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Abstract

We consider phase transitions in random graphs (G, ,/Gn.m) with constant
average degree, like the sudden appearance of the giant component or the
giant k-core ([PSW96, GMO00]) at some critical average degree. Small neigh-
bourhoods in such random graphs closely resemble branching trees. Fre-
quently, the exact numerical values of the critical average degrees and the
expected sizes of the aforementioned giant subgraphs can be ‘predicted’ in a
semi-heuristic manner from studying ‘corresponding’ branching trees instead,
which is far simpler than the rigorous analysis of the phase transition in the
random graphs. It is a major goal to turn this observation, which - follow-
ing [PSW96] - we shall call the ‘Branching Tree Connection’, into a rigorous
proof technique. Goerdt and Molloy have achieved this for the k-core in the
model of random faulty configurations in [GMO00].

We prove — in the G, , model — the sudden appearance of a giant subgraph
that is ‘almost the k-core’, its size being sharply concentrated around what
is predicted by the Branching Tree Connection. Our proof, based on the
Principle of Deferred Decisions and a new application of the Simple Concen-
tration Bound, essentially employs the same recursive equations as used for
analysing a ‘corresponding’ phase transition in branching trees, thus provid-
ing structural insight into why the Branching Tree Connection predicts the
correct values. Adapting ideas from [GMO0] to the model G,, ,,,, we show that
the aforementioned subgraph which is ‘almost the k-core’ can be ‘purged’,
yielding a giant k-core upon deletion of only o(n) nodes.

Motivated by a new phase transition phenomenon in branching trees we
have found a novel subgraph of k-partite graphs, the magic subgraph. We can
empirically demonstrate its sudden appearance. Both critical average degree
and size are in good accordance with the Branching Tree Connection. The
fact that it appears at a critical average degree of 4.91(. . .) suggests a relation
with the Antivoter Phenomenon ([PW89]). Moreover, when it appears, the
magic subgraph seems to be ‘almost uniquely k-colourable’, which may turn
out to be relevant for understanding the threshold for k-colourability in non-
k-partite random graphs with constant average degree.
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Chapter 1

Introduction

The main focus our work is understanding combinatorial phase transitions
in sparse random graphs and their algorithmic implications. We regard our
results as contributions towards understanding the average case behaviour
of k-graph-colourability for £ > 3*, which has attracted a lot of attention in
the theory of random graphs. Determining, and understanding the mecha-
nisms behind, the so called k-colourability threshold is a central open research
problem posed by P. Erdés, according to M. Molloy in [Mol01]. The afore-
mentioned reference is a recent survey on the subject including a thorough
exposition of the closely related threshold phenomenon in random k-SAT
(satisfiability). We encourage the reader to consult [Mol01] as an excellent
supplement to our introductory sections.

Before seriously getting started we will outline important aspects of the
subject of 3-colouring random graphs in Section 1.1, and point out some con-
nections to statistical physics, in Section 1.2. In Section 1.3 we will introduce
the Branching Tree Connection, and Section 1.4 contains a synopsis of the
thesis.

1.1 3-Colouring and Phase Transitions

It is well known that the decision problem (x denotes the chromatic number)

(G) <3

is NP-complete for graphs G on n nodes. Not even an n! ®-approximation

algorithm for y exists unless co — RP = NP, according to [FJ96]. For tri-
partite graphs the decision problem is easy, yet finding 3-colourings of such

*Generalisations to k > 3 frequently are analogous if not straightforward and we shall
therefore often assume k = 3.



graphs is still NP-hard, in the (loose) sense that a polynomial time algorithm
able to explicitely find 3-colourings could be employed in a rather straight-
forward manner to solve the above decision problem. Note that the existence
of polynomial randomised algorithms for the decision problem in the general
case, and for the constructive problem in the tripartite case, would imply
RP = NP. Thus, considering the standard assumptions of complexity theory,
there is little hope for algorithms, both randomised and deterministic, solv-
ing those problems efficiently, i.e. in polynomial time (w.r.t. the number of
nodes n), in the worst case.

The picture looks rather different in the average case. We consider ran-
dom graphs parametrised with their average degrees ¢ = ¢(n). We shall see
below in Section 2.2 that the decision problem is indeed trivial for ‘most’ val-
ues of ¢ in the following sense. For some c.;(n) answering ‘yes’ when ¢ < ¢y
and ‘no’ for ¢ > ¢y is correct with probability approaching one, asymptot-
ically in n. The rate of convergence may depend on ¢ and one expects it
to deteriorate the closer ¢ gets to c.i;. Unfortunately the exact asymptotics
of ¢uig(n) are unknown. Yet liminf ey (n) and lim sup cgi(n) provably lie
between 3.85(...) and 4.99(...), and ci;(n) is conjectured to converge to an
absolute constant, c.f. Section 2.5.

There is a (randomised) heuristic for 3-colouring random tripartite graphs
that seems to be inefficient only for some critical average degrees of approxi-
mately 5 ([PW89], our Section 2.6). There also are algorithms that provably
find colourings for all average degrees greater than some (rather large) con-
stant (Section 2.6, [BS95], also [AK94], [Al098]). Deciding 3-colourability is
trivial with high probability, when the average degree is less than some other
constant 3.35(...), c.f. Sections 2.3 and 2.4.

Note that for graphs the property of being 3-colourable is non-local in the
sense that the presence of certain small subgraphs (such as K;) may imply
non-3-colourability but the converse is not true, c.f. the existence of uniquely
3-colourable graphs with large girth (Section 2.6).

Very loosely speaking, a combinatorial phase transition occurs if the typ-
ical behaviour of certain (sets of) combinatorial objects associated with the
random graph change discontinuously (or at least non-analytically), as a
function of the average degree c¢. In view of the sudden jump in chromatic
number described above, the set of proper 3-colourings is such a combinato-
rial object. The well known giant component phenomenon ([ER60]) and the
appearance of a giant subgraph called 3-core ([PSW96], explained below in
Sections 2.3 and 2.4) are fairly well understood examples for phase transi-
tions. In both those latter phenomena certain subgraphs of ‘giant’ size 0(n)
suddenly appear.



When the chromatic number jumps to x = 4 a non-empty (edge-)mini-
mally 4-chromatic subgraph, possibly giant, must have appeared. It was
conjectured by Bollobas that the jump in chromatic number should coincide
with the appearance of the 3-core, because the 3-core might contain a min-
imally 4-chromatic subgraph. This turned out to be wrong. Still the search
for the appearance of some subgraph that is, or implies the existence of, a
minimally 4-chromatic subgraph continues (c.f. [MR99, Mol01]).

Some may argue that average case analysis has some ad hoc flavour, since
one distribution on the set of inputs is as good as any other, the uniform
distribution being the only canonical choice. However, having shown that a
problem is NP-hard we know it will be difficult to solve under the standard
assumptions of complexity theory, but we do not really understand why. Is
it just because some ‘artificially constructed’ inputs seem to ‘confuse’ all
algorithms feasible on Turing machines? Are all inputs equally hard? Or is
it because some subset of inputs is ‘difficult’, and if this is true, what makes
those inputs special?

Average case analysis employing distributions that are concentrated on
certain subsets of the input set may help in answering those questions, by
‘focusing’ on subsets of the inputs f. It is generally believed that combina-
torial phase transitions are somehow connected to those questions, in that
random inputs generated according to a distribution with parameters (like
the average degree ¢) tend to be ‘easy’, when the parameters are bounded
away from phase transitions and ‘difficult’ otherwise. This suggests that
generating inputs with the parameters set upon the critical values should be
an effective way of generating ‘typical’ hard inputs. However, there is no
general rigorous theory justifying this belief. Most certainly such a theory
presupposes a rigorous definition and classification of phase transitions. We
believe that a lot could be learned from statistical physics, where there is a
theory of phase transitions developed by mathematical physicists. We will
therefore give a short and very incomplete overview in the next subsection.

1.2 Colouring and Statistical Physics

We include this little excursion to demonstrate that using the term ‘phase
transition’ in the context of random graphs is more than a superficial analogy
motivated by the fact that ‘something suddenly jumps’.

tOne should keep in mind, though, that there may be other large subsets of the set
of feasible inputs that are also hard, but never in the ‘focus’ of the class of probability
distributions considered.



There are many connections between algorithmic complexity issues, as
studied by computer scientists and discrete mathematicians, and phase tran-
sitions, as studied by physicists. There may be hope for a ‘unifying’ theory,
that may yield certain inapproximability results in the average case analysis
of NP-hard problems by studying the singularities of Gibbs measures as ex-
plained below. As far as we are aware there is no such theory. However note
the recent results by Brightwell and Winkler in [BW99b, BW99a, BW00)].

In order to draw (further) attention to this situation, we find it worthwhile
to explain our limited understanding of the analogies, if nothing else, offering
a different perspective on the problem and explaining some terminology as
we go along.

Studying the 3-colouring problem of a graph G is equivalent to studying
the anti-ferromagnetic 3-spin Potts model associated with G. The states,
i.e. families of three different ‘spins’ labelled by the nodes of GG, are nothing
but colourings of G, not necessarily proper. The Hamiltonian H is a map-
ping from colourings to the number of monochromatic edges therein. To a
physicist the Hamiltonian is the energy of the states. The Gibbs measure is a
measure proportional to exp(—1/T- H) on the set of all colourings, where the
parameter 7" may be interpreted as a temperature. The specific structure of
the system is encoded in (the functional form of) the Hamiltonian, and the
Gibbs measure describes the ‘occupancy’ of states in thermodynamic equi-
librium at temperature 7. When the temperature 7" goes to zero, the Gibbs
measure is the uniform distribution on the colourings with the minimum
number of monochromatic edges, also called the ground states of H.

There is plenty of evidence in the theoretical computer science literature
for the fruitful interplay between statistical physics and theoretical computer
science. Theoretical computer science has benefited from ideas brought up
by physicists, frequently cast in non-rigorous form. We agree with Talagrand
([Tal98]) that ‘the physicists’ tend to produce non-rigorous speculative re-
sults, settling for ‘proofs’ relying on assumptions that are implicit, overly
optimistic and ad hoc. At the same time, ideas both for problems and even
for proof techniques (e.g. hard-core lattice gas model, Dobrushin uniqueness,
c.f. [BDI7]) have had a strong impact on research in discrete probability and
theoretical computer science.

In Physics there is a ‘theory of critical phenomena’ or ‘scaling’, which
seems to be not consistently mathematically rigorous (however, see [Bax89]
for mathematically rigorous results on statistical physics). Our understand-
ing is that quantities like ‘correlation-lengths’ derived from the Gibbs mea-
sure, diverge as a function of the parameters according to some ‘universal
scaling laws’, like for example (T — Ti;;)®, believed to be fairly independent
of many specific details of the system (i.e. Hamiltonian) under consideration.

4



We remark that Bollobds et.al. in [BBC*99] relate their results to ‘scaling’.

Based on our acquaintance with D. Ruelle’s seminal Thermodynamic For-
malism ([Rue78]), we will therefore sketch his theory of phase transitions,
and state some observations, in a rather non-rigorous fashion. Carrying out
the thermodynamic limit, to be explained presently, is a rather subtle and
difficult issue, our point is that there exists a mathematically rigorous theory.

The Potts-model Gibbs measure has been studied on regular lattices such
as tori with n = [ nodes, where d = 1,2,3,(...). In the limit n — oo the
corresponding sequence of Gibbs measures induces a translation invariant
infinite volume Gibbs measure on colourings of Z%. This process is referred
to as the thermodynamic limit. This infinite volume Gibbs measure depends
on 7', d and all ‘macroscopic’ parameters the Hamiltonian H might addition-
ally depend on. A phase transition is a point of non-analyticity (in some
appropriate weak sense) of the infinite volume Gibbs measure.

Note that the functional form of the Gibbs measure, exp(—1/7 - H), sug-
gests an essential singularity at 7= 0. Any deterministic algorithm finding a
ground state efficiently could be employed to decide 3-colourability in poly-
nomial time, which would imply P = NP. Even a randomised algorithm
efficiently sampling from the Gibbs measure at 7" = 0 would imply RP = NP.
Both P = NP and RP = NP are generally believed to be wrong. Yet there
are at first sight efficient Markov Chain Monte Carlo (MCMC) algorithms
sampling from the Gibbs measure at finite temperatures. Not surprisingly in
the light of the above complexity-theoretic considerations, the performance
of those samplers breaks down when 7" — 0. It is well known, at least
empirically, that setting the parameters close to points of phase transitions
may spoil the performance of otherwise efficient MCMC samplers. This phe-
nomenon is referred to as critical slowing down (c.f. [GJIT]).

The singularities appear only in the thermodynamic limit n — oo, but
for systems with large constant n the finite volume Gibbs measures vary
rapidly when the parameters are close to critical points. Discontinuities
appear slightly ‘rounded off’. The physicists’ intuition is that a system with
many, say 1023, atoms resembles very closely the idealised ‘limiting system’
with an infinite number of atoms.

Note that the sequence of finite lattices ‘everywhere look the same, locally
and for all n’. More precisely they have a translation invariance, or isotropy,
which seems to play an important role for the advent of phase transitions.

Now let us compare this to the situation in random graphs with average
degree ¢(n). They also ‘everywhere look the same, locally’, but in a stochastic
sense. When ¢(n) is not constant, this will depend on n, but otherwise the
random graphs, too, ‘everywhere look the same, locally and for all n’. To
a physicist, average degree means average coordination number and should



be an extensive variable in the sense of thermodynamics, that is, it should
be independent of system size n. This is clearly satisfied by the tori (‘lattice
graphs’) above. Random graphs with average degree explicitly depending
on n do not comply with this. Thus graphs with constant average degrees
seem best suited for a physical interpretation of a ‘thermodynamic limit’. We
find it remarkable that (c.f. above) the jump in chromatic number happens
in exactly this regime of constant average degree.

We conclude by observing that, when the tori resemble regular crystal
lattices, our random graphs are resembling ‘glass’. Indeed the area of spin
glasses seems to be very closely related to our setting, c.f. Talagrand ([Tal98]).

1.3 Branching Trees and Random Graphs

We have studied random graphs with constant average degree ¢, and ‘cor-
responding’ branching trees with expected growth rate ¢. Small neighbour-
hoods in random graphs with constant average degree c closely resemble
branching trees with expected growth rate c.

Branching trees are far simpler to study than the ‘corresponding’ random
graphs, mainly because disjoint sub-trees are independently and identically
distributed as the branching tree itself. Moreover, branching trees also ex-
hibit phase transitions intuitively corresponding to phase transitions in the
random graphs. This correspondence is called* the Branching Tree Connec-
tion in [PSW96], and has been observed by many researchers in one way or an-
other. For example, the famous ‘appearance of the giant component’ ([ER60])
corresponds to the ‘appearance of an infinite subtree’ in the branching tree,
and the ‘appearance of a giant 3-core’ ([PSW96]) corresponds to the ‘appear-
ance of an infinite (complete) binary subtree’. This correspondence predicts
the discontinuous jump not only qualitatively. The critical values ¢ coin-
cide and the expected relative sizes at which the giant subgraphs appear are
exactly equal to the probabilities that the branching trees contain the corre-
sponding infinite subtrees. The Branching Tree Connection even holds when
we consider random graph models that differ from the classical binomial or
uniform ones, only the progeny distributions in the corresponding branching
trees needs to be adapted accordingly ([MR95a, MR98, GMO00]).

The Branching Tree Connection suggests a non-rigorous ‘explanation’
of the basic mechanism of the appearance of giant subgraphs, that can be
put as follows. The random graph ‘behaves similarly’ to a disjoint union of
independent branching trees, the roots of the ones containing infinite subtrees
forming something analogous to the giant subgraph. Obviously, this is not

tActually, in [PSW96] the term ‘branching process connection’ is used.



what is going on in random graphs. Neighbourhoods are never infinite, they
resemble branching trees only for radii much smaller than the diameter of
the graph and, finally, the neighbourhoods of different nodes do overlap.

Our overall goal is turning this semi-heuristic ‘explanation’ into rigorous
proofs for phase transitions. Our contribution can be summarised as follows.
We provide a little theory for treating phase transitions in branching trees.
Then we provide a novel technique, in close accordance to the treatment
of the corresponding branching trees, for proving the ‘appearance of giant
marked sets’ which are ‘almost the same’ as the giant k-core or the giant
magic subgraph. For the appearance of the k-core we can actually show that
the ‘giant marked set’ differs from a giant k-core only by o(n) nodes, adapting
the proof strategy of Goerdt and Molloy ([GMO00]) to the G, /G, model of
random graphs. Inspired by the theory of branching trees we have discov-
ered a new ‘sudden appearance of a giant subgraph’ phenomenon in random
tripartite graphs. We called this subgraph the magic subgraph. Empirically,
magic subgraphs as they appear in random graphs are ‘almost uniquely’
colourable, which makes them interesting candidates for explaining the jump
in chromatic number (see our discussion on p. 3).

As explained above it may appear natural for a physicist to study phase
transitions in random graphs with constant average degree ¢(n) = ¢. When
analysing the average case behaviour of the chromatic number, such random
graphs are the most interesting from a purely mathematical point of view,
too. But note that there are other important combinatorial phase transitions
where ¢ explicitely depends on n, like the appearance of a Hamilton cycle.
Actually, this problem helps to illustrate why it is promising to study small
neighbourhoods in random graphs. Deciding Hamiltonicity is well known
to be NP-complete. Yet it turns out that a random graph almost surely
contains a Hamilton cycle, as soon as the average degree is such that every
node has degree at least two, almost surely. For deciding the latter it clearly
suffices to merely inspect all 1-neighbourhoods of the nodes, which can be
performed in polynomial time. Note that the degrees of the nodes are dis-
tributed approximately like ‘fairly independent’ Po. random variables, which
can be interpreted as a ‘Branching Tree Connection for 1-neighbourhoods’.

Remember that it would be appealing to explain the jump in chromatic
number by the appearance of some appropriate giant subgraph which might
be much easier to decide than the NP-complete problem whether the graph is
3-colourable. Our work shows that the appearance of certain giant subgraphs
may be (‘approximately’) decided upon inspecting the r-neighbourhoods
of the nodes, where r = r(n) grows slowly with n, not unlike the afore-
mentioned ‘approximation’ to Hamiltonicity based upon inspection all 1-
neighbourhoods.



1.4 Synopsis

In Chapter 2 we define basic terms, review some probabilistic concepts, and
report on a number of results that are relevant in the context of our work.
Only Section 2.3 contains some original definitions and insights that are so
central to our work that we wanted them to be available as soon as possible.

Chapter 3 contains a rigorous treatment of two important phase tran-
sitions in branching trees, using certain recurrence equations. These two
phase transitions in branching trees can be regarded as the ‘analogues’ of
the appearance of the k-core and the magic subgraph (see below) in random
graphs. We include some additional material concerning branching trees.

In Chapter 4 we formally define the magic subgraph, a new type of
subgraph in k-partite graphs that is somewhat similar to the k-core. We
discuss certain deterministic properties of magic subgraphs. In Section 4.3
we give striking empirical evidence for the sudden appearance of a giant
magic subgraph at an average degree ¢ = 4.91(...). The empirically observed
numerical values of both the threshold and the expected size closely coincide
with what would be expected from the ‘corresponding branching tree theory’
as laid out in Section 3.2. Moreover, this coincidence manifests itself in a
way completely analogous to how empirically observed k-cores coincide with
what would be expected from the ‘corresponding branching tree theory’ as
laid out in Section 3.1. We present evidence that empirically observed magic
subgraphs appear to be ‘almost uniquely colourable’.

In Chapter 5 we show how to prove the ‘sudden appearance of a giant
subgraph that is almost the k-core’ in the G, ,-model with average degree c,
employing the same recurrence equations as used for the analysis of the ‘cor-
responding’ phase transition discussed in Section 3.1. This gives a good
deal of structural insight into why the Branching Tree Connection works so
well. We finally ‘translate’ our results to the closely related G, ,,,-model with
average degree c.

The aforementioned ‘giant subgraph that is almost the k-core’ is indeed
closely related to the giant k-core. In Chapter 6 we extend our results
from Chapter 5 to a new proof for the sudden appearance of a giant k-
core in the G, ,,-model with average degree ¢, adapting the proof strategy of
Goerdt and Molloy ([GMO00], appearance of a giant k-core in random faulty
configurations).

In Chapter 7 we explain to what extent our new proof techniques that
enabled us to give a new proof for the appearance of a giant k-core, can be
employed for proving the empirically observed sudden appearance of a giant
magic subgraph. In particular, we report on where we failed in generalising
the material from Chapter 6 to the magic subgraph and discuss alternative



strategies. The appearance of the (empirically, ‘almost’) uniquely colourable
magic subgraph could well be regarded as candidate mechanism for the afore-
mentioned ‘jump’ of the chromatic number of random graphs from & to k+1,
if it were not only well defined for k-partite graphs. We lay out what we can
say about comparing the k-partite and the non-k-partite model in Section 7.3.
By ‘discovering’ the magic subgraph we have demonstrated that phase tran-
sitions in branching trees described by certain recursive equations sometimes
‘indicate’ the appearance of certain ‘corresponding’ giant subgraphs. We
shall discuss a few recursive equations that may lead to the discovery of new
giant subgraphs, including one recursive equation related to random 3-SAT.

In Chapter 8 we summarise our results, state open questions and make
suggestions for future research.
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Chapter 2

Context and Related Work

In this chapter we will attempt to set the scene for later discussions by
defining the terms and concepts that will be used and by reviewing the work
of other authors. Once again, we refer those seeking additional information
to the excellent overview provided by M. Molloy [Mol01].

In Section 2.1 we state various models of random graphs, and review a
few probabilistic tools. Section 2.2 is devoted to the average case analysis
of graph properties in random graphs with constant average degree, using
Fourier Analysis. The probabilities of certain ‘non-local’ graph properties
discontinuously jump as a function of the average degree. In Section 2.3
we introduce some specific concepts, such as the k-core and branching trees.
Section 2.4 contains rigorous results for the ‘sudden appearance of the 3-core’
for two different models of random graphs. Section 2.5 deals with what is
known about the average case analysis of 3-colourability as a function of the
average degree. Section 2.6 is devoted to 3-colourability in the 3-partite case.

This chapter contains nothing that is new, apart from the definition and
discussion of ownership and the extended k-core in Section 2.3. We have
included this material at an early stage, such that we can describe the results
of others in the language developed for our work.

2.1 Basic Probability Concepts

Here we will briefly review some important mathematical basics mainly for
the sake of completeness and later reference. A reader familiar with the
theory of random graphs, as laid out in the books by Bollobds [Bol85] or
Janson et. al. [JER0O0], may safely skip most of this section.

We discuss various models of random graphs and how they are related,
the Principle of Deferred Decisions and important concentration ‘tools’.
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2.1.1 Models of Random Graphs

We mainly consider simple undirected graphs G = (V, E) on |V| = n vertices.
The number of edges will be (close to) |E| = m = ¢n/2, that is the average

degree will be (close to) ¢. By G = G,, we denote the set of all 2(3) graphs
on n nodes. This will be the underlying probability space, more formally a
sequence of probability spaces, in most future considerations. Apart from this
we shall also consider so called configurations, closely related to multigraphs,
to be explained below.

Binomial Random Graphs

Our favourite model is G, ,. This is just a shorthand notation indicating
that we shall deal with a certain (sequence of) probability distribution on
the set of all graphs G,,. Random graphs ‘in G, ,," are generated by retaining
the edges of the complete graph K, with probability p, independently. Thus
the aforementioned probability distribution is the product of (g) Bernoulli
distributions, each ‘random bit’ corresponding to a potential edge switched
on or off.

Usually we will choose p = p(n) = ¢/(n—1) in order to attain an average
degree of c.

We shall later need random tripartite graphs with average degree ¢, de-
noted by Qn73,g_;. Each edge in the complete tripartite graph K, /3,/3,/3 18

3c

5=, independently. Here n will be assumed to be

retained with probability
an integer multiple of 3.

Uniform Random Graphs

In the model G,, ,,, graphs are drawn uniformly from all graphs in G,, with ex-
actly m edges. Choosing m = ¢n/2 yields average degree c. Algorithmically,
such graphs may be generated by random graph processes as follows.

e Start with the empty graph.

e As long as there are less than m edges in the graph so far, select a
consistent potential edge uniformly at random and add it.

A potential edge is consistent with the graph generated so far, if it does
not introduce multiple edges when added. Clearly, this can be adapted to
the tripartite case.

12



Other Random Graphs

In the uniform model the only constraint is the number of edges. We also
may prescribe a degree sequence, that is a sequence (d;); of integers counting
the numbers of nodes with degree i. We deviate slightly from the standard
definition, following [MR95a]. Instead of writing down the degrees of all
nodes in increasing order, forming a string of length n, we count how often a
certain number (i.e. degree) appears in this string, which is clearly equivalent.
Note that it is also equivalent to consider the integrated degree sequence
formed by the D; := 2j>i d;. We may also consider random graphs that are
chosen uniformly amongst all graphs with a given degree sequence.

The aforementioned reference [MR95a] contains an interesting generalisa-
tion of the well known ‘appearance of a giant component’ for random graphs
with a given degree sequence.

It is not easy to algorithmically construct such graphs with a given degree
sequence uniformly at random. Therefore it has become standard practice
to use the model of random configurations, and translate results back to the
corresponding random graphs by ‘translation tools’ (see below).

e For each 7 create d; ‘meta-nodes’, consisting of 7 vertices each.

e Generate a random perfect matching on the vertices. This can be
done by a random process similar to the one described above. Note
that ) .id; = >, deg(v) = 2m is even, whenever (d;); is the degree
sequence of some graph.

We finally remark that Janson et. al. in [JKLP93] have proposed a model
of generating directed random graphs, where each pair of vertices is incorpo-
rated independently with probability ¢. This model seems to be particularly
well adapted to analysis using generating functions. We shall make no further
reference to this model.

Relating the Models

The models G, , and Gy, »,, when m is (close to) the expected number of edges
in G, ,, are not fully equivalent, yet they are very similar in spirit. Indeed
there are ‘translation tools” enabling us to carry over results from one model
to the other, an in-depth-treatment may be found in the aforementioned
references [Bol85] and [JLR00]. We merely quote two facts from [Bol85] for
later reference. Denote by G, the set of all graphs on n nodes and by Q™
a subset of G,. Strictly speaking {Q™},, is a family of respective subsets
of G,, but we shall say that Q™ is an event. An event is conver, if for all
FCGCH,Fe QM and He Q™ implies G € Q™.

13



Fact 1 If the probability of a convexr event Q™ converges to one in Gnp
then it also converges to one in G, m, when p = p(n) is such that the expected
number of edges is m = m(n).

Fact 2 The probability of any event A™ in G, ,, is bounded by O(m(n)"/?)
times its probability in G, ,, when p = p(n) is such that the expected number
of edges is m = m(n).

Also, random configurations with degree sequence (d;); are closely re-
lated to random graphs with degree sequence (d;);. The essential idea for a
‘translation tool’ is to contract ‘meta-nodes’ to single vertices. This will how-
ever yield multigraphs, with multiple edges and self-loops. First note that a
random configuration conditional on no self-loops or multiple edges yields a
random graph with degree sequence (d;);, uniformly amongst all such graphs,
because every graph is the ‘contraction’ of [[,(d;)! configurations. Moreover,
it can be shown that the event ‘no self-loops or multiple edges’ has a constant
probability. Thus any event that has probability o(1) in the configuration
model has probability o(1) in the corresponding random graph model, too.
See, for example, [MR95a] for a more thorough discussion.

2.1.2 Principle of Deferred Decisions

When working in the G, , and related models, we may encode the graphs as
strings in {0,1}M, M = (g), each independent bit standing for a potential
edge in K, being switched on or off. When analysing algorithms on the
graphs in the course of ‘time’ it is sometimes convenient to think of the
random choices being made at the very time when we ‘ask’ for their outcome.
As long as we have not ‘looked’ at the corresponding potential edges, their
outcomes are independent of all other bits. Instead of stating this more
formally we will give a couple of examples.

The n vertices of a graph are (labelled by) the integers in [n]. At each
‘time’ ¢ we consider the (potential) edges connecting node ¢ with [t —1]. This
is tantamount to building up the graph by ‘glueing’ node t to the ‘graph so
far’. This specific way of ‘grouping’ the edges is referred to as vertex exposure.

Consider a breadth first search (BFS) or depth first search (DFS) in the
random graph. Instead of generating the full random graph and then running
a BFS or DFS we can do the following. At ‘time’ ¢ we know that some nodes
are fully explored, some are on the boundary and the rest are unexplored.
According to the protocol (DFS or BFS with appropriate tie-breaking) we
choose some node v; from the boundary. Then we ‘ask’ for the outcome of
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the random bits corresponding to (potential) edges connecting v; with other
boundary and unexplored nodes, moving v; from being ‘boundary’ to being
‘explored’ and the formerly ‘unexplored’ newly discovered neighbours to the
boundary. Whatever the outcome of the random bits so far, the bits we ‘ask’
for at ‘time’ ¢ are completely ‘fresh’.

Another ‘BFS-like’ fanning-out process in the above spirit is obtained
when the boundary nodes to be expanded are chosen uniformly at random.
We shall later refer to it as Karp’s fanning-out process, see [Kar90].

2.1.3 Concentration Tools

In the asymptotic theory of random graphs we frequently encounter discrete
random variables X (™ = Y icrm Yi(n), counting certain combinatorial objects
associated with the graphs (n is the number of nodes). Think of the number
of (proper!) colourings, or the number of nodes participating in a triangle, for
example. Thus X ™ takes values in the non-negative integers. The indicators
Yi(n) in the sum constituting X(™ are usually not independent, which renders
analysis more difficult.

Note that in the independent case due to the law of large numbers X ™
will be sharply concentrated around E[X ], which itself is simply the sum of
the IE[Yi(n)]. For sufficiently large n the behaviour of X ™ would be basically
determined by E[X ™)].

Fortunately, linearity of expectation also holds in the dependent case,
and we may still be able to calculate E[X ] using the ]E[Yi(n)]. Sometimes
it is even possible to calculate the covariance matrix and we may get hold
of Var[X (] from the IE[Yi(n)Yj(n)]. If we can not calculate those quantities
we might still be able to bound them. We will frequently write X instead of
X™ etc., the dependence on n being understood.

Knowledge of moments, even of the first moment alone, may yield more
insight into the behaviour of X than one would naively expect. The First
and Second Moment Method to be explained presently are exploiting little
more than the elementary Markov Inequality for analysing P[X = 0].

The aforementioned concentration of X in the independent case is best
captured by Chernoff Bounds when the Y; are independent indicators. As
a rule of thumb, when correlations are absent, with high probability the
deviation from E[X™] is #(\/n), when E[X™] = #(n). When the Y; are in
some sense ‘weakly’ dependent indicators, or even when X is no longer a sum
of indicators but a more general function of random variables that ‘does not
vary too much’ (satisfying a Lipschitz condition, see below) concentration
results are available. There are various techniques yielding ‘Chernoff-like’
concentration inequalities some of which we will briefly describe below.
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Even when correlations are not small, but ‘the right way round’, there
are interesting results, a formal discussion of which we consider out of scope.
Note that there is not even a unique canonical definition of what should be
understood by ‘negatively or positively correlated’. We will limit ourselves to
reproducing an informal but illustrative picture of the effect of correlations
on sums of random variables due to B. Reed. Consider n random indicator
variables, say, each being one with probability 1/2 but not independently.

The extreme case of positive correlation is that the first variable ‘decides’
and all the others go along. In that case the sum is concentrated on 0 and n,
in particular, it is not concentrated around its mean.

For negative correlation each variable does the opposite of what the ma-
jority of the others have done. Up to rounding errors the sum is exactly
concentrated on n/2, which is the mean.

Thus, intuitively, negative correlation improves concentration whereas
positive correlation spoils it.

The First and Second Moment Method

Let us now suppose that we were somehow able to find out, or at least
bound, the asymptotic behaviour of E[X], and possibly also of Var[X]. As
mentioned above, this is usually achieved by considering cleverly-chosen sums
of (possibly dependent) indicator random variables, using linearity of expec-
tation. When X is counting certain objects, we are particularly interested in
P[X = 0], i.e. the probability that no such object exists. Applying the well
known and elementary inequalities of Markov and Chebychev we can learn
about P[X = 0], purely from our knowledge of E[X] and Var[X].

I) When E[X] — 0 then P[X = 0] — 1, by Markov’s inequality.

Proving that P[X = 0] — 1 using this implication is called the First
Moment Method.

IT) What if E[X] diverges, does this imply P[X = 0] — 0?7 As long as
X is reasonably concentrated around E[X] one should expect so. And
indeed, employing Chebychev’s inequality yields that P[X = 0] — 0 as
long as Var[X] does not diverge too badly.

Proving P[X = 0] — 0 by this implication is called the Second Moment
Method.

Note that E[X] — oo in general does not imply P[X = 0] — 0, as can
be seen from the following counterexample. Let P[X = i] = 0 except P[X =
0] =1—1/n and P[X = 2"| = 1/n. Clearly, E[X] diverges but P[.X = 0] — 1.
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Intuitively, the First Moment Method fails to prove P[X = 0] — 1, when
in the (unlikely!) case that X # 0 there are ‘far too many’ objects counted
by X. Following Molloy [Mol01] we shall call this a ‘jackpot-phenomenon’.
This suggests a refinement of the First Moment Method. Use X instead of
X, counting only ‘some’ of the objects. If those selected objects are in some
sense maximal, that is X =0 = X =0, there is hope that the ‘jackpot’ has

been sufficiently reduced such that now E[X] — 0 yields the desired result,
although E[X] itself still diverges.

Concentration Inequalities

We will mainly follow McDiarmid ([HMRR98]) in our exposition. A concen-
tration inequality or ‘tail bound’ associated with a random variable X always
has the single-sided form

P[X™ —E[X™] > 4(n)] < e(n),

or the double-sided form
P[|xX™ —E[X™]| > §(n)] <&'(n).

The slower € and ¢ grow with n, the better the bound.
Chernoff Bounds apply to random variables that are sums of indepen-
dent real random variables, frequently but not exclusively indicator random

variables
x) — Z Yi(n)_
i€[n]

Chernoff Bounds are the paradigm for all concentration inequalities. New-
comers to the field may be confused when finding not one Chernoff Inequality
but many similar-looking inequalities in the literature. This is because for
many applications one may trade off some sharpness in favour of expressive-
ness, that is simpler formulae for £(n) and 6(n). Thus we are really talking
about a whole class of inequalities. It takes some time to grow accustomed
to this vagueness and to learn how to handle it correctly. The same applies
to all other inequalities stated in this paragraph. We will use the following
version of the Chernoff bounds for later reference.

Fact 3 (McDiarmid [HMRRIS, p. 200]). Let X =" | X; the sum of i.i.d.
0/1 random variables, such that E[X]| = u. Then for all 6 > 0

2
P[X — u > 6] < e T30,
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As we have seen above concentration inequalities may exist even when
X is no longer a sum but a more general function. Consider a sequence
X =(Xy,...,X,) of n independent random variables and a function f from
the product [],_, Ax of the respective ranges Ay of the X} to the reals. We
begin with the Simple Concentration Bound.

Fact 4 (McDiarmid [HMRRYS, p. 206]). Using the above notation and def-
initions, when f satisfies a Lipschitz condition, that is if for all k

(L) |f(x1, .o mpg, ) — oy, w2 )| <
then for any t > 0, P[|f(X) — E[f (X)]| 2 1] < 2exp(—£7).
Note that the function ‘sum’ (z1,...,2,) — Y ., 2; is a special case having

Lipschitz constants ¢, = 1. The Simple Concentration Bound yields similar
but slightly weaker inequalities than the Chernoff Bounds, the latter being
especially tailored for the case of sums of independent variables.

Note that for the last inequality to hold, the X; still need to be inde-
pendent. Even this may be relaxed using martingale techniques. In combi-
natorial applications we frequently encounter a ‘limiting’ random variable Y
factoring over the (x1,...,2,). The quantities

Vi =Yi(zr,. . xp) =B f(xr, ..., 26, Xkgty - X))

yield ‘intermediate’ variables on the probability space of the (z1,...,xy)
‘averaged out’ over the respective futures (zgy1,...,7,). Yi may thus be
regarded as a random variable on the probability space of all possible his-
tories up to time k. In particular we have Y, = Y and Y, = E[Y]. When
the (Y; — Y; 1); form a martingale, Azuma’s Inequality yields concentration
of Y =Y. We shall not elaborate on the concept of martingales. We shall
merely remark that processes (Y; — Y;_1); arising from a single random vari-
able Y on a product space by conditioning in the above way are called Doob
martingales.

Fact 5 (A simple version of Azuma’s Inequality, folklore.) Let (X;)'_, be
not necessarily independent random wvariables, and let f : R* — R satisfy
the following.

For all possible histories (x1,. .., Tk 1, %) the expected increase is 0, i.e.

]E[f(l‘l, e ,ZL‘k,I,Xk, e ,Xn)] — ]E[f(.fb‘l, e ,l‘k,Xk+1, e ;Xn)] = O,

and f satisfies a Lipschitz condition (L) with constants ¢ as above.
Then
t2

PIfX) =E[f(X)]] = 1] < QGXP(—m

).
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We will finally merely sketch a result of N. Wormald, which is somewhat
similar in spirit to Azuma’s inequality. For a proper treatment we refer the
reader to [Wor95, Wor99].

Suppose we want to study a system of random variables forming a ‘vector
valued’ discrete time stochastic process, similar to the Y; discussed above. If,
after appropriate re-scaling, the expected increase yields a system of ordi-
nary differential equations, and the deviation from the expected increase is
appropriately bounded, the random variables will closely follow the solution
of the (system of) differential equations with high probability.

Let Y, be a vector of non-negative integers, describing the sizes of certain
combinatorial quantities in the course of some process. Suppose that for
t=0,....,n—1

discrete derivative

™ _ ™ ()
Y -y Y
Y - Y =R YY) & —H—— = F(t,n-—)/n.

Then it is at least plausible to associate the ordinary differential equation
L y(a) = (2. y()),
where
f(x,y) =Fn-z,n-y)/n, y(0):= Y(()n)/n z € [0,1],
and to believe x — y(x) suggests an approximate solution Y,
t =Y, :=n-y(t/n).

The true Y, will follow Y, quite closely, provided that f again satisfies
a Lipschitz condition. Note that a Lipschitz condition is also needed to
ensure the existence of a unique solution of the ordinary differential equation.
The method is very powerful and has important applications, two of which
we will discuss below (Sections 2.5.1 and 2.4.2). Usually it is quite easy
to compute the differential equation, to solve it (at least numerically) and
see what is going on. But turning this into a rigorous proof, checking the
conditions of the theorem and handling subtle difficulties, requires a lot of
careful reasoning, which makes this method difficult to apply.

2.2 Thresholds for Graph Properties

2.2.1 Monotone Properties of Random Graphs

A graph property A = (A(”))n is a sequence of respective subsets of the sets
G, of all graphs on n nodes. We will frequently suppress the dependence
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on n in our notation. We will abbreviate (;) by M. It is convenient to
view graphs as strings in {0,1}™, each ‘bit’ standing for the presence or
absence of a potential edge, after an arbitrary labelling of the edges in the
complete graph K,,. A graph property is symmetric if it is invariant against
re-orderings induced by permutations of the vertices and monotone if closed
against addition of edges. The property of being non-k-colourable is a sym-
metric and monotone graph property since quite obviously the labelling of
the vertices does not matter and adding edges makes a graph ‘even more
non-k-colourable’.

When we consider probability distributions P.[-] on G,, parametrised by
the average degree (see Section 2.1), it is quite natural to study P.[A™],
where A denotes a non-empty, monotone and symmetric graph-property.
Clearly Py[A™] # 0 only if the empty graph is contained in A™), in which
case A™ = G, due to monotonicity. Moreover, the function ¢ — P.[A™)]
is strictly increasing in ¢ for every fixed n, converging to 1 when ¢ goes

to infinity. The point-wise limit lim,,_,, IP’C[.A(”)] is still nondecreasing and
(n)

converging to 1, but it may be discontinuous. For each n the threshold c.;,

is the unique value of ¢ such that
P [A™M] =1/2.

crit

Usually cgfl)t will converge to a limit, although a ‘weird’ behaviour is feasible

(however, c.f. [FK96]). Now the threshold interval [c(_n), cgf)] is defined by the
values [¢™ and "] satisfying P w[A™M] =cand P o [AM] =1 —c. If
- +

)

(n)

Cerit

is bounded away from 0 (for all £,n) the property A is said to have a coarse
threshold, and to have a sharp threshold otherwise. Note that the threshold
interval is called the scaling window in [BBCT99], where a similar situation
arising from random 2-SAT formulae is studied. It will turn out that non-
k-colourability has a sharp threshold. Observe that in the case of non-k-
colourability this yields a rather trivial algorithm for ‘approximately’ deciding

the - in the worst case - NP-complete decision problem

(G) <3

that performs well on average for almost all values of ¢ we just answer ‘yes’
when ¢ < ¢, and ‘no’ otherwise. The big problem is that the limit of ¢") is
not known in this case, not even whether the limit exists. We will see upper
bounds for lim sup c((:fl)t and lower bounds for lim inf ¢ below.

crit

20



2.2.2 Fourier-Walsh Transform of Graph Properties

Note that the set {0,1}" is a product group, with the product measure in-
duced by the Bernoulli measures on the factors, and we may define a Fourier
transform f of a function f on {0,1}, called the Fourier- Walsh transform.
The transform f is again a function on {0, 1} and the coefficients f(H) are
labelled by what may be seen as subgraphs of the complete graph, identi-
fying ‘bit-strings’ with graphs as above. The number of ‘bits switched on’
in H, i.e. the size of the labelling subgraphs may be regarded as some kind
of ‘frequency’. The overall idea is that ‘local’ properties that can be well ap-
proximated by ‘low frequencies’, i.e. by Fourier-coefficients labelled by small
graphs, have a coarse threshold. We will occasionally identify A™ with the
corresponding indicator, or characteristic function f = y 4 on {0, 1}™.

We now set out to explain the (generalised) Fourier-Walsh-transform.
Note that:

e We encode (labelled) graphs by strings in G,, := {0, 1}.

e The measure on the set of all graphs G, is given by the G(n, ¢/n)-model,
ie.:

P, [G] = (c/n)/P@N1 — ¢/n)()-1EE@),

e A property A™ is a subset of G, or, equivalently, the characteristic
function f of that subset.

e Both the property f and P.[-] are required to be symmetric with re-
spect to the action of the permutation group S,, on the complete graph
K,. le., isomorphic graphs have the same values of f and the same
probability P.[-].

e The property is monotone if G < G' = f(G) < f(G'), where G < G’
if G’ can be obtained from G by adding some edges.

Associated with the set of graphs G, together with the measure P.[-] is
the Hilbert-space of square integrable functions L?(G,, P.[-]).

< fg>e= 3 F(@g(GP[G].

We consider the orthonormal basis {Ul(qc)} 1 of L*(G,,P.[]) which is indexed
by the set of all graphs:

= [ v

ecH
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where

—JEdr it G
o/n ifed @

The collection of the coefficients
fH =< Ug), f >

is called the Fourier- Walsh-spectrum of f. It is an isometry, and Parseval’s
identity holds:

<ff>=)_fh (2.1)
H
Note that, since f is a 0/1-function we have the useful identities:

<UD f>=<1,f>=) fGPIG] =Y FG) P.[G] =< f,f > (2.2)
=P.[f=1]=E.[f].

2.2.3 Threshold and Spectrum of ‘G Contains a Trian-
gle’

Obviously, the property ‘G contains a triangle’ is symmetric and monotone.
Following Friedgut and Kalai in [FK96], we now turn to (approximately)
computing the spectrum of this property since it serves as an illustrative
example. We will actually only present the computation of two important
Fourier coefficients, and even there we shall be sloppy with asymptotics. Our
goal is merely to give an idea of how the argument works. Remember that
we identify the property A™, corresponding to the set of graphs containing
at least one triangle, with its characteristic function

1 Ge AM
f(G)—{O GdAm

We shall first (approximately) compute the distribution of the number
of triangles X in a sparse G(n,c/n) graph, where ¢ = cgfl)t is chosen to be

the threshold value (i.e. P.[ G contains no triangle | = 1/2). The number of
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triangles X (G) is asymptotically Poisson distributed (see e.g. [AS92]), i.e.

£

k=0: Po.(0) = e~
k=1: Po.(1)=e “-¢
k=2: Po.(2)=e* %2

k=1: Po.(2)=e* &/l

It therefore suffices to calculate the expected number € = £(c) := E.[X]
of triangles in G to get the asymptotic distribution of X. The critical ¢ is

implicitly defined by Po(,(0) = e =(® = 1/2. Thus c is the solution of

log2 = £(e) = Z Pr[{v;, v9,v3} form a triangle] = (n) (c/n)3.

3
{v1,v2,03}CV
(2.3)
Therefore the probabilities that G' contains k triangles are:

k=0: Po.(0) =1/2

k=1: Po.(1)=1/2-¢
k=2: Po.(2)=1/2.¢%/2
k=1 fog(z) =1/2-'/1!

In particular the probability that there is at least one triangle is

P, [A™] =1— PO (2 (¢/my2 (0)-

The threshold ¢!} converges to (6log2)"/? from above. The function ¢
P.[A™)] has bounded derivatives near the threshold for all n and thus the
property A has a coarse threshold.

We want to compute the Fourier-Walsh spectrum f for c set on the thresh-
old value (c.f. Eq. 2.3) such that P.[f = 1] = 1/2. We will indicate how to
compute all Fourier-coefficients for the case that H is a union of &k € N
disjoint triangles and then see indirectly that all the others have to be zero

because of Eq. 2.1.
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k = 0: The first Fourier-coefficient is simply the probability of f = 1:
fo=<Up f>=1/2.

k =1: We will first compute® Ufe, ¢, e} (G), for a specific triangle induced by
the edges {eq, ez, e3}.

f_(l;/CT/Ln)?,/Q C/n 3/2 if {61,62,63}HE G {61762763}

—~(c/n)” (@) =

_{(1“/") < +(C/n) V2if {er, 65,3} N E(G) = {ex, 2, e5} \ €,
—(c/n) (@) =
(c/n) (@) =

c/n c/n
+1/2 1f{61,62,63}ﬂEG’ { }
c/n)t32 if {e1, e9,e3} N E(G) = 0.

c/n

r
—~
o
~
S
~—
w
~
[\

Next we want the Fourier-coefficient corresponding to the (specific!) tri-
angle {e1, ey, €3}:

f{el,eg,e;:,} =< U{61,62,83}7 f > = Z U{el,ez,eg}(G)f(G)]P)c [G] .
G

Partition the graphs according to how much of the triangle defined by
{e1, €2, €3} they contain:

Flevenea) = — > (¢/n) 2 f(G)P,[G]

{e1,e2,e3}NE(G)={e1,e2,e3}

+3 > (¢/n)~"2f(G)P. [G]

{61 ,62,83}0E(G):{61,82}

-3 DR LN () Ale]

{e1,e2,e3}NE(G)={e1}
+ ) (em)TPEReP[A].
{e1,e2,e3}NE(G)=0

We interpret these terms as probabilities.

f{el,ez,es} ~ —(¢/n)3?P, [G contains {e, e5,e3} and f(G) = 1]
+3(¢/n) 2P, [G contains only {e;,es} and f(G) = 1]
—3(c¢/n)*'/?P, [G contains only {e;} and f(G) = 1]
+(c/n)*3PP,[G N {e1, e, e5} =0 and f(G) = 1].

c/n

*We shall - in a rather imprecise manner - substitute certain quantities by their asymp-
totic values. We use ‘~’ instead of ‘=".
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Because!
P. [G contains {ey, e9,e3} and f(G) = 1]
=P.[f(G) = 1| G contains {ey, ez, e3}]
-P.[ G contains {e1, ey, e3}] ~ 1 (c/n)?,

P. [G contains only {ej,es} and f(G) = 1]
=P.[f(G) = 1| G contains only {ej, es}]
-P,[ G contains only {e;,ex}] ~ 1/2- (c/n)?,

this simplifies to
Frevesesy = = (¢/n)*(¢/n)?
+3(c/n)"Y?-1/2- (¢/n)?
= 3(c/m)*2-1/2 (¢/n)
+ (¢/n)™3?1/2
~—1/2-(¢/n)*?
= [lereneny =(e/n)* /4.

Now we know that for all isomorphic triangles the value of f must be the
same by symmetry. Therefore we get (remember Eq. 2.3):

> sy ) e =1

H is a triangle

k > 2: In a similar manner we can calculate the other non-zero Fourier-
coefficients. We shall get 1/4 - e*/k!.

Z f2 o~ Z 1/4-e"/kl=1/2- Z]P’c [G contains k triangles].
k

H is a disjoint union k
of k triangles

The terms (including the first coefficient £ = 0) sum up to 1/2 which is, using
Parseval’s identity 2.1, equal to the sum over all squared Fourier-coefficients
given by Equation 2.2. Therefore the Fourier-coefficients labelled by disjoint
unions of triangles are the only non-zero terms.

tNote that the factor 1/2 stems from the fact that the property ‘G’ contains a triangle’
is nearly independent of the event that some ‘potential’ triangle is not ‘switched on’. It
should be replaced by a correct value in 1/2 4 o(1).

25



2.2.4 3-Colourability (3-SAT) Has a Sharp Threshold.

The spectral techniques discussed above can be employed to show that certain
properties have a sharp threshold. In [FK96] Friedgut proved that random
3-SAT has a sharp threshold, and in [AF99] Achlioptas and Friedgut showed
this for k-colourability. The proofs are essentially indirect proofs and do not
quantify the threshold value cgfl)t nor its asymptotic behaviour.

We will not elaborate much on the random 3-SAT problem here, we re-
fer the reader to [Mol01] and to our Section 7.4.3. Note that 3-SAT is also
an NP-complete problem. The idea is to pick m 3-SAT-clauses at random
using n variables. The quotient « = m/n plays a role similar to the aver-
age degree for random graphs. Again there is a threshold value, possibly
depending on n. Friedgut was able to show that for o below this value a
random 3-SAT formula is a.s. satisfiable, and a.s. unsatisfiable for a: above
this value. Empirical evidence has been reported that the threshold value
should converge to a value close to 4.2.

Now we return to k-colourability. Achlioptas/Friedgut used the following
theorem from [FK96].

Fact 6 From [FK96]. Let « > 0. There exist functions B(s,C), bi(e,C),
ba(g,C) independent of n such that for all n, c*, C and e, and any monotone
graph property A such that o < Pre<[A] =: per <1 —a and ¢* - 2—’;|c:c* <C
there exists a graph H with no more than B edges such that:

e H is balanced, i.e. the average degree of any induced subgraph of H is
no larger than the average degree of H.

o by < En[Zy] < by, where Zy counts the number of copies of H in
gn,c*/n-

e Conditional on the event that some specific copy of H appears in Gy, - /p,

Pr.[A|H] > 1 —c¢.

We will now sketch - admittedly very vaguely - how Achlioptas and
Friedgut (in [AF99]) reach a contradiction assuming that k-colourability had
a coarse threshold.

a) Intuitively Fact 6 means that for a property with a coarse threshold
the ‘appearance’ of some appropriate rather small subgraph H changes the
probability of k-colourability significantly.

b) When a property has a coarse threshold, its probability does not change
significantly when we ‘add’ 6 - n edges.
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Now ‘adding’ d - n edges will lead to a copy of H to ‘appear’, due to H
being sufficiently small, which by a) should drastically change the probability
of k-colourability significantly, which it does not, by b). This is the essence
of the contradiction leading to their main result stated below.

Fact 7 (From [AF99]) Let fi(n,c) denote the probability P,JA™] for the

property A™ of k-colourability. For every integer k > 3 there exist d,(cn) such
that for any € > 0,

lim fi(n, dgcn) —¢) =1 and lim fi(n, dgcn) +¢) =0.
n—0o0 n—0o0

2.3 Important Concepts

We will introduce the k-core together with some immediately related results,
define branching trees, the extended k-core and the concept ownership. We
include this material here because it will facilitate reading the next subsec-
tions.

2.3.1 k-Core and its Significance for k-Colouring

Definition 2.3.1 The k-core of a graph G 1is the union of all induced sub-
graphs H with minimum degree §(H) = k.

Definition 2.3.2 A (node-)deletion process is some rule (or protocol) for
iteratively removing nodes with degree less than k from G as follows.

At ‘time’ t, as long as there are any nodes with degree less than k left in
the remainder graph Gy, select such a node v; according to the protocol and
remove it from Gy, setting Giyq = Gy \ v;.

Fact 8 The k-core can be algorithmically characterised as the outcome of
any deletion process. In particular, the outcome of any deletion process is
the k-core, wrrespective of the details of the specific deletion protocol.

Proof (Of Fact 8.) Denote by H(G) the collection of all induced subgraphs
of minimum degree k. Then C' := ., H is the k-core. For convenience let
the empty subgraph have minimum degree k. Denote by C’ the outcome of
an arbitrary deletion process consistent with Definition 2.3.2.

C C C": Let H be any induced subgraph of minimum degree k. It cannot
be deleted by any deletion process, since otherwise some node in H would
have to be the first to be deleted. But since it is the first, it has still degree
at least k, as the other nodes in H are still in place.
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C' C C: Conversely it is obvious that the outcome of any deletion process
is a subgraph with minimum degree £. O

Fact 9 Any graph G = (V, E) with an empty k-core can be k-coloured in
polynomial time.

Proof (Of Fact 9.) When the k-core is empty, any (node-)deletion process
has removed all nodes in some order. We will consider an arbitrary such
deletion process. In the reverse order ‘glue’ the deleted vertices back on.
This yields a sequence of (sub-)graphs. Due to the way in which the deletion
process works any re-inserted vertex is connected to at most £ — 1 nodes in
the graph reconstructed so far, with the result that it is always possible to
extend a proper colouring of the graph reconstructed so far to the next graph
in the sequence. O

We will also introduce an edge-deletion process. This seems rather artifi-
cial when considering only the k-core but the significance will become clear
when we discuss the magic subgraph defined below. When we interpret some
graph GG as directed we mean that we have replaced all edges by bi-directed
arcs. We will frequently omit the word ‘directed” when talking about directed
edges, that is arcs.

Definition 2.3.3 An edge (u,v) is ‘bad’ if there are less than k — 1 nodes
different from v in the in-neighbourhood of u. An edge-deletion process is
some rule (or protocol) for iteratively removing ‘bad’ edges G as follows.

At time t, as long as there are ‘bad’ directed edges left in the remainder
graph Gy, select such an edge (u,v) according to the protocol and remove it
from Gy, setting Gyyq = Gy \ (u,v).

We shall refer to the outcome of this deletion process as the extended k-
core. It is a directed subgraph of GG, the extended k-core in the node sense is
the subgraph induced by the nodes ‘pointed to’ by at least two directed edges.

Proposition 2.3.4 The outcome of the edge-deletion process is the union of
all directed subgraphs consisting entirely of ‘good’ edges. It is independent
of the deletion protocol. The k-core can be obtained from the outcome of an
edge-deletion process as the subgraph induced by the nodes participating in
bi-directed edges.

The proof is analogous to the corresponding proof of Fact 8 (p. 27) for
node-deletion. Note that C has to be replaced by the union of all directed
subgraphs consisting entirely of ‘good’ edges (‘good’ with respect to the given
subgraph!).
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2.3.2 Branching Trees

Branching trees are random (possibly infinite) trees that are generated by
the following procedure.

e Start with the root and mark it as ‘live’.

e While there are live leaves in the tree generated so far, expand a live
leaf, chosen according to some protocol (see below). That is generate a
random number X, of fresh nodes distributed according to some integer
distribution g, glue them to the leaf being expanded and mark the leaf
as dead.

The distribution p;, is called the progeny distribution. The tree is built up ac-
cording to a protocol determining the order in which live leafs are expanded,
such as, for example, breadth first search (BFS). Sometimes the live leaf to
be expanded is chosen uniformly at random (note the similarity to Karp’s
fanning-out process in graphs explained above). Having chosen such a proto-
col the leafs expanded at time ¢ have progeny X;. Usually (X;); is assumed
to be an i.i.d. sequence but it is feasible that u; depends on ¢ and even on
the history xy,..., x4 1.

We will mainly consider Po, (Poisson) and Bi(n, ¢/n) (binomial) progeny
distributions. We will frequently discuss trees with finite radius r, where
children are no longer allowed to reproduce when they are at some distance r
from the root.

The Branching Tree Connection will be explained in Section 2.4.1 below.
The overall idea is that when G, ./, random graphs are explored by BFS or
some other fanning-out process, small neighbourhoods will closely resemble
branching trees since cross edges are rather unlikely, the graphs being as
sparse as they are. For a more thorough account of branching trees we refer
the reader to [ANT72] and [AN97], and to Karp’s important paper [Kar90]
explaining the appearance of the giant component using branching trees.

2.3.3 The Concept of Ownership

We will again fix & = 3, for ease of exposition only. For motivation consider a
node v in a graph G, assuming that the r-neighbourhood (w.r.t. the ‘shortest
path metric’) of v is a tree. When v is in the 3-core of G it is adjacent to at
least three complete binary trees of depth r—1. Otherwise v could be removed
by a node deletion process restricted to the interior of the r-neighbourhood,
contradicting Fact 8. We shall say that ‘v owns a Cayley tree of depth r’,
or ‘v is an r-Cayley-owner’. We shall state formal definitions and make this
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Figure 2.1: A 3-Cayley tree and a 3-binary tree.

precise presently. So being an r-Cayley-owner is somehow the ‘equivalent’
of being in the 3-core on a local basis. Note that in random graphs with
average degree ¢ the r-neighbourhoods will be trees for most nodes, with
high probability, and furthermore closely resemble branching trees. We shall
later study ownership in branching trees and shall see that a lot can be
learned from this about the 3-core in ‘corresponding’ random graphs.

Definition 2.3.5 An r-binary tree is a binary tree of depth r. An r-Cayley
tree is a tree consisting of 3 disjoint complete binary trees of depth r — 1,
their root being connected to some (extra) node v. See Figure 2.1.

We will first define ownership for the special case that G is a tree. This
will turn out to be a special case of Definition 2.3.7 below.

Definition 2.3.6 (Ownership in Trees, special case of Definition 2.5.7.) Let
v be the root of some tree T with depth r.

The root v is an r-binary owner (w.r.t. T), if T contains (at least one)
complete binary tree of depth r rooted at v.

The root v is an r-Cayley owner (w.r.t. T), if T contains (at least one)
Cayley-tree of depth r rooted at v.

Note that an r-Cayley-owner (w.r.t. T') v may own several (possibly overlap-
ping) r-Cayley trees. We shall sometimes call the union of those r-Cayley
trees (rooted at v) the r-cone of v, because it is the ‘analogue’ of the core
in trees. Thus the root v of a tree is an r-Cayley-owner if and only if its
r-neighbourhood contains a non-empty r-cone.

To include cases where the r-neighbourhood is not a tree, we take some
node v € V(G) and decide whether it is an r-owner on the basis of the r-
neighbourhood of v in G. The following definition is sufficiently general to
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apply to both trees and general graphs. We will also define the concept of
runs that will be important later.

Definition 2.3.7 (Ownership in graphs, generalising Definition 2.3.6.) Let
G be some graph.

1. Every node v in G is a 0-binary owner (w.r.t. G) and a 0-Cayley owner
(w.r.t. G).

2. A node v is recursively defined to be an r-binary owner (w.r.t. G) if it
is adjacent to at least two (r — 1)-binary owner w.r.t. G \ v.

3. An r-Cayley owner (w.r.t. G) is a node v that is adjacent to at least
three (r — 1)-binary owners w.r.t. G'\ v.

4. An (r-)run (w.r.t. G) is an r-Cayley owner (w.r.t. G) v that is not
adjacent to at least three r-binary owners w.r.t. G\ v.

Note that the ‘proofs’ for r-ownership in the recursive definition above are
not necessarily edge-disjoint if the r-neighbourhood is not a tree.

We have collected some simple observations in the following Proposi-
tion 2.3.8.

Proposition 2.3.8 Let v be a node in some graph G.

1. If the r-neighbourhood of v in G is a tree, then v is an r-binary(Cayley)
owner (w.r.t. G), if and only if its r-neighbourhood contains an r-
binary(Cayley) tree.

2. Ownership (both r-binary and r-Cayley, w.r.t. G) can be decided upon
knowledge of the r-neighbourhood of v in G.

3. Any node in the 3-core of G that has a tree-like r-neighbourhood is an
r-Cayley owner (w.r.t G). Any node that is not an r-Cayley owner
(w.r.t. G) but has a tree-like r-neighbourhood cannot be in the 3-core.

Proof
1. Obvious.

2. The r — I-neighbourhood w.r.t. G \ v of some neighbour w of v is
contained in the r-neighbourhood of v w.r.t. G.
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3. We have seen in Fact 8 above, that the deletion protocol may be chosen
arbitrarily. The ‘tamed’ deletion protocol leaves out the complement of
the (r — 1)-neighbourhood as long as possible, that is no node outside
the (r — 1)-neighbourhood may be deleted as long as there are any
nodes with degree less than k left in the (r — 1)-neighbourhood of v.

Clearly, if v has an r-neighbourhood that is a tree (w.r.t. G), it survives
the above ‘tamed’ deletion process (stopped before it starts attacking
the complement of the (r — 1)-neighbourhood of v) if and only if it is
an r-Cayley owner.

So if v survives the entire ‘tamed’ deletion process, due to being in
the 3-core, it will in particular survive the ‘first phase’ and is thus an
r-Cayley owner.

Conversely, if it is not an r-Cayley owner it will not even survive the
‘first phase’ and thus not be in the 3-core.

O
To understand why we restricted ourselves to r-neighbourhoods that are trees
look at the extreme case that v participates in a copy of K. Then v is not
an r-owner for r > 2 according to our definition but it will be in the 3-core.
Also observe that an isolated copy of an r-Cayley tree will survive the first
phase of the ‘tamed’ deletion process, but nevertheless it is not in the k-core.

2.4 Sudden Appearance of the Giant k-Core

Similarly to the ‘appearance of the giant connected component’ at ¢ = 1 a
giant k-core appears at some critical value of ¢ which is 3.35(...) for £ = 3.
We will start with discussing what is known as the Branching Tree Connec-
tion. The first rigorous proof for the appearance of the k-core in random
graphs by Pittel et.al. (see [PSW96]) will be explained in in Section 2.4.2
below. In Section 2.4.3 we review the important proof of Goerdt and Mol-
loy ([GMOO0]) for the sudden appearance of a giant k-core in faulty random
configurations. Our new proof for the appearance of the k-core in random
graphs (Chapter 6) may essentially be regarded as a generalisation of their
proof technique to the G, ,, model.

2.4.1 The Branching Tree Connection

The term ‘Branching Tree Connection’ was coined! by Pittel, Spencer and
Wormald in [PSW96], to be reviewed below. Random graphs with constant

tAs mentioned before, in [PSW96] the term ‘branching process connection’ is used.

32



average degrees locally resemble branching trees. By ‘locally’ we mean in a
sufficiently small neighbourhood w.r.t. the breadth first search (BFS) metric.
This is true because cross edges are sufficiently rare. Note that (unfortu-
nately) cross edges are not rare enough to totally disappear for sufficiently
large n. In the G, /» model the progeny distributions are (quite obviously,
close to) Poisson-distributions with parameter ¢, i.e. Po.. In other models
(approximations to) the respective progeny-distributions may be determined
analogously.

Before going into more detail we stress the fact that a prior: the Branching
Tree Connection is a heuristic concept. It has frequently been observed that
one can learn a lot about ‘giant subgraph’ phase transitions from studying the
‘corresponding’ branching-trees and ‘corresponding phase transition’ therein,
instead of the random graphs. Threshold phenomena in branching trees
seem to parallel the appearance of giant subgraphs in ‘corresponding’ sparse
random graphs. In particular, the correspondence seems to be so close that
numerical values of critical average degree and size of the ‘corresponding’
subgraphs can be correctly predicted.

Phase transitions in branching trees can be studied rigorously using re-
currence equations. Ideas concerning this observation have definitively been
around, we have turned them into a little theory (see Chapter 3) providing
a comprehensive treatment of phase transitions in branching trees and some
novel aspects.

Some ‘giant subgraph phase transitions’ in random graphs have been
studied rigorously. Proofs that do not employ the Branching Tree Connec-
tion require considerable technical effort. A notable exception is Goerdt and
Molloy’s result in [GMO0O] that we shall discuss below. In the special case of
the giant component Karp ([Kar90]) gave a proof ‘based’ on the Branching
Tree Connection. But we did not see a way to generalise his proof to other
similar situations such as the appearance of the k-core. Yet in all cases where
‘giant subgraph phase transitions’ in random graphs have been analysed the
results are such that they could have been ‘guessed’ from analysing the ‘corre-
sponding’ branching trees. As to how the ‘guessing’ works, see the discussion
on the giant component in the next paragraph. Somehow the appearance of
infinite subtrees in branching trees ‘corresponds’ to the appearance of giant
subgraphs in random graphs. This is the heuristic aspect. The situation
cries out for a rigorous theory formalising the Branching Tree Connection.
Our work presented in Chapters 5 and 6 shows the progress we have made in
making this rigorous. We also have discovered the appearance of a giant sub-
graph in tripartite models that has not been previously described, inspired
by the Branching Tree Connection, see Chapter 4.

For example, the appearance of the giant component ‘corresponds’ to a
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branching tree phase transition in the following way. When ¢ < 1 the Po,
branching trees die out with very high probability. For ¢ > 1 the branching
trees are infinite with a certain probability ¢(c), we shall say that ‘the root
owns an infinite subtree’. In the random graph, when ¢ > 1 there is a giant
component containing n - ¢(c) nodes.

Thus the random graph apparently behaves as if each node rooted a
separate (independent) branching tree, those nodes with an infinite subtree
somehow ‘merging’ into the giant component. Certainly this picture does not
at all correctly capture what is going on in the graph, since neighbourhoods
are never finite and will more and more overlap the larger their radii become.
Still, both the threshold value and the size of the giant subgraph can be
correctly predicted by studying branching trees.

For the k-core, consider the trace of the 3-core on a (say, treelike) neigh-
bourhood of some node v. This subtree will have minimum degree 3 for all
interior nodes. This is equivalent to containing a Cayley-Tree, that is a com-
plete binary tree with degree 3 at the root v. In the ‘branching tree world’
this leads to a phase transition at ¢ = 3.35, the probability that the root owns
an infinite Cayley tree being some constant ¢'(¢). And indeed, the Branching
Tree Connection appears to work, since the rigorous proof of Pittel, Spencer
and Wormald ([PSW96]) yields the appearance of a giant k-core at ¢ = 3.35
its size being sharply concentrated around ¢'(c).

2.4.2 Analysing the Deletion Process

The only existing proof for the sudden appearance of a giant k-core in the
Gn.m-model so far is due to Pittel, Spencer and Wormald ([PSW96]). The
overall idea is to analyse the stochastic process of degree sequences induced
by the deletion process, rather one version of the deletion process particularly
amenable to analysis. By a degree sequence we mean for the moment, slightly
abusing notation, the 5-tuple

(Xo(G), X1(G), X2(G), X>3(G), M(G)),

counting the numbers of nodes with degrees 0,1, 2, > 3, respectively and the
number of edges.

Using the differential-equations tool we sketched in Section 2.1, and many
other subtle arguments, they can capture the behaviour of the components
of the above degree sequence in the course of the deletion process. It turns
out that for ¢ < 3.35(...) the process converges to (n,0,0,0,0) with high
probability and to (n — p(c) - n,0,0,p(c) - n,c - (p(c))? - n), otherwise. The
value of p(c) can be ‘predicted’ from the Branching Tree Connection and it
assumes the value 0.27(...) for ¢ just above the critical value 3.35(...).
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Remember that it was Pittel, Spencer and Wormald themselves who
brought up the idea of the Branching Tree Connection and asked whether
this could lead to a more natural proof. As we know (c.f. Section 2.3) the
k-core is defined independently of the specific version of the deletion pro-
cess. Certainly, since the k-core can be characterised by deletion processes
a detailed analysis of such processes will yield information on the k-core.
Analysing the full dynamics of the deletion process may turn out to be un-
necessarily difficult. Yet Pittel, Spencer and Wormald’s proof, involved as it
may be, has been the only rigorous proof so far. Empirically the Branching
Tree Connection appears to be rather robust against the choice of model,
that is it correctly predicts the appearance of, say, the k-core for a larger
class of models, whereas the existing proofs strongly depend on the specific
model, therefore a proof based on the Branching Tree Connection is likely to
apply to a wider class of models.

Note that Molloy and Reed ([MR95a] and [MR98|) where able to uni-
formly treat the appearance of a giant component on graphs that are ran-
domly distributed amongst a large class of pre-defined degree-sequences.

2.4.3 Goerdt and Molloy’s Result

Very recently Goerdt and Molloy (in [GMO00]) have presented an analysis of
the appearance of the k-core in the model of faulty random configurations.
They were the first to give a rigorous proof for the sudden appearance of a
giant k-core based on the Branching Tree Connection in the model of random
faulty d-regular configurations. Random faulty d-regular configurations are
generated as follows:

1) Choose a random d-regular configuration.
2) Retain each edge independently with probability p.

We will try to describe their result in the language developed for our work,
trying to point out why it is not merely a straightforward task to generalise
their results to G, ,/Gnm. Their main idea is to choose a clever protocol for
the deletion process, ingeniously ‘by-passing’ most of the tedious ‘step by
step” analysis in [PSW96]. In a first phase consisting of r — 1 = o(diam(G))
rounds iteratively Goerdt and Molloy strip off all nodes that had degrees
less than 3 at the beginning of the round, we will refer to this as the shell-
wise deletion process. At the end of the first phase all nodes with a tree-like
neighbourhood that have remained, have had Cayley-trees of radius r in
their neighbourhoods, i.e. are r-owners in the sense of Section 2.3.3. Thus
the expected number of nodes remaining is approximately p(c) - n, where p
is the value from the Branching Tree Connection for branching trees with
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progeny distribution Bi(d, p). Since the BFS-balls between different nodes
do overlap, but ‘not too often’, they were able to show concentration of the
number of remaining nodes using Chebychev’s inequality, i.e. by the Second
Moment Method. The degree sequence of the remainder configuration at the
end of the first phase is extremely close to what would be expected from
the Branching Tree Connection, up to o(n) corrections. In particular there
are only o(n) nodes with degrees less than k, corresponding to runs, in our
language. Essentially for further success of their proof strategy, they are able
to prove that the remainder configuration is distributed uniformly among all
configurations having the same degree sequence.

In the second phase (random) single nodes with degrees less than k are
deleted. Since the expected increase in the number of ‘deficient nodes’ having
degrees less than k is negative due to the form of the degree sequence, the
second phase will terminate with high probability having deleted only o(n)
further nodes, this follows from a straightforward ‘gambler’s ruin’ argument.
Note that throughout the second phase the degree sequence may only change
by o(n) which is immaterial for the negative expected increase in the number
of ‘deficient nodes’. Again it is crucial that the uniform distribution amongst
all configurations with the same degree sequence remains invariant in the
course of the second phase.

Our work described in Chapter 5 is similar to Goerdt and Molloy’s result
concerning the first phase. A substantial part of our further work (Chapter 6)
consists in generalising their ingenious proof idea to G, /Gy, (With average
degree ¢). What makes this generalisation a non-trivial task?

1. In random d-regular configurations the r-neighbourhoods of at most
(n — o(n)) of the nodes are d — ary-trees a.a.s., before the (indepen-
dent!) edge percolation is performed. For all those nodes the distri-
bution of arbitrary r-neighbourhoods equals ezactly the distribution of
r-branching trees with progeny distribution Bi(d, p).

2. Note that in random d-regular configurations the sizes of the r-neigh-
bourhoods are bounded by d", deterministically. This remains true
after the edge percolation since the degrees are only reduced by this
operation. This implies that the r-neighbourhood of each node is in-
dependent of the r-neighbourhoods of all but at most d?” other nodes,
deterministically. Therefore it is possible to show that the number
of r-owners is concentrated around its expected value which is crucial
at least for determining the number of runs. Note that in this set-
ting concentration tools relying on the existence of a dependency graph
could have been employed instead of Chebychev’s Inequality, yielding
Chernoff-tight concentration.
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Generalising the first point to G, /G, With average degree ¢ is more of
a technical problem. In G, ,,/G,, the r-neighbourhoods which are trees are
essentially distributed as r-branching trees, too, with progeny distribution
Po.. The fact that these distributions are only approximately equal makes
calculations more clumsy but not essentially different.

The second point is harder to transfer to G, ., /G, , with average degree c.
There it is not very hard to prove that the r-neighbourhoods of all nodes are
bounded by K", too, for some appropriate constant K = K (c) and a suitable
choice of r = r(¢,n) with very high probability. However, there is no worst
case bound on the sizes of the r-neighbourhoods. We can define a ‘meta-
graph’ closely resembling a dependency graph by connecting nodes whose
r-neighbourhoods overlap by (‘meta’-)edges. With very high probability this
‘meta-graph’ is degree-bounded just as usually required for a dependency
graph. It is intuitively obvious that the neighbourhoods are ‘independent’
for nodes not connected by a ‘meta-edge’. This ‘independence’ should imply
concentration of the number of owners. However all concentration tools em-
ploying a dependency graph (that we know of) require that the dependency
graph, usually together with a degree-bound, is given in advance, i.e. before
the random graph is chosen.

We have discovered that Goerdt and Molloy’s proof for the uniform dis-
tribution conditional on the degree sequence carries over to graphs in the
Gn,m-model. We can therefore adapt their proof strategy to the appearance
of the k-core in the G, ,,-model, because the set of owners (to be defined
later) is (very close to) what remains after the first phase of shell-wise node
deletions.

2.5 Explicit Bounds for k-Colourability

Remember the result of Achlioptas/Friedgut that k-colouring has a sharp
threshold. One expects this threshold to converge to an absolute constant
independent of n, but there is no rigorous proof.

We have seen above (Fact 9 in Section 2.3.1, p. 28) the absence of a
k-core leads to a trivial k-colouring algorithm. From Section 2.4 above we
know that the 3-core is a.s. empty for ¢ < 3.35(...). Bollobds conjectured
that the a.s. jump in chromatic number might coincide with the appearance
of the 3-core.

Things turned out not to be so easy. A first indication was given by
Molloy in [Mol96], and Achlioptas and Molloy later showed in [AM97] that
Gn.m can be efficiently 3-coloured up to an average degree of ¢ = 3.85(...).
We will explain their algorithm in Section 2.5.1 below.
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For upper bounds a straightforward application of the First Moment
Method counting colourings yields cqiy < 5.419(...). We will review this
in Section 2.5.2 together with a series of refinements yielding increasingly
tighter upper bounds.

2.5.1 Lower Bounds

Achlioptas/Molloy described and analysed an algorithm called list colouring
that 3-colours a G, ,,-graph in linear time with success probability provably
greater than some £ > 0, for all ¢ < 3.85(...). In view of the fact that 3-
colouring has a sharp threshold (c.f. Section 2.2) this proves that G, ,,-graphs
are a.s. 3-colourable for ¢ < 3.85(...).

The algorithm works as follows. Associated with each node there is
a list initially containing all three colours. The nodes are partitioned in
coloured nodes, boundary nodes and untouched nodes. Initially all nodes are
untouched. Repeat the following until finished.

e As long as there are uncoloured nodes, pick a node v at random. If
there are boundary nodes pick one node v with minimal list length.
Otherwise pick v amongst the untouched nodes.

e Colour v with an extra colour if its list is empty. Otherwise colour v
with a colour consistent with its list.

e Update all nodes w in the neighbourhood of v by making them bound-
ary nodes if necessary and deleting the newly assigned colour of v from
their lists.

Obviously, conditional on success in each step this yields a proper colour-
ing. Note that this is the usual greedy colouring procedure with respect to
an ordering of the nodes that is determined on-line.

This algorithm is analysed using Wormald’s differential-equations tool
(see [Wor95, Wor99] and Section 2.1.3). We partition the boundary nodes
into Sy, S1, S, according to their list lengths. All other nodes are either
contained in the set C' of coloured nodes or in the remainder U, the untouched
nodes.

At time ¢t = 0 all nodes are contained in U. The time evolution can be
analysed using the principle of deferred decisions. At time ¢ we only know
the outcome of the random bits corresponding to potential edges within C'®
and the edges connecting C® with S®. When we colour a node v, in S®
or C") in the course of the above algorithm the random bits for all potential
edges connecting v,4; to S® \ v, and C® ‘have not yet been looked at’,
and will be switched on or off independently of the history of the process.
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Considering the expected increase (after appropriate scaling) yields a sys-
tem of differential equations. As long as ¢ < 3.85 the solutions are such that
S1 remains strictly less than one, for all ¢. Intuitively this means that ‘critical
nodes’ in S are processed at a faster rate than they are produced, as long
as ¢ < 3.85.

2.5.2 Upper Bounds

All known upper bounds arise from applications of the First Moment Method.
We will review Achlioptas and Molloy [AM99]. We will consider the G, ,,-
model with m = r-n. Thus the average degree is 2r. Let {a;}%_, denote the
relative sizes of colour classes in a partition P : {V;}*_, of the nodes. There
are M = (;) potential edges and

T(P) :=n? Zai o =:7n?
i<j

potential edges respecting the partition P. Thus the probability for the
event Cp that P is a proper colouring is given by

T(P)
picy) = Ln) < T < orymoq),

U

It is straightforward to see that the number T'(P) of partitions is maximal
when «; = 1/k. The total number of k-partitions is k™ and thus the expected
number of colourings is bounded above by

kE—1

E(——)"0(1).

Upon substituting m = rn this bound converges to zero if

Ele s In k
K "k —Ink-1)

(2.4)

for k£ = 3 this corresponds to ¢ > 5.419(...).

However, remember our discussion of the First Moment Method in Sec-
tion 2.1.3, this bound is not necessarily tight. Even for ¢ < 5.419(...) the
number of k-colourings may be zero with probability converging to one. But
if in the rare case that it is greater than zero there are ‘very many’ colourings,
this may cause the expected value to diverge, nevertheless.

Achlioptas and Molloy used an idea that has previously been success-
fully applied in an analogous situation counting the number of satisfying
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assignments of random k-SAT instances([KKK96]). Instead of counting all
colourings they only count some colourings. A colouring is rigid if and only
if for each node v, coloured with colour 4, recolouring v with colour 57 > ¢
renders the colouring non-proper. If the set of colourings is non-empty, the
lexicographically maximum colouring amongst them is rigid. Thus when
there are no rigid colourings, there are no colourings at all.

Achlioptas and Molloy calculate a bound on the expected number of rigid
colourings that can be approximated numerically to any accuracy. A worst
case over all {o;}¥_| needs to be calculated, in order to see whether a rather
complicated term is less than one, just as the term (27({a;}%_,))" above.
Further details concerning their calculations can be found in Section 7.3
below. We reproduce their thresholds for various values of k.

3 4 3 6 7
c | 5.0434 | 9.1722 | 13.8958 | 19.0778 | 24.632

Recently Kaporis et. al. ([KKS00]) have been able to even improve on
this using tail bounds for the occupancy problem. This was again inspired
by a success in the analogous situation for random k-SAT instances. The
improvement is due to considering more carefully a conjunction of events that
occurs in [AM99] when bounding the expected number of rigid colourings. In
[AM99] the probability of the conjunction was merely upper bounded by the
product of the individual events. Since those events are actually negatively
correlated, a tighter bound can be achieved using tail bounds from Kamath
et.al. in [KMPS95]. Thus the value of 4.989(...) in [KKS00] is the best
currently known upper bound for the 3-colouring threshold, apparently it is
not easy to get the corresponding numerical values for £ > 3.

2.6 Tripartite Graphs

In Section 2.1.1 we introduced random tripartite graphs with constant av-
erage degree. The tripartite case is of independent interest, remember that
finding 3-colourings for tripartite graphs is NP-hard.

We will first review a result of Petford and Welsh ([PW89]), empirically
describing the critical slowing down of a Markov chain on the colourings of
random tripartite graphs called Antivoter Algorithm.

Later we will report on two rigorously analysed algorithms finding colour-
ings for sparse random tripartite graphs.

Finally the random tripartite model has been employed to show the exis-
tence of uniquely 3-colourable graphs with large girth (length of the shortest
cycle).
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2.6.1 The Antivoter Phenomenon

The Antivoter Markov chain proposed by Petford and Welsh ([PW89]) sam-
ples from the (not necessarily proper) colourings of a graph G. It is similar in
spirit to the Gibbs Sampler Markov chains, studied by statistical physicists.
For a graph G consider the set = = {0, 1, 2}" of all possible 3-colourings,
the set of states. The number of ‘badly’ coloured edges can be interpreted as
an energy—function or Hamiltonian, as discussed in Section 1.2. The ground
states of minimum energy zero, if they exist, are the proper colourings.

Antivoter-Algorithm:
0.) Choose an initial state & uniformly at random.
1.) While there are monochromatic edges in &:
la.) When in state & pick one vertex ¢ € V that is participating in a

monochromatic edge uniformly at random.

1b.) Generate &1 from & by re-colouring vertex i in colour v with
probabilities proportional to e (9 (where n., (£, i) is the number
of neighbours of i coloured in colour v when in state &).

2.) Return the (correct!) colouring and the number of iterations.

In a little detour we will illustrate the connections between the Antivoter
Algorithm and the Gibbs sampler. The Gibbs sampler is a Markov kernel P
that is the product of n local characteristics 11; with ¢ chosen uniformly at
random from the set of vertices:

icv
. . _ . o
IL,(¢, ) ::{ Z; exp( H(ﬂ(l)fx/\{z})()) ;ft}fféfr\xi}se Yv\ (i} (2.6)
2
Zi =Y _exp(—H(v&wn\1)) (2.7)
v=0

Here (v&y\gi3) is a shorthand notation for the state coinciding with & on
V'\ {i} and with vertex i being coloured in colour 7. It is straightforward to
check that the local characteristics satisfy detailed balance with respect to

€ Zy' exp(—H(€)), (2.8)

the Gibbs measure on =.
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This carries through to the Gibbs sampler being a convex combination of
local characteristics. Since the Gibbs sampler is ergodic, the Gibbs measure
is its unique invariant distribution.

Apart from the fact that only nodes with monochromatic edges are re-
coloured the Antivoter is a Gibbs sampler sampling from the Gibbs measure
(2.8) with Hamiltonian function

H(§) = %an(i)(fai) (2.9)

Observe that H(&) is simply the number of ‘badly’ coloured edges in state .
We end our detour explaining how the Gibbs sampler described above re-
produces the updating rule 1b. Assume vertex i, presently coloured 7y,
is to be recoloured with colour 7y according to the Gibbs updating rule.
Let h, := H(v&ngy), b = H(§) and n, = n,(&,i). The number of o-
monochromatic edges is decreased by n., and increased by n., therefore
h, = h — n,, + n,. Thus the exponential terms in (2.6) are proportional to
e~ "™ as required in 1b.

Petford and Welsh describe in [PW89] that the expected hitting time ap-
pears to be roughly proportional to n for fixed average degree c. However,
there seems to be a significant slow-down (empirical divergence of the pro-
portionality constant) at a value of ¢ &~ 5. This resembles the ‘critical slowing
down’ in the vicinity of phase transitions, as described in Section 1.1.

2.6.2 Results for 3-Colouring Tripartite Graphs

With an eye on the Branching Tree Connection, it is at least intuitively
clear that the algorithmic lower bounds essentially carry over to the k-partite
case. The fact that the graph is tripartite has little effect locally, as seen from
a BF'S. For the appearance of the 3-core our techniques explained below work
equally well for the tripartite model predicting the same critical ¢ = 3.35(. . .).
We are convinced (and have empirically tested this) that the same holds true
for the colouring algorithm of Achlioptas and Molloy. Thus for sufficiently
small constant average degree ¢, 3-colouring can be achieved efficiently.

For upper bounds we will briefly report on two different algorithms, both
rigorously analysed.

The first upper bound is due to Blum and Spencer ([BS95]), who designed
and analysed an algorithm for efficiently k-colouring k-colourable tripartite
graphs with average degree as low as ¢ = ¢(n) = nf,e > 0. The essence of
their method can be explained as follows. Consider two nodes u and v and
their common neighbourhood I'(u) N ['(v). If w and v are in the same colour
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class, the expected number of common neighbours is 2/3-n-(3/2-¢(n)/n)?,
and 1/3-n-(3/2-c(n)/n)?, otherwise. Note that those numbers are the sum
of f(n) independent indicators (one for each potential edge) and therefore
Chernoff bounds apply. Thus for each pair (u, v) we can tell whether they are
in the same colour class with a subpolynomially small error. So the presence
or absence of all #(n?) potential edges can be a.a.s. decided correctly. Note
that counting nodes in the mutual neighbourhood I'(u) NT'(v) is tantamount
to counting paths of length 2 connecting u and v. They refined this basic
idea by appropriately considering paths of lengths greater than 2, leading to
the aforementioned lower bound of ¢(n) = n®.

Blum and Spencer have also considered the semi-random model, where
an adversary builds up the graph by considering all potential edges in an
order of his choice, its choice being reverted with noise rate p. They refined
the above basic idea by using the concept of k-links. It is convenient to view
the colour classes as cliques in the complement graph (V, K, \ E). Nodes
u,v in the same clique will share more edges (forming the links for k = 3,
Kj_1’s otherwise) within I'(u) N T'(v) than nodes in different cliques. Draw
a ‘meta-edge’ between u, v if there are sufficiently many links between them
and output the connected components of the ‘meta-graph’ as a guess for the
colour classes. This algorithm efficiently recovers the 3-colouring of the graph
with high probability for noise rates as low as p > n%%t ¢ > 0.

The second upper bound (Alon and Kahale [AK94]) is based on spectral
methods. They were able to prove correctness of their intrinsically efficient
algorithm based on calculating eigenvectors of the adjacency matrix of GG, for
some constant average degree ¢y, independent of n, improving on the results
of Blum and Spencer. The overall idea is that the eigenvectors are a.a.s.
sufficiently close to characteristic functions of the colour classes. We refer
the reader to the paper for details.

It is apparently hard to ‘hide’ large planted objects in random graphs, (c.f.
the discussion in [FM97]). Using spectral techniques appears to be superior
to using ‘local information’ in the spirit of Blum and Spencer’s approach.
We have had a similar experience when studying the problem of recovering
the cluster structure of ‘noisy’ clique graphs (joint work with J. Ernst and
V. Heun [EHV00]).

2.6.3 Uniquely Colourable Graphs of Large Girth

What makes a (random) graph (k+1) chromatic? Remember our discussion
of Fourier-Walsh spectra of graph properties. ‘Local’ properties are char-
acterised by the appearance of constant size subgraphs. Indeed, the phase
transition of the property ‘non-k-colourable’ can apparently not be explained
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by the appearance of small substructures, such as a copy of Kj;. Small sub-
graphs that ‘explain why the chromatic number is £’, are rather dense, in
fact too dense to appear in a random graph with constant average degree.
We feel that our work is relevant in the context of uniquely colourable graphs
of large girth, as discussed in [BS76] and [EHK9S].

The girth v(G) of a graph G is the length of the shortest cycle. Graphs
with large girth are ‘locally tree-like’, in particular they are very sparse. Note
that a uniquely 3-colourable graph becomes 4-chromatic as soon as one edge
connecting nodes in the same colour class is inserted.

The existence of uniquely k-colourable graphs with arbitrary girth g was
proven using the probabilistic method by Bollobas and Sauer [BS76]. It came
as somewhat of a surprise that there should be ‘almost tree-like’ graphs
exhibiting high chromatic number. Starting with a random tripartite graph
with average degree ¢(n) they proved that it contains a uniquely k-colourable
subgraph with large girth on 6(n) nodes with positive probability, as long as
c(n) > n®,e > 0. Thus such an object exists.

Later Emden-Weinert et.al. [EHK98] improved the above construction
and found uniquely 3-colourable graphs of large girth for average degrees
down to ¢ > ¢y, where ¢g depends on £ but is independent of n, more precisely
co(k) = k', Their focus is on worst case analysis, and they searched for
uniquely 3-colourable subgraphs in tripartite random graphs mainly for the
sake of finding counterexamples. It may be interesting to note that a new
kind of subgraph (to be defined and discussed later, see Chapter 4) suddenly
appearing at an average degree of ¢ = 4.91(...) (k = 3) is apparently a.s.
‘almost’ uniquely 3-colourable, according to our simulations. If this were true
one could possibly considerably if not optimally improve on the construction
of [EHK98].
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Chapter 3

Threshold Phenomena in
Branching Trees

We ask the reader to re-inspect the definition of branching trees and own-
ership in Section 2.3.3, pp. 29. In this chapter we shall analyse phase tran-
sitions in branching trees with Po. progeny distribution, that may be seen
as the analogues in branching trees of certain phase transitions in random
graphs with average degree ¢, such as the sudden appearance of a giant k-
core. We describe a new phase transition in appropriately coloured branching
trees that has guided us to ‘discovering’ a new phase transition in k-partite
random graphs, the appearance of a giant magic subgraph (see Chapter 4).

We shall study how the probability of the ‘appearance’ of certain sub-
trees, such as binary trees, in a Po. branching tree depends on the expected
progeny distribution ¢. Such events can be defined recursively, and since
disjoint sub-trees are merely independent copies of Po. branching trees their
probabilities can be quite easily described by recursive equations.

We shall later show that the very same recursive equations can be em-
ployed in a rigorous analysis of the appearance of giant subgraphs, thereby
providing structural insight into why the Branching Tree Connection cor-
rectly ‘predicts’ numerical values for appearance and expected sizes of giant
subgraphs in random graphs.

For the analogue of the k-core (Section 3.1) we have worked out the ana-
lysis of the recursive equations in great detail. Most results can be easily
‘guessed’ from inspecting the plots in Figures 3.1 and 3.2 and the proofs con-
sist in curve discussion essentially at undergraduate level. Therefore the
corresponding results for the analogue of the magic subgraph are stated
much more concisely, the curve discussions being completely analogous to
the sooner case (Section 3.2). In Section 3.3 we present some additional
material concerning branching trees and phase transitions therein.
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3.1 Owners and Runs, Related to the £k—Core

As the ‘analogue’ of the appearance of the 3-core in the context of (unre-
stricted) Po.-branching trees consider the edge monotone events

B = ‘the root owns a (complete, unrestricted) binary tree’,

and

C = ‘the root owns a Cayley tree’,

i.e. the root has at least three neighbours, each of which root a binary tree.

Denote the probability of the former event by ¢(c) and the latter by p(c).
The probability ¢(c¢) can be computed rigorously for branching trees using
recursive equations, and p(c) can be easily computed from ¢(c). We shall
presently see that there exists a ceiy = 3.35(...) such that p(c) = 0 for all
¢ < Ceit and equal to some p(c) > 0.2674(...) otherwise.

Essentially, what is called the Branching Tree Connection in [PSW96] is
the observation that c.; and p(c) ‘happen’ to be exactly the critical value
and the relative expected size of the 3-core in the random graph.

1 1
0.8 0.8
06 06
0.4+ 0.4
02 0.2
0 02 04 06 0B 1 0 02 04 06 0B 1

Figure 3.1: The plots show x — f5(3.2,2) and z — f»(3.6,x). Note that for
¢ < 3.35(...) the only root of z = f5(c, x) is zero, whereas for ¢ > 3.35(...) the
largest root ¢(c) is positive as can be seen from Figure 3.2 below, portraying
¢+ q(c). For k > 3 similar plots can be drawn.
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Here we consider stopped branching trees, i.e. shell-wise fanning out pro-
cesses discovering the r-neighbourhood of the root in some breadth first
search (BFS) order. Note that subtrees induced by the children of the root
are just independent copies of branching trees with radius » — 1. The prob-
ability ¢, of the edge monotone event

C, = ‘the root owns a binary tree within its r-neighbourhood’

can therefore be computed recursively as follows.

q0(c) =1, ¢r+1(c) == falc,q-(c)) :== 1P’ [Pocg,(e) > 2]/. (3.1)

-~

at least two
children ‘fixed’

The value of ¢(c) is the largest root of x = fo(c,x). The value of this
root drastically changes when ¢ becomes larger than c.; = 3.35(...). For
sub-critical ¢ < 3.35(...) the only root of x = fy(¢,z) is + = 0 whereas for
super-critical ¢ > 3.35(...) there ‘suddenly’ appear additional roots greater
than zero, c.f. Figures 3.2 and 3.1.

The probability of the edge monotone event

C, = ‘the root owns a Cayley tree within its r-neighbourhood’

is
pr(c) = f3(ca qr—l(c)) =P [Pocqr_l(c) > 3] .
Finally p(c) := fs3(c,q(c)), c.f. Figure 3.2.
We first collect some properties of f5 in Proposition 3.1.1 that are rather
obvious from the plots in Figure 3.1 but require a formal proof. We advise

the reader to first check the plausibility of the assertions by looking at the
plots before reading the proof. Remember that ¢(c) is the largest root of

r = fo(c,x).

Proposition 3.1.1 The function fs(c, ) is an entire analytic function of ¢
and x, strictly increasing in x for c fixed and strictly increasing in ¢ for x
fized. All derivatives (w.r.t. x) are bounded on (the compact set) [0, 1].

The function g(c,x) := fo(c,x) —x has a root at x =0, and either none,
one or two additional roots in [0, 1].

In the first case when ¢ < 3.35(...),

fale,z) < z(1 —e(c)),
for all x € ]0,1] and for some €(c).
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Figure 3.2: The larger curve shows the numerical value of the largest root
q(c) of x = fy(c,x), the second curve shows p(c) = f3(c,q(c)). The latter
is the probability that the root of the unbounded branching tree owns an
unrestricted Cayley tree (which ‘corresponds’ to being in the 3-core). Note
that p(c) is always slightly larger than ¢(c)/2, for all ¢ > 3.35(...). For k > 3
similar plots can be drawn.

The exceptional second case happens only at one value of ¢, that can be
verified to be 3.35(...), numerically.

In the third case for ¢ > 3.35(...) the derivative t(c) := 2 fo(c, ®)|s=q(c)
is strictly less than one, and the curvature of fy(c,x) is negative for x in an
open interval containing [q(c),1]. Thus by Taylor’s Theorem we have for all
x in such an interval

fale,m) < qle) +t(e) - (z — q(c)).

Furthermore, in that third case q(c) is strictly increasing and C* in ¢, and
the derivative t(c) is equal to 2 - Pocyy|>2(2), which is strictly decreasing.

Proof Analyticity and monotonicity are easily verified, as well as the ‘trivial’
root fa(c,0) = 0.

Note that g(c,z) := fa(c,x) — = starts at 0 and ends at —exp(c) —
cexp(c) < 0. The second derivative ¢"(c,z) = (¢* — 3x) - exp(—cx) of ¢
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w.r.t. x starts off with a positive value and changes sign at zo(c) := 1/c.
Therefore the first derivative ¢ = xc? - exp(—cz) — 1 is unimodal, starting
at ¢'(0) = —1, ending at ¢'(1) = —(1 — ¢® - exp(—c)) < 0 and attaining its
maximum ¢'(¢,1/c) = c¢-exp(—1) — 1 at z(c) = 1/c.

The maximum of ¢'(c,1/c) = ¢ - exp(—1) — 1 is greater than zero for all
c > e. If they exist, x1(c) denotes the x-value where ¢’ changes sign from
— to + and xs(c) the z-value where it changes back. Necessarily for ¢ > e,
z1(c) < xo(c) < wa(c), as ¢’ is continuous.

If ¢ < e we are in the first case, as we will presently show. Now ¢'(c, x)
is non-positive. The anti-derivative ¢ is negative, for ¢’ starts at —1 and
remains less than, say, —1/2 within an interval of size 2¢(c) (¢’ is continuous).
Therefore when ¢ < e, fo(c,z) < z(1 —2(c)) for all z € [0, 1].

From now on we will assume that ¢ > e (note that all three cases are
still possible). Now ¢’ increases from —1 until x = zy(c) crossing zero at
z1(c) < xo(c) then falls again crossing zero at za(c) > xo(c). This im-
plies for g that it falls from zero, attains a local minimum at z;(c), starting
to rise again attaining its maximum at zy(c). We get 0 = ¢'(c, x2(c)) =
c*zy(c) exp(—czo(c)) — 1, knowing that x5(c) > 1/c and 1/¢ > 1/e Therefore
we know that czy(c) = —W_1(—1/c¢). Here W is the Lambert-IW-function*
which is the inverse of x — xe®. Inserting this expression for z5(c) into the
definition of ¢ yields

CW_l(—l/C) +1-— W_l(—l/C) + W_l(—l/c)Q
c-W_1(=1/c) .

9(c, 22(c)) =

We have not succeeded in explicitly solving g(c, z2(c)) = 0 for ¢, even when
using the Lambert-1W-function. Fortunately we can prove that there is only
one root and determine it numerically to any accuracy. The derivative of
g(c, xo(c)) with respect to ¢ is

—W_1(—1/¢)
c? ’

this is positive for all ¢ > e. For ¢ = e we get ¢'(e,z2(e)) = 1 —3/e < 0.

Thus there is exactly one value ¢ = 3.3509188715116727732(. . .) such that

g(ccrit; x2(ccrit)) =0.
This yields the desired result for ¢ > 3.35(...) (and for e < ¢ < 3.35(...)
because the only local maximum of g besides the one at x = 0 is strictly

*Just like the more familiar logarithm (In), which is the inverse of z — e*, W has
branches labelled by indices in Z, so W_; is the (—1)-st branch of W. For an excellent
discussion of W we refer the reader to [CGHT96]. Also, some computer-algebra tools,
like Maple, can perform computations involving W with the same ease as computations
involving In.
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smaller than 1). As g is positive at x(c), the largest root ¢(c) lies (strictly)
right of z5(c). For all x > z5(¢) including ¢(c) we have negative ¢’ (i.e. fj <
1), and since xo(c) > xo(c) the curvature is indeed negative in |z5(c), 1] D
(o), 1]
Why is ¢(c) strictly increasing for ¢ > 3.35(...)7 Monotonicity implies
that
f2(c(1+£),4(0) > falc, q(c)) = q(c).

By continuity there must be some further root of fo(c(1+ &), x) = z strictly
larger than ¢(c) since fa(c(1+¢),1) < 1.

Continuity (C*) of ¢ — ¢(c) follows from the Implicit Function Theorem.
F(c,z) := fa(e,z) — z is C* on R? and has a root at some (co, ¢(cp)), fur-
thermore 2 F(cg, g(co)) # 0. Thus there is (at least) a small neighbourhood
of ¢y such that ¢ — ¢(c) is a C* function.

Finally, we know that cq(c) > cxz(c) > 1 from the above discussion for

¢ > 3.35(...) and thus

a —cqlc
t(c) = %fQ(C, ) |lo=g(c) = *q(c)e 1 =2. Pocy(e)(2)/q(c) = 2 - Pocg(e)|>2(2)
is strictly decreasing, as a + ae® is for a > 1. O

Lemma 3.1.2 In the Po. branching tree the probability p,(c) of the event C,
‘the root is an r-Cayley owner’ converges (w.r.t. r) to p(c) from above at an
(at least) exponential rate for all ¢ # 3.35(...), i.e.

p(e) < pr(c) < ple) + Orsoo(t(c)”).

If ¢ < 3.35(...) (sub-critical case) p(c) is zero whereas for ¢ > 3.35(...)
(super-critical case), p(c) > 0.2674314(...), and it is strictly increasing in c.

For the probability q.(c) of the event B, ‘the root is an r-binary owner’
we have

q(c) < ¢:(c) < qlc) +t(c)".

If ¢ < 3.35(...), q(c) is zero whereas for ¢ > 3.35(...) (super-critical case),
q(c) > 0.5349949(...), and it is strictly increasing in c.
In the super-critical case t(c) can be chosen to be the derivative w.r.t. x

of fa(e,x) at x = g(c).

Proof We first analyse the convergence of the probability ¢,(c), of the event
B, ‘the root is an r-binary owner’, towards the largest root ¢(c) of fo(c,z) = x
in [0, 1]. We will use the results from Proposition 3.1.1.
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Figure 3.3: A plot of z — f3(3.6, z).

If z € ]g(c), 1] we have fy(c,x) €
By induction over r starting at go(c) =
)

gr(c) > q(c).

q(c), 1], from the monotonicity of fs.
1 this implies

Furthermore, for all = in Jg(c), 1]
fole,x) = g(e)
z —q(c)
In the sub-critical case we define ¢(c) := 1 — £(c), c.f. Proposition 3.1.1. By
induction over r starting at go(c) = 1 this yields

a-(c) < qle) + (t(c))".

Figure 3.3 illustrates the fact that f3(c,-) ‘distorts’ its input in a smooth
and analytic way, mapping errors of ¢ to errors of O(0), the constants de-
pending only on ¢. Formally f3(c,-) is analytic and has bounded derivatives,
the results will carry over from ¢, (c) to p,(c) by a straightforward application
of Taylor’s Theorem, i.e.

frlea(e) + (1))
= 5(0(6)) + sl Dlamater () + 5o (6,2 ma - (1)

< t(c).
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where 6 is in [0, (¢(c))"]. The error is O, (t(c)") since all constants are
bounded, depending only on c. O

The next lemma discusses the probability of runs, see Definition 2.3.7 on
p. 31, i.e. nodes that are r-owners but not (r + 1)-owners. This somehow
reflects the ‘robustness’ of ownership further aspects of which shall discuss
below.

Lemma 3.1.3 In the Po. branching tree the probability P|C,.1 AC,] that the
root is an r-Cayley owner but not an r + 1-Cayley owner is O, (t(c)"). So
is the probability P[C,.1|C,].

Proof Select three of the at least Po.,,_,|>3 > 3 children of an r-owner v
that are r — 1-binary owners. Denote by B, the event that the root is an
r-binary owner. For r — 1-binary-owners we have (c.f. Lemma 3.1.2)

P [B,_1 AB,| =P[B,_1] = P[B,_1 A B,]
=P[B,_1] = P[B,] < q(c) + Or0(t(c) ™) — d(e) = Oryoo(t(c)"),

i.e. the selected children of v are also r-binary owners with probability 1 —
O, o(t(c)"), independently. Even when considering only the three selected
children the probability that some child fails to be an r-binary owner is
therefore still 1 — O, (t(c)"). So this is the probability that the root v is
a (r + 1)-Cayley owner conditional on being an r-Cayley owner. We remark
that P[B, AB,_1] and P[B,|B,_;] differ only by a constant factor disappearing
in Landau notation. O

3.2 Coloured Owners and Runs, Related to
the Magic Subgraph

We will now consider coloured branching trees. We ‘translate’ what a BFS will
‘see’ in a random tripartite graph to the ‘branching tree world’. Whenever
new children are generated they are uniformly and independently assigned
one of the colours other than the colour of their respective fathers. We will
say that the root is a coloured owner if it contains a complete binary tree
such that every father node has children in all available colours. Such a tree
will be called a coloured binary tree.

The theory of coloured owners is very similar to the theory of ‘ordinary’
owners discussed above. We will use the same symbols f5, ¢ as we did for the
‘ordinary’ owners.
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The probability ¢, of the edge monotone event ‘the root owns a coloured
binary tree within its r-neighbourhood’ can be computed recursively as fol-
lows.

qQ(c) =1, ¢ri1(c) == fale,qr(€)) == 1P’ [Pocg, /2 > 1] 2/ (3.2)

TV
at least one child
of each colour ‘fixed’

The value of ¢(c) is the largest root of © = f5(¢, ). The value of this root
drastically changes when ¢ becomes larger than c.i = 4.91(...) (for k£ = 3).
For sub-critical ¢ < 4.91(. . .) the only root of x = fy(c, z) is = 0 whereas for
super-critical ¢ > 4.91(...) there ‘suddenly’ appear additional roots greater
than zero, c.f. Figures 3.4 and 3.5. There is not really an equivalent to
Cayley-owners, so there are no p’s.

1 1
0.8 0.8
06 06
0.4+ 0.4
02 0.2
0 02 04 06 0B 1 0 02 04 06 0B 1

Figure 3.4: ‘Coloured case’, k = 3: The plots show z +— f5(4.7, ) and
z — f2(5.2,x). Note that for ¢ < 4.91(...) the only root of x = fo(c,x) is
zero, whereas for ¢ > 4.91(...) the largest root ¢(c) is positive as can be seen
from Figure 3.5 below, portraying ¢ — ¢(c). For k > 3 similar plots can be
drawn.

For larger k Equation 3.2 generalises to:

k — -
(@) =1 (@)= 57(a (@) =P [Pow 2 1],

J/

-~

at least one child
of each colour ‘fixed’
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051
04
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02’

011

Figure 3.5: ‘Coloured case’, k = 3: Numerical value of the largest root ¢(c) of
x = fy(c,x), This is the probability that the root of the unbounded branching
tree owns an unrestricted coloured binary tree (which ‘corresponds’ to being
in the magic subgraph to be defined later). For k£ > 3 similar plots can be
drawn. Compare this to the empirically observed sizes of magic subgraphs
portrayed in Figure 4.5, p. 75.

(k)

In the ‘coloured case’ we can explicitely compute the values of c.;; for all
(3)
values of k > 3. For k = 3, solving %BT(C’CE) = 0 for z yields

2W—1(—1/2¢ 1?) +1
c )

Ty =

(3)

crit

(3)

crit?
3) _ 2W_y(=1/2e %) +1
crit — 1_ 26W_1(71/28_1/2)+1/2 + (ew_1(71/2e—1/2)+1/2)2

= 4.91081496456825589875153480524 . . ..

and solving f2(3)(c xy) = xq for c.;, finally yields

C

Along these lines we get the general formula

w (k=D Woi(—e D (k=17 +1

k—1

crit
1—d%m%*“W%hn*Hwﬂrj
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For k = 3,...,7 we have filled in the numerical values into the following
table.

k 3 4 3 6 7
Cerit | 4.9108 | 9.2673 | 14.036 | 19.112 | 24.434

Although most results in Section 3.1 could have been ‘guessed’ from the
plots in Figures 3.1 and 3.2, we have thoroughly explained how they can
be rigorously proved by elementary curve discussion, there. We shall be
much more concise here, as the situation is completely analogous, c.f. Fig-
ures 3.4 and 3.5.

Proposition 3.2.1 Completely analogous to Proposition 3.1.1. Merely re-
place 3.35... by 4.91(...), and t(c) := 2 fo(c, z)|sq(c) takes the value

¢+ P [Pocg(ey 2 = 0] - P [Pogg(ey2 > 0],
being strictly smaller than one.

Lemma 3.2.2 In the coloured Po. branching tree the probability g.(c) of the
event ‘the root is a coloured r-binary owner’ converges (w.r.t. r) to q(c) from
above at an (at least) exponential rate for all ¢ # 4.91(...), i.e. for the prob-
ability q.(c) of the event B, ‘the root is an r-binary owner’ we have

9(¢) < ¢:(c) < gle) +#(c)".

If c < 4.91(...), q(c) is zero whereas for ¢ > 4.91(...), q(c) > 0.5116996(. . .),
and it strictly increasing in c.
In the super-critical case t(c) can be chosen to be the derivative w.r.t. x

of fale,7) at 7 = g(c).

Lemma 3.2.3 In the coloured Po. branching tree the probability P[B,.1 AB,]
that the root is a coloured r-binary owner but not a coloured r-+1-binary owner
is O 00(t(€)"). So is the probability P[B,,1|B,].

3.3 Miscellaneous Results

In the course of our work we have also investigated almost sure bounds on
the sizes of branching trees with progeny distributions Po. or Bi(n, ¢/n) and
radius r(n) = aloglogn for some o > 0. Eventually we found that a very
coarse estimate based on the maximum degree is sufficient for our purposes,
see Proposition 5.1.1 below.
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There is also a ‘branching tree analogue’ for the analysis of the second
stage in our new proof for the appearance of the k-core, to be discussed below.
However, we have not found a rigorous way of employing these observations
for proofs in random graphs, as opposed to the material covered in Section 3.1
and 3.2.

We also state some results illustrating that ownership appears to be ‘ro-
bust’ against small perturbations.

3.3.1 Expected Size and Upper Bounds

We shall briefly review some rather well known facts about branching trees.
The reader is encouraged to re-inspect Section 2.3.2 and references therein.
We shall concentrate on the case ¢ > 1, i.e. considering super-critical branch-
ing trees in the language customary for (Galton-Watson )branching trees.
This should not be confused with our use of the words ‘sub-critical’ and
‘super-critical’ according to whether ¢ < ¢ or ¢ > cqi. The letter ‘¢’ will
always denote both the average degree of the random graph and the first
moment of the progeny distribution of the affiliated branching trees. Let Z,
be the size of the rth generation of a branching tree.

Zr
Zpy =Y X, (3.3)
i=1

the X; being i.i.d. copies of the progeny distribution p. It is assumed that
ZU ~ (51 (1e Z[] = 1) and Zl = X1 ~ .

Fact 10 The expected size of the rth generation is given by
E[Z]|=E[Z]]" ="

The standard proof uses generation function arguments. We will give a
simple and more instructive proof for binomial branching trees.
Proof of Fact 10 for p = Bi(n, ¢/n).

A branching tree with progeny distribution Bi(n,¢/n) and radius r can
be constructed by the following procedure:

e Start with the complete n—ary tree of radius r.
e Perform independent edge percolation with probability ¢/n.

e Delete all nodes that are not connected to the root.
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Now, the probability for one of the n" leafs of the complete n—ary tree of
radius r to be connected to the root is (¢/n)". Therefore E[Z,] = ¢. O

A reader familiar with typical applications of Azuma’s inequality in the
theory of random graphs (see Section 2.1.3) might at first sight conjecture
that the relative sizes W, := % should be sharply concentrated around their
means, asymptotically, i.e. to converge (in an appropriate sense) to a de-
terministic variable with value E[W,| = ¢"/¢" = 1. This is not the case.
Nevertheless, martingale techniques may be employed to show that the W,
do converge to a random variable W with E[I¥] = 1. The distribution of W
consists of an absolutely continuous density on Ry ' plus a Dirac measure at
0 (corresponding to the event of extinction) under conditions that are sat-
isfied in our setting. Specifically for Z; ~ Po,. we know that E[W] = 1 and
Var[W| = i Intuitively, the first few generations determine the ‘fluctua-
tion’ of the sizes of all later generations. Once the ‘population’ has reached
a certain size the law of large numbers will provide a progression that is
sharply concentrated around its expected value but the ‘early fluctuations’
will persist.

In [KZ95] Karp and Zhang proved tight large deviation bounds for the
tails of the W,’s themselves, assuming arbitrary but bounded Z;. Since Po.
is not bounded we need to take another approach. Moreover, our specific Z;
is not a worst—case instance of a class of distributions as in Karp’s proof, thus
there is hope for tighter bounds. These bounds are provided by Lemma 3.3.1
and Corollary 3.3.2 below.

£5/3
(&

Lemma 3.3.1 Given ¢ > 1 for any 0 < ¢ < 0.029 < exp(—2/3-
branching tree with Zy =1 and Z, ~ Po,

) in a

P[Z, > 1/2-log(1/e) - (3c)"] < -,
for all r € N.

Proof of Lemma 3.3.1.

First note by looking at any proof of the Chernoff bounds for the sum
of ny independent Bernoulli random variables, that we can replace the i.i.d.
Bernoulli r.v.s by Poisson r.v.s {X;}; (X; ~ Po./y,) without essentially alter-
ing the proof. The estimate used as an upper bound for the moment generat-
ing function of a Bernoulli variable is just the moment generating function of
the corresponding Poisson variable. Therefore we know (c.f. [MR95b]) that

foro > 1 .
=1

S7

0—1

< (S (3.4)

P 5




Now we proceed by induction. For r = 1 we explicitly show that
P[Z >1/2-log(1/e) - (3¢)'] <,
using
o0 k oo
S ro < 3o
i=k =0
Substituting 1/2-log(1/¢)-(3¢)* = 3/2-c-log(1/¢) for k and Stirling’s formula
yield

3/2-c~log(1/a)

(3/2-c-log(1/e)/e)3/2clog(1/e)
— 63/2~c-(log(—cloga)+10g3—log2 1)‘

P[Po. > 3/2-c-log(1/e)] <

This is less than ¢ provided 0 < £ < 0.029 < exp(—2/3 - ¢ ) for all ¢ > 1.
For the induction step we use Bayes’ formula and the Chernoﬁ' bound 3.4
from above. The Y; are independent Po, variables.

P[Z1 > - (ve) ] =

(
P[Zy =@ (7)™ 2 > - ( 76’"] [Z, ><,0 ve)]
P [Zo1 > - (7)) Z, < o (7¢) | P2, < - (70)"]

<PIZ, > ¢ () 1+ P [Zr1 > 0 (v0) T Z < - (76)’"}

( ) [ ('YC) . (3_4) 6771 ( C)T.c
<r-e+P X;Y>7(g0-(70))-c Sr-6+[—77]‘p7 :

If we choose v such that the square brackets are less than 1/e, e.g. v > 3,
and ¢ = 1/2-log(1/e) the last expression is certainly less than (r+1)-£. O

Corollary 3.3.2 Assume ¢ > 1 and choose r = r(n) = aloglogn.

The size of the r-th shell of an Po. branching tree stopped at radius r is
less than logn - (3¢)"™ with probability o(1/n). The total number A(r(n)) of
nodes in such a tree is less than logn - (3¢)"™*1 also with probability o(1/n).

Analogous results hold for Bi(n,c/n) branching trees stopped at radius r
and for BFS-Balls of radius r in a G, graph with average degree c.

Proof of Corollary 3.3.2
The statements concerning the sizes of the r-shells of the Poisson trees
are valid for all sufficiently large n choosing € = £(n) = 1/n? in Lemma 3.3.1
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above. First we condition on the ‘good event’, that the sizes of the shells are
compliant with our a.s. upper bounds. Summing over all shells yields the
total size, and the resulting geometric series can be bounded as stated. Since
there are only r(n) ‘bad events’ each occurring with probability at most
r(n)/n?, the ‘good event’ fails to occur with probability at most r(n)?/n?
which is still o(1/n) for our choice of r(n).

For binomial trees we re—inspect the proof of Lemma 3.3.1, replacing Po,
by Bi(n,¢/n). The tail bound for r» = 1 is correct since we can use Chernoff
bounds for Bernoulli random variables. Substituting ¢ - ¢ by ¢ and ¢ by
3p(n) =3/2-log(1/e(n)) = 3-logn (c.f. the proof of Lemma 3.3.1 above) in
inequality 3.4 yields

3p(n)—1
e30(n) < p—3cllog(3)—1+log(log(n)))

P[Bi(n,c/n) >3- ¢(n) - ] [W]c <

IN

< 1/n*=¢e(n)

for sufficiently large n (n > 6). For the induction step the Chernoff bounds
for Poisson r.v. carry over, since the moment generating function of Bi(n, ¢/n)
is smaller than the moment generating function of Po. ((1 —¢/n+ z¢/n)" <
ec(z—l)).

In a fanning-out process exploring r-neighbourhoods in random graphs,
the number of newly-discovered children is at each step stochastically domi-
nated by Bi(n,c/n).

0

3.3.2 Damage Process in Branching Trees

Using the same recursive equations as for branching trees, we shall later turn
the results discussed in Section 3.1 into a rigorous proof for the appearance
of a giant set of r-Cayley owners' in the random graph, that is ‘almost’ the
k-core, choosing r = r(n) appropriately.

By ‘almost’ we mean that there are a few nodes (i.e. runs) left that do
not have degree at least k£ in the subgraph induced by the r-Cayley-owners.
Remember that runs were defined as nodes that are r-Cayley-owners but not
(r 4+ 1)-Cayley-owners, in Section 2.3. Removing runs may cause nodes that
have previously had degree k to have degree £ —1 and if we continue to delete
these nodes recursively we may find a big ‘hole’ that has been ‘sparked’ off by
removing a single run. We shall call this recursive deletion process a ‘damage
process’. It may also be interesting to know how large the ‘hole sparked off’

tA similar result for coloured binary owners seems to be within reach, too.

99



Figure 3.6: The black subtree is the cone, i.e. the union of all Cayley trees
proving that the root is a Cayley owner. The subtrees drawn with dotted lines
are irrelevant for ownership and hole. The hole induced by the root (shaded
area) are all nodes that are removed by the recursive damage process upon
removal of the root.

by removing an arbitrary node will be, i.e. to assess the robustness of the
aforementioned subgraph against removing single nodes.

We found that there is a branching tree theory for analysing ‘damage
processes’ similar to the ones discussed in the last paragraph. However, we
were not able to turn this into a rigorous proof for random graphs. It is
nevertheless worthwhile to describe our observations.

We state the following definitions only for unrestricted branching trees.
See Figure 3.6 for an illustration.

Definition 3.3.3 Suppose the root in a Po. branching tree is a Cayley owner.
The k-cone s the union of all Cayley trees that prove that the root is a Cayley-
owner.

The hole induced by v are all binary owners (‘away from’ their respective
fathers in the tree) that are deleted by a damage process started at v.

The damage process starts with deleting the root v and recursively deletes
all children in the k-cone that have degree (k — 1) (w.r.t. the k-cone!) ‘away
from’ their respective fathers.
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Corollary 3.3.4 (of Proposition 3.1.1). The conditional Poisson distribu-
tion Pocy(e)|>2 for super-critical ¢ > 3.35 has the following properties.

m(¢) 1= Pocy()[>2(2) < (1 —e(c))/2.

Moreover, Pocgy)|>2(2) is strictly decreasing with c. For general k > 3 we
have

7 (c) 1= Pogyo(g >k (k) < (1= (e))/(k —1).

Proposition 3.3.5 The 3-cone is distributed like an unrestricted Pocg(. |>2
branching tree, where the root plays an exceptional role having at least Pocq >3
children.

When the root is a binary owner, the hole induced by the removal of the
root is distributed like a Bi(2,7(c)) branching tree, where m(c) = t(c)/2 =
1/2 —e(c). If the root v is not a binary owner, the hole induced by v is the
union of all holes induced by the children of v that are binary owners, each
hole being distributed as described above.

Similar statements hold when we replace 3 by k > 3.

Proof We shall again use the fact that disjoint induced subtrees are inde-
pendent copies of the original branching tree.

When the root is a binary owner, we know that it has at least 2 children
that are binary owners. Each of the Po, children are binary owners indepen-
dently with probability g. Therefore the 3-cone is distributed as a Pogg)|>2
branching tree.

Within the 3-cone the damage process will proceed to delete a node,
whenever it has ezactly two children. Those children will be ‘exposed’ upon
removal of their father, i.e. have ezactly two children themselves, with prob-
ability Pocg(e)|>2(2) = m(c). O

Intuitively the holes should die out quickly. This follows from the theory
of sub-critical’ and is also implicit in the analysis of the giant component for
¢ < 1. The proof of the following proposition is based on a straightforward
gambler’s ruin argument.

Proposition 3.3.6 In the (unrestricted) Po. branching tree, conditional on
the root being an owner, the union of the holes induced by the remowval of the
root v contains more than (logn)™(©) owners with probability subpolynomially
small in n, say . Here M(c) is a sufficiently large constant.

YA branching tree with progeny distribution s is sub-critical branching trees when
E[u] < 1, which should not to be confused with our usage of ‘sub-critical average degrees’.
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Proof We shall merely sketch the proof and omit some straightforward but
tedious details.

The removal of the root v may spark off at most (logn)? new holes with
probability at least 1 — exp(—(1 + &) log(n)?), for some § > 0. This is easy
to see, for example, see (the proof of) our Proposition 5.1.1 below. Denote
by X;, the set of ‘live’ nodes at time ¢ of the damage process. This can be
described by the following gambler’s ruin walk starting at X, = (logn)? and
stopped at X =0,

P[Xy =i+ 11X, =1] = Bi(2,7)(2)
P[Xiy1 = i[Xy = i] = Bi(2,7)(1)
P[X;41 =i — 1|X; =i] = Bi(2,7)(0).

We shall be a little sloppy and merely analyse the walk Y; starting at Y; := X,
without self-loops and without the stopping condition. In a more rigorous
proof we would have to condition on the number of ‘stops’ due to self loops
being close to their expected values, introducing a constant ‘slow-down’.
Because of Corollary 3.3.4 we have

PlYipn =i+ 1Y, =i = (1-¢)/2
PlYipn=i— 1Y =i =(1+¢)/2.

What is the probability that Y7 is still positive after T = (logn)™ steps?
Answer: After T steps Y7 is distributed according to Bi(27T, (1 —¢)/2) — T +
(logn)?. Using Chernoff bounds yields a subpolynomially small bound, say
exp(—(logn)?)), provided M = M(c) is a sufficiently large constant:

P[X7 > 0] < P[Yr > 0]
=P [Bi(2T, (1 - ¢)/2) > T — (logn)?]

Z~Bi(2T(1-¢)/2) P [Z —E[Z] > Te — (log ”)2]

§:=eT—(log n)?

<* Pz —E[2]> 4
n=E[Z] 52

= S 5/

(eT — (logn)?)? )

3T — 2¢T — (logn)?”

= exp(—3/2
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Damage Process in Coloured Branching Trees
We briefly remind the reader that
t(c) = ¢ P [Pocy(p = 0] - P [Pocg(p > 0] < 1,

where #(c) denotes the quantity related to the coloured owners (see Proposi-
tion 3.2.1, p. 55) can be interpreted as follows. Suppose some coloured binary
owner is deleted from the tree. We shall assume arbitrarily that it is red.
Then all (of a total of ¢, on average) neighbours that have only ‘fixed’ chil-
dren in the colour different from red and their own will no longer be ‘fixed’.
Therefore #(c) < 1 is the expected decrease in the number of ‘fixed’ nodes, if
a ‘fixed’ node is deleted. It should therefore be possible to discuss cones and
holes in a similar manner for coloured owners, as we have done for ‘ordinary’
owners.

[t may be interesting that the quantity t(c), related to the ‘ordinary’
owners, which is equal to P[Po.,|>2(2)] can also be written as

t(c) =c-P[Po, > 1] <1,

where P[Po,, > 1] is the probability for being a ‘unary owner’.

3.3.3 Expected Number of Cayley Trees, Robustness

Let Z be the random variable that counts the number of Cayley trees in

a branching tree. We have proven the drastic change in the probability

P.[Z = 0] when ¢ crosses cuit. Now we will demonstrate the surprising

fact that E.[Z] is perfectly ‘well-behaved’, it is analytic in ¢. Remember the

constructive characterisation of Bi(n, ¢/n) branching trees stopped at radius r

in our proof of Fact 10. From this E[Z] can be computed by counting trees.
We shall need the following (obvious) observation.

Proposition 3.3.7 A Cayley tree of radius r has 32"~! — 2 inner nodes
including the root, 32"~ leaves and 3 - 2" — 3 edges.

Note that when embedding a Cayley tree in the complete n—ary tree we
have (g) choices at the root and we have (g) choices for all the other inner
nodes.

Proposition 3.3.8

E, [7] = lim <§> . (’;) ot (c/n)*!

n3+2(“/inner‘71)

=lim—————  (¢/n)VI7 = 8/6 -1/ (¢/V2)*?.  (3.5)

n 6 . 2“/inner|_1

63



Formula 3.5 is perfectly analytic in ¢, nothing appears to happen at ¢ =
4.91(...). We will try to shed some light on this seemingly paradoxical re-
sult below, by explaining it as a ‘jackpot phenomenon’. Return to Propo-
sition 3.3.8 and compute the expected number of Cayley trees conditional
on Z # 0.

Proposition 3.3.9 Let p; = P.[Z = i] and p; = P[Z = i| Z #0]. Z is the
random variable that counts Cayley trees conditional on Z # 0. Assume that
E.[Z] and py = P.[Z = 0] are known. Then

[0 i=0 . E,[Z]
pi = {L i2 0 and E. [Z] = T-P[Z=0] (3.6)

1-po
The denominator is nothing but p,(c). Qualitatively assuming a ‘jackpot phe-
nomenon’ implies that in the super-critical case there will be many different
Cayley trees conditional on the existence of at least one, and in the sub-
critical case there must be even more to provide an expected value smooth
in ¢. The typical 3-cone, the union of all Cayley trees, will therefore have
many more than 327! leaves at level r. Intuitively the cone is ‘robust’, or
‘bushy’.

‘Robustness’ of the cone can also be demonstrated more directly by the
following argument. We know that the cone is itself a branching tree with
Pocy|>2 progeny distribution. Now we may introduce further errors in two
different ways.

a) Either we perform ‘node percolation’ at the outer shell at radius r,
that is tantamount to defining ¢o = 1 — ¢ instead of ¢y = 1. Clearly, the
recursive equation (describing probabilities in the cone) for binary ownership
in the presence of this percolation is given by

fle,x) = ZPocq|22(k) -P[Bi(k,z) > 2].

It has a fixed point at x = 1 and convergence of the ¢, will be like
1- O(gtr) S qr S 17

for some 0 < t < 1. We implicitly have assumed that ¢ is o(1), or small and
constant, in the worst case.

b) Or, more strongly, we may ‘disown’ each owner with probability ¢,
independently in each level. The recursive equation for binary ownership is
then given by

fle,x) = Pogglsa(k) - P[Bi(k,2(1 - £)) > 2].
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For ¢ = 0 the recursive equation of a) is reproduced. Increasing ¢ has the
effect that the fixed point shifts from 1 to 1 — de, the dependence on ¢ is
(locally) linear due to analyticity, this also holds for ¢. Thus for sufficiently
small £ = o(1) the ¢. will converge with the ‘usual’ rate of convergence to
some value converging to 1.
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Chapter 4

The Magic Subgraph

We were inspired by the Branching Tree Connection in searching for some
subgraph ‘corresponding’ to the coloured owners (Section 3.2) in an anal-
ogous way as the Cayley owners ‘correspond’ to the k-core. We actually
found a ‘corresponding’ subgraph. Similarly to the extended k-core it can
be characterised by a directed-edge deletion process. The magic subgraph is
thus well-defined, in any graph with respect to a given k-colouring, moreover
it can be found in linear time, algorithmically.

We have collected strong empirical evidence (see Section 4.3) that in
tripartite random graphs there ‘suddenly appears a giant magic subgraph’
at an average degree of cgr = 4.91.... The same seems to be true fore
k > 3, the critical c-values being the ones from the Branching Tree Connec-
tion for coloured owners, Moreover, magic subgraphs found in random tri-
partite graphs are ‘almost uniquely colourable’, empirically. However, magic
subgraphs are not alway uniquely colourable, deterministically.

Being ‘almost uniquely colourable’ would make the magic subgraph a can-
didate giant subgraph for explaining the jump in chromatic number, which
is certainly one of the most central challenges in the field, see [Mol01]. Un-
fortunately, it is only defined with respect to a specific, ‘built-in’ k-partition.
We shall further discuss this in Chapter 7. We have demonstrated above (see
Section 2.6) that there are serious results and open questions related to ran-
dom tripartite graphs. It may well be that the Antivoter Phenomenon turns
out to be a ‘critical slowing down’ due* to the ‘sudden appearance of the
magic subgraph’. Also, magic subgraphs may be interesting in the context
of finding uniquely colourable graphs with large girth (see Section 2.6.3).

*Note that we do not claim anything rigorous on a general mechanism of the ‘critical
slowing down’, see our comments in Section 1.2.

67



4.1 Motivation and Definition

When looking for something similar to the k-core ‘corresponding’ to the
coloured owners of Section 3.2, the naive idea that jumps to mind is modifying
the node deletion process characterising the k-core by now deleting nodes
with a monochromatic neighbourhood.

However, this does not seem to yield anything exciting. We observed
no discontinuity in the size of the remaining subgraph at the critical value
c=491... (k = 3), as might be expected considering the Branching Tree
Connection and the results on coloured owners from the last chapter. We
can furthermore give an explicit example proving that the ‘naive’ node dele-
tion process as described above is indeed ‘weaker’ than the deletion process
leading to the magic subgraph. Consider a Cy with an additional edge. This
graph is uniquely 3-colourable, and every node has a non-monochromatic
neighbourhood. Thus it is robust against the above ‘naive’ deletion process.
Yet, as we will presently see, it is not robust against the deletion process
leading to the magic subgraph. This example graph is just a special case of
the (uniquely colourable) graphs defined in the proof of Lemma 4.2.6 below.

The breakthrough was devising a directed-edge deletion process, similar to
the seemingly artifical one introduced for the extended k-core in Section 2.3.1.

Remember the intuition that a coloured owner u is ‘fixed’, in the unre-
stricted branching tree. Let us assume that v is red and has a blue child v
and a green child w, both of them being ‘fixed’. Suppose we re-colour u with,
say, blue. Then the edge {u,v} becomes monochromatic, which we do not
like. If we decide to fix this by re-colouring v, recursively and ‘away from u’,
we will spark off an infinite chain of re-colouring actions. By the (recursive)
definition of coloured owners this is true no matter what colours we try to
choose as replacement colours.

If, on the other hand u is not a coloured owner, we can (cleverly) choose
replacement colours such that we will need to perform only a finite number of
re-colouring actions. At some stage in the re-colouring process we will meet
a node u that has only fixed children of one of the available colours, other
than the colour of 4. Note that 4 does not need to have a monochromatic
neighbourhood, we only require that the ‘fixed’ part of its neighbourhood
except 1.’s parent be monochromatic.

It is therefore more natural to look at directed edges (u,v). If T~ (u) \ v
contains (‘fixed’) nodes of each available colour, then we consider the edge
(u,v) to be a ‘warning’ not to recolour v and to fix it by re-colouring u, and
so on recursively ‘away from v’, in the way we have described above.

Therefore we make the following definition.
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good @ ®\ bad
(D)
(V)

Figure 4.1: A directed edge (u,v) is bad, if T~ (u) \ v is monochromatic, and
good otherwise. Note that there may be more directed edges, but ' (u) \ v
is completely portrayed.

Definition 4.1.1 Let D = (V, A) be some directed tripartite graph. A di-
rected edge (u,v) € A is bad, if I (u) \ v is monochromatic, and good
otherwise. An edge is good or bad with respect to A. A subgraph (V, A") is
good, if it consists entirely of good edges with respect to A'.

The magic subgraph of D = (V, A) is the union of all good directed sub-
graphs. Simple graphs are interpreted as directed graphs by replacing undi-
rected edges by anti-parallel directed edges.

Note that unions of good subgraphs are good themselves, obviously.

Remark 4.1.2 The above can be generalised to the case k > 3. In that case
an edge (u,v) is good if the in-neighbourhood contains nodes of all k — 1
available colours. We have chosen to state the definitions only for the case
k = 3 in order to avoid complicating our notation.

Here and in what follows we will always assume that V is partitioned
into k ‘built in’ colour classes, not necessarily balanced, even if not explicitly
stated in our notation.

4.2 Properties of the Magic Subgraph

The magic subgraph is in many ways similar to the k-core, see Section 2.3.1.
Remember that we have shown that the k-core may also be characterised by
a directed-edge deletion process. We have seen empirically, that the magic
subgraphs found in random graphs are ‘almost uniquely k-colourable’. We

69



Figure 4.2: The tripartite globe graph is its own magic subgraph. It is
uniquely 3-colourable, but note Figure 4.3.

Figure 4.3: The colouring of a (simple) tripartite graph restricted to the
magic subgraph is not unique, in general. The grey area stands for some
appropriate graph, for example the graph from Figure 4.2.

therefore have collected some fairly simple statements illuminating some in-
terconnections between uniquely k-colourable graphs, k-cores and magic sub-
graphs.

Again, the magic subgraph can be characterised by deletion processes.
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Definition 4.2.1 An edge deletion process is some rule (or protocol) for
iteratively removing bad edges from D (with respect to the remainder graph).

At ‘time’ t, as long as there are any bad edges left in the remainder graph
Dy, select such an edge e; according to the protocol and remove it from Dy,
setting Dyyq := Dy \ €.

Proposition 4.2.2 The magic subgraph can be algorithmically characterised
as the outcome of any edge deletion process. In particular, the outcome of
any edge deletion process is the magic subgraph, irrespective of the details of
the specific deletion protocol.

Proof Denote by G(D) the collection of all good subgraphs. Then M :=
UD’Eg(D) D' is the magic subgraph. The empty subgraph is good. Denote
by M' the outcome of an arbitrary deletion process consistent with Defini-
tion 4.2.1.

M C M': Let D' be any good subgraph. It cannot be deleted by any
deletion process, since otherwise some edge in D’ would have to be the first
to be deleted. But since it is the first, it is still good with respect to the
remainder graph, due to all other edges in D’ still being there.

M’ C M: Conversely, it is obvious that the outcome of any deletion pro-
cess consists entirely of good edges. O

Definition 4.2.3 The magic subgraph in the node sense of some simple
graph G is the (simple) subgraph induced in G by the nodes that do not have
monochromatic in-neighbourhoods in the magic subgraph M of G.

The smallest (as far as we know) tripartite example graph containing a
non-trivial magic subgraph is the globe graph portrayed in Figure 4.2. It is
uniquely 3-colourable, but this is not generally true for magic subgraphs, at
least deterministically. Figure 4.3 shows a counterexample.

Proposition 4.2.4 Subgraphs of tripartite simple graphs induced by magic
subgraphs are not necessarily uniquely 3-colourable.

Yet, in Section 4.3 we shall present empirical evidence, that the colourings
of random tripartite graphs, restricted to the respective magic subgraphs (in
the node sense) appear to be ‘almost unique’.

There is one assertion that we can prove deterministically for magic sub-
graphs.
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Lemma 4.2.5 Let D = (V, A) be the magic subgraph of some simple graph
G. For each pair of colour classes the subgraph induced by bi-directed edges
in D on those two colour classes has minimum degree 2. The statement
generalises to k > 3, ‘minimum degree 2’ having to be replaced by ‘minimum
degree k — 1"

Proof We start with £ = 3. Assume the adjacent nodes v and v are coloured
red and green, respectively and that there is a bi-directed edge between w
and v, i.e. (u,v) € Aand (v,u) € A. Then there must exist nodes wy, wsy, u'v’
together with the arcs (wy,u), (wq,v), (v',u), (v',v) as shown in Figure 4.4,
otherwise the arcs connecting u and v would not be good. Therefore the arcs
(u,v") and (v,u’) (dotted arrows in Figure 4.4) must be present, too. For
(u, ") this is because it was there in the original graph G, and the presence
of the arcs (wy,u) and (v, u) proves that it cannot have been deleted by the
deletion process. The same holds true for the arc (v, u’), by symmetry.

For k£ > 3 the proof is analogous. O

Figure 4.4: Illustration for the proof of Lemma 4.2.5.

Conversely, one may ask whether uniquely colourable graphs always con-
tain magic subgraphs. The answer is no, in general.

Lemma 4.2.6 There are uniquely k-colourable graphs of arbitrary size hav-
ing an empty magic subgraph.

Proof (of Lemma 4.2.6) Start with an edge {u,v}, u coloured red and v
coloured green. Recursively attach ‘cherries’ w; to the graph, where w; is
attached to the graph G so far with exactly two edges, connecting w; with
nodes of two different colours. The colour of w; is uniquely determined by
the colours of its two neighbours in ;. Such graphs are uniquely colourable,
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but their magic subgraphs are empty. The latter, if not obvious, is implied
by Corollary 4.2.9 b) below. O
Note that if we replace the ‘starting edge’ in the proof of Lemma 4.2.6 by
a non-empty magic subgraph (such as the globe graph from Figure 4.2), all
the ‘cherries’ will be in the magic subgraph (in the node sense).

We may further ask whether uniquely colourable graphs that do contain
a k-core need to also contain non-empty magic subgraphs (note that the
counterexamples in the proof of Lemma 4.2.6 are not of that type). However
the pyramid (join of circle Cy with an isolated vertex) is a counterexample.
This counterexample does not readily generalise to k£ > 3.

Proposition 4.2.7 There exist uniquely 3-colourable graphs with a non-
empty 3-core but an empty magic subgraph.

Let us now return to the directed-edge deletion process that characterises
the extended k-core, as described in Section 2.3.1. The analogue of the
magic subgraph in the node sense is the subgraph induced by all vertices
with in-degree at least two, with respect to the directed graph surviving
the deletion process. Remember that this was called the extended k-core in
Definition 2.3.3.

Lemma 4.2.8 A non-empty extended k-core implies a non empty k-core in
the classical sense.

Proof (of Lemma 4.2.8) We will only discuss the case k = 3, generalisation
to k > 3 is straightforward. Note that as soon as there is a node v with
in-degree at least 3 there will be a non-empty 3-core. Clearly, all in-edges
of v must be bi-directed edges, bi-directed edges ‘never end’ (Lemma 4.2.5),
and thus at least the vertices contained in the 1-in-neighbourhood of v will
be in the 3-core.

Thus if there is no 3-core, the in-degree of all nodes in the extended 3-
core is exactly two. We will presently show that if there is no 3-core, the
extended 3-core is acyclic. This yields a contradiction, since there exists no
(non-empty) acyclic directed graph with in-degree exactly two.

Assume that there is a cycle in the extended 3-core and consider any
node v on the cycle and the (directed) edges (u,v), (v,w) on that cycle.
Since (v, w) has not been removed by the (3-core, directed-edge) deletion
process there must exist an edge (u',v). Now consider the time at which the
deletion process has deleted the first edge in the opposite cycle, say (v, u).
At that time the edges (u',v) and (w, v) are still present, a contradiction. In
other words, when there are cycles there are also double edges, implying a
classical 3-core which we have assumed to be absent. O

73



Corollary 4.2.9 a) The magic subgraph is contained in the extended k-core.
b) Any magic subgraph contains a non-empty ‘classical’ k-core.

Proof ad a) We choose a specific protocol for the magic-subgraph- deletion
process, remember that any will do according to Proposition 4.2.2. First
delete all edges that are bad due to having in-degree less than & — 1, recur-
sively. At that stage we have found the extended k-core. The magic subgraph
deletion process may now carry on deleting further edges that are bad in the
‘magic subgraph sense’.

ad b) Apparently what is left by the magic subgraph directed-edge dele-
tion process consists entirely of directed edges that are also good with respect
to the k-core node deletion process. It forms an extended k-core. Because of
Lemma 4.2.8 it also contains a k-core in the ‘classical’ sense. O

4.3 Empirical Results

In this section we present some experimental results. The ‘sudden appearance
of a magic subgraph’ at ¢ = 4.91 .. .in tripartite random graphs is presumably
the most interesting novelty. In Section 4.3.1 we shall show how the sizes of
magic subgraphs (in the node sense) in random tripartite graphs depend on
¢ and n - in full accordance with what would be expected heuristically from
the Branching Tree Connection.

It is not hard to see that magic subgraphs are not uniquely 3-colourable,
deterministically, c.f. Section 4.2. Still magic subgraphs of random tripartite
graphs do seem to be ‘almost’ uniquely 3-colourable. In Section 4.3.2 we
will present striking empirical evidence for this observation. But counterex-
amples do occur. We have included ‘screen-shots’ of a randomly-generated
magic subgraph that behaves like the counterexample portrayed in Figure 4.3,
leading to Proposition 4.2.4.

Finally, in Section 4.3.3, we shall state and discuss various observations.

4.3.1 Sudden Appearance of a Giant Magic Subgraph

Figure 4.5 shows the relative sizes of ‘real life’ magic subgraphs in the node
sense at various average degrees for n = 3000, 30000 and 300000 nodes, re-
spectively. They are the outcome of the directed-edge deletion process ap-
plied to random tripartite graphs with average degree c. Remember that
the magic subgraph in the node sense is the set of nodes having a non-
monochromatic in-neighbourhood, w.r.t. the magic subgraph. Intuitively, it
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Figure 4.5: Relative sizes of empirically observed magic subgraphs for ¢ €
[4.8,5.1], n = 3000, 30000, 300000. We have also plotted the value predicted
by the Branching Tree Connection, see Figure 3.5, p. 54.
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‘corresponds’ to the set of coloured binary-owners. We have also plotted the
value ¢(c), see Section 3.2, which is the expected (relative) size according to
the Branching Tree Connection.

The reader may be interested in the following details concerning our im-
plementation.

e Random tripartite graphs with average degree ¢ are not generated ac-
cording to the G, 3, model but to the following G, 3, model, using
a procedure similar to the one which generates G, ,, graphs (c.f. Sec-
tion 2.1.1, p. 12):

Partition the set of nodes into three ‘colour classes’ of equal size. As
long as there are less than m = < edges repeatedly choose a pair (u, v)
of nodes in different ‘colour-classes’ uniformly at random. When the
edge {u, v} is not yet present in the graph generated so far incorporate
it, otherwise ignore (u,v) and retry.

This procedure will generate a random graph in (an expected number
of) O(n) steps as opposed to the corresponding G, 3, procedure that
has to consider each of the #(n?) ‘potential’ edges. Finding ‘transla-
tion tools’ between G, 3, and G, 3, generalising the tools explained in
Section 2.1.1, p. 13, should be a straightforward task.

e The deletion process finding the magic subgraph is carried out exactly
as described in Definition 4.2.1, p. 70.

e We have generated only one magic subgraph for each value of n and c.
We could instead have generated several magic subgraphs for each (¢, n)
in order to plot error bars (based on a variance estimator). We have
not done so because it seems plausible that fluctuations will not change
much for closely adjacent c-values. Looking at the ‘fluctuations’ in the
plots therefore immediately gives an impression of the variance.

4.3.2 Magic Subgraph ‘Almost Uniquely Colourable’?

Before describing our experiments and presenting the results we shall make
a few remarks on motivation.

Qualitative Considerations

Remember the intuition behind the definition of the magic subgraph. In the
branching tree world, the (root) node is ‘fixed’ if recolouring to a different
colour will spark off an ‘infinite chain of repair steps’ when trying to ‘repair
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the colouring away from the root’. As a rule of thumb infinite subtrees trans-
late to giant (6(n) nodes) subgraphs in the random graph world. Conversely,
consider a uniquely colourable (giant) subgraph. Recolour one selected node
from red to green, say. Then we need to change the whole formerly green
colour class into red, when trying to ‘repair the colouring away from the
selected node’. In the light of these admittedly very hand-waving considera-
tions it seems plausible to conjecture that the magic subgraph of a random
tripartite graph might be uniquely colourable.

If this were true computing magic subgraphs of random tripartite graphs
might lead to a new method for generating uniquely colourable graphs of
large girth (c.f. Section 2.6.3). More importantly, adding a single edge be-
tween nodes of the same colour in uniquely 3-colourable graphs increases the
chromatic number by one. This will happen a.s. after adding o(n) random
edges no longer respecting the colour classes. Thus the appearance of a gi-
ant uniquely colourable subgraph could provide an appealing explanation for
the jump in chromatic number in the non-tripartite case. However, we do
not know how to translate results for tripartite random graphs to results
concerning non-tripartite random graphs.

How to Generate Random Colourings

We can generate random colourings using the Antivoter algorithm described
in Section 2.6.1. It is highly plausible to assume that a proper colouring
returned by the Antivoter is distributed (very close) to uniformly at ran-
dom amongst all proper colourings, since the invariant distribution of the
Antivoter is the (Boltzmann-)Gibbs-distribution on the set of all colourings
of a graph (see 1.2 and 2.6.1). Even if the mixing time of the Antivoter
was much longer than the first hitting time of a proper colouring, the fact
that it starts from a completely random i.i.d. colouring should prevent the
Antivoter from introducing any ‘external’ bias towards colourings that are
somehow correlated with the built in colouring. In other words, when the
colourings produced by the Antivoter are somehow correlated with the ‘built
in’ colouring, this should only be due to the internal structure of the graph
and not to the sampling algorithm.

Algorithm and Results

We have generated random tripartite graphs as described above for n =
3000,9000 and ¢ = 4.30,4.35,...,5.45. For each graph we computed the
magic subgraph and generated two different, independent (bona fide) random
colourings using the Antivoter algorithm. Each time we counted the overlap
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c T q | r | Rr|Gr|Br|r|lus| Rrlus | Grius | Brlus
4.30 160 | 0 | 33| 31 | 34 | 35 - - - -
4.35 730 | O [ 33| 38 | 27 | 35 - - - -
4.40 240 | 0 |33 | 33 | 38 | 29 - - - -
4.45 920 0 | 34| 32| 24 | 44 - - - -
4.50 * 0| * | * * * * * * *
4.55 310 | O [ 34| 14 | 70 | 16 - - - -
4.60 460 | O [ 34| 77 | 14| 9 - - - -
4.65 82 0 |33 8 | 8 | 10 - - - -
4.70 760 | O |34 | 78 | 10 1 - - - -
4.75 1100 | 0 | 33| 8 | 8 7 - - - -
4.80 120 | 0 | 34| 8 10 | 83 - - - -
4.85 400 | 0 [ 33 ] 9 6 84 - - - -
4.90 430 | 0 [ 33| 9 7 | 84 - - - -
4.95 160 | 62|34 | 87 | 7 7 21 100 0 0
5.00 40 (64 33| 7 | 87| 6 21 0 100 0
5.00" 92 |60 (34| 7 5 87 20 ~ 0 ~0 99.003
5.05 46 |63 34| 5 | 88 7 21 0 100 0
5.10 73 |67 34|89 | 4 7 23 100 0 0
5.15 73 |69 33| 6 | 88 6 22 0 100 0
5.20 210 | 65 | 33| 5 | 88 6 21 0 100 0
5.25 16 | 7413390 | 5 5 25 100 0 0
5.30 18 | 72134 6 6 88 24 0 0 100
5.35 36 |75 (34| 4 | 91 5 25 0 100 0
5.40 40 |77 1341 93| 3 3 26 100 0 0
5.45 17 | 75133 | 5 4 |91 25 0 0 100

“7: Antivoter stopped unsuccessfully. More than 9 x 107 iterations.
‘-’: Magic subgraph empty.
‘+’: Repeated 9 times until we saw deviations of the colourings restricted to the magic subgraph.

All columns in % except ¢ (average degree, no units) and 7' (hitting time of Antivoter, in units of nlnn).

Table 4.1: The magic subgraph appears to be almost uniquely 3-colourable,
n = 3000. In this experiment the colourings restricted to the magic subgraph
were always identical up to permutation of the colour classes. It took 9
repetitions of the experiment for ¢ = 5.0 to actually see a (slight) deviation,
reported in the extra line of the table. Further explanations see Table 4.3.
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c T | g | r | Rr|Gr|Br|rlus| Rrlus | Grlus | Brlus
4301 50 | 0 | 34| 32| 33| 35 - - - -
4351120 0 | 34| 35| 31 | 33 - - - -
440 | * 0| * | * * * * * * *
445 | * 0| * | * * * * * * *
450 | * 0| * | * * * * * * *
455 | * 0| * | * * * * * * *
460 | * 0| * | * * * * * * *
465 | * 0| * | * * * * * * *
470 | * 0| * | * * * * * * *
4751210 0 (34 ] 9 8 83 - - - -
480370 0 [33] 9 8 83 - - - -
4851890 | 0 | 33| 8 7 7 - - - -
4901400 0 | 33| 7 7 | 8 - - - -
495|520 |61 33| 7 | 8| 6 21 ~( 99.62 ~0
5.00 1240 |63 | 34| 6 | 89 5 21 0 100 0
5.05 1260 | 64|33 8| 5 6 21 100 0 0
510 | 63 |64 | 33| 7 | 87 | 6 21 0 100 0
515 | 110 | 71 | 33| 5 | 91 4 24 ~( 99.95 ~(
520 1160 | 71 |33 ] 90 | 5 6 23 100 0 0
525 51 |73 133 ] 6 | 89 5 24 c c c
530 63 | 74133 ] 5 | 90 5 25 ~( 99.72 ~0
535 | b7 |75 | 34| 4 4 | 92 25 0 0 100
540 | 40 |77 33| 5 4 |91 26 0 0 100
545 | B8 |76 | 33 | 91 5 4 25 100 0 0

“7: Antivoter stopped unsuccessfully. More than 9 x 107 iterations.
‘-’: Magic subgraph empty.

All columns in % except ¢ (average degree, no units) and 7' (hitting time of Antivoter, in units of nlnn).

Table 4.2: The magic subgraph appears to be almost uniquely 3-colourable,
n = 9000. The colourings restricted to the magic subgraph are frequently
identical up to permutations of the colour classes. If not, the deviations are
restricted to a tiny fraction of the nodes. Further explanations see Table 4.3.
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Average degree, no units.
Hitting time of the (first) Antivoter, in multiples of n Inn.
Relative size of the magic subgraph, in %, rounded.
Relative size of the (first) red colour class, in %, rounded.
r Size of the overlap of the new colour class R with the (first)
red class r relative to the size of r, in %, rounded.
G'r, Br analogous.
rlms Relative size of the (first) red colour class
restricted to the magic subgraph, in %, rounded.
Rr|ms]  Size of the overlap of the new colour class R with class g
relative to the size of r|jsg, in %, rounded. Yet
whenever we write 100% in this column, we mean it.
G'r|ms, Brums analogous.

';UﬁQ Pﬂﬁ

Table 4.3: Explanation for the columns in Tables 4.1 and 4.2.

of the ‘new’ colour classes {R, G, B} of the second colouring with the colour
class r of the second colouring, as well as those quantities restricted to the
respective magic subgraph. The data presented in Tables 4.1 and 4.2 (p. 78
and p. 79, respectively) clearly show that those two colourings either coincide
completely or occasionally differ in only a tiny fraction of the nodes, up
to globally relabelling the colour classes. They are rather self-explanatory,
Table 4.3 contains information on the columns in Tables 4.1 and 4.2.

We shall discuss observations concerning those counterexamples in more
detail below.

Structure of Counterexamples

We have randomly generated counterexamples, i.e. magic subgraphs that
are assigned non-equivalent colourings in independent runs of the Antivoter,
and inspected them in detail in an attempt to guess the structure implied
by the fact that there are more than one colourings of the magic subgraph.
However, we did not get very far. All we can say is that two colourings of
a given magic subgraph seem to differ by ‘shifts’ along odd directed cycles,
and on some other nodes that are ‘somehow influenced’ by those cycles, not
unlike the small uni-cyclic connected components before the advent of the
giant component. However striking the empirical evidence, there is a lot to
be done on the theoretical side.
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The situation reminds us of Section 7 in [Mol01] where a giant ‘bi-linked
collection” B, somewhat similar to the magic subgraph, is conjectured to
contain a uniquely colourable subgraph B’ with |B'| = |B| — o(n).

In Figures 4.6, 4.7, 4.8 (pages 81, 82, 83, respectively) we show various
layouts of a specific magic subgraph found in a graph on n = 60 nodes

which has more than one colouring. This specific example resembles the
counterexample in Figure 4.3.
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Figure 4.6: Example magic subgraph (see text), Layout I. Note that the
‘built-in’ in colouring is reproduced on all but 3 nodes.

4.3.3 Miscellaneous Observations

We shall state various observations that we have made performing our sim-
ulations.

e Apparently the hitting time of the Antivoter depends on the ‘temper-
ature’ T (for fixed (n,c) in a nice, ‘concave’ way), whereas Petford and
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Figure 4.7: Example magic subgraph (see text), Layout II. The ‘wrongly-
coloured’ node lie on a directed triangle, like in the counterexample given in

Figure 4.3.

Welsh in [PW89] merely reported that the precise value of ‘tempera-
ture’ does not affect the ‘critical slowing down’, qualitatively. We have
not checked whether there is a ‘universal’ optimal choice 1" or whether
the optimal 7" should depend on ¢, possibly even on n, but have merely
hand-tuned this parameter to obtain reasonable running times.

e We have not thoroughly studied the case & > 3. Some simulations
made for k& = 4 suggest that the situation looks very similar to the case

k = 3, apart from different numerical values, obviously.

e When looking at the data in Tables 4.1 and 4.2 for c-values just before
the appearance of the magic subgraph two observations jump to mind.
Firstly, the worst case running times of the Antivoter appear to occur
in this regime. Secondly, the colourings seem to be ‘correlated’, even
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Figure 4.8: Example magic subgraph (see text), Layout III. The neighbour-
hood of the ‘wrongly-coloured triangle’ (top right corner).

though there is no magic subgraph present yet. We shall present some
ideas concerning this below.

e We have not included plots for the appearance of the extended 3-core
nor of the ‘classical’ 3-core, as they look exactly the same as the plots
in Figure 4.5, apart from the fact that numerical values are different,
obviously. Note that we can fully analyse the appearance of the ‘clas-
sical” 3-core but - at the time being - not the appearance of the closely
related extended 3-core nor of the magic subgraph. The fact that in
all cases the empirical sizes, even for finite, moderately large values
of n, so closely follow the Branching Tree Connection suggests that
generalising the proof for the ‘classical’ 3-core should be possible.

e Unsurprisingly in the light of the Branching Tree Connection, i.e. from
a ‘local’ perspective, both the appearance of the 3-core appears at a
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critical average degree ¢ = 3.35(...) in the tripartite model, too.

Moreover, we have implemented the list-colouring algorithm of Achliop-
tas and Molloy (see Section 2.5.1). Both in the tripartite and in the
non-tripartite model it seems to fail only when ¢ > 3.85(...) and the
performance is completely comparable for both models.

e We have also investigated, and observed, the appearance of a giant

magic subgraph with respect to a random i.i.d.-colouring, this scenario
is discussed separately in Section 7.4.1.

0.8+

0.6

0.4+

0.2+

Figure 4.9: Plots of ¢ — ¢g(c) and ¢ — qi5(c) as well as ¢ — goo(c).

We conclude with an informal discussion of the aforementioned ‘correla-
tions’ between independent colourings for slightly sub-critical values of ¢ and
the fact that the Antivoter appears to diverge just before a magic subgraph
has appeared.

Idea I: One may conjecture that another (possibly uniquely colourable)
subgraph appears before the magic subgraph. ‘Correlations’ between colour-
ings may appear somehow ‘blurred” when we do not restrict ourselves to the
new subgraph but to the total graph, just as can be observed in the super-
critical case (columns 5, 6 and 7 in Tables 4.1 and 4.2). The reader might
also like to consult our observations laid out in Section 7.4.1 on p. 148.
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Idea II: In Figure 4.9 we have plotted ¢ — ¢s(c) and ¢ — ¢i6(c) com-
pared to ¢ — ¢x(c). Even though ¢.(c) converges to ¢.(c) (w.r.t. r) this
convergence is by no means uniform. The plots show that there will be
many coloured r-owners, for moderately small constant values of r, even for
c-values way below 4.91(...). Now the intuition for being an r-owner is that
not even a ‘clever’ backtracking algorithm restricted to the interior of the
r-neighbourhood v may find a colouring such that the root v has a different
colour than before. This will even more apply to the Antivoter which is
essentially ‘greedy with a random backtracking facility’, intuitively. Thus it
may already be hard for the Antivoter to colour the set of r-owners (for mod-
erately small constant values of r), which has size 6(n) even for sub-critical
values of ¢. Note that the diameter of ‘our’ random graphs is ~ logn and
it seems hard to discern ‘global’ owners from, say, 10-owners for moderately
sized n, anyway. In the light of what we have just said it is even more sur-
prising that the relative sizes of magic subgraphs found by the edge-deletion
process follow ¢ (c) so closely, as illustrated above.
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Chapter 5

Relating Branching Trees and
Random Graphs

Both the empirical results and the fact that sparse random graphs locally
resemble branching trees suggest that there should be a rigorous proof em-
ploying the ideas behind the Branching Tree Connection, both for the sudden
appearance of the k-core and the magic subgraph. As described in Sec-
tion 2.4.3 Goerdt and Molloy were the first to achieve this goal by proving
the appearance of the k-core in random faulty configurations. One essential
ingredient, of their proof is predicting the degree sequence of the subgraph
induced by the set we called r-owners with reasonable accuracy.

This part of Goerdt and Molloy’s proof does not readily extend to G, ,
and G, ,», mainly because both the sizes of BF'S-balls and their mutual over-
laps are not deterministically bounded. Sufficient concentration of the degree
sequence of the set of r-owners follows from an application of Chebychev’s
inequality only in the degree bounded model of faulty configurations. In G, ,
when considering sums of indicator variables (indexed by nodes) depend-
ing on the respective the r-neighbourhoods, none of the standard concen-
tration tools seems to directly apply. We have developed a concentration
tool for semi-local functions of random graphs, implying a corresponding
concentration result in the G, , models. A second but less critical point is
that r-neighbourhoods in random faulty configurations are Bi(d, p, -) branch-
ing trees, conditional on the r-neighbourhood in the underlying d-regular
graph being a tree. In G, ./, the r-neighbourhoods are merely similar to Po,-
branching trees but corrections have to be taken into account for finite n.

Combining our results with the proof strategy of Goerdt and Molloy,
together with our observation that uniform distribution conditional on the
degree sequence remains invariant also for graphs, will finally yield a new
proof for the appearance of the k-core in the G, ,, model, see Chapter 6.
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5.1 Ownership and Concentration of Semi-
Local Functions

In this section we will show that quantities like the number of r(n)-owners
are sharply concentrated around their means, always considering the G, ./,
model. For regular faulty configurations it is possible to show reasonable
concentration using Chebychev’s inequality, see Goerdt/Molloy [GMO00], but
as explained above this does not work in G, ¢/p.

We first state some rather trivial facts concerning the r-neighbourhoods.
When r = 7(n), we define A\(n) := (logn)> ™, a rather crude upper bound
on the size of the r(n)-neighbourhoods.

Proposition 5.1.1 For sufficiently large n, the mazimum degree of a graph
G € Guem is greater than (logn)? with a probability which is subpolyno-
mially small in n, say exp(—(logn)?). Thus, when r = r(n) there exist
r-neighbourhoods containing more than A(n) = (logn)>™ nodes, with sub-
polynomially probability exp(—(logn)?), only.

Proof The degree of any node is a Bi(n,c¢/n) random variable which is
greater than (logn)? with probability at most

log(n)*

—1/2.
(=12 T R e
by Chernoff. Note that the negative exponent is ~ 3/2 - (logn)?. Since
there are only n ‘bad events’ with all but subpolynomially small probability
bounded by exp(—(logn)?) the maximum degree of the graph is (logn)%. O

Remark 5.1.2 When some function like exp(—(logn)?) is subpolynomially
small, it goes to zero even when multiplied by a constant number of arbitrary
(fized degree) polynomials in n.

Instead of having used Chernoff Bounds in the proof of Proposition 5.1.1
we could have calculated the tail probability more explicitly, using Stirling’s
formula, yielding essentially the same result. However, re-inspecting the proof
of the Chernoff bounds yields that any upper bound on the tail of the Po,-
distribution is automatically an upper bound for the tail of the ‘corresponding’
Bi(n, ¢/n)-distribution.

Corollary 5.1.3 A node contains a cycle in its r(n)-neighbourhood with
probability O(A(n)?/n).
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Proof Because of Proposition 5.1.1 there are at most (A(Q")) < A(n)? po-
tential cross edges available. The probability that at least one cross edge is
switched on is therefore less than 1 — (1 — ¢/n)*™°/2, For sufficiently large

n this is at most 1 — exp(—cA(n)?/n) < cA(n)?/n. O

As explained on p. 14 we shall order the (72‘) ‘random bits’ standing for the
potential edges being switched on or off into n ‘groups’ Xi,...,X,. The X;
describe outcome of the random bits for all potential edges connecting node
i with the nodes [i — 1] discovered ‘so far’ in the course of vertex exposure.
Each function of G will depend on the variables X1, ..., X, just as required
in the conditions of the Simple Concentration Bound, see p. 18.

We consider functions of G of the form f(G) = 3" .\ Z{", where the

7" are 0/1 random variables depending only on the r-neighbourhood of the
respective node v. Such an f will be called r-semi-local.

Definition 5.1.4 Let f = f(G) be a sum of indicator variables, labelled by
the nodes v of a graph G:

F(G) =)z,

veEV

If all the indicator-variables 7" can be decided upon knowledge of the r-
neighbourhood of v in G, we call f r-semi-local.

Intuitively speaking the number f(G) is the sum of ‘nearly independent’
0/1 random variables and may therefore be expected to be sharply concen-
trated. The Zq(,r) are ‘nearly independent’, because for each v all w’s outside
the 2r-neighbourhood around v will have disjoint proofs for A being zero
or one. Since with high probability all r(n)-neighbourhoods are small, that
is (log )M each Z{" is therefore ‘independent’ of all but (log n)AM ()
of the Zg )’s. Yet this does not imply the existence of a suitable dependency
graph, since we do not know for sure how many of the Zg)’s are indepen-
dent of Z" in advance. Further note that the Z\"’s are slightly positively
correlated if the events ‘Zy) = 1’ are edge monotonous.

We aim at applying the Simple Concentration Bound (Fact 4). As men-
tioned above, in our case the X; will be the respective random bits for all
potential edges connecting node i to [i — 1], and f(X) is simply f(G), G
being encoded by the X;.

The crucial point is that f(X) would be concentrated, if f satisfied a
Lipschitz condition with reasonably small Lipschitz-constant. But this is true
only for most graphs (w.r.t. the G, ./, model), ruling out a straightforward
application of the Simple Concentration Bound.
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As an example let (the semi-local function) f be the number of all nodes
with degree greater 0 and consider the (very unlikely) case that G is a star,
centred at node number n. Then ‘flipping’ the last coordinate X,, will change
the value of f by n, in the worst case, and a Lipschitz constant of n does not
yield concentration. Admittedly, we know that with very high probability
the maximum degree is (logn)? and conditional on that event flipping any
coordinate X; could alter the value of f by at most that value. Note that
conditioning on the ‘typical’ maximum degree would not help, since then the
coordinates would no longer be independent, and the Simple Concentration
Bound would not apply.

Yet we can prove the following ‘Semi-Local Lemma.’

Lemma 5.1.5 (Semi-Local Lemma) Suppose f is r(n)-semi-local, for some
r(n) < a(c)loglogn. Then the random variable f(G) lies outside

[E[f(G)] = n'/>* E[f(G)] + n'/**]
with probability subpolynomially small in n, say exp(—(logn)?).

Proof

We consider the random variables Y;, the X, conditional on the event B,
that no vertex has no more than (logn)? neighbours in the graph discovered
so far, when ‘glued’ to the graph in the course of vertex exposure. Note that
By is a product event and the Y; are still independent, since we can tell for
each X; separately, whether more than (logn)? bits are switched on. (If we
had conditioned on some bound on the total vertex degree we would have
lost independence of the X;!)

In order to achieve a Lipschitz condition we define f to be the number of
owners in an appropriately truncated graph, i.e. f = foT . A given graph
G = (x1,...,1,) gets truncated by the following procedure defining 7.

For each node v in G with degree greater than (logn)? consider all ad-
jacent edges {v,w;}, {v,ws},... in increasing order of the labels of the w;.
Mark all but the first (logn)? edges for deletion (but do not delete them yet).
The remainder graph T'(G) consists of the edges that were not marked for
deletion and has maximum degree (logn)? by construction.

What is the Lipschitz constant of f? We consider two graphs G and G’
differing only in the k-th component. I.e. when partitioning the edges in
E\,E,...,E, and E|,E,, ..., E only E}, # E,. By our condition By the
symmetric difference between E(G) and E(G') will contain at most 2(logn)?
edges. We will show that T(G) and T(G") differ only by 6(logn)? edges.

First of all introduce a sequence of intermediate graphs

GU - G, Gl, .. .Gk,Gk+1, Gk+k’ - GI
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where k, k' < (logn)?, first switching off all edges in Ej and then switching
on all edges in Fj, one after the other. Two consecutive graphs G; and G,
will differ in exactly one edge e; = {u,v}. For convenience we assume that
e ¢ E(G;) but e € E(G;41), but the argument is obviously symmetric.

If two graphs G; and G;,; differ only by a single edge, by how many
edges will T'(G;) and T(G;41) differ in the worst case? After inserting edge e,
node u may have degree > (logn)?+1 (in G;;,!) and either e or some other
edge adjacent to u may be removed by 7. The same holds true for the other
endpoint v of e. Thus in the worst case the symmetric difference is 3, that
is the case when both u and v lose an edge other than e upon truncation (in
Gi+1!). This worst case is illustrated in Figure 5.1.

®

Figure 5.1: The worst case effect of presence or absence of edge e on the
truncated versions T'(G;) and T(G;41) of two graphs G; and G, differing
only in a single edge e. The right hand picture shows the (logn)? neighbours
with minimum label of the endpoints of e in ;. If e is switched on, only
the dotted edges (if at all present) may possibly now be marked for deletion
by the truncation operation. Conversely, if e is switched off, only (possibly)
the dotted edges will no longer be marked for deletion. Thus the symmetric
difference |T'(G;) @ T(G;41)| is at most 3.

We thus know that the symmetric difference between T'(G) and T(G') is
at most 6(logn)%. Changing one of these edges e = {u,v} may affect the
status of ownership only for nodes lying in the r-neighbourhood of e which is
contained in the (r+1)-neighbourhood of any one of the respective endpoints.

This is illustrated in Figure 5.2.
Therefore the Lipschitz constant is bounded,

F(G) = F(G")| < 6(logn)?(logn) el oglosm),
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r+1

Figure 5.2: The r-fattening of edge e is contained in the (r+1)-neighbourhood
of node v. Flipping e may affect r-ownership only for nodes in the r-fattening
of e.

Putting things together we get the subpolynomially small tail bound
P(|Fx)—E[f(X)]| = n*21B,

oInlte
n(6(10g n)2 (lOg n)2(1+a(c) log log n))2 )

< 2exp(— (5.1)

from the simple concentration bound for f(X) Note that € has been replaced
by £/2 in this bound on f(X) for reasons which will become obvious below.

It remains to show that this bound yields also a bound for f(X), as stated
in the assertion.

All probabilities above were conditional on By. We want to use the good
event B; ‘no vertex has total degree greater than (logn)?. Note that B
implies By and that P[B; N By] is subpolynomially small by Proposition 5.1.1.

Let us briefly summarise the remainder of the proof in simple words. We
have two functions f and f that coincide on the event B; which occurs with
very high probability. In the subpolynomially rare event B; they may differ,
but they can differ by no more than n, in the worst case. Therefore it should
be intuitively clear that f is concentrated around the same value as f .

The distribution of f(X) can be decomposed into

Lix) =P [Bi] Lixys +P BN Bo] Lixypnp, =P [Bi] p+P [BiN By o,
and the distribution of f(X) into
[B1

Lix) =P [Bi] Lyxys, +P [Bi N Bo] Lyxysins, =P [Bi] p+P[BiN Byl d.
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By construction of f the first two terms already denoted by the same letter

‘' are identical. . )
Therefore E[f(X)] and E[f (X)] differ by at most 2nP[B; N By], because

‘]E [f(X) - f(X)] ‘ =P [B, N By Zx : ‘5(90) - S(x)‘ < 2P [By N By) .
z=0
This is subpolynomially small by Proposition 5.1.1, and because E[f(X)] and
E[f (X)] differ so little the desired event
[P\ [E[f(X)] = 02, E[f(X)] + n'/?*]
is contained in
]\ [E [ F(X)] —nt/22 B[ f(X)] +nl/2r2,

for n large enough. Therefore bounding the probability of f(X) hitting the
second event will suffice. Note that

implies a subpolynomially small difference exp(—(logn)?), because of Propo-
sition 5.1.1) in variation norm* between the distributions of f(X) and f(X),
and thus it is equivalent to bound the probability of f (X) hitting the second
event instead, up to a subpolynomially small error. The latter probability is
bounded by Inequality (5.1) above. This completes the proof. 0

5.2 Appearance of ‘Almost the £-Core’

We start with a remark on notation.

Remark 5.2.1 Intuitively, the effect of small perturbations (in the inputs)
on the outcome of analytic functions is small. We will write

a=>b=x0,
whenever a is contained in the interval [b — §,b+ 6]. The notation

flatd) =fla) £y
*See our Remark 5.3.4, p. 105.
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means that whenever x is in [a — §,a + 6], f(z) is in [f(a) — 7, f(a) + 7].
Note that whenever the derivative f' is uniformly bounded by some constant
C we may choose v to be C' -6, by Taylor’s Theorem.

In the applications below, both the values a,b,... and the perturbations
v, 0, ... will be functions of n.

Remember Definition 2.3.7 (p. 31) of the various concepts of ownership,
and that we may decide r-ownership upon knowing the r-neighbourhood.
Thus the number of r(n)-owners is always r(n)-semi-local and, provided that
r(n) < a(c)loglogn, the Semi-Local Lemma 5.1.5 applies.

Both in the graph and the branching tree v is an r-binary owner, if at
least two of its children are (r — 1)-binary-owners in G'\ v. When considering
branching trees we used the fact that the respective subtrees induced by
the children of a node v were independent copies of the original branching
trees. Moreover, using this independence we were able to calculate various
probabilities such as of v being an r-Cayley owner, being a run, and the
conditional number of children of v that were themselves r—binary owners.

Apart from the fact that Poisson progeny distributions should be replaced
by binomial progeny distributions, which is more of a technical issue, the only
reason that prevents us from computing the aforementioned probabilities by
the same set of arguments in the random graph is lack of independence.
However, the Semi-Local Lemma 5.1.5 allows us to calculate those probabil-
ities in the random graph by essentially (up to negligible errors) the same
calculations as we did in branching trees.

The following Lemma 5.2.2 shows why.

Lemma 5.2.2 Assume that c is contained in some interval C' not containing
3.35.... Take a ‘test particle’ v that is connected to each node of a ‘remainder
graph’ G onn'(n) := n—XAo(n) nodes, independently with probability c¢/(n—1).
Suppose that there is some ‘marked’ subset Vy of the nodes of G containing

Vol < bn'(n) £ 6(n)
nodes.
Here 0 < Xo(n) < Ag(n) = o(n), and 0 < 6(n) <
further assume that A\o(n) < 6(n), and that A( ) =o(n )
Then for sufficiently large n (depending on Ag(n) and A(n)),

a) v is adjacent to at least two marked nodes with probability

fa(e,b) £ To(C)A(n)/n,
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b) v is adjacent to at least three marked nodes with probability

f3(e,b) £ T3(C)A(n)/n,

¢) conditional on v being adjacent to at least two marked nodes, v is ad-
jacent to exactly two marked nodes with probability

Poe|>2(2) £ To(C)A(n)/n,

where To(C), T1(C) and To(C') are constants depending only on C.

Note that the internal structure of G is irrelevant. All randomness involved
stems from the n'(n) independent random bits connecting the ‘test particle’
to G.

Before we will prove this intuitively rather obvious lemma, we will quan-
tify the intuition that it ‘does not matter asymptotically’ whether we use
Po_. or Bi(...) in the ‘sandwiching’ Proposition 5.2.3 below.

Proposition 5.2.3 For all £(n) = w(1/n) and n sufficiently large
P [Po._¢m) > 2] <P[Bi(n,c¢/n) > 2] <P [Pocigm) > 2],

P [Poc—¢(ny > 3] < P[Bi(n,¢/n) > 3] <P [Pociem) > 3] -
P0c+§(n)|22(2) < Bi(n, C/”)|22(2) < Pchg(n)|22(2)-

Furthermore ¢ may even depend slightly on n, as long as ¢(n) converges to
some c¢g.

Proof By definition

P [Bi(n,c/n) > 2] :==1— (1 —¢/n)" — (1 —¢/n)""
PPo,>2]:=1—e “—ce ©
P [Bi(n,c/n) >3] :=1— (1 —c¢/n)" —c(1 —c¢/n)""

02

S =)= efny?
P[Po.>3]:=1—e“—ce ®—c?/2e°
?/2e ¢

POC|22(2) =

1—e¢—ce¢
?/2(1 —1/n)(1 — ¢/n)"2

Biln, e/m)l>2(2) = T — ot — o /myr 1
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In view of these formulas it suffices to show that

(I —¢/n)"

e~ (=9 % (1—c/n)" 2> (1—c¢/n)"!

(1=1/n)(1 = ¢/n)"2

and

(1 - e/n)"

e O (1 1/m)(1—c/m)" <d  (1—¢/n)n!

(1=1/n)(1 = ¢/n)""2

Inequalities a) and b) can be shown to be true by straightforward calcu-
lations using the well known estimates exp(—z) > 1 —x and exp(—z —2?) <
1 —z, the latter holding true for sufficiently small x. Note that in both cases
below it is important that £(n) = w(1/n).

Inequality a) follows from

e = (e7¢/™")"ef > (1 — ¢/n)"2e8(1 — ¢/n)?
> (1 _ C/n)n—Q e§—2c/n—202/n2 > (1 _ C/,n)n—2,
N———

—00, for £(n) = w(1/n)

for n sufficiently large.
Inequality b) follows from

670(1«}*&) — (efc/nfc2/n271/n271/n3+c2/n2+1/n2+1/n375/71‘)774

— 671/77,71/77,2 (efc/nfc2/n2)n (602/n2+1/n2+1/n37§/n)n

(N S
v~

—0, for £(n) = w(1/n)

< (1=1/n)(1 —=¢/n)",

for n sufficiently large.
Re-inspecting the proof yields that it does not matter if ¢ depends on n,
as long as ¢(n) converges. O

Proof (Of Lemma 5.2.2.) The following calculations hold for sufficiently
large n. It would be difficult to explicitly specify just how large n should be,
but we will be content with the fact that it could be determined in principle.
Note that the answer will depend on the behaviour of A\¢(n) and d(n), and it
is clear that the worst case is determined by Ag(n) and A(n).
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Ad a): We use Proposition 5.2.3.

P[At least two marked children]
<P Bi(n'(n), (bn (n) + 6(”)) ) C/(TL — 1)) > 9

n'(n) -
<P [Pogu e/ (n1)tem) > 2]
g;:
]P) [Pocb+2c5 -1) > 2]
—fz(C b+ 26(n )/(n - 1))
<fa(c,0) + To(C)o(n)/n,

where T5(C') is some universal constant depending only on ¢. Up to

constants it is the maximum of @fQ(c, x). The last inequality is a
. . . BI

straightforward application of Taylor’s Theorem.

By an essentially symmetrical argument we get the lower bound as
follows.
P [At least two marked children]

>P Bi(n'(n), (bnl(n) — 6(”)) ) C/(TL — 1)) > 9

n'(n) N

PObn () d(n))-e/(n-1) () = 2]

&= (/\0+5
P POy c(as(n))/(n—1) > 2]

>P |
[
=fa(c,b+ (46(n))/(n — 1))
> fa(c,b) + To(C)d(n)/n,

remembering that \g < 9.
Ad b): Completely analogous to a).
Ad ¢): Very similar to a). We use again Proposition 5.2.3.

P[Exactly two | at least two marked children]
, bn'(n) —d(n))-¢/(n—1
<Bi(/(n), A= D )
<SP0 (n)-5(m)) e/ (n-1)-(m) [ >2(2)

&:=c(Ao+d)/n
< Poacpom+im)/n-1)>2(2)

=POoc(s+ (o (m)+5(m)/(n—1)) [>2(2)
<Poe|>2(2) + To(C)d(n) /n,
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where Ty(C') is again some universal constant depending only on ¢, up
to constants it is the largest value of 2Po.,(2)/f2(c,z). Remember
that )\0 <.

Again the lower bound follows from an essentially symmetric argument.

O

Corollary 5.2.4 (Of Proposition 3.1.1.) For any r and any fived ¢y #
3.35... the function ¢ — q.(c) is analytic and strictly increasing in ¢, and its
derivative is uniformly (in ) bounded by T(C) in some interval C containing
co but not 3.35. .., depending only on the choice of the interval C.

Proof By its definition as the r-fold application to 1 of the monotonous and
entire analytic function fy(c,-), ¢ — ¢,-(c) is monotonous and entire analytic.
We will show that <, (c) is uniformly (in ) bounded in some neighbour-
hood C' of ¢.
For the super-critical case we proceed as follows. Note that %qo(c) =0.
Now, aiming at a recursively defined upper bound,

d 0 0 d
%QT(C) = &f?(ca gr—1(c)) + G_fo(C’ Qr—1(0))%%«—1(0)

= 42 (€)1 (0)) xp (o1 (6)) + Hr — 1,6) 1)
<l/e+ tN(r — l,c)%qr_l(c).

We know from Proposition 3.1.1 that #(r — 1, ¢) is always less than #(c) < 1.
Thus the above indeed establishes a recursive equation for an upper bound
on g, (c) which is solved by

= exp(=1)(1 = #(¢)")/(1 = #(c)).

This converges from below to some continuous function in ¢ and therefore
4 g, (c) is uniformly bounded on some interval C' by some constant T(0).
In the sub-critical case ¢.(c) converges to 0. After some number of steps
A(C), depending only on the right boundary of the interval C, for all ¢ € C,
¢r(c) will have reached a value where f5(c, -) has derivative less than one, for
all ¢ € C. From that point on we may argue as above. For the (w.r.t. r) con-
stant number of functions qi, ..., ga(c) there will be some separate bounds as
their derivatives are continuous on the compact set C'. Thus we may choose
T(C) to be the maximum of those A(C) 4 1 bounds. O
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Lemma 5.2.5 Remember that r(n) := a(c)loglogn and assume that p <
r(n). In a G c/m—1) graph when ¢ # 3.35... the number of p-binary owners
is sharply concentrated around n - q,(c). More precisely, it is not equal to

¢(c)n £ (4T (C))Pnt/?*=

with probability subpolynomially small in n, say exp(—(logn)?). Here C is
some interval containing ¢ but not 3.35. .., and T(C') > max{1,1/c} is larger
than the mazimum of 2 fo(c,z) on C x [0,1].

Before presenting a proof we will show that the statement of Lemma 5.2.5
is actually more general than it seems.

Corollary 5.2.6 Suppose that 0 < n—n' = \g(n) = o(n). The statement of
Lemma 5.2.5 implies that the number of p-binary owners in Gy o/(n—1) 18 not
equal to

n'q,(c) £ (n'eT(C) M) | (4T(C))Pn!/?+)

n—1

with probability subpolynomially small in n, say exp(—(log n)?). The constant
T(C) stems from Corollary 5.2.4, and n needs to be sufficiently large.

Proof (Of Corollary 5.2.6.) For fixed p the statement of Lemma 5.2.5
above for G, ./(n—1) replaced by G,/ /(1) reads that the number of p-binary
owners in G, /-1y lies outside

o)’ + (AT () (') 12 gy’ — (4T(C))P ()17,

with probability subpolynomially small in n’. Now G, /1) is nothing but
Gt c/(n—1), setting ¢’ = (1 — Ag(n)/(n —1)).

We have seen in Corollary 5.2.4 that ¢ — ¢,(c) is analytic and its deriva-
tive on an appropriately chosen interval C' containing ¢ but not 3.35... is
uniformly bounded by some constant T(C). For sufficiently large n, ¢ will
be contained in C'. Therefore by Taylor’s Theorem ¢(¢’) deviates from g(c)
by less than ¢T'(C)\o(n)/n.

Finally observe that n’ ~ n and thus the probability is subpolynomially
small in n, too. O

Proof (Of Lemma 5.2.5.) Denote the probability that a node is a p-binary
owner in G, ./(n—1) by G-

The basic idea is that concentration of the number of (p—1)-binary owners
enables us to calculate the probability that a node is a p-binary owner to be
close to the value expected in branching trees. Simply ‘glue’ a ‘test particle’
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to the graph, and see whether it is adjacent to at least two (p — 1)-binary
owners. This gets us the expected number of p-binary owners. Provided
that p is still sufficiently small, the number of p-binary owners is again a
semi-local function and we may apply Lemma 5.1.5 proving that it is also
concentrated around what it should be. We will now turn this idea into an
inductive proof over p = 0,...,7(n) = a(c) loglogn.
p = 0: There are n = ngy(c) 0-binary owners.
p— 1~ p: We assume for the induction step that the statement is true for
p — 1 choosing n’' :=n — 1. We consider (without loss of generality) the last
node v, and the remainder graph G \ v, being an Gn—1,c/(n—1) Tandom graph.
Each of the potential n — 1 edges connecting v, to G'\ v, is switched on i.i.d.
with probability ¢/(n —1). Node v, is a p-binary owner in G, ./(»—1) if and
only if it is connected to at least two (p — 1)-binary owners in G \ v,, i.e. in
Gn—1,c/(n—1)- We thus may apply an argument as in Lemma 5.2.2, where the
marked set is the set of (p — 1)-binary owners in G \ v,,.

Now we calculate the probability ¢, conditional on G'\ v, having the right
number of owners.

4(c) — 3/c- T(C)(4T(C))* ">+ /n
< fole, gpr(€) = B/ (4T(C))P~' 01> /n)
=P [PO (C))p71n1/2+€/n Z 2

[Bi(

%]P’ Bi(n — 1,¢cq, 1(c)/(n — 1) — 2 (4T(C))* 'n'/?*¢ /(n — 1)) > 2]

1)%—1(0) (n—1) — T (C) — (4T(C))P'nl/2+e
n—1

Bi(n — 1,¢/(n ) =2

e Inequality a) follows from Taylor’s Theorem, using the fact that 0 <
a%fg(c, z) <T(C).

e Inequality b) follows from Proposition 5.2.3 .

e Inequality c) follows from the assumption using Corollary 5.2.6 for (p—
1) and M\g(n) =1

For the last argument it is crucial that the number of p — 1 owners is at least

p1(c)(n=1) = (n - 1)CT(0)w/(n —1) = (4T(C))r'nt/2+



and at most

Go-1(c)(n—1)+ (n — l)cT(C)A&@/(n — 1) + (4T(C))P~ /2,

Symmetrically,

dp(c)

<P |Bi(n —1,¢/(n — 1)%—1(6) (n— 1) + cT(C) + (4T (C))P~'n'/2+=

<P [Bi(n — 1,cg,1(c)/(n — 1) + 2 - (4T(C))"'n'**(n — 1)%) > 2]

) >2

n—1

<P | Pocy, _,(c)+3-(ar(c))p-1n1/z4e fn = 2

=fale, gy 1(c) + /e~ (AT(C))* 0!/ /n)
<0,(€) +3/c- T(C)AT(C))" n! /24 /.

The condition fails to be true with probability only subpolynomially small
in n. If it does, the probability of being a p-binary owner may be anything
(in [0, 1], obviously) but this yields only a subpolynomially small correction.

Now we may apply Lemma 5.1.5. The expected number of p-binary own-
ers is now ‘blurred’ by another additive term n'/?*%, except for some sub-
polynomially small probability, and thus in the worst case

go(c)n — 4+ (4T(C))""'n'*** < Gooi()n < gylc)n +4- (4T(C))"~ ' /2He.
with probability one minus some subpolynomially small correction. 0

Together with Lemma 5.2.2 this implies that the numbers of owners and
runs are concentrated around the values expected from Po.-branching trees.

Lemma 5.2.7 Let G € Gy_xon)c/(n—1), Where Ao(n) = O(n'/?), n' := n —
Xo(n). Then the numbers of the various kinds of owners are concentrated
around the values expected from the branching trees with an error less than
some n'/?te"

Assume again that 0 < p < r(n) With probability one minus some sub-

polynomially small error, say exp(—(logn)?) ...

. the number of p—binary owners s

nlqp (C) + TLI/2+E, ’
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. the number of (r(n) — 1)-binary owners is

n'q(c)%,n'?t

. the number of p—Cayley owners is

nIQp (C) + pl/2He )

. the number of r(n)-Cayley owners is

n'p(c) £ />

. the number of r(n)-binary owners that are adjacent to exactly two bi-

nary owners is
! —1/2+4¢'
n Poch(TL) |22(2) :l: n / ) ¢

Finally, the number of runs is

O(n/(logn)* M),

almost surely.

Proof We can obviously overestimate errors of the form K7("n=1/2+¢ by
the more expressive form n~='/2*¢'. In all cases below we will select such an
¢" and take the maximum of these as the referent of the lemma.

Lemma 5.2.5 and Corollary 5.2.6 directly imply the first part for p-
binary owners, where 0 < p < r(n).

The second statement follows from Lemma 3.1.2 on branching trees.

For r(n)-Cayley owners we apply Lemma 5.2.2, where the marked set
are the (r — 1)-binary owners. Another application of Lemma 5.1.5
yields concentration of the r—Cayley owners around n'p,.) and the
third statement.

The fourth statement follows again from Lemma 3.1.2.

For the fifth statement we know, using Lemma 5.2.2 once more the
marked set being the r—binary owners in the remainder graph, that an
r—binary owner is adjacent to exactly two binary owners with proba-
bility

[POcq,[>2(2) — To(cyn " /#+", Pocg, ) 1>2(2) + To(c)n V%],

Applying Lemma 5.1.5 yields the desired result.
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For runs, we may again argue as in Lemma 3.1.3. The (r —1)-binary own-
ers that are not r-binary owners are sharply concentrated around O(t(c)"™),
whereas there are O(n) (r — 1)-binary owners. Being an r-Cayley owner, the
node v is adjacent to at least three (r — 1)-binary owners in G \ v. Select
three arbitrary children. The probability that at least one of those children
is a ‘pure’ (r — 1)-binary owner is in O(#(c)"(n)), and by Markov’s inequal-
ity the total number of runs is less than logn - O(#(¢)"(n)) with probability
O(1/logn). O

5.3 Degree Sequence of the r-Cayley-Owners,
Gnp VS. G

We have by now already ‘translated’ the branching tree results to random
graphs. The set of owners induces a subgraph of the random graph, obviously
very closely related to the k-core, and the proof of its sudden appearance is
based on rigorously translating the branching tree ideas to random graphs.
However the set of owners is not a subgraph of minimal degree k, since
there are runs. Considering the gambler’s ruin argument in the branching
tree world it is intuitively clear that those runs do not matter a lot, but
proving this requires further analysis. Following the strategy of Goerdt and
Molloy we will later show that (essentially) the set of r-owners is distributed
uniformly conditional on its degree sequence. Given this and knowing the
degree sequence reasonably accurately the gambler’s ruin argument can be
made rigorous. However, this will only work in the G, ,,, model.

We finish this chapter by calculating the degree sequence of the graph
induced by the set of owners fairly accurately and translating those re-
sults to the G, model. Also, the number of nodes with a non-tree-like
r-neighbourhood is small in the G, ,, model, too. We shall make use of the
‘translation tools’ Fact 1 and Fact 2 (see Section 2.1.1).

In view of Lemma 5.2.2 the degree-sequence of the set of r-owners should
be pretty close to what we expect it to be from the Branching Tree Connec-
tion, heuristically, that is close to

n - Pog,(7) >3
d” =20 0<i<3 (5.2)
n-PPog <3| i=0

In order to facilitate the translation from G, , to G, ,,, we are also interested in
the integrated degree sequence, that is {D;};cn,, where D; counts the number
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of nodes having at least degree i. We expect it to be close to
n - P[Po.,(7) > i >3
D ={n—n-PPo,<3] 0<i<3 (5.3)
n 1=20

Observe that knowing the D; within some small margins of errors implies
knowledge of the d; within essentially the same margins of errors, because

di = D; — Diy1.

We shall say that an integrated degree sequence {D;}icn, is e-close to some
‘idealised’ integrated degree sequence {D!};cn, if

D) —e<D; <D} +e,
for all i. Note that D;, D? and ¢ can and will depend on n.
Lemma 5.3.1 Consider any € = £(n). The (sequence of) event(s)
£ =EM = (G € G,|integrated degree sequence of G is e-close to {D?}ien, }
1S convezr.
Proof Take FFC G C H, and assume that F, H € £. Then
D;(F) < Di(G) < Di(H),

because any node that is adjacent to ¢ r-owners in some graph will be adja-
cent to at least ¢ r-owners after adding some edges, i.e. in any super-graph.
But since both D;(F) and D;(H) are contained within [D? — ¢, DY + €], so is
D;(G). O

Lemma 5.3.2 The integrated degree sequence { D; }ien, of the set of r-owners
is e-close to {DP}ien, for some £(n) = O(n/log(n)* M) with probability
approaching one. This holds true in the G, , model and in the corresponding
Gn,m model.

Before proving Lemma 5.3.2 we will provide some little tools.

Proposition 5.3.3 The derivative of fy(c,x) = P[Po., > k| is uniformly

bounded by c, that is
d

0< —
— dx

fule,z) <,

for all k € Ny, xz € R.
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Proof Consider A(k) := max,cr = fr(c,z). Now straightforward curve
discussion yields that %fk(c, x) is maximised at k—;l, and there it takes the
value
(k _ l)kflef(kfl)c
<eg,
(k—1)! -

because (K — 1) 1/(k— 1)1 <322 (k —1)"/il = =1, Thus A(k) < ¢, and
the proof is complete. O

We quote a powerful statement from Janson’s paper [Jan94]:

Fact 11 (Straightforward consequence of Inequality 11 in [Jan94].)

dTV(Bin,c/na Poc) S

Sio

Remark 5.3.4 Remember that the total variation distance dpy(u,v) be-
tween probability measures p and v 1s defined as

dry (4, v) = sup |u(A) = v(A)],
where the sup runs over all possible events. Thus it is a worst case bound.

Proof (of Lemma 5.3.2). We shall only discuss G, ,. Note that the good
event is convex according to Lemma 5.3.1. It is then easy to translate the
result to G, ,, using Fact 1.

We know from Lemma 5.2.5 that the set of » — 1 binary-owners has size
ng=+40(n) and the set of r — 1 binary owners that are not r-binary owners has
size y(n) = O(n/log(n)*@M©) hoth with all but a subpolynomially small
probability. We shall merely make use of the fact that d(n) and y(n) are
some functions in o(n).

We shall first calculate the expected values of the D; by using the ‘test-
particle approach’. Concentration will follow from Lemma 5.1.5. Since we
only have to handle a polynomial number of events (note that all D; are cer-
tainly 0 for ¢ > n!) all the D; will remain within their respective ‘confidence
intervals’ simultaneously, with probability tending to one.

1 > 3: We consider a ‘test particle’ v, connected with n potential edges to the
remainder graph, each edge being switched on with probability ¢/n. We
know that the number of r(!)-binary owners in the remainder graph is
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ng + 6(n) with all but a subpolynomially small probability. Therefore

P[‘v adjacent to > i r-binary-owners’|‘# r-binary-owners is ng + §(n)’]

. cng+4d(n) .
Fact 11 . M
= P [Pocqgasmym 2 ] £ g% 3(n)
/

Proposition:5.3.3, Taylor P [POCq Z Z] + 9% - (S(TL)/R
Now, conditional on the event ‘# r-binary-owners is not ng 4+ d(n)’ the
probability of v being adjacent to at least ¢ r-binary-owners may be
anything, but this event only happens with a subpolynomially small
probability. Therefore

E[D;] = nP[Po., > i] £ 3c- §(n).

Finally, we can use Lemma 5.1.5, to see that ‘D; = nP[Po., > i] +
4¢-0(n)” holds with probability one minus some subpolynomially small
correction.

t < 3: We will only give a rather crude but sufficient argument. It is clear that
only n — D3 nodes have degree less than 3. Those that have degree 1
or 2 are runs, and we know there are only ~(n) of them around. Thus
dy = n — S35 — . Remember that d; = D; — D;,, and that Dy = n.
We this implies that

D1:DO—dOZDgi’Y:’I’LP[POcqZ3]:|:2’}/
DQZDl—d1:D3i3’y.

(We have - realistically - assumed that v is w(d).)

Thus we may choose £(n) = 3v(n). O

Observe that nodes with a treelike r-neighbourhood will survive (r — 1)
steps of shell-wise deletion if and only if they are r-Cayley owners. Since the
expected number of nodes with a non-tree-like r-neighbourhood is (bounded
above by) log(n)? ™ (c.f. Proposition 5.1.3) we have essentially predicted
the outcome of the shell-wise deletion process. Using Markov’s inequality we
know that there are o(n) nodes with a non-tree-like r-neighbourhood, a.a.s.
Using Fact 2 we can easily translate this to G, .
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Proposition 5.3.5 The number of nodes whose r-neighbourhood is not a
tree is less than n'/?>*e, with probability converging to one in the Gn.m model
with average degree c.

Proof The probability that a node has a non-tree-like r-neighbourhood
is log(n)?™ /n by Proposition 5.1.3, in G,,. By Fact 2 this probability
increases by at most a factor of v/m, that is \/¢/2 - n. Now, using Markov’s
inequality for a sum of indicators ) ., X, we get

B> ev X0
P X, >t| < 2=V v
vz < B0
veV
Setting ¢ := n'/?** yields
1/2+¢

P [‘more than n nodes with a non-tree-like r—neighbourhood’]

< log(n)™/e/2 -1 o

- nl/2+e
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Chapter 6

Sudden Appearance of the
k-Core

The result of Goerdt and Molloy concerning the k-core for random faulty
configurations consists of two essential ingredients.

The first is proving the existence of a sub-configuration that has almost
the right degree sequence - for G, ,/G, ., we have parallelled this with our
results on the set of owners described in Chapter 5. It remains to show that
we have also correctly predicted the degree sequence after (r — 1) rounds of
the shell-wise deletion process. This is tantamount to by-passing most of the
tedious step by step analysis of the single node deletion process in [PSW96].

The second ingredient consists in proving that both shell-wise and single-
node deletion processes leave invariant the uniform distribution conditional
on the given degree sequence. There are only o(n) nodes (or classes) with a
non-treelike neighbourhood, both inrandom graphs and faulty configurations.
All other nodes will survive (r — 1) rounds of the shell-wise deletion process
if and only if they are r-owners. From that point on it is straightforward to
show that the single-node deletion process terminates after o(n) steps using
a gambler’s ruin argument, provided both the degree sequence and uniform
distribution conditional on that degree sequence are known.

It is fairly easy to see that that there may be no k-core in the sub-critical
case (Section 6.1), using an edge-density argument as Goerdt and Molloy did.
In the super-critical case (Section 6.2) we study the invariance of uniform
distribution under the various deletion processes (Section 6.2.1), prove that
the degree sequence after (r — 1) rounds of edge deletion is essentially the
same as the degree sequence of the r-owners (Section 6.2.1) and show that
the single node process removing remaining runs will a.s. terminate after
o(n) steps (Section 6.2.1). We shall state and prove the new theorem for the
sudden appearance of the k-core in the G, ,,, model in Section 6.3.
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6.1 Sub-Critical Case

Before we can complete the proof of the main theorem, we need to discuss
the sub-critical case (¢ < 3.35...). We argue similar to as Goerdt and Molloy
did in [GMOO].

Lemma 6.1.1 Almost surely a graph in G, /n contains no induced subgraph
with minimum degree 3 and o(n) nodes.

Proof Consider all subsets S of size s < en, for some ¢ that will be fixed
below.

Denote by Xg the indicator random variable of the event ‘S induces a
subgraph with minimum degree three’. We will show that

E|l Y X :iE > X

|S|<en =2 | |s|=s
En n

:§:<;yHXS:1ABW:ﬂ (6.1)
s=2

converges to zero which proves the lemma via the First Moment Method.

(Mers=atsi=i< (M) (, 2 ) erme
(en/g)s(68/3)3/2.s(c/n)3/2.5

(1/27 - €°sc® /n)' /%

(6803/n)1/2-5

f(s).

VAN VAN VAN

Now
En En

ST Fs) =Y [(65¢3/m) )" =3 [(As/n) ')’

s=2 s=2

Choosing ¢ < 1/(24e) = 1/(12c¢%) we get f(2) =2A/n and for s > 3

f(s)/f(s—1)
Z(AS/n)(s*”/Z\/M(A(s _ 1)/n)7(571)/2

s/n<e

=((s +1)/s5)*/\/As/n < €Y2\/1/(2e)
=1/v/2.
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Therefore

D fls) <24/n-> (1/V2)F =0(1/n).

6.2 Super-Critical Case

6.2.1 Deletion Processes and Uniform Distribution

Remember that the k-core can be found by any suitable protocol of node
deletion. Following the overall proof strategy of Goerdt and Molloy we will
in a first phase delete bad nodes shell by shell. Applying this shell-wise
deletion process (r — 1) times will yield a subgraph that is essentially the set
of r-Cayley owners. That is, we can predict the degree sequence after (r —1)
rounds of edge deletion sufficiently accurate.

All but o(n) nodes will have degree at least k. Moreover, the form of
the predicted degree sequence is such that we can show that the single node
deletion process applied to the remainder graph (in a second phase) will a.s.
die out removing only o(n) nodes using a straightforward gambler’s ruin
argument.

For the proof to work as sketched above it is essential to know that
the uniform distribution, conditional on the given degree sequence, remains
invariant during each step of both shell-wise and single-node deletion.

The deletion process can be seen as a mapping

A: G AG).

In the case of shell-wise deletion all bad nodes (having degree less than k)
are deprived of their incident edges. For single-node deletion we uniformly
pick a random bad vertex and deprive it of its incident edges, if there are
no bad vertices we do nothing. Note that in the latter case A is a random
mapping.

Let us denote the mapping G +— {d;(G)}ien, by the letter §. We will
sometimes denote degree sequences by the letter ‘0, too, which is sloppy but
should not lead to confusion.

Proposition 6.2.1 Let G be distributed according to the G, ,,-model and
condition on the event £ = ‘G has degree sequence {d;}icn, ', where ) . id; =
2m. Then G conditional on £ is distributed uniformly amongst all graphs
with degree-sequence {d;}ien, -
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Proof Note that & C G, is a subset of the set of all graphs on n nodes
with exactly m edges. Considering the G, ,,-model is tantamount to consid-
ering the uniform distribution on the set of all such graphs. But uniform
distribution on some discrete probability space €2 obviously induces uniform
distribution on any subset of 2. O

We will call a degree sequence {d;};cn, relevant if it can be reached by a
series of shell-wise or single-node deletion steps, i.e. there is a GG such that
for some /,

5(A(Z) (G)) = {di}iENO'

Two degree sequences {d;}ien, and {d}}ien, are consistent if there is at
least one graph G with 6(G) = {d;}ien,, such that

0(A(G)) = {di}ien, -

In what follows we will always assume all degree sequences to be relevant
and pairs of degree sequences to be consistent, as this will quite obviously
be the case for all degree sequences encountered in the course of the deletion
process(es).

We will presently show that both deletion processes leave invariant the
uniform distribution conditional on the (present) degree sequence. The
essence of the proof idea is to take two arbitrary graphs with degree se-
quence {d}};cn, and to prove that their predecessor sets under A amongst all
graphs with degree sequence {d;};cn, are disjoint and of the same cardinality.
Note that the disjointness is evident since A is a mapping.

Shell-Wise Deletion

Lemma 6.2.2 For all consistent pairs ({d;}ieng, {d}}ien,) and for all rele-
vant graphs G' (such that 6(G') = {d.}ien, ) the number of predecessors G €
AYG'] under the shell wise deletion process A (such that §(G) = {d;}ien, ),
depends only on ({d;}ien,, {d}}ien, ), not on the specific choice of G'.

Proof
Semi-formal version of the proof: Consider two arbitrary graphs
G, and GY, which both have degree sequence {d.};cn,. Choose an arbi-
trary relabelling 7 = 7g; ¢ € S, of the nodes, preserving the degrees, i.e.
degg: (v) = deggy (7(v)). Let G1 be an arbitrary predecessor of G under A.
Then
G2 = GIQ %) 7T[G1 \ Gll]
N——

=H
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is a predecessor of GY,. In other words H + m[H] induces a bijection between
the (disjoint, see above) sets of predecessor graphs. It remains to justify
using the symbol ‘W', for disjoint union.

We shall say that H ‘fits on’ G} if no edge in H has been present in G/, i.e.
adding H to G will not introduce multiple edges. The essential observation
is that when H ‘fits on’ G} we know that m[H| ‘fits on’ GY, since each edge
in H is incident to at least one node with degree 0 in G| and 7 preserves
degrees.

Note that we know that the set of H’s is never empty because of relevance
and consistency of the degree sequences involved.

Entirely formal proof: Choose m = 7 g; € S, preserving degrees as
above. Denote by

7 Gy — Gy

{{u, v}, ...} = {{r(u),7(v)},...}

the bijection between the set of subgraphs induced by = (we encode an ele-
ment of G, by the subset of edges ‘switched on’).
We shall show that

o :AG ] — ATHGY
Gy — Gyu " (G \ GY)

and

U A G — ATHGY
Gy Gy ()71 (G2\ GY)

are well defined mappings between A~'[G!] and A™'[GY], and that
PoP ! = idA—l[G’l} and Wod ! = idA—l[GIQ}.

The latter is clear by construction of ® and V. By symmetry it will suffice
to show that @ is well defined. We need to show that for every G € A7G]]
there is exactly one Gy € A™'[G)] such that G, = GLwn*(G1\ G). Keep in
mind that the W is justified as we have argued above, thus G5 is unique. It
remains to show that Gy € A™'[G}]. Now A(Gy) is contained in G because
all edges in 7*(G4 \ G) will be incident to nodes with degree at most & — 1
by construction. Conversely, G} is contained in A(Gs3), because assuming
otherwise would yield the following contradiction. By construction, G5 has
the same degree-sequence as G; implying that there are dy +do + ...+ dg_1
nodes that are bad in G5, too. On the other hand, all nodes that had degree
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0 in G and are bad in G are mapped to those d; + ds + ...+ dix_; nodes in
(G3. Thus no other edge in GG will be deleted than the edges that correspond
to edges in H.

0

This proof also intuitively ‘explains’ why it is important to remove all
edges incident to bad nodes. Otherwise, if some difference graph H ‘fits on
G}, it might be that 7[H] introduces some multiple edges when ‘added’ to
GY,. By a simple induction we get the following corollary.

Corollary 6.2.3 Suppose an initial graph Gq is chosen uniformly at ran-
dom from all configurations with degree sequence {d;}icn,. Then the graphs
GO derived from Gy by an (-fold application of the shell-wise deletion pro-
cess, with degree sequences {dié)}ieNo, are distributed uniformly conditional

on {dz(-é)}ieNo, respectively.

Remark 6.2.4 We may replace the {dgl)}iENo by the integrated degree se-
quence {Dy)}ieNm the discrete antiderivative of the degree sequence, i.e.

ji

Any graph has {dz(g)}iENo when it has the corresponding {DZ(E)}iENO7 provided
Di - Di-l—l = di; fOT’ all i Z 0.

Single-Node Deletion

Lemma 6.2.5 Consider a consistent pair ({d;}ien,, {d;}ien, ). Denote by A
the action of the (randomised!) single-node deletion process, and assume that
G is distributed uniformly amongst all graphs with degree sequence {d;}ien, -

Then A(G) is distributed uniformly amongst all graphs with degree se-
quence {d,};en,, conditional on having this degree sequence.

Proof Fairly similar to the proof of Lemma 6.2.2.

From inspecting {d, };cn, and {d}};cn, we can easily determine the degree
0 < £ < k of the bad node that is going to be deleted - it is simply equal to
the number of edges ‘before’ minus the number of edges ‘after’.

We shall consider the (-strip Sy consisting of all pairs (G, v), where G
has degree sequence {d;};cn, and v is contained in the set of bad nodes with
degree ¢, i.e. in By(G) consisting of all nodes with deg,(v) = /.
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Since we assume G to be distributed uniformly amongst all graphs with
degree sequence {d;}ien,, and the single node deletion process picks bad
nodes uniformly at random, any pair (G, v) in Sy is equally likely.

Instead of considering the randomised (single node) deletion operation A
we consider the deterministic mapping A, from S, to the set of graphs with
degree sequence {d;};cn,. The pair (G, v) is mapped to A,(G) = G\ v. Here
A, is the deterministic deletion of node v.

It is clear that the randomised operation A produces uniform distribution
on the set of graphs with degree sequence {d.};cn, if the cardinality of A, '[G"]
does not depend on the specific choice of G’.

Now

AG = Y H(Gow) €8] A,(G) =G

{vo| degg (v0)=0}

Clearly the number of summands depends only on {d!}icn,-

[t remains to show that the summands are equal for all (G, v1), (GY, va),
where v1,v, are arbitrary choices of nodes such that dege: (vi) = 0 and
dege (v2) = 0. We shall choose a suitable node-relabelling ™ = 71 a1 1,0, €
S, preserving degrees and identifying v; and vs.

Again, as in the proof of Lemma 6.2.2, any graph in A} '[G]] can be
written as (GyWH, vy), and (GLWr[H],m(v1)) is a corresponding predecessor
in A, '[GY). Thus all summands are enumerated by the set of predecessor
graphs of, say, G| and the have identical cardinality for all (G},v;). It is
again crucial that the v; are isolated nodes in the graphs G;. Note that all
difference graphs H are stars centred at the respective v;’s with ¢ edges.

O

Corollary 6.2.6 Suppose an initial graph Gy is chosen uniformly at ran-
dom from all configurations with degree sequence {d;}icn,. Then the graphs
G derived from Gy by an (-fold application of the single-node deletion pro-
cess, with degree sequences {dié Yieng, are distributed uniformly conditional

on {dz(-é)}ieNo, respectively.

6.2.2 Degree Sequence after Deleting (r — 1) Shells

We shall fist observe that the degree-sequence of the graph after (r — 1) steps
of shell-wise deletion is e-close to the degree sequence of the set of owners.

Lemma 6.2.7 Let G be some graph distributed according to the G, ,, model
with average degree c. A.a.s., the degree-sequence of the subgraph Gs induced
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by S, the set of nodes surviving (r — 1) steps of shell wise deletion with a
non-zero degree,is e-close to the degree sequence of the subgraph Go induced
by set O of r-owners. We may choose €(n) = n'/2te" where €' is larger than
the € of Proposition 5.3.5.

Proof Denote by T the set of nodes that have a tree-like r-neighbourhood
w.r.t. the given graph G.
We shall first prove that

ONTCSCOUT. (6.2)

The first inclusion is true since any r-owner with a tree-like r-neighbourhood
will survive (r —1) rounds of edge deletion with degree at least 3. The second
inclusion is tantamount to the contraposition of the following implication: if
a node is an r-non-owner (i.e. in O) and has a tree-like r-neighbourhood it
will certainly not survive (r — 1) steps of shell wise deletion with a non-zero
degree, see Proposition 2.3.8.

We shall next show that the (integrated) degree-sequences of the corre-
sponding induced subgraphs of G are monotonous. We shall write deg 4(v)
to denote the degree of v with respect to the subgraph G4 of G induced by
the (node-)set A. Clearly, degpnr(v) < degg(v).

Now let X’ be an ‘indicator’ that is 1 if degon7(v) > 4 and 0 otherwise
and Y;! be an ‘indicator’ that is 1 if degg(v) > i and 0 otherwise. Summing
over all nodes yields

Di(Gonr) = ZK; < ZY;Z = D;(Gs).
In a completely analogous way we can show that

Di(Gs) =Y Vi< > X, = Di(Gou7)-

It remains to show that D;(Gonr) and D;(Gp 7) remain reasonably close
to D;(Go), respectively. We shall prove the following inequality for arbitrary
disjoint subsets A, B below (C := AW B).

Di(G.a) = Di(Gaus) — (A(G) +1) |B|. (63)
Substituting
1) ./41 = OﬂT,BH = O_\ (OHT) and
11) Ag = O,BQ = (OUT)\O
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in Inequality 6.3 actually yields that

Di(Go) — (A(G) + 1) |Bi]
< Di(Gonr) < Di(Gs) < Di(G o i7)
< Di(Go) + (A(G) + 1) |Bs] .

Observe that in either case B; is contained in (the small set) 7 and the fact
that a.a.s. the degrees in G' are bounded*. Indeed, the maximum degree is
less than (logn)?, a.a.s., in the G, ,, model, too. This is an easy consequence
of Proposition 5.1.1 and Fact 2. Remember that 7 contains at most n'/?*®
nodes, a.a.s. by Proposition 5.3.5.

Therefore we may choose ¢(n) = n
(independent of n!).

It remains to prove Inequality 6.3.

Di(Gass) =Y Ci

=Y ci+> Ci

1/2+¢' " with an appropriately large ¢’

vEA veEB
<|B|
<Y AL+ (AG)+1) 8]
veEA

= D;(G4)+ (A(G)+1)|B].

Here A(G) denotes the maximum degree in G, A is indicating that v has
degree > i in G4 and C! is indicating that v has degree > i in G¢. The
inequality sign holds because every node in B can contribute to the degree
(w.r.t. C) of at most A(G) nodes in A; in the worst case the degrees (w.r.t.
C) of all affected nodes in A drop below 4, for all other nodes in A we have
Ci = A’. Observe that the C = 1 but A = 0 only happens when v is
affected, i.e. adjacent to some node in B. O

Combining this with the result on the degree sequence of the set of owners
stated in Lemma 5.3.2 it is now easy to predict the degree sequence after
(r — 1) steps of shell-wise deletion.

*Note that without some reasonable degree bound the statement would not be very
useful even when B is very small, as can be seen from the following counterexample: Let
G be a star on n + 1 nodes, centred at node 1, choose B := {1} and A := [n+ 1]\ B. Then
D1(G4) =0 but Dy (Gawp) = n. Le. Inequality 6.3 is sharp.
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Corollary 6.2.8 Let G be distributed according to the Gy, model with av-
erage degree c. A.a.s., the degree-sequence of the subgraph Gs induced by
S, the set of nodes surviving (r — 1) steps of shell wise deletion with a non-

zero degree,is e-close to the degree sequence {dz(-o)(G)}iENo expected from the
Branching Tree Connection. Here ¢ = £(n) = O(n/log(n)M(),

6.2.3 Single Node Deletion, Gambler’s Ruin

In Corollary 6.2.8 above we have - for G, ,, - determined the degree sequence
{d;(G) }ien, of the graph remaining after an (r — 1)-fold application of the
shell-wise deletion process, for the super-critical case ¢ > 3.35.... It is
a.a.s. e-close to the degree-sequence {dz(-o)(G)}ieNo that we would intuitively
expect from the Branching Tree Connection. Furthermore, we know that the
graph is distributed uniformly amongst all graphs having degree sequence
{di(G) Yien-

It remains to show that under these circumstances iteratively deleting
remaining bad nodes until none are left will a.a.s. terminate after o(n) steps.

Lemma 6.2.9 Suppose some graph G is distributed uniformly amongst all
graphs with degree sequence {d;(G)}ien,, and that this degree sequence is -
close to {dEO)(G)}ieNO, for some ¢ = £(n) = O(n/ log(n)*M),

Then a.a.s. we will be left with a linear sized k-core after o(n) applications
of the single node deletion process. Moreover, the degree sequence of the k-
core found will be £'-close to {dEO)(G)}ieNO, for some ' = £'(n) = o(n)

Before proving this essential lemma we shall start a little excursion trying
to point out that it states merely the random graph analogue to the damage
process in trees discussed above (Section 3.3.2). We shall also give an impres-
sion how the branching tree ideas relate to the various models available, that
is Gnp, Gn,m and random configurations. Any reader not interested in top-
level, semi-intuitive ramifications is encouraged to skip this and to continue
with the proof of Lemma 6.2.9 on pp. 121.

The generic run v has at most 2 neighbours (again restricting ourselves
to k = 3). Using the ‘test-particle approach’ (see Section 5.2, Lemma 5.2.2)
it is not hard to show that in the G, , model the number of neighbours of v
having degree exactly three is distributed as Bi(2,7), up to o(1) corrections;
we shall write Bi(2,7) 4+ o(1). Remember that 7 = 1/2 — &(c) is the per-
centage of the binary owners that are adjacent to exactly two binary owners.
When we remove v from the set of r-Cayley-owners we shall thus produce
Bi(2,7) + o(1) new bad nodes. If we could iterate this argument for the

118



newly created runs, recursively, the number Y; of bad nodes would be clearly
captured by a gambler’s ruin process with drift —e(c)/2, starting at some
Yy = 0(n/ log(n)®M()). Such a gambler’s ruin process is well known to a.s.
die out after o(n) steps, c.f. the proof of Lemma 6.2.9 below.

We have amply demonstrated above how to translate calculations valid
in branching trees to the G, , model, taking into account all those annoying
errors that do not matter in the end. In particular we can show that the first
run to be deleted will spark off Bi(2, 7) + o(1) new bad nodes, as sketched in
the last paragraph. With considerable more effort we shall show below that
this is also true in the G, ,,, model. So why did not we stay in the G,, , model,
where we have our machinery working?

e It is not sufficient to merely know the degree sequences of the sub-
graphs involved, as encoded in Lemma 5.3.2. Otherwise an adversary
could ‘pile up’ many (6(n)) of the #(n) nodes with degree exactly 3
around a single run. In that deterministic worst case the single node
process would quite clearly not stop after o(n) steps. Note that - at
least intuitively - assuming uniform distribution amongst all graphs
with the given degree sequence would turn such a worst case scenario
highly improbable. In the G, , model it may be intuitively clear that
all subgraphs with the given degree sequence are equally likely, but we
lack a formal proof. Thus we have to work in the G, ,, model, where we
have such a proof, see Section 6.2.1, Corollary 6.2.3. However, for the
first (few) run(s) we could still prove that the number of newly created
bad nodes is distributed according to Bi(2,7) +0(1)) in the G, , model,
as explained above.

e We also need to know that the uniform distribution (conditional on
the degree sequence) remains invariant in the course of successive sin-
gle node deletion steps. Otherwise we would not know that the number
of newly created bad nodes is Bi(2, 7) + o(n), each time afresh, and we
could not describe the evolution of Y; by a gambler’s ruin. Obviously
‘having looked at’ only a few nodes in the G, , model does not matter a
lot - but it does matter. To see this, consider the ‘remainder graph’ at
the last but one step of the single node deletion process. It will deter-
ministically not have any bad nodes at all. Therefore it can not be dis-
tributed as a G,_,(n),, random graph, because such a graph would have
to have f(n/log(n)*©M() runs (w.r.t. the remainder graph!) with
high probability, according to Lemma 5.2.7. This seemingly paradox
result can be intuitively explained by observing that runs w.r.t. the re-
mainder graph are not necessarily runs with respect to the total graph.
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Thus the principle of deferred decisions does not apply when we con-
sider more than the first run, and we can presently not control the
complicated dependencies in the G, , model.

For those reasons we have translated our results achieved in G, , to G,
where we can adapt the proof strategy of G/M. Note that it would be highly
desirable to devise a proof entirely within the G, , model, avoiding the anal-
ysis of deletion processes altogether. We shall continue this discussion in
Chapter 7.

It is thus essential to translate the ‘test-particle’ approach to the G, .,
model. Goerdt and Molloy, working in the model of random faulty configu-
rations, have demonstrated how to go about it, we shall briefly describe the
central formula and how it ‘miraculously’ yields the same result as the ‘test-
particle’ approach in the G, , model. The equivalent of the ‘test-particle’
approach in random configurations is not too hard to show, essentially as
we may employ random matchings, see the characterisation of random con-
figurations in Section 2.1.1, p. 13. However, we do not work with random
configurations but with random graphs (both distributed uniformly under
all objects with a given degree sequence). It is standard practice to prove
results in the random graph model by proving them in the ‘corresponding’
configuration model. We have alluded to the ‘translation tools’ available in
Section 2.1.1. It appears to be difficult (although the result is intuitively ob-
vious) to translate Goerdt and Molloy’s result concerning the change in the
number of bad nodes Y; from the configuration model to the ‘corresponding’
random graph model step by step. We consider the following strategy feasible
but tedious: Analyse the gambler’s ruin in the ‘corresponding’ configuration
model and translate the bad event ‘gambler’s ruin does not terminate after
o(n) steps’ back into the random graph model.

Instead we have found a direct proof for random (G, ,,,) graphs based on
a switching argument.

Before we end our excursion we shall explain how the damage process
in branching trees translates to the different models, G, , on one side and
Gn,m/random configurations on the other side, and why the seemingly differ-
ent central formulae yield the same value Bi(2,7) + o(1).

Gn,p Assume that the degree sequence of the binary ownersin the remainder
graph is (e-close to) 8 = {b;}{%,, where by ~ 0 and by = n — Y72 b;.
Clearly, attaching a test-particle with one edge to the binary owners
in the remainder graph will hit a binary owner with degree exactly two
(w.r.t. the remainder graph!) with probability

by

B 222 bi‘
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Gn,m We shall here discuss only the configuration model. In the proof of
Lemma 6.2.9 below we shall prove that the same formula holds for
the ‘corresponding’ graphs, too. Assume that the degree sequence of
the Cayley-owners is e-close to 0 = {d;}°,, where dj,dy ~ 0 and
dy = n — Z;’il d;. Essentially we pick a node v with degree 1 and
discern cases according to what kind of class the the edge emanating
from v ends. Obviously, to hit a class of degree exactly 3 (w.r.t. the set
of Cayley owners altogether!) is proportional to both d; and i, yielding
the formula

Doyt d; (64)
Similar results hold when the test-particle has degree greater than one.
These formulae appear to be different. But note that in the case of Cayley-
and binary-owners we have b; >~ n - Po.,(7), for i > 2 and d; ~ n - Po.,(i), for
1 > 3. Observe that

b2 - POCq (2)

ST S, Poy ) "

and that
3- d3 -~ 3 POcq(?))

oo - — oo - N = 71'(0),
Doimgldi Y iZgi Pogy(i)

too. It is straightforward to compute that those formulae yield the same
value 7(c) using the characterisation ¢ = P[Po., > 2]. However, this equality
seems to reflect some kind of ‘equivalence’ of dealing with Cayley-owners and
dealing with binary-owners that we do not understand well enough. Note
that we can fully analyse the sudden appearance of the ‘classical’ 3-core
(essentially the set of Cayley-owners) adapting the proof strategy of Goerdt
and Molloy whereas we can not fully analyse the sudden appearance of the
extended 3-core (see Definition 2.3.3 on p. 28, essentially the equivalent to the
binary-owners). Yet we can prove the ‘appearance of a giant set of binary-
owners’ (see Section 3.1) which relate to the extended 3-core in a seemingly
completely analogous way as the Cayley owners relate to the classical 3-core.
This apparent analogy is further backed by simulations using the respective
deletion processes, strongly suggesting that the size of the extended 3-core
is ‘obeying’ the Branching Tree Connection in the very same way as the size
of the ‘classical’ 3-core does. Note that the much sought for proof strategy
avoiding the analysis of the deletion process altogether, as mentioned above,
could most likely be adapted to both situations, easily.

Proof (Of Lemma 6.2.9.) We shall show further down in this proof that
at all ‘relevant times’ ¢ the increase Y; — Y;_; in the number of bad nodes is
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stochastically dominated by a Bi(2,1/2 — k(¢)) — 1 random variable, initially
assuming uniform distribution under a degree sequence 0y that is e-close to
the degree sequence expected from the Branching Tree Connection, for some
e =¢(n) = Ky -n/log(n)*Me) c.f. Corollary 6.2.8.

Note that the conditional uniform distribution remains invariant due to
Corollary 6.2.6, p. 115.

By ‘relevant times’ t < T we mean that we stop the processes Y and X at
time 7. In other words we shall show that the random process (Y}); is stochas-
tically dominated by a gambler’s ruin process (X;);, having increments dis-
tributed according to X; — X; 1 ~ Bi(2,1/2 — k(c)) — 1. The gambler’s ruin
process is well known to a.s die out quickly (see Feller [Fel68]). More for-
mally, we know that the expected hitting time of the origin 0 is proportional
to Xo/k ([Fel68], XIV). Since X, = Yy = Ky -n/ log(n)*M() we know that
the hitting time of the origin 0 is at most, say, T := Ky-n/log(n)®9M(©).log n,
a.a.s., using Markov’s Inequality.

Note that at each time ¢ < T', i.e. after having deleted ¢ < T nodes, the
degree sequence of the remainder graph will still be K3-n/ log(n)*©*()_close
to to the degree sequence expected from the Branching Tree Connection,
which follows from an argument similar to the argument in the proof of
Lemma 6.2.7, using Inequality 6.3 (see p. 116).

We next turn to proving the aforementioned stochastic dominance. Un-
fortunately it is necessary to discuss several cases. However, it will turn out
that in all cases the number of newly created bad nodes is stochastically
dominated by Bi(2,1/2 — k(c)). The generic case is the following:

a) The (bad) node v to be removed has degree 2 and it is adjacent to two
other good nodes.

Apart from this there are a few ‘atypical’ cases.

b) The (bad) node v to be removed has degree 2 and it is adjacent to one
good node and one bad node.

¢) The (bad) node v to be removed has degree 2 and it is adjacent to two
bad nodes.

d) The (bad) node v to be removed has degree 1 and it is adjacent to a
good node.

e) The (bad) node v to be removed has degree 1 and it is adjacent to a

bad node.
Note that a run that has only one neighbour left in the set of Cayley-owners
will occur much less frequently than the ‘generic run’ with two neighbours.
It should be clear, that case a) is indeed not only the generic case but the
worst case. Only in case a) it is possible to create more bad nodes than we
remove. In cases ¢) and e) the increase in bad nodes is -1, deterministically,
and cases b) and d) are essentially the same.
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We shall start with discussing case d), explaining the switching argument,
as we go along. This is a rigorous version of the informal discussion on p. 121.
There are two possibilities. FEither the bad node v is adjacent to a good node
with degree exactly three, or it is adjacent to a good node with degree greater
than three. We thus expect the number of newly created bad nodes to be
distributed according to Bi(1,7) + o(1). Now we need to prove this formally.
We should really discern cases for all pairs (i, 7) that the bad node v to be
removed is node number ¢ and that its only neighbour is node number j.
We shall merely discuss the case that i = 1 and j = 2. This is sufficient
because all cases are equivalent due to symmetry against relabelling nodes.
Assuming that the original graph had degree-sequence 9, we shall denote by
d1,; the degree sequence arising from § upon ‘moving’ one node with degree 1
(i.e. our node number 1) to the set of nodes with degree 0 and one node with
degree i (i.e. our node number 2) to the set of nodes with degree i —1. Denote
by G° the set of all graphs having degree sequence §, where additionally node
1 is adjacent to node 2. By G’ we shall denote all graphs in G° where node
2 has degree ¢ — 1 and node 1 has degree 0. Clearly.

= X[

i>1

Now the number of newly created bad nodes may either be 0 or 1. We shall
compute the probability that it is 1. Since we have uniform distribution on
all graphs in G°, we have

g
Zz’ZI |G

Our goal is to show that this probability is close to the value expected in
Formula 6.4. In order to see this, we shall use a switching argument. We
shall show that

P [one new bad node created] = : (6.5)

‘QJM -~ i'di
|g5L3|__ 3 .d3'

This will clearly lead towards Formula 6.4, when substituting this in Equa-
tion 6.5, as the d; are close to the values expected from the Branching Tree
Connection. How does one prove a statement like Equation 6.67 Consider a
bipartite graph between some sets A and B (we shall choose A := G%.i and
B := G% presently). We can count the number of edges in the bipartite

graph in two ways:
Z deg(v) = Z deg(w).

vEA weB

(6.6)
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Figure 6.1: Switching between a graph in A := G%5 (left) and a graph
in B := G%¢ (right). The edges drawn with full lines are the ones to be
switched. The dotted edge is the one that is selected to remain incident to
w. Further edges that may be present are drawn with dashed lines.

Note that when all nodes in A have degree b and all nodes in B have degree a
this reduces to A

|A|-b=|B|-a < B
Even when the degrees are not exactly equal to a and b, respectively, we
may produce approximate formulae along those lines. The difficult part
is to construct an appropriate bipartite graph, i.e. to appropriately pair the
elements of A with elements of B. We shall from now on refer to the bipartite
graph as a ‘meta-graph’, simply to avoid confusion due to the fact that the
elements of A := G% and B := G°* are graphs themselves.

We consider a meta-node G € A and determine its meta-neighbours in B.
Remember that node 2 has degree a — 1 in G. We shall also select a node w
with degree 3. Now we shall ‘switch’ the edges incident to node 2 with the
edges incident to node w in the following way, see Figure 6.1. One of the
edges incident to w remains, the other edges get attached to node 2. All
edges that were originally incident to node 2 get attached to node w. Note
that there are usually 3 ways to switch, depending on how the remaining
edge incident to w is selected. We shall not allow a switching in (the rare)
case we introduce self-loops or multiple edges, or do not get a graph in
B otherwise. Conversely we consider a meta-node G € B and determine
its meta-neighbours correspondingly. Note that we have actually defined a
simple bipartite (meta-)graph this way, because the fact that each allowed
switching can be reversed proves that each (a priori directed) meta-edge from
A to B has a corresponding ‘partner’ from B to A. So what do we know about

SalES]
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the degrees in the bipartite meta graphs? At first sight it seems that each
graph in A := G% has indeed exactly 3 - d3 meta-neighbours in B := G123
and each graph in B has exactly ¢ meta-neighbours in A, but this is not quite
true. If we switch with nodes w in the 2-neighbourhood of node 2 we might
not end up with a graph in A, or B, respectively. Fortunately we know that
all graphs considered are degree-bounded by A(G) = (logn)?. In the worst
case we do not know what will happen for (logn)* candidates w. Thus the
meta-degrees are only determined up to an error in the following way.

deg(G) = 3 - (ds + (logn)*), for G € A,
and
deg(G) =i - (d; &= (logn)*), for G € B.
Alas, the d; are only known up to additive errors of +Kj - n/ log(n)*M' (),
anyway. We may thus replace those errors by K, - n/log(n)*©M () and
ignore the +(logn)?*) in the following. Now the number of edges in the
meta-graph may be written as )., deg(G) = > deg(G'). Substituting
the degree sequence (within the aforementioned additive errors of size & :=
Ky - n/log(n)*@M () yields
|A| -3 (n-Poy(3)£&) = |B|-i-(n-i-Poeyl(i) £¢),
for i > 4,
|A|-3-(n-Poy,(3)£&) =|B|-2-(0+£¢),
for i = 2,
[A[ -3+ (n- Poey(3) +6) = |B[ - 1- (0 +¢),

for i = 1. Therefore,

g51,3‘
P[one new bad node created] = ‘7
D i1 GO
_ 1 _ 1
- goui| — |gtia Go1.2 GO
Zz’ZI ||g51,3|| Ig51,3I + Ig51,3I +1+ 2124 w

B 3-Poy(3) £E/n

— (Xissi Pogl(i) £ 2/n) £ O(/n)
Due to the degree bound the summation over the i extends only to A(G) =
(logn)? and we may continue

3-Poy(3)£E/n

S i - Pog, (i) — (Zfﬁ)g(n))z i Pocq(i)> + (zgljgf(””? €/n) + O(3/n)

_ 3 Poy(3) £ &/n o
S Pouli) £ 0((ogny 2/ 0OV
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Note that

= = (cq)’ = (cq)’
SIRHONUNES SUNPICI RS ST
(log(m)2 +1 (log(m)2 +1 " (log(n))? "

which is subpolynomially small by Lemma 5.1.1. Also,

(log(n))?

Z £/n < log(n)*-&/n=o(1),

1=3

for sufficiently large o = a(c).

We have lost track on the rate of convergence on the way, and a careless
use of Landau symbols is potentially dangerous. Fortunately, in this proof
there are only a constant (independent of n) number of different rates of
convergence to be considered, so we can take the slowest amongst them as a
worst cat rate.

We have now rigorously discussed case d), remember that for cases ¢) and
e) there is nothing to be done.

The cases a) and b) can be treated in an analogous way, but we shall not
discuss them as detailed as case d). First of all, we exclude all cases where
nodes 2 and 3 have distance less than 3 in the graph with node 1 deleted,
this will lead to a o(1) correction, even if we make the worst case assumption
that in this case we have always produced two bad nodes in this case.

We shall merely sketch a proof for the sub-case of a) that node 1 is
adjacent to nodes 2 and 3, both of them being good. We need to prove that

P[two new bad nodes created]
I i Y (3 Pocy(3))”
Z%ll |Govii| Z?Z‘:s,i +J + Pocg(i) - Pocy (i)
>

This can be shown using

‘g(sl,i,j
|g51,3,3| - 9. d%

i-j-di-d; . .
= DT %% L corrections as in d),

which follows from a switching argument as in case d). Essentially, choose
two nodes with degrees i, 7 sufficiently far apart from each other and from
nodes 2 and 3, and switch all but one of their incident edges with the edges
incident to nodes 2 and 3, respectively. O
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6.3 Sudden Appearance of the k-Core, New
Proof

We are finally ready to state and prove the Main Theorem 1, giving the new
proof of the sudden appearance of a giant k-core in G, ,,-graphs with average
degree c.

Theorem 1 Let G be distributed according to the G, model with average
degree c. Denote by cqry the critical value for ownership in branching trees,

which is 3.35(...) for k = 3.

1. For sub-critical average degrees ¢ < cqpy the k-core is empty, with prob-
ability approaching one.

2. For super-critical average degrees ¢ > copy there is a giant k-core with
probability approaching one. It consists of the set of r(n)-Cayley owners
of G minus o(n) nodes. Moreover, the degree sequence of the k-core

found will be £'-close to {dz(-o)(G)}ieNO, for some ' =£'(n) = o(n).

Here {dEO)(G)}ieNO is the degree sequence ‘predicted’ by the Branching Tree
Connection, see Equation 5.2, p. 103.

Proof (Of the Main Theorem 1.)

1. Inequality 6.2 (p. 116) states that the set S surviving (r — 1) steps of
the shell-wise deletion process is contained in the set @ U T, where O are
the r-owners and 7 are the nodes with an r-neighbourhood that is not a
tree. Lemma 5.3.2 and Proposition 5.3.5 imply that |S| = o(n). Clearly, S
is a super-set of the k-core, since the shell wise-deletion process is a specific
deletion protocol stopped (shortly, one should think) before it has found the
k-core. Now Lemma 6.1.1 shows that there exists no subgraph with minimum
degree (> 3) containing o(n) nodes, with probability approaching one, and
thus there there exists no k-core, with probability approaching one.

2. The supercritical case is a straightforward consequence of Corollary 6.2.8
on p. 118, stating that the degree sequence after (r — 1) rounds of shell-wise
deletion is right, Corollary 6.2.3 on p. 114, implying that we have uniform
distribution under this degree sequence, and Lemma 6.2.9 on p. 118 proving
that the subsequent single node degree sequence will die out after at o(n)
steps.

O
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Chapter 7

Loose Threads

In this chapter we discuss various results and insights we have collected during
our studies. The material is incomplete and has (apart from Section 7.1) a
heuristic, or even speculative flavour. Still, it may reveal insights valuable to
anybody pursuing further studies in this field.

We have given a new proof for the sudden appearance of a giant k-core
avoiding most of the tedious step by step analysis of the deletion process and
discovered a new type of giant subgraph, the magic subgraph, both motivated
by the Branching Tree Connection. The reader may ask why we have not
included a proof for the sudden appearance of extended k-core or magic
subgraph using our new techniques. Section 7.1 explains to what extent the
proofs can be adapted to directed subgraphs such as the extended k-core or
the magic subgraph and why we feel unable to generalise the proof for the
invariance of uniform distribution which is essential for the analysis of the
second phase, i.e. for removing the remaining runs.

In Section 7.2 we explain why we could not completely avoid analysis of
the deletion processes characterising k-core and related subgraphs.

Even though the tripartite case deserves attention independently of non-
tripartite models it is natural to ask whether there is some phenomenon
similar to the sudden appearance of a giant magic subgraph in non-tripartite
graphs. In particular, what can be learned about the k-colourability thresh-
old? We shall discuss this in Section 7.3.

Finally, in Section 7.4 we present some further recursive equations pre-
dicting critical values in branching trees. They may be a starting point for
finding new giant subgraphs in the ‘corresponding’ random graphs, just as the
recursive equations connected to coloured owners (see Section 3.2) eventually
lead to ‘discovering’ the magic subgraph. We also include such a recursive
equation possibly related to random k-SAT formulae.
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7.1 Sudden Appearance of Extended k-Core
and Magic Subgraph

Note that the new proof for the k-core is conceptually simple but writing
it down in a rigorous way involves a lot of technical effort mainly due to
having to carefully discuss the errors terms appearing in the calculations due
to finite n.

Similarly as in branching trees, ownership in graphs is defined recursively,
and the numbers of owners are concentrated by the Semi-Local Lemma 5.1.5.
We may thus compute the expected number of owners in graphs essentially
using the very same recursive equations that are describing and explaining
the ‘corresponding’ phase transitions in branching trees.

It is natural to seek for generalisations of the existing proof to the ap-
pearance of the extended k-core and of the magic subgraph, as well as the
‘classical’ k-core in the k-partite model, sticking closely to analysing the two
phases (shell-wise deletion followed by single node deletion) which turned out
successful for the ‘classical’ k-core.

Sources of errors to be taken into account

The aforementioned technical effort arises for two reasons.

In order to show that the errors do not matter asymptotically we need to
write them down, and to discuss them carefully. Some errors stem from the
deviations between Po. and Bi(n, ¢/n) distributions. Sizes of certain subsets
are concentrated around their expected values but not equal to the expected
values, introducing a further source of errors.

Because we need to analyse the single node deletion process in the second
phase and show that it behaves like a gambler’s ruin random walk, we need
to translate the results achieved for the G, , model to the G, ,, model because
only there we can analyse the deletion process. This is an additional source
of errors and forces us to go through the whole ‘translation machinery’.

We shall report below in Section 7.2 on some ideas how having to translate
from G, , to G, ,, could possibly be avoided.

Modifications necessary for k-partite models

When re-inspecting the proofs in Chapters 5 and 6 it seems highly plausible
to believe that comparable results may also be shown for the ‘corresponding’
k-partite models. Here is a list of changes for £ = 3.

e Bi(2/3-n,3/2- ¢/n) will have to be approximated by Po,., instead of
Bi(n, ¢/n).
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e Vertex exposure will have to be reformulated for the tripartite case,
and the proof for the Semi-Local Lemma 5.1.5 needs to be adapted
accordingly.

e We need to translate from G, 3, to G, 3,m. There is no doubt that there
are ‘translation tools’ closely analogous to the ones for translating from
Gnp t0 Gp m. However, they would need to be written down.

Conjecture 1 All statements concerning the (generalised, see below) degree-
sequence of the extended and ‘classical’ k-core that we proved (or can be
proved) for G ,/Gn.m with average degree ¢ are also valid for the tripartite
models Gy, 3 p/Gn.3.m with average degree ¢, with possibly slightly modified error
terms.

Generalised degree sequence

What should be the analogue of the degree sequence, when talking about
directed edge deletion processes? There are certainly several possibilities,
we have singled out a choice that appeared amongst the most sensible. Yet
we were not able to fully generalise the analysis of the invariance of uniform
distribution during the course of the deletion processes (see below). Hence we
shall only sketch what seems to be feasible to show. We shall mainly discuss
the scenario of the extended k-core (Definition 2.3.3, p. 28) since we expect a
further generalisation to the magic subgraph to be relatively easy - the hard
bit seems to be analysing the directed-edge deletion process properly.

Remember that the extended k-core (in the node sense) consists of all
nodes ‘pointed to’ by at least two ‘good’ directed edges. Intuitively, and con-
sistently with our empirical observation, this is essentially the set of binary
owners.

Definition 7.1.1 The generalised degree sequence is a family {dr};er of
non-negative numbers labelled by an index I = (i,j,k). The numbers d;
count the number of nodes in some digraph with a specific 1-neighbourhood,
having i in/out-edges, j ‘pure’ in-edges and k ‘pure’ out-edges.

Instead of regarding I as a triple it is more convenient to interpret it as a
‘picture’ of the (undirected) 1-neighbourhood of a node in a digraph, ignoring
the labels.

There is a natural partial ordering on T, namely J = I whenever I can
be obtained from J by deleting some directed edges.

Finally we can define the integrated generalised degree sequence {Dy}rer

by
D[ = Zd]

J-1
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Note that {d;}er is related to {D;} ez in the same way as multivariate
(discrete) probability-distributions are related to the corresponding multi-
variate distribution functions.

The above definition satisfies one important necessary ‘constraint’, that
all other alternative definitions should also comply to. When we choose an
undirected random graph initially and make it bi-directed, it will be dis-
tributed uniformly amongst all digraphs with a certain generalised degree
sequence, where the only non-zero d; are labelled by indices I of the type
(d;,0,0), d; being the ‘normal’ degree sequence of the undirected graph. This
will provide the basis of any inductive proof concerning uniform distribution
conditional on a generalised degree sequence.

Next we have to specify the deletion protocol. A node will be bad, if there
are out-edges bad in its 1-neighbourhood. Note that when the generalised
degree sequence {d;} ez is such that there are no more bad nodes, it is the
degree sequence of an extended k-core, possibly empty. We shall ‘purge’
the bad edges in a ‘node-wise’ fashion. Whenever a node is bad, remove all
emanating out-edges that are bad. For the shell-wise deletion process, we
will check on all nodes presently bad and determine which edges would have
to be deleted from their out-neighbourhoods, in ‘single-node mode’. Then
we remove the union of all those edges.

. O
/N N

a) b) c)

Figure 7.1: All cases of possible ‘pictures’ I that can occur (i.e. have non-zero
d;) in the generalised degree sequence {d;};c7 of the extended 3-core, apart
from the empty ‘picture’. See text for a discussion.

Can we, like in the case of the ‘classical’ k-core predict the degree-sequence
after r — 1 rounds of shell-wise deletion? We believe that the answer is yes,
but we give only a hand-waving derivation. Remember the results from
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Chapter 5, i.e. the ‘test-particle’ approach. There are binary owners, Cayley
owners and also unary owners, the latter are nodes adjacent to exactly one
binary owner. Whenever a ‘test-particle’ v is attached to the remainder graph
it will be connected to Po,, unary owners, where

u:=P[Po., =1],

and to Po., binary owners. We have portrayed all cases that can happen in
Figure 7.1 and will calculate the expected d; below.

a) ‘Picture’ I = (0,2, k), k > 0 has probability P[Po,, = 2] - P[Po., = k].

b) ‘Picture’ I = (4,0, k), i > 3, k > 0 has probability P[Po., = i]-P[Po., = k|.
c¢) ‘Picture’ I = (0,1,0) has probability P[Po., = 1](= u).

Conjecture 2 The generalised degree sequence of the digraph obtained after
r — 1 rounds of shell-wise edge deletion is € — close to the generalised degree
sequence obtained from the ‘branching tree’ probabilities just calculated.

Moreover, in the case of the magic subgraph an analogous statement, con-
cerning an even more complicated but straightforward generalisation™ of the
degree sequence, holds true.

Analysing the deletion process in directed graphs is difficult

We now turn to explaining why we failed in generalising the proof strategy
of Goerdt and Molloy to the directed subgraphs extended k-core and magic
subgraph.

We remind the reader of the essential ideas that worked for the ‘classical’
k-core. In the G, ,, model it is obvious that conditional on some specific
degree sequence the graph G will be distributed uniformly amongst all graphs
with this specific degree sequence. In order to show that this conditional
degree sequence remains invariant in the course of both shell-wise and single-
node deletion process, we had to essentially show the following.

Given two degree sequences ¢ (‘before’) and ¢' (‘after’), count the pre-
images of each graph! G’ under the action of the deletion process A and
show that their sizes are independent of the specific choice of G' amongst all
graphs with degree sequence ¢’. More specifically, we showed that for any
two graphs G| and G, we can explicitely state a bijection between the pre-
images A7'[G]] and A™'[G)]. This bijection was induced by a relabelling
Ty of the nodes preserving §'. Whenever G} & H is a predecessor of G,

*Re-reading the discussion on p. 63 may help when wondering what the typical ex-
tended degree sequence should look like in the coloured case.
"Even when considering digraphs we shall use the letter ‘G’.
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G, W r[H] is a predecessor of G. Recall that we demanded that both § and
¢ were relevant (i.e. they may occur in the course of some deletion process)
and consistent (i.e. the set of predecessors is not empty). When discussing
generalised degree sequences, relevance implies that certain pictures that may
not appear due to the way the deletion process works.

kel o

Figure 7.2: All cases of bad ‘pictures’ that may appear, and how they are
dealt with by the deletion process. See text for a discussion.

It appears natural to attempt choosing a relabelling 71 o of the nodes,
now preserving the generalised degree sequence ¢'. However, here the prob-
lems arise that we feel unable to overcome at present. Note that there are
several ways for a node of being bad, portrayed in Figure 7.2. We will also
make the deletion process a little more ‘aggressive’ in that pictures of type
¢) (c.f. Figure 7.1) will be reduced to the empty picture at once, since we are
only interested in nodes ‘pointed to’ by at least two directed edges.

The ‘bad picture’ portrayed in the first row of Figure 7.2 we shall call an
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Figure 7.3: Two purged cherries (rectangular boxes) that are not ‘equivalent’.
One cherry has been ‘freshly’ purged, whereas the other has been purged in
a previous step of shell-wise deletion. ‘Non-equivalent’ cherries must not be
identified by 7gr ¢! The grey area stands for some subgraph robust against
the deletion process, e.g. a Ks.

un-purged cherry, and the picture it is turned into by the deletion process a
purged cherry. Now the aforementioned relabelling 7¢: ¢ will identify purged
cherries with purged cherries. But looking at Figure 7.3 shows that this will
in general lead to problems. Some cherries have been purged ‘some while
ago’ in the course of the deletion process and they should not be ‘un-purged’
when looking for predecessors under the given graph, whereas other purged
cherries should. It is certainly no longer true that whenever G| W H is a
predecessor of G|, G, W m[H] is a predecessor of GY.

Matters are even worse. There is a counterexample of two graphs having
the same generalised degree sequence §' but having (respectively) unique
predecessors under the shell wise deletion process with different generalised
degree sequences, ¢; and d,. Thus the number of predecessors with degree
sequence d; is 0 for one graph, say G and 1 for G),. The counterexample is
shown in Figure 7.4. In the graph on the left the shell-wise deletion process
will have purged the cherries in both ‘cranes’ in a symmetric way until there
are no bad edges left. Thus for the left graph, reverting the deletion process
should make all four cherries ‘at the basis of the cranes’ un-purged. Whereas
for the graph on the right, the smaller ‘crane’ on the right hand side will have
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Figure 7.4: Two graphs with the same generalised degree sequence having
(respectively) unique but different predecessors under the shell-wise deletion
process. The grey area stands again for some subgraph robust against the
deletion process, e.g. a Kg. Note by increasing the ‘height of the cranes’ this
example yields a hole class of counterexamples.

been purged before the shell-wise deletion process has terminated. Thus for
the right graph, reverting the deletion process should make only the two
cherries ‘at the basis of the left crane’ un-purged.

At this point we are stuck because we can not answer the following ques-
tions. Are the graphs obtained by a repeated application of the shell-wise
edge deletion process distributed uniformly amongst all graphs with a specific
generalised degree sequence? Does only the proof strategy fail, that worked
so well for the undirected case? Is the graph invariant ‘generalised degree
sequence’ (as defined above) the wrong invariant amongst several other can-
didates for our purposes? Did we choose the ‘wrong’ deletion protocol, in
the sense that it does not lead to the results we expected?

7.2 Attempts to Avoid Analysis of the Dele-
tion Process

The ‘classical’ k-core and other subgraphs such as the the extended k-core
and the magic subgraph can be characterised by deletion processes. Clev-
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erly analysing cleverly chosen protocols of the deletion process will therefore
teach us something about the respective subgraphs, indirectly. Analysing
those processes is possible, but not easy, and seems to introduce unnecessary
overhead. Intuitively, the subgraphs ‘do not care’ about the deletion process
and how we analyse it. We feel that the ‘ideal proof’ could get away without
any reference to deletion processes.

We have discussed (in Section 7.1) to what extent we can generalise the
proof strategy successful for the ‘classical’ k-core to the extended k-core
and the magic subgraph. Our proof, adapting Goerdt and Molloys proof
strategy to the G, ,/Gnm model, is simpler than the original proof of Pit-
tel et.al. ([PSW96]) in that most of the tedious analysis of the single node
deletion process is replaced by studying the set of owners instead. But we
do not avoid deletion processes altogether. Even this remainder makes the
proof far more clumsy than intuitively necessary. Moreover, we were unable
to carry over the proof strategy to the case of (directed) edge deletion pro-
cesses, as far as the treatment of remaining runs is concerned. This is possibly
‘merely’ a technical issue but we would be happy to avoid it. We expect a
proof for the ‘classical’ k-core not having to rely on deletion processes at all
to translate to the scenario of directed subgraphs (essentially corresponding
to the binary owners) in a fairly straightforward manner.

We could settle with a weaker result, the ‘sudden appearance of giant
subgraph that has only o(n) runs’, which can be proved without any reference
to deletion processes whatsoever (Section 5.2). This subgraph is simply the
set of r-owners. Note that this result gives a good deal of structural insight
why a phase transition in branching trees corresponds to a phase transition in
random graphs, and why the numerical values coincide. Yet the set of owners
is only an approximation to the k-core based on ‘semi-local information’
which itself is actually a ‘global phenomenon’.

Ultimately we want to prove the sudden appearance of the k-core and
similar structures and not approximations. How can we ‘get rid’ of the runs
if not by analysing the single node deletion process as we have done for the
‘classical’ k-core? In other words, can we exploit the fact that the radii (n)
(on which the ‘semi-local’ decisions rely) grow with n sufficiently well to
capture the ‘globalness’ of the k-core and related subgraphs?

Arguing similarly as in the sub-critical case

This approach appears to be the most promising and would lead to a short
and elegant proof, if successful.

Remember that in the sub-critical case we knew that there were only
o(n) nodes that might form a non-empty k-core. This result followed from
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predicting the degree sequence of the r-owners. Now without having to refer
to any deletion processes we could indirectly argue that those o(n) nodes
are highly unlikely to form or contain a k-core, essentially considering the
edge-density of any induced subgraph containing less than ¢ - n nodes, for
some sufficiently small ¢ (following Goerdt and Molloy).

In the super-critical case we need to dis-prove that more than o(n) nodes
will be deleted from the set of r-owners. We have done this using the gam-
bler’s ruin argument, but is there a simpler proof?

Intuitively, consider an adversary that is allowed to pick a degree-sequence
as predicted in Lemma 5.3.2. Then he builds a graph obeying this degree
sequence in a worst case fashion. There are #(n) nodes that have degree
exactly 3 and some o(n) nodes that are runs. Presumably the adversary
would take (at least) one run and ‘pile up’ many (6(n)) nodes with degrees
exactly 3 into a neighbourhood of this run. Upon removal of the run all those
‘piled up’ nodes will be removed by the deletion process.

However, it seems very unlikely that such ‘giant piles’ of nodes having
degree exactly 3 will occur in a random setting.

How could this insight be formalised other than by analysing the gam-
bler’s ruin? We think that assuming that more than o(n) nodes, say ¢ - n
for some sufficiently small ¢, are deleted from the set of owners implies the
existence of some subgraph that is unlikely to occur.

Possibly such an argument turns out to be simple, but we were not suc-
cessful in finding one. In view of the sub-critical case the first idea that
jumps to mind is to analyse the edge density in the subgraph induced by
the r-owners that were deleted. Essentially there are only two edges per
node, and the edges connecting the deleted nodes with the remaining owners
must not be counted. Thus the edge density seems - at first sight - indeed
‘atypically low’. It is certainly bounded above by 2. But note that we are
considering subgraphs that are induced by e-n nodes, only. Here the expected
number of edges should be

(62n> ce/n~e?-n/2-c,

and, accordingly, the expected edge density in the induced subgraphs should
be roughly equal to
£-c/2.

But this does not imply a contradiction to the observation that the edge
density is upper bounded by 2 in the induced subgraphs, the smaller £ the
less there is a problem. Let us contrast this to the analysis of the sub-critical
case. Here we know that the edge density of the induced subgraphs is lower
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bounded by 3 and there is a contradiction, the smaller £ the further away is
the expected edge density from the lower bound 3.

Finally note that there is a faint hope that the specific structure of the
degree sequence is such that building up ‘piles’ (as explained above) is impos-
sible for the adversary and more generally that we can deduce the deletion
process to terminate after o(n) steps deterministically. But we neither know
whether this can be true nor do we have any ideas how we should prove such
a statement.

Increasing r(n) is too naive

We first present a ‘naive’ approach that does not work. Remember that runs
can be shown to be rare, because p-owners fail to be (p + 1)-owners with
probability O(t?), only. Now choosing p := r(n) for r(n) growing with n
will lead to increasingly smaller probabilities. When we could choose r(n)
such that the aforementioned probability was o(1/n), the expected number
of runs would converge to zero and there would be none a.a.s. by Markov’s
Inequality. Clearly we would have to substitute p := r(n) = w(logn) in order
to get O(t?) small enough. It is well known that the diameter of a random
graph with constant average degree is roughly equal to logn. Therefore the
r-neighbourhoods will resemble branching trees only for r(n) = o(logn) -
when choosing r(n) larger than the diameter, the branching tree analogy
will be definitely lost. More formally, we can re-inspect the proof of the
Semi-Local Lemma 5.1.5 and see that the inductive proof would break down
when choosing r(n) considerably larger than we have done.

There is a last informal observation to be stated in that context. The
aforementioned problems are in some sense due to the fact that we restrict
ourselves to neighbourhoods with fixed radii when determining whether nodes
are owners, non-owners or runs. Within our framework, we need to do that,
because otherwise we could no longer employ the recursive equations.

Intuitively, the status of the root is very ‘sensitive’ against changes on the
boundary of the r-neighbourhood whenever its cone contains a binary tree
(not necessarily complete) ‘connecting’ the root with the r-boundary, such
that every interior node has degree exactly 3.

We have seen in the context of branching trees that the part of the cone
that has degree exactly 3 can be described by a sub-critical branching tree
with progeny distribution Bi(2, w(c)). Such branching trees will die out after
only (log(n))X(© nodes are discovered, yet this will not always happen in
a ‘balanced’ way, i.e. these sub-critical branching trees will with very high
probability die out after having ‘generated’ (log(n))*(® nodes but not always
within a radius of order loglogn. If that happens, it will be necessary to look
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‘beyond the horizon’ of 7(n). We therefore believe that ownership etc. should
probably be determined not only on the basis of the r(n)-neighbourhood,
but that in the rare cases described above it would be necessary to explore
the graph beyond the r-th shell of the BFS, starting from those nodes on the
boundary that are part of a sub-critical binary tree. We have not found a way
of turning this intuition into something rigorous, but note that the ‘proofs’
for ownership etc. would presumably still be based on the outcome of some
(log(n))"(© edges. So, the vaguely suggested ‘improved’ concept of ownership
could presumably still be decided ‘locally’, in some new appropriate sense.

Extending the ‘test particle’ approach?

What we present next does not work, too, but it is more sophisticated and
there may be faint hope that something can be shown along those lines,
eventually. In Section 5.2 we have successfully applied the ‘test particle’
approach. Apart from having taken into account errors due to finite n we
essentially showed that the probability for being an owner is governed by the
same recurrence equations as in branching trees.

Now, in branching trees we were also able to describe the evolution of
the holes induced by runs. Those holes are branching trees themselves with
progeny distributions Bi(2,7(c)). The expected progeny is less then 1 (see
Section 3.3.2) - such branching trees are well known to die out quickly. So
there is something like a Branching Tree Connection for the evolution of the
hole. Obviously the gambler’s ruin argument, whenever we can get it to
work(!), rigorously proves that this intuition is correct.

We furthermore know that, at least in branching trees, the probability
of the event ‘the root is an r-owner’ is robust against small perturbations
(see 3.3.3). So intuitively one might expect that the impact of ‘knowing’
about some nodes already deleted on the set of owners in the remainder
graph should somehow be small.

Positively speaking, we have pursued the following approach somewhat
similar to analysing the gambler’s ruin process arising from the single node
deletion process, but using only the principle of deferred decisions. The idea
is to describe the evolution of the hole H; by a fanning out process, which
hopefully should die out quickly.

We shall at first be sloppy with the concept of ownership and clarify
problems arising from this afterwards. For ease of exposition, we shall restrict
ourselves to the ‘generic case’, i.e. that each run is adjacent to exactly two
binary owners, and we shall assume that the hole H;, i.e. the set of nodes
that have been removed so far, is a union of trees.
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Suppose we have removed o(n) nodes from the set of owners. Each node v
in the hole H; was an owner w.r.t. the original graph. If v was a run originally,
it was adjacent to exactly two owners (generic case!). Or it was ‘made bad’
because one father in the set of nodes already deleted was removed, in which
case it is adjacent to exactly two other owners. In particular, each node
that is still bad in the boundary of the hole H; is adjacent to exactly two
binary-owner nodes in the remainder graph.

What do we know about the remainder graph? Essentially all we know
is that there are at least some 2 |H;| nodes in the remainder graph that are
binary owners. However, we know that the set of binary-owners has linear
size, anyway, the size being sharply concentrated. Thus conditioning on
having at least 2 |H,| binary owners is conditioning on an event that fails to
happen with sub-polynomially small probability.

One may be tempted to assume (but this will turn out to be wrong!) that
information on how nodes in the boundary of H; are connected to those own-
ers in the remainder graph is essentially an issue of how the edges connecting
H; with the remainder graph are selected. The owners reached by edges from
H, will be Cayley owners w.r.t. the remainder graph with probability strictly
larger than 1/2. And Hy,; should therefore be smaller than H,; by a factor
strictly less than one, on average.

So it seems as if an analysis of the evolution of H; could be possible.
However, when it is true that that the remainder graph is essentially a ‘fresh’
Gnp, as long as only o(n) nodes are removed, it should contain §(¢"™) runs
(c.f. Lemma 5.2.7). So how should the bad nodes die out in the process?

What is wrong? The paradoxical conclusion is due to the aforementioned
sloppiness. An owner w.r.t. the remainder graph is not the same as an owner
w.r.t. the entire graph and we need to study the latter. More specifically,
the ideas laid out in the last but one paragraph are incorrect. It is correct
that the set of owners w.r.t. an arbitrary remainder graph on n — o(n) nodes
is concentrated around what it should be, independently of the outcome of
the edges connecting H; with the remainder graph, see Lemma 5.2.7. But
the Principle of Deferred Decisions may not be applied, as ownership w.r.t.
the original graph depends on the random edges within the remainder graph
and on the edges connecting H; with the remainder graph.
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7.3 Comparing k-Partite and Non-k-Partite
Models

Guided by the intuition that lead to defining the magic subgraph and in view
of the empirically observed ‘almost unique colourability’ one might conjecture
that the magic subgraph is a candidate for a subgraph explaining the jump
in chromatic number. Remember that the appearance of a giant uniquely
3-colourable subgraph would a.a.s. make the chromatic number jump after
adding only o(n) edges, c.f. the discussion in [Mol01].

Unfortunately, the magic subgraph is defined w.r.t. some given tripar-
titton, and it is is not at all clear which tripartition should be used in the
non-tripartite model, in the presence of several proper colourings. We start
with a couple of (confusing) observations.

Proposition 7.3.1 The G, ./,-model, conditional on respecting some spe-
cific (balanced) colouring, is equivalent to the Gn,3,c.c/n model. Ie. the average
degree is reduced to 2/3 - ¢ by conditioning on a specific colouring.

Proof We may assume that the colour classes consist in the node sets
[1,n/3], [n/3+1,2-n/3] and [2-n/3+1,n]. Obviously, this partition induces
a proper colouring if and only if there are no edges within the colour classes.
Since one third of the potential edges in the non-tripartite model lie within a
colour class we have just discounted 1/3 of the potential edges without any
restriction on the other potential edges. Thus the average degree is reduced
to 2/3 - c. 0

Thus Proposition 7.3.1 suggests that conditioning on 3-colourability in
the non-tripartite case might reduce the ‘effective’ average degree. On the
other hand, it seems plausible to assume that whenever c is strictly below the
(unknown) threshold in the non-tripartite model, the graph is 3-colourable
with very high probability. If the probability of failure was sub-polynomially
small, the sum of indicators counting the number of edges should not be
considerably changed, in other words conditioning on the existence of some
proper colouring should not affect the average degree (nor any other ‘rea-
sonable event’), for sub-critical values of ¢. We have tried to discern ‘cases’,
applying Proposition 7.3.1 to all feasible (balanced?!) colourings. But those
‘cases’ do not form a partition of the probability space and we were unable
to perform any rigorous calculations. We remind the reader that the 3-core
appears at the same critical average degree both in the the tripartite and
in the non-tripartite model which is certainly backed by empirical evidence.
Moreover, it is very plausible that our proofs for the appearance of the giant
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k-core can be adapted to the tripartite model without changing the critical
value (we are merely careful not to claim anything that we have not fully
checked).

We thus do not even intuitively know whether the tripartite and the non-
tripartite model should be considered comparable, as far as critical average
degrees for the jump in chromatic number are concerned. Still it is a nat-
ural ad hoc assumption that the jump in the chromatic number from £ to
(k + 1) in the non-k-partite model ‘corresponds’ to a ‘dying out’ of the k-
colourings different from the ‘built in’ colouring in the k-partite model, and
that the critical average degrees might be the same in both models. We find
it worthwhile to discuss the issue here.

We have given empirical and (partial) theoretical evidence for the sudden
appearance of a giant magic subgraph in random tripartite graphs at an
average degree cpr (the values from the Branching Tree Connection), and
this seems to generalise to £ > 3. Let us assume this to be true for the
moment. We encourage the reader to re-read the discussion of Achlioptas
and Molloys upper bound c4,; on the critical average degree for the jump in
chromatic number in Section 2.5.2.

If the assumption described in the last but one paragraph were true the
magic subgraph in the k-partite model should better not appear before the
point where there are no more proper k-colourings. Those critical points were
upper bounded by Achlioptas and Molloy using the First Moment Method.

In the light of the above considerations it is tempting to compare the
numerical values for the appearance of the magic subgraph in the k-partite
model and the upper bound on the colourability threshold in the non-k-
partite model.

k 3 4 5 6 7
can | 5.0434 | 9.1722 | 13.8958 | 19.0778 | 24.632
cpr | 4.9108 | 9.267 | 14.035 | 19.112 | 24.434

Observe that for £k = 4,5, 6 there are c-values such that there are a.s. no
colourings left in the non-k-partite model, whereas a magic subgraph has not
yet appeared in the k-partite model with the same average degree c.

It is therefore natural to ask whether the (First Moment) upper bound
from the non-k-partite model applies to the k-partite case as well. To achieve
a fair basis for comparison, we have repeated the arguments of Achlioptas
and Molloy for the k-partite model, see Lemma 7.3.2 below. We remark that
in order to achieve a fair basis of comparison one could also switch entirely
to the non-tripartite model. But there it is unclear with respect to which
colouring the magic subgraph should be defined, see above.
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Note that the significance of the rigid colourings in the k-partite case is
different than in the non-k-partite case. In the non-k-partite case a non-
empty set of (proper) colouring implies the existence of at least one rigid
colouring and therefore it suffices to show that the expected number of rigid
colourings converges to zero. However, in the k-partite case the set of proper
colourings is never empty by construction and so is the set of rigid colourings.
When arguing that the jump in the chromatic number in the non-k-partite
model should ‘correspond’ to the numbers of proper colourings jumping from
many to one in the k-partite model, one should thus possibly only count ‘or-
thogonal’ rigid colourings, ‘orthogonal’ being defined somehow appropriately,
see our discussion at the end of this section.

Lemma 7.3.2 The upper bound capr on the number of rigid colourings in
the non-k-partite case is not the same as the analogous upper bound in the
k-partite case. Specifically, for k = 4 it is strictly larger than the branching
tree value cgr at which a magic subgraph should appear.

Proof (of Lemma 7.3.2) In [AM99] Achlioptas and Molloy count the rigid
colourings only. The crucial quantity in [AM99] is the function

c/ o
[2 Qi< aiaj] ¢/2 s
— H l—exp| —qj-=—"— ,
[Lied)e 25 22 i i

since the expected number of rigid colourings is bounded above by

n+o(n)
sup f(C, a1, Oy, (3, O{4)
a1,02,03,004

By mimicking their analysis for the k-partite case we get an upper bound

n+o(n)
sup F'(c, (vj)i) :
(ij)i,j

where

F (e, (ij)ig) =
le

[kQT ((aiy‘)i,j)]C/2 B - L ij
gy LI (1 eXP( Zal,y,ﬂ@z‘j)i,j))) ’

J i j<kj'>j i' £
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here (as above) all indices in sums and products are in [k] and

T((aij)i,j) = Z Z Qi Qi i

i<il j#i'

We include detailed calculations below. From now on we assume that
k = 4. Whenever the suprema are less than one the expected number of
rigid colourings converges to zero and there are no rigid colourings a.a.s.
by the First Moment Method. By substituting «;; := «;/4 the function F
reduces to f, therefore

sup  f(c, a1, a0, a3,04) < sup Fle, (if)i)-
ai1,a2,03,04 (@ij)ij

Moreover, for ¢ = cap = 9.172 and even for ¢ = cgr = 9.267 there are
(cvij)i;) such that F(c, (ij)ij)) is definitely greater than one. Choose the
following parametrisation:

1/4—x  z/3 z/3 z/3
z/3 1/4—z z/3 z/3
z/3 z/3 1/4—x x/3
z/3 x/3 z/3 1/4—x

=: a(x). (7.1)

We have plotted = +— F(c,a(z)) for the aforementioned values of ¢ in Fig-
ure 7.5. From that plot it is evident that choosing, say, x = 0.05, yields an
F-value strictly greater than one.

It remains to state details concerning the upper bound on the expected
numbers of colourings in the k-partite model, we proceed analogously as
Achlioptas and Molloy in [AM99].

We will encode all possible partitions of the nodes in ‘built in’ and new
colour classes by k x k-matrices (o;); ;. The rows correspond to the ‘built
in’ colouring and thus the row sums are all 1/k, respectively. Entry a;;
describes the percentage of nodes that were coloured by colour ¢ in the ‘built
in’ colouring and are coloured j by the new colouring encoded by a.

Let
T(a) :=n*1(a) := n? Z Z Qo
i< j#'
be the number of proper colourings consistent with a.
Now a colouring encoded by « is proper with probability

T ()™ 2k
PlC,| = = T(a))™.
I —remy =
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Figure 7.5: Plot of F(c, ) (see Eq. 7.2) along the curve z — a(x) defined in
Eq. 7.1, for caps = 9.172 and cgr = 9.267 .

Next we need the probability P[R,|C,] that a colouring is rigid conditional
on being proper.

PRI < [TTTTT (1 — exp <_Zai,f%>> |
i j<kj'>j i #i

Thus the expected number of rigid colourings is
E[R] =) P[R,] <sup[] n/k P[R,] - n*’
- T S\, e Qg ¢ ’

since there are at most n*’ ways to partition n into k2 ordered summands.
Therefore we get
E[R] < sup F(c, a)" ",

[0
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where

2k c/2 c Qjj
F(c,a)—l[_[ L ijHH(l—exp( Za” 2)) . (7.2)

i j<kj'>j i Fi

O

Note that in the above proof colourings parametrised with the matrix
«(0.05) may certainly regarded ‘orthogonal’; in the sense that they do not
coincide with the ‘built’ in colouring. One may regard the colourings whose
a-matrix maximises F' as the typical colourings. They will presumably be
even ‘more orthogonal’ than the ones restricted to the curve x — a(z).

The above discussion is not satisfactory. In our eyes the problems arising
may reflect the essential weakness of trying to determine the colourability
threshold via the First Moment Method. The appearance of a giant uniquely
colourable subgraph is certainly an appealing feasible mechanism suggesting
an explanation for the jump in chromatic number, c.f. [Mol01]. Yet, even in
the presence of such a giant uniquely colourable subgraph there may still be
many different colourings of the graph as a whole. The unique colouring of the
giant subgraph may be extended to the nodes not in the giant subgraphs in
possibly exponentially many ways, the colours of those node are still ‘flexible’.

From this point of view the refinements of the naive application of the
First Moment Method (see p. 39) may be regarded as an attempt to (par-
tially) reduce the ‘flexibility’ of nodes in the complement of a uniquely
colourable subgraph in order to reduce the number of ‘extensions’ of the
colouring restricted to the uniquely colourable subgraph. As a simple exam-
ple consider the ~ n - Po.(0) isolated nodes. They certainly introduce an
exponential factor in the number of colourings, and by restricting ourselves
to rigid colourings this ‘flexibility’-effect (as well as other more complicated
effects) is excluded. First Moment upper bounds counting colourings are
never wrong, but they may systematically overestimate the threshold due to
the ‘jackpot phenomena’ as discussed. Moreover, it seems very hard to com-
pletely eliminate the ‘flexibility’ without explicitely referring to the uniquely
colourable subgraph, provided such a subgraph was indeed the ‘true reason’
for the phase transition.

So, what is the conclusion of this section? Our Lemma 7.3.2 merely gives
an indication that the First Moment Bounds derived for the non-k-partite
model do not carry over in a straightforward way to the k-partite model.
The thresholds may have different numerical values in the two models, even
though some subgraph similar to the magic subgraph may still be responsible
for the threshold-phenomenon in the non-k-partite model.
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7.4 Further Recurrence Equations

This section contains a heuristic discussion of further recursive equations
indicating phase transition in branching trees. We have decided to include
the material at this point.

The theory of phase transition in sparse random graphs may benefit from
studying recurrence equations for branching trees in two ways. We have seen
that the concept of ownership can be transfered to the ‘corresponding’ graphs
and that we can devise a new rigorous proof for the appearance of a giant
k-core based on the very same recurrence equations playing the central role
for branching trees. The ‘discovery’ of the magic subgraph as the ‘analogue’
to the coloured owners illustrates the second benefit. Motivated by a new
threshold phenomenon in branching trees we set out to find - and found - a
‘corresponding’ giant subgraph that actually appears in graphs. Apparently,
when the root is ‘fixed’ in the branching tree with probability p there seems
to appear a ‘corresponding’ giant subgraph of size p-n in the random graph.

We therefore consider it worthwhile to report on several other recursive
equations that exhibit threshold phenomena. They may serve as starting
points when looking for new giant subgraphs playing some role for under-
standing phase transitions.

7.4.1 Heuristic: Arbitrarily Coloured Graphs

Consider the analogue of what a BFS ‘sees’ in a arbitrarily coloured random
graph. By arbitrarily coloured we mean that all vertices get some colour, uni-
formly and independently, thus the colouring will usually not be proper. This
resembles the starting state of the Antivoter Algorithm, see Section 2.6.1.

We consider a vertex ‘fixed” when it has at least two fixed children of
different colours. This yields a recursive equation associated to

fle,x) = (1 _ 671/3:170) (1 _ (671/310)2) L e lsac (1 B 6’1/3“)2
~—_———— N——

at least one red child fixed no red child fixed

-1 3672/310 + 267:170,

with a critical value at ¢ = 4.1546(. . .).

Indeed, we have empirically observed the sudden appearance of giant
magic subgraphs of random non-k-partite graphs at this critical value, de-
fined with respect to arbitrary random colourings, see Figure 7.6.

However, as opposed to the magic subgraph in the tripartite case this
magic subgraph does not appear to be ‘almost uniquely’ colourable, em-
pirically. Neither does its absence imply some (obvious) efficient colouring
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Figure 7.6: Magic subgraph with respect to an i.i.d. colouring. Value from
the Branching Tree Connection and empirical result of a deletion process on
a random graph with n = 50000 nodes.

algorithm like in the case of the absence of a k-core, c.f. Section 2.5.1. It may
deserve attention when further investigating the ‘correlation’ effect described
on p. 84 in Section 4.3.

7.4.2 Heuristic: Uniquely Colourable Subgraphs

The phase transition in coloured branching trees as explained in Section 3.2
does actually appear to translate to the appearance of a giant subgraph in
the tripartite model. Moreover there is empirical evidence that this sub-
graph (the magic subgraph) may be uniquely 3-colourable or contain a giant
uniquely colourable subgraph. Remember (see Chapter 1) that the advent of
a uniquely 3-colourable subgraph would immediately imply an upper bound
for the 3-colourability threshold in the non-tripartite model. It is by no means
clear whether the thresholds for the tripartite and the non-tripartite model
are comparable (see Section 7.3). In particular, since the magic subgraph
is defined with respect to a ‘built in’ tripartition it is not well-defined in
non-k-partite graphs.
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In the non-k-partite model one feasible mechanism for explaining the
sudden jump in chromatic number goes as follows: In the course of vertex
exposure there suddenly appears a giant uniquely k-colourable graph, imply-
ing chromatic number k41 after only o(n) further steps. Since we know that
below the (unknown) threshold the random graph is k-colourable with high
probability it seems therefore plausible to assume that the graph ‘generated
so far’ contains a certain proportion of ‘fixed” nodes, and condition on the
event that the newly attached vertex has ‘fixed’ neighbours only in £ — 1
of the colour classes, which we further assume to be of roughly equal size.
L.e., we assume that some unknown subgraph of size ¢ - n induced by ‘fixed’
nodes is uniquely colourable. We shall ask for the probability that the newly
attached node is ‘fixed’, i.e. becomes a member of this uniquely colourable
subgraph itself.

This leads to the following recursive equation:

adjacent to fixed nodes in all but one colour

kP [Pogg/s > 0] ¥ P [Pogs = 0]

not adjacent to ﬁx(:drnodes in all colours
For k = 3, ..., 7 this leads to the following critical values, stated in the second

row in the table below.

k 3 4 5 6 7

¢ 4.851 | 8.891 | 13.205 | 17.753 | 22.496
can | 5.0434 1 9.1722 | 13.8958 | 19.0778 | 24.632 |
cpr | 4.9108 | 9.267 | 14.035 | 19.112 | 24.434

Note that those critical values are slightly smaller than the values for
the k-partite model (last row). In particular, they are consistent for all
k = 3,4,...,7 with all presently known upper bounds on the k-colouring
threshold (third row).

7.4.3 Heuristic: Uniquely Satisfiable Subformulae

In the last subsection, where we studied - very heuristically - what may be
the ‘branching tree analogue’ of a uniquely colourable subgraph in the ‘cor-
responding’ random graph. We may also ask for the analogue of a uniquely
satisfiable formula in random 3-SAT with n variables and m = «.-n 3-clauses.

Instead of properly defining things we shall merely give an example for a
‘random’ (rather a generic example of a) formula F avoiding clumsy notation.
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F:(Xl\/Xg\/XQg)/\(X3\/X9\/X12)/\.../\(X18VX27\/X37),

[ J/
-~

m 3-clauses

i.e. such 3-SAT formulae are obtained by collecting m random 3-clauses *.

We can view the 3-clauses as randomly coloured hyper-edges in a random
3-uniform hyper-graph. The nodes correspond to variables that are elements
from the set {X7,...X,}. The ‘colour’ is a number in {0, 1, ..., 7} describing
whether the variables in the 3-clause are negated or not:

Order the variables in each clause (according to the canonical ordering)
and interpret the ‘colour’ as a bit-string (b1, b, b3). The ¢-th variable in a
clause becomes a negated literal if and only if by, = 0. Thus the first clause in
the above example formula corresponds to the hyper-edge { X7, X5, X3} with
colour 1-2°4+0-2 +1.22 =6.

Again we shall assume that those hyper-graphs locally look like ‘trees’.
We will not make this precise and we shall assume that there is some analogue
of vertex exposure. It is not hard to see that we should expect the new
variable X ‘glued to the formula’ (remember our ‘test-particle’ approach) to
participate im roughly Pos, clauses. So 3« is something like ‘average degree’.
The generic case will be that those clauses intersect only in node X. The
variable X will be ‘fixed” if it participates in at least one clause {X,Y, Z}
such that both ‘endpoints’ Y, Z are fixed and the colouring of {X,Y, Z} is
such that the value of X is indeed uniquely determined. It is straightforward
to see that the latter happens for 1/4-th of all possible ‘colours’, that is
truth-assignments of the variables.

We therefore get the recurrence equation

q= fla,q) = ZP03a(z’) -£1 —(1-¢/0H)=1- o—3/4aa®

i

fixed by at least
one hyper-edge

Analysing this recurrence equation yields a critical value at
a = 3.273(...).
Note that this value is consistent with the presently best lower bound
a = 3.26(...).
by Achlioptas and Sorkin (as reported by [Mol01]), but it is far away from
the conjectured (according to [Mol01]) value of « < 4.9,

tWe do not pay any attention to whether we sample with or without replacement,
at this heuristic level. This resembles G,, ,,, there are also models analogous to G, , and
random multigraphs.
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Chapter 8

Discussion and Open Questions

We shall first report on what we consider our most important achievements,
and then make suggestions for future research based on the insights gained
during our studies, in particular discussing how our results and new proof
techniques might be further improved.

8.1 Central Results

We have investigated aspects of the heuristic ‘analogy’ between phase tran-
sitions in branching trees and ‘corresponding’ random graphs, referred to as
the Branching Tree Connection.

We showed that essentially the same calculations that describe phase
transitions in branching trees can be translated into rigorous proofs for ran-
dom graphs, by giving a new proof for the sudden appearance of the giant
k-core in the G, ,, model.

Also, the search for new giant subgraphs that may play an important
role for understanding phase transitions in random graphs can apparently be
guided by first studying new phase transitions in branching trees, which is
a relatively easy task, and then identifying the ‘corresponding’ subgraphs in
random graphs, as we have demonstrated for the new magic subgraph.

New proof for the k-core

In Chapter 5 we proved the sudden appearance of a giant subgraph induced
by the set of r(n)-Cayley owners in the G, ,/G, m model. This subgraph
has minimum degree k for all but o(n) nodes and is closely related to the
giant k-core which has been analysed in [PSW96] by another proof technique
analysing the dynamics of the deletion process.
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Our rigorous proof employs the same recursive equations that are the key
for analysing the intuitively ‘corresponding’ phase transition in branching
trees (as discussed in Section 3.1) and we are thus providing a structural
explanation for why the heuristic predictions suggested by the Branching
Tree Connection are so surprisingly accurate.

Clearly, Goerdt and Molloy should be honoured for being the first to
employ recursive equations related to ‘corresponding branching trees’ for
rigorously proving the sudden appearance of the k-core in random struc-
tures closely related to random graphs, namely random faulty configurations,
in [GMO00]. We have explained their results in Section 2.4.3, also trying to
point out why it is a non-trivial task to generalise their result to the important
Gn.p/Gnm model, which we have done. Our contribution here mainly consists
in the ‘test particle approach’, combined with the ‘Semi-Local’ Lemma 5.1.5,
the proof of which requires somewhat more than an application of standard
concentration tools based on a degree-bounded dependency graph, see Sec-
tions 5.1 and 5.2.

The aforementioned subgraph of r(n)-Cayley owners is only ‘almost’ the
k-core. Again, Goerdt and Molloy have pioneered our proof for the sudden
appearance of a giant k-core in the G,,/G,,, model (see Chapter 6), by
showing that a single-node deletion process applied to the set of r(n)-Cayley
owners will a.a.s die out after only o(n) steps, in the model of random faulty
configurations. Our proof essentially follows the route laid out in [GMOO].
Yet mimicking Goerdt and Molloy’s proof in the G, /G, ,» model required
some additional work on a more or less technical level. In particular, we
showed for the G, ,, model that uniform distribution remains invariant under
the shell-wise deletion process, and that at each step of the single node dele-
tion process the expected increase in the number of ‘bad’ nodes is negative,
both as in the model of random faulty configurations. Negative expected
increase is slightly harder to show in the G, , model, we used a switching
argument.

Directed subgraphs, extended k-core and magic subgraph

Our second central achievement is the ‘discovery’ and formal definition of the
magic subgraph, together with the empirical observations that its appearance
and size follow the values suggested by the Branching Tree Connection in a
completely analogous way as the k-core does, and that magic subgraphs
of random k-partite graphs seem to be ‘almost uniquely colourable’. See
Chapter 4.

We were motivated by the branching tree result as laid out in Section 3.2
in searching for a subgraph that ‘corresponds’ to the set of coloured owners
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just as the ‘ordinary’ owners correspond to the k-core. Surprisingly, the
‘corresponding’ magic subgraph turned out to be a directed subgraph, and
in retrospect we saw that there is an analogous directed subgraph closely
related to the k-core, that is the extended k-core.

Intuitively, the directed subgraphs correspond to the binary owners, ei-
ther coloured or ‘ordinary’, whereas the ‘classical’ k-core corresponds to the
Cayley owners. Remember that when defining Cayley owners we had to make
an exception, taking into account the ‘special role’ of the root, which was
not necessary for binary owners. Further note that, using our results laid
out in Section 4.2, it is a trivial* task to deduce the appearance of a giant
‘classical” k core from the appearance of a giant extended k-core. Finally,
talking about ‘coloured Cayley owners’ does not seem to make sense, and
thus there is no ‘classical’ magic subgraph, possibly reflecting the fact that
the magic subgraph can not be characterised by a node-deletion process.

Considering the arguments laid out in the last paragraph, we think that
analysing directed subgraphs appears to be the most natural approach, mainly
because of the similarity between (extended) k-core and the magic subgraph
seems best reflected in this framework. Having said this we feel even more
dissatisfied that we were not even able to fully generalise the proof for the
sudden appearance of the giant k-core to a proof of the sudden appearance
of a giant extended k-core. This is essentially due to the fact that we could
not prove the invariance of uniform distribution under what seems to be a
natural generalisation of the graph invariant ‘degree sequence’ to directed
graphs, in the course of the deletion processes. We have discussed this issue
in Section 7.1 and we will highlight important ideas concerning this problem
below.

8.2 Future Research

We shall now discuss what can or should to be done next, also highlighting
the most important conclusions that can be drawn from our investigations
described in Chapter 7.

Avoiding the analysis of the deletion process

It should by now be clear that our proofs would become a lot shorter if we
did not have to translate from the G, , model to the G, ,, model, which we
have only done in order to be able to analyse the single node deletion process

*The ‘classical’ k-core is induced by the set of nodes with in-degree at least k w.r.t.
the extended k-core. See the proof of Lemma 4.2.8
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in the second phase. Moreover, once in the G, ,, model, there was still a lot of
work to be done in order to show the invariance of uniform distribution under
the deletion processes for the ‘classical’ k-core and, see pp. 131 in Section 7.2,
for the extended k-core and magic subgraph we do not even know how to
generalise the proof. So, can we avoid analysing the deletion process?

The most promising approach appears to be finding an indirect argument,
similar to the one used in the sub-critical case for the k-core. We know the
degree sequence of the set induced by the r-owners and we know how the
single node deletion process works. Assuming that we need to delete more
than o(n) nodes might deterministically imply that there is some subgraph
contained in the graph which can be shown to be unlikely to appear using the
First Moment Method. We have discussed this idea on pp. 137 in Section 7.2.

The second best approach may consist in trying to ‘translate’ the branch-
ing tree version of the damage process (see Section 3.3.2) to random graphs.
Further material concerning this can be found on pp. 140 in Section 7.2.

There may be a very faint hope that we could give up on considering
r-neighbourhoods only, but still only retain some ‘semi-local proofs of own-
ership’, see pp. 139 in Section 7.2.

Analysing the deletion process in the right way

The reader is encouraged to cross-check with Section 7.1. We have failed
in analysing the invariance of the uniform distribution under the generalised
degree sequence {dr}er during the course of the deletion processes.

Formally, we have considered a graph invariant!, here the generalised
degree sequence, and attempted to show that invariance of the uniform dis-
tribution conditional on whatever value the graph invariant takes, remains
invariant during repeated applications of some deletion protocol. Note that
we are free to both choose practically any graph invariant and practically
any deletion protocol, as long as we can prove what we want in the end.
The existence of these two ‘degrees of freedom’ makes finding the right proof
hard, if there is one at all.

Naturally, we have tried to single out ‘sensible’ invariants and deletion
protocols, we have discussed this in detail in Section 7.1. We shall demon-
strate in the next paragraph that there are still many alternatives left, that
are also ‘sensible’.

When considering the generalised degree sequence we classify graphs ac-
cording to how many of its nodes have 1-neighbourhoods ‘matching’ a cer-

In the strict mathematical sense: a mapping from the set of graphs to some other set
such that isomorphic graphs are mapped to the same object

156



tain ‘picture’® I. We could use more complicated ‘pictures’, say, of the 2-
neighbourhood. Apart from the fact that this leads to ‘combinatorial explo-
sion’ we think that the counterexample portrayed in Figure 7.4 also rules out
this possibility. Since we are dealing with a directed-edge deletion process,
really, we might also consider classifying graphs according how many of its
(directed, undirected?) edges ‘match certain pictures’.

It may further be possible that both choices (deletion protocol and in-
variant) were ‘right’, and only our attempt to generalise the proof for the
invariance of the uniform distribution was ‘wrong’, or that we do not even
need uniform distribution amongst all directed graphs with a given invariant,
in order to prove that the second phase a.a.s. terminates after o(n) steps.

Having depicted this scenario in rather dark colours, we remind the reader
of how strongly the empirical results and the ‘branching tree analogue’ (c.f.
Section 3.3.2) suggest that the directed subgraphs in question ‘behave com-
pletely analogous’ to the k-core. Quite possibly there is just a simple idea
lacking, but lacking it is.

Specify ‘almost uniquely colourable’

We have shown in Chapter 4, that the magic subgraph is not uniquely
colourable, deterministically, but have presented empirical evidence, that
magic subgraphs as found in random tripartite graphs are ‘almost uniquely
colourable’.

More precisely, we have observed, that two different random colourings
found by independent runs of the Antivoter algorithm coincided on the magic
subgraph (w.r.t. the ‘built in’ 3-partition) either completely, or differed oc-
casionally only on a tiny set of nodes. Moreover, the nodes in the magic
subgraph on which the colourings differed appeared to lie in small neigh-
bourhoods of small cycles and the colours of those nodes appeared to be
‘shifted along these cycles’ in a specific way that we are unable to further
describe.

The following questions may be a starting point for theoretical investiga-
tions in order to make sense of those vaguely stated observations.

e How do magic subgraphs with respect to different proper colourings of
the same graph relate to each other?

e Do they, when they are magic subgraphs of a random graph w.r.t.
different colourings, (almost) always ‘coincide’ in essentially the same
node set, as suggested to be true by our simulations?

fRemember that the indices I of the generalised degree sequence may be regarded as
unlabelled ‘photographs’ of feasible 1-neighbourhoods in directed graphs, see pp. 131
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e If they do not ‘essentially coincide’, does this imply the existence of
some subgraph that can be shown to be unlikely to occur in random
graphs?

Finally one may ask whether generating magic subgraphs can be em-
ployed for generating uniquely colourable graphs of large girth, as discussed
in Section 2.6.3.

k-Partite vs. non-k-Partite

The magic subgraph is only well-defined with respect to a ‘built-in’ triparti-
tion. What can we learn about the non-tripartite case?

We have discussed this question in Section 7.3. Yet, essentially we do
not know, to what extent the k-partite and the non-k-partite model with
the same average degree should be regarded comparable, in particular with
respect to predicting critical average degrees.

If the critical degrees were comparable, there would be a ‘contradiction’,
since the chromatic number would have jumped in the non-k-partite model
at average degrees at which in the k-partite model no magic subgraph has
‘vet’ appeared for £k = 4,5,6 which follows from the First Moment Bounds
calculated in [AM99].

We have reproduced the following table from Section 7.3

k 3 1 5 6 7

Cod boc | 4.851 | 8.891 | 13.205 | 17.753 | 22.496
cant | 5.0434 [ 9.1722 | 13.8958 | 19.0778 | 24.632
cor | 4.9108 | 9.267 | 14.035 | 19.112 | 24.434

The last line shows the critical values for the appearance of a giant magic
subgraph in the k-partite model. The last but one line shows the upper bound
on the k-colouring threshold from [AM99], for the non-k-partite model. The
second line shows values predicted by a heuristic and fairly ad hoc guess, when
a uniquely colourable subgraph in the non-k-partite model might appear, see
Section 7.4.2 and below.

In the non-k-partite case, the advent of a giant subgraph that is uniquely
k—colourable yields an upper bound on the k-colouring threshold, as a.s.
adding o(n) additional edges will destroy® k-colourability. But according to
Molloy (see Questions 7.2 in [Mol01]) it is still feasible, though ‘unlikely’,
that the chromatic number might jump before the appearance of a giant
uniquely colourable subgraph that is not a triangle. The aforementioned

§A.s. some edge will connect nodes in the same colour class of the unique colouring.
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‘contradiction’ could thus also be a hint that this ‘unlikely’ scenario is indeed
true, for certain values of k.

A brief aside: In Chapter 4 we showed that there are large uniquely
colourable graphs with an empty magic subgraph, that are ‘built up from a
triangle by adding cherries’, see Lemma 4.2.6. Should they also be excluded
from the statement of Question 7.2 in [Mol01]?

Since we have not presented a rigorous proof for the appearance of a giant
magic subgraph it may be interesting to know that empirically, at least for
the case k£ = 4, the ‘branching tree value’ seems to correctly predict the
appearance of a giant magic subgraph.

All in all, we do not know enough. Certainly, answering the questions
stated on p. 157 should help, because we do not know which magic subgraph
is the ‘right’ one, in the presence of more than one (‘canonical’) colourings,
and how those different magic subgraphs relate to each other.

It is also feasible that another subgraph similar to the magic subgraph
appears in the non-k-partite model at smaller average degree. Possibly at
the value we have referred to as ‘ad hoc’ above, but this is purely speculative.

Finding new subgraphs or sub-formulae?

We knew about the phase transition related to coloured owners in branching
trees (Section 3.1) a long time before we actually ‘found’ the magic subgraph
in random graphs. At least in this particular case we have demonstrated that
phase transitions in branching trees may ‘announce’ the sudden appearance
of certain giant subgraphs in ‘corresponding’ random graphs, the subgraphs
being well defined objects.

We have discussed above that the advent of a giant uniquely colourable
subgraph in the non-k-partite model would be a very interesting phenomenon
to describe. Also, the magic subgraph seems somewhat resemblant the rather
recent concept of a backbone in random SAT formulae, see [BBCT99], which
is closely related to uniquely satisfiable sub-formulae. In Section 7.4.2 and
Section 7.4.3 we have discussed recursive equations that may be interpreted
as describing the appearance of a giant uniquely colourable subgraph in the
non-k-partite model of random graphs with average degree ¢ and that of
a giant uniquely satisfiable subgraph in random instances of 3-SAT with
average clauses to variable ration «, respectively.

This is just an educated guess, but note that the predicted values are con-
sistent with all known upper and lower bounds on the respective thresholds.

See the second row (Caqnoc) in the table on p. 158 for k-colouring. For
3-SAT the heuristic predicts a value of ac = 3.273(...), whereas the best
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known lower bound is 3.26(...). However empirical evidence has been re-
ported that ag.; >~ 4.2.

We do not see any way of performing simulations that might confirm the
appearance of such subgraphs/sub-formulae.

We think that one might be able to study random satisfiable 3-SAT for-
mulae with average clauses to variable ratio o empirically, by implementing
a hyper-edge deletion process analogous to the edge deletion characterising
the magic subgraph. It would be certainly interesting to know what would
happen.

In Section 7.4.2 we have described yet another branching tree heuristic,
i.e. recursive equations, supported by empirical evidence in this case, that
in the non-tripartite model there appears a giant magic subgraph w.r.t. an
i.i.d. 3-colouring, not necessary proper, at ¢ = 4.16(...). But we do not know
what to make of this observation. Neither does its absence seem to imply
an efficient colouring algorithm nor does it appear to be ‘almost uniquely
colourable’.

Algorithmic implications

In the tripartite case we can imagine that the ‘critical slowing down’ of
the Antivoter Algorithm is ‘indicating’ the advent of the magic subgraph.
However, we are far from understanding even intuitively, why the advent
of the magic subgraph should ‘confuse’ the Antivoter Algorithm, and even
further from proving anything.

Yet, note our observations stated in Section 4.3. Apparently the hitting
time of the Antivoter ‘peaks’ slightly before the magic subgraph appears.
Moreover, we have noticed ‘correlations’ between colourings produced by
independent runs of the Antivoter, for critical average degrees strictly less
than 4.91(...). It may well be that the critical slowing down of the Antivoter
and the appearance of the magic subgraph are not causally related. Then
again, it is hard to extrapolate the empirical results performed on graphs
with as little as 3000 or 6000 nodes. We have informally discussed this issue
at the end of Section 4.3.

There are two interesting recent publications that we want to mention in
this context. In [DFO01] Dyer and Frieze are apparently able to show rapid
mixing of the so called Glauber dynamics on random graphs, which is nothing
but the Gibbs sampler (~ Antivoter) described in Section 2.6.1 in random
graphs. The other paper is [ABMO1] by Achlioptas, Beame and Molloy.
There it is shown that a certain backtracking algorithm takes exponential
time to find a satisfying assignment for a random SAT instance with average
degree below the ‘generally accepted’ threshold value.
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Abstraction

The reason that prevented us from writing down Conjecture 1 and Conjec-
ture 2 as proper lemmas was the fact that otherwise we would have had to
repeatedly go through our proofs laid out in Chapters 5 and 6 line by line,
adapting things to a very similar but different scenario (e.g. random tripar-
tite with average degree ¢, instead of random non-tripartite with average
degree c), without essentially adding any new ideas.

One might want to consider defining a class of ‘sparse random combi-
natorial structures admitting a Branching Tree Connection’ that contains
as special instances sparse random graphs, k-partite or not, sparse random
configurations and possibly even random k-SAT-formulae. So, for example,
there would be only one ‘Generalised Semi-Local Lemma’ to be shown, which
should yield similar but different versions that seem plausible to hold for each
specific random structure as corollaries.

Fourier Analysis

The sharpness of both the threshold for k-colourability in random graphs
and for random k-SAT was proved using Fourier analysis, see our Section 2.2.
We have explained that the proof is indirect and therefore does not predict
the threshold value, merely the assumption of a coarse threshold can be
disproved.

In 2.2.3 we have sketched, following [FK96], how the Fourier-Walsh trans-
form of the local property ‘G contains a triangle’ is asymptotically concen-
trated on the Fourier-coefficients that are (a disjoint union of) triangles. We
have the intuition, possibly unjustified, that this reflects the fact that one
only has to ‘look at triangles’ in order to decide the property.

We know that properties such as ‘G contains a giant k-core’ are non-local.
Yet we have in some sense demonstrated that it ‘suffices to look at small
neighbourhoods of radius r = r(n)’, which mostly are tree-like, in order to
determine the apparently closely related property ‘G’ contains a giant set of
r(n)-owners’.

We should definitely leave this to the experts, but we dare to ask: is it
feasible that the Fourier-Walsh transform of the property ‘G contains a giant
set of r(n)-owners’, or even the property ‘G contains a giant k-core’, can
be asymptotically well approximated by considering only Fourier-coefficients
that are trees of radius r(n)? Could this lead to explicitely computing the
threshold value for certain properties?
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List of

Symbols and

Abbreviations

K,,C,

Gn

Gnps Gnim
P[A], P.[A]
X=Xm Yy
E[X], E.[X]
Po.(+), Bi(n, ¢, *)
(a.)a.s.

iid.

0, 0,0, ~
W

W,

Graph with edge set £ and node set V'

Usually, |E'| = m edges and |V| = n vertices,
average degree is ¢ =2-m/n

Degree sequence of ¢

Integrated degree sequence of G, D; := iji d;
Chromatic number of G, girth of G

Complete graph on n vertices, cycle on n vertices

Set of all graphs on n nodes

Random graphs, see Subsection 2.1.1

Prob. of event A on random graphs with average degree ¢
Integer random variables, possibly depending on n
Expectation or first moment of X

Poisson and binomial distributions

(Asymptotically) almost surely

Identically and independently distributed

Landau symbols (n — oo, usually, sometimes r — 0co)
(Branch of the) Lambert-W-function, see [CGH™96]

Relative size Z,/E[u]" of the r-th shell in a p-branching
tree.
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