RJB99]) there are two whose major focus is component interaction: Sequence Diagrams
(SDs), and Collaboration Diagrams (CoDs). While SDs stress the sequencing of messages
in an interaction pattern CoDs stress the paths along which objects exchange messages.

Roughly, a CoD consists of a set of object symbols (rectangles, labeled with the object’s
name), and a set of arrows connecting communicating objects. These arrows represent
communication links; the definition of these links may appear, for instance, in the form of
association specifications within corresponding class diagrams. The messages exchanged
by the objects label the communication links along which the messages occur; each mes-
sage within a CoD carries a unique sequence number that determines its order within the
interaction pattern; Figure 2.28 shows a simple example.

1. ldn 3. rdn
Im:LM c:Control rm:RM
2.1mr 4. rmr

Figure 2.28.: CoD for the “locking” use case

Because the CoDs’ graphical appearance aims more at clearly conveying structure instead
of interaction sequences, we focus on SDs in the following. We refer the reader to [RJB99]
for the details about CoDs.

o4

2.3. Other MSC Dialects

The direct syntactic ancestors of the UML’s SDs are the OMSCs we have described in
Section 2.3.1. In fact, the SD’s syntax is — up to a few minor changes and the omission of
the process boundary symbol — a superset of the OMSC syntax; the major additions con-
tributed by the UML are means for indicating alternatives, repetition, timing constraints,
and state symbols within SDs.

SDs provide the following modeling elements:

e labeled axes, representing part of the existence of an object (this corresponds to
instance axes in MSCs);

e labeled arrows, indicating message exchange, method calls, and returns (this corre-
sponds to the message arrows within MSCs, although MSC-96 does not offer syn-
chronous and return arrows);

e object activities, denoting phases where an object is active, i.e. where it executes
the body of a method, function, or procedure (there is no corresponding concept in
MSC-96);

e object creation arrows, denoting the point from which on an object exists (this cor-
responds to the createline of MSCs);

e object deletion symbols, denoting the end of an object’s existence (this corresponds
to object deletion in MSCs);

e guarded messages and conditional lifelines, expressing alternatives among interaction
sequences (this corresponds to the alt-inline expression of MSCs);

e repetition boxes, denoting repeatable parts within an interaction sequence (this cor-
responds to the MSCs’ loop-inline expression);

e timing constraints, specifying bounds on the duration of interaction sequences (this
roughly corresponds to the timers of MSCs);

e state symbols, indicating state information about individual components during an
interaction sequence (this corresponds to local conditions in MSCs, if we interpret
the condition’s label as state information);

Elements from MSC-96 absent from SDs are the environment frame, SD names, reference
expressions, actions, coregions, general orderings, gates, lost and found messages, and
hierarchy. In particular, the lack of referencing constructs restricts the use of SDs to
representing interaction scenarios of rather limited size.

In the following paragraphs we briefly introduce the graphical syntax of SDs to the extent it
differs from the one we have already discussed in the context of OMSCs in Section 2.3.1. We
also omit some of the syntactic presentation options (alternative syntactic forms) contained
in [Rat97] and [RJB99].

95

2. MSC Notations — Introduction and Comparison

Object Axis, Lifeline The graphical representation of (part of) an object’s existence is a
dashed vertical line, which the authors of the UML call the object’s lifeline. The object’s
name and class, separated by a colon, appear in a box to which the lifeline connects from
below. Again, we call this box together with the label it contains the object symbol.
The object symbols of objects already existing before the depicted interaction scenario
starts align at the top of the diagram. Figure 2.29 shows an axis for each of the three
objects ¢ (of class Control), Im (of class LM), and rm (of class RM). The authors of
[RJB99] use the term “classifier role” instead of “object symbol” to allow using lifelines as
representations of roles rather than concrete objects. The idea is as follows: the interaction
pattern corresponding to a lifeline is a placeholder for all objects that can “play this role”,
i.e. objects of the appropriate class. In particular, the same object may occur in different
roles in different SDs; objects of the same class may occur in different roles in the same
SD. We refer the reader to [RJB99] for a description of the technical details of this way
of interpreting lifelines. For our purposes a simpler intuition suffices: a lifeline represents
part of a concrete object’s existence.

’c:Control‘ ’ Im:LM ‘ ’ rm:RM ‘

Ick ‘ | |
€ ldn ‘

|
|
1
Imr] !
| |
rdn ! !
|
rmr !]
|
|
|

Figure 2.29.: SD for the “locking” use case

Arrows Arrows in SDs represent interaction among objects. The SD notation offers four
kinds of arrows:

1. asynchronous message arrows,
2. synchronous message (method call) arrows,
3. “neutral” arrows (no indication of underlying communication paradigm),

4. return arrows.

Solid lines with half stick arrowheads, directed from the sender to the receiver of the cor-
responding message, represent asynchronous message exchange. The name of the message
appears as a label above the arrow. Often, messages in SDs denote method calls; their
representation is a solid line with a filled solid arrowhead. Return arrows, which consist of
a dashed line and a stick arrowhead, indicate the return corresponding to a method call.

56

2.3. Other MSC Dialects

Figure 2.29 shows three messages representing method calls: Ick, ldn, and rdn. Arrows
with downward slope indicate that the transmission of the corresponding message takes

time.
Ick

— 1K - newM otor()

Im:LM

act:=ldn(dly,t)
=]
actDly:=setDly(dly)

|

delMotor() \!

Figure 2.30.: SD with message/return parameters, and object creation/deletion

Method calls can have parameters; their labels appear as a comma-separated list within
parenthesis after the method name on the corresponding arrow. Figure 2.30 shows two
examples: method ldn has two parameters (dly and t), method setDly has one parameter
(dly). Similarly, method calls may return values; the names of the attributes intended as
the destination for these return values appear as a comma-separated list before the method
name on the corresponding method call arrow; an assignment symbol (“:=") separates the
attribute list and the method name. Figure 2.30 shows the example of the method call
upon [dn; this call returns a value, which ends up in attribute act. At the end of an
operation or method an explicit return arrow (consider the return of method setDly in
Figure 2.30) from the callee to the caller may occur. If an activation (see below) indicates
the duration of a method, the return is implicit and the corresponding arrow is optional
in the SD (consider the implicit return of method ldn in Figure 2.30).

Object Creation and Deletion A message arrow whose arrowhead ends at another object
symbol denotes object creation; the object from which the message arrow originates creates
the object at whose symbol the arrow ends. The create-message’s label indicates the
method called at initialization of the newly created object. The graphical representation
of an object’s deletion is a large cross at the end of the object’s lifeline with the same
syntax as we have introduced for OMSCs in 2.3.1 (consider Figure 2.30 for an example).

Activations and Recursion The UML calls the OMSCs’ “object activities” (cf. Section
2.3.1) “activations”. Both terms describe the same underlying concept; their syntactic rep-
resentation, a “tall thin rectangle” of an object’s lifeline, is also equivalent. An activation
indicates the focus of control within the system under consideration; it represents the du-
ration of an action and the control relationship between the activation and its callers. The

27

2. MSC Notations — Introduction and Comparison

UML’s authors suggest to let activations start at the tip of an arrow representing a method
call; the activations’ ends should coincide with the corresponding return. If each object
has its own flow of control, independent of other objects, they suggest to use activations to
indicate operation durations. The activation of a recursive method is shown slightly to the
right of its calling activation (see Figure 2.27 in Section 2.3.1). A shaded region within an
activation indicates actual computation as opposed to having focus of control in a waiting
or idling state. Figure 2.30 shows activations on the lifelines of objects ¢ and Im.

Alternatives The UML’s SDs can express alternatives within interaction patterns by
means of two syntactic constructs: guarded messages and conditional lifelines. To indicate
that an object sends exactly one of a set of possible messages we position the tails of all
corresponding alternative arrows at the same point on the object’s lifeline, and add a guard
to the label of every arrow. The guard of a message is a text label within square brackets,
indicating the occurrence condition for this message. Typically, the guard is a boolean
expression over attributes of the sending object; the UML allows also other explanatory
text. To ensure that exactly one message from the set of alternatives is enabled, all guards
must be mutually exclusive; when, during execution of the system, the sender’s control
reaches the alternative message arrows, exactly one guard must yield true.

|

switchMode() [mode = "up"] lup()
[mode = "down"] Idn() J

Figure 2.31.: SD with guarded message arrows

Figure 2.31 displays two guarded messages, representing the alternative between invoking
method [up or ldn; the selection between the two alternatives depends on whether attribute
mode has value up or down, respectively.

There is an obvious problem brought along by the use of guarded messages for expressing
alternatives. By inspection of an object’s lifeline alone we cannot determine whether the
messages arriving at it belong to an alternative or are totally separate messages. We must,
at least, determine whether their labels contain guards. But even if we find guards at-
tached to the messages, we must still determine that these are messages from the same set
of alternatives. The order of the arrowheads at an object’s lifeline can easily become coun-
terintuitive; does the order of two incoming arrows on the same lifeline denote sequentially
arriving or alternative messages?

As a partial remedy, and to allow the developer to express different reactions of an object to
alternative incoming arrows, the UML offers the concept of conditional lifelines. A lifeline
may split into multiple ones to denote that the corresponding object can participate in the

58

2.3. Other MSC Dialects

depicted interaction sequences in alternative ways. Each lifeline represents one of a set of
possible interaction scenarios in which the object can partake. Split lifelines must merge
again within the SD.

switchMode() —_— oo
ﬂ [mode="up' IupQ 1} ggnaupg

[mode = "down"] Idn() ‘

ﬁ‘ signalDn()

Figure 2.32.: SD with Guarded Message Arrows and Conditional Lifelines

As an example, consider the SD of Figure 2.32. Here, Im’s lifeline splits to represent
different reactions according to the incoming method call. If Im receives message lup it
sends message signalUp; if it receives message ldn it sends message signalDn.

Repetition For the specification of repeated interactions among a set of objects the UML
offers only little syntactic support. We may enclose a repeatable sequence of messages, and
add an iteration marker to indicate the repetition (cf. [Rat97, RJB99]). The UML does
not specify how to enclose the sequence. The UML also leaves open the concrete syntax
for the iteration marker.

Timing Marks The UML provides timing marks and timing constraints for the speci-
fication of the duration of message transmission or of interaction sequences as a whole.
A timing mark is a letter put closely to the tail or head of a message arrow. The let-
ter represents the time at which the corresponding send or receive event occurs. For an
asynchronous message we only need to mark its sending time explicitly by a text label; im-
plicitly, the same label plus an appended prime symbol (“’”) represents the corresponding
time of receipt (cf. [Rat97]). If a is the label at the tail of the asynchronous message arrow,
then a’ indicates the time of receipt for this message. A timing constraint can have one
of the following two forms:

1. a predicate over expressions involving timing marks in curly braces in the left or right
margin of the SD,

2. avertical line whose extent covers all messages whose transmission must occur within
the time specified by the constraint; two short horizontal lines bound the vertical line
at its beginning and its end, respectively. The vertical line’s text label indicates the
allowed duration informally.

29

2. MSC Notations — Introduction and Comparison

’ C:Control‘ ’ Im:LM ‘ ’ rm:RM ‘
lck ‘ | |
ldn ! !
Imr] 3
| | <
. rdn ! | 80 ms
{b-a < 20 ms.}) mr 1]

Figure 2.33.: SD with Timing Marks and Timing Constraints

Figure 2.33 shows examples for timing marks and timing constraints. a represents the
sending time of message rdn, whereas b represents the time of receipt for message rmr.
The two timing constraints in curly braces specify two conditions at the transmission
times of the depicted messages. The sum of transmission times for messages rdn and rmr
may not exceed twenty milliseconds. The message sequence from ldn through rmr must be
complete within 80 milliseconds.

Note, however, that as for the other syntactic constructs we have discussed so far, the
UML neither defines a formal mathematical semantics for timing marks, nor does it specify
consistency criteria for the timing constraints within SDs and other system views, such as
statecharts. Therefore, timing marks and timing constraints within SDs have annotational
character only.

rmr

’c:ControI ‘ ’ Im:LM ‘ ’ rm:RM ‘
T T T
OFF OFF
Ick | |]
iy ldn ! |
| |
! DWN !
! Imr [!
w rdn | |
| | DWN
l l
|

Figure 2.34.: SD with State Symbols

State Symbols The UML allows integration of state information for individual objects
into SDs via the use of state symbols on the corresponding objects’ lifelines. Syntactically
state symbols in SDs equal those in statecharts (cf. [RJB99]); the graphical representation
of a state is a rectangle with rounded corners, labeled with the name of the state. To
indicate that an object is in a certain state before or after (part of) an interaction sequence,

60

2.3. Other MSC Dialects

we place an appropriately labeled state symbol on this object’s lifeline; the position of the
state symbol on the lifeline indicates when the object has assumed the corresponding state.

Figure 2.34 shows examples of state symbols on each of the depicted lifelines. Consider,
for instance, the lifeline of object Im. Initially, Im is in state OFF. After having received

message ldn, Im switches into its DWWN state; once it has sent message Imr it changes back
to state OFF.

2.3.3. EETs

Extended Event Traces (EETs, for short), are a much simplified variant of MSCs. Their
origin is the specification of control oriented and embedded systems (see [SHB96]), and
the specification of interaction architectures (see [BHKS97a]). EETSs have evolved slightly

differently in these two application domains; we concentrate on the variant presented in
[BHKS97a] in the following.

EETSs provide the following modeling elements:

e labels, indicating the name of an EET for referencing it in other EETs (this corre-
sponds to MSC labels);

e labeled axes, representing part of the existence of a component (this corresponds to
instance axes in MSCs);

e labeled arrows, indicating synchronous message exchange (synchronous message ex-
change is not a modeling element of MSC-96);

e choice boxes for referencing EETs and for the specification of alternatives (this cor-
responds to alt-inline and -reference expressions in plain MSCs, and to references
and alternatives in HMSCs);

e repetition indicators for the specification of options and loops (this corresponds to
the opt-inline expression, and the loop-inline expressions in plain MSCs and loops
in HMSCs, respectively);

e an interleaving operator for the specification of independent interactions (this corre-
sponds to coregions and par-inline expressions in simple MSCs, and parallel nodes

in HMSCs);

e predicates for formulating properties over sequences of interactions (predicates are
not a modeling element of MSC-96).

Elements from MSC-96 absent from EETSs are asynchronous messages, the environment
frame, conditions and actions, reference expressions, general orderings, gates, lost and

61

2. MSC Notations — Introduction and Comparison

found messages, instance creation and stop, and timers. Furthermore, loops in EETs allow
specification of finite repetitions only, whereas loop-inline expressions and loops in HMSCs
also allow representation of infinite repetition.

In the following paragraphs we briefly introduce the graphical syntax and informal seman-
tics of EETSs. For a more elaborate discussion of these issues, and for the formal semantics
of EETs we refer the reader to [SHB96, BHKS97a].

Component Axes and Arrows Similar to an MSC, an EET represents components by
labeled axes. The label is the name of the component, the axis is a solid vertical line. A
horizontal arrow denotes message exchange; its label is the name of the message together
with a list of formal parameters within parentheses, if needed. As an example consider
the EET of Figure 2.35, left. It shows two component axes, labeled LM, and C. These
components exchange two messages: [dn and [mr. Message exchange in EETSs occurs
synchronously. Hence, each arrow denotes a single event. This allows us to determine
the semantics of an EET without interleaving, alternatives, and repetition (see below)
simply by reading the EET from top to bottom, recording the messages we encounter
along the way. This yields for every EET, even for the more complex ones we discuss
below, a set of message sequences as its semantics. For the EET in Figure 2.35, left, this
set equals {<ldn, Imr>}2. Similarly, the semantics of the EET in Figure 2.35, right, equals
{<rdn, rmr>}.

locking:
LM C C RM
ldn rdn
- ——————
-
Imr rmr

Figure 2.35.: EET locking with message exchange and interleaving

EET Names An EET may have a name for referencing it in other EETs. The name,
followed by a colon, appears at the top left of an EET. The name of the EET in Figure
2.35 is locking. If an EET has no name, i.e. the EET is “anonymous”, we assume that it
has a globally unique implicit name. The two sub-EETs of Figure 2.35 left and right of
the tilde symbol, respectively, are anonymous.

2We use comma-separated lists of messages within angular brackets to represent message sequences. For
reasons of brevity we identify messages with their names in this section. In [BHKS97a] a message
consists of sender, receiver, message name, and parameter list.

62

2.3. Other MSC Dialects

unlocking:
LM C C RM
lup rup
- >
'
Imr rmr

Figure 2.36.: EET unlocking

Interleaving To express simultaneous occurrence of messages, EETSs offer the interleav-
ing operator; this operator’s graphic representation is the tilde symbol. As an example
consider Figures 2.35 and 2.36. In each of these figures the interleaving operator connects
two sub-EETs. The semantics of the interleaving of two EETSs is the set of all possible
interleavings of the message sequences represented by the operand EETSs. The semantics
of EET wunlocking, for instance, is

{ <lup, lmr, rup, rmr>, <lup, rup, lmr, rmr>,
<lup, rup, rmr, Imr>, <rup, lup, lmr, rmr>,

<rup, lup, rmr, lmr>, <rup, rmr, lup, Imr> }

Each element of this set contains every message occurring in Figure 2.36 in the order given
by the sub-EET from which it originates. The difference between two distinct elements
from the set is the order of messages that originate from different operand EETs. MSC-96
assigns two events to each message, whereas EETSs treat messages as atomic; besides this
difference the interleaving operator achieves the same effect as the par-inline expression in
a plain MSC, or a parallel node in an HMSC.

Environment Unlike MSCs, EETSs provide no notion of environment frame; instead, we
must model the environment explicitly as another system component. In Figures 2.37
through 2.39 we use component ENV to represent the environment.

EET Reference EETSs have a referencing mechanism; the graphical symbol for an EET
reference is a box that covers all component axes. The label of the box denotes the
referenced EET. Figures 2.37 and 2.38 show examples of EET references. EETSs cannot
have cyclic references. Semantically, an EET reference corresponds to the substitution of
the referenced EET for the reference symbol. Hence, we obtain the semantics of EET U by
prefixing message Ick to each element of EET unlocking’s semantics. The EET referencing
mechanism subsumes the referencing mechanisms of plain MSCs and HMSCs.

63

2. MSC Notations — Introduction and Comparison

ENV C LM RM

Ick

y

locking

| |

Figure 2.37.: EET L with reference to EET locking
uU:

ENV C LM RM

unick

Y

unlocking

| |

Figure 2.38.: EET U with reference to EET unlocking

Alternatives To specify the alternative among a set of message sequences the EET syntax
allows us to label a reference box not only with a single EET name, but also with a set
thereof. Consider EET LorU of Figure 2.39 as an example. Here the label of the reference
box is the set {L, U}. This means that wherever this reference box appears, we have the
choice of substituting either EET L, or EET U. This becomes particularly interesting in
combination with repetition.

LorU:

ENV C LM RM

{L, U} 0-*

Figure 2.39.: EET LorU with alternative and repetition

Repetition The repetition operator provided by the EET syntax resembles the loop-
inline expression from MSC-96. Its graphic representation, called “repetition indicator”,
is a vertical line bounded from above and below by two short horizontal lines. The length

64

2.3. Other MSC Dialects

of the repetition indicator determines the scope of the repetition. We call the syntactic
elements of an EET covered by a repetition indicator the indicator’s operand. The indica-
tor’s label determines the possible number of repetitions. The label may have one of two
syntactic forms. The first is “l — «”, where [,u € IN. Then the semantics of the repeti-
tion indicator is the set of message sequences obtained by repeating the operand at least
[and at most u times. Hence, the label “0 — 1”7 corresponds to the opt-inline expression
of MSC-96. The second syntactic form for the label is “I — *’, where [€ IN. Then the
semantics of the repetition indicator is the set of message sequences obtained by repeating
the operand any arbitrary finite number of times, but at least [times.

Consider Figure 2.39 as an example. Here the operand of the repetition indicator is the
alternative box. The label indicates that the operand may occur any finite, nonnegative
number of times. Because the operand is an alternative, in each repetition a different
choice is possible.

Property Specification The major benefit of EETSs is their simple, yet precisely defined
semantics [SHB96, BHKS97a]; the meaning of each EET is a set of finite message sequences.
Because of the assumption of synchronous message exchange, and due to the limited set of
modeling elements, we can derive this set in an intuitive, direct fashion from the graphical
representation. Moreover, in contrast to MSC-96 (cf. [IT96, IT98]), the EET semantics
given in [BHKS97a] integrates the formal parameters of messages into the semantic treat-
ment. This allows us to use predicates to formulate properties of interaction sequences; this
is particularly interesting in cases where we cannot represent these properties by means of
the EETSs’ graphical syntax. Examples of such properties are relations between parameter
values, and the number of occurrences of certain messages with respect to others. We have
exploited this potential in [BHKS97a] for the precise specification of interaction architec-
tures, such as the “Observer” and “Pipes and Filters” patterns (cf. [GHJV95, BMR96]).

An example of a property best formulated as a predicate for EET LorU is “between any
two [ck messages from the environment an unlck message occurs”.

2.3.4. Interworkings

The origin of Interworkings is, similar to that of MSCs, the specification of interactions
in telecommunication systems [MR96, MR94]. In fact, Interworkings are one of the direct
predecessors of MSC-96 (cf. [Ren99]). In contrast to messages in MSCs, interactions occur
synchronously within Interworkings; they do not model any delay between a message out-
put and the corresponding input. Interworkings have a formal semantics. The authors of
[IMR96] give it in a process-algebraic setting, and use the semantics to define composition
operators for Interworkings, such as sequencing and merge (see below).

65

2. MSC Notations — Introduction and Comparison

Interworkings provide the following modeling elements:

e labels, indicating the name of an Interworking for referencing it in accompanying
text (this corresponds to MSC labels, although MSC-96 allows references to occur
within MSCs, not only within accompanying text);

e labeled axes, representing part of the existence of an entity (this corresponds to
instance axes in MSCs);

e labeled arrows, indicating synchronous message exchange (synchronous message ex-
change is not a modeling element of MSC-96);

e a sequencing operator, yielding the sequential composition of two argument Inter-
workings (this corresponds to weak sequential composition in MSC-96);

e a merge operator for the specification of the parallel composition of two argument
Interworkings. The resulting Interworking identifies instances that have the same
labels, and messages that have the same sender, receiver, and label in the argument
Interworkings (there is no corresponding construct in MSC-96);

e a formal refinement relation, relating an abstract and a more concrete Interworking
(this corresponds to instance decomposition in MSC-96, although the definition of
the latter is less formal).

Elements from MSC-96 absent from Interworkings are asynchronous messages, the envi-
ronment frame®, conditions and actions, reference expressions, general orderings, gates,
lost and found messages, instance creation and stop, and timers. In particular, there is no
means for expressing alternatives and repetition, and no referencing mechanism.

In the following paragraphs we briefly introduce the graphical syntax and informal seman-
tics of Interworkings. For a more elaborate discussion of these issues, and for the formal
semantics of Interworkings we refer the reader to [MR96].

Interworking Label, Entity Axis, and Message Arrow An Interworking may have a
name; if the name exists it occurs at the top left of the diagram. The representation
of (part of) an entity’s existence is a solid vertical line, labeled with the entity’s name.
Horizontal arrows in Interworkings, directed from the sender of a message to its receiver,
denote communication between entities. Message transmission occurs instantaneously,
i.e. Interworkings model no delay between the sending of a message and its receipt. Time
runs from top to bottom in Interworkings along each entity axis; the messages sent and
received by a single entity form a total order. There exists, however, neither a global clock,
nor a quantitative time scale along the entity axes. Hence, an Interworking defines a partial
order on the messages it contains.

3The environment frame has no semantics in Interworkings; it serves to separate diagrams within the
same picture.

66

2.3. Other MSC Dialects

Log
LMLog LM C RM

Idn
logDn ran

|

Imr

y

rmr

Figure 2.40.: Interworking Log with ordered and unrelated synchronous messages

As an example, consider Interworking Log in Figure 2.40. Because the position of the ar-
rowheads and -tails on LM’s entity axis induce a total order on the corresponding messages,
we obtain that ldn precedes logDn, which, in turn, precedes Imr. Similarly we obtain from
the total ordering of messages along (’s axis that message ldn precedes rdn; rdn precedes
Imr, which, in turn, precedes rmr. Because of the absence of a global clock we cannot
assign an ordering to the messages logDn and rdn. Thus, Log represents the following set
of interaction sequences:

{ <ldn,logDn, rdn, lmr, rmr>, <ldn, rdn, logDn, lmr, rmr> }

The developer may use multiple Interworkings to describe the interaction among the sys-
tem’s entities. The information contained in an Interworking is complete with respect
to the entities referenced by the Interworking. This means that the interaction sequence
between any two entities A and B in an Interworking proceeds as depicted; no other in-
teraction sequence between A and B can occur interleaved to the depicted one. This rule
does not restrict interactions between an entity occurring in an Interworking I, and any
other entity absent from I.

Two operators allow the developer to compose Interworkings vertically and horizontally.
These operators define how the interaction sequences among entities depicted in different
Interworkings relate. We discuss both operators in turn, below.

Sequencing The sequencing operator yields the vertical composition of two Interwork-
ings. The composite’s set of instance axes is the union of the sets of instance axes of the
operands. To obtain the composite’s interaction sequences we copy the messages from
the first operand, in the order they appear there, to the composite. Then, below the last
message that stems from the first operand, we copy the messages from the second operand,
in order.

As an example, consider the Interworkings LDN and LMR from Figure 2.41. Their se-
quencing occurs as Interworking L in Figure 2.42.

67

2. MSC Notations — Introduction and Comparison

LDN

Idn

LMR
LM

C

Imr

Figure 2.41.: Interworkings LDN and LMR

Sequencing does not necessarily yield sequential composition of the operand Interworkings.
If the operands’ sets of entities are disjoint, for instance, the messages from the two Inter-
workings are independent as we have discussed already, above. Hence, sequencing yields
sequential composition of certain parts of the operand’s interaction sequences at most if
the operands have at least one entity in common that participates in interactions in both
Interworkings.

Merge Intuitively, the merge of two Interworkings corresponds to their horizontal compo-
sition. For operand Interworkings having no entities in common this corresponds to parallel
composition; the semantics of the composite is the set of all interleavings of the interaction
sequences represented by the operands. For operand Interworkings that do have entities
in common the interactions occurring between the common entities in one operand must
appear in the exact same form in the other operand; no other interactions among such
entities may occur in either operand. Thus, the merge identifies common entities and their
interactions in the operand Interworkings. Put another way this means that the operand
Interworkings synchronize on the interactions of common entities. Operand Interworkings
violating this restriction are inconsistent. Their merge results in a deadlock. Messages
whose sender or receiver occurs in one operand, but not in the other, get interleaved in the
result of the merge.

L R
LM C C RM
ldn rdn
- —————
Imr rmr

Figure 2.42.: Interworkings L and R

According to this definition the Interworkings LDN and LMR from Figure 2.41 are inconsis-
tent. The Interworkings L and R from Figure 2.42, on the other hand, are consistent. The

68

2.3. Other MSC Dialects

merge of these two operands has the following set of interaction sequences as its semantics:

{ <ldn,lmr, rdn, rmr>, <ldn, rdn, lmr, rmr>,
<ldn, rdn, rmr, Imr>, <rdn, ldn, rmr, Imr>,

<rdn, ldn, Imr, rmr>, <rdn, rmr, ldn, Imr> }

Refinement The authors of [MR96] provide a formal definition of Interworking refine-
ment, which loosely corresponds to the notion of instance decomposition in MSC-96. In-
tuitively, Interworking A refines Interworking B if

e the set of entities from B is a subset of A’s entity set, and

e for every entity x occurring in B there exists a set of entities in A whose elements
together assume 2’s interaction responsibilities.

More precisely, every entity occurring in A must map to exactly one entity in B. Multiple
entities from A, say ey through e,_;, may map to the same entity, say e, of B. In such a
situation we say that ey through e,_; constitute e’s refinement in A. Every message from
B must reappear in A in the same ordering with respect to the other messages from B. If
e sends or receives a message in B then any one of ¢y through e,_; must send or receive
this message in A. Entities ey through e, ; may exchange arbitrary additional messages
in the refinement.

L Ref
LMLog LMI C

Idn

A

logDn

A

Imr

y

Figure 2.43.: Interworking LRef, a refinement of Interworking L

According to these rules, Interworking LRef from Figure 2.43 refines Interworking L from
Figure 2.42. Entities LMLog and LMI constitute LM’s refinement. The refining entities
exchange the additional logDn message; LMI now acts as the receiver of message [dn,
whereas LMLog acts as the sender of message Imr.

69

2. MSC Notations — Introduction and Comparison

2.3.5. HySCs

In [GKS99a] we have used the syntax of MSC-96 for the specification of complete interaction
behavior in hybrid systems. The corresponding semantics differs significantly from the one
of MSC-96; the semantics of Hybrid Sequence Charts (HySCs) bases on a shared variable
communication model for clock-synchronously operating components.

We mention this MSC dialect for two reasons. First, it assigns a formal semantics to
condition symbols (as predicates over discrete and continuous component variables), and
provides access to a quantitative notion of time in MSCs (via appropriate differential
equations). Second, it makes the concept of preemption syntactically and semantically
accessible to MSC specifications.

Preemption has many practical applications in the context of reactive systems. Consider a
communication protocol where any participant may terminate an ongoing communication
at any time; a typical example is a telephone call, which any party can terminate by
hanging up the phone. Capturing such protocols by means of MSCs without an appropriate
syntactic and semantic preemption concept is a laborious task. It requires adding a plethora
of interaction scenarios, each of which represents one of the possibly many situations in
which the preemption may occur.

In Chapter 4 we discuss the syntactic and semantic treatment of preemption in more detail.

2.3.6. LSCs

The authors of [DH99] have introduced Live Sequence Charts (LSCs) as an extension of the
ITU’s MSC-96 standard for plain (basic) MSCs; [DH99] does not address HMSCs. The
major addition here is integrating the specification of liveness properties into the MSC
notation. To that end the authors relate LSC specifications to system runs. A system run,
in their approach, is an infinite sequence of snapshots, where a snapshot consists of the
set of current events (being either synchronous or asynchronous sends or receives between
components or between a component and the environment), and an assignment of values
to all variables of the system.

The authors associate liveness with four syntactic elements of MSCs:
e plain MSCs as a whole,
e locations (segments on an individual instance axis),
e messages,
e conditions.

We can specify the occurrence of each of these syntactic elements as either mandatory or
provisional (but not both) in LSCs. In the following paragraphs we briefly address each of
these items in turn.

70

2.3. Other MSC Dialects

Plain MSCs The authors of [DH99] associate with each plain MSC a mode: universal
(mandatory) or existential (provisional). Any system run must satisfy a universal LSC,
whereas an existential LSC requires only at least one such run to exist. This distinction,
which also occurs in [K1e98, KGSB99, Krii99b], separates the traditional interpretation of
MSCs as scenarios from complete behavior specification. Syntactically the frame around
an LSC determines whether the LSC is a universal (solid-line frame) or an existential
(dashed-line frame) one.

Location A dashed line segment on an instance axis denotes that, during a run of the
system, the instance under consideration need not move beyond this line segment. A solid
line segment indicates that during a system run the instance must move beyond this line
segment. Intuitively, the distinction between these two cases allows the developer to specify
local progress requirements in the global context of an interaction sequence.

Message A dashed arrow denotes that the corresponding message, if sent, may or may not
arrive at its destination. Solid arrows indicate that a sent message must arrive. In addition
to asynchronous message exchanges (indicated by open ended arrowheads) known from
MSC-96, the authors allow synchronous message exchange (indicated by solid arrowheads).

Condition The authors of [DH99] associate state predicates with conditions occurring in
LSCs. If, during a run of the system, execution reaches a provisional condition evaluating
to false, then the LSC allows arbitrary behavior from this point onward. If, during a run
of the system, execution reaches a mandatory condition evaluating to false, the modeled
system halts. If the condition holds in either case then execution simply progresses beyond
the condition. Provisional conditions appear syntactically as MSC-96 condition symbols
with dashed outlines; the graphical representation of mandatory conditions are MSC-96
condition symbols with regular outlines.

Operational LSC Interpretation Given the interpretation of the above syntactic elements
the authors define the semantics of an LSC operationally as follows. The LSC has a
corresponding transition system (automaton) with three states labeled active, terminated,
and aborted. Given a run of the system the automaton remains in state active while the run
evolves as described by the LSC, according to the above-mentioned progress properties.
Once the run reaches a mandatory condition evaluating to false, the automaton switches to
and remains in state aborted, allowing only stuttering steps from this point in time on. If
either the LSC describes a prefix of the run, or a provisional condition within the LSC does
not hold, the automaton switches to and remains in state terminated, allowing arbitrary
behavior from this point in time on.

The automaton accepts a run as conformant to the LSC if and only if either it reaches
state terminated, or it stays in state active forever after all progress conditions have been
met.

71

2. MSC Notations — Introduction and Comparison

The authors hint at, but do not elaborate on, the representation of repetition constructs;
similarly, they only briefly mention “forbidden” scenarios, i.e. scenarios that must not occur
in a system run. They also introduce the concept of “subcharts”, which are LSCs occurring
within other LSCs. The idea is that subcharts, in which a provisional condition does
not hold, terminate, and execution continues in the “parent” LSC outside the subchart;
one application, therefore, of subcharts together with provisional conditions is to specify
preemption in LSCs. However, the precise semantics of these subcharts does not appear
in [DH99].

2.3.7. MSC 2000

MSC 2000 (cf. [IT99]) is ITU’s follow-up on MSC-96. The new recommendation differs
from MSC-96 mainly in the following areas:

e control flow: MSC 2000 offers syntax for specifying control flow, comparable to what
OMSCs (cf. Section 2.3.1) and the UML’s SDs (cf. Section 2.3.2) provide under the
name “activities” and “activations”, respectively. Furthermore, MSC 2000 allows
indicating whether an arrow denotes a method call or the corresponding return.

e better integration of conditions: conditions in MSC 2000 have a meaning beyond
denoting labels for “pasting together” MSCs; they now can express requirements at
component and system states, and guide the selection of alternatives.

e quantitative notion of time: the duration of timers can now be specified formally. In
addition, MSC 2000 enables the specification of timing constraints on the occurrences
of events. The syntax and intended meaning is similar to what the UML’s SDs provide
(cf. Section 2.3.2).

e data specification: MSC 2000 assigns meaning to data specifications in MSCs; exam-
ples are messages with data parameters, and local instance variables.

We refer the reader to [IT99] for further details. So far, there exists no formal semantics
comparable to the one of MSC-96 (cf. [IT98]) for MSC 2000.

72

2.4. Comparison and Prospective Enhancements

2.4. Comparison and Prospective Enhancements

In Sections 2.2 and 2.3 we have studied the syntax and informal semantics of several MSC
dialects. These dialects differ mainly in the underlying communication models (asyn-
chronous vs. synchronous, or combinations thereof), the scope of the notation (simple,
finite scenarios only vs. complete system behavior), and the degree of semantic foundation.

Tables 2.1 and 2.2 summarize the similarities and differences of the various dialects. Entries
of the form “4” and “-” indicate the presence or absence, respectively, of a certain feature.
“(4)” and “(-)” mean that the syntactic or semantic support for the feature is limited or
very limited, respectively.

Table 2.1.: Comparison of MSC dialects (part I)
| | MSC Dialect |

Feature MSC-96 gggg OMSCs | SDs | EETs | IWs | HySCs | LSCs
Communication
asynchronous + + + + - - - +
synchronous - - + + + i - I
shared variables - - - - - - -+ -
Composition
bounded finite + + - (-)? + _ _ (_|_)b
repetition
unbounded finite - - - (2l + - + (+)P
repetition
infinite repetition + + - (-)? - - + (+)P
non-guarded + + - - + - + -
alternatives
guarded alternatives - + - + - - - +
parallel composition + + - (+)°| + + (H)T | (9
overlapping - - - - + - -
operands
Structuring
gates + + - - - - - -
referencing + + - - + _ + I
HMSCs + + - (-)° } - i _

@ The SDs’ syntax for general repetition (involving more than one repeated message) is
not specified formally in [Rat97, RJB99).

> [DH99] omits the corresponding formal definitions.

¢ Only for individual messages.

4 Only via coregions or for MSCs with disjoint instance sets.

¢ The UML’s activity diagrams (cf. [RJB99]) are conceptionally very similar to HMSCs.

73

2. MSC Notations — Introduction and Comparison

Table 2.2.: Comparison of MSC dialects (part II)

‘ H MSC Dialect

MSC
2000

Feature MSC-96 OMSCs | SDs | EETs | IWs | HySCs | LSCs

Miscellanea
control flow: - + + + - - - _
method call/return
instance creation + + + + - - - (+)!
and stop
actions + + - - - - - _

process boundaries - - + (-)& - - - _

preemption concept - - - - - - 4 ()P

Semantics
formal semantics + - - - + i + n
integration of - (+)! - (+) - - I T+
component states
distinction between - - - - - - - 4
partial and complete
behavior

formal refinement - - - - - (+)K _ -
notions
quantitative notion - (+)! - (+) - _ ¥ _
of time

F [DH99] omits the corresponding formal definitions.

& The notion of “swimlanes” (cf. [Rat97, RJB99]) could serve as a process boundary
indicator.

b There is no explicit syntactic support for preemption in LSCs; however, there are
combinations of mandatory LSCs with provisional sub-charts that, together, can model
preemption.

I MSC 2000 has no formal semantics yet; therefore, condition symbols and timing con-
straints have annotational value only.

7 SDs have no formal semantics; therefore, state markers and timing constraints have
annotational value only.

K For structural refinement only.

Comparison

Clearly, MSC-96 and its “update” MSC 2000 provide the most elaborate syntax. MSC-
96 offers notation for the specification of both finite and infinite behavior; it also allows
description of alternatives and concurrency. The referencing concept enables structured

74

2.4. Comparison and Prospective Enhancements

presentations of interaction sequences. High-Level MSCs hide the details — with respect to
the components and messages involved — of a composite interaction protocol. MSC-96 has
a precise, formal semantics; unfortunately, this semantics is purely event-oriented, and does
not take states of individual components into account. As a consequence the specification
of the precise conditions under which an interaction sequence is optional or inevitable is,
in general, impossible with MSC-96. Moreover, as we will describe in Chapter 4, the use of
“weak sequential composition” (cf. Section 2.2.2) as a fundamental composition form for
MSCs can lead to unintuitive MSC specifications. Message parameters are not considered
in the formal semantics of MSC-96; this makes the formulation of data-oriented behavior
aspects, as we have discussed it in the context of EETs (cf. Section 2.3.3), impossible.

MSC 2000 addresses these deficits; however, there is — as of now — no formal semantics
definition for MSC 2000.

OMSCs and Interworkings support specification of finite interaction scenarios without al-
ternatives and repetition only. They are not intended as description techniques for com-
plete component behavior. Still, the features of these notations complement those of MSC-
96. OMSCs introduce syntax for indicating method calls and returns, as well as process
boundaries. Interworkings base on synchronous message exchange, in contrast to the asyn-
chronous communication model underlying MSC-96. The notion of structural refinement is
formally defined for Interworkings, whereas MSC-96’s instance decomposition has no for-
mal semantics. Moreover, the semantics of an Interworking is closed in the following sense:
it excludes any further occurrence of communication between the depicted components via
messages that appear explicitly in the Interworking. This is a step towards considering
MSCs as specifications of complete interaction behavior.

SDs improve on OMSCs by adding syntax for alternatives and — to some extent — also
for repetition. Timing constraints are also modeling elements of SDs. Because they lack
an explicit referencing mechanism SDs are restricted to small-scale specifications. Yet,
the state symbols provided by SDs as part of object lifelines indicate a tighter coupling
between interaction- and state-oriented description techniques than what is offered by
MSC-96, OMSCs, Interworkings, and EETs.

EETs provide synchronous communication, alternatives, repetition, parallel composition,
and referencing as modeling elements; this already allows quite elaborate interaction spec-
ifications. In addition, EETs have a formal semantics, which enables their integration into
formal development environments (cf. [BHS99, HMS™98, HSS96, HSSS96]). Yet, their in-
terplay with state-oriented description techniques has been left open in [SHB96, BHKS97a].

HySCs target the specification of interaction in hybrid systems; they use the syntax, but not
the semantic model of MSC-96. HySCs make heavy use of condition symbols. The latter
capture the continuous aspects of system behavior, whereas interactions indicate discrete
events. This increased semantic integration of condition symbols is one of the major
contributions of HySCs; the other is the addition of syntax and semantics for preemption
specifications in MSCs.

1)

2. MSC Notations — Introduction and Comparison

LSCs use a subset of MSC-96 as the basis for interaction specifications. They stress the
distinction between optional and mandatory behavior to allow specification of progress or
fairness aspects in MSCs. Because the developer must watch this distinction for every
modeling element (messages, axes, and MSCs as a whole), LSC specifications are rather
complicated to construct, to communicate and to handle methodically. Still, the work of
[DH99] assigns a formal meaning to condition symbols, and thus improves on MSC-96.

Discussion

In Chapter 1 we have pointed out the importance of several features of an adequate MSC
notation. One such feature is the existence of a formal semantics, integrating the notions
of interaction and state; this facilitates the transition from interaction-oriented scenario
specifications to state-oriented, complete component specifications. Tables 2.1 and 2.2
indicate only HySCs and LSCs as MSC notations with a corresponding formal semantics.
On a very detailed level, LSCs support both mandatory and optional MSC specifications,
whereas HySCs do not make this distinction.

Beyond instance decomposition in Interworkings and in MSC-96/MSC 2000 none of the
MSC dialects studied here offers refinement notions for some or all of the modeling concepts
of MSCs. As we have argued in the introduction (cf. Section 1.2.3) this deficit induces an
early shift from MSCs to other description techniques that support formal refinement — if
formal refinement is intended to be an integral part of a systematic development process
at all.

Interestingly, except HySCs none of the MSC dialects offers dedicated syntax and semantics
for the specification of preemption (or, similarly, exceptions and exception handlers); this
is quite surprising given the history of MSCs as a means for illustrating telecommunica-
tion protocols. In such protocols exceptional cases are quite typical. Popular state-oriented
notations for the specification of reactive system behavior, such as statecharts and ROOM-
Charts (cf. Section 3.3.2), explicitly support preemption specifications.

Another important modeling aspect is also neglected by most MSC dialects. The composi-
tion operators of MSC-96/MSC 2000, SDs, EETs, HySCs, and LSCs treat their operands
as entirely separate MSCs. Sometimes, however, different MSCs are used to represent
separate views on the same service or execution segment. The lack of proper notation
for making the overlap in the interactions (depicted in different MSCs) explicit introduces
ambiguity into MSC specifications. Interworkings do provide an operator for overlapping
scenarios; this operator, however, imposes a very strict requirement on its operands: the
common interactions must match exactly to yield consistent specifications.

Unfortunately, none of the MSC dialects studied above combines the following important
features:

e adequate expressiveness for both partial and complete interaction behavior in reactive
systems,

76

2.5. Related Work

e existence of a formal semantics, integrating the notions of interaction and state to
enable the smooth transition between interaction- and state-oriented description tech-
niques we seek,

e existence of refinement notions for the modeling aspects of structure and behavior
addressed by MSCs,

e syntactic and semantic support for

— preemption,
— overlapping scenarios,

— progress/fairness constraints.

This is our prime motivation for introducing another MSC dialect in Chapter 4. Its mod-
erate syntactic and semantic extensions (to what is known from MSC-96) allow integrating
interaction- and state-oriented specifications, and provide support for modeling preemp-
tion, overlapping interaction patterns, as well as progress constraints. Despite these ex-
tensions, which cover the entire list of features mentioned above, the new notation is
syntactically close to MSC-96; we discuss the differences, in detail, in Chapter 4. Based on
the notation of Chapter 4 we address MSC refinement in Chapter 5, discuss the distinction
between partial and complete behavior specifications in Chapter 6, and provide transfor-
mation procedures for obtaining complete behavior specifications from MSCs in Chapter
7.

2.5. Related Work

Clearly, in the preceding sections we have covered only a small selection of the many
different MSC-like notations for component interaction. Here, we give a brief list of further
references to other MSC dialects.

The author of [Ren99] discusses the syntax and process-algebraic semantics definition for
MSC-96, in detail. This reference also contains an overview of the history of MSC-96,
including a brief survey of similar notations that have influenced or are related with MSC-
96.

[Fac95] provides a formal definition of the syntax and semantics of Time Sequence Di-
agrams (TSDs), an earlier notation recommended by the International Standardization
Organization (ISO, cf. [ISO87]), specifically in the context of ISO/OSI service specifica-
tions. TSDs typically depict the interactions between one particular layer of the ISO/OSI
protocol and the users of this layer.

The MSC variant discussed in [AHP96, Hol95, Hol96] allows “plugging in” several semantic
models for the communication between the depicted components. One example of such a

7

2. MSC Notations — Introduction and Comparison

pluggable communication model is given by first-in-first-out channels as the component’s
connection. For each communication model the authors derive constraints at the con-
sistency of MSCs; consistent MSCs admit component implementations that exhibit the
depicted interaction behavior, based on the selected communication model.

The author of [Ber97] introduces a notation for interaction scenarios consisting of a graphi-
cal part (with syntax for alternatives, concurrency, and repetition), and a textual part. The
textual part serves to comment the context of the graphical specifications; it also describes
loop bounds and guards for alternatives. We also refer the reader to [Ber97] for a discussion
of similar notations from object-oriented analysis and design. [KMST96, KSTM98] also
contains a syntax for scenario specification; similar to the one of [Ber97] its roots are in
the interaction diagram notation of [JCJO92].

2.6. Summary

In this chapter we have studied and compared the following graphical notations for com-
ponent interactions:

e MSC-96,

e Object Message Sequence Charts,
e Sequence Diagrams,

e Extended Event Traces,

e Interworkings,

e Hybrid Sequence Charts,

e Life Sequence Charts, and

e MSC 2000.

We have thoroughly dealt with the rich syntax of MSC-96, and have thus established a
basis for discussing the other MSC dialects. This discussion has highlighted potential for
improvement in the notations under consideration. We address this potential in Chapter
4 where we introduce an MSC notation that fulfills the requirements identified here.

All MSC dialects we have studied in this chapter enable specification of structural and
behavioral aspects of interaction patterns. An MSC depicts several components, interacting
to achieve a certain goal. In this sense MSCs illustrate the coordination aspect of system
behavior. This complements the typically complete specifications of individual component
behavior, as state-oriented specification techniques provide them. In Chapter 3 we give an

78

2.6. Summary

impression of several popular automaton models for state-oriented behavior specifications.
This highlights the difference between the two classes of description techniques. Moreover,
we get an impression of the models we target when transiting from partial to complete
behavior specifications with MSCs.

79

2. MSC Notations — Introduction and Comparison

30

CHAPTER 3

State-Based Description Techniques for Component Behavior

Automaton models have been studied extensively in the literature as a means for specifying
state-oriented behavior of reactive systems. In this chapter we take a closer look at the
role of automata in the development process and contrast it with the one of MSCs. Fur-
thermore, we give an overview of several automaton models. This overview complements
the comparison of MSC dialects of Chapter 2, and helps underline the modeling aspects
on which automaton specifications focus. This chapter also prepares our treatment of the
transition between MSCs and automata in Chapter 7.

Contents
3.1. Introduction e e 82
3.2. Automata in the Development Process 85
3.3. Overview of Automaton Models 88
3.4. Related Work 0 i i i i i i i et i et e e e e 103
3.5, SUMMATY . . v v v vttt e e e e e e e e e e e e e e e e e e e 103

81

3. State-Based Description Techniques for Component Behavior

3.1. Introduction

In the preceding chapter we have studied several graphical description techniques for com-
ponent interactions. Despite the possibility for specifying component states offered by
MSC-96/MSC 2000, SDs, and LSCs, the major focus of MSCs is on component collabora-
tion. This provides a global view on a sequence of steps performed by a set of components
to establish a certain goal.

In Chapter 2, for instance, we have used MSCs to illustrate interaction scenarios within
a simplified Central Locking System (CLS) for car doors. Recall that the CLS consists
essentially of three components. Two of these (LM and RM) represent the lock motors
of the left and right door lock, respectively. The third component (Control) coordinates
the reactions of the CLS to incoming requests from the car user. Upon receipt of message
lck component Control initiates the closing of the locks by sending messages ldn and rdn
to LM and RM, respectively. LM and RM indicate fulfillment of the locking request by
returning the messages Imr and rmr, respectively, to Control. The unlocking scenario
proceeds similarly; it only differs in the messages sent, and in the result obtained (open
locks instead of closed ones). Figures 3.1 (a) and (b) depict these two scenarios in the form
of MSCs.

msc locking msc unlocking
Control LM RM Control LM RM
[] [] [] [] [] []
Ick - unick |
o ldn | o lup |
- mr o - mr o
B ran | B rup |
- mr | - mr |
]]]]]]

(a) (b)
Figure 3.1.: Scenarios of the CLS

The two MSCs give no information on how the three components establish their interaction
behavior. Instead, we obtain an overview of the sequence of steps resulting in the car being
either locked or unlocked. In this chapter we discuss the contrast between overview spec-
ifications and detailed component behavior; moreover, we take a closer look at dedicated
description techniques for the latter.

The specification and design of detailed component behavior is the domain of state-oriented
modeling techniques. Automata, also called State Machines (SMs) or State Transition Sys-
tems (STSs), are the favorite graphical description technique for state-oriented component
specifications; they stress state change and the input/output relationship that defines an
individual component’s behavior.

82

3.1. Introduction

The authors of [RJB99] summarize the methodical difference between state-oriented and
interaction-oriented description techniques as follows: “A state machine is a localized view
of an object, a view that separates it from the rest of the world and examines its behavior
in isolation. It is a reductionist view of a system. This is a good way to specify behavior
precisely, but often it is not a good way to understand the overall operation of a system.”
(cf. [RIB99], p. 68). To illustrate this difference further we return to the CLS example,
this time from a state-oriented perspective.

Figure 3.2 shows automaton specifications for the detailed behavior of Control, LM, and
RM. In this figure we use labeled boxes to represent components'. Arrows between the
boxes denote directed communication paths. In the following paragraphs we leave open
how the communication is established; it suffices to know that only connected components
communicate.

LM

Aup/lraise 2Adn/!lower
. V .
2moving . £ S, 2moving
.WR .WL
!ra/ise ‘ ,‘ b !I0<Ner Lock

2done/! Imr 2done/! Imr

Control 2Amr/!rdn

Key AN

Sensor

2unick rmr

2Amr/'rup

RM

2rup/lraise 2rdn/!lower
. V .
?moving £ 2movin
e OFF)" Lock
lraise lower

N xS

2done/!rmr 2done/!rmr

Figure 3.2.: Detailed behavior specification of the CLS

The boxes for LM, RM, and Control contain the respective component’s automata. For a
more detailed discussion of automaton syntax and semantics we refer the reader to Section

!The behavior of the components Key Sensor and Lock is irrelevant for this introduction.

33

3. State-Based Description Techniques for Component Behavior

3.3 and Chapter 7. Here, we aim only at conveying a general intuition about automata as
a state-oriented modeling technique.

Each automaton consists of a set of states (indicated by rectangles with rounded corners)
and transitions (indicated by arrows). A state represents a certain condition in the behavior
of the component it is associated with. Transitions indicate the input messages (prefixed
by “?”) which cause a state change of the component, and (optionally) the output the
component produces (prefixed by “!”) when changing from the source to the target state
of the transition.

If, for instance, component LM receives message ldn in state OFF it outputs message
lower (which we assume to be directed at the component Lock), and switches to the state
labeled WL. It remains in this state until it receives message done. Upon receipt of this
message LM outputs message Imr and switches back to state OFF. While in state WL, the
component replies every incoming message moving by sending message lower. Intuitively,
component LM “waits” for the lock to close before it signals success back to Control.

This automaton gives a much more detailed specification of LM’s behavior than the corre-
sponding MSCs of Figure 3.1 do. In particular, it describes what happens in LM between
the receipt of a request and the corresponding reply for both use cases (locking and unlock-
ing). Similarly, the automata for Control and RM represent the individual component’s
behavior in detail. Control’s automaton, for instance, specifies what happens if the car user
tries to unlock a car whose door locks are already open: Control remains in the unlocked
state (UNLD) without initiating further interactions until it receives a lck message.

Note, however, that the gain of complete information about the behavior of individual
components comes at the price of losing the overview of the “big-picture”, i.e. the coor-
dination necessary to establish a certain goal. From the automata for Control, LM, and
RM alone it is rather complicated to derive the interplay of the three components for the
locking and the unlocking scenario.

‘ | MSCs ‘ Automata ‘
scope projection of overall sys- | projection of overall sys-
tem behavior onto partic- | tem behavior onto indi-
ular services/use cases vidual components
completeness of the de- | typically partial typically complete
picted behavior

Table 3.1.: The role of MSCs versus that of automata

Table 3.1 gives a rough summary of typical roles played by MSCs and automata during
the development process. Clearly, the borders between these roles are not tightly fixed.
Each of the MSCs in Figure 3.1 represents only one of the scenarios of the CLS. However,
we have studied several MSC dialects with operators for combining partial scenarios to
yield complete behavior specifications in Chapter 2. In Chapter 7 of this thesis we study

84

3.2. Automata in the Development Process

the relationship between MSCs and automata in much more detail. In particular, we
investigate the question of how to transit from MSCs (representing scenarios) to automata
(representing complete component behavior).

To prepare this discussion we take a closer look at automata in this chapter. In Section 3.2
we discuss the methodical role of automata in the development process. Section 3.3 contains
an overview of several automaton models for the specification of components in distributed,
reactive systems. This overview includes Mealy machines, statecharts, ROOMCharts, w-
automata, and I/O-automata. This also provides a first impression of typical state-oriented
modeling concepts, such as liveness and fairness. We mention related work in Section 3.4
and summarize this chapter in Section 3.5.

3.2. Automata in the Development Process

The roots of using automata for behavior specification lie in the huge body of theoretical
work on the relationship between automata and formal language theory (cf. [HU90, Tho90],
and the references therein). Today, automata often serve as a means for detailed behavior
specification, slightly more abstract than programs in concrete programming languages.

As we will see in more detail in Section 3.3, typical automaton models base on two simple
notions for representing component behavior: states and state transitions. The states
classify certain conditions in the behavior of the component under consideration, such as
the portion of an input already consumed. State transitions indicate possible reactions of
the automaton with respect to the current state and the input of the automaton.

The notions of state and state transitions are also inherent in all state-oriented program-
ming languages, such as Modula-2, C, C++, or Java. Here, the state space of a system is
spanned by all variables defined by the system components. States relate these variables
to concrete values. Transitions correspond to changing variable assignments.

By means of this direct correspondence, automata help capture the essence of state-oriented
system behavior without having to commit to the syntax of any particular programming
language. The transformation of an automaton specification into a corresponding imple-
mentation in any state-oriented programming language is entirely schematic. Figure 3.3
shows one of several possible ways for implementing LM’s automaton in Java. Here the
state in which LM resides is captured by variable currentState. Transitions are represented
by corresponding if-clauses in the case-statement for the respective state. By means of
the functions readInput () and writeOutput() we capture the reading of input messages
and the writing of output messages, respectively (without going into technical details here).

85

3. State-Based Description Techniques for Component Behavior

while(true) {

switch(currentState) {
case OFF:

if (readInput() == "1ldn") {
writeOutput ("lower");
currentState = WL;

} else if (readInput() == "lup") {
writeOutput ("raise");
currentState = WR;

} else {

/* idle */

+

break;

case WL:

if (readInput() == "moving") {
writeOutput ("lower");

} else if(readInput() == "done") {
writeQutput ("lmr") ;
currentState = OFF,;

} else {

/* idle */

+

break;

case WR:

Figure 3.3.: Fragment of one possible implementation of LM’s automaton (cf. Figure 3.2)

86

3.2. Automata in the Development Process

In fact, the rich syntax provided by popular automaton models, such as statecharts and
ROOMCharts (cf. Section 3.3), turns automaton models into “graphical programming lan-
guages”. Clearly, however, the role played by automata in the development process is not
limited to the graphical representation of state-oriented implementations. For automaton
models a large body of work on their use for property specification, on refinement calculi
and verification support exists; examples include [Har87, CD94, Bro97, Rum96, Kle98,
Sch98, Miil98, DW9S|. This explains, in part, the popularity enjoyed by state transition
systems: their methodical “handling” is, by now, quite well understood?, and the basic
idea of specifying a component’s states, state changes, and outputs in relation to triggering
input seems simple and intuitive.

Yet, state-oriented behavior specifications as provided by automata always reveal to some
extent how the behavior is established; the partitioning of a component’s or system’s
state space, and the selection of transitions between these states is usually connected with
design decisions. During specification, on the other hand, we try to avoid introducing such
decisions into the description of the system under consideration.

This, again, illustrates the complementary roles of MSCs and automata in the development
process. MSCs help capture interaction requirements, typically without revealing or fixing
the details of how the interaction is established. Automata put more focus on how the
result is obtained.

This observation suggests using MSCs as the “front-end” for requirements capture and
specification, and automata as the corresponding “back-end” for more detailed design.
This, in turn, motivates establishing a link between the requirements captured by MSCs
and their implementation in the form of automata for individual components.

In the remainder of this thesis we address these challenges. In Chapter 4 we prepare
the semantic link between MSCs and automata by introducing a semantic framework for
capturing both interaction and state within MSC specifications. In Chapters 5 and 6 we
deal with MSCs as a tool for capturing, specifying, and manipulating system requirements
by considering notions of MSC refinement, and by studying the properties that MSCs
allow us to express. This stresses the role of MSCs as the “front-end” for requirements
capture and specification. In Chapter 7 we establish the mentioned link between MSCs
and individual component specifications in general, and between MSCs and automaton
specifications in particular.

To give an impression of the modeling elements provided by popular automaton models,
especially in the context of reactive systems, we take a closer look at several such models
in the following section. This also complements our discussion of MSC dialects in Chapter
2, and prepares the formal definition of the automaton model we use in Chapter 7. More
specifically, the automaton model of Chapter 7 combines features of the Mealy-, w-, and
“spelling”-automaton models we review here.

2This is not to say that this knowledge has found its way already into industrial practice and into most
of the tools that claim to support state-based system specification.

87

3. State-Based Description Techniques for Component Behavior
3.3. Overview of Automaton Models

For the specification of individual component behavior, stressing state change and in-
put/output relationships, automaton models and transition systems have been studied
and used extensively for the past three decades. Among the most well-known examples of
such models are

e Moore and Mealy automata,
e statecharts and ROOMCharts,
e w-Automata, and

e [/O-Automata.

Whereas compiler construction, and more specifically, the specification of lexical analyzers,
is the “original” application area for the automaton models of Moore and Mealy, the
specification of behavior in concurrent and distributed systems is the domain of the other
models. In industrial practice automata used to occur mostly in technical contexts, such as
in circuit design; however, the increasing popularity of object-oriented modeling techniques
and notations, such as the UML and others (cf. [Rat97, RJB99, Boo94]), has triggered the
use of automaton models also in the development of business systems.

In the following paragraphs we briefly discuss each of the automaton models mentioned
above, together with related ones, in turn. Similar to the approach we have taken in
Chapter 2 we will present the syntax and the informal meaning of the respective model,
instead of giving a precise, mathematical semantics. Chapter 7 contains a formal semantics
definition of the automaton model we employ there. The syntax of this model is based on
Mealy automata; its semantics, however, allows specification of infinite behavior, similar to
w- and I/O-automata. Readers who are familiar with automata as a description technique
are invited to skip the remainder of this chapter, and to use it as reference material when
studying Chapter 7.

3.3.1. Moore/Mealy-Automata

Moore and Mealy automata (see [HU90|) have emerged in the context of formal language
acceptors. Given a formal language L, i.e. a set of words over a given set of symbols, and a
particular word w over the alphabet, a language acceptor determines whether w belongs to
L. Deterministic and nondeterministic finite automata (see [HU90]) accept a word if and
only if, after processing it, they reach a final state. We can interpret the fact whether or
not an automaton has reached a final state after having processed the input as an “output”
of the automaton (“accepted” if the automaton has eventually reached a final state, and
“rejected” else). Moore and Mealy automata can produce more elaborate output. In a

88

3.3. Overview of Automaton Models

Moore automaton each state has an associated output symbol produced by the automaton
whenever it reaches the state while processing the input. In a Mealy automaton each
transition has an associated output symbol produced by the automaton whenever it takes
the transition while processing the input.

Moore Automata Along the lines of [HU90], we define a Moore automaton A as a sixtuple
A=(S,1,0,0, A, sq), where the elements of the tuple denote

S a finite set of states,

1 a finite set of input symbols,

(@) : a finite set of output symbols,

JC(SxI)x S : a(nondeterministic) transition relation,
A:S—0 : a labeling of states with corresponding outputs,
so €8 . the start state,

respectively. [HU90| defines deterministic Moore automata, whereas we allow nondeter-
ministic transitions, too.

Processing of an input word ajas . .. a, (withn > 0and a; € I for 1 <i < n) starts with the
automaton residing in the start state sqg. In each step the automaton nondeterministically
selects a transition from its transition relation ¢ according to the current input symbol and
its current state; when performing the transition the automaton advances to both the target
state of the transition, and the next input symbol from the input word. Whenever the
automaton reaches a state, which includes the start state, it outputs the symbol associated
with the state through A. Thus, an output of A with respect to the input word ajas. .. a,
is A(so)A(s1) ... A(sp) with s; € 0(s4-1,0a;) for 1 <i <n.

Graphically we denote states and transitions by labeled rounded rectangles and labeled
arrows between state symbols, respectively. A state symbol for a Moore automaton has
two labels: the element from S represented by the state symbol, and an element from O,
the output associated with this state. A transition label is an element from set I; the label
indicates the input symbol “read” by the automaton when moving from the origin to the
target state of the transition. For better readability we prefix elements from sets / and O
with “?” and “!”, respectively. An unlabeled arrow having a target but no source indicates
the target as the start state.

As an example consider the Moore automaton from Figure 3.4. It has three states: OFF
(the start state), DWN, and UP, as well as six transitions. The outputs of states OFF,
DWN, and UP are init, Imr_d, and [mr_u, respectively. For this automaton we have I =
{ldn, lup}, and O = {init, Imr_d, Imr_u}.

For the input word “ldn ldn lup” the automaton from Figure 3.4 produces the output word
“inat lmr_d Imr_d Imr_u”.

39

3. State-Based Description Techniques for Component Behavior

Adn

Figure 3.4.: Moore automaton

Mealy Automata As mentioned above, Mealy automata differ from Moore automata in
that the former associate the output with transitions, whereas the latter associate the out-
put with states. Consequently, the only difference between Moore and Mealy automata is
the labeling function A\. We define a Mealy automaton A as a sixtuple A = (S, 1,0, 4§, A, s¢),
where with the exception of A all elements of the tuple have the same meaning as for Moore
automata. For Mealy automata we define A : Sx xS — O as the function that establishes
the association between a transition (represented by the source state, an input symbol, and
the target state) and its output symbol.

Processing of an input word ajas...a, (with n > 0 and a; € I for 1 < i < n) for the
most part proceeds as we have described for Moore automata. The difference is that a
Mealy automaton, whenever it performs a transition, outputs the symbol associated with
this transition through A. Thus, the output of A with respect to the input word aqas ... a,
is A(s0, @1, 51)A(81, a2, 82) ... A(Sp_1, Gn, Sp) With s; € 0(s;_1,a;) for 1 < i < n.

Graphically we denote states and transitions as before by labeled rounded rectangles and
labeled arrows between state symbols, respectively. A state symbol now has a single label:
the element from S represented by the state symbol. A transition label is an element from
I x O; the label indicates the input symbol “read” by the automaton, and the output
symbol produced by the automaton when moving from the origin to the target state of the
transition. For better readability we separate the two constituents of a transition label by
means of a slash (“/”).

As an example consider the Mealy automaton from Figure 3.5. It has only one state (the
start state OFF), and two transitions. The outputs of the transitions labeled with the
input symbols lup, and ldn are Imr_u, and Imr_d, respectively. For this automaton we have

I = {ldn, lup}, and O = {lmr_d, Imr_u}.

Aup/timr_u Adn/limr_d

Figure 3.5.: Mealy automaton

For the input word “ldn ldn lup” the automaton from Figure 3.5 produces the output word
“Imr_d Imr_d Imr_u”.

90

3.3. Overview of Automaton Models

Moore and Mealy automata are equivalent with respect to the class of languages they
accept (see [HU90| for a proof). However, as the two examples from Figures 3.4 and 3.5
indicate, Mealy automata can become considerably smaller with respect to the number of
states and transitions than any equivalent Moore automaton. A Moore automaton has at
least as many states as there are different output symbols; this also affects the number of
transitions needed for the automaton. A Mealy automaton, on the other hand, has at least
as many transitions as there are different output symbols.

We can use both Moore and Mealy automata to describe a component’s reaction to any
possible input it can receive. Any input word must, however, have finite length. There-
fore, a specification using either Moore or Mealy automata is inherently limited to the
description of transformational components; the automaton produces the specified finite
output for a given finite input and then “stops”. This is particularly inadequate for reac-
tive systems, where the basic assumption is that the component under specification does
never stop. Yet, we can easily work around the restriction to finite objects, as the work on
w-automata (see Section 3.3.3) and the automaton model we introduce in Chapter 7 show.

More significant is that the number of states and transitions in Moore and Mealy au-
tomata specifications for realistic examples becomes large very quickly. This reduces the
readability of automata specifications considerably, despite their intuitive graphical nota-
tion. Moreover, composition of automata was not in the center of concern at the time
when Moore and Mealy automata were invented. The ability to compose specifications is,
however, essential for systems of nontrivial size.

The mentioned deficits motivated several attempts at devising more “powerful” automaton
models — with respect to expressiveness and graphical conciseness. The most prominent
representatives of these are statecharts and w-automata, which we consider in the two
following sections.

3.3.2. Statecharts, ROOMCharts

David Harel introduced statecharts (see [Har87, HP98]) in 1987 as a visual formalism for
the specification of reactive systems. In a sense, statecharts are a combination of Moore
and Mealy automata with a number of syntactic and semantic additions. In particular,
statecharts go beyond Moore and Mealy automata by providing the notions of hierarchic
and concurrent states. The motivation for these additions was to

e reduce the number of state and transition symbols to keep specifications concise,

e add concepts relevant for the specification of systems of nontrivial size, such as com-
position of individual automata, and

e provide specification mechanisms of particular importance for reactive systems, such
as preemption for the specification of interrupts, as well as timing constraints.

91

3. State-Based Description Techniques for Component Behavior

In the following paragraphs we describe the syntactic and semantic modifications with
respect to pure Moore and Mealy automata, introduced by statecharts to address these
issues.

Extended Transition and State Labels The basic syntactic form of transition labels in
statecharts is “trigger|condition]/action” , where trigger, action (optional), and condition
(optional) represent an input event, i.e. an input symbol in the terminology of Moore and
Mealy automata, an action performed by the automaton when taking the transition, and
a boolean expression guarding the transition, respectively. Actions are not restricted to
output events; in particular, they may alter the data state of the component under devel-
opment through assignments to the component’s variables. [HP98] describes the detailed
transition label syntax, as well as a plethora of special actions admitted in transition la-
bels; we can interpret most of these actions, however, as assignments to local component
variables. If the guard condition exists, the transition is enabled during an execution of
the model only if the condition evaluates to true.

The use of assignments to (local) variables in combination with guarded transitions in-
creases the expressiveness of statecharts with respect to that of Moore and Mealy au-
tomata. As an example, consider the statechart of Figure 3.6, which models a simple
counter component.

Figure 3.6.: Statechart model for a simple counter

We assume that the counter has a local variable x, which can take on values from the set
IN of natural numbers. The counter accepts two kinds of input messages: up and down.
Upon receipt of message up in state COUNT the counter increases the value of x by one,
according to the transition labeled “?up/x:=x+1". Upon receipt of message down there
are two possibilities. If the value of x is 0, precisely the transition to state FRROR is
enabled and taken. Otherwise the transition labeled “?’down[x > 0]/x:=x-1" is enabled
and taken, decreasing the value of x by one. Note that we carry over our convention from
the preceding automaton models, and label input symbols by “?” and output symbols by
“I” (this is not part of the statecharts syntax).

There is no practicable Moore or Mealy automaton that displays the same input/output
behavior as the statechart of Figure 3.6. The problem is that the value of determines

92

3.3. Overview of Automaton Models

how many down messages may occur before a transition to the ERROR state must happen.
Thus, in pure Moore and Mealy automata we would have to encode every possible value of
x in a corresponding control state of the automaton; this would induce explicit transitions
between these states as well. Depending on the size of the domain of x this quickly becomes
infeasible.

Actions can also label states in statecharts. A state’s ewit action gets executed when,
during execution of the statechart, a transition leaving this state occurs. A state’s entry
action gets executed when, during execution of the statechart, a transition entering this
state occurs. This abbreviates labeling all exiting and entering transitions of a state with
the respective actions. Besides entry and exit actions statecharts introduce general static
reactions as state-labeling actions. General static reactions execute without resulting in a
state change. For further details on actions in statecharts we refer the reader to [HP98].

Hierarchical States (“OR-states”) Any statechart state can hierarchically refine into
another statechart; we call the decomposed state the parent of the sub-states of which the
refining sub-chart consists. This hierarchy concept allows extracting common properties
of states, such as common outgoing transitions to the same target state, and representing
these graphically only once with the parent state.

rdy/!mr

Figure 3.7.: Hierarchic state decomposition

Figure 3.7 shows the hierarchic decomposition of state ON. Its substates are UP and DWN.
Upon receipt of message rdy in both of these a transition to state OFF occurs.

If, during model execution, the statechart enters a parent state, it enters precisely one
of its sub-states. For this reason [HP98] terms hierarchic states also “OR-states”. If a
transition ends at a decomposed state, then the sub-chart must have either a designated
initial state, or a history connector (cf. [HP98]) that indicates which of the sub-states is
the actual target of the transition.

[HP98] allows inter-level transitions, i.e. transitions whose origin state is on a different level
of the state hierarchy than the transition’s destination state. This is a means for modeling
preemption in statecharts; the behavior of a sub-state gets interrupted upon occurrence of
a certain signal, and execution continues on a different hierarchic level.

93

3. State-Based Description Techniques for Component Behavior

Orthogonal States (“AND-states”) Orthogonal states are the statecharts’ mechanism
for the implicit representation of product automata.

One context where the need for product automata arises is the independent description of
several of a component’s properties. As an example, consider the two properties represented
by the two automata in Figure 3.8 (a) and (b). If we want to combine the corresponding
statecharts into a single one, we need to form the product automaton depicted in Figure
3.8 (c¢). Here, each state represents the combination of one state of the automaton from
Figure 3.8 (a), and one state of the automaton from Figure 3.8 (b).

U Filled

EM PTY COMPOSITE

~2emptied CONT illed
@)])
~Zemptied
TEMP hested _
il ?heated _ >~ COLD HOT

~ 2cooled

Figure 3.8.: Product automata

In general the number of states of the resulting automaton equals the product of the number
of states of the two operand automata; the number of transitions increases correspondingly.

The graphical representation of the product of two automata in statecharts is a state
symbol with two compartments separated by a dashed line; each compartment contains
one of the two operand automata. The state name appears in a box attached from above
to the top of the state symbol (cf. Figure 3.8 (d)).

The statecharts within the compartments of an orthogonal state are the state’s sub-states.
The state itself is the parent of its sub-states. While, during execution, the model is in an
orthogonal state, each of this state’s sub-states is in precisely one of its states. For this
reason, [HP98] calls orthogonal states also “AND-states”.

The second context where product automata are important is the specification of concur-
rent behavior within a component. The sub-states of an orthogonal state operate inde-
pendently of one another in the following sense. All sub-states with an enabled transition
independently change state upon occurrence of the triggering event. Consider the AND-
state of Figure 3.9 (a). Each of its orthogonal states has transitions whose enabledness
depends on the occurrence of message up. Assume that the sub-chart to the top (labeled
“PARITY”) is in its ODD state, and that the sub-chart to the bottom (labeled “UPCNT”)
is in its CNT state during execution of the model. If the input event corresponding to mes-

94

3.3. Overview of Automaton Models

sage up occurs, then both “PARITY” and “UPCNT” change state: “PARITY” transits to
state “EVEN” and “UPCNT” performs its self-loop, thereby increasing the value of x.

’m‘
’—‘ /'SCo I
- H H H H
PARITY — W@W%@ x @ x >

e e s
(a) (b)

Figure 3.9.: Concurrency and broadcast in statecharts

An output event generated by one of the orthogonal sub-states gets broadcast to all other
sub-components as well; the “recipients” of such a generated event may react immediately
to it. Because all sub-states of an orthogonal state can react to the same input event
simultaneously, [HP98] calls this form of “communication” between orthogonal sub-states
“broadcasting”. An example of broadcasting appears in Figure 3.9 (b). The three depicted
AND-states SC0, SC1, and SC2 communicate via the events b, ¢, and d. Upon receipt of
a, SCO produces event b. Due to broadcasting both SC7 and SCT sense b, change state,
and generate their respective outputs.

Events, Conditions, Actions The statechart language presented in [HP98] has an elabo-
rate syntax for the specification of events, conditions, and actions. It allows us, for instance,
to

e test the presence or the absence of triggering events,
e logically compose triggers by means of connectives such as and and or,

e test whether other sub-states of an orthogonal state are in a certain state configura-
tion,

e manipulate conditions, i.e. setting their values to true or false,
e test conditions,
e test for the occurrence of timeout events,

e schedule transitions within time intervals.

95

3. State-Based Description Techniques for Component Behavior

Furthermore, it allows composing actions by means of sequencing, choice, and repetition.
Together, these possibilities turn the statecharts language into a mixture of a state-based,
graphical description technique, and a regular textual programming language.

Operational Statecharts Semantics The rich set of syntactic features provided by the
statechart language comes at a price. Ever since their inception have statecharts been
subject to a considerable amount of criticism largely due to possible ambiguities in the
interpretation of the semantics of AND-states, general static reactions, and inter-level
transitions. [vdB94] gives an excellent overview of these problems, and describes corre-
sponding solutions. These solution strategies have lead to multiple variants of the original
statechart language.

Here, we describe the statechart semantics informally along the lines of [HP98]3. Intuitively,
execution of a statechart model consists of an infinite sequence of steps. During each
step, triggered by the presence or absence of events (including input signals and variable
changes), the system transits from one state configuration to the next, thereby producing
outputs and executing actions. The state configuration at the beginning of the step and the
trigger events determine the set of enabled transitions, including the implicit transitions
associated with static reactions. An enabled transition fires, which includes execution of the
origin state’s exit actions, the actions on the transition label, and the target state’s entry
actions?. Execution of an action can produce further events: output events, state entry
and exit events, and so forth. Due to the broadcasting communication in an AND-state, all
orthogonal sub-states can sense these events immediately; this may cause the enabledness
of additional transitions. After all transitions that were enabled at the beginning of the
step, as well as those that became enabled during the step, have fired, this step ends and
the next one begins.

This simplified description disguises many of the intricacies that become apparent at closer
inspection. It is easy to write down ambiguous statechart specifications. To give just one
example (cf. [Sch98, Mar92|), consider the AND-state of Figure 3.10. Here, if a step starts
with the orthogonal substates S0 and S7 in state S00 and S10, respectively, then the
absence of input event a, which we denote by the action label —a, causes S0 to transit
to state S01, thereby generating output event b. This enables the transition to state S11
in S1, whose firing results in the presence of event a. This requires a to be both absent
(otherwise SO could not have taken its transition) and present (as the result of S7 taking
its transition) during the same system step.

Whether or not the statechart of Figure 3.10 is, indeed, ambiguous depends on the con-
crete statechart semantics definition (cf. [vdB94]). Some statechart variants, most notably
ROOM’s ROOMCharts [SGW94], avoid most of these ambiguities by not making use
of AND-states, and by providing other communication mechanisms than instantaneous
broadcast.

3[HP98] discusses multiple execution variants, differing in the time points at which the system can react
to external events. We avoid this distinction here for reasons of brevity.
4An inter-level transition causes execution of entry/exit actions on all levels of hierarchy it crosses.

96

3.3. Overview of Automaton Models

Figure 3.10.: Ambiguous statechart?

ROOMCharts ROOM (short for Real-Time Object-Oriented Modeling, cf. [SGW94])
is a development methodology for object-oriented, reactive systems; its constituents are a
precise specification language together with an execution model, as well as the development
guidelines contained in [SGW94]. In ROOM a system specification consists of a set of
actors, communicating by means of asynchronous message passing over channels. Each
actor is of a certain class (the actor class) that determines the actor’s interface, and the
actor’s behavior. Actors receive and send messages along ports. By means of its associated
protocol class a port syntactically defines the sets of messages an actor can send and
receive via this port. Thus, an actor’s ports fix the actor’s syntactic interface. ROOM uses
ROOMCharts to specify the behavior of actor classes.

ROOMCharts are, in a sense, a lean version of statecharts. From statecharts they have
inherited the basic idea of modeling behavior by means of hierarchic state automata. How-
ever, the syntactic “features” of ROOMCharts are much simpler than the ones of their
predecessor. The following list highlights some of the differences between statecharts and
ROOMCharts:

e transition labels have the form “trigger|[condition]/action”, where trigger denotes an
input message whose occurrence triggers firing of the transition only if the boolean
guard condition evaluates to true. The input message specification of the trigger
contains, in particular, the port along which the actor expects the message. A com-
pound trigger consists of a set of input events any of which can trigger the transition.
Nothing but arriving messages can trigger transitions in ROOMCharts; in particular,
unlike in statecharts, there exists no means for making a trigger depend on another
actor’s current state. Upon firing of the transition the action, which can represent
any executable piece of program that can alter actor variables and send messages
along the actors ports, executes.

e cach ROOMChart has an explicit initial transition that can have an associated action,
but without an input trigger; its use, besides taking the ROOMChart into its starting
control state, is the initialization of the actor’s data variables.

e hierarchical states (OR-states) exist; however, unlike in statecharts, in ROOM there
are no direct inter-level transitions. A ROOM state can have transition points whose

97

3. State-Based Description Techniques for Component Behavior

purpose is to connect transition segments across hierarchy levels. Transitions that
start at a sub-state of an OR-state and continue beyond the parent’s boundary end
at a transition exit point. This, in a sense, defines an interface concept for states,
which allows substitution of states with the same interface within ROOMCharts.

e group transitions, i.e. transitions that start at a transition exit point of an OR-state
and have no destination within the OR-state denote “high-level interrupts”; they
represent individual transitions with identical labels, starting at all sub-states of the
OR state and leaving it via the same transition exit point; group transitions of an
OR-state take precedence over all transitions within the OR-state.

e entry and exit actions exist; to obtain a similar effect as the statecharts’ general
static reactions in ROOM, the developer must specify an explicit internal self-loop.

e ROOMCharts have no AND-states. This is the most significant difference between
ROOMCharts and statecharts. The rationale behind their omission is, according to
[SGW94], to avoid unintentional coupling through implicit communication among
orthogonal states. In ROOM different actors — each behaving according to a sequen-
tial ROOMChart —, communicating via explicit message exchange, model concurrent
system aspects. There is no concurrency within a single actor. To translate an AND-
state from a statechart specification into ROOM typically involves turning each of
the orthogonal sub-states into a separate ROOM actor, and converting all (implicit)
broadcasting communication between the orthogonal states into explicit message ex-
change along each actor’s ports. The omission of AND-states avoids most, if not all,
of the problems with statecharts we have mentioned above. In particular, it simplifies
the underlying execution model considerably.

e The run-to-completion execution model bases on the queuing of messages on the
channels that connect actors. All actors execute independently of one another. An
actor that receives a message processes it by performing an enabled transition, if such
a transition exists in the actor’s corresponding ROOMChart. Every transition runs
to completion; a queue holds all messages that arrive at a port of the actor while the
transition fires.

Statecharts and ROOMCharts extend the expressiveness of Moore and Mealy machines
both on the syntactic and semantic level. Hierarchical state decomposition allows state-
based modeling on multiple levels of abstraction. The incorporation of data state, and of
actions with the potential to modify the state, into the automaton models allows spec-
ification of systems with complex data state by means of automata with a finite set of
“control” states. Because of their target application domain of reactive systems, the exe-
cution models for both statecharts and ROOMCharts impose no restriction on the length
of the input. The instantaneous broadcasting among orthogonal states requires very care-
ful use of AND-states in statechart models. ROOMCharts avoid these problems by means
of precise actor interfaces, the omission of AND-states, and a simpler execution model.

98

3.3. Overview of Automaton Models

3.3.3. w-Automata, I/O-Automata, “Spelling” Automata

The major motivation behind the introduction of statecharts and their descendants was,
as we have pointed out above, to reduce the visual complexity of automaton models to
enable their practical application in an engineering context.

Researchers have studied other automaton models that lend themselves for the specification
of reactive systems more from a scientific perspective. This has lead to a large body of work
on the expressiveness of automaton models, on the theoretical and practical decidability of
properties of the languages accepted by these automata, and — on the more pragmatic side —
on the definition of refinement techniques to enable a methodical application of automaton
models in the development process for reactive systems. Here, we give a brief overview
of three models that we take as representatives of these research directions: w-automata,
[/O-Automata, and “spelling” automata.

w-Automata The automaton models of Moore and Mealy we have described in Section
3.3.1 operate on finite input sequences only. Automaton models with finite state sets that
deal with infinite input and output sequences — which we call w-automata in the sequel
— have emerged, and were studied in the context of decision problems in mathematical
logic (cf. [Tho90]) in the 1960s. Because of their ability to model relevant properties of
component behavior in reactive systems precisely — which they share with temporal logics
(cf. [Tho90, Eme90]) — and because effective procedures for deciding whether an automaton
fulfills a certain property have been invented in the 1980s (cf. [Eme90]), w-automata have
experienced a revival over the past decade. Here, we give only the basic ideas behind
w-automata to allow a comparison with the other models introduced in this section. For
a detailed exposition of the members of this automaton class, and of their properties, we
refer the reader to [Tho90].

The most famous approaches for defining w-automata are those of Biichi, Muller, and
Rabin. Each of them uses models with finite state and input symbol sets, as well as
some form of transition relation. Their major difference is in how they define acceptance
of an infinite input sequence. Recall that Moore and Mealy machines have no explicit
sets of “accepting” states; the idea behind these automata is that the output sequence
resulting from a given input sequence indicates whether or not the automaton has accepted
the input. The w-automata of Biichi, Muller, and Rabin have no output alphabet; their
acceptance conditions involve the infinite occurrence of states or state sets in executions
of an automaton.

As an example, consider the definition of a nondeterministic Biichi automaton A as a
quintuple A = (S, 1,0, sg, F'), where the elements of the tuple denote

S : a finite set of states,

I : a finite set of input symbols,

§C S xIxS : a(nondeterministic) transition relation,
s0€ 8 . the start state,

FCS : an acceptance set,

99

3. State-Based Description Techniques for Component Behavior

respectively.

A run of automaton A on an infinite input sequence o« = agaqs . .., with o; € I for i > 0,
is an infinite sequence o = 0go10; ... of states, such that oy = sp and (0}, o, 0541) € 6 for
J=0.

Automaton A accepts « if and only if there is an f € F', and a run ¢ of A on « such that
f occurs infinitely often in . This acceptance condition allows us to “force” progress onto
an execution of the automaton: input sequences, whose runs avoid all states from F' for
infinitely many steps do not belong to the language accepted by the automaton.

Figure 3.11.: Biichi automaton

Figure 3.11 shows an example Biichi automaton, accepting infinite sequences of a’s. For
the graphical representation of states and transitions (whose trigger is an input symbol)
we have adopted the same conventions as in the previous sections. If we take F' = {S0}
in this example, we force each execution of the automaton to leave state SI eventually
whenever it occurs in the execution.

Muller and Rabin automata are deterministic and have slightly different acceptance con-
ditions than Biichi automata (cf. [Tho90]).

The most interesting aspect about these automaton classes is, however, the proximity of
the languages over infinite input sequences they accept, and temporal logics for which
effective verification procedures exist. This has lead to a line of research that suggests
for reactive systems to model their behavior, and to specify their properties by means of
(variations of) w-automata (cf. [Tho90, Eme90, MP95]); the question of whether a system
has a certain property then becomes a question of determining language inclusion with
respect to the corresponding automata.

/O Automata Input/Output automata (I/O automata, for short) have been introduced
by Lynch and Tuttle [LT87, LT89, Lyn96] as a model for the behavior of components
in distributed systems, specifically targeting the verification of algorithms for such sys-
tems. The emphasis in the theoretical work on this automaton model is on refinement and
compositionality [Lyn96, LV95, LV96].

In contrast to the state sets of w-automata, the ones of I/O automata are not necessarily
finite. An I/O automaton can perform three kinds of actions that label transitions: input,
output, and local (internal) actions. More precisely, along the lines of [Miil98]°, we define

°[Miil98], as well as [LT87, LT89, Lyn96], uses a slightly different syntax; here, we render the definition
in a style similar to the one of the preceding sections.

100

3.3. Overview of Automaton Models

an I/O automaton A as an eight-tuple A = (S,1,0, L, 0, Sy, F\y, Fs), where the elements of
the tuple denote

S . a (possibly infinite) set of states,

I . a set of input actions,

@) . a set of output actions,

L : aset of local (internal) actions,
JCSx(IUOUL) xS : a(nondeterministic) transition relation,
SpCS . a set of start states,

F, CP(L) :a set of weak fairness constraints,

F, CP(L) :aset of strong fairness constraints,

respectively. I, O, and L must be pairwise disjoint; together, they form A’s action signature
TUOUL. 6 must be input enabled: Vs € S,a € I :3t € S : (s,a,t) € §; i.e. the automaton
must be able to perform any input action in any state.

An execution of an I/O automaton A is a finite or infinite sequence® sya;siasss, ... that
alternates between states and actions of A, beginning in a state (a finite sequence must also
end in a state), such that sy € Sy, and for all j € N: (s;,a;41, Sj41) € 6, with s;,5;41 € 5,
and a;41 € (JUOUL).

Sets F,, and F§ play the role of the acceptance sets of Biichi automata. For each set
f € F,, an infinite execution of the I/O automaton must contain either an infinite number
of occurrences of actions from f, or an infinite number of states in which no element of f
is enabled. For each set f’ € F an infinite execution of the I/O automaton must contain
either an infinite number of occurrences of actions from f’, or an at most finite number
of states in which an element of f’ is enabled. Without going into further details about
the notions of weak and strong fairness induced by these two sets, we note that while
the acceptance sets of Biichi automata contain states, I/O automata assign progress to
transitions (via actions).

Input actions correspond to reading an input symbol in the terms of a regular Moore or
Mealy automaton. A similar correspondence holds for output actions. Local actions result
in a state change without reading input or writing output; they model local computation (or
idling) steps of the automaton. Except in very simple cases there is no appealing graphical
notation for I/O automata; because of the input enabledness requirement each state would
need outgoing transitions for all input actions. Therefore, [Lyn96] uses a pre-/postcondition
specification style for actions. As an example, consider the I/O automaton from Figure
3.12. The automaton operates on two variables: x and signal. For simplicity we assume
that = and signal are of type IN and IB, respectively. Action up takes an integer input and
increments the value of variable x corresponding to the parameter value. Action get sets
variable signal to true, thus enabling output of the current value of x through output action
out. This “two step” approach to emitting x’s value is necessary, because a transition can
either perform an input or an output action, but not both.

6In the remainder of this section we disregard finite executions.

101

3. State-Based Description Techniques for Component Behavior

output out(x)
pre: signal = true
post: signal := false

input up(y) input get
post: x :=x+y post: signal := true

Figure 3.12.: I/O automaton for a simple counter

The use of action signatures (together with the enabledness condition) helps giving clear
definitions of action hiding (a form of encapsulation), as well as of parallel composition
[Lyn96]. I/O automata are compositional in the sense that properties of parts carry over to
their parallel composition; this can ease reasoning about larger specifications considerably.
Moreover, the existence of refinement techniques [LT87, LT89] provides a basis for step-
wise top-down system development. [Miil98] has extended these techniques by abstraction
rules allowing to integrate I/O automata into interactive and fully automatic verification
methodologies.

“Spelling” Automata [Rum96] introduces the class of “spelling” automata, which are,
with respect to their expressiveness, equivalent to I/O automata. The target domain for
the application of spelling automata is the state-based behavior specification of objects
in distributed object-oriented systems. The major difference between 1/O automata and
spelling automata is that the former stress the concept of actions, whereas the latter place
messages and message sequences in the center of concern.

[Rum96| defines a spelling automaton A as a quintuple A = (5,1,0,6,S,), where the
elements of the tuple denote”

S a (possibly infinite) nonempty set of states,

I a nonempty set of input symbols,

@) :a nonempty set of output symbols,

JC S xIxSx0¥ : a(nondeterministic) transition relation,

So €S x O . a set of initial states and initial output sequences,
respectively.

Processing of an input sequence ajagas ... (with a; € I) starts with the automaton residing
in a start state so for some (g, 09) € Sp; before entering this state, the automaton produces
the corresponding initial output og. In each step the automaton determines a transition
from its transition relation § according to the current input symbol and its current state;
when performing this transition the automaton advances to both the target state of the
transition, and the next input symbol from the input word; furthermore, it emits the output
sequence associated with the transition through 6. Thus, the output of A with respect to
the input word ajasas ... is 010903 ... where (s;, a;y1, Si+1,0:41) € 0 for i > 0.

"By X“ we denote the set of finite and infinite sequences over X in Section 7 we give a precise definition
of this notation.

102

3.4. Related Work

Allowing transitions to have an output label avoids the I/O automata’s need for extra
intermediate states to separate input from output actions. Spelling automata translate
the notion of input enabledness to chaotic behavior; if, in the current state, there is no
transition that can process the current input symbol, the automaton can display arbitrary
behavior from this point on. [Rum96| interprets this form of chaos as underspecification,
and provides an extensive treatment of a refinement calculus for spelling automata that is
largely based on the idea of removing underspecification in the sense just mentioned.

3.4. Related Work

The overview of automaton models we have given in Section 3.3 is, of course, incomplete.
There exists a plethora of other state-based approaches, such as the process diagrams
from SDL [EHS98|, timed port automata [GR95], and variations of spelling automata
[GKRB96, Bro97, Kle98|. Petri nets [Rei82] can express the state-based behavior of a single
component, as well as the communication between several components in one diagram.
Some synchronous languages, which have a similar communication model as statecharts,
also describe component behavior as state-transition relations [BG88, Mar92]. In [Leu95]
and [Kle98] automata serve as the basis for defining the semantics for MSCs and scenarios,
respectively.

As we have mentioned earlier; the role of automata is by no means fixed to being only a
slight abstraction from executable code. [CD94], [Rum96], [WK96], [Kle98], and [Sch9§]
contain examples of refinement notions, and even of refinement calculi for statecharts and
related models. Their application makes automata accessible to the systematic design of
the detailed behavior of individual components.

3.5. Summary

In the preceding sections we have treated two major topics. First, we have discussed the
role of automata in the development process to contrast it with the role of MSCs. Second,
we have given an overview of several relevant automaton models for reactive systems. The
discussion of these two topics together has underlined the methodical difference between
MSCs and automata as description techniques for system behavior.

The major way of using automaton models in this context today is the specification of
complete component behavior; the automaton for a component covers its complete in-
put/output relationship, as well as the component’s complete state change relation. MSCs,
in contrast, typically depict scenarios, i.e. certain parts of the behavior of a set of compo-
nents, often without aiming at overall completeness.

Because automata usually reveal to a certain degree how a particular behavior is achieved,
their typical position in the development process is closer to design and implementation

103

3. State-Based Description Techniques for Component Behavior

than to requirements capture. In this sense we see MSCs as the “front-end” of the analysis
and specification task, and view automata as the corresponding “back-end” for design and
implementation. This calls for establishing a link between these two description techniques.

The overview of automaton models we have given includes Moore and Mealy automata,
statecharts and ROOMCharts, as well as w- and I/O-automata; it prepares our definition
of the automaton model we employ in Chapter 7, which combines features of Mealy- and
w-automata. Moore and Mealy automata are the predecessors of pragmatic automaton
models like statecharts and ROOMCharts. The latter two have emerged as attempts
at reducing the sizes of automaton specifications in practical engineering contexts. The
work on w-automata, I/O automata, and spelling automata centers around the notions
of effective verification, compositionality, and refinement. w-automata and their relatives
allow, in particular, adding progress and fairness constraints to automaton specifications.

Using automata typically means focusing on the input/output behavior of a single compo-
nent over time. An important step of the development process is, however, the composition
of individual components such that they cooperate to achieve an overall goal. MSCs allow
us to specify the interaction sequences into which the individual components must inte-
grate to allow the system to achieve this goal. In the following chapters we will work out
an approach for the combination of the two behavioral views we have studied so far: the
interaction-oriented, global system view of MSCs and the state-oriented, “birds-eye-view”
of automaton models.

104

CHAPTER 4

YAMS - Yet Another MSC Semantics

This chapter contains the syntax and semantics definition of the MSC notation we have
developed to solve the deficits identified in Chapter 2. Our first step towards this goal
is to define a precise model of the system class we target. Then, we base the semantics
definition on this model. We discuss the expressiveness of the notation we introduce, and
present several extensions going beyond the MSC-96 standard.

Contents
4.1. Introduction i e 106
4.2. System Model and Mathematical Preliminaries 108
4.3. Abstract Textual Syntax, 112
4.4. Denotational MSC-Semantics 115
4.5. Discussion of the Semantics 131
4.6. HMSGCs o i i i ittt e et e e e e e e e e e e 139
4.7. Example: the Abracadabra-Protocol 146
4.8. Related Work o o 0 i i oo 152
4.9, SUIMINATY .+ v v v v v b bt e e e e e e e e e e e e e e e e 152

105

4. YAMS — Yet Another MSC Semantics
4.1. Introduction

In this chapter we introduce the syntax and semantics of the MSC variant we employ in
the remainder of this thesis. The semantic framework we establish here forms the basis for
the investigation of the methodical aspects of MSC usage in the subsequent chapters.

Our motivation for the definition of “yet another” MSC syntax and semantics differing
from already existing approaches is twofold.

First, the discussion of MSC variants in Sections 2.2 and 2.3, and the comparison in Sec-
tion 2.4 have revealed several deficits in the already existing MSC variants. Recall, for
instance, that MSC-96 provides no notion of component state, no preemption mechanism,
no general concept of liveness conditions, and no semantic integration of message parame-
ters. LSCs, which do improve on MSC-96 by integrating state information and means for
the specification of liveness properties with MSCs, introduce other problems. The multi-
tude of ways for specifying liveness, each with its own graphical syntax, can make MSC
specifications extremely hard to read, especially if different liveness requirements occur in
combination within the same LSC. As an example, in LSCs there is no clear distinction
between the specification of preemption and provisional conditions on instance axes. This
can result in ambiguous LSC specifications. Moreover, LSCs do not support High-Level
MSCs (HMSCs), and provide no semantic integration of message parameters.

Second, we want to establish a semantic framework that supports both reasoning about the
semantics, and reasoning with the semantics. Reasoning about the semantics includes, for
instance, establishing properties of the mapping from syntax to semantics, and properties
of the elements of the notation, such as symmetry and associativity of composition oper-
ators. Reasoning with the semantics includes, for instance, the definition of effective and
manageable refinement notions, as well as the derivation of individual component specifi-
cations from MSCs. None of the MSC variants addresses the notion of MSC refinement
beyond “instance decomposition”; we attribute this to a large extent to the respective
semantic models, which — with a few exceptions — do not lend themselves to the definition
of practicable notions of refinement.

With the MSC variant we introduce here we aim at providing a specification mechanism
of adequate expressiveness that avoids the problems mentioned above. We use a graphical
syntax almost identical to the one of MSC-96; we also introduce an abstract textual syntax
that directly mimics the graphical one but is easier to manipulate and reason about in the
semantics definition.

With a few exceptions the syntax and semantics we define directly correspond to the one
of MSC-96. The major difference between our semantics and the one of MSC-96 is that
we model neither “weak sequencing”, nor “delayed choice”. Weak sequencing is a form
of MSC composition in MSC-96 that results in the parallel composition of its operands if
the instance sets of the operands on which send or receive events occur are disjoint. Our
sequential composition and interleaving operators have different semantics. The MSC-96

106

4.1. Introduction

semantics avoids resolution of an alternative construct until it is inevitable, i.e. until the
point where the two alternatives differ. Thus, the MSC-96 view on the interpretation of
an MSC is analogous to the execution model underlying tree logics like CTL and CTL*
(cf. [Tho90, Eme90]). In our approach each alternative is fixed right from the beginning
of an execution; the set of all alternative behaviors is the semantics of the MSC. This is
analogous to the execution model underlying linear temporal logics (cf. [Eme90]).

Our MSC variant has several “features” going beyond MSC-96. Major additions are
guarded MSCs, guarded alternatives and loops, unbounded finite repetition, a “join” oper-
ator, the concept of preemption, and the “trigger composition” operator. Guarded MSCs
assign meaning to condition symbols: the interactions guarded by a condition occur only
if the condition evaluates to true. We use this concept also to guard the selection of al-
ternatives and the termination of loops. As a simple means for specifying terminating
loops with unknown loop bounds we add unbounded finite repetition to the set of loop
specifiers known from MSC-96. The “join” operator allows to compose MSCs that rep-
resent non-orthogonal views on an interaction sequence; it identifies identical messages of
its operands. The preemption mechanism allows specification of exceptional cases in MSC
specifications. The trigger composition operator enables specifying that the occurrence of
an interaction sequence always causes occurrence of another. This is an important way of
defining liveness properties in our approach.

We select the mathematical model of streams as the domain for the MSC semantics; this
eases the definition of refinement notions in Chapter 5, as well as the derivation of individual
component specifications from MSCs in Chapter 7.

The current chapter has the following structure. In Section 4.2 we introduce the system
model underlying our semantics definition; this model supports the specification of a large
class of reactive systems. Section 4.3 contains the textual syntax we use in the semantics
definitions of Section 4.4. There, we concentrate on the core notational elements, like
message exchange, sequential, parallel and alternative composition, guarded MSCs, loops,
references, preemption, as well as join and trigger composition. We investigate properties
of the semantics definition, such as its well-definedness, and its relationship to the MSC-96
semantics and to temporal logics in Section 4.5. We describe our semantic treatment of
HMSCs in Section 4.6 as an example for an extension of the core syntax and semantics of
Sections 4.3 and 4.4 (further syntactic and semantic extensions, such as the integration of
parameters and parametric MSCs, actions, timers and gates, appear in Appendix A). In
Section 4.7 we give an example MSC specification to demonstrate, in particular, the use of
unbounded repetition, join and trigger composition, and preemption. Section 4.9 contains
a summary of what we have achieved.

107

4. YAMS — Yet Another MSC Semantics
4.2. System Model and Mathematical Preliminaries

The system class we aim at is that of open, distributed reactive systems with static struc-
ture. Here, we define a simple, yet precise mathematical model for the description of such
systems. Along the way we introduce the notation and concepts we need to describe the
model.

4.2.1. Notational Conventions

We start with a few notational conventions. By B and IN we denote the set of booleans

(the constants are true and false) and natural numbers (including 0), respectively. We

define Noo & NU {oo} for the set of naturals together with their supremum (oco). We

use the usual extensions of (binary) operations from IN to IN; examples are x < oo for all
x € Ny, max(z,00) = max(co,z) = co and min(z, c0) = min(co, z) = z for all z € N.
To denote function application we often use an infix dot (“.”) instead of parentheses to
increase readability of our formulae. For @) € {V,3} and predicates r and p we write
(Qx : r.x : p.xr) to denote the respective quantification over all p.z for which x satisfies
the quantification range r.x. If the range is understood from the context, we omit it
from the quantifying formula. As another form of reduced notation we integrate simple
ranges into the specification of the quantified variable; as an example, we sometimes write
(Vo € N =z ...) instead of (Vo : x € IN: ...). P(X) denotes the powerset of any set X.
Given sets Y7, Ys,... we define for tuples y = (y1,2,...) € Y1 x Y3 x ... the projection

onto the i-th element of the tuple as 7;.y def y; for 1 > 1. For the closed interval between
m € N and n € Ny, we write [m,n]; if m > n then [m, n] =)

The mathematical model serving below as the basis for our notion of system behavior is
that of streams. Streams and predicates or functions on streams are an extremely power-
ful specification mechanism for distributed, interactive systems (cf. [Bro99a, Mo199, BS00,
Ste97, Rum96]). It serves particularly well for property-oriented component specifications,
as well as for the definition of refinement notions and for the verification of correspond-
ing refinement relationships between specifications (cf. [BDDT92, Rum96, Kle98, Sch98]).
Here, we give a concise overview of the major concepts and notations with respect to
streams to the extent required for this thesis; for a thorough introduction to the topic, we
refer the reader to [Bro99a, M6l199, Ste97].

A stream is a finite or infinite sequence of messages. By X* and X we denote the set of

finite and infinite sequences over set X, respectively. X¢ & X+ U X denotes the set of

streams over set X. Note that we may identify X* and X with (J,.n([0,7] — X) and
IN — X, respectively. This allows us, for x € X“ and n € IN, to use function application
to write x.n for the n-th element of stream x. By |z| we denote the length of stream x. It
is equal to some natural number if x € X*; for x € X, |z| yields oco. Furthermore, for
x € X¥andn € N, with || > n, we define x | n to be the prefix of x with length n. By xTn

108

4.2. System Model and Mathematical Preliminaries

we denote the stream obtained from x by removing the first n elements. x 1 oo yields the
empty stream. We write the concatenation of two streams x, 2" € X¢ as v ~2'. If |z| = o0
then x —~ 2’ equals z. By <x1, xa, ..., x,> we denote the finite stream consisting, in this
order, of the elements x; through x, with x; € X for 1 <7 <n. For x =<z, 29, ..., T,>

and y € X we define y € x def (Fi: 1 <i<n:z =y). As a shorthand, we define

Ty~ def <x1>—~x for x;1 € X and v € X¥. We denote the empty stream by <>. For

an element z; € X and n € IN, we define 2} to be the stream over X that consists of n
consecutive copies of z1, i.e. (Vt:0 <t <n:al.t=uxz) A |z} =n holds. Given a subset
Y C X of the base set X, the filter operation Y (©)x yields the stream obtained from x € X¥
by removing all elements not contained in Y. The restriction function x|, , f (xln)Tm
yields the part of stream z that starts at position m and ends at position n. Table 4.1
serves as a quick reference for these sets and operators.

‘ Notation ‘ Informal Meaning ‘
X* set of finite sequences over set X
X set of infinite sequences over set X
X« set of streams over set X
xr.n nth element of stream x
|| length of stream x
rln prefix of length n of stream x
xTn stream obtained from x by removing the first n elements
x—~a concatenation of streams x and z’
<Xy, To, ..., T,> | finite stream consisting, in this order, of the elements x; through z,,
yex y appears as an element in the finite stream x
<> the empty stream
xy the stream consisting of n consecutive copies of element x;
Y(@©u stream obtained from x by dropping all elements not contained in Y’
|] stream obtained from x by considering only elements m through n

Table 4.1.: “Quick reference” for the stream notation used here

We lift the operators introduced above to finite and infinite tuples and sets of streams by
interpreting them in a pointwise and elementwise fashion, respectively. Given, for instance,
the stream tuple x : [1,m] — X%, with @ = (z1,... ,x,,) for m € IN, we denote by z.n the
tuple (z1.n,...,z,.n), if n € N.

Below, we use streams to model the behavior of components — including both the commu-
nication between components, and the states assumed by these components — over time.
To stress this intuition we introduce the name timed streams for infinite streams (time
does not halt) whose elements at position ¢ € IN represent the messages transmitted or the
states assumed at time t. Based on this intuition we identify tuples over timed streams with
streams over tuples, and call both timed stream tuples. For instance, we identify (X x Y)*>

109

4. YAMS — Yet Another MSC Semantics

with X x Y for sets X and Y. Moreover, for finite index sets X, and arbitrary sets Y we
identify elements of the domains X — Y and (X — Y')*°. This is a technical convention
that gives us a convenient way of converting streams of functions into functions, whose
ranges are streams, and vice versa. If, as an example, we have z € (X — Y)>® and z € X
then we allow ourselves to write z.x to obtain z’s projection onto x. Similarly, if we have
z€ (X —-Y*®) and t € N, then we consider z.z.t and z.t.z as synonyms.

4.2.2. System Structure

Structurally, a system consists of a set P of components, objects, or processes!, and a set C
of directed channels. Channels connect components that communicate with one another;
they also connect components with the environment. With every p € P we associate a
unique set of states, i.e. a component state space, S,. We define the state space of the

system as S &f II,epS,. For simplicity we represent messages by the set M of message
identifiers.
iec

cl cr
LM Ic Control o RM
B -

Figure 4.1.: Simple SSD that defines the sets P and C'

We use system structure diagrams (SSDs) to describe the sets P and C' in graphical nota-
tion. Alternatively, we could use ROOM’s actor- and binding-diagrams for this purpose.
The UML does not have an explicit channel concept; however, we could map the associa-
tions described by class and object diagrams onto “logical” channels. The SSD of Figure
4.1, for instance, defines P = { LM, Control, RM} and C = {cl,lc, cr,re, ec}.

Each channel ch € C is directed from its source to its destination component. To distin-
guish multiple channels with identical source and destination components we associate a
name (an element from the set CN of channel names) with every channel. Thus, we treat
each element ch € C as a triple ch = (¢n, cs,cd) € CN x P x P, where c¢n, ¢s, and cd
denote the channel name, the source component, and the destination component of channel
ch, respectively. We use the functions chn : ¢ — CN, src : C' — P, and dst : C — P
to project a channel on its name, source, and destination component, respectively; hence,
we have ch = (c¢n, cs,cd) = chn.ch = en A src.ch = ¢s A\ dst.ch = cd. We assume that
channel names are unique within C', and, where no confusion can arise, identify a channel
with its name.

Table 4.2 summarizes these structural elements.

'In the remainder of this thesis, we use the terms components, objects, and processes interchangeably.

110

4.2. System Model and Mathematical Preliminaries

H Entity ‘ Meaning H
P set of system components
C set of directed channels
Sp state of component p € P
S system state (S &f IL,epSy)
M set of message identifiers

Table 4.2.: Structural elements of the system model

To assign structure to the set .S, of states of component p € P we will explicitly name the
local variables of p together with their types in concrete examples. Then, we can interpret
a state of p as an assignment of each of p’s variables to a value of the corresponding type.
Similarly, we can further structure the set of messages M, say, to allow messages with
parameters (see Section A.3). To keep our presentation concise, we will not employ a
graphical syntax such as the UML’s class diagrams or ROOM'’s actor class specifications.

Above, we have not distinguished a component’s control and data state; we defer this
distinction until Chapter 7. For the time being we consider the control state as one part
of the components’ overall state space.

The systems we consider here are fixed in the sense that neither set P, nor set C' changes
over time. This does not exclude, however, dealing with the dynamic creation or deletion
of system components or channels. We refer to Appendix A for a treatment of component
creation and deletion in our semantic framework.

4.2.3. System Behavior

Now we turn to the dynamic aspects of the system model. In our model we take into
account both the interaction- and state-oriented part of system behavior; this prepares the
integration of both aspects in the following chapters.

We assume that the system components communicate between one another and with the
environment by exchanging messages over channels. We assume further that a discrete
global clock drives the system. We model this clock by the set IN of natural numbers.
Intuitively, at time ¢ € IN every component determines its output based on the messages
it has received until time ¢t — 1, and on its current state. It then writes the output to
the corresponding output channels and changes state. The delay of at least one time unit
models the processing time between an input and the output it triggers; more precisely, the
delay establishes a strict causality between an output and its triggering input (cf. [Bro99a,
BK98]).

Formally, with every channel ¢ € C' we associate the histories obtained from collecting all
messages sent along ¢ in the order of their occurrence. Our basic assumption here is that

111

4. YAMS — Yet Another MSC Semantics

communication happens asynchronously: the sender of a message does not have to wait
for the latter’s receipt by the destination component. This allows us to model channel
histories by means of streams.

We define ¢ % © — M* as a channel valuation that assigns a sequence of messages to

each channel; we obtain the timed stream tuple C™ as an infinite valuation of all channels.
This models that at each point in time a component can send multiple messages on a single
channel.

With timed streams over message sequences we have a model for the communication among
components over time. Similarly we can define a succession of system states over time as
an element of set S*°.

With these preliminaries in place, we can now define the semantics of a system with channel
set C, state space S, and message set M as an element of P((C' x S)*®). Any element
(1, p2) of a system’s semantics consists of a valuation of the system’s channels (¢ € C"’o)
and a description of the system state over time (po € S°). The existence of more than
one element in the semantics of a system indicates nondeterminism.

Table 4.3 summarizes the semantic entities for modeling system behavior.

H Entity ‘ Meaning H
C channel valuation at a particular time point (C L oM)
e overall channel history
S0 state history
(C x §)> combined channel and state history
P((C x S)®) semantics domain for system behaviors

Table 4.3.: Behavioral elements of the system model

In summary, our system model consists of two parts: the system’s static structure and
its behavior. The set of channels, the set of component states, and the set of messages
determine the system’s structure. The channel valuations, i.e. the occurrences of messages
on channels over time, and the sequences of states determine the system’s behavior.

In the following sections we will use the system model we have defined here as the basis
for defining the semantics of MSCs.

4.3. Abstract Textual Syntax

To simplify the semantics definition of our MSC variant we first introduce its abstract
textual syntax. We describe the translation from the graphical to the textual syntax in

112

4.3. Abstract Textual Syntax

Section 4.5.5. In the syntax definition we use an extended Backus-Naur Form (BNF)
(cf. [Wir86, ASU88]), where production rules of the grammar have the following form:

(N) == alt§N>
| altd”

| alt;N>

We denote nonterminals of the grammar by enclosing them in angular brackets. To the
right of the assignment symbol “::=” we give the alternative productions alt§N> through
alt;m of the nonterminal (N), such that the symbol || separates any two alternatives. To
indicate repetition of a nonterminal (N) we write {(N)}* and {(N)}* for any finite and
any positive number of successive occurrences of (N), respectively. If a terminal symbol t
separates any two of these occurrences we write {(N)}; and {(N)}{", respectively.

For notational convenience in the subsequent sections and chapters, we identify any non-
terminal (N) with the language defined by its corresponding grammar rule.

MSC Documents

We use the syntactic category (MSCDOC) to represent MSC documents, i.e. sequences of
MSC definitions.

(MSCDOC) ::= {{MSCDEF) }*

MSC Definitions

An MSC definition, represented by the syntactic category (MSCDEF), associates an inter-
action description (as defined by (MSC)) to an MSC name (as defined by (MSCNAME),
which represents a text string). The MSC name becomes important in combination with
references; there it acts as a placeholder for the interaction description to which the name
relates:

(MSCDEF) ::= msc (MSCNAME) = (MSC)

MSC Terms

The syntactic category (MSC) represents an interaction description. It captures the syntac-
tic correspondences between the graphical notation’s arrows, conditions, inline expressions,
and references. In addition, it provides the syntax for expressing arbitrary interactions and

113

4. YAMS — Yet Another MSC Semantics

preemption, as well as join and trigger composition.

(MSC) ::== empty
| any
| (MSG)
| (GMSC)
| (MSC) ; (MSC)
| (GMSC) | (GMSC)
| (MSC) ~ (MSC)
| (MSC)T(LspEcy
| (MSC) @ (MSC)
| (MSC) — (MSC)
| —(MSCNAME)
I vsc)y ™S sy
| (MSC) P say

For simplicity, we call elements of (MSC) “MSC terms” or “MSCs” for short. The intuitive
interpretations of the syntactic elements in (MSC) is as follows: empty and any repre-
sent the absence of, and any form of interaction, respectively. (MSG) denotes a message
specification; it consists of a channel name (defined by (CHNAME), a text string) and a
message header (represented by (MSGH)).

(MSG) ::= (CHNAME)>(MSGH)

A message header consists of a message name (defined by (MSGNAME), a text string) or
of a message name followed by a comma-separated list of formal message parameter names
within parentheses:

(MSGH) ::= (MSGNAME)
| (MSGNAME)({(FPNAME)} ")

We discuss the treatment of message parameters in Appendix A. For the most part of this
thesis, however, we will make use of messages without parameters only.

(GMSC) represents guarded MSCs; they consist of a guard specification (defined by the
nonterminal (GUARD), a text string) and the guarded interaction description.

(GMSC) ::== (GUARD):(MSC)

Operators ;, |, and ~ denote the sequencing of, the alternative between, and the inter-
leaving of the operand interaction descriptions, respectively. T indicates a repetition; the

114

4.4. Denotational MSC-Semantics

loop specification (defined by (LSPEC)) determines the number of repetitions either in the
sense of MSC-96’s loop-inline expression, or in the form of a guard condition.

(LSPEC) == <(NATIT)>
| <(NATT),(NATT)>
| <*>
| <(GUARD)>

(NATT) represents either a natural number (defined by (NAT), a number string), or the
infinity symbol oo.

(NATT) == (NAT)

I o0

® and +— represent the join and trigger composition of two interaction descriptions. The

join of two MSCs corresponds to the interleaving of the interaction sequences they represent
with the exception that common messages on common channels synchronize. The trigger
composition of two MSCs expresses the property that whenever the interactions specified
by the first have occurred the interactions specified by the second are inevitable.

— and (M3 represent MSC referencing and preemption, respectively. A reference to an
MSC X is semantically equivalent to the interaction sequence represented by X. Preempt-
ing one MSC by another means that upon occurrence of a certain message the interaction
sequence specified by the first MSC stops immediately and is continued by the interac-
tion sequence specified by the second MSC. Preemption is of particular importance for
the specification of exception and interrupt mechanisms. To allow specification of “self-
preemption”, i.e. the restarting of an interaction upon occurrence of a message, we use the
fomsq) notation.

We omit the obvious definitions of the syntactic categories (MSCNAME), (CHNAME),
(MSGNAME), (GUARD), and (NAT); we assume all of them to define text strings. Fur-
thermore, we use parentheses freely to group terms in (MSC), and let the repetition oper-
ators (loops and preemptive loops) bind stronger than the other operators.

4.4. Denotational MSC-Semantics

In this section we introduce the formal, denotational semantics for the MSC dialect whose
textual syntax we have given in Section 4.3.

Intuitively, we associate with a given MSC a set of channel and state valuations, i.e. a
set of system behaviors according to the system model we have introduced in Section 4.2.
Put another way, we interpret an MSC as a constraint at the possible behaviors of the

115

4. YAMS — Yet Another MSC Semantics

system under consideration. More precisely, with every o € (MSC) and every u € N
we associate a set [a], € P((C x §)® x Ny); any element of [a], is a pair of the form
(1) € (C x §)® x Nu. The first constituent, ¢, of such a pair describes an infinite
system behavior. u and the pair’s second constituent, ¢, describe the time interval within
which « constrains the system’s behavior. Intuitively, u corresponds to the “starting time”
of the behavior represented by the MSC; ¢ indicates the time point when this behavior
has finished. Hence, outside the time interval specified by v and ¢ the MSC « makes no
statement whatsoever about the interactions and state changes happening in the system
(cf. Figure 4.2).

. 0 u t
time: — —t

¢ l=—arbitrary | a l<—arbitrary—
Figure 4.2.: MSC « constrains system behavior ¢ only over time interval [u, t]

Our motivation for using u as a parameter of the semantics, and for returning ¢ as a “result”
parameter in the semantics definition is twofold:

1. we view an individual MSC as a representation of (part of) a system execution. With-
out further information — MSCs do not contain explicit absolute timing information
— we cannot say in advance at what time during the system execution the behavior
modeled by an MSC starts; this explains parameter . Similarly, because of the lack
of explicit timing information (say, between two message occurrences), we cannot
say in advance at what time the behavior modeled by an MSC is over; this explains
parameter t.

2. the use of the lower time-bound u as a parameter eases the semantics definition;
sequential composition and preemption (see below) demonstrate this benefit.

Definition 1 (Behavior “Beyond Infinity”) To model that we cannot observe (or con-
strain) system behavior “beyond infinity” we define that for all ¢ € (C'x S)*>°, a € (MSC),
and t € N, the following two predicates hold:

(1) € [a]w
(4.1)

(pT00,1) € [afw .

The behavior modeled by an MSC is independent of the time point at which the behavior
starts, i.e. for all ¢ € (C'x S)*®, u,n € N, t € N, and o € (MSC) we have:

(o, t+n) € [a]urn = (pTn,t) € [a]u (4.2)

This means that our model is independent of absolute time (see Appendix B.1 for the
proof).

116

4.4. Denotational MSC-Semantics

We assume given a relation MSCR C (MSCNAME) x (MSC), which associates MSC names
with their interaction descriptions. We expect MSCR to be the result of parsing all of a
given MSC document’s MSC definitions. For every MSC definition msc X = « in the
MSC document we assume the existence of an entry (X, «) in MSCR. For simplicity we
require the MSC term associated with an MSC name via MSCR to be unique, i.e.:

(VX € (MSCNAME), a, 5 € (MSC) :: (X,a) € MSCR A (X,3) € MSCR = a = ()
where we denote the syntactic equivalence of MSCs « and 3 by o = j3.

In some of the semantic definitions we introduce here and in Appendix A we need to
determine the messages and channels contained in an MSC. To that end, we define function

msgs : (MSC) — P((MSG)) inductively as follows:

msgs.empty o

msgs.any def {ch>m :ch e C N m e M}

msgs.ch>m &of {ch>m}

msgs.(at) def msgs.cc Umsgs.B, forte{;,|,~, ®, —}

msgs.(pk : «) def msgs.c

msgs.al <.~ def msgs.o

msgs.(— X) def { msgs.a %f (X,a) € MSCR
{cho>m:ch e C N me M} if =(Ja:: (X, a) € MSCR)

msgs.(a chogn B) oef msgs.c U msgs.5 U {ch>m}

msgs.of chom msgs.c U {ch>m}
The semantics mapping [.], induces an equivalence relation on MSC terms in the usual
way:

Definition 2 (Semantic Equivalence of MSCs) We define the semantic equivalence
of two MSCs «, 5 € (MSC) with respect to time u € N, written o« =, (3, by

def

a= 0 = [afu=1[0l 0

In the following paragraphs we define the MSC semantics by means of structural induction
over the grammar from Section 4.3. Along the way we also state several properties of
the operators we introduce. For formal proofs of these properties we refer the reader
to Appendix B. Where appropriate we show the graphical notation corresponding to an
element of the textual syntax.

Empty MSC For any time u € IN,, empty describes arbitrary system behavior that
starts and ends at time u. Formally, we define the semantics of empty as follows:

[empty], < {(¢.u):pe (C xS~}

117

4. YAMS — Yet Another MSC Semantics

empty is the neutral element with respect to sequential composition, interleaving, and the
join of MSCs (see below for the corresponding definitions), i.e. for all & € (MSC) each of
the following equivalences holds:

empty; a =, « a; empty =, «
empty ~ a =, « a ~ empty =, «
empty ® o =, « a ® empty =, «

Arbitrary Interactions MSC any describes completely arbitrary system behavior; there
is neither a constraint on the allowed interactions and state changes, nor a bound on the
time until the system displays arbitrary behavior:

[any]. & {(¢.1) € (C x 9)® x Noo : t > u}

any subsumes all possible behavior, i.e. for all & € (MSC) we have:

ﬂa]]u C [any],

any has no direct graphical representation; we use it to resolve unbound MSC references
(see below).

Single Message An MSC that represents the occurrence of message m on channel ch
(cf. Figure 4.3 (a)) constrains the system behavior until the minimum time such that this
occurrence has happened:

[ch>m], o {(p,t) € (Cx9)>® xN:t=min{v:v>uAmem(p)v.ch}}

Because we disallow pairs (¢, 00) in [ch>m], we require the message to occur eventually
(within finite time). This corresponds with the typical intuition we associate with MSCs:
the depicted messages do occur within finite time.

We add the channel identifier explicitly to the label of a message arrow in the graphical
representation; this is useful in situations where a component has more than one commu-
nication path to another component. The channel names used in message specifications,
and the channel names appearing in an SSD (such as the one shown in Figure 4.1) must be
consistent, i.e. a message can occur only on a channel between two components if such a
channel exists in the corresponding SSD. If we employed ROOM’s actor classes and bind-
ings, or the UML’s class and object diagrams to specify the communication links between
components, we would have to map ports and bindings, or associations, respectively, to
‘virtual’” channel names.

118

4.4. Denotational MSC-Semantics

(6%
X Y e)
chom I

Figure 4.3.: Single message exchange and sequential MSC composition

Sequential Composition The semantics of the semicolon operator is sequential compo-
sition: given two MSCs « and the MSC « ; 3 denotes that we can separate each system
behavior in a prefix and a suffix such that o describes the prefix and § describes the suffix

(cf. Figure 4.3 (b)):

[o; Bl = {(p,1) € (€ x 9)® x Nog : (3t € Nog 1: (9,) € [0 A (0,1) € [B])}

This definition differs from what MSC-96 calls “weak sequential composition” or weak se-
quencing for short. In MSC-96 the weak sequencing of independent interaction sequences
results in their interleaving. Our definition keeps the intuition behind the term “sequenc-
ing” and forbids the interleaving of the interactions of the operand MSCs. For unordered
interactions we introduce a separate interleaving concept, below. In Section 4.5.3 we discuss
our reason for avoiding weak sequencing in detail.

Sequential composition is associative, and distributes over the alternative operator, i.e. for

all o, 5,7 € (MSC) we have:

(; B); v = a; (B35 7)
and

a; (B]y
Bl17); @

w (a5)] (a;)
w (85 a)l

Guarded MSC Let K C P be a set of instance identifiers. By px we denote a predicate
over the state spaces of the instances in K. Let [px] € P(S) denote the set of states in
which pg holds. Then we define the semantics of the guarded MSC pg : a as the set of

behaviors whose state projection fulfills px at time u, and whose interactions proceed as
described by MSC a:

[px - alu € {(o,1) € [a]u : ma(p).u € [px]}

We require px to hold only at instant w. This allows arbitrary state changes from time u
on. In particular, at no other point within the time interval covered by « can we assume
that pg still holds.

119

4. YAMS — Yet Another MSC Semantics

We can conjoin multiple guards of an MSC into a single one, i.e. for all p,q € (GUARD)
and a € (MSC) we have:

pilg:a) = (pAq):a

Moreover, the boolean constants true and false hold in all and none of the system’s execu-
tions, respectively, i.e. for all &« € (MSC) we have:

[true:], = [a].
[false : o], = 0

As Figure 4.4 (a) shows, where K = {X,..., X, } for some n € N, we use the condition
symbol from MSC-96 to represent guards in MSCs. Put another way, we have assigned
a meaning to conditions by treating them as guards. In the semantics for MSC-96 the
meaning of conditions is void (cf. [IT98]), besides the composition constraints they impose
on references in HMSCs (cf. [IT96]).

Figure 4.4.: Guarded MSC and alternative

Alternative An alternative denotes the union of the semantics of its two operand MSCs.
The operands must be guarded MSCs; the disjunction of their guards must yield true.
Thus, for « = p : @ and g = ¢q : (' for o, 3 € (MSC) and p,q € (GUARD) with
pV q = true we define:

def
[a] Bl = [a]uU[B]a
For guards p and ¢ with p A ¢ = true the alternative expresses a nondeterministic choice.

The alternative operator is symmetric and associative, i.e. for all a, 3,7 € (MSC) we have:

alf = PBla
al(Bl7) = (a]B)]y

120

4.4. Denotational MSC-Semantics

Our treatment of the alternative operator differs from the approach taken in MSC-96.
There, choices are resolved at the latest possible moment, i.e. at the moment where the
alternatives differ ([IT98] terms this “delayed choice”). This corresponds to regarding
MSCs as representations of execution trees in the sense of branching time temporal logics,
such as CTL and CTL* (cf. [Tho90, Eme90]). Each element in [.],, on the other hand,
represents a single system execution, with all choices fixed. This corresponds to regarding
MSCs as representations of execution sequences in the sense of linear time temporal logics,
such as PLTL (cf. [Eme90]). In Section 4.5.4 we study the relationship between temporal
logics and our semantics definition further.

Our motivation for choosing the simpler alternative construct is that it leads to easier equiv-
alence and refinement notions. While the definition of MSC equivalence and refinement
in MSC-96 requires an appeal to bisimulation, we can use set equality and set inclusion
instead (cf. Chapter 5).

MSC-96 provides no means for guiding the choice among alternatives; this corresponds to
setting both p and ¢ to true in our definition. In the graphical representation of alternatives
(cf. Figure 4.4 (b)) we add the guarding predicates after a colon to the keyword alt in the
respective compartment of the alternative box.

Interleaving With interleaving we capture the idea of causally unrelated interactions.
The result of interleaving two operand MSCs « and (3 is a set of behaviors whose elements
contain the interactions of o and [in any order (cf. Figure 4.5 (a)).

time
0 1 2 3
| @ | @
‘ * o o l \
par Jod - m(p).ch é‘m> <rn> <n> <p,s>
5 a 5 / / /]
R e
e s | @ e
1t bs.ch <tt> | <> | <ff> | <t ff>

(a) (b)

Figure 4.5.: MSC interleaving?

The basic idea behind the semantics definition for @ ~ 3 is as follows. Let (p,t) be an
element of Jaw ~ f],. If we remove ’s contribution from ¢, then the one of § must still
be present in what is left; the same holds with the roles of a and (3 interchanged. In other
words, we can reconstruct the behaviors of @ and 8 independently from the behaviors of
their interleaving.

24¢t” and “ff” abbreviate true and false, respectively.

121

4. YAMS — Yet Another MSC Semantics

As an example, assume given the two MSC definitions

a = ch>bm; chbn; chbp
and

6 = ch>r; ch>n; ch>s

Figure 4.5 (b) illustrates the relationship between the semantics of o and 3, and the
semantics of the interleaving @ ~ (. In this figure, time increases to the right. Columns
indicate time points. Rows indicate the valuations of channel ch in exemplary elements of
the semantics of a (first row), 3 (third row), and @ ~ [(second row). The arrows indicate
where the contribution of an operand ends up in this particular interleaving.

In the semantics definition for interleaving, we use an oracle bs € (C — IB*)* that tells
us for every time t € IN which of the elements of a channel valuation cv € ¢' — M* are
contributed by «, and which by 8. In terms of the example from Figure 4.5 (b), where
bs.ch occupies the bottom row, the oracle encodes the information expressed by the arrows.
Thus, the purpose of bs is to help us filter any behavior in the semantics of an interleaving
a ~ [independently for the contributions of o and 3. To that end, we specify the two
helper functions

filter - (C*™ x (C'— B*)® x B) — C*
and
h:(M*xB*xB)— M*
Intuitively, function A filters the contents of one particular channel at one particular point

in time. filter filters entire interaction histories. For all ¢ € C™, bs € (C — B")>,
bs' € B*, b,bv € B, x € M, and zs € M* we define:

(Vt € N, ch € C :: (filter.a.bs.bv).t.ch = h.(¢.t.ch).(bs.t.ch).bv)
and

h.<>.<>.b'l} = <>

ho(x —~15).(b— bs').bv = {

x~h.xs.bs'.bv if bv =b

h.xs.bs’.bv else

In the definition of h we have assumed the validity of |zs| = |bs'[, i.e. the length of the
stream to be filtered and the length of the corresponding oracle must coincide. The function
application h.zs.bs’.bv yields the projection of the finite stream of messages xs onto those
elements zs.i for which bs’.i equals bv (0 < ¢ < |zs|). Our intuition for the parameter

122

4.4. Denotational MSC-Semantics

bv is to let it indicate which operand’s contribution we currently consider; for o we use
bv = true, for 3 we use bv = false.

The function filter extends h over all time points and channels. Thus, filter allows us to
project an entire execution ¢ onto the respective operand’s contribution.

With these preliminaries in place, we define the semantics of the interleaving operator as
follows:

[~ Bl. = {(g.1) € (€' x 9)® x Ny :
(Fbs, ty, o, 1, by ty, bty € Nog Athy, 1y € (C' % S)™®
bs € (C — B")™
A (V' € N, ch € C :: |bs.t'.ch| = |(m1(p) Tw).t'.ch|)
A ((filter.(m1 (@) Tu).bs. true, (ma(p) Tu)) ~ 1, t1) € [a]o
A ((filter.(m1 (@) Tu).bs. false, (m2(p) Tu)) ~ 9, ta) € [Bo
At =u+ max(ti,t2))}

The first two conjuncts in this definition ensure the oracle’s type-correctness; for every
time t € IN bs fixes the origin (« or [3) for precisely the messages appearing in m(p) at
time t. Together, the third and fourth conjunct require that we can extract the behaviors
represented by a and independently of each other from ¢. This captures our intuitive
understanding of the interleaving operator.

The interleaving operator is symmetric and associative, i.e. for all «, 5,7 € (MSC) we
have:

a~fp =, [0 ~«
an~ B~y = (a~f) ~y

Join The join @ ® 3 of two operand MSCs « and [is similar to their interleaving
with the exception that the join identifies common messages, i.e. messages on the same
channels with identical labels in both operands. MSC-96 does not offer an operator with
a similar semantics. In our graphical representation (cf. Figure 4.6 (a)) we use the same
representation as for interleaving, with the exception that instead of the keyword par we
use the keyword join.

As an example, consider again the two MSC definitions
a = ch>m; ch>n; ch>p
and

B = chb>r; ch>n; ch>s

123

4. YAMS — Yet Another MSC Semantics

time
0 1 2 3
. e >
e | I miaen | Em >
a { A\
‘ m1(p).ch <m,r> <n> <p> <s>
F---A=5=7=z754=----
R & | @
: ‘ : s .ch
S (W) (o) —

Figure 4.6.: MSC join

a and (3 share the occurrence of message n on channel ch. Figure 4.6 (b) illustrates the
relationship between the semantics of o and (3, and the semantics of the join @ ® (in the
style we used already to explain the intuition behind interleaving (see above). Here, the
top, bottom, and middle rows contain exemplary elements of the semantics of o, (3, and
a ® (3, respectively. The arrows indicate where the contribution of an operand ends up in
this particular join. Message n occurs only once in Figure 4.6 (b), whereas it occurs twice
in Figure 4.5 (b).

The idea behind our semantics definition for the join operator is as follows. Let (¢, t) be
an element of [a ® [],. We require that ¢ is an execution of both « and /3, i.e. both
a and (contribute the behavior they represent to their join. There may not be any
redundancy in the semantics of the join with respect to messages shared by o and (. In
other words, if we drop one such message anywhere in ¢|, 4, then the remaining execution
is neither an execution of a, nor of 3. This captures that a and § contribute only one
copy per occurrence of a common message. This leads to the following definition of the
join semantics:

[0 ® 8l. & {(pt) € (Cx 9)* x N
(Ftistz 2 (@ 1) € [alu A (9, t2) € [Blu At = max(ti, t2))
A (VX € (msgs.a Nmsgs.B)*, ¢ € (C x S)*, ch € C,t € [u,t] NN ::
(X # <) A(m ().t .ch = mi(p).t'.ch\ X))
= (V" € N (¢,1") & [a]u A (¥,1") & [8]u))}

In this definition we use the notation m \ n as a shorthand for {x & n}©m, i.e. for the
stream obtained from m by dropping all elements that do also appear in n.

The second outer conjunct of this definition ensures that we cannot reconstruct the be-
haviors of @ and 3 independently from the behaviors of their join, if the two MSCs have
messages in common. This distinguishes the join clearly from the interleaving of o and

124

4.4. Denotational MSC-Semantics

3, if msgs.cc N msgs.3 # () holds. In this state of affairs, we call a and [non-orthogonal
(or overlapping); if msgs.cc N msgs. = () holds, then we call & and 3 orthogonal (or non-
overlapping).

The definition of the join operator is quite restrictive. As an example, consider the two
MSCs

a=c>bm; c>n
and
b =c>n; c>m

which define two different orderings of the messages c>m and c>n. What is the join of «
and [in this case?

It is easy to see that if (p,t) € [a ® (], holds, then m(¢).c must contain at least two
copies of either m or n within the time interval [u,¢]. Otherwise, m(¢).c would not model
either o or 3, and the first outer conjunct of the join semantics would be false. However, if
we drop only one of the duplicates of either m or n from 7 (¢).c, then the resulting channel
assignment still models either o or 3 on a time interval starting at u. This violates the
second outer conjunct of the join semantics. This shows that for a and (as given above
we have [a ®], = 0. This corresponds with our intuitive understanding of identifying
occurrences of common messages of the operands of the join operator.

Guided by this example we now define under what circumstances we consider two MSCs
consistent with respect to the join operator.

Definition 3 (Consistency with respect to join) Let a, 3 € (MSC) be MSCs. If [a®
Blo # 0 holds, then we call o and 3 consistent (with respect to join); otherwise, we call «
and [inconsistent (with respect to join). o

In Chapter 7 we will describe a constructive procedure for determining whether or not two
MSCs are consistent.

The join operator allows us to represent different aspects of a communication in different
MSCs. We could, for instance, represent the interactions between a customer and an ATM
for a withdrawal from the customer’s bank account in one MSC (showing only the axes
representing the customer and the ATM), and the interactions between the ATM and the
component representing the bank account in another.

Thus, the importance of join is not so much in the construction of individual MSCs but in
the composition of MSCs that display the same instances in different roles.

The join operator is symmetric and associative, i.e. for all a, 3,7 € (MSC) we have:

a® b = [«
a® By = (a®p) e~y

125

4. YAMS — Yet Another MSC Semantics

Loops We introduce four classes of loop constructs:

e qguarded loops, where the validity of a guard determines further execution of the loop
body;

e bounded loops, where a lower and upper bound from set IN statically determine a
finite number of repetitions;

e unbounded loops, that represent any finite number of repetitions;

e infinite loops, where the loop body occurs an infinite number of times.

MSC-96 offers only bounded and infinite loops, and combinations thereof. Because, in
contrast to MSC-96, we have access to component states in our semantic framework we
can give a simple definition for guarded loops. The existence of unbounded loops eases
the definition of liveness properties as we shall discuss in Chapter 6. In the following
paragraphs we introduce all forms of interactions and their combinations as allowed by

MSC-96.

We start by defining the semantics of guarded loops, i.e. loops of the form a7, where
p € (GUARD) denotes a guard. The semantics [a]], of the guarded loop is the greatest
fixpoint (with respect to set inclusion) of the following equation:

[eTgnlu = [(p: (a5 algs)) | ((-p) : empty)]. (4.3)

The fixpoint exists because of the monotonicity of its defining equation (with respect to set
inclusion); in Appendix B.1.3 we turn Equation (4.3) into a corresponding set transformer,
which makes the required monotonicity explicit.

The semantics of a loop whose guard is false equals the semantics of empty, i.e. for all
a € (MSC) we have:

aT<false> =u empty

On the basis of guarded repetition we can easily define the semantics of «’s infinite repe-
tition as follows:

def
[[aT<oo,oo>]]u é [[aT<true>]]u

For the description of the combinations of bounded and infinite loops allowed by MSC-
96 we first introduce a syntactic abbreviation for the finite repetition of a loop body «.
Intuitively, for any i € IN by o we denote the i-fold finite sequential composition of copies
of a. More precisely, we define

«Q tef empty

4 def - . .
atlt = ar b forie NAT>0

126

4.4. Denotational MSC-Semantics

In repetitions of the form af, » the bounds m,n € N, determine how often the loop
body « occurs. We present the definition by case distinction on the values of the lower
bound m and the upper bound n. Note the close correspondence between these definitions
and the loop constructs of MSC-96 (see Section 2.2):

UOSiSn[[ai]]u ifm=0AneNN
def Uie]N[[O‘ZHu U [[aT<oo7oo>]]u %f m=0An=o0o0
[[@T<m,n>]]u = ﬂam : aT<0,n—m>]]u if m,n € NAO<mMm <n
[a™ 5 ol o005]u ifmelNAO<mMAR=00
[empty], if (mneNAn<m)V(neNAm=o)

Furthermore, we carry over two syntactic abbreviations from MSC-96. We define a shortcut
for the n-fold repetition of a;, where n € IN,, by

[[aT<n>]]u déf [[aT<n,n>]]u

The semantics of the shortcut for any positive or infinite number of repetitions of « is as
follows:

def

[[OéT]]u = [[aT<l,oo>]]u

Unbounded finite repetition has the following semantics:

[[OéT<*>]]u &of U [[aT<U,n>]]u

nelN

MSC-96 has no repetition operator for expressing unbounded finite repetition. This oper-
ator is, however, one way of specifying liveness properties with MSCs (cf. Section 4.5).

From the definitions of the various loop constructs we can easily deduce for any o € (MSC),
and m,n € N, the two equivalences

a aT<m,n> =u OZT<mH,n+1>

and

A ams 3 @ = Al anptnis>

Graphically, we extend the syntax of MSC-96 for representing loops by allowing all forms
of loop specifiers we have introduced above, i.e. in the loop definition of Figure 4.7 (a) we
allow <[> € {<p>, <m,n>, <¢>}, where p is a guard and m,n € N.

127

4. YAMS — Yet Another MSC Semantics

Figure 4.7.: MSC loops and reference

References If an MSC named X exists in the given MSC document, i.e. there exists a
pair (X, «) € MSCR for some o € (MSC), then the semantics of a reference to X equals
the semantics of a. Otherwise, i.e. if no adequate MSC definition exists, we associate the
meaning of any with the reference (cf. Figure 4.7 (b)):

de [a]. if (X,«) € MSCR
[= X - { [any]. else

To identify any with an unbound reference has the advantage that we can understand
the binding of references as a form of refinement (cf. Section 5.2). The simple reference
resolution scheme we use here allows acyclic references only. We can easily construct more
complex reference mechanisms. We could, for instance, allow recursive MSC definitions,
i.e. MSC definitions referring either directly or indirectly to themselves. Semantically this
corresponds to defining and solving fixpoint equations over the set of given MSC definitions.
However, within this document we deal with acyclic MSC references only and stick with
the simple referencing scheme given above.

This simplifies the semantics definition, because we do not need to add further fixpoint
equations. The price we pay for this simplification is restricted expressiveness; without
recursive references the specification of an MSC a with the following property is impossible
with the constructs introduced so far: for all n € IN, o contains n occurrences of message x
and n occurrences of message y such that all occurrences of z precede all occurrences of y.
In favor of a simpler semantics we are willing to pay this price for the moment. In Chapter
6 we discuss how to define such properties through combinations of graphical and textual
specifications.

Preemption Preemption is an important concept that occurs in various disguises in al-
most all kinds of systems, most often in the form of interrupt or exception handling.
Consider, for instance, that we want to model a telephony call protocol. A typical event
within every scenario is that, say, the caller suddenly hangs up the phone. We would expect
that this ends any call scenario immediately and maybe results in tearing town the rest of
the communication link in a certain order. However, as we have explained in Chapter 2,
none of the existing MSC dialects provides adequate syntax and semantics for specifying
such behavior. We solve this deficit by defining the concept of preemptive reference along
the lines of the telephony scenario just outlined. We allow a message m (such as “putting

128

4.4. Denotational MSC-Semantics

a phone on hook”) to preempt a given MSC (such as “initiate phone call”) and to cause
continuation by a possibly different MSC (such as “tear down communication link”).

Thus, the semantics of MSC « chbgm [is equivalent to the one of a as long as message ch>m
has not occurred. From the moment in time at which ch>m occurs, the MSC immediately
switches its semantics to the one given by :

o "8l € {(p.t) €a]: (VwEN:u<v<t:m¢m(p)v.ch)}
U{(p,1) € (C x §)> x Ny
(Fv:velN:
v=min{t' : ' >u A m e m(p).t'ch}
Ap,o—=1) € o]y
A (1) € [Blu)}

Here we use the set [a]? C (C' x S)® x Ny for any a € (MSC), which is similar to [a],
except that each element of [a]? constrains the system behavior until time v € IN:

[o]t € {(p,v) € (C x S)® x Ny :
<E|(Q/)at) : (wat) € [[O'/]]u : 90|[u,v} - 77ZJ|[u,v] N v S t>}

Graphically we use the same notation as for interleaving, with the exception that we label
the upper box with the preempting message, followed by the keyword preempts (cf. Figure
4.8 (a)). The box at the top holds the MSC part that the message can preempt; the box at
the bottom holds the MSC part describing the continuation once preemption has occurred.
Often the content of the MSC part at the top will be more “elaborate” than the one at
the bottom. Depending on the context, the handling of an exception, for instance, is often
less involved than the code or protocol that “throws” the exception. In Section 4.6 we

introduce a more convenient notation than what Figure 4.8 (a) suggests for such cases, in
the context of HMSCs.

. .
ch>m preemptsJ ‘

Figure 4.8.: MSC preemption and preemptive loop

The way we have defined the semantics of preemption was inspired by the notion of “catas-
trophe”, introduced by C.A.R. Hoare in [Hoa85|. Note, however, that our preemption op-
erator is more permissive with respect to the occurrence of the preemptive message than

129

4. YAMS — Yet Another MSC Semantics

catastrophe is with respect to the catastrophic interrupt event. In particular, in a preemp-

tion specification « chogn £ we do not exclude the syntactic occurrence of ch>m in . In
anticipation of the different MSC interpretations we discuss in Chapter 6, we mention that
the closed world semantics (cf. Section 6.2.3) of the preemption operator comes close to
the semantics of catastrophe.

Preemptive Loop The definition of MSC preemption above does not capture the restart-
ing of an interaction in case of the occurrence of a certain message. To handle this case we
define the notion of preemptive loop. The intuitive semantics of the preemptive loop of «
for a given message ch>m is that whenever ch>m occurs a gets interrupted and then the
interaction sequence proceeds as specified by «, again with the possibility for preemption.
More precisely, we define [aftepem]. to equal the greatest fixpoint (with respect to set
inclusion) of the following equation:

[[O[ﬂchbm]]u = [[a dt’m (aﬂchbm)]]u (4.4)

The fixpoint exists due to the monotonicity of its defining equation (with respect to set
inclusion). Appendix B.1.3 contains the details for justifying this claim; there, we turn
Equation (4.3) into a corresponding set transformer, which makes the required monotonic-
ity explicit.

Graphically we use the same notation as for loops, with the exception that we label the
box with the preempting message, followed by the keyword restarts (cf. Figure 4.8 (b)).
For this situation we also introduce more convenient syntax in Section 4.6.

The preemptive loop operator we have defined above is a variation of the “restart”-operator
introduced in [Hoa85]. As was the case with regular preemption, we do not exclude the
syntactic occurrence of the preemptive message within the body of the preemptive loop.

Trigger Composition By means of the trigger composition operator we can express a
temporal relationship between two MSCs « and (3; whenever an interaction sequence cor-
responding to « has occurred in the system we specify, then the occurrence of an interaction
sequence corresponding to 3 is inevitable:

[a — Bl & {(p,t) € (C x §)® x Ny :
V" o0>t" >t >u:
(p,t") € a]y = (3" 100 >t" >t": (p,t) € [Blen))}
The relevance of this operator is that it gives us a handle at defining certain liveness
properties (cf. Sections 4.5 and 6.3) for MSC specifications. In fact, the liveness proper-

ties that we can specify using the trigger composition are a form of fairness constraints
(cf. [Fra86]) at the executions of the system we model. In o +— [(read: “« triggers [5”

130

4.5. Discussion of the Semantics

Figure 4.9.: Trigger composition

or “a leads to 4”) we call a and [the trigger (or the triggering MSC) and the triggered
MSC, respectively.

Trigger composition is “transitive”, i.e. for all u,t € Ny, ¢ € (C x S)>®, and a, 3,7 €
(MSC) we have:

<E|t17t2 . t2 Z 231 : (qutl) € [[a = ﬁﬂu A (907t) S [[5 = 7]]152) = (907t) € [[Oé = ’Y]]u

Graphically we use the same notation as for alternatives, with the exception that we label
the box with the keyword triggers (cf. Figure 4.9). The top compartment holds the
trigger, the bottom compartment holds the triggered MSC.

4.5. Discussion of the Semantics

In Section 4.4 we have defined the semantics for the MSC dialect we employ in this thesis.
However, before we go about and use this semantic framework in the following chapters,
we discuss some of its properties in this section.

First, we consider the well-definedness of the semantics function [.], (cf. Section 4.5.1),
and give a characterization of the elements in [a], for a given o € (MSC) (cf. Section
45.2).

Second, we study the relationship between the sequential composition and the interleaving
operator in our semantics (cf. Section 4.5.3). This allows us to relate our approach to the
standard semantics [IT98].

Third, to get a first impression on the expressiveness of our MSC dialect, we briefly relate
temporal logic formulae with certain classes of MSC terms in Section 4.5.4.

Together, the topics we discuss in this section serve as “sanity checks” for the semantics
foundation we have established in Section 4.4

4.5.1. Well-Definedness

Section 4.4 contains two recursive equations: (4.3), and (4.4). This induces the question
whether the semantics we have presented is well-defined. Because all other definitions are

131

4. YAMS — Yet Another MSC Semantics

non-recursive, and involve basic set operations only, answering this question amounts to
establishing that each of the recursive equations has a (unique) greatest fixpoint.

Proposition 1 (Well-Definedness of the Semantics) The semantics of Section 4./ is
well defined. In particular, each of the recursive Equations (4.3) and (4.4) has a unique
greatest fixrpoint. o

PROOF See Appendix B.1.3. -

4.5.2. General Observations

In Section 4.4 we have stated informally that for an MSC a the semantics function [.].,
yields the set of pairs (p,t) € (C' x S)* x IN,, where ¢ is a system behavior and [u, t] is
the time interval in which « constrains . To support this intuition we observe that

e 1o MSC can “reset” time, i.e. [.], constrains the system behavior only from time u
onward, and

e the semantics [a], contains indeed all system behaviors that exhibit the interaction
sequence specified by a;, from time v on.

The following two propositions make these observations more precise.

Proposition 2 For alla € (MSC), t,u € Ny, and ¢ € (C'xS)> the following implication
holds:

(p,t) €lau=t>u o

ProoF By induction on the structure of a. n
Proposition 3 [a], is the equivalence class of all system behaviors that “comply to” «

from time u on, i.e. for all « € (MSC), t,u € Ny, and ¢ € (C x §)® the following
equivalence holds:

(p,t) €[]y =(VY: 9 € (é X S)* A Pl = el : (¥, 1) € [a]u) o
PROOF The direction “«<" is trivial. The direction “=" follows by induction on the
structure of . n

The consequence of Proposition 3’s validity is that our MSC semantics is extremely loose.
The elements of [«], all represent at least a behavior depicted explicitly in MSC «, but
do not exclude arbitrary other behavior. This looseness is helpful in the definition of
refinement notions (cf. Chapter 5), as well as in relating MSCs with other forms of system
specifications. In Chapter 6 we establish several such relationships; one of them (called
“exact” MSC interpretation) removes all looseness, and fixes the MSC semantics to what
is explicitly specified in the MSC.

132

4.5. Discussion of the Semantics

4.5.3. The Relationship between Sequential Composition and
Interleaving

In Section 4.4 we have noted the difference between our definition of sequential composition
and the weak sequencing operator used by the authors of [IT98] for what they call the
“vertical composition” of MSCs. Here, we make this statement more precise by studying
the relationship between sequential composition and interleaving in our semantics.

msc Xxyz
A B C D
[— — — —
ml -
- m2
B m3 -
- m4

— —— —— ——

Figure 4.10.: Composition of MSCs with disjoint instance sets

The weak sequencing of two MSCs can result in their interleaving, if the two MSCs do not
share instances. As an example, consider MSC zyz of Figure 4.10; we can think of this
MSC as being the vertical composition of the MSC that contains only the interactions of
instances A and B, and the MSC that contains only the interactions of instances C'and D.
Despite the vertical positioning of the two message “clusters” {m1, m2} and {m3, m4}, the
weak-sequencing used by the authors of [IT98] yields the interleaving of these two message
clusters as the semantics of MSC zyz.

Another way to interpret xyz is that it is the horizontal composition of the two sub-MSCs
we have identified before. In this case, too, the semantics of [IT98] assigns the interleaving
of the individual interaction sequences as the meaning of the composite MSC.

msc V
A B C D
] [— ——
m —
w)
n
] I I I

Figure 4.11.: The ordering between m and n depends on the content of MSC W

Defining vertical composition in this way can result in rather counter-intuitive MSC spec-
ifications. As an example, consider the MSC in Figure 4.11. Under the weak sequencing

133

4. YAMS — Yet Another MSC Semantics

of [IT96, IT98] it depends on the content of MSC W whether or not there is an order
between messages m and n. If we use MSC W from Figure 4.12 to resolve the reference,
then it depends on the alternative selected during execution, whether or not n can precede
or must succeed m. Such specifications are difficult to communicate in practice because
their semantics “contradicts” their graphical representation.

msc W
A B C D
[‘ [— ——
alt) r -
s
V |-
—— — — —

Figure 4.12.: Depending on the selected alternative n can or cannot precede m in the MSC
from Figure 4.11

Therefore, we follow a different approach in our semantics definition. We require explicit
use of the adequate composition operators to yield the desired interpretation. The only
cases where sequential composition and interleaving coincide in our semantics are those,
where at least one of the operands is empty. The following proposition makes this state-
ment more precise.

Proposition 4 For all «, 5 € (MSC) the following equivalence holds:
(o~ B =, 0a;8) = (o=, empty) V (3 =, empty) o

PROOF See Appendix B.1.4. -

This result shows the difference between our sequential composition and the weak se-
quencing of [IT98]. Our composition operator is “strong” in the sense that all interactions
contained in its first operand precede any interactions of the second operand.

This difference in interpretation has a methodical implication. We require that all messages
within an MSC be vertically ordered. Lack of ordering be only established through the
interleaving operator (see also the discussion in Section 4.5.5).

Even if we follow this convention, MSCs like the one in Figure 4.10 are difficult to compre-
hend from a practical point of view. There is no visible communication between instances
B and C'that could establish an ordering between messages m2 and mJ3. This also suggests
to avoid MSCs like zyz, and to make ordering and the lack of it explicit through messages,
and application of the interleaving operator, respectively.

134

4.5. Discussion of the Semantics

4.5.4. MSCs versus Temporal Logic

Given the language of MSC terms and its semantics a natural question arises: what kinds
of system properties can we specify using the language?

To get a first impression on the expressiveness of our MSC dialect, we relate it with
propositional linear temporal logic (PLTL, cf. [Eme90]). We do so on a rather informal
level to convey the basic idea; in Chapter 6 we give a precise characterization of the
properties we can express by means of MSC terms.

[Eme90] gives an informal characterization of PLTL formulae over a set of atomic propo-
sitions {p,q, ...}, based on infinite sequences of states as a system’s execution model, as
summarized in Table 4.4.

Formula Read as Informal Meaning
Fp “sometime p” | there is a state in the execution of the system where p holds
Gp “always p” | p holds in all states of the system’s execution
Xp “nexttime p” | p holds in the next system state
p U q “p until ¢” q holds eventually, and until that happens, p holds

Table 4.4.: PLTL formulae and their intuitive interpretation

As a more elaborate example we mention that, under this interpretation, the formula GF p
characterizes system executions in which p holds infinitely often. We can, on the basis of a
given system model, view each PLTL formula as the equivalence class of system executions
satisfying the formula.

In our semantic framework we use infinite sequences of channel and state valuations as
the model of a single system execution. In Section 4.5.2 we have identified [a], as the
equivalence class of system executions complying to a from time u on. Based on this
intuition we identify MSC terms that mimic the PLTL operators F and GF as follows:

MSC Term Read as Informal Meaning

« “sometime from the next time point onward the system
displays the behavior as specified by «

any — « | “infinitely often o” | the system displays a behavior as specified
by « infinitely often

Table 4.5.: Rephrasing of temporal logic formulae in terms of MSCs

To see the correspondence between any — « and the PLTL-operator GF, we simply have
to write out the term’s semantics definition from Section 4.4. We derive:

(¢,t) € [any — o,
= (* definition of . — . %)

135

4. YAMS — Yet Another MSC Semantics

V1" 00>t >t > u: (p,t") € [any]y = (3" : 00 > 1" > 1" : (p,1) € [a]im))
= (* definition of [any], predicate calculus *)
(Vt' coo >t >u: (" 100 >t" >t : (p,t) € [a]pm))

This shows that if (¢,t) € [any +— «a], holds, then the interaction sequence specified by
« occurs infinitely often in ¢ from time u on.

The correspondence between the PLTL-operator F and an MSC « as such seems less
intuitive at first sight. Yet, the semantics of « includes all behaviors with an arbitrary
finite delay before the behavior explicitly represented by « starts. Thus, if « is not a

guarded MSC?, we have [a], = [fany ; a],; here we use the new MSC term fany (defined
def

by [fany], = {(p,t) € [any], : t € IN}) to express arbitrary finite behavior.

The intuition behind the PLTL-formula Gp is that every state fulfills p during an infinite
system execution. In other words, there is no state in which p does not hold. Our MSC
semantics explicitly includes arbitrary other behavior besides the one depicted in the MSC
under consideration. Similarly, an “until” formula p U ¢ excludes occurrence of states in
which p does not hold until ¢ eventually holds; we cannot express this exclusion, in general,
with the MSC semantics as such. To mimic the PLTL-operators G and U, we need a more
restrictive MSC interpretation. We discuss this “exact” MSC interpretation in more detail
in Chapter 6; it excludes other behavior than the explicitly depicted one. By means of
this interpretation we are able to use MSC terms like o]~ and al.. ; 0 to rewrite the
PLTL-operators G and U, respectively.

Temporal logics such as UNITY [CM88] and TLA [Lam94| provide a “leadsto” operator
instead of PLTL’s “until”. For instance, p — ¢ in UNITY means that whenever p holds
during system execution then ¢ will also hold within finite time. The trigger composition
a — (3 directly mimics this interpretation.

The correspondence between temporal logic formulae and MSC terms suggests to construct
MSC specifications that follow the specification patterns contained in Table 4.5 and the
accompanying text above. It also gives a first hint at a way of integrating MSCs into the
validation task: given a system specification Sys and a property Prop whose truth in Sys
we want to validate, we can construct an MSC « that has property Prop according to the
schemata above, and check whether a’s behaviors are abstractions of the behaviors of Sys.

4.5.5. Adequacy of the Syntax and its Semantics

In Section 4.4 we have defined the semantics for our MSC dialect based on the textual
syntax of MSC terms. This raises the question whether the textual syntax is “adequate”,
i.e. whether it has the same expressiveness as the graphical syntax. The second question
related to the adequacy of our MSC dialect is a semantic one: does the model we have

3Guarded MSCs inject safety-properties into MSC specifications, cf. Section 6.3.

136

4.5. Discussion of the Semantics

chosen indeed capture asynchronous message exchange? We tackle both of these questions,
in turn, in this section.

Relating the Graphical and the Textual Representation

The semantics of our MSC dialect bases on the textual MSC syntax from Section 4.3,
not directly on the graphical notation. In Section 4.4 we have motivated the relationship
between the graphical and the textual syntax by means of generic examples (cf. Figures
4.3 through 4.9).

We consider the proximity of the constructs provided by the textual syntax and those of the
graphical notation convincing enough to claim that for every MSC in graphical notation
there is a corresponding MSC term and vice versa. The remaining issue is how to find, say,
the MSC term corresponding to an MSC in graphical form. The discussion of the relation-
ship between sequential composition and interleaving in Section 4.5.3 shows the existence
of MSCs whose graphical representation can be misleading. Recall the MSC of Figure 4.10,
where messages mS3 and m4 are located below messages m1 and m2. Yet, the “horizontal”
and “vertical” composition operators of MSC-96 implicitly yield the interleaving of the two
independent message sequences as the semantics of the MSC.

To simplify the derivation of an MSC term from a given MSC in graphical form, we require
the graphical representation to contain all forms of composition for “sub-MSCs” explicitly,
by means of adequate inline expressions. As an example, we require a rewriting of the
MSC from Figure 4.10 to yield the form displayed in Figure 4.13.

msc xyz'
A B C D

?} — — —

par /
ml o
- m2
m3 _
o m4
— E— E— E—

Figure 4.13.: Unambiguous version of Figure 4.10

The derivation of the MSC term corresponding to the MSC in graphical form is then just a
matter of selecting the appropriate composition operators in (MSC), according to Figures
4.3 through 4.9.

With this technical convention we have established a one-to-one correspondence between
the graphical and the textual syntax. Therefore, in the remainder of this thesis, we use

137

4. YAMS — Yet Another MSC Semantics

the phrases “semantics of the MSC” and “semantics of the MSC term corresponding to
the MSC” interchangeably.

Capturing Asynchronous Message Exchange

MSC-96 models asynchronous message exchange by introducing two distinct events for
every message m: the send and the receive event; furthermore, MSC-96 requires a message’s
send event to precede the corresponding receive event. No other constraints exist on the
duration between sending and receipt of a message. In particular, there is no notion of a
global clock (cf. [IT96, IT98]).

In contrast, the system model we have introduced in Section 4.2 does not associate two
events to a single message; instead, we associate a specific time point with respect to a
global clock at which the message occurs on its corresponding channel.

This raises the question whether the system model we use is adequate for modeling asyn-
chronous message exchange in the sense of MSC-96. Indeed, associating a single time
point with the occurrence of a message, as it happens in our semantics definition, seems
to suggest that we have modeled a synchronous communication mechanism.

A B Cc

[——
,,,,,, oGP
,,,,,,,,,,,,,,,,,,,,,,, L P .)
,,,,,,,,,,,,,,,,,,,,,,, < Ca My T
,, C3DIG gl 4
,,, Labmy o t+ 04

I I I

Figure 4.14.: Rationale for the adequacy of the MSC semantics

To answer this question we observe that the order in which the messages arrive at or
emanate from a single axis induces an order on the times at which these messages may
occur on their respective channels. As an example, consider message cs>my in the MSC
fragment of Figure 4.14. To the right of this figure we have indicated the time points at
which the messages occur. cy>my can occur only after at least do time units, calculated
from the occurrence of message cy>my on, have elapsed (see the definition of sequential
composition in Section 4.4). The total ordering of time points for the occurrences of
messages in Figure 4.14 is 1 < §; < d5 < 03 < d4. Remember that in our system model
the “reaction” of a component to an incoming message must have a delay of at least one
time unit. The idea is that the channels between components act as unbounded message
buffers. The time point at which a message occurs on its channel indicates the moment
at which the originator sent this message. If we identify the time at which a component

138

4.6. HMSCs

reacts to an input message with the actual receipt of this message, then we have in fact
established a distinction between the sending of a message and its receipt in the sense of
MSC-96. The required delay of at least one time unit between the occurrence of a message
on its channel and the receiving component’s reaction to it models the precedence of send
over receive “event”.

However, the system model we have chosen is not bound to one specific style of commu-
nication. From an abstract point of view the channel valuations in an MSC «’s semantics
reveal the message orderings specified by «, whether the underlying communication mech-
anism is asynchronous or not. The distinction between these two mechanisms becomes of
importance only when we discuss the transition from MSC specifications, which describe
“global” behavior, to the specification of individual component behavior (see Chapter 7).

4.6. HMSCs

As we have mentioned in Section 2.2.2, the constructs provided by HMSCs — namely
references, alternatives, finite and infinite repetition, and interleaving — correspond directly
to similar constructs in plain MSCs. Here, we exploit this similarity to base the semantics
definition for HMSCs on the one of plain MSCs. Our major task is, therefore, to transform
the topological ordering of MSC references within an HMSC into a linear MSC term. The
standard semantics in [IT98] achieves this transformation by introducing recursive process-
algebraic equations. The approach we take here is purely syntactic and constructive;
thereby we avoid changing the semantics definition of Section 4.4.

We assume given an HMSC whose reference nodes refer to plain MSCs only. If we encounter
an HMSC violating this rule, we perform the mapping for the HMSCs it references first.
This simplification is possible, because references in both plain MSCs and HMSCs must be
acyclic (cf. [IT96, IT98], as well as Section 4.4). We require the HMSC to have at least one
reference node. Furthermore, we assume that the HMSCs have no parallel nodes. We can
replace any parallel node by a reference to a plain MSC that hosts the translated parallel
HMSCs in the operands of a par-inline expression. Hence, the only nodes contributing
message exchange to the semantics of an HMSC are its reference nodes. The first step

towards the definition of the mapping is to remove all connection and condition nodes
from an HMSC.

The remaining graph already resembles a finite state automaton known from formal lan-
guage theory; the only major difference is that HMSC graphs have their labels on the
nodes, not on the edges as usual.

The idea behind our mapping is to use a modification of the well-known transformation
from finite-state automata to regular expressions. However, standard regular expressions
and their corresponding finite state automata do not capture the infinite repetition of
interaction sequences that HMSCs can represent. Therefore, we adapt the transformation

139

4. YAMS — Yet Another MSC Semantics

from automata to regular expressions presented in [HU90] to obtain a term in (MSC) as
the textual representation for the HMSC; the semantics of this term is, by definition, the
one of the HMSC.

The mapping itself consists of performing the following two steps in order:

1. transform the HMSC graph into a finite state automaton;

2. transform the automaton into an MSC term.

In the following paragraphs we explain each of the mentioned transformations in turn;
along the way we give examples for the individual transformation steps.

Transforming an HMSC Graph into an Automaton To keep the first phase of our
mapping from HMSCs to plain MSCs as close as possible to the well-known transfor-
mation from finite state automata to regular expressions (cf. [HU90]), we turn the given
HMSC graph into an “equivalent” finite state automaton (FSA). The difference between
the HMSC graph and its corresponding FSA is that the latter has the reference labels on
its edges, whereas the former has them on the nodes. Furthermore, an FSA represents the
connections between HMSC reference and end nodes by means of terminal nodes.

More precisely, we use a sixtuple
A = (Ea L767 50, St F)

as the FSA representation of HMSC graphs. > and L denote the automaton’s set of
states and the set of transition labels, respectively. Every label is an element from (MSC).
d : X x L x ¥ denotes the transition relation; we have (x,y, z) € § if and only if there exists
an edge labeled with y from state x to state z in the FSA. sy € X denotes the automaton’s
initial state; s; € X is a special “trap” state that becomes relevant later in the translation
process. ' C 3 denotes the set of terminal states.

As the running example for illustrating the transformations in this section we use the
HMSC of Figure 4.15 (a).

To obtain the FSA A = (X, L, 0, sq, 8¢, F) with X = {sq, $1, ..., S, 8¢} from an HMSC A
with n reference nodes, we perform the following steps:

e with every reference node we associate exactly one element of the set {sy, ..., s, }, such
that no two reference nodes map to the same element from this set. Hence, every
automaton state in the set {si, ..., s, } represents precisely one of the reference nodes
of the HMSC graph. Figure 4.15 (b) shows one possible result of this transformation
on the HMSC;

140

©

4.6. HMSCs

(d)

Figure 4.15.: Transformation from an HMSC to its corresponding FSA

we modify the HMSC graph by moving the label of every reference node to all its in-
coming edges. Figure 4.15 (c) shows the result of this transformation on the example

HMSC;

the automaton’s initial state sy represents the HMSC’s start node;

if a reference node connects to the graph’s end node, the state associated with this

reference node becomes a member of F,

we obtain A’s transition relation by considering every edge in the modified HMSC
graph. For all pairs (i,7) € {0,...,n} x {0,...,n}, and for all y € L we add the triple
(si,y,s;) to d if and only if there exists an edge labeled with y from the reference (or
start) node associated with s; to the reference node associated with s;.

141

4. YAMS — Yet Another MSC Semantics

For the example HMSC from 4.15 (a) successive application of these steps yields the graphic
representation of the corresponding FSA in Figure 4.15 (d).

The formal automaton representation of an HMSC graph according to the steps introduced
here is the basis for the transformation from HMSCs to MSC terms.

Transforming an Automaton into an MSC Term The next step of our translation from
HMSCs to plain MSCs is to obtain a term in (MSC) from the HMSC’s FSA representation.
We do so along the lines of well-known procedures from formal language theory for regular
expressions (cf. [HU90]). The only difference between these and the procedure we describe
here is that we have to decide whether a cycle in the automaton corresponds to an infinite
or a possibly finite repetition in the MSC term.

Intuitively, the procedure we apply consists of a sequence of steps. Each step transforms
a given automaton into a “smaller” one; the target automaton is smaller in the sense that
it has either less states, or less transitions than its origin. When we eliminate a state
in transiting between the source and the target automaton, we determine the terms in
(MSC) corresponding to “short-circuiting” the incoming, loop, and outgoing transitions
(in all possible combinations) with respect to this particular state. We then label the
short-circuited transitions with the corresponding MSC term. Thus, we build the MSC
term represented by the original automaton in an iterative fashion by eliminating states
and short-circuiting the eliminated states’ incoming, loop, and outgoing transitions. The
procedure terminates, once there remain exactly two states and one transition, whose label
is the overall MSC term, between these two states.

Before we describe the state elimination formally, we observe that, when eliminating a
state from an automaton, we assume the situation depicted in Figure 4.16. The state is
either final or non-final. It has precisely one loop transition whose label we denote with
[. I may equal empty. Furthermore, we assume that, besides the self loop, the state has
n € IN incoming and m € IN outgoing transitions, whose labels are ¢; through i,, and o,
through o,,, respectively. If a state has multiple self-loops labeled, say, by [; through I,
k € IN, we can replace them by a single one whose label is the MSC term Iy | ... |l;. More
generally we replace multiple transitions between any two automaton states by a single
one, whose label represents the alternatives in the form of an MSC term before we perform
any state elimination step.

Figure 4.16.: General state with n incoming and m outgoing transitions besides the self-
loop

142

4.6. HMSCs

The crucial point in state elimination is, as we have mentioned above, to determine whether
a self-loop represents an infinite or a possibly finite repetition. Intuitively, final states of
the automaton, as well as states with outgoing transitions other than the self-loop, yield
possibly finite repetition, whereas all other states yield infinite repetition of the label on
their self-loop.

Formally, we define each step of the state elimination procedure as a transformation be-
tween the two automata A = (X, L, 0, sg, s, F') and A" = (X', L', s¢, 8¢, F'). The result
of one step, i.e. A’, becomes the starting point for the next state elimination step. For any
given state s € ¥ we denote by P.s = {(sp,7,s) € 0 : s, € ¥\ {s}} the set of its incoming
transitions, and by Q.s = {(s,0,s,) € § : 5, € ¥\ {s}} the set of its outgoing transitions.
Neither P.s, nor ().s contains a self-loop of s. We denote the self-loop of s by (s,,s) € .

Let s € ¥\ {s0, st} be the state we want to eliminate. We never eliminate the initial or
the “trap” state. The labels of incoming transitions of the trap state s; indicate possible
suffixes of the MSC term we seck. The procedure terminates if ¥ = {s¢, s;}. The label of
the only remaining transition between sy and s; is the resulting MSC term. Below we will
show that the elimination will, indeed, terminate in the mentioned configuration.

In the following, we assume that X\ {sq, s;} # 0. We set X' = 3\ {s}, and distinguish
four cases, depending on whether s is a final state or not, and whether it has outgoing
transitions or not.

1) Ifs¢g FAQ.s=0,ie., if s neither is a final state nor has outgoing transitions other
than its self-loop labeled [, we have found a state whose self-loop describes an infinite
repetition of the corresponding label. We set I’ = F and eliminate s by redirecting all
incoming transitions to the trap state, and by appending the MSC term representing the
infinite repetition of the self-loop’s label to each such transition. Formally, we define

§ = O\ {(z,y,2):x=5Vz=s})
U {(sp,i; Ueoes, 5t) 1 (Sp,3,8) € P.s A (s,l,s) € d}

2) Ifsg FAQ.s # 0, ie, if sis not a final state and has outgoing transitions other
than its self-loop labeled [, we have found a state whose self-loop describes a possibly finite
repetition of the corresponding label. Intuitively, we could perform a finite number of
self-loops after having entered the state through any incoming transition, and then leave
the state along any of its other outgoing transitions. Alternatively, we could perform
the self-loop infinitely often. We eliminate this state by establishing all possible short-
circuitings between any one incoming and any one outgoing transition. The label of such
a short-circuited transition consists of the sequencing of the label of the corresponding
incoming transition, the finite or infinite repetition of the self-loop’s label, and the label of

143

4. YAMS — Yet Another MSC Semantics

the corresponding outgoing transition. Formally, we define F/ = F' and

§ = (\{ry2) iz =svz=s)
U {(sp,7; Uepoes 3 0,8¢) : (8p,7,8) € Ps A (8,0,8,) € Q.s A (s,1,s) €0}

3.) and 4.) Now we assume that s € F holds. In this case we set F' = F'\ {s}. sisa
state whose self-loop describes a possibly finite repetition of the corresponding label. The
repetition may be finite because we can stop interpretation of the automaton at any of
its final states. The first step towards elimination of this state is to redirect all incoming
transitions to the trap state, and by appending the MSC term that represents the possibly
finite repetition of the self-loop’s label to each such transition. Formally, we define

0" = (0\{(z,y,2) v =5V 2z=5})
U {(sp,i; Depoesy St) = (Spyi,5) € P.s A (s,1,8) € 6}

If Q.s =) we are done and set ¢’ = 0", which concludes case 3.). Otherwise, i.e., if s has
outgoing transitions other than its self-loop labeled [(case 4.)), we add all possible short-
circuitings between any one incoming and any one outgoing transition to the transition
relation of A’. The label of such a short-circuited transition consists of the sequencing
of the label of the corresponding incoming transition, the finite or infinite repetition of
the self-loop’s label, and the label of the corresponding outgoing transition. Formally, we
define

5/ — 5//
U {(Spvi; lT<0,oo> 3 0, Sq) : (Sp,i,S) € Ps A (8707 Sq) S Q.S A (S,l,S) € 5}

To obtain L’ in any of the four cases mentioned above we simply union the labels of the
freshly added transitions with the existing ones from L.

Above we claimed that successive application of state elimination terminates and results
in an automaton with precisely two states (so and s;), and one transition between these
states. In every elimination step precisely one state vanishes; this ensures termination of the
elimination process. Furthermore, no elimination step removes incoming transitions from
s¢*. In cases 1.) and 3.) we add incoming transitions to s;. In case 2.)(and similarly in case
4.)) we short-circuit the incoming and outgoing transitions of the state under consideration.
This leaves the number of incoming transitions of s; intact. It cannot remain zero, however,
because successive application of rules 2.) and 4.), with no incoming transitions at s;, can
happen at most until there exist precisely four states in the automaton: sg, s, ¢, and s;.
For case 2.) or 4.) to apply, s must have an outgoing transition to t. After application
of either rule 2.) or 4.) s vanishes, and ¢ can have at most a self-loop. In particular, it
cannot have other outgoing transitions. Hence, neither rule 2.), nor rule 4.) applies when

4up to replacing multiple incoming transitions by a single one that represents all alternatives

144

4.6. HMSCs

we eliminate ¢; this leads to addition of an incoming transition to s; by either rule 1.) or
3.). This shows that in the final configuration there is precisely one transition between s
and s;.

As an example, consider again the FSA from Figure 4.15 (d). Figures 4.17 (a) through
(d) show the result of eliminating the states si, s3, s, and sy, in this order. For bet-
ter readability we write X instead of — X in this example. The resulting MSC term
is A; B; (C; As B)l«wees; D3 (B (C5 A B)T 9o 3 D)1 <000-- By applica-
tion of the simplification rules for loops (cf. Section 4.4), we obtain the equivalent term
A5 (B (C5 A B)lwee 5 D)l e

e
& ®

C; A; B

(b)

N
@A;B; (C;A§B)T<D,m>5D,i>B; (C; A; Bllwes: D

©

N
@ A;B; (C; A; B)lawos: D (B; (C; A B)laoos D)T<o,oo>>Q

&
(d)

Figure 4.17.: Example application of state elimination

Extensions for Preemption In Sections 4.3 and 4.4 we have introduced the “core” syntax
and semantics for preemption. We allow preemption specifications in HMSCs as well.
Figures 4.18 (a) and (b) show the corresponding graphical notation: we use a dashed arrow
whose label is the preempting message, directed from the MSC reference being preempted
to the MSC reference representing the behavior in case the preemptive message occurs. The
integration of this notation into the transformation procedure above is straightforward. We
have to label automaton transitions with the information whether they correspond to a
regular or a preemption arrow. For the elimination of a state with exiting or entering
preemptive arrows we have to consider the situations depicted in Figures 4.18 (a) and (b).

145

4. YAMS — Yet Another MSC Semantics

ch>m

For the preemption in Figure 4.18 (a) we use the MSC term (— A) — (— B) (instead
of sequential composition), and for the preemptive loop in Figure 4.18 (b) we use the term
(— A)frensm (instead of the loop construct). For regular transitions the transformation
remains unchanged.

Figure 4.18.: Notation for preemption and preemptive loop in HMSCs

HMSC semantics The elimination procedure we have introduced above leaves freedom
in the order in which the nodes of the FSA get eliminated. Each node ordering may yield
a syntactically different MSC term. However, these different MSC terms are semantically
equivalent. The proof of this, which we do not carry out here, proceeds along the exact
same lines as the proof in [HU90] that asserts the equivalence of finite automata and
corresponding regular expressions.

In the remainder of this thesis we identify HMSCs with the MSC terms produced by the
transformation above, without mentioning the transformation explicitly.

4.7. Example: the Abracadabra-Protocol

In the preceding sections we have introduced and discussed the syntax and semantics of
our MSC dialect. Because of the direct correspondence between MSC-96 and our MSC
dialect almost all of the examples we have given in Section 2.2 are also examples for our
syntax and semantics.

Here, we illustrate the new concepts, such as unbounded repetition, join and trigger com-
position, and preemption, provided by our approach. To that end, we use MSCs to specify
a slightly modified version of the ABRACADABRA-protocol (cf. [Bro87, BK98|).

We start with an informal description of this protocol in Section 4.7.1. From this we extract
the major “use cases” of the protocol, and integrate them into an HMSC that captures all
possible protocol executions (cf. Section 4.7.2). Sections 4.7.3 and 4.7.4 contain the plain
MSCs for the use cases we have identified. In Section 4.7.5 we show how to employ join
and trigger composition to add a progress (cf. [CM88]) or liveness (cf. [Lam94]) property to
the protocol specification. We modify the protocol slightly in Section 4.7.6 to demonstrate
the use of preemption.

146

4.7. Example: the ABRACADABRA-Protocol

4.7.1. Informal “Requirements Specification”

We consider a system that consists of two components X and Y, and the channels zy
(directed from X to Y) and yz (directed from Y to X). Figure 4.19 shows this structure in
the form of an SSD.

Xy

Y

Figure 4.19.: SSD for the ABRACADABRA-protocol

The symmetric ABRACADABRA-protocol (cf. [BK98]) describes a scheme that allows any
of the two components to

1. establish a connection to the other component,
2. send data messages once a connection exists,

3. tear down an existing connection it has initiated.

If both components try to establish a connection simultaneously, the system is in conflict.
Both components tear down their “attempted” connections to resolve the conflict.

We describe the symmetric protocol in more detail from X’s viewpoint. To establish a
connection, X sends message sreq (“sending requested”) to Y. If Y returns message sack
the connection is established. In this case, X sends a finite number of data messages to Y,
such that Y replies each data message individually by sending message dack to X. Upon
receipt of a dack message, X can either send another data message, or close the connection.
To close the connection, X sends message ereq (“end requested”) to Y, and receives message
eack (“end acknowledged”) as a reply.

If, after sending message sreq to Y, X receives message sreq instead of sack from Y, both
components resolve this conflict by sending message ereq, and — upon receipt of their
partner component’s ereq message — message eack.

After a successful transmission, as well as after conflict resolution, the protocol starts over
again (ad infinitum).

147

4. YAMS — Yet Another MSC Semantics

4.7.2. “Roadmap” for the Major Use Cases

As a first step towards an MSC specification of the ABRACADABRA-protocol we identify
four major use cases of the system under specification from the informal description above:

H Use Case | Description H
(SX) X initiates a successful transmission,
(SY) Y initiates a successful transmission,
(C) conflict; X and Y try to establish a connection simultaneously,
(CR) X and Y perform conflict resolution.

In Sections 4.7.3 and 4.7.4 we will develop plain MSCs for each of these use cases. Here,
we use the informal protocol description to integrate the use cases into a roadmap for an
overall system specification.

We can understand the ABRACADABRA-protocol as consisting of an infinite sequence of
steps, where during any particular step the system evolves as either of the use cases SX,
SY, or C (followed by CR) describes. The HMSC A from Figure 4.20 captures this under-

standing.

Figure 4.20.: HMSC for the ABRACADABRA-protocol

An MSC definition corresponding to the graphical representation in Figure 4.20 is the
following;:

msc A = <—> SX| — SY ’ (—> C; — CR))T<OO>

MSC A describes all possible paths through the use cases of the ABRACADABRA-protocol
we have identified above. Our remaining task is to provide MSC definitions for the refer-
ences occurring in MSC A.

148

4.7. Example: the ABRACADABRA-Protocol

4.7.3. Successful Communication

A successful transmission, initiated by X consists of

1. establishing the connection through the message sequence zy>sreq ; yr>sack,

2. transmitting a finite sequence of data messages (with corresponding acknowledg-
ments), i.e. a repetition of the form: (zy>d ; yr>dack)] s,

3. tearing town the connection through the message sequence xyrereq ; yr>eack.

The MSC from Figure 4.21 (a) displays this part of the protocol in graphical form; Figure
4.21 (b) contains the symmetric case where Y is the initiator.

msc SX msc SY
X Y X Y

— — — —
xy>sreq < VEDSTEY
y>sack zybsack o

loop<*>) loop<*>)

zy>d - < V> d
ya>dack xy>dack -
xy>ereq < VERereq
ya>eack Ty eack -

— — — —

(a) (b)

Figure 4.21.: MSCs for successful transmission

Because MSC-96 lacks a loop operator for unbounded finite repetition, we could not have
formulated these two use cases adequately in MSC-96.

4.7.4. Conflict and Conflict Resolution

Conflict occurs if both X and Y try to establish a connection simultaneously. The MSC
in Figure 4.22 (a) captures this case by means of causally unrelated messages, i.e. through
the use of interleaving.

Conflict resolution is, according to the informal specification, a matter of mutual exchange
of messages ereq and eack by X and Y. Again, there need not be a specific order between
the ereq and eack messages with different origins (cf. Figure 4.22 (b)).

All MSCs together, i.e. A, SX, SY, C, and CR, capture the requirements stated informally
at the beginning of this example.

149

4. YAMS — Yet Another MSC Semantics

msc C msc CR
X Y X Y
—/— — —/— —
par par ry>ereq
zyvsreq o _ yr>eack
yT>sreq < ST
— ry>eack
— E— — E—

() (b)

Figure 4.22.: MSCs for conflicts and their resolution

4.7.5. Adding Progress/Liveness

The informal requirements specification leaves open whether a send request by either com-
ponent will, eventually, result in an established connection. The use of nondeterministic
choice in the definition of MSC A allows an infinite sequence of steps consisting only of
conflict and conflict resolution.

We can cast the progress/liveness property (cf. [CM88, Lam94]) that a message zy>sreq
must lead to subsequent data exchange, i.e. occurrence of at least one zy>d message, in
terms of a trigger composition of the form zy>sreq — xy>d. To express the validity of
this property in all executions of the ABRACADABRA-protocol, we can join the reference
to MSC A to the MSC expressing the trigger composition (cf. Figure 4.23).

msc AT
X Y
——— ———
join
LA
triggers)
Ty>sreq o
fffffff wed |
—— —

Figure 4.23.: ABRACADABRA with progress property

Through the join operator we “bind” the messages occurring in the trigger composition to
those in A. The semantics of the joint MSC is the subset of A’s semantics where every
xy>sreq message is followed by an xy>d message eventually. Put another way, no element
of the semantics of the joint MSC has only conflicts or successful transmissions initiated
by Y, if X issues message xy>sreq at least once.

The combination of trigger composition and join helps to express the desired property; it
does not, however, provide an immediate strategy for implementing it. In Section 5.3 we

150

4.7. Example: the ABRACADABRA-Protocol

will — in the context of MSC refinement — investigate transformations of specifications that
allow us to obtain MSCs implementing a given progress property.

4.7.6. Adding Preemption

To demonstrate an application of preemption we extend the informal protocol specification
given above as follows: we modify the system structure from Figure 4.19 by connecting
component X to the “environment” (represented by component ENV) through channel ez
(cf. Figure 4.24).

Xy
ENV X ¥ Y

Figure 4.24.: SSD for the ABRACADABRA-protocol with preemption

By sending message reset along channel ex the environment can force X to stop any com-
munication it may currently be involved in, and to restart the whole protocol afresh. Upon
receipt of message reset, component X sends message streq (“stop requested”) to Y; YV
replies by sending message stack (“stop acknowledged”) to X.

The HMSC AP from Figure 4.25 (a) models this behavior by means of a preemption arrow
labeled with the preemptive message ex>reset. MSC B (cf. Figure 4.25 (b)) shows the
handling of the preemption. Recall that MSC A (cf. Figure 4.20) captures the overall
behavior of the ABRACADABRA-protocol (without preemption).

msc AP
~— msc B

X Y
—— —

Ty>streq

Y

A ex>reset B _ yzistack
— —

(a) (b)

Figure 4.25.: Preemption and its handling

The textual MSC definition corresponding to the graphical representation in Figure 4.25
(a) is msc AP = ((— A) ““ (> B))laes

Without the preemption construct we would have to rewrite the MSCs A, SX, SY, C| and
CR completely to accommodate the external reset request. The resulting MSCs would lose
their intuitive appeal almost entirely, because the one exceptional case would dominate the
whole specification.

151

4. YAMS — Yet Another MSC Semantics

None of the MSCs we have introduced so far generates the message ex>reset. Never-
theless, [— AP], contains all behaviors that, whenever ex>reset occurs, preempt the
ABRACADABRA-protocol, perform some preemption handling (according to MSC B), and
then “restart” the whole protocol.

4.8. Related Work

The semantics we have discussed in this chapter extends earlier work on EET's (cf. [SHB96,
BHKS97a, BHKS97b]) and HySCs (cf. [GKS99a, GKS99b)); it was also influenced by the
semantics for TSDs of [Fac95].

[Bro98, Bro99b| and [Kle98] use stream processing functions (directly or indirectly) as the
basis for defining MSC semantics. Our approach employs sets of streams instead. This
simplifies the treatment of repetition, preemption, and trigger composition; it also permits
basing MSC refinement directly on the notion of set inclusion, as we will see in Chapter 5.

In Chapter 2 we have already given an overview of other MSC dialects and their semantics
bases. The ones most closely related to the notation introduced in this chapter are MSC-
96/MSC 2000 (cf. [IT96, IT98, IT99]), and LSCs (cf. [DH99]).

In Section 4.5.4 we have established the relationship between our MSC notation and formu-
lae in PLTL and similar logics (such as UNITY and TLA) on an informal level. Obviously,
there is also a similarity with the u-calculus (for a brief introduction see [Eme90]). In the
p-calculus fixpoint formulae express eventuality and invariance properties. However, as
[Eme90] points out, the expressiveness of the p-calculus subsumes the one of tree-logics
such as CTL and CTL*. To simplify the notions of equivalence and refinement we have
deliberately chosen a semantic framework more closely related with linear temporal logics.

4.9. Summary

In this chapter we have defined the formal syntax and semantics of the MSC dialect we
use in this thesis. We have based our treatment on a precise system model that captures
communication among, and state changes of components over time; this model is adequate
for the specification of all kinds of reactive systems.

To support the inductive definition of our MSC dialect’s denotational semantics we have
introduced an abstract textual syntax for MSC terms. Syntax and semantics capture the
following notational elements: empty MSC (no interaction), arbitrary interactions, mes-
sage exchange, sequential composition, guarded MSCs, alternatives (choice), interleaving
(parallel composition), join, loops, references, preemption, and trigger composition. Our
treatment goes beyond the approaches of MSC-96 and most of the other MSC variants

152

4.9. Summary

we have described in Chapter 2 in that it assigns a meaning to condition symbols, allows
guiding choices and loop termination through guarding predicates, introduces the concept
of preemption, and allows specification of liveness properties in an intuitive fashion through

MSCs.

We have established a number of properties of the semantics: it is well-defined, distin-
guishes strictly between sequential composition and interleaving (in contrast to MSC-96),
and, despite minor differences, models the same interaction sequences as MSC-96. We have
also sketched the relationship between temporal logic formulae and certain terms in our
MSC dialect. This relationship motivates the use of “specification patterns” in constructing
MSCs to yield systems that have the required temporal properties.

Moreover, we have described how to extend our MSC dialect to capture High-Level MSCs
(HMSCs). Together with the syntactic and semantic extensions of Appendix A (instance
start and stop, timers, message parameters and parametric MSCs, actions, and gates) our
MSC dialect covers a large subset of MSC-96, and — as mentioned above — even goes beyond
MSC-96’s expressiveness.

By means of the ABRACADABRA-protocol we have demonstrated the use of unbounded
repetition, trigger and join composition, and preemption in an MSC specification.

This extensive treatment of MSC syntax and semantics prepares the ground for the in-
vestigation of the methodical usage of MSCs in the subsequent chapters of this thesis. It
allows us to study refinement notions for MSCs, and guides the transition from “global”
interaction descriptions to individual component specifications.

153

4. YAMS — Yet Another MSC Semantics

154

CHAPTER b

MSC Refinement

Based on the semantic framework we have established in the preceding chapter we introduce
four notions of MSC refinement in this chapter: binding references, property refinement,
message or interface refinement, and structural refinement. These refinement notions form
the basis for turning coarse-grained MSC specifications into fine-grained ones in a system-
atic way.

Contents
5.1. Introduction oo, 156
5.2. Binding References, 160
5.3. Property Refinement 161
5.4. Message Refinement 167
5.5. Structural Refinement0.0.0.. 176
5.6. Related Work i i 184
BT, SUmMmary . . . v v v v vt e 184

155

5. MSC Refinement
5.1. Introduction

The fundamental aim of system development is to turn an idea of what the system shall do
into a product implementing the idea. A systematic development process provides means
for establishing that the resulting product meets the requirements corresponding to the
before-mentioned idea. One way to achieve this is to start from a first rough sketch of
the idea, and to apply to it a number of successive transformations that preserve the idea,
adding more and more detail along the way; “preserving the idea” here means maintaining
the invariant that the result of each transformation still implements the idea

[Dij68, Wir7l, DDH72] have, for the design of (sequential) algorithms, contributed the
notions of “stepwise program construction” and “stepwise program refinement” as a me-
thodical approach to achieving a certain goal in the program under development. For
instance, [Dij68] notes in a discussion of relating a more detailed and a more abstract
program version: “The successive versions appear as successive levels of elaboration. It is
apparently essential for each level to make a clear separation between ‘what it does’ and
‘how it works’. The description of ‘what it does’, the definition of its nett effect, requires
introduction of the adequate concepts ... 7.

Extending the notion of program refinement to more general system descriptions, we are
interested in development steps that relate system descriptions on different levels of detail,
such that the more detailed version still captures the “idea” (the “what it does”) behind
the more abstract description. In this state of affairs we say that the detailed description
refines the abstract one; in the words of [DW98]: “A refinement is a relationship between
two descriptions of the same thing at two levels of detail, wherein one — the realization —
conforms to the other — the abstraction. A refinement is accompanied by a mapping that
justifies this claim and shows how the abstraction is met by the realization.”.

Adopting the view that the definition of a refinement notion requires exhibiting a mapping
that makes the relation between a detailed and an abstract system description explicit,
we define — based on the semantic framework we have established in Chapter 4 — four
refinement relations for MSCs in this chapter: binding references, property refinement,
message or interface refinement, and structural refinement. Together, these refinement
relations allow us to change the level of detail of all aspects of an MSC specification. The
refinement rules we present along with the definitions of the refinement relations capture
the methodical steps from more abstract MSCs to more detailed ones.

In the following paragraphs we briefly describe each of these refinement notions, in turn.

Binding of References The binding of a reference amounts to adding a fresh pair (X,)
to the binding relation MSCR. This has the effect of changing the semantics of all refer-
ences — X within the MSC document under consideration from [any], to [a],. As an
example for refinement through the binding of references recall how we developed the MSC
specification of the ABRACADABRA-protocol in Section 4.7. We started out with a single

156

5.1. Introduction

HMSC A with references to the plain MSCs SX, SY, C, and CR (cf. Figure 4.20 in Section
4.7.2). Without knowledge about the contents of these MSCs A’s semantics equals the one
of any; an MSC document containing only the definition of A is just too unspecific. In
Sections 4.7.3 and 4.7.4 we have, step by step, “filled in the holes” by adding the definitions
for the plain MSCs. Each such addition has bound one of the references in A and has thus
made the behavior represented by A more specific.

Property Refinement Property refinement addresses the reduction of the possible be-
haviors of the overall system. In our semantic framework this amounts to restricting the
set of system behaviors in the equivalence class [o],, if @ is the MSC we want to refine.
Examples of property refinements are removing alternatives, removing interleaving, and
strengthening guards. If 3 is the refined version of MSC [(with respect to property re-
finement), then " describes an “implementation strategy” for the interaction properties
specified by 3. In fact, we have already seen an application of property refinement in our
treatment of the ABRACADABRA-protocol. In Section 4.7.5 we have removed all behaviors
from the protocol specification (given through HMSC A) where a send request of compo-
nent X did not result in a successful transmission initiated by X within finite time. We
achieved this removal by joining a progress property to the original HMSC A.

SX msc SX_mr
mee X Y
X Y msc SX_dr
— — X Y — ——
y>sreq
xy>sreq — —
. yxb>sack
. yz>sack xy>dstart -
loop<r>) y>dsack loop<*>
xy>d xy>d0 SX_dr
o yr>dack zy>dl < Vz>dack
zy>ereq Lwyed? | ayvereq
 yr>eack |_ay>dend . yzbeack
I I I I I —

(a) (b) ()

Figure 5.1.: Message refinement

Message Refinement Message refinement denotes the substitution of a whole interaction
sequence or protocol for a single message. We can capture a simple version thereof by
replacing the message, say ch>m, by a reference to an MSC containing the protocol to be
substituted for ch>m. We could, for instance, replace message zy>d in MSC SX (cf. Figure
5.1 (a)) with the protocol given in Figure 5.1 (b), and obtain MSC SX_mr (cf. Figure 5.1
(c)) as a message refinement of MSC SX. This refinement notion is, however, very liberal
with respect to the protocol allowed as a replacement for the original message; therefore,
we study also restricted versions of message refinement in this chapter.

157

5. MSC Refinement

Structural Refinement Structural refinement denotes replacing a single component ap-
pearing in an MSC «, say p, with a set of (other) components, say {po, ..., pn} for some
n € IN. Intuitively, this results in decomposing component p into its subcomponents, and
redirecting all messages arriving at or emanating from p to corresponding subcomponents.
In the ABRACADABRA-protocol we could, for instance, replace the component Y with
the two components Y7 and Y2, and obtain MSC SX_sr (cf. Figure 5.2) as a structural
refinement of MSC SX (cf. Figure 5.1 (a)).

msc SX_sr
X Y1l Y2
—— [] []

Ty2>sreq

-
|

_y2z>sack

_y2yl>sntfy

loop<*>

zyl>d

_ylz>dack

Y2 ereq

-

L y2ylventfy

_y2x>eack
— — —

Figure 5.2.: Structural refinement

Refinement and the System Model To give a precise characterization for each of these
refinement notions we observe that some refinement steps result in changes to the system
model we have introduced in Section 4.2. Structural refinement is an example: here, as
we will see below, we want to exclude the reappearance of the refined component p in the
refining MSC. We can ensure this by excluding p from the set P of available components.
This, however, induces a fresh semantic function [.],, under which we must interpret the
refining MSC. Recall that we have introduced [.], in Section 4.4 on the basis of the fixed
sets P (the set of component identifiers), C' (the set of channels), M (the set of messages),
and S (the set of states). Moreover, we have used the relation MSCR to represent the
mapping from MSC names to their corresponding MSC terms (as the result of parsing
an MSC document) for the resolution of references. Refinement steps that change any of
these sets and relations, therefore, induce another semantics mapping [.],. To make clear
on what sets the MSC semantics bases we write [[.]]gp’C’M’S’MSCR) instead of [.],; we use
the latter only if P, C', M, S, and MSCR are clear from the context.

We capture the transformation of the system model that underlies a refinement step from a
tuple B = (P,C,M,S, MSCR) to B' = (P', C',M',S", MSCR') by relations ~, such that
B ~~ B’ holds, if B and B’ are the semantic bases for the abstract and the refined system,
respectively. This allows us to take such system model transformations as a parameter to

158

5.1. Introduction

the definition of the corresponding refinement notion for MSCs. More precisely, for every
refinement step on an MSC we capture the underlying system model transformation by
defining a specific ~» relation. While this may, at first, seem to be yet another notational
complication, it serves a very practical purpose. Each relation ~~ we introduce reflects
changes in other system views that we better take into consideration when interpreting
MSCs. Thus, we can understand each relation ~» as a way of describing consistency
conditions for MSC refinements with respect to other system views.

Throughout this chapter, we label the relation ~» with b, p, m, and s to make explicit
that it expresses the binding of references, property, message, and structural refinement,
respectively. We use the same kind of labeling also for the refinement relations themselves,
which we will denote by the symbol <.

MSC Refinement vs. Component Refinement The refinement notions we introduce
in this chapter relate MSCs on different levels of abstraction. Each MSC describes the
interplay of a set of components. An interesting question is whether and how refinements on
MSCs correspond to refinements of the individual components or processes appearing in the
MSCs. Typically, a refinement step on an MSC affects multiple components. The removal
of a message by performing a property refinement, for instance, weakens the “assumptions”
made by the recipient at its environment, while it strengthens the “commitment” of the
sender. We defer this discussion until Chapter 7, where we investigate the relationship
between MSCs and individual component specifications in detail.

The remainder of this chapter has the following structure. In Section 5.2 we treat the bind-
ing of references. Then, in Section 5.3, we discuss property refinement. Besides giving its
definition, which we base on set inclusion, in Section 5.3.1 we also present a set of concrete
refinement rules for turning a given MSC into a more detailed one. The compositionality of
property refinement is the topic of Section 5.3.2. We introduce the definitions of message
and structural refinement in Sections 5.4 and 5.5, respectively. Both of these follow the
intuitive and pragmatic explanations we have given above. For message refinement this
intuition fails in the presence of interleaving in the MSCs under consideration. We discuss
solutions to this problem in Section 5.4.2. Section 5.7 contains a summary.

159

5. MSC Refinement

5.2. Binding References

In Section 4.4 we have introduced the semantics of an MSC reference — X as the semantics
of the MSC « it refers to, if there is a corresponding pair (X, «a) € MSCR. Otherwise,
i.e. if such a pair does not exist in MSCR, the semantics of — X equals the one of any.

The methodical motivation for defining MSC referencing in this way is to use references as
placeholders for more specific interaction sequences to be added later in the development
process. As soon as we introduce a pair (X, a) into MSCR for a previously unbound
reference — X we have established a refinement step for all MSC terms that include such
a reference.

Adding a fresh MSC to an MSC document, which induces adding a new binding relation
between MSC names and MSC terms, constitutes a change to the base of the semantics
definition. Therefore, we capture the addition of a fresh pair (X,) € (MSCNAME) x
(MSC) to an MSC document for the semantics bases B = (P, C, M, S, MSCR) and B’ =

(P, C", M, S", MSCR') through the relation)%? with

BB ¥ popAM=MAC=CAS=SF

b
A MSCR' = MSCRw {(X,3)}

In this definition we use the dyadic set operator . W ., which yields the disjoint union of its
operands.

Our goal now is to define a refinement relation <;, such that o/ <, « holds for two MSCs o’
and « if the semantics base underlying the interpretation of o’ binds at least as many MSC
references as the semantics base underlying the interpretation of o, and — with respect to
their corresponding semantics bases — the behaviors of o are a subset of the behaviors of .
To this end, we proceed in three steps. First, we introduce the relation gfys; it regards the
semantics bases B and B’, as well as the MSC name X and the MSC term as given. We

define Sfys such that it implies the validity of B)%BB’ . Intuitively, §fys captures a single

refinement step between the two MSCs under consideration with respect to a corresponding
transformation of the underlying system model. Second, we abstract from the concrete
values for B, B’, X, and 3, and introduce the refinement relation <7 such that o/ <] «
holds if there exist adequate semantics bases, MSC names and terms to establish the
validity of the relation o’ gfys «. Third, because we want <, to be transitive and reflexive,
we define <, as the transitive, reflexive closure of SE. Transitive refinement relations allow
us to perform successive refinement steps — where the MSC resulting from one refinement
is the starting point for the next — and to establish a relation between the original MSC
and the overall result of the sequence of refinement steps. These considerations lead us to
the following definition for the binding of references as a refinement notion for MSCs:

160

5.3. Property Refinement

Definition 4 (Binding References) For all a,a’ € (MSC), and the semantics bases
B=(P,C,M,S, MSCR), and B’ = (P', C',M',S", MSCR') we define

o Mo E BEB A C [olf
o < a gef (3B,B', X, :: Sfys)
< £ ()

where (<7)* denotes the reflexive, transitive closure of <7. We say “a’ refines a (with
W/

respect to the binding of references)” or “o’ is a binding refinement of o”, if @/ <, «
holds. o

The refinement through the binding of references allows us to start the development process
with very abstract MSCs, such as the MSC A in Figure 4.20 (cf. Section 4.7.2), and to
add MSCs that resolve the unbound references, incrementally. This corresponds to using
MSCs methodically along the lines of the classical top-down stepwise refinement notions
of [Dij68, Wir71, DDH72].

5.3. Property Refinement

Recall from Proposition 3 (cf. Section 4.5.2) that [«], is the equivalence class of all system
behaviors exhibiting the behavior specified by « from time uw on. This observation induces
a ‘natural” way of comparing two MSCs « and [3: simply compare the sets of system
behaviors represented by the two MSCs.

As a simple example, consider the two MSCs « | 8 and a. By the definition of operator
.. we know that [a | 5], = [@]. U [5]. holds. This shows the validity of [a], C [a | (..
Hence, « alone represents at most the behaviors of the alternative construct « | 5. Put
another way, removing one alternative from an alternative construct has the potential of
reducing the size of the equivalence class of an MSC.

Restricting the set of behaviors represented by an MSC corresponds to turning a less
restrictive specification into a more specific one: the MSC « | f “allows” the behaviors
of both o and 3, whereas « does, in general, not capture 3’s contribution. Therefore,
we call the restriction of the set of behaviors represented by an MSC also “removing
underspecification” or property refinement. The following definition makes this informal
description precise:

Definition 5 (Property Refinement) For a, o’ € (MSC), and all semantics bases B =
(P,C,M,S, MSCR) we define

o <o = [0]FClalf

and say “o’ refines o” (with respect to property refinement) or “o’ is a property refinement
of o, if &/ <, « holds. o

161

5. MSC Refinement

Property refinement inherits reflexivity, transitivity, and antisymmetry directly from set
inclusion. The independence of the semantics mapping [.], of the concrete value of u
(cf. Equation (4.2)) allows us to pick 0 as the time point for the comparison of the equiv-
alence classes in the definition above. The same system model underlies the evaluation
of MSCs « and o/ in this definition. This captures that besides restricting the set of
executions a property refinement has no further consequences on a specification.

Continuing the example we have started above, we recognize « as a property refinement
of a| B. In the remainder of this section we study ways of refining given MSCs besides
the removal of alternatives (cf. Section 5.3.1), and discuss how “compositional” property
refinement is, i.e. under what circumstances the refinement of part of an MSC results in a
refinement of the whole MSC (cf. Section 5.3.2).

5.3.1. Refinement Rules

Now that we have the notion of property refinement available, we can investigate trans-
formations on MSCs leading to refined versions. Each such transformation constitutes a
systematic development step that makes the MSC specification more precise.

In Appendix B.2 we formally justify the validity of the refinement relationships we describe
here.

Every MSC refines any

any is the least specific MSC term available, i.e. for all & € (MSC) we have

a <, any

Strengthening Guards
The guard p of a guarded MSC p : o determines which elements of [a], end up in [p : o],.
In Section 4.4 we have seen two extreme examples of guarded MSCs: [true : of, = [a].

and [false : a, = 0. The stronger the guard p, the more restricted is the set [p : o],.
More precisely, we have for all « € (MSC) and p,q € (GUARD):

p=q) = pra<,q:a

Removing Alternatives

In the motivation for the definition of property refinement above we have already shown
that removing one alternative from an alternative construct yields a property refinement.

162

5.3. Property Refinement

More precisely, due to the symmetric definition of [a | §], with respect to « and (3, each
of the following two refinement relations holds for all a, 8 € (MSC):

a <, alp

B <y afB

Joining Properties

Elements (¢,t) € [®], have corresponding elements (¢,t") € [a], and (p,t") € [(].,
i.e. each of the following two implications holds:

(p,t) € Ja @ Bl = 3t € [u,t] = (o, 1) € [a]u)
(p,t) € [a @ Blu= (3t € [u,1] 2 (0, 1) € [B]u)

This follows directly from the join operator’s definition, which constrains the behavior of
a such that it must also be a behavior of # (and vice versa). In general, we cannot expect
the validity of

(o, 1) €la ® Bla = (p,t) € [a]uA(p,t) € [Alu

as the MSCs o« = empty and § = ch>m show. Here, we have (¢,t) € o], = t =u
and (p,t) € [fl. = ¢ > w. Thus, we only obtain a “pseudo-refinement” for the join
operator. However, if we abstract from the time-component of the semantics domain, we
observe that the set of behaviors of the join is a subset of the behaviors of each operand.

We have already seen an application of this “refinement step” in Section 4.7.5, where we
have restricted the behaviors of HMSC A to those fulfilling a certain progress property.

Sequential Composition Refines Interleaving

The purpose of the interleaving operator is to model the absence of causality between
the contributions of the operand MSCs to an overall specification. Fixing an arbitrary
order between the behaviors modeled by the operand MSCs yields a refinement step. More
specifically we obtain that for all a, 3 € (MSC) each of the following two refinement
relations holds:

Oé;ﬂngéNﬂ
Bra <, a~f

These two refinement relations identify sequential composition as an implementation strat-
egy for interleaving.

163

5. MSC Refinement

Narrowing Loop Bounds

Besides guarded loops — whose refinement we have discussed above, in connection with
the one of guarded MSCs — we have introduced bounded, unbounded, and infinite loops in
Section 4.4.

Narrowing the bounds of a bounded loop yields a property refinement, i.e. for all a € (MSC),
and m,m’,n,n’ € N, we have

[m/anl] g [man] = OzTQn’,n’> Sp aTQn,n>

Similarly, all finite bounded repetitions of an MSC « refine a’s unbounded repetition,
i.e. for all m € IN we have

aT<0,m> Sp OéT<*>

Removing Preemption

In a preemption construct, such as « chogn [, the interruption of o and the immediate
continuation of the corresponding execution as specified by 3 depends on the occurrence of
the message ch>m during the time interval covered by «a. If ch>m does not occur during

this time interval the preemption does not happen, and [« chogn Bl equals [a],. More
formally:

(a =, « chbn B) < Vet o:(pt)efa]y AN u<t <t:méem(p).t.ch)

Therefore, to yield a refinement relation like o <, « chogm (8 we have to find criteria for

excluding the occurrence of chi>m during executions that “comply to” «.

However, a simple criterion like ch>m ¢ msgs.a does not suffice. Remember that [a],
represents all behaviors evolving as a “requires”. The messages occurring syntactically
in « appear in the specified order in [o],. [a], makes no statement whatsoever about
messages absent from «. As we will discuss in more detail in Chapter 6, we need this very
loose MSC interpretation to relate MSCs with other system views.

Therefore, under the given circumstances, we can only formulate a very strong “context
condition” that explicitly excludes the occurrences of certain messages. To that end, we
add another MSC term, the “message closure” operator [.]-, and define its semantics for

all « € (MSC) and N C M by

[[a1™] oef {(p,t) € [a]u: (Vt',chym:u <t <t:m € m(p).t'.ch= chbm € N)}

164

5.3. Property Refinement

Thus, [[a]"]. contains only pairs (p,#) such that messages outside N do not occur in ¢
within the time interval [u,t].

Equipped with this operator we can easily prove the validity of the following refinement

relation, where M denotes the set of all channel and message pairs, i.e. M aef {ch>m :

che CAme M}

l’a]M\{cth} Sp o cigmﬂ

Similarly, we can show that the following refinement relation holds:

(O[‘ M\{Chbm} Sp Ofﬂ ch>m

The message closure operator induces a very strong assumption at the context in which
the behavior represented by an MSC may occur. Checking that the context satisfies this
assumption is, in general, possible “at runtime” only, which is unsatisfactory for most
practical purposes. We can be sure of the absence of a particular message during a certain
time interval only if we have complete information about the behavior of all parts of the
system. Later, in Chapter 7, we will study a much more restricted MSC interpretation
under which (ch>m ¢ msgs.a) = (a =, [a]M\Mmh) holds. This is a context condition
whose validity we can check syntactically.

LHS Weakening And RHS Strengthening of Trigger Composition

Trigger composition inherits anti-monotonicity in its first argument from the use of the
implication operator in the semantics definition in Section 4.4. As a consequence we have
to handle the refinement of trigger composition with care: we cannot simply refine each
of the trigger composition’s operands to yield a refinement of the trigger composition as a
whole.

In analogy to the handling of predicates and the implication operator, we call development
steps leading from an MSC «a to an MSC o such that o/ <, « holds “strengthening”
steps. Similarly, we call development steps leading from o’ to a such that o/ <, « holds
“weakening” steps.

Using this vocabulary, we can state the refinement properties of the trigger composition
as follows: weakening the left-hand-side and strengthening the right-hand-side of a trig-
ger composition both result in a property refinement. More precisely, we have for all
a, o, 3,0 € (MSC):

(@ <)N < B) = (@ F) < (@ -)

165

5. MSC Refinement

5.3.2. Compositionality

A refinement notion is particularly useful if it is compositional, i.e. if the refinement of
one of a composite’s constituents yields a refinement of the composite. A compositional
refinement notion allows us to refine parts of an MSC (specification) individually, without
knowledge about the rest of the MSC (specification).

Fortunately, property refinement is — almost — compositional with respect to our MSC
dialect. The only exception is trigger composition, whose anti-monotonicity in its first
argument destroys general compositionality. The following proposition makes this informal
claim more precise.

Proposition 5 (Compositionality of Property Refinement) Property refinement is
compositional for MSCs that do not contain trigger composition. In particular, for all
a, 3,7 € (MSC), p e (GUARD), m,n € Ny, <[> € {<x>, <m, >, <m>}, T € {;, |, ~, @},
X, Y € (MSCNAME), with (X,d/),(Y,a) € MSCR, and o/ <, a AN (' <, B, each of
the following refinement relations holds:

p:d <, pra
a'ty <, aty
o' <, vta
04/T<L> <, alars
—- X < =Y
O/ ciz)m B/ < cigm ﬁ
a/ﬂchbm Sp aﬂchbm
a— [<, d —p

AN N N N N N N /N
A A A A A
O I & U B~ W N
S’ N e e e N N N

O

PRrROOF The validities of relations (5.1) through (5.7) follow directly from the use of only set
inclusion tests, set union and conjunction in the semantics definitions of the corresponding
operators (cf. Section 4.4). We discussed the validity of (5.8) in the previous section. m

This proposition has a methodical implication. We can perform arbitrary property refine-
ments on any part of an MSC «, as long as this part does not contain a trigger composition.
This suggests to keep MSCs for the specification of fairness properties separate from the
“other” MSCs. Then, we can perform property refinement in a compositional way on the
non-trigger part of the specification, and add the fairness conditions later. We will pick up
this issue again in Chapter 6, where we discuss the relationship between individual MSCs
and other parts of a system specification.

166

5.4. Message Refinement
5.4. Message Refinement

With message refinement we want to capture two kinds of modifications to a specification
(cf. [Bro93, Bro99al):

1. changing the number and names of channels connecting components;

2. changing the representation or granularity of messages occurring on the channels.

Message refinement allows us to start with rough sketches of the actual behavior when we
construct a specification. The messages we begin with may indicate the nett effect of a
more elaborate interaction, while a refinement reveals the actual message exchange within
the system’s implementation.

As an example, consider a system consisting of two components: Customer and Vendor.
There are two channels that connect the components: cv (directed from Customer to
Vendor), and ve (directed from Vendorto Customer). We can capture a purchase performed
by the customer using the MSC of Figure 5.3 (a): the customer sends a “purchase” order
along cv, and the Vendor returns the “delivery” on ve. Clearly, placing an order typically is
not an atomic action: it usually consists of selecting the item to be purchased, and paying
for it. MSC prchsr in Figure 5.3 (b) shows the sequence of messages selectltem and pay
instead of the more abstract message purchase in Figure 5.3 (a). Despite this difference,
both MSCs represent the same nett effect: the customer places an order, and the vendor
delivers. Therefore, we would like to consider the MSC from Figure 5.3 (b) a refinement
of the one from Figure 5.3 (a).

msc prchs msc prchsr msc prchsrr
Customer Vendor Customer Vendor Customer Vendor
— [] [] — [] []
cv>purchase _ cv>selectitem cv>selectltem
cu>pay loop<15>)

»
|

cop>prilPmnt_

- ver deliver - ven deliver __ vcbdeliver

(a) (b) ()

Figure 5.3.: Three MSCs with messages on different levels of detail

Similarly, we want to view the MSC of Figure 5.3 (c) as a refinement of the one of Figure
5.3 (b); Figure 5.3 (c) adds the information that the payment happens in form of up to five
installments along a fresh channel cvp. Again, the overall ordering of the “actions” per-
formed has not changed; the only difference is the level of detail revealed by the respective
MSCs about the interaction between Customer and Vendor.

167

5. MSC Refinement

To get a first idea for a precise definition of message refinement, we observe that using the
MSC referencing mechanism we can nicely capture the effect of replacing a single message
with an entire protocol. Together, the MSCs in Figure 5.4 (a) and (b) represent the same
interaction sequence as the MSC from Figure 5.3 (b). From prchs we can derive an MSC
that represents the same behavior as MSC prchsr simply by substituting the reference to
refined Purchase for the occurrence of message cv>purchase.

msc refinedPurchase msc prchs mr
Customer Vendor Customer Vendor
[] []
cudselectltem, |
refinedPurchase
cv>pay
__ vebdeliver

I I I I

(a) (b)

Figure 5.4.: Capturing message refinement through referencing

Generalizing this example, we consider MSC o/ a message refinement of MSC « with
respect to message ch>m € msgs.a if there is a pair (X, 5) € (MSCNAME) x (MSC) such
that if we substitute — X for all occurrences of ch>m in a we obtain an MSC subsuming
the behavior of /.

As was the case with the binding of references, the addition of a pair (X, 3) results in a
change of the semantic model. Because we also allow the set of channels and messages to
change in a message refinement step, we present the formal definition of message refinement

. . . . chom,X,8 . . .
in two stages. First, we introduce relation s ﬁ; it describes the changes to the semantic

model underlying the refinement of message ch>m into the protocol represented by the
pair (X,). Second, we describe the substitution process formally and use it to relate the
MSCs on different levels of detail.

h>m, X

Before we can formulate relation © ~3 ”G, a few considerations about the protocol allowed

as a replacement for message ch>m ;nre in order; clearly, we want the protocol to maintain
the intuitive meaning we associate with messages. We don’t want to replace a message
occurrence with empty behavior; this would turn the mandatory occurrence of the abstract
message into an optional protocol in the refined version. We consider this to be as counter-
intuitive as the replacement of a single message with an infinite protocol. If the abstract
message occurs on its channel at all, this happens within finite time. Therefore, we require
the replacing protocol to exhibit neither empty nor infinite behavior.

Thus, for two given tuples B = (P, C', M, S, MSCR) and B’ = (P', C',M',S", MSCR'), a

message chom € M < {ch'>m’ : ch' € CAm' € M}, a pair (X,) € (MSCNAME) x

168

5.4. Message Refinement

(MSC) we define

B UM g MM (5.9)
ACCC (5.10)
A MSCR' = MSCRW {(X, ()} (5.11)
A ch>m & msgs.3 (5.12)
A —(empty <, f3) (5.13)
N B <, fany (5.14)

This definition captures the following properties:

1. the sets of messages and channels can increase in the refined system (conjuncts (5.9)
and (5.10)),

2. the pair (X,) is the only addition to the binding relation (conjunct (5.11)),

3. the refinement is proper, i.e. the abstract message does not reappear in the refining
protocol (conjunct (5.12)),

4. [cannot exhibit empty behavior (conjunct (5.13)),

5. [represents finite behavior (conjunct (5.14)).

The second step is to formalize the substitution process. With one exception the definition
of the substitution of reference — X for message chi>m is straightforward. Only preemption
requires special treatment. If we decide to refine MSC « with respect to message ch>m, and

« contains a preemption specification like g chbgm 1 or Yoftensm for some o, 71 € (MSC),
then it is not entirely obvious what result the substitution should produce. The syntax
for preemption, as we have introduced it, allows a single preemptive message only. This
suggests to designate one of the messages that occur in the refining protocol as the new
preemptive message. Moreover, because the occurrence of the abstract preemptive message
on its channel is an atomic “action”, and preemption only happens when the message has
indeed occurred, the new preemptive message should occur at the end of the refining
protocol. Based on these two conventions we can refine preemptive messages in the same
way as the other messages.

These considerations lead to the following definition for the substitution operator
1 -/] - (MSC) x (MSCNAME) x (MSG) x (MSG) — (MSC)

which, for given MSC «, MSC name X, and messages ch1i and chi>m substitutes reference
— X for all occurrences of ch>m in « except for those occurrences where ch>m acts as

169

5. MSC Refinement

a preemptive message. In these cases, ch>1 replaces ch>m. We define the substitution
operator for t € {; , |, ~, ®, — }, ch'pm’ € (MSG), and «, § € (MSC) as follows:

empty[X, C}LDm/Cth] def empty
~ e X if ch'>m’ = ch
(ch'>m/)[X, ch>m/ch>m) et 1 b= chbm
ch’'>m’ else

(atB)[X, che1m/ chim] & (a[X, chem/chem))t(B[X, chi>1m/ ch>m])

(— Y)[X, chemm/ ch>m) oy

(a[X, cho1i/ chm]) T (81X, chi1ii) chm))
if ch'>m’ = ch>m

(a[X, cho1iv/ chom]) " (B[X, che1i/ chm))
else

(a[X, cheri/ch>m)) gpn i ch'>m/ = chm

(o[X, chemi/ch>m)topom else

(a "= B)IX, chiin/ chem] &

(ot enom) [X, chi>1/ chi>m] &of {

To determine the set of messages allowed as the final messages of a refining protocol we
introduce the function

lastmsgs : (MSC) — P((MSG))

Forte{;, —}ite{]l,~,®}, a e (MSC), ch>m € (MSG), and a given semantics
base (P, C, M, S, MSCR), we define, with M gef {ch>m :ch e CAm € M}:
def
lastmsgs.empty = ()
lastmsgs.any e

lastmsgs.chem < {ch>m}

lastmsgs.(at3) tef lastmsgs.3

lastmsgs.(aif

= lastmsgs.a U lastmsgs.[3

lastmsgs.(a chogm B) = lastmsgs.ac U lastmsgs.[3

)

def
)
lastmsgs. (o chm) fef lastmsgs.ca

e o if (X, MSCR
lastmsgs.(— X) def {%Stmsgs a 11(a) €
else

With these preliminaries in place, we define message refinement on MSCs as follows:

170

5.4. Message Refinement

Definition 6 (Message Refinement) For all a,a’ € (MSC), and semantics bases B =
(P,C,M,S, MSCR), and B' = (P', C',M',S", MSCR') we define

ch>m, X,3
~>

of <5 o B B
A (Bchsm : {chem} = lastmsgs.(: [0/ C [a[X, chem/chem]]P)
o <o def (3B, B, che>m, X, B - o/ <%)
< E (S

where (<2)* denotes the reflexive, transitive closure of <2. We say “a/ refines a (with
respect to message refinement)” or “o’ is a message refinement of o if o/ <,,, a holds. g

According to this definition, o/ <% « holds for a given MSC term 3, and a message
ch>m in msgs.a if the semantics of o’ is a subset of the one of the MSC term obtained
by replacing all occurrences of ch>m in « with a reference to 3. Thus, o/ <% « captures
a single message refinement step with respect to a corresponding transformation of the
underlying system model. Relation <2 abstracts from concrete semantics bases B and B’,
messages ch>m, and MSC definitions (X, 3). It holds if we can find an appropriate MSC
term [, and a message chi>m such that o/ g;fg/s « is true. an is not transitive: if we have
o’ <2 o and o/ <2, @, then we cannot, in general, exhibit a single MSC 3 and a single
message ch>m to derive o <3 a. Therefore, we have forced transitivity (and reflexivity)
on <,, by taking the reflexive, transitive closure of <2 as the definition for <,,.

As an example, consider the MSCs prchs and prehsr from Figures 5.3 (a) and (b), respec-
tively. We have

prchsr <,,, prchs

because we obtain MSC prchsr-mr (cf. Figure 5.4(b)) by replacing the occurrence of mes-
sage cv>purchase in MSC prchs with a reference to MSC refined Purchase; by expanding
the reference we immediately obtain the validity of [prchsr]o = [prchs_—mr]o.

5.4.1. Refinement Rule

The “operational” definition we have given for message refinement immediately suggests
how to carry out a concrete refinement of an MSC «:

1. Select a message ch>m € msgs.a. ch>m is the message we want to replace with an
entire protocol.

2. Define the refining protocol § € (MSC) such that (fulfills the requirements posed
by the definitions of the relations ~5 and <,,:

171

5. MSC Refinement

(a) ch>m must not occur in 3 (ch>m & msgs.3),

(b) § must not display empty behavior (=(empty <, [3)),
(
(d

(e) lastmsgs.f must be a singleton, i.e. lastmsgs.3 = {ch>m} for some ch>m €
(MSG); this means that 3 is semantically equivalent to an MSC of the form
v ; ch>m for some v € (MSC) with v <, fany.

)
)

¢) @ must not display infinite behavior (f <, fany),
) [/ may introduce fresh messages and fresh channels,
)

3. Perform a global substitution (i.e. a substitution in all MSCs of the MSC document
under consideration) of 3 for ch>m, mimicking the definition of the substitution
operator [.,./.], to yield the refined MSC «’'.

The substitution must be global, because we want the refinement to be consistent across
all MSCs of the MSC document; this includes, in particular, all MSCs referred to by a.

Clearly, after performing these steps, we obtain the validity of the relation o' <,, «a; we
can easily exhibit tuples B and B’, and an MSC definition msc X = [such that

! ~Sys
o <7«

holds.

5.4.2. Problems With Message Refinement

Our definition of message refinement is a very pragmatic one: simply syntactically replace
the message under consideration with an entire protocol, everywhere the message occurs
in the MSC document. This intuitive refinement notion is particularly well-suited for the
incorporation into tools performing the substitution automatically.

Unfortunately, however, the intuition comes at a price: message refinement does not pre-
serve the equivalence relation =, we have defined in Section 4.4, i.e. =, is not a congruence
with respect to message refinement. This means that if we have a, o/, 3,3 € (MSC) such
that we obtain o’ from a and 3’ from by means of the exact same message refinement,
and we also have o =, (we cannot, in general, conclude o/ =, .

To illustrate this we adapt an example from [vG96]. Consider the two MSC terms
a = (apmg; b>my) ~ c>m,
and

B = (a>bmg; (bbmy ~ c>me)) | ((abm, ~ c>me); b>my)

172

5.4. Message Refinement

where a, b, ¢ are channels and m,, my, m. the corresponding messages. It is easy to see
that

a =,
holds. If we refine ¢>m, through the sequence (¢;>me, ; co>me,) in both MSC terms, we
obtain:

o = (apmg; b>my) ~ (ci>me, ; cabme,)

B = (apmg; (b>my ~ (ci>me, ; cobme,))) | ((abmg ~ (ci>me, ; cabme,)); b>my)

Observe that

(cibme, ; abmg; b>my; cobme,) <, o

holds, i.e. one possible behavior for o/ is a message sequence starting with m., and ending
with m,,. (', on the other hand, cannot exhibit such a sequence. Here, any behavior either
starts with m, or ends with m,. Obviously, we thus have

of #F.

The reason for this discrepancy is that the equivalence relation =, directly bases on
the equality of the sets of (partial) system executions represented by the operands. The
semantic model we have chosen for these executions treats message occurrences on channels
as “atomic” entities. In the transition from « to o this atomicity breaks, thus allowing
the refinement of c>m, to split across an entire execution. In (' the prefix a>m, and the
suffix b>m; limit the possible extent of ¢;>m,., and cz>m,., “to the left” and “to the right”,
respectively.

Viewed in this light, the discrepancy is not quite as surprising as it might at first have
seemed. Replacing an atomic “action” with a sequence of actions usually offers more
potential for interference.

In the context of “action refinement” the problem of the non-preservation of equivalences
was studied extensively from the mid 1980s to the mid 1990s; see [AH93] and [v(G96]
for an overview and an extensive list of references. [vG96] compares numerous semantic
models for concurrent systems and corresponding equivalence notions with respect to the
preservation of equivalence under action refinement. The author shows that

1. no interleaving model has a corresponding equivalence notion that preserves action
refinement, and

173

5. MSC Refinement

2. there are partial order models (also known as event structures) with corresponding
equivalences that are preserved under action refinement; examples are

e pomset (cf. [Pra86, vG9I6]) trace equivalence (for linear time partial orders), and

e history preserving bisimulation (for branching time partial orders).

In fact, [vG96] shows for branching time partial orders that less fine-grained equivalences
than history preserving bisimulation do not preserve equivalences under action refinement.

The approach followed by [vG96] to obtain a sufficiently fine-grained equivalence notion is
to allow actions to have a duration, and to consider as system states (or configurations) the
sets of already started, but not yet finished actions (together with their causal predeces-
sors). The work of [AH93| goes in a similar direction: here, the authors split an action into
two parts, the action’s beginning, and its end. This allows them to obtain an equivalence
preserving notion of action refinement for a subset of the process algebra CCS.

This leaves us with the question of how to deal with the problem in our semantic framework.
We identify the following three possibilities:

1. we keep the current semantics basis, but strengthen our equivalence notion, or

2. we switch to a pomset or branching time partial order semantics with an equivalence-
preserving message refinement notion, or

3. we introduce a concept for avoiding interferences such as the ones exhibited through
the refined MSC « in the example above.

In the following paragraphs we discuss each of these possibilities in turn.

Strengthening the Equivalence Notion

As we have discussed above, the equivalence notion =, we have introduced in Section
4.4 is too weak to distinguish the MSCs a and 3 in view of the potential interference
introduced by the message refinement of ¢>m, into the sequence (¢;>me, ; cobme,).

A standard construction (cf. [Mil80, AH93]) to yield a stronger equivalence notion is to
consider two MSCs equivalent if and only if they represent the same sets of executions, and
all of their possible message refinements are equivalent as well. More precisely, we define
the equivalence relation ="C (MSC) x (MSC) as follows, for all 7,0 € (MSC):

=S Y (=) AN Y Sy A by = O

Clearly, we have a =, (3 but a #" (3 in the example above.

By construction of =] we obtain that message refinement preserves =]". However, be-

cause its definition involves a closure over all possible refinements of the operand MSCs,

174

5.4. Message Refinement

we have no general, practical way of determining whether v =] ¢ holds for MSC terms
and 0.

Switching the Semantics Basis

As [vG96] and [AH93] show, there are semantic domains with corresponding equivalence
notions that are preserved under action, or — in our setting — message refinement.

Therefore, we could switch from our stream-based model to one of the appropriate partial
order models. It is, for instance, not a difficult exercise to define a pomset semantics for
MSC terms and to use pomset trace equivalence (cf. [vG96]) as the equivalence notion on
these terms. We could even keep our stream-based model “for all other purposes” and
resort to pomset trace equivalence only when it comes to defining MSC equivalence; the
authors of [AH93] use this technique for the definition of their equivalence notion: they
introduce a more fine-grained semantic model, define equivalence on it, and then map this
equivalence to the original, coarser model.

Again, however, this additional effort would not yield a practicable procedure for deter-
mining whether two given MSCs are equivalent or not. In all but trivial cases we would
have to resolve this question by semantic, not by syntactic considerations.

Avoiding Interference

The two MSCs o and (' from our example above are not equivalent under =, because
refining c>m, into (¢;>me, ; co>m,,) breaks the “atomicity” of the single message c>m;
this results in the additional possibility for interference exhibited by o', as compared to
a. Thus, another way of coping with the equivalence preservation problem is to avoid the
additional interference by explicit syntactic and semantic means.

We could, for instance, introduce a new MSC term protect with [protect(y)], def 7],
redefine the semantics of the interleaving operator such that for all messages ch>m

ch>m ~ protect(y) =, (ch>m ; protect(y)) | (protect(vy); ch>m)

holds, and modify the definition of <,, by defining the substitution operator on protect

terms as follows:
protect(y)[X, chi>1m/ chi>m] & protect(y[X, ch1i/ch>m))

Then, if we refined message C>m into protect(c;>m,, ; co>m.,) we could no longer
distinguish the MSCs & and 3, which we obtain from « and (as follows:

& = (apmg; b>my) ~ protect(c;>me, ; cobme,)
and

B = (adbmy; (bbmy ~ protect(c;>me, ; cabme,)))
| ((a>m, ~ protect(c;>me, ; cobme,)); b>my)

175

5. MSC Refinement

protect keeps the “atomicity” of single messages, even for protocols refining them, intact.

We could then prove that the refinement of messages by protected protocols preserves the
equivalence relation =, .

This approach makes the methodical challenges behind message refinement explicit. In
the presence of any form of parallel composition we cannot, in general, hope to preserve
equivalences if we break an individual message into an entire protocol. A very practical
example is the removal of locking mechanisms around a database transaction: loss of
coherence may be the undesirable result. Using protect in the refinement of a message
corresponds to introducing a “locking mechanism” around the refining protocol to maintain
the causality between the message to be refined and its context in the transition from the
abstract to the more detailed MSC.

Conclusion

Each of the three approaches for defining an adequate equivalence relation that is invari-
ant under message refinement for MSCs has both advantages and disadvantages. The
first, based on the definition of =", induces no changes to the semantic model, but does
not offer much insight on how we can determine the equivalence of two MSCs practically
(or even syntactically). Switching to a semantics model equipped with an appropriate
equivalence notion (such as pomset equivalence or history preserving bisimulation) has
the advantage that determining the semantic equivalence of two MSCs is easier than with
=/"". The disadvantage is that, still, there is no general syntactic way of determining MSC
equivalence for practical purposes. Using the protect-construct to avoid additional inter-
ference through message refinement has the advantage of making the methodical difference
between atomic messages and non-atomic protocols explicit; using it, the developer can
decide whether or not a refinement should preserve equivalences. Its disadvantage is the

addition of “yet another” operator to the MSC language.

The choice between these three alternatives depends on the goals we follow in our usage of
MSCs. In a pragmatic application of MSCs we favor the third approach, because it allows
the developer to make an “informed choice” about how to refine messages that may appear
within operands of a parallel composition.

For the remainder of this thesis it shall suffice that we now know about the difficulties
of message refinement; we will stick with the original semantics definition, and with the
“weak” equivalence relation =, , as we have defined it in Section 4.4.

5.5. Structural Refinement

A typical step in the systematic development of distributed systems is to decompose a single
component into several sub-components. This step reveals (part of) the internal structure
of the component under consideration; therefore, we call this form of adding more detail

176

5.5. Structural Refinement

to a specification structural refinement. Before performing a structural refinement we view
the component under consideration as a “black box”, and do not care about how this
box internally handles the messages it receives. Afterwards the component has become
a “glass box”, i.e. we have additional knowledge about its internals that we can refer to
in our specifications. Other common names for this form of refinement are “glass box
refinement” (cf. [Bro93, Bro99a]) and “object refinement” (cf. [DW9g]).

MSCs have both a structural and a behavioral dimension; they display (logical) component
distribution, as well as the communication of the depicted components over time. There-
fore, in this section, we study a refinement notion for MSCs that reflects changes in the
system structure.

msc xchng
S M R
— — —

smb>req |
.

mre>req |
>

rm>ack

mst>ack

gy
-

(a) (b)

Figure 5.5.: System structure diagram and MSC before structural refinement

S ms M rm R

As an example, consider the structure of a simple communication system, consisting of
a sender (S5), a receiver (R), and a transmission medium (M) as depicted in Figure 5.5
(a). Figure 5.5 (b) displays a simple two-way communication between S and R via M. A
possible structural refinement of M is to decouple the two communication paths from S to
R and from R to S internally. Figure 5.6 shows a corresponding system structure diagram.
Here we have redirected incoming and outgoing channels of M such that they now end and
start at either M1 or M2. We use the dashed box labeled M in Figure 5.6 to indicate that
M1 and M2 are sub-components of M.

L
S m |

Figure 5.6.: System structure diagram after structural refinement

To obtain an MSC that reflects the structural refinement from Figure 5.5 (a) to Figure
5.6 we have to perform two modifications to the MSC of Figure 5.5 (b). First, we have
to replace the axis for M with axes for M1 and M2. Second, we have to “redirect” each
message arriving at or emanating from M to either M1 or M2. Figure 5.7 shows a possible
result of these modifications.

177

5. MSC Refinement

msc xchng_r
S M1 M2 R
— —— []
sm>req |
mr>req -
- ack
- P ack
I E—— E—— I

Figure 5.7.: MSC after structural refinement

The behavior represented by MSC xchng_r differs from the one of xchng only in the sources
and destinations of certain messages; the ordering of the messages is identical.

So far, the decomposition we have shown in Figures 5.6 and 5.7 is simple in the sense that
the components M1 and M2 cannot communicate; there is no channel between M1 and M2.
Often, however, we want the refining components to coordinate their behavior explicitly
over “local” channels, i.e. channels connecting only refining components. Figure 5.8 shows
an example decomposition of M into M1 and M2 where the local channel mm connects M1
and M2.

sm imr
S mm R

Figure 5.8.: System structure diagram with added local channel

MSC zchng_r2in Figure 5.9 displays the same behavior as MSC xchng_r, up to the message
notify sent by M1 to M2 along channel mm.

msc xchng_r2

S M1 M2 R

—— ——— []

sm>req

mr>req _
mm>notify
o rmb>ack

mst>ack

— I I —

Figure 5.9.: MSC with message on local channel mm

This example already hints at a possible treatment of structural refinement in our setting:
if we find an abstraction from communication on local channels, as well as a mapping

178

5.5. Structural Refinement

from the sub-components’ channels to the channels of the abstract component such that
the behavior represented by the MSC resulting from this mapping “equals” the one of the
more abstract MSC, we have “witnessed” a structural MSC refinement.

Before we can turn this intuition into a precise definition we have to discuss another open
question: can the decomposed component reappear in the decomposition? This question
addresses a situation that is quite common in practical designs: a component decomposes
into several others, but still participates in the interplay between its constituents.

As an example for a design where this question is important we note the “Mediator” pat-
tern (cf. [GHJIV95]), which describes a strategy for encapsulating and coordinating complex
interactions among a set of (sub-)components in object-oriented designs. The parent ob-
ject (the mediator) interacts with the environment and delegates incoming requests to its
sub-components; the sub-components interact not among one another, but only via the me-
diator. The mediator thus coordinates the interactions among its constituents to achieve
a desired result.

This example suggests to answer “yes” to the question we have raised above. However,
allowing reappearance of the parent component induces a much more complicated defini-
tion for structural refinement; we cannot, in general, determine syntactically, whether an
interaction between the parent component and its environment occurring in the refined
MSC was already there in the non-refined version. Therefore, we require the composition
to be strong in the sense that the parent component cannot reappear in the refined MSC.
This restriction does not result in loss of generality, however. If we want to model struc-
tural refinement of a mediator object, for instance, we simply have to provide an additional
sub-component in the refined MSC that takes over the coordination role of the “abstract”
mediator.

We introduce structural MSC refinement in two steps. First, we make precise what a
refinement on the system structure, or, more precisely, on the system model, is; to that

end, we define the relation 2L that captures the changes on the sets of components and
S
channels, reflecting the decomposition of component p into the elements of set P. Second,

based on relation pv’f, we translate the semantics of an MSC in the structurally refined

system model to one in the non-refined system model to enable the comparison of the two
semantics.

We start with the definition of relation 5. As we have discussed in detail, above, we want

the set of components of the refined sysf:em to differ from the one of the abstract system
such that the former includes the components in P, but does not contain component p. We
also require the refined system to contain verbatim copies of all channels of the abstract
system that neither start nor end at p; the abstract system’s other channels appear in
the refined system with either their source or destination component changed to one of
P’s elements. Furthermore, we allow fresh “local” channels that connect only components
from P in the refined system.

179

5. MSC Refinement

Thus, for two given tuples B = (P, C, M, S, MSCR) and B" = (P',C",M',S', MSCR'), a
component p € P of the abstract system, and a set of components P C P’ in the refined
system, we define!

B ’15 B (5.15)

L P =P\{pHuP (5.16)
A (V(chn, sre, dst) € C" :: src ¢ P A dst € P = (chn, sre,p) € C) (5.17)

A (V(chn, sre, dst) € C" :: src € P A dst ¢ P = (chn,p, dst) € C) (5.18)

A (V(chn, src,dst) € C':: src € P A dst € P = (chn, sre, dst) € C) (5.19)

A (¥(chn, sre, dst) € C :: (Fsrc’, dst’ :: (chn, src’, dst’) € C")) (5.20)

The definition of 2% captures the following properties:

1. the decomposition is proper, i.e. the decomposed component does not reappear in the
decomposition, and none of the refining components appears in the abstract system
(conjunct (5.16)),

2. every channel that ends at a refining component, and that does not also start at a
refining component, maps to a corresponding channel with the same source, ending
at the abstract component (conjunct (5.17)),

3. every channel that starts at a refining component, and that does not also end at
a refining component, maps to a corresponding channel with the same destination,
starting at the abstract component (conjunct (5.18)),

4. every channel that neither starts nor ends at either a refining or the abstract com-
ponent appears unchanged in both the abstract and the refined system (conjunct

(5.19)),

5. up to the possible change of source and destination components all channels of the

abstract system reappear — with the same names — in the refined system (conjunct
(5.20)).

As an example, consider the SSDs of Figure 5.5 (a) and 5.8. Clearly, we have

M, {M1,M2}
AN

(P,C,M,S, MSCR) (P, C',M',S', MSCR)

s

where Figure 5.5 (a) induces tuple (P, C, M,S, MSCR), and Figure 5.8 induces tuple
(P, C'",M',S", MSCR").

'To simplify the formulae later in this section we implicitly assume S’ = S, although modifying the set
of components induces a modification of the overall state space.

180

5.5. Structural Refinement

The next step is to base structural MSC refinement on the definition of 2L This allows us

S
to relate MSCs whose semantics use different system models on different levels of structural
abstraction.

To this end, we mimic the procedure we have carried out in the introductory example.
We assume given two tuples B = (P, C, M,S, MSCR) and B’ = (P',C',M', 5", MSCR'),

a component p € P, and a set of components P C P’ such that
B 2P B’
S

holds. To establish whether an MSC «/, interpreted with respect to B’, is a structural
refinement of the MSC «, interpreted with respect to B, we proceed in three steps. First,
we remove all local communication between the components in P from the semantics of
o’. Second, in executions according to o we redirect all other communication — appearing
on channels starting or ending at components in P — to component p. Finally, we compare
the resulting set of executions with the one represented by a.

1.) Removing “local” communication of the refining components
For a set Y C O we define the restriction of [a/]Z" to the set of channels in Y, written
[[O/]]E |Y7 by

@]l = {(p.1) € (V x 8)™ x Neg »

(3= (v, 1) € [a]) -
(Vt',ch:t € [u,tJAcheY : m ().t .ch=m(p).t.ch

A 7T2(¢)-t/ = W?(@)'t,»

We define the set of channels that are in C', but whose source or destination component
is outside P by

C aef {(chn, src, dst) € C" : src & PV dst & P}

With C7; defined like this, [o/]]5'|c;5 contains all behaviors represented by «, restricted to

channels whose source or destination component is outside P.

2.) Redirecting communication involving the refining components

To capture the redirection of channel sources and destinations, we define function

relabel’;g%, 05— C

181

5. MSC Refinement

by
(chn, p, dst) if src € P
relabel’lg%,.(chn, sre, dst) = < (chn, src, p) if dst € 1{7]
(chn, src, dst) if src € P A\ dst ¢ P

We lift relabel%cc, to sets of system executions as follows: for all Z C P((C" x §)> x N)
we define

relabel’s. i, : P((C" x S)® x No) — P((C x)™ x Na)
by
relabelg’%.Z & {(p,1) € (C x)™ x Ny :

(F: (Y,t) € Z:
(Vt',ch' :t' € [0,t] Ach' € C":

m (). .ch' = mi ().t (relabelly], .ch') Ama().4' = ma(p).t'))

3.) Comparing the resulting set of executions with [«],

Intuitively, the aim of the preceding two steps was to “undo” the effects of a potential
refinement to allow us to compare the set of executions represented by the refined MSC

with the one of the abstract MSC. If the set of executions relabel?é%,.(ﬂa’ 1%]%) is a subset
of the set of executions [a]F then we call o a structural refinement of a. More precisely,
we define:

Definition 7 (Structural Refinement) For MSCs «,a’ € (MSC), and the semantics
bases B' = (P',C",M',S’, MSCR') and B = (P, C, M, S, MSCR), component p € P, and
set P C P, we define

of <o o B%DB' A relabel%%,.([[a/]](?]c%) C [a]¥
o <Za E @B,B.p Pid < a)
f
s < (Si)* o

o <% o holds for a given component p, and a set of refining components P, if the
semantics obtained from o’ by “undoing” the effects of structural refinement is a subset of
o’s semantics. Thus, o/ <% « captures a single structural refinement step with respect
to a corresponding transformation of the underlying system model. Relation <2 abstracts
from concrete semantics bases B and B’, components p, and component sets P. <2 is not
transitive: if we have o’ <2 o/ and o/ <7 a, then we cannot, in general, exhibit a single
component p and a single component set P to derive o <7 a. Therefore, we use < to
obtain the reflexive, transitive closure of <3,.

182

5.5. Structural Refinement

5.5.1. Refinement Rule

Similar to <,,, we have defined <; in a very pragmatic, operational fashion. This allows
us to formulate the following steps leading to a concrete structural refinement of an MSC
a:

1. Select a component p occurring within a as the source or destination of a message;
p is the component we want to replace with a set P of fresh components.
2. Transform « into a fresh MSC o such that o/, p, and P fulfill the requirements posed

by the definition of relation 2L,
S

a) p does not reappear in o/,

messages arriving at p in « arrive at an element of P in o/,

(c
d)
(e)
(f) up to the redirection of channels and additional messages on local channels

connecting only components in P, the ordering and labeling of message arrows
in the MSCs o/ and « coincides.

(a)

(b) none of the reﬁning Components appears in a,
)

(

messages originating from p in « originate from an element of P in o/,

all messages that neither start nor end at p in « are copied verbatim to o/,

3. Perform the structural refinement consistently in all MSCs within the MSC docu-
ment.

The refinement must be “global” to allow consistent composition of MSCs within the
document.

Clearly, after performing these steps, we obtain the validity of the relation o/ <, a; we can
easily exhibit semantics bases B’ and B such that o/ <% o holds.

5.5.2. Relationship With MSC-96’s Instance Decomposition

Recall from Section 2.2.3 that MSC-96 provides the “decomposed instance” construct,
which is similar to our notion of structural refinement.

The major difference between decomposed instances and our approach is that neither inline
expressions nor references may appear on the abstract component in MSC-96. Because we
base our refinement notion on a “global” syntactic and semantic refinement of both the
system structure and all MSCs within the same MSC document, we do not have to pose
such restrictions.

183

5. MSC Refinement

5.6. Related Work

The work on MSC refinement in the literature concentrates mostly on structural refinement.
Interworkings, for instance, have a formal notion for structural refinement (cf. [MR96)),
which is similar to ours. MSC-96 contributes the notion of instance decomposition as an
informal version thereof (cf. [IT96]).

The notion of property refinement we have introduced for MSCs is founded on set inclusion
with respect to sets of entire system executions. Similar refinement notions for the behavior
of individual components appear, for instance, in [Bro99a, Rum96, Sch98, Kle98]. In
Chapter 7 we discuss the distinction between property refinement of MSCs and of individual
components in more detail.

As we have explained above, the difficulties we encountered with message refinement are
instances of similar problems in the context of action refinement. For a discussion of
these problems, as well as for solution strategies, we refer the reader to [vG96, AH93]
and the references contained therein. Our notion of message refinement was inspired by
[Bro93, Bro99al, as well as by the notion of action refinement in [DW9S].

5.7. Summary

In this chapter we have defined and discussed four refinement notions for MSCs: the
binding of references, property refinement, message refinement, and structural refinement.

The binding of references accommodates the incremental development of MSC documents.
Each new MSC definition of the form msc X = a makes the semantics of the other MSCs
in the document that refer to X more precise.

A property refinement restricts the set of behaviors of an MSC; this corresponds to the
removal of underspecification. We have presented several concrete transformations on
MSCs resulting in refined versions with respect to property refinement. Examples are
the removal of alternatives and the use of the join operator to add properties to an MSC
specification. Moreover, we have discussed the compositionality of property refinement,
which is valid with the exception of the trigger composition operator.

By our notion of message refinement we have formalized the substitution of an entire
protocol for a single message. We have given an intuitive definition for this refinement
concept by means of the referencing mechanism of our MSC dialect. The drawback of
this intuitive definition is that — within our semantic model — message refinement does
not preserve the equivalence relation =, . We have discussed this problem and possible
solutions for it, in detail.

Structural refinement introduces the replacement of a single component with a set thereof
(the set of the component’s constituents) into our methodical framework. We have given

184

5.7. Summary

a very pragmatic definition for structural refinement, and have related it to the notion of
“decomposed instance” in MSC-96.

The refinement notions, as well as the refinement rules we have introduced in this section
enable the systematic use of MSCs in the development process. Each development step that
bases on one of the refinement rules we have presented adds to the detail of a specification,
while maintaining the “nett effect” or the “idea” behind the specification.

An interesting question is whether the rules for property refinement allow us to perform an
efficient syntactic check whether one MSC is a refinement of another. If that was the case
we could use MSCs effectively in the validation process. We consider this an important
direction for future work.

185

5. MSC Refinement

186

CHAPTER 6

MSCs for Property-Oriented System Specifications

In this chapter we investigate four interpretations of MSCs with respect to a given system
specification: the ezistential, universal, exzact, and negated interpretation. Each of these is
the basis for a different kind of methodic MSC usage in the development process, which
ranges from using MSCs as scenarios (based on the existential interpretation) to MSCs
as a complete specification technique (based on the exact interpretation). Moreover, we
determine the classes of properties our MSC dialect allows us to express according to the
classical distinction between safety and liveness properties.

Contents
6.1. Introduction 0 o . 188
6.2. MSC Interpretations 193
6.3. Property Specification with MISCs: Safety and Liveness . . . 202
6.4. Related Work i i i i i it i i et e e e e 211
6.5. SUMMATY . . .« v v v v e e e e e e e e e e e e e e e e e 212

187

6. MSCs for Property-Oriented System Specifications
6.1. Introduction

In the preceding two chapters we have considered MSCs more or less in isolation; the
semantics chapter (cf. Chapter 4) was entirely devoted to individual MSCs, whereas the
chapter on MSC refinement (cf. Chapter 5) took corresponding refinements of the system
structure into account, and has thus broadened our view beyond MSCs as such.

Now we turn our attention to a question that is at the heart of a methodical application
of MSCs within the overall development process:

What properties does an MSC express?

By answering this question we clarify what constraints an MSC imposes on the system
under development.

Because MSCs address multiple aspects of a system specification in the range from structure
to behavior (cf. Chapter 1), the question we face has multiple facets:

how complete is the information contained in an MSC, i.e.

— can there be other components in the system besides the ones depicted in the
MSC?

— may a component involve in other interactions with components within or out-
side the scope of the MSC?

what triggers the occurrence of the interaction sequence depicted in an MSC?

e must or may the depicted interaction sequences occur in all or any executions of the
system under development?

how to transit from possible to mandatory behavior?

Clearly, this list is neither exhaustive, nor orthogonal. However, these questions illustrate
the spectrum of possible MSC interpretations within the development process. The answers
we can give strongly depend on the intention we follow in using MSCs as a property-oriented
specification technique.

If we consider analysis (capturing of functional and nonfunctional requirements), specifica-
tion (constructing a model that fulfills the requirements captured during analysis), design
(tailoring the model resulting from specification to fit a specific target architecture), and
implementation (coding the design in a set of target programming languages to obtain an
executable product system) as the phases of an iterative development process as we did
in Chapter 1, we quickly see the relevance of the questions we have phrased above within
and across all development phases.

188

6.1. Introduction

A popular example of specifying system properties by means of MSCs is to illustrate sce-
narios, i.e. partial system executions capturing a segment of one of possibly many execution
alternatives of the system under consideration. Across all development phases we can use
scenarios to illustrate key interaction patterns that we want (or do not want), or observe
the system components to exhibit. During analysis, scenarios often serve as coarse sketches
of the principle idea behind the collaboration of a set of components. During specification
and design we might use scenarios at a level of greater detail as a precise documenta-
tion of certain relevant interaction patterns. During and after implementation more or
less detailed scenarios often serve the purpose of knowledge-management (by means of re-
documenting interaction patterns within the “running” system), tracing (as illustrations
of simulation or real system runs), and even reengineering (by feeding back traces into the
analysis phase).

In each of these uses of scenarios we treat the corresponding MSCs — on the respective
level of detail — as a very liberal statement about the system under consideration; each of
the depicted components might also involve in arbitrary other interactions, as long as the
ones depicted in the MSCs at least have the potential for occurring.

However, if we were to focus on MSCs as a visualization of scenarios only, we would exploit
only little of the methodical potential of MSCs within the development process.

We might also be interested, for instance, in illustrating inevitable interaction patterns, in
contrast to scenarios, which may or may not occur. As an example, we might want to spec-
ify the following property: in a communication protocol data eventually gets transmitted
between two parties. We cannot specify this by means of scenarios alone; only if we adopt
the view that a set of scenarios describes a certain system behavior completely, i.e. leaves
no options for arbitrary other behavior, can we describe such eventuality properties by
means of MSCs.

We can even go a step further, and require a given (set of) MSC(s) to describe the system’s
behavior exactly, from the beginning of an execution on. As a result, we consider MSCs as
a description technique for complete system or component behavior, as an alternative for
complete automaton specifications in the sense we have described in Chapter 3. This idea
is particularly appealing if we use MSCs to collect interaction requirements, say, as a set
of scenarios during analysis, and want to determine how the individual components must
operate to establish the interactions contained in the MSCs, as part of the construction of
early prototypes during specification and design, or even to prepare the implementation
phase.

As an example, recall the ABRACADABRA-protocol we have specified by means of MSCs
in Section 4.7. Figure 6.1 (a) shows another specification for part of the protocol, this
time in a state-oriented fashion by means of a Mealy automaton variant (cf. Section 3.3.1)
for one of the participating components. In Chapter 7 we give a formal semantics for
Figure 6.1 (a) in terms of our system model; here, we appeal to the reader’s intuitive
understanding to observe that the automaton displays those behaviors we have identified

189

6. MSCs for Property-Oriented System Specifications

for the ABRACADABRA-protocol — from the viewpoint of component X — such that X is
the only initiator of a successful communication.

N msc SX
S‘ X Y
v C - —3
§ TY>sreq
LE loop<*>)
| zy>d
lzy sreq
z>dack
Tyavsreq N Tyavsack e —
4 Ty>ereq
lzy>d ?yz>dack yx>eack
— —

(a) (b)

Figure 6.1.: Automaton and MSC for part of ABRACADABRA

MSC SX of Figure 6.1 (b), which we have copied verbatim from Section 4.7.3, shows
only a subset of the automaton’s behaviors: it displays a successful transmission, initiated
by X. Conflict and conflict resolution are missing in SX. Having both the automaton
and the MSC as part of an overall system specification raises the question whether the
system, as specified through the automaton, can or must display the behavior represented
by the MSC. Put another way, we can ask whether the MSC represents optional (possible)
or mandatory (necessary) system behavior. In view of the MSC A from Section 4.7.2
(cf. Figure 4.20), which also captures all behaviors of the protocol, we could even require
the system behaviors to match the ones of A exactly.

Motivated by these considerations we make precise and discuss the following MSC inter-
pretations in this chapter:

Existential MSC Interpretation: As we have already mentioned above, the most promi-
nent usage of MSCs to date in the development process is to consider them as “scenarios”,
i.e. as a representation of partial system behavior that may occur during the system’s ex-
ecution. There may also be executions of the system differing completely from the MSC
under consideration. An MSC under existential interpretation expresses only that the sys-
tem may not prohibit occurrence of the behavior represented by the MSC in all executions.

As an example, we can regard MSC SX from Figure 6.1 (b) as a scenario with respect to
the behaviors represented by the automaton in Figure 6.1 (a), and obtain the existence of
system executions where X initiates a successful transmission. We can also interpret each
of the “use cases” C'and CR (cf. Figure 4.22) of the ABRACADABRA-protocol existentially
with respect to the automaton for the complete protocol specification.

190

6.1. Introduction

Universal MSC Interpretation: Alternatively, we can require the behaviors represented
by an MSC to occur in all executions of the system. Put another way, there may not be
any system executions in which the behavior represented by the MSC is absent. In this
sense, universal interpretation is “stronger” than existential interpretation. Still, universal
interpretation allows arbitrary other behavior before, during, and after the interaction
sequence specified via the MSC occurs.

We could, for instance, interpret MSC SX universally with respect to the automaton, and
obtain that in every execution of the system X must initiate a successful transmission.
Interpreting MSC A from Figure 4.20, which captures all use cases of the ABRACADABRA-
protocol, universally with respect to another given system specification, yields only those
executions that — besides other interactions in which the components may partake — fulfill
the ABRACADABRA-protocol.

Exact MSC Interpretation: Strengthening the meaning of universal interpretation fur-
ther to explicitly prohibit other behaviors than the ones specified through the MSC under
consideration, we obtain the notion of “exact” interpretation. This MSC interpretation
holds only for system executions displaying precisely the behavior specified by the MSC
under consideration with nothing else in between.

If, as an example, we apply the exact interpretation to the MSC A from Figure 4.20
(with the behavior of all references occurring in A bound to the MSCs defined in Sections
4.7.3 and 4.7.4), we obtain system executions containing nothing else than communication
between the components X and Y according to the ABRACADABRA-protocol.

We use the exact interpretation as the basis for the translation of MSCs into individual
(and complete) component behavior in Chapter 7.

Negation: Unwanted Behaviors: So far, we have considered MSCs as a description of
what may or what should happen only. Clearly, we can use MSCs also to describe what
should not happen. This leads to the interpretation of MSCs as unwanted behaviors or
“negative scenarios” .

As an example, consider the MSCs AC and C in Figure 6.2 (a) and (b), respectively.
Together, they represent an infinite repetition of conflicts between X and Y. If we interpret
the infinite repetition of MSC (' as a negative scenario with respect to the automaton from
Figure 6.1 (a), we obtain only those system executions with a finite number of conflicts.

The extreme choices of treating MSCs as either exemplary execution segments (scenarios)
or as complete behavior specifications, span the range of possible interpretations of entire
MSCs with respect to the system under development. Making precise which of the possible
choices we adopt for any particular MSC fixes — on a rather large scale — this MSC’s role as
an artifact within the development process, and thus fixes a property we want the system
to have.

191

6. MSCs for Property-Oriented System Specifications

msc AC msc C

N\ 0
[
par
Ty>sreq |
iiiiiiiiiiiiiiiiiiiii
__ yz>sreq

(a) (b)

Figure 6.2.: Negative scenario: infinite repetition of conflicts

Safety and Liveness Properties Interestingly, we face similar choices of interpretation,
if we approach the properties addressed by MSCs on a much smaller scale. We can ask,
for instance, whether the messages contained in an MSC must occur within finite time
or can have an infinite delay. An answer to this question induces responsibilities for all
components occurring in the MSC. More generally, we are interested in what constraints
each individual arrow in an MSC imposes on the system as a whole, as well as on each
individual component — according to the semantics definition of Chapter 4.

The author of [Lam77] has introduced the distinction between safety and liveness proper-
ties, which we use to discuss this aspect of the interpretation of MSCs. A safety property
states that “nothing bad” ever happens during system execution, while a liveness property
states that “something (good)” does eventually happen. Having these terms available, we
can ask whether MSCs express safety or liveness properties with respect to the system
under consideration: must the messages depicted within an MSC occur within finite time?
Can they occur out of order? Can other than the depicted messages occur?

These questions complement the larger-scale interpretation of MSCs in the sense that the
smaller-scale interpretations make precise the properties an MSC specifies for any concrete
execution, whereas the larger-scale interpretations determine whether a system must or
may (not) have executions fulfilling these properties.

As a result of this chapter we will see that the MSC dialect of Chapter 4 specifies essen-
tially liveness properties. This corresponds with the typical intuition responsible for the
popularity of MSCs: an MSC describes a sequence of interactions, where all the depicted
messages do indeed appear in the specified order. As a methodical consequence we ob-
tain that our MSC dialect nicely complements specification techniques focusing on safety
properties.

The remainder of this chapter has the following structure. In Section 6.2 we discuss the
existential, universal, exact, and negated MSC interpretations. For each of these we give
a formal definition based on our system model, and discuss methodical implications of
using them. In particular, we discuss the relationship between each interpretation and
system refinement. Our analysis of the safety and liveness properties represented by an

192

6.2. MSC Interpretations

MSC appears in Section 6.3. In Section 6.4 we mention related work; this includes a brief
comparison of our approach with the ones of [Kle98] and [DH99], which also distinguish
between existential and universal MSC interpretations. Section 6.5 contains a summary of
this chapter.

6.2. MSC Interpretations

In this section we explore several MSC interpretations, and discuss their methodical impli-
cations. Recall from the presentation of our system model in Section 4.2 that we consider
subsets Spec C (C’ x S)> as system specifications. Spec contains all possible executions of
the system under consideration. Recall further that, given a time u € IN,,, we have defined
the semantics of an MSC a to be the set of all pairs of the form (i, t), where € (C' x §)>
and t € N, such that « represents ¢ during the time interval [u,¢]. Thus, relating an
MSC a with a given system specification Spec amounts to comparing the sets of executions
represented by « with those in Spec.

For each of the MSC interpretations introduced below we define a relation F: P((C'x.5)>) x
(MSC); this relation makes precise under what circumstances a system specification Spec
fulfills an MSC according to the respective interpretation. Observe that we do not say how
we have obtained Spec in the first place. As we have sketched in the introduction, Spec
may, for instance, be the result of a complete system specification through an automaton;
it may also result from any other form of behavior specification. Moreover, in this section
we focus on defining the various MSC interpretations to make their intuitive meanings
precise and accessible to methodical application. Checking whether a system specification
actually fulfills an MSC is a matter of validation, and is beyond the scope of this thesis.

One of the distinguishing characteristics of the interpretations we study is their stability
under property refinement of a given system specification. We carry over the definition we
gave in Section 5.3 for property refinement of MSCs to the refinement of system specifica-
tions as follows:

Definition 8 (Specification Property Refinement) For all sets Specy, Spec; € (C' x
S)>* we define the relation <, : P((C x S)®) x P((C x S)>) by

Specy <, Spec; = Specy C Spec,
and say “Spec refines Spec, (with respect to property refinement)” or “Spec, is a property

refinement of Spec,, if Spec, <, Spec, holds. o

Specification property refinement inherits reflexivity, transitivity, and antisymmetry from
set inclusion.

With these preliminaries in place, we can now present the definitions of the existential
(cf. Section 6.2.1), universal (cf. Section 6.2.2), exact (cf. Section 6.2.3), and negated
(cf. Section 6.2.4) MSC interpretations, in turn.

193

6. MSCs for Property-Oriented System Specifications

6.2.1. Existential MSC Interpretation

MSCs and similar description techniques have gained significant popularity over the past
decade as a means for illustrating scenarios of component interaction in distributed sys-
tems.

As an example, consider the specification of a telecommunication switching system, which
typically covers several thousand services (such as starting up, processing calls, billing,
etc.). Each of these services may result in several thousand lines of executable code. By
means of scenarios we can illustrate key patterns of the communication behavior of the
components constituting the switch, without having to present all the nitty gritty details
of what all else happens before, during, and after the time interval covered by the scenario.

In this section we give a formal definition for the term “scenario”, and discuss its methodical
usage.

Typical informal definitions for the term in the literature are “a sequence of actions that
illustrates a behavior” (cf. [RJB99]), and “a particular trace of action occurrences starting
from a known initial state” (cf. [DW98]). Some authors view scenarios as instances of
use cases, and informally define the term “use case” as “the specification of sequences
of actions, including variant sequences and error sequences, that a system, subsystem, or
class can perform by interacting with outside actors” (cf. [RJB99]), or as “a sequence of
actions a system performs that yields an observable result of value to a particular actor”

(cf. [Kru99al).

In our view, a scenario is a partial, possible behavior of the system under specification.
A scenario describes the system’s behavior from a certain point in time on, and under
certain circumstances that have enabled occurrence of the scenario. Formally, we define
the notions of existential interpretation and scenarios as follows:

Definition 9 (Existential Interpretation, Scenario) For all Spec C (C' x S)*, and
a € (MSC) we define

Spec b3 a def (Fp € Spec,u € N, (¢,1) € [a]u =2 Y]y = @lws)

and say that “Spec fulfills o under existential interpretation” or “« represents a scenario
of the system specification Spec, if Spec 3 «a holds. o

According to this definition, a represents a scenario with respect to Spec, if a represents at
least one of the possible system behaviors according to Spec from a certain point in time
onward.

Our definition is liberal in the sense that we allow the use of alternatives, repetition, and
referencing in the MSCs we interpret as scenarios. Most of the traditional approaches,
which view scenarios as instances of use cases, require scenarios to represent a single, finite
sub-sequence of the system behavior. This restricted view quickly leads to a proliferation

194

6.2. MSC Interpretations

of scenarios that capture, say, different numbers of repetitions of a loop body, but are
identical otherwise. Therefore, we have chosen our liberal scenario definition and, in a
sense, identify the notions of scenario and use case in our treatment.

Because scenarios describe only potential behavior, and do not constrain all behaviors
of a system specification, the existential interpretation is not monotonic with respect to
specification property refinement, as the following proposition demonstrates:

Proposition 6 (<, does not preserve 3) There are Specy, Spec; C (C' x S)> and
a € (MSC) with

Spec; F3 o A Specy <, Spec;, N Specy V3 « 5
Proor Consider Spec, & {{c+— m.},s)>*} and Spec, &f Specy U{({b — my}, s)>} for
some s C S, channels ¢, b, and the corresponding messages m., and my. Clearly, we have
Specy <, Spec; and Spec, 3 b>my, but Specy 5 b>my. m

The methodical consequence of this proposition is that, during systematic development
based on specification property refinement, the developer must revalidate all scenarios
against the specification after each refinement step. Only development steps coarsening
a specification, i.e. leading from a specification Spec, to another specification Spec, with
Specy <, Spec;, preserve an existential interpretation.

This sensitivity to specification property refinement of the existential interpretation is not
a problem if the purpose of MSC usage is to illustrate or document the system at a certain
stage of the development process. On the contrary, we can view the documentation of
complex interaction patterns by means of scenarios in already existing systems as a means
of knowledge management, and as an important step in the reengineering process; this step
prepares the transition from one system version to the next.

Moreover, if we start our development process by collecting interaction requirements in
the form of scenarios, then we can try to construct a system fulfilling these scenarios. This
drives the methodical character of scenarios from a mere means of documentation or il-
lustration towards becoming a specification technique for complete system behavior, and
constructively avoids the problem of the existential interpretation’s sensitivity to specifi-
cation property refinement.

In the remainder of this chapter, as well as in Chapter 7 we discuss the step from scenarios
to complete behavior specifications in detail. One of the prerequisites for this step is
a sufficiently expressive MSC notation, such as the one from Chapter 4, allowing us to
compose both orthogonal scenarios (by means of sequential and alternative composition,
interleaving, repetition, preemption, or trigger composition), and overlapping scenarios (by
means of join). The other important prerequisite is the existence of the refinement notions
we have established in Chapter 5; they allow us to tune the level of detail we want the
constructed specification to have already while working on the MSCs.

195

6. MSCs for Property-Oriented System Specifications

6.2.2. Universal MSC Interpretation

Above, we have identified the documentation and illustration of key interaction patterns
as the predominant application area for scenarios. If the system specification is not (any
more) subject to change then every existentially interpreted MSC remains a scenario of
this specification.

If we place MSCs in the center of a systematic development process where a scenario,
which we have identified as such, will remain a scenario of the system across the entire
development process, we have to come up with a stronger MSC interpretation.

The universal MSC interpretation we define in this section designates the interaction pat-
terns represented by an MSC as mandatory behavior, as opposed to the optional interpre-
tation underlying scenarios. Formally, we define

Definition 10 (Universal Interpretation) For all Spec C (C' x S)®, and a € (MSC)
we define

Spec by def (Vi € Spec :: (Ju € N, (p,t) € [a]u = Y|y = ©lwg))

and say that “Spec fulfills a under universal interpretation”, if Spec v « holds. o

According to this definition, every behavior of a specification that fulfills an MSC under
universal interpretation must, from a certain (finite) point in time onward, equal one of
the behaviors represented by the MSC. Because we have defined specification property re-
finement based on set inclusion, we immediately see that the universal MSC interpretation
is stable under property refinement:

Proposition 7 (Stab~ility of the Universal Interpretation) For all system specifica-
tions Spec, Spec; C (C' x S)* and MSCs a € (MSC) we have

Spec, v o A Specy <, Spec;, = Specy Fy «
PROOF For all Spec,, Spec, € (C x §)> and o € (MSC) we observe
Spec, Fy o A Specy <, Spec;
= (* definitions of Fy and <, *)
(Vi € Specy :: (FJu € N, (p,t) € [a]u :: Y|y = ©lwg)) N Specy C Spec,
= (* predicate calculus *)
(Vi € Specy = (Fu € N, (¢, 1) € [ou = ¥luy = Plua))
= (* definition of -y *)

Specy Fv «

196

6.2. MSC Interpretations

The universal interpretation lets us use MSCs to express eventuality properties: one of the
behaviors represented by the MSC does eventually occur in every execution of the system.
In Section 6.3 we examine the properties we can express with MSCs in more detail.

Recall that [a], is the equivalence class of all behaviors “complying” to a over some time
interval. Therefore, if Spec Fy « holds, then arbitrary other behavior may occur before,
during, and after the time interval covered by « in each of Spec’s elements. In the next
section, we strengthen the definition of universal interpretation further to rule out this
“background noise”.

6.2.3. Exact MSC Interpretation

The MSC interpretations we have introduced so far target the combination of MSCs with
(other) given system specifications. For every MSC « and u € N, the semantics [a],
contains all system behaviors exhibiting the interaction sequence specified by « from time
won (cf. Section 4.5.2). This ensures that in both the existential and the universal interpre-
tation the MSC under consideration requires neither more nor less than that the specified
behavior occurs; in particular, it does not prohibit other behavior before, during, and after
the time interval covered by the MSC, as long as the other behavior does not “contradict”
the one represented by the MSC. This flexibility is necessary because we do not want an
MSC to constrain the specification it complements more than necessary. It allows us to
relate MSCs with arbitrary other system specifications of which we know nothing more
than the sets of components, channels, and messages they refer to.

If, instead, we use MSCs for a complete system specification, i.e. if we want to construct a
specification from a set of MSCs, such that the specification captures precisely the inter-
action patterns described by the MSCs — nothing more or less — we must use a different
MSC interpretation. Intuitively, for a given o € (MSC) we start with the semantics [a],
and eliminate from it every execution where anything else than what is specified explicitly
in e occurs. Formally, we define

Definition 11 (Closed World Semantics) For all a € (MSC), u € N, and (p,1) €
(C'x5)*°x Ny we define the semantics function [.] cw : (MSC)xINy — P((C'xS5)>°xNy)
by

(Spﬂt) € [[a]]u,CW = (Spvt) € [[@]]u
AV € [t € (Cx S)® £
mi ().t C m(p)t' = (¥,1) € [a]u)
and call [a], cw the “closed world semantics” of o with respect to u. By =" and gpc w
we denote the equivalence and MSC property refinement relations we derive from =, and

<,, respectively, by substituting [a], cw for [a], in the original definitions (cf. Sections
4.4 and 5.3). O

197

6. MSCs for Property-Oriented System Specifications

The elements of the closed world semantics of an MSC a must explicitly display the
interaction behavior represented by « (according to the first conjunct of Definition 11);
moreover, they do not display any other interaction behavior during the time interval
covered by a (according to the second conjunct of Definition 11). The following proposition
illustrates this by stating that a message that does not occur explicitly in an MSC term «
does not occur at any time in the closed world semantics of «a:

Proposition 8 For all ch>m € (MSG), and o € (MSC) we have

ch>m & msgs.ac = (¥(p,t) € []u.cw,t’ € [u,t] :: m & m1(p).t'.ch)

O

PROOF See Appendix B.3. -

By means of the following corollary we can round up our treatment of property refinement
for the preemption construct we have started in Section 5.3. There, we could not formulate
a syntactic criterion for removing a preemption construct from an MSC term; all we could
do was to give a very strong semantic criterion that prevented the preemptive message
from occurring. The refinement rule we gave read as follows:

"a“ﬁ\{chbm} Sp o dﬁ’mﬂ
where M & {chem 1 ch € C Am € M}. Recall that the semantics of the message
closure operator [.]- ensures that in the refined MSC [a]Y\{¢"™} the message ch>m does
not occur during the time interval covered by o.

Under the closed world semantics, however, we can determine syntactically whether or
not a message can occur in the behavior represented by an MSC. Therefore, we have the
following corollary of Proposition 8:

Corollary 1 (Syntactic Criterion for Preemption Refinement) For all messages
ch>m € (MSG), and MSCs a € (MSC) we have

(ch>m & msgs.a) = (a =CW [a]M\Mehemh
and
(ch>m & msgs.o) = (a <" o) .

Still, we have to handle the refinement of preemption with care. Consider the MSC term
(c chepn B) ~ ch>m
and let ch>m & msgs.o hold. Clearly, we have e <S (v chbgm), but

(v ~ ch>m) SPCW ((a chogn B3) ~ ch>m)

198

6.2. MSC Interpretations

does not hold, i.e. this (syntactic) form of preemption refinement destroys the composi-
tionality of property refinement (cf. Section 5.3.2). We mention two ways for dealing with
this problem. The first is to check the validity of ch>m ¢ msgs.y for all MSC terms ~y
in the MSC documents in which a or a reference to o appears. The second is to protect
the preemption construct by means of the protect operator we have introduced in Section
5.4 in connection with message refinement. This prohibits the occurrence of ch>m during

the time period covered by « in the semantics of protect(« chogn 3) ~ ch>m; then, the
suggested refinement is valid and compositional.

Now we use the closed world semantics to define the exact MSC interpretation.

Definition 12 (Exact Interpretation) For all Spec C (C' x S)*, and a € (MSC) we
define

SpecFx o & 1€ Spec = (Ft € Noo = (U, 1) € [a]o.ow
ANV >t ch € C:m(Y).t.ch = <>))

and say that “Spec fulfills @ under exact interpretation”, if Spec Fx «a holds. o

This definition characterizes the exact interpretation as the strongest universal interpreta-
tion. Moreover, we have
Fx € kv C k3

which we derive easily by inspection of the three interpretations’ definitions. If an MSC
a represents finite behavior, i.e. we have (¢,t) € [a]o.cw = t € N for all ¢ € (C x S)>,
then the exact interpretation requires “silence” on all channels after the interactions as
specified in « have occurred. We could relax the exact interpretation by dropping the
second conjunct of the definition, above. However, the stronger version we have chosen

here matches best our intention of having an interpretation that leaves no room for other
behavior than the one explicitly contained in the MSC under consideration.

Under the closed world semantics and the exact interpretation an MSC gives us complete
information about what happens among the depicted components. If, for instance, we
consider the closed world semantics of the MSC SX (cf. Figure 6.1 (b)) we find that it
contains only executions where after the sending of message sreq by X there is no other
communication between X and Y until the arrival of message sack from Y at X. In other
words, yr>sack is the immediate response of Y to X’s zy>sreq message.

As we have mentioned above, the exact interpretation is of particular interest in the deriva-
tion of complete system behavior from a set of MSCs; it allows us to clearly separate the
“absolutely necessary” behavior from possible “background noise”. Therefore, this in-
terpretation forms the basis for our transformation from MSCs to individual component
specifications in Chapter 7.

199

6. MSCs for Property-Oriented System Specifications

6.2.4. Negation: Unwanted Behaviors

The existential, universal, and exact MSC interpretations allow us to express behaviors we
want the system under consideration to have. The exact interpretation even goes beyond
both the existential and the universal interpretation in that it not only requires what can
happen (the behavior explicitly represented by the MSC); it also makes precise what must
not happen (everything else).

By putting our focus on the second aspect of the exact interpretation, i.e. on specifying
what must not happen, we obtain another possibility for interpreting an MSC with respect
to a system specification: MSCs as unwanted behaviors or as “anti-scenarios”.

Definition 13 (Negative Interpretation, Anti-Scenarios) For all Spec C (C x S
and a € (MSC) we define

Spec . a & (Vip € Spec,u € N, t € Ny =2 (¢,t) & [o]w)

and say that “Spec forbids o, or that “«a represents an anti-scenario of Spec”, if Spec -, «
holds. o

If o is an anti-scenario with respect to Spec, then no behavior represented by a occurs in
any element of Spec. Anti-scenarios are, in a sense, the duals to MSCs under universal
interpretation. While the latter specify what must eventually happen in all executions, the
former specify what must not happen in any execution.

Clearly, our definition for anti-scenarios, which we have obtained by “negating” the exis-
tential interpretation, is just one of several alternatives. We could also have negated the
right-hand-side of the universal interpretation, and would have obtained anti-scenarios as a
specification of behavior absent from at least one execution of the system under considera-
tion. Our selection reflects the intuition behind the typical interpretation of anti-scenarios
as counterexamples or error cases. A good example of this way of using MSCs is the coun-
terexample output of the model checker SPIN [Hol97]. As the result of trying to check
a temporal logic formula that does not hold in the system (i.e. the specification) under
consideration SPIN presents a specific message trace — in the form of an MSC — leading to
a violation of the formula with respect to the specification.

After having detected an MSC as an error case of a specification we can conserve the MSC
as a (negative) test case for subsequent versions of the specification.

In the introduction to this chapter we have already given an example for an anti-scenario
that we might want to interpret with respect to specifications of the ABRACADABRA-
protocol. If Spec denotes such a specification, then Spec - (— AC') holds if Spec contains
no executions with an infinite number of simultaneous send requests by X and Y.

Because for an MSC term « the semantics function [«f, allows arbitrary communication
besides the one represented explicitly by a, we must resort to the closed world semantics

200

6.2. MSC Interpretations

to specify certain anti-scenarios. As an example, consider the MSC ETX of Figure 6.3,
where, after a simultaneous send request by X and Y component X starts the transmission
of data by sending message d to Y.

msc ETX
X Y
:} | —
par

YD sreq

< JEDSTE]

zy>d
L] L]

Figure 6.3.: Error case: missing conflict resolution

For any Spec C (C' x S)> the relation Spec - (— ETX) denotes that no zy>d occurrence
may follow a simultaneous send request in any execution in Spec, even if between the
collision and the transmission of data there is a collision resolution and a subsequent send
request by X for which Y returns an acknowledgment.

What we really might want to express with MSC ETX as an anti-scenario is that zy>d
must not immediately follow a collision between X and Y. Recall from Section 6.2.3 that
the exact MSC interpretation allows us to express such immediate responses. Therefore,
if we interpret ETX as an anti-scenario under the closed world semantics with respect to
Spec, then E'TX excludes only those executions where zy>d immediately follows a collision
between X and Y.

To take this aspect of negation into account, we introduce a closed world version of our
definition of the negative interpretation:

Definition 14 (Closed World Anti-Scenarios) For all specifications Spec C (C' x S)>®
and MSCs a € (MSC) we define

def

= <V77/J € Specau €]N,t €]Noo - (wvt) € ﬂa]]u,CW>

and say that “a represents an anti-scenario of Spec under the closed world semantics”, if
Spec FEW o holds. o

Spec Y o

Because of their definitions by means of universal quantification over the elements of Spec,
we immediately observe the monotonicity of both negative interpretations with respect to
specification property refinement.

As an aside we note that if Spec is given by means of an MSC, say «, we can check whether
an MSC (3 is a closed world anti-scenario with respect to a. This is the case if and only if
«a and 3 are inconsistent with respect to join. In Section 7.4.4 we introduce a constructive
approach for deciding this question on MSCs.

201

6. MSCs for Property-Oriented System Specifications

6.3. Property Specification with MSCs: Safety and
Liveness

The MSC interpretations we have introduced in the preceding sections give us a handle
at clarifying the “large-scale” properties specified by an MSC, such as whether or not
the interactions within the MSC may or must (not) occur as part of any or all system
executions. We can use any of these interpretations to relate MSCs with arbitrary other
forms of system specifications.

Here, we turn our focus back on MSCs as such, and study the properties we can express
with MSCs according to the “traditional” classification into safety and liveness properties
as suggested by Lamport (cf. [Lam77, Lam99]). The main result of this section is as
follows: our MSC dialect allows us to specify — in essence — liveness properties. Therefore,
our MSCs nicely complement specification techniques whose prime target is safety. By
means of slight changes to the semantics definition, however, we can also use MSCs to
express safety properties.

We start our investigation of safety and liveness properties by giving formal definitions
for these terms in Section 6.3.1. In Section 6.3.2 we determine the class of properties our
MSC dialect allows us to express. We do so by determining, for each MSC operator, what
kinds of properties it preserves in a composition or, alternatively, what kinds of properties
it defines. In particular, we will find that messages, infinite loops, and trigger composition
define liveness properties; almost all MSC operators — with guarded MSCs and guarded
loops as the only exceptions — preserve liveness properties.

6.3.1. Safety and Liveness

To prepare our discussion of the properties we can express directly with MSCs, we now give
formal definitions of the terms “property”, “safety”, and “liveness”. We do so by adapting
the well-accepted definitions of [AS85] to the context of our system model.

Definition 15 (System Property) A (system) property} q is a set of system executions
with respect to the system model of Section 4.2, i.e. ¢ C (C' x 5)*. 0

Thus, the notion of system specification we have introduced earlier in this chapter coincides
with the notion of system property we have given here. Determining whether a system
specification Spec C (C' x S)* fulfills a property ¢ € (C' x S)™® is a matter of checking
whether Spec C ¢ holds.

According to [Lam77, AS85], a safety property includes all system executions where “noth-
ing bad” ever happens. Put another way, if a given system execution does not fulfill a safety

'In Chapter 7 we differentiate between system properties and component properties. For the remainder
of this section we refer to system properties when using the term property alone.

202

6.3. Property Specification with MSCs: Safety and Liveness

property, we can find a point in time where “something bad” has happened during this
execution; whatever happens afterwards cannot “undo” the “bad thing” (the execution
has reached a “point of no return”). Formally, we define

Definition 16 (Safety Property) ¢ C (C' x S)™ is a safety property, if and only if

(Vi € (Cx8)®:pgq: (HEN: (Vo (Cx8)®u(hlt)~pdq))
holds. o

By inspection of this definition we immediately obtain that both () and (C’ x S) are safety
properties. We call these two properties the trivial safety properties.

[Rem92|, [M6199], and [Bro95, Bro99a] give an alternative characterization, which identifies
safety properties as the prefix-closed subsets of the set of all system executions. We repeat
it here, because it facilitates our proofs for safety properties in Appendix B.3.2.

Definition 17 (Prefix Closure) Let ¢ C (C' x S)® be a property, and (US (C x §)>
any system execution. We define the prefix-closure operator prefc : P((C' x S)*) —
P((C x 8)*) by

e prefeq = MeN: (Fpequy|t=plt) o

Proposition 9 (Alternative Characterization of Safety) Let ¢ C (C' x S)® be a
property. q is a safety property if and only if

q = prefc.q
holds. o

PROOF See Appendix B.3. -

A liveness property includes all system executions in which “something (good)” happens
eventually (cf. [Lam77, AS85]); put another way, there is no “point of no return” during
any system execution fulfilling the liveness property.

Definition 18 (Liveness Property) ¢ C (C'x)™ is a liveness property, if and only if
(Vip € (Cx8)®,teN:(Fpe (Cx8)®:(Plt)~peq))
holds. o

From this definition we immediately infer that (C' x S)™ is a liveness property, whereas 0
is not. We call (C' x S)* the trivial liveness property.

Again, there is another characterization of liveness (cf. [Rem92, M6199, Bro95, Bro99a)),
which facilitates our proofs in Appendix B.3.2; it identifies liveness properties as dense sets
with respect to (C' x §)*:

203

6. MSCs for Property-Oriented System Specifications

Proposition 10 (Alternative Characterization of Liveness) Let ¢ C (C' x S)> be a
property. q is a liveness property if and only if

prefc.q = (C x S)>
holds. o

PROOF See Appendix B.3. -

Some properties are neither safety nor liveness properties according to the definitions above.
This is true for properties that simultaneously require “nothing bad” and “something
(good)” to happen in all system executions. We will see examples of such properties shortly.
The following proposition (cf. [AS85]) shows that we can decompose every property into a
safety part and a liveness part:

Proposition 11 (Property Decomposition) Let ¢ C (C x §)> be_a property. Then
there is a safety property g, C (C' x S)* and a liveness property q C (C' x S)*°, such that

q=4ds N qi
holds. o

PROOF See Appendix B.3. -

We call properties that directly fall into the two categories of Definitions 16 and 18 pure
safety and liveness properties, respectively, to distinguish them from arbitrary other prop-
erties.

Equipped with these characterizations of safety and liveness we will now investigate the
properties MSCs allow us to express.

6.3.2. MSC Properties

In the following paragraphs we will identify the classes of properties expressible by the
operators of our MSC dialect. We derive our results via the following steps. First, we de-
fine how to associate a property with an individual MSC. Second, we determine the MSC
composition operators defining or preserving safety and liveness properties, respectively.
This shows how safety and liveness properties propagate through a composite MSC. As a
result we obtain that MSCs without guards, guarded loops, and applications of the join
operator describe pure liveness properties. Thus, such MSCs nicely complement other,
safety-oriented, specification techniques. Third, we dicuss how to alter the semantics defi-
nition to yield safety specifications with MSCs.

204

6.3. Property Specification with MSCs: Safety and Liveness

Assigning Properties to MSCs

Recall from Section 4.4 that we have defined the semantics [a], relative to an arbitrary
starting time u € INo.. The elements of [a],, are pairs of the form (g, t), where ¢ € (C'x S)>
and t € N, holds. To associate a property with an MSC «, we fix the starting time to 0,
and project each element of [afy onto its first position. More precisely, we define

Definition 19 (MSC Properties) Let a € (MSC) be an MSC term. We define the
property functions [.] : (MSC) — P((C' x §)*®) and [.Jew : (MSC) — P((C x S)*°) by

[o] & {pe(Cx8)®:(TteNy: (o) € [a]o)}

and

[aew & {pe (Cx8)>:

(Tt € N = (0, 1) € [a]o,cw
NNV >tm(p)t = <)}

respectively. We call [a] “the property associated with” or “defined by the MSC «”,
and call [a]cw “the property associated with” or “defined by « under the closed world
semantics”. 0

Thus, the property we associate with an MSC « contains all infinite executions “comply-
ing” to « from time 0 on. This definition highlights once again the difference between the
“regular” and the closed world semantics; if the MSC covers only a finite time interval
of the system’s behavior, the property under the “regular” semantics allows any behav-
ior afterwards, whereas the property under the closed world semantics requires “silence”
instead.

As an example, consider the MSC property [— A], where A is the MSC for the ABRA-
CADABRA-protocol (cf. Figure 4.20 in Section 4.7.2). [— A] contains all infinite executions
“complying” to the ABRACADABRA-protocol from time 0 on; still, X and Y may perform
arbitrary other message exchanges. [— A]cw contains only behaviors where X and Y
execute the ABRACADABRA-protocol and do nothing else.

Our definition of MSC properties allows us to use MSCs as specifications, as well. We
can, for instance, formulate that we interpret a successful transmission initiated by X
existentially with respect to [— A] as follows:

[= Al F3 (= 5X)

The next step we take to investigate the properties we can express with our MSC dialect
is to observe how safety and liveness properties propagate through MSC composition, and
which MSC operators define safety and liveness operators, respectively. We limit this
investigation (and the accompanying propositions) to MSC properties on the basis of [.],

205

6. MSCs for Property-Oriented System Specifications

and deal with properties under the closed world semantics separately at the end of this
section.

Safety Preservers
Most of the operators we have available in our MSC dialect yield safety properties, if their

operands are also safety properties. More precisely, we have

Proposition 12 (Safety Preserving Operators) Let o, € (MSC), p € (GUARD),
Tel;, |, ~,}, <> € {<*x> <>, <m,n>} with m,n € N, ch>m € (MSG), and
X € (MSCNAME) with (X,) € MSCR. Furthermore, let [a] and [3] be safety properties.
Then each of the following is a safety property:
[p: o]
[at5]
[aT<]
[o ™"]
[[O{ﬂchbm]]
[— X] 0
PROOF See Appendix B.3. n

Message occurrence, infinite loops, and trigger composition are absent from this list. As
we will see below, message occurrence and trigger composition both generate liveness prop-
erties, whereas infinite loops produce hybrid properties, in general.

Liveness Preservers
All operators but those for guarded MSCs, guarded loops, and join preserve the liveness
of their operands. More precisely, we have

Proposition 13 (Liveness Preserving Operators) Let o, 5 € (MSC), m,n € N,
<[> € {<x> <>, <m,n>}, chbm € (MSG), and X € (MSCNAME) with (X,«) €
MSCR. Furthermore, let [o] and [(] be liveness properties. Then each of the following is
a liveness property:

[or; 5]
o] 5]
[~ 0]
[aT<-]
o ="]
[— X] O
PROOF See Appendix B.3. -

206

6.3. Property Specification with MSCs: Safety and Liveness

For [aftensm] we also conjecture that it yields a liveness property, if [a] does. Our rationale
for this conjecture is that elements ¢ of [af}ehsm] have one of two possible shapes. The
first possibility is that there is a time interval [u,t] with 0 < u < ¢ such that a contribution
represented by a occurs during this time interval, but ch>m does not. Such elements of
[attensm] essentially express the property “eventually o”. The second possible property
expressed by elements of [aftepsm] 18 “ch>m occurs infinitely often”. “Eventually o, and
“infinitely often ch>m” are both classical liveness properties.

Hybrids

empty and any both yield (C’ x) as their associated properties, and are, therefore,
both safety and liveness properties.

Guarded MSCs yield neither safety nor liveness properties, if their operand is a liveness
property. However, we can determine the property represented by a guarded MSC as the
intersection of a nontrivial safety and a nontrivial liveness property. In the property [p : o]
of an MSC term p : « the safety part captures that the guard p must hold precisely at
time 0, whereas the liveness part captures that the execution complies to « from time 0
onward. By a similar line of reasoning we also identify guarded loops as combinations of
safety and liveness properties.

The join of two MSCs « and 3 has also both a safety and a liveness part, if [o] and [5]
are liveness properties. Recall from the join operator’s definition that (¢,t) € Ja ®],
holds for 1) € (C'x $)™, u € N, and ¢ € N, precisely if there exist ¢’ and ¢ such that
both (¢,t") € [a]., and (¢, t") € [F]. hold, and there are no redundant messages from the
set msgs.c N msgs.3 in 1|;,. This latter requirement is the safety part of the property
expressed by the join operator.

Proposition 14 (Hybrid Properties) Let «, 5 € (MSC) be such that both [«] and [5]
are nontriwvial liveness properties, and p € (GUARD). Then, in general, each of the fol-
lowing is neither a pure safety nor a pure liveness property:

[p: o]

[aT<]

[a @ 4] .
PROOF See Appendix B.3. -

Liveness Generators

Two operators generate liveness properties, whatever property class their operands belong
to: message occurrence and trigger composition.

Recall from Section 4.4 that we have defined the semantics of a single message ch>m €
(MSG) by

[ch>m], & {(p,t) € (Cx 8)® x N :t=min{v:v>uAm e i (p)v.ch}}

207

6. MSCs for Property-Oriented System Specifications

As a consequence, message occurrence generates a liveness property: we can always extend
any finite execution where the message has not yet occurred by an infinite execution where
the message does occur at some finite time.

A similar line of thought shows that trigger composition generates liveness properties. We
have

Proposition 15 (Liveness Generators) Let o, € (MSC), and ch>m € (MSG). Fur-
thermore, let [a] and [B] be arbitrary nontrivial properties. Then each of the following is
a liveness property:

[chem]
[= 4] D

PROOF See Appendix B.3. -

Liveness Specifications with MSCs

Because message occurrence, as we have defined it in Section 4.4, defines a liveness property,
and all of our composition operators up to those for guarded MSCs, guarded loops, and
join preserve liveness properties, we obtain the following corollary:

Corollary 2 MSC terms containing neither guarded MSCs, nor guarded loops, nor appli-
cations of the join operator express pure liveness properties. o

This corollary has a methodical consequence. Our MSC dialect nicely complements other
specification techniques whose prime focus is safety. As a simple example, consider a system
consisting of the components X and Y, connected by means of the channels zy (from X to
Y) and yz (from Y to X). Let us assume that X and Y communicate by exchanging the
messages zy>¢g and yr>h. The following is a safety property for this system: at any time
t € IN, Y may have sent at most as many h messages as it has received g messages from X
until before time ¢. We can formalize this property as the set ¢ C (C’ x S)* of executions,
where we define ¢ as follows:

peqg (Vt € N =2 ent.(yz, h, 0| (t+ 1)) < ent.(zy, g, 1))

Here, the function cnt : C' x M x (C x S)* — NN counts the number of occurrences of a
message on a certain channel in a given execution segment:

0 if || =0
ent.(ch,m, p) ey ent.(chy,m,11) if || >0Am € m(p).0.ch
ent.(ch,m,pT1) if || > 0Am & m(p).0.ch

Clearly, q is a safety property:

208

6.3. Property Specification with MSCs: Safety and Liveness

W € prefe.q
= (* definition of prefc *)

(VteIN:FJpeqguylt=plt))
= (x definition of ¢, predicate calculus *)

(Vt e N =

(Fp e (Cx 8)™ =
(Vt' e N iz ent.(yz, h, o L (' + 1)) < ent.(zy, 9,0 [) Nt =¢lt))

= (*select t >t 4+ 1 %)

(Vt € N == ent.(yz, h, | (t+ 1)) < ent.(zy,g,¢ | t))
= (* definition of ¢ *)

v eq

We can complement ¢ by an MSC specifying a liveness property. Consider MSC L in
Figure 6.4. It captures the following requirements:

e there is an infinite number of zy>g¢ messages, as well as an infinite number of yz>h
messages,

e a yx>h message eventually follows every zy>g message.

msc L

yr>h

Figure 6.4.: Liveness specification

Together, i.e. by performing the intersection gN[— L], these properties yield a specification
restricting the system’s behavior in three ways:

1. Y must not produce unsolicited reactions,
2. Y must eventually answer every incoming zyt>g message by a yz>h message,

3. X issues an infinite number of zyr>g messages.

209

6. MSCs for Property-Oriented System Specifications

A typical source for safety specifications are automata models like the ones we have men-
tioned in Chapter 3. Likewise, the “transition relation” in TLA models the safety part
of an overall TLA specification (cf. [Lam99]). We can complement all of these by stating
liveness properties by means of MSCs.

Safety Specifications with MSCs

As we have seen above, most of the MSC operators also propagate safety properties. The
exceptions are infinite loops and trigger composition. Therefore, if we alter the definition
of message occurrence such that its new version yields a safety property instead of a
liveness property, and employ neither infinite loops nor trigger composition, we obtain a
specification mechanism for safety properties.

We can turn message occurrence into a safety property generator by placing an upper
bound on the time until when the message under consideration must have occurred. This
places a “bounded response” requirement on the originator of the message. If we require
immediate response from the message sender, i.e. if we set the upper bound on the response
time to 0, and denote the sending of a message now by ch>,m, we obtain the following
semantics definition:

[chsm], &of {(pu+1) e (Cx8)®xN:mem(p)u.ch}

Clearly, [chi>sm] is a safety property. We can, by looking at what occurs on the channels
at time 0, determine immediately whether or not a given execution belongs to [ch>gm].
The extension of [ch>sm], to other upper bounds on the sender’s response time is an easy
exercise.

Safety and Liveness under the Closed World Semantics

Properties under the closed world semantics are neither pure safety nor pure liveness prop-
erties. Instead, we can separate such an MSC property into a safety and a liveness part,
similar to what we have done with guarded MSCs under the “regular” semantics, above.

An example for this is message occurrence under the closed world semantics. We can easily
show that with

qs &f {SOG(C'XS)OOZ

(Veh' = ch’ # ch: mi(p).ch’ = <>%)
A (mi(p).ch # <>® = (It € N 1y (p).ch = <> ~<m>~<>>)}

and
ar = {p € (Cx 8)* :m(p).ch # <>}

we have

[ehem]ew = qs Nar

210

6.4. Related Work

Clearly, qg is a safety property, and ¢, is a liveness property.

Such specific safety and liveness properties do not propagate through an MSC specification
under the closed world semantics. The MSC ch>m; ch>m, for instance, does not represent
the safety property ¢s.

However, without proof we note the two parts of the major safety property of an MSC «
under the closed world semantics:

e at most the messages specified in « occur in any element of [o] oy, and

e the order of the messages occurring in any element of [a]cw is as specified in a.

The corresponding liveness property of « is that the specified messages do indeed occur
(there are no infinite delays).

In Chapter 7 we present this decomposition in more detail; there, we derive these properties
— from the viewpoint of individual component specifications — schematically from MSCs.
In particular, we will present a transformation scheme that produces from a given MSC
the corresponding safety part in the form of an automaton model.

6.4. Related Work

The distinction between the existential and universal interpretation of behavior spec-
ifications in general, and of MSC specifications in particular appears also in [Kle98],
[KGSB99, Krii99b], and [DH99].

The author of [Kle98] represents system specifications by means of labeled state transition
systems, and uses the latter also as a semantics basis for scenario specifications. The in-
stability of properties under property refinement is the defining characteristic of existential
system properties in this approach; similarly, stability under property refinement defines
a property as being a universal one. Therefore, the notions of existential and universal
MSC interpretation we have introduced in this chapter correspond directly with the no-
tions of existential and universal properties of [Kle98]. Our work in this chapter, which
is an extension of earlier contributions in [KGSB99, Krii99b|, adds the notions of exact
interpretation, and negation to the set of interpretations known from [Kle98|. The ex-
act interpretation reduces the semantics of a specification to only the explicitly depicted
behavior. The negated interpretation allows us to specify “anti-scenarios”.

As we have discussed already in Section 2.3.6 the authors of [DH99] allow the developer
to distinguish between optional and mandatory behavior for all modeling elements within
an LSC specification: entire LSCs, individual messages, and locations on component axes.
As a result, an LSC specification composes segments of optional and mandatory behavior
within the same LSC. The authors of [DH99] use this flexibility to encode alternatives,

211

6. MSCs for Property-Oriented System Specifications

and repetition. In our approach we use the dedicated MSC-96 syntax for this purpose,
and distinguish between existential (optional) and universal (mandatory) behavior only on
the level of entire specifications. This supports the methodical transition of a specification
from being a collection of scenarios only to a complete behavior description of the system
(components) under consideration.

[Fac95] defines the notions of “scenaric” and “complete” interpretation in the context of
Time Sequence Diagrams (TSD). The scenaric interpretation describes a single occurrence
of the behavior captured by a TSD. The complete interpretation captures, in addition, an
arbitrary number of repetitions of this behavior. Thus, the scenaric TSD interpretation is
similar to (but not identical with) our existential MSC interpretation. The complete TSD
interpretation most closely corresponds to a combination of our universal MSC interpreta-
tion and a corresponding repetition construct.

[DH99], [Fac95] and [NGH93]| also discuss the separation of interaction specifications into
their safety and liveness part.

In [DH99] safety and liveness specifications are achieved by means of a combination of
optional and mandatory modeling elements. [Fac95] proves that typical TSDs specify
combinations of safety and liveness properties; he also differentiates between the safety
and liveness constraints posed by a TSD at the component providing a service, and at
the component using a service. We pick up this discussion again in Chapter 7, where
we describe the transition from MSCs to specifications for individual components. In the
context of testing the authors of [NGH93| identify MSCs as a specification technique for
guarantee properties, i.e. properties fulfilled at least once during any system execution.
This, together with our observation that our MSC dialect specifies — mainly — liveness
properties, corresponds to our notion of universal MSC interpretation.

6.5. Summary

In this chapter we have discussed two major topics. First, we have defined four MSC
interpretations — the existential, universal, exact, and negated MSC interpretation — with
respect to other system specifications. Second, we have investigated the classes of properties
we can express with our MSC dialect. Together, these two topics help highlight the usage
of MSCs as a property oriented description technique in the development process.

The existential interpretation corresponds to the traditional view of MSCs as scenarios.
The behavior represented by the MSC may, but need not necessarily happen during an
execution of the system under development. The existential interpretation is not monotonic
with respect to specification property refinement. This interpretation, therefore, typically
underlies the usage of MSCs as a documentation mechanism for relatively short segments
of system behavior.

212

6.5. Summary

The universal interpretation leaves little room for behavior other than the one represented
by the MSC under consideration; at some point in time every execution must exhibit the
MSC’s behavior. Therefore, the universal MSC interpretation allows us to use MSCs to
express eventuality properties.

The exact interpretation leaves no room for behavior other than the one represented ex-
plicitly by the MSC under consideration. An MSC under exact interpretation fixes the
system behavior entirely; put another way, the MSC captures the complete information we
have about the system under development.

The negated interpretation treats MSCs as a specification technique for invalid execution
segments. One way of using this interpretation is to collect sets of MSCs as “counterexam-
ples” or error cases for the system under development. These counterexamples can later
serve as negative test-cases during validation.

To complement our treatment of how to relate MSCs with (other) system specifications,
we have also studied what kinds of properties we can express with MSCs as such. As a
result we have obtained that MSCs without guards and join yield liveness properties. This
suggests the use of MSCs as an addition to safety-oriented specification techniques, such as
the automata we have introduced in Chapter 3. By means of a slightly modified message
semantics we have also shown how to use MSCs for safety specifications.

213

6. MSCs for Property-Oriented System Specifications

214

CHAPTER [/

From MSCs to Component Specifications

In this chapter, we discuss the transition from an overall collaboration specification, as
given by a set of MSCs, to the specification of individual components. To avoid incon-
sistencies between the information captured by the MSCs, and the one contained in the
individual component specifications, we present two constructive transformation schemes
from MSCs to components. The first has relational component specifications in the as-
sumption/commitment format as its result, the other produces finite state machines. The
results contained in this chapter help close the gap between global system specifications,
and local component specifications.

Contents
7.1. Introductiono 216
7.2. Relational Component Specifications 221
7.3. From MSCs to A/C-Specifications 230
7.4. From MSCs to Automaton Specifications 245
7.5. Related Work o i i iiiii i 285
7.6, SUMIMATY . . v v v v v v vt e vt v e e et e e e e e e e e 292

215

7. From MSCs to Component Specifications
7.1. Introduction

The preceding two chapters on the methodical usage of MSCs have — mainly — addressed
the following questions:

e How to capture the interaction requirements of distributed components by means of
MSCs?

e How to increase the level of detail of MSC specifications?

e How to express relevant system properties with MSCs?

Each of these questions is or can be of relevance within each of the four development phases
we consider: analysis, specification, design, and implementation. In Chapter 6 we have
already mentioned that MSCs can serve as a description technique for scenarios, as well
as for complete interaction behavior specifications. Clearly, we can apply any of the MSC
interpretations from Section 6.2 within any of the development phases referred to above.

For a seamless integration of MSCs into the overall development process we are, however,
not only interested in using MSCs within each development phase, but also in using them
across all phases. In particular, if we use MSCs during the analysis phase to capture
the system’s interaction requirements, but want to perform, say, development steps on an
automaton specification of the relevant components later, then we need a way to transit
from the MSCs to a state-oriented form of specification. As we now briefly discuss, such a
transition between models requires care.

Often, the artifacts (MSCs in our case) or models produced during one phase of the develop-
ment process get thrown away or remain as mere (and sometimes obsolete) documentation
when the transition to the next development phase happens. Whereas the model in one
phase may capture all system requirements correctly, the model in the next phase may
display arbitrary behavior — unless we prove the correctness of the new model formally.
In the words of [SGW94] (p. 8): “One of the major trouble spots in traditional systems
development is the presence of discontinuities that occur within the development process.
These discontinuities are caused by the lack of formal relationships between different no-
tations... These discontinuities also make it difficult to trace the linkages between system
requirements and the implementation that is supposed to satisfy them. Maintaining this
linkage is important to ensure not only that all the requirements are met, but also that
(as the system evolves) the effects of any change can be determined precisely in terms of
its effect on the original requirements.”

In the chapter on MSC refinement (cf. Chapter 5) we have already reduced some of the
potential discontinuities with respect to using MSCs within the development process: not
only have we provided refinement notions for every aspect of behavior and structure ad-
dressed by an MSC specification, but also have we discussed the consequences of these

216

7.1. Introduction

refinements on the system model as a whole. This allows us to reflect refinement steps we
perform on an MSC also, say, on a corresponding system structure diagram. Thus, we can
increase the specification’s level of detail directly while working with the MSCs, without
having to resort to other description techniques.

In Chapter 6 we have laid a second foundation for the transition from MSCs interpreted as
scenarios to complete system specifications, by introducing the exact MSC interpretation.
The latter fixes the behavior of all system components to what is explicitly depicted in the
MSCs. This interpretation makes precise what is allowed in a collaboration between the
system components, and what is not. In this sense the MSCs capture the entire system
behavior completely.

It is, however, one of the decisive steps in the development process to transit from collabo-
ration specifications, as MSCs provide them, to the specification of individual components.
The ultimate aim of system development is the specification, design and implementation
of individual components that provide the required functionality within the environment
they are supposed to operate in. One of the major benefits of MSCs is their focus on the
interaction behavior of the components we are particularly interested in, embedded within
their respective environment. This makes MSCs particularly useful for the specification of
the interface the depicted components must provide in order to operate correctly in the
context of the overall system.

As an example, recall the specification of the central locking system (CLS) we have used
in Chapter 2 to introduce various MSC dialects. The variant of the CLS we consider here
consists of four components: a key sensor (KS), a left and a right lock motor (LM and RM),
and the controller (Control). The controller receives message kci>lck or ke>unlck from the
key sensor when the operator locks or unlocks the car, respectively. Upon receipt of either
message the controller initiates the locking and unlocking by issuing appropriate messages
(cl>down/ cr>down or cl>up/cereup) to both motors. Each of the motors acknowledges
the controller’s request by sending a reply message (le>rdy and re>rdy) to the controller.

msc CLS

e —— S

Figure 7.1.: HMSC for the CLS

We can capture these informal requirements by means of three MSCs as shown in Figures
7.1 and 7.2. The HMSC of Figure 7.1 specifies that every system execution is an infinite

217

7. From MSCs to Component Specifications

sequence of steps, where each step consists of the locking or the unlocking of the car.
The “locking” use case appears in Figure 7.2 (a): the MSC shows how the controller
interacts with its environment to close the lock. Similarly, the MSC in Figure 7.2 (b) for
the “unlocking” use case shows how the controller interacts with its environment to open
the lock.

msc locking msc unlocking
KS Control LM RM KS Control LM RM
l] [] [] [] l) [] [] []
kelek ke>unlck
par) par)
cl>dwn | cl>up |
_lc>rdy _lc>rdy
cr>dwn cr>up

- re>rdy - re>rdy

I I] I I] I I

(a) (b)

Figure 7.2.: Specification of the “locking” and “unlocking” use case

The MSCs of Figure 7.2 represent a “global” view on the collaboration of the four compo-
nents to establish the desired effect for the respective use case. The HMSC CLS of Figure
7.1 specifies how the locking and unlocking use cases compose to yield the overall system
behavior. The exact interpretation of CLS (together with locking and unlocking) fixes the
behavior of KS, Control, LM, and RM to what explicitly occurs in the MSCs.

Typically, when developing a system like the CLS in this example, we do not have to
specify or implement all of the components on our own; we can (or must) assume some of
them to be given. In the CLS our task might be, for instance, to specify and implement
the controller on the basis of an existing key sensor and existing lock motors. Clearly, we
want an implementation of the controller to exhibit the behavior as we have specified it by
means of the MSCs — under the assumption that the key sensor and the lock motors also
behave as expected.

Therefore, after capturing the “global” interaction requirements of the system part we are
interested in, our next task is to come up with individual specifications for the relevant
components, such that the individual specifications together fulfill the captured require-
ments. An obvious way of introducing a discontinuity into the development process at this
point is to start developing the individual component specifications from scratch. Because
there is no formal relation between the individual component specifications and the inter-
action requirements specification we can only hope for the former to comply to the latter.
The typical way of gaining back confidence in our work is to perform more or less exten-
sive tests on the resulting components, and to check whether the test sequences match

218

7.1. Introduction

the requirements specification. MSCs can support the testing process nicely, because we
can derive both test-drivers and result checks from them rather schematically. However, if
testing is our only way of establishing the correctness of an implementation we are in quite
bad shape: “Program testing can be used to show the presence of bugs, but never to show
their absence!” (cf. [DDHT72]) — unless the test is exhaustive.

In our approach we avoid the mentioned discontinuity by constructing individual compo-
nent specifications directly from the given MSCs. This ensures that the components we
thus obtain exhibit precisely the interaction behavior we have captured before by means
of the MSCs. The construction process establishes the formal link between the two repre-
sentations of the relevant component behavior.

We present and discuss two derivation schemes for the construction of individual compo-
nent specifications from MSCs. The one yields relational component specifications in the
assumption/commitment format, the other produces finite state machines. In the following
paragraphs, we briefly discuss these two forms of behavior specification, in turn.

Assumption/Commitment Specifications One way to specify the behavior of a partic-
ular component is to relate each stream of inputs received by the component on its input
channels with sets of possible output streams produced by the component on its output
channels; the sets of output streams model the component’s reaction to the corresponding
input. Such relational component specifications have proven to be a very powerful tool
for the development of distributed systems [BDD192, Bro99a, BS00]. They capture the
“black-box”-behavior of the component, in the sense that they only refer to the externally
observable component behavior without directly revealing how the component establishes
its reaction to the presented input.

The format in which an MSC depicts the behavior of the components appearing in it
already strongly hints at the use of input/output relations for component specifications:
we can view every axis for the component under consideration as a certain part of the
relation we want to find. In fact, the way we have defined the semantics of MSCs in
Chapter 4 follows precisely this idea.

The assumption/commitment format [MC81, Pan90, Bro95] allows us to structure the com-
ponent specification into two parts: the expectations the component has at the environment
(the assumption), and the behavior the component displays (the commitment), provided
the environment fulfills the assumption. Intuitively, in the context of MSCs the assumption
requires the environment of the component under consideration to provide the expected
input messages in the order as given by the MSCs under the exact interpretation. The
commitment then ensures that the component partakes as intended in the collaboration
and produces its output messages in the required order.

Based on this intuition, we derive assumption/commitment specifications from MSCs in
a fully schematic way. This derivation is completely general: it allows us to use the full
MSC dialect we have introduced in Chapter 4.

219

7. From MSCs to Component Specifications

Automaton Specifications As we have mentioned above, the assumption/commitment
specifications we derive from MSCs give us a black-box view on the component we are
interested in. In later phases of the development process, however, we want to model
not only the externally visible component behavior, but also the way how the component
achieves its results.

In Chapter 3 we have already introduced various forms of finite state machines as popular
models for detailed, state-oriented behavior specifications for individual components.

To support the direct transition from MSCs to individual component specifications in state-
oriented form we introduce a fully automatic procedure for deriving finite state machines
from MSCs. The procedure is constructive; it takes MSCs as input, and syntactically
transforms them into an automaton for the component under consideration. The resulting
automaton’s set of behaviors is a subset of the semantics of the MSCs we have started
with. In the presentation of this procedure we restrict ourselves to a subset of our MSC
dialect.

The automaton we obtain as a result of the procedure gives us a “glass-box” view on
the component; we can consider this glass-box view as a “jump-start” model for further
elaboration, as well as for the construction of early prototypes from MSC specifications.

Closing the Methodical Gap Together, these two transformations close the methodical
gap between the specification of component collaboration and the specification of individual
component behavior. Closing this gap is a methodical necessity for a seamless integration
of MSCs into the overall software development process for distributed systems.

The remainder of this chapter has the following structure. In Section 7.2 we introduce
the notation and mathematical concepts we need to describe the black-box and glass-box
behavior of individual components. In Section 7.3, we define the assumption/commitment
format for relational component specifications and show how to derive assumption/com-
mitment specifications for individual components from MSC specifications. This allows
us to extract the black-box behavior of components schematically from an MSC specifica-
tion. In Section 7.4 we present our transformation procedure from MSCs to finite state
machines, which provides us with glass-box behavior specifications for the components we
are interested in. Section 7.6 contains our summary.

220

7.2. Relational Component Specifications
7.2. Relational Component Specifications

Recall from Section 4.2 that the systems we consider consist of components whose interac-
tion proceeds via directed channels. Because of the channels’ directedness we can classify
the channels to which a component connects as either input channels, or output channels,
depending on whether the component is the channel’s destination or source, respectively.
A component controls only its output channels, whereas other system components, which
constitute the environment of the component under consideration, control the input chan-
nels.

Graphically, we depict a component together with its input and output channels by means
of system structure diagrams, as we have done before for the system as a whole. Figure
7.3 shows an example where the input and output channels’ labels are i; through 7, and
01 through o,,, respectively.

1 01
™ I
Do Foolroom
—

Figure 7.3.: SSD for component F

For the specification of the black-box behavior of individual components we use relations
over input channel valuations and output channel valuations as described in [BS00, Bro99a,
BK98]. In this section we introduce the notation and mathematical concepts we need within
this framework. In our presentation we closely follow [Bro99a, BK98] but restrict ourselves
to the notation and concepts of interest for the remainder of this chapter.

7.2.1. Basic Definitions

The separation of the component’s channels into input and output channels gives rise to
the following definition for the notion of syntactic component interface:

Definition 20 (Syntactic Component Interface) Let C' be a set of channels, F' € P
a system component, and Ir C C, Op C C be defined as follows!:

Ip & {ch € C : dst.ch = F}

O & {ch € C : src.ch = F}
Then the pair
(Ir,Op) € P(C) x P(C)

is the syntactic interface of component F'. o

'Recall from Chapter 4 that for channels ch € C the function applications src.ch and dst.ch yield the
source and destination component, respectively, of ch, i.e. with ch = (chn, s, d) we have src.ch = s and
dst.ch = d.

221

7. From MSCs to Component Specifications

If the component F' to which a syntactic interface (I, Or) belongs is clear from the context,
we omit the indices from Ir and Op.

The definition above includes components F where IrNOp # () holds, i.e. where the sets of
input and output channels are not disjoint. Channels in Ir N Op constitute feedback-loops
of F. In the following sections we will mainly consider components without feedback-loops,
and call the corresponding syntactic interfaces “directed”.

Definition 21 (Directed Syntactic Interface) Let (Ip,Or) € P(C) x P(C) be the
syntactic interface of component F' € P. We call (Ir,Or) and F directed, if Ir N Op = ()
holds. o

As before, we represent the “content” of a channel over time by means of timed streams,
and call the assignment of a timed stream to a channel an infinite valuation or history.

Definition 22 (Valuation, History) Let X C C be a set of channels, and let M be a
set of messages. By

XY (x - M
we denote the set of valuations of the channels in X. By

PR

we denote the set of infinite valuations or histories of the channels in X. For a component
F € P with the syntactic interface (1, 0) we call I and O the set of F’s input and output
histories, respectively. o

Now we have everything in place to define the notion of black-box component behavior,
which we also call the semantic component interface:

Definition 23 (Black-Box Component Behavior, Semantic Interface) Let F' € P
be a system component, and let (I,0) be its syntactic interface. We call a relation (here
expressed as a family of predicates)?

F:I—(0—B)

the black-box behavior specification or semantic interface of component F'. o

Thus, the semantic interface relates input histories with output histories of the component
under consideration. Therefore, we call black-box behavior specifications also relational
component specifications or 1/O behaviors.

The absence of any explicit notion of state or any other explicit information about the inner
workings of the component justifies the attribute “black-box” in the definition above.

2We identify the name of the relation with the name of its corresponding component if no confusion can
arise.

222

7.2. Relational Component Specifications

7.2.2. Causality, Realizability, and Nondeterminism

In their full generality, relational component specifications allow us to model quite “strange”
components. We can, for instance, easily specify a component predicting its input. Con-
sider the sets I = {i}, O = {o}, and M = {1, 2} of input and output channels, and
messages, respectively. If we define the relation F : I — (O — B) for all z € Tandye O
by

(Fx)y = (Mt e N (x.(t+1)).d=(y.t).o)

then the component F' produces as its output at any time ¢ € IN the sequence of values it
will receive as input one time unit later.

For modeling reactive components we are, however, interested in specifications without
the ability or necessity of predicting the future, because — ultimately — we must implement
them as part of a real system.

Causal component specifications, i.e. specifications where any output follows its triggering
input, have pleasant properties with respect to the composition of components as we will
see later in this section.

Definition 24 (Time Guardedness, Causality) Let F : I — (O — B) be a relational
component specification. We call F' time guarded or causal, if

WteN,zyel:axlt=ylt=(Fa)|(t+1)=(Fy)l{t+1))
holds. O

The output of a time guarded component at time t € IN depends only on the input
history the component has received strictly before time . The asymmetry between input
and output models the causal dependence of the component’s reaction upon the input
having triggered the reaction. Another interpretation of the delay between an input and
the possible reaction to it is as follows: no component is infinitely fast; therefore, every
component needs some time to calculate its output.

Functions f : [— O are special cases of relations over I and O A partial function assigns
at most one output stream in O to every input stream in I. Total functions f: [-0
describe deterministic components.

To characterize specifications for which we can find implementations we introduce the
notion of realizability:

Definition 25 (Realizability) Let F : I — (O — B) be a relational component specifi-

cation. We call F' realizable if there exists a total time guarded function f : I — O such
that

Vo eI (Fa).(fa))
holds. 0

223

7. From MSCs to Component Specifications

For a realizable specification we can find a deterministic implementation strategy (a total
function) associating with every input history precisely one output history from the set
of possible output histories offered by the specification. For some of the possible output
histories such a function need not exist. As an example, consider a component that nonde-
terministically behaves as either the time guarded identity function, which outputs every
input with a delay of one time unit, or as the oracle we have specified above. This compo-
nent is realizable because we can identify the time guarded identity as one implementation
strategy for the component.

If every possible output history of the component is the result of some deterministic im-
plementation strategy, then we call the specification fully realizable. More precisely, we
define:

Definition 26 (Full Realizability) Let F : I — (O — B) be a relational component
specification. Let the set RZ.F be defined as follows:

RZF {f:T— O: fis time guarded A (V& € I :: (F.z)(f.x))}

RZ.F is the set of time guarded implementation strategies for F'. We call F' fully realizable
if

(Veel:Fx={fx:feRZf})

holds. O

For every possible behavior of a fully realizable specification we can find a deterministic
implementation.

7.2.3. Composition

To integrate individual components into a larger system we need a notion of composition.
Here, we use a very simple composition operator that identifies common channels of its
operands. Because channels have a direction, this corresponds to “connecting” the output
channels of the one operand with corresponding input channels of the other (cf. Figure
7.4). Syntactically, we denote the composition operator by the symbol “®”.

FeG
— - F - — G ——
| - R — -

Figure 7.4.: Effect of composing F' and G

224

7.2. Relational Component Specifications

We will define the composition operator ® such that the common channels of the operands
are absent from the syntactic interface of the composition. This corresponds to “hiding” the
channels by which the components are connected. This form of composition is particularly
useful for modeling a strict hierarchic system structure.

We refer the reader to [Bro99a] and [SRS99] for the definition of several other composition
operators with and without channel hiding.

Definition 27 (Composition) Let F : Iz — (Op — B) and G : I — (Og — B) be
relational component specifications with Ip U Op U I U Og C C and Op N Og = 0. We
denote the composition of F' and G by F' ® G, and define its syntactic interface (I, 0) as
follows:

I % (Ip UIs)\ (OF UOE)
O € (0pUO0E)\ (IpUIg)

The semantic interface '@ G : I — (O — B) has the following definition, where z and y
range over [and C', respectively:

(FeG)w(ylo) = yli=zAF(yli) Ylor) AG-(ylis)-(ylog) .
We note the following facts, whose justification the reader can find in [Bro99a] and [SRS99]:

1. if both F' and G are realizable, then so is F' ® G,
2. if both F' and G are fully realizable, then so is F' ® G,

3. if both F' and G are time guarded and fully realizable, then so is F' ® G.

Furthermore, we observe the symmetry of ® by inspection of this composition operator’s
definition. Under the assumption that every channel has at most one source and at most
one destination component, ® is also associative (the proof of this is straightforward).

A special case of this general form of composition is sequential composition:

Definition 28 (Sequential Composition) Let F : [p — (Op — B) and G : Iz —
(O¢ — B) be directed relational component specifications with Op = I and Ir N Og = 0.
In this state of affairs we introduce F; G as a synonym for F' ® G:

G ¥ rec

and call F'; G the sequential composition of F and G. o

225

7. From MSCs to Component Specifications

7.2.4. Component Refinement

[Bro99a| introduces three notions of refinement for component specifications:

e property refinement,
e glass box refinement,

e interaction refinement.

Property Refinement allows us to reduce the set of 1/O behaviors represented by a com-
ponent specification. Glass box refinement addresses the decomposition of a component
into subcomponents. Interaction refinement allows us to change the number and types of
channels of a component, and thus to change the representation of communication histories.

We have derived our notions for MSC refinement (cf. Chapter 5) from these three refinement
notions for individual components. Therefore, there is a direct correspondence between

e property refinement of MSCs and of components,
e structural refinement of MSCs and glass box refinement of components, and

e message refinement of MSCs and interaction refinement of components.

To make this correspondence explicit we repeat the formal definitions of the component
refinement notions from [Bro99a]. In the remainder of this thesis, however, we will con-
centrate mostly on property refinement.

Definition 29 (Property Refinement) Let F,G : I — (O — B) be relational compo-
nent specifications. We call G a property refinement of F', and write G <, F', if

Vrxel,yeO:Gury= Fauy)

holds. O

An alternative definition of G <, F' is

which highlights the similarity of property refinement for components with our definition
for property refinement for MSCs.

226

7.2. Relational Component Specifications

Definition 30 (Glass Box Refinement) Let F : [— (O — IB) be a relational compo-
nent specification. If there exist relational component specifications F; : I; — (O; — B)
for ¢ € [1,n] for some n € N, n > 1, such that

AR®.. QF <,F

holds, then we call F; ® ... ® F,, a glass box refinement of F. o

Note how closely our definition of structural refinement of MSCs follows the idea behind
this definition of glass box refinement; both of them allow the introduction of “fresh” local
channels for the communication between the subcomponents.

[Bro99a] also treats the refinement of a component specification into state transition sys-
tems as a special case of glass box refinement. We deal with this special case of property
refinement later in this chapter, in detail.

Interaction refinement allows us to change the number and names of a component’s input
and output channels, as well as the granularity of the messages on these channels. Here,
we consider only one special case of this very general refinement notion. For a much more
detailed treatment of interaction refinement we refer the reader to [Bro99al.

Definition 31 (Interaction Refinement) Let F : fp — (6}7‘ — B), G : fG — (6@ —
B), A; : fG — (fp — B), and A, : 6G — (6F — IB) be directed relational component
specifications with I NOp = 0 and Ir N Og = 0 . We call G an interaction refinement of
F, and write G <,,, F, if

Ga AZ Sp A17 F
holds. o
Intuitively, A; and A, in this definition are components whose purpose is to translate the

input and output streams of GG into those for F; this is a form of abstraction. Figure 7.5
illustrates this situation.

A Fold
1 “ 1 ‘
Al | A2
f‘—» G E——

Figure 7.5.: Interaction refinement

Because A; and A; are arbitrary directed components we can express all kinds of changes to
messages and channels by means of interaction refinement; in particular, via appropriately

227

7. From MSCs to Component Specifications

chosen relations A; and A, we can express the implementation of a single message by
means of an entire protocol. This explains the proximity between this notion of interaction
refinement and our definition of message refinement for MSCs.

We will come back to the relationship between MSC refinement and component refinement
in Section 7.3.4.

7.2.5. Component Properties, Safety and Liveness of Components

In Section 6.3.1 we have, on the basis of our system model from Section 4.2, introduced
the notions of system properties in general, and MSC properties in particular. Here, we
introduce similar concepts for individual components, and also adapt the notions of safety
and liveness we have defined in Section 6.3.1, accordingly.

A system property ¢ C (C'x S)™ is a set of system executions that “have” or “exhibit”
the property. Components appear only rather indirectly in this formalization of system
properties; channels — not their sources and destinations — are in the center of concern
here. This gives us a global view on the communication (and state changes) within the
system. The direction of the channels (from their source to their destination component),
as well as the individual responsibilities for establishing a certain message order are of little
relevance in this view.

For an individual component, however, the directedness of its channels is of high signifi-
cance. With feedback channels as the only exception, a component has no direct control
of the histories it receives on its input channels. These are the channels controlled by the
component’s environment.

The component has, however, full control over its output channels. The only way for the
environment to influence the component’s output histories is to provide the adequate input
histories; what the component produces as its reaction to this input is entirely up to the
component.

An adequate notion of component properties must, therefore, take the directedness of the
component’s channels, as well as the component’s responsibility for establishing the desired
output into account. This responsibility clearly differentiates, for instance, the definitions
of component safety and liveness from their “global” counterparts, as we will see, below.
A component can establish only the safety and liveness of its output, but not the one of
its input.

In the following definitions, we follow [Bro99a, Bro95].

Definition 32 (Component Property) We call I — (6 — IB) the set of component
properties for the syntactic interface (1,0). If F': I — (O — B) is a relational component
specification, then we call F' also a component property. o

228

7.2. Relational Component Specifications

This defines the notion of component property directly on the basis of the (directed) relation
between the component’s inputs and outputs.

In Section 6.3.1 we have classified system properties into safety and liveness properties.
We have defined system safety properties to be those properties that hold on all finite
prefixes of all system executions; our definition of liveness properties identifies them as
those properties that hold eventually in all infinite system executions. These definitions
refer to the system as a whole. A system safety property, therefore, makes a statement
about the joint safety of all components of the system; similarly, a system liveness property
makes a statement about the entire collaboration of all components.

As we have argued above, each component can control only its output directly. Therefore,
it makes sense to define the notions of component safety and liveness with respect to the
output of the component for any given input.

The following two definitions for component safety and liveness are reformulations of the
alternative characterizations for system safety (prefc.q = ¢ for some g C (C’ x 5)>) and
system liveness (prefe.q = (C' x S)*°) from Section 6.3.1. In these reformulations we
introduce an asymmetry between input and output by fixing an arbitrary input history
and determining whether the output of the component is safe or live, respectively.

Definition 33 (Component Safety Property) Let F : I — (O — B) be a relational
component specification. We call F' a component safety specification or component safety
property, if

VrelycO:=(WteN=(3ze0uzlt=ylt A (Fa).z) = (Fx)y))
holds. o

Note the form of the left-hand-side operand of the equivalence in this definition; its result
is the prefix closure of the outputs of component F' with respect to the fixed input history
x.

Time guardedness is a simple example for a component safety property.

Definition 34 (Component Liveness Property) Let F : I — (O — B) be a rela-
tional component specification. We call ' a component liveness specification or component
liveness property, if

(Vo € ILye O,te N :: (32 € Ouzlt=ylt A (F.x).z))
holds. o
Given these two definitions, as well as those for system safety and liveness, we face an
important methodical question (cf. [Bro95, BK98]): given a system safety or liveness spec-

ification, how can we decompose it into safety and liveness specifications for individual
components?

229

7. From MSCs to Component Specifications

We answer this question in the following section, where we treat the decomposition of MSC
specifications into relational component specifications in the assumption/commitment for-
mat.

7.3. From MSCs to A/C-Specifications

In the preceding section we have described the framework we use to model individual com-
ponents. Our aim for this section is to derive the specification of an individual component
from a given MSC.

Our point of departure here is the observation that an MSC describes the behavior of each
component occurring in it within a certain context or environment. This context consists,
on the structural side, of all the other components partaking in the depicted interaction,
as well as, on the behavioral side, of the contribution of these other components to the
interaction. Clearly, we want every individual component’s specification to be such that if
the environment exhibits the behavior required by the MSC, then the component fulfills
its part of the collaboration.

As an example, recall the specification of the CLS from Section 7.1 by means of the MSCs
CLS, locking, and unlocking from Figures 7.1, 7.2 (a) and 7.2 (b). Let us assume that our
task is to develop an individual component specification for the component Control. This
means that we have to come up with a relational component specification

Control : 1 contror — (O contror — B)

where oy = {ke,lc,rc} and O Control = {cl, er}, such that it associates appropriate
output histories with the input histories received by Control. In particular, if message
kc>lck occurs we want Control to react by sending messages cl>down and cr>down and
to “wait for” the replies le>rdy and re>rdy.

Without further information, beyond the given MSCs, about Control and its environment,
we cannot, in general, say how Control must or should react if the environment displays
other behavior than the explicitly depicted one. What if, for instance, the component LM
would reply message cl>down by lc>error? The mentioned MSCs give no indication how
Control should handle this situation.

One way of dealing with this problem is to fix the behavior of a component only for those
input histories where the environment exhibits the expected behavior, and to leave the
component’s behavior unspecified otherwise. Put another way we commit the component
to a certain behavior only provided the environment fulfills certain assumptions.

Component specifications that distinguish, and make explicit the assumptions made by the
component at its environment, and the commitment that the component promises to fulfill

230

7.3. From MSCs to A/C-Specifications

are called assumption/commitment (A/C) or rely/guarantee specifications in the literature
(cf., among others, [MC81, Pan90, Bro95], and the references contained therein).

Guided by the intuition that an MSC indeed depicts the component we are interested in
together and in collaboration with the relevant part of its environment, we study the A/C
specification style in more detail in the remainder of this section. In Section 7.3.1 we re-
view the A/C format for relational component specifications along the lines of [Bro95]. In
accordance with the system model we have introduced in Section 4.2 we capture the collab-
oration of a component with its environment by means of predicates over 1/O histories, and
call these predicates “interaction interfaces” in Section 7.3.2. In Section 7.3.3 we present
a decomposition scheme that allows us to turn any interaction interface into a relational
component specification in the A/C style. Because MSC properties under the closed world
semantics (cf. Section 6.3.2) are special cases of interaction interfaces, the decomposition
is applicable to MSC specifications as well. On this basis we take another look at MSC
refinement in Section 7.3.4, and determine the implications of an MSC property refinement
on the individual component specifications we can derive from the respective MSCs.

7.3.1. A/C Specifications

The A/C specification style has been extensively studied in the literature, mainly as a
tool for achieving modular specifications with the potential for simplified verification (see,
among others, [XS98, Sha98| for an overview and further references). The modularity of
A/C specifications stems from the clear separation of the specification into the responsi-
bilities of the component under consideration, and of its environment. This, by itself, is
already helpful from a methodical point of view as [Bro95] points out, because it supports
the definition of clear semantic component interfaces. Whether the separation into as-
sumptions and commitments has indeed beneficial consequences on the task of verification
is debatable (cf. [Lam98, Sha9d8]) and certainly depends on how strongly the assumptions
and commitments are formulated.

Here, we concentrate on the first aspect responsible for the popularity of A /C specifications:
their potential for the definition of clear semantic component interfaces.

Before we describe in detail how to derive an A /C specification directly from a given MSC
specification, we first make the notions of assumptions and commitments for relational
component specifications precise. [Bro95] contains a detailed derivation of several A/C
specification styles for a functional setting. Here we pick the most general one of these for
our purposes.

Definition 35 (A/C Style for Relational Component Specifications)

Let F': I — (O — B) be a relational component specification. If there exist relations

Es,Er, Fs,Fr,: I — (O — B) such that for all z € [and y € O
Frzy= (Esxy = Fs.z.y)

(7.1)
N (Es.xyNEpzy = Frouy)

231

7. From MSCs to Component Specifications

holds, and Fg and Fg are component safety specifications, and E;, and F}, are component
liveness specifications, then we call the right-hand-side of Equation (7.1) a relational A/C
specification for component F. Furthermore, we call Eg the environment safety assumption,
E, the environment liveness assumption, Fs the component safety commitment, and F7,
the component liveness commitment. o

Thus, an A/C specification consists of two parts, represented by the two (outer) conjuncts
of Equation (7.1). The first part deals with the safety properties ensured by the component,
provided the environment fulfills certain safety requirements. The second part deals with
the liveness properties ensured by the component, provided the environment fulfills its
safety and liveness requirements.

Figure 7.6 shows the structural view behind the decomposition of responsibilities between
component F' and its environment E. F' controls the channels in O, whereas F controls the
channels in I. In this sense, F' and E are each other’s “duals”. Because of this duality, the
requirement imposed by Definition 35 on Eg and Ej to be safety and liveness properties,
respectively, is sloppy. Recall that the definition of component properties depends on
the directedness of input and output channels. A more precise formulation would have
been: there exist Eg, B, : O — (I — B) such that Eg and Ej are component safety
and liveness specifications, respectively, and we have (Vx € I, Y € O Egxy = Eg.y.x>
and (Vx € f,y €0 : Epxy = EL.y.x>. In view of this quick remedy, we stick with the
signatures for Fg and Fj, as they occur in Definition 35.

I

@)

Figure 7.6.: Structural view behind A/C specifications

By closer inspection of Definition 35 we observe that F.x.y holds trivially if either Fg.z.y
is false, or Eg.x.y holds, but Ey.x.y does not. If Eg.x.y is false, then there is a time ¢t € IN
such that F' cannot react properly to the input z | ¢ it has received until time ¢ (recall
that Eg is a “dual” safety property). If Fp.z.y is false, then from some time ¢ € IN on the
environment does never produce an input when F' expects it to occur.

Therefore, a component F' specified in the A/C format is reactive in the following sense:

for every input history = € I there exists at least one output history y € 6, such that
F.z.y holds.

As [Bro95] explains in detail, each of the relations Eg, Fy, Fs, and F, must reference both
the component’s input and its output histories to support specifications of full generality.
Intuitively, we need both the input and output histories of a component to “reconstruct”
the component’s internal state from a black-box behavior. Later in this section we will
encounter an environment safety assumption we can only formulate if we refer to both the
input and the output histories of the component.

232

7.3. From MSCs to A/C-Specifications

As a simple example, we give an alternative specification for component LM of the CLS
in the A/C format. Given the message set M = {dwn, up, lck, unlck, rdy}, the component
set P = {Control, LM, RM,KS}, and the channel sets C' = {ke, cl, lc, cr,rc}, I = {cl},
and O = {lc} we define the relations Eg, Er,, LM g, LMy, : I — (6 — IB) as follows:

Esxy = (Vt € N :: x.t.cl € {<up>, <dwn>, <>})
IMg.zy =Vt € N:y.tlc# <>
y.tlc = <rdy>
A@ <t:xzt.cl e {<up> <dwn>}: (V" ' <t" <t:ytlc=<>)))
Ep.xy = true
IMpay =Mt eNatcl#<>=(H eN:t'>t:yt.lc#<>))

Relation Eg constrains the input histories of component LM to messages of the form cl>up
and cl>dwn, if a message occurs on channel cl at all. LM g specifies that if LM produces an
output it is the message lc>rdy; moreover, LM produces neither unsolicited, nor redundant
replies. E, imposes only the trivial liveness constraint on the environment; it may or may
not send messages. Relation LM j specifies that if there is a request on LM’s input channel
then LM will send a reply eventually.

By means of these four predicates we define the relational component specification in A/C
form for LM : I — (O — B) as follows:

LM.zy = (Esxy = LMg.x.y)
A (Es.xy N Ep.xy = LMp.x.y)

forallxefandyeé.

The relations Es and Ej, in this specification are rather weak. For instance, FEg allows
multiple occurrences of up or dwn messages in sequence, without a corresponding reply
from LM in between. Ej, poses no constraint at all at the liveness of the environment.

If we take a closer look at the MSCs CLS, locking, and unlocking from Figures 7.1, 7.2
(a), and 7.2 (b) (under the exact interpretation), we notice additional safety and live-
ness requirements in the MSC specification. MSC CLS, for instance, specifies an infinite
number of occurrences of either use case (locking or unlocking). This induces an infinite
number of either cl>up or cl>dwn messages as well. Furthermore, the MSCs locking and
unlocking require the occurrence of an lc>rdy message between any two messages from the
set {cl>up, cl>dwn}. Intuitively, this means that the controller waits until it has received
a reply from the motor before it issues another request. We can enrich the A/C specifica-
tion above by means of the following two relations £y and E to capture these additional
properties:

233

7. From MSCs to Component Specifications

Esxy = Esaxuy
ALY €Nt >t Axtc € {<up>,<dwn>} AN x.t'.cl € {<up>, <dwn>} :
(F"t<t" <t yd"le = <rdy>))
E;.xy = #({up, dun}©x.lc) = oo

In the definition of E% we must refer to both the input and the output histories of LM.
Otherwise we could not capture the condition under which the environment must fulfill the
assumption. The assumption makes a statement about the “state” of LM in which it can
handle requests from the environment: LM must have replied any pending prior request.

This example already shows that even for “simple” components like LM an A/C specifi-
cation can be quite elaborate. By means of the construction we present in the remainder
of this section, however, we can extract A/C specifications from MSC specifications fully
schematically.

7.3.2. MSCs and Interaction Interfaces

Now that we have fixed the format of the component specifications we want to end up with,
we put our focus back on the overall collaboration specifications we assume given as the
starting point of our derivation scheme. Of course, we use MSCs to represent these overall
collaboration specifications. To this end, we first define the notion of interaction interface,
which captures the black-box behavior of all components partaking in a collaboration.
Second, we show how to obtain an interaction interface from an MSC specification; this
is not a big step, because we have defined the semantic basis for MSCs essentially as a
special form of interaction interfaces.

An important first step in the derivation of an individual component specification from
an overall collaboration specification is to fix both the component, and the subset of its
channels we are interested in. This defines, in particular, what part of the system we
consider as the component’s environment.

If, for instance, we set out to derive an A/C specification for component LM in our CLS
example, then we have several (nontrivial) options for defining the environment for this
component:

e (Control

e Control, RM

e Control, KS

e Control, RM, KS.

234

7.3. From MSCs to A/C-Specifications

If we add other components, besides Control (to which LM connects directly), to the
environment of LM, then we indirectly strengthen the requirements at LM through the
interplay between components without direct connection with LM.

In view of this freedom of choice we define interaction interfaces as a projection of all
channel histories on a certain subset thereof. Clearly, this subset should include all relevant
input and output channels of the component under consideration.

Definition 36 (Interaction Interface) Let C denote the set of directed channels in the
system as before. Let I C (', O C C' be sets of channels. We call any predicate

SN
R:(IUO)— B

an interaction interface specification with respect to the syntactic interface (I,0). By

(1 U O) we denote the set of infinite valuations (or histories) over the channel set 7 UQO. If
(1,0) is directed, we call R directed as well. 0

An interaction interface identifies all channel valuations where the components controlling
the channels in I and O all display the required behavior. In other words, an interaction
interface is the projection of the interaction part of the system model from Section 4.2 onto
a subset of the channel set C'. Writing interaction interfaces as characteristic predicates
instead of as sets is triggered by the technical convenience of predicates in the formulation
of component specifications.

For the derivation of individual component specifications we are, of course, not interested
in arbitrary interaction interfaces; instead, we select the sets I and O such that they are
subsets of the sets of input and output channels of the component under consideration.
Introducing this directedness of the channels right from the beginning would, however,
destroy the symmetry with respect to the component and its environment unnecessarily
early.

If R is a directed interaction interface over (I,0), and z € f, Yy € O are valuations of the
channels in I and O, respectively, we write x@y for the valuation of the channels in U O,
whose projections on [and O yield x and y, respectively. More formally, we define

chel = (z®y).ch & 2.ch

and

che O = (z&y).ch & y.ch

In Section 7.2 we have introduced three special kinds of relational component specifica-
tions: time guarded, realizable, and fully realizable ones. Because interaction interfaces
are, in essence, specifications of the joint behavior of multiple components, we can lift
these qualities to interaction interfaces as well. We demonstrate this by means of time
guardedness.

235

7. From MSCs to Component Specifications

Definition 37 (Time Guarded Interaction Interface) Let R : (/UO) — B be a
directed interaction interface. We call R time guarded, if both

Vel el teN:zlt=at: {yl(t+1): R(z®y)} ={yl{t+1): R(z®y)})
and

Wy, €OteN:ylt=y t:{z](t+1): R(z®y)}={zl{t+1): R(z®y)})
hold. o

Intuitively, an interaction interface over the syntactic interface (I, O) is time guarded, if all
components controlling the channels in I are time guarded, and all components controlling
the channels in O are time guarded.

Time guardedness for interaction interfaces is a safety property of the entire subsystem
defined by the syntactic interface (I, O).

The way we have defined the semantics of MSCs and the notion of interaction interfaces
allows us an easy transition from the one to the other. As the basis for this transition we
use the exact MSC interpretation we have introduced in Section 6.2.3. It captures precisely
the interaction sequences we want the component under consideration to display — nothing
more, and nothing less. More precisely, we use the extension of the exact interpretation to
MSC properties from Section 6.3.2.

Definition 38 (Derived Interaction Interface) Let o € (MSC) be an MSC term. Let
I C C and O C C be sets of channels. Then we call the interaction interface

—
R,:(IUO)— B
—_—
which we define for x € (I U O) by
Ry.x = (3p € [a]ew : mi(@)|1u0 = @)

the interaction interface derived from o with respect to (I,0). o

Thus, the interaction interface with respect to (I, 0) derived from an MSC « is the pro-
jection of the channel valuations under the exact MSC interpretation for o onto I U O.

The interaction interfaces we derive from MSCs are time guarded, as the following propo-
sition shows.

Proposition 16 (Time Guardedness of MSCs) Let o, € (MSC) be MSC terms,
and 1,0 C C sets of channels such that (I,0) is directed, and R, : (I UO) — B and
Rg : (1UO) — B are time guarded. Furthermore, let p € (GUARD), ch>m € (MSG),
and <[> € {<p>, <>, <m,m>} hold for m,n € N,. Then each of the following interac-
tion interfaces (of the same signature as R, and Rg) is also time guarded: Rempty, Rany,
Renoms Ra;py Byas Rajpy RBanps Bawps Ratas Boowpys Rofu Bae g D

236

7.3. From MSCs to A/C-Specifications

PRrROOF See Appendix B.4 for the details. The basic intuition behind this result is that
time guardedness is a safety property, and all MSC operators yield properties we can
decompose into a safety part (implying time guardedness) and a liveness part. Finally,
[a — Blew = [empty]cw, and therefore, R, ., s is trivially time guarded. m

This proposition identifies the MSC dialect we have introduced in Chapter 4 as a graphical
description technique for time guarded interaction interfaces.

Now we have everything in place to describe the transition from an MSC to an individual
component specification in the A/C format.

7.3.3. From MSCs to A/C Specifications

In this section we describe the transformation of an MSC specification into an individual
component specification in the A/C format. This transformation consists of several steps:

1. Fix the MSC « we want to transform.

2. Fix the component F' and the syntactic interface (I, O) for which we want to obtain
an A /C specification.

3. Derive environment and component safety and liveness relations from the interaction
interface R, with respect to (I, O).
Throughout this section we assume given a directed component F'. In terms of the MSC

« this means the absence of message arrows that both start and end at F’s axis in a.

Let R : (/UO) — B be any directed and time guarded interaction interface, such that
I C{cheC:dst.ch=F}and O C {ch € C: src.ch = F} holds. Our goal is to construct
relations Fg, Er, Fg, and Fp, and to define

F:I—(0—B)
by a time guarded relational A/C specification
Fxy= (Fsxy = Fs.x.y)

A (EsxyNEpxy = Frauy)

We start with the definition of Fg and Fg, i.e. with the environment safety assumption
and F’s safety commitment. Intuitively, Fg specifies the following safety property: the
inputs F' receives on its input channels at any time ¢ € IN fulfill the interaction interface R.
In other words, at every time point ¢ € IN the environment produces only input histories

237

7. From MSCs to Component Specifications

—

F can handle according to R’s definition. We use the relation F%.z.y : I — (O — B) to
capture this intuition until time ¢ € IN:

Eixy= (I € LyeOuazlt=2tAylt=y |t AR(zDY))

For any t € N, EY identifies those finite prefixes of length ¢ of x permitted as the prefix of
an input of component F according to the interaction interface R. More specifically, Ef
identifies those pairs of input/output channel valuations where both the environment and
F proceed as specified by R. From the view of component F', however, the real constraint
imposed by E% is on z. Based on the definition of the relations EY, we construct Es as
their limit with respect to t:

Es.xy= (Vt € N:: E{.x.y)

Clearly, Eyg is a safety relation.

Next, we turn our attention to the safety commitment of F. If the environment provides
the correct input on F’s input channels until time ¢ € IN, then — by the requirement of
time guardedness — we commit F' to producing the correct output until time ¢ + 1:

Flay=@rel,y cOualt=2tAylt+1)=y1{t+1) ARG DY)

F! identifies those prefixes of pairs of input/output valuations, where the input of F' is
correct at least until time ¢ and the output of F' is correct at least until time ¢t + 1. Again,
we take Fg as the limit of the relations F§ with respect to ¢:

Fsaxy= (Vt € N:: Fhay)

The decomposition of R into environment and component safety properties is purely
schematic. FEg captures that the environment never makes a wrong “move”. Fg speci-
fies that F' never produces the wrong output (under the assumption of the environment
working as expected), and, moreover, that F'is time guarded. In the composite system nei-
ther F nor its environment may fail to fulfill a safety property at any time. If R is a derived
interaction interface with respect to an MSC «, then the environment safety assumption
requires the environment to send only messages for which there is a corresponding arrow
ending at F' in «. Similarly, F' sends only messages for which there is a corresponding
arrow starting at F' in a. Moreover, the ordering of the messages exchanged by F' and its
environment is as depicted in a.

Our remaining task is to capture the liveness requirements of the environment and of
component F. In contrast to the decomposition of R’s safety part the decomposition of
R’s liveness part into clearly separated responsibilities for F' and its environment is, in
general, impossible.

As an example, consider the MSCs LA and LB from Figure 7.7 (a) and (b).

238

7.3. From MSCs to A/C-Specifications

msc LA msc LB

X Y X Y

loop <oo>)

00

L)OE<OO> J alt)
com com
/ i

S—_al c'vm’

I I — e

Figure 7.7.: Decomposable and non-decomposable liveness specifications

MSC LA implies the following liveness property: valuations of ¢ and ¢’ according to R4
contain an infinite number of ¢>m and ¢'>m’ messages. This is a property we can clearly
decompose into responsibilities for X and Y; each component must produce its output
infinitely often.

MSC LB only requires infinitely many occurrences of either ¢>m or ¢’>m/. As a conse-
quence, in executions where c¢>m occurs infinitely often Y has no liveness responsibility
at all. However, without further knowledge about X’s complete output history, Y cannot
determine by itself at any finite time whether or not X will contribute to the fulfillment of
the liveness property.

This leaves us with two options. We can either add further information to the specification
of one of the components such that the liveness properties of both components are fixed
uniquely. One way to achieve this in the example above is to add the property that
message c>m may occur only finitely often. This fixes Y’s liveness property: ¢'m’ must
occur infinitely often according to MSC LB.

Or, we can start with the strongest possible liveness constraints for both F' and its envi-
ronment; these constraints require all components to work individually towards fulfillment
of the liveness property, independent of whether the contribution of the other components
already suffices or not. Then, we can weaken either F’s or the environment’s liveness
properties once new information, say, through refinement steps, becomes available.

To investigate the most general case (without further knowledge about the components)
we follow the second option here. According to Section 6.3.2 we can decompose any system
property (and thus, any interaction interface) into a canonic safety and liveness part. For
an interaction interface R this decomposition yields the safety part

Spaxy=Mte Nz (' el,y eOualt=altAylt=y |t AR(2®Y)))

The right-hand-side of Sg’s definition is an expansion of the canonic safety property
prefc{z € (IUQO) : R.z}. This allows us to obtain the canonic liveness part of R by
means of the following definition:

239

7. From MSCs to Component Specifications

Lp is the liveness property that F' and its environment must jointly fulfill. We define F’s
environment liveness assumption E; and F’s component liveness commitment Fj as the
weakest relations (with respect to set inclusion) E}, F) : I — (O — B) whose conjunction
nontrivially implies L. More precisely, we require E; and F} to fulfill each of the following
three conditions:

E,.xyAFj.xy= Lrxy (7.2)
Weel:(FyeO: Lpxy): (JyeO:Fay))
WyeO:(3xel:Lpxy): (3zel: E .2y

According to Condition (7.2) E} and F] must together fulfill the system liveness property
Lg. Condition (7.3) restricts F] such that it must produce at least one output history for
every input history allowing fulfillment of Lg. In other words, F' must produce an output
history if there is a chance to fulfill Lg jointly with E. Condition (7.4) defines a similar
restriction for F.

For R # false we can substitute Lp for both F] and E} to convince ourselves of the
existence of a solution for these three conditions. Thus, F;, and E;, are well-defined as the
weakest solutions for F] and E.

These considerations show that there is freedom in assigning liveness properties to the indi-
vidual components of a system. Resolving this freedom by fixing one particular assignment
according to the conditions (7.2) through (7.4) is a design step.

This completes our decomposition of R into an A/C specification for component F. We
have found relations Es, Ep, Fs, and Fj, such that we can define F': I — (O — B) by a
time guarded relational A /C specification

Frzy= (FEsxy = Fs.xy)
A(EsxyNEpxy = Frauy)

By definition, we have established the validity of
EsxyAFsxyAEpxyA Fr.xy= R.(xdy)

for all z € I and Yy € 0. Hence, the relational component specification obtained for F
forces F' to operate as expected in environments complying to R.

If we have derived the interaction interface R from an MSC «, then we can interpret the
component safety and liveness commitments Fs and F7, as follows. If F' produces an output
message ch>m at all, then there is a corresponding arrow whose source is F'in «. If there
were no such arrow, then ch>m could not occur in executions that comply to o under the
exact interpretation. As a consequence R.z.y would be false for all output histories y of
F'in which ch>m occurs at any finite time. Fg, whose validity depends on R’s validity

240

7.3. From MSCs to A/C-Specifications

on any finite prefix of inputs and outputs of F', would then also yield false. By a similar
line of reasoning, we could show that Fg can only hold if F' produces its output messages
in the order specified by a. The requirement for time guardedness, which we have coded
into the definition of Fj, is already given for interaction interfaces derived from MSCs
(cf. Proposition 16).

The liveness commitment Fp, of I’ asserts an at most finite delay before F' sends a message
on whose occurrence the overall liveness of the system depends. Otherwise F, would violate
the conditions (7.3) and (7.4).

Because of the duality between F' and its environment we immediately obtain similar
interpretations for the assumptions Fg and Ey.

According to these considerations the component F' derived schematically from an MSC «
is bound to producing the specified output if and only if the components constituting F’s
environment do not deviate from what « specifies for them.

Thus, the A/C specification format is helpful in determining the formal responsibilities
defined by an MSC for the components appearing in it as the sources and destinations of
messages. We exploit this benefit of the A/C format again in the next section, where we
apply it to explain the consequences of property refinement steps on MSCs with respect
to individual components.

7.3.4. MSC Refinement Revisited

In Chapter 5 we have studied four refinement notions for MSCs: binding references, prop-
erty, message, and structural refinement. Given the decomposition of an MSC into indi-
vidual component specifications according to Section 7.3.3 we can now investigate in more
detail the effect of an MSC refinement on the components themselves. We demonstrate
these effects by considering MSC property refinement as the representative refinement
notion.

In Section 6.2 we have introduced the notion of specification property refinement by means
of set inclusion. This induces a “natural” form of property refinement on interaction
interfaces, because interaction interfaces are projections of system specifications. Thus, for
given interaction interfaces Ry, Ry : (I UO) — B we call R; a property refinement of Rs,
ifforallxefandyeé

Ri.(x®y) = Ry.(z®y)

holds.

Because property refinement of MSCs is a special case of specification property refinement
(cf. Sections 5.3 and 6.2), and because MSC properties under the closed world semantics
are subsets of regular MSC properties, we can conclude from [a]y C [G]o that also [a] cw C

241

7. From MSCs to Component Specifications
[B]ew holds. Hence, property refinement of MSCs indeed yields a property refinement of
the derived interaction interface.

The separation of channels into the sets I and O in the definition of an interaction interface
allows us to distinguish three forms of property refinements, depending on whether the
refinement has an effect on I only, on O only, or on both:

1. I-stable refinements,
2. O-stable refinements,

3. joint refinements.

An I-stable refinement leaves the set of input histories, for which the component produces
an output history, unchanged. It may only reduce the set of possible output histories
for the same input history of the component. This corresponds to reducing the output-
nondeterminism of the component.

Definition 39 (I-stable Refinement) Let Ry, Ry : (I UO) — B be interaction inter-
faces with respect to the syntactic interface (I,0). We call Ry an [-stable refinement of
R, if for all x € I and y € O both

R1.(z®y) = Rs.(z®y)
and
{zel:(3yecO:R.(zady))}={zel:(3yecO:Ry.(zdy))}

hold. o

Consider the MSCs SRA and SRB from Figures 7.8 (a) and (b). If we derive interaction
interfaces from SRA and SRB with respect to I = {c} and O = {d}, i.e. from the viewpoint
of component Y, then Rgrp is an I-stable refinement of Rgry.

In the step from SRA to SRB we have limited the choices of Y for producing a reaction to
message c>m from X. We have not, however, modified the set of inputs to which Y must
react.

An O-stable refinement leaves the set of output histories the component can produce
unchanged. It may only reduce the set of input histories for which the component produces
the same output history. This corresponds to reducing the input-nondeterminism of the
component.

242

7.3. From MSCs to A/C-Specifications

msc SRA msc SRB
X Y X Y
—— —— —— ———
com
al’[) c>m
don
Ll o]] _dpn
_ den ‘
I I I I

Figure 7.8.: Stable refinements

Definition 40 (O-stable Refinement) Let Ry, Ry : (I UO) — B be interaction inter-
faces with respect to the syntactic interface (I,0). We call Ry an O-stable refinement of
Ry if for all x € I and y € O both

Ry.(z®y) = Ry.(z®y)
and
{y € O:(3zel: Ry.(zdy))}={y € O : (Fz € I Ry.(xdy))}
hold. o

Consider again the MSCs SRA and SRB from the example above. If we now derive inter-
action interfaces from SRA and SRB with respect to I = {d} and O = {c}, i.e. from the
viewpoint of component X, then Rgrp is now an O-stable refinement of Rgru.

From a methodical point of view the use of O-stable refinements — which are, in fact, I-
stable refinements of the environment — means weakening the environment assumptions Fg
or Ep, whereas an [-stable refinement means strengthening the component’s commitments
Fg or Fp, as we can easily verify by considering the A/C specifications derived from a
corresponding interaction interface.

As the examples above suggest, refinement steps (on MSCs) leading to I-stable or O-stable
refinements of the corresponding interaction interface remove alternatives from the MSC;
all arrows in the removed alternative point into the same direction: either away from or
towards the component under consideration, but not both.

A joint refinement is neither I-stable, nor O-stable. It influences both the sets of input
histories a component must react to, and the sets of output histories the component is
committed to produce.

Definition 41 (Joint Refinement) Let Ry, Ry : (I UO) — B be interaction interfaces
with respect to the syntactic interface (I,0). We call Ry a joint refinement of Ry if for all
xe€landye O

Ri.(x®y) = Ry.(x®y)

243

7. From MSCs to Component Specifications

holds, and R; is neither an I-stable, nor an O-stable refinement of R,. o

Consider the MSCs JRA and JRB from Figures 7.9 (a) and (b). Let (I,0) be defined as
({c},{d}). Then Rjgp is a joint refinement of R jp4.

msc JRA msc JRB
X Y X Y
— C—— [— C——
alt)
com g com
_ den o
o’] don
__den/ o
I I I I

Figure 7.9.: Joint refinement

A joint refinement results from removing alternatives in MSCs where the arrows within
the alternative point both towards and away from the component under consideration.

We conclude that property refinement of MSCs in general has consequences on all compo-
nents involved in an interaction, even in the case of I- and O-stable refinements.

7.3.5. Discussion

In Section 7.3.3 we have shown how to transform an MSC specification schematically into
an individual component specification for any of the components occurring in the MSC.

This approach has several benefits:
e it is purely schematic up to the possible weakening of the liveness relations E; and
Fy.

e the A/C format clearly identifies and separates the environment’s from the com-
ponent’s responsibilities; an application of this separation is our discussion of the
consequences of MSC property refinement on individual components in Section 7.3.4.

e the derivation is based on interaction interfaces, instead of on the syntactic form
of MSCs. Therefore, it is independent of the concrete MSC syntax we employ; in
particular, it covers the entire MSC dialect we have introduced in Chapter 4.

However, because the approach is so schematic, it also has the drawback of providing only
implicit specifications of assumptions and commitments. This need not be problematic

244

7.4. From MSCs to Automaton Specifications

if a concrete component specification is not subject to further manual manipulation or
“paper-and-pencil” proofs. It is not particularly helpful, however, if we have to produce
executable specifications or code for the component under consideration. We cannot, for
instance, derive sensible finite state machine specifications schematically from interaction
interfaces or A/C specifications.

This observation motivates the approach we pursue in the next section. There, we construct
finite state machines directly from MSCs in their syntactic form.

7.4. From MSCs to Automaton Specifications

The A/C specifications we have associated with MSCs in the preceding section are a
powerful tool for studying the relationship between MSCs and individual component spec-
ifications. As an application of this we have investigated in much more detail than before
the implications of property refinement steps, which we carry out on an entire MSC, with
respect to the individual components appearing in the MSC.

By intention, an A/C specification yields a black-box view: it only considers the relation
between input and output histories of the component under consideration. This view is
particularly useful during the requirements capture process, because it focuses on what
the component must achieve, abstracting away from the details of how the component
establishes its result.

At certain stages during the development process we are, however, specifically interested in
how a component achieves the what. This is certainly true when it comes to implementing
the component in a state-based programming language, such as C, C++, or Java. Each of
these languages is state-oriented in the sense that programs in these languages operate on
a certain control and data state-space, often partitioned among the processes or objects
representing the component under consideration at runtime.

Besides the “final” implementation there are further reasons why we are interested in
glass-box specifications of the component under consideration. Even during requirements
capture we might want to produce early prototypes of the component to demonstrate the
feasibility of our development approach. If we aim at employing automatic verification
techniques, such as model checking, then we definitely have to come up with a state-based
model for the component. Furthermore, we can also derive a state-based model for the
component’s environment and use this model as a test-driver for the component itself.

Accepting the importance of state-oriented component specifications as an integral part of
the development process, the following question arises: can we derive such specifications
equally schematically from MSCs as we did with A/C specifications?

The approach we pursue in the remainder of this chapter allows us to answer this question
positively. As a consequence, we establish a seamless transformation from MSCs — as a

245

7. From MSCs to Component Specifications

means for requirements specification — to (prototypic) state-oriented component implemen-
tations.

A first idea for establishing this result might be to derive an A/C specification from a
set of given MSCs, and to convert this A/C specification into a corresponding finite state
machine. This second step is, however, not feasible in general. Automata with finite state
and transition sets are hard to construct from A/C specifications. The problem is that
determining the component’s “current” control state from (a finite prefix of) its interaction
behavior is, in general, impossible.

Therefore, we follow a different approach in this section. Instead of trying to perform
transformations on the semantic domain to yield an automaton specification, we operate
purely syntactically. We present a translation procedure that takes as main input the given
MSCs in their syntactic form. Step by step the procedure syntactically turns each MSC
into a segment of the finite state automaton we want to construct. By construction the
resulting automaton has a finite number of states. Moreover, the syntactic transformations
we suggest have another advantage: they are independent of the underlying semantic
model of the resulting automata. This means we could, for instance, apply the same
transformation scheme if we interpreted both the MSCs and the resulting automata in a
time and message synchronous way — as compared to the message asynchronous semantics
we have selected in Chapter 4.

To this end, in Section 7.4.1 we fix a specific automaton syntax that is general enough
for modeling reactive components within our system model. In Chapter 3 we have al-
ready discussed several variants of automaton models. The one we use in this section is a
mixture of a Mealy machine and an w-automaton. We avoid the more elaborate concepts
(including hierarchic states and preemption) we have reviewed in Chapter 3 in connection
with statecharts and ROOMCharts in favor of a simpler semantic treatment. However,
we can map most of these concepts to the simpler ones we introduce here, and thus do
not experience a significant loss of generality. In Section 7.4.2 we present the transfor-
mation procedure in detail. In particular, we restrict our attention to the subset of the
MSC dialect from Chapter 4 we can translate directly into the automaton model of Section
7.4.1. We describe extensions to this subset, and how to translate them into corresponding
automata in Section 7.4.4. In Section 7.5 we compare our approach with related ones from
the literature. Section 7.6 contains a summary.

7.4.1. Automaton Syntax and Semantics

Our first step towards the automatic derivation of finite state machines from MSCs is to fix
the syntax and semantics of the automata we want to end up with. As we have explained
in Chapter 3 there is a plethora of automaton models for reactive systems in the literature,
each with its own strengths and weaknesses. Instead of limiting the discussion of this
section to one specific automaton model from Chapter 3, say statecharts or ROOMCharts,

246

7.4. From MSCs to Automaton Specifications

we have chosen a mixture of Mealy machines and w-automata. The syntax of our model is
a subset of what most other automaton models provide; this makes our results applicable
to a wide range of state-oriented specification techniques. Moreover, the restricted syntax
helps us to focus on the key aspects of the translation procedure we present in Section 7.4.2.
We discuss extensions of our automaton model together with corresponding extensions for
the MSCs we accept as input for the translation procedure in Section 7.4.4.

Recall from Chapter 3 that the general form of a transition in a Mealy machine is as
depicted in Figure 7.10. The transition starts in a state si, and ends at a target state s;;
the transition’s label is of the form i/o0, where ¢ denotes the input read by the machine,
and o denotes the output written by the machine when it takes the transition.

Figure 7.10.: General form of transition in Mealy machine

In our automaton model we also capture spontaneous input/output transitions, i.e. tran-
sitions where either ¢ or o equals ¢, indicating that the machine reads no input or writes
no output, respectively, when taking the transition.

According to the system model we have introduced in Section 4.2, each component can
have multiple input and output channels. To indicate the channel on which a certain
message occurs, we use the same syntax as in our MSCs: ¢>m indicates the occurrence of
message m on channel c.

Graphically, we borrow the representation for (initial) states and transitions from Mealy
machines. Instead of the symbol € we also use “-” to indicate the absence of input or output
on a transition label; instead of “-/-” we simply write “-” or “€”. To stress the separation
between the role of input and output messages on transition labels further, we use the
symbols “?” and “!” as prefixes of input and output messages, respectively. This allows

us to use “Z?e>m” and “le>m” as shorthands for “ce>m/-" and “-/c>m” | respectively.

Definition 42 (Automaton Syntax) Let S and Sy be finite sets of states with Sy C S,
and let I, O. C (MSG) W {e} be sets of input and output message specifications, respec-
tively, such that I. N O, = {e} holds; furthermore, let

6:1.x O, xS — P(S)
be a state transition function. Then we call the quintuple
A= (Sa jea Oea SOv (5)

a (nondeterministic) syntactic automaton specification®, or automaton for short. o

3The automaton specification is syntactic in the following sense: it contains no mapping from the state
transition function to the system model. Later in this section we associate safety and liveness properties
with the automaton syntax introduced here; this association constitutes the semantics definition for
automata.

247

7. From MSCs to Component Specifications

As a simple example, consider the automaton from Figure 7.11, which we could use to rep-
resent the state-oriented behavior of the component Control in the CLS example from the
introduction to this chapter (cf. Figures 7.2 (a) and (b)). For this automaton we obtain the
state set S = {UNLD, LCKD, s1, s2, s3, s4}, the set of initial states Sy = { UNLD, LCKD},
the set of input message specifications I = {€, kevlck, kesunlck, le>rdy, resrdy}, and the
set of output message specifications 0., = {€, cl>up, cl>dwn, cr>up, cr>dwn}; the state
transition function 0 is as the figure specifies.

ke lck /! el> dwn e rdy [er>dwn re>rdy
sl 2
{2 -2]
s
A
?re>rdy [s] e rdy/er>up [3] ?ke>unlek /lel>up

Figure 7.11.: Automaton specification

The transformation procedure we suggest below is purely syntactic; in particular, it is
independent of the semantics we associate with either MSCs or automata — as long as
we use the same semantic model for interpreting both. Nevertheless, in the following
paragraphs we introduce an automaton semantics. Our motivation for this is two-fold.
First, we demonstrate that the automata indeed fit into our semantic model. Second, we
can relate the result of the translation procedure constructively with the semantics of the
MSCs we have started out with.

Clearly, there is a plethora of possibilities for defining a semantics for the automata whose
syntax we have just introduced. The one we chose here is particularly simple. Intuitively,
a component operating according to this semantics in each step has the opportunity of
reading a single input message, writing a single output message, and changing state; if
there is neither an input the component can read, nor an output the component can write,
then the component remains in its current state.

We separate introduction of the automaton semantics into the automaton’s safety and
liveness properties. We fix the safety properties by unfolding the transition relation “over
time”, and use arbitrary liveness properties to constrain the liveness of the component
corresponding to the automaton.

Definition 43 (Automaton Safety Property) Let C' and S be the sets of system chan-
nels and states, respectively. By F we denote the system component whose behavior
the automaton defines (F' is an element of the set P of system components). Let A =
(Sa, I.,0.,S,,) be an automaton specification such that S4 C S|z holds. S| denotes the
restriction of the overall system state space S with respect to F'. Let, furthermore, I,O C C

hold with I = {ce€ C: (3me M= evme) andO={ceC: (3me M :: com € O,.)}.

248

7.4. From MSCs to Automaton Specifications

Then we define the safety property AS.A of automaton A as follows:

ASA E {(y,0) € (C x 8
o|lr.0 €Sy
ANNVteN:t>1:
(olpt=o0olp.(t—1)ANNcel,d €O .t —1).c= <> Nipt.cd = <))
vV (3(i,0) € 126 X Oe ::
i,0,0|p.(t — 1))
AN(i#e= (Fe,mi=com:me.(t—1).c)

S
S
~
m
<

Ni=e=Ncel:y(t—1).c=<>))
AN(o#e= (Je,m:0=c>bm:m € .ic))
ANo=e= (VeeO:ptc=<>))))}

In this definition, we denote by |z the projection of the overall stream of system states
onto F’s contribution. Thus, every execution in which the component corresponding to
the automaton A partakes starts in an initial state of the automaton (o|r.0 € Sp). At any
time ¢ > 1 the component either

e has remained in its previous state (i.e. o|p.t = o|p.(t—1)), if no input message occurs
on any input channel at time (¢ — 1), and no output message occurs on any output
channel at time ¢, or

e it has taken a transition from state o|p.(t — 1) to o|g.t, labeled i/o in § (i.e. o|p.t €
d(i,0,0|p.(t — 1))), and the input at time ¢t — 1 equals i, and the output at time ¢
equals o.

Compared to, say, statecharts this is a very simple, operational model for component be-
havior. At any time the component consumes at most one input message, changes state,
and produces at most one output message. As a result, the specification of certain prop-
erties, such as the lack of causality between messages, requires more elaborate automaton
specifications. We will come back to this point in Section 7.4.4.

Now we turn to the liveness properties of our automaton specifications; as the “role-model”
for liveness specifications with automata we use the ones provided by w-automata. Recall
from Chapter 3 that the liveness properties we can associate with an w-automaton are
defined via sets of states, whose elements must occur infinitely often during any execution
of the system. Here, we take a more liberal approach and provide the opportunity to assign
any system liveness property AL.A C (C’ X 5)> as the liveness property of the automaton
A.

249

7. From MSCs to Component Specifications

An example for a liveness property for component Control, whose safety property is given
through the automaton specification from Figure 7.11 is

AL Aconiror = {p € (C x 8)® : #({UNLDY©ma(p)) = oo}

which expresses that state UNLD must occur infinitely often in any execution. Another
example for a liveness property is the MSC specification

keslck — (cl>dwn ~ cr>dwn)

which requires every kc>lck message to be eventually followed by corresponding “down”
messages to both motors of the CLS. The first example is formulated over the internal
state of component Control, whereas the second one only refers to the externally visible
behavior of Control. We obtain the overall automaton semantics as the conjunction of the
automaton safety property and an automaton liveness property:

Definition 44 (Automaton Semantics) Let A be an automaton specification, and let
AL.A C (C x S)*> be a system liveness property. Then we define the semantics of A by

[A]={p € (CxS)®:pec AS.ANp e AL A}

Without proof we note that standard (nondeterministic) finite state machines (in the sense
of [HU90]), as well as Mealy machines, and w-automata are special cases of our automaton
model.

In summary, we have defined a simple automaton model for reactive components in the
preceding paragraphs. We have separated the semantics definition into the safety and the
liveness part of the automaton. The safety part is, in essence, defined by an expansion
of the state transition function over time. In the following section we use this automaton
model as the target for our transformation procedure from MSCs to finite state machines.

7.4.2. Translation Scheme

Our next aim is to construct an automaton specification for one of the components ap-
pearing in a given set of MSCs. To this end, in this section, we present a transformation
procedure that takes as input a set of MSCs, and, through a sequence of syntactic manip-
ulations, turns them into an automaton in the syntax as we have introduced it above.

Clearly, we want the semantics of the automaton we thus obtain to be “compatible” with
the one of the given MSCs, in the sense that the automaton “implements” the interaction
behavior specified by the MSCs for the component under consideration. This notion of
compatibility strongly depends on the semantics of the MSCs and on the semantics of the
target automaton model. We will show later in this section that, indeed, if we associate
the semantics of the preceding section with the automaton obtained as the output of the

250

7.4. From MSCs to Automaton Specifications

transformation scheme, then the automaton’s behavior is a subset of the behavior we
associate with the set of MSCs according to the closed-world semantics.

The basic idea behind our approach is as follows: we view MSCs as “unfoldings” of (partial)
paths through the automaton corresponding to the component under consideration. Our
task is, then, to “reconstruct” the complete automaton from sets of such partial paths as
given by the set of MSCs we start out with.

Consider, as an example, the MSCs slocking and sunlocking from Figures 7.12 (a) and (b).
We can view each of them as one specific path through the automaton for component
Control from Figure 7.13. MSC slocking “takes” the automaton from state UNLD to state
LCKD, whereas MSC sunlocking describes the transition path from state LCKD back to
state UNLD.

msc slocking msc sunlocking
KS Control LM RM KS Control LM RM
L] [] [] [] l] [] [] []
kexlek ke>unlck
cl>dun | clo>up |
- le>rdy _ le>rdy
cr>dwn cr>up
re>rdy re>rdy
I I] I I] I I

(a) (b)

Figure 7.12.: Specification of the (simplified) “locking” and “unlocking” use case

lel>dun, ?lerrdy leredwn
= = UL3

Tre>rdy

Tke>unlck

< LU2
ler>up e rdy C)<!cl>ugo

Figure 7.13.: Automaton for component Control

Thus, the main problem we have to solve, if we have given a set of MSCs, and want to
construct an automaton such as the one from Figure 7.13, is to find an appropriate set of
states, as well as an appropriate state transition function that establishes the link between
the different execution paths represented by the MSCs.

The example MSCs slocking and sunlocking already show that finding an appropriate state
set and transition function is, in general, nontrivial: neither of the MSCs indicates what

251

7. From MSCs to Component Specifications

state the component Control assumes after the respective interaction pattern has occurred.
We could, for instance, use the same automaton state as the start and end state of both use
cases. This would lead to a slightly different automaton specification than that of Figure
7.13; it would allow component Control to initiate a locking process even if the CLS is
already locked.

One of the challenges we face, therefore, is to find not only arbitrary state sets and state
transition functions, but also ones yielding manageable and sensible automata. The solu-
tion we follow here is to use guards within MSCs as a means for guiding the construction
process. Each guard in the MSC will define one control state of the resulting automaton.

Consider, as an example, the MSCs slocking’ and sunlocking’ from Figures 7.14 (a) and
(b). We use the guards labeled UNLD and LCKD to express in what control state the
component Control resides after partaking in the respective use case.

msc slocking’ msc sunlocking’
KS Control LM RM KS Control LM RM
l] [] [] [] l] [] [] []
< UNLD > <{ LCKD >
kexlck ke>unlck |
T clbdun o o cloup
__ levrdy T __le>rdy
B cr>dwun B cr>up
| re>rdy " | re>rdy
LCKD UNLD
E— — — — — —

(a) (b)

Figure 7.14.: Specification of the “locking” and “unlocking” use case with guards

Below, we will see that taking guards as state labels into account can increase the quality
of the resulting automaton (with respect to a lower number of states and transitions)
considerably. In fact, the automaton from Figure 7.13 is what our transformation procedure

yields if applied to the MSCs of Figure 7.14.

In the remainder of this section we present our transformation procedure from MSCs to
automaton specifications in detail; the structure of our presentation is as follows. First,
we define the subset of the MSC syntax for which we give the transformation explicitly.
This syntactic subset suffices to express guarded message exchange, alternatives, and repe-
tition. The transformation of more elaborate syntactic constructs appears in Section 7.4.4.
Second, we give a roadmap for the transformation procedure to convey a first idea of the
four steps we perform to obtain the automaton from a set of MSCs. Third, we discuss a
few preliminaries we have to establish before the transformation can succeed. Fourth, we
present each of the phases of the transformation procedure, in detail. We illustrate our

252

7.4. From MSCs to Automaton Specifications

approach by transforming the MSCs slocking’ and sunlocking’ into an automaton for the
component Control along the way. Another example appears in Section 7.4.3, where we
revisit the ABRACADABRA-protocol.

Restricted MSC Syntax

The syntax for which we define the transformation of MSCs into automata is a small
subset of the one we have introduced in Chapter 4. The reason for this restriction is
twofold. First, we want to focus on the key aspects of the transformation, not on syntactic
technicalities. Second, although the automaton model of Section 7.4.1 provides no direct
syntactic support for expressing the advanced “features” of our MSC dialect, such as
preemption, interleaving, join, and guarded repetition, we will see in Section 7.4.4 that for
most of these constructs simple “macro-expansions”, based on the restricted MSC syntax,
exist.

An MSC we accept as input for the transformation procedure may contain — besides com-
ponent axes in the graphical representation — possibly empty sequences of messages and
guards only. For simplicity, we allow guards to refer only to the control states of the com-
ponents. We assume further that each such guard is represented by a unique name. We
use these names to refer to the components’ control states within MSCs.

As an example, consider the CLS again. The overall state space S is the cross product of
the individual component state spaces Sks, Scontrors Sy, and Sgar:

S = Sks X Scontrol X SLym X Srm

We treat control states as part of each component’s overall state space, and write

SF:S;C XS?

to denote the separation of component F’s state space into the control state space SE¢
and the data state space SE, respectively.

In our example, let us assume that the control state space of component Control includes
the two states LCKD and UNLD, i.e. {LCKD, UNLD} C SEC holds. Then the guards

Control
occurring in the MSCs slocking” and sunlocking” of Figure 7.14 (a) and (b) express that
component Control is in the respective control state before and after the depicted interac-

tion pattern occurs.

We use the interpretation of guards as control states also to express alternatives and
repetition in our restricted MSC syntax:

e MSCs starting with the same guard-label express alternative interaction patterns,

e an MSC starting and ending with the same guard-label expresses the repetition of
the interaction pattern between the two guards.

253

7. From MSCs to Component Specifications

Thus, the two MSC terms in restricted syntax:

msc X = (g1 : ecbm); (g1 : empty)
msc Y = (¢; : empty) ; (g2 : empty)

together represent the same “black-box” behavior as the MSC term

msc Z = (cbm)]ae

in our full MSC dialect with inline expressions.

Under this interpretation, the MSCs slocking’ and sunlocking’, for instance, represent that
component Control switches between the two control states UNLD and LCKD, triggered
by the receipt of the corresponding messages from component KS.

In this example, local guards represent control states of component Control. For MSCs
containing non-local guards we assume the existence of a surjective mapping from non-local
guards to local guards for each of the components covered by the non-local guards. This
reduces these components’ dependency on the states of their environment.

Roadmap

The roadmap we follow with our transformation procedure is as depicted in Figure 7.15.
It consists of four successive phases:

1.

2.

3.

254

Projection:
After having selected the component for which we want to construct an automaton
specification we project each of the given MSCs onto this component.

Normalization:

We determine the transition-path segments defined by the projected MSCs, accord-
ing to the guards appearing in the MSCs; if necessary, we add appropriate guards
at the beginning and at the end of the projected MSCs.

Transformation into an Automaton:

We turn every message arrow that appears in an MSC into a transition of the
automaton; if necessary, we add intermediate states to link the transitions, such
that they correspond to a sequence of messages within a normalized MSC.

Optimization:

Because the resulting automata are, in essence, standard nondeterministic finite
state machines, we can apply any of the well-known optimization algorithms from
automata theory, say, to minimize the number of states or transitions.

7.4. From MSCs to Automaton Specifications

msc sunlocking

KS Control LM RM
[] L 1 L 1 [1
kevunlek
msc slocking
KS Control LM RM
[1 C 1 C 1 L 1 - .
re ik 1. Projection
vClck
cl>duwn
— =
o levrdy
credwn msc sunlocking
- KS Control LM RM
- . B ———— IS :
— — — I ke unlek
msc slocking
KS Control LM RM
i kevlck :
2. Normalization ‘ o |
. cil>awn
—— >
: le>rdy
cr>dwn
msc sunlocking' re>rdy
KS Control LM RM : : :
ke unlck
msc slocking’
KS Control LM RM
< UNLD >
: ‘ ke ek . .
— clodun : 3. Transfor mation into an automaton
lebrdy : :
credun
re>rdy
LCKD :
— T — e) 2eb T lers dw
ULl lel>dwn, @ e rdy, @ leredwn
\ ‘.’krblnk: v Trevrdy

E-B)

i ?re>rdy v 2kevunlck
LU4 LU3 LU2 LU1
. lersup ©<‘:’[(:Drdy D lelbup

4. Optimization

() e rdy/ler>dwn
ke lek [el> dwn
re>rdy

I
Tresrdy ?kesunlck /! el up
-

e rdy/\ervup

Figure 7.15.: Roadmap for the transformation procedure

255

7. From MSCs to Component Specifications

Next, we will discuss each of these phases in detail.

Preliminaries

To prepare and simplify our presentation of the transformation procedure, we first mention
a few prerequisites, as well as some technical assumptions we make.

Before we can apply the procedure, we have to determine the component for which we want
to construct an automaton. In the following we call this component F. We assume given
a set of MSCs describing F’s interaction behavior. From this set of MSCs we construct an
automaton for F.

Our automaton model requires the specification of a set Sy C S of initial states. For the
purposes of the transformation procedure, we assume Sy to be a singleton: Sy = {so}; the
initial state sg be given before we apply the procedure. If the MSCs are already annotated
with guards, then it often makes sense to pick one of these as the initial state sq. However,
in the general case, we cannot determine sy canonically from the given MSCs. Therefore,
we leave it to the designer to decide which of the component’s states should “be” s,.

At several points during the transformation we need to introduce fresh guards (or control
states) into the MSCs (or automata) produced as intermediate results. Such fresh guards
(or control states) occur nowhere else in the specification. Therefore, we assume we can
always select a fresh element from SE¢ whenever we need it; we do so only finitely many
times during the transformation, which ensures that SE¢ remains finite. Moreover, we
assume that SEC contains all state labels corresponding to guard labels within the given
MSCs.

With these preliminaries in place, we now turn to the description of the four transformation
phases projection, normalization, transformation into an automaton, and optimization.

Projection

The first step of the transformation procedure is to project all MSCs onto the component
we are interested in (component F'). This means removing all other instance axes, as well
as message arrows that neither start nor end at the instance axis of component F'.

The result of this is a fresh set of partial MSCs; each of these MSCs has precisely one
component axis whose label is F'. The MSCs are partial in the following sense: we can
determine the source and destination of a message only through the labels of the message
arrow; the axes of components other than F' are absent.

If we perform the projection of the MSCs slocking’and sunlocking’ onto component Control,
we obtain (partial) MSCs as depicted in Figures 7.16 (a) and (b).

256

7.4. From MSCs to Automaton Specifications

msc SLUI1 msc SLUI2
Control Control
< UNLD > < LCKD >
kexlck ke>unlck
cl>dwn - cl>up
_le>rdy [c>rdy
cr> dwn> cr>up
<> rdy rci>Tdy

(a) (b)

Figure 7.16.: Projected and Normalized MSCs for component Control

Normalization

As we have mentioned above, we adopt the view that every one of the projected MSCs
describes one particular state/transition path within the automaton we construct. This
path leads from a “start” state, i.e. the control state assumed by the component before it
partakes in the interaction pattern, to an “end” state, i.e. the control state assumed by
the component after the interaction has occurred.

Our next step, therefore, is to assign start and end states to each of the (partial) MSCs
resulting from the projection according to the preceding transformation phase.

We call (partial) MSCs that both start and end with a guard, and that have no other
guards in between MSCs in normal form; SLUI1 and SLUI2 are examples of such MSCs.

MSCs in normal form are particularly helpful in our transformation procedure, because
they make explicit the start and end states of the transition path we aim at.

Clearly, the MSCs resulting from the projection need not be in normal form right away. In
general, there may be no guards at all; the MSCs may also contain an arbitrary number
of guards between occurrences of message arrows. If we were to perform the projection of
the MSC slocking” (cf. Figure 7.17) onto the component RM, say, then we would obtain
a partial MSC having neither a start guard, nor an end guard; instead, it has a guard
(labeled INTER) between the message receipt and the corresponding reply.

How do we normalize MSCs without guards at their beginning or at their end? Because
the developer of the MSC has specified no constraint at the state of the component, we
have a plethora of options. We mention four of them to illustrate the design decisions we
face.

257

7. From MSCs to Component Specifications

msc slocking’’
KS Control LM RM
[] [] [] []
< UNLD >
ke lck
L > clodun
_c>rdy
cr>dwn
INTER >
- re>rdy
LCKD
E— — I

Figure 7.17.: Component RM without start and end guard
If the start guard is missing, we could either

1.a) add the given initial state instead, or

1.b) produce copies of the MSC such that for every control state of the component there
is one copy with this state as the start guard.

According to the first alternative the interaction pattern corresponding to the MSC is
“reachable”, i.e. can occur, at least once. There is a path through the automaton under
construction that starts in the initial state and that corresponds to the interaction pattern.

The second alternative results in a component specification where the interaction pattern
under consideration may start in any control state; accordingly, the interaction pattern
potentially preempts any other behavior displayed by the component.

If the end guard is missing, we could either

2.a) add the given initial state instead, or

2.b) add any control state without an outgoing transition, i.e. a trap state.

Here, the first alternative allows the component to continue to react according to some
(other) given MSC. The second alternative treats the interaction patterns as “one-way”
paths, from which there is no exit.

Clearly, there is a lot of other advantageous possibilities in concrete applications. Here,
we select the two options 1.a) and 2.a), and add the given initial state, whenever a guard
is missing. This is in line even with the weakest of our MSC interpretations, i.e. the
existential interpretation, which requires that the scenario represented by an MSC should

258

7.4. From MSCs to Automaton Specifications

at least have the potential for occurring; moreover, other scenarios can occur after the one
under consideration has finished.

Now we assume that all MSCs have both a start and an end guard. The final step of the
normalization phase is to split MSCs with more than two guards at any of the intermediate
ones. We replace each such MSC by two new ones; the first of these is the original MSC
up to (and including) the guard at which we split, the second one is the original MSC from
this guard on. We repeat the splitting process until all MSCs have precisely two guards:
their start and their end guard.

Figures 7.18 (b) and (c) show the result of applying the last step to the MSC fragment of
Figure 7.18 (a).

X X X
U U <osr >
—
B —

— f,——————
<Sl> B — >
B —
.

(a) (b) (c)

Figure 7.18.: MSCs with intermediate guard (a) and in normal form (b), (c)

Transformation into an Automaton

So far, we have extracted the relevant part of the MSCs for the component we are interested
in (during the projection phase), and have fixed the start- and end-points of the transition
paths we associate with each (partial) MSC (during the normalization phase).

Now we switch from the MSC syntax to the one of the target automata. In fact, we are
already almost there. Our remaining task is to add intermediate states and transitions be-

tween any two control states that correspond to the start and end guards of the normalized
MSCs.

To illustrate how close the MSCs in normal form are to a coarse-grained automaton de-
scription, and to establish a link between the semantics of the MSCs and the semantics of
the resulting automaton, we introduce the notion of an MSC automaton. This is a finite
state machine, whose states are the start and end guards of the normalized MSCs, and
whose transition labels are MSC names. Intuitively, there is a transition labeled X from
state sg to state s; in an MSC automaton, if and only if there is a normalized MSC named
X in the MSC document, such that X starts with guard sy and ends with guard s;.

259

7. From MSCs to Component Specifications

Definition 45 (MSC Automaton) We consider an MSC document that contains only
MSCs in the restricted syntax and in normal form for a component F' in the set of all
components P. Let C' and S be the set of all channels, and component states, respectively,
of the system. Let Sg be the set of control states of component F. Sp includes, in
particular, all start and end guards appearing in the MSC document. sy € Sp is the initial
state given as an input to the transformation procedure. Let ¥ C (MSCNAME) be the set
of names of the MSCs within the MSC document. We call a quadruple

APSC = (Sp,%,0,50)
an MSC automaton for F, if
§:SpxX— P(Sp)
is a state transition function, such that
s' € (s, X)
holds for s’,s € Sp and X € ¥ if and only if there is an MSC with name X, start guard

s, and end guard s’ in the MSC document. o

The semantics of an MSC automaton is the set of system executions where the component
F displays the interaction behavior as defined by the MSCs in the document, and assumes

e the control state corresponding to the start guard before it partakes in the interaction
pattern,

e the control state corresponding to the end guard after the interaction pattern is

finished.

Between the time points fixed by the start and end guards the MSC labeling the transition
in the MSC automaton describes F’s behavior. Formally, we define:

Definition 46 (MSC Automaton Semantics) Let A¥5¢ = (Sp, %, 4, 55) be an MSC
automaton for component F'. Let C' and S be the sets of system channels and states,
respectively. We define the semantics of A¥5¢ which we denote by [A¥5¢], as follows:

[AMSC] £ {(4,0) € (C x §)®:

olp.0 = sy
ANETEN®:T0=0:
(Vte N:t>1:
(X e X =
olp.(Tt) € 6(o|p.(T-(t —1)), X)
A((,0),T) € [X .cw))) ;

260

7.4. From MSCs to Automaton Specifications

The two innermost conjuncts in this definition capture the three informal requirements we
have stated above:

e there is an MSC named X whose start guard is o|g.(T.(t — 1)), and whose end guard
is o|p.(T.t),

e at the time points o|p.(T.(t —1)) and o|p.(T.t) the component F' assumes the control
states o|p.(T.(t — 1)) and o|p.(T.t), respectively,

e between time 7'.(t — 1) and T'.t the system behavior is as the MSC X specifies.

The stream of time points 7', which occurs in this definition, acts as an oracle predicting
the “duration” of an MSC when its transition fires.

With {UNLD, LCKD} C Scontror and so = UNLD as a description of the control states
and the initial state, we obtain the MSC automaton from Figure 7.19 for our CLS example
with respect to component Control.

N

UNLD LCKD

Z

SLUI1

SLUI2

Figure 7.19.: MSC automaton for component Control

The safety part of this MSC automaton’s semantics equals the one of the MSC term
(— SLUI1; — SLUI2) oo

under the closed world semantics, starting from time 0.

Note the close relationship between MSC automata and HMSCs. The MSC automaton for
a component F' provides a “high-level” view on the state-oriented behavior of F.

To finalize the step from MSCs to finite state machines in the sense of Section 7.4.1
we only have to turn the transitions labeled with MSCs in the MSC automaton into
state/transition-segments, such that every transition is labeled with an input message,
an output message, or €. Thus, we obtain the automaton corresponding to F' in two steps.

First, we introduce fresh guards into the normalized MSCs, such that before and after each
message arrow there is a guard; guards we add between the start and end guards of an
MSC must be unique.

Second, we interpret each guard as a control state of the resulting automaton, and draw
a transition arrow from state s to s’ if and only if there is an MSC with a message arrow

261

7. From MSCs to Component Specifications

between guards whose labels are s and s', respectively. We label the transition with an
input or output message specification according to whether the message arrow in the MSC
is an incoming or an outgoing one. If s and s are the start and end guards of an MSC, and
there is no message arrow between s and s’ in that MSC we also introduce a transition,
and label it by €. More formally, to obtain the state transition function

§:1.x O, x Sp— P(SF)
we require that

e s € §(c>m,e,s) holds if and only if there is an MSC where an incoming arrow,
labeled c¢>m, occurs directly after guard s and directly before guard ¢/,

e 5 € (e, c>m, s) holds if and only if there is an MSC where an outgoing arrow,
labeled ¢>m, occurs directly after guard s and directly before guard ¢/,

e 5’ € J(¢,€, 5) holds if and only if there is an MSC where guard s directly precedes s’
(with no message arrow in between).

According to its definition the set I, contains exactly the messages labeling incoming arrows
of the normalized MSCs, as well as €; O, contains — besides € — exactly the messages labeling
outgoing arrows of the normalized MSCs.

This construction yields a nondeterministic automaton specification
AF - (SFa IEv Oea 67 {SO})

where Sg is the set of control states, defined by the guards that occur explicitly in the
MSCs, or were added between message arrows as intermediate states, I, and O, are the
sets of input and output messages of F' as defined by the (direction) of the arrows within
the MSCs, 0 is the transition function we have built in this transformation phase, and s
is the given, unique initial state.

el dwn, ?lcbrdy@ ler>duwn
> UL3

LU4 < LU2
. ler>up ?e>rdy C)<!cl>up

Figure 7.20.: Result of the transformation with respect to component Control

If we apply this construction to our CLS example for component Control, and label the
intermediate states by ULI through UL4, and LU1 through LUj, we obtain the automaton
specification of Figure 7.20 as a result of applying the transformation of MSCs SLUI1 and
SLUI?2 into an automaton.

262

7.4. From MSCs to Automaton Specifications

MSC Semantics vs. Automaton Semantics As we have noted before, the transforma-
tion procedure we develop here is purely syntactic; in particular, it is independent of the
concrete semantics associated with MSCs and automata. Yet, because we have defined a
semantics for our exemplary automaton model, we can relate the semantics of the original
MSCs with the semantics of the resulting automata. We do so informally to convey the
basic idea; intuitively, we sketch a trace back from the behavior of the automaton Ag to
the original MSCs in restricted syntax. Without proof we note that the safety part of the
semantics of Ap implies the safety part of the semantics of A¥9¢ by construction (up to
the renaming of states). The only essential difference between Ar and AM5C is that Ap
makes precise which control states [’ assumes in the transition between the states repre-
senting the start and end guards of the given MSCs. A¥5C only restricts the time points
at which the control states corresponding to start and end guards must occur, but makes
no statement about the states occurring during any of the MSC automaton’s transitions.
Therefore, the step from AMSC to Ap is a specification property refinement step in the
sense of Section 6.2, and — if we consider only the I/O behavior of the component F' cor-
responding to the automaton — a (component) property refinement step in the sense of
Section 7.2.4. To see the relationship between the MSCs we have started out with and
the resulting automaton’s semantics recall the definition of A¥5¢ which we gave earlier
in this section (cf. Definition 46). A transition between two states of the MSC automaton
captures precisely the behavior represented by one of the projected and normalized MSCs
under the closed world semantics. The projection of the closed world semantics of each
individual MSC in restricted syntax (cf. Section 7.4.1) equals the semantics of the MSC
resulting from the projection phase by construction. Normalization does not change the
sequences of interactions represented by the restricted MSCs. Thus, if we accept that
the MSCs in restricted syntax are “connected” via guards representing control states (to
express alternatives and repetition), then we see that up to the projection onto the com-
ponent F', and up to the renaming of states, the semantics of Ap is a property refinement
of the semantics of the original restricted MSCs under the closed world semantics.

We have deliberately chosen to use transition labels consisting of any one of the following
only: €, an input message specification, or an output message specification. As a result,
the automaton specification we obtain is syntactically isomorphic to a standard finite
state automaton (modulo fixing terminal states). In the final phase of the transformation
procedure we exploit this “feature” by applying various optimization algorithms that exist
for standard finite state machines to the automata we have obtained so far.

Optimization
In general, the automata we obtain by application of the transformation as we have de-

scribed it up to this point, are nondeterministic and can have e-transitions. As an example,
consider the three MSCs ND1, ND2, and ND3 from Figures 7.21 (a) through (c).

263

7. From MSCs to Component Specifications

msc ND1 msc ND2 msc ND3
X X X
c>m - c>m -

(a) (b) ()

Figure 7.21.: MSCs yielding a nondeterministic automaton with an e-transition

Figure 7.22 shows the automaton resulting from these MSCs, if we use g1 as the initial
state.

lem

le>m

Figure 7.22.: Automaton derived from MSCs ND1, ND2, and ND&

Clearly, the automaton of Figure 7.22 bears potential for optimization with respect to the
number of its states and transitions.

During the optimization phase we try to turn the result of the schematic application
of the preceding phases into a more compact automaton specification. The reduction
of nondeterminism is just one example for a standard algorithm known from automata
theory that can bring us closer towards this goal. In addition, we might want to exploit
“specialties” of the target automaton model. In the following paragraphs, we describe both
of these forms of optimization, in turn.

Algorithms from Automata Theory

Automata theory provides various algorithms for optimizing standard finite state machines
with respect to their number of states and transitions. Typical examples of such algorithms
are the removal of e-transitions, determinization, and minimization; the authors of [HU90]
describe each of these in detail.

We can make these algorithms applicable to our automaton model as well. As we have noted
earlier, the major difference between our model and the one of [HU90] for nondeterministic
finite state machines is that the latter operate on finite sequences of inputs, whereas we
have defined our automaton model on infinite channel valuations. [HU90]’s model includes

264

7.4. From MSCs to Automaton Specifications

the following acceptance condition: after processing the finite input word, the automaton
finally resides in a terminal state. Such acceptance conditions for finite input sequences

correspond to liveness conditions for automata operating on infinite input (cf. Section
3.3.3).

Therefore, to carry over the standard optimization algorithms for finite state machines
from [HU90], we have to designate a set of terminal states for the automaton we have
constructed in the preceding transformation phases. For simplicity we let every automaton
state be a terminal state, and apply the mentioned optimization algorithms starting with
the nondeterministic finite state automaton

ANFS - (SF7 fe U Oev 5’mt57”7 505 SF)

inter

where we define 0,0, : SF X (fE U OE) — P(SFr) by

s' € Ointer(s,0) = (Fepm € I:z=com:s € d(s, c>m,€))
V{(3erme O,z =com:s €d(s e com))
Vi(z=eNs €d(s,ec€))

By application of the algorithm for the elimination of e-transitions, determinization, and
minimization, in this order, with ANIS as the initial input, we obtain an optimal, deter-
ministic automaton

DFS __ opt 71 A DFS opt
Ao = (S¢ AU O, 0,,," 50,5)

which we turn back into an automaton within our model
Aopt - (S;pta jeu 067 5opt7 SO)
by defining &,y : Sg X I.x O, — P(Sr) by

' € Oopi(s,i,0) = (Fepm el i=comAo=c:s €6255(s, eom))

V{3csmeO, i=eNo=com:s € 55155(3, c>m))

If, as an example, we start out with the MSCs from Figures 7.23 (a) through (e), and
g0 as the initial state, we obtain the automaton of Figure 7.24 (a) as the result of the
transformation steps before optimization.

265

7. From MSCs to Component Specifications

msc X1 msc X2 msc X3 msc X4 msc X5
X X X X X
_com Ac’ >m’ A{:’ >m’
don o don o den |

(a) (b) () () (e)

o1 lden I. 901 lden ,.

¢

Figure 7.24.: Automaton before optimization (a) and after elimination of e-transitions (b)

The elimination of e-transitions yields the nondeterministic automaton of Figure 7.24 (b);
Figure 7.25 (a) displays a deterministic equivalent. By means of the minimization with
respect to the number of automaton states we obtain the automaton from Figure 7.25 (b).

AN
@ D@
7c'>m %
= lden ' rc'>m!
(a) (b)

Figure 7.25.: Automaton after determinization (a) and minimization (b)

In the course of optimization even states corresponding to guards within MSCs can “van-
ish” | i.e. may become unreachable from the initial state. Hence, the state-part of the
optimized automaton’s semantics may not remain the same as the one of the MSC seman-
tics. However, the I/O behavior of the automaton still implements the one specified by
the MSCs under the closed world semantics.

266

7.4. From MSCs to Automaton Specifications

Other Optimizations

[qph]

The transition labels we have used so far are of the simple form “€”, “?c>m” or “le>m”
for some c>m € (MSG). This simplicity was very helpful in view of the optimization
algorithms we could directly apply to the resulting automata.

However, our automaton syntax also allows transition labels of the form “?c¢>m/ld>n”;
this bears potential for further optimization of the automata produced by the transforma-
tion. We can shorten transition segments as depicted in Figure 7.26 (a) by dropping the
intermediate state s; from the set of states, and by connecting all transition paths from s;
to each of the states s; through sy, as Figure 7.26 (b) demonstrates. Clearly, this makes
sense only if s; is not the initial state of the automaton.

(b)

Figure 7.26.: Exploiting more elaborate transition labels

Other automaton models, such as statecharts, allow us to associate even longer chains of
outputs with an input event. However, the causal relationship thus established between
triggering input and triggered output may be rather artificial. Therefore, we consider this
already a form of heuristic optimization. Heuristic optimizations require careful application
to avoid introduction of unwanted side-effects, such as possibly unintended causality in this
case.

7.4.3. Example: the Abracadabra-Protocol

In Section 4.7 we have studied the ABRACADABRA-protocol as an example for an MSC
specification. Here, we show on a simplified version of this symmetric communication
protocol how to derive an automaton specification for the individual components.

We use the MSCs from Figures 7.27 (a) through (d) to specify the simplified protocol
from the view of component X; we have omitted the use case where X acts as the receiver
in a successful communication initiated by Y. Moreover, we have fixed the orders of the
messages in case of a conflict: here, X is always the first to send.

We apply the transformation procedure to obtain an automaton for X, and take IDLF as
the initial state.

267

7. From MSCs to Component Specifications

msc SR_S msc SR C
X Y X Y
[]] [
@ LY STCG
< VE>87e
TY>Ssreq.
yassack R
Ty>ereq |
SNDG <V cack |
I I I

msc SR_S1 msc SR_S2
X Y X Y
[] []

SNDG SNDG
zybd TYy>ereq
yz>dack yz>eack

SNDG { IDLE >

I I

(a)

(b)

()

()

Figure 7.27.: MSCs for the simplified ABRACADABRA-protocol

Projection

Performing the projection onto X here simply amounts to omitting the axis for component
Y; therefore, we do not draw separate MSCs for the projected use cases. In the following
we refer to the MSCs of Figure 7.27 (a) through (d) as if they were projected onto X

already.

Normalization

The only MSC that leaves room for normalization is the projection of SR_C onto X. Ac-
cording to the transformation procedure, we insert state IDLFE as the start and end guard,
and split the resulting MSC at guard CNFL to obtain the MSCs SR_CNI1 and SR_-CN2

from Figures 7.28 (a) and (b); these two MSCs are in normal form.

268

msc SR_CN1
X

{_IDLE >

Ty sreq,
>
yx>sreq

(a)

msc SR_CN2
X

< _CNFL >

Ty>ereq

</ eack

{_IDLE >

(b)

Figure 7.28.: Result of normalizing MSC SR_C

7.4. From MSCs to Automaton Specifications

Transformation into an Automaton

The interpretation of the normalized MSCs as transition paths, and the insertion of in-
termediate states yields the automaton specification of Figure 7.29. Here, we show the

intermediate states as unlabeled circles to distinguish them from the guards that occur in
the MSCs.

Tyx>dack

Figure 7.29.: Automaton for component X

Optimization

The automaton of Figure 7.29 has no e-transition, but it is not deterministic: two transi-
tions with the label “lzy>sreq” leave state IDLE. By application of the determinization
algorithm from [HU90], we obtain the automaton from Figure 7.30 (a).

YovaAThj >

=
m

lzy>sreq

Tyx>sreq)A Tyx>sack
/

Tyx>dack

Figure 7.30.: Automaton after determinization (a) and minimization (b)

Minimization of this automaton identifies the two intermediate states whose outgoing tran-

sition is labeled with “?yz>eack” and ends at state IDLFE. This yields the automaton from
Figure 7.30 (b).

269

7. From MSCs to Component Specifications

7.4.4. Extensions

The MSC syntax for which we have defined the transformation into automata is rather
limited. However, by means of a few conventions we can apply it also to the more elaborate
MSCs allowed by our MSC dialect. In the following paragraphs we show how to deal with
alternatives, bounded and unbounded repetition, interleaving, join, preemption, and trigger
composition.

Alternatives

Different MSCs starting with the same guard express the nondeterministic choice between
alternatives. Therefore, we can translate every MSC term

alp

into the two terms

g«
g:p

for a, 5 € (MSC) and a (fresh) guard g to obtain the same nett effect in the restricted
syntax.

Bounded Repetition

The most basic transformation for a bounded loop of the form o, for m,n € IN and
m < n is to produce n copies (named «; through «,) of «, each with a unique set of
guards. We assume that « is in normal form, and that o’s start and end guards differ. As
the start guard of a; we use the start guard of a;, and as the end guard of «,, we use the
end guard of a.

A

The next step is to derive the automata Ay, = (Sa,, 1", 0% 84, s5") through A, =
(San s I o Of”, dan,» So™) corresponding to the n copies of a. Then, we combine these au-
tomata into a single result automaton by inserting e-transitions “between” the automata
A,, and A, ., for all r € [1,n—1]; this arranges the n automata into a chain corresponding
to an n-fold sequential composition of the interaction pattern represented by «. Further-
more, because all repetitions beyond the lower bound m are optional, we add e-transitions
from the initial states of the automata A, , for r > m + 1, to the state of A,, that cor-
responds to the end guard of «a,,. More precisely, we construct the resulting automaton as
follows:

o the state set is the union of all state sets S,, through S,,,
e the input symbol set is the union of all input symbol sets I** through 1%,

e the output symbol set is the union of all output symbol sets O?l through Of”,

270

7.4. From MSCs to Automaton Specifications

e the transition function ¢ is the union of the transition functions d,, through o,,,
enriched by e-transitions such that both
so Tt € (sTi €, €)
and
s3 € 0(sy” €, €)

holds for all ¢ € [1,n — 1], and j € [m + 1,n], where by s7*, k € [1,n], we denote the
control state corresponding to the end guard of MSC ay,

e the initial state is the initial state of automaton A,,, which equals the initial guard
of a.

As an example, consider the MSC BLX of Figure 7.31 (a). Figure 7.31 (b) shows the
automaton with respect to component X that results from this expansion strategy.

msc BLX

X Y
[]

T
loop <1,3>

cbm

(a) (b)

Figure 7.31.: Transformation of bounded repetition

Automaton models that provide access to the data state of the component under consid-
eration would allow us a much more compact transformation. In statecharts and ROOM-
Charts, for instance, we could simply introduce a counter variable for the number of rep-
etitions of the interaction pattern; we would control the values of this counter within the
range [1,n] such that the pattern must occur at least m times, and at most n times.

Unbounded Repetition

In Section 7.4.2 we have already shown how to insert guards into copies of an MSC «, such
that together these modified copies model the unbounded repetition of & when we perform
the transformation to automata.

The motivation for this expansion is, again, the following understanding of MSCs with
appropriately labeled guards: each such MSC represents a path through the automaton we
construct; if such a path ends in the same state with which it started, then we can follow
the same path over and over again. If there is another transition leaving the start state of

271

7. From MSCs to Component Specifications

this path, and ending at another state, then we may also have an exit out of the repetition.
This models unbounded loops.

Infinite Repetition

To model an infinite repetition, such as a . of an MSC a without guards, we simply
have to use the same, unique guard g as both the start and as the end guard of the MSC:

(9:a); (g: empty)

If o does contain guards, we also have to ensure that none of these may occur as a start
guard of any other MSC, i.e. there is no “exit” out of the infinite loop. Clearly, this only
captures the safety part specified by an infinite loop. Below, we discuss how we can also
integrate the corresponding liveness property.

Interleaving

The major purpose of interleaving in our MSC dialect is to express the lack of causality
between message sequences. Our automaton model has no dedicated syntactic and se-
mantic counterpart to the parallel inline expression of MSCs. However, we can always
explicitly enumerate all possible interleavings of the operands of a parallel inline expres-
sion, and treat these interleavings as execution alternatives. Then, we can construct the
component’s automaton via the alternative MSCs.

Consider, for instance, the par-inline expression in the MSC from Figure 7.32. We can
expand this inline expression into the MSCs of Figure 7.33 (with respect to component X).

msc CR_P
X Y
——
par
zy>ereq |
__yx>eack
_yr>ereq
ry>eack |
{ IDLE >
I

Figure 7.32.: MSC with par-inline expression

Figure 7.34 shows the nondeterministic automaton resulting from the transformation of
these six MSCs with CNFL as the initial state.

The drawback of this syntactic expansion of the par-inline expression is the induced “com-
binatoric explosion” of the number of intermediate states for the nondeterministic automa-
ton.

272

7.4. From MSCs to Automaton Specifications

msc CR_P1 msc CR_P2 msc CR_P3

Oﬂx
Oﬂx
Oﬂx

CNFL CNFL CNFL
Ty>ereq Ty ereq Ty>ereq
<2 eaclr __yzp> erqu <2 erqu
</E>ereq zyveack <Yz eack
Ty eacl; __yz>eack Ty> cacl;

IDLE IDLE IDLE

B
B
|2

msc CR_P4 msc CR_P5 msc CR_P6

Oﬂx
Oﬂx
Oﬂx

CNFL CNFL CNFL
_yr>ereq _yr>ereq _yr>ereq
‘CL‘yD ereqy, ‘.’L’yl> eac/f; ‘Z‘yb ereqy,

Ty> eac/; Ty>ereqy <2 eack
__yx>eack <yx[>eack xybeaclg

|2

IDLE {_IDLE >

Figure 7.33.: Explicit interleavings of the messages from Figure 7.32

Q0 1 20

O Tyx>eack >O Tyx>ereq

Tyx>ereq =0 lzy>eack

\ Tyx>ereq e Tyx>eack
lzy>ereq =) Ly eack

lzy> eack e lzy>ereq

O lzy>ereq =0 Tyx>eack

Figure 7.34.: Automaton obtained from the MSCs of Figure 7.33

More elaborate automaton models, such as statecharts and ROOMCharts, provide bet-
ter syntactic support for modeling causal independence. Recall from Section 3.3.2 that
statecharts offer the concept of AND-states, which we could exploit in our transformation
procedure if the operands of the inline expressions do not share messages. We simply would
have to transform each operand separately, and put the results of the transformations into
separate compartments of an AND-state; Figure 7.35 illustrates the idea of this approach
with respect to the example we have started above.

In ROOM a possible solution would also be to perform a separate transformation of the
two operands, and to create two sub-actors of the actor corresponding to component X,

273

7. From MSCs to Component Specifications

CR
CR1
lzy>ereq Tyz>eack
Ty

CR2

24 | "
tyx>ereq lxy>eac
N

Figure 7.35.: Statechart (with AND-state) corresponding to the automaton from Figure
7.34

such that these sub-actors operate as separate “threads” to handle the parallel behavior.

Join

The semantics of the join of two MSCs a and (identifies the messages shared by « and
(; messages outside the set msgs.ceMmsgs.3 can occur interleaved. Again, our automaton
model provides no direct support for “implementing” the join operator.

As a remedy, we can translate each operand of the join separately — as we have suggested
above to implement the interleaving operator with statecharts —, and then combine the
results by means of an operation on automata that captures the idea of the join operator.

To this end, we define the cross product of two automata A = (SA,ff,Of,éA,sé) and
B = (Sg, 12,08 45, sF), which we denote by A ® B, as

€)

A®B def (Sa x SB,fAUff,O?Uéf,5A®Ba(5§aSOB))

€

where we have

Sy €0a(sa,i€) Nsy € 0p(sp, i €)) «ie I NIP)
s €04(s4,€,0) A sy €0p(sp,€,0)) <=o0e0rnOF)
(iellnigill)
(ig1tniel?f))
(0€ Ot nog OF))
(0 O NoeOf))

((
((
((8'y € 0a(sa,i,€) N sy =sp) <
((s'y = sa N sy € 0p(sp,i,€)) <
((s'y € 0a(sa,6,0) Nsly = sp) <
(() <=

sy =sa NSy €0p(sp,¢€0)

for states (sa, sg), (4, %) € Sax Sp, and message specifications i € I*UIP, o € OAUOP.

Thus, by construction, dagp contains a transition from state (s4,sp) to (s, sz) if and
only if

274

7.4. From MSCs to Automaton Specifications

e both A and B can take a transition from s, to sy, and sp to s’z, respectively, labeled
with the same input or output message, or

e A can take a transition from s, to s’y labeled with i/e or €/0, and B has no transition
with the same label, or

e B can take a transition from sp to s’z labeled with i /e or €/0, and A has no transition
with the same label.

In essence, A ® B yields the product of the automata A and B such that transitions with
the same label synchronize.

As an example, consider the two MSCs JA and JB from Figure 7.36. These MSCs describe
two different views on a system in which X sends the message zy>mlI to Y. JA specifies
what happens between X and Y only, whereas JB shows that the message zx>r is an
“indirect” result of the triggering message zy>ml .

msc JA msc JB
[X] Y [X] Y z
gl gl
zy>ml zy>ml
_yr>nl yz>n2
Ty>ml - 2T
L] L] L]

Figure 7.36.: Operand MSCs for the join operator

To derive an automaton for the join of these two MSCs with respect to the component X,
we transform each of the MSCs into a separate automaton, as depicted in Figures 7.37 (a)

and (b).
e QUL Ly me
\@ lzy>ml =0 tyx>nl =) lzy>m?2 gt

()

0y 9
\@ loy>ml >O Pax>r 95

(b)
Figure 7.37.: Automata for X, derived from JA and JB

Figure 7.38 shows (the reachable part of) the product of these two automata schematically.
It identifies the two occurrences of the message label “lzy>m1”, and interleaves the rest
of the messages.

275

7. From MSCs to Component Specifications

Tyr>nl lzy>m2 Pzx>T

Figure 7.38.: Automaton for the join of MSCs JA and JB

Again, we could exploit the syntactic “features” of statecharts to reduce the sets of states
and transitions of the resulting automaton.

In Section 4.4 we have noted the existence of MSCs a and (8 whose join has an empty
semantics, i.e. MSCs for which [a ® (] = () holds; in other words, o and /3 are inconsistent
with respect to join.

The construction of the corresponding product automaton reflects this by yielding a tran-
sition function where the state representing the join of the two MSC’s end guards is un-
reachable from the initial state.

Consider the two MSCs JC and JD of Figure 7.39. The join of JC and JD has an empty
semantics, because there is no way to identify the occurrences of zy>m and yz>n that
respects the ordering of these messages in both MSCs.

msc JC msc JD
[X] Y [X] Y
gl < gl >
Ty>m _ yz>n
. yr>n Ty>m |
I]

Figure 7.39.: MSCs that are inconsistent wrt. join

The automata corresponding to the projection of JC and JD onto X with g1 as the initial
state appear in Figure 7.40.

c lzy>m Tyz>n C D Tyz>n lzy>m D
N O i NGOl g

(a) (b)
Figure 7.40.: Automata for X according to MSCs JC and JD

If we construct the product automaton A ;- ® A p, we find the set of states reachable
from (¢, gP) to be empty. In particular, the state corresponding to the “joint” end guard
(g5, g¥) is unreachable from the initial state.

276

7.4. From MSCs to Automaton Specifications

This observation leads to a constructive procedure for checking whether two normalized
MSCs « and (3 are consistent with respect to join. We formulate the procedure based on
a simpler notion of join consistency for individual components, as follows.

Definition 47 (Join Consistency of Components) Let a and 5 be normalized MSCs,
and let F' € P represent a component occurring in « and 3. Let A, and Ag be the automata
corresponding to « and [according to the transformation procedure. For 7 € {a, 3}
we denote by s{ and s} the automaton state corresponding to 7’s start and end guard,

respectively. We call o and 3 join-consistent with respect to F' if the state (s%,s?) is

reachable from the initial state (s, s5) in the transition function d4, g A, of the product

automaton A, ® Ag. O

To check whether two MSCs o and (3 are consistent with respect to join, we have to check
whether all components that occur within o and 3 are mutually join-consistent.

Proposition 17 (Join Consistency) Let a and [be normalized MSCs. o and (3 are
consistent with respect to join if and only if o and (B are join-consistent with respect to
every component appearing in o and [3. o

PROOF See Appendix B.3. n

This constructive criterion for join consistency allows us to determine whether a set of
MSCs describes “sensible” interaction patterns.

Preemption
To translate a preemption specification like

acfgmﬁ

into an automaton specification, we observe the following property of the semantics of the
preemption construct: whenever message ch>m occurs during an execution corresponding
to a, then from this time point on the execution evolves as described by 4. In terms of the
automaton we aim at, this means that every state corresponding to a’s behavior should
have an outgoing transition to the state where §’s behavior starts.

This immediately suggests to transform « and [separately into the automata A, =
(Sa, I%,0%,6,,58) and Az = (S, 1°,07,85,s5) with disjoint state sets S, and Sj, and
to integrate A, and Ag such that from every state s, € S, there is precisely one outgoing
transition labeled ch>m, which ends at sg . More precisely, we define

A= (S,USz I°UI?,0°U0? 65, %)

277

7. From MSCs to Component Specifications

such that

s' € 0(s,1,0)
= (s€SyAs =si A((i =chem Aie)V (o= chem Ao OY)))
V(s € Sy As €04(s,1,0) A (i # ch>m Ao # ch>m))
V(s€SgAs €ds(s,i,o0))

holds. Clearly, this makes only sense if ch is either an incoming or an outgoing channel of
the component under consideration. Otherwise the component cannot directly observe the
occurrence of message ch>m in its own I/O behavior. Hence, if we encounter a preemptive
message ch>m during the transformation process, and ch is not a channel of the component
for which we construct the automaton, then we first have to enrich the MSCs to reflect the
occurrence of message ch>m on a channel to which the component has access. One way to
achieve this is to perform a message refinement on ch>m (cf. Section 5.4), such that the
refining protocol indicates the “occurrence” of the (abstract) preemptive message on one
of the channels of the component.

By means of a similar construction, we can also translate preemptive loops like a1} cppm-
Here, we produce an automaton A, for «, and change ¢, such that there is precisely one
outgoing transition labeled ch>m from every state in S,, and this transition must end at
the initial state of A,; otherwise d, remains as is.

Trigger Composition

The MSC term a +— 3 expresses the following liveness property: whenever an interaction
sequence corresponding to « has occurred in an execution, then an interaction sequence
corresponding to (3 follows.

It makes only little sense to construct an automaton with respect to a +— [directly,
because there is a plethora of automata that trivially implement this property; it holds, in
particular, for all automata with an empty transition set.

We are more interested in specifications of the form o ® (5 — 7), and aim at constructing
an automaton A, from o whose semantics has the liveness property § — 7. As we have
seen above (cf. Section 7.4.1), we can use 3 — -y directly as the liveness property AL.A,
to obtain the semantics of the automaton A,. The intersection of AS.A, and AL.A,
implicitly identifies the messages shared by « and f.

HMSCs

So far, we have considered plain MSCs only. However, as we have demonstrated in Section
4.6 there is a constructive transformation from HMSCs to plain MSCs that we can apply
first, before we transform the resulting plain MSCs into an automaton for the component
under consideration.

278

7.4. From MSCs to Automaton Specifications

HMSCs are helpful in our transformation procedure from a methodical point of view.
Because their main purpose is to express alternatives and repetition of entire MSCs, we

can use them to find guards representing control states in the plain MSCs referenced by
the HMSC.

For instance, we could add guards to the MSCs A and B referenced by the HMSC from
Figure 7.41 (a), such that A and B have the same start guard, as well as the same end
guard.

msc H1 msc H2 msc H3

o) e o
\K A

(a) (b) ()
Figure 7.41.: HMSCs defining the labeling of plain MSCs A, B, C, and D with guards

The HMSC of Figure 7.41 (b) suggests an identical start and end guard for MSC C.

The HMSC of Figure 7.41 (c¢) induces the need for two copies of MSC D with the same
start guard: one whose end guard equals the start guard (to represent the possible repeti-
tion), and another whose end guard differs from the start guard (to model exit from the
repetition).

Thus, HMSCs define (“sanity checks” for) the placement of guards within the corresponding
plain MSCs used as the input for our transformation procedure.

Data States

Our transformation procedure considers MSCs with guards representing control states only.
We give a rough sketch of how to integrate data states into this framework.

An easy way to extend our work to guards that also refer to data states is to consider MSC
guards as pairs (p., pq) (cf. [Bro98, Bro99b]). In such a pair p. is a control state as before,
and py is a predicate on the data state of the component under consideration. Based on
this structuring of guards we perform the transformation with respect to the control states
as before.

The data state predicates p; then act as “slices” of the control state they are associated
with.

A thorough treatment of data states is an interesting area for future work (cf. Chapter 8).

279

7. From MSCs to Component Specifications

7.4.5. Methodological Issues

By now, we have available a transformation procedure suitable for deriving automaton
specifications from a significant subset of the MSC dialect we have introduced in Chapter
4.

We conclude this section with a few methodical considerations about the application of
our transformation procedure within the development process.
The Role of Guards

The shape of the resulting automata can strongly depend on how many guards the de-
veloper of an MSC has specified. This is a consequence of our choice to introduce fresh
intermediate states between message occurrences in the normalized MSCs.

msc R1 msc R2
X R] Y X [R] Y
gl g1
xr>d | xreod |
o ryed o ry>d
Lot >
< U __ yr>d’
- rand - rznd
— — — —

(a) (b)

Figure 7.42.: MSCs with different numbers of occurrences of guard g1

For instance, the MSCs R1 and R2 from Figure 7.42 yield the two different automaton
specifications from Figure 7.43 (a) and (b), respectively, according to our transformation
procedure for component R with ¢! being the initial state. Both MSCs specify R as a
“relay” component that forwards the messages it receives.

lre>d’

Tar>d =0 lry>d

(a)

Figure 7.43.: Automata corresponding to the MSCs R1 and R2

' Tyred’

The information provided by the MSC R1 does not clarify what states the component R
assumes between forwarding the messages from X and Y. This results in an automaton
where R must first forward a message from X before it can forward one from Y (cf. Figure

280

7.4. From MSCs to Automaton Specifications

7.43 (a)). R2, on the other hand, yields an automaton that decouples the forwarding
tasks to some extent (cf. Figure 7.43 (b)); R now can forward messages from X and Y
independently.

This example shows that the placement of guards not only has an effect on the size of the
resulting automata, but also on the overall behavior of the component in relation to its
environment. Our choice of inserting fresh intermediate states (as compared to, say, arbi-
trary guards) follows “the principle of least surprise”, but may make the component more
dependent on its environment than necessary. Once we have detected such an unnecessary
dependency in the resulting automaton, we can go back to the MSC specification, and
relax it by adding further (alternative) MSCs.

The important role played by guards during the transformation process induces the ques-
tion at what points during the development process we should add guards to MSCs, and
at what level of detail we should do so.

We consider the focus of MSCs on message exchange, instead of on state change, one of
the particular advantages of this description technique; this focus makes MSCs applicable
already in very early development phases, where we have fixed only little about the detailed
behavior of the individual components. Once we start adding guards with control infor-
mation to the MSCs we reduce our freedom for implementing the component’s behavior
(adding guards is a property refinement step on MSCs, cf. Section 5.3). This suggests to
add as few guards as possible to MSCs, and to do so as late as possible in the development
process, close to the switch from the interaction-oriented to the state-oriented component
view.

However, guards also help structure large MSC specifications, and thus help highlight
the roles played by individual components in an interaction. We have already seen a
simple example for this usage of guards in our treatment of the ABRACADABRA-protocol
in Section 7.4.3. Here, the control states IDLE, CNFL, and SNDG indicate phases of the
communication protocol. Structuring the specification around the start and end points of
such phases can even be the origin for developing an MSC specification in the first place.
Then it definitely makes sense to keep these start and end guards around within the MSCs.

In summary, we conclude that the MSCs we work with until just before the derivation of
automata should contain guards only sparsely; these guards should, in particular, clarify
the structuring of a component’s behavior (in phases) over time. The fewer states we
fix through guards before application of the transformation procedure, the more work we
leave to the procedure itself. If the resulting automata display unwanted dependencies with
respect to their environment, then we can take a step back, and relax the MSC specification
by means of additional alternative MSCs.

Relaxing the MSC Interpretation

Our decision to use the exact MSC interpretation as the basis for the transformation
procedure yields automata capable of processing exactly the messages contained in the
given MSCs, in precisely the same order as specified there.

281

7. From MSCs to Component Specifications

If, however, we assume that the MSCs fix only the interaction behavior displayed by the
component and its environment with respect to the messages occurring explicitly within
the MSCs, and allow arbitrary other message exchange in between, we have to change the
shape of the resulting automata slightly.

One approach to relaxing the MSC interpretation in this way is to add idle-loops to every
automaton state, such that these loops force the automaton to maintain its current state
if it receives an input message absent from all of the given MSCs. It is easy to imagine
multiple other sensible relaxations of the MSC interpretation we start out with. Which one
we choose strongly depends on the target automaton model, as well as on the execution
environment we have given. If the MSCs describe the behavior of both the component and
its environment completely, the exact interpretation is the right choice; if we only have
partial knowledge about the environment, we need a more “forgiving” MSC interpretation,
or, alternatively, a less strict target automaton model.

From Automata to A/C Specifications

We have given the semantics of an automaton A as a subset [A] C (C' x S)™ of the set of
all system executions. [A] contains all those infinite executions where both, the component
associated with A, and its environment “play by the rules”.

We can convert this automaton specification into a relational component specification along
the same lines we followed in Section 7.3, where we derived A /C specifications from MSCs.
We simply have to come up with a closed world version of the automaton semantics, and
derive an interaction interface from it; this interaction interface is the input we need for the
decomposition scheme of Section 7.3.3. The resulting A/C specification yields a reactive
component specification that associates with every input history of the component at least
one output history.

“Non-Local Choice”

The automata resulting from application of the transformation procedure may have states
with outgoing transitions labeled with both input messages and output messages (cf. Figure

7.44).

Figure 7.44.: State with outgoing input and output transitions

Thus, in such a state the automaton can either read an input message present on the cor-
responding input channel, or output a message and change state. As [LL95, Leu95] discuss

282

7.4. From MSCs to Automaton Specifications

in detail under the label of “non-local choice”, this nondeterminism can lead to undesired
behavior, if the automata in the environment and the automaton of the component under
consideration take their nondeterministic choices independently.

[Leu95| and [HK99] describe several schemes for solving this problem by means of explicit
coordination. In a tool environment supporting the construction of automata according
to our procedure, we could highlight states that display this problem, and request the
developer to add adequate communication among the affected components within the ap-
propriate MSCs to establish explicit coordination.

Automata: Safety and Liveness

Our discussion of the transformation procedure has focused mainly on the safety part of
the resulting automaton specifications. In fact, we can view the transformation procedure
as a constructive derivation scheme for the safety part of the closed world semantics of an
MSC. However, as we have shown in Chapter 6, the properties specified by MSCs under
the closed world semantics have a liveness part as well. We can add this liveness part
schematically to an automaton specification as follows.

Let A= (S, I.,0.,9, Sp) be the automaton we obtain by application of the transformation
procedure to a set of MSCs with respect to component F. Let, furthermore, R : (I UQO) —
B be the interaction interface derived from the set of MSCs (according to Section 7.3.2).
Then we define the liveness property AL.A by

ALA € {oe (Cx8)®:(Fiel,0e0 :m(p)o =i®oA Ly.i.o)}

where Lg is the canonic liveness property of the derived interaction interface (cf. Section
7.3.2). This ensures that the semantics of automaton A implies the liveness properties spec-
ified by the MSCs. However, this rather implicit liveness specification provides only little
help if we have to implement the liveness requirement for automaton A in an operational
way.

From the semantics definition in Chapter 4, the discussion of liveness properties in Chapter
6, as well as from the derivation scheme for A/C specifications in Section 7.3.3 we know
the major liveness requirement captured by MSCs: if the environment of the component
F plays by the rules (i.e. fulfills the environment safety assumption and indeed supplies
the specified messages within finite time) then F' can delay its response at most for a finite
amount of time.

We can turn this observation into schematic liveness requirements on the occurrences of
control states in executions of the automaton corresponding to component F'. For instance,
we could require that whenever a state s with at least one outgoing transition whose label
is an output message of F' occurs in an execution, then eventually a direct successor state
s" of s with respect to the transition function ¢ follows in this execution, and the transition
taken by the component to reach s’ is labeled with an output message of F'. Operationally,

283

7. From MSCs to Component Specifications

one way to implement this requirement is to allow only provably terminating program
statements to implement such an output transition.

We could formulate similar requirements to capture fairness specifications, such as the trig-
ger composition of two MSCs. If, however, the automata produced by our transformation
procedure are only an intermediate step, the target being a temporal logic like TLA or
UNITY (which provides means for proving liveness or fairness properties) then we have
to encode the liveness requirements in a form supported by this logic. Instead of present-
ing such a special-purpose encoding here, we stick with the schema we have just outlined
above.

Refinement of Automata

In Chapter 5 we have discussed the refinement of MSC specifications in detail. In line with
our view of MSCs as an interaction-oriented specification technique we have paid special
attention to the refinement of interaction protocols there. Now that we have established
the transition to state-oriented specifications we can use the latter as “jump-start” models
of detailed component behavior, and use refinement techniques whose focus is the addition,
removal, or rearrangement of states instead of interactions.

The authors of [Rum96], [CD94|, [K1e98], and [Sch98] present such refinement techniques
for automaton models, in detail. Because we can carry over most of their work into the
context of our semantic model, we have now available an entire portfolio of refinement
techniques for specifications on various levels of detail.

From Automata Back to MSCs

If, after transforming a set of MSCs into an automaton, we perform modifications to this
automaton as part of the further development of the component, the question arises how we
can keep the set of MSCs we have started out with consistent with the modified automaton.
This is of particular importance if we wish to use the MSCs as part of the documentation,
or as the source for developing a test-suite for the implementation.

However, the step from an automaton back to a set of MSCs is not as canonic as the other
way around; this step depends crucially on what start and end points we chose to “flatten”
the transition paths through the automaton. Matching the MSCs we obtain from these
transition paths with the MSCs that were the basis for the construction of the automaton
is, in general, a nontrivial task, which is outside the scope of this thesis.

284

7.5. Related Work

7.5. Related Work

The transformation of MSCs or, more generally, scenarios into specifications of individual
components has recently become a very active area of research. The authors of [HK99] give
a good overview of part of this topic’s “historic” development in the literature, including
notes on relationships with synthesis problems treated in the context of temporal logic.

In the following, we give an overview of the approaches in the literature we consider most
related to our work. First, we discuss approaches related to A/C specifications and au-
tomaton models in general. Then, we focus on the derivation of automaton specifications
from MSCs.

7.5.1. A/C Specifications, Automaton Models

The derivation of A/C specifications from MSCs was prepared in [BK98], where we used
interaction interfaces as the starting point for the construction of component specifica-
tions. Our work in Section 7.3 extends this contribution by enabling the derivation of
interaction interfaces directly from the MSC semantics of Chapter 4 — without any inter-
mediate transformations or conversions. [Fac95] uses the A/C specification style directly
for the semantics definition of TSDs. The authors of [KM99] use projections of a Petri-Net
formalization of scenarios to obtain criteria for individual components that resemble A /C
specifications.

The authors of [HU99] discuss an instance of the submodule construction problem (SCP,
cf. [MB83]): given a specification of system M, and of one of its components M;, derive
a specification of a component Ms, such that the composition of M; and M, implements
M. The authors use prefix-closed finite state machines to represent M,, M;, and M, and
present an algorithm that yields an automaton for Ms with the required property, if the
automata for My and M; are given, and if a solution to the SCP exists. If, in our setting,
we consider M as the specification of an interaction interface, and M, as a specification of
the environment of My, then we can consider the construction of an A/C specification (or
an automaton, if My is given as an MSC) for My also as an instance of the SCP. However,
the approach we have presented in Section 7.3 is more general than the one of [HU99],
because we also discuss the mapping of general liveness properties. We mention the work
of [HU99| mainly for another reason. The criterion given by the authors as an indicator for
automata for which no solution to the SCP exists basically coincides with our definition
for the join-consistency of MSCs.

The authors of [LL95] present various automaton models, which can directly serve as the
semantics base for MSCs. In particular, they discuss the relationship between message
flow graphs (MFGs, an automaton variant) and temporal logic, in detail. This includes a
treatment of various approaches for assigning liveness properties to MFGs. An extension of
this work appears in [Leu95], where the author investigates the relationship between MSCs

285

7. From MSCs to Component Specifications

and finite state machines thoroughly. In particular, he discusses the representation of both
synchronous and asynchronous communication primitives, as well as the use of conditions
in MSCs. Mapping MSCs to state machines for the individual components induces the
problem of “non-local choice”, which the author addresses by means of history variables.

[Rum96|, and [Kle98| describe the syntax and semantics of more elaborate automaton
models than the one we have used in this chapter. [Sch98] treats a subset of the statechart
language syntactically and semantically. [K1e98| uses his model to give a formal, as well
as a methodical basis for system development with scenarios; the derivation of automata
from MSCs plays a less prominent role there. [Rum96], [K1e98], and [Sch98] also contain
a plethora of refinement notions for automata, which we could easily adapt to our work
to obtain a seamless transition from interaction requirements captured by MSCs to the
specification and design of detailed component behavior on the basis of automaton specifi-
cations. The authors of [BP99] adapt the proof rules for safety and progress from UNITY
[CM88] to stream-based black-box specifications for state machines; as a result they ob-
tain a framework for reasoning about state machine behavior. The aim here is to take a
state machine as given, and to capture its relevant properties by means of more abstract
specifications referring to the machine’s I/O behavior only. In a sense, this latter view cor-
responds to our notion of interaction interfaces. Therefore, there is potential for relating
the work of [BP99] with the MSC specifications we use here to obtain an integration of the
properties expressed by MSCs into the validation process.

7.5.2. Work on the Transformation of MSCs to Automaton
Specifications

In the following paragraphs we compare our approach to the transformation of MSCs
into automaton specifications with similar ones from the literature. We summarize the
approaches of [Fei99], [LMR9S8|, [KM93, KMST96, KSTM98|, and [HK99]. After this, we
highlight the “features” that distinguish these approaches, and discuss their relationships
with our work.

Summaries

[Fei99]: “Generating FSMs from interworkings”

[Fei99] contains a transformation scheme enabling the derivation of finite state machines
(in the sense of SDL) from Interworkings (cf. [MR94, MR96] and Section 2.3.4). The
author bases the transformation on translating Interworkings into process-algebraic terms,
and on generating a state-model by application of a series of term-rewriting rules. The
transformation scheme proceeds in five steps. The first step consists of projecting the
given Interworkings onto the process under consideration. The result of this step is one

286

7.5. Related Work

process-algebraic term for every alternative behavior of this process. The second step
of the transformation serves the purpose of extracting common prefixes and suffixes of
the alternative process terms. The aim of this extraction is twofold: first, it serves to
delay the choice between different alternative behaviors with common prefixes until their
first deviation; second, it serves to reduce the number of generated states by representing
common suffixes only once. The third step consists of labeling sub-process-terms in each
of the terms obtained from step two to identify intermediate states of the finite state
machine, such that there is an intermediate state between any two receive actions of the
process. The idea here is to associate one control state with each receive action, and to
“complete” an automaton transition before the next receive action occurs. The fourth step
consists of unfolding alternatives with common suffixes to avoid SDL transitions using the
“join” construct. The fifth step associates an automaton state with every label assigned
to the sub-process-terms in step three. A transition consists of one receive action (if the
sub-process-term starts with one) and all successive send actions that occur until the next
receive action (or the end of the process term) occurs. The state associated with the next
receive action (or the stop state of the SDL automaton) determines the target state of the
transition.

[LMRO98]: “Synthesizing ROOM Models from Message Sequence Chart
Specifications”

The authors of [LMRI8] describe an approach for synthesizing ROOM models from MSC
specifications. They assume given one HMSC and a set of plain MSCs. The idea is that
the HMSC describes the succession of the interactions represented by the plain MSCs,
which display mutually exclusive scenarios. ROOM models consist of a structural and
a behavioral description. The structural part fixes the components of the system, their
syntactic interfaces, and their connections via channels. State machines describe the dy-
namic properties of the component they are associated with. To obtain a ROOM model
from a given set of MSCs the authors first extract the structural information contained in
the MSCs, i.e. the process identifiers, message signatures, and communication paths, and
translate this information into corresponding ROOM actor classes, protocol classes, and
bindings. For the derivation of state machines from the given MSCs the authors propose
two strategies. Using the first, termed “maximum traceability”, they obtain a high-level
state machine from the HMSC by associating an automaton state with each plain MSC
referenced in the HMSC. Transitions between the states thus obtained mimic the edges
between MSC references in the HMSC. The next step is to expand each of the high-level
states by deriving a state machine from the corresponding plain MSC. To this end, for
each process referenced in the plain MSC, the authors split the sequence of actions of this
process into transitions with intermediate states. Each transition consists of one receive
action (or a substituting timeout action, if there is no receive action on the instance axis
of the process) followed by the sequence of send actions until the next receive action or the
end of the instance axis of the plain MSC under consideration occurs. The second strat-
egy, termed “maximum progress”, does not use the information contained in the HMSC to

287

7. From MSCs to Component Specifications

obtain high-level state machines. Instead, the authors directly split the action sequences
occurring on an instance axis (even across different plain MSCs) into transitions with inter-
mediate states. Here, a transition consists of one receive action (or a substituting timeout
action, see above) followed by the sequence of send actions until the next receive action
in the MSC under consideration or in any MSC following sequentially according to the
HMSC.

[KM93]: “Inferring State Machines From Trace Diagrams”

The authors of [KM93] present an incremental algorithm for inferring state machines (in
the sense of OMT [RBP*91]) from scenarios given as event traces. The algorithm takes
as input a set of event traces and produces the minimal automaton, with respect to the
number of states, for any of the components participating in the interaction. The traces
are finite sequences of pairs of the form (a,e) where a and e are actions and events,
respectively (in the sense of OMT), of the system under consideration. The meaning the
authors of [KM93| associate with such a pair is that the object for which we construct
the automaton sends event a to another object, and then expects to receive event e before
it changes state. The traces contain no control-state labels; the authors discuss this as
a possible extension of their work in [KM93]. The algorithm is based on backtracking,
which results in a potentially exponential runtime complexity for generating the result
automaton. It proceeds in a series of steps, reading the event trace resulting from the
concatenation of all given scenario traces, from left to right. In each step it “consumes”
one event pair (a;, e;), ¢ € IN from the trace, and then moves on to the next event pair
(@is1,€i41). Simply put, the consumption of the pair (a;,e;) proceeds as follows: if there
is no state labeled a; yet, then the algorithm adds such a state to the automaton. In any
case, it adds a transition labeled e;_; from the state labeled a;_; to the one labeled a;. By
considering all action/event-pairs of the trace in order, the algorithm produces a minimal,
deterministic automaton such that every one of the initially given scenarios reoccurs as a
state/transition path in the automaton. Common subsequences of action/event-pairs of
multiple scenarios end up as the same state/transition path in the automaton. Whenever,
in a step, the algorithm tries to add a fresh state such that the resulting set of states is larger
than necessary, i.e. there is a shorter state/transition path, which already “subsumes”
the part of the trace consumed so far, then the algorithm backtracks. As the authors
of [KM93] note, the merging of scenarios into state/transition paths as described above
induces the problem that the resulting automaton may express more general behavior than
the scenarios themselves. In [KMST96] the authors discuss extensions of their approach by
adding support for scenarios with conditions and repetition; they also discuss consistency
issues, induced on class diagrams by corresponding scenarios in form of an MSC variant.
In [KSTMO98| the authors present the application of the algorithm proposed in [KM93]
within a tool for automated modeling of object-oriented software, called SCED, in detail.
SCED allows the designer to create scenario diagrams, to infer state machines from these
diagrams, and to simulate a system consisting of several state machines. During simulation
the designer can add information by entering events corresponding to an incomplete or

288

7.5. Related Work

missing state machine. The simulation runs completed in this way may then serve as the
basis for adding information to the existing state machines using the incremental inference
algorithm.

[HK99]: “Synthesizing Object Systems from LSC Specifications”

The work of [HK99] bases on the MSC dialect LSC [DH99], which we have discussed in
Section 2.3.6. LSCs allow specification of existential sequence charts (roughly correspond-
ing to MSCs under the existential interpretation in our approach) and universal sequence
charts (roughly corresponding to MSCs under the universal interpretation in our approach).
Moreover, for any location on any instance axis within an LSC we can determine whether
it may or must be reached during an execution of the system. In particular, in an LSC
specification, both existential and universal charts and locations can occur together. The
authors of [HK99] present an algorithm for checking the consistency of an LSC specifica-
tion (answering the question whether or not there is a system satisfying the specification),
as well as schemata for synthesizing state machines from a consistent LSC specification.
The algorithm for checking consistency proceeds by constructing a global, deterministic
finite state automaton, whose states are associated with locations within LSCs that indi-
cate when prefixes of an interaction have occurred. The transition function relates two
such states if there is a message in the LSC such that extending the prefix represented by
the source state yields the execution prefix represented by the target state; the transition
function also respects the specification of liveness constraints on the locations in the LSCs.
The automaton is global in the sense that it captures the behavior of all instances together.
In the approach of [HK99] the occurrence of messages not fixed by any LSC is allowed at
any time; besides this there is a correspondence between the automata obtained by the
construction of [HK99] and the message flow graphs of [LL95, Leu95]. Whereas the lat-
ter consider both synchronous and asynchronous communication primitives, [HK99] treats
only synchronous communication. After a few transformations on the global automaton,
the algorithm of [HK99] decides whether all existential and universal charts are fulfilled by
the automaton. The starting point for the synthesis of individual component specifications
is also the global automaton constructed during consistency checking. The authors give
several strategies for projecting the global automaton onto state machines for individual
components, such that the synthesized state machines solve “non-local choice” problems
by coordination (cf. also the remarks in [Leu95]).

Comparison

The following questions address the major differences between these approaches and our
work:

e Can the developer guide the transformation by specifying automaton states already
within the scenarios?

289

7. From MSCs to Component Specifications

e What is the syntactic and semantic scope of the underlying scenarios, i.e. can they
express, say, alternatives and repetition or safety and liveness properties?

e Can the scenarios overlap?

Are the resulting automata deterministic or (possibly) nondeterministic?

Are optimization schemes for the resulting automata necessary and available?

How complex is the transformation?

We use these questions to structure our comparison between the transformation procedure
we have introduced in Section 7.4, and the ones we have summarized above.

Guiding the Transformation by Guards Within MSCs

The major difference between our approach and those we have summarized above is as
follows: none of the others directly takes control state information supplied by the devel-
oper inside the MSCs into account. As we have seen already, such state information can
significantly reduce the number of states of the automaton produced. In their “maximum
traceability” strategy, the authors of [LMRI8] use HMSCs and the implicit states obtained
from the MSCs referenced therein, as a partial remedy. In [KMST96] the authors also hint
at a translation scheme that extends the one from [KM93| by taking conditions (which
could encode control states) into account.

MSC Syntax and Semantics

Through the use of guards, and the “macro-expansions” we have introduced in Section
7.4.4, our approach allows the transformation of almost the full MSC dialect as presented
in Chapter 4. In particular, we support sequential composition, alternatives, and repetition
of MSCs. [LMROS| allows sequential composition, alternatives, and repetition via a given
HMSC. [Fei99] allows neither sequential composition, nor repetition. The author treats
each interworking as a separate alternative (modulo common prefixes). In [DH99] the
authors hint at an encoding of alternatives and repetition in LSCs by means of properly
chosen mandatory and optional locations within LSCs. On this basis the transformation
of [HK99] would support, besides sequential composition, also alternatives and repetition
of LSCs. [KM93] considers sequential composition and alternatives only; extensions for
repetition appear in [KMST96].

MSC Interpretations

In our approach, we perform the transformation to automaton specifications based on
the exact interpretation for MSCs. Thus, we do not mix interpretations when deriving
automata. [HK99] allows both existential and universal charts as the source for their syn-
thesis algorithm. This leads to a more complex consistency definition. [Fei99] uses an

290

7.5. Related Work

interpretation matching our exact MSC interpretation; this approach considers the safety
properties contained in the source Interworkings only. [LMRIS8| start out from mutually
exclusive MSCs. If no HMSC is given, then the MSCs represent alternative executions,
otherwise the HMSC fixes the relationship between the HMSCs as either of sequential
composition, alternatives, or repetition. Here, too, the interpretation corresponds to our
exact interpretation. The authors of [KM93] produce deterministic automata from possi-
bly overlapping scenarios. This corresponds to our exact interpretation where the given
scenarios are treated as alternatives.

Overlapping Scenarios

The MSCs that serve as the input of our transformation procedure can overlap; we simply
have to treat the overlapping MSCs as the operands of a join construct. The author
of [Fei99] considers all given interworkings as possibly overlapping finite scenarios, and
always performs a join on them during the construction of the automaton specification.
[LMR98] allows non-overlapping scenarios only. [KM93] allows overlapping scenarios, but
the semantics of overlapping differs from ours. Whereas we identify all occurrences of
identical messages in the arguments of a join (which leads to the notion of inconsistency
with respect to join, if the arguments of a join specify different message orders for the
identical messages), [KM93] treats MSCs whose projection on the identical messages differ
in their message order as separate, alternative executions. Existential charts can always
overlap in the approach of [HK99]. Universal charts with the same activation message (this
is the external message triggering the occurrence of an interaction as depicted in the chart)
can overlap only if their identical messages occur precisely in the same order; otherwise
the LSC specification is inconsistent.

Nondeterministic versus Deterministic Automata, Optimization

The result automata of [KM93| are deterministic by construction; this is a tribute to the
target automaton model from OMT. [Fei99], [HK99], as well as our procedure produce non-
deterministic state machines as the result of their respective transformations. Similarly,
the HMSC in the approach of [LMR98] could lead to nondeterministic behavior specifica-
tions. However, by augmenting the resulting ROOMCharts the authors let the developer
resolve possible nondeterminism during execution time of the ROOM model.

In our approach, we treat optimization as a separate phase of the transformation; this
allows us to work with state machines on various levels of efficiency with respect to their
number of states and transitions. We place an intermediate state between any two in-
put/output actions, and label the automaton’s transitions with precisely one such action.
This results in a nondeterministic automaton that we can then subject to well-known op-
timization algorithms from automata theory, such as determinization (for finding common
prefixes in the automaton), and minimization (for finding common suffixes). We also sug-
gest to identify maximal sequences of output actions with the input that triggers them,
and to form a single transition out of such sequences. However, we consider this already a

291

7. From MSCs to Component Specifications

heuristic optimization, because — depending on the underlying system model, or the inten-
tion of the developer — the outputs might just as well occur within disjoint time intervals.
Moreover, after such a transition contraction the automata are no longer in a form permit-
ting direct application of the above-mentioned optimization algorithms. The “maximum
progress” algorithm of [LMRYS8] reduces the set of states and transitions by associating
maximal sequences of output actions with a single input action whenever possible. [Fei99]
directly associates maximal output sequences with their preceding input actions and thus
produces contracted transitions directly (motivated by the SDL’s requirement that at least
one state be present between adjacent receive events). The “left contraction” and “right
contraction” steps of [Fei99] roughly correspond to the determinization and minimization
steps of our approach. [HK99] use the global, minimal, deterministic finite state machine
that is consistent with the LSC specification as a starting point for projections onto the in-
dividual components; they mention three projection schemes that result in state machines
of differing degrees of optimization, depending on how much information each machine
must store to resolve non-local choices. The authors of [KM93] determine the optimal
automaton (with respect to the number of states) that fulfills the given MSCs under the
interpretation we have summarized above.

Complexity

A thorough treatment of the complexity of the various transformation approaches is be-
yond the scope of this thesis. The worst-case complexity of the algorithm in [KM93] is
exponential in the length of the input MSCs due to potential backtracking. The authors
of [HK99] claim that the run-time complexity of their transformation algorithm from the
global system automaton A to the automata for individual components is polynomial in
the size of A. They do not give a time estimate for the construction of A. [Fei99] also
does not mention the complexity of automaton construction according to his approach.
In our transformation procedure, the projection, normalization, and automaton construc-
tion phases are all linear in the length of the argument MSCs. The complexity of the
optimization phase depends on which of the optimizations we actually carry out.

7.6. Summary

In this chapter, we have established the transition from interaction-oriented collaboration
specifications for multiple components, as captured by MSCs, to specifications for individ-
ual components. We have addressed this transition from a more theoretical point of view
in the context of relational component specifications in the A/C format, as well as from
a more pragmatic, constructive point of view on the basis of a syntactic transformation
procedure from MSCs to automaton specifications.

The A /C specifications we have derived starting from the black-box view on the component
under consideration yield a separation of the overall responsibilities in a collaboration into

292

7.6. Summary

those of the component and the ones of its environment. Our major observation here is
that we can derive the safety properties of the component fully schematically, whereas we
have, in general, a spectrum of possibilities for splitting liveness responsibilities between
the component and its environment. We have exploited the A /C format to study the effects
of property refinement steps on entire MSCs with respect to the corresponding individual
component specifications.

The link between MSCs and A /C specifications is completely general, there are no restric-
tions with respect to the syntax of the MSCs we start out with. Because of their generality
A /C specifications serve particularly well for formal reasoning about component properties
induced by MSC specifications.

In a more pragmatic approach, aiming at implementing the interaction patterns captured
by MSCs, we have defined a transformation procedure from MSCs to finite state machines.
The procedure operates entirely on the syntax of the MSCs and automata, and is thus
independent of any concrete semantic model. To establish a close connection between the
derived automata and their source MSCs we have, nevertheless, defined both a syntax and
a semantics for the target automata.

The syntactic transformation consists of four phases:

1. projection of the given MSCs onto the component of interest,

2. normalization of the MSCs, i.e. adding missing start and end guards, and splitting
MSCs with more than two guards at an intermediate guard,

3. transformation into an automaton by identifying the MSCs as transition paths, and
by adding intermediate states accordingly,

4. optimization of the resulting automata.

After the presentation of this transformation procedure for a very restricted syntactic form
of MSCs we have sketched the procedure’s extension to almost the entire MSC dialect from
Chapter 4.

The major limitation — and potential for future improvement — is that the transformation
considers control states only, instead of a combination of control and data states.

The applications of the results of this chapter are manifold; we list a few of them explicitly,
to give a coarse overview.

First, we can use either approach for the derivation of prototypes for the component of
interest at all levels of detail within any development phase. In particular, the availability
of a feature for automatic “code generation” from MSCs can significantly reduce the dis-
continuities arising from manual implementations of interaction requirements; because of
its potential for tool-support it may even increase the acceptance of MSCs as a description
technique in industrial contexts in the first place.

293

7. From MSCs to Component Specifications

Second, we can use the automata resulting from the transformation procedure also as
test-drivers for the component under consideration. Automatically generated test drivers
and test sequences are extremely important in contexts where requirements keep changing:
implementing tests manually after each modification of the requirements is typically infea-
sible. The transformation procedure establishes a traceability of the requirements captured
by means of MSCs, and the properties implemented via the component automata; this way,
the test drivers remain consistent with their corresponding components despite changing
requirements.

Third, both the A/C format and the derived automata make MSCs amenable for formal
verification tools such as theorem provers and model checkers. The work of this chap-
ter enables using MSCs also as an intuitive, accessible language for expressing system
and component properties; the existence of more accessible specification languages has
the potential of increasing the acceptance of formal verification environments beyond the
academic context.

In summary, the transition from MSCs to individual component specifications as we have
discussed it in this chapter closes the methodical gap between global system specifications,
and local component specifications.

294

CHAPTER 8

Summary and Outlook

In the preceding chapters we have studied the semantics of MSCs, corresponding refinement
notions, the use of MSCs for property specifications, and the transformation from MSCs
to behavior specifications for individual components. Here, we summarize the results we
have obtained, and give directions for further work.

Contents
8.1. Summary i it e e e e e e e e e e e e e e e e e 296
8.2. Outlook @ @ i i i i e e e e e e e e e e e e e e e e e e e 298

295

8. Summary and Outlook
8.1. Summary

In the introduction to this thesis we have set out to work towards the seamless integration
of MSCs into the development process for reactive distributed systems. As important steps
into this direction we have identified a thorough understanding of a sufficiently expressive
MSC semantics and of the properties represented by MSCs, effective refinement notions,
and transformation schemes from MSCs to individual component specifications. In the
following paragraphs we recapitulate and relate the results we have obtained so far.

Based on the mathematical notion of streams we have defined a formal model for reactive
distributed systems that combines structural system aspects (component distribution) with
dynamic system aspects (component state and interaction over time). The selection of this
system model was guided by the modeling scope of MSC specifications. MSCs represent
system structure via separate component axes, as well as system behavior via message
arrows and their ordering. The model we chose consists of components, directed channels
between components, and infinite valuations of these channels. Component states, the
other “ingredient” of our system model, were motivated by our intention of relating MSCs
with individual component specifications. The integration of states into our model allowed
us to give a semantics for conditions within MSCs. By means of conditions representing
control states of the individual components we have established a smooth transition from
the MSC semantics to the semantics of state-oriented component specifications.

Our semantic model allowed us to define all major constructs of the standard MSC-96
succinctly; we have deliberately avoided to incorporate MSC-96’s delayed choice and weak
sequential composition in favor of a simpler diagram interpretation. We have also gone be-
yond the standard syntax and semantics; guarded and unbounded finite repetition, the join
and trigger composition operators for the specification of overlapping message sequences
and fairness constraints, as well as the treatment of preemption, message parameters, and
parametric MSCs are examples of such extensions. The selection of MSC-96 as the basis
for our investigations was motivated by this notation’s expressiveness: it allows specifica-
tion of alternatives, finite and infinite repetition, and parallelism. In addition, MSC-96
provides the concept of High-Level MSCs as a structuring mechanism for MSC specifica-
tions; most other MSC dialects support only a subset of these operators and mechanisms
in their syntax and semantics. Our aim, however, was to model reactive distributed sys-
tems (including infinite behavior), and to use MSCs not only as scenarios but also for the
specification of complete component behavior; hence, we selected MSC-96 as the starting
point for a correspondingly expressive MSC notation.

Systematic refinement of specifications and designs is an alternative to ad hoc development
steps that leave open whether the result of a particular development activity still displays
some or all of the properties of the model as it was before the step was carried out.
Based on our system model we have defined and investigated several refinement notions
for MSCs; these refinement notions address all system aspects captured by MSCs. By
means of property refinement we can reduce the nondeterminism contained in an MSC

296

8.1. Summary

specification. This corresponds to fixing design choices in the system under development.
Message refinement allows us to adjust the granularity of individual messages. Similarly,
structural refinement addresses the hierarchical decomposition of components. In addition,
we have discussed the binding of references as a systematic way of using MSCs in step-
wise top-down system development. Given these four refinement notions we can express
system properties at the appropriate level of detail by means of MSCs — without having
to resort to other description techniques. This is particularly important for using MSCs
systematically across multiple development phases. Adjusting the appropriate level of
detail also significantly facilitates discussing specifications and designs among different
groups of developers — each with a specific technical background and responsibility for a
particular system part — as is typical in industrial software and system development today.

Our investigation of different MSC interpretations in the range from simple scenarios to
complete system behavior has clarified the different roles MSCs can play across the entire
development process. The bare MSC semantics is quite loose: it only requires the exis-
tence of a time interval in a corresponding system execution where the depicted messages
occur in the specified order — possibly among arbitrary (other) messages. The existential,
universal, exact, and negated MSC interpretations relate an MSC’s semantics with (other
forms of) system specifications. The existential interpretation, which corresponds to the
classical role of MSCs as scenarios, requires that the behavior specified by the MSC under
consideration can, but need not occur as part of the system’s behavior. The universal inter-
pretation requires the behavior represented by the MSC to occur eventually in every system
execution. The exact MSC interpretation is even more restrictive: it allows only system
behaviors corresponding precisely to what is given by the MSC. This interpretation is the
basis for transiting from scenarios to complete component behavior. An “anti-scenario”,
i.e. an MSC under the negated interpretation, shows what must not happen in any system
execution. The investigation of these various interpretations of MSCs is far from being
purely academic. In fact, every tool with MSC support in use in industry bases on one of
these interpretations. The lesson we learn from this multiplicity of MSC interpretations is
that making the intention we follow with an MSC specification explicit is a prerequisite if
the MSC specification is to be of any (formal) value during the development process.

We have also analyzed the properties expressed by MSCs along the classical notions of
safety and liveness. As a result, we have obtained that our MSCs specify mainly liveness
properties and thus nicely complement description techniques for safety specifications. This
fits in with the intuition we relate with the arrows in MSCs: the depicted messages do occur
in the specified order.

Our discussion of MSC interpretations and properties has prepared another central contri-
bution of this thesis: the derivation of individual component specifications from collections
of MSCs. Expressing system requirements by means of MSCs is of limited value if the
captured requirements serve only as more or less accurate documentation during require-
ments capture. Yet, most development methods and their supporting CASE tools today
provide systematic design transformations and code generation mechanisms at most for

297

8. Summary and Outlook

other description techniques, such as class diagrams and automata. This forces the devel-
oper to leave the MSC notation quickly for carrying out the “real” component development
steps. The translation schemes from MSCs to A/C and automaton specifications we have
described in our work help bridge the gap between the interpretation of MSCs as inter-
component scenarios and as complete behavior descriptions for individual components.
The schematic A/C specifications we derive from MSCs provide a handle at using our full
MSC dialect in connection with formal validation techniques. Still, the A/C specification
address mainly the black-box component behavior, i.e. the relation between a component’s
input and output histories. We also have shown how to produce a state-oriented model
for the glass-box behavior of individual components by the syntactic transformation from
MSCs to automaton specifications. The constructed automata can serve as “jump-start”
behavior specifications, ready for detailed individual component design. Although our
transformation procedure is purely syntactic, we have also established a semantic relation-
ship between the MSCs and the corresponding automata via the exact MSC interpretation.
Thus, the transformation from MSCs to automata directly links and integrates our work
on MSC semantics, MSC refinement, and MSC interpretations.

Together, these results increase the seamlessness of the MSC’s integration into the overall
development process for reactive distributed systems. Clearly, however, there is still much
work left to do. In the next section we briefly discuss areas for further exploration.

8.2. Outlook

In Chapters 4 through 7 we have laid the foundation for future work of both theoretical
and practical nature. This includes, in particular:

1. extensions to the syntax and semantics of MSCs,

2. integration of the suggested refinement techniques and transformation procedures
into existing development processes,

3. integration of MSCs into validation technologies,
4. tool support,

5. extended case studies.

In the following paragraphs we briefly discuss each of these areas, in turn.

Syntactic and Semantic Extensions

The MSC dialect we have defined in Chapter 4 is quite expressive already. However, there
are several modeling situations where we might welcome additional syntactic and semantic

298

8.2. Outlook

concepts. Examples are the specification of synchronous messages, procedure calls and
broadcasting communication. Typically, procedure calls combine data- and control-flow
between components. One way of coping with both of these aspects is to add corresponding
invariants to the system model [RGG99]. The need for broadcasting arises frequently in
component-oriented development, be it as a requirement of the underlying system model (as
is the case with statecharts [Har87, HK99] and (other) synchronous programming languages
such as [BG88, Mar92]), or as a deliberate design choice. An example for the latter is the
Observer design pattern (cf. [GHJV95]), where an object broadcasts changes of its internal
state to all observers having registered with the object. Observers can subscribe and
unsubscribe to the notification about the object’s state change at any time. This poses a
challenge at the graphical notation of MSCs: if each axis represents a single concrete object
we can capture at most scenarios of such situations with MSCs. Otherwise we would have
to know in advance what observers are registered with an object at any point in time. The
UML, for instance addresses this problem by distinguishing sequence diagrams where the
axes represent, concrete objects from others where the axes represent object roles or classes
(cf. [RIB99]); clearly, such an approach requires careful analysis and investigation.

Another direction for syntactic and semantic extensions is the incorporation of notation
and concepts for the specification of mobile systems. The challenge here is to represent
changing component configurations syntactically and semantically. Instance start and stop,
as we discuss it in Appendix A, gives only a first idea of how we can capture such changes by
means of invariants. However, the leeway we have for representing changes in structure in a
two-dimensional description technique — with time being the one dimension and structure
being the other one — is quite limited. Obviously, we can always resort to tool support and
multiple dimensions. Whether this indeed leads to more readable specifications is rather
questionable.

Indeed, adding “gimmicks” to graphical description techniques always comes at a price.
Reducing the complexity of the graphical representation is typically accompanied by a
significant increase in semantic complexity. Shifting expressiveness between different de-
scription techniques to prevent visual overload often increases the complexity of the induced
context conditions. Finding the right balance between how intuitively comprehensible a
(graphical) description technique and its artifacts are, and how expressive the description
technique is, is a difficult task. The UML suggests the use of the Object Constraint Lan-
guage (OCL) for the specification of context conditions for graphical models (cf. [RJB99]).
The combination of MSC specifications with textual OCL constraints might be an inter-
esting starting point for moderate increases in expressiveness without loosing the MSC’s
intuitive appearance.

MSCs and Development Processes

The integration of the methodical MSC usage into concrete development methods and
processes is another promising area of future work. An interesting application of our
work is to assign meaning to connector specifications as they appear, for instance, in

299

8. Summary and Outlook

various forms in CATALYSIS [DW98], and ROOM [SGW94]. ROOM’s “protocol classes”,
for instance, consist only of a static list of input and output messages that describe a certain
aspect of a ROOM component’s interface in the form of message names and signatures.
Protocol classes do not constrain the dynamic aspects of the collaborating components.
Using MSCs to specify both the static and the dynamic protocol aspects, and deriving
the specifications of each component’s assumptions and commitments directly from the
MSCs results in a much more expressive form of protocol classes, and in a much better
integration of MSCs into ROOM. Similarly, we could enhance the Interface Description
Languages (IDLs) used in middleware technologies like CORBA, Java RMI, and DCOM
by supplying (semi)automatically derived behavior descriptions in addition to the static
method signatures in use today.

CATALYSIS makes use of pre- and postconditions to clarify the context in which an in-
teraction specification is applicable. Combining these pre- and postconditions with the
assumptions and commitments we derive schematically from MSCs also seems promising.

The MSCs’ expressiveness significantly exceeds description techniques whose only target
is scenario specification. In fact, the border between scenario and use case specifications
by means of the MSC dialect we use is quite fuzzy. This suggests to investigate to what
extent we can use our semantic model and the MSCs as such to give an adequate semantics

to existing specification techniques for use case or activity specifications (as they appear,
for instance, in the UML [RJB99]).

MSCs and Validation

An important application of our thorough investigation of the MSC semantics is their inte-
gration into verification technologies. The individual component specifications we obtain
schematically from MSCs provide an obvious starting point for applying theorem provers
(in the case of general A/C specifications) and model checkers (in the case of finite-state
automaton models). This way we can check whether an MSC specification is consistent
with respect to (additional) requirements at the individual components. A similarly di-
rect application of our transformation procedures is the derivation of test drivers for the
depicted components.

Another possibility for integrating MSCs into validation is to view them as abstractions of
more detailed system behavior, and to exploit the coordination information they capture.
Assume we start out with a network of components whose behavior is specified by a set of
automata, and have given a property to verify against the component network. The idea
is to come up with MSCs capturing the relevant interactions in the network with respect
to the property under consideration, such that proving the property by “inspection” of
the MSCs is easier than proving the property by considering each individual component
separately.

Instead of using MSCs for a posteriori verification we could also extend the work on re-
finement and property preserving MSC transformations we have started here to obtain a

300

8.2. Outlook

description technique supporting specification and design for validation. We can imagine,
for instance, a combination of the techniques we have explored in this thesis with the
interaction specifications of design patterns as they appear in [GHJV95] and [BMR™96].
Proving interaction properties once and for all for certain interaction patterns, and pro-
viding the corresponding designs in a library of “design components” or frameworks has
the potential for increasing the quality of specifications making use of such a library.

Tool Support

To obtain the maximum benefit of the automatic and semi-automatic transformations
from MSCs to individual component specifications we must integrate these transformations
into corresponding development tools. The transformation from MSCs into automata is,
however, particularly easy to implement, because it is purely syntactic, and bases on well-
known algorithms from automata theory.

Similarly important is the tool support for the refinement notions and rules we have given
in this thesis. Despite the increasing popularity of MSCs typical development tools of
today offer only little methodical support for performing systematic development steps on
MSCs.

Case Studies

The investigation of case studies of substantial size is also an important aspect of future
work. This includes an assessment of the quality of the automata obtained from the
transformation procedure. This might lead to more elaborate heuristics for automaton
optimization, as well as to the incorporation of more elaborate automaton models than the
one we have employed here. Producing automata with hierarchic states, as statecharts and
ROOMCharts provide them, is one interesting starting point for obtaining more readable
results from large MSC specifications.

Finally, we consider a thorough treatment of data states, in addition to pure control states
as we use them in our simplified transformation procedure, a source for further improvement
of our approach towards more succinct automaton specifications.

301

8. Summary and Outlook

302

APPENDIX A

Syntactic And Semantic Extensions

In Chapter 4 we have introduced the “core” of the MSC syntax and semantics used in
this thesis. We kept the core notation intentionally small in size to ease the semantics
definition, as well as the investigation of its properties. Despite its size, the notation we
have at our disposal already is quite powerful as its proximity to linear time temporal logics
indicates (cf. Section 4.5.4).

Here, we present several extensions of the core syntax and semantics that increase the
usability of our notation in various respects. Sections A.1 and A.2 contain sketches of how
to deal with instance creation and deletion, and timers, respectively, in our framework. We
discuss the treatment of messages with parameters, as well as the substitution of channel,
message, and parameter names in Section A.3. Action specifications and gates are the
topics of Sections A.4 and A.5, respectively.

A.1. Instance Start and Stop

The syntax of MSC terms does not provide means for specifying the starting or stopping
of instances. Here, we discuss how we can integrate these two concepts into our framework
even without changes to the syntax.

The basic idea of our treatment of instance start and stop is that no instance can participate
in interactions before its creation, and after its deletion, respectively. Therefore, we can
augment the system model of Section 4.2 with an invariant ensuring this property.

303

A. Syntactic And Semantic Extensions

To this end, we structure the set of messages such that it equals the union of the three pair-
wise disjoint sets {start}, {stop}, and M’, where M’ is the message set we have introduced
in Section 4.2:

M = {start} U {stop} U M’

Starting and stopping an instance corresponds to sending message start and stop, respec-
tively, on one of the input channels of this instance. The invariant we define below char-
acterizes system executions respecting the intuitive requirement stated above: no message
can occur before a start message, and no message can occur after a stop message on any
channel to which the instance under consideration is connected.

Given a system specification Sys C (é x S)* we require the validity of the following
invariant:
(Vs,p:s€Sys N\peP:pes= (Nch:che(C:
(Vt" :: stop € ().t .ch = (V" ch' : t" >t A ch’ € chans.p: w1 (p).t".ch’ = <))
N iz start € m ().t .ch = (V" ch' . t" <t A ch' € chans.p : mi(p).t".ch' = <>))))

Here, we use function chans : P — P(C'), which associates with every instance p € P the
set of its channels.

The start or stop message can come from any instance; we do not exclude the instance to
be started or stopped from the set of possible message originators. Whether this makes
sense depends on the system (model) under consideration. More restrictive requirements
result in strengthening the above invariant. As an example, recall from Chapter 2 that in
MSC-96 only “self-destruction” is allowed, whereas the UML’s SDs allow any object with
a corresponding association to destroy another object.

A.2. Timers

As we have described in Section 2.2, we can understand timers as a special kind of instances
with one input and one output channel, whose interface consists of messages set, reset, and
timeout only. set and reset are allowed on the incoming channel of the timer only, whereas
timeout can occur only on the timer’s outgoing channel.

The ordering of messages between the instance using the timer, and the timer itself then
corresponds to the ordering of the respective timer events of MSC-96.

Remember that we use only a qualitative notion of time in the system model of Section 4.2.
The “time” in timed streams serves only the purpose of expressing precedence or causality
between messages or message sequences.

One way of adding “real-time” to MSC specifications is to associate a real-time clock
(modeled, for instance, as a stream over the nonnegative real numbers) with each timer
and to add invariants on the points in real-time where timeout events can occur on the
outgoing channels of the timer.

304

A.3. Message Parameters and Parametric MSCs
A.3. Message Parameters and Parametric MSCs

So far, we have not assigned a meaning to messages with parameters. In MSC-96 the
meaning of parameters is void (cf. [IT96, IT98]). Here, we sketch an approach to inte-
grating parameters into our semantic framework. Such an integration allows us not only
to formulate properties about control and message flow in the systems we study, but also
to characterize quantitative data-flow. Our treatment of parameters in this section was
inspired by, and extends similar approaches in [BHKS97a| and [Fac95].

Allowing parameters in message specifications is one way of parameterizing MSCs; another
one is to enable the substitution of channel, message and parameter names in MSC terms,
which allows reuse of the substituted terms in different contexts. This can reduce MSC
specifications significantly.

Messages with Parameters

The assignment of meaning to message parameters requires three minor modifications to the
semantics from Section 4.4. First, we have to establish a link between the formal parameter
specifications occurring in the MSCs, and the concrete parameter values associated with
messages during an execution. Second, we must alter the message semantics such that it
allows all possible parameter value assignments. Third, we have to decide on how to handle
constants, as well as message parameters occurring more than once within the same MSC
term. In the following paragraphs we deal with each of these issues in turn.

msc params

A B
——] ——]

< 3Y)
loop<*>

dxy) o

y) o
]]

Figure A.1.: Messages with formal parameters

Figure A.1 shows messages with parameters; y occurs in the parameter lists of s, d, and r,
whereas x occurs only in the parameter list of d.

We call the parameters occurring within the parameter list of a message in an MSC formal
parameters; the values associated with the message during an execution of the system are
the actual parameters of this message. To make this distinction precise we introduce the set

M of messages with formal parameters; we define: M C MN x FPL. Here, MN denotes the

set of message names (a text string), and FPL {0} UU;en ([0, 7] — PN) models empty

305

A. Syntactic And Semantic Extensions

and nonempty parameter lists; in this definition, PN denotes the set of formal parameter
names. A parameter list is a mapping from index positions to formal parameter names.
As an example, consider the message label d(z,y) in Figure A.1. We model such a label as
the element (d,{0 — z,1 — y}) € M, with d € MN and z,5 € PN. For easy access to
the names of message parameters, we define the selector function pars as follows:

m = (my,ms) € M = m.pars = {&1 : (§0,&1) € ma}

Actual messages, i.e. messages carrying actual values instead of formal parameters, are
elements of set M C MN x APL, where APL < {0} UU;en([0,7] — PV) models empty
and nonempty lists of parameter values. We assume that every parameter occurring within
a parameter list has some specific type. We do not write out these types in MSCs; rather,
we expect the specification of parameter types to be part of another document, such as a
class diagram or interface specification. For simplicity we assume given a function tdom
whose purpose is to map parameter names to the domains of their types. PV is the set of

parameter values; we define it as the union over all domains of the types associated with

the parameter names: PV aef UpnE py tdom.pn. For easy access to the constituents of an

actual message, we define the two selector functions mn and pval as follows:
m = (my,mq) € M = m.mn =my A m.pval = ms

Because of the direct correspondence between formal and actual parameter lists, we fur-
thermore use pval as a function from formal parameter names to parameter values: pval :
PN — PV instead of as a function from index sets to parameter values.

With these preliminaries in place we can define function dom : M — P(M), which asso-
ciates with a formal message the set of all actual messages, i.e. the set of all messages with
the same name and arity where concrete values replace the formal parameters.

This allows us to modify the semantics definition for messages from Section 4.4 as follows:

[chem], & {(p.1) € (C x 9)® x N :
t=min{v:v>uAE@m :m' € domm:m' € m(p).v.ch)}}

Here, m is an element of set M, i.e. a message with a formal parameter list.

These slight modifications yield a new MSC semantics that integrates messages with pa-
rameters into our framework. We can use this integration, for instance, to constrain the
data flow in the executions modeled by an MSC. To this end, we can use predicates
p:(Cx8) x Ny x Ny — B and define

[o]2 = {(¢.t) € [a]. : p-puct}

As an example, consider the MSC of Figure A.1; it corresponds to the MSC term
chi>s(y); (ch'>d(z, y))T<es ch'or(y),

306

A.3. Message Parameters and Parametric MSCs

which we abbreviate by . We might want to constrain the data flow modeled by this term
such that parameter y carries the same value in all occurrences of message d. Predicate

Jv v € tdom.x :
(V' m:u<t' <t AN mem(p)t'.ch:mmn=d= (m.pval).y = v))

def
Pequal--u.T =

formalizes this requirement. Thus, [a]n™ denotes the set of executions that correspond
to a and fulfill pegyar.

This example already hints at an inconvenience introduced by the modified semantics for
messages. As it stands, this semantics allows completely arbitrary value assignments to
parameters in system executions. If a formal parameter occurs multiple times within an
MSC, such as parameter y in Figure A.1, and we want to express that each occurrence
carries the same value, we have to introduce explicit invariants such as pegyq in the example
above. To fix this we could define that all occurrences of parameters within an MSC term
must carry the same actual value during system execution. This, however, is clearly too
restrictive, as the MSC of Figure A.1 suggests. Only message d references parameter x; this
message, however, occurs within a loop construct. We identify two sensible interpretations
in this state of affairs: during system execution an arbitrary finite number of messages
d with the same (interpretation 1) or different (interpretation 2) values of x occur. The
liberal treatment of parameter values makes it easy to yield the second interpretation,
whereas it renders the first interpretation hard to represent. The restrictive parameter
treatment eases yielding the first interpretation, whereas it makes representing the second
interpretation (almost) impossible.

Mixing both interpretations seems also sensible. Consider MSC params as the specification
of a database transaction. B initiates the transaction by sending message s(y) with the
transaction number y to A. A then sends an arbitrary finite number of messages d(z,y)
to B, where x represents a data value that may differ from one loop iteration to the next,
whereas y still denotes the same transaction number supplied by B. Finally A closes
transaction y by sending message 7(y) to B.

To allow both interpretations we structure the set of parameter names PN into two disjoint

sets: PN % PNpied U PNpjoxivie With PN piced N PN prexivie = 0. We interpret PN piexibie

as the set of parameter names whose concrete values can change during the part of the
execution covered by the MSC under consideration; PN piq denotes the set of parameter
names whose values remain fixed during this execution segment.

Given this distinction, we introduce an MSC term dp,. : @ whose semantics is, intuitively,
equal to the one of a with the exception that for the time period covered by « all formal
parameters contained in set Pars C PNpiwq have the same value. The parameter names
in PN piexible can change arbitrarily from one occurrence of the corresponding message to

307

A. Syntactic And Semantic Extensions

the next. Formally, we define:

[Brars : 0w = {(p,1) €] :
(Vpn : pn € Pars :
(v : v e tdom.pn :
(Vt',ch,m :u <t <t A ch>m € msgs.« :
(Im' :m' € dom.m :
m' € m(p).t'.ch A pn € m.pars = (m'.pval).pn = v))))}

Note the similarity between this operator and predicate p.q,q in the example, above.

The set PNpixea can also hold the names of constants. We model constants by parameter
names with a singular domain type holding precisely the constant’s value. This allows us
to mix constants freely with formal parameters in message headers.

Using [3. : .], instead of simply [.], in all semantics definitions of Section 4.4 yields
the desired integration of parameters into our semantic framework. The only additional
information we require for an MSC with parameters is to what sort (PN pixeq 0r PN Flexible)
each parameter belongs.

Clearly, we could extend this integration of parameters into our MSC syntax and semantics
further. A semantic extension would be, for instance, to use the values of message param-
eters in guards of loop constructs. On the syntactic side we could add inline expressions
that declare parameters as either flexible or fixed. Because, in this thesis, we do not work
extensively with parameters, we refrain from a further elaboration of this topic.

Parametric MSCs

Formal parameters are a means for abstracting from concrete parameter values, which
means that we need to draw only a single MSC with formal parameters to capture all
possible value assignments to the formal parameters as well.

Another way of reducing the number of MSCs needed for the specification of (part of) a
system behavior is to use substitution, i.e. to take an existing MSC and, say, modify the
name of one channel or message occurring in it, to yield a new MSC.

As an example, consider MSC success in Figure A.2 (a). Imagine that the depicted inter-
action sequence is part of a symmetric communication protocol between instances A and
B. The protocol consists of three phases: establishing a connection (through messages sreq
and sack), transmitting data (via message d), and tearing down the connection (through
messages ereq and eack). Because the protocol is symmetric we would have to draw two
MSCs similar to success, one where instance A initiates the transmission, the other where
instance B is the initiator.

To increase the amount of reuse achievable within MSC specifications we allow the use of
the following three syntactic substitution operators (cf. [IT96, IT98] or Section 2.2 for the
corresponding substitution operators of MSC-96):

308

A.4. Actions

mSC success
A B
— —

ch>sreq
; - msc ABR_Success
ch'>sack

= X
ch>d

choereq Euccess[ch,ch’/cab,cba] j Eucce&[ch,ch’/cba,cab] j

_ ch/>eack
— —
(b)

(a)

y

Figure A.2.: Generic MSC and substitutions

alch’/ch] substitutes channel name ch’ for ch in o
alpn’/pn] substitutes formal parameter name pn’ for pn in «
almn’/mn] substitutes message name mn’ for mn in «

We omit the obvious definitions by induction on the structure of « for each of these substi-
tution operators. Each of these definitions extends in the usual way to lists of simultaneous
substitutions of the form xy, 2!, ... /xg, z1,..., where xj is the substitute for xq, x} is the
substitute for x1, and so on.

Using the operator for channel substitution allows us to reuse MSC success in the specifi-
cation of the symmetric communication protocol above (cf. Figure A.2 (b)).

A.4. Actions

As we have described in Section 2.2, MSC-96 allows specification of local actions on indi-
vidual instance axes. Besides their presence in the ordering relation imposed by an MSC
on the events it contains, however, the meaning of actions is void in [IT98].

Regarding actions as state transformers in the sense of [DS90] allows us to integrate them
easily into our semantic framework. We introduce a new MSC term act(p, ¢). Intuitively,
predicates p and ¢ are pre- and postconditions describing the assumption under which
the action executes, and the effect its execution has on the state space, respectively. For
reasons of simplicity we consider terminating actions only. Then we define

[act(p,). = {(¢.t) € (C'x S)® x N
(T " u <t <t"<t:m(p)t €[p] N m(p)t” € [q])}

309

A. Syntactic And Semantic Extensions

A simple example of an action specification is act(true,a = 5), where we assume that “a”
is a local variable of the instance on whose axis the action specification occurs. This action
corresponds to setting the value of variable a to 5.

If we want to mimic MSC-96’s action usage, we can constrain the predicates p and ¢ such
that they refer to local variables of a single instance only. Otherwise, we use more elaborate
pre- and postconditions to describe joint actions of multiple components (cf. [DW9S]).

A.5. Gates

Message gates in MSC-96 serve the purpose of specifying the continuation of message
arrows outside the scope of an MSC, such that we can depict the sending of a message in
one MSC, and the receipt of the same message in a different one (cf. Section 2.2). The
notion of gates allows establishing a link between a send event and the corresponding
receive event across MSCs.

Because we associate a particular channel, connecting sender and receiver, with every
message, we do not need an extra gate concept in our approach to describe the continuation
of messages. The channel is the link between sender and receiver.

Thus, the only remaining question is how to connect an MSC containing the sending of a
message with another MSC containing the receipt of the same message. This is precisely
the purpose of the join operator ® , whose semantics we have defined in Section 4.4: if,
say, MSCs a and 3 each contain an occurrence of message ch>m, then o ® [identifies
these two occurrences, just as the corresponding MSC-96 gates link the send event with
the appropriate receive event.

Thus, we can model message gates in our framework without modifications to the seman-
tics.

As we have argued in Section 2.2, we can understand general orderings as a special sort of
message arrows, labeled with (anonymous) ordering messages. Similarly, we can consider
order gates as special forms of message gates. Therefore, we can integrate order gates
without changes to the semantics definition by partitioning the set of messages M into the
set of ordering messages and the set of other, regular messages. An ordering arrow then
gets an “implicit” label from the set of ordering messages.

If needed, we can filter out the ordering messages from each execution in the set [«],, and
obtain those executions obeying the message order imposed by the ordering arrows, but
without the corresponding ordering messages.

310

APPENDIX B

Proofs

In Chapters 4 through 7 we have omitted most of the proofs for better readability of
the “main” text. In the following sections we make up for this omission. Section B.1
contains the proofs concerning properties of the semantics in general (such as independence
of absolute time, and well-definedness), as well as of the semantics of MSC operators
in particular (such as associativity, and distributivity). This covers the claims made in
Chapter 4. In Section B.2 we prove the validity of the refinement rules stated in Chapter
5. We deal with safety and liveness properties in the context of MSC specifications in
Section B.3; the proofs we give there correspond to the claims in Chapter 6. In Section
B.4 we discharge the proof obligations on time guardedness and join consistency of MSCs
from Chapter 7. Table B.1 summarizes the mapping between chapters in the main text
and sections of the appendix for ease of reference.

H Chapter in the main text ‘ Part of the appendix containing the proofs ”

Chapter 4 Section B.1 (page 312)
Chapter 5 Section B.2 (page 324)
Chapter 6 Section B.3 (page 328)
Chapter 7 Section B.4 (page 355)

Table B.1.: Mapping between chapters and the corresponding section of the appendix

Where appropriate we employ the calculational proof style proposed in [DS90].

311

B. Proofs

B.1. Properties of the MSC Semantics

In Chapter 4 we have stated several properties of the MSC semantics introduced there. In
particular, we have

e claimed the independence of absolute time of the semantics function [.],,
e listed symmetry, associativity, and distributivity of MSC operators,
e asserted the well-definedness of the semantics,

e discussed the difference between sequential composition and interleaving in our MSC
notation.

This section contains the proofs corresponding to these topics. First, we deal with the
semantic mapping’s independence of absolute time. Second, we give a sequence of proposi-
tions, one for each of the operator properties stated in Section 4.4. Third, we deal with the
well-definedness of the semantics mapping, and mention a proof principle for determining
properties of operators defined via greatest fixpoints. Fourth, we prove that in the MSC
semantics defined in Section 4.4 sequential composition and interleaving never coincide for
non-empty MSCs.

B.1.1. Independence of Absolute Time

Proposition 18 For all « € (MSC), n,u € N, t € Ny, and (p,t) € (C x 5)> x Ny, the
following equivalence holds:
(@at—f_ n) € [[a]]u+n = ((,OTTL,t) € [[a]]u m]

PrOOF For n € IN the claim follows by induction on n. The base case n = 0 is trivial. For
the inductive step we first observe without proof that for all u,t € IN we have ¢ T (u+t) =
(pTu)Ttand o1 (u+1t) = (pTt)Tu. Now we assume that the claim holds for all n’ with
0 < n’ <n and derive

(pT(n+1),t) € [a]u
= (*x above observation *)

((p11)Tn,t) € [a].

= (x* induction hypothesis *)
(pT1Lt+n) € [a]utn

= (x induction hypothesis *)
(p,t+n+1) € [ausn

This shows the validity of the claim for all n € IN. m

312

B.1. Properties of the MSC' Semantics

B.1.2. Properties of the MSC Operators

In the following paragraphs we prove the properties we have listed in Section 4.4 as part
of the semantics definition. We structure our presentation along the introduction of the
MSC operators in Section 4.4.

empty

Proposition 19 empty is the neutral element with respect to sequential composition,
interleaving, and the join of MSCs, i.e. for all « € (MSC) each of the following equivalences
holds:

empty; a =, « a; empty =, «
empty ~ a =, « a ~ empty =, «
empty ® o« =, « a ® empty =, «

ProoF For all a € (MSC) we observe:
[empty ; a.
= (% definition of [;], *)
{(p,8) - (Ft" 22 (o,') € [empty], A (1) € [a]v)}
= (% definition of [empty],, predicate calculus *)
{(¢.1) : (p,u) € [empty]. A (¢,1) € [a]u}
= (* definition of [empty], *)

{(0,1) = (@, 1) € [a]u}
= (* definition of [.], *)
[a].
= (% definition of [.],, definition of [empty], *)
{(v.t) : (p.t) € [a]u A (9.1) € [empty],}
= (x definition of [.; .J, *)
[oe ; empty],

This shows the validity of the equivalences in the first row.

We derive the validity of empty ~ a =, « directly from the definition of the interleaving
operator; we only have to select a type correct oracle bs with bs € (C' — {true}*)>, and
to observe the validity of (¢, u) € [empty], for all (¢, u) € (C' x S)* x IN,,. Because the

313

B. Proofs

interleaving operator is symmetric (as we will see below) we thus obtain the validity of the
second row of equivalences.

With respect to the third row of equivalences we observe for all & € (MSC):
(¢,) € [empty @ of,
= (x definition of [® [, msgs.empty = () *)
(Ft1,ts € Ny = (p,11) € [empty], A (p,t2) € [a]. A t = max(t1,12))
= (x(p,t) € empty], = t=ux*)
(Fty € N = (p,ta) € [a]u A t = max(u,ts))
= (xty>u*)

(,t) € [adu

The remaining equivalence follows by the symmetry of the join operator (see below). m

any

Proposition 20 any subsumes all MSCs, i.e. for all o € (MSC) the following set inclu-
ston holds:

[e]. € [any]. 0

PrROOF We observe for all a € (MSC):
[e]. € [any].

= (* definition of set inclusion *)
(V(o,1) =2 (o, 1) € [a]u = (o,1) € [any],)
= (x (p,t) € [any], for all (p,t) with t > u, (p,t) € [a], = t > u *)

true

Sequential Composition

Proposition 21 (Associativity of ;) Sequential composition is associative, i.e. for all
a, 3,y € (MSC) we have:

(;)y =u s (85 7) o

314

B.1. Properties of the MSC' Semantics

Proor For all a, 3,7 € (MSC) we observe:
[(e; 8) ;Y]
= (* definition of [.; .J, *)
{(p,8) - (Ft" =2 (o, 8) € [as Blu A (o1) €)}
= (% definition of [.; .]., predicate calculus *)
{(p,t) : (31" = (@,t") € [a]u A (0, 8) € [Bler A (0,1) € [Ve)}
= (* definition of [.; .J, *)
{(p.1) - (3" = (0, 1") € [a]u A (0,1") € [B5 A]e)}
= (* definition of [.; .J, *)
[ors (v B)]u
[
Proposition 22 (; distributes over |) Sequential composition distributes both from

the left and from the right over |, i.e. for all o, 3,y € (MSC) the following two equivalences
hold:

a; (Bl7) =u (a; B)](as)

Bly);a = (B;a)](v; @) o

PROOF We show the validity of the first equivalence. We observe for all a, 3,7 € (MSC):

[or: (B17)]w
= (x definition of [.; .J, *)

{(,t) : Bt (@ 1) € [adu A (p,1) € [B 7]}
= (x definition of [. | .J, *)

{(p,0) - (Tt = (o) € [a]u A (1) € [B]e V (o,1) € [V]e))}

= (x predicate calculus, definitions of [.; .J,, and [. | .]. *)

[(e; B) | (a5)]

We omit the proof for the distributivity from the right, which proceeds along the same
lines as the one we have carried out explicitly. n

315

B. Proofs

Guarded MSCs

Proposition 23 (Conjunction of guards) For all guards pg,py, € (GUARD), and
MSCs a € (MSC) we have:
pr (P i) =4 (px A D) o
PROOF We observe for any pg, pf € (GUARD), and any a € (MSC):
[px (Do =)]
= (x definition of [. : .J, *)
{(¢,1) € [P = alu : ma(p).u € [px]}
= (x definition of [. : .J, *)
{(p,t) e {(¢, 1) € [a]u : ma(¢).u € [pic]} - ma(e).u € [px]}
= (* set theory *)
{(¢,t) € [a]u : ma(p)u € [pk] A ma(p).u € [px]}
= (* definition of [. : ., *)
[(px A Plir) = O

[
Proposition 24 (true holds always) For all « € (MSC) and u € Ny, we have:
[true : o], = [a]. O
PROOF We observe for any v € N, and any a € (MSC):
[true : o],
= (% definition of [. : .], *)
{(p,t) € [a]y : ma(p).u € [true]}
= (x [true] = S *)
[a].
[

Proposition 25 (false holds never) false holds in no execution, i.e. for all « € (MSC)
and u € Ny, the following holds:

[false : o, = 0 O
PROOF We observe for any u € N, and any a € (MSC):
[false : o,
= (x definition of [. : .J, *)
{(p,t) € [a]y : m2(p).u € [false] }
= (x [false] = 0 *)
0

316

B.1. Properties of the MSC' Semantics

Alternatives

Proposition 26 (| is symmetric and associative) The alternative operator | is sym-
metric and associative, i.e. for all o, 3,y € (MSC) the following two equivalences hold:

alf =, Bla

al(@ly) =u (@]B8)]y 0

PROOF Both equivalences follow directly by the definition of [. | .],, and the symmetry
and associativity of set union. -

Interleaving

Proposition 27 (Symmetry of ~) The interleaving operator ~ is symmetric, i.e. for
all a, 8 € (MSC) the following equivalence holds:

O_/NﬁEuﬁNa/ O

PROOF The validity of this equivalence is based on the symmetry (with respect to o and
3) of the right-hand-side of the interleaving operator’s definition; by inverting one of the
oracles that exist for & ~ [in a pointwise manner we obtain an appropriate oracle for

G ~ a. u

Proposition 28 (Associativity of ~) The interleaving operator ~ is associative; for
all a, B,y € (MSC) the following equivalence holds:

an~ (B ~7) =0 (@~ f) ~y .

PROOF Because the full proof is technically rather cumbersome (it involves a significant
amount of time point transformations), we give a rough sketch of the proof outline only.

We prove the validity of [a ~ (8 ~)], = [(« ~) ~ 7], by mutual set inclusion.
The strategy we follow is driven by the use of an oracle in the interleaving operator’s
semantics definition; in the argument below, we relate the two oracles corresponding to
the left-hand-side with those corresponding to the right-hand-side of the equation we aim
at.

Let us assume that (¢,t) € [~ (8 ~ 7)]. holds. We must show that this implies
(p,t) € [(a ~ B) ~ 7]u. To see this, we observe that (p,t) € [a ~ (8 ~ ~)]. implies
the existence of two oracles bs; and bss, such that bs; controls the interleaving of a and
B ~ 7, and bsy controls the interleaving of 3 and v. Whenever bs;.ch.t.n is true, then
a contributes the element m(p).ch.t.n to the interleaving. Otherwise, i.e. if bsy.ch.t.n is
false, the contribution comes from 3 ~ ~. In this latter case, we know that there is a time

317

B. Proofs

t" and a position n’ such that if bsy.ch.t’.n’ is true, then the element 7 (¢).ch.t.n stems
from (; otherwise it stems from ~.

Furthermore, we observe that for (p,t) € [(« ~ () ~ 7], to hold there must exist two
oracles bs3 and bsy4, such that bs3 controls the interleaving of a ~ (3 and ~, and bs, controls
the interleaving of @ and . The question now is whether we can construct the oracles bss
and bsy, given the oracles bs; and bs,. This is, indeed, possible. We must set bs3.ch.t.n
to true if and only if (bsy.ch.t.n V bsy.ch.t’.n’) holds (where ¢, ¢/, n, and n’ have the same
meaning as above). Otherwise we know that the element 7 (p).ch.t.n is contributed by 7,
and bss.ch.t.n must be false. We must set bsy.ch.t’.n’ to true if and only if bsy.ch.t.n is
true; this corresponds to the case where o contributes the element m(p).ch.t.n.

By this construction we obtain the validity of (¢,t) € [a ~ (8 ~ Y)]. = (p,t) € [(a ~
B) ~ ~]u. The proof of the other direction, i.e. (p,t) € (¢,t) € [(a ~ B) ~], = [ao ~
(8 ~ 7)]u, proceeds along the same lines. m

Join

Proposition 29 (Symmetry of ®) The join operator & is symmetric, i.e. for all
a, € (MSC) the following equivalence holds:

a®pf = 06« 0

PrOOF This equivalence follows directly by the symmetry of the right-hand-side of the
join operator’s definition in a and (3, and the symmetry of conjunction and the maximum
function. n

Proposition 30 (Associativity of ®) The join operator ® is associative, i.e. for all
a, B, € (MSC) the following equivalence holds:

a® By = (a®p) @~y o

PROOF Again, the proof is technically rather cumbersome, so we just sketch the basic idea
for reasons of brevity.

Observe for arbitrary 1,92 € (MSC) that, in essence, [d; ® 03], is a certain subset of
[61]w N [02].; this is due to the first conjunct of the join operator’s definition. Thus
[a ® (8 ® v)]. and [(a« ®) & 7], are both subsets of [a], N []. N [7]u. To see that
[® (B ® 7)], and [(a ® B) ® ~]. are indeed identical subsets of [a], N [B]. N [v]. we
concentrate on what elements do not occur in these two subsets. If (¢, t) € [a].N[5].N[V]
holds, but we have also (¢,t) € [@ (8 ®)], then 71 (¢) contains a redundant message
from msgs.cc N msgs.(8 ® =), i.e. a message chi>m appearing in « and either in § or in ~
(msgs.(0 @) = msgs.Umsgs.y). If ch>m € msgs.(holds, then (¢,t) € [a ® (], is the

318

B.1. Properties of the MSC' Semantics

consequence, because () is redundant with respect to the message ch>m, which occurs
in both a and 5. Thus, (p,t) € [(a« ®) @ 7], holds in this case. Assume, instead, that
both ch>m & msgs. and ch>m € msgs.y hold. Then, again, m(¢) is redundant with
respect to message chi>m, and the join of @ ® 3 and 7. Thus, in this case, we also have
(p,t) € [(a @ B) ® v].. By taking the contrapositive, we obtain the validity of

[l ® B) @ 1w Clo @ (B @ 7).

The other direction follows by a similar line of thought. m

Loops
Proposition 31 For all a € (MSC) the following equivalence holds:
aT<false> =u empty m]

ProoF For all a € (MSC) we observe:

[[aT<false>]]u
= (* defining functional (Proposition 34) *)
(vX 7y.X)
= (* definition of 7, with p = false, [false : a, = 0 *)
(vX :: [true : empty],)
= (* property of (v =), true: § =, [for any 3 *)
[empty],
|

Proposition 32 (Loop unfolding) For any o € (MSC), and m,n € Ny, the following
two equivalences hold:

a 04T<m,n> =u O4T<m+1,n+1>

aT<m,n> ;0 =y aT<m+1,n+1> o

ProoF Before we show the validity of the first equivalence for m,n € N, n > m, we
observe that ol > =y @™ ; @l n—m> holds directly by definition of al,, ~. We derive

] O-/T<m,n>
=, (* definition of oo *)
] (am ; aT<0,n—m>)

=, (* associativity of ; and definition of a™*! x)

319

B. Proofs

1.
am+) aT<U,n—m>
=, (x definition of algn41 41> *)

A amt1n+1>
For the second equivalence we observe:
aT<m,n> ; &
=, (x definition of ol > *)
; O‘T<U,n—m>) e

=, (x associativity of ; and observation, below *)

(™

a™; alan-mii>

=, (x definition of a4, mi1>, associativity of ;, definition of a™*! x)
am+1 ; O4T<O,nfm>

=, (x definition of o pnt1nt1> *)

aT<m+1,n+1>

The second step of this derivation is valid due to the following observation:
(¢, 1) € [alomn—m>; Au
= (x definition of [.; .J, *)
(3t € Neo 2 (¢, 1) € [olcon—ms]u A (9, 8) € [o])
= (* definition of [a]<n—m>]u *)
(3t € Neo = (0, 1) € Upcicnmla'Tu A (9,1) € []v)
= (x set theory, predicate calculus *)
(' ENg,teIN:0<i<n—m: (p,t') € [a']u A (0,t) € [a]w)
= (x definition of [.; .J, *)
(FeN:0<i<n—m:(pt) €a"; a],)
= (* definition of o't *)
(FeN:0<i<n—m:(p,t) € [a],)
= (x set theory, predicate calculus *)
(p,t) € UOSiSn—m[[ai+1]]u
= (x index shift *)
(p,t) € Ulgign—mﬂ [
= (x definition of [l mi1s]u *)

(907t) € [[aT<1,n—m+1>]]u

320

B.1. Properties of the MSC' Semantics

Trigger Composition

Proposition 33 (“Transitivity” of trigger composition))
Trigger composition is “transitive”; i.e. for all u,t € Ny, ¢ € (C x 9)®, and o, 3,7 €
(MSC) we have:

(Fti,ta 1 ta >t (1) € [a = Blu A (p,t) €8 = V]w) = (¢, 1) € [a = 7] o

PRrROOF For all u,t € Ny, ¢ € (C x)™, and «, 3,7 € (MSC) we observe:

(Ftr,ta 1t 2ty 2 (o, 1) € [a = Blu A (p1) €[—)
(* definition of [. — .],, twice *)
(3 1t ity >ty
(V' t" oo >t" >t >u:
((F’éﬂ) € [[a]]ti = <AEIt”’ co00>t" >t (p,t) € [B)en))
ANV 00> >8>ty
(¢, ") € [l = (3" 200 > 1" > 1" (p,1) € [y]3)))
(* predicate calculus *)
Bty ty ity >ty (V Ut o>t >t >u A oco>T >t >ty
(,t") € [= (3" s 00 > " >t (p,1) € [Bl)
N (@,t") € [Bly = (3" 100 > 1" > 1" : (p,t) € [Y]im)))

= (* predicate calculus: set t” to t1; transitivity of =
ty > t" > t" (see Proposition 2) *)

Tty by ty >ty (V00> >t >u A oo>ty >ty
(0, ") € [a]y = (3" 00 > " >t > t": (p,1) € [1]o)))

= (% definition of [. —], *)
(gO,t) € [[Oé = 7]]11

B.1.3. Well-Definedness of the Semantics

Proposition 34 The semantics of Section 4.4 is well defined. In particular, each of the
recursive Equations (4.3) and (4.4) has a unique greatest fixpoint. o

PROOF To see that both (4.3), and (4.4) have unique greatest fixpoints (with respect to
set inclusion), we rewrite the equations to make the underlying set transformers explicit.

For every a € (MSC), p € (GUARD), and u € IN,, we define the set transformers

7o, Tt - P(C % 8)® x Ny) — P((C x §)® x Nu)

321

B. Proofs

by
T74.X = [(—p) : empty],
U{(g,t) € (C x 8)® x Ny
(F 1" € N :u <t/ <t":
(o, t)Yep:a]u A (Tt t")YeX AN t=t+1t")}
and

. X = {(p,t) € [a]u: (Vv € [u,t] ::m & m(p).v.ch)}
U{(p,t) € (C'x 5)® x N
(Fv e N, t" € N, =
v=min{t' :u<t' <t A mem(p).t'.ch}
Ap,v—1) € [a]y™
Aplo,t")y e X
ANt=v+t")}

Here, 7, and 7,; are the set transformers for the semantics definition of guarded loops and
preemptive loops, respectively. We have obtained 7, and 7, essentially by expanding the
Equations (4.3), and (4.4). Thus, to see whether (4.3), and (4.4) have unique greatest
fixpoints, we determine whether this holds for the equations 74.X = X and 7,;,. X = X.

In the definitions of 74, and 7,; the variable X occurs only positively on the respective right-
hand-sides. This syntactic criterion suffices to deduce that both 7, and 7,; are monotonic
with respect to set inclusion'. By the theorem of Knaster-Tarski (cf. [Win93]), we can
conclude that each of these functionals has a (unique) greatest fixpoint. n

In the following sections we have to discharge several proof obligations with respect to the
semantics of guarded and preemptive loops. One of the proof principles we employ for this
purpose is as follows:

Proposition 35 (Proof principle for fixpoints) Let 7: P(T) — P(T) be a set trans-

former for a given set T, and let P : P(T) — B be a predicate, such that all of the following
hold:

(1) T is monotonic

!Note that the monotonicity of the predicate transformers 7, and 7, is independent of the (lack of)
monotonicity of the individual MSC operators with respect to their arguments (see also Section 5.3.2
and the proofs in Appendix B.2).

322

B.1. Properties of the MSC' Semantics

(2) P is admissible, i.e.
(Vn e N PX,) = P.([) X,)

nelN
holds for all infinite descending chains (X;)ien with X;v1 € X; for alli € N

(3) P.T
(4) (VX CT:PX = P(r.X))

Then, we can conclude the validity of

P(vX :1.X)

O

PROOF See, for instance, [CC92] for the dual claim for the least fixpoint (uX ::). Because

of the duality of (vX ::) and (uX ::) we obtain our proof rule as a simple rewriting of the
one in [CC92]. -

B.1.4. Sequential Composition versus Interleaving

Proposition 36 For all o, 5 € (MSC) the following equivalence holds:

(a~p3 =, a;0) = (a =, empty) V (§ =, empty) 0
Proor We show

a~p = a; = (o« = empty)V (5 =, empty)
The other direction follows trivially from the properties of empty, interleaving, and se-
quential composition. Assume that o #, empty A 3 #, empty holds. For simplicity,
we consider the special case o = ch>m, and § = ch>n, for m # n, without loss of gen-
erality. Then, for any v € IN, we can exhibit a behavior ¢, and a time point t = u + 1
with m(p).t.ch = <m,n>. Clearly, (p,t) € [a ~], holds, as any type-correct oracle
bs € (C — B*)*® with bs.t.ch = <true, false> shows. However, we can also show that
(p,t) & [o; B, holds. Observe that
(p,t) € [che>m ;5 ch>n],
= (% definition of [.; .J, *)
(Ft' 2 (o,) € [ehem]u A (p,t) € [ch>n]y)
= (*t >t > u, from the semantics of message occurrence *)
t>u-+2

holds. Thus, we have shown the validity of
(a Zu empty) N (ﬁ Zu emptY) = (a ~ B Fu o ﬁ)

By taking the contrapositive, the original claim follows. m

323

B. Proofs

B.2. Property Refinement Rules

The notion of property refinement (“ <, ”) we have introduced in Section 5.3 is based on
set inclusion; we consider an MSC « a property refinement of an MSC S if [a], C [G].
holds. In the following paragraphs we recapitulate and prove the property refinement rules
of Section 5.3.1.

any

Proposition 37 (Every MSC refines any) For all MSCs o € (MSC) we have

a <, any

ProOF This follows directly from Proposition 20. m

Guarded MSCs

Proposition 38 For all MSCs a € (MSC) and guards p,q € (GUARD) we have

p=9q = pa<, ¢«

PrROOF We observe for all « € (MSC) and p, ¢ € (GUARD):
pra <, qra
= (* definition of <, *)
[p:alu Cla: ol
= (* set theory *)
(V(p,1) € (Cx 8)* x Ne : (,1) € [p: au = (p.t) € [q: a]u)
= (* definition of [p: o], and [q : ol *)
(V(p,1) € [a]u :: ma(p)u € [p] = m.(p).u € [q])
= Gp=>q = ISl

P=4q

324

B.2. Property Refinement Rules

Alternatives

Proposition 39 For all MSCs a, 3 € (MSC) we have
a <p aff
B < alp .
ProoFr For all MSCs «, 5 € (MSC) we observe:
[

C (* set theory *)

[a]u U [B]u

D (*x set theory *)

[6].

Because of [« |], = [@]. U [B]. the claim follows trivially by definition of <, and the
above observation. n

Sequential Composition Refines Interleaving

Proposition 40 For all MSCs a, 3 € (MSC) the following two refinement relations hold:

Oé;ﬁngéNﬂ
Bia <, an~f 0

ProoF To prove the implication

(o,t) € [as Blu = (p,t) € [a ~ Flu

we observe that (p,t) € [a; (], implies the existence of a time ' € IN,, such that
both (¢,t') € [a], and (p,t) € [B]y hold. By constructing a type-correct oracle bs €
(C — B*)> with (bs.ch)|py—u € (true*)* and (bs.ch)|p—u+1,00) € (false®)* for all channels
ch € C we can easily show the validity of (¢,t) € Ja ~ (],. The proofof ;@ <, a ~ 3
proceeds along the same lines of thought. n

Narrowing Loop Bounds

Proposition 41 For all MSCs a € (MSC) and m,m',n,n" € Ny, the following refinement
relation holds:

[mlan,] g [m,n} = aT<m’,n’> Sp aT<m,n>

325

B. Proofs

PrRoOOF Let m,m/,n,n" € IN. Then [m/,n'] C [m,n] implies m < m’ < n’ < n. Thus,
o o > Tequires at least as many and also at most as many repetitions as o<y does.
Any element (¢, 1) € [a]an s]u exhibits at least m and at most n repetitions of a. Thus,
(p,t) is also an element of [aT] The line of reasoning for the cases where any one
of m, m’, n, and n’ equals co is similar. m

Proposition 42 For all MSCs o € (MSC) and m € N the following refinement relation
holds:

aT<0,m> <p alce O

PrROOF We observe for all MSCs o € (MSC) and m € IN:

[[aT<07m>ﬂu

= (* definition of [a]<gms]u *)

UOSiSm [[O‘i]]u

C (* set theory *)

UmelN(Uogz‘gm[[O‘i]]u)
= (* definition of [a]<gms]u *)

UmGIN [[@T<O,m>ﬂu
= (* definition of [[CYT<*>]]u *)

[oT<s]u

Removing Preemption

Proposition 43 Let a € (MSC) and ch>m € (MSG) be an MSC and a message specifi-
cation, respectively, and let M be defined as follows:

M {ch>m :ch e CAme M}

Then the following two refinement relations hold:

(Oé-‘ M\{ch>m} <

<, a C}Kmﬁ

I_a-l M\{ chbm} Sp O-/TT ch>m O

PrRoOOF With respect to the first relation we observe for any o € (MSC) and ch>m €
(MSG):

326

B.2. Property Refinement Rules

(1) € [[a]\chemi],
(*x definition of [HMM\{C’W’”}]U)

(0, 1) € [a]u
ANV € N, ch'pm’ € (MSG) :u <t <t:m' € m(p).t'.ch’ = ch'>m’ # ch>m)

= (x simplification of the second conjunct *)
(p,t) € [a]u A (Vv € [u,t] :m & m(p).v.ch)

ch>m

= (* definition of Ja "=" 3], *)

(p,t) € ™" 3

The second relation follows by substituting « for § in the last step of this proof, and by
definition of [} chom] u- m

LHS Weakening and RHS Strengthening of Trigger Composition

Proposition 44 Weakening the left-hand-side and strengthening the right-hand-side of a
trigger composition both result in a property refinement, i.e. we have for all o, o/, 3,5 €

(MSC):
((<p a) A (' < B) = ((aw— 3) <p (o = 3)) o

PrROOF We observe for all o, o/, 5,3 € (MSC) with (o <, o)A (8 <, [):

(V" eN:u<t <t'<oo:
(o, t") €[]y = (A" e Nt/ <t" < 00: (p,t) € [B]im))

< (* = is antimonotonic in its first, and monotonic in its second argument *)

(V" eN:u <t <t'<oo:
(p,t") €]y = Ft" e N t" <t" < o0 (p,t) €[B]um))

327

B. Proofs
B.3. MSCs for Property-Oriented System Specifications

In Chapter 6 we have investigated several MSC interpretations. One of these, the exact
MSC interpretation, forbids the occurrence of messages that do not appear syntactically
in the MSC under consideration. Based on this result we obtain a syntactic criterion for
preemption refinement; Section B.3.1 contains the corresponding proofs.

Besides MSC interpretations we have also discussed the notions of safety and liveness
with respect to MSC specifications in Chapter 6. To this end, we have given several
definitions for safety and liveness. We have also studied how safety and liveness properties
propagate through MSC specifications. In Section B.3.2 we show the equivalence of the
different characterizations for safety and liveness, respectively; moreover, we give the proofs
corresponding to our observations regarding property propagation.

B.3.1. Exact MSC Interpretation

Proposition 45 (Minimality of the CW-Semantics) Only messages specified syntac-
tically in «, i.e. messages inside the set msgs.cc can occur in elements of []., for any MSC
a € (MSC); more precisely, the following implication holds for all messages ch>m €
(MSG):

ch>m & msgs.ac = (Y(p,t) € [au.cw,t’ € [u,t] :m & m1(p).t'.ch) :
PROOF The basic idea behind this proof is to observe that the only MSC operator that
explicitly requires the presence of a message in m(p).t.ch for ¢ € (C x §)*, t € N, and
ch € C' is the message occurrence operator ch>m. All other MSC operators (with at least
one argument) simply combine what their operands contribute. The validity of

(p,u) € [empty]o.cw = (VYch € C ::m(p).u.ch = <)

is easy to see, because <> C x holds for all x € M*. Similarly easily, we can show that we
have

(p,t) € [any]u.cw = (Yeh € C,t' € [u,t] = mi(p).t'.ch = <)

For message occurrence we observe that the least element (¢, t) € [ch>m], (with respect
to the inclusion C on the channel valuations) is the one with m(p).t.ch = <m> and

(Veh' € Ot € [u,t] - ch' # ch Vvt #t:m(p)t.ch = <>).

The validity of the claim for arbitrary MSCs « follows by induction on the structure of a.
The essential step here is to pick behaviors from the closed-world semantics of the operands
of a composite MSC to obtain the semantics of the composite, and to observe that no MSC
composition operator introduces a message on its own. ™

328

B.3. MSCs for Property-Oriented System Specifications

Proposition 46 (Syntactic criterion for preemption refinement)
For all messages ch>m € (MSG), and MSCs o € (MSC) we have

(ch>m & msgs.a) = (a =" [Q"IM\{cth})
and

(ch>m & msgs.a) = (a <V « chogn 3) .

PRrROOF The first implication is a trivial consequence of Proposition 45, and the definitions
of =¢W and [.]. For the second implication we observe for all messages ch>m € (MSG)
and MSCs a € (MSC):

(p,t) € [a]u.cw N ch>m & msgs.a
= (x Proposition 45 *)
(o,t) € [a]u,ew A (Vv € [u,t] = m & m(p).v.ch)

ch>m

= (* definition of [a =" Blu, (¢,t) € [a]w.ow *)
(p,t) € [e Blu

B.3.2. Safety and Liveness

In the following paragraphs we support the discussion of safety and liveness we have started
in Section 6.3. We start by showing the equivalence of the two alternative definitions given
for safety and liveness, respectively. To this end, we also study properties (idempotence,
monotonicity, finite “sub-conjunctivity”, finite disjunctivity) of the prefc-operator. We
need these properties later in this section, where we prove our results on the propagation
of safety and liveness properties with respect to MSC composition.

Alternative Characterizations for Safety and Liveness

In the proofs we carry out later we make extensive use of the alternative characterizations
for safety and liveness given in Section 6.3. Here, we show that the alternatives are, indeed,
equivalent. The alternative definitions are based on the prefc-operator; in the following
three propositions we establish several important properties of this operator. After this
we consider the alternative characterizations. Based on these we establish the well-known
result that every property is the disjunction of a safety and a liveness property. The proofs
we give here directly mimic the corresponding ones from [AS85, Rem92, M6199].

Before we start, we note that (Vg C (C~’ x S§)% i1 q C prefe.q) holds. This follows immedi-
ately by inspection of the definition of prefc (where ¢ € (C' x), g C (C x S)*>):

Ve prefeq = MeN: (Jpequ|t=plt))

329

B. Proofs

Proposition 47 (prefc is idempotent) For all ¢ C (C’ x S)® the following equality
holds:

prefe.(prefe.q) = prefc.q o

PROOF We observe for every ¢ C (C' x S)® and) € (C' x S)>:
W € prefe.(prefc.q)
= (* definition of prefc *)
(Vt € N :: (p € prefe.q = [t =@ t))
= (x predicate calculus *)
(Vt e N :: (p € (é X S)® i € prefecqg N[t =@lt))
= (* definition of prefc *)
(VteN:(Fpe(Cx9)®u(WWeNu:(Apequelt =@t AY]t=pl|t))
= (x predicate calculus *)
(VMte N (Fpequyplt=¢l[t))
= (* definition of prefc *)
Y € prefe.q
|

Proposition 48 (prefc is monotonic) For allp,q C (C‘XS)OO the following implication
holds:

pCSq = prefep C prefeq o

PrROOF We observe for every p, ¢ C (C' x $)> and ¢ € (C' x §)>:
W) € prefe.p
= (* definition of prefc *)
(VteIN:E@pepuylt=plt))
= (xpCq=*)
(VMte N (Fpeqylt=plt))
= (* definition of prefc *)
Y € prefe.q
|

Proposition 49 (prefc is finitely “sub-conjunctive”) For all p,q C (C’ x S)> the
following equality holds:

prefe.(p N q) C prefe.p N prefe.q -

330

B.3. MSCs for Property-Oriented System Specifications

PrROOF We observe for every p,q C (C' x $)> and ¢ € (C' x §)>:
Y € prefe.(pNq)
= (x definition of prefc *)
(Vte N (Jpe(png) =y lt=plt))
= (* set theory *)
VteN:(Fpe(Cx9)®pephpcqhylt=plt)
= (* predicate calculus *)

(VteN:Fpe(Cx8)®pepAplt=plt))
A (VteN:(Fpe(CxS)®peqhplt=plt))

= (* definition of prefc, twice *)

W) € prefe.p N € prefe.q

With these preliminaries in place we can now prove the equivalence of the alternative
characterizations for safety and liveness. This is the topic of the following two propositions.

Proposition 50 (Alternative characterization for safety)
For all g € (C x S)* the following equivalence holds:

(Vipe (CxS)®:pgq: (FHeN:(Voe (Cx8)*::(hlt)~p&q))
= (prefeq=q) -

Proor We prove this equivalence by mutual implication.
(4:77:
Let ¢ be such that

(Vp € (Cx)X :pgq:(BeEN: (Vo (Cx ¥ (Wlt)~pda) (x)

holds; we show that this implies

prefe.q € q
Let ¢ € prefe.q, i.e. we have (Vt € N :: (Jp € ¢ 2 [t = ¢ |t)). We observe:
v Eq

= (x Assumption (x) *)
(It € Nz (Vp € (C'x 8)* = (¢ [to) ~¢ & q))

= (* predicate calculus *)

331

B. Proofs

—(Vtp € N:: (Fp € (C x 8)® =2 (1 ty) ~p € q))
(* identify ¢ Tty with ¢ *)

~(Vto € N : (@ € ¢ ¢ [tg = ¢ l0))
(x ¢ € prefc.q *)

false

By taking the contrapositive, we have established ¢ € ¢, and thus prefc.q C ¢ holds.
Because of g C prefe.q for all ¢ C (C' x S)*>° we obtain prefc.q = q as desired.

(L<:77 :
Assume that prefc.qg C g holds, and let ¢ € (C’ x §)* be arbitrary but fixed. We observe:

vEqg = (FeN:(Vpe(Cx9)°: (@)~ ¢q)
= (% contrapositive *)
VteN:z=(Fpe(Cx8)®:@Wlt)~peq)) = Yeq
= (% identify ¢ Tt with ¢ *)
(VMteN:(Fpeqylt=¢lt) = pegq
= (* definition of prefc *)
Y € prefe.q = Y €q
= (% prefc.q = q *)

true

Proposition 51 (Alternative characterization for liveness) Let ¢ C (C' x S) be a
property. q is a lweness property if and only if

prefc.q = (C' x S)>
holds. O

PROOF By definition of prefc we obtain that prefe.q C (C’ x §)* holds. For the inclusion
(C x S)> C prefc.q we derive:

q is a liveness property

= (% definition of liveness *)

(Vip e (Cx8)®teN:(Fpe(CxS)®:(lt)~pecq))
= (% identify ¢ Tt with ¢, predicate calculus *)
(Vip e (Cx8)*teN:(Fpeq=lt=¢lt)

332

B.3. MSCs for Property-Oriented System Specifications

= (* definition of prefc *)
(Vip € (C x §)> = 1) € prefe.q)
= (* set theory *)
(C x 8)® C prefe.q
|
Proposition 52 (Property decomposition) Let ¢ C (C x §)>® be a property. Then
there is a safety property g, C (C' x S)* and a liveness property q C (C' x S)*°, such that
q=qsNq
holds. o

PrROOF We define two properties $.q C (C' x S)® and LL.q C (C' x S)™ as follows:

S.q =4 prefc.q

and

velLg E peSg=eg

Then ¢ = $.g N IL.q holds on account of:
Y eB.qnll.g
= (* definitions of $ and I *)
W € prefe.q A\ (Y € prefe.q = 1 € q)
= (x predicate calculus *)
W) € prefe.q N € q
= (*x q C prefc.q *)
veq

In the following we prove that S.q is a safety property and IL.q is a liveness property, from
which the claim of the proposition follows.

S.q is a safety property:

We observe:

prefe.(5.q)
= (* definition of $.q *)

prefe.(prefe.q)

333

B. Proofs

= (* idempotence of prefc *)
prefc.q

= (* definition of $.q *)
S.q

IL.q is a liveness property:

We show that (C' x) C prefc.(IL.q) holds (the other direction is trivial):
Y e (Cx8)>
= (* predicate calculus *)

WY € prefe.q VY & prefe.q
= (* definition of & *)

W € prefe.q V€ ((C x 9)\ prefe.q)
= (x ¢’ C prefe.q for arbitrary ¢’ *)

W € prefe.qV € prefe.((C x 8)®\ prefe.q)
= (% prefc is finitely disjunctive, see below *)

W € prefe.(qU ((C x 8)= \ prefe.q))
= (* definition of IL.q *)

Y € prefe.(IL.q)

prefc is finitely disjunctive:

Let ¢o,q1 C (C~' x S)> be arbitrary properties, 1» € prefc.(qo U q1), and assume that
U & prefc.qp holds. We show that this is equivalent to ¢ € prefc.q; as follows:
Y € prefe.(qoUqr)
= (* definition of prefc *)
(Vte N:(Fpe(pUaq)=lt=plt)
= (x predicate calculus, set theory *)
(VteN:(FBpe(Cx9)®:(peqpVeeq)Av]lt=plt))
= (x predicate calculus *)
(VMte N (Fpeq vlt=plt)V{Feeq Y lt=plt)
= (k9 & prefe.qo ¥)
(VMte N (Jpeq =v]lt=plt))
= (* definition of prefc *)
Y € prefe.qu

334

B.3. MSCs for Property-Oriented System Specifications

Safety Preservers

The following proposition characterizes the MSC operators that preserve the safety of their
operands.

Proposition 53 (Safety preserving operators) Let o, € (MSC), p € (GUARD),
Tel;, |, ~,®}, <> € {<x> <>, <mn>} with m,n € N, ch>m € (MSG), and
X € (MSCNAME) with (X,) € MSCR. Furthermore, let [a] and [5] be safety properties.
Then each of the following is a safety property:

[p: o]
[atA]
[aTzs]
o ™"]
[[O/ﬂchbm]]
[[_> X]] 0

PROOF Let the assumptions be as stated in the proposition. For every ¢ € {[p : o], [a15],
[al <], [chogn O], [edtensm], [— X]} we show that prefe.q C ¢ holds.

q = [a; B
The idea here is to distinguish the cases where « represents an infinite and a finite behavior,
respectively. To this end, we observe for an arbitrary ¢ € (C' x S)>:

(¥ € prefe.fa; B A (¥, 00) € [alo) = ¢ € [a; B])
A ((v € prefe.a; Bl A (3t € N = (,t) € [ao)) = ¢ € [a; B])

= (x predicate calculus *)

((v € prefe.fa; Bl A (¥, 00) € [a]o)
Vo (Y € prefea; Bl A (Bt € N (,t) € [ao))) = ¢ € [a; 5]

= (* predicate calculus *)

(¢ € prefe.Ja; BIA (1, 00) € [a]o V (3t € N2 (¥,1) € [oo))) = ¢ € [or;]
= (¢ eprefefa; f] = (3t € Ny = (¥,1) € [@]o), see below *)

Y € prefea; B] = ¢ € [a;]

This leaves us with the following three proof obligations:

1. ¢ € prefe.]a; 8] = (3t € Ny = (¥,¢) € [a]o)
2. (¢ € prefefa; BI A (¥, 00) € [a]o) = o € [a; f]

335

B. Proofs

3. (¢ € prefe.Ja; BIA (Gt € N (,1) € [a]o)) = ¥ € [a; f]

We now discharge each of these proof obligations, in turn.

¥ € prefe.a; B] = (3t € Ny 2 (1, 1) € [ao):

Y € prefe.fa; f]

= (* [a; A] C [o], see below; monotonicity of prefc *)
Y € prefe.[o]

= (x [o] is a safety property *)
V€ [o]

= (x definition of [o] *)
(It € Ny =2 (¢, 1) € [a]o)

To see the validity of [a; 5] C [a] we observe:
b € for; O]
= (* definition of [a; G] *)
(It € Ny == (¢, t) € [a; Bo)
= (x definition of [a; B¢ *)
(Ft, 1" € Ny 2 (1, 1) € [a]o A (,1) € [B]w)
= (* predicate calculus *)
(Ft' € Ny :: (0, t) € [a]o)
= (* definition of [a] *)
¢ € [a]

(¥ € prefe.Ja; Bl A (¥, 00) € [a]o)) = ¥ € [a; B]:
We observe for every a, 3 € (MSC) and ¢ € (C' x S)>:
(1, 00) € [afo
= (* predicate calculus, property of [.Jo *)
(1, 00) € [aJo A (¥, 00) € [B]o
= (% definition of [.; .], Definition 1 *)
(¢, 00) € [a; O]

336

B.3. MSCs for Property-Oriented System Specifications

(¢ € prefe.Ja; BIA (Bt € N (¥,1) € [eo) = ¥ € [a; B]:
We observe for every a, f € (MSC) and 1 € (C' x S)>:

A

(3t € N = 4p € prefe.fa; B] A (v,) € [o]o)
= (* definition of prefc *)
(It e N =
(Vt € IN =
(Fp e (Cx 9)> =)
pela; BIAYIt=plt) A1) € [a]o)
(* definition of Ja; 5] *)
(3t € N ::
(Vt € N =
(Fp € (Cx 9)=, ', t" € Ny = A
(v, 1) € [edo A (0, t") € [Ble A Lt =) A (¥,1) € [e]o)
= (* predicate calculus, aiming at using ¢ as the time point “between” o and § *)
(3t €N
(VteN:t>t:
(3o e (Cx 8)® 1" e Ny :: A) A)
(p. 1) € [edo A (") € [Ble A (@ TE L{E—1) = (pT1) L(t —1)))
A1) € [afo)
= (* predicate calculus, fix t’ to £ *)
(3t €N =
(VteN:t>1t:
(Fp € (Cx 8)=,t" € Ny))) A
(.)€ [alo A (0, 8") € [81 A (1) Lt —) = (p18) L(t — D))
A1) € [afo)
= (% predicate calculus, shift range of ¢; we aim at using the definition of prefc *)
(Ft e N =
(VteN:t>1:
(3p € (Cx)=, 1" € Ny o o
(p.1) € [edo A (0 T,2") € [BloA (W TE) L= (0 T8) 1))
/\<¢7t) € [[a]]0>
= (x predicate calculus *)
(3t € N ::
(VteN:t>t:
(Fpe (CxS)° " eNyg: .
(@.1") € [Blon (@Tt) [t =& 11) A (¥, 1) € [a]o)

~

>
X

337

B. Proofs

= (* definition of prefc *)
(It € N1t € prefe.[8] A (1,1) € [a]o)
= (% [J] is a safety property *)
(Ft e N=yl1ie [B]A (1) € [a]o)
= (* definition of [.] *)
(3t e N,#' € Noo = (9,1) € [alo A (¥ 11,7) € [Blo)
= (x property of [.], (independence of absolute time) *)
(It € N,# € Ny = (1,1) € [a]o A (0,7 +1) € [8];)
= (* definition of [.; .J, *)

V€ [a; Bl

This concludes the proof of prefe.Ja; 5] C [a; G].

q =[] B]:
Y € prefe.Ja| f]
= (* definition of prefc *)
(WteN:=(Fpe (x> pelalflAylt=plt)
= (x definition of [« | 5] *)

(Vt € N =
(Fp € (C x 8)® ' € Ny ::
(e, ') € [ado V (@,) € [Blo) Ab Lt =@ L1))

= (x predicate calculus *)

(Vt e N (Jp e (Cx 8™t e Ny (p,t) €afo ANt =)
V (VteN:(Fpe (Cx8)®teNy:(pt)e[BloAdlt=plt)

= (* definition of prefc *)
b € prefe.fa] v o € prefe.[0]
(* [a] and [] are safety properties *)
vela] vy elf]
= (x definition of [. |.] *)
velald]

338

B.3. MSCs for Property-Oriented System Specifications

q=[p:al:
W € prefe.p:]
= (* definition of prefe, [p: o] *)
(VteN: (Fpe(Cx8)®teNyg:(pt)elp:aoAvlt=plt))
= (x definition of [p: afo *)
(VteN: (Fpe (Cx8)®teNy:(pt)€[afoAm(p)0e[p] At =qlt))
= (x definition of prefe, [a], predicate calculus *)
b € prefe.fo] Ama($).0 €]
= (% [o] is a safety property, definition of [p : a] *
Vvelp:a]

Y & [a ~ [3] implies that there is no type correct oracle bs € (C' — IB*)>, no 91,1 €
(C' x S)*, or no ty,ty € Ny, such that both

((filter.(m1(p) Tw).bs. true, (mo (@) Tu)) ~ 11, t1) € []o

and

((filter.(m1 (@) Tu).bs. false, (m2(p) Tu)) ~ 9, t2) € [Bo

hold. This, in turn, implies that we have either

(filter.(m1(p) Tu).bs. true, (m2(p) Tu)) ~1y & prefe.fa]

or

(filter.(m1 (@) Tu).bs. false, (m2(p) Tu)) ~ 1)y & prefe.[0]

because [a] and [3] both are safety properties. From this, however, we easily conclude the
validity of 1 & prefe.Jac ~ [] by inspection of the definition of prefc and [a ~ []. B
taking the contrapositive, we obtain ¢ € prefe.Ja ~] = ¥ € Ja ~ [].

q¢=la ® ol
Observe that [a ® f] is the intersection of the sets [«], [A], and ¢’, where we define ¢’ by:

¢ E {pe(Cx8)
(It € Ny
((6,8) € [alo V (1) € [8lo).
= ((VX € (msgs.aN msgs. 6)*, (Cx 8)®,che C,t"€lut] NN ::
(X # <) A (m ().t .ch = }<w> t'.ch\ X))
= (V1" € N (4,") & [a]u A (&, 8) & [BLu))

S

339

B. Proofs

Because each of these is a safety property, which is given in the case of o] and [5], and
is easy to see for ¢/, we can conclude:

prefe.Ja @ (]

= (% definition of [o], [A], and ¢ *)
prefe.(la] N 181 N ¢)

C (x prefc is finitely “sub-conjunctive” *)
prefe.[a] N prefe.[5] N prefe.q

= (x [a], [B], and ¢ are safety properties *)
[el N8N d

= (x definition of [«], [A], and ¢’ *)
[o @ /3]

This shows that [® (] is a safety property, if both [a] and [3] are.

q = [aT<s]:

We show for all n € IN that [aT =] is a pure safety property if [a] is a pure safety
property by induction on n. For the other finite loop ranges we reduce the claim to this
result by means of the case distinction of the loop operator’s definition, and the observation
that ; preserves safety properties.

Y € prefe.Jalwos]
= (x definition of [l o] *)
Y € prefc.[empty]
(x [empty] is a safety property *)
¥ € [empty]
= (x definition of [alq o] *)

Y € [al<0]

n~ (ntl):
Y € prefefalpnsts]
= alopes =u @ (O‘T<0’”>) *)

v € prefe.a; (oon)]

340

B.3. MSCs for Property-Oriented System Specifications

= (% [o] and [a«,»] are safety properties, ; preserves safety *)
¥ € [a; (alamn)]
= (xalonis =u o) (algmns) *)

Y € [alwonts]

ch>m
q=[a ="
We make a case distinction on whether the preemptive message occurs in the execution
under consideration or not.

In a first step, we assume (Vo € IN : (3t € Ny, = (¢,1) € [afo) : m & m(¢).v.ch) and
observe under this assumption:
Y € prefe.|o choy A]
= (* definition of [« chon B] *)
Y € prefe.[d]
= (x [o] is a safety property *)
¥ € [e]
= (x definition of Ja ™" 8] *)

v € a ™"]

This establishes the result if ch>m does not occur in ¢ during the time interval covered by
a from time 0 on. Now we assume that ch>m does indeed occur during this time interval
and observe:

(v e N:v=min{t' >0:m € mY).t.ch} A (b,v—1) € [a]y":
(Vte N
(Jp e (CxS)>:
e €la ™" BIAvLE=plt)
= (x definition of o ™" 8] *)
(v € N:v=min{t' >0:m € m(Y).t.ch} A (b, —1) € [a]y " :
(vt e N
(Bp € (C x 8)*,i € Noo, 0 € N: 0 =min{t" >0:m & m(¢).t".ch}:
(po—1) € [ofg7 Alpf) € [Bla ALt =@ L1)))
= (x identify v and 0, consider ¢ > v, predicate calculus *)
(e N zv=min{t' >0:m € (Y).t'.ch} A (,v—1) € [a]y™ A Tv € prefe.[B])

= (* [4] is a safety property *)

341

B. Proofs

(e N:zv=min{t' >0:mem().t'.ch} A(,v—1) € [a]y AyTv e [F])

= (x definition of o ™" g] *)

Y€ [a ™"]

From this derivation the validity of

Y € prefe.a chbym 8] = ve€]a chbqm O]

follows.

q= [[O[ﬂchbm]]:
We want to show that prefc.[aftchsm] € [oftcnsm] holds. Due to the definition of [orf} epsm]
this amounts to proving the validity of

prefe.(vX 7, X) = (vX = 7). X)

where we define 7/, : P((C x §)%) — P((C'x S)®) for all 1 € (C'x §)* and X C (C'x §)®
by
def

Yper, X = (FteNy:(Y,t) €y X)

7,-X is the projection of 7,;. X on the first coordinate of the latter’s elements.

We follow the proof principle for fixpoints we have formulated in Proposition 35. As the
predicate under consideration, we choose P : P((C x S)*) — B with

P.Q def prefc.Q) = Q)

According to Proposition 35 we have to discharge the following proof obligations:

1) 7, is monotonic

(1)
(2) P is admissible
(3) P.(C x §)>
(4)

4) (VX C (C x 8)® = P.X = P.(7,.X))

We deal with each of these proof obligations in turn.

TZIJZ is monotonic:

7, inherits its monotonicity directly from 7.

342

B.3. MSCs for Property-Oriented System Specifications

P is admissible:

We have to show that (vn € N :: P.X,) = P.([),cn Xn) holds for all infinite descending
chains (X;);en with X;11 C X, for all i € N. Let (X;);en be such a chain, ¥ € (C’ x 5)°°,
and let (Vn € IN :: P.X,,) hold. We observe:

true
= (* set theory *)
(VE € N (),en Xn € Xi)
= (* monotonicity of prefc *)
(Vk € N =2 prefe.((),,en Xn) C prefe. Xy)
= G (VnelN:PX,) *
(VE € IN =z prefe.(,en Xn) € X&)
= (x set theory *)
prefe-(Nnew Xn) € MNpen Xn

P.(C x §)>:
P.(C x S)®
= (x definition of P *)
prefe.(C x §)>® = (C' x §)™
= (% (C x 8)™ is a trivial safety property *)

true

(VX C (C x 8)® = PX = P.(1,.X)):

Y € prefe.(r,,.X)
= (* definition of prefc *)
(VteN:=(Fpe (Cx®uper, X Aplt=plt)

= (% definition of T;l %)

(Vt € N =
(Fp e (C x 8)®,t' € Ny ::
(((p,t) €]afon (Yo e[0,t] ::m & mi(p).v.ch))
V(I eN:
v=min{t" e N: 0 <t" <t'Am € m(p).v.ch}
Agw—1) € [aly " AlpTo.t) € X)) ALt =gl)

343

B. Proofs

= (x predicate calculus *)

(Vt € N
(Fp € (C x 9)™,t' € Ny ::
(p,t) € [a]o A (Yo € [0,t] ::m & mi(p).v.ch)y ANt =plt))
vV (VteN:
(Fp e (Cx8)® t € Nog,v €N ::
v=min{t" e N:0<t" <t'Am € m(p).v.ch}
Ao —1) € [alg A (o1, 1) € X) A L= pLt)

= (% definition of prefc, twice *)

(v e prefefo]
A (Vt € Noo,v € N (¢, 1) € [a]o Am € m (). v.ch i v > 1))
V. ((JuveN::
v=min{t € N:m € m(¢)).t.ch}
Ao —1) € a]y P A Tv € prefe. X))

(* [a] and X are safety properties *)

(veld
A (Yt € Noo,v € N2 (¢, 1) € [a]o Am € m (). v.ch i v > 1))
V. ((JuveN::
v=min{t € N:m € m(¢).t.ch}
Ao —1) €[]y AvTv € X))

(* definition of 7, *)

(0 GT;/)z

q=[— X]:

If o] is a safety property and (X, o) € MSCR holds, then [— X] is also a safety property,
because we have [— X] = [a] by definition of [— X] under these circumstances.

Liveness Preservers

The following proposition is the dual to the preceding one, and characterizes the MSC
operators that preserve the liveness of their operands.

Proposition 54 (Liveness preserving operators) Let o, € (MSC), m,n € N,

<[> € {<x>, <>, <mn>}, cheom € (MSG), and X € (MSCNAME) with (X,a) €
MSCR. Furthermore, let [o] and [3] be liveness properties. Then each of the following is

344

B.3. MSCs for Property-Oriented System Specifications

a lieness property:

[— X] e

PROOF Let the assumptions be as stated in the proposition. For every property ¢ €

{[[CE; ﬁ]]a [[a | ﬁﬂv [[Oz ~ 6]]’ [[O‘T<L>]]> [[CV s ﬂ]]a [[O[ﬂciwm]]a [[_> X]]} we show that (é x §)> C
prefc.q holds.

q = [a; B]:

We begin by observing that for all ¢» € (C' x §)*® and «, § € (MSC)
(Y, 00) € [alo = (,00) € [a; Blo

holds. This is a trivial consequence of the definition of sequential composition and Def-
inition 1. Thus, in the following we can concentrate on the subset of [a] generated by
executions with finite time bounds in [a],. Therefore, we assume that ¢ is such an ele-
ment, i.e. we have:

(It € N :: (1, t) € [a]o) (5k)

Based on this assumption we derive
¥ € prefe.fa; f]
= (* definition of prefc *)
(VteN:: (Fpe(CxS)®upcfa; BlAplt=plt)
< (* definition of Jar; G] *)
(Vte N
(Jpe (Cx8)>te N, t" € Ny =
(o, 1) € [elo A (e, ") € [Ble A LE = 1))
< (* choose ¢ = (o [t') ~(¢sTt) and # = ¢, predicate calculus *)
(Vt € N :: (Fp, € (C x S)®,t' € N 2 (pq,) € [afo ALt = o [1))
AVt €N :: i
(Vt € N (Fpp € (O x S)*,t' € Noo =2 (¢, 1) € [Bli ALt = sl 1))

345

B. Proofs

< (x index shift, choose ¢3 = (¢ |[t) ~pg, and ' =t+1t *)
(sz eN: (Fpa € (Cx 8t €Nz (o,) € [afo Ap Lt = palt))
AVt € N ::
(Vt € N = (3pg € (C x §)®,t' € Nog =2 (03,) € [Blo A (W 11) [t = pslt)))
< (* definition of prefc, Assumption (%) *)
Y € prefe.Ja] A (VE € N 1t € prefe.[5])
< (* [a] and [f] are liveness properties *)

true

q=[a]d]:
¥ € prefe.fa|]
= (* definitions of prefc and [a | G] *)
(VteN: (Fpe(Cx8)®teNyg:(pt)ela|Blonyt=plt))
= (x definition of [| 8]o *)
(Vte N
(Fp € (Cx 8)®,t € Ny ::
((p,t') € [afo V ((¢,t) € [Blo) ALt =l 1))
< (* predicate calculus *)
(VteN: (3p e (Cx 9=t € Ny (p,t) € [alo ALt = plt))
V (VteN:(Fpe (CxS)t eNy::(p,t)e[Blonv]t=¢lt))
= (* definition of prefc, twice *)
Y € prefe.a] Vi € prefe.[5]
< (* [a] and [f] are liveness properties *)

true

q=[a ~ O

Observe that Ja; 5] C [a ~ (] holds (recall that «; (3 is a property refinement of v ~ f3).
Thus, we derive:

Y € prefe.Ja ~ (]
< (x above observation, monotonicity of prefc *)
Y € prefefa; f]
< (* see proof above, [a] and [3] are liveness properties *)

true

346

B.3. MSCs for Property-Oriented System Specifications

qc {[[aT<m,n>]]7 [[aT<*>]]}:
We start with deriving the result for ¢ = [@"], n € IN by induction on n:

Y € prefe.[a’]
= (x definition of o *)
Y € prefc.[empty]
< (x [empty | is a liveness property *)

true

n~ (n+1):
Y € prefe.a™]
= (* definition of o™ *)
Y € prefe.a; o]
< (* [a] and [a"] are liveness properties, ; preserves liveness *)

true

The result for arbitrary finite repetition ranges follows from the defining equations for the
repetition operator, which reduce their argument to either empty or the term o™ ; o™~ ™;
moreover, [empty] and [o*] are liveness properties for arbitrary k& € IN (see above), and

sequential composition preserves liveness.

q = [a]<c]:
We sketch the outline of a proof strategy. We have to show that the infinite repetition of

an MSC that defines a liveness property also yields a liveness property. The basic idea we
follow is to reduce this problem to well-known liveness properties of temporal logic.

As a starting point we consider the special case « © chem. Below, we will see that message

occurrence defines a liveness property (cf. Proposition 56), i.e. (C' x S)> C prefe.[ch>m]
holds.

Our first step is to observe the validity of the following equation:

chem 5 (ch>mlaoe) =y chbml o

347

B. Proofs

Its validity follows directly from the reduction lemma for greatest fixpoints as stated, for
instance, in [Win93] (p. 237). By induction we obtain further the validity of

cheml g 5 (ch>mloes) =u chbml oo

for any n € IN.

Recall from Proposition 2 that we have (p,t) € [f]l. = t > u. In particular, for
empty £, [we have (¢,t) € [f]. = t > u (empty is the only MSC term without
“time progress”). This implies that (p,t) € [ch>m]o = ¢ > 0 holds in the special case
we consider. By induction, we obtain the validity of (¢,t) € [chbmlos]o = ¢t >n—1for
arbitrary n € IN. The semantics of ch>m1,,~ equals the semantics of the n-fold sequential
composition of occurrences of ch>m. In particular, any ¢ with (¢,t) € [ch>m T 4=]o
contains at least n occurrences of ch>m at n distinct time points.

Equipped with these preliminaries we observe for any n € IN

(p,t) € [ch>mT coes]
(* see above *)
cheml g 5 (ch>ml o)
(* definition of [.; .] *)
(3t" € Noo 2 (9, ') € [eh>mTon]o A (1) € [ch>mT oo]wr)
= (* above observations *)

t>nA|{t' e N:m e m(p)t'.ch}| >n

Because n € IN is arbitrary, this implies that
(p,t) € [cheml oo = t=o00A|{t' e N:m € m(p).t'.ch}| =0 (")

holds. Hence, elements of [ch>m T] have the form (p,00) such that ¢ contains an
infinite number of occurrences of ch>m.

It is a well-known fact from temporal logic that properties requiring an infinite number
of occurrences of a certain condition are liveness properties (cf., for instance, [Eme90,
CMP91]). To establish a closer relationship between our notion of properties and the one
of temporal logic we could encode the condition “ch>m has occurred” by means of an
appropriate state (predicate) p; then the implication (x') reduces to GFp in linear time
temporal logic (cf. [Eme90]).

This concludes the proof outline for the special case o = ch>m. For arbitrary « such that
[a] is a liveness property the reduction to temporal logic proceeds along the same lines
(and by induction on a’s structure). We omit the full details of the proof for reasons of
brevity.

348

B.3. MSCs for Property-Oriented System Specifications

q= [[O{ clgm ﬁ]]
Let ¢ € (C'x S)® and t € N be arbitrary but fixed. We show that there is a ¢ € (C' x S)>
with ¢ [t = ¢ | ¢ and ¢ € [o =" 3].

We distinguish the following three cases:

(1) «’s contribution has already occurred in ¢ | ¢, but the preemptive message ch>m has
not occurred until a’s contribution is finished.

(2) «’s contribution has occurred until time ¢, and the preemptive message chi>m has
occurred before o’s contribution was finished.

(3) a’s contribution has not (completely) occurred in ¢ until time ¢.

For each of these cases we describe how to construct an element ¢ € (C x S)> with
ch>m

lt=pltand p €a =" f].

case (1):

We assume there is a time t' € [0, ¢] such that
(¥, 1) € [afo A (Yo e [0,t]::m & mi(¢).v.ch)

Inspection of the preemption operator’s definition immediately shows that, under these

circumstances, we can set gef Y to obtain (¢,t') € o chogn Bo; this, in turn, implies

o € [o " 3.

case (2):

Now we assume there is a time ¢’ € [0,¢] such that (¢,t') € [a]o holds. Furthermore, we
assume the existence of a time v € IN with

v=min{v" € [1,¢'] : m € m (¢).v".ch}

In this constellation we have (¢,v — 1) € [a]y~'. Thus, to find a ¢ that satisfies the
preemption operator’s definition in this case, we only have to append the preemption

handling according to § to ¢ | t. More precisely, we select an element ¢ € [3], and

construct ¢ as follows: def Y |t~ . For this ¢ we observe the validity of all of the

following;:

e v =min{v' € [1,t] :m € m ()0 .ch}
o (9077) o 1) € [[a]]g—l
e (' €N == (o, t) €[0))

349

B. Proofs

From this we immediately obtain that ¢ € [« chey 3] holds.
case (3):

Assume there is no ¢ € [0,¢] such that (¢,t") € [afo holds. Yet, because « is a liveness
property, we know that there is a ¢, € N, with (¢,t,) € [a]o.

This time, we construct ¢ by “forcing” occurrence of preemption and preemption handling
def

in the extension of ¥ | t. More precisely, we set ¢ = 1 |t~k where x is specified as
follows:
k11 €[] N <m>=m(k).0.ch N (Ve # ch::m(k).0.c = <>)

Then there is a time v € [1,¢ 4 1] such that all of the following hold:

e v =min{v > 0:m € m(p)v.ch}
® (SO?U - 1) € [[a]]g—l
o (' € Ny == (o, 1) € [F))

and thus we again obtain ¢ € [« chogn (] by the preemption operator’s definition.

In summary, we obtain
(Vip € (Cx §)®°,te N Fpea ™" Bl uvlt=plt)

which shows that [« chogn (] indeed is a liveness property.

q=[— X]:

If [a] is a liveness property and (X,«) € MSCR holds, then [— X] is also a liveness
property, because we have [— X| = [a] by definition of [— X] under these circumstances.

Hybrids

Operators involving guards, as well as the join operator yield combinations of safety and
liveness properties; the following proposition makes this statement more precise.

Proposition 55 (Hybrid properties) Let o, 3 € (MSC) be such that both [o] and [5]
are nontrivial liveness properties, and p € (GUARD). Then, in general, each of the fol-
lowing is neither a pure safety nor a pure liveness property:

[p: o]
[aTas]

[a ® 0] o

350

B.3. MSCs for Property-Oriented System Specifications

ProOOF For q € {[p: o], [aT4], [a ® B]}, such that the assumptions in the proposition
hold, we show that there are nontrivial safety and liveness properties gg, g, C (C' x S)*
with ¢ = gs Nqr.

qg=[p:al:

[p : @] is the intersection of the nontrivial safety property qo & {o e (Cx8)®:m(p)0e
[p]}, and the nontrivial liveness property [a]:

[p:a] =qn[a]

To see that qq is, indeed, a safety property, we observe:
¥ € prefc.qo
= (* definition of prefc *)
(VteN:(Fpe (CxS™®peqh|t=yplt)
= (* definition of gy *)
(VteN: (Fpe (Cx8)®:mlp)oep]Avlt=plt)
= (xselect t =0 %)
mo(10).0 € [p]
= (* definition of gy *)

Y€ qo

q= [[OéT<p>ﬂ1

We observe the result for the special case « & chm. To this end, we consider a predicate

p that holds precisely if at least n € IN copies of message ch>m € (MSG) have occurred,
and examine the property defined by the MSC term ch>ml.,.. We observe the validity of

[cheml o] = ¢ N go

where we define ¢; and ¢ as follows:

@ E Y e(Cx9): (e Nz @)t €p] = #({m}@m(¥).ch) > n)}

¢ & (v e [chomlge]}

Clearly, ¢, is a nontrivial safety property, and ¢, is a nontrivial liveness property. Even for
p = true and certain a € (MSC) the property [af], which equals [aT <], is neither
a pure safety, nor a pure liveness property. To see this, we consider the predicate p’ that
holds precisely if at most n € IN copies of the message chi>m have occurred. For this choice

351

B. Proofs

of p’ we study the property defined by the MSC ((p’ : ch>m) | ch’'>m/)T . Clearly, we
have

[[((p/ ch>m) | eh'>m')T] = 43 N qa

where we define ¢3 and ¢4 as follows:

def

g3 = {¢ € (Cx8)®: (vt eN::#({m}@m(¢).ch) < n)}
(Y e [(chom | ch'bm') o]}

g3 is a nontrivial safety property, and ¢4 is a nontrivial liveness property. Thus,

[((p": chem) | ch'e>m')] <]

is a hybrid property.

= [0 ® 8]
Here, the safety part of the join semantics comes from the requirement that no redundant

message may occur during the time interval covered by a and 3. Thus, we obtain the
validity of

[® B] =¢q5Mgs
where we define g5 and ¢g as :

def

{ € (Cx8)*

(3t € N <w> [efo v (¢,1) € [5]o :

(VX € (msgs.a Nmsgs.B)*, 0 € (C x §)®, ch e C,t' €[0,{]NN ::
t'.c
[

(X #<)A(r (A) h=m().t'.ch\ X))
= (V" € Nz (¢,1") & [afo A (¢, 1") € [Blo)))
and

def

g = {¢ € (Cx8)*: (I, ts € Nog it (1h,11) € [afo A (¥, 12) € [Blo)}

To see that g5 is a safety property we assume that 1) ¢ g5 holds. Because both [a]
and [3] are liveness properties this can only happen if ¢ is redundant in a message in
msgs.aNmsgs. at some finite time point. No extension whatsoever of 1) beyond this time
point can remedy this.

ge is a liveness property due to the following derivation:

Y € prefc.gs
= (* definition of prefec *)

352

B.3. MSCs for Property-Oriented System Specifications

(VtelN:= (Fpe(Cx8)®:peqgAplt=plt)
= (* definition of gg *)
(Vt € N =)
(Jp € (C x S)>, ¢/ t" € Ny
(. t') € [elo A (0, t") € [Blo A Lt = @l 1))
< (* predicate calculus *)
(Vte N (Fp e (Cx 8t € Nui: (p,t') € [alo ALt =0 t))
AN (MteN: (Fpe (CxS)®te Ny (p,t")e[BloANy]t =¢lt))
< (* definitions of prefc, [a] and [5] *)
Y € prefe.a] N € prefe.[]
< (* [a] and [F] are liveness properties *)

true

Liveness Generators

The following proposition indicates that message occurrence and trigger composition gen-
erate liveness properties.

Proposition 56 (Liveness generators) Let o, 5 € (MSC), and ch>m € (MSG). Fur-
thermore, let [o] and [5] be arbitrary nontrivial properties. Then each of the following is
a liveness property:

[chem]
[or = 4] D

PrOOF For every q € {[ch>m], [a — (]}, and arbitrary a, € (MSC) such that o] and

[5] are nontrivial we show that (C' x S)* C prefc.q holds.

q = [ch>m]:
Y € prefe.[chem]
= (x definitions of prefc and [ch>m] *)
(Vte N (Fpe (Cx 9™t e Ny () € [chom]o Ayt =@|t))
= (x definition of [ch>m]y *)

(Vte N
(Fp € (C'x 8)=,t' € N ::
t' =min{v:v>0Am e m(p)v.ch} ANt =¢lt))

353

B. Proofs

< (xselect p = 1p |t~k with & € (C x S)® such that m € m;(k).1.ch holds *)

true

q = o — B

b € prefe.fo —]
= (* definition of prefc and a0 — (] *)

(VteN: Fpe (Cx8)®ieNy:(pi)efa— BloA]t=plt)
= (* definition of [a —] *)

(Vte N
(p € (C x 5)®,t € Ny =
(VA" o>t >t >0: A
(p,t") € [a]y = (3" 100 > " > 1" : (p,1) € [Blem)) Nb LT =@ 1))

< (xset o= (Y|t)~r for any (x,) € [B]is1 *)

true

354

B.4. From MSCs to Component Specifications
B.4. From MSCs to Component Specifications

Chapter 7 contains two major propositions. The first asserts that MSC specifications
are time guarded. The second gives a constructive criterion for determining the join-
consistency of normalized MSCs. We prove these results in Section B.4.1 and B.4.2, re-
spectively.

B.4.1. Time Guardedness Of MSCs

Proposition 57 (Time Guardedness of MSCs) Let o, € (MSC) be MSC terms,
—
and 1,0 C C sets of channels such that (I,0) is directed, and R, : (I UO) — B and

Rs : (1UO) — B are time guarded. Furthermore, let p € (GUARD), ch>m € (MSG),
and <[> € {<p>, <>, <m,m>} hold for m,n € N.,. Then each of the following interac-
tion interfaces (of the same signature as R, and Rg) is also time guarded: Rempty, Rany,
Rewoms Basps Bpas Rajps Ranps Rawp, Ratns B ooy Bt fa g o

Proor We give an extended proof sketch. Rempty and Rany are trivially time guarded,
because empty and any contain no interaction whatsoever under the closed world seman-
tics. Repsm is time guarded, because each element of [ch>m]o cw contains precisely one
message occurrence with a delay of at least one time unit:

(p,t) € [chom]o = (Ft € N it =min{t' € N: ¢ > 0Am(p).t'.ch})

The delay becomes important in connection with sequential composition. Consider an
element of the semantics of the sequential composition of o and f: (¢,t) € [a; BJo.ow.
We know that there is a ¢’ € N, such that both (¢, ") € [a]o and (p,t) € [B]y hold. Recall
that for « #, empty and § #, empty we have t' > 0 and ¢t > t. Moreover, the first
message contributed by [to ¢ occurs at least one time unit later than the last message
« has contributed, due to the above observation for message occurrence. This explains
the time guardedness of sequential composition. For the alternative operator we observe
Ru 3.2 = Ro.xV Rg.x and the disjunction of two time guarded interaction interfaces is time
guarded. For guarded MSCs and the join of two MSCs the following two implications hold:
R,o.x = Ry.x, Rygp.0 = (Ry.x A Rg.x); because R, and R are both time guarded, and
conjunction preserves time guardedness, we obtain that also guarded MSCs and the join of
two MSCs are time guarded. R, . g is time guarded, because there is no mandatory order
between messages contributed individually by a and 3, but the required order (induced by
the time guardedness of R, and Rg) is maintained; the reason is that we can extract a’s
and (3’s contributions from the semantics of @ ~ 3 independently. The loop constructs all

reduce to sequential composition; therefore R,;_,_ is time guarded if R, is. Ra”ﬂ’” 5 is time

guarded, because it either represents a alone (if ch>m does not occur during the behavior
corresponding to «), or it represents prefixes of a’s behavior, sequentially composed with
the behaviors of 3. In the latter case, the delay of at least one time unit, introduced by

355

B. Proofs

message occurrence in 3, establishes the time guardedness of preemption. A similar line
of thought shows that R.q,,, is time guarded. Finally, R, . g is time guarded, because
there is at least one time unit of delay between the occurrence of the last message of the
trigger, and the first message of the triggered MSC. m

B.4.2. Join Consistency

Proposition 58 (Join Consistency) Let a and [be normalized MSCs. « and (3 are
consistent with respect to join if and only if o and (B are join-consistent with respect to
every component appearing in o and (3. o

Proor Without loss of generality we assume that the normalized MSCs « and 3 contain
precisely one component axis labeled F'. Moreover, we assume that s§ and sg are the start
guards of a and (3, respectively, and that s and sg are the corresponding end guards. Let

A, and Ag be the automata obtained from « and 3 by application of the transformation
procedure. We reduce the claim of the proposition to the following two proof obligations:

1. Ja ® Blo#0 = (s3,s7) is reachable in d4,54,,

2. (s%,57) is reachable in Oapway = o ® Blo#0

We now discharge each of these proof obligations, in turn.

[@ Blo#0 = (s%,55) is reachable in OAamAy:

Assume ¢ € o @] holds for some ¢ € (C' x S)>°. This implies, in particular, that there
exist t; € IN and ¢y € N, such that (¢,t1) € [a]o and (¢, t2) € [B]o. This, in turn, implies
the existence of ¢, " € (C' x)™ such that both (¢',t1) € [a]o.cw and (¢”,t2) € [Blo.ow
hold. The step from ¢ to ¢’ involves, for instance, dropping all message occurrences outside
the set msgs.a, as well as all redundant messages from the set msgs.c.. We obtain ¢” from
¢ in the same way, now considering the messages outside and inside msgs.(, respectively.

Assume that (s%,s5) is not reachable from (s%,s5) in 04, ¢ A,- This implies the existence

of a state (s, s”) € Sa, x Sa, with (s*, s%) # (s7, s7), such that (s*, s7) is reachable from
(&, s5) but no other state is reachable from (s®, s7). Because a and 3 are normalized, 4,
and 04, connect si and sg with s and sg, respectively, in a “linear” way, i.e. there are
neither explicit loops, nor e-transitions in the automata A, and Az. Hence, in the cross
product A? ® AﬁA ;L‘he reachability of (5%, s5) from (s*, s7) can only fail if there is a message
ch>m € (14 N I177) such that

(s sﬂ) & (0a,(s%, chbm,e),éAﬁ(sﬂ, ch>m, €))

n’n

356

B.4. From MSCs to Component Specifications

holds, or there exists a message ch>m € (Of”‘ noM) such that

(s, sh) & (04, (5% €, ch>m), 04,(s”, €, chm))

nTn

n» n

holds for all (s%,s5) € Sa, % Sa,.

This, however, means that we cannot construct an execution ¢ € (é x S)* such that both
¢ € [A,] and ¢ € [Ag] hold. This contradicts our observation above that there exist
¢ € (C x 8)® and times t1,t, € N with (¢, ;) € [a]o.cw and (¢',t2) € [B]o.cw, because
by construction of A, and Az we easily obtain the validity of ¢ € [A,] and ¢’ € [Ag].

This shows that [o ®] # () implies that (s, s5) is reachable from (s§, s5) in 64, Ay

(53, s5) is reachable in daupay, = [a ® Blo#0:

Assume that (s, s is reachable from (s%, s5) in 0A,04,- Pick an element ¢ € [A, ® Ag]

with mo(@)|#.0 = (s¢,s0) and ty = min{t' € N : my(@)|pt’ = (53, 52)}. We show this
implies the validity of (p,t7) € [@]o.

Assume the opposite, i.e. (¢, tr) € [a®(]o. This can happen if either of the outer conjuncts
of the join operator’s semantics yields false. The first one requires that there are times
t1,to € IN such that both (p,t;) € [a]o and (¢, t2) € [B]o hold. This, however, cannot be
false by construction of d4,54,. We have, in particular, ¢ € [A, ® Ag] = (¢ € [A]J A €
[As]) where ¢ equals ¢ up to the restriction of the state label pairs from Sy, x S4, to
their first and second component, respectively. Because ¢ € [A,] = (4,t1) € [afo for
some t; € N and ¢ € [Ag] = (&, 1t2) € [F]o for some ty € IN we obtain the validity of the
first conjunct of the join operator’s definition.

Therefore, if we assume (p,tr) € [@ (]o, the other conjunct must be false. Hence, there
isa € (Cx8)® atime ty € N, and an element ch>m € msgs.c N msgs.3, such that
both

(Vt e Nt #£ty: .t =p.t)
and
”Lp.to.Ch = <> A gD.to.Ch = <m>

hold, with (¢,t]) € [a]o or (¢, ty) € [G]o for some ¢, t, € IN.

However, this implies that ¢ is then not an element of the closed world semantics of either
aor 3, ie ¢ & [afo.cw or ¢ & [Blo.cw holds. This contradicts our observation that
¢ € [Aa] and ¢ € [Ag] holds, because we have [A,] C [a]cw and [As] C [B]lew-

Thus, we have established that if (s, s5) is reachable from (s%, s5) in dA.@4,, then [a @ 3]
is nonempty. [

357

B. Proofs

358

Bibliography

[AHO3]

[AHPY6]

[ARS9S]

[ASS5]

[ASUSS]

[ATS99]

[BALY6]

[BCYG]

Luca Aceto and Mathew Hennessy. Towards Action-Refinement in Process
Algebras. Information and Computation, 103(2):204-269, 1993.

Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An Analyzer for Message
Sequence Charts. Software — Concepts and Tools, 17:70 — 77, 1996.

Camille Ben Achour, Colette Rolland, and Carine Souveyet. A Proposal for
Improving The Quality of the Organization of Scenarios Collections. Technical
Report 98-24, RWTH Aachen, 1998. CREWS Report Series (obtained via
http://sunsite.informatik.rwth-aachen.de/CREWS).

Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Pro-
cessing Letters, 21(4):181-185, 1985.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilerbau, volume I.
Addison-Wesley, 1988.

Camille Ben Achour, Mustapha Tawbi, and Carine Souveyet. Bridging the
Gap Between Users and Requirements Engineering: The Scenario-Based Ap-
proach. Technical Report 99-07, RWTH Aachen, 1999. CREWS Report Series
(obtained via http://sunsite.informatik.rwth-aachen.de/CREWS).

Hanéne Ben-Abdallah and Stefan Leue. Architecture of a Requirements and
Design Tool Based on Message Sequence Charts. Technical Report 96-13,
University of Waterloo, 1996.

Raymond J. A. Buhr and Ron S. Casselman. Use CASE Maps for Object-
Oriented Systems. Prentice Hall, 1996.

359

Bibliography

[BDD+92]

[Ber97]

[BGSS]

[BGH*97]

[BGH*98]

[BGK9Y]

[BHKS97a)

[BHKSO7D]

[BHS99)

[BKOS]

360

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas F.
Gritzner, and Rainer Weber. The Design of Distributed Systems. An In-
troduction to FOCUS — Revised Version — Technical Report TUM-19202-2,
Technische Universitat Miinchen, 1992.

Dorothea Beringer. Modelling Global Behaviour With Scenarios In Object-
Oriented Analysis. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
1997.

Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming
Language: Design, Semantics, Implementation. Technical Report 842, INRIA,
1988.

Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Kriiger,
Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and
Complete Object Interaction Descriptions. In H. Kilov, B. Rumpe, and I. Sim-
monds, editors, Proceedings OOPSLA’97 Workshop on Object-oriented Behav-
toral Semantics, TUM-19737, 1997.

Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Kriiger,
Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and
complete object interaction descriptions. Computer Standards & Interfaces,
19:335 — 345, 1998.

Manfred Broy, Radu Grosu, and Ingolf Kriiger. Verfahren zum Automatischen
Erzeugen eines Programms. Deutsches Patent, Aktenzeichen 198 37 871, 1999.
(German Patent).

Manfred Broy, Christoph Hofmann, Ingolf Kriiger, and Monika Schmidt. A
graphical description technique for communication in software architectures.
Technical Report TUM-19705, Technische Universitat Miinchen, 1997.

Manfred Broy, Christoph Hofmann, Ingolf Kriiger, and Monika Schmidt. Us-
ing Extended Event Traces to Describe Communication in Software Architec-
tures. In Proceedings of the Asia-Pacific Software Engineering Conference and
International Computer Science Conference. IEEE Computer Society, 1997.

Manfred Broy, Franz Huber, and Bernhard Schatz. AutoFocus — Ein Werk-
zeugprototyp zur Entwicklung eingebetteter Systeme. Informatik Forschung
und Entwicklung, 14(3):121-134, 1999.

Manfred Broy and Ingolf Kriiger. Interaction Interfaces — Towards a scientific
foundation of a methodological usage of Message Sequence Charts. In J. Sta-
ples, M. G. Hinchey, and Shaoying Liu, editors, Formal Engineering Methods
(ICFEM’98), pages 2—-15. IEEE Computer Society, 1998.

Bibliography

[BMR*96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. A System of Patterns. Pattern-Oriented Software Architecture.
Wiley, 1996.

[Boe8§| Barry W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, pages 61 — 72, May 1988.

[Boo94| Grady Booch. Object-Oriented Analysis and Design. With Applications.
Addison-Wesley, 2nd edition, 1994.

[BP99] Max Breitling and Jan Philipps. Black Box Views of State Machines. Technical
Report TUM-19916, Technische Universitat Miinchen, 1999.

[Bre99| Ruth Breu. Konzepte, Techniken und Methodik des objektorientierten Ent-
wurfs — Fin integrierter Ansatz. Technische Universitat Miinchen, 1999. Ha-
bilitationsschrift. (in German).

[Bro&7] Manfred Broy. Some algebraic and functional hocuspocus with ABRA-
CADABRA. Technical Report MIP-8717, Fakultat fiir Mathematik und Infor-
matik, Universitat Passau, 1987. also in: Information and Software Technology
32, 1990, pp. 686-696.

[Bro93] Manfred Broy. Interaction Refinement-The Easy Way. In Manfred Broy,
editor, Program Design Calculi, volume 118 of NATO ASI Series F. Springer,
1993.

[Bro95] Manfred Broy. A Functional Rephrasing of the Assumption/Commitment
Specification Style. Technical Report TUM-19417, Technische Universitat
Miinchen, 1995.

[Bro97] Manfred Broy. The Specification of System Components by State Transition
Diagrams. Technical Report TUM-19729, Technische Universitat Miinchen,
1997.

[Bro9g| Manfred Broy. On the Meaning of Message Sequence Charts (Key Note). In
Lahav Y. et al., editors, Proceedings of the 1st Workshop of the SDL Forum
Society Workshop on SDL € MSC, volume 1, pages 13-34, 1998.

[Bro99a| Manfred Broy. A Logical Basis for Modular Systems Engineering. In Manfred
Broy and Ralf Steinbriiggen, editors, Calculational System Design, volume 173
of NATO Science Series F, pages 101-130. IOS Press, 1999.

[Bro99b] Manfred Broy. The Essence of Message Sequence Charts. (in preparation),
1999.

[BS00] Manfred Broy and Ketil Stglen. Focus on System Development. Springer,
2000. (to appear).

361

Bibliography

[CC92]

[CDY4]

[CMSS]

[CMPY1]

[DDHT72)

[DH99)]

[Dij68]

[Dou9g]

[DS90]

[DW9g]

[EHS98]

[Eme90]

[Fac95]

362

Patrick Cousot and Radhia Cousot. Inductive Definitions, Semantics and Ab-
stract Interpretation. In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 83-94, Albuquerque, New Mexico, January 1992. ACM Press, New York,
NY.

Steve Cook and John Daniels. Designing Object Systems. Object-Oriented
Modelling with Syntropy. Prentice Hall, 1994.

K. Mani Chandy and Jayadev Misra. Parallel Program Design. A Foundation.
Addison Wesley, 1988.

Edward Chang, Zohar Manna, and Amir Pnueli. The Safety-Progress Classi-
fication. In F.L. Bauer, W. Brauer, and H. Schwichtenberg, editors, In Logic
and Algebra of Specifications, NATO Advanced Science Institutes Series, pages
143-202. Springer, 1991.

Ole-Johan Dahl, Edsger W. Dijkstra, and C.A.R. Hoare. Structured Program-
ming, chapter “Notes on Structured Programming” by Edsger W. Dijkstra,
pages 1-82. Academic Press, 1972.

Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. In FMOODS’99 IFIP TC6/WG6.1 Third International Conference
on Formal Methods for Open Object-Based Distributed Systems, 1999.

Edsger W. Dijkstra. Selected Writings on Computing, chapter EWD227. Step-
wise Program Construction, pages 1-14. Springer, 1968.

Bruce Powell Douglass. Real-Time UML. Developing Efficient Objects for
Embedded Systems. Addison Wesley, 1998.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Springer, 1990.

Desmond D’Souza and Alan Cameron Wills. Objects, Components, and Frame-
works with UML—- The Catalysis Approach. Addison Wesley, 1998.

Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL. Formal Object-
oriented Language for Communicating Systems. Prentice Hall, 1998.

E. Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B, pages 995-1072.
Elsevier, 1990.

Christian Facchi. Methodik zur Formalen Spezifikation des 1SO/OSI Schicht-
enmodells. PhD thesis, Technische Universitdt Miinchen, 1995. (in German).

[Fei99]

[Fra86]

[FS97]

[GHIVO5]

[GHNO3]

[GKRBYG6]

[GKS99a]

[GKSO9b)]

[GKSO00]

[GKSH99

[GR9S]

(GRG93]

Bibliography

Loe M. G. Feijs. Generating FSMs from interworkings. Distributed Computing,
12:31-40, 1999.

Nissim Francez. Fairness. Texts and monographs in computer science.
Springer, 1986.

Martin Fowler and Kendall Scott. UML Distilled. Applying the Standard Object
Modeling Language. Addison Wesley, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generation
with Test Purpose Specification by MSCs. In O. Feergemand and A. Sarma,
editors, SDL’93 — Using Objects, Proceedings of the Sixth SDL Forum, 1993.

Radu Grosu, Cornel Klein, Bernhard Rumpe, and Manfred Broy. State
Transition Diagrams. Technical Report TUM-19630, Technische Universitat
Miinchen, 1996.

Radu Grosu, Ingolf Kriiger, and Thomas Stauner. Hybrid Sequence Charts.
Technical Report TUM-19914, Technische Universitat Miinchen, 1999.

Radu Grosu, Ingolf Kriiger, and Thomas Stauner. Requirements Specification
of an Automotive System with Hybrid Sequence Charts. In WORDS’99F,
Fifth International Workshop on Object-oriented Real-time Dependable Sys-
tems. IEEE, 1999.

Radu Grosu, Ingolf Kriiger, and Thomas Stauner. Hybrid Sequence Charts. In
Proc. of the 3rd IEEFE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2000). IEEE, 2000.

Jens Grabowski, Beat Koch, Michael Schmitt, and Dieter Hogrefe. SDL and
MSC based test generation for distributed test architectures. In R. Dssouli,
G.V. Bochman, and Y. Lahav, editors, SDL’99. The Next Millenium, Proceed-
ings of the 9th SDL-Forum. Elsevier, June 1999.

Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Tech-
nical Report TUM-19533, Technische Universitat Miinchen, 1995.

Peter Graubmann, Ekkart Rudolph, and Jens Grabowski. Towards a Petri net
based semantics definition for Message Sequence Charts. In O. Feaergemand
and A. Sarma, editors, SDL’93 — Using Objects, Proceedings of the Sixth SDL
Forum, pages 179-190, 1993.

363

Bibliography

[Har87]

[Hau97]

[HK99]

[HMS+98]

[Hoa85]

[Hol95]

[Hol96]

[Hol97]

[HP9g)

[HSG+94]

[HSS96]

[HSSS96]

[HU90]

364

David Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231-274, 1987.

Markus Haubner. Transformation von MSCs in Temporallogische Formeln.
Master’s thesis, Technische Universitdt Miinchen, 1997. (in German).

David Harel and Hillel Kugler. Synthesizing Object Systems from LSC Spec-
ifications. (submitted), August 1999.

Franz Huber, Sascha Molterer, Bernhard Schétz, Oscar Slotosch, and Alexan-
der Vilbig. Traffic Lights - An AutoFocus Case Study. In 1998 International
Conference on Application of Concurrency to System Design, pp. 282-29.
[EEE Computer Society, 1998.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-
tional, 1985.

Gerard J. Holzmann. Formal Methods for Early Fault Detection. In
TACAS’95, volume 1135 of LNCS, pages 40 — 54. Springer, 1995.

Gerard J. Holzmann. Early Fault Detection Tools. Software — Concepts and
Tools, 17:63 — 69, 1996.

Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279 — 295, 1997.

David Harel and Michal Politi. Modeling Reactive Systems with Statecharts.
The STATEMATE approach. McGraw-Hill, 1998.

Pei Hsia, Jayarajan Samuel, Jerry Gao, David Kung, Yasufumi Toyoshima,
and Chris Chen. Formal Approach to Scenario Analysis. IEEE Software,
pages 33 — 41, March 1994.

Franz Huber, Bernhard Schétz, and Katharina Spies. AutoFocus — Ein
Werkzeugkonzept zur Beschreibung verteilter Systeme. In U. Herzog and
H. Hermanns, editors, Formale Beschreibungstechniken fur verteilte Systeme,
pages 165—-174. Universitdat Erlangen-Niirnberg, 1996. Published in: Arbeits-
berichte des Insituts fiir mathematische Maschinen und Datenverarbeitung,
Vol. 29, Nr. 9.

Franz Huber, Bernhard Schétz, Alexander Schmidt, and Katharina Spies. Aut-
ofocus — a tool for distributed systems specification. In B. Jonsson and J. Par-
row, editors, Proceedings FTRTFT’96 - Formal Techniques in Real-Time and
Fault-Tolerant Systems, P. 467-470. Springer Verlag, LNCS 1135, 1996.

John E. Hopcroft and Jeffrey D. Ullman. Einfihrung in die Automatentheorie,
Formale Sprachen und Komplezititstheorie. Addison-Wesley, 1990.

[HU99)

[ISO87]

[1T96]

[1T98]
[1T99]
[JBROY]

JCJ092]

[KGSBYY]

[K1e98]

[KMO3]

[KM99]

[KMST96]

[Kru99a|

[Krii99b]

Bibliography

Esfandiar Haghverdi and Hasan Ural. Submodule construction from concur-
rent system specifications. Information and Software Technology, 41:499-506,
1999.

[SO. Information Processing Systems — Open Systems Interconnection — ser-
vice conventions, 1987.

ITU-TS. Recommendation Z.120 : Message Sequence Chart (MSC). Geneva,
1996.

ITU-TS. Recommendation Z.120 : Annex B. Geneva, 1998.
ITU-TS. Recommendation Z.120 (11/99) : MSC 2000. Geneva, 1999.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering — A Use Case Driven Approach. Addi-
son Wesley, 1992.

Ingolf Kriiger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs to
Statecharts. In DIPES’98. Kluwer, 1999.

Cornel Klein. Anforderungsspezifikation durch Transitionssysteme und Szena-
rien. PhD thesis, Technische Universitdt Miinchen, 1998. (in German).

Kai Koskimies and Erkki Mékinen. Inferring State Machines From Trace
Diagrams. Technical Report A-1993-3, University of Tampere. Department of
Computer Science, July 1993.

Ekkart Kindler and Axel Martens. Szenarios: Lokale Kriterien fiir globale Ko-
rrektheit. In Katharina Spies and Bernhard Schéatz, editors, Formale Beschrei-
bungstechniken fir verteilte Systeme. FBT’99, 9. GI/ITG Fachgesprich, pages
113-122. Herbert Utz Verlag, June 1999.

Kai Koskimies, Tatu Mannisto, Tarja Systd, and Jyrki Tuomi. On the Role
of Scenarios in Object-Oriented Software Design. Technical Report A-1996-1,
University of Tampere. Department of Computer Science, January 1996.

Philippe Kruchten. The Rational Unified Processs. An Introduction. Addison
Wesley, 1999.

Ingolf Kriiger. Towards the Methodical Usage of Message Sequence Charts.
In Katharina Spies and Bernhard Schéatz, editors, Formale Beschreibungstech-
niken fiur verteilte Systeme. FBT’99, 9. GI/ITG Fachgesprich, pages 123-134.
Herbert Utz Verlag, June 1999.

365

Bibliography

[KSTM98] Kai Koskimies, Tarja Systé, Jyrki Tuomi, and Tatu Ménnisté. Automated

[KWOS]

[Lam77]

[Lam94]

[Lamosg]

[Lam99]

[Leu9s|

[LL95]

[LMROS]

[LT87]

[LT89]

[LV95]

366

Support for Modeling OO Software. I[EEE Software, pages 87 — 94, January—
February 1998.

Piotr Kosiuczenko and Martin Wirsing. Towards an Integration of Message
Sequence Charts and Timed Maude. In M.M. Tanik, J. Tauka, K. Itoh,
M. Goedicke, W. Rossak, H. Ehrig, and H. Kurfess, editors, 3rd World Con-
ference on Integrated Design and Process Technology, IDPT’98, pages 88-95,
Berlin, Austin: Society for Design and Process Science, 1998. (revised version
to appear in Journal of IDPT, 2000).

Leslie Lamport. Proving the Correctness of multiprocess programs. [EEE
Transactions on Software Engineering, TSE-3(2):125-143, 1977.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872 — 923, May 1994.

Leslie Lamport. Composition: A Way to Make Proofs Harder. In Willem-Paul
de Roever, Hans Langmaack, and Amir Pnueli, editors, Compositionality: The
Significant Difference, volume 1536 of LNCS, pages 402-423. Springer, 1998.

Leslie Lamport. Specifying Concurrent Systems with TLAT. In Manfred Broy
and Ralf Steinbriiggen, editors, Calculational System Design, volume 173 of
NATO Science Series F, pages 183-247. 10S Press, 1999.

Stefan Leue. Methods and Semantics for Telecommunications Systems Engi-
neering. PhD thesis, Universitat Bern, 1995.

Peter B. Ladkin and Stefan Leue. Interpreting Message Flow Graphs. Formal
Aspects of Computing, (5):473-509, 1995.

Stefan Leue, Lars Mehrmann, and Mohammad Rezai. Synthesizing ROOM
Models from Message Sequence Chart Specifications. Technical Report 98-06,
University of Waterloo, 1998.

Nancy Lynch and Mark Tuttle. Hierarchical Correctness Proof for Distributed
Algorithms. Technical Report MIT/LCS/TR-387, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA., 1987.

Nancy Lynch and Mark Tuttle. An Introduction to Input/Output automata.
CWI Quarterly, 2(3):219-246, 1989.

Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations — Part
I: Untimed Systems. Information and Computation, 121(3):214-233, 1995.

[LVI6]

[Lyn96|
[Mar92]

IMBS3]

IMC81]

[Mil80]

[M&199]

[MP95]

[MR94]

[MR96]

[M{ilog]

[INGH93]

[Pae97]

[Pan9o]

Bibliography

Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations —
Part II: Timing-Based Systems. Information and Computation, 128(1):1-25,
1996.

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Florence Maraninchi. Operational and Compositional Semantics of Syn-
chronous Automaton Compositions. In W.R. Cleaveland, editor, Proceedings
CONCUR’92, volume 630 of LNCS, pages 550-564. Springer, 1992.

Philip Merlin and Gregor von Bochman. On the construction of submodule
specifications and communication protocols. ACM Transactions on Program-
ming Languages and Systems, 5(1):1-25, 1983.

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEFE
Transactions on Software Engineering, 7:417-426, 1981.

Robin Milner. A Calculus of Communicating Systems. Number 92 in Lecture
Notes in Computer Science. Springer, 1980.

Bernhard Moéller. Algebraic Structures for Program Calculation. In Manfred
Broy and Ralf Steinbriiggen, editors, Calculational System Design, volume 173
of NATO Science Series F, pages 25-97. 10S Press, 1999.

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer, 1995.

Sjouke Mauw and Michel Adriaan Reniers. An Algebraic Semantics of Basic
Message Sequence Charts. The Computer Journal, 37(4), 1994.

Sjouke Mauw and Michel Adriaan Reniers. Refinement in Interworkings. In
U. Montanari and V. Sassone, editors, CONCUR 96, volume 1119 of LNCS,
pages 671-686. Springer, 1996.

Olaf Miiller. A Verification Environment for 1/0 Automata Based on Formal-
i1zed Meta-Theory. PhD thesis, Technische Universitat Miinchen, 1998.

Robert Nahm, Jens Grabowski, and Dieter Hogrefe. Test Case Generation
for Temporal Properties. Technical Report IAM-93-013, University of Berne,
Institute for Informatics, Berne, Switzerland, June 1993.

Barbara Paech. A Framework for Interaction Description with Roles. Technical
Report TUM-19731, Technische Universitat Miinchen, June 1997.

Paritosh K. Pandya. Some comments on the assumption-commitment frame-
work for compositional verification of distributed programs. In Proc. REX
Workshop on Stepwise Refinement of Distributed Systems, number 430 in Lec-
ture Notes in Computer Science, pages 622640, 1990.

367

Bibliography

[Pras6]

[RA9S]

[Rat97]

[RBK99a)

[RBK99b)]

[RBP+91]

[Rei82]

[Rem92]

[Ren99|

[RGGY]

[RIBYY]

[RKWO5]

[Roy87]

368

Vaughan R. Pratt. Modeling concurrency with partial orders. International
Journal of Parallel Programming, 15(1):33-71, 1986.

Colette Rolland and Camille Ben Achour. Guiding the Construction of
Textual Use Case Specifications. Technical Report 98-1, RWTH Aachen,
1998. CREWS Report Series (obtained via http://sunsite.informatik.
rwth-aachen.de/CREWS).

Unified Modeling Language, Version 1.1. Rational Software Corporation, 1997.

Bernhard Rumpe, Ruth Breu, and Ingolf Kriiger. Applied Software Engineer-
ing Principles for UML. Tutorial at the TOOLS Europe’99, 29th International
Conference, June 1999.

Bernhard Rumpe, Ruth Breu, and Ingolf Kriiger. Applied Software Engineer-
ing Principles for UML. Tutorial at the TOOLS Pacific’99, 32nd International
Conference, November 1999.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modelling and Design. Prentice-Hall, 1991.

Wolfgang Reisig. Petri-Netze — eine Einfihrung. Springer, 1982.

Martin Rem. A Personal Perspective of the Alpern-Schneider Characterization
of Safety and Liveness. In Jayadev Misra, editor, Beauty is our Business, pages
365-372. Springer, 1992.

Michel Adriaan Reniers. Message Sequence Chart. Syntax and Semantics. PhD
thesis, Eindhoven University of Technology, 1999.

Ekkart Rudolph, Jens Grabowski, and Peter Graubmann. Towards a Harmo-
nization of UML-Sequence Diagrams and MSC. In R. Dssouli, G.V. Bochman,
and Y. Lahav, editors, SDL’99. The Next Millenium, Proceedings of the 9th
SDL-Forum. Elsevier, June 1999.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

Bjorn Regnell, Kristofer Kimbler, and Anders Wesslén. Improving the Use
Case Driven Approach to Requirements Engineering. In Proceedings Require-
ments Engineering. IEEE, 1995.

W.W. Royce. Managing the Development of Large Software Systems. In Proc.
ICSE, pages 328 — 339. IEEE, 1987. reprinted from [EEE WESCON, 1970,

pp-1-09.

[Rum96|

[Sch9g|

[SDO3]

[SGWO4]

[Sha9g|

[SHB96]

[SKGHOS]

[SRS99]

[Ste97]

[Tho90]

[UBE99)]

V7]

[vdB94]

Bibliography

Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. PhD thesis, TU Miinchen, 1996. (in German).

Peter Scholz. Design of Reactive Systems and their Distributed Implementation
with Statecharts. PhD thesis, Technische Universitat Miinchen, 1998.

Rainer Schlor and Werner Damm. Specification and verification of system
level hardware designs using timing diagrams. In Proc. Furopean Conference
on Design Automation, pages 518-524, 1993.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. Wiley, 1994.

Natarajan Shankar. Lazy Compositional Verification. In Willem-Paul
de Roever, Hans Langmaack, and Amir Pnueli, editors, Compositionality: The
Significant Difference, volume 1536 of LNCS, pages 541-564. Springer, 1998.

Bernhard Schatz, Heinrich Humann, and Manfred Broy. Graphical Develop-
ment of Consistent System Specifications. In J. Woodcock and M.-C. Gaudel,
editors, FMFE’96:Industrial Benefit and Advances in Formal Methods, volume
1051 of LNCS. Springer, 1996.

Michael Schmitt, Beat Koch, Jens Grabowski, and Dieter Hogrefe. Autolink
— Putting formal test methods into practice. Schriftenreihe der Institute fiir
Mathematik /Informatik A-98-04, Medical University of Liibeck, April 1998.

Thomas Stauner, Bernhard Rumpe, and Peter Scholz. Hybrid System Model.
Technical Report TUM-19903, Technische Universitat Miinchen, 1999.

Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34:491—
541, 1997.

Wolfgang Thomas. Automata on Infinite Objects. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133-191. Elsevier,
1990.

uBET Homepage, 1999. http://cm.bell-1labs.com/cm/cs/what/ubet.

Entwicklungsstandard fiir IT-Systeme des Bundes, Vorgehensmodell. Allge-
meiner Umdruck Nr. 250/1. Juni 1997, BWB IT I5.

Michael von der Beeck. A Comparison of Statecharts Variants. In H. Lang-
maack, W.-P. de Roever, and J. Vytopil, editors, Proc. Formal Techniques in
Real-Time and Fault-Tolearnt Systems (FTRTFT’94), volume 863 of LNCS,
pages 128-148. Springer, 1994.

369

Bibliography

[vG96]

[Win93]

[Wir71]

[Wirs6]
[WK96]

[XS98]

370

Robert J.H. van Glabbeek. Comparative concurrency semantics and refine-
ment of actions. CWI Tracts, 1996.

Glynn Winskel. The Formal Semantics of Programming Languages: An In-
troduction. The MIT Press, 1993.

Niklaus Wirth. Program Development by Stepwise Refinement. Communica-

tion of the ACM, 14(4), 1971.
Niklaus Wirth. Compilerbau. Teubner, 1986.

Martin Wirsing and Alexander Knapp. A Formal Approach to Object-Oriented
Software Engineering. In José Meseguer, editor, Proc. 1st Int. Wsh. Rewriting
Logic and Its Applications, volume 4 of Electr. Notes Theo. Comp. Sci., pages
321-359, 1996. (revised version).

Qiwen Xu and Mohalik Swarup. Compositional Reasoning Using the Assump-
tion-Commitment Paradigm. In Willem-Paul de Roever, Hans Langmaack,
and Amir Pnueli, editors, Compositionality: The Significant Difference, vol-
ume 1536 of LNCS, pages 565-583. Springer, 1998.

