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Abstract

This thesis presents the first formalization of the Owicki-Gries method
and its compositional version, the rely-guarantee method, in a theorem
prover. These methods are widely used for correctness proofs of parallel im-
perative programs with shared variables. We define syntax, semantics and
proof rules in Isabelle/HOL, which is the instantiation of higher-order logic
in the theorem prover Isabelle. The proof rules also provide for programs pa-
rameterized in the number of parallel components. Their correctness w.r.t.
the semantics is proven mechanically and the completeness proofs for both
methods are extended to the new case of parameterized programs. For the
automatic generation of verification conditions we define a tactic based on
the proof rules. Using this tactic we verify several non-trivial examples for
parameterized and non-parameterized programs.





Zusammenfassung

In dieser Arbeit wird die Owicki-Gries Methode, und ihre komposi-
tionelle Version, die Rely-Guarantee Methode, zur Verifikation paralleler
imperativer Programme mit gemeinsamen Variablen zum ersten Mal in
einem Theorembeweiser formalisiert. Syntax, Semantik und Beweisregeln
werden in höherstufiger Logik definiert und die Korrektheit des Beweissys-
tems bezüglich der Semantik wird bewiesen. Zahlreiche Beispiele, darunter
parametrisierte parallele Programme, werden mit Hilfe einer Taktik für die
systematische Generierung der Verifikations-Bedingungen verifiziert. Außer-
dem wird die Vollständigkeit der formalisierten Systeme für den Fall para-
metrisierter paralleler Programme bewiesen.
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Chapter 1

Introduction

1.1 Motivation

Parallel programs find applications in many different areas. They offer the
possibility of computing data much faster than sequential programs, which is
important in applications such as weather forecasting, computer visualized
brain surgery, etc. They also support real-time applications where a program
(alarm system) cannot be halted to let another program run (deallocation
of computer memory), or, they simply need to be synchronized (scheduling
resources). However, even small parallel programs are difficult to design, and
errors are more often the rule than the exception. Failure of such programs
can lead to minor disruptions in daily life, like the loss of a printing job, or
to endangering human lives.

Due to their complexity, parallel programs should always be proved cor-
rect. This means proving formally that a program performs its intended task
for any possible input. This is not easy. Some techniques are based on test-
ing or reasoning about the behavior of possible executions. These techniques
help to find bugs and improve efficiency, but do not provide a reliable proof
of correctness. In general, it is impossible to verify designs exhaustively by
such methods, simply because the number of possible executions is too large
(or even infinite). Especially for programs used in safety-critical situations,
we need formal verification methods to prove that a program always satisfies
its specification.

The first formal method for verifying parallel programs was invented
already in 1975 by Susan Owicki and David Gries [Owicki, 1975, Owicki and
Gries, 1976a, Owicki and Gries, 1976b] and Leslie Lamport [Lamport, 1977].
It was the starting point for further developments like the compositional
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rely-guarantee method for shared-variable parallelism [Jones, 1981, Jones,
1983] and the assumption-commitment method for synchronous message
passing [Misra and Chandy, 1981, Apt et al., 1980, Levin and Gries, 1981].

This dissertation presents the first formalization of the Owicki-Gries and
the rely-guarantee methods for correctness proofs of imperative parallel pro-
grams with shared variables in a theorem prover. The formalizations have
been successfully applied to the verification of several (parameterized and
non-parameterized) programs like mutual exclusion and garbage collection
algorithms.

1.2 Shared-Variable Parallel Programs

By parallel programs we understand a collection of sequential processes
which run concurrently and cooperate in accomplishing some task. This
cooperation is possible through the sharing of objects. Depending on the
nature of these shared objects we distinguish between shared-variable and
message-passing parallelism. In the former, the different processes have ac-
cess to shared memory cells. The latter is used when each process has its
own local memory and communicates with other processes by sending mes-
sages on shared channels. The present work deals with parallel programs
that communicate via shared variables only.

1.3 Hoare Logic for Parallel Programs

Verification means proving formally that a program satisfies its specification,
which should first be written in some logical language. The approach used in
this work is based on the axiomatic method initiated by Hoare for sequential
programs and extended later by various researchers to parallel programs.
Hoare-like techniques are based on proving that a given program together
with its specification can be derived from a system of axioms and inference
rules which are syntax oriented, i.e. the proof is carried out on the program’s
text [Hoare, 1969, Apt, 1981b].

The Owicki-Gries proof system represents the first and probably the sim-
plest extension of Hoare logic to parallel programs with shared-variable con-
currency. It provides a methodology for breaking down correctness proofs
into simpler pieces. First, the sequential components of the program are
annotated with suitable assertions (resulting in so-called proof outlines).
Then, the proof reduces to showing that the annotation of each compo-
nent is correct, and that each assertion of an annotation is invariant under
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the execution of the actions of the other components (so-called interference
freedom of proof outlines).

The main drawback of the Owicki-Gries method is that it is not compo-
sitional. To perform the interference-freedom tests for some component we
require information about the implementation of all other components. A
compositional proof method, however, should be able to infer the specifica-
tion of the system from the specification of the components without knowing
anything about their internal representation.

The idea leading to a compositional proof method for parallel programs
is to enrich the specification of each component with additional informa-
tion about the interaction with the environment during execution. Such a
proof method for shared-variable concurrency was first proposed by Cliff
Jones [Jones, 1981, Jones, 1983]. A complete version of this system was
later designed by [Stølen, 1990].

Jones extended the traditional Hoare pre- and postcondition specification
of sequential programs with two new predicates: a rely condition specifying
what the component expects from the environment, and a guarantee condi-
tion expressing the task performed by that component, and how this task
may influence the environment. These two conditions can be formulated
independently of the actual implementation of the components. Then, the
verification process consists of proving certain relations among the rely and
guarantee conditions of all components (and possibly of an overall environ-
ment). As a result, the proof rule for parallel composition can be formulated
in terms of the specifications without any need for additional information
about the implementation of the components, i.e. the resulting proof method
is compositional.

The main improvements of the rely-guarantee method over Owicki-Gries
are:

1. The complexity of the verification process grows linearly with the num-
ber of components, whereas in the Owicki-Gries method the number
of proof obligations grows exponentially.

2. It allows verification of open systems, i.e. systems whose interaction
with the environment can be specified without knowing the precise im-
plementation of the environment. This makes the method suitable for
top-down design. In contrast, the Owicki-Gries method only works for
verifying closed systems, where the environment is fully characterized
in terms of concretely known processes.

Although the rely-guarantee method represents an important step forward in
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the methodology of program verification, it does not make the Owicki-Gries
method obsolete. In general, when it comes to verifying an algorithm, the
main concern is finding a proof. In this sense, non-compositional methods
are sometimes more successful than compositional ones. This is the case for
systems based on shared-variable concurrency like, for example, mutual ex-
clusion algorithms, where processes require reading from and writing to the
same shared variable. In general, programs defined using invariants which
cannot be easily expressed as a conjunction of local predicates [Chandy and
Misra, 1984, Francez and Rodeh, 1980] are difficult for compositional verifi-
cation methods. There are very few examples of non-trivial shared-variable
programs which have been verified using compositional methods [Stølen,
1990, de Boer et al., 1997]. In contrast, non-compositional methods have
been quite successful [Gries, 1997, Prensa Nieto and Esparza, 2000, Feijen
and van Gasteren, 1999] (see [de Roever et al., 2000] for a discussion on this
topic).

Since proving the correctness of parallel programs is indeed difficult,
each particular program should be tackled with the most suitable tech-
nique. Therefore, it is advantageous to have both compositional and non-
compositional systems available.

1.4 Parameterized Parallel Programs

Parameterized parallel programs have become a very important subject of
research in the area of computer-aided verification. These are programs
which are defined generically, depending in a regular way on a parameter
that represents the number of parallel processes. Many interesting programs
are of this form, for example, mutual exclusion algorithms for an arbitrary
number of processes wanting to use a common resource, or, a garbage col-
lector that interacts with an arbitrary number of user processes. The goal is
to verify such systems uniformly, i.e. prove by a single proof that the system
is correct for any value of the parameter.

The Hoare-like methods for parallel programs found in the literature
present systems of rules where the rule for the parallel constructor allows
us to derive the composition of some fixed number of processes. In most
cases, the parallel constructor is a binary operator [Xu et al., 1997, Stirling,
1988] and programs with more than two processes have to be verified by
repeatedly using the rule. Other systems present the parallel composition
rule for a fixed number n of known processes [Owicki and Gries, 1976a, Apt,
1981a].
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In this thesis, we present a generalization of the parallel composition rule
so that parameterized programs can be directly verified in the system. This
is achieved by modeling the parallel constructor such that its argument is
a list of component programs. Then, the length of the list can be fixed or
left as a parameter. With the resulting system, we can derive parameterized
parallel programs in one go, i.e. by a single derivation. Several examples
have been verified using both the compositional and the non-compositional
methods formalized in this thesis. In these examples, the assertions used to
obtain a valid derivation in the system are, like the program instructions,
parameterized in the number of components and in the particular index of
each component.

This led us to the question whether it is always possible to find such
assertions, i.e. whether the systems are complete for verifying parameterized
parallel programs. Completeness results for the standard systems, where
parallel programs have a fixed number of components, have already been
presented in [Owicki, 1975, Apt, 1981a] for the Owicki-Gries system and
in [Xu et al., 1997] for the rely-guarantee system. These results ensure that
for any correct parallel program with a fixed number of components we
can find a derivation in the respective system. However, they do not solve
the problem for the parameterized case. In this thesis, we present proofs
of completeness of the systems for parameterized programs as a natural
extension of the known completeness results. These proofs have been carried
out in an informal pencil-and-paper style, i.e. not formalized in the theorem
prover.

1.5 Need for Machine-Supported Verification

Whichever method we select for an application, the main difficulty lies in
finding assertions that formally express the conditions of the specification
and yield a derivation from the corresponding system of rules.

For the Owicki-Gries method we need to find interference free interme-
diate assertions that lead to the expected results. For the rely-guarantee
method, we need appropriate rely and guarantee conditions. These asser-
tions are usually difficult to find and have to be changed and tuned many
times. Each time the verification process has to be essentially restarted.

It is possible to do the proof by hand. However, this is a long, tedious
and error-prone process. Consider for example the Owicki-Gries method.
The number of interference-freedom tests needed is O(kn), where n is the
number of sequential components, and k is the maximal number of lines of a
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component. This makes a complete pencil-and-paper proof very laborious,
even for small examples. For this reason, many of the interference-freedom
proofs, which tend to be very simple, are usually omitted. A fact that
increases the possibility of a mistake.

With the rely-guarantee method the situation is not so critical because
the number of conditions to be checked is considerably smaller. Nevertheless,
the proofs involved in verification are very detailed and often just boring
routine work. When proofs are done by hand, one tends to spend too much
time checking rather simple proof steps over and over again. Therefore it
is desirable to have the help of computers that automate the process and
ensure that no mistakes are made.

1.5.1 Theorem Proving vs. Model Checking

There are two major approaches used for mechanizing verification: theorem
proving and model checking. Theorem proving is based on using a specific
deductive system and performing a formal proof in the mathematical sense.
Model checking techniques are based on decision or semi-decision procedures
that “check” whether a program satisfies its specification by basically ex-
ploring the possible states exhaustively. Model checking has the advantage
of being essentially automatic whereas general theorem proving requires in-
teractive input from the user. On the other hand, verification with theorem
provers can be fully general whereas model checking is still only applicable
to a limited class of programs.

Initially, model-checking was restricted to finite-state systems of moder-
ate size, but thanks to the development of techniques that improve efficiency
it is now possible to tackle surprisingly large examples. Unfortunately, for
infinite-state systems, even the theoretical possibility of exploring the state
space disappears.

A program may have an infinite state space because it operates on data
structures from a potentially infinite domain (integers, queues, etc.) or
because it has an infinite control part (parallel programs parameterized in
the number of components). Theoretical results [Apt and Kozen, 1986] even
show that the verification of parameterized parallel programs is undecidable.
Nevertheless, recent work present solutions that extend the applicability
of model checking to restricted cases of infinite-state systems of the first
kind [Jonsson and Parrow, 1993, Alur and Dill, 1994, Henzinger, 1995], and
of the second kind [German and Sistla, 1992, Clarke et al., 1995, Esparza,
1995, Abdulla and Jonsson, 1998]. However, programs which are infinite in
both data and control flow are out of reach for the existing model-checking
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techniques.
The availability of a theorem prover allows us to reason generically about

programs without restrictions on their specification. It can deal with un-
bounded or infinite systems and supports highly expressive specifications of
properties. For example, a garbage collection algorithm that manipulates
an infinite data structure representing the computer memory and interacts
with a parameterized number of mutators can be naturally specified and
verified [Prensa Nieto and Esparza, 2000].

In this work a powerful interactive theorem prover, Isabelle, is used to
formalize two well-known axiomatic verification methods, prove their sound-
ness and considerably automate their application to real programs. As a
result, we obtain a verification tool for general parallel programs where the
generation of the verification conditions and the proof of the easy cases is
automatic. The user is then able to concentrate only on the most important
aspects of the proof.

1.6 Related Work

The idea of embedding an imperative programming language in a theorem
prover goes back at least to [Gordon, 1989], who considered the Hoare logic
of a simple while-language. Gordon’s idea inspired an increasingly active
research area. In this section, we give a brief overview. The following list of
references is by no means exhaustive.

In the line of sequential language embeddings, [Nipkow, 1996, Nipkow,
1998] formalizes the first chapters of [Winskel, 1993] in Isabelle/HOL (and
even finds a mistake in the proof of completeness), [Harrison, 1998] presents
a formalization in HOL of Dijkstra’s classic [Dijkstra, 1976], [Homeier and
Martin, 1996] and [Kleymann, 1998] deal also with recursive procedures,
[von Oheimb, 2001] presents an embedding of a Hoare logic for a subset of
sequential Java in Isabelle/HOL and [Filliatre, 1999] presents a formalism
for the verification of imperative programs in Type Theory in Coq.

For concurrent programming languages we encounter a long list of em-
beddings. For example, UNITY has been formalized in the Boyer-Moore
prover [Goldschlag, 1990], HOL [Andersen et al., 1994], Coq [Heyd and
Crégut, 1996], LP [Chetali and Heyd, 1997] and Isabelle [Paulson, 2000,
Paulson, 2001]. A related framework, action systems, has also been for-
malized in HOL [L̊angbacka and von Wright, 1997]. CSP has been treated
in HOL [Camillieri, 1990], in Isabelle/HOL [Tej and Wolff, 1997] and in
PVS [Dutertre and Schneider, 1997]. CCS has been formalized in HOL [Nesi,
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1994]. ACP-style process algebra has also been formalized in PVS [Basten
and Hooman, 1999]. TLA is found in HOL [von Wright and L̊angbacka,
1993], LP [Engberg et al., 1993] and Isabelle/HOL [Kalvala, 1995]. In-
put/Output Automata embeddings are found in Isabelle/HOL [Müller and
Nipkow, 1997, Müller, 1998] and in LP [Søgaard-Andersen et al., 1993]. A
formalism based on a semantical characterization of compositional verifi-
cation has been formalized in PVS [Owre et al., 1995]. [Hooman, 1998]
presents an embedding of an assertional compositional system for asyn-
chronous communication in PVS. The PVS system combined with model
checking techniques [Rushby, 2000, Owre et al., 1996, Shankar, 1996] has
been successfully applied to medium-size examples as reported for example
in [Hooman, 1995, Shankar, 1998, de Roever et al., 1998].

Surprisingly, it appears that there has been no work on embedding Hoare
logics for shared-variable parallelism in any theorem prover.

The Owicki-Gries method marks the beginning of a vast body of liter-
ature on proof systems for concurrency which we cannot survey here. The
recent book [de Roever et al., 2000] presents a development of state-based
verification systems and contains numerous references related to the sub-
ject. A second volume of this book is announced [Hooman et al., 2000]
which focuses on illustrating through examples the success of compositional
techniques in correctness proofs for parallel programs as well as techniques
for machine-support in the verification process using PVS.

1.7 Formalization in Isabelle/HOL

For the formalization and proofs presented in this work we use the system
Isabelle/HOL. Isabelle [Paulson, 1994] is a generic interactive theorem pro-
ver and Isabelle/HOL is its instantiation for higher-order logic, which is
very similar to Gordon’s HOL system [Gordon and Melham, 1993]. A recent
gentle introduction to Isabelle/HOL is [Nipkow and Paulson, 2001].

In this section we briefly describe the aspects of the system required to
understand this dissertation. We can divide the work done with Isabelle
into two main parts: the formalization of the verification methods and their
application to concrete programs.

1.7.1 Formalization of the Verification Methods

When formalizing a programming language in a theorem prover, one has to
decide between using a deep embedding, where first the (abstract) syntax is
represented via an inductive datatype and then a semantics is assigned to it,
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and a shallow embedding, where a term in the language is essentially an ab-
breviation of its semantics. Deep embeddings are useful when meta-theoretic
reasoning (usually by induction over the syntax) is required. Shallow em-
beddings on the other hand, simplify reasoning about individual programs
because one may work directly with the semantics avoiding the extra syn-
tactic level.

We use a combination of both styles that has become quite established
[Nipkow, 1998, von Oheimb, 2001]. We formalize as much as possible using
a shallow embedding and use a deep embedding only where needed in order
to perform the meta-theoretic proofs we are interested in. For our purposes,
it suffices to use a deep embedding for the programming language. Asser-
tions, expressions and even assignments are represented semantically, i.e. as
functions on states. Consequently, the assertion language is not restricted
to first-order logic as is customary in Hoare-like frameworks. Any HOL
expression, and in particular all the constants defined in the Isabelle/HOL
library can be used in assertions, boolean conditions and expressions within
a program.

The program syntax is defined in Isabelle/HOL via a datatype defi-
nition. A free datatype is defined by listing its constructors together with
their argument types, separated by ‘|’. In general it has the form

datatype (α1, . . . , αn) t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are distinct type variables, Ci are distinct constructor names and
τij are types. Type abbreviations in Isabelle are declared by the keyword
types. They follow the syntax of ML, except that function types are de-
noted by ⇒. Laws about datatypes, such as Ci 6= Cj , are automatically
included in the simplification tactics for future proofs. An induction prin-
ciple, namely, structural induction over the constructors of the datatype is
also generated with each datatype declaration. To use it in proofs it has
to be explicitly invoked. Functions about datatypes are usually defined by
primitive recursion. They are introduced by the keyword primrec.

Constants are declared with consts followed by their name and type,
separated by ‘::’. Non-recursive definitions are declared by the keyword
contsdefs. The introduced constant and its definition are separated by ‘≡’.
Sometimes we first declare the constant and introduce the definition later
with the keyword defs.

The operational semantics of commands is inductively defined via a set
of rules. Similarly, the set of correct specifications is defined inductively by
a set of axioms and proof rules. Such inductively defined sets represent the
least set which is closed under the formation rules. They are declared by
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the keyword inductive followed by the word intros. From each inductive
definition Isabelle generates the corresponding induction principle, called
rule induction, which represents the most powerful proof method used in
this dissertation. In particular, soundness of the system of rules for program
verification is proved by rule induction.

The so-called inductive cases proof principle is also automatically gen-
erated by the system for any inductive definition. It can be understood as
the counterpart of (structural) case distinction on inductively generated el-
ements. Whenever we have an assumption stating that an element belongs
to an inductively defined set, we can distinguish on the last rule used for
its derivation. As a result, we obtain a subgoal where the given element
has been replaced by the corresponding premises of each of the proof rules
whose conclusion matches the element. When we speak of case analysis on
an inductively generated element we refer to this proof principle.

Statements that we want to prove are preceded by theorem or lemma.
There is no formal difference between them; we use one or the other de-
pending on the importance we attach to the stated proposition. Proofs are
done by applying tactics to the stated goals. The application of a tactic is
preceded by the keyword apply. The basic tactics are based on resolution,
i.e. by applying inference rules (backwards or forwards) in a natural deduc-
tion style, and rewriting, i.e. by applying (conditional) directed equalities.
As a result, goals are reduced to simpler subgoals until they become trivial.
When all subgoals are solved the proposition is proven and stored under
some name given by the user.

Some tactics are based on natural deduction (forward and back-chaining
of rules) where search with backtracking is automated using the so-called
classical reasoner. Other tactics, called simplifiers, compose rewriting steps.
More powerful tactics (like auto) combine both systems and are able to
automatically prove complicated goals. Tactics may also be combined using
control structures called tacticals.

In an interactive theorem prover like Isabelle, if a statement cannot be
proved automatically, the user is able to direct the proof by explicitly using
induction, case distinction, instantiating variables and, in general, giving
hints to the prover whenever automatic tactics do not succeed. Very often,
automatic tools do succeed if they are supplied with the suitable auxiliary
lemmas, which can be often obtained from the Isabelle library or have to be
previously proven by the user.
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1.7.2 Application to Concrete Programs

The relation between the program syntax and its semantics need only be
studied once in the proof of soundness of the system. Once this is done,
we can forget about the semantics and just use the system of rules for the
verification of programs.

In order to make the verification task easier, we enrich the formalization
with two additional features: the definition of a familiar concrete syntax for
the programming language, and a tactic that, given a program specification,
automatically generates the verification conditions.

Isabelle offers several facilities to define concrete (or external) syntax. It
is possible to declare mixfix syntax notation for types and constants. The
new notation may contain mathematical symbols and user-defined prece-
dences. They can be directly given with the constant or type declaration
(by writing the mixfix notation in parenthesis) or by defining new syntactic
constants under the keyword syntax and putting the corresponding transla-
tion equations into the internal (abstract) syntax under the keyword trans-
lations. The translation equations are directed. The direction from left to
right is represented by the arrows ⇀, and the translation in both directions
by ⇀↽.

When the transformations cannot easily be done via translations, Isabelle
offers the possibility of defining ML programs that perform the translations
from concrete syntax into abstract syntax (parse translation), and vice
versa (print translation). These facilities are used to obtain an alternative
syntax that allows us to write programs and assertions essentially like they
are found in the literature.

The correctness of a program specification depends upon the validity of
certain conditions called verification condition (also called proof obligations).
These conditions are pure higher-order logic predicates with no mention of
the programming language. Their validity is thus proven using standard
Isabelle proving techniques.

For the automatic generation of the verification conditions, we define a
so-called verification conditions generator (vcg) as an Isabelle tactic. Isabelle
allows the user to construct new tactics by programming them in ML as
combinations of existing ones. Without this tactic, the verification of the
larger examples presented in this thesis would have been unbearably tedious.
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1.8 The Standard Isabelle/HOL Library

The formalization uses some types and constants defined in the standard
Isabelle/HOL library. We briefly present the most frequently used. Others
will be explained when needed in the subsequent chapters.

The product type α×β comes with the projection functions fst and snd.
Tuples are pairs nested to the right, e.g. (a, b, c) = (a, (b, c)). They may
also be used as patterns like in λ(x, y). f x y.

List notation is similar to ML (e.g. @ is ‘append’) except that the ‘cons’
operation is denoted by # (instead of ::). The ith component of a list xs is
written xs!i, where the first element has the index 0, i.e. xs!0, also defined as
the head of the list, hd xs. The rest of the list (or tail) can be represented
by the function tl xs. last xs represents the last element of a non-empty
list. The syntax xs[i := x] denotes xs with the ith component replaced by
x. The functional map :: (α ⇒ β) ⇒ α list ⇒ β list applies a function to
all elements of a list. The function length :: α list ⇒ nat returns the length
of a list. The conversion function set :: α list ⇒ α set builds a set from
the elements of a list. The function filter :: (α ⇒ bool) ⇒ α list ⇒ α list,
returns the list of elements formed from the elements of a given list for which
a given predicate holds.

The datatype α option = None | Some α is frequently used to add a
distinguished element to some existing type. It comes with the function the
:: α option ⇒ α such that the (Some x) = x.

Set comprehension syntax is {x. Px} expressing the set of all elements
that satisfy the predicate P . This notation is also available for tuples
{(x, y, z). Pxyz}. A more general syntax for sets is {e~x | ~x. P~x} which
abbreviates the set {u. ∃~x. u = e~x ∧ P~x}. The image of a set A under a
function f is denoted by f ‘ A and is predefined in the Isabelle library as
{f x | x. x ∈ A}. The complement of a set A is denoted by −A.

The notation [[A1; . . . ;An]] =⇒ A represents an implication with as-
sumptions A1, . . . , An and conclusion A. It is also important to distinguish
between the object implication ‘−→’ and the meta-implication ‘=⇒’. The
first one is a normal implication as known from mathematics and the second
one separates assumptions from conclusions in proofs. In other words, if we
state the goal a −→ b in Isabelle, then we want to prove the proposition
a −→ b from the empty set of assumptions. However, if we state a =⇒ b,
then we want to prove b by assuming a. The first goal can be reduced to
the second one by applying the deduction rule (P =⇒ Q) =⇒ P −→ Q
backwards.
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1.9 Presentation Style

Isabelle provides tools for the automatic generation of LATEX documents from
Isabelle theories. The formal content of this dissertation has been written
with this system. Hence, all definitions and theorems presented are part
of actual Isabelle theories, where the side explanations have been inserted
in special “text” environments that are ignored when the theory is being
processed by Isabelle. This procedure ensures the consistency of the infor-
mation presented. However, it forces the presentation to be bottom-up (as
in the original formal theories) where probably a top-down explanation of
the contents would be more appropriate. Nevertheless, we manage to avoid
showing unnecessary details of the formalization (like user-defined prefer-
ences in syntax declarations) and more technical parts that are not relevant
for the general understanding (like the syntax transformation functions or
the tactics programmed in ML) are placed in the appendix.

The proofs done in this work follow the “traditional” tactic style, re-
sulting in so-called “proof scripts”, which are not easily readable for non-
experienced users. Now there is an alternative based on a more developed
proof language that allows us to write proofs basically as they are found
in mathematics books. This new system is called Isar (Intelligible semi-
automated reasoning) and has been developed by Markus Wenzel [Wenzel,
2001a]. We have adopted the definition language of Isar but have main-
tained the tactic-style proofs (for historical reasons). Thus, we do not show
the mechanical proofs in this thesis, but simply state the lemmas and ex-
plain their proofs informally in the text. Longer proofs are announced by
Proof and finished with 2. The complete Isabelle theories and proof scripts
can be obtained from http://isabelle.in.tum.de/hoare-parallel/.

1.10 Overview

Chapter 2 presents the formalization of the Owicki-Gries method and its
application to some typical examples.

Chapter 3 is devoted to the main case study, namely, the verification of
two parallel garbage collection algorithms, the second one parametric in the
number of mutators.

Chapter 4 presents the formalization of the rely-guarantee method and
its application to some typical examples.

Chapter 5 is devoted to the completeness of both the Owicki-Gries and
rely-guarantee systems for parameterized parallel programs.
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Chapter 6 summarizes the main results and gives suggestions for further
work.

All results except for the completeness theorems of chapter 5 have been
obtained using the theorem prover Isabelle/HOL.

Part of the materials contained in this thesis have been previously pub-
lished in [Nipkow and Prensa Nieto, 1999], [Prensa Nieto and Esparza, 2000]
and [Prensa Nieto, 2001].
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Chapter 2

The Owicki-Gries Method in
Isabelle/HOL

In this chapter we present the first formalization in a theorem prover of the
Owicki-Gries method. First published by Susan Owicki in her Ph. D. thesis
under the supervision of David Gries [Owicki, 1975], this method is widely
accepted as the most fundamental methodology for correctness proofs of
shared-variable concurrency.

Our formalization closely follows the description in [Apt and Olderog,
1991]. Thus, the present work can also be seen as an exercise in formaliz-
ing textbooks on programming language semantics. Yet, the search for a
suitable and efficient adaptation in the theorem prover yields some improve-
ments over the original presentation. Especially interesting is the parametric
nature of the parallel composition rule (allowing verification of parameter-
ized parallel programs directly in the system) and the soundness proof (be-
cause it does not explicitly mention program locations).

The different parts of the formalization are introduced following the usual
steps required by a formal system. First, the abstract syntax of the program-
ming language presents a simple while-language with concurrent execution
of commands and synchronization via an await-command. Then, the op-
erational semantics and the proof system are inductively defined as sets of
rules. The soundness of the latter w.r.t. the former represents the main
meta-theoretical result of the formalization.

Our interest is focused on the practical application. Therefore we prove
soundness but not completeness of the proof system. Instead, we provide
an automatic procedure for the generation of the verification conditions and
define a familiar concrete syntax for writing programs. Finally, some typical
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examples illustrate the applicability of the formalization. Furthermore, the
verification of several schematic programs, where the number of parallel
components is a parameter, shows that this embedding is more than just
a verification condition generator. The use of a theorem prover allows us
to tackle problems outside the range of fully automatic methods like model
checking.

In the next chapter the method is applied to two garbage collection
algorithms, the second one parametric in the number of mutators. These
nontrivial case studies demonstrate the success of the approach, mainly due
to the high degree of automation.

2.1 Abstract Syntax

We follow [Apt and Olderog, 1991] in stratifying the language. Only top-
level parallelism is allowed, i.e. the parallel operator (‖) must not be nested.
Hence, each ci in c1 ‖ . . . ‖ cn is a sequential command, called a (sequential)
component of the parallel composition. Nevertheless, parallelism may occur
within sequential composition, conditional statements and while-loops.

The third sublanguage in this stratification is the one used in the bod-
ies of await-commands. They are called atomic programs because they are
executed atomically, i.e. without interruption from other components. Sum-
marizing, the programming language combines the following three layers:

Parallel commands include parallel composition of component programs
as a construct. Component programs are purely sequential programs,
thus nested parallelism is excluded.

Component commands represent the language of the programs appear-
ing within a parallel composition and can be synchronized via an
await-command. They have to be annotated with assertions before
each command, thus, they are also called annotated commands.

Atomic commands are used for the bodies of await-statements, which are
executed atomically.

We illustrate by the following example the scope of each layer. The delim-
iters cobegin-coend enclose a list of programs that are to be executed in
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parallel:

x := 0;
cobegin
{x = 0} await True then x := x+ 1; x := x+ 1 end {True}
‖
{True} x := 0 {x = 0 ∨ x = 1 ∨ x = 2}
coend

The whole is a parallel command (non-annotated)consisting of the sequential
composition of an assignment (x :=0) and a parallel composition of two com-
ponent (annotated) commands. The first component consists of an await-
statement whose body is an atomic command (non-annotated). In HOL,
there are two ways to encode this stratification:

1. Define the type of all programs and require well-formedness predicates
for each sublanguage, or

2. Define the syntax in layers with different types.

We have chosen a combination of both that simplifies statements and proofs
about the language. Component programs and parallel programs are defined
in different layers, whereas atomic programs are defined as a sublanguage of
parallel programs via a simple well-formedness predicate.

Although a number of constructs appear duplicated in both the parallel
and component layers, they differ in that the latter attaches annotations to
them. Proofs about those constructs may have to be duplicated but this
duplication is quite mechanical.

Following the established combination of shallow and deep embedding
we start by defining the parameterized type abbreviations:

types
α bexp = α set
α assn = α set

representing both assertions and boolean expressions as sets (of states). The
α stands for the state of a program, which is a parameter of the program
type. The reason for this formalization of the state will be explained in §2.7.

The three levels of the language depend on each other. An await-
command is a constructor of the language of component programs but its
body must be atomic. Similarly, a parallel construct is not part of the
component’s language but its arguments are component programs.
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Atomic commands represent the simpler layer in this hierarchy. Its con-
structors are also used in parallel commands so that atomic programs can
be defined as a sublanguage of parallel programs. Hence, only two datatypes
are required: α ann-com for annotated sequential programs and α com for
atomic and parallel programs. Datatypes that depend on each other are
called mutually recursive. They are defined in HOL under a single datatype
declaration joined via the keyword and:

datatype α ann-com =
AnnBasic (α assn) (α ⇒ α)
| AnnSeq (α ann-com) (α ann-com)
| AnnCond1 (α assn) (α bexp) (α ann-com) (α ann-com)
| AnnCond2 (α assn) (α bexp) (α ann-com)
| AnnWhile (α assn) (α bexp) (α assn) (α ann-com)
| AnnAwait (α assn) (α bexp) (α com)

and α com =
Parallel (α ann-com option × α assn) list
| Basic (α ⇒ α)
| Seq (α com) (α com)
| Cond (α bexp) (α com) (α com)
| While (α bexp) (α assn) (α com)

2.1.1 Component Programs

The language of component programs has the type α ann-com. It is a stan-
dard sequential while-language augmented with a synchronization construct
(AnnAwait). It departs from the usual presentation of the language by the
inclusion of assertions directly in the syntax: every construct, apart from
sequential composition, is annotated with a precondition, and the loop is
also annotated with an invariant. Due to this special presentation they are
called annotated commands. We emphasize that these assertions are merely
annotations and do not change the semantics of the language. Next, we
discuss the different constructors:

AnnBasic represents a basic atomic state transformation, for example an
assignment, a multiple assignment, or even any non-constructive spec-
ification. Concrete syntax for single assignments of the form x :=e,
where x is a program variable and e is an expression of the corre-
sponding type, is also available (cf. §2.7).

AnnSeq is the sequential composition of commands.
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AnnCond1 is the standard conditional. Both subprograms are themselves
annotated commands, thus preceded by a precondition, subject to the
so called interference freedom test in the verification process.

AnnCond2 is the conditional without else-branch. In some cases, it is con-
venient to ignore the else-branch altogether because its precondition
is bound to fail at the interference freedom test.

AnnWhile is the loop, annotated with an invariant.

AnnAwait is the synchronization construct. Notice that its body is of type
α com.

It might seem more natural to define AnnCond2 as a special case of the
constructor AnnCond1, namely AnnCond1 r b c (AnnBasic p id), where id
represents the identity transformation. This, however, would still require
proving interference freedom for the assertion p which must, in general,
include the clause ¬b. Sometimes, e.g. in §3.4.1, this is not possible and we
prefer to directly ignore the else-part. Another possible way of avoiding this
assertion is to consider AnnCond2 as an abbreviation of AnnCond1 r b c
(AnnAwait r True (Cond b c (Basic id))). This way we also avoid proving
that ¬b is interference free, but it is an unnecessarily complicated solution.

The meaning of await-commands is quite intuitive to understand. Imagi-
ne an execution of a parallel composition of programs where one component
intends to execute the statement AnnAwait r b c. If b evaluates to True,
then c is executed as an atomic region. If b evaluates to false, the com-
ponent becomes blocked. In sequential programs this behavior does not
make any sense, but in the case of parallel programs it means that other
components can take over the execution. If eventually b becomes true, the
blocked component can resume its execution. Otherwise, it remains blocked
forever. Programs with this construct may end in a deadlock. This happens
when some component of a parallel program is blocked and there are no
other active components. A component is active if it is neither blocked nor
finished.

To reason about parallel programs with shared variables we need to
reason about each atomic step taken in the computations of its components.
To this end, proofs of component programs are presented in the form of proof
outlines, i.e. interleaved with assertions at appropriate places. Furthermore,
we directly present them as a special case of proof outlines called standard
proof outlines obtained by minimizing the number of annotations. Each
command c is then preceded by an assertion, pre c, and apart from these and
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loop invariants there are no other assertions1. These annotations describe
(a subset of) the set of states that are reachable at each point of control.

For purely sequential programs such a presentation is not necessary. The
intermediate annotations can be derived as the weakest precondition from
the postcondition and loop invariants. The so computed assertions invari-
ably hold at their respective locations since no other action can modify the
expected results. In contrast, a component in a parallel program has the
ability to modify shared variables, endangering the task of other compo-
nents. For this reason we explicitly annotate each point of control with an
assertion, whose invariance under the actions in the other parallel compo-
nents can be checked.

To obtain this special presentation we include the precondition in the
syntax of component programs. Moreover, it turns out that for proof-
theoretic reasons it is very helpful to define the semantics of the language
directly on annotated commands. The precondition of each annotated com-
mand is extracted by the function pre. Its definition is:

consts
pre :: α ann-com ⇒ α assn

primrec
pre (AnnBasic r f ) = r
pre (AnnSeq c1 c2) = pre c1

pre (AnnCond1 r b c1 c2) = r
pre (AnnCond2 r b c) = r
pre (AnnWhile r b i c) = r
pre (AnnAwait r b c) = r

2.1.2 Atomic and Parallel Programs

Atomic and parallel commands are similar enough to both be represented
by the same datatype (α com) together with a simple well-formedness pred-
icate characterizing atomic programs. We could define them in two different
datatypes, but this would make the specification of the language unneces-
sarily long and proofs about (otherwise) identical constructors would have
to be duplicated. By minimizing the number of constructors in the language
we obtain a clearer and shorter presentation of the theories and proofs.

Atomic commands form the body of await-statements which are executed
as atomic regions, i.e. its activation cannot be interrupted by the other
components. Hence, they behave as pure sequential programs. On the other

1Non-standard proof outlines admit two assertions after each other provided that the
second one is a logical consequence of the first one.
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hand, parallel commands are themselves not executed in parallel, i.e. nested
parallelism is not allowed. However, if c1 and c2 are both parallel programs,
they can be sequentially composed (Seq c1 c2) or appear in conditional (Cond
b c1 c2) statements and loop constructions (While b i c1).

The only kind of commands in this layered language that is executed in
parallel with others are the annotated commands.

Consequently, atomic programs and programs containing parallel pro-
grams are similar in the sense that they are both sequential. This is char-
acterized by two important aspects:

1. They do not contain await-statements, which are only meaningful in
a parallel context. To ensure termination, it is also usual to forbid
while-commands inside atomic regions. However, this condition is not
necessary for the soundness of the system and so we leave it out.

2. They do not contain intermediate annotations. For purely sequential
commands there is no need to record a proof outline to be checked for
interference freedom.

The Parallel constructor encloses a list of pairs (c, q), where c is a sequential
command or the empty program if the execution has terminated, and q is the
postcondition (remember that the precondition is already part of the anno-
tated c). Strictly speaking it is not necessary to include the postcondition,
but it simplifies program verification.

Although each component consists of a pair, they can be seen as Hoare
triples. The three elements are the precondition, which can be extracted
from the command, followed by the program itself (ignoring the precondi-
tion), and finally the postcondition.

The remaining commands are almost like their namesakes in the se-
quential layer, but with a slightly different concrete syntax for sequential
composition, to avoid confusion.

Nevertheless, atomic commands do not contain parallel constructs. We
introduce a well-formedness predicate that characterizes the subset of pro-
grams of α com that may appear inside atomic regions:

consts atom-com :: α com ⇒ bool
primrec

atom-com (Parallel Ts) = False
atom-com (Basic f ) = True
atom-com (Seq c1 c2) = (atom-com c1 ∧ atom-com c2)
atom-com (Cond b c1 c2) = (atom-com c1 ∧ atom-com c2)
atom-com (While b i c) = atom-com c
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If desired while-commands could also be excluded by writing

atom-com (While b i c) = False

instead.

2.2 Operational Semantics

The semantics defines the input/output behavior of programs, i.e. given a
program c, its semantics Sem c defines a mapping from (initial) states to
(final) states. There are two classical ways of defining this mapping:

A denotational semantics [Scott and Strachey, 1971, Gordon, 1979] de-
fines Sem c by induction on the structure of c, as a partial function
on states. In particular, fixed point techniques are used to deal with
recursion.

An operational semantics [Hennessy and Plotkin, 1979, Plotkin, 1981]
defines first a transition relation between so-called configurations and
then defines Sem c using this relation.

Although the denotational style is more abstract and can theoretically han-
dle all programming languages, it becomes very complicated for parallel
programs. In contrast, the operational semantics remains simple and is thus
preferred for assigning meaning to parallel constructors.

2.2.1 The Transition Relation

The transition relation used to define the operational semantics is induc-
tively defined by a set of axioms and rules about transitions (or steps) be-
tween configurations. A configuration is a pair of a program fragment and a
state, where a program fragment is either an atomic command or, if execu-
tion has come to an end, the empty program. Each transition is regarded as
one step in the computation. For example, (c, s) −1→ (c ′, s ′) means that
the execution of one instruction in c from state s leads to the configuration
consisting of a command c ′ and a state s ′ from which execution continues.

Basically, we need to define axioms and rules for all possible transition
steps. Since the programming language constructs are defined in two dif-
ferent layers, two kinds of transitions are defined: transition, for steps of
commands of type α com and, ann-transition, for steps of commands with
type α ann-com.
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In order to define the rules we need some way to represent the fact that
the command is empty. The language of component programs does not
contain the empty program. Adjoining a new element to a type is naturally
modeled by the standard Isabelle/HOL datatype α option = None | Some α.
In this case, None represents the empty program. Otherwise, the command
is wrapped up by the Some constructor. To abbreviate we define a new type
for optional annotated commands:

types α ann-com-op = α ann-com option

A new type abbreviation for an optional annotated command followed by its
postcondition stands for the type of each component in the list of a parallel
composition constructor. It can be seen as a triple since the precondition is
part of the command’s type:

types α ann-triple-op = (α ann-com-op × α assn)

Two selector functions extract the command part and the postcondition:

consts com :: α ann-triple-op ⇒ α ann-com-op
primrec com (c, q) = c

consts post :: α ann-triple-op ⇒ α assn
primrec post (c, q) = q

Equations defining a primitive recursive function are automatically added
to the simplifier.

In the language of atomic and parallel programs we can consider the
parallel composition with the empty list as argument as the equivalent of
the empty program. This way we avoid the option type. The execution
of a parallel composition terminates when all components do, i.e. when all
components are None. The following predicate characterizes a terminated
parallel composition:

constdefs
All-None :: α ann-triple-op list ⇒ bool
All-None Ts ≡ ∀ (c, q) ∈ set Ts. c = None

Now we can define the transition relations. They are inductively defined as
sets of relations between configurations:
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consts
ann-transition :: ((α ann-com-op × α) × (α ann-com-op × α)) set
transition :: ((α com × α) × (α com × α)) set

Concrete syntax for a transition step as well as for its n-fold iteration and
the reflexive transitive closure is provided via infix syntax annotations

syntax
-ann-transition :: (α ann-com-op × α) ⇒ (α ann-com-op × α) ⇒ bool

(- −1→ -)
-ann-transition-n :: (α ann-com-op × α) ⇒ nat ⇒ (α ann-com-op × α)

⇒ bool (- −-→ -)
-ann-transition-∗ :: (α ann-com-op × α) ⇒ (α ann-com-op × α) ⇒ bool

(- −∗→ -)

-transition :: (α com × α) ⇒ (α com × α) ⇒ bool (- −P1→ -)
-transition-n :: (α com × α) ⇒ nat ⇒ (α com × α) ⇒ bool (- −P-→ -)
-transition-∗ :: (α com × α) ⇒ (α com × α) ⇒ bool (- −P∗→ -)

The corresponding syntax translations are:

translations
con0 −1→ con1 ⇀↽ (con0, con1) ∈ ann-transition
con0 −n→ con1 ⇀↽ (con0, con1) ∈ ann-transitionˆn
con0 −∗→ con1 ⇀↽ (con0, con1) ∈ ann-transition∗

con0 −P1→ con1 ⇀↽ (con0, con1) ∈ transition
con0 −Pn→ con1 ⇀↽ (con0, con1) ∈ transitionˆn
con0 −P∗→ con1 ⇀↽ (con0, con1) ∈ transition∗

The last two arrows are syntactic sugar for the n-fold and the * postfix
operators which are part of Isabelle/HOL’s theory of relations.

The two kinds of transitions defining the semantics depend on each other.
Thus, the rules for both systems are defined simultaneously and atomic pro-
grams and parallel programs “share” the rules for the common constructors.

The transition rules defined below are also called small-step rules and
the semantics they define is called small-step semantics because it describes
the execution of programs step by step. (In contrast to the so-called big-
step semantics, where the rules represent transitions that may correspond
to several steps in the execution of the program.)
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inductive ann-transition transition
intros

AnnBasic: (Some (AnnBasic r f ), s) −1→ (None, f s)

AnnSeq1: (Some c0, s) −1→ (None, t) =⇒
(Some (AnnSeq c0 c1), s) −1→ (Some c1, t)

AnnSeq2: (Some c0, s) −1→ (Some c2, t) =⇒
(Some (AnnSeq c0 c1), s) −1→ (Some (AnnSeq c2 c1), t)

AnnCond1T : s ∈ b =⇒ (Some (AnnCond1 r b c1 c2), s) −1→ (Some c1, s)
AnnCond1F : s /∈ b =⇒ (Some (AnnCond1 r b c1 c2), s) −1→ (Some c2, s)

AnnCond2T : s ∈ b =⇒ (Some (AnnCond2 r b c), s) −1→ (Some c, s)
AnnCond2F : s /∈ b =⇒ (Some (AnnCond2 r b c), s) −1→ (None, s)

AnnWhileF : s /∈ b =⇒ (Some (AnnWhile r b i c), s) −1→ (None, s)
AnnWhileT : s ∈ b =⇒ (Some (AnnWhile r b i c), s) −1→

(Some (AnnSeq c (AnnWhile i b i c)), s)

AnnAwait : [[ s ∈ b; atom-com c; (c, s) −P∗→ (Parallel [], t) ]] =⇒
(Some (AnnAwait r b c), s) −1→ (None, t)

Parallel : [[ i<length Ts; Ts!i = (Some c, q); (Some c, s) −1→ (r , t) ]]
=⇒ (Parallel Ts, s) −P1→ (Parallel (Ts [i :=(r , q)]), t)

Basic: (Basic f , s) −P1→ (Parallel [], f s)

Seq1: All-None Ts =⇒ (Seq (Parallel Ts) c, s) −P1→ (c, s)
Seq2: (c0, s) −P1→ (c2, t) =⇒ (Seq c0 c1, s) −P1→ (Seq c2 c1, t)

CondT : s ∈ b =⇒ (Cond b c1 c2, s) −P1→ (c1, s)
CondF : s /∈ b =⇒ (Cond b c1 c2, s) −P1→ (c2, s)

WhileF : s /∈ b =⇒ (While b i c, s) −P1→ (Parallel [], s)
WhileT : s ∈ b =⇒ (While b i c, s) −P1→ (Seq c (While b i c), s)

The transition rules for the similar constructs in both, annotated and non-
annotated commands, are practically identical. The only difference is that
the empty program is represented by None in the former and by Parallel []
in the latter.
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The basic commands are executed in one step, performing the corre-
sponding state transformation. The one-step execution of a sequential com-
position is determined by two rules. If the first command of the sequential
composition finishes in one step, the next configuration indicates that only
the second command remains to be executed. Otherwise, the first command
is simply substituted by its reduction after one step.

The rules for the conditional statement lead, depending on the initial
state s being an element of the set b or not, to the corresponding subpro-
gram, leaving in both cases the state unchanged. While-statements termi-
nate if the boolean condition is not fulfilled. Otherwise, the execution of
one body followed by the original while-loop proceeds.

The transition rule AnnAwait formalizes the meaning of conditional
atomic regions, where the body is required to be a well-formed atomic com-
mand whose execution terminates. If s ∈ b, the await-statement is executed
uninterrupted in one step, provided the computation of the body terminates.
If s /∈ b, no transition is possible and the component is blocked.

Basic statements and evaluation of boolean expressions are all executed
in one step. This is called a high level semantics, which abstracts from all
the details of the evaluation of expressions.

Observe that both the preconditions denoted by r as well as the loop
invariants i are merely annotations and do not play any role in the semantics.
However, in the rule AnnWhileT, the precondition of the second AnnWhile
has been changed to the invariant i. Although this does not influence the
semantics it is important for the proof theory in §2.4.

The execution of the parallel composition of a list of annotated triples
Ts proceeds by executing one non-None component of Ts. This form of
modeling concurrency is called interleaving.

A terminating computation of a parallel composition of commands is
a finite transition sequence starting in a state s such that in the last con-
figuration each component program is None. The computation cannot be
extended because there is no possible transition from None. For example,

(Parallel [(Some (AnnBasic p f ), q), (Some (AnnBasic p ′ g), q ′)], s)
−P1→ (Parallel [(None, q), (Some (AnnBasic p ′ g), q ′)], f s)
−P1→ (Parallel [(None, q), (None, q ′)], g (f s))

This one-step semantics is particularly appropriate for concurrent languages
where different executions have to be interleaved. For simplicity, we employ
this style at all levels, although strictly speaking it is only necessary for
component programs.
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2.2.2 Definition of Semantics

There are different definitions of the semantics of programs. They differ
mainly in the amount of information they provide about the input/output
behavior of programs. Two of the possible definitions are the so-called total
correctness semantics and partial correctness semantics. Both approaches
differ in the way they deal with divergent computations. The former con-
siders the possibility of divergence while the latter one ignores it. Other
definitions [Apt and Olderog, 1991] include information about fairness or
deadlocks for example. In this work we concentrate on proving partial cor-
rectness, thus, only this interpretation will be formalized.

Following Apt and Olderog, we define the partial correctness semantics
of annotated commands by the function ann-SEM :

constdefs
ann-sem :: α ann-com ⇒ α ⇒ α set
ann-sem c ≡ λs. {t . (Some c, s) −∗→ (None, t)}

ann-SEM :: α ann-com ⇒ α set ⇒ α set
ann-SEM c S ≡

⋃
ann-sem c ‘ S

The auxiliary function ann-sem returns for some annotated command c and
some initial state s the set of all possible final states.

The semantics ann-SEM of an annotated command c is the union of the
sets of final states that result from applying ann-sem c to each initial state
in the set S. In other words, ann-SEM c S is the union of all possible final
states of c executed from some state in S.

The image of a set A under a function f is denoted by f ‘ A and is
predefined in the Isabelle library as f ‘ A ≡ {f x | x . x ∈ A}.

The definition of partial correctness semantics for non-annotated pro-
grams is slightly different because of the lack of None as an indicator of
termination:

constdefs
sem :: α com ⇒ α ⇒ α set
sem c ≡ λs. {t . ∃Ts. (c, s) −P∗→ (Parallel Ts, t) ∧ All-None Ts}

SEM :: α com ⇒ α set ⇒ α set
SEM c S ≡

⋃
sem c ‘ S

The semantics SEM satisfies several properties that we shall need in the

27



sequel. For a property about the semantics of while-commands we define an
auxiliary program called Ω .

syntax -Omega :: α com (Ω)

It is defined as an abbreviation of the following while-statement:

translations Ω ⇀↽ While UNIV UNIV (Basic id)

where UNIV stands for the universal set of a fixed type, i.e. {x . True} and
id represents the identity transformation. This particular program enjoys
the following property:

lemma SEM-Omega: SEM Ω S = {}

The primitive recursive function fwhile defines a sequence of deterministic
programs that simulates the behavior of a while-statement:

consts fwhile :: α bexp ⇒ α com ⇒ nat ⇒ α com
primrec

fwhile b c 0 = Ω
fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)

We prove the following lemmas about SEM as stated in [Apt and Olderog,
1991] (the proofs in the book are left as an exercise). We briefly review the
main steps of our mechanized version.:

lemma SEM-mono: X ⊆ Y =⇒ SEM c X ⊆ SEM c Y

The proof is automatic.

lemma SEM-Seq : SEM (Seq c1 c2) X = SEM c2 (SEM c1 X )

Proof. The ⊆-inclusion is proved using the following lemma:

lemma SEM-Seq-onlyif :
[[ (Seq c1 c2, s) −P∗→ (Parallel Ts, t); All-None Ts ]]
=⇒ ∃ y Rs. (c1, s) −P∗→ (Parallel Rs, y) ∧ All-None Rs ∧

(c2, y) −P∗→ (Parallel Ts, t)

The proof relies on the following auxiliary lemma solved by induction on n:
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lemma SEM-Seq-onlyif-aux :
[[ (Seq c1 c2, s) −Pn→ (Parallel Ts, t); All-None Ts ]]
=⇒ ∃ y m Rs. (c1, s) −P∗→ (Parallel Rs, y) ∧ All-None Rs ∧

(c2, y) −Pm→ (Parallel Ts, t) ∧ m ≤ n

For the ⊇-inclusion we use the lemma:

lemma SEM-Seq-if :
[[ (c1, s1) −P∗→ (Parallel Ts, s2); All-None Ts;

(c2, s2) −P∗→ (Parallel Rs, s3); All-None Rs ]]
=⇒ (Seq c1 c2, s1) −P∗→ (Parallel Rs, s3)

which is proven by induction on the length of the transition sequence given
by (c1, s1) −P∗→ (Parallel Ts, s2). 2

lemma SEM-Seq-assoc:
SEM (Seq (Seq c1 c2) c3) X = SEM (Seq c1 (Seq c2 c3)) X

The proof is trivial.

lemma SEM-Cond :
SEM (Cond b c1 c2) X = SEM c1 (X ∩ b) ∪ SEM c2 (X ∩ −b)

where −b represents the complement set of b. Both inclusions are easily
solved by properly manipulating the transitive closure and doing case anal-
ysis on the conditional statement.

lemma SEM-While: SEM (While b i c) = (λx .
⋃

k . SEM (fwhile b c k) x )

Proof. The ⊆-inclusion is proved using the lemma:

lemma SEM-While-onlyif :
[[ (While b i c, s) −Pn→ (Parallel Ts, t); All-None Ts ]]
=⇒ ∃ k . (fwhile b c k , s) −P∗→ (Parallel Ts, t)

which is proved by complete induction on n. With the induction hypothesis
we obtain the subgoal:

[[ ∀m < n. (∀ s. (While b i c, s) −Pm→ (Parallel Ts, t) ∧ All-None Ts
−→ (∃ k . (fwhile b c k , s) −P∗→ (Parallel Ts, t)));
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(While b i c, s) −Pn→ (Parallel Ts, t); All-None Ts ]]
=⇒ ∃ k . (fwhile b c k , s) −P∗→ (Parallel Ts, t)

We want to find an appropriate k satisfying the conclusion. If s /∈ b, it
suffices to take k = 1. If s ∈ b, we obtain by case analysis:

(Seq c (While b i c), s) −Pm→ (Parallel Ts, t)

where n = Suc m. By SEM-Seq-onlyif-aux we can split the computation
of the sequential composition into the computations of its two components.
Then, for some y we obtain:

(c, s) −P∗→ (Parallel Rs, y) ∧ All-None Rs
(While b i c, y) −Pm ′→ (Parallel Ts, t) ∧ m ′ ≤ m

we apply the induction hypothesis obtaining for some k ′,

(fwhile b c k ′, y) −P∗→ (Parallel Ts, t)

choosing k = k ′ + 1 the conclusion becomes

(Cond b (Seq c (fwhile b c k)) Basic id , s) −P∗→ (Parallel Ts, t)

but s ∈ b holds, so it can be simplified to

(Seq c (fwhile b c k), s) −P∗→ (Parallel Ts, t)

which we prove via SEM-Seq-if.

The ⊇-inclusion requires also an auxiliary lemma:

lemma SEM-While-if :
[[ (fwhile b c k , s) −P∗→ (Parallel Ts, t); All-None Ts ]]
=⇒ (While b i c, s) −P∗→ (Parallel Ts, t)

proved by induction on k as follows. The base case is easy; since Ω does not
terminate, there is a contradiction among the premises.

For the induction step, we first distinguish whether the transitive clo-
sure in the premise performs at least one step. If not, the proof is trivial.
Otherwise, from the definition of fwhile we obtain a conditional statement,
thus by case analysis there are two possible situations:

1. If s ∈ b, then (Seq c (fwhile b c n), s) −P∗→ (Parallel Ts, t). De-
composing the computation of the sequential composition by applying
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the lemma SEM-Seq-onlyif-aux and using the induction hypothesis we
obtain for some Rs and some state y

(c, s) −P∗→ (Parallel Rs, y) ∧ All-None Rs ∧
(While b i c, y) −P∗→ (Parallel Ts, t)

as premises. Since we have s ∈ b, the conclusion becomes

(Seq c (While b i c), s) −P∗→ (Parallel Ts, t)

The proof follows by applying the lemma SEM-Seq-if.

2. If s /∈ b, then the conclusion becomes

(Parallel [], s) −P∗→ (Parallel Ts, t)

We need to show that s = t and Ts = []. This follows easily from the
premise (Basic id , s) −P∗→ (Parallel Ts, t) and the lemma

(Parallel [], s) −Pn→ (Parallel Ts, t) =⇒ Ts = [] ∧ n = 0 ∧ s = t

2

2.3 Validity of Correctness Formulas

Before introducing the proof system that shows us the rules to derive correct
programs, we need to formalize what we mean by “correct”, and in particular
correct in the sense of partial correctness. Informally, we say that a program
is correct if it satisfies the intended input/output relation, where input and
output are usually described as predicates over states, or equivalently as
sets of states. Thus, a program specification consists of a triple, also called
Hoare triple, of the form {p} c {q} where c is a program and p and q are the
corresponding precondition and postcondition. The precondition describes
the set of initial or input states, in which the program c is started, and the
postcondition describes the set of final or output states.

Then, we say that a formula {p} c {q} is valid (or true) in the sense
of partial correctness iff every terminating computation of c that starts in
a state s satisfying p ends in a state satisfying q. This definition does not
take diverging computations of c into account. Following [Apt and Olderog,
1991], we formalize this interpretation as set theoretic inclusions.
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For a command c of type α com we define validity of a partial correctness
formula, and write ||= p c q as follows:

constdefs
com-validity :: α assn ⇒ α com ⇒ α assn ⇒ bool (||= - - -)
||= p c q ≡ SEM c p ⊆ q

where p and q are sets of initial and final states, respectively.
Validity of a partial correctness formula for an annotated command is

defined analogously:

constdefs
ann-com-validity :: α ann-com ⇒ α assn ⇒ bool (|= - -)
|= c q ≡ ann-SEM c (pre c) ⊆ q

The only difference with programs of type α com is that we do not need
an extra argument for the precondition since it is included as part of the
annotated command and can be extracted via the function pre.

2.4 The Proof System

Given a correctness formula, we can reason about its validity directly in
terms of the semantics. This methodology is commonly known as operational
or behavioral reasoning and basically consists on observing the effects of the
computation by unfolding the steps according to the rules of the operational
semantics. This procedure should be repeated for each possible initial state.
Obviously, this is very tedious for non-trivial programs (or even impossible
since the set of initial states may be infinite). Programmers using this
procedure tend to give an informal account of the possible behaviors of
the program for certain inputs, but experience has shown that this lack of
structure is bound to fail due to a non-exhaustive study of the possibilities.

Hoare’s approach to program verification is based on proving that a given
correctness formula is derivable in a system of axioms and inference rules
which are syntax oriented. The relation between the program syntax and
its semantics is studied exclusively in the proof of soundness of the system.
Once this is achieved, we can forget the semantics completely and just use
the system of rules for program verification.

The main properties of such systems are soundness and completeness.
The rules of a sound system inductively define a set of correct programs. If
the system is also complete then it defines the set of all correct programs.
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We define three systems of rules, one for each level of the language. How-
ever, due to the interdependencies among the different levels, the three sets
which are inductively defined from the three systems of rules are mutually
recursive. Thus, they must be declared in a single inductive set definition.
Atomic and parallel programs share the rules for the common constructors.

In this section we progressively show the three systems and give the full
set of rules only at the end. We start with the system for atomic programs.
The definition of the rules and the soundness proof is independent of the
other rules. We continue with the system for component programs which
depends on the previous one and finish with the rule for parallel composition.

2.4.1 Proof System for Atomic Programs

The set of derivable correctness formulas of atomic programs is inductively
defined by the set:

consts oghoare :: (α assn × α com × α assn) set

The syntax `̀ p c q denotes that the triple (p, c, q) is an element of the
inductively defined set. This amounts to say that it can be derived in the
system.

syntax -oghoare :: α assn ⇒ α com ⇒ α assn ⇒ bool (`̀ - - -)
translations `̀ p c q ⇀↽ (p, c, q) ∈ oghoare

A complete system contains at least one axiom or inference rule for each con-
structor of the language. The rules defining this set are shown in table 2.1.

2.4.2 Proof System for Component Programs

Correctness formulas for component programs are not just annotated with
a precondition and a postcondition. As explained in §2.1 they appear as
proof outlines, where each command is preceded by its precondition. The
set of derivable proof outlines is defined by the constant:

consts ann-hoare :: (α ann-com × α assn) set

A pair (c, q) is an element of the set if it has derivation in the system,
denoted ` c q :
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Basic: `̀ {s. f s ∈ q} (Basic f ) q

Seq : [[ `̀ p c1 r ; `̀ r c2 q ]] =⇒ `̀ p (Seq c1 c2) q

Cond : [[ `̀ (p ∩ b) c1 q ; `̀ (p ∩ −b) c2 q ]]
=⇒ `̀ p (Cond b c1 c2) q

While: [[ `̀ (p ∩ b) c p ]] =⇒ `̀ p (While b i c) (p ∩ −b)

Conseq : [[ p ′ ⊆ p; `̀ p c q ; q ⊆ q ′ ]] =⇒ `̀ p ′ c q ′

Table 2.1: Proof rules for atomic commands.

syntax -ann-hoare :: α ann-com ⇒ α assn ⇒ bool (` - -)
translations ` c q ⇀↽ (c, q) ∈ ann-hoare

The formation rules for proof outlines are shown in table 2.2. They look
unusual because preconditions are hidden as part of the commands’ syn-
tax. The consequence rule does not permit to strengthen the precondition.
However, this possibility appears embedded in each of the other rules. The
following result shows that this system is equivalent to the standard presen-
tation.

Equivalence of Proof Systems.

Let `st p κ q stand for provability of the correctness formula p κ q in some
standard system. By κ we mean commands without any annotation other
than loop invariants. The relation c ∼ κ means that both commands are
equal except for the annotations (loop invariants must also be equal). Then,

1. `st p κ q =⇒ ∃c. ` c q ∧ p ⊆ pre c ∧ κ ∼ c

2. ` c q =⇒ ∃κ. `st (pre c) κ q ∧ κ ∼ c
Proof. Both directions are proven by rule induction on `st and ` respec-
tively. We have not formalized them in Isabelle, but we hope to convince
the reader that the system above can be used without any loss of generality:

1. To prove the first implication we have to consider six cases, one for each
rule (the standard system contains only one rule for the conditional-
statement). We only show two representative ones:
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AnnBasic: r ⊆ {s. f s ∈ q} =⇒ ` (AnnBasic r f ) q

AnnSeq : [[ ` c0 pre c1; ` c1 q ]] =⇒ ` (AnnSeq c0 c1) q

AnnCond1: [[ r ∩ b ⊆ pre c1; ` c1 q ; r ∩ −b ⊆ pre c2; ` c2 q ]] =⇒
` (AnnCond1 r b c1 c2) q

AnnCond2: [[ r ∩ b ⊆ pre c; ` c q ; r ∩ −b ⊆ q ]] =⇒
` (AnnCond2 r b c) q

AnnWhile: [[ r ⊆ i ; i ∩ b ⊆ pre c; ` c i ; i ∩ −b ⊆ q ]]
=⇒ ` (AnnWhile r b i c) q

AnnAwait : [[ atom-com c; `̀ (r ∩ b) c q ]] =⇒ ` (AnnAwait r b c) q

AnnConseq : [[ ` c q ; q ⊆ q ′ ]] =⇒ ` c q ′

Table 2.2: Proof rules for annotated commands.

Basic Suppose that the equivalent non-annotated basic command is
called Basic in some standard system. We have to prove

`st {s. f s ∈ q} (Basic f) q =⇒
∃c. ` c q ∧ {s. f s ∈ q} ⊆ pre c ∧ (Basic f) ∼ c

The annotated command AnnBasic {s. f s ∈ q} f fulfills the re-
quirements.

Seq Suppose `st p (c1; c2) q. From the rule of sequential composition
we have for some r, `st p c1 r and `st r c2 q. By induction
hypothesis we obtain for some ca and some cb the assumptions:

` ca r ∧ p ⊆ pre ca ∧ c1 ∼ ca, and
` cb q ∧ r ⊆ pre cb ∧ c2 ∼ cb.

We want to find a command c such that

` c q ∧ p ⊆ pre c ∧ c1; c2 ∼ c

Taking c = AnnSeq ca cb we have from c1 ∼ ca and c2 ∼ cb that
c1; c2 ∼ AnnSeq ca cb.
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From p ⊆ pre ca and pre AnnSeq ca cb = pre ca (by definition
of pre), we obtain p ⊆ pre AnnSeq ca cb. By the rule of conse-
quence,

` ca r ∧ r ⊆ pre cb =⇒ ` ca pre cb

And finally, by the rule for sequential composition,

` ca (pre cb) ∧ ` cb q =⇒ ` AnnSeq ca cb q

2. We illustrate the opposite direction with two cases not considered be-
fore:

AnnAwait Suppose the await-command in the standard system is
called Await. We want to prove
` (AnnAwait r b c) q =⇒ ∃κ. `st r κ q ∧ κ ∼ (AnnAwait r b c)
By the proof rule AnnAwait, we know that `̀ (r ∩ b) c q. The
system of rules for atomic programs is like the standard system
and since c is an atomic command it does not contain assertions,
thus we can assume `st (r ∩ b) c q.
If we choose κ = Await b c we can derive `st r (Await b c) q and
obviously AnnAwait r b c ∼ Await b c holds.

AnnConseq Suppose ` c′ q′. By the rule of consequence we have the
premises ` c′ q and q ⊆ q′ for some q. By hypothesis there is a
non-annotated command κ such that `st pre c′ κ q and κ ∼ c′.
Obviously, κ is the searched program:

`st pre c′ κ q ∧ q ⊆ q′ =⇒ `st pre c′ κ q′

This concludes the proof of equivalence of our system of rules and
a standard one like the one in [Apt and Olderog, 1991], where
preconditions are not directly attached to commands. 2

2.4.3 Proof System for Parallel Programs

Proof of correctness of parallel programs is much more demanding than
the sequential case. The problem is that different components can interfere
with each other via shared variables. Unfortunately, proving that all proof
outlines are correct independently of the environment is not sufficient to
conclude that the input/output specification of a parallel composition is the
intersection (assertions are modeled as sets) of the input/output specifica-
tion of each component. We also need to guarantee that the proof outline of
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any component is not falsified by the execution of the others. This property,
called interference freedom of proof outlines, is determined by the predicate
interfree. Its definition requires a number of auxiliary concepts:

• An assertion p is invariant under execution of an atomic command a
iff ||= (p ∩ pre a) a p.

• An atomic command a does not interfere with a standard proof outline
c q iff the following two conditions hold:

1. ||= (q ∩ pre a) a q,

2. For any assertion p within c: ||= (p ∩ pre a) a p

• Standard proof outlines c1 q1, . . . , cn qn are interference free if no as-
signment or atomic region of a program ci interferes with the proof
outline cj qj of another component with i 6= j.

Given two component program’s proof outlines c q and c ′ q ′, showing in-
terference freedom means proving that all assertions in the former remain
invariant under execution of all assignments or atomic regions in the latter,
and vice versa.

Atomic commands are collected by the function atomics which, given an
annotated command, returns the set of all pairs (r , a) where a is either the
body of an AnnAwait-command, or a Basic-command (from an AnnBasic-
command) and r is the corresponding precondition.

consts atomics :: α ann-com ⇒ (α assn × α com) set
primrec

atomics (AnnBasic r f ) = {(r , Basic f )}
atomics (AnnSeq c1 c2) = atomics c1 ∪ atomics c2

atomics (AnnCond1 r b c1 c2) = atomics c1 ∪ atomics c2

atomics (AnnCond2 r b c) = atomics c
atomics (AnnWhile r b i c) = atomics c
atomics (AnnAwait r b c) = {(r ∩ b, c)}

The set of all assertions of an annotated command (including loop invariants)
is collected by the function assertions:

consts assertions :: α ann-com ⇒ (α assn) set
primrec

assertions (AnnBasic r f ) = {r}
assertions (AnnSeq c1 c2) = assertions c1 ∪ assertions c2
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Parallel :
[[ ∀ i < length Ts. ∃ c q . Ts!i = (Some c, q) ∧ ` c q ; interfree Ts ]] =⇒

`̀ (
⋂

i ∈ {i . i < length Ts}. pre (the (com (Ts!i))))
Parallel Ts

(
⋂

i ∈ {i . i < length Ts}. post (Ts!i))

Table 2.3: Proof rule for parallel programs.

assertions (AnnCond1 r b c1 c2) = {r} ∪ assertions c1 ∪ assertions c2

assertions (AnnCond2 r b c) = {r} ∪ assertions c
assertions (AnnWhile r b i c) = {r , i} ∪ assertions c
assertions (AnnAwait r b c) = {r}

The interference freedom test in one direction, i.e. where the assertions in
(co, q) are checked for invariance against the atomic actions in co ′, is realized
by the function interfree-aux :

constdefs interfree-aux :: (α ann-com-op × α assn × α ann-com-op) ⇒ bool
interfree-aux ≡ λ(co, q , co ′). co ′ = None ∨

(∀ (r , a) ∈ atomics (the co ′). ||= (q ∩ r) a q ∧
(co = None ∨ (∀ p ∈ assertions (the co). ||= (p ∩ r) a p)))

The function interfree-aux must be applied to all possible combinations of
component programs, except for a component program with itself. Hence,
the definition of interfree becomes:

constdefs interfree :: (α ann-triple-op) list ⇒ bool
interfree Ts ≡ ∀ i j . i < length Ts ∧ j < length Ts ∧ i 6= j −→

interfree-aux (com (Ts!i), post (Ts!i), com (Ts!j ))

The rule for parallel composition shown in table 2.3 claims that if all com-
ponent programs are correct and interference free, then the parallel com-
position satisfies the formula where the precondition is the intersection of
all the components’ preconditions and the postcondition is the intersection
of all the components’ postconditions. Each element of Ts is a pair of an
optional command α ann-com-op and a postcondition α assn. The func-
tion post extracts the postcondition, com extracts the optional command
α ann-com-op, the predefined function the extracts the command c from
Some c (by assumption all commands are wrapped up in Some), and finally
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pre extracts the precondition. This rule together with the rules for atomic
programs constitute the system of rules for parallel programs.

Because of the interdependencies among the rules, the full system con-
sisting of the rules that define the set oghoare and the rules that define
the set ann-hoare must be declared simultaneously in a so-called mutually
inductive definition:

inductive oghoare ann-hoare
intros

AnnBasic: r ⊆ {s. f s ∈ q} =⇒ ` (AnnBasic r f ) q

AnnSeq : [[ ` c0 pre c1; ` c1 q ]] =⇒ ` (AnnSeq c0 c1) q

AnnCond1: [[ r ∩ b ⊆ pre c1; ` c1 q ; r ∩ −b ⊆ pre c2; ` c2 q ]]
=⇒ ` (AnnCond1 r b c1 c2) q

AnnCond2: [[ r ∩ b ⊆ pre c; ` c q ; r ∩ −b ⊆ q ]] =⇒ ` (AnnCond2 r b c) q

AnnWhile: [[ r ⊆ i ; i ∩ b ⊆ pre c; ` c i ; i ∩ −b ⊆ q ]]
=⇒ ` (AnnWhile r b i c) q

AnnAwait : [[ atom-com c; `̀ (r ∩ b) c q ]] =⇒ ` (AnnAwait r b c) q

AnnConseq :[[ ` c q ; q ⊆ q ′ ]] =⇒ ` c q ′

Parallel : [[ ∀ i < length Ts. ∃ c q . Ts!i = (Some c, q) ∧ ` c q ; interfree Ts ]]
=⇒ `̀ (

⋂
i ∈ {i . i < length Ts}. pre (the (com (Ts!i))))

Parallel Ts
(
⋂

i ∈ {i . i < length Ts}. post (Ts!i))

Basic: `̀ {s. f s ∈ q} (Basic f ) q

Seq : [[ `̀ p c1 r ; `̀ r c2 q ]] =⇒ `̀ p (Seq c1 c2) q

Cond : [[ `̀ (p ∩ b) c1 q ; `̀ (p ∩ −b) c2 q ]] =⇒ `̀ p (Cond b c1 c2) q

While: [[ `̀ (p ∩ b) c p ]] =⇒ `̀ p (While b i c) (p ∩ −b)

Conseq : [[ p ′ ⊆ p; `̀ p c q ; q ⊆ q ′ ]] =⇒ `̀ p ′ c q ′
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Like in the definition of the semantics, atomic and parallel programs share
the rules for the common constructors. Thus, to denote that a triple (p, c,
q), where c is a parallel program, is derivable in the system we use the same
syntax as for atomic programs `̀ p c q.

We can refer to a particular rule, for example Seq, by writing the prefix
oghoare-ann-hoare, i.e. oghoare-ann-hoare.Seq.

2.4.4 Auxiliary Variables

An important aspect of the Owicki-Gries method is the use of auxiliary
variables. They augment the program with additional information for proof
purposes. Therefore, auxiliary variables should neither affect the control flow
nor the data flow of the program. In fact, they are only allowed to appear
in assignments of the form a := t, where a is an auxiliary variable. Since
auxiliary variables may not appear in boolean expressions or in assignments
to program variables, they are superfluous to the real computation and can
therefore be eliminated.

Auxiliary variables record information about the course of the compu-
tation in a program which cannot in general be captured by the program
variables alone. There are two main kinds of auxiliary variables:

• History variables: only one such auxiliary variable is required for the
full parallel program. It records the values of all program variables
atomically with every assignment or atomic region. At the end of the
computation the history variable contains the full sequence of states
that the execution has gone through.

• Location variables: in this case, a different auxiliary variable of this
kind is introduced for each component of a parallel program. These
variables keep track of the location where control flow resides at each
moment of the computation by means of labels, where a different label
is needed for every possible control point.

There are several well-known systematic procedures for the introduction of
auxiliary variables of both kinds [Owicki, 1975, Apt and Olderog, 1991, Best,
1996, de Roever et al., 2000]. Such general procedures are essential for
the completeness proof of the Owicki-Gries method because they work for
every possible program. However, history variables are too complicated
in practice and the general procedure for location variables introduces too
many auxiliary variables. A more clever proof for a particular program
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can normally extract the needed information from a few suitable auxiliary
variables.

The general approach consists of extending the program by the assign-
ments to auxiliary variables, proving the correctness of the extended pro-
gram and then deleting the added assignments. This last step is done with
the elimination rule

p c q =⇒ p c∗ q

where for some set of auxiliary variables A used in the program c such that
(free variables in q)∩ A = ∅, the program c∗ is obtained from c by deleting
all assignments to the variables in A.

The need for the auxiliary variable rule is a recurrent issue in research
about verification systems for parallel programs. Stirling describes the need
for this elimination rule as a “major disadvantage” [Stirling, 1988]. Further
studies have demonstrated that it is possible to design a complete verifica-
tion calculus for parallel programs with shared variables where the auxiliary
structure is only a part of the logic, so that the program text need not be
modified [Soundararajan, 1984, Stølen, 1991].

Our current proof system is incomplete because there is no rule for re-
moving auxiliary variables. We can prove the correctness of the extended
program, but it is left to the user to ensure that auxiliary variables are used
correctly.

2.5 Soundness

We are interested in the following soundness property:

`̀ p c q =⇒ ||= p c q

that whenever a correctness formula for a parallel program is derivable in
the proof system then it is also valid in the sense of partial correctness.

Properties of inductively defined sets are usually proven by rule induc-
tion. The theorem describing this proof principle is automatically generated
by Isabelle for every inductively defined set. The idea is to prove that a given
property is true for all axioms of the system and that it is preserved by all
inference rules. Since an inductively defined set is the least set closed under
the given axioms and rules, every element of the set that has a derivation
in the system satisfies the property.

The proof of soundness proceeds in three stages that correspond to the
three subsystems. In §2.5.1, we prove soundness of the subsystem for atomic
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programs. This result is necessary for the soundness proof of the subsystem
for component (annotated) programs in §2.5.2. Section §2.5.3 presents the
soundness of the rule for parallel programs. With these results, we finally
prove soundness of the full system.

2.5.1 Soundness of the System for Atomic Programs

The proof is done by rule induction on the set of rules defining oghoare.

theorem atom-hoare-sound : [[ `̀ p c q ; atom-com c ]] =⇒ ||= p c q

This amounts to proving the soundness of each rule separately. We require
that the program be atomic, consequently the subgoal concerning the Paral-
lel rule is trivially eliminated. The proofs for the other rules follow directly
from the lemmas about the semantics SEM (cf. §2.3).

2.5.2 Soundness of the System for Component Programs

A correctness formula is valid in the sense of partial correctness iff whenever
a program c started in a state satisfying the precondition terminates, then
the final state satisfies the postcondition. Observe that this definition does
not mention the intermediate assertions. This is fine for non-annotated
programs, but in our case satisfiability of the intermediate annotations is
also relevant.

Informally speaking, proof outlines fulfill the property that whenever the
control of c in a given computation starting in a state s ∈ p reaches a point
annotated by an assertion, this assertion is true. This property is called
strong soundness. The standard soundness property follows trivially from
this theorem.

Strong Soundness for Component Programs

This property of proof outlines is formally proven in the following theorem:

theorem Strong-Soundness:
[[ (Some c, s) −∗→ (co, t); s ∈ pre c; ` c q ]]
=⇒ if co = None then t ∈ q else t ∈ pre (the co)

where the is a predefined function that extracts c from Some c.
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Proof. The proof is by induction on the length of the computation. How-
ever, the Strong-Soundness theorem is not yet suitably formulated. To be
able to apply the induction hypothesis we need the fact that the program
rest, i.e. the co is also derivable in the system:

lemma Strong-Soundness-aux : [[ (Some c, s) −∗→ (co, t); s ∈ pre c; ` c q ]]
=⇒ if co = None then t ∈ q else t ∈ pre (the co) ∧ ` (the co) q

If the length of the computation is 0 then co = (Some c) and t = s. By
hypothesis we know that s ∈ pre c, then t ∈ pre c. Suppose the length is
now positive. Then, for some co ′ and t ′ we have

(Some c, s) −∗→ (co ′, t ′) −1→ (co, t)

co ′ cannot be None because there is no possible transition from None in
the system ann-transition. Thus, there is a c ′ so that co ′ = Some c ′. By
the induction hypothesis we know that t ′ ∈ pre c ′ and ` c ′ q. The proof
follows by rule induction on the last step. This is achieved via the following
auxiliary lemma:

lemma Strong-Soundness-aux-aux :
[[ (co, s) −1→ (co ′, t); co = Some c; s ∈ pre c; ` c q ]]
=⇒ if co ′ = None then t ∈ q else t ∈ pre (the co ′) ∧ ` (the co ′) q

We discuss three representative cases from the ten that result from applying
rule induction on (co, s) −1→ (co ′, t).

Seq2: From this rule we obtain (Some c0, s) −1→ (Some c2, t) in the
premises. After applying the induction hypothesis and using pre (AnnSeq
c0 c1) = pre c0 we obtain:

[[ (Some c0, s) −1→ (Some c2, t); s ∈ pre c0; ` (AnnSeq c0 c1) q ;
∀ q . ` c0 q −→ t ∈ pre c2 ∧ ` c2 q ]]

=⇒ t ∈ pre c2 ∧ ` (AnnSeq c2 c1) q

By case analysis on ` (AnnSeq c0 c1) q we obtain ` c0 (pre c1) and ` c1

q from the Seq2 rule. Unfortunately, we also obtain ` (AnnSeq c0 c1) q ′

and q ′ ⊆ q from the rule of consequence. This second subgoal is basically
the original subgoal. This circular effect is due to the generality of the
consequence rule. This rule is so general that it can always be applied.
To avoid this, we prove a more appropriate version of the inductive cases
principle which applies the consequence rule at most once:
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lemma ann-hoare-case-analysis: ` C q ′ =⇒
(∀ r f . C = AnnBasic r f −→ (∃ q . r ⊆ {s. f s ∈ q} ∧ q ⊆ q ′)) ∧
(∀ c0 c1. C = AnnSeq c0 c1 −→ (∃ q . q ⊆ q ′ ∧ ` c0 pre c1 ∧ ` c1 q)) ∧
(∀ r b c1 c2. C = AnnCond1 r b c1 c2 −→ (∃ q . q ⊆ q ′ ∧
r ∩ b ⊆ pre c1 ∧ ` c1 q ∧ r ∩ −b ⊆ pre c2 ∧ ` c2 q)) ∧
(∀ r b c. C = AnnCond2 r b c −→
(∃ q . q ⊆ q ′ ∧ r ∩ b ⊆ pre c ∧ ` c q ∧ r ∩ −b ⊆ q)) ∧
(∀ r i b c. C = AnnWhile r b i c −→
(∃ q . q ⊆ q ′ ∧ r ⊆ i ∧ i ∩ b ⊆ pre c ∧ ` c i ∧ i ∩ −b ⊆ q)) ∧
(∀ r b c. C = AnnAwait r b c −→ (∃ q . q ⊆ q ′ ∧ `̀ (r ∩ b) c q))

Using this theorem instead we obtain only ` c0 (pre c1) and ` c1 q. By
instantiating ∀ q . ` c0 q −→ t ∈ pre c2 ∧ ` c2 q with pre c1 we prove t ∈
pre c2 and obtain ` c2 (pre c1). The remaining conclusion, ` (AnnSeq c2

c1) q, follows from the rule Seq2.

WhileT: After some simplification the corresponding subgoal is:

[[ s ∈ b; s ∈ r ; ` (AnnWhile r b i c) q ; r ⊆ i ; i ∩ b ⊆ pre c; ` c i ; i ∩ − b ⊆ q ]]
=⇒ ` (AnnSeq c (AnnWhile i b i c)) q

After applying AnnSeq backwards we obtain two subgoals. The first one

[[ s ∈ b; s ∈ r ; ` (AnnWhile r b i c) q ; r ⊆ i ; i ∩ b ⊆ pre c; ` c i ; i ∩ − b ⊆ q ]]
=⇒ ` c pre (AnnWhile i b i c)

is proven by simplification because pre (AnnWhile i b i c) = i. Observe
that this follows from the definition of the semantics rule AnnWhileT. We
mentioned in §2.2 that the annotations do not play any role in the definition
of the rules of the semantics. However, if we wrote r instead of i for that
precondition, this subgoal would not be provable. The second subgoal is
solved by applying AnnWhile backwards.

Await: This is an axiom of the system so there is no induction hypothesis:

[[ s ∈ b; atom-com c; (c, s) −P∗→ (Parallel [], t); s ∈ r ;
` (AnnAwait r b c) q ]] =⇒ t ∈ q

By case analysis on ` (AnnAwait r b c) we obtain `̀ (r ∩ b) c q. The system
for atomic programs is sound, thus ||= (r ∩ b) c q. From s ∈ r ∩ b and the
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definition of validity for atomic programs we prove t ∈ q. 2

Finally, we state the soundness theorem for component programs:

theorem ann-hoare-sound : ` c q =⇒ |= c q

The proof is immediate using the Strong-Soundness theorem.

2.5.3 Soundness of the System for Parallel Programs

The most interesting result of the soundness proof is the soundness of the
Parallel rule. Like for component programs, we first show the corresponding
stronger property called strong soundness for parallel programs.

Intuitively, if the proof outline of each component program satisfies the
strong soundness property and the actions of the other components do not
“interfere”, then every component is able to establish the intended post-
condition. Then, if all components finish their computations the final state
satisfies all postconditions simultaneously.

For example, consider the standard proof outlines (written in a standard
syntax) {x = 0} x := x+1 {x = 1} and {True} x := 0 {x = 0}. They are
obviously correct, but not interference free. For instance, the postcondition
{x = 0} is not preserved under the execution of x := x+1.

However, if we weaken the postconditions and consider the annotations
{x = 0} x := x+1 {x = 0 ∨ x = 1} and {True} x := 0 {x = 0 ∨ x = 1} we
obtain both, correct and interference free proof outlines.

Finding annotations for each component that are strong enough to sat-
isfy its specification, and yet weak enough to remain invariant under the
execution of all atomic actions of other components is often a difficult task
that requires perseverance.

The strong soundness theorem for parallel programs states that whenever
flow of control reaches a point annotated by an assertion, this assertion
is true. The difference is that in a parallel program the control resides
simultaneously at several points. Thus, we have to prove that the assertions
attached to those points are simultaneously true.

Strong Soundness Theorem for Parallel Programs

Let Ts be a list of pairs formed by (optional) component programs and
their postcondition. Suppose that each component Ts!i such that Ts!i =
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(Some c, q) for some annotated command c and some postcondition q, has
a derivation in the system ann-hoare, i.e. ` c q, and interfree Ts also holds.

Assume also that (Parallel Ts, s) −P∗→ (Parallel Rs, t) for some list of
component programs Rs and some states s, t such that s satisfies the pre-
condition of all component programs Ts!i. Then, all component programs
Rs!j of Parallel Rs satisfy that

• if com (Rs!j ) = Some c for a command c, then t ∈ pre c,

• if com (Rs!j ) = None, then t ∈ post (Rs!j ).

In particular if com (Rs!j ) = None for all j, we have that t ∈ post (Rs!j )
for all j such that j < length Rs.

The formal lemma as formulated in Isabelle is:

lemma Parallel-Strong-Soundness:
[[ (Parallel Ts, s) −P∗→ (Parallel Rs, t); interfree Ts; j < length Rs;
∀ i < length Ts. ∃ c q . Ts!i = (Some c, q) ∧ s ∈ pre c ∧ ` c q ]]

=⇒ if com (Rs!j ) = None then t ∈ post (Ts!j ) else t ∈ pre (the (com (Rs!j )))

Proof. Like in the case of component programs, the theorem in the above
form is too weak. The conclusion must establish two more properties of the
reached configuration, namely, that the program fragment the (com (Rs!j ))
has a derivation in the system and that the list of component programs after
the transition still satisfies the interference freedom property, i.e. interfree
Rs. In other words, we have to prove that derivability of a component’s
proof outline and the interference freedom of a list of proof outlines are
preserved throughout the computation:

lemma Parallel-Strong-Soundness-aux :
[[ (Ts ′, s) −P∗→ (Rs ′, t); Ts ′ = (Parallel Ts);
∀ i < length Ts. ∃ c q . Ts!i = (Some c, q) ∧ s ∈ pre c ∧ ` c q ; interfree Ts ]]

=⇒ ∀Rs. Rs ′ = (Parallel Rs) −→
(∀ j < length Rs. (if com (Rs!j ) = None then t ∈ post (Ts!j )
else t ∈ pre (the (com (Rs!j ))) ∧ ` the (com (Rs!j )) post (Ts!j ))) ∧
interfree Rs

The proof is by induction on the length of the computation. If the length is
0, the proof is trivial since Ts ′ = Rs ′ and s = t. If the length is > 0, then
for some list of component programs Ss and some state b:
(Parallel Ts,s) −P∗→ (Parallel Ss,b) −P1→ (Parallel (Ss[i :=(co, q)]),t)
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where the last step is performed by the ith component of Ss through tran-
sition (Some c, b) −1→ (co, t) and Rs ′ = Parallel (Ss[i := (co, q)]).

The conclusion of the lemma is a conjunction of two clauses. The second
one, namely interfree (Ss[i := (co, q)]) is proven with the following lemma:

lemma interfree-lemma:
[[ (Some c, s) −1→ (co, t); interfree Ts; i < length Ts; Ts!i = (Some c, q) ]]
=⇒ interfree (Ts[i := (co, q)])

The proof of this lemma follows from two symmetric properties of the pred-
icate interfree-aux, both proven by rule induction on the ann-transition re-
lation:

lemma interfree-aux1:
[[ (co, s) −1→ (co ′, t); interfree-aux (co1, q , co) ]] =⇒ interfree-aux (co1, q , co ′)

lemma interfree-aux2:
[[ (co, s) −1→ (co ′, t); interfree-aux (co, q , co1) ]] =⇒ interfree-aux (co ′, q , co1)

For the other clause of the conclusion, two cases arise: i = j or i 6= j. The
first one means that the transition occurred in the same component that
we were observing, i.e. component j. The proof amounts to checking strong
soundness of a proof outline which is exactly the Strong-Soundness theorem.

The case i 6= j means that the last transition (Some c, b) −1→ (co, t)
was performed by a component i which is not the one we were observing,
i.e. not the fixed j. We must prove that component j fulfills the conclusion
of the theorem just the same.

The proof proceeds by rule induction on the last ann-transition relation.
The corresponding “appropriate” auxiliary lemma is:

lemma Parallel-Strong-Soundness-aux-aux :
[[ (Some c, b) −1→ (co, t); i < length Ts; com (Ts!i) = Some c;
∀ i < length Ts. if com (Ts!i) = None then b ∈ post (Ts!i)

else b ∈ pre (the (com (Ts!i))) ∧ ` the (com (Ts!i)) post (Ts!i);
interfree Ts; j < length Ts; i 6= j ]]

=⇒ if com (Ts!j ) = None then t ∈ post (Ts!j )
else t ∈ pre (the (com (Ts!j ))) ∧ ` the (com (Ts!j )) post (Ts!j )

If the last step in the computation consists of the evaluation of a Boolean
expression, then b = t. The proof follows by instantiating the universal
quantification in the premise with j.
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Otherwise, the last step consists of the execution of a basic action, an
atomic region or some transition in a sequential composition of commands.
We discuss two of them; the remaining two cases are analogous:

Basic: Suppose the command of the ith component is AnnBasic r f, then
the last transition is (Some (AnnBasic r f ), b) −1→ (None, f b). By
assumption b ∈ r. Then,

• If com (Ts!j ) = None, then by assumption b ∈ post (Ts!j ). By the
interference freedom hypothesis we have ||= (post (Ts!j ) ∩ r) Basic f
post (Ts!j ). From the definition of validity and b ∈ post (Ts!j ) ∩ r,
we conclude that f b ∈ post (Ts!j ).

• If com (Ts!j ) = Some y for some command y, we obtain from the
assumptions that b ∈ pre y. By the interference freedom of Ts we
have:

∀ p ∈ assertions y . ||= (p ∩ r) Basic f p.

By structural induction on c we prove the lemma: pre c ∈ assertions
c. Hence, we can instantiate the previous assumption with pre y ob-
taining ||= (pre y ∩ r) Basic f (pre y). Finally, from the definition of
validity f b ∈ pre y.

Seq2: Suppose now the command of the ith component is AnnSeq c0 c1,
and the last transition is

(Some (AnnSeq c0 c1), b) −1→ (Some (AnnSeq c2 c1), t)

Then, from the ann-transition rule Seq2 we know that

(Some c0, b) −1→ (Some c2, t)

We instantiate the universally quantified variable Ts in the induction hy-
pothesis with Ts[i := (Some c0, pre c1)]. Thereby, we obtain the information
we need about t but referring to the above instantiation. Since all compo-
nents of Ts other than the component i remain unchanged, the conclusion
of the induction hypothesis is exactly the conclusion of the subgoal. Thus,
it remains to be shown that the premises required to validate the conclusion
of the induction hypothesis are indeed fulfilled by the instantiation:

lemma Parallel-Strong-Soundness-Seq :
[[ ∀ i < length Ts. if com (Ts!i) = None then b ∈ post (Ts!i)

else b ∈ pre (the (com (Ts!i))) ∧ ` the (com (Ts!i)) post (Ts!i);
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com (Ts!i) = Some (AnnSeq c0 c1); i < length Ts; interfree Ts ]] =⇒
(∀ ia < length Ts. (if com (Ts[i :=(Some c0, pre c1)]!ia) = None
then b ∈ post (Ts[i :=(Some c0, pre c1)]!ia)
else b ∈ pre (the (com (Ts[i :=(Some c0, pre c1)]!ia)))

∧ ` the (com (Ts[i :=(Some c0, pre c1)]!ia)) post (Ts[i :=(Some c0, pre c1)]!ia)))
∧ interfree (Ts[i :=(Some c0, pre c1)])

The proof is fairly straightforward. The only modification concerns com-
ponent i, i.e. we substitute (Some AnnSeq c0 c1, q) for (Some c0, pre c1).
The postcondition remains the same, and so does the precondition since pre
(AnnSeq c0 c1) = pre c0.

To show ` c0 pre c1, we instantiate the assumption for component i
obtaining ` (AnnSeq c0 c1) q. By the rule for sequential composition ` c0

pre c1 also holds.
At last showing interfree Ts =⇒ interfree Ts[i :=(Some c0, pre c1)] is

straightforward. This concludes the proof of the Parallel-Strong-Soundness
theorem. 2

The final result is the soundness of the full system of rules for parallel
programs:

theorem oghoare-sound : `̀ p c q =⇒ ||= p c q

Soundness of the rule for parallel composition follows directly from the
Parallel-Strong-Soundness theorem. The proofs of soundness for the re-
maining inference rules have already been proven in the soundness proof for
the system of atomic programs.

Our soundness proof is new with respect to those found in the literature.
By including preconditions in the program’s syntax we achieve a simpler
and more intuitive formulation. The textbook we follow as a model for our
formalization, namely [Apt and Olderog, 1991], defines the program syntax
devoid of any annotation and attaches the preconditions separately. In order
to refer to the precondition reached by the execution of a program S, they
define a recursive function at such that, given a program S and a subprogram
T , at (T, S) returns the remainder of S that is to be executed when the
control is at subprogram T . Using this function they are able to refer to the
precondition of the remaining subprogram. Unfortunately, this function is
not well-defined: a program S might contain several identical subprograms
T , so that the behavior of at is unclear. To resolve these ambiguities they
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informally propose to attach labels to each basic statement in the program.
In contrast, the function pre of our formalization is trivially well-defined and
devoid of such difficulties.

2.6 Generation of Verification Conditions

Due to the presence of the test for interference freedom, the proof method of
Owicki and Gries is not compositional, i.e. it does not allow a derivation of a
correctness specification of a parallel program from the specifications of its
components without reference to their internal structure. This causes this
method to be very costly in practice. For example, in the case of two com-
ponent programs of length l1 and l2, proving interference freedom requires
proving l1 × l2 additional correctness formulas. Most of them are trivially
satisfied because they check an assignment or atomic region a against an
assertion which is disjoint from the variables changed in a. By automating
this tedious work the user can be sure that all cases are considered.

Fortunately, Hoare-like methods possess the necessary structure to be
automated. The proof rules of the system are syntax directed and can be
used to generate the necessary verification conditions by using the rules
backwards. This process has been encapsulated in an Isabelle tactic. The
generated verification conditions are statements of the logic of assertions
devoid of any mention of the programming language. The correctness of the
program specification depends upon the validity of these conditions, which
can be checked using standard Isabelle proof strategies.

As far as the user is concerned, only the name of the defined tactic is rel-
evant. We call the tactic oghoare. It is simply applied to a goal stating that
some parallel program’s specification (with full proof outlines for the com-
ponent programs) is derivable in the system with the same name (oghoare).
As a result a subgoal for each verification condition is generated. A detailed
explanation of the design of the tactics can be found in appendix A.

2.7 Concrete Syntax

In the previous sections we used an abstract representation for the syntax
of the programming language. In particular, the type of the state was left
completely indeterminate. This is convenient for meta-theoretical reasoning
about the language, however, in order to apply the method for verification,
we need to write real programs. In this section we describe the particular
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formalization of the state and introduce concrete syntax for commands and
assertions that allow us to write programs in a familiar way.

2.7.1 Formalization of the State

The state of a program at some point during execution is usually defined
as the tuple of values of program variables (or as a mapping that returns
the values of the program variables) at each point during execution. In any
case, imperative programs manipulate the state by referencing and assigning
program variables. Thus, we need a representation for the state that allows
these two operations.

Finding an adequate model for the representation of state spaces has
been a tricky issue in the story of formal tools for verification of programs.
We briefly describe two of the solutions that have been previously imple-
mented in HOL, and the approach used in this thesis.

State as Tuple

The first one is a rather simple approach proposed by [von Wright et al.,
1993]. The state is represented as the tuple of the variables appearing in
a particular program and implicitly abstract expressions involving variables
over this tuple2. For example, suppose we have the annotated program
(written in a familiar syntax):

vars x y . {|True|} x :=0; {|x = 0|} y :=1

The state is then represented by the tuple (x , y). The internal representation
would be

AnnSeq (AnnBasic {(x , y). True} (λ(x , y). (0, y)))
(AnnBasic {(x , y). x = 0} (λ(x , y). (x , 1)))

The explicit declaration of variables vars x y is important for translation
functions in order to distinguish program variables depending on the state
from constants of the underlying logic.

With this approach variables can have any name and any type. More-
over, operations, syntax, etc. on their values can be directly inherited from
Isabelle/HOL’s theories and used in programs.

2This was the model that we adopted originally. A previous version of the examples
verified with the Owicki-Gries method were carried out using this approach.
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The main disadvantage is that variable names are bound, thus they have
no first-class existence. In HOL there is no difference between λ(x , y). x
+ y and λ(s, t). s + t. This complicates the translation functions which
have to “remember” the original names as given by the explicit declaration
to avoid renaming of variables throughout the transformations. Besides,
abstraction over tuples is not primitive in HOL. It is achieved by suitable
combinations of ordinary abstraction and an uncurrying function of type
(α ⇒ β ⇒ γ) ⇒ α × β ⇒ γ. A one-to-one translation between input
and output syntax is sometimes impossible. For example, if the state of a
program is (x , y) and the input program contains the dummy assignment
x := x the translation into internal syntax will return λ(x , y). (x , y). The
function that translates from internal into external syntax cannot distinguish
whether the original input was x := x, or y := y.

Another disadvantage is the poor modularity: program fragments can
be defined separately, but they can only be put together if they depend on
the exact same state tuple.

State as Function

An alternative, originally used in [Gordon, 1989], consists of defining the
state as a partial function from variable names to values: name ⇒ value
option. This approach gives variables a first-class existence, however, types
of variables have to be modeled explicitly. The simplest model would be to
require all variables in a program to have the same type, this was the first
formalization of program variables in Isabelle/HOL [Galm, 1995]. While
this model is maybe enough for simple programs with variables ranging over
numbers or booleans it is already insufficient when composed variables like
arrays are required. A first way out of this situation is to use an enumerated
type containing all the required types. However, at least theoretically, im-
perative programs can use an unlimited range of types (e.g. arrays of arrays
of arrays . . .). A better choice is to use a properly recursive type. This is
the approach used in [Harrison, 1998]. It can be achieved by disjoint sum
types or by inductive datatypes as follows:

types α array = nat × α list
datatype value =

Bool bool
| Nat nat
| Array value array
| Pointer value
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Following [Harrison, 1998], arrays are represented as a pair consisting of
a starting index and a list of elements. With this model it is possible to
have an unlimited range of types built from a fixed set of constructors. The
main problem is the need to cope with type structure within the logic. This
basically means that type-correctness of programs has to be proved every
time. This may be feasible for meta-theoretical studies of a programming
language, but quite cumbersome in concrete verification tasks.

State as Record

Finally, a model that has all the advantages of the previous two mod-
els is based on a formalization of the state as an Isabelle/HOL record
type [Naraschewski and Wenzel, 1998]. This type automatically supplies
selecting and updating functions for each field. This model was first used by
Markus Wenzel in his version of the Hoare logic for sequential programs in
Isabelle/Isar [Wenzel, 2001b]. Program variables have a first-class existence
and can range over any type. Operations on their value domains can be
inherited directly from Isabelle/HOL theories.

Program variables must be previously declared as an Isabelle/HOL re-
cord type. Each variable is represented by a record field whose type is the
value domain of the variable. For example, consider a program with a single
variable x ranging over the natural numbers. Before writing the program,
we declare the following record:

record state = x :: nat

Automatically we obtain a selector function: x :: state ⇒ nat, and an update
function: x-update :: nat ⇒ state ⇒ state such that the standard properties
of record fields hold. This is optimal for our purposes: the selector function x
is used to reference the value of x at a certain state, and the update function
is used to model assignments to the variable.

As we shall see in the examples throughout this thesis, concrete syn-
tax can be defined in a very elegant way. The basic idea is based on the
quote/antiquote technique. A quotation is an expression which is implicitly
abstracted, in our case over the state space. An antiquotation is a marked
expression (for example by the antiquote symbol ‘´’) within a quotation that
refers to the implicit argument, in our case to the state. An antiquotation
would select (or even update) components from the state.

The syntax for quoted expressions and antiquoted expressions inside a
quotation is:
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syntax
-quote :: β ⇒ (α ⇒ β) (�-�)
-antiquote :: (α ⇒ β) ⇒ β (´-)

A quotation �b� where b has type β represents a function λs. b with type
α ⇒ β. Antiquoted expressions appear within a quotation and are preceded
by the symbol ´. For example, assume f is a function with type α ⇒ β,
then �´f � is a quotation, i.e. an abstraction over some bound variable s
where the function f is antiquoted, i.e. applied to the implicit argument s.
Thus, the internal expression is λs. f s.

For the case where a variable has been declared in a record, for example
x above, then x is a selector function. If we write �´x = 0� then the
quoted expression ´x = 0 is delimited by an abstraction (λs. ´x = 0). The
expression x appears antiquoted so that x is translated as a function that
refers to the implicit argument: (x s). As a result we obtain the internal
expression λs. x s = 0. Let us see now how assignments to variables are
modeled with these techniques.

A basic-command represents any state transformation. However, pro-
gramming languages usually use single assignments of the form x :=e where
x is a variable and e a expression of the proper type. First, we define external
syntax for both annotated and non-annotated basic-commands:

syntax
-Assign :: idt ⇒ β ⇒ α com (´- := -)
-AnnAssign :: α assn ⇒ idt ⇒ β ⇒ α com (- ´- := -)

On the left side of the assignment we write simply an identifier which stands
for the variable name. The variable appears “artificially” antiquoted in order
to keep a uniform notation for variables inside the program. On the right side
we write the assigned expression. Variables appearing within this expression
must be antiquoted. The internal syntax uses the function -update-name on
syntax trees which, given an argument x, returns x-update.

translations
´x := a ⇀ Basic �´(-update-name x a)�
r ´x := a ⇀ AnnBasic r �´(-update-name x a)�

As a result of this translation from external into internal syntax, if we write
in our program for example ´x :=´x + 1, then internally Isabelle turns it into
Basic (λs. s(|x := x s + 1|)), where s(|x := x s + 1|) represents the record
s where the field x has been updated to the value x s + 1. The defined
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concrete syntax for assignments does not allow for multiple assignments,
but they can obviously be expressed in the abstract syntax.

Assertions are enclosed in special brackets to avoid confusion with set
notation.

syntax
-Assert :: α ⇒ α set ({|-|})

An object enclosed by an assertion, say b, is a boolean expression (possibly
containing antiquoted variable names), which is internally quoted, i.e. ab-
stracted over the state. This function is then passed on as the argument of
Collect :: (α ⇒ bool) ⇒ α set. Internally, {|b|} represents the set of states
satisfying the predicate b.

translations
{|b|} ⇀ Collect �b�

Further advantages of this model are:

• Antiquotations mark an expression as dependent on the implicit state
abstraction. This expression may be “non-atomic”, e.g. composition
of functions is allowed. This is useful in chapter 4 where abstraction
occurs over pairs of states (s, t).

• Isabelle/HOL record types may be extended in a linear fashion. For
example, if we verify a program that uses a variable x ranging over
naturals we declare the record:

record program1 = x :: nat

If later we wish to verify a second program with variables x ranging
over naturals and b of boolean type, it suffices to declare the extended
record:

record program2 = program1 + b :: bool

This is useful for proving derivability of a program by first proving it
separately for its subprograms.

• We can also define abbreviations for parts of assertions, parts of pro-
grams, etc. as functions over the record type. Such expressions might
depend on the values of the program variables in a fixed way. For
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example, assume a program with variables x , y and z declared in a
record called vars such that the expression ´x + ´y − ´z = ´x − ´y
+ ´z appears in many assertions. We can define a predicate P :: vars
⇒ bool over the record type as the quotation �´x + ´y − ´z = ´x −
´y + ´z� and then simply write ´P in the assertions.

However, as we shall see in the examples in chapter 3 some expres-
sions over the program variables appear repeatedly but do not always
depend on a fixed form of the variables. For example, consider the
previous example where the expression ´x + ´y − ´z = ´x − ´y + ´z
appears sometimes like that and sometimes as (´x + 1) + ´y − ´z =
(´x + 1) − ´y + ´z. Then, we can define the predicate P as a function
over the record-state with a parameter for the value of the variable ´x,
i.e. the type of P would be vars ⇒ nat ⇒ bool and its definition P
≡ � λx . x + ´y − ´z = x − ´y + ´z �. Then, we can write ´P
´x or ´P (´x + 1) depending on the kind of occurrence in the asser-
tions. For large programs with many variables where the predicates
in the assertions are frequently repeated, these abbreviations allow us
to write clear and short annotations.

With the previous method of representing the state via a tuple of
bound variables [von Wright et al., 1993], abbreviations could also be
declared as functions over the types of the variables concerned. For
example, the predicate P of the previous example would be defined as
P ≡ λ(x , y , z ). x + y − z = x − y + z. However, every time the
predicate is used in an assertion, the arguments have to be written,
i.e. P (x , y , z ) or P (x + 1, y , z ). When the predicate depends on
many variables which appear always in a fixed form, the abbreviations
themselves can be unnecessary long.

The many advantages of the representation of program variables used in this
thesis will be clearly illustrated in the examples presented here.

2.7.2 Concrete Syntax for Commands and Assertions

In this section we introduce the concrete syntax for commands and assertions
in a recipe style. For the reader interested in understanding the examples
shown in this thesis and maybe also interested in using the formalization
as a verification tool, it suffices to read the rest of this section. The formal
specification of the syntax and the corresponding translations are shown in
the appendix B.
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Variables in the program code appear always marked by an antiquote
symbol (´). For example, the variable x is written ´x in the program text
and inside assertions. In this thesis however, we automatically substitute
“antiquoted” variables by the variable name in sans serif font (looks nicer
on paper). For example, the variable ´x, is written x in the program text
and inside assertions in this thesis.

Assertions are written as boolean expressions (predicates) enclosed be-
tween the brackets ‘{|’ and ‘|}’. Thus, if we write {|r |} it is internally trans-
lated as the set of states satisfying the predicate r. Boolean conditions for
if- while- or await-statements are written as normal predicates without any
special marking.

Abbreviations for predicates used frequently in the assertions of a pro-
gram can be given an abbreviation by stating the equality in the premises or
defining it previously via constdefs. They are defined as abstractions over
the state (quoted expressions). Inside assertions they appear antiquoted,
i.e. in sans serif font.

Table 2.4 shows an overview of the external syntax. Each constructor
of the abstract syntax is given a concrete representation. Some commands,
separated by a horizontal line in the table, are simply abbreviations for
special cases of the commands declared in the abstract syntax. They can be
defined by declaring syntax and one-to-one translations (see appendix B).
The “new” commands introduced this way are:

Skip is a basic-command whose state-transformation function is the identity.

Atomic regions are AnnAwait-statements where the waiting condition is
True. They appear enclosed in angle brackets 〈 and 〉.

Wait -statements are AnnAwait-statements where only the waiting condi-
tion is important, i.e. the body is Skip.

If−then -statements for commands of type α com can be defined by a trans-
lation with the else-part being Skip.

A minor problem appears if we try to define the same syntax for the sequen-
tial composition of programs at both layers. Since both have two arguments,
Isabelle cannot solve the ambiguity. Thus, we define the syntax at each level
slightly different. In the case of annotated programs, sequential composition
of c and c ′ is denoted by c;; c ′, this choice avoids clashes with the predefined
; in Isabelle. For programs of type α com the sequential composition of two
commands c and c ′ is denoted by c,, c ′.
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For parallel programs there is some concrete syntax of the form

cobegin c0 {|q0|} ‖ . . . ‖ cn {|qn|} coend

for the case where a given number n of component programs are composed
in parallel. We also define concrete syntax for program schemas, where the
number of components n is a parameter, such as

A := A[0 := 0] ‖ . . . ‖ A:= A[n−1 := 0]

which sets to 0 the components 0 to n− 1 in the array A, where arrays are
usually modeled as lists. Although the syntax of the programming language
does not cater for “. . .”, HOL does. Using the well-known function map and
the construct [i ..j (], which represents the list of natural numbers from i to
j−1, we can express the above schematic program in HOL as follows

Parallel (map (λi . {i < length A} A := A[i :=0] {A!i = 0}) [0..n(])

where the necessary annotations to prove the triple

`̀ {n < length A} Parallel . . . {∀ i<n. A!i = 0}

have already been inserted.
With the defined concrete syntax for parameterized programs the exam-

ple above would be written as

cobegin
scheme [0 ≤ i < n] {i < length A} A := A[i :=0] {A!i= 0}
coend

Schematic programs can also appear in parallel with other component pro-
grams in the same cobegin-coend environment. The index i ranges between
the limits indicated in [- ≤ i <-]. Note that i is a bound variable.

In the next section, devoted to the verification of concrete examples,
we shall see a sample of all program features presented using the concrete
syntax.

2.8 Examples

We have verified all the relevant examples in [Apt and Olderog, 1991]. This
section presents solutions to the mutual exclusion, parallel zero search and
the producer/consumer problems. Two of the programs for mutual exclu-
sion handle the problem for a non-fixed number of components. In the
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Assertion {|r |}
Non-annotated commands

Basic x := e
Seq a0,, a1

Cond if b then a0 else a1 fi
While while b inv {|inv |} do a od
Skip skip
Cond2 if b then a0 fi

Annotated commands
AnnBasic {|r |} x := e
AnnSeq c0;; c1

AnnCond1 {|r |} if b then c1 else c2 fi
AnnCond2 {|r |} if b then c fi
AnnWhile {|r |} while b inv {|inv |} do c od
AnnAwait {|r |} await b then a end
AnnSkip {|r |} skip
AnnAtom {|r |} 〈 a 〉
AnnWait {|r |} wait b end

Parallel commands
Parallel cobegin c0 {|q0|} ‖ . . . ‖ cn {| qn |} coend
Schematic scheme [j ≤ i < k ] c {|q |}

Convention
x: program variable
e: expression of the type of x
r , b, inv , q, qi: boolean expressions
a, a0, a1: non-annotated commands
c, c0, c1: annotated commands
j , k : limits for indexing the component programs

Table 2.4: Concrete syntax for programs.
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next chapter we present a more involved case study of a parameterized pro-
gram, namely, the verification of a parallel garbage collection algorithm for
n mutators. All of them have been verified using the vcg-tactic to generate
the verification conditions and standard Isabelle automatic tactics to prove
them.

The examples use array variables which are modeled as lists. Access to
components of arrays, usually written A [i ], becomes A!i ; assignments to
components of arrays are written A := A [i :=e], where A [i :=e] means that
the component at index i in the list A has been replaced by e.

2.8.1 Mutual Exclusion

Mutual exclusion algorithms synchronize n processes, n ≥ 2, which share
a resource. Several properties are expected to be satisfied. The mutual
exclusion property guarantees that never more than one process uses the
common resource at a time, i.e. only one process may be inside its critical
section at each moment. Other properties like deadlock-freedom, defined
in §2.1.1, or fairness, which means that all the components get “fair” turns
to perform steps, cannot be directly verified in the actual formalization.

Each process Si in a mutual exclusion algorithm is an infinite loop of the
form:

Si ≡ while True do
NC i; (non-critical section)
ACQ i; (acquire protocol)
CS i; (critical section)
RELi; (release protocol)
od

We consider a parallel program

S ≡ INIT , , cobegin S1‖ . . . ‖Sn coend

where INIT is a loop free program in which the variables used in ACQ i and
RELi are initialized.

We prove correctness of three solutions to this problem: a busy wait
solution, i.e. without synchronization, for a two-process algorithm, a second
solution using semaphores via synchronization constructs, and the so-called
ticket algorithm. The last two examples work for n-processes waiting to
access the critical region.
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A Busy Wait Solution

A mutual exclusion algorithm where the “adquire protocol” part for each
process ACQ i is of the form Ti; while bi do skip od with Ti loop free, is
called a busy wait solution and the loop while bi do skip od is called a busy
wait loop.

The following such solution to the mutual exclusion problem for two
processes is due to [Peterson, 1981]:

record Busy-wait-mutex =
flag1 :: bool
flag2 :: bool
turn :: nat
after1 :: bool
after2 :: bool

lemma Busy-wait-mutex :
`̀ {| True |}
flag1 := False,, flag2 := False,,
cobegin

{| ¬flag1 |}
while True

inv {| ¬flag1 |}
do {| ¬flag1 |} 〈flag1 := True,, after1 := False〉;;
{| flag1 ∧ ¬after1 |} 〈turn := 1,, after1 := True〉;;
{| flag1 ∧ after1 ∧ (turn = 1 ∨ turn = 2) |}
while ¬(flag2 −→ turn = 2)

inv {| flag1 ∧ after1 ∧ (turn = 1 ∨ turn = 2) |}
do {| flag1 ∧ after1 ∧ (turn = 1 ∨ turn = 2) |} skip od;;
{| flag1 ∧ after1 ∧ (flag2 ∧ after2 −→ turn = 2) |}
flag1 := False

od

{| False |}
‖
{| ¬flag2 |}
while True

inv {| ¬flag2 |}
do {| ¬flag2 |} 〈flag2 := True,,after2 := False〉;;
{| flag2 ∧ ¬after2 |} 〈turn := 2,,after2 := True〉;;
{| flag2 ∧ after2 ∧ (turn = 1 ∨ turn = 2) |}
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while ¬(flag1 −→ turn = 1)
inv {| flag2 ∧ after2 ∧ (turn = 1 ∨ turn = 2) |}

do {| flag2 ∧ after2 ∧ (turn = 1 ∨ turn = 2) |} skip od;;
{| flag2 ∧ after2 ∧ (flag1 ∧ after1 −→ turn = 1) |}
flag2 := False

od

{| False |}
coend

{| False |}

The boolean variable flagi is set to true when the component Si intends
to enter its critical section. The variable turn is used to manage conflicts,
which appear when both components intend to enter their critical sections at
the same time. The component which sets the variable turn first is delayed
in a busy wait loop. The auxiliary variables afteri indicate whether the
assignment turn := i in ACQ i has been executed.

The critical sections CS i proceed after the busy wait loop. The precon-
ditions of the critical sections represent the set of states reachable at those
points. Observe that program control cannot be ready to enter both crit-
ical sections at the same time because no state can satisfy both assertions
simultaneously.

The vcg-tactic oghoare generates a total of 122 verification conditions,
all of them are automatically proven by the Isabelle tactic auto, which solves
all subgoals simultaneously.

A Solution Using Semaphores

The next solution to the mutual exclusion problem is due to Dijkstra [Dijk-
stra, 1968]. The algorithm can be generalized to the case where n processes
compete to enter their critical sections. It has the simple form:

S ≡ out := True, , cobegin S1‖ . . . ‖Sn coend

Written with the formalized syntax for schematic (parameterized) programs
(cf. §2.7) the corresponding specification is:

record Semaphores-parameterized-mutex =
out :: bool
who :: nat

lemma Semaphores-parameterized-mutex : 0 < n =⇒
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`̀ {| True |}
out := True,,
cobegin

scheme [0 ≤ i < n]
{| True |}
while True inv {| True |}
do {| True |} await out then out := False,, who := i end;;
{| ¬out ∧ who = i |} out := True

od

{| False |}
coend

{| False |}

This algorithm uses binary semaphores as a synchronization primitive. A bi-
nary semaphore is a semaphore that can only take two values. The standard
operations on semaphores can be implemented via the synchronization con-
structor AnnAwait. In the program the variable out is a binary semaphore
that indicates whether all processes are out of their critical sections. The
auxiliary variable who serves to indicate which component, if any, is inside
the critical section.

The critical section would be after the assertion {| ¬ out ∧ who = i |}.
It is easy to see that this precondition cannot hold simultaneously for two
different components. Thus, the mutual exclusion property holds.

The vcg-tactic oghoare generates 20 verification conditions which are all
solved automatically by auto.

The Ticket Algorithm

The next example is also a mutual exclusion algorithm for n processes. We
prove its correctness based on the proof outline given in [de Roever et al.,
2000].

Predicates that are often used in the assertions of a program can be
given an abbreviated name by stating the equality in the premises. For
reasons concerning the translations between internal and external syntax,
the abbreviated expressions appear enclosed between ‘�’ and ‘�’. Then
the given name (Inv in the next example) appears in sans serif font in
the assertions, i.e. Inv. These abbreviations are not to be confused with
program variables, the reason why they both have the same representation
in the program, namely the same font, lies in the fact that both, variables
and abbreviations, depend upon the program state.
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record Ticket-mutex =
num :: nat
nextv :: nat
turn :: nat list
ind :: nat

lemma Ticket-mutex :
[[ 0 < n; Invariant= � n = length turn ∧ 0 < nextv ∧
(∀ k < n. ∀ l < n. k 6= l −→ turn!k < num ∧ (turn!k = 0 ∨ turn!k 6= turn!l)) � ]]

=⇒
`̀ {| n = length turn |}
ind := 0,,
while ind < n

inv {| n = length turn ∧ (∀ i < ind. turn!i = 0) |}
do turn := turn [ind := 0],, ind := ind + 1 od,,

num := 1,, nextv := 1 ,,
cobegin

scheme [0 ≤ i < n]
{| Invariant |}
while True inv {| Invariant |}
do {| Invariant |} 〈turn := turn [i := num],, num := num + 1〉;;
{| Invariant |} wait turn!i = nextv end;;
{| Invariant ∧ turn!i = nextv |} nextv := nextv + 1

od

{| False |}
coend

{| False |}

The critical section would be entered before the assignment to nextv, i.e. at
the moment of entering the assertion {| Invariant ∧ turn!i=nextv |} holds. The
mutual exclusion property is guaranteed because the conjunction of two or
more assertions with different values for i before entering the critical section
implies false. These assertions represent the possible states at that point,
consequently, the set of states from which more than one component could
enter the critical section is empty.

The application of the vcg-tactic returns 35 subgoals. Simplification
tactics leave 11 verification conditions unsolved. Their proofs only need to
be further directed by several case distinctions as hinted in the pencil and
paper proof of [de Roever et al., 2000].

64



2.8.2 Parallel Zero Search

The next example is a program that finds a zero of a function f from naturals
to naturals, searching in parallel for zeroes that are bigger or smaller than
a certain natural a.

record Zero-search =
turn :: nat
found :: bool
x :: nat
y :: nat

lemma Zero-search:
[[ I1 = � a ≤ x ∧ (found −→ (a < x ∧ f (x) = 0) ∨ (y ≤ a ∧ f (y) = 0))

∧ (¬found ∧ a < x −→ f (x) 6= 0) � ;
I2 = � y ≤ a + 1 ∧ (found −→ (a < x ∧ f (x) = 0) ∨ (y ≤ a ∧ f (y) = 0))

∧ (¬found ∧ y ≤ a −→ f (y) 6= 0) � ]] =⇒
`̀ {| ∃ u. f (u) = 0 |}
turn := 1,, found := False,,
x := a,, y := a + 1 ,,
cobegin {| I1 |}

while ¬found

inv {| I1 |}
do {| a ≤ x ∧ (found −→ y ≤ a ∧ f (y) = 0) ∧ (a < x −→ f (x) 6= 0) |}

wait turn = 1 end;;
{| a ≤ x ∧ (found −→ y ≤ a ∧ f (y) = 0) ∧ (a < x −→ f (x) 6= 0) |}
turn := 2;;
{| a ≤ x ∧ (found −→ y ≤ a ∧ f (y) = 0) ∧ (a < x −→ f (x) 6= 0) |}
〈x := x + 1,, if f (x) = 0 then found := True else skip fi〉

od;;
{| I1 ∧ found |}

turn := 2
{| I1 ∧ found |}
‖
{| I2 |}
while ¬found

inv {| I2 |}
do {| y ≤ a + 1 ∧ (found −→ a < x ∧ f (x) = 0) ∧ (y ≤ a −→ f (y) 6= 0) |}

wait turn=2 end;;
{| y ≤ a + 1 ∧ (found −→ a < x ∧ f (x) = 0) ∧ (y ≤ a −→ f (y) 6= 0) |}
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turn := 1;;
{| y ≤ a + 1 ∧ (found −→ a < x ∧ f (x) = 0) ∧ (y ≤ a −→ f (y) 6= 0) |}
〈y := y − 1,, if f (y) = 0 then found := True else skip fi〉

od;;
{| I2 ∧ found |}
turn := 1
{| I2 ∧ found |}

coend

{| f (x) = 0 ∨ f (y) = 0 |}

The tactic generates 98 verification conditions. After applying the general
automatic tactic auto, 40 subgoals remain3. They are all proven with the
tactic arith that automatically solves basic arithmetical problems.

We verify a second simpler solution to this problem without using syn-
chronization:

lemma Zero-Search2:
[[ I1 = � a ≤ x ∧ (found −→ (a < x ∧ f (x) = 0) ∨ (y ≤ a ∧ f (y) = 0))

∧ (¬found ∧ a < x −→ f (x) 6= 0) �;
I2 = � y ≤ a + 1 ∧ (found −→ (a < x ∧ f (x) = 0) ∨ (y ≤ a ∧ f (y) = 0))

∧ (¬found ∧ y ≤ a −→ f (y) 6= 0) � ]] =⇒
`̀ {| ∃ u. f (u) = 0 |}
found := False,,
x := a,, y := a + 1,,
cobegin {| I1 |}
while ¬found

inv {| I1 |}
do {| a ≤ x ∧ (found −→ y ≤ a ∧ f (y) = 0) ∧ (a < x −→ f (x) 6= 0) |}
〈x := x + 1,, if f (x) = 0 then found := True else skip fi〉

od

{| I1 ∧ found |}
‖
{| I2 |}
while ¬found

inv {| I2 |}
do {| y ≤ a + 1 ∧ (found −→ a < x ∧ f (x) = 0) ∧ (y ≤ a −→ f (y) 6= 0) |}
〈y := y − 1,, if f (y) = 0 then found := True else skip fi〉

od

3The tactic auto simplifies all subgoals simultaneously and might generate several sim-
pler subgoals out of one.
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{| I2 ∧ found |}
coend

{| f (x) = 0 ∨ f (y) = 0 |}

Only 20 verification conditions are generated in this simplified version. The
application of auto leaves 32 arithmetical subgoals, all solved automatically
by the tactic arith.

2.8.3 Producer/Consumer

This problem coordinates two processes, producer and consumer, that share
a common, bounded buffer. The producer puts information into the buffer,
the consumer takes it out. Trouble arises when the producer attempts to
put a new item in a full buffer or the consumer tries to remove an item
from an empty buffer. Following Owicki-Gries we express the problem as a
parallel program with shared variables and await-commands. It copies the
elements of an array a into an array variable b. Note that a is not a variable
of the program, thus its value cannot be overwritten.

{0 < length a ∧ 0 < length buffer ∧ length b = length a}
cobegin producer ‖ consumer coend
{∀ k < length a. a!k = b!k}

The precondition imposes that the length of a and b be equal, and a, b and
buffer have non-zero length. The full program is shown below:

record Producer-consumer =
ins :: nat
outs :: nat
i :: nat
j :: nat
vx :: nat
vy :: nat
buffer :: nat list
b :: nat list

For readability we used some abbreviations that can be defined in the
premises of the lemma.

lemma Producer-consumer :
[[ INIT = � 0 < length a ∧ 0 < length buffer ∧ length b = length a � ;
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I = � (∀ k . outs ≤ k ∧ k < ins −→ a!k = buffer!(k mod (length buffer)))
∧ outs ≤ ins ∧ ins − outs ≤ length buffer � ;

I1 = � I ∧ i ≤ length a � ;
p1 = � I1 ∧ i = ins � ;
I2 = � I ∧ (∀ k < j. a!k = b!k) ∧ j ≤ length a � ;
p2 = � I2 ∧ j = outs � ]] =⇒
`̀ {| INIT |}
ins := 0,, outs := 0,, i := 0,, j := 0,,

cobegin {| p1 ∧ INIT |}
while i < length a

inv {| p1 ∧ INIT |}
do {| p1 ∧ INIT ∧ i < length a |}

vx := a!i;;
{| p1 ∧ INIT ∧ i < length a ∧ vx = a!i |}
wait ins − outs < length buffer end;;
{| p1 ∧ INIT ∧ i < length a ∧ vx = a!i ∧

ins − outs < length buffer |}
buffer := buffer [ins mod (length buffer) := vx];;
{| p1 ∧ INIT ∧ i < length a ∧

a!i = buffer!(ins mod (length buffer)) ∧ ins − outs < length buffer |}
ins := ins + 1;;
{| I1 ∧ INIT ∧ i + 1 = ins ∧ i < length a |}
i := i + 1

od

{| p1 ∧ INIT ∧ i = length a |}
‖
{| p2 ∧ INIT |}
while j < length a

inv {| p2 ∧ INIT |}
do {| p2 ∧ j < length a ∧ INIT |}

wait outs < ins end;;
{| p2 ∧ j < length a ∧ outs < ins ∧ INIT |}
vy := buffer!(outs mod (length buffer));;
{| p2 ∧ j < length a ∧ outs < ins ∧ vy = a!j ∧ INIT |}
outs := outs + 1;;
{| I2 ∧ j + 1 = outs ∧ j < length a ∧ vy = a!j ∧ INIT |}
b := b [j := vy];;
{| I2 ∧ j + 1 = outs ∧ j < length a ∧ a!j = b!j ∧ INIT |}
j := j + 1

od
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{| p2 ∧ j = length a ∧ INIT |}
coend

{| ∀ k < length a. a!k = b!k |}

Both components share the variables ins and outs, which count the values
added to the buffer and the values removed from the buffer, respectively.
Thus, the buffer contain ins − outs values at each moment. Expressions ins
mod (length buffer) and outs mod (length buffer) determine the subscript of
the buffer element where the next value is to be added or removed.

The verification of this problem involves proving a total of 138 conditions.
Half of them are trivially solved since they refer to triples of the form (A ∩
pre r) r A where the atomic action r does not change the variables in A.
The rest are automatically solved by Isabelle standard simplification tactics.

2.9 Summary

We have presented the first formalization of the Owicki-Gries method in a
general purpose theorem prover. This method can be considered a classic
and has been studied extensively since its introduction in 1975 (cf. [Dijkstra,
1976, Apt, 1981a, Apt and Olderog, 1991, Best, 1996, de Roever et al.,
2000]). Nevertheless, our formalization yields two main new contributions:

1. A simpler and more intuitive soundness proof with no explicit reference
to program locations.

2. A generalized proof rule for parallel composition that allows direct
verification of parameterized parallel programs in the system.

In addition, we provide the following features that turn the formalization
into a tool suitable for real program verification:

1. Familiar concrete syntax for writing programs like they are usually
found in the literature, and

2. A tactic that automatically generates all the verification conditions.

So far we have only verified typical examples from the literature. The
next chapter presents the verification of two garbage collection algorithms.
These examples better illustrate the applicability of the formalization for
two reasons: first, they are larger and more involved programs and second,
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no complete Owicki-Gries proof existed in the literature. We believe that
the availability of the tool was decisive in the search for successful proof
outlines.
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Chapter 3

Case Study: Single and
Multi-Mutator Garbage
Collection Algorithms

In this chapter we show that the Owicki-Gries method and its mechanization
can be successfully applied to larger examples than those considered in §2.8.
We study two incremental garbage collection algorithms, the second one
parametric in the number of mutators. These algorithms are particularly
tricky and very distinguished scientists have published flawed proofs, some of
which were first detected by mechanization attempts. An excellent account
of these flaws can be found in [Russinoff, 1994].

We first verify Ben-Ari’s classic algorithm [Ben-Ari, 1984]. A pencil and
paper proof using the Owicki-Gries method plus ad-hoc reasoning was pre-
sented in [van de Snepscheut, 1987]. Our proof follows [van de Snepscheut,
1987], but it manages to formulate the extra reasoning within the Owicki-
Gries method. Ben-Ari’s algorithm has also been mechanically proven using
the Boyer-Moore prover [Russinoff, 1994] and PVS [Havelund, 1996], but
none of these proofs uses Owicki-Gries. This makes the algorithm an ex-
cellent example for comparing Owicki-Gries with other methods, and for
comparing Isabelle/HOL with other theorem provers.

In §3.4 we verify a parameterized garbage collector in which an arbitrary
number of mutators work in parallel. This implies that the correctness proof
must be carried out for an infinite family of algorithms, which introduces an
additional difficulty.

The first extension of Ben-Ari’s algorithm to several mutators was pub-
lished in [Pixley, 1988]. We verify an improved version from [Jonker, 1992]
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which is finer-grained, uses less colors and has less overhead for the mutators.
The author of [Jonker, 1992] gives a proof of correctness using an ad-hoc
technique based on observing the behavior of appropriate variant functions.
In the same paper it is argued that the Owicki-Gries method is not suitable
for this problem. To our knowledge this is the first Owicki-Gries proof and
the first mechanized proof of this algorithm.

Thanks to Isabelle’s facilities in dealing with concrete syntax, the for-
malization can be done in a very natural way, where the algorithms and
lemmas are as readable as in the original papers.

The chapter is structured as follows: the basics of garbage collection
algorithms are described in section 3.1. In section 3.2 we formalize a model
for computer memory. Section 3.3 presents the proof of Ben-Ari’s algorithm
in detail. Section 3.4 presents the proof of the parametric algorithm. In
both cases a safety property stating that only garbage nodes are collected is
verified. In section 3.5 we compare our proofs with other related works and
draw conclusions.

3.1 Incremental Garbage Collection

Garbage collection is the automatic reclamation of memory space1. User
processes, called mutators, might produce garbage while performing their
computations. The collector ’s task is to identify this garbage and to recycle
it for future use by appending it to the free list. Incremental (also called
on-the-fly) garbage collection systems are those where the garbage collection
work is randomly interleaved with the execution of instructions in the run-
ning programs. This is important for real-time applications where memory
management operations should never halt the executing program for more
than a very brief period.

The memory is modeled as a finite directed graph with a fixed number of
nodes, where each node has a fixed set of outgoing edges. A predetermined
subset of nodes, called the roots, is always accessible to the running program.
A node is called reachable or accessible if a directed path exists along the
edges from at least one root to that node, otherwise, it is called garbage. For
marking purposes, each node is associated a color, which can be black or
white. The memory structure can only be modified by one of the following
three operations: redirect an edge from a reachable node towards a reachable
node, append a garbage node to the free list, or change the color of a node.

1An excellent survey about garbage collection algorithms can be found in [Wilson,
1992].
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The mutators abstractly represent the changes that user programs pro-
duce on the memory structure. It is assumed that they only work on nodes
that are reachable, having the ability to redirect an edge to some new target.
To make garbage collection safe, the mutators cooperate with the collector
by assuming the overhead of blackening the new target. Thus, a mutator
repeatedly redirects some edge R to some reachable node T , and then colors
the node T black.

It is customary to describe the collector’s task in this way: identify the
nodes that are garbage, i.e. no longer reachable, and append them to the free
list, so that their space can be reused by the running program. We abstract
from the particular implementation of the free list and simply assume that
the collector makes garbage nodes accessible again: since the mutator has
the ability to redirect arbitrary accessible edges, it may reuse these nodes.
In the sequel adding a node to the free list just means making it accessible.

The collector repeatedly executes two phases, traditionally called mark-
ing phase and sweep or appending phase.

During the marking phase, the collector traverses the graph, starting by
blackening the set of roots, and marks accessible nodes by coloring them
black. This process finishes when all reachable nodes are black. During the
appending phase the memory is swept, appending all unmarked (garbage)
nodes to the free list. The outline of the algorithms is:

• Marking phase:

1. Color the roots black.

2. Visit each edge. If the source is black, color the target black.

3. Count the black nodes.

4. If not all reachable nodes are black, go to step 2.

• Appending phase:

5. Visit each node. If it is white, append it to the free list; if it is
black, color it white.

The safety property we prove says that no reachable node is garbage
collected. In other words, if during the appending operation a node is white,
then it is garbage. Clearly, this property holds if step 4 is correct. But
how do we determine that all reachable nodes are black? In the case of
one mutator, Ben Ari’s solution is to keep the result of the last count, and
compare it with the result of the current count. If they coincide, then all
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reachable nodes are black. For n mutators, we compare the results of the
last n+ 1 counts. So the algorithms for one and several mutators differ only
in step 4.

3.2 Formalization of the Memory

The memory is formalized using two lists of fixed size. The first list, repre-
sented by the variable M in the algorithms, has an index for each memory
node, i.e. nodes are referred to by natural numbers that range from 0 to
length M − 1; the color of node i can be consulted by accessing the contents
of index i, which in Isabelle’s list notation is written as M!i. The datatype
node is the color of a node, which can be black or white.

datatype node = Black | White

The list of nodes M has the type

types nodes = node list

The second list, which we refer to by E in the algorithms, models the edges,
which are numbered by the indices of the list; each edge is a pair of natural
numbers corresponding to the source and the target nodes

types
edge = nat × nat
edges = edge list

and Roots is an arbitrary set of nodes

consts Roots :: nat set

Figure 3.1 shows an example of a memory where the set of roots is {1, 2},
the list M of nodes is [White, Black , White, White, White] and the list E of
edges is [(0, 0), (3, 4), (1, 2), (2, 3), (4, 2)].

We define some sets and predicates that are frequently used in the an-
notations. Blacks of a list of nodes returns the set of nodes that are Black .
BtoW is true of the edges that point from a Black node to a White node.
Finally, given a list of edges e, Reach e is the set of nodes reachable from
Roots, i.e. the Roots themselves and those nodes such that there exists a

74



1

2

4

3

0

Roots

0

1
2

3

4

Figure 3.1: An example of the memory.

path along the edges from the node to some root. The formal definitions
are:

constdefs
BtoW :: (edge × nodes) ⇒ bool
BtoW ≡ λ(e, m). (m!fst e) = Black ∧ (m!snd e) 6= Black

Blacks :: nodes ⇒ nat set
Blacks m ≡ {i . i < length m ∧ m!i = Black}

Reach :: edges ⇒ nat set
Reach e ≡ {x . x ∈ Roots ∨

(∃ path. 1 < length path ∧ path!(length path − 1) ∈ Roots ∧ x = path!0
∧ (∀ i < length path − 1. (∃ j < length e. e!j = (path!(i + 1), path!i))))}

The next predicates indicate whether a given set of roots or edges is well-
formed:

Proper-Roots :: nodes ⇒ bool
Proper-Roots m ≡ Roots 6= {} ∧ Roots ⊆ {i . i < length m}

Proper-Edges :: (nodes × edges) ⇒ bool
Proper-Edges ≡ (λ(m, e). ∀ i < length e. fst (e!i) < length m

∧ snd (e!i) < length m)

Given a list of nodes, a proper set of roots is a non-empty subset of nodes.
Proper edges are those that point from a node to a node, i.e. the first and
second components of an edge-pair must be within the range of node indices.
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The separate treatment of colors and edges in our data structure is an
abstraction that considerably simplifies proofs relating to the changes in
the graph. If an edge is redirected, the variable representing the memory,
namely M, remains invariant, while coloring does not modify the variable
representing the edges E.

Finally, we introduce a last predicate to express that all reachable nodes
are black. It is called Safe because as we shall see this situation represents
a safe state for the memory.

constdefs
Safe :: (nodes × edges) ⇒ bool
Safe ≡ λ(m, e). Reach e ⊆ Blacks m

3.3 The Single-Mutator Case

We verify van de Snepscheut’s version of Ben-Ari’s algorithm. We follow
the ideas of [van de Snepscheut, 1987], but formulate the proof completely
within the Owicki-Gries system.

The program consists of two components, namely, the Mutator and the
Collector. First, we study each component separately and prove that they
achieve their intended task whenever they are executed in isolation. Then,
we prove that both components can indeed be executed in parallel without
interfering with each other.

In order to use the defined concrete syntax for programs (see 2.7), the
variables used in the collector and mutator are first declared in a record:

record gar-coll-state =
M :: nodes
E :: edges
bc :: nat set
obc :: nat set
Ma :: nodes
ind :: nat
k :: nat
z :: bool

In the program text and assertions, variables are printed in sans serif font.
The variable M represents the list of nodes and E the list of edges. The role
of the other variables will be explained in the following sections.
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Figure 3.2: The Mutator.

3.3.1 The Mutator

The mutator first redirects an arbitrary edge R from an arbitrary accessible
node towards an arbitrary accessible node T. It then colors the new target
T black. A graphical description of the actions are shown in figure 3.2. We
declare the arbitrarily selected node and edge as constants:

consts
R :: nat
T :: nat

The following predicate states, given a list of nodes m and a list of edges e,
the conditions under which the selected edge R and node T are valid:

constdefs
Mut-init :: gar-coll-state ⇒ bool
Mut-init ≡ � T ∈ Reach E ∧ R < length E ∧ T < length M �

For a more structured proof we have divided the algorithms into modules.
A module is a piece of code, consisting of one or several instructions. For
the mutator we consider two modules, one for each action. An auxiliary
variable z is set to false if the mutator has already redirected an edge but
has not yet colored the new target. Note that the state is the previously
declared record of program variables.

constdefs
Redirect-Edge :: gar-coll-state ann-com
Redirect-Edge ≡ {|Mut-init ∧ z|} 〈E := E [R := (fst (E!R), T )],, z := (¬z)〉

Color-Target :: gar-coll-state ann-com
Color-Target ≡ {|Mut-init ∧ ¬z|} 〈M := M [T := Black ],, z := (¬z)〉

Mutator :: gar-coll-state ann-com
Mutator ≡
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{|Mut-init ∧ z|}
while True inv {|Mut-init ∧ z|}
do Redirect-Edge ;; Color-Target od

We prove that the mutator’s proof outline is correct, by the soundness theo-
rem it suffices to prove that it is derivable in the proof system for component
programs. To obtain the full proof outline a postcondition has to be added
to the annotated command. Since the program is an infinite loop, no state
ever reaches the postcondition.

lemma Mutator : ` Mutator {| False |}

The verification conditions are generated with the tactic annhoare. All are
trivially solved except for one which requires the following lemma:

lemma Graph1:
[[ t ∈ Reach e; r < length e ]] =⇒ t ∈ Reach (e [r := (fst (e!r), t)])

stating that an accessible node cannot be rendered inaccessible by redirecting
an edge to it. For the proof it is not necessary to require that the source of
the selected edge R be reachable. However, for implementations purposes,
it is important that mutators work on nodes that are reachable. Otherwise,
the following scenario explained in [Pixley, 1988] could cause problems in the
system: Suppose that a certain edge R has been selected by the mutator. If
its source becomes unreachable before the redirection is executed, it could
be garbage collected. Once it is appended to the free list another process
might re-use it resulting in unexpected results when the mutator performs
the pending redirection.

3.3.2 The Collector

The collector works in two phases. The first one, called the marking phase
first blackens the roots and then executes a loop. The body of the loop
consists of first traversing M, coloring all reachable nodes black, and then
counting the number of black nodes. The loop terminates if the results of the
current count and the previous one coincide. After termination of the loop,
the appending phase starts. Here the collector traverses M once more, this
time making all white nodes reachable and all black nodes white. Figure 3.3
shows an example of the execution of the collector in isolation.

To structure the proof outline of the collector we define four modules:
Blacken-Roots, Propagate-Black, Count-Blacks and Append.
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Figure 3.3: The marking phase.

The collector uses, apart form the list of nodes M and the list of edges E,
five more variables. bc (black count) and obc (old black count) are used to
determine if the set of black nodes has grown during the last Propagate-Black
phase. Following [van de Snepscheut, 1987], obc is initialized to the empty
set, and bc to the set Roots2. A single auxiliary variable Ma is used for
“recording” the value of M after the execution of Propagate-Black. This
is just an assignment to an auxiliary variable, used exclusively for proof
purposes, and therefore not part of the computation. Finally, ind is a counter
for loops and k is used to achieve a finer grain of interleaving inside the
Propagate-Black phase.

consts
Blacken-Roots :: gar-coll-state ann-com
Propagate-Black :: gar-coll-state ann-com
Count-Blacks :: gar-coll-state ann-com
Append :: gar-coll-state ann-com

A constant M-init is used to give Ma a suitable first value, defined as a list
of nodes where only the Roots are black.

2obc and bc are modeled as sets of black nodes whereas in the original algorithm they
represent their cardinalities. We found the set approach more elegant but it simplifies
neither the algorithm nor the proofs.
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consts M-init :: nodes
constdefs

Proper-M-init :: nodes ⇒ bool
Proper-M-init m ≡ Blacks M-init = Roots ∧ length M-init = length m

For readability of the assertions we introduce the following abbreviations:

constdefs
Proper :: gar-coll-state ⇒ bool
Proper ≡ � Proper-Roots M ∧ Proper-Edges (M, E) ∧ Proper-M-init M �

The proof outline of the collector with modules is:

constdefs
Collector :: gar-coll-state ann-com
Collector ≡
{| Proper |}
while True inv {| Proper |}
do

Blacken-Roots;;
{| Proper ∧ Roots ⊆ Blacks M |} obc := {};;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc = {} |} bc := Roots;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc = {} ∧ bc = Roots |} Ma := M-init ;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc = {} ∧ bc = Roots ∧ Ma = M-init |}
while obc 6= bc

inv {| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ bc ∧ bc ⊆ Blacks M

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) |}
do {| Proper ∧ Roots ⊆ Blacks M ∧ bc ⊆ Blacks M |}

obc := bc;;
Propagate-Black ;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ (obc ⊂ Blacks M ∨ Safe (M, E)) |}
Ma := M;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks Ma

∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M ∧ length Ma = length M

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) |}
bc := {};;
Count-Blacks

od;;
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Append
od

Safe (M, E) states that all reachable nodes are black, i.e. Reach E ⊆ Blacks
M. Since it holds before Append, all white nodes are garbage right before
the appending module starts. This is almost the safety property we wish
to prove. The algorithm must ensure that only garbage nodes are collected
during the appending phase. We shall show later when describing the Ap-
pend module that if a white node is garbage before Append, then it remains
so until Append makes it reachable.

The key parts of the invariant are the second and third lines. The second
line guarantees that after any execution of the body the cardinalities of
obc and bc are a lower and upper bound, respectively, of the number of
black nodes after Propagate-Black. It is clear that obc is a lower bound,
because black nodes stay black until the beginning of the appending phase.
That bc is an upper bound would be difficult to prove without the auxiliary
variable Ma since the mutator can blacken nodes while the collector executes
Count-Blacks. The third line of the invariant guarantees that, if an execution
of the body does not establish the safety property, then obc is a proper
lower bound, which means that some white node was colored black during
the execution of Propagate-Black. As we shall see, the Propagate-Black and
Count-Blacks modules have very clear tasks: Propagate-Black establishes
the third line, while Count-Blacks establishes the second.

Let us now see that the conjunction of the invariant and the negation of
the guard obc 6= bc imply the safety condition. If obc = bc, then the upper
and lower bound coincide, and so obc cannot be a proper lower bound.
Hence, no white node was colored black during Propagate-Black, and we
obtain Safe (M, E).

We prove the derivability of the collector’s proof outline. Since it is an
infinite loop, the postcondition is the empty set of states, i.e. the set of
states that satisfy the predicate False:

lemma Collector : ` Collector {| False |}

Blackening Roots

In this module a loop visits all roots and colors them black. The correspond-
ing annotated command is:

defs Blacken-Roots-def :
Blacken-Roots ≡
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{| Proper |}
ind := 0;;
{| Proper ∧ ind = 0 |}
while ind < length M

inv {|Proper ∧ (∀ i < ind. i ∈ Roots −→ M!i = Black) ∧ ind ≤ length M|}
do {| Proper ∧ (∀ i < ind. i ∈ Roots −→ M!i = Black) ∧ ind < length M |}
if ind ∈ Roots then

{| Proper ∧ (∀ i < ind. i ∈ Roots −→ M!i = Black) ∧ ind < length M

∧ ind ∈ Roots |}
M := M [ind := Black ] fi;;
{|Proper ∧ (∀ i < ind + 1. i ∈ Roots −→ M!i = Black) ∧ ind < length M|}
ind := ind + 1

od

This module establishes in the postcondition that the set of roots is a subset
of the set of black nodes. Its derivability in the ann-hoare system is easy to
prove.

lemma Blacken-Roots: ` Blacken-Roots {| Proper ∧ Roots ⊆ Blacks M |}

Propagation of the Coloring

During this phase, the collector visits the edges in a given order, coloring
the target whenever the source is Black. This phase establishes the third
line of the invariant.

The predicate PBInv contains the main idea of the proof. We declare it
now but explain its meaning below:

consts
PBInv :: gar-coll-state ⇒ nat ⇒ bool

We first explain an easier version of the Propagate-Black module. It will be
later modified to obtain a finer degree of interleaving.

constdefs
Propagate-Black-aux :: gar-coll-state ann-com
Propagate-Black-aux ≡
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M |}
ind := 0;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ ind = 0 |}
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while ind < length E

inv {| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ PBInv ind ∧ ind ≤ length E |}
do {| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ PBInv ind ∧ ind < length E |}
if M!fst (E!ind) = Black then

{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ PBInv ind ∧ ind < length E ∧ M!fst (E!ind) = Black |}
M := M [snd (E!ind) := Black ];;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ PBInv (ind + 1) ∧ ind < length E |}
ind := ind + 1

fi

od

If the collector is executed in isolation it suffices to define PBInv as

λind . obc ⊂ Blacks M ∨ (∀ i < ind . ¬BtoW (E!i , M).

Upon termination, i.e. when ind = length E we would obtain

obc ⊂ Blacks M ∨ (∀ i < length E. ¬BtoW (E!i , M))

in the postcondition. When all roots are black, the following lemma holds:

lemma Graph2:
[[Roots ⊆ Blacks m; Proper-Edges (m, e); ∀ i < length e. ¬BtoW (e!i , m) ]]

=⇒ Reach e ⊆ Blacks m

Hence, upon termination we obtain obc ⊂ Blacks M ∨ Safe (M, E), which
is the postcondition of the Propagate-Black phase in the proof outline of the
collector.

However, it is easy to see that this definition of BPInv is not invariant
under the first action of the mutator: an edge that has already been visited
by the collector could be redirected by the mutator to a white target. This
is depicted in figure 3.4. In this example the collector is interrupted by the
mutator when it reaches edge 3 (ind = 3) but before coloring. The mutator
then redirects the already visited edge 2 to node 3. Thus, there is a visited
edge that satisfies the black-to-white predicate, falsifying the invariant.

Fortunately, we can find a weaker predicate that is able to establish the
postcondition while remaining invariant under the actions of the mutator.
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Figure 3.4: Interference with the mutator.

The following definition of BPInv is an adaptation of the one proposed
in [van de Snepscheut, 1987]:

defs PBInv-def :
PBInv ≡ � λind . obc < Blacks M ∨ (∀ i <ind . ¬BtoW (E!i , M) ∨

(¬z ∧ i = R ∧ (snd (E!R)) = T ∧
(∃ r . ind ≤ r ∧ r < length E ∧ BtoW (E!r , M)))) �

Intuitively, its invariance is proved as follows.
If either the collector or the mutator blacken some white node then, after

execution of the body, the predicate obc ⊂ Blacks M holds. Otherwise, i.e.
no coloring occurs, there are two situations:

1. All edges visited by the collector point to a Black node, i.e. ∀ i < ind.
¬BtoW (E!i , M) holds.

2. Some visited edge points to a white node because the mutator has
redirected it. Then this edge has target node T. Ben-Ari observes
that in this situation there must be another BtoW edge among those
that have not yet been visited by the collector. This holds because
the new target T is reachable by assumption, thus, there exists a path
to T from some root. Since all roots are black, some edge along this
path must be a BtoW edge.

Observe that upon termination of the loop this last clause cannot hold be-
cause the counter ind reaches the value of length E. Consequently, this in-
variant establishes obc ⊂ Blacks M ∨ Safe (M, E) upon termination and is
interference free under the mutator’s actions. We prove the derivability of
the corresponding triple:
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lemma Propagate-Black-aux :
` Propagate-Black-aux
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (obc ⊂ Blacks M ∨ Safe (M, E)) |}

The assignment M := M [snd (E!ind) := Black ] contains two references
to shared variables (M and E), which leads to implementation problems.
Fortunately, the loop body can be replaced by

if M! fst (E!ind) = Black
then k := snd (E!ind);; 〈M := M [k := Black ],, ind := ind + 1〉
else 〈if M! fst (E!ind) 6= Black then ind := ind + 1 fi〉

where at most one shared variable is accessed in each atomic action.
This introduces a new point of interference with the mutator. After this

modification the program remains correct although the precondition of the
atomic region 〈M := M [k := Black ],, ind := ind + 1〉 is non-trivial. It
includes the following predicate, proposed in [van de Snepscheut, 1987]:

constdefs
Auxk :: gar-coll-state ⇒ bool
Auxk ≡ � k < length M ∧ (M!k 6= Black ∨ ¬BtoW (E!ind, M)

∨ obc < Blacks M ∨ (¬z ∧ ind = R ∧ snd (E!R) = T
∧ (∃ r . ind < r ∧ r < length E ∧ BtoW (E!r , M)))) �

Van de Snepscheut leaves its verification as an exercise that we carried out
successfully.

defs
Propagate-Black-def :
Propagate-Black ≡
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M |}
ind := 0;;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ ind = 0 |}
while ind < length E

inv {| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ PBInv ind ∧ ind ≤ length E |}
do {| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M

∧ bc ⊆ Blacks M ∧ PBInv ind ∧ ind < length E |}
if M! fst (E!ind) = Black
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then

{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ PBInv ind ∧ ind < length E ∧ M!fst (E!ind) = Black |}
k := snd (E!ind);;
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ PBInv ind ∧ ind < length E ∧ M!fst (E!ind) = Black ∧ Auxk |}
〈M := M [k := Black ],, ind := ind + 1〉

else

{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ PBInv ind ∧ ind < length E |}
〈if M! fst (E!ind) 6= Black then ind := ind + 1 fi〉

fi

od

The evaluation of the condition M! fst (E!ind) 6= Black and the incrementing
of ind must be done atomically. If we let a point of interference in between,
the mutator could blacken the node, which would falsify the assertion.

lemma Propagate-Black :
` Propagate-Black
{| Proper ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M
∧ (obc ⊂ Blacks M ∨ Safe (M, E)) |}

Counting Black Nodes

This phase finally re-establishes the invariant of the collector’s outermost
loop. The computed set bc must contain all nodes which were black upon
termination of Propagate-Black or, since Ma records precisely this set, the
Count-Blacks phase must ensure that Blacks Ma ⊆ bc holds.

The invariant contains the predicate

constdefs
CountInv :: gar-coll-state ⇒ nat ⇒ bool
CountInv ≡ � λind . {i . i < ind ∧ Ma!i = Black} ⊆ bc �

which upon termination establishes Blacks Ma ⊆ bc. The corresponding
annotated command is:

defs
Count-Blacks-def :
Count-Blacks ≡
{| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M
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∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) ∧ bc = {} |}
ind := 0;;
{| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) ∧ bc = {} ∧ ind = 0 |}
while ind < length M

inv {| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ CountInv ind

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) ∧ ind ≤ length M |}
do {| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ CountInv ind

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) ∧ ind < length M |}
if M!ind = Black
then {| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ CountInv ind ∧ (obc ⊂ Blacks Ma ∨ Safe (M, E))
∧ ind < length M ∧ M!ind = Black |}

bc := insert ind bc

fi;;
{| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ CountInv (ind + 1)
∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) ∧ ind < length M |}

ind := ind + 1
od

The mutator cannot access the auxiliary variable Ma. Thus, the set of black
nodes of Ma remains invariant under the mutator’s blackening action so that
these annotations are invariant against the mutator’s actions.

The postcondition is exactly the outermost invariant of the collector’s
loop, which must hold at the beginning and at the end of the loop’s body.

lemma Count-Blacks:
` Count-Blacks
{| Proper ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ bc ∧ bc ⊆ Blacks M

∧ (obc ⊂ Blacks Ma ∨ Safe (M, E)) |}
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With all reachable nodes marked we can proceed to the appending phase
where all unmarked nodes are appended to the free list.

Appending to the Free List

Following our predecessors, the operation of appending a garbage node ind to
the free list, i.e. making ind reachable, is modeled abstractly by the function:

consts Append-to-free :: nat × edges ⇒ edges

satisfying the following axioms:

axioms
Append-to-free0: length (Append-to-free (n, e)) = length e
Append-to-free1: Proper-Edges (m, e)

=⇒ Proper-Edges (m, Append-to-free (n, e))
Append-to-free2: n /∈ Reach e

=⇒ n ′ ∈ Reach (Append-to-free (n, e)) = (n ′ = n ∨ n ′ ∈ Reach e)

In the annotated code, AppendInv ind states that all white nodes with index
ind or larger are garbage, i.e. the safety property is maintained throughout
the appending loop.

constdefs
AppendInv :: gar-coll-state ⇒ nat ⇒ bool
AppendInv ≡ �λind . ∀ i<length M. ind ≤ i −→ i ∈ Reach E −→ M!i = Black�

defs
Append-def :
Append ≡
{| Proper ∧ Roots ⊆ Blacks M ∧ Safe (M, E) |}
ind := 0;;
{| Proper ∧ Roots ⊆ Blacks M ∧ Safe (M, E) ∧ ind = 0 |}
while ind < length M

inv {| Proper ∧ AppendInv ind ∧ ind ≤ length M |}
do {| Proper ∧ AppendInv ind ∧ ind < length M |}

if M!ind = Black then

{| Proper ∧ AppendInv ind ∧ ind < length M ∧ M!ind = Black |}
M := M [ind := White]

else
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{| Proper ∧ AppendInv ind ∧ ind < length M ∧ ind /∈ Reach E |}
E := Append-to-free (ind, E)

fi;;
{| Proper ∧ AppendInv (ind + 1) ∧ ind < length M |}
ind := ind + 1

od

The precondition of the assignment to E guarantees that only garbage nodes
are collected.

3.3.3 Interference Freedom

The proof outline for the mutator has a total of 5 assertions and 2 atomic
actions. The proof outline of the collector has 36 assertions and 20 atomic
actions. Hence, the number of interference freedom tests that have to be
checked is 172. Obviously many of them are trivial, but in many cases what
seemed to be a perfect proof outline revealed a bug only after attempting
the proof with the theorem prover.

We carry out part of the interference freeness tests using the modules
used to structure the code of the collector and mutator. We prove lemmas
about the invariance of the assertions in each module of the collector against
the atomic actions in each module of the mutator, and vice versa. These
are in total 16 lemmas of the form:

lemma interfree-Blacken-Roots--Redirect-Edge:
interfree-aux (Some Blacken-Roots, {}, Some Redirect-Edge)

lemma interfree-Redirect-Edge--Blacken-Roots:
interfree-aux (Some Redirect-Edge, {}, Some Blacken-Roots)

The verification conditions that result from the interference-freedom tests
represented by these lemmas can be automatically generated. First, the
definitions of the modules are unfolded, and then we apply a special tactic
called interfree-aux which is a “subtactic” of the one used for full parallel
programs (see appendix A.3).

To prove several verification conditions that result from the interference
freedom tests, we need some auxiliary lemmas about graphs. The first one
states that the set of reachable nodes is not increased by the first action of
the mutator:

lemma Graph3:
[[ t ∈ Reach e; r < length e ]] =⇒ Reach (e [r := (fst (e!r), t)]) ⊆ Reach e
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In the proof of interfree-Propagate-Black--Redirect-Edge we need the follow-
ing lemma:

lemma Graph4:
[[t ∈ Reach e; Roots ⊆ Blacks m; index ≤ length e; t < length m; r < length e;
∀ i < index . ¬BtoW (e!i , m); r < index ; m!fst (e!r) = Black ; m!t 6= Black ]]

=⇒ ∃ r . index ≤ r ∧ r < length e ∧ BtoW (e [r := (fst (e!r), t)]!r , m)

establishing that whenever a visited edge r < index is redirected to a white
target t then there exists a not visited edge in the modified list of edges such
that it satisfies the predicate BtoW as well. A slight variation is needed to
prove the invariance of the predicate Auxk, namely,

lemma Graph5:
[[ t ∈ Reach e; Roots ⊆ Blacks m; ∀ i < r . ¬BtoW (e!i , m); t < length m;

r < length e; m!fst (e!r) = Black ; m!snd (e!r) = Black ; m!t 6= Black ]]
=⇒ ∃ r ′. r < r ′ ∧ r ′ < length e ∧ BtoW (e [r := (fst (e!r), t)]!r ′, m)

Next, we prove the interference freedom of the collector against the mutator
and vice versa:

lemma interfree-Collector--Mutator :
interfree-aux (Some Collector , {}, Some Mutator)

lemma interfree-Mutator--Collector :
interfree-aux (Some Mutator , {}, Some Collector)

Finally, we prove the derivability of the full program:

lemma Gar-Coll :
`̀ {| Proper ∧ Mut-init ∧ z |}
cobegin

Collector {| False |} ‖ Mutator {| False |}
coend

{| False |}

The tactic oghoare is applied without unfolding the definitions of the mod-
ules. As a result, the derivability of the components is directly proven by the
lemmas Collector and Mutator, and the interference freedom test consists
only of two subgoals, which correspond exactly to the lemmas about interfer-
ence shown above. By the soundness theorem the algorithm is correct in the
sense of partial correctness. The validity of the postcondition is, however,
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not interesting since both the mutator and the collector are infinite cycles.
The interesting property is the validity of the intermediate annotations. In
particular, the precondition of the action which appends nodes to the free
list ensures that these nodes are garbage.

3.4 The Multi-Mutator Case

If we allow the interaction with several mutators, new difficulties come into
play. We consider a solution, first presented in [Jonker, 1992], where the
collector proceeds to the appending phase only after n+ 1 consecutive exe-
cutions of the Propagate-Black phase where the set of black nodes is not in-
creased. Observe that, for one mutator, this algorithm checks twice whether
obc = bc. [Jonker, 1992] also shows that n consecutive executions suffice,
but we do not consider this version here.

The program consists of a fixed, finite and nonempty set of mutator
processes and one collector process. The external syntax for parameterized
programs is shown in the table 2.4.

3.4.1 The Mutators

A mutator can only redirect an edge when its target is a reachable node.
Redirecting an edge may make its old target inaccessible. If several mutators
are active, then one of them may select a reachable node T as a new target.
Before the edge has been redirected, however, another mutator may render T
inaccessible. To solve this problem, selecting the new target and redirecting
the edge is modeled as a single atomic action.

Each mutator m selects an edge Rm and a target node Tm. As in the
previous section each mutator uses an auxiliary variable Zm, that indicates
if it is pending before the blackening of a node. These three objects are put
together as fields of a record:

record mut =
Z :: bool
R :: nat
T :: nat

Isabelle’s syntax for accessing the field Z of a variable Mut of type mut is
Z Mut. Record update is written Mut (|Z :=True|), meaning that the field Z
of the record Mut is updated to the value True.
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In the algorithm the variable Muts is a list of length n (the number
of mutators) whose components are records of type mut. For example, to
access the selected edge of mutator j we write R (Muts!j ).

The variables of the program are the same as in the case for one mutator,
except for the list Muts used by the mutator and two new variables, Qa and
L, of the collector which we explain in the following sections:

record mul-gar-coll-state =
M :: nodes
E :: edges
bc :: nat set
obc :: nat set
Ma :: nodes
ind :: nat
k :: nat
Qa :: nat
L :: nat
Muts :: mut list

In the assertions of the mutator we use the following predicate:

constdefs
Mul-mut-init :: mul-gar-coll-state ⇒ nat ⇒ bool
Mul-mut-init ≡ � λn. n = length Muts ∧ (∀ i < n. R (Muts!i) < length E

∧ T (Muts!i) < length M) �

indicating that the selected edges and targets are within the range of edges
and nodes, respectively, and that the list of records Muts has an entry for
each of the n mutators.

The modules of the mutator’s code are functions of the number of mu-
tators n and the particular mutator’s index j with 0 ≤ j < n.

constdefs
Mul-Redirect-Edge :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com
Mul-Redirect-Edge j n ≡
{| Mul-mut-init n ∧ Z (Muts!j ) |}
〈if T (Muts!j ) ∈ Reach E then

E := E [R (Muts!j ) := (fst (E!R (Muts!j )), T (Muts!j ))] fi,,

Muts := Muts [j := (Muts!j ) (|Z := False|)]〉

Mul-Color-Target :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com
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Mul-Color-Target j n ≡
{| Mul-mut-init n ∧ ¬ Z (Muts!j ) |}
〈M := M [T (Muts!j ) := Black ],, Muts := Muts [j := (Muts!j ) (|Z := True|)]〉

Mul-Mutator :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com
Mul-Mutator j n ≡
{| Mul-mut-init n ∧ Z (Muts!j ) |}
while True

inv {| Mul-mut-init n ∧ Z (Muts!j ) |}
do Mul-Redirect-Edge j n ;;

Mul-Color-Target j n
od

The annotations of the proof outline of the mutators are, like the instruc-
tions, parameterized by the number of mutators n and the index j. In
chapter 5, we shall show that parameterized annotations for correct spec-
ifications of parameterized programs can always be found. We prove the
derivability of the parameterized proof outline of a generic mutator:

lemma Mul-Mutator : [[0 ≤ j ; j < n]] =⇒ ` Mul-Mutator j n {| False |}

3.4.2 The Collector

In the case of one mutator, if an execution of the body does not establish the
safety property, the reason is that some white node was colored black during
the execution of Propagate-Black. When several mutators are present, there
may be other reasons. To describe them we need a new value which repre-
sents the number of mutators that are queueing to blacken a white node.
This value is computed by the function Queue, which returns the length
of the list that results from filtering the queueing mutators from the list of
mutator variables:

constdefs
Queue :: mul-gar-coll-state ⇒ nat

Queue ≡ � length (filter (λi . ¬ Z i ∧ M!(T i) 6= Black) Muts) �

The auxiliary variable Qa “records” this value upon termination of the
Propagate-Black phase. The definition of the predicate Mul-Proper requires,
besides proper nodes and proper edges, that the length of the variable Muts
be the number of mutators n:
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constdefs
Mul-Proper :: mul-gar-coll-state ⇒ nat ⇒ bool
Mul-Proper ≡ � λn. Proper-Roots M ∧ Proper-Edges (M, E)

∧ Proper-M-init M ∧ n = length Muts �

We declare the modules used for the collector:

consts
Mul-Blacken-Roots :: nat ⇒ mul-gar-coll-state ann-com
Mul-Propagate-Black :: nat ⇒ mul-gar-coll-state ann-com
Mul-Count-Blacks :: nat ⇒ mul-gar-coll-state ann-com
Mul-Append :: nat ⇒ mul-gar-coll-state ann-com

The variable L is a counter that keeps track of how many consecutive
times the values of obc and bc coincide. When it reaches the value n + 1
the conditions satisfy the safety requirement and the collector proceeds to
collect the unmarked nodes. The proof outline of the collector is:

constdefs
Mul-Collector :: nat ⇒ mul-gar-coll-state ann-com
Mul-Collector n ≡
{| Mul-Proper n |}
while True inv {| Mul-Proper n |}
do

Mul-Blacken-Roots n ;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M |} obc := {};;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc = {} |} bc := Roots;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc = {} ∧ bc = Roots |} L := 0;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc = {} ∧ bc = Roots ∧ L = 0 |}
while L < n + 1

inv {| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ bc ⊆ Blacks M ∧
(Safe (M, E) ∨ (L ≤ Queue ∨ bc ⊂ Blacks M) ∧ L < n + 1) |}

do

{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ L ≤ Queue ∨ bc ⊂ Blacks M) |}
obc := bc;;
Mul-Propagate-Black n;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ obc ⊂ Blacks M ∨ L < Queue

∧ (L ≤ Queue ∨ obc ⊂ Blacks M)) |}
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bc := {};;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ obc ⊂ Blacks M ∨ L < Queue

∧ (L ≤ Queue ∨ obc ⊂ Blacks M)) ∧ bc = {} |}
〈Ma := M,, Qa := Queue〉;;
Mul-Count-Blacks n;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Blacks Ma ⊆ bc ∧ (Safe (M, E) ∨ obc ⊂ Blacks Ma ∨
L < Qa ∧ (Qa ≤ Queue ∨ obc ⊂ Blacks M)) ∧ Qa < n + 1 |}

if obc = bc

then

{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Blacks Ma ⊆ bc ∧ (Safe (M, E) ∨ obc ⊂ Blacks Ma ∨
L < Qa ∧ (Qa ≤ Queue ∨ obc ⊂ Blacks M)) ∧ Qa < n + 1

∧ obc = bc |}
L := L + 1

else

{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ length Ma = length M

∧ obc ⊆ Blacks Ma ∧ Blacks Ma ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Blacks Ma ⊆ bc ∧ (Safe (M, E) ∨ obc ⊂ Blacks Ma ∨
L < Qa ∧ (Qa ≤ Queue ∨ obc ⊂ Blacks M)) ∧ Qa < n + 1

∧ obc 6= bc |}
L := 0

fi

od;;
Mul-Append n
od

The invariant of the one-mutator case must be compared with the precon-
dition of the if−then−else instruction, because both correspond to the as-
sertion established by the phase that counts the black nodes. The assertion
Safe (M, E) ∨ obc ⊂ Blacks Ma has been weakened with a new disjunct,
corresponding to the new situation which can prevent Safe (M, E) from
holding. The new disjunct corresponds to the case in which at least one
mutator joins the queue during the Mul-Propagate-Black phase, i.e. L < Qa.
In this case it is also necessary to distinguish whether some mutator leaves
the queue, i.e. colors its white target (obc ⊂ Blacks M), or none leaves the
queue, i.e. the queue is not decreased (Qa ≤ Queue). Intuitively, after n+ 1
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non-blackening Mul-Propagate-Black iterations, the property Safe (M, E)
must hold, since the number of queueing mutators cannot exceed n.

The codes of the modules are the same as in §3.3 except for the annota-
tions in the Mul-Propagate-Black and Count-Blacks phases, which have to
be adapted to the new invariant.

We just show the Mul-Propagate-Black phase.

constdefs
Mul-PBInv :: mul-gar-coll-state ⇒ bool
Mul-PBInv ≡ � Safe (M, E) ∨ obc ⊂ Blacks M ∨ L < Queue

∨ (∀ i < ind. ¬BtoW (E!i , M)) ∧ L ≤ Queue �

Mul-Auxk :: mul-gar-coll-state ⇒ bool
Mul-Auxk ≡ � L < Queue ∨ M!k 6= Black ∨ ¬BtoW (E!ind, M)

∨ obc ⊂ Blacks M �

defs
Mul-Propagate-Black-def :
Mul-Propagate-Black n ≡
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ L ≤ Queue ∨ obc ⊂ Blacks M) |}
ind := 0;;
{| Mul-Proper n ∧ Roots ⊆ Blacks M

∧ obc ⊆ Blacks M ∧ Blacks M ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ L ≤ Queue ∨ obc ⊂ Blacks M) ∧ ind = 0 |}
while ind < length E

inv {| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Mul-PBInv ∧ ind ≤ length E |}
do {| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Mul-PBInv ∧ ind < length E |}
if M!fst (E!ind) = Black
then

{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Mul-PBInv ∧ M!fst (E!ind) = Black ∧ ind < length E |}
k := snd (E!ind);;
{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ (Safe (M, E) ∨ obc ⊂ Blacks M ∨ L < Queue ∨
(∀ i < ind. ¬BtoW (E!i , M)) ∧ L ≤ Queue ∧ Mul-Auxk )

∧ k < length M ∧ M!fst (E!ind) = Black ∧ ind < length E |}
〈M := M [k := Black ],, ind := ind + 1〉
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else

{| Mul-Proper n ∧ Roots ⊆ Blacks M ∧ obc ⊆ Blacks M ∧ bc ⊆ Blacks M

∧ Mul-PBInv ∧ ind < length E |}
〈if M!fst (E!ind) 6= Black then ind := ind + 1 fi〉

fi

od

If we expand the predicate Mul-PBInv in the invariant we obtain

Safe (M, E) ∨ obc ⊂ Blacks M ∨ L < Queue
∨ (∀ i < ind. ¬BtoW (E!i , M)) ∧ L ≤ Queue.

Any coloring establishes obc ⊂ Blacks M. (Observe that only coloring can
make the queue shorter.) If no coloring occurs, then, either all the visited
edges point to a black node, or some mutator has redirected an edge to a
white source, but has not yet colored the target, which amounts to saying
that the queue grows, i.e. L < Queue.

The next lemma proves derivability of the collector’s proof outline in the
system:

lemma Mul-Collector : ` Mul-Collector n {| False |}

3.4.3 Interference Freedom

The collector has a total of 40 assertions and 21 atomic actions. One mutator
has 5 assertions and 2 atomic actions. For the interference freedom test it
suffices to consider the following combinations:

1. Invariance of the assertions in the collector against the actions of a
generic mutator with some index j such that 0 ≤ j < n, and vice
versa.

2. Invariance of the assertions of one mutator j against the actions of
another mutator i such that i 6= j.

This results in a total of 195 interference freedom proofs. Like for the one-
mutator case we perform combinations of the modules in separate lemmas
that are then applied directly to the verification of the parallel composition.
The interference freedom among the mutators is proven in the following
lemma:

lemma Mul-interfree-Mutator--Mutator : [[i < n; j < n; i 6= j ]] =⇒
interfree-aux (Some (Mul-Mutator i n), {}, Some (Mul-Mutator j n))
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The derivability of the parallel composition of the mutators, i.e. the lemma

lemma Mul-Parameterized-Mutators: 0 < n =⇒
`̀ {| Mul-mut-init n ∧ (∀ i < n. Z (Muts!i)) |}
cobegin

scheme [0 ≤ j < n] Mul-Mutator j n {| False |}
coend

{| False |}

is proven by applying the tactic oghoare without unfolding the definition of
Mul-Mutator. The tactic generates four subgoals. Two of them correspond
to the two verification conditions about the logical implications of the over-
all precondition and postcondition and those of the components. A third
subgoal stating the derivability of one generic mutator (proven by the lemma
Mul-Mutator), and the forth subgoal stating the interference between two
generic mutators (proven by the lemma Mul-interfree-Mutator--Mutator).
Notice that there is no need for induction or any other proof method; pa-
rameterized programs are directly handled by the proof rules of the system.

The rest of the interference freedom tests are similar to those of the
one-mutator case:

lemma Mul-interfree-Collector--Mutator : j < n =⇒
interfree-aux (Some (Mul-Collector n), {}, Some (Mul-Mutator j n))

lemma Mul-interfree-Mutator--Collector : j < n =⇒
interfree-aux (Some (Mul-Mutator j n), {}, Some (Mul-Collector n))

Finally, we prove the derivability in the Owicki-Gries system of the full
program:

lemma Mul-Gar-Coll :
`̀ {| Mul-Proper n ∧ Mul-mut-init n ∧ (∀ i < n. Z (Muts!i)) |}
cobegin
Mul-Collector n {| False |}
‖
scheme [0 ≤ j < n] Mul-Mutator j n {| False |}

coend
{| False |}

3.5 Conclusions and Related Work

We have provided mechanically checked Owicki-Gries proofs for two garbage
collection algorithms. The Owicki-Gries method splits the proof into a large
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number of simple interference freedom subproofs. These are very tedious to
prove by hand, and so avoided by humans, who prefer to concentrate on the
few difficult cases. By applying the formalized Owicki-Gries system most of
the interference freedom proofs for the final annotations were automatically
carried out by Isabelle/HOL. For the remaining cases, five non-trivial lem-
mas about graphs had to be supplied. The proofs of these lemmas, however,
were very interactive.

We do not know of any complete Owicki-Gries proof for any of the two
algorithms. In his proof of Ben-Ari’s algorithm, [van de Snepscheut, 1987]
mixes the Owicki-Gries method with ad-hoc reasoning; in particular, he
does not provide an invariant for the outermost loop, implicitly claiming
that doing so would be complicated. However, the invariant turns out to be
simple (3 clauses), and has a clear intuitive interpretation.

For the n-mutators algorithm, [Jonker, 1992] argues that

A proof according to the Owicki-Gries theory would require the
introduction of a satisfactory number of ghost variables. In an
earlier version of this paper the invariant we constructed was
rather unwieldy and the proof of invariance almost unreadable.

However, our proof only uses two auxiliary variables (Ma and Qa), plus a
trivial auxiliary variable for each mutator. Jonker considers in his paper
several variations of the algorithm. We believe that Owicki-Gries proofs for
these variations should be possible to obtain from the proof presented here
with reasonable effort.

We know of two other mechanized proofs of Ben-Ari’s algorithm, carried
out using the Boyer-Moore theorem prover [Russinoff, 1994] and the PVS
theorem prover [Havelund, 1996, Havelund and Shankar, 1997]. A main
advantage of our approach is the closeness to the original program text,
which simplifies the interaction with the prover. Annotated programs are
fairly readable by humans, and they are also directly accepted as input by
Isabelle. In other approaches the program must first be translated into a
different language (e.g. LISP in [Russinoff, 1994]).

Another aspect of our formalization is that we only had to prove 13
lemmas (7 of them trivial) about graph functions, whereas 100 lemmas were
required in [Russinoff, 1994], and about 55 in [Havelund, 1996, Havelund and
Shankar, 1997]. The reason for this is probably that many trivial lemmas
about sets or lists could be automatically proven using Isabelle’s built-in
tactics (rewriting, classical reasoning, etc.) and Isabelle’s standard libraries.
The proof effort, however, took two months for the one-mutator algorithm
(similar to our predecessors) and another two months for the n-mutator case.
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Most of the time was consumed in finding and improving the annotations.
A disadvantage of the Owicki-Gries method (in its classical version) is

that it can only be applied to safety properties. A liveness property, namely
every garbage node is eventually collected, is also very important for garbage
collection algorithms. Mechanical proofs of this liveness property are found
in [Russinoff, 1994] for Ben Ari’s algorithm and in [Jackson, 1998], where the
safety and liveness property of a predecessor of Ben Ari’s algorithm [Dijkstra
et al., 1978] is proven using PVS.

None of our two algorithms has been proven correct using fully automatic
methods. In [Bruns, 1997], there is a proof of Ben Ari’s algorithm for 1
mutator and 4 memory cells. In [Das et al., 1999], a predecessor of Ben
Ari’s algorithm is proved correct using automatic tools for generating and
proving invariants. The key invariants, however, require intelligent input
from the user. The paper suggests using predicate abstraction for checking
or strengthening invariants in a larger verification effort involving interactive
theorem provers, which is a promising idea.

Our overall conclusion is that the application of a theorem prover greatly
enhances the applicability of the Owicki-Gries method. The closeness to the
original program is preserved, and the large number of routine proofs is
considerably automated.
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Chapter 4

The Rely-Guarantee Method
in Isabelle/HOL

This chapter presents the formalization of the rely-guarantee method for
correctness proofs of parallel imperative programs with shared variables
in the theorem prover Isabelle/HOL. This method was first proposed by
Jones [Jones, 1981, Jones, 1983] and can be seen as the compositional ver-
sion of Owicki-Gries. We closely follow the presentation in [Xu et al., 1997],
where a sound and complete version of the system is presented in a conven-
tional pencil and paper style. However, some aspects of our formalization
differ from this model. The reasons for these modifications will be addressed
as we encounter them.

The rely-guarantee system provides compositional proof rules for the ver-
ification of parallel programs. This is accomplished by enriching the speci-
fication of each component with conditions concerning the interaction with
the environment. A rely-guarantee specification defines four sets: the sets
of initial and final states (pre and postcondition) and the sets characterizing
the effect of actions performed by the environment or by the component
itself (rely and guarantee conditions).

It is important to observe the strong connection to Owicki-Gries. In
the latter, programs were annotated at every point of interference and the
verification process required proving interference freedom of the annotations
of each component against the atomic actions of the other components. The
idea of the rely-guarantee method is to record the interference information
in the specification of each component. This information consists of the
rely condition stating what the component expects from the environment,
and the guarantee condition, stating the effect of the component itself on
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the environment. By using the information given by the rely and guarantee
conditions of each component, the verification of a parallel program can be
carried out in a compositional way.

The compositionality of this method has two major advantages over the
non-compositionality of Owicki-Gries. First of all, it drastically reduces the
complexity of the verification process. The number of correctness proofs
in the rely-guarantee formalism increases only linearly with the number of
parallel components, while exponentially in the Owicki-Gries method. Sec-
ondly, it allows the verification of so-called open systems, i.e. systems where
a specified margin of interaction from an arbitrary environment is permitted.
Then, new components, whose actions respect this margin, can be added a
posteriori. The verification of the new system can be done without looking
into the structure of the previously verified program. This makes the method
adequate for top-down development of parallel systems. In constrast, the
Owicki-Gries method only works for closed systems, where all component
programs must be simultaneously known. If a new component program is
added to the parallel composition, the verification process must be restarted
due to the non-compositionality of the interference freedom test.

The chapter is organized as follows: section 4.1 presents the abstract syn-
tax and section 4.2 the operational semantics of the language. Section 4.3
defines the notion of validity of a specification in the rely-guarantee formal-
ism and section 4.4 presents the rules of the proof system. The soundness
of the proof system with relation to the underlying semantics is proven in
section 4.5. Section 4.6 defines a user-friendly concrete syntax for using
the method and section 4.7 shows the applicability of the formalization by
verifying several examples. Section 4.8 summarizes the main results.

4.1 Abstract Syntax

Like in the previous formalization, the languages of sequential and parallel
programs are defined in different layers.

types
α bexp = α set

datatype α com =
Basic (α ⇒ α)
| Seq (α com) (α com)
| Cond (α bexp) (α com) (α com)
| While (α bexp) (α com)
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| Await (α bexp) (α com)
types α par-com = α com option list

The language of component programs α com is a standard sequential while-
language augmented with the known synchronization construct Await. The
only difference with the language of component programs of section 2.1 is
the lack of assertions in the syntax. Component programs are not presented
as proof outlines, so intermediate assertions can be omitted.

Parallelism is defined in a separate layer with type α par-com; it is
simply a list of optional component programs. This is analogous to the
constructor Parallel defined in the Owicki-Gries language. For simplicity,
we consider parallelism only at the top level, i.e. no nested parallelism.
Moreover, contrary to the formalization in 2.1 parallelism appears as a single
construction, i.e. there are neither sequential nor if- nor while-constructions
for parallel programs. This way, we reduce the number of constructors and
avoid having to duplicate proofs.

Like in chapter 2, this model of parallelism allows composition of any
number of sequential component programs by grouping them in a list. Rep-
resentation of parameterized parallel programs may be achieved by means
of the function map.

4.2 Operational Semantics

The execution of a component program is characterized by an operational
semantics that distinguishes between two kinds of transitions: program (or
component) transitions, performed by the component itself, and environ-
ment transitions, performed by another component or an arbitrary environ-
ment. The latter affects the state but leaves the program unchanged.

The set of rules defining program transitions is analogous to the rules pre-
sented in §2.2. Execution of programs is described via computations, which
record the sequence of transitions of both kinds. This semantics allows us
to define the computation of parallel programs in terms of the computations
of the components via a special operator described in section 4.5.2.

Next, we introduce the rules of the semantics and the definition of com-
putation for each layer of the language.
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4.2.1 Semantics of Component Programs

A configuration is a pair (P , σ), where P is some program or None standing
for a terminated program, and σ is a state.

types α conf = α com option × α

A transition is represented by a labelled arrow connecting the beginning and
ending configurations. There are two kinds of transitions:

Environment transitions, labelled with e, represent a step from the en-
vironment and can only change the state.

consts etran :: (α conf × α conf ) set
syntax -etran :: α conf ⇒ α conf ⇒ bool (- −e→ -)
translations P −e→ Q ⇀↽ (P , Q) ∈ etran
inductive etran
intros

Env : (P , s) −e→ (P , t)

Component transitions, labelled with c, represent a step of a sequential
component program

consts ctran :: (α conf × α conf ) set
syntax

-ctran :: α conf ⇒ α conf ⇒ bool (- −c→ -)
-ctran∗ :: α conf ⇒ α conf ⇒ bool (- −c∗→ -)

translations
P −c→ Q ⇀↽ (P , Q) ∈ ctran
P −c∗→ Q ⇀↽ (P , Q) ∈ ctran∗

where P −c∗→ Q is the reflexive transitive closure of P −c→ Q.

inductive ctran
intros

Basic: (Some (Basic f ), s) −c→ (None, f s)

Seq1: (Some P0, s) −c→ (None, t)
=⇒ (Some (Seq P0 P1), s) −c→ (Some P1, t)

Seq2: (Some P0, s) −c→ (Some P2, t)
=⇒ (Some (Seq P0 P1), s) −c→ (Some (Seq P2 P1), t)
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CondT : s∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P1, s)
CondF : s /∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P2, s)

WhileF : s /∈b =⇒ (Some (While b P), s) −c→ (None, s)
WhileT : s∈b =⇒ (Some (While b P), s) −c→ (Some (Seq P (While b P)), s)

Await : [[ s∈b; (Some P , s) −c∗→ (None, t) ]]
=⇒ (Some (Await b P), s) −c→ (None, t)

Basic actions and evaluation of boolean conditions are atomic. In both
conditional and iteration statements, the evaluation of the boolean tests are
atomic, but a step of the environment can interrupt between the boolean
test and the first action from the corresponding program body. The body of
an await-statement is executed atomically, thus no environment transitions
can occur.

It is usual to ensure that await-statements always terminate by disallow-
ing iteration and await-statements in the body, however, this restriction is
not necessary for the soundness proofs of this formalization and is thus not
required.

4.2.2 Semantics of Parallel Programs

The semantics of parallel programs is also defined by transition rules between
configurations. A configuration for a parallel program is a pair formed by
a program (α par-com) and a state. A parallel program has terminated if
so have all its components, i.e. when all component programs are None, but
this is also of type α par-com. Thus, we do not need to wrap the program
part into an option type.

types
α par-conf = α par-com × α

Transitions may be from the environment, labelled with pe, or from the
parallel program, labelled with pc.

consts
par-etran :: (α par-conf × α par-conf ) set
par-ctran :: (α par-conf × α par-conf ) set
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syntax
-par-etran:: α par-conf ⇒ α par-conf ⇒ bool (- −pe→ -)
-par-ctran:: α par-conf ⇒ α par-conf ⇒ bool (- −pc→ -)

translations
P −pe→ Q ⇀↽ (P , Q) ∈ par-etran
P −pc→ Q ⇀↽ (P , Q) ∈ par-ctran

The transition rule for environment transitions is as expected.

inductive par-etran
intros

ParEnv : (Ps, s) −pe→ (Ps, t)

The execution of a parallel program is modeled by a nondeterministic inter-
leaving of the atomic actions of the components. In other words, a parallel
program performs a component step when one of its non-terminated com-
ponents performs a component step.

inductive par-ctran
intros

ParComp: [[ i<length Ps; (Ps!i , s) −c→ (r , t) ]]
=⇒ (Ps, s) −pc→ (Ps[i :=r ], t)

Ps[i :=r ] is the list of programs Ps with the program i replaced by r. This is
the only transition rule. If we extend the syntax with other constructors at
the parallel level, the set of rules defining the semantics should be augmented
with the corresponding rules.

4.2.3 Computations

A computation is defined in [Xu et al., 1997] as any sequence of the form

(P0, σ0) δ1−→ (P1, σ1) δ2−→ . . .
δn−→ (Pn, σn)

δn+1−→ . . . , δi ∈ {e, c}

There are many ways of formalizing this concept. Given a definition of
computation, the main requirement is to be able to access the program
fragment and the state of each configuration, and also the kind of transition
between two configurations.

The solution we adopted is to model computations as an inductive set
of lists of configurations. The one-element list is always a computation, and
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two inference rules, one for each kind of transition, determine which lists
belong to the inductive set.

types α confs = α conf list
consts cptn :: α confs set
inductive cptn
intros

CptnOne: [(P , s)] ∈ cptn
CptnEnv : (P , t)#xs ∈ cptn =⇒ (P , s)#(P , t)#xs ∈ cptn
CptnComp: [[ (P , s) −c→ (Q , t); (Q , t)#xs ∈ cptn ]]

=⇒ (P , s)#(Q , t)#xs ∈ cptn

Given two consecutive configurations in a computation it is always possi-
ble to determine the kind of transition between them by comparing both
program fragments: environment transitions leave the program unchanged
while component transitions always change it. Computations of parallel
programs are defined analogously.

types α par-confs = α par-conf list
consts par-cptn :: α par-confs set
inductive par-cptn
intros

ParCptnOne: [(P , s)] ∈ par-cptn
ParCptnEnv : (P , t)#xs ∈ par-cptn =⇒ (P , s)#(P , t)#xs ∈ par-cptn
ParCptnComp: [[ (P , s) −pc→ (Q , t); (Q , t)#xs ∈ par-cptn ]]

=⇒ (P , s)#(Q , t)#xs ∈ par-cptn

The set of computations of a program P starting from some initial state s
is defined as the set of lists of configurations with first element the pair (P ,
s) which are a computation.

constdefs
cp :: α com option ⇒ α ⇒ α confs set
cp P s ≡ {l . l !0 = (P , s) ∧ l ∈ cptn}

par-cp :: α par-com ⇒ α ⇒ α par-confs set
par-cp P s ≡ {l . l !0 = (P , s) ∧ l ∈ par-cptn}

4.2.4 Modular Definition of Computation

The definition of computation of sequential programs presented in the pre-
vious section follows the one proposed in [Xu et al., 1997] and is probably
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the most natural and intuitive approach. However, it represents the execu-
tion of a program in a simplified linear way without taking into account the
inherent structure of the development of a computation.

In the definition of the programming language, however, we observe a
well defined structure. For example, the sequential composition is formed
from two programs, and the body of a while or an await constructor is itself
a program. This structure is automatically reflected in the corresponding
computations.

For the proof of some properties, this modular structure is very impor-
tant. Trying to retrieve this information out of the linear representation
of the computation results in tedious and illegible proofs. Such proofs are
not appropriate for being carried out in a theorem prover and can often be
avoided by redefining concepts. The alternative definition for computations
proposed in this section explicitly shows the structure of the program, thus
considerably simplifying some proofs, especially those concerning properties
of while-programs.

First, we define the auxiliary function lift that returns, given a confi-
guration and a program Q, the same configuration where the program has
been sequentially composed with Q. If the concerned program is finished,
i.e. None, the returned program is just Q.

constdefs
lift :: α com ⇒ α conf ⇒ α conf
lift Q ≡ λ(P ,s). (if P=None then (Some Q , s) else (Some(Seq (the P) Q), s))

The set of computations can be defined respecting the modular structure by
the following rules:

consts cptn-mod :: α confs set
inductive cptn-mod
intros

CptnModOne: [(P , s)] ∈ cptn-mod
CptnModEnv : (P , t)#xs ∈ cptn-mod =⇒ (P , s)#(P , t)#xs ∈ cptn-mod
CptnModNone: [[ (Some P , s) −c→ (None, t); (None, t)#xs ∈ cptn-mod ]]

=⇒ (Some P , s)#(None, t)#xs ∈cptn-mod

CptnModCondT : [[ (Some P0, s)#ys ∈ cptn-mod ; s ∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P0, s)#ys ∈ cptn-mod

CptnModCondF : [[ (Some P1, s)#ys ∈ cptn-mod ; s /∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P1, s)#ys ∈ cptn-mod
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CptnModSeq1: [[ (Some P0, s)#xs ∈ cptn-mod ; zs = map (lift P1) xs ]]
=⇒ (Some (Seq P0 P1), s)#zs ∈ cptn-mod

CptnModSeq2:
[[ (Some P0, s)#xs ∈ cptn-mod ; fst (last ((Some P0, s)#xs)) = None;
(Some P1, snd (last ((Some P0, s)#xs)))#ys ∈ cptn-mod ;
zs = (map (lift P1) xs)@ys ]] =⇒ (Some (Seq P0 P1), s)#zs ∈ cptn-mod

CptnModWhile1:
[[ (Some P , s)#xs ∈ cptn-mod ; s ∈ b; zs = map (lift (While b P)) xs ]]

=⇒ (Some (While b P), s)#(Some (Seq P (While b P)), s)#zs ∈ cptn-mod
CptnModWhile2:

[[ (Some P , s)#xs ∈ cptn-mod ; fst (last ((Some P , s)#xs)) = None;
s ∈ b; zs = (map (lift (While b P)) xs)@ys;

(Some (While b P), snd (last ((Some P , s)#xs)))#ys ∈ cptn-mod ]]
=⇒ (Some (While b P), s)#(Some (Seq P (While b P)), s)#zs ∈ cptn-mod

The first two rules are the same as in the set or rules defining cptn. The
third rule of cptn, namely CptnComp, is now replaced by seven rules which
not only take into account that the first step is performed by the component
program but also consider the kind of program performing the step.

The rule CptnModNone summarizes the three possible steps where the
program terminates: Basic, WhileF and Await. The two rules for the con-
ditional are obvious. Observe that for these five cases the new definition
does not provide any richer information than the CptnComp rule with case
analysis on the corresponding c-step.

The rule CptnModSeq1 represents the computations of a sequential com-
position where execution does not enter the second program, and Cptn-
ModSeq2 those who at least finish the first program. For while-programs
a computation might enter the body but not finish it (CptnModWhile1) or
finish it at least once (CptnModWhile2).

The new definition is useful for proofs about computations of while-
programs because, in general, we do not know how often the body is ex-
ecuted. By using rule induction on cptn-mod we directly obtain the three
following cases:

1. CptnModNone: the while-body is not entered.

2. CptnModWhile1: the execution of the body is at least started.

3. CptnModWhile2: the body is executed completely at least once fol-
lowed by a new computation of the same while-program, on which the
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induction hypothesis holds.

The proof power of applying rule induction to cptn-mod is, at least for
the while-case, decisive for the proof of soundness in §4.5. In contrast, the
information obtained by using the same proof method on cptn was almost
useless.

Equivalence of both Definitions

The new definition of computation does not represent the intuitive idea of
a computation as obviously as the previous one does. The reader might not
be convinced that the set generated by these rules contains all computations
defined by the set cptn and vice versa. For this reason, and also because
we still want to use the previous definition when it is convenient, we prove
their equivalence in the following theorem:

theorem cptn-iff-cptn-mod : (c ∈ cptn) = (c ∈ cptn-mod)

Proof. The if-direction is fairly easy.

lemma cptn-if-cptn-mod : c ∈ cptn-mod =⇒ c ∈ cptn

It is proven by rule induction on cptn-mod. The only-if-direction is more
complicated since it requires recovering the missing structure.

lemma cptn-onlyif-cptn-mod : c ∈ cptn =⇒ c ∈ cptn-mod

It is proved by rule induction on cptn, with a nested structural induction on
the program for the case where the first step is made by the component, i.e.
we need to prove the following auxiliary lemma by structural induction on
a:

lemma cptn-onlyif-cptn-mod-aux :
[[ (Some a, s) −c→ (Q , t); (Q , t) # xs ∈ cptn-mod ]]
=⇒ (Some a, s) # (Q , t) # xs ∈ cptn-mod

In the proof of this lemma we need an important property stating that the
computation of a sequential composition of programs can be divided into a
computation of the first program and a computation of the second one.

lemma div-seq :
(Some (Seq P Q), s) # zs ∈ cptn-mod =⇒
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∃ xs. (Some P , s) # xs ∈ cptn-mod ∧
(zs = map (lift Q) xs ∨ fst (last ((Some P , s) # xs)) = None ∧
(∃ ys. (Some Q , snd (last ((Some P , s) # xs))) # ys ∈ cptn-mod

∧ zs = map (lift Q) xs @ ys))

The proof is by rule induction on cptn-mod. 2

4.3 Validity of Correctness Formulas

A rely-guarantee correctness formula (or specification) of a program P con-
sists of the quadruple (pre, rely , guar , post). These four conditions can be
classified in two parts:

• Assumptions, represented by the pre- and rely condition, describe the
conditions under which the program runs, and

• Commitments, composed by the guarantee and postcondition, describe
the expected behaviors of the program when it is run under the as-
sumptions.

The pre- and postcondition are, like in the traditional Hoare logic, sets of
states. They impose conditions upon the initial and final states of a compu-
tation, respectively. The rely and guarantee conditions describe properties of
environment transitions and transitions of the program, respectively. Thus,
they describe sets of pairs of states, formed by the state before and after the
transition.

Jones first suggested in [Jones, 1981] that the rely and guarantee condi-
tions be reflexive and transitive. However, for the soundness proof only the
reflexivity of the guarantee condition is necessary.

4.3.1 Validity for Component Programs

Specifications of sequential programs are written with the syntax “P sat
[pre, rely , guar , post ]” where sat stands for “satisfies”. The type of these
tuples is:

types α rgformula = α com × α set × (α × α) set × (α × α) set × α set

Informally, we say that P satisfies its specification if under the assumptions
that
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1 P is started in a state that satisfies pre, and

2 any environment transition in the computation satisfies rely,

then P ensures the following commitments:

3 any component transition satisfies guar, and

4 if the computation terminates, the final state satisfies post.

The formal definitions are given by the functions:

constdefs
assum :: (α set × (α × α) set) ⇒ α confs set
assum ≡ λ(pre, rely) . {c. snd (c!0) ∈ pre ∧ (∀ i . Suc i<length c −→

c!i −e→ c!Suc i −→ (snd (c!i), snd (c!Suc i)) ∈ rely)}

comm :: ((α × α) set × α set) ⇒ α confs set
comm ≡ λ(guar , post) . {c. (∀ i . Suc i<length c −→

c!i −c→ c!Suc i −→ (snd (c!i), snd (c!Suc i)) ∈ guar) ∧
(fst (last c) = None −→ snd (last c) ∈ post)}

A rely-guarantee specification of a sequential component program P is valid,
and we use the usual syntax |= P sat [pre, rely , guar , post ], iff for any
initial state, all computations of P that satisfy the assumptions satisfy the
commitments.

constdefs
com-validity :: α com ⇒ α set ⇒ (α × α) set ⇒ (α × α) set ⇒ α set ⇒ bool

(|= - sat [-, -, -, -] )
|= P sat [pre, rely , guar , post ] ≡
∀ s. cp (Some P) s ∩ assum (pre, rely) ⊆ comm (guar , post)

4.3.2 Validity for Parallel Programs

Parallel programs can be seen as a unit executed in a possibly interfering
environment. For this reason, we include a rely and a guarantee condition
in the specification of parallel programs as well. They have the form P SAT
[pre, rely , guar , post ] where P has the type α par-com.

A parallel program has finished when all its components are None. To
abbreviate this we introduce the following definition:

constdefs
All-None :: α com option list ⇒ bool
All-None xs ≡ ∀ c∈set xs. c = None
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The definition of assumptions, commitments and validity are analogous to
the previous section:

constdefs
par-assum :: (α set × (α × α) set) ⇒ α par-confs set
par-assum ≡ λ(pre, rely). {c. snd (c!0) ∈ pre ∧ (∀ i . Suc i<length c −→

c!i −pe→ c!Suc i −→ (snd (c!i), snd (c!Suc i)) ∈ rely)}

par-comm :: ((α × α) set × α set) ⇒ α par-confs set
par-comm ≡ λ(guar , post). {c. (∀ i . Suc i<length c −→

c!i −pc→ c!Suc i −→ (snd (c!i), snd (c!Suc i)) ∈ guar) ∧
(All-None (fst (last c)) −→ snd (last c) ∈ post)}

par-com-validity :: α par-com ⇒ α set ⇒ (α × α) set ⇒ (α × α) set ⇒ α set
⇒ bool (|= - SAT [-, -, -, -] )

|= P SAT [pre, rely , guar , post ] ≡
∀ s. par-cp P s ∩ par-assum (pre, rely) ⊆ par-comm (guar , post)

4.4 The Proof System

The system of axioms and inference rules for deriving partial correctness
formulas of parallel programs in the rely-guarantee formalism can be re-
garded as a compositional reformulation of the Owicki-Gries system. Due
to the layered definition of the syntax, the set of all derivable specifications
is defined using two sets:

1. The set of all derivable specifications of sequential programs: rghoare.

2. The set of all derivable specifications of parallel programs: par-rghoare.

The definition of the second set uses the previous one. Thus, the declarations
must follow the previous order.

4.4.1 Proof System for Component Programs

We first define a predicate about stability needed in the rules.

constdefs
stable :: α set ⇒ (α × α) set ⇒ bool
stable ≡ λf g . ∀ x y . x ∈ f −→ (x , y) ∈ g −→ y ∈ f

For example, stable pre rely means that if a state belongs to the precondition
and some transition satisfies the rely condition, then the reached state still
belongs to the precondition.
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The set of all derivable specifications is defined by the constant

consts rghoare :: α rgformula set

where α rgformula is the type of a specification of a sequential component
program (see §4.3.1). A derivable specification is denoted with the usual
syntax:

syntax
-rghoare :: α com ⇒ α set ⇒ (α × α) set ⇒ (α × α) set ⇒ α set ⇒ bool

(` - sat [-, -, -, -])
translations
` P sat [pre, rely , guar , post ] ⇀↽ (P , pre, rely , guar , post) ∈ rghoare

We follow [Xu et al., 1997] in the definition of the rules, but differ mainly in
the representation of the variables. In [Xu et al., 1997], rules are expressed
in terms of a variable y representing the vector of program variables and
the corresponding primed variable y′ referring to the same vector after a
transformation. In our formalization we describe properties of states or
of pairs of states by directly describing the set of tuples of values, i.e. we
do not refer to program variables. For example, the set of pairs of states
representing the identity transformation is {(s, t). s = t}, whereas in [Xu et
al., 1997] it would be y = y′.

inductive rghoare
intros

Basic: [[ pre ⊆ {s. f s ∈ post}; {(s, t). s ∈ pre ∧ (t = f s ∨ t = s)} ⊆ guar ;
stable pre rely ; stable post rely ]]

=⇒ ` Basic f sat [pre, rely , guar , post ]

In the computation of a Basic command there is exactly one component
transition that updates the state. Before and after this component transition
there can be a number of environment transitions. The initial state satisfies
pre, thus from stable pre rely it follows that pre holds immediately before
the component transition takes place. From pre ⊆ {s. f s ∈ post} it follows
that post holds immediately after the component transition, and because
post is stable when rely holds, post holds after any number of environment
transitions.
The rules for the sequential composition and conditional statements are
standard:
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Seq : [[ ` P sat [pre, rely , guar , mid ]; ` Q sat [mid , rely , guar , post ] ]]
=⇒ ` Seq P Q sat [pre, rely , guar , post ]

Cond : [[ stable pre rely ; ` P1 sat [pre ∩ b, rely , guar , post ];
` P2 sat [pre ∩ −b, rely , guar , post ]; ∀ s. (s, s)∈guar ]]

=⇒ ` Cond b P1 P2 sat [pre, rely , guar , post ]

In the while-rule the precondition plays the role of the invariant; it must
hold before and after execution of the body at every iteration:

While: [[ stable pre rely ; pre ∩ −b ⊆ post ; stable post rely ;
` P sat [pre ∩ b, rely , guar , pre]; ∀ s. (s, s)∈guar ]]

=⇒ ` While b P sat [pre, rely , guar , post ]

The rule for the await-statement is less obvious:

Await : [[ ∀V . ` P sat [pre ∩ b ∩ {V }, {(s, t). s = t}, UNIV ,

{s. (V , s) ∈ guar} ∩ post ]; stable pre rely ; stable post rely ]]
=⇒ ` Await b P sat [pre, rely , guar , post ]

By the semantics of the await-command, a positive evaluation of the con-
dition and the execution of the body is done atomically. Thus, the state
transition caused by the complete execution of P must satisfy the guarantee
condition. This is reflected in the precondition and postcondition of P in
the assumptions; since these are sets of single states, the relation between
the state before and after the transformation is established by fixing the
values of the first via a universally quantified variable V. The intermediate
state changes during the execution of P must not guarantee anything, thus
the guarantee condition is the universal set UNIV. However, since they are
executed atomically, the environment cannot change their values. This is
reflected by the rely condition {(s, t). s = t}. To ensure that the postcondi-
tion holds at the end of the computation, regardless of possible environment
transitions, we require stable post rely.
Finally, the rule of consequence allows to strengthen the assumptions and
weaken the commitments:

Conseq : [[ pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post ;
` P sat [pre ′, rely ′, guar ′, post ′] ]]

=⇒ ` P sat [pre, rely , guar , post ]
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These six rules inductively define the set of derivable specifications of sequen-
tial component programs. In §4.5 we prove that only valid specifications
can be derived, i.e. we prove the soundness of the system.

The functions defined below extract the parts of a specification of a
sequential parallel program and will be used in the following section:

constdefs
Pre :: α rgformula ⇒ α set
Pre x ≡ fst (snd x )
Post :: α rgformula ⇒ α set
Post x ≡ snd (snd (snd (snd x )))
Rely :: α rgformula ⇒ (α × α) set
Rely x ≡ fst (snd (snd x ))
Guar :: α rgformula ⇒ (α × α) set
Guar x ≡ fst (snd (snd (snd x )))
Com :: α rgformula ⇒ α com
Com x ≡ fst x

4.4.2 Proof System for Parallel Programs

This section presents the rule for deriving parallel programs whose compo-
nents are sequential. Observe that in the definition of validity for parallel
programs (see §4.3.2) no information about the pre, post, rely and guarantee
conditions of the component programs was included. This was not important
for the definition of validity, however, at the level of concrete verification of
programs with the system of rules, we want to apply the rules backwards.
Therefore, the conclusion should include all the information needed in the
premises of the rule. For this reason, we include it as part of the elements
of the set of derivable formulas. Their type is

types α par-rgformula = α rgformula list × α set × (α × α) set × (α × α) set
× α set

The type α rgformula corresponds to a full specification of a component
program (see §4.3.1). The constant defining the corresponding set of deriva-
tions, called par-rghoare, and a familiar syntax for membership of an element
are shown below.

consts par-rghoare :: α par-rgformula set
syntax

-par-rghoare:: α rgformula list ⇒ α set ⇒ (α × α) set ⇒ (α × α) set ⇒ α set
⇒ bool (` - SAT [-, -, -, -] )
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translations
` Ps SAT [pre, rely , guar , post ] ⇀↽ (Ps, pre, rely , guar , post) ∈ par-rghoare

Do not confuse the type of the first argument. Here it is a list of specifications
of sequential component programs, while in |= P SAT [pre, rely , guar , post ],
P is just a program of type α par-com.

The rule for parallel composition is new in the sense that it generalizes
the case of composing two programs, as given in [Xu et al., 1997, de Roever
et al., 2000], to the generic case of composing any number of programs. This
rule allows the verification of parameterized parallel programs directly in the
system.

inductive par-rghoare
intros

Parallel :
[[ ∀ i<length Ps. rely ∪ (

⋃
j∈{j . j<length Ps ∧ j 6=i}. Guar (Ps!j )) ⊆ Rely (Ps!i);

(
⋃

j∈{j . j<length Ps}. Guar (Ps!j )) ⊆ guar ;
pre ⊆ (

⋂
i∈{i . i<length Ps}. Pre (Ps!i));

(
⋂

i∈{i . i<length Ps}. Post (Ps!i)) ⊆ post ;
∀ i<length Ps. ` Com(Ps!i) sat [Pre(Ps!i), Rely(Ps!i), Guar(Ps!i), Post(Ps!i)]]]
=⇒ ` Ps SAT [pre, rely , guar , post ]

An environment transition for the component specified by Ps!i consists of a
component transition from any of the other processes Ps!j where i 6=j, or of a
transition from the overall environment. Hence, the strongest rely condition
that component i can assume is rely ∪ (

⋃
j∈{j . j<length Ps ∧ j 6=i}. Guar

(Ps!j )).
A component transition of the parallel program is performed by one of its

components, hence they all have to satisfy the overall guarantee condition
guar. Like in the Owicki-Gries system the precondition for the parallel
composition must imply all the component’s preconditions and the overall
postcondition must be a logical consequence of all postconditions.

Finally, the specifications of the components have to be derivable in their
system. Consequently, the soundness of the system of rules for sequential
component programs is a necessary previous result for the proof of soundness
of this rule.
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4.5 Soundness

In this section we prove soundness of the rule for parallel composition. For
this result the proof of soundness of the system for sequential programs is
required.

As explained in §2.5, soundness of a system of rules that inductively
define a set of correctness formulas can be shown by rule induction. This
proof principle works by proving that a certain property of the elements of
the set is true of all axioms and is preserved by each inference rule. Then by
construction of the set, we obtain the property for any element in the set.
When the property concerned is validity of a correctness formula, then any
derivable formula is correct and we say that the system of rules is sound.

Using rule induction soundness of the system amounts to proving sound-
ness of each rule. Thus, for each rule we assume that the formulas that
appear in the premises are valid and we must prove that the formula in the
conclusion is also valid.

4.5.1 Soundness of the System for Component Programs

We want to prove the theorem:

theorem rgsound :
` P sat [pre, rely , guar , post ] =⇒ |= P sat [pre, rely , guar , post ]

The proof proceeds by rule induction. This results in six subgoals, one for
each rule.

Soundness of the Basic Rule

The rule for a Basic command is an axiom. Hence, validity must follow
directly from the premises of the rule without any induction hypothesis.

lemma Basic-sound :
[[ pre ⊆ {s. f s ∈ post}; {(s, t). s ∈ pre ∧ (t = f s ∨ t = s)} ⊆ guar ;

stable pre rely ; stable post rely ]] =⇒ |= Basic f sat [pre, rely , guar , post ]

For this and some of the following proofs we need a lemma about the stability
predicate.

Assume a computation whose environment transitions satisfy the rely
condition and where all transitions of the subcomputation between two in-
dices j and k are made by the environment. If the state of the configuration
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at index j satisfies some condition p such that stable p rely, then the state
at configuration k also satisfies the condition p and the program part is left
unchanged:

lemma stability :
[[ x ∈ cptn; stable p rely ; j ≤ k ; k < length x ; snd (x !j ) ∈ p;
∀ i . Suc i<length x −→ x !i −e→ x !Suc i −→ (snd (x !i), snd (x ! Suc i))∈rely ;
∀ i . j ≤ i ∧ i < k −→ x !i −e→ x ! Suc i ]]
=⇒ snd (x !k) ∈ p ∧ fst (x !j ) = fst (x !k)

The soundness of the Basic rule is easy to prove with help of stability and
two more lemmas. The first one states that if there is a component transition
in the computation of a Basic-command, then it is the only one:

lemma unique-ctran-Basic:
[[ x ∈ cptn; x !0 = (Some (Basic f ), s); Suc i < length x ;

x !i −c→ x ! Suc i ; Suc j < length x ; i 6= j ]] =⇒ x !j −e→ x ! Suc j

The second one ensures that if the empty program appears in a computa-
tion of a Basic-command at some point, then there must be a component
transition before:

lemma exists-ctran-Basic-None:
[[ x ∈ cptn; x !0 = (Some (Basic f ), s); i < length x ; fst (x !i) = None ]]
=⇒ ∃ j . j < i ∧ x !j −c→ x ! Suc j

Both lemmas are proven by induction on the length of the computation.

Soundness of the Await Rule

The induction hypothesis is applied to the derivability of the await-body,
thus we can assume that its specification is valid:

lemma Await-sound :
[[ stable pre rely ; stable post rely ;
∀V . |= P sat [pre ∩ b ∩ {s. s = V }, {(s, t). s = t}, UNIV ,

{s. (V , s)∈guar} ∩ post ] ]]
=⇒ |= Await b P sat [pre, rely , guar , post ]

The proof is similar to the previous one and requires the analogous lemmas:
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lemma unique-ctran-Await :
[[ x ∈ cptn; x !0 = (Some (Await b c), s); Suc i < length x ;

x !i −c→ x ! Suc i ; Suc j < length x ; i 6= j ]] =⇒ x !j −e→ x ! Suc j

lemma exists-ctran-Await-None:
[[ x ∈ cptn; x !0 = (Some (Await b c), s); i < length x ; fst (x !i) = None ]]
=⇒ ∃ j . j < i ∧ x !j −c→ x ! Suc j

We also need to prove that there is a computation of the body of the await-
statement that satisfies the specification given in the premises. However,
the only information we obtain from the semantics about the execution of
the body is that it terminates in some number of component transitions.
We prove that a sequence of component transitions can also be described as
a computation:

lemma Star-imp-cptn: (P , s) −c∗→ (R, t) =⇒ ∃ l ∈ cp P s. last l = (R, t)

Soundness of the Conditional Rule

Given valid subspecifications of the if- and else-branches we prove that the
correctness formula for the conditional statement is also valid:

lemma Cond-sound :
[[ stable pre rely ; |= P1 sat [pre ∩ b, rely , guar , post ];
|= P2 sat [pre ∩ − b, rely , guar , post ]; ∀ s. (s, s)∈guar ]]

=⇒ |= (Cond b P1 P2) sat [pre, rely , guar , post ]

In the proof we first distinguish whether a computation of (Cond b P1 P2)
contains a component transition or not. If not, by the following lemma all
transitions are performed by the environment:

lemma etran-or-ctran:
[[ x ∈ cptn; m ≤ length x ; ∀ i . Suc i < m −→ ¬ x !i −c→ x ! Suc i ; Suc i < m ]]
=⇒ x !i −e→ x ! Suc i

Thus the first part of the commitments is trivially fulfilled. By using the
stability lemma the last program of the computation cannot be None, so the
the second part of the commitments holds too.

If there is a component transition, then by the lemma

lemma Ex-first-occurrence: P n =⇒ ∃m. P m ∧ (∀ i < m. ¬ P i)

120



there is a first one. This component transition satisfies the guarantee con-
dition because of the required reflexivity property. By the stability lemma,
the precondition holds after this step. Depending on whether the boolean
condition of the if-statement holds or not, the fulfillment of the commit-
ments for the rest of the computation follows from the induction hypothesis
on the corresponding program.

Soundness of the Sequential Rule

Validity of a specification for sequential composition follows from the va-
lidity of appropriate subspecifications of the programs that are sequentially
composed:

lemma Seq-sound :
[[ |= P sat [pre, rely , guar , mid ]; |= Q sat [mid , rely , guar , post ] ]]
=⇒ |= Seq P Q sat [pre, rely , guar , post ]

In the proof we distinguish whether a computation of the sequential com-
position finishes computing P or not:

1. If not, we have ∀ i<length x . fst (x !i)6=Some Q. In this case, we can
find a computation of P such that c is just the corresponding “lifted”
computation.

2. Otherwise, we have ∃ i<length x . fst (x !i) = Some Q. Such a config-
uration can occur several times but we are only interested in the first
occurrence. The computation c in this case can be split into a “lifted”
terminated computation of P followed by a computation of Q.

The following lemmas establish these properties.

lemma Seq-sound1:
[[ x ∈ cptn-mod ; x !0 = (Some (Seq P Q), s); ∀ i<length x . fst (x !i)6=Some Q ]]
=⇒ ∃ xs ∈ cp (Some P) s. x = map (lift Q) xs

We prove it by rule induction on cptn-mod. The induction hypothesis is only
needed at the CptnModEnv rule.

lemma Seq-sound2:
[[ x ∈ cptn; x !0 = (Some (Seq P Q), s); i<length x ; fst (x !i) = Some Q ;
∀ j<i . fst (x !j )6=Some Q ]]
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=⇒ ∃ xs ys. xs ∈ cp (Some P) s ∧ length xs = Suc i ∧
ys ∈ cp (Some Q) (snd (xs !i)) ∧ x = (map (lift Q) xs)@tl ys

This second lemma is easier to prove by rule induction on cptn. When the
computation results from the rule CptnComp, we perform case analysis on
the c-step. After simplifying, only the cases corresponding to Seq1 and
Seq2 remain. The first one is solved easily without need of the induction
hypothesis. The proof for the second one is also straightforward because the
induction hypothesis can be directly used.

Back to the main lemma, suppose that a computation of Seq P Q, say
c, satisfies the assumptions assum (pre, rely). If the computation does not
finish computing P, then it does not terminate, so we only have to prove
that all component transitions satisfy guar. This follows from |= P sat [pre,
rely , guar , mid ] and the lemma Seq-sound1. In the second case, we first
prove the same thing for the first part of the computation. Then, since
it terminates we obtain from |= P sat [pre, rely , guar , mid ] that the last
state satisfies mid. From |= Q sat [mid , rely , guar , post ] the rest of the
computation also satisfies the commitments.

Soundness of the While Rule

The subsequent proof is the most interesting one so far.

lemma While-sound :
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ;
|= P sat [pre ∩ b, rely , guar , pre]; ∀ s. (s, s) ∈ guar ]]

=⇒ |= While b P sat [pre, rely , guar , post ]

First attempts at proving this lemma using the “flat” definition of computa-
tion turn out to be unnecessarily cumbersome. Finding a suitable definition
of computation together with the proof of equivalence (§4.2.4) and finally
the soundness proof of the rule took about a month of work. This seems
unnecessary considering that the proof on paper from [Xu et al., 1995] is
barely a page and very intuitive. However, some intuitive ideas like the
recursive structure of a while-computation are easy to state on paper but
turn out to be difficult to formalize in a theorem prover if the definitions are
inadequate.

The proof of soundness directly follows from a lemma which can be
proved by rule induction on cptn-mod :
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lemma While-sound-aux :
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ;
|= P sat [pre ∩ b, rely , guar , pre]; ∀ s. (s, s) ∈ guar ; x ∈ cptn-mod ]]

=⇒ ∀ s xs. x = (Some (While b P), s) # xs −→ x ∈ assum (pre, rely)
−→ x ∈ comm (guar , post)

After some simplification four subgoals remain. We briefly explain their
proofs.

The first one corresponds to the CptnModEnv rule. After an environ-
ment step the program fragment is still a while-program so the induction
hypothesis can be applied:

lemma WhileEnv :
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ; ∀ s. (s, s) ∈ guar ;
|= P sat [pre ∩ b, rely , guar , pre]; (Some (While b P), t) # xs ∈ cptn-mod ;

(Some (While b P), t) # xs ∈ assum (pre, rely) −→
(Some (While b P), t) # xs ∈ comm (guar , post);
(Some (While b P), s) # (Some (While b P), t) # xs ∈ assum (pre, rely) ]]

=⇒ (Some (While b P), s) # (Some (While b P), t) # xs ∈ comm (guar , post)

The proof follows directly using the following two lemmas:

lemma etran-in-comm: (P , t) # xs ∈ comm (guar , post)
=⇒ (P , s) # (P , t) # xs ∈ comm (guar , post)

lemma tl-of-assum-in-assum:
[[ (P , s) # (P , t) # xs ∈ assum (pre, rely); stable pre rely ]]
=⇒ (P , t) # xs ∈ assum (pre, rely)

The second subgoal corresponds to the CptnModNone rule, i.e. the while-
program terminates:

lemma WhileNone:
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ; ∀ s. (s, s) ∈ guar ;
|= P sat [pre ∩ b, rely , guar , pre]; (Some (While b P), s) −c→ (None, t);
(None, t) # xs ∈ cptn-mod ;

(Some (While b P), s) # (None, t) # xs ∈ assum (pre, rely) ]]
=⇒ (Some (While b P), s) # (None, t) # xs ∈ comm (guar , post)

By rule inversion on the c-transition we obtain s /∈ b and s = t. The
first transition of the computation in the conclusion satisfies the guarantee
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condition by the reflexivity assumption. The rest of the transitions are
environmental. By the assumption pre ∩ − b ⊆ post the state s satisfies
the postcondition, since stable post rely it follows by the stability lemma
that the final state satisfies the postcondition.

The third subgoal corresponds to the rule CptnModWhile1. There are
not subcomputations of while-programs in the premises, thus the induction
hypothesis cannot be used:

lemma While1:
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ; ∀ s. (s, s) ∈ guar ;
|= P sat [pre ∩ b, rely , guar , pre]; (Some P , s) # xs ∈ cptn-mod ; s ∈ b;
(Some (While b P), s) # (Some (Seq P (While b P)), s) #

map (lift (While b P)) xs ∈ assum (pre, rely) ]]
=⇒ (Some (While b P), s) # (Some (Seq P (While b P)), s) #

map (lift (While b P)) xs ∈ comm (guar , post)

This kind of computation does not terminate, thus we only have to prove
that all component transitions satisfy the guarantee condition. The first
component transition is easy due to the reflexivity property. The rest of the
computation can be reduced to a computation of P where the initial state
satisfies pre ∩ b, thus the proof follows from |= P sat [pre ∩ b, rely , guar ,
pre].

The interesting case is the fourth subgoal. The computation contains a
full computation of the body followed by a computation of the same while-
command, where the induction hypothesis is applied:

lemma While2:
[[ stable pre rely ; pre ∩ − b ⊆ post ; stable post rely ; ∀ s. (s, s) ∈ guar ;
|= P sat [pre ∩ b, rely , guar , pre]; fst (last ((Some P , s) # xs)) = None;
(Some P , s) # xs ∈ cptn-mod ; s ∈ b;
(Some (While b P), snd (last ((Some P , s) # xs))) # ys ∈ cptn-mod ;
(Some (While b P), snd (last ((Some P , s) # xs))) # ys ∈ assum (pre, rely)
−→ (Some (While b P), snd (last ((Some P , s) # xs))) # ys

∈ comm (guar , post);
(Some (While b P), s) # (Some (Seq P (While b P)), s) #

map (lift (While b P)) xs @ ys ∈ assum (pre, rely) ]]
=⇒ (Some (While b P), s) # (Some (Seq P (While b P)), s) #

map (lift (While b P)) xs @ ys ∈ comm (guar , post)

The first part of the computation, i.e. (Some (While b P), s) # (Some (Seq
P (While b P)), s) # map (lift (While b P)) xs represents the first entire
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execution of the body. Like for the proof of the last subgoal it follows that
the commitments are satisfied by this subcomputation. For the rest of the
computation it suffices to apply the induction hypothesis. Thus, we need to
prove that it satisfies the assumptions:

lemma assum-after-body :
[[ |= P sat [pre ∩ b, rely , guar , pre]; (Some P , s) # xs ∈ cptn-mod ;

fst (last ((Some P , s) # xs)) = None; s ∈ b;
(Some (While b P), s) # (Some (Seq P (While b P)), s) #

map (lift (While b P)) xs @ ys ∈ assum (pre, rely) ]]
=⇒ (Some (While b P), snd (last ((Some P , s) # xs))) # ys
∈ assum (pre, rely)

From |= P sat [pre ∩ b, rely , guar , pre] the precondition (which plays the
role of the loop-invariant) holds after the full execution of the body. It is also
easy to prove that if all environment transitions in a computation satisfy the
rely condition, so do those of a subcomputation.

Soundness of the Rule of Consequence

The proof of the soundness of the consequence rule is trivial.

lemma Conseq-sound :
[[ pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post ;
|= P sat [pre ′, rely ′, guar ′, post ′] ]] =⇒ |= P sat [pre, rely , guar , post ]

The soundness of the system follows from the soundness of each rule. This
concludes the proof of the theorem rgsound.

The next step is to prove soundness of the system for deriving correct
parallel programs. This result relies on an important property of the seman-
tics which we show in the following section.

4.5.2 Compositionality of the Semantics

The most important virtue of the semantics presented in §4.2, where we
distinguish between component and environment transitions, is that it allows
us to define computations of parallel programs in terms of the computations
of the components. In this sense, we say that the semantics is compositional.
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A computation c of a parallel program can be described in terms of a
list of computations of component programs clist if they conjoin, and we
write it c ∝ clist.

Before giving the formal definition of the conjoin-operator, we explain
its intuitive meaning by means of a parallel program consisting of two com-
ponents P and Q that run in parallel with an overall environment R. Then,
P ’s environment consists of Q and R. Analogously, Q ’s environment consists
of P and R.

If P and Q are executed in parallel, their respective computations should
have the same sequence of states:

(P0, σ0) δ1−→ (P1, σ1) δ2−→ . . .
δn−→ (Pn, σn)

δn+1−→ . . . , δi ∈ {e, c}

(Q0, σ0)
δ′1−→ (Q1, σ1)

δ′2−→ . . .
δ′n−→ (Qn, σn)

δ′n+1−→ . . . , δ′i ∈ {e, c}

All components of a parallel composition have computations of the same
length. If one component terminates before the others, its computation
is extended by environment transitions, which are also allowed when the
program has terminated.

Another requirement for separate computations of components to make
part of a parallel composition is to have compatible simultaneous transitions.
This means that they do not have component transitions at the same time,
i.e. δi and δ′i cannot be both c.

Moreover, when some component performs a component transition, then
the transition of the full parallel composition is also a component transition.
The parallel composition executes an environment step only when all com-
ponents simultaneously perform an environment step.

For example, consider the above transitions with the following labels:

(P0, σ0) c−→ (P1, σ1) c−→ . . .
e−→ (Pn, σn) e−→ . . .

(Q0, σ0) e−→ (Q1, σ1) e−→ . . .
e−→ (Qn, σn) e−→ . . . .

Then, both computations could be composed in the following computation
of the parallel program formed by P and Q (denoted P ‖ Q):

(P0 ‖ Q0, σ0) c−→ (P1 ‖ Q1, σ1) c−→ . . .
e−→ (Pn ‖ Qn, σn) e−→ . . .

The formal definitions of the properties involved for a list of computations
to conjoin with the computation of a parallel composition are listed below.

constdefs
same-length :: α par-confs ⇒ α confs list ⇒ bool
same-length c clist ≡ ∀ i<length clist . length (clist !i) = length c

126



All computations have the same length and the same state sequence.

same-state :: α par-confs ⇒ α confs list ⇒ bool
same-state c clist ≡ ∀ i<length clist . ∀ j<length c. snd (c!j ) = snd ((clist !i)!j )

The parallel program must at each stage of the computation be formed by
combining the program fragments of clist :

same-program :: α par-confs ⇒ α confs list ⇒ bool
same-program c clist ≡ ∀ j<length c. fst (c!j ) = map (λx . fst (x !j )) clist

And finally, the labels must be compatible. A transition is labelled as pc in
the parallel computation if one of the transitions in clist at the corresponding
position is a c-transition, and pe if all transitions in clist are also made by
the environment.

compat-label :: α par-confs ⇒ α confs list ⇒ bool
compat-label c clist ≡ ∀ j . Suc j<length c −→
(c!j −pc→ c!Suc j ∧ (∃ i<length clist . (clist !i)!j −c→ (clist !i)! Suc j ∧

(∀ l<length clist . l 6=i −→ (clist !l)!j −e→ (clist !l)! Suc j ))) ∨
(c!j −pe→ c!Suc j ∧ (∀ i<length clist . (clist !i)!j −e→ (clist !i)! Suc j ))

A parallel program conjoins with a list of components if the four properties
hold:

conjoin :: α par-confs ⇒ α confs list ⇒ bool (- ∝ - )
c ∝ clist ≡ same-length c clist ∧ same-state c clist ∧

same-program c clist ∧ compat-label c clist

We now prove a lemma stating that the set of computations of a (non-empty)
parallel program consists of the computations that conjoin with some list of
computations of the components.

theorem one: xs 6=[] =⇒
par-cp xs s = {c. ∃ clist . length clist = length xs ∧ c ∝ clist

∧ (∀ i<length clist . (clist !i) ∈ cp (xs!i) s)}

Hence, the computation of a parallel program can be described in terms of
the computations of its components, revealing the compositionality of the
semantics1.

1The “numbered” names of some lemmas follow the terminology in [Xu et al., 1997].
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Proof. The if-implication

lemma one-if :
[[ length clist = length xs; ∀ i<length clist . (clist !i) ∈ cp (xs!i) s; c ∝ clist ]]
=⇒ c ∈ par-cp xs s

is proved by means of the following auxiliary (and equivalent) lemma:

lemma aux-if :
[[ length clist = length xs; ∀ i<length xs. (xs!i , s) # clist !i ∈ cptn;

(xs, s) # ys ∝ map (λi . (fst i , s) # snd i) (zip xs clist) ]]
=⇒ (xs, s) # ys ∈ par-cptn

The proof of aux-if proceeds by induction on the list ys. The base case is
solved by the ParCptnOne rule. The induction step is reduced by working
out the first step distinguishing whether it is a step made by the environment
or by the component. Then we can use the induction hypothesis on the rest
of the list.

The only-if-direction is analogously proven by means of an auxiliary
lemma:

lemma aux-onlyif :
(xs, s) # ys ∈ par-cptn =⇒ ∃ clist . length clist = length xs ∧

(xs, s) # ys ∝ map (λi . (fst i , s) # snd i) (zip xs clist) ∧
(∀ i < length xs. (xs!i , s) # (clist !i) ∈ cptn)

The proof is by induction on ys. The base case is solved by instantiating
clist with the empty list. The proof of the inductive step follows by case
analysis on the inductive definition of par-cptn, and instantiating clist with
the appropriate list in each case.

Finally, the equivalence lemma

lemma one-iff-aux : xs 6=[] =⇒
(∀ ys. (xs, s) # ys ∈ par-cptn =

(∃ clist . length clist = length xs ∧
(xs, s) # ys ∝ map (λi . (fst i , s) # snd i) (zip xs clist) ∧
(∀ i<length xs. (xs!i , s) # clist !i ∈ cptn))) =

(par-cp (xs) s =
{c. ∃ clist . length clist = length xs ∧ c ∝ clist ∧
(∀ i<length clist . clist !i ∈ cp (xs!i) s)})
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proves that theorem one follows from the two auxiliary lemmas. 2

The compositionality of the semantics is necessary for the proof of sound-
ness of the rule for parallel programs, subject of the next section.

4.5.3 Soundness of the System for Parallel Programs

This section is devoted to the soundness of the system of rules that define
the set par-rghoare. The type of c in a derivable formula ` c SAT [pre, rely ,
guar , post ] is a list of the complete specifications of the program components.
However, for the validity formula we just require the corresponding parallel
program. We obtain it from c with the function

constdefs
ParallelCom :: α rgformula list ⇒ α par-com
ParallelCom Ps ≡ map (Some ◦ fst) Ps

The soundness theorem is formulated using this function as follows:

theorem par-rgsound :
` c SAT [pre, rely , guar , post ] =⇒
|= ParallelCom c SAT [pre, rely , guar , post ]

Proof. The proof proceeds by rule induction. The system par-rghoare
consists of a single rule: Parallel. The soundness of the system is thus
reduced to the soundness proof of this rule, namely

lemma Parallel-sound :
[[∀ i<length xs. rely ∪ (

⋃
j∈{j . j<length xs ∧ j 6=i}. Guar (xs!j )) ⊆ Rely (xs!i);

(
⋃

j∈{j . j<length xs}. Guar (xs!j )) ⊆ guar ;
pre ⊆ (

⋂
i∈{i . i<length xs}. Pre (xs!i));

(
⋂

i∈{i . i<length xs}. Post (xs!i)) ⊆ post ;
∀ i<length xs. |= Com(xs!i) sat [Pre(xs!i), Rely(xs!i), Guar(xs!i), Post(xs!i)] ]]
=⇒ |= ParallelCom xs SAT [pre, rely , guar , post ]

By the soundness of the system for component programs we can assume
that all component programs are valid. Our proof follows the one presented
in [Xu et al., 1997]. It relies on the compositionality of the semantics and
four other lemmas that need this property for their proofs.

The second lemma states the following: Given the assumptions of the
lemma Parallel-sound, if a computation x of a parallel program satisfies the
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assumptions and conjoins with a list of computations of component programs
clist, then all component transitions in each of the component computations
satisfy their corresponding guarantee conditions.

lemma two:
[[∀ i<length xs. rely ∪ (

⋃
j∈{j . j<length xs ∧ j 6=i}. Guar (xs!j )) ⊆ Rely (xs!i);

pre ⊆ (
⋂

i∈{i . i < length xs}. Pre (xs!i)); length xs = length clist ;
∀ i<length xs. |= Com (xs!i) sat [Pre (xs!i), Rely (xs!i), Guar (xs!i), Post (xs!i)];
x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely);
∀ i<length clist . clist !i ∈ cp (Some (Com (xs!i))) s; x ∝ clist ]]
=⇒ ∀ i<length clist . ∀ j . Suc j<length x −→ clist !i !j −c→ clist !i !Suc j −→

(snd (clist !i !j ), snd (clist !i !Suc j )) ∈ Guar (xs!i)

The proof proceeds by contradiction. Assume that the first c-transition
which does not satisfy the guarantee condition is from xs!i at step m. From
the compositionality of the semantics, each e-transition in the subcompu-
tation take (Suc (Suc m)) (clist !i) corresponds to a c-transition in one of
the other components or to an e-transition of x, therefore it satisfies rely ∪
(
⋃

j∈{j . j < length xs ∧ j 6= i}. Guar (xs!j )). Hence, we can prove

take (Suc (Suc m)) (clist !i) ∈ assum (Pre (xs!i), Rely (xs!i))

But this contradicts

|= Com (xs!i) sat [Pre (xs!i), Rely (xs!i), Guar (xs!i), Post (xs!i)]

because one c-transition within the first m transitions does not satisfy the
guarantee condition.

Given the assumptions of the previous lemma, the third lemma states
that all e-transitions of each of the component computations xs!i satisfy

rely ∪ (
⋃

j∈{j . j < length xs ∧ j 6= i}. Guar (xs!j )).

lemma three:
[[ xs 6= []; pre ⊆ (

⋂
i∈{i . i < length xs}. Pre (xs!i)); length xs = length clist ;

∀ i<length xs. rely ∪ (
⋃

j∈{j . j < length xs ∧ j 6= i}. Guar (xs!j )) ⊆ Rely (xs!i);
∀ i<length xs. |= Com (xs!i) sat [Pre (xs!i), Rely (xs!i), Guar (xs!i), Post (xs!i)];
x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely);
∀ i<length clist . clist !i ∈ cp (Some (Com (xs!i))) s; x ∝ clist ]]
=⇒ ∀ i<length clist . ∀ j . Suc j<length x −→ clist !i !j −e→ clist !i !Suc j
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−→ (snd (clist !i !j ), snd (clist !i !Suc j )) ∈
rely ∪ (

⋃
j∈{j . j < length xs ∧ j 6= i}. Guar (xs!j ))

The proof follows directly from lemma two.

The forth lemma says that each pc-transition satisfies guar :

lemma four :
[[ xs 6=[]; x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely);
∀ i<length xs. rely ∪ (

⋃
j∈{j . j<length xs ∧ j 6=i}. Guar (xs!j )) ⊆ Rely (xs!i);

(
⋃

j∈{j . j < length xs}. Guar (xs!j )) ⊆ guar ;
pre ⊆ (

⋂
i∈{i . i < length xs}. Pre (xs!i));

∀ i<length xs. |= Com (xs!i) sat [Pre (xs!i), Rely (xs!i), Guar (xs!i), Post (xs!i)];
Suc i < length x ; x !i −pc→ x !Suc i ]]
=⇒ (snd (x !i), snd (x !Suc i)) ∈ guar

The proof follows from lemma two.

The last lemma states that if the computation terminates, the final state
satisfies all postconditions of the components and thus the postcondition of
the parallel program:

lemma five:
[[ xs 6=[]; x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely);
∀ i<length xs. rely ∪ (

⋃
j∈{j . j<length xs ∧ j 6=i}. Guar (xs!j )) ⊆ Rely (xs!i);

∀ i<length xs. |= Com (xs!i) sat [Pre (xs!i), Rely (xs!i), Guar (xs!i), Post (xs!i)];
pre ⊆ (

⋂
i∈{i . i < length xs}. Pre (xs!i));

(
⋂

i∈{i . i < length xs}. Post (xs!i)) ⊆ post ;
fst (last x ) = ys; All-None ys ]] =⇒ snd (last x ) ∈ post

From lemma one there exists a list of computations clist such that x ∝ clist.
From lemma three and the hypothesis it follows that

∀ i<length clist . clist !i ∈ assum (Pre (xs!i), Rely (xs!i))

By validity of the component programs the last state of each one satisfies
Post (xs!i). From the definition of conjoining computations the last state
of all component computations is the same as the last state of x. Thus, it
satisfies post.

The soundness of the parallel composition rule Parallel-sound follows di-
rectly from lemmas four and five. This concludes the proof of par-rgsound. 2
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The soundness proofs of both systems represent the theoretical part of
the formalization of the rely-guarantee system. The next two sections are
concerned with the practical application. Section 4.6 defines concrete syn-
tax for programs in order to facilitate verification of real programs and
section 4.7 presents some examples.

4.6 Concrete Syntax

This section presents an alternative external representation for programs
and assertions. It approaches the standard syntax used in the literature
providing a user-friendlier interface for the application of the formalized
rely-guarantee method on concrete programs.

The concrete syntax defined here is similar to that of §2.7 where we
presented the concrete syntax for the language of the Owicki-Gries formal-
ization. In particular, the representation of program variables follows the
quote/antiquote technique. We refer to section 2.7.1 for detailed explana-
tions. Here, we concentrate on the particularities of the concrete syntax for
the language of the present chapter. An overview of the different elements
and their external representation is shown in table 4.1.

In a rely-guarantee specification the pre- and postcondition are sets of
single states. Like in 2.7 variables within such assertions are represented in
sans serif font, e.g. {|x = 0|}. Internally, x is a selector function that refers
to the value of the variable x at some state.

The rely and guarantee conditions are, however, sets of pairs of states.
We need to refer to the values of the variables of the first and second states,
i.e. the values before and after the transition. In this case, using simply a
selector function is not enough. Antiquoted entities refer now to a pair. The
solution is to “antiquote” the selector function that refers to a variable, e.g.
x, composed with the predefined functions on pairs fst and snd, for the value
of the variable x before or after the transition, respectively. For example,
the set {(s1, s2) | s1 s2. x s1 = 0 ∧ x s2 = 1} is represented by the expression
{|´(x ◦ fst) = 0 ∧ ´(x ◦ snd) = 1|} or equivalently {| x ´fst = 0 ∧ x ´snd =
1 |}, in the concrete syntax. These expressions are, however, quite long, so
we introduce new syntax for antiquotations referring to the before and after
the transition.

syntax
-before :: (α ⇒ β) ⇒ β (o-)
-after :: (α ⇒ β) ⇒ β (a-)
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Assertion {|r |}
Sequential commands

Basic x := e
Seq c0;; c1

Cond if b then c0 else c1 fi
While while b do c od
Await await b then c end
Skip skip
Cond2 if b then c0 fi
Atom 〈c〉
Wait wait b end

Parallel commands
Parallel cobegin s0 ‖ . . . ‖ sn coend
Schematic scheme [j ≤ i < k ] s

Notation
x: program variable
x: value of program variable after a transition
e: expression of the type of x
r , b: boolean expressions
c, c0, c1: sequential commands
s, s0, . . . sn: specifications for component programs
j , k : limits for indexing parameterized programs

Table 4.1: Concrete syntax for programs.

Note that these syntax declarations are similar to that of the syntax con-
stant -quote of §2.7.1. The corresponding translations into internal syntax
are:

translations
ox ⇀ x ´fst
ax ⇀ x ´snd

In the examples shown in this thesis we tune the output by printing
entities preceded by an antiquote symbol ´ in sans serif font. To maintain
this nice output for all variables we print entities preceded by o also in sans
serif and those preceded by a are printed in sans serif and overlined, e.g. the
set {| ox = ax |} is printed {| x = x |}.
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The declaration of syntax constants, the equational and the parse and
print translations that translate the external concrete syntax into the inter-
nal abstract syntax and vice versa are very similar to those defined for the
language of the Owicki-Gries formalization (see appendix B).

4.7 Examples

We show the application of the method on three known examples from the
literature [Xu et al., 1997, Stirling, 1988].

4.7.1 Set Elements of an Array to Zero

The first example is a very simple program. It sets the first n components
of an array A to zero in parallel. There are no shared variables and no
auxiliary variables are required for the verification.

record Example1 =
A :: nat list

lemma Example1:
` cobegin

scheme [0 ≤ i < n]
(A := A [i := 0],
{| n < length A |},
{| length A = length A ∧ A ! i = A ! i |},
{| length A = length A ∧ (∀ j<n. i 6= j −→ A ! j = A ! j ) |},
{| A ! i = 0 |})

coend

SAT [{| n < length A |}, {| A = A |}, {| True |}, {| ∀ i < n. A ! i = 0 |}]

The array (modeled as a list) must have at least as many elements as the
number of parallel components; this is the only requirement in the precon-
dition. The rely condition of component i requires that the environment
does not change the value of the array A at index i. On the other hand,
it guarantees not to change the values of the other indices. The length of
the array is invariant, thus this holds in both the rely and the guarantee
condition.
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We consider this program as closed with respect to the environment.
This is reflected in the overall rely condition which requires that the en-
vironment does not affect the variables used in the program. The overall
guarantee condition can be set to True, because no other program relies on
the behavior of this one. If there was an influencing environment, its effect
could be stated in the overall rely and guarantee conditions

The proof just requires us to first apply the Parallel rule backwards.
The rule Basic is used for the proof of derivability of the parameterized
component program. The generated verification conditions are easily proven
with standard Isabelle techniques.

4.7.2 Increment a Variable in Parallel

Consider the program x := x+1 ‖ x := x+1. The goal is to prove that if
the precondition x = 0 holds, then the postcondition x = 2 is satisfied by
the final states. This parallel program is a classic in the literature because,
despite its simplicity, auxiliary variables are unavoidable for its verification.

We declare the shared variable x and two “private” auxiliary variables
c0 and c1, one for each component:

record Example2 =
x :: nat
c0 :: nat
c1 :: nat

The program must be extended with assignments to the auxiliary vari-
ables. The first and second components satisfy complementary specifica-
tions, where the rely and guarantee conditions are switched. We verify the
parallel composition as a closed system:

lemma Example2:
` cobegin

(〈x := x+1;; c0 := c0 + 1〉,
{| x = c0 + c1 ∧ c0 = 0 |},
{| c0 = c0 ∧ (x = c0 + c1 −→ x = c0 + c1) |},
{| c1 = c1 ∧ (x = c0 + c1 −→ x = c0 + c1) |},
{| x = c0 + c1 ∧ c0 = 1 |})
‖
(〈x := x+1;; c1 := c1+1〉,
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{| x = c0 + c1 ∧ c1 = 0 |},
{| c1 = c1 ∧ (x = c0 + c1 −→ x = c0 + c1) |},
{| c0 = c0 ∧ (x = c0 + c1 −→ x = c0 + c1) |},
{| x = c0 + c1 ∧ c1 = 1 |})
coend

SAT [{| x = 0 ∧ c0 = 0 ∧ c1 = 0 |}, {| x = x ∧ c0 = c0 ∧ c1 = c1 |},
{| True |}, {| x = 2 |}]

The proof uses the rule for parallel composition Parallel and the system of
rules for sequential component programs.

Parameterized Version

We take advantage of the possibility of proving the derivability of parame-
terized programs in our system and show in the next lemma how to prove
the correctness of the last example for any number of components.

We introduce a composed variable c, such that the component i of the
parallel program atomically updates the shared variable x and the ith com-
ponent of c.

There are several possibilities of modeling such composed variables in
HOL. One of them is as lists of length n (like in the previous example),
however, lists cause in some cases unnecessary trouble, for example the in-
variance of the length has to be explicitly required in all assertions. Another
more abstract possibility is to use functions from naturals to the value do-
main of the components. The syntax for updating the value of a function f
on argument i is f (i := t), where t is of the corresponding type.

The declaration of the variables is:

record Example2-parameterized =
x :: nat
c :: nat ⇒ nat

We want to prove that the extended parameterized program

〈x := x+1,, c := c (i := 1)〉

satisfies the rely-guarantee specification

(x = 0 ∧ (
∑

i < n. c i) = 0, x = x ∧ c = c, True, x = n).

For the assertions, we use the summation function predefined in the
Isabelle library. In the precondition of the program we require the summa-
tion of the values of the composed variable c on the first n natural numbers
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to be 0. The rely and guarantee conditions indicate that the program is to
be executed in a closed environment.

To establish the specification above, we require that each component i
satisfy suitable (parameterized) local specifications.

The lemma stating the derivability of the full specification is:

lemma Example2-parameterized : 0 < n =⇒
` cobegin

scheme [0 ≤ i < n]
(〈x := x+1;; c := c (i := 1)〉,
{| x = (

∑
i < n. c i) ∧ c i = 0 |},

{| c i = c i ∧ (x = (
∑

i < n. c i) −→ x = (
∑

i < n. c i)) |},
{| (∀ j < n. i 6= j −→ c j = c j ) ∧

(x = (
∑

i < n. c i) −→ x = (
∑

i < n. c i)) |},
{| x = (

∑
i < n. c i) ∧ c i = 1 |})

coend

SAT [{| x = 0 ∧ (
∑

i < n. c i) = 0 |}, {| x = x ∧ c = c |}, {| True |}, {| x = n |}]

It is fairly easy to prove with the help of some basic lemmas about the
summation function.

In section 5.5 of the next chapter we reconsider this example and study
the relation with its proof in the Owicki-Gries system.

4.7.3 Find Least Element

The next example was already used in [Owicki and Gries, 1976a] and has
ever since constituted a standard example of parallel program verification.
We reproduce the more general version for parameterized parallel programs
of [Stirling, 1988].

Let B be an array, modeled as a list of length m. We want a program
that finds the first element, if there is one, satisfying the predicate P . If so,
it is saved in the variable x, otherwise x = m. Then, the program FINDP
should satisfy the specification

{|True|} FINDP {|x < m+1 ∧ (∀ i < x . ¬ P (B !i)) ∧ x < m −→ P (B !x )|}

where we already use the notation of Isabelle for access to components of
a list. The program FINDP is of the form: INIT ; SEARCH ; END, where
INIT initializes, SEARCH searches in parallel and END performs the final
assignment to x.
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In SEARCH we use a number of concurrent programs, SEARCH (0)
‖ . . . ‖ SEARCH (n−1) with n ≤ m; for simplicity let n divide m. Each
SEARCH (i) scans the array squares i , n+i , 2∗n+i , . . . m+i looking for
x.

Assume that each SEARCH (i) has a private variable xi for searching.
Each SEARCH (i) should terminate when

1. P (B ! xi) or

2. xi > m or

3. SEARCH (k), with k 6= i, has found that P (B ! xk) for xk < xi.

We introduce a further private variable yi for each SEARCH (i) which
initially is set to m+ i and if P (B ! xi) holds, then yi is set to xi. Hence, the
termination condition for SEARCH (i) is ∃j < n. yj ≤ xi. Finally, END
sets x to the value of min(y0, . . . , yn−1) when each SEARCH (i) terminates.

Consider SEARCH (i). Then,

1. As xi, yi are private, the environment cannot affect their values or
increase yk, k 6= i.

2. The program SEARCH (i) cannot affect the variables xk and yk for
k 6= i and it does not increase the initial value of yi.

SEARCH (i) will be a loop with invariant:

inv : xi mod n = i ∧ (∀j < xi. j mod n = i −→ ¬P (B ! j)) ∧
(yi < m −→ P (B ! yi) ∧ yi ≤ m+ i)

The full specification is shown below. Like in the previous example we
represent the private variables xi and yi as functions x , y from naturals to
naturals, so that x i corresponds to the private variable xi of component i:

record Example3 =
x :: nat ⇒ nat
y :: nat ⇒ nat

lemma Example3: m mod n = 0 =⇒
` cobegin

scheme [0 ≤ i < n]
(while (∀ j < n. x i < y j ) do
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if P (B ! x i) then y := y (i := x i)
else x := x (i := (x i)+ n) fi

od,

{| (x i) mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬P (B ! j )) ∧
(y i < m −→ P (B ! y i) ∧ y i ≤ m+i) |},
{| (∀ j < n. i 6= j −→ y j ≤ y j ) ∧ x i = x i ∧ y i = y i |},
{| (∀ j < n. i 6= j −→ x j = x j ∧ y j = y j ) ∧ y i ≤ y i |},
{| (x i) mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬P (B ! j )) ∧

(y i < m −→ P (B ! y i) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |})
coend

SAT [{| ∀ i < n. x i = i ∧ y i = m+i |}, {| x = x ∧ y = y |}, {| True |},
{| ∀ i < n. (x i) mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬P (B ! j )) ∧
(y i < m −→ P (B ! y i) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |}]

The initialization part of the program (INIT ) as well as the final assign-
ment x := min(y0, . . . yn−1) of END are not included because the sequential
composition with parallel programs is not defined in the programming lan-
guage. If so wanted, the language should be extended and so the semantics
and the proof rules. Here we concentrate on the verification of the parallel
part SEARCH.

We consider the parallel program closed and thus define the overall rely
and guarantee conditions as such.

The interactive proof is easy but needs explicit hints about the asser-
tions that should be used for the final verification conditions. This reveals
an important aspect which was not obvious while studying the theory: an
automatic verification generation tactic would need intermediate annota-
tions.

It is known that sequential while-programs need only be annotated with
the corresponding loop invariants. This is because invariants are not, in
general, derivable from the postcondition and the program itself. Loop
invariants, precondition and postcondition are the only annotations that
an automatic procedure requires to extract the verification conditions for a
sequential program.

For the Owicki-Gries method, more annotations than loop-invariants
were required. In fact, programs had to be fully annotated as proof outlines.
The automatic tactic could thus extract the verification conditions out of
the intermediate annotations supplied by the user.

In the verification of this example we observe that an automatic tactic
to generate the verification conditions is not possible by just annotating
programs with the four conditions (pre-, rely-, guar- and postcondition).
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While-invariants and even explicit intermediate annotations are also needed.
To illustrate the insufficiency of the rely-guarantee specification we follow
the verification of this example and show that extra information must be
supplied by the user.

An automatic vcg-tactic that uses the specified rules in the theory would
proceed in the following order:

1 First, the Parallel rule is applied backwards. We obtain four verifi-
cation conditions and a fifth goal concerning the derivability of the
component programs.

2 The component programs are all the same up to indexing, so the goal
reduces to the following formula:

lemma i < n =⇒
` while (∀ j < n. x i < y j )

do if P (B ! x i) then y := y (i := x i)
else x := x (i := x i + n) fi

od

sat
[{| x i mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬ P (B ! j )) ∧

(y i < m −→ P (B ! y i) ∧ y i ≤ m+i) |},
{| (∀ j < n. i 6= j −→ y j ≤ y j ) ∧ x i = x i ∧ y i = y i |},
{| (∀ j < n. i 6= j −→ x j = x j ∧ y j = y j ) ∧ y i ≤ y i |},
{| x i mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬ P (B ! j )) ∧

(y i < m −→ P (B ! y i) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |}]

3 The precondition in this case has been carefully chosen to be the in-
variant of the loop, thus we can apply the While rule directly. From
this rule we obtain five subgoals. Four of them are solvable verification
conditions. Only the derivability of the while-body remains:

lemma i < n =⇒
` if P (B ! x i) then y := y (i := x i)

else x := x (i := x i + n) fi

sat
[{| x i mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬ P (B ! j ))
∧ (y i < n∗q −→ P (B ! y i)) |} ∩ {| ∀ j < n. x i <y j |},
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{| (∀ j < n. i 6= j −→ y j ≤ y j ) ∧ x i = x i ∧ y i = y i |},
{| (∀ j < n. i 6= j −→ x j = x j ∧ y j = y j ) ∧ y i ≤ y i |},
{| x i mod n = i ∧ (∀ j < x i . j mod n = i −→ ¬ P (B ! j )) ∧

(y i < n∗q −→ P (B ! y i)) |} ]

The problem we observe is that the precondition of this subgoal is automat-
ically pre ∩ b (see rule Cond), which is the strongest precondition. When
we attempt to verify the derivability of this subprogram, we fail at condition
stable pre rely which results from applying the rule Cond.

The rely condition only ensures that the values of x i and y i remain
invariant for the component i, but we cannot prove that ∀ j < n. x i < y j,
because the environment can decrease the values of some y k with k 6= i.

However, we can verify the program if we first apply the Conseq rule and
choose a weaker precondition, namely, the same one but where the condition
b only refers to the variables with index i, i.e. x i < y i. Obviously pre ∩ b
implies the weaker precondition. If we apply the rule Cond backwards with
this new weaker precondition we can prove stable pre rely.

For an automatic tactic it is not possible to guess when the intermediate
assertions should be weakened or strengthened. Even more difficult would
be to guess the new pre-, or postconditions that yield a successful deriva-
tion. The solution lies in defining a new set of inference rules for annotated
programs and designing the automatic tactic in terms of these rules.

4.8 Concluding Remarks

The rely-guarantee method represents the logical successor of Owicki-Gries
as its compositional reformulation. We have formalized the system and a
soundness proof following the presentation given in [Xu et al., 1997]. Often,
the definitions and proofs found in the literature turn out to be too inefficient
for theorem proving techniques. In this formalization, for example, we give
an alternative (but equivalent) definition for the semantics in order to carry
out the proofs successfully.

So far, we have applied the formalization to the verification of simple pro-
grams. The verifications have been done by interactively applying the proof
rules and using the standard Isabelle techniques for proving the generated
verification conditions. This works fine for small programs, but otherwise
it becomes quite tedious. To handle the verification of larger programs a
tactic for the automatic generation of the verification conditions should be
designed. Such a tactic requires information about intermediate annota-
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tions, which means that programs have to be presented as proof outlines.
Another interesting extension is the inclusion of nested parallelism in the
language. This would allow us to use the compositionality of the method for
top-down design and verification of large systems. Both extensions involve
changes in the definition of the programming language, which would influ-
ence the whole formalization. However, the proof of soundness is essentially
the same as the one presented in [Xu et al., 1997] where nested parallelism
is part of the language. Thus, the formalized proofs would only need minor
modifications.
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Chapter 5

Completeness of the Proof
Systems for Parameterized
Parallel Programs

In the previous chapters we have formalized the Owicki-Gries and the rely-
guarantee systems in Isabelle/HOL and proved soundness of these systems
w.r.t. the corresponding underlying semantics.

The complementary property of soundness is completeness. A system for
verification of programs is complete if all correct programs can be deduced
in the system. Soundness is a minimal requirement of such systems. One
starts with a trivial sound system, for example, the empty one, and adds
sound axioms and rules which preserve soundness until a complete system
is achieved.

Our current proof systems are incomplete because there is no rule for
removing auxiliary variables. This rule is fundamental for a completeness
proof. However, for the practical purposes of this work, i.e. mechanical ver-
ification of parallel programs, it is sufficient to find derivations for programs
augmented with assignments to auxiliary variables. When these variables
are used correctly they influence neither control nor data flow. Consequently,
removing all assignments to auxiliary variables does not affect the correct-
ness of the program.

The systems with the rule for removing auxiliary variables have been
proved complete in previous works. Completeness proofs for the Owicki-
Gries system can be found in [Owicki, 1975], [Apt, 1981a] or in [de Roever
et al., 2000]. For the rely-guarantee system see for example [Xu et al., 1997],
[Stirling, 1988] or again [de Roever et al., 2000]. Both systems are proven
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to be relatively complete with respect to the standard interpretation in the
natural numbers. Moreover, in [Apt, 1981a] the author proves that the as-
sertions for the Owicki-Gries system are recursive when history variables are
used as auxiliary variables but only recursively enumerable when program
counters are used.

We assume these results to be known and concentrate on extending the
completeness property to a kind of programs not considered in the complete-
ness proofs mentioned above, namely, parallel programs where the number
of parallel components is represented by a parameter n. Contrary to the
traditional systems found in the literature, these programs can be directly
derived in our systems. The reason for this lies in the representation of
parallel programs as lists of component programs.

The chapter is organized as follows. In section 5.1 we give a formal
characterization of parameterized programs. Section 5.2 presents the com-
pleteness proof of the extended Owicki-Gries system. Section 5.4 extends
this result to the rely-guarantee method. In section 5.5 we illustrate by an
example the relevance of these completeness results.

The results presented in this chapter are, apart from the examples of
section 5.5, not carried out with Isabelle and thus independent from the
details of the formalization. In the sequel, we use a standard notation (even
for program syntax) which is not necessarily the one required by the theorem
prover.

5.1 Parameterized Programs

Parameterized programs represent a family of programs by a single syntac-
tic object. In order to represent, understand and manipulate these objects,
several aspects of the programming language have to be adapted to deal
with parameters. In this section we give a formal description of the syn-
tax of parameterized programs and other aspects relevant for the following
sections.

5.1.1 Syntax of Parameterized Programs

Let n and i be parameters, where n ranges over the natural numbers and i
ranges over the subset {0, . . . , n− 1}. A parameterized component program
S(i, n), parameterized by n and i, is described by the following syntactic
sets:
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1. A finite set of simple variables V = {x0, . . . , xk}, where we assume
without loss of generality that each xj for j ≤ k ranges over the natu-
ral numbers, and a finite set of composed variables Vc = {y0, . . . , yl}.
(Simple variables could also be considered a degenerated case of com-
posed variables.) Composed variables are usually implemented as ar-
rays, where the value of an array is a function from some “range” to
some “set” of values [Best, 1996]. Access to components outside the
range of an array are not allowed. We interpret composed variables
directly on IN in a way that we explain in §5.2.1.

2. Parameterized arithmetic and boolean expressions given by the follow-
ing BNF grammars:

a ::= j | m | N | x | y[a0] | a0 + a1 | a0 − a1 | a0 ∗ a1

b ::= True | b0 ∧ b1 | ¬b0 | ∃x. b0 | a0 ≤ a1

where j and m are special variables that take the values given by the
parameters i and n, N is a natural number, x ∈ V and y ∈ Vc.

Given an arithmetic expression a, we define a(i, n) inductively as
follows:

j(i, n) def= i, m(i, n) def= n, N(i, n) def= N,

x(i, n) def= x, y[a0](i, n) def= y[a0(i, n)],
(a0 + a1)(i, n) def= a0(i, n) + a1(i, n),
(a0 − a1)(i, n) def= a0(i, n)− a1(i, n),
(a0 ∗ a1)(i, n) def= a0(i, n) ∗ a1(i, n)

Parameterized boolean expressions b(i, n) are defined analogously.

3. Finally, the syntax of parameterized component programs:

S ::= x := a | y[a0] := a1 | S1; S2 |
if b then S1 else S2 fi |
while b do S od | await b then T end
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We define S(i, n) inductively as follows:

(x := a)(i, n) def= x := a(i, n),
(y[a0] := a1)(i, n) def= y[a0(i, n)] := a1(i, n),
(S1; S2)(i, n) def= S1(i, n); S2(i, n),
(if b then S1 else S2 fi)(i, n) def=
if b(i, n) then S1(i, n) else S2(i, n) fi
· · ·

The family of parallel programs built form S(i, n) is defined by the set
{‖n−1
i=0 S(i, n) | n ∈ IN}. The notation ‖n−1

i=0 S(i, n) represents the pro-
gram S(1, n) ‖ . . . ‖ S(n, n), where ‖ is the parallel composition construct
based on interleaving. For each n, the resulting member is a concrete (non-
parameterized) parallel program like the programs considered in the original
Owicki-Gries and rely-guarantee systems.

A typical example for a parameterized parallel program is the ticket mu-
tual exclusion algorithm for distributed processes that we already considered
in §2.8

ticket ≡ num := 1; next := 1; turn := 0; ‖n−1
i=0 S(i, n)

where S(i, n) is shown in Figure 5.1. By the assignment turn := 0 we mean
that 0 is assigned to each component of the array turn.

S(i, n) ≡ while true do
NCS (i , n); (noncritical section)
〈 turn[i] := num; num := num + 1 〉;
wait turn[i] = next end;
CS (i , n); (critical section)
next := next + 1

od

Figure 5.1: Ticket algorithm.

Syntax of assignments to composed variables

The concrete syntax of the programming language in the Isabelle/HOL for-
malizations of the previous chapters does not support the above notations

146



for assignments to components of composed variables. For example, an as-
signment to component i of a list a is written a := a [i :=e]. Similarly, an
assigment to the argument i of a function a is written a := a (i :=e) meaning
that the function is assigned the new updated function. In the literature,
such assignments are usually written a[i ]:= e, however, both notations have
the same semantics, which we explain in the next section.

5.1.2 The State Space

The meaning of a program S is usually defined as a partial function M(S)
from states to states. States are represented as tuples of values correspond-
ing to the variables occurring in the program. For the purpose of our com-
pleteness proof it is convenient to require that these values be natural num-
bers. Thus, given a state s and a simple variable x, we refer to the value of
the variable x in state s by s(x). For a composed variable y, s(y) returns the
corresponding encoding of the sequence of values given by its components.
This means that the value domain of a composed variable is also IN . As we
shall see in §5.3, the reason for this is that free variables in the language of
elementary arithmetic must range over numbers and not over functions.

There are many different ways of encoding a finite sequence of values
as a single natural number. Any such encoding will do as long as there is
an effective procedure for encoding and an effective procedure for extract-
ing any of the original components from the coded sequence. Following the
syntax in [Apt, 1981a], the encoding of the sequence a1, . . . , ak is repre-
sented by da1, . . . , ake. If a = da1, . . . , ake then a_c = da1, . . . , ak, ce. We
denote the code of the empty sequence by de. We assume some properties
of the functions “d. . .e” and “_”, in particular, their definability in the lan-
guage of elementary arithmetic. The proofs of these properties can be found
in [Schoenfield, 1967]. The state space Σ of a given parameterized program is
then INk, where k is the total number of variables appearing in the program.

An assignment to a component i of a composed variable should be under-
stood as an assignment to the composed variable as a whole. Thus, the new
value is the composed variable with the component i updated. Due to the
special treatment of the value domain for composed variables we informally
describe the semantics of assignments to components of composed variables
by the following transition rule:

(y[a0] := a1, s)→ (None, s[y ← update(y, s(a0), s(a1))])
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None denotes the empty program. The notation s[y ← t] stands for the
usual operation of substitution in s of the value of the variable y by the new
value t. The syntax s(a0) denotes the value resulting from the evaluation of
the arithmetic expression a0 by substituting the free variables by the values
they have in state s. Finally, update(y, j, l) is a function that replaces
the jth component of the sequence encoded by y with a new value l. It is
possible to prove that there is a partial recursive procedure computing this
function. Thus, the transformations performed on the state by a program
are all computable.

The rules of the semantics for the rest of the constructors can be con-
sulted in sections 2.2 and 4.2.

The next section deals with the completeness result for parameterized
parallel programs of the Owicki-Gries system. As will be explained in sec-
tion 5.4, due to the strong connection between the completeness proofs of
the Owicki-Gries and the rely-guarantee systems, and to the independence
of the proof in section 5.2 from the details of the Owicki-Gries system, this
result can be easily extended to the rely-guarantee system.

5.2 Completeness of the Owicki-Gries System for
Parameterized Parallel Programs

The proof rule for parallel composition as formulated in the original Owicki-
Gries system is1

` {P0} S0 {Q0}, . . . ,` {Pk} Sk {Qk}
and the proof outlines are interference free
` {P0 ∩ . . . ∩ Pk} S0 ‖ . . . ‖ Sk {Q0 ∩ . . . ∩Qk}

This rule is concerned with the verification of parallel programs consisting
of a fixed number k of (possibly different) components S0, . . . , Sk. We refer
to the Owicki-Gries system by O.

However, as encountered already in the previous chapters, many inter-
esting parallel programs are given schematically in terms of a parameter
n, representing the number of parallel components. In order to be able to
verify these programs directly we consider the extension of the system O by

1Assertions are modeled as sets of states here.
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the following rule:

∀i < n. ` {P (i, n)} S(i, n) {Q(i, n)} ∧
∀i < n. ∀j < n. i 6= j −→ the proof outlines of
{P (i, n)} S(i, n) {Q(i, n)} ∧ {P (j, n)} S(j, n) {Q(j, n)}
are interference free

` {
⋂n−1
i=0 P (i, n)} ‖n−1

i=0 S(i, n) {
⋂n−1
i=0 Q(i, n)}

where P (i, n) and Q(i, n) denote for each i and n the precondition and the
postcondition, respectively.

This rule represents a particular case of the more general rule presented
in the formalization of the Owicki-Gries system in §2.4.3. Hence, we can
easily derive it from the system2:

lemma ParamParallelRule:
[[ ∀ i<n. ` (c i) (Q i);
∀ i<n. ∀ j<n. i 6= j −→ interfree-aux (Some (c i), Q i , Some (c j )) ]]

=⇒ `̀ (
⋂

i ∈ {i . i < n}. pre(c i))
cobegin scheme [0 ≤ i < n] (c i) (Q i) coend

(
⋂

i ∈ {i . i < n}. Q i)

This rule allows us to prove partial correctness of a parallel program pa-
rameterized by the number of component processes n by showing it for an
arbitrary but fixed value of n. We refer to the system of rules that results
by adding this new rule to the original Owicki-Gries system by F (F stands
for family). We write `F {P} S {Q} to denote that {P} S {Q} can be
derived from F . The soundness of this system has been already proven in
chapter 2. Here we prove the relative completeness of F .

The proof proceeds by induction on the structure of the programs. For
all non-parameterized constructors the proofs can be found in, for exam-
ple [Owicki, 1975]. The only interesting case here is that of parameterized
parallel programs, i.e. given a family of valid partial correctness formulas of
the form

|= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

we want to study if we can always find a proof outline for S so that

`F {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

2This rule is specific for the derivation of one parameterized parallel program. However,
the theoretical completeness result presented here can be generalized to the more general
rule of the formalization.
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By the completeness of the system O we know that for each value of
n we can always find proof outlines for each of the n components, so that
the program can be derived in O. This result, however, does not give any
information about what these proof outlines look like for different values of n
and i. Do they have a uniform pattern (probably parameterized by n and i)
or are the proof outlines of the program with three components completely
different from those of the program with four components? And, for a given
value of n, is the annotation of the component i different from the annotation
of the component j for some values of i and j in the set {0, . . . , n− 1}?

Previous works on parallel program verification present proofs of param-
eterized programs in the style of Owicki and Gries [Stirling, 1988, de Roever
et al., 2000]. However, they abstract from the fact that the Owicki-Gries
system does not directly support reasoning on parameterized programs. An
extension of the system and a proof of completeness was missing. The au-
thors of [de Roever et al., 2000] say

Since Szymanski’s algorithm3 is parameterized, it is quite natural
to use assertion networks parameterized by a process index i.

In the present work we provide a formal proof that supports this “natural-
ity.” The main conclusion is that, for any valid specification of a parame-
terized program, it is always possible to find a single (parameterized) proof
outline that can be derived in the system F for all values of n.

The proof is organized as follows. In §5.2.1 we prove the semantic exis-
tence of the intermediate assertions that form a proof outline. This means
that we show in our meta-language (English and mathematics) that these
assertions exist (so-called semantic completeness). Further, we prove that
these so constructed proof outlines yield valid F -derivations since they sat-
isfy the expected properties for using the method. In §5.3 we show that
these (semantic) assertions can be expressed in a language containing at
least first order arithmetic over the standard model of the natural numbers
(elementary arithmetic). That is, we prove that syntactic expressions cor-
responding to the semantic ones exist. This result is called expressiveness,
which together with the semantic completeness implies relative complete-
ness.

3A mutual exclusion algorithm for distributed processes.
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5.2.1 Semantic Completeness

The proof proceeds by induction on the structure of the programs. The
case for parallel programs of the form S0 ‖ . . . ‖ Sk where the number of
components is fixed was first proven in [Owicki, 1975].

The remaining case is that of parameterized parallel programs. Given a
valid partial correctness formula of the form

|= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

we prove that we can always find a proof outline for S such that

`F {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

Given a parameterized (non-annotated) component program S(i, n), we
construct its proof outline by associating an assertion with every point of
interference. For this purpose, it suffices to annotate S(i, n) with a post-
condition q(i, n) and every normal subprogram R(i, n) of S(i, n) with
a precondition pre(R(i, n)), where a normal subprogram of S is a sub-
program which is not a proper subprogram of an await-statement. The
result is an annotated program A(S(i, n)). We define pre(A(S(i, n))) and
post(A(S(i, n))) to be the initial precondition and the final postcondition,
respectively.

To prove correctness of parameterized parallel programs using the sys-
tem F , we need to show local correctness and interference freedom of the
associated proof outlines. To this end, one must in general augment actions
and boolean guards with assignments to auxiliary variables. These record
the progress of computation in the other processes allowing us to express
the effects of parallel execution.

There are two well-known canonical methods of introducing auxiliary
variables (see 2.4.4). One makes use of a single so-called history variable
z that records, throughout execution, the index number of the component
performing the atomic action and the values of the program variables before
that action is executed. In a terminating state, z contains the history asso-
ciated with the executions of assignments or await-statements. The second
possibility consists of using auxiliary variables as labels indicating the con-
trol points that the program passes through. Thus, these special auxiliary
variables (which are also called counters) are updated with every transi-
tion. One auxiliary variable of this form for each component suffices for any
Owicki-Gries style proof [Lamport, 1977, Best, 1996].

Our programming language does not allow for the atomic evaluation of a
boolean condition together with the updating of an auxiliary variable. As a
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consequence, not all transitions, but only assignments and await-statements,
can be recorded by auxiliary variables. For this reason we use a single history
variable z, respecting this syntactic restriction, in the style of Apt [Apt,
1981a]. The set of program variables is augmented with a single variable
z, containing the value corresponding to the encoding of the substring of
the history sequence, where transitions corresponding to the evaluation of
boolean expressions are not registered.

Given a program S with state space Σ, we denote the state space of
the extended program S∗ by Σ∗, where we assume that the first value of
each tuple corresponds to the value of the history variable. For instance, if
s∗ ∈ Σ∗ is a state of S∗, then, by convention, s denotes the corresponding
state of Σ, where the first element of the tuple has been removed.

Given |= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}, the proof of semantic completeness

is structured as follows:

1. Extend the program by initializing the history variable:

z := de; ‖n−1
i=0 S(i, n)

2. Extend S(i, n) to S∗(i, n) by adding assignments to the history vari-
able.

3. Annotate every point of interference in S∗(i, n) with an assertion,
obtaining an annotated program A(S∗(i, n)) such that the following
conditions hold:

(a) ∀s ∈ Σ. s ∈ P (n) −→ (de, s) ∈
⋂n−1
i=0 pre(A(S∗(i, n)))

(b) Local correctness of proof outlines: ∀i < n. ` A(S∗(i, n))

(c) Interference freedom: ∀i, j ∈ {0, . . . , n − 1}. If i 6= j then,
for every assertion rk(i, n) in A(S∗(i, n)), and for every atomic
action a(j, n) with precondition pre(a(j, n)) in A(S∗(j, n)), the
formula

` {rk(i, n) ∩ pre(a(j, n))} a(j, n) {rk(i, n)}

holds.

(d) ∀s∗ ∈ Σ∗. s∗ ∈
⋂n−1
i=0 post(A(S∗(i, n))) −→ s ∈ Q(n).

Then, using the rule for parameterized parallel programs, we can conclude
that `F {P (n)} z := de; ‖n−1

i=0 A(S∗(i, n)) {Q(n)} holds. By deleting the

152



assignments to auxiliary variables with the elimination rule (see 2.4.4) and
omitting the intermediate annotations we obtain

`F {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

Note that with the system O we could prove the following statement

∀n. (|= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)} −→

∃An. `O {P (n)} ‖n−1
i=0 A

n(S∗(i, n)) {Q(n)})

where for different values m and l of n, Am can be very different from
Al. In this paper, however, we prove the existence of a uniform annotation
(parameterized by n and i) for all values of n, i.e. we prove

|= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)} −→

∃A. `F {P (n)} ‖n−1
i=0 A(S∗(i, n)) {Q(n)}

5.2.2 Extending the Program

Let V = {x0, . . . , xk} be the set of variables occurring in S(i, n). Let x
denote the coding dx0, . . . , xke. Let z be a new variable. Then, we transform
S(i, n) into S∗(i, n) by replacing

(i) every await-statement await b then R end, where R is not skip, by
await b then z := z _di, xe; R end,

(ii) every assignment y := t not inside an await-statement by await true
then z := z _di, xe; y := t end.

If the language allows for assignments to variables at every transition (in-
cluding those consisting of evaluation of boolean conditions), completeness
can be proven by extending the program with assignments to counter vari-
ables. In a parameterized program the counter variable would be a com-
posed variable c. The ith component program would update this variable
by updating its ith component, i.e. c[i], at every transition. As we shall see
in §5.5, parallel programs are in practice verified using auxiliary variables
as counters because finding assertions in terms of history variables is too
difficult.
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5.2.3 Annotating the Program

Given S∗(i, n), our goal is to construct intermediate assertions4 that yield
a proof outline such that conditions (a), (b), (c) and (d) of §5.2.1 can be
proven.

By the completeness of O we know that given

|= {P (n)} ‖n−1
i=0 S(i, n) {Q(n)}

we can find for every value m of n, i.e. for the particular valid triple

|= {P (m)} S(1, m) ‖ . . . ‖ S(m, m) {Q(m)},

an extended program

z := de; (S∗(1, m) ‖ . . . ‖ S∗(m, m))

and an annotation Am so that

` {P (m)} z := de; ‖m−1
i=0 A

m(S∗(i, m)) {Q(m)}

Am associates every point of interference j inside a component i with an
assertion (set of states) rmji whose construction is described in the complete-
ness proof for the system O [Owicki, 1975, Apt, 1981a, de Roever et al.,
2000]. Informally, these assertions are defined as the sets of states that are
reachable by some computation starting in a state in the precondition, where
the steps of the computation are determined by the rules of the operational
semantics.

The assertion associated with a location j in a parameterized component
program S∗(i, n), represented by rj(i, n), is defined as follows:

rj(i, n) = rnji

where for each value m of n and for each value l of i, the set rmjl is the one
constructed in the completeness proof of the Owicki-Gries system for the
concrete parallel program ‖m−1

i=0 S(i, m) at the location j inside component
l.

It remains to be proven that with this annotation the conditions nec-
essary to derive the corresponding triple using the system F are satisfied.
For this purpose, it suffices to prove that conditions (a), (b), (c) and (d)
mentioned above hold for this annotation. This is easy, since for any arbi-
trary value m of n, the proof is reduced to the case for the concrete program
with m parallel components. We just show the proof of (a), the others are
similar:

4By an assertion we mean here a set of states as a semantic object.

154



(a) Denote the first location (the one corresponding to the precondition) of
a component by 0. Assume that there is a state s such that s ∈ P (m).
By the completeness of the system O we have (de, s) ∈

⋂m−1
i=0 rm0i . By

definition of r0(i, m), we have (de, s) ∈
⋂m−1
i=0 r0(i, m).

This closes our proof of semantic completeness of the system F . By defin-
ing the intermediate assertions as parameterized functions that for each n
and each i return the set of states that characterize the assertions of the
particular program with those values of n and i, we have proven that these
sets of states exist for every n and every i. The main goal, however, is to
prove that these sets not only exist but can also be concretely described
using some concrete assertion language.

5.3 Relative Completeness

In this section we prove that the semantic sets described in §5.2.1 can be
syntactically expressed if we use an assertion language which contains at
least the logical system of elementary arithmetic and consider programs
whose boolean conditions and state transformations can be expressed in the
assertion language. For this purpose we use an important result of recursion
theory [Rogers, 1987]:

For any relation R, if R defines a recursively enumerable set,
then R is definable in elementary arithmetic.

Thus, it suffices to prove that the sets of states rj(i, n) that we constructed
in §5.2.1 are recursively enumerable sets. Intuitively, a set S is recursively
enumerable (or checkable) if there exists a procedure M such that given an
element t as input, “checks” whether t is in S and stops when its checking
procedure succeeds. If t is not in S the procedure continues checking forever.
We show that such a procedure for checking the sets rj(i, n) exists.

Let ‖n−1
i=0 S(i, n) be a parameterized parallel program and let P (n) be

a set of initial states. For every value m of n and for every control point
j in component i, the set rmji is recursively enumerable. We denote the
corresponding checking procedure by Mm

ji . Informally, it works as follows:

Given an input state s, Mm
ji (s) succeeds iff it is possible to start

an execution of S∗(1, m) ‖ . . . ‖ S∗(m, m) from a state in P (m)
and reach the control point j of component i with the values of
the variables as given by the state s.
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We now define the procedure Mj that checks if a state s is in rj(i, n):

It takes as arguments n, i and the state s. With the values of n
and i, it builds the concrete program S∗(1, n) ‖ . . . ‖ S∗(n, n)
and simulates the procedure Mn

ji on state s. Then, Mj(n, i, s)
is defined such that it succeeds iff Mn

ji(s) succeeds.

Hence, the domain of the procedure Mj (the values for which it succeeds) is
a recursively enumerable set. By the theorem mentioned above, the relation
that defines this set is definable in elementary arithmetic. Let us recall what
this means [Rogers, 1987]:

An n-ary relation R is definable in elementary arithmetic if there
is a formula F a1 · · · an with free variables a1, . . . , an such that

R = {(x1, . . . , xn) | Fx1 · · ·xn}

where, for any integers x1, . . . , xn, F x1 · · ·xn is the result of
substituting the numeral expressions of x1, . . . , xn for a1, . . . , an
in F a1 · · · an.

The tuples of our set are formed by the values of n, i and those of the
program variables that form the state. Consequently, the formula defining
this set has as free variables not only the program variables (such as for
concrete programs) but also n and i, as intuitively expected.

In the ticket algorithm, for example, the arithmetical expression defining
some assertion would have as free variables, n, i, num, next and turn (all
ranging over IN). Composed variables are considered simple variables with
value the encoding of the values of the components. Thus, in the first-order
logic expressions of the assertions there are no references to the components
of turn. However, to reason practically in Hoare style, more expressive logics
are used (e.g. HOL). If these logics allow us to express composed variables
as functions, then expressions like turn[i] can be written directly.

This completeness proof does not provide an effective methodology for
finding the expressions for assertions. The important result is that these
expressions always exist. This means that it is always possible to find pa-
rameterized proof outlines for valid parameterized parallel programs.
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5.4 Completeness of the Rely-Guarantee System
for Parameterized Parallel Programs

The completeness proof of the rely-guarantee system for this particular kind
of programs follows by the same reasoning as in the previous section. The
completeness proof for the standard rely-guarantee system is, like for the
Owicki-Gries system, based on the definition of intermediate annotations
as strongest postconditions, but where the environment is also taken into
account.

Given a rely-guarantee specification ` P SAT [pre, rely , guar , post ] for
a parallel program P, we associate with every point of interference l in P
the corresponding strongest postcondition SP l. Following [de Roever et al.,
2000], a state s belongs to SP l if there is a computation of P together with
its environment that reaches location l of P , starting in a state satisfying
pre, such that all environment steps satisfy rely. Similarly, the so-called
strongest guarantee condition SG is defined as the set of pairs of states
defining transitions of P which are executed by P in some computation,
provided pre is satisfied initially, and every environment transition satisfies
rely.

The proofs of completeness for the rely-guarantee system presented in
[Xu et al., 1997] and [de Roever et al., 2000] are essentially based on these
constructions. History variables as auxiliary variables are also needed for
the proofs.

In [Stirling, 1988], the author presents another proof of completeness for
his version of the rely-guarantee system based on a very elegant theory of
invariants. The idea is to prove that the rely-guarantee system is complete
with respect to the Owicki-Gries system. Intuitively, whenever we have a
derivation for a correct program in the Owicki-Gries system, we can find
a derivation in the rely-guarantee system by considering the rely-condition
of a component program Pi to be the predicate describing the set of pairs
of states which preserve the annotations of its own proof outline. Thus, no
environment transition can falsify the local correctness of the proof outline.
For the guar -condition it suffices to take the predicate characterizing the set
of pairs of states which preserve the annotations in the proof outlines of the
other components Pj with i 6= j. Basically, a rely-guarantee specification
can be obtained from an Owicki-Gries one by registering in the rely and
guarantee conditions the information provided by the interference freedom
test. We illustrate this idea with a simple example in §5.5.

In any case, proofs of completeness have already been studied in previous
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works and we are just interested in assuming that given any valid rely-
guarantee specification of a parallel program it is possible to construct the
subspecifications of its components so that the program can be derived in
the system.

The introduction of auxiliary variables for a parameterized parallel pro-
gram as well as the proof of semantic and relative completeness presented
in the previous section for the Owicki-Gries system are independent of the
particularities of the Owicki-Gries system itself and can be directly used for
the rely-guarantee method.

Consequently, for any valid rely-guarantee specification of a parameter-
ized parallel program it is possible to find a derivation in the rely-guarantee
system. Moreover, the assertions needed for it are by construction recur-
sively enumerable and can thus be expressed in elementary arithmetic.

5.5 Example

There are several examples of assertional verification of parameterized par-
allel programs in the literature [Stirling, 1988, de Roever et al., 2000, Best,
1996]. Some of them have already been studied in the examples of the pre-
vious chapters. Here we consider a very simple program that illustrates the
practical meaning of the completeness result presented in this chapter.

The example we choose is the classic program {x = 0} ‖n−1
i=0 x := x +

1 {x = n}. Its verification with the rely-guarantee method has already been
studied in §4.7.2. We show here its verification in the Owicki-Gries system
and compare both results.

We introduce a composed variable c, such that the component i of the
parallel program atomically updates the shared variable x and the ith com-
ponent of c. We model the composed variable c as a function from naturals
to naturals. The syntax for updating the value of a function f on argument
i is f (i :=t), where t is of the corresponding type. The summation function
used in the assertions is predefined in the Isabelle library.

record Schema =
x :: nat
c :: nat ⇒ nat

lemma Schema: 0<n =⇒
`̀ {|x=0 ∧ (

∑
i< n. c i)=0|}

cobegin

158



scheme [0≤i<n]
{|x=(

∑
i< n. c i) ∧ c i=0|}

〈x:=x+1,, c:=c (i :=1)〉
{|x=(

∑
i< n. c i) ∧ c i=1|}

coend

{|x=n|}

The completeness result for parameterized parallel programs claims that the
assertions can be expressed in the language of elementary arithmetic with
free variables n, i, x and c. For obvious practical reasons, we prefer to
use a higher order language. However, projection and finite summation are
both partial recursive functions and as such can be expressed in a first order
arithmetic.

As proved in §4.7.2, the correctness of the same program with respect to
the rely-guarantee specification

(x = 0 ∧ (
∑

i<n. c i) = 0, x = x ∧ c = c, True, x = n)

where the overall rely and guarantee conditions specify the program as being
closed, requires that each component i satisfy the following (parameterized)
local specification:

pre : x =
∑

i<n. c i ∧ c i = 0
rely : c i = c i ∧

(x =
∑

i<n. c i −→ x =
∑

i<n. c i)
guar : (∀ j<n. i 6= j −→ c j = c j ) ∧

(x =
∑

i<n. c i −→ x =
∑

i<n. c i)
post : x =

∑
i<n. c i ∧ c i = 1

As observed by [Stirling, 1988], there is a direct connection between the
interference freedom tests required in the Owicki-Gries proof of the same
program and the rely and guarantee conditions required here.

For component i the interference freedom test is successful if

1. The truth of the equality x =
∑

i< n. c i is preserved and the local
variable c i is not modified by the actions of the other components.

2. The atomic actions in i do not affect the truth of the assertions in the
other components.

The first part is exactly expressed in the rely condition, which represents
what the component assumes from the environment. And the second one
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is reflected on the guarantee condition that represents what the component
ensures the environment. In this case, since the program is closed, the
environment is represented by the rest of the components.

Observe that for the formulation of the rely and guarantee conditions,
no assumption on the concrete implementation of the environment is made.
In the Owicki-Gries formalism, however, we need to know the concrete form
of the environment to be able to carry out the interference freedom tests.

This example illustrates the intuitive idea that the rely-guarantee me-
thod is complete with respect to the Owicki-Gries method, and that this
also applies to parameterized programs.

5.6 Summary

The Owicki-Gries and the rely-guarantee systems are the most fundamental
assertional methods for reasoning about the correctness of parallel programs
with shared variables. However, they were not designed for the verification
of parameterized parallel programs, but for programs with a given number of
components only. In the previous chapters we have shown that the systems
can be generalized to handle parameterized parallel programs and that the
resulting systems are sound.

In this chapter we have studied the completeness of the extended sys-
tems. The main difficulty, however, lies in a satisfactory formalization of
the problem. To this end, we have defined the syntax and meaning of pa-
rameterized parallel programs and have formalized what it means for these
programs to be verified in a Hoare logic framework.

The proofs and ideas presented in this chapter have been developed
in an abstract mathematical style. Hence, they are independent from the
particular formalization of the systems in Isabelle. Moreover, the starting
point is the assumption that the proof systems found in the literature are
complete. This assumption allows us to state that for each instance of a valid
specification of a parameterized parallel program there exists a proof in the
system. The main result presented in this chapter, namely, the completeness
of the extended systems, states that it is always possible to find a single
proof that works for any number of components. Not surprisingly (but not
obviously) the assertions that allow us to derive such proofs are themselves
parameterized. Then, the proof for some particular program can be obtained
by instantiating the parameters in the assertions.
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Chapter 6

Conclusion

This thesis describes the first formalization of the Owicki-Gries and rely-
guarantee methods in a theorem prover. Both methods are used to prove
partial correctness of parallel imperative programs with shared variables.
For each method, the programming language, the operational semantics and
the proof rules have been defined in Isabelle/HOL. The proof of soundness
of the rules w.r.t. the underlying semantics has also been carried out with
the theorem prover. As a result, we obtain a verified framework for proving
the correctness of parallel programs with shared variables having the choice
between a compositional and a non-compositional axiomatic method.

The theorem prover Isabelle/HOL has provided a user-friendly, reliable
and powerful tool that ensures a systematic, correct and understandable
development of the theory underlying both verification systems. We have
shown that a theorem prover like Isabelle also provides a powerful tool for the
application of these methods to real programs. In particular, by considering
programs like the parallel garbage collection algorithms we have gone beyond
typical “toy” examples. Moreover, since we had no previous (complete)
pencil and paper Owicki-Gries proofs for these examples, the tool was useful
not only for the a “a posteriori” verification, but also as a checking friend
in the search for a proof.

6.1 General Contributions

Apart from this concrete verification environment this thesis provides con-
tributions which are of general interest for the areas of parallel program
verification and mechanical formalization of programming languages.
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Parameterized Parallel Programs

The formalized systems differ from those found in the literature mainly
in that the rule for parallel composition has been generalized to handle
parameterized parallel programs. Thus, it is possible to prove correctness of
such systems for any instance of the parameter by finding just one derivation.
This naturally led to the question whether finding such a derivation was
always possible, i.e. whether the systems are complete for these kind of
programs.

Although proofs of completeness for the traditional Owicki-Gries and
rely-guarantee systems already exist in the literature, none of them considers
the question whether parameterized parallel programs can always be verified
in a schematic way. From the completeness results of the original systems
we know that there is a derivation in the system for each particular instance
of the parameter, however, a machine that checks derivations of the systems
for all instances would never stop. In contrast, the completeness of our
system demonstrates that it is always possible to find a single parameterized
derivation of these programs, so that one correctness proof is valid for any
instance of the parameter.

Concrete Representation of Programs

Isabelle also provides concrete syntax facilities which makes it possible to
present programs in a familiar syntax. To achieve this, the main concern
is the representation of program variables. In this thesis we have used the
quote/antiquote technique. This technique is widely used in the functional
programming world, but the idea of using it for the purpose of encoding
program variables was first proposed by Markus Wenzel in [Wenzel, 2001b].
These techniques represent the most advanced “technology” in the state of
the art of program variables representation in HOL: they provide a combina-
tion of the advantages of previously used methods without introducing any
drawbacks. The examples shown in this dissertation represent the largest
application so far and have contributed to reveal many of the advantages of
this model.

Automation of the verification process

With the theorem prover we can apply the verification methods system-
atically ensuring that no mistakes are made and no details ignored. The
verification process is made considerably less tedious because the boring
and in general easy routine steps involved in such endeavors are taken care
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of. This allows the user to concentrate on the fundamental aspects of the
proof which require intelligent input.

The main disadvantage of using a theorem prover for the verification of
programs is that they generally require extensive human guidance, and that
this guidance is expressed in terms of the particular theorem prover. This
problem can be partially solved by designing a tactic that automatically
generates the verification conditions. Such an automatic tactic has been de-
fined for the Owicki-Gries method and it has been successfully applied to the
verification of several non-trivial examples. Depending on the complexity of
these verifications conditions, proving them could require certain knowledge
of the proving techniques. Nevertheless, once the verification conditions are
generated and simplified it is easier to see whether they hold or not.

6.2 Statistics of the formalization

We give an overview of the amount of work carried out with Isabelle. Ta-
ble 6.1 shows the number of specification lines (types, definitions, inductive
sets, etc.), the number of lemmas and the total number of proof steps needed
for the formalization of the theory underlying the verification methods.

Theory Spec. lines Lemmas Proof steps
Owicki-Gries 220 49 340
Rely-guarantee 330 93 2240
VCG-tactic 190 42 80
Concrete syntax 260 0 0
Total 1000 184 2660

Table 6.1: Statistics of the formalizations.

We observe that the formalization of the rely-guarantee method is more
involved and, in particular, the proofs are longer. This is the price we pay
in obtaining a compositional method: the underlying theory requires more
work, but yields a simpler proof system. The soundness proof only needs to
be done once, however, we enjoy the advantages of a compositional system
with every verification exercise.

The tactic for the automatic generation of the verification conditions
requires a number of rules derived as lemmas from the Owicki-Gries theory.
The 190 specification lines correspond to the ML code implementing the
tactic.
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The concrete syntax for both formalizations involves 260 lines of specifi-
cation which include the declaration of syntactic constants, the translation
equations and the parse and print translation functions programmed in ML.
Many of the features are duplicated in both formalizations.

One of the main goals of this work is to demonstrate the applicability
of the formalizations on the verification of real programs. We briefly review
the results of our experience.

Table 6.2 shows the statistics of the verification of the typical examples
done with the Owicki-Gries formalization.

Algorithm Verif. cond. Automatic Lemmas
Peterson 122 122 0
Dijkstra 20 20 0
Ticket 35 24 0
Zero search (with sync.) 98 98 0
Zero search (without sync.) 20 20 0
Producer/Consumer 138 125 3
Total 433 409 3

Table 6.2: Examples verified with Owicki-Gries.

The next table shows the statistics concerning the verification of the two
garbage collection (gc) algorithms and the theory of graphs common to both
algorithms.

Theory Spec. lines Lemmas Verif. cond Proof steps
Graph 23 17 - 289
Single-mut. gc 35 28 289 408
Multi-mut. gc 35 36 328 756
Total 93 81 617 1453

Table 6.3: Verification of garbage collection algorithms.

Finally, table 6.4 gives an overview of the effort involved in verifying
the examples considered for the rely-guarantee method. There is no tactic
for the automatic generation of verification conditions, thus the proof steps
also contain the number of steps needed in order to apply the rules from the
rely-guarantee system.
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Algorithm Verif. cond. Lemmas Proof steps
Array to zero 8 3 40
Increment variable 14 3 23
Find least element 22 1 30
Total 44 7 93

Table 6.4: Examples verified with rely-guarantee.

6.3 Further Work

The present work represents a first basic study of verification methods for
parallel programs with shared variables in a theorem prover. Several pos-
sible extensions from both the mechanical and the theoretical sides of the
formalization can be addressed:

1. The completeness proofs for both systems are known theoretical re-
sults. It would be interesting to formalize them in the theorem prover
especially because our systems also handle the verification of param-
eterized parallel programs. To obtain a complete system, however, a
missing rule in the present formalization, namely the rule for elimina-
tion of auxiliary variables, should also be formalized.

2. The programming language considered for both formalizations is fairly
simple. The enrichment with nested parallelism would be a mean-
ingful extension, especially for the rely-guarantee system. For the
Owicki-Gries method the lack of this feature is not a major disadvan-
tage because all the processes involved in a parallel program have to
be known prior to verification. However, the compositionality of the
rely-guarantee system makes the method suitable for top-down devel-
opment of programs. This is important to cope with the design and
verification of large programs. Also, to automate the application of the
rely-guarantee method, a tactic for the automatic generation of ver-
ification conditions similar to the one presented for the Owicki-Gries
method should be designed. However, the presentation of programs
should be extended to include intermediate annotations in order to
avoid the use of the consequence rule at intermediate steps.

3. It would also be interesting to investigate the relation between proofs
in both the compositional and non-compositional methods. Espe-
cially, to study whether Owicki-Gries proofs can be translated into
rely-guarantee proofs following some systematic procedure.
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6.4 Experience

By formalizing these methods in Isabelle/HOL we have gained a full under-
standing of the difficulty involved in designing correct proof methods for the
verification of (parallel) programs. The level of detail required for such a
formal work naturally leads to approach each step in the formalization with
a critical eye, considering first what might come next and studying alterna-
tives that could simplify the formalization. This often leads to improvements
over the known definitions and methods found in the literature. However, to
understand the theorem proving techniques and learn to optimize the effort
involved in any formalization takes a great deal of time, effort and mistakes.

Verifying parallel programs using the methods formalized here can be
difficult, but it is mostly tedious work. The interesting part of the verifi-
cation process is to understand the program and find an intuitive proof of
their correctness. However, the projection of this intuition into assertions
that have to satisfy a number of requirements (like interference freedom!)
implies, in general, changing and tuning the assertions too many times and
a great deal of effort is expended in getting details right.

The tool presented here does not directly help in finding the right anno-
tations but at least automates the iterative process of changing assertions
and checking the proof again. One thing is sure, the theorem prover will
never let the user get away with wrong or incomplete annotations. We be-
lieved to have found the perfect annotations many times only to then have
the theorem prover reveal subtle (and sometimes obvious) mistakes. From
our experience, we do not recommend implicitly trusting a pencil and paper
proof correctness for parallel programs.

6.5 To conclude

The main point of this thesis is that, by formalizing (generalized versions) of
the two well-known Owicki-Gries and rely-guarantee methods in a theorem
prover, it is now possible to obtain mechanized proofs of correctness for
general (parameterized and non-parameterized) parallel programs with these
methods.
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Appendix A

Automatic Generation of
Verification Conditions

We construct a tactic for the automatic generation of the verification con-
ditions (vcg) for full specifications of parallel programs. The construction
is presented in a bottom-up style. First, a vcg-tactic is designed for atomic
programs. This makes understanding the construction easier, since atomic
programs are the simplest ones used here. Using this tactic another vcg-
tactic is developed for annotated programs. This second vcg-tactic is em-
ployed in the construction of the final vcg-tactic, which is used to generate
the verification conditions of parallel programs.

A.1 VCG for Atomic Programs

Atomic programs are sequential programs and do not contain intermediate
annotations. The vcg-tactic works by deriving all intermediate assertions
from the postcondition and loop invariants and establishing the correspond-
ing verification conditions. These are expressed simply as set theoretic in-
clusions because assertions and boolean conditions are formalized as sets of
states.

The generated intermediate assertions are generally called weakest liberal
preconditions [Winskel, 1993, Dijkstra, 1976]. Informally, given a command
c and its postcondition q, the weakest liberal precondition wlp(c, q) is de-
fined as the set of states from which the execution of c either diverges, or
ends up in a final state satisfying q.

Given a program and its specification, the verification conditions are
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obtained by recursively applying the proof rules backwards until only state-
ments of the logic of assertions, without any mention of the programming
language, remain. To this end, the proof rules have to be generalized because
the rules defined in the proof theory cannot always be applied backwards
directly. The pre- and postconditions in most of the conclusions are too
specific and need to be previously manipulated via the rule of consequence.
Consider for example the following specification of an atomic program:

lemma `̀ {x . x = 0} Basic (λx . x+1) {x . x = 1}

The rule Basic is too specific to be applied. The consequence rule comes to
the rescue

apply (rule Conseq)

generating the following three subgoals:

1. {x . x = 0} ⊆ ?p
2. `̀ ?p Basic (λx . x + 1) ?q
3. ?q ⊆ {x . x = 1}

where ?p and ?q are schematic variables that can be instantiated with any-
thing of the corresponding type. By applying the rule Basic backwards on
the second subgoal, the schematic variables ?p and ?q are automatically
instantiated with the pre- and postcondition required by the rule:

prefer 2
apply (rule Basic)

Two verification conditions are left, namely

1. {x . x = 0} ⊆ {s. s + 1 ∈ ?q}
2. ?q ⊆ {x . x = 1}

which are automatically solved by the tactic auto:

apply auto
done

In general, it is impossible for an automatic tactic to guess when and how
many times the rule of consequence should be used to obtain suitable asser-
tions. Instead, we derive more general rules by combining the original proof
rules for each command with the rule of consequence:
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lemma SkipRule: p ⊆ q =⇒ `̀ p (Basic id) q
lemma BasicRule: p ⊆ {s. (f s) ∈ q} =⇒ `̀ p (Basic f ) q
lemma SeqRule: [[ `̀ p c1 r ; `̀ r c2 q ]] =⇒ `̀ p (Seq c1 c2) q
lemma CondRule:

[[ p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}; `̀ w c1 q ; `̀ w ′ c2 q ]]
=⇒ `̀ p (Cond b c1 c2) q

lemma WhileRule: [[ p ⊆ i ; `̀ (i ∩ b) c i ; (i ∩ −b) ⊆ q ]]
=⇒ `̀ p (While b i c) q

These derived rules can always be applied. Only the rule for sequential com-
position remains the same. Maybe surprising is the case of the conditional
statement because the rule of consequence affects the premises and not the
conclusion. The original rule

[[ `̀ (p ∩ b) c1 q ; `̀ (p ∩ −b) c2 q ]] =⇒ `̀ p (Cond b c1 c2) q

matches any pre- and postcondition, however, the generated subgoals easily
fail. For example, consider the triple

p (Cond True (Basic id) (Basic id)) p.

Although it is trivially valid, the original rule Cond would fail.
In [Winskel, 1993], this problem is solved by generating the verifica-

tion conditions from programs that have been previously annotated, not
only with loop invariants, but also with suitable assertions before any if-
or while-statement. Our approach, however, reduces the required human
guidance to loop invariants.

To verify sequential programs we proceed “bottom-up”, i.e. starting by
the last non-sequential command. Hence, a function called WlpTac recur-
sively decomposes sequential constructions1 until it reaches the last non-
sequential command whose postcondition is known. Using the derived proof
rules, the tactic generates the weakest (liberal) precondition.

The tactic controls via the parameter precond if the precondition is un-
known. If so, the generated verification condition has the form ?p ⊆ . . .,
where ?p represents the unknown precondition which is subsequently instan-
tiated by reflexivity, i.e. using the theorem A ⊆ A. Initially, the only known
preconditions are those supplied by the user, namely the overall precondi-
tion and loop invariants. Thus, when the tactic is invoked precond is true;
it becomes false whenever the precondition must be worked out from the
postcondition.

1The sequential operator associates to the right, i.e. c0;; (c1;; c2).
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The vcg-tactic for atomic programs is called HoareRuleTac and is pro-
grammed in ML. The tacticals THEN , ORELSE , EVERY and FIRST pro-
vide control structures for combining tactics. THEN executes one after the
other and ORELSE tries first one and, if it fails, it tries the second one.
EVERY and FIRST are the corresponding block versions of THEN and
ORELSE, respectively. The tactic rtac takes two arguments, a theorem and
a (subgoal) number, then it applies the given theorem backwards to the
subgoal at the given number. To access Isabelle theorems inside an ML
environment, they have to be preceded by the word thm.

ML {∗
fun WlpTac i = rtac (thm SeqRule) i THEN HoareRuleTac false (i+1)
and HoareRuleTac precond i =

WlpTac i THEN HoareRuleTac precond i
ORELSE

FIRST [rtac (thm SkipRule) i ,
rtac (thm BasicRule) i ,
EVERY [rtac (thm CondRule) i ,

HoareRuleTac false (i+2),
HoareRuleTac false (i+1)],

EVERY [rtac (thm WhileRule) i ,
HoareRuleTac true (i+1)]]

THEN (if precond then (K all-tac i) else rtac (thm subset-refl) i)
∗}

The tactic (K all-tac) leaves the subgoal unchanged.

A.2 VCG for Component Programs

The vcg-tactic for component programs is simpler because the rules of the
system are already generic enough to be directly applied. Moreover, since
all annotations must be provided in advance there is no need for finding
weakest preconditions.

We only derive three new proof rules for special instances of the AnnBa-
sic and the AnnAwait commands when the transformation performed on
the state is the identity,

lemma AnnSkipRule: r ⊆ q =⇒ ` (AnnBasic r id) q
lemma AnnWaitRule: [[ r ∩ b ⊆ q ]] =⇒ ` (AnnAwait r b (Basic id)) q
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and for an AnnAwait command where the boolean condition is {s. True}:

lemma AnnAtomRule:
[[ atom-com c; `̀ r c q ]] =⇒ ` (AnnAwait r {s. True} c) q

To refer to a rule of the proof system, for example AnnBasic, we have
to write oghoare-ann-hoare.AnnBasic. This is quite long, so we introduce
abbreviated names with the keyword lemmas:

lemmas AnnBasic = oghoare-ann-hoare.AnnBasic
lemmas AnnSeq = oghoare-ann-hoare.AnnSeq
lemmas AnnCond1 = oghoare-ann-hoare.AnnCond1

lemmas AnnCond2 = oghoare-ann-hoare.AnnCond2

lemmas AnnWhile = oghoare-ann-hoare.AnnWhile
lemmas AnnAwait = oghoare-ann-hoare.AnnAwait
lemmas AnnConseq = oghoare-ann-hoare.AnnConseq

The vcg-tactic is otherwise similar to the previous one.

ML {∗
fun AnnWlpTac i = rtac (thm AnnSeq) i THEN AnnHoareRuleTac (i+1)
and AnnHoareRuleTac i =

AnnWlpTac i THEN AnnHoareRuleTac i
ORELSE

FIRST [rtac (thm AnnSkipRule) i ,
EVERY [rtac (thm AnnAtomRule) i ,

HoareRuleTac true (i+1)],
rtac (thm AnnWaitRule) i ,
rtac (thm AnnBasic) i ,
EVERY [rtac (thm AnnCond1) i ,

AnnHoareRuleTac (i+3),
AnnHoareRuleTac (i+1)],

EVERY [rtac (thm AnnCond2) i ,
AnnHoareRuleTac (i+1)],

EVERY [rtac (thm AnnWhile) i ,
AnnHoareRuleTac (i+2)],

EVERY [rtac (thm AnnAwait) i ,
HoareRuleTac true (i+1)]]

∗}

Although it is not necessary to generate the intermediate preconditions from
the last postcondition, the tactic also processes the commands “bottom-up”,
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i.e. the higher subgoal number first. This is necessary because, in general,
the application of the proof rules backwards generates more subgoals.

Let us see what happens if the tactic starts by processing the lowest
subgoal number. We illustrate the problem by an example,

lemma
` AnnSeq

(AnnCond1 {x . x = 0} {x . x = 0}
(AnnBasic {x . x = 0} (λx . x+1))
(AnnBasic {x . x = 0} (λx . 0)))

(AnnBasic {x . x = 1} (λx . x+2))
{x . x = Suc 2}

First, we decompose the sequential composition,

apply(rule AnnSeq)

1. ` AnnCond1 {x . x = 0} {x . x = 0} (AnnBasic {x . x = 0} (λx . x + 1))
(AnnBasic {x . x = 0} (λx . 0)) pre (AnnBasic {x . x = 1} (λx . x + 2))

2. ` AnnBasic {x . x = 1} (λx . x + 2) {x . x = Suc 2}

If we start by the first command of the sequential composition and apply the
rule AnnCond1, the second part of the program is moved 3 subgoals down:

apply(rule AnnCond1)

1. {x . x = 0} ∩ {x . x = 0} ⊆ pre (AnnBasic {x . x = 0} (λx . x + 1))
2. ` AnnBasic {x . x = 0} (λx . x + 1) pre (AnnBasic {x . x = 1} (λx . x + 2))
3. {x . x = 0} ∩ − {x . x = 0} ⊆ pre (AnnBasic {x . x = 0} (λx . 0))
4. ` AnnBasic {x . x = 0} (λx . 0) pre (AnnBasic {x . x = 1} (λx . x + 2))
5. ` AnnBasic {x . x = 1} (λx . x + 2) {x . x = Suc 2}

In general it is difficult to keep track of the number of subgoals that are
generated. However, if we start processing the subgoals “bottom-up”, the
subgoals with lower numbers remain where they are, no matter how many
new subgoals are generated.

A.3 VCG for Parallel Programs

For the constructors shared between atomic and parallel programs the vcg-
tactic is exactly like HoareRuleTac. We only have to add to this tactic the
case where a command is a parallel composition.
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First, we derive a rule where the pre- and postcondition of the Parallel
rule are generalized:

lemma ParallelConseqRule:
[[ p ⊆ (

⋂
i ∈ {i . i < length Ts}. pre (the (com (Ts!i))));

`̀ (
⋂

i ∈ {i . i < length Ts}. pre (the (com (Ts!i))))
(Parallel Ts)

(
⋂

i ∈ {i . i < length Ts}. post (Ts!i));
(
⋂

i ∈ {i . i < length Ts}. post (Ts!i)) ⊆ q ]] =⇒ `̀ p (Parallel Ts) q

Then, the Parallel rule should be applied backwards on the subgoal that
results from the second premise of this rule. As a result, two new subgoals,
namely, the derivability of the component programs and their interference
freedom, are generated. However, the first subgoal, which results from the
first premise of the rule for parallel composition Parallel, is quite complicated
because of the universal quantifier. We derive a variant of the rule Parallel
that is more suitable for backwards application.

The predicate [`] Ts indicates if all elements in the list of specifications
of component programs Ts are derivable:

constdefs map-ann-hoare :: (α ann-com-op × α assn) list ⇒ bool ([`] -)
[`] Ts ≡ ∀ i < length Ts. ∃ c q . Ts!i = (Some c, q) ∧ ` c q

This definition corresponds to the first premise of the Parallel rule. We
substitute it in original proof rule:

lemma ParallelRule: [[ [`] Ts; interfree Ts ]]
=⇒ `̀ (

⋂
i ∈ {i . i < length Ts}. pre (the (com (Ts!i))))
Parallel Ts

(
⋂

i ∈ {i . i < length Ts}. post (Ts!i))

To automate the proof of [`] Ts we derive two rules that distinguish whether
the list is empty or not, and whether it is a parameterized list of component
programs:

lemma MapAnnEmpty : [`] []
lemma MapAnnList : [[ ` c q ; [`] xs ]] =⇒ [`] (Some c, q)#xs
lemma MapAnnMap:
∀ k . a ≤ k ∧ k < b −→ ` (c k) (Q k) =⇒ [`] map (λk . (Some (c k), Q k)) [a..b(]

By using these rules we avoid dealing with the quantifier of the original
Parallel rule. Observe that for the case of parameterized programs, if we
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apply MapAnnMap backwards, eliminate the quantifier in the premise and
“move” a ≤ k ∧ k < b to the assumptions, we obtain the subgoal a ≤ k ∧
k < b =⇒ ` c k Q k for an arbitrary but fixed value of k. Consequently,
proving the derivability of a parameterized list of programs is reduced to
proving derivability of an arbitrary but fixed component without need for
induction.

Proving the predicate interfree Ts can also be optimized by new derived
rules. First, we define a function such that given a component program x
and a list of component programs xs, it checks if the assertions in x are
preserved by all atomic actions in xs and if all assertions in xs are preserved
by the atomic actions in x :

constdefs interfree-swap :: (α ann-triple-op × α ann-triple-op list) ⇒ bool
interfree-swap ≡ λ(x , xs). ∀ y ∈ set xs. interfree-aux (com x , post x , com y)

∧ interfree-aux (com y , post y , com x )

With this function we derive proof rules for interfree:

lemma interfree-Empty : interfree []
lemma interfree-List :

[[ interfree-swap (x , xs); interfree xs ]] =⇒ interfree (x#xs)
lemma interfree-Map:
∀ i j . a ≤ i ∧ i < b ∧ a ≤ j ∧ j < b ∧ i 6= j −→ interfree-aux (c i , Q i , c j )

=⇒ interfree (map (λk . (c k , Q k)) [a..b(])

The definitions of interfree-swap and interfree-aux can also be expressed as
inference rules suitable for automation. For interfree-swap we derive the
following three rules:

lemma interfree-swap-Empty : interfree-swap (x , [])
lemma interfree-swap-List :

[[ interfree-aux (com x , post x , com y); interfree-aux (com y , post y , com x );
interfree-swap (x , xs) ]] =⇒ interfree-swap (x , y#xs)

lemma interfree-swap-Map:
∀ k . a ≤ k ∧ k < b −→ interfree-aux (com x , post x , c k)
∧ interfree-aux (c k , Q k , com x )

=⇒ interfree-swap (x , map (λk . (c k , Q k)) [a..b(])

And for interfree-aux the next three ones:

lemma interfree-aux-rule1: interfree-aux (co, q , None)
lemma interfree-aux-rule2:
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∀ (R, r) ∈ (atomics a). `̀ (q ∩ R) r q =⇒ interfree-aux (None, q , Some a)
lemma interfree-aux-rule3:
∀ (R, r) ∈ (atomics a). `̀ (q ∩ R) r q ∧ (∀ p ∈ (assertions c). `̀ (p ∩ R) r p)

=⇒ interfree-aux (Some c, q , Some a)

The premises of the last two rules are, due to the universal quantifiers,
not yet suitable for automation. The solution lies in proving a separate rule
for all possible instances of the commands c and a in the conclusion. For
each case, the assertions and atomic commands involved are known. The
idea is to first extract the assertions that have to be checked for interference
and then the atomic commands that should preserve those assertions. In
the end, we obtain a subgoal for each of the Hoare triples involved in the
interference freedom test.

The rules for isolating the assertions are:

lemma AnnBasic-assertions:
[[ interfree-aux (None, r , Some a); interfree-aux (None, q , Some a) ]] =⇒

interfree-aux (Some (AnnBasic r f ), q , Some a)
lemma AnnSeq-assertions:

[[ interfree-aux (Some c1, q , Some a); interfree-aux (Some c2, q , Some a) ]]=⇒
interfree-aux (Some (AnnSeq c1 c2), q , Some a)

lemma AnnCond1-assertions:
[[ interfree-aux (None, r , Some a); interfree-aux (Some c1, q , Some a);

interfree-aux (Some c2, q , Some a) ]]=⇒
interfree-aux (Some (AnnCond1 r b c1 c2), q , Some a)

lemma AnnCond2-assertions:
[[ interfree-aux (None, r , Some a); interfree-aux (Some c, q , Some a) ]]=⇒

interfree-aux (Some (AnnCond2 r b c), q , Some a)
lemma AnnWhile-assertions:

[[ interfree-aux (None, r , Some a); interfree-aux (None, i , Some a);
interfree-aux (Some c, q , Some a) ]]=⇒
interfree-aux (Some (AnnWhile r b i c), q , Some a)

lemma AnnAwait-assertions:
[[ interfree-aux (None, r , Some a); interfree-aux (None, q , Some a) ]]=⇒

interfree-aux (Some (AnnAwait r b c), q , Some a)

By repeatedly applying these rules backwards only subgoals of the form
interfree-aux (None, r , Some a) are left. That is, we eliminate quantification
over assertions. Finally, the assertion r has to be checked for invariance
under all atomic actions of a. This quantifier is “unfolded” by using rules
that distinguish on the command a:
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lemma AnnBasic-atomics:
`̀ (q ∩ r) (Basic f ) q =⇒ interfree-aux (None, q , Some (AnnBasic r f ))

lemma AnnSeq-atomics:
[[ interfree-aux (c, q , Some a1); interfree-aux (c, q , Some a2) ]]=⇒

interfree-aux (c, q , Some (AnnSeq a1 a2))
lemma AnnCond1-atomics:

[[ interfree-aux (c, q , Some a1); interfree-aux (c, q , Some a2) ]]=⇒
interfree-aux (c, q , Some (AnnCond1 r b a1 a2))

lemma AnnCond2-atomics:
interfree-aux (c, q , Some a)=⇒ interfree-aux (c, q , Some (AnnCond2 r b a))

lemma AnnWhile-atomics:
interfree-aux (c, q , Some a) =⇒ interfree-aux (c, q , Some (AnnWhile r b i a))

lemma Annatom-atomics:
`̀ (q ∩ r) a q =⇒ interfree-aux (None, q , Some (AnnAwait r {x . True} a))

lemma AnnAwait-atomics:
`̀ (q ∩ (r ∩ b)) a q =⇒ interfree-aux (None, q , Some (AnnAwait r b a))

By repeatedly applying these rules backwards, only subgoals that state the
derivability of a Hoare-triple remain. Then, the verification conditions are
automatically generated with the vcg-tactic for atomic programs HoareRule-
Tac since the interference freedom tests involve only atomic actions.

The full tactic for the generation of the verification conditions of a par-
allel program is a combination of the tactics and rules above. Because of the
interdependencies between them they must be defined together connected
by the keyword and2:

ML {∗

fun WlpTac i = rtac (thm SeqRule) i THEN HoareRuleTac false (i+1)
and HoareRuleTac precond i =

WlpTac i THEN HoareRuleTac precond i
ORELSE

FIRST [rtac (thm SkipRule) i ,
rtac (thm BasicRule) i ,
EVERY [rtac (thm ParallelConseqRule) i ,

ParallelTac (i+1)],
EVERY [rtac (thm CondRule) i ,

HoareRuleTac false (i+2),
2This tactic is a slight simplification of the real one which can be found in the source

theories.
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HoareRuleTac false (i+1)],
EVERY [rtac (thm WhileRule) i ,

HoareRuleTac true (i+1)]]
THEN (if precond then (K all-tac i) else rtac (thm subset-refl) i)

and AnnWlpTac i = rtac (thm AnnSeq) i
THEN AnnHoareRuleTac (i+1)

and AnnHoareRuleTac i =
AnnWlpTac i THEN AnnHoareRuleTac i

ORELSE
FIRST [rtac (thm AnnSkipRule) i ,

EVERY [rtac (thm AnnAtomRule) i ,
HoareRuleTac true (i+1)],

rtac (thm AnnWaitRule) i ,
rtac (thm AnnBasic) i ,
EVERY [rtac (thm AnnCond1) i ,

AnnHoareRuleTac (i+3),
AnnHoareRuleTac (i+1)],

EVERY [rtac (thm AnnCond2) i ,
AnnHoareRuleTac (i+1)],

EVERY [rtac (thm AnnWhile) i ,
AnnHoareRuleTac (i+2)],

EVERY [rtac (thm AnnAwait) i ,
HoareRuleTac true (i+1)]]

and ParallelTac i = EVERY [rtac (thm ParallelRule) i ,
interfree-Tac (i+1),
MapAnn-Tac i ]

and MapAnn-Tac i =
FIRST [rtac (thm MapAnnEmpty) i ,

EVERY [rtac (thm MapAnnList) i ,
MapAnn-Tac (i+1),
AnnHoareRuleTac i ],

EVERY [rtac (thm MapAnnMap) i ,
rtac (thm allI ) i , rtac (thm impI ) i ,
AnnHoareRuleTac i ]]

and interfree-swap-Tac i =
FIRST [rtac (thm interfree-swap-Empty) i ,
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EVERY [rtac (thm interfree-swap-List) i ,
interfree-swap-Tac (i+2),
interfree-aux-Tac (i+1),
interfree-aux-Tac i ],

EVERY [rtac (thm interfree-swap-Map) i ,
rtac (thm allI ) i , rtac (thm impI ) i , rtac (thm conjI ) i ,
interfree-aux-Tac (i+1),
interfree-aux-Tac i ]]

and interfree-Tac i =
FIRST [rtac (thm interfree-Empty) i ,

EVERY [rtac (thm interfree-List) i ,
interfree-Tac (i+1),
interfree-swap-Tac i ],

EVERY [rtac (thm interfree-Map) i ,
rtac (thm allI ) i , rtac (thm allI ) i , rtac (thm impI ) i ,
interfree-aux-Tac i ]]

and interfree-aux-Tac i =
FIRST [rtac (thm interfree-aux-rule1) i ,

dest-assertions-Tac i ]

and dest-assertions-Tac i =
FIRST [EVERY [rtac (thm AnnBasic-assertions) i ,

dest-atomics-Tac (i+1),
dest-atomics-Tac i ],

EVERY [rtac (thm AnnSeq-assertions) i ,
dest-assertions-Tac (i+1),
dest-assertions-Tac i ],

EVERY [rtac (thm AnnCond1-assertions) i ,
dest-assertions-Tac (i+2),
dest-assertions-Tac (i+1),
dest-atomics-Tac i ],

EVERY [rtac (thm AnnCond2-assertions) i ,
dest-assertions-Tac (i+1),
dest-atomics-Tac i ],

EVERY [rtac (thm AnnWhile-assertions) i ,
dest-assertions-Tac (i+2),
dest-atomics-Tac (i+1),
dest-atomics-Tac i ],
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EVERY [rtac (thm AnnAwait-assertions) i ,
dest-atomics-Tac (i+1),
dest-atomics-Tac i ],

dest-atomics-Tac i ]

and dest-atomics-Tac i =
FIRST [EVERY [rtac (thm AnnBasic-atomics) i ,

HoareRuleTac true i ],
EVERY [rtac (thm AnnSeq-atomics) i ,

dest-atomics-Tac (i+1),
dest-atomics-Tac i ],

EVERY [rtac (thm AnnCond1-atomics) i ,
dest-atomics-Tac (i+1),
dest-atomics-Tac i ],

EVERY [rtac (thm AnnCond2-atomics) i ,
dest-atomics-Tac i ],

EVERY [rtac (thm AnnWhile-atomics) i ,
dest-atomics-Tac i ],

EVERY [rtac (thm Annatom-atomics) i ,
HoareRuleTac true i ],

EVERY [rtac (thm AnnAwait-atomics) i ,
HoareRuleTac true i ]]

∗}

Note that subgoals are always treated counting downwards, to avoid prob-
lems when subgoals are added or deleted. The final tactic is given the name
oghoare:

ML {∗
fun oghoare-tac i thm = SUBGOAL (fn (term, -) =>

(HoareRuleTac true i)) i thm
∗}

Notice that the tactic for parallel programs oghoare-tac is initially in-
voked with the value true for the parameter precond.

Parts of the tactic can be also individually used to generate the verifica-
tion conditions for annotated sequential programs and to generate verifica-
tion conditions out of interference freedom tests like in §3.3.3:

ML {∗
fun annhoare-tac i thm = SUBGOAL (fn (term, -) =>
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(AnnHoareRuleTac i)) i thm

fun interfree-aux-tac i thm = SUBGOAL (fn (term, -) =>
(interfree-aux-Tac i)) i thm

∗}

The so defined ML tactics are then “exported” to be used in Isabelle
proofs.

method-setup oghoare = {∗
Method .no-args (Method .SIMPLE-METHOD ′ HEADGOAL (oghoare-tac)) ∗}
verification condition generator for the oghoare logic

method-setup annhoare = {∗
Method .no-args

(Method .SIMPLE-METHOD ′ HEADGOAL (annhoare-tac)) ∗}
verification condition generator for the ann-hoare logic

method-setup interfree-aux = {∗
Method .no-args

(Method .SIMPLE-METHOD ′ HEADGOAL (interfree-aux-tac)) ∗}
verification condition generator for interference freedom tests

The three tactics for generating verification conditions, oghoare for parallel
programs, annhoare for annotated sequential programs and interfree-aux for
parts of interference freedom tests, are the only tactics used to verify the
examples presented throughout this work. They are invoked simply with
apply, i.e. apply oghoare, etc.
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Appendix B

Formal Declaration of
Concrete Syntax

This section presents the specification of syntax and translations needed to
obtain a user-friendly external representation for programs and assertions.
As explained in §2.7.1 we use the quote/antiquote technique.

syntax
-quote :: β ⇒ (α ⇒ β) (�-�)
-antiquote :: (α ⇒ β) ⇒ β (´-)

The syntax and translations declared here correspond to the programming
language used for the Owicki-Gries formalization. The counterpart for the
language of the rely-guarantee formalization is very similar and thus not
shown here.

We start with the syntax for component programs. Mixfix notation for
commands can be defined by declaring new syntax constants.

syntax
-Assign :: idt ⇒ β ⇒ α com (´- := -)
-Seq :: α com ⇒ α com ⇒ α com (-,,/ -)
-Cond :: α bexp ⇒ α com ⇒ α com ⇒ α com (if - then - else - fi)
-While-inv :: α bexp ⇒ α assn ⇒ α com ⇒ α com (while - inv - do - od)

-AnnAssign :: α assn ⇒ idt ⇒ β ⇒ α com (- ´- := -)
-AnnSeq :: α ann-com ⇒ α ann-com ⇒ α ann-com (-;;/ -)
-AnnCond1 :: α assn ⇒ α bexp ⇒ α ann-com ⇒ α ann-com
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⇒ α ann-com (- if - then - else - fi)
-AnnCond2 :: α assn ⇒ α bexp ⇒ α ann-com ⇒ α ann-com (- if - then - fi)
-AnnWhile :: α assn ⇒ α bexp ⇒ α assn ⇒ α ann-com ⇒ α ann-com

(- while - inv - do - od)
-AnnAwait :: α assn ⇒ α bexp ⇒ α com ⇒ α ann-com

(- await - then - end)

We also introduce external syntax for commands which are simply abbrevi-
ations of the existing ones.

syntax
-Skip :: α com (skip)
-Cond2 :: α bexp ⇒ α com ⇒ α com (if - then - fi)

-AnnSkip :: α assn ⇒ α ann-com (- skip)
-AnnAtom :: α assn ⇒ α com ⇒ α ann-com (- 〈-〉)
-AnnWait :: α assn ⇒ α bexp ⇒ α ann-com (- wait - end)

The external syntax for assertions is:

syntax
-Assert :: α ⇒ α set ({|-|})

Part of the corresponding translations of these concrete syntax constants
into internal (abstract) syntax can be done simply by directed rewriting
equations:

translations
{|b|} ⇀ Collect �b�

´x := a ⇀ Basic �´(-update-name x a)�
c1,, c2 ⇀↽ Seq c1 c2

if b then c1 else c2 fi ⇀ Cond {|b|} c1 c2

while b inv i do c od ⇀ While {|b|} i c

r ´x := a ⇀ AnnBasic r �´(-update-name x a)�
c1;; c2 ⇀↽ AnnSeq c1 c2

r if b then c1 else c2 fi ⇀ AnnCond1 r {|b|} c1 c2

r if b then c fi ⇀ AnnCond2 r {|b|} c
r while b inv i do c od ⇀ AnnWhile r {|b|} i c
r await b then c end ⇀ AnnAwait r {|b|} c
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skip ⇀↽ Basic id
if b then c fi ⇀↽ if b then c else skip fi

r skip ⇀↽ AnnBasic r id
r 〈c〉 ⇀↽ r await True then c end

r wait b end ⇀↽ r await b then skip end

These equations translate in the direction of the arrow. Expressions on the
left-hand side are the input syntax, and those on the right-hand side are
the internal representation. The one-to-one translations, denoted by ⇀↽ are
automatically performed by Isabelle’s parser and printer. This is the case for
the sequential composition and the command’s abbreviations. For the rest
of the commands the translation from internal to external representation is
a little more complicated because boolean conditions and program variables
have to be translated according to the quote/antiquote technique. When the
translations are too complicated as to be expressed by an equation, Isabelle
allows so-called parse and print translation functions to be programmed in
ML.

For parallel programs there is also some concrete syntax of the form

cobegin c1 {|q1|} ‖ . . . ‖cn{|qn|} coend

defined formally as follows:

nonterminals
prgs

syntax
-PAR :: prgs ⇒ α (cobegin - coend)
-prg :: [α, α] ⇒ prgs (- -)
-prgs :: [α, α, prgs] ⇒ prgs (- - ‖ -)

The following one-direction translations translate the external representa-
tion into a Parallel command with argument the corresponding list of com-
ponent programs:

translations
-prg a c ⇀ [(Some a, c)]
-prgs a c ps ⇀ (Some a, c) # ps
-PAR ps ⇀ Parallel ps
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The definition of syntax and the corresponding translation for program
schemas are:

syntax
-prg-scheme :: [α, α, α, α, α] ⇒ prgs (scheme [- ≤ - < -] - -)

translations
-prg-scheme j i k c q ⇀↽ (map (λi . (Some c, q)) [j ..k(])

Notice that the internal representation is just a list of parallel programs.
Thus, it has to be enclosed in a cobegin− coend environment, where it can
be further composed with other parameterized or concrete parallel programs.

With these equations, the translation from external into internal repre-
sentation is almost finished, only one constant is still not understandable
for Isabelle, namely -quote. To translate quotations into internal syntax we
use a parse-translation function which uses the basic quote/antiquote trans-
lations predefined in the theory Isabelle/Pure (see Syntax.quote_tr and
Syntax.quote_tr’).

parse-translation {∗
let

fun quote-tr [t ] = Syntax .quote-tr -antiquote t
| quote-tr ts = raise TERM (quote-tr , ts);

in [(-quote, quote-tr)] end
∗}

This last step completes the translation from external into internal syntax.
For the recovery of the external syntax from the internal representation, a

similar ML program called print-translation is defined. As usual in Isabelle
syntax translations, the part for printing is more complicated. It is only
recommended for Isabelle experts and thus it is not shown here. However,
we mention that the full ML print-translation function consists only of 50
lines of code.

As a comparative remark, it is worth mentioning that the ML program
implementing the parse and print translations needed for a method to rep-
resent the state via abstraction over tuples of program variables due to [von
Wright et al., 1993] (see 2.7.1) consisted of 550 lines of code.
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cptn, 107
cptn-mod, 108

datatype, 9
deadlock, 19
deep embedding, 8
defs, 9
denotational semantics, 22

edge, 74
edges, 74

elementary arithmetic, 150
environment transition, 103
expressiveness, 150

free list, 72
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