
INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

EOS: An Epistemological Ontology-driven
System for Knowledge Processing

Dipl.-Inform. Univ. Wolfgang Wohner

Institut für Informatik
der Technischen Universität München

EOS: An Epistemological Ontology-driven
System for Knowledge Processing

Dipl.-Inform. Univ. Wolfgang Wohner

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität Mün-
chen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Krcmar

Prüfer der Dissertation: 1. Univ.-Prof. Rudolf Bayer, Ph.D.

 2. Univ.-Prof. Dr. Manfred Paul, em.

Die Dissertation wurde am 27. Februar 2003 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 22. Oktober 2003 angenommen.

Title of the Thesis:

EOS: An Epistemological Ontology-driven System for Knowledge Processing

Author:

Dipl.-Inform. Univ. Wolfgang Wohner

Keywords:
Knowledge Representation and Processing, Ontologies, Epistemology, Concept Theory

Abstract:

This thesis introduces EOS, a new approach to knowledge representation and processing that
is based on Concept Theory, a unicategorical formalism we developed for defining semanti-
cally enriched formal ontologies. Generally, ontologies are a means for knowledge represen-
tation and reuse. They provide a shared understanding about a knowledge domain. EOS ex-
tends the scope of ontologies by offering means to also formalize epistemological processes,
i.e. guidelines for knowledge processing that may be employed in knowledge acquisition,
generation and retrieval tasks. This general idea is molded into an EOS framework for epis-
temological ontology-driven systems for knowledge processing. On this formal basis we will
show how an actual EOS system can be designed, implemented and successfully put to work.

Table of Contents

Chapter 1 A Reader’s Guide .. 1
1.1 Motivation and Objectives ... 3

1.1.1 Digital Libraries ... 3
1.1.2 The Digital Library Project VD17 ... 4
1.1.3 Cataloging Standards and Metadata... 6
1.1.4 Digital Libraries and Semantic Modeling .. 16

1.2 Orientation.. 18
1.2.1 What is Knowledge? .. 19
1.2.2 Knowledge Management.. 21
1.2.3 Knowledge Representation and Processing ... 22

1.3 EOS Ontologies in a Nutshell .. 23
1.4 The Enterprise of EOS Epistemology .. 24
1.5 Employment of EOS Ontologies.. 24
Chapter 2 EOS Ontologies ... 27
2.1 Knowledge Representation .. 27

2.1.1 Philosophical Foundations ... 28
2.1.2 Formal Ontologies in Information Science .. 31

2.2 Concept Theory .. 32
2.2.1 Syntax... 34
2.2.2 Sets of Concepts ... 38
2.2.3 Kinds of Concepts .. 41
2.2.4 Semantics of Concepts ... 44

2.3 Graphical Notation for Concept Theory .. 54
2.4 Extended Example.. 57
Chapter 3 EOS Epistemology .. 63
3.1 Knowledge Processing ... 63

3.1.1 Philosophical Perspective... 64
3.1.2 Knowledge Processing in Information Science ... 68
3.1.3 EOS Framework... 72

3.2 Epistemology in Concept Theory... 82
3.2.1 On Modeling Epistemological Rules ... 83

TABLE OF CONTENT

 viii

3.2.2 Conditions and Rules ... 86
3.2.3 Laws ... 97

Chapter 4 EOS Systems.. 133
4.1 Application Scenario .. 133

4.1.1 Data on the Web... 134
4.1.2 Semi-structured Data and Document Markup.. 136
4.1.3 Coupling of Formal Ontologies and Document Markup 136

4.2 Classifying Web Pages Using an Exemplary EOS System.................................... 141
4.2.1 An EOS Ontology for Document Classification .. 142
4.2.2 Knowledge Acquisition: Classification of Web Documents.................................. 144
4.2.3 Knowledge Retrieval: Querying Information on Web Documents........................ 148
4.2.4 Knowledge Generation: Semantic Query Rewriting for Querying Documents..... 152

4.3 Representing EOS Ontologies in XML.. 156
4.3.1 RDF and RDFS .. 156
4.3.2 DAML+OIL ... 157
4.3.3 An XML DTD for EOS Ontologies ... 158

4.4 Representing EOS Ontologies in a RDBS ... 164
4.4.1 Graph Representation... 165
4.4.2 The Indexing Algorithm... 168
4.4.3 The Transformation Algorithm .. 170
4.4.4 Relational Schema for Ontology Graphs ... 172

4.5 Prototype Implementation .. 175
4.5.1 Java Classes in Package eos.graph .. 176
4.5.2 Java Classes in Package eos.wrapper .. 178

Chapter 5 Conclusion.. 179
5.1 Current Scope of EOS.. 179
5.2 The Road Ahead... 180

5.2.1 Integration of Particulars under the Open World Paradigm................................... 180
5.2.2 Modeling Sophisticated Knowledge Processing Tasks.. 181

Bibliographic References .. 183

Appendix: Indexes and Tables ... 189
Table of Figures ... 189
Table of Definitions ... 191
Table of Proofs ... 191

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 1

Chapter 1 A Reader’s Guide

This thesis introduces the EOS approach to knowledge representation and processing. EOS
reads ‘Epistemological Ontology System’, indicating the essential aspects of designing com-
puterized management of human knowledge using EOS – epistemological and ontological
properties, as well as their reconciliation in a unifying framework. Epistemology1 and Ontol-
ogy2 are terms affiliated with using and representing knowledge, that have been borrowed
from philosophy where theories of knowledge have a long tradition. In order to provide a bet-
ter access to the basic ideas behind these terms, as well as their influence on current research
activities in the IT community, we will subsequently offer a short introduction to their origins,
the principles they embody and how they are reflected in different areas of computer science.
This perspective will then be used for motivating the goals and requirements of the EOS ap-
proach.

Ontology (literally: the study of being), in its traditional meaning, is used in two senses.
[46] distinguishes the general meaning of ontology depicting the “department of metaphysics
concerned with the nature of existence” as a whole from the more particularized usage of the
term referring to a “specific theory” thereof. In this thesis we are looking at ontologies exclu-
sively in the latter sense of the word, taking the information science perspective, i.e. we un-
derstand ontologies as theories, or models, describing the semantics of a particular knowledge
domain using a specific syntax. In information science, recent research activities have led to
the notion of formal ontologies, providing knowledge representations of different fields of
expertise, i.e. domains. Formal ontologies are used to describe the terms used, as well as their
semantics, implications and interrelationships within such domains, e.g. an “enterprise ontol-
ogy” that outlines a company’s structure and the internal vocabulary used by its employees.
From this perspective, any knowledge representation may be regarded as a formal ontology.
Thus an ontology engineer can look at a relational Entity/Relationship (E/R) model and an
UML diagram alike, identifying both of them as formal knowledge representations, i.e. as
formal ontologies. Their individual representations will certainly differ in format and UML

1 The term epistemology is built from the Greek words episteme (engl. scientific knowledge) and logos (engl. word, defini-

tion).
2 The term ontology is derived from the Greek words ontos (engl. to be) and logos (engl. word, definition). Apart from de-

picting different metaphysical theories Ontology (then written with a capital ‘O’) is often used as a synonym for metaphys-
ics. In order to avoid misinterpretations we refrain from this latter usage of the word.

CHAPTER 1 A READER’S GUIDE

 2

diagrams serve a different purpose than E/R models, yet the common goal of these formaliza-
tions is to provide a conceptualization of a certain problem domain – in the case of an E/R
model this will include the entities, attributes and relations for an application scenario of a
relational database system, whereas UML diagrams are directed towards developing a spe-
cific software application using object-oriented modeling techniques. While E/R models,
UML diagrams and comparable modeling techniques serve a specific purpose in their respec-
tive fields of application, formal ontologies are a general means for designing domain models,
not presupposing any particular application area. A cardinal aim of formal ontologies is to
create a shared understanding of a given subject area [72]. This shared understanding, as pro-
vided by ontologies, may then be used in a variety of contexts. Generally speaking, by pre-
senting a shared understanding, formal ontologies provide a means for communication be-
tween or among people, organizations, and/or software systems alike. This thesis will cer-
tainly concentrate on the employment of ontologies in the context of software systems, and in
particular applications that base decisive parts of their behavior dependent on the formal on-
tologies they accept as an input.

Epistemology (literally: the study of knowledge) focuses on questions about the nature of
(human) knowledge, i.e. what is knowledge and what can be known. As pointed out above,
formal ontologies are being regarded as shared understandings of subject areas, i.e. knowledge
representations describing the respective domains. Thus, in the context of formal ontologies
epistemological questions center around how formal ontologies should be structured, what
they are able to express, and especially how they can be successfully used by software sys-
tems. Questions of this kind determine on the one hand the need for a concise formalism for
ontologies that act as a basis for epistemological processes, i.e. tasks a software system has to
manage, which thus influences the behavior of the system. On the other hand, the definition
of such system internal processes themselves becomes a significant subject matter. Recogniz-
ing this, we designed an ontology formalism we call Concept Theory. Concept Theory defines
the structural elements of formal ontologies within the EOS approach. Next to domain knowl-
edge EOS also distinguishes different classes of epistemological processes that find their on-
tological specification within Concept Theory. This means that the EOS approach extends the
scope of formal ontologies as used in current systems (cf. [75] and [76]). EOS ontologies
based on Concept Theory are not only depicting a shared understanding of a subject domain
but are also covering application semantics, aspects about the system behavior, e.g. inference
rules or guidelines for (personalized) query processing.

In a nutshell, the EOS approach provides the theoretical foundation for formalizing differ-
ent kinds of knowledge that are required for successful knowledge processing. Such formal-
izations can be passed as an input to an actual EOS system, a technique that is described
within the EOS framework. Unlike other knowledge processing systems, an EOS system ac-
cepts not only a formal domain model but also schematized application semantics about the
manner in which domain knowledge should be handled. As a direct consequence, EOS sys-
tems are more flexible than conventional systems because EOS allows for parameterized
knowledge processing. Encoding domain knowledge in a standardized way in order to create
a shared understanding that can be communicated to other parties, belongs to the ontological
foundation of the EOS approach. Its epistemological competency stems from the expressive
power of EOS, which allows for an explicit modeling of application semantics based on the
same formalism that is used to express domain knowledge, namely Concept Theory. The
theoretical framework provided by EOS thus lays the necessary groundwork for designing
and implementing a full-fledged knowledge processing system.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 33

1.1 Motivation and Objectives
In order to characterize the important role of knowledge representation and processing in in-
formation systems, in this motivating section we will refer to a specific class of such systems,
namely digital libraries.

1.1.1 Digital Libraries
Digital libraries (DL) provide access to electronic information collections that are made avail-
able e.g. using Web and database technology. Collections of this kind may range from pub-
licly accessible Web indices, newspaper archives and library catalogues to collections that are
intended for a restricted audience only, e.g. a company’s knowledge base consisting of inter-
nal project documentation, white papers, best practice sheets, etc. Common to any of these
application areas for DL is the basic need for an efficient management of huge amounts of
information, often derived from heterogeneous sources. Efficiency in this respect entails both,
short response times and high quality of service, especially in terms of assisting users in find-
ing the information they are looking for. Therefore, next to storage and preservation of infor-
mation the foremost services of DL are concerning solutions for comfortable information re-
trieval and delivery.

DL typically offer standardized interfaces for querying the information held within their
collections. The most common query interfaces use keyword-based search, categorized
search or a combination thereof. Keywords and phrases, such as ‘database’ and ‘database
managing system’ are eventually transformed into a fulltext search that produces all informa-
tion items (e.g. documents stored within a DL) that contain matching text passages. Many DL
also provide additional features, such as Boolean operators for formulating more complex
queries, e.g. ‘schema OR model’, or a special syntax for specifying text patterns and trunca-
tion. Categorized search, on the other hand, offers the user a predefined set of categories and
subcategories for navigating through the information space of the DL. These categories, e.g.
‘news’, ‘sports’ and ‘politics’, are representing classes of information items that are intended
to provide a structural view of the DL. Finally, combining keyword-based and categorized
search yields a query interface where the user can chose keywords that will only be matched
against the class of information items as determined by one or several selected categories.

The known drawbacks of these search strategies are the limited expressiveness of the
query languages and the insufficient treatment of semantic text properties such as linguistic
diversity or contextual semantics. Keyword-based approaches fail to handle e.g. homonyms
such as the word ‘kiwi’, as one example of linguistic diversity, in a satisfactory way, i.e.
searching for ‘kiwi’ may yield documents on the bird ‘kiwi’, as well as on the fruit ‘kiwi’ or
on New Zealanders who are sometimes nicknamed ‘Kiwis’. Categorized search provides lim-
ited contextual semantics that must be chosen on a rather broad level in order to remain gen-
erally applicable. Yet, exactly for this reason, they cannot account for the specific information
needs of users at different times. In order to overcome these drawbacks, DL can benefit
greatly from conceptual approaches that have recently emerged in the research fields center-
ing on knowledge representation and processing, e.g. a refined conceptual model that is ac-
cessible to the user in combination with an appropriate query language would enable a DL
user to formulate queries that exactly meet his or her information needs. In order to be able to
discuss questions of this kind in greater detail and on a more practical basis, in the following
sections we will refer to an actual DL system and its specific domain background.

CHAPTER 1 A READER’S GUIDE

 4

1.1.2 The Digital Library Project VD17
The DL project called VD173 has been brought to life in order to build, maintain and provide
for public electronic access the German National Bibliography of the years 1601-1700. VD17
is funded by the Deutsche Forschungsgesellschaft (DFG, engl. German Research Founda-
tion), and is currently being built in a joint effort of six German partner libraries4 holding ma-
jor stocks of 17th century prints. The cataloging phase of this project started in 1996 and will
continuously be financed by the DFG for a total period of 10 – 12 years. As a central goal,
VD17 aims at establishing an extensive, for the most part complete bibliography of the esti-
mated 300,000 baroque works still existing today that have been originally published in the
German language area of the 17th century. Cataloging data within this bibliography is being
stored in a central database and supplemented by a number of distributed image databases
holding 1.5 million digitized images of key pages, and provided for world-wide access via the
Web.

1.1.2.1 Data Integration in the Project VD17
In order to succeed, on the technical side VD17 is dependent on the services of a distributed
DL system allowing for cooperative cataloging and advanced searching techniques. For this
reason, FORWISS, the Bavarian Research Center for Knowledge-based Systems, has been
called into the project as a technical partner. FORWISS designed and implemented a DL sys-
tem tailored to the particular needs and specifications of the project, including a distributed
relational database system holding VD17 records as well as complementary pixel images,
along with additional software tools. Key issues that had to be addressed when designing the
VD17 software components were (cf. [45], [44]):

 Supporting cooperation and collaboration of libraries located in different federal states of
Germany and therefore belonging to different library networks, via the Internet.

 Design and implementation of a data model which meets the needs of German cataloging
formats and rules.

 Linkage of the digitized key pages distributed over several databases to their respective
bibliographical records within the central VD17 database.

 Providing world-wide access to the VD17 database for Web-based research.
 Integration of already existing machine-readable bibliographical records of other national

and international book collections covering German 17th century prints.

While the first four issues of the above list pertain to the immediate realization of the project,
which is under the sovereignty of the project partners, integration of foreign records poses
demands of a different nature. In order to successfully import data from foreign sources, it
must be assured that this data either complies with native formats and concepts, or can be
easily translated into them. In case of VD17, the accepted cataloging format is MAB5, a Ger-

3 VD17 is an acronym for the German project title “Verzeichnis der im deutschen Sprachraum erschienenen Drucke des 17.

Jahrhunderts” whose general sense may be translated into English as “German National Bibliography 1601 - 1700”.
4 Active partner libraries are the State Library of Berlin, the Bavarian State Library Munich, the Herzog August Library

Wolfenbüttel, the State and University Library of Dresden, the Research Library of Gotha, and the State and University
Library of Halle. The number of libraries participating in the VD17 project will further increase during the funding period
of the DFG. Another three libraries have already been approved. Additionally, bibliographic records of other libraries that
meet the high standards of the VD17 records will also be included, as has already been

5 The original MAB (ger. Maschinelles Austauschformat für Bibliotheken) had been brought forward by the Deutsche For-
schungsgemeinschaft (DFG) who initiated and financed the development of a standardized machine-readable exchange
format for German libraries in the early 1970s. The MAB working group who has ever since been responsible for further
development and amendments of MAB was later integrated into the Deutsche Bibliothek (German National Library). In
1995 a revised version of MAB called MAB2 was announced by the Deutsche Bibliothek in order to adapt the German ex-
change format so that it could meet the new requirements of exchanging data in online environments. Thus, MAB2 is a

SECTION 1.1 MOTIVATION AND OBJECTIVES

 55

man library standard (cf. section 1.1.3.1). VD17 records are thus compatible with the vast
majority of German library systems. Therefore, integration of bibliographical records from
these libraries poses little technical problems, e.g. in 1999 a set of 17,500 MAB records pro-
vided by the Ratsschulbibliothek Zwickau6 were successfully imported into the VD17 data-
base. However, records in foreign formats, e.g. MARC7 as defined by the Library of Congress
(LC), are usually not directly convertible into MAB without extensive manual work. Issues
that must be taken into consideration in this context are:

 Cataloging Format. What a machine-readable cataloging format (e.g. MAB, MARC) de-
scribes is a classification schema that defines the structure of parsable bibliographical re-
cords. Firstly, a cataloging format specifies a set of entities (e.g. author, title) that are apt
to identify a particular copy of some work, such as a book or a CD. Secondly, it describes
the structure of the work itself (e.g. of a multi-volume work). Thirdly, it defines the inter-
nal organization of bibliographical records (e.g. how information about single copies of a
work and information about the work itself are grouped together, and marked accordingly
for automated parsing). Different cataloging formats may thus be incompatible because of
several reasons (leaving separate naming schemes for semantically identical entities
aside):

- Entities of one format cannot be matched correctly to entities of another format (e.g.
the different understanding of the concepts work and item in MAB and MARC).

- Structures cannot be matched correctly from one format to the other (e.g. multi-
volume books are treated differently in MAB and MARC).

- Parsing information cannot be matched correctly (e.g. MAB and MARC are not fully
compatible concerning their record structures, i.e. the semantics of their parsing in-
structions are also differing).

 Cataloging Rules. Any cataloging format requires additional cataloging rules on how to
insert bibliographical data into the cataloging schema as defined by the standard format,
e.g. how names and initials of persons are quoted. As a common practice, cataloging rules
are standardized separately from cataloging formats. Thus, records complying to one set
of rules defined for a specific format (e.g. German RAK8 rules for the MAB format, cf.
section 1.1.3.1) and records created according to a different cataloging rules standard may
be incompatible even if they relate to one and the same format.

As a consequence, importing foreign records into the VD17 database without manual human
work must fail if the bibliographical data does not follow the cataloging standards used within
the project (MAB and RAK). Even for a notedly German project like VD17 this poses a seri-
ous drawback because important stocks of German 17th century prints can be found world-
wide, especially in the UK and the US, where other cataloging standards apply. The impor-
tance of being able to process non-MAB formats within the bounds of VD17 becomes a vital
factor for German libraries regarding their general holdings. Today, the share of Anglo-
American books present in German libraries amounts to 54% on average (cf. [55]) which

rather modern format compared to other library standards, even MARC. In this thesis we will not differentiate between the
original MAB and MAB2 but subsume them uniformly as MAB.

6 The Ratsschulbibliothek Zwickau is a German library not associated with the project.
7 MARC defines a data format which originally emerged from a Library of Congress led initiative begun in the 1970s.

MARC became USMARC in the 1980s and MARC 21 in the late 1990s. There also exist several other MARC dialects
such as the British UKMARC or the internationally maintained UNIMARC that differ slightly from MARC 21 as defined
by the Library of Congress. We will not go into detail concerning these minor differences within the rather homogeneous
MARC world and simply refer to them as MARC.

8 RAK is an acronym for the German “Regeln für die Alphabetische Katalogisierung” (engl. Rules for Alphabetic Catalog-
ing).

CHAPTER 1 A READER’S GUIDE

 6

turns the ability to parse already existing bibliographical records of Anglo-American libraries
(complying to MARC) into an economic factor. At present, German library systems working
with MAB are not able to automatically import bibliographical data in foreign formats. Such
records still require individual manual labor before they can be integrated into local German
systems, which is an inefficient and costly procedure.

This describes a current dilemma within the library world. On the one hand, libraries are
heavily using DL systems for maintaining and offering their bibliographical data, which al-
lows for fast and easy data exchange and integration in electronic form. On the other hand,
data exchange and integration requires cataloging standards that are universally accepted. As
already pointed out in this section, existing cataloging standards, such as MAB and MARC,
are not compatible with each other. Several national and international initiatives (cf. [28],
[27]) have therefore tried to harmonize library standards. However, to this day neither a uni-
versally accepted new standard has evolved, nor has one already existing standard replaced
the others. There are different reasons for this status quo, from an economic and from a cata-
loging point of view. [37] present an impressive list of disadvantages in case German libraries
were to abandon their cataloging standards. An immediate solution to this problem on con-
ventional grounds has not been found during long years of debate. Yet, recent developments
in the area of defining and using metadata in the context of knowledge representation and
processing promise to offer new perspectives. Regarding cataloging standards as metadata on
bibliographical records related to the items of library holdings makes advances e.g. in the area
of ontology engineering applicable to this problem.

1.1.3 Cataloging Standards and Metadata
This section takes a closer look at some prominent cataloging standards that define formats
and rules for bibliographic records such as the information stored and managed by the VD17
DL. The discussion will mainly concentrate on MAB/RAK and MARC/AACR, and how they
touch on related metadata and Web standards such as XML and Dublin Core (DC).

MAB (ger. Maschinelles Austauschformat für Bibliotheken) and MARC (MAchine-
Readable Cataloging) are standard formats for the representation and communication of bib-
liographic and related information in machine-readable form. These formats define the struc-
ture of bibliographical records, similar to DTDs9 that are describing the structure of XML10
documents. From a technical point of view, MAB and MARC thus are metadata schemas for
cataloguing books and other media according to a set of predefined categories such as book,
title, author, year, etc. Bibliographical records complying to these standard formats are (in
their electronic form) machine-readable classifications that can be processed and used by li-
brary applications, such as the VD17 DL. In particular, data exchange with the VD17 data-
base has been realized via a MAB interface, i.e. the DL system reads in records complying to
MAB which are then stored in a relational database, from where records can again be ex-
ported in MAB format.

Librarians are creating and maintaining bibliographical records, i.e. standardized descrip-
tions of (mainly) printed publications. This activity originally involved hand-written catalog
cards that were held and organized in (physical) catalog shelves inside a library building –
usually organized redundantly, sorted once per authors’ names, and once per subject area.
Since the 1970s bibliographical records were increasingly stored digitally, so that, nowadays,
electronic catalogs have substituted former card systems in most institutions. Bibliographical

9 DTDs (Document Type Definitions) are used for specifying the structure and elements of XML documents.
10 XML, the eXtensible Markup Language, is used for generating semi-structured documents containing user defined meta-

information (markup) on the textual content of the documents.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 77

records in modern systems are, e.g. CIP-records and tables of content when included in the
document, as well as catalog records when stored in separate Online Public Access Catalogs
(OPACs) or abstract and index databases. From a technical point of view, MAB and MARC
records are digital representations of information used for describing (mainly) print media and
thus simply are a specific kind of metadata. Metadata, generally speaking, consists of descrip-
tions of objects, documents or services which may contain information about their form and
content. This means that metadata represents “data about data” and is thus semantically inde-
pendent from the data it is describing. Therefore, it may be part of the resources themselves or
kept separately from them. Concerning print media held in stock by a traditional library, bib-
liographic information is naturally kept separate from the works themselves, either on catalog
cards or, nowadays, in electronic records.

With the advent of the Web and the immensely growing supply of electronic documents
(e.g. in the formats HTML, XML or PDF) the possibility to store a work along with its ac-
companying metadata has become ubiquitous. Analogous to the need for effective classifica-
tion schemas for printed works that resulted into the definition of cataloging formats, the huge
amount of digital documents demands corresponding metadata standards in order to facilitate
searching and filtering the information offered on the Web. In this context DC, a compara-
tively new metadata standard for digital documents, became popular.

1.1.3.1 MAB and RAK
The first version of the German MAB standard was published in 1972. MAB defines a cata-
loging format comprising about 700 different categories, called fields. Developed and pro-
moted by the Deutsche Bibliothek, it quickly became the standard format for exchanging bib-
liographical records among German libraries in electronic form. An excerpt of a MAB classi-
fication of the VD17 book “Der aus dem Grab der Vergessenheit wieder erstandene Simpli-
cissimus” by Hans J.C. v. Grimmelshausen is given in Figure 1.1. It contains original biblio-
graphical data extracted from the VD17 database.

001 23:233330V
005n19961113
100 Grimmelshausen, Hans Jakob Christoffel ¬von¬
101 Schleifheim von Sulsfort, German
198 Boener, J. A.
198 Meyer, Joh.
331 ¬Der¬ Aus dem Grab der Vergessenheit wieder erstandene
 Simplicissimus
335 Dessen Abentheuerlicher und mit allerhand seltsamen/ fast
 unerhörten Begebenheiten angefüllter Lebens-Wandel ...
 vermittelst Scharfsinnigen Lehren/ wohlkommenden Anmerckungen
 und schönklingenden Poetischen Versen/ auch recht lebhafften
 Kupffer-Bildnüssen ... vorgestellet wird
410 Nürnberg
412 Felßecker
413 Nürnberg
414 Felsecker, Johann Jonathan
505 Nebent.: ¬Deß¬ Teutschen Simplicisimi Redi-vivi Lust- und
 Lehr-reicher Schrifftenmarck
511 Erscheinungsjahr im Bd. 1 auf Zwischent.: 1683. - Bd. 3 von
 1699 erschien bei Felsecker, Johann Jonathan <Erben>
523 Erschienen: 1 (1683) - 3 (1684); 3 (1699)
675 Anmerkungen // Kupferbildnissen // Schriftenmarkt
710 Roman

CHAPTER 1 A READER’S GUIDE

 8

Figure 1.1: MAB Example

As indicated in Figure 1.1, MAB is built upon a category schema consisting of 3-digit num-
bers that are representing predefined concepts, e.g. author, title, belonging to the same work
(usually a book). For example, the line

100 Grimmelshausen, Hans Jakob Christoffel ¬von¬11
simply states that the string “Grimmelshausen, Hans Jakob Christoffel ¬von¬”
falls into MAB category 100. The semantics of category 100 associate record entries in this
field with the first author of the respective book. Accordingly, in the above line “Grimmel-
shausen, Hans Jakob Christoffel ¬von¬” must be interpreted as the name of the
first author. Similarly, category 331 indicates the main title (“¬Der¬ Aus dem Grab der
Vergessenheit wieder erstandene Simplicissimus”) of the same book, category
335 is used for additional titles (“Dessen Abentheuerlicher und mit allerhand
seltsamen/ fast unerhörten Begebenheiten angefüllter Lebens-
Wandel…”), and, likewise, all remaining categories are interpreted according to their MAB
semantics as defined in the MAB standard.

 Most MAB fields are further subdivided into a set of related concepts, or subcategories,
using 1-digit MAB indicators. In the second line of the MAB record in Figure 1.1, for exam-
ple, indicator n is used with category 00512. Next to classifying single works, MAB can also
be used to catalogue hierarchical structures such as multi-volume works, collections (i.e. sev-
eral works published in one volume), supplements (e.g. maps or CDs), etc. In fact, Figure 1.1
shows an excerpt of a MAB record that, in its entirety, describes a three-volume edition of the
novel by Hans J.C. v. Grimmelshausen.

As MAB only defines a cataloging format, it does not per se account for any cataloging
rules, i.e. the exact way in which bibliographical information of a particular work is trans-
ferred into the category schema. This is not a trivial question, i.e. bibliographical records may
take on very different forms depending on the cataloging rules applied. Referring to the above
example, the line

100 Grimmelshausen, Hans Jakob Christoffel ¬von¬

suggests that MAB category 100 must be of the form
100 <last_name>, <first_name>.

Yet, strictly, this is not the case. In fact, MAB itself does not specify the internal structure of
category entries. Thus, the above line could as well be written

100 Hans Jakob Christoffel ¬von¬ Grimmelshausen

and would (according to the format definition by itself) still be MAB compliant. However, for
machine processing it is necessary that record entries do follow a predefined schema in order
to render applications able to interpret MAB data correctly. This is done using cataloging
rules. In general, cataloging rules are defining on the one hand what data about a work will be
used for creating a bibliographical record, e.g. whether a foreword author is mentioned at all

11 According to German cataloging rules, using the non-sort markers (ger. Nichtsortierzeichen) ‘¬’ causes the enclosed word

to be omitted in sorting processes, e.g. ‘¬von¬’ signals that the substring ‘von’ in ‘Grimmelshausen, Hans Ja-
kob Christoffel ¬von¬’ should not be considered by MAB parsers when building e.g. a fulltext index on the re-
spective category, in this case category 100.

12 Category 005 within MAB denotes the date of change of the respective records, i.e. whenever the contents of a MAB
record are altered (e.g. for correcting or completing bibliographical data), category 005 serves as a time stamp of this
transaction. MAB provides two indicators for category 005, n and v: 005n specifies the date of the last transaction on the
record, while 005v denotes the date of the last but one transaction.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 99

within the record or not13. On the other hand cataloging rules are describing how the data is
entered into the category schema, e.g. RAK specifies how names of persons within MAB
category 100 are treated.

RAK consists of a body of about 430 paragraphs containing a complete set of cataloging
rules for the MAB standard. Originally, RAK was designed for cataloging print media using
traditional index cards, but has already been modified for a better support of electronic and
online processing techniques (cf. [37]). The RAK standard is subdivided into groups of rules
covering basic concepts (§§ 1-35), general rules (§§ 101-193), main headings (§§ 201-208),
person names (§§ 301-342), corporate bodies (§§ 401-486), titles (§§ 501-524), main and
added entries (§§ 601-696), titles for main and added entries (§§701-715), and additional
rules (§§ 801-823).

MAB format definitions and RAK cataloging rules are specified in natural language and
intended for guiding librarians when cataloging books and other media. Thus, MAB and RAK
cannot be used directly e.g. as an input to a knowledge processing system that would then be
able to correctly interpret bibliographical records that comply with MAB/RAK. Conse-
quently, for any system that does work on bibliographical records MAB and RAK definitions
have to be translated into the design of the system. This can be achieved either by implement-
ing these definitions into the algorithms of the different system components, or by using a
separate knowledge representation of MAB/RAK which can be parsed by the system. In the
VD17 project we chose a middle way between these two options. VD17 system components
know the hierarchical makeup14 of MAB and the basic structure of MAB records. The cate-
gory schema and according processing instructions are defined in a separate so-called “con-
figuration file”. The format of this configuration file has been designed so that VD17 compo-
nents can parse it efficiently. In its simple form, the VD17 configuration file therefore is a
knowledge representation of MAB categories and how they should be processed by the VD17
DL.

1.1.3.2 MARC and AACR
The American cataloging format MARC was designed by the LC and put to use in 1969.
While MAB is basically limited to German libraries, MARC has found its application area on
an international scale, encompassing among other countries the complete Anglo-American
language area. The set of about 330 MARC data elements make up the foundation of most
library catalogs currently used in these countries. Because of their extensive publishing pro-
ductivity and economic weight, today, MARC is the most recognized format for exchanging
bibliographical records among libraries all over the world. Consequently, even libraries that
are using other authoritative bibliographical standards, such as the German MAB, are facing
the need for translating their local formats into MARC, be it because they want to integrate
foreign records into their own systems or that they are offering their bibliographical data to
the international library community.

13 Neither MAB nor MARC possess a separate category foreword author. It depends on the cataloging rules if a foreword

author is mentioned at all, e.g. on equal terms with the book authors. With MAB this is not the case, i.e. information about
foreword authors is omitted completely, while MARC cataloging rules allow for mentioning foreword authors in the title
category.

14 MAB knows a strict hierarchical schema, the “Gesamttitelhierarchie”, for cataloging multi-volume works: information
that is valid for all volumes (e.g. publisher, general title, etc.) is stored separately from information about the different vol-
umes, and these records are interconnected. The same accounts for bibliographical data about the various copies of these
volumes. The resulting hierarchical structure defines the work as a whole, respecting multi-volume works as such within
MAB record structures. MARC cannot handle such structures: either the complete information about a work is stored in
one single record (including all general and volume information), or for each volume there exists a separate record (with-
out reference to the other records).

CHAPTER 1 A READER’S GUIDE

 10

005 19961113
100 1# $a Grimmelshausen, Hans Jakob Christoph von, $d 1625-1676.
245 14 $a Der Aus dem Grab der Vergessenheit wieder erstandene

Simplicissimus $b Dessen Abentheuerlicher und mit allerhand
seltsamen/ fast unerhörten Begebenheiten angefüllter Lebens-
Wandel ... vermittelst Scharfsinnigen Lehren/ wohlkommenden
Anmerckungen und schönklingenden Poetischen Versen/ auch recht
lebhafften Kupffer-Bildnüssen ... vorgestellet wird

260 ## $a Nürnberg, $b Felßecker, Johann Jonathan, $c 1683-99.
312 #4 Deß Teutschen Simplicisimi Redi-vivi Lust- und
 Lehr-reicher Schrifftenmarck.
214 ## Anmerkungen, Kupferbildnissen, Schriftenmarkt

Figure 1.2: MARC Example

Figure 1.1 shows a bibliographic record in MARC. Similar to MAB categories, each bib-
liographic record in MARC is divided logically into fields. There is a field for the author, a
field for title information, and so on. These fields are subdivided into one or more subfields.
MARC fields are represented by 3-digit number, or tags15. A tag unambiguously identifies the
field, the kind of data, that follows, e.g. an author or title entry. The tag is followed by one or
two one-digit indicators, usually numbers, though MARC also allows letters to be used for
specifying indicators. Unlike MAB indicators who specify subcategories, MARC indicators
mostly denote processing instructions, e.g. the second indicator for the title field 245 displays
the number of characters at the beginning of the field (including spaces) to be disregarded by
the computer in the sorting and filing process – an instruction that MAB expresses using the
non-sort markers ‘¬’ (cf. the discussion following Figure 1.1). As already mentioned, most
MARC fields contain several related pieces of data that refer to subfields. For example, the
field for a book’s physical description (defined by the tag 300) includes a subfield for the ex-
tent (number of pages), a subfield for other physical details (illustration information), and a
subfield for dimensions (centimeters). Each subfield is preceded by a subfield code, com-
monly a lowercase letter (occasionally a number) preceded by a delimiter, i.e. a character
used to separate subfields (in the example MARC record shown in Figure 1.2 the delimiter
character is ‘$’). Each subfield code indicates what type of data follows it.

Cataloging rules for MARC records are defined in the AACR standard that has been de-
signed for use in the construction of bibliographic catalogues and other lists in general librar-
ies within the Anglo-American community. The rules cover the description of, and the provi-
sion of access points for, all library materials, such as print media, CDs, etc. Similar to the
RAK standard for MAB records, AACR rules are the standard way to create and interpret
bibliographical data complying to MARC. The AACR standard is divided into two parts, one
covering rules dealing with the different types library materials, and the second defining how
to handle headings, uniform titles and references. knowledge representation of MAB catego-
ries and how they should be processed by the VD17 DL.

1.1.3.3 Dublin Core

The name ‘Dublin Core’ (DC) is actually a shorthand for the Dublin Metadata Core Element
Set, a list of metadata elements that has been agreed upon at the OCLC/NCSA Metadata
Workshop in March 1995 (cf. [74]). The objective of DC has been to define a minimal set of

15 Though on-line catalogs using MARC as their internal format may display the names of the fields, the names are supplied

by the system software, not by the MARC record. The same accounts for MAB based systems such as the VD17 DL.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 1111

15 data elements so that authors and publishers of Web documents could annotate their prod-
ucts on a common basis. DC can be viewed as a compromise between highly structured bib-
liographic data such as MAB and MARC records and simple annotations for automatic index-
ing as it is done by Web crawlers or locator services such as Lycos.

The DC element set consists of (with obvious semantics): TITLE, CREATOR, SUBJECT,
DESCRIPTION, PUBLISHER, CONTRIBUTORS, DATE, TYPE, FORMAT, IDENTIFIER,
SOURCE, LANGUAGE, RELATION, COVERAGE, and RIGHTS. All elements are optional
and repeatable. DC annotations have been mainly used with HTML pages using the HTML
META tag. An HTML version of the book by Hans J.C. v. Grimmelshausen as introduced in
Section 1.1.3.1 could include annotations as listed in Figure 1.3.

<META NAME="DC.title"
 CONTENT="Der Aus dem Grab der Vergessenheit
 wieder erstandene Simplicissimus">
<META NAME="DC.creator"
 CONTENT="Grimmelshausen, Hans Jakob Christoph von">
<META NAME="DC.publisher"
 CONTENT="Felßecker, Johann Jonathan">
<META NAME="DC.type"
 CONTENT="Roman">

Figure 1.3: DC Example

Providing metadata for Web documents using the DC element has marked an important im-
provement. DC allows producers and publishers to annotate their Web documents in a simple
way that does not require any specific expertise in cataloging. Yet, the category schema it
provides can certainly not meet the high standards of cataloging formats such as MAB and
MARC. From a cataloging point of view, DC describes a minimal set of document properties
that are required in bibliographical records but do not suffice to catalog library stocks in a
satisfactory way. There have been various proposals to extend the DC core element set, but as
[20] argues correctly, it is hardly possible and even undesirable to define one single metadata
standard that can accommodate all present and future requirements of all communities. As we
will argue in more detail in the following sections, even within the highly specialized and
restricted library community it has not yet been possible to specify one commonly agreed
upon cataloging standard. On the contrary, the existing major cataloging formats have proven
to be incompatible to an extent that makes automated format conversions a difficult and in
some respects unresolved task, which is the status quo current library systems have to deal
with.

1.1.3.4 Library Systems and Cataloging Standards

Library systems, e.g. OPACs and DLs, rely on well-defined data formats, such as MAB and
MARC, in order to be able to interpret and manage bibliographic records correctly. In the
library world according guidelines are provided by different sets of cataloging rules, e.g.
RAK rules for MAB records and AACR rules for the MARC format. Cataloging rules were in
the first place meant for catalogers who are using them for creating bibliographical records
describing a work. The product of cataloging, however, is eventually a catalog or database of
such records, managed by a library system and is usually meant for use by the public. Users
of systems providing catalog (meta)data, such as the VD17 DL, expect library catalogs to be
intuitively understandable, and this means there has to be a transparent structure with clearly

CHAPTER 1 A READER’S GUIDE

 12

outlined semantics. This is what cataloging formats and rules are providing. [78], [26] give a
list of features a library system should offer:

 Reliability. Catalog users should be able to ascertain quickly and with certainty if the item
is in the collection or not. In an unreliable catalog it may require potentially many trials
before one can be sure.

 Serendipity. Taking search result sets as a starting point, browsing functions are essential,
firstly because one doesn’t always have precise search criteria, and secondly because
chance findings are often valuable. Catalogs should therefore make related materials
browsable16. Library systems can, for example, support browsing in the following ways:
- provide alphabetical indexes of names, terms, titles, etc.
- present result sets in more than one arrangement for the user to choose
- make related publications accessible via hyperlinks

 Depth. This feature covers two aspects that are not exactly part of cataloging:

- a policy saying what materials or objects are subjected to cataloging. Classically,
these are (complete) books. However, a book may consist of several meaningful parts,
each of which is representing a unit that might become the subject of a bibliographic
record itself, e.g. proceedings volumes or periodicals. Readers will, in many cases, be
interested and thus actually be looking for a chapter or parts of a book rather than the
whole volume. If cataloging restricts itself to title page information, the catalog will be
completely oblivious to all the constituent parts of books. One important case are
"multipart publications" with individually titled volumes and how they are to be repre-
sented in a catalog: the focus of European cataloging (e.g. in MAB) is concentrating
on the parts, whereas American catalogers (using MARC) have more often perceived
multipart works as a whole.

- a concept for subject indexing. Usually it does not suffice to simply assign a few sub-
ject terms and/or classification symbols to a document to nail down its content matter.
The aim, on the other hand, should be to index every or the relevant part of all subjects
that is actually dealt with in some part of the publication (cf. [26]).

Considering the above list of requirements and following [19] one can define essential proper-
ties for library systems. We will shortly characterize these properties and set them into rela-
tion with the services offered by the VD17 DL. The core principles for the definition of cata-
loging standards should optimally result in a catalog (interface) that:

 makes the available materials reliably findable: The user must be able to find with cer-
tainty each object in the collection according to specified characteristics that are normally
in or on the object, e.g. titles and names of persons. The idea is that, for the majority of
search scenarios, a small set of characteristics should suffice for finding a work if it is
contained in the catalog.
Book characteristics in the VD17 DL are realized through a set of 15 so-called structure
fields. Each structure field pertains to a class of characteristics, e.g. there is a structure
field “title” encompassing entries for main titles, title propers and secondary titles, and
another structure field “first person” containing authors, translators, publishers, etc. All of
these structure fields are searchable through the VD17 user interface, either separately or
combined into complex queries using Boolean operators. If necessary, structure field
search can also be used in combination with fulltext searches.

16 The question what “related” means within a collection is, of course, not a trivial one to answer. The quality of a catalog,

however, will depend to an important degree on its capability to inform users about affiliated and correlated works, e.g.
concerning authors, subjects, secondary literature, etc.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 1313

 differentiates among the dissimilar: Each object should be described succinctly but in
sufficient detail that it can be distinguished from any other object in the collection. Essen-
tially, the criteria for describing objects are laid out in the cataloging format definition the
catalog uses internally.
The internal data representation format of the VD17 DL is MAB. Accordingly, each
VD17 document possesses a unique identifier (stored in MAB category 001), similar to a
ISBD number. VD17 identifiers are organized in an according searchable structure field.
Furthermore, VD17 records are such that a combination of the structure fields first person,
title, year and volume will distinguish any document from all others within the VD17 DL.

 relates and displays together objects that belong together: The catalog must be able to
provide the user contextual interrelations among its objects, e.g. the works of one and the
same author, the available editions or versions of a work, or the components parts of a
multipart work or a series.
Contextual interrelations within the VD17 DL are partly immediately accessible, partly
interrelations must be actively queried by the user. Immediately accessible are all hierar-
chical relations of multivolume works. Works by the same author, different editions or
versions of works must be searched using the appropriate structure fields.

 clearly displays that which is found: If there are several or more entries in the catalog that
meet the search criteria, the catalog should present them in a clear manner that facilitates
selection by the user, e.g. using sorting capabilities.
The VD17 DL allows the user to determine the way a result list is displayed in two ways.
Firstly, large result sets are split into several result pages where the user may chose the
number of hits shown per page. Secondly, the user can chose whether hits are sorted by
first person, title or year (with the option that multivolume works are sorted consecutive
by volume number).

 makes the selected object accessible: The user is interested in the quickest way of access-
ing the selected object. Card catalogs display only the location and call number; online
catalogs, on the other hand, can lead directly from the record to use: they can facilitate the
ordering or reserving of an item, or link one directly to the document online, if available.

All documents of a VD17 result set listing are accessible directly via HTML links (each
book title of the result list acts as a link to the respective document). Within each docu-
ment page that consists of the bibliographical data of an individual work, there is also a
list of links to related digitized key pages of this work.

In order to meet these requirements and provide services as outlined above, a computer sys-
tem managing catalog data, such as the VD17 DL, must be able to interpret this data cor-
rectly. This means that the system depends on an adequate model of the bibliographical re-
cords it handles and accepts as an input. In the library world such models are inherent in cata-
loging formats and rules that provide the syntax and semantics for bibliographical records,
MAB/RAK in the case of VD17. This poses no problem as long as all data such a system has
to manage complies to one format alone, or at least it must be assured that there exists an al-
gorithm for converting foreign data into the native format. Even with VD17, a project limited
to German prints published in the 17th century, a significant portion of relevant works can be
found abroad, e.g. in stocks of the LC. Yet LC records are coded in MARC/AACR that are
based on a model that differs significantly from MAB/RAK.

Different cataloging standards are unfortunately using models that may be incompatible to
an extent that makes it impossible to convert data from one standard to another without man-
ual labor. As mentioned above, MAB/RAK and MARC/AACR records exhibit significant
differences, e.g. concerning the treatment of multivolume works. Even within relatively ho-

CHAPTER 1 A READER’S GUIDE

 14

mogeneous library standards such as the family of different MARC dialects, format conver-
sions must not be seen as a trivial task. Even more so, records of more remote formats such as
MAB and MARC cannot be easily aligned into a homogeneous data set (pertaining to a single
data model). In fact, incompatibilities between MAB/RAK and MARC/AACR have grown to
be a well-recognized deficit that poses a significant obstacle to exchanging data between
German and Anglo-American libraries. For this reason, the VD17 partners had to refrain from
importing LC records into the VD17 DL.

1.1.3.5 Harmonization of Cataloging Standards

Various international projects and conferences have been recently focusing on questions con-
cerning the harmonization of cataloging standards. Harmonization in this context subsumes
all efforts to either define a mapping between library standards (e.g. MAB/RAK and
MARC/AACR), to propose an outline of (desirably minor) changes to these standards which
would allow for such a mapping, or to specify a new standard that acts as a format unification.
Finding solutions to these questions is a task that has been addressed in various international
initiatives:

 UseMARCON (Telematics for Libraries Project No. 2054) [65] is a EU funded project
that was aimed at developing a toolkit for converting bibliographical records in different
MARC variants17. It was completed in 1997, resulting in a software package for managing
UNIMARC, UKMARC and USMARC records. Yet, concerning bibliographical compati-
bility, UseMARCON does not go beyond the MARC world, and therefore cannot provide
results that would be helpful for more complex tasks such as harmonizing MAB and
MARC (cf. reuse_final_report.html]).

 The joint project “Harmonization of Anglo-American Cataloguing Rules and Russian
Cataloguing Rules (RCR)” [60] was initiated in 1996 by the Russian Library Association
(RBA) and OCLC. Financed by the Ministry of Culture (Russia) and OCLC, the project
yielded a comparative table of 120 major differences between AACR and RCR. These re-
sults were the basis for a first list of recommendations open for discussion concerning pos-
sible changes of AACR and RCR in order to achieve a better foundation for exchanging
bibliographic records between Russian and Anglo-American libraries. Although the pro-
ject members could not offer a working solution for this problem, these efforts can be seen
as an important step towards harmonization.

 REUSE [55], [28] and REUSE+ [27] are two consecutive projects carried through during
the years 1995 – 1998, focusing on enhancing bibliographic compatibility among libraries
using MAB/RAK and MARC/AACR. The project partners, members of the State and Uni-
versity Library of Göttingen (SUB Göttingen) and OCLC, studied format and rules differ-
ences that impede harmonization between the German and Anglo-American library stan-
dards. The goal of the REUSE projects was to identify these differences and to provide
guidelines for an enhanced reuse (hence the project names) of MAB and MARC records.
For the remainder of this section we will take a closer look at the REUSE efforts that offer
a more detailed view on the background of and the difficulties encountered in harmoniz-
ing library standards.

As pointed out in [55], German academic libraries acquire more than 60% of their books
abroad, and 90% of this material is provided by Anglo-American publishers. These books
must be catalogued by German libraries according to their own cataloging formats and rules,
mostly MAB/RAK. Furthermore, the bibliographic records of the American Library of Con-

17 Throughout the world nearly 50 different MARC formats are currently in use, with 10 employed in the national libraries of

European Community countries.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 1515

gress (LC) and its European counterpart, the British National Bibliography, are offered in
most of the German library networks (ger. Verbünde). This accounts for the importance of
manageable techniques for processing Anglo-American records, i.e. bibliographic data com-
plying to MARC/AARC, in German library systems. However, reuse of these records without
considerable manual and intellectual labor is appallingly low. This shortcoming has been ex-
amined in several studies (e.g. in [60]) from the perspective of the German library networks.
Vice versa, the Library of Congress came to similar conclusions when trying to import Ger-
man records into their local system (cf. [71]). The different studies showed as a common re-
sult that the impending question of finding possible ways to accommodate German records
created on the basis of MAB/RAK with bibliographical records generated with
MARC/AARC stated an unresolved problem in the international library world. It was against
this background that in October 1995, OCLC and the State and University Library of Göttin-
gen (SUB Göttingen), seat of the Regional Library Network for Central and Northern Ger-
many (GBV), agreed to join in the project REUSE with the goal of enhancing international
bibliographic compatibility among German and Anglo-American libraries. REUSE+, a con-
tinuation of project REUSE has then set its main focus on different types of representations of
hierarchical bibliographic structures in MAB and MARC.

With MARC being a de facto standard exchange format on a global scale it seems quite
natural to ask why it has not already replaced all other library standards. The answer to this
question is not a purely historical one. Obviously, local developments and library initiatives
in different cultural and national regions brought forward different cataloguing schemes, such
as MAB and MARC. However, these formats save the same purpose within the same applica-
tion area, i.e. defining a standard machine-readable format for bibliographical records. Thus,
cataloging rules and formats could be essentially the same, taking minor differences aside,
e.g. diverging names for identical concepts, etc. Unfortunately, this is not the case as we will
demonstrate by referring to the relationship between MARC and the German MAB format.
During REUSE and REUSE+, bibliographical records complying to MAB/RAK and
MARC/AACR were systematically analyzed regarding their underlying formats and catalog-
ing rules specifications. As a result, the REUSE working group defined a number of rule and
format differences existing between the current versions of MAB/RAK and MARC/AARC.
Major discrepancies were observed e.g. in the proper forms (ger. Ansetzungsformen) of
names, titles and corporate bodies. Three separate classes of differences between the two li-
brary standards can be identified:

 Conceptual differences. MARC and MAB offer diverging understandings of what is
meant e.g. by the terms “work” and “item”, as well as what may be accounted for as “cor-
porate bodies”. These diverging understandings lead to structural differences and different
cataloging policies.

 Structural differences. Multivolume and multipart editions are treated differently in MAB
and MARC. While information on multivolumes and multiparts are integral parts of MAB
records, MARC records do not know hierarchical structures. With MARC the work of es-
tablishing item records for individual volumes is done locally (in separate records main-
tained by libraries holding copies of the respective volumes), i.e. several records are
needed for a complete description of a work. MAB records, on the other hand, contain the
complete information on a work be it multipart or not.

 Differences concerning cataloging rules. RAK and AACR define diverging rules for cata-
loging corporate bodies in work titles. AACR regards more entities as corporate bodies,
e.g. projects, expeditions and actions, ships and spacecraft, and buildings such as churches
or castles. According to RAK these are not considered to be corporate bodies and will

CHAPTER 1 A READER’S GUIDE

 16

therefore be treated differently (either they are omitted completely or fall into different
categories).

The main result of REUSE has been the global observation that some of the most striking
discrepancies between MAB/RAK and MARC/AACR are not caused by the respective cata-
loging rules or formats but by the differing underlying logical data models (cf. [28]). The
REUSE working group came to the conclusion that the different data models inherent in
MAB and MARC would require what they call a ‘Common Object Model’ for representing
and a ‘Common Functional Model’ for processing bibliographical records (cf. also [59]). Al-
though the REUSE working group does not provide such a model they stress its vital impor-
tance for further alignment between cataloging standards in general, and for MAB and
MARC in particular. The foundations for designing such a data model and putting it into use
cannot be found in the limited context of cataloging standards but in information science
where research on semantic modeling has become a major field.

1.1.4 Digital Libraries and Semantic Modeling
The general idea behind a conceptual approach to DL using knowledge representations is to
define a formal domain model, i.e. a formalization that covers the semantic content of a range
of information items held in a DL. This conceptual model is on the one hand intended to pro-
vide an unambiguous view on the specific domain, e.g. differentiating between the different
senses of homonyms such as ‘kiwi’, on the other hand it acts as a basis for knowledge proc-
essing tasks such as intelligent information retrieval. Research in this field has centered
around conceptualizations called formal ontologies. Formal ontologies, roughly characterized
as ‘specifications of conceptualizations’ [40] have experienced an increasing popularity in the
last decade manifesting a common trend within the IT community that stresses the importance
of conceptual modeling over specific technologies and software architectures. The roots of
ontology engineering lie on the one hand in knowledge representation techniques and mathe-
matical logic, and on the other hand find their origins in the treatises of Plato and Aristotle on
the philosophical discipline of Ontology where ontology engineering got its name from. The
conscious choice of the terms formal ontologies and ontology engineering pays reference to
these philosophical foundations and their rich vocabulary, and also stresses the grown aware-
ness within the IT community that research in conceptual modeling is of prime importance for
enabling advanced knowledge processing, such as intelligent information retrieval in DL.

SECTION 1.1 MOTIVATION AND OBJECTIVES

 1717

 E/R OO-Design/UML Prolog EOS Ontology
Engineering

Primitives entities, relations,
attributes

Classes, attributes,
methods

Facts, rules concepts, ontologies

Active Components integrity constraints Methods Rules rules, laws

Purpose Designing specific
database schemas

implementation of
software compo-
nents

implementation
of rule-based
systems, e.g.
deductive data-
bases

designing a domain
model determining the
semantic mode of op-
eration of knowledge
processing (EOS) sys-
tems, e.g. DL

Formalism relational Algebra (–) 18 predicate logic
(Horn clauses)

Concept Theory

Table 1.1: Different Areas of Semantic Modeling

As indicated in Table 1.1, developing semantic domain models is not a new idea, e.g. a rela-
tional database schema is the result of a conceptualization that has been carried out using the
Entity/Relationship (E/R) modeling technique. Other prominent examples for the employment
of conceptualizations can be found in the area of object-oriented software design, where the
structure and behavior of software components are modeled, e.g. using the Unified Modeling
Language (UML), and in the field of logic programming, e.g. using Prolog for implementing
rule-based systems. What sets ontology engineering apart from E/R, UML and logic pro-
gramming is that these latter aim at and result in producing integral parts of software systems
(the schema materialized in the system tables of a particular database, particular software
components and systems), while the outcome of an ontology engineering process remains
conceptual, i.e. an application independent representation of the domain in the form of an
ontology. Such representations can take on different forms, e.g. using new technologies such
as XML and XML-based languages, e.g. RDF(S) and DAML+OIL, or hybrid formats that
include predicate logic or frame logic, e.g. KIF. Regardless of the specific representation for-
mat, the purpose of formal ontologies is to provide an application independent conceptual
model of a given domain of interest.

This already mentions one of the benefits of formal ontologies, namely that they are not
designed with respect to particular systems or application areas but remain on the conceptual
level. In this way, ontologies can be exchanged among heterogeneous systems that may also
use them differently, e.g. a DL and a workflow management system can operate on the basis
of the same ‘enterprise ontology’, yet utilize it to completely different ends. The knowledge
that is represented in a formal ontology, e.g. the above mentioned enterprise ontology, is an
explicit conceptual model that can be used by both (and more) systems, as opposed to a situa-
tion where the different systems hold this knowledge implicitly in their algorithmical imple-
mentation. Using explicit and interchangeable conceptualizations in the form of ontologies
thus keeps software systems more flexible, as it is fairly easy to alter the formal representa-
tion of an ontology (e.g. an XML file) that is passed to the systems as an input, than a costly
system redesign that is necessary if these changes pertain to their internal implementation.

This also implies that the semantic knowledge contained in formal ontologies must be in-
terpreted by these systems. In order to enable correct semantic interpretation, these systems
must not only be able to parse the specific ontology representation but also need a formal ba-

18 No satisfactory and uniquely accepted formalism for OO design has yet evolved.

CHAPTER 1 A READER’S GUIDE

 18

sis for such an interpretation. To the best of our knowledge, an adequate formalism for ex-
pressing on the one hand conceptualized domain knowledge and on the other hand the seman-
tic implications for utilizing this knowledge in a unified way has not yet been proposed. This
leads to the following objectives for the EOS approach as presented in this thesis:

 Motivating and presenting a formalism and modeling technique apt to provide a semanti-
cal basis for ontologies. The formalism we have developed in that respect is called Con-
cept Theory and builds upon a unicategorical view on conceptual modeling. Concept The-
ory is based on our notion of formal concepts which will be explained in detail in Chapter
2, along with a graphical notation for ontology design. Formal ontologies that are founded
in Concept Theory are called EOS ontologies.

 Incorporating application semantics into this formalism, which allows knowledge proc-
essing systems to interpret EOS ontologies in a unified way. This applies in particular to
the active components of EOS ontologies, i.e. concepts defining rules and epistemological
laws. Thus, EOS ontologies also model the mode of operation of knowledge processing
systems. This approach is also new to the ontology engineering community and will be the
central topic of Chapter 3.

 Proposing a general architecture for knowledge processing systems that interpret EOS
ontologies. Such systems are called EOS systems. Basically, any information system such
as the VD17 DL, search engines, etc. can be regarded as an EOS system, provided it can
interpret EOS ontologies according to Concept Theory. The basic architecture of EOS sys-
tems is introduced in the discussion on automated knowledge processing in Chapter 3
while further application and implementation details are presented in Chapter 4.

 Translating EOS ontologies into an easy-to-parse and convenient exchange format. In this
context we will show how EOS ontologies can be expressed in XML compliant to a spe-
cific EOS DTD.

 Storing and querying EOS ontologies efficiently using database techniques. Here, we will
refer to relational database systems and how they can be employed for managing EOS on-
tologies. In particular, a database schema and a mechanism for accordingly indexing EOS
ontologies will be presented.

 Evaluating and discussing the proposed EOS approach. This is done by referring to a
specific application scenario for EOS systems and how knowledge processing tasks may
be defined and put to work in this practical example. Furthermore, we will flesh out the
application scenario by discussing a prototypical implementation.

1.2 Orientation
The following reflections give an outline on how different fields of human activity are operat-
ing with the term ‘knowledge’. In the course of this synopsis we will briefly shed light on
philosophical, business and information science perspectives on knowledge. These very dif-
ferent disciplines all have their own objectives that, evidently, influence the way they ap-
proach knowledge. Yet, despite their contrasting motivations, it is only natural that philoso-
phers, scientists, and practitioners find many parallels, analogous questions and arguments
that mutually build upon each other when analyzing knowledge. Philosophy, being the origi-
nal discipline of rational investigation per se, examines the essential nature of its subjects of
analysis, thus providing a valuable and mature history of discourse, which is especially true
with treatises on knowledge19. This preliminary work serves as a theoretical basis for adequate

19 How knowledge should be ultimately characterized is an unsettled matter in Philosophy to this day. The most influential

treatises on the subject have been given by Plato and his scholar Aristotle. Knowledge about some thing in the world, ac-

SECTION 1.2 ORIENTATION

 1919

ways of making use of knowledge in application areas such as organizational knowledge
management, or computerized knowledge representation and processing.

Sociologically, knowledge is nowadays being considered a key factor of primal impor-
tance. Individual and economical success depend, more than ever, on the ability to acquire,
organize, annotate, retrieve, interpret and utilize knowledge in a fast and efficient manner.
Enabling technologies brought forth by engineering and information science, therefore, ex-
perienced an unparalleled growth as an immediate consequence to the increasing demand for
new and better ways of dealing with large quantities of correlated information. Advanced
database techniques, especially improved indexing methods, coupled with accomplishments
in the fields of e.g. Data Warehousing, Online Analytical Processing (OLAP) and Information
Retrieval (IR) help organizing and searching information. Yet, searchable information in it-
self may not be incautiously equated with knowledge. All of the techniques mentioned treat
information on the basis of a specific semantic model. Databases, for example, store informa-
tion according to a predefined schema that, on its part, enables applications built on top of
them to correctly interpret this information. On equal terms, a thorough understanding of the
problem domain, integrated explicitly or implicitly into the computer system, is a necessary
prerequisite to any information processing task. Once again, the specification of the algo-
rithmic solutions to these tasks is, too, based on knowledge about problem-solving techniques
in the particular area.

These first, exploratory considerations have shown that knowledge and its utilization touch
on practically every aspect of modern society, in particular, it has become a valuable eco-
nomical resource. Starting from this perspective we will further discuss the notion of knowl-
edge within the scope of this thesis. Section 1.2.1 is dealing with an approximation to a work-
ing hypothesis of knowledge applicable to practical usage. How knowledge is being ap-
proached in organizational knowledge management and arising consequences for knowledge
representation and processing will be the subject matter of section 1.2.2. In section 1.2.3 we
will then briefly sketch the current status of computerized utilization of knowledge.

1.2.1 What is Knowledge?
Asking the question ‘What is knowledge?’ might at a first glance seem to be a purely phi-
losophical enterprise. However, even on a day-to-day basis, humans constantly rely on
knowledge of their environment, their physical and mental skills to perform the tasks their
daily life calls for. Clearly, it is of utmost importance for us to acquire knowledge and skills
in order to master anything, from brushing our teeth to conceiving very abstract scientific
theories. Knowledge is being articulated in various forms, in written or spoken language,
graphics, diagrams, etc., and communicated to others, which is the basis of all learning. In
short, acquiring and using knowledge is an essential factor of human life, not just an abstract
philosophical inquiry.

Surely, this thesis cannot and does not try to answer the metaphysical question about the
nature of knowledge, a problem which has not been satisfactorily solved since the beginnings
of Western Philosophy in Ancient Greek – despite its prominent status at the center of phi-
losophical debates ever since. Our focus is application oriented, and therefore we will concen-
trate on theoretical and technical aspects of utilizing knowledge in computer systems. Hence
we will certainly not define knowledge but, on the other hand, we must not refrain from clari-
fying the notion of knowledge in our field of research that encompasses knowledge represen-
tation as well as knowledge processing.

cording to Aristotle [2], implies the ability to produce a precise definition of that thing. Plato, too, referred to the notion of
definition when he specified knowledge as “justified true belief” [11].

CHAPTER 1 A READER’S GUIDE

 20

Knowledge representation treats knowledge as a resource that can be communicated to
third parties, humans and computer systems alike. Thus, research in this field is concerned
with encoding and decoding knowledge in different ways. As a simple example, knowledge
about the topic ‘knowledge representation’ may be encoded in electronic form, e.g. as an
XML file. Physically, this XML file is binary data and from this point of view equivalent to
any other file containing data of any kind, e.g. text, audio, or video, possibly even an arbitrary
binary sequence. Syntactically, the XML file contains structured information that is expressed
in a specific format, namely XML, and text in some artificial or natural language, as the con-
tent of XML files is interpreted as textual information. Semantically, the same XML file car-
ries knowledge on a particular subject, ‘knowledge representation’ in this example, that can
be understood by humans and processed by computer systems. Consequently, one and the
same XML file may be regarded as data (‘something’), information (‘something containing
semantics’), or knowledge (‘semantics themselves’) depending on whether one adopts a
physical, syntactical, or semantic perspective.

Knowledge processing comprises techniques and methodologies for computerized man-
agement of knowledge, or more precisely, management of data bearing knowledge, like the
XML file mentioned above. The hypothesis of knowledge processing is that the semantic con-
tent of data can be analyzed by a computer system if the syntactical features are exploited in
an appropriate manner. On this basis, a resulting knowledge processing system should then
behave as if it understands the semantic content of its input data. Naturally, highly structured
data, whose syntactical composition is known in advance and can thus be interpreted accord-
ingly, offers better preconditions for advanced processing techniques than unspecific data like
plain text files in natural language. In any case, the computer system will be designed accord-
ing to presumptions about the format and range of content of the data it should process, i.e.
background, or ontological knowledge, will necessarily be an important part of the implemen-
tation of the system, be it explicitly or implicitly. Secondly, the data has to be processed in a
way that a desired result, e.g. the answer to a query about its content, can be computed.
Therefore application semantics, or epistemological knowledge, have to be integrated into the
system. Any knowledge processing system, consequently, is the result of carefully designing
and implementing software components according to scientific theories, practical guidelines,
and expertise in the application area.

We identified two different kinds of knowledge, ontological and epistemological knowl-
edge, that are essentially determining the modalities of knowledge representation and the be-
havior of knowledge processing systems:

 Following philosophical theories, taking an ontological perspective means to analyze
parts or all of reality in order to determine its constituents and inner correlations. Evi-
dently, classification and explication of the entities identified during this analysis is of
predominant interest when examining reality. Studying the world ontologically, therefore,
is to categorize it according to an elaborate metaphysical system, which is very similar to
formalizing knowledge according to a predefined methodology. Hence, the basic consid-
erations of ontological theories and formalizing knowledge are closely coupled, but unfor-
tunately this fact is hardly ever recognized, let alone exploited to benefit knowledge repre-
sentation formalisms. Against this background it is our expressed concern to incorporate a
thorough metaphysical foundation into our EOS framework to overcome these deficien-
cies and to pave the path for its epistemological applicability.

 Regarding the world epistemologically, then, is to look into ways of acquiring and using
ontological knowledge, which presupposes an understanding of the nature of knowledge
itself. Different epistemological theories in Philosophy have evolved, most of them shar-

SECTION 1.2 ORIENTATION

 2121

ing as a common denominator that the structure of knowledge is characterized as some-
thing strong enough to account for objective truths about entities of reality [70]. Knowl-
edge, thus, relies on an ontological basis and modes for justifying true beliefs, just like
mathematical deduction is based on a set of primitives and inference rules.

We will frequently refer to the basic distinction between ontological and epistemological as-
pects of knowledge throughout this thesis in order to motivate and explain practical as well as
technical details.

1.2.2 Knowledge Management
It comes as no surprise that, with knowledge being recognized as a value of its own, knowl-
edge management has nowadays become a vital economic constituent for organizations as
commercial success depends on a proper understanding of business and market structures (cf.
[79]). This includes internal processes leading to increased productivity and innovation, as
well as external processes, e.g. concerning market perspectives, and interactive processes
among organizations and their customers, as in e-commerce environments. All of these proc-
esses on the one hand produce new information, while on the other hand they require knowl-
edge in order to be mastered successfully. Knowledge, here, is seen in the context of business
rules [73] and the organizational memory that comprises the intellectual potential of employ-
ees (i.e. skills, experience, expertise), document archives (electronic as well as print media)
and all further information relevant to the organization (e.g. inherent in workflow processes)
[50]. Therefore, knowledge management tasks concentrate on capturing and organizing these
semantics for further usage. Predominant problems in this area are how to implement ways to
acquire and handle often large amounts of information, particularly implicit knowledge, and
how to incorporate it into an organization’s workflows.

The knowledge management business model thus understands knowledge as a valuable re-
source that should be exploited in order to supplement the success of an organization. Hence
knowledge management offers no explicit theory of knowledge nor does it promote a particu-
lar methodology for representing knowledge. Rather, it provides guidelines for identifying
and using relevant information (about and within business processes) and its actual and poten-
tial benefits for an organization. Once the explorative labor of gathering this fundamental
information has been carried out, it can be formalized according to some knowledge represen-
tation model and subsequently forged for further use. This clearly establishes a close connec-
tion between organizational management and knowledge representation techniques that are
used as an indispensable auxiliary for efficiently implementing a knowledge environment. In
short, representation methods provide the means for computer supported exploitation and
utilization of knowledge, thereby enabling successful management of huge amounts of infor-
mation in the first place.

It is a common practice to organize formalized information in databases where it is stored
consistent with a suitable database schema that allows for a syntactical interpretation of the
data. Databases provide secure persistent storage and efficient information retrieval tech-
niques, and are as such a valuable aide, if not an essential prerequisite for intelligent search-
ing, knowledge bases, data warehouses and OLAP systems, or more general, for knowledge
processing. Knowledge processing techniques are using the syntactical features of knowledge
representations in order to make domain knowledge and its implications available to human
users. Advanced tasks that can be solved by knowledge processing systems are automatic
deduction of new knowledge from information at hand, as well as finding yet undiagnosed
interdependencies and correlations among domain entities. Knowledge management on the
technical side, thus, heavily relies on such systems for ensuring highest benefits from organ-
izational knowledge, once it has been acquired.

CHAPTER 1 A READER’S GUIDE

 22

As already mentioned above, organizational knowledge management is closely connected
to knowledge representation and processing techniques. The information identified and accu-
mulated during explorative phases of knowledge management can on its part be regarded as
an input to knowledge representation methods. Resulting formalizations, then, are the basis of
knowledge processing, whose conclusions may be used, again, to support knowledge man-
agement processes. Knowledge management therefore displays ontological as well as episte-
mological requirements that have to be met by supportive computerized systems incorporat-
ing knowledge representation and processing.

1.2.3 Knowledge Representation and Processing
Knowledge representation and processing have become major fields of interdisciplinary re-
search. [43] As outlined in the previous sections, human knowledge is being identified, ac-
quired and analyzed, then formalized using various representation models. Resulting repre-
sentations lay the groundwork for processes that incorporate knowledge, be it on a general
level (e.g. for supporting workflows within organizations) or in practical applications (e.g. for
assisting specific workflow components). At present, the predominant means for representing
knowledge in knowledge processing systems are formal ontologies [41]. But despite their
widespread use the notion of formal ontologies remains blurred [42]. The commonly accepted
but nevertheless subsidiary and rather unspecific definition of a formal ontology as a ‘specifi-
cation of a conceptualization’ [39] does not account for the semantic implications of ontolo-
gies, although the object of such conceptualizations is supposed to be knowledge. As an un-
fortunate consequence, the predicate ‘ontology’ is attributed to a large variety of formaliza-
tions that differ greatly in form and their expressive power. What is obviously lacking is an
elaborate formalism for the design of ontologies to account for a satisfying theoretical funda-
ment.

Since ontologies are knowledge representations, explicitly formalized bodies of human
knowledge, they can be as such communicated across computer systems. In particular, formal
ontologies may be used as an input to knowledge processing systems. Yet, how knowledge
held within an ontology is utilized by a computer system to perform its tasks is still part of the
algorithmical implementation of the respective system. The actual knowledge processing
tasks, just like all other internal processes, thus typically remain encapsulated by the system,
that in this respect acts as a black box, abstracting from the details of its realization. While
hiding implementation particulars from outside components is a well-established and advan-
tageous technique, concealing the pursued application semantics when processing knowledge
comes close to self-contradiction when knowledge is at the center of the enterprise of such
systems.

It is an important design decision for any knowledge processing system where to draw the
line between internally realized application semantics that are an integral part of its imple-
mentation, and input data to the system, i.e. its parameters that have to be interpreted accord-
ing to application semantics. Note that this decision is certainly not one about the syntactical
format of input data, e.g. formal ontologies, but one about the scope this data covers semanti-
cally. With respect to formal ontologies, different languages like DAML+OIL, RDFS, etc. for
expressing their ontological content are conceivable (cf. Section 4.3), and a respective knowl-
edge processing system must, of course, be able to interpret (at least) one representation for-
mat. Yet, the ability to understand an ontology syntactically does not tackle the original ques-
tion on what kind of knowledge the ontology carries semantically. If it is restricted to onto-
logical knowledge alone (and no other input is given to the system), then application seman-
tics are the sole responsibility of the knowledge processing system. The more epistemological

SECTION 1.3 EOS ONTOLOGIES IN A NUTSHELL

 2323

knowledge, e.g. on processing and inference rules, a system can accept, the better and more
flexible it can be put to use for assorted and complex tasks.

1.3 EOS Ontologies in a Nutshell
At the core of EOS is Concept Theory, a formalism that provides the syntax and accompany-
ing semantics that are necessary for designing EOS ontologies, highly structured knowledge
representations. Concept Theory is the necessary foundation of the EOS approach and offers a
uniform modeling paradigm for formal ontologies. As such it provides clear semantics and a
corresponding definition for formal ontologies.

Central to Concept Theory is the notion of formal concepts. A formal concept in terms of
Concept Theory represents a definition of an existent, i.e. an entity or relation of a domain of
interest that has to be modeled by a formal ontology. A complete EOS ontology, then, con-
sists of a set of formal concepts complying to the structural rules as laid out by Concept The-
ory. These syntactical principles define, firstly, a hierarchical structure among ontology con-
cepts that mirrors specialization and generalization among existents. Secondly, Concept The-
ory determines composition patterns of concepts along the specialization hierarchy. From this
perspective, an EOS ontology can be thought of as a directed graph of ordered concepts.

Concepts are capable of representing domain objects as well as relationships, which allows
to regard them on the one hand as entities that are subject to relations, and on the other hand
as relations themselves. As an example, ownership is a relation between some property and
its owner. In Concept Theory it is feasible to describe such a relation with a concept OWN-
ERSHIP that relates two other concepts, PROPERTY and OWNER. The concept
OWNERSHIP may then in turn be subject to other relations such as a
CONTRACT_OF_SALE.

Another specialty of formal concepts is that they are used to describe general domain exis-
tents, classes or categories, such as OWNERSHIP, as well as their individual concretizations,
instances or occurrences20, like the specific ownership that exists between a particular person
BARRY and the specific HOUSE_OF_BARRY this individual owns. Hence, Concept Theory
offers a seamless representation mechanism for both, a definition of the general aspects of a
domain, i.e. entities and relations, and concrete instances thereof.

Concept Theory is outlined in Chapter 2 with reference to the current state of research con-
cerning knowledge representation in information science, which is sketched in Section 2.1.
An introduction to the theoretical groundwork of the EOS approach is given in Section 2.1.1,
where two main categories of domain existents, universals and particulars, are presented.
Section 2.1.2 subsequently discusses the notion of formal ontologies in information science.
Based on the results of this treatise, all of Section 2.2 is dedicated to a thorough introduction
to the syntactical and semantical features of formal concepts. Section 2.2.1 covers the essen-
tial syntax of concepts, while Sections 2.2.2 and 2.2.3 discuss sets and kinds of concepts. Sig-
nificant sets of concepts are the Universe of Concepts that represents the totality of all intelli-
gible concepts, domains and formal ontologies themselves. Different kinds of concepts can be
identified by examining what kinds of existents, universals or particulars, they are describing.
The semantics of concepts are motivated and formally defined in Section 2.2.4, which eventu-
ally leads to an exact definition of formal ontologies. Ontological semantics are grounded in
the properties of the relation specialization which is represented by the concept ISA. Section
2.2.4 is thus a concise treatment of the syntactical properties and the ensuant semantical im-

20 Occurrences are specializations of existents, e.g. the species larch is an occurrence of tree, and an individual larch that is

part of a forest is an occurrence of the species larch. As these examples indicate, occurrences can be both, species and in-
stances.

CHAPTER 1 A READER’S GUIDE

 24

plications of this concept. A graphical notation for representing EOS concepts is introduced in
2.3. Finally, Section 2.4 concludes Chapter 2 by presenting an extended example of an EOS
ontology.

1.4 The Enterprise of EOS Epistemology
Introducing epistemology to the EOS approach means integrating knowledge processing
primitives into the formal body of Concept Theory. This project has far-reaching conse-
quences concerning the understanding of knowledge processing systems. Currently, knowl-
edge processing systems do not allow their internal processes to be subject to conceptional
changes without redesigning vital parts of their implementations, which is understandable
considering that such systems are commonly conceived and realized for very specific pur-
poses, e.g. for parsing natural language texts, for managing Web pages, or for providing the
services of a DL. The EOS approach, on the other hand, pursues a more general goal. An EOS
system must be thought of as a versatile machine the actual behavior of which can be defined
(and altered) at any time and on a declarative, formal level, i.e. on the level of Concept The-
ory. Thus, EOS systems do not only accept knowledge representations, formal ontologies,
that contain specific domain entities and their interrelations, but also receive formalized epis-
temic entities that define the epistemological processes specifying the system behavior in ac-
cordance with the respective knowledge representation. In other words, an EOS system will
accept both, ontological and epistemological knowledge.

Epistemological elements of Concept Theory will be discussed in Chapter 3. Section 3.1
starts with an introduction to knowledge processing from the different perspectives of phi-
losophy and information science. Points made there will result into the specification on the
EOS framework for knowledge processing systems. This framework defines the general ar-
chitecture for EOS systems and defines three main epistemological tasks, namely knowledge
acquisition (accepting and classifying input information expressed through concepts), knowl-
edge generation (producing new concepts from existing ones) and knowledge retrieval (by
querying an EOS ontology). Section 3.2 sets off from this theoretical outset and introduces
EOS rules and laws for defining epistemological processes. Rules and logical conditions in
Concept Theory are treated in Sections 3.2.1 and 3.2.2. Conceptual laws for epistemological
tasks are laid out in Section 3.2.3. In particular, Section 3.2.3.1 presents a generic algorithm
for EOS systems that shows the overall structure of EOS knowledge processing. Subse-
quently, Section 3.2.3.2 discusses the law ACQUIRE and its employment in the knowledge
acquisition process, Section 3.2.3.3 introduces the law GENERATE that used in knowledge
generation processes, and lastly Section 3.2.3.4 covers QUERY, the law for defining query
processing in knowledge retrieval.

1.5 Employment of EOS Ontologies
Chapter 4 presents an application scenario for EOS systems used for classifying Web docu-
ments. This discussion will focus on two main issues, the practical employment of EOS on-
tologies in knowledge processing tasks, and different representation formats for such ontolo-
gies. On the one hand, ontologies may be communicated to, from and across EOS systems,
i.e. an adequate representation format for exchanging EOS ontologies is needed. On the other
hand, EOS systems must persistently store ontologies and provide mechanisms for updating
and querying this information. In order to implement these services in an effective way, it is
feasible to use database technology. As a prerequisite, an internal representation format for
EOS ontologies in the form of a database schema is needed.

SECTION 1.5 EMPLOYMENT OF EOS ONTOLOGIES

 2525

Section 4.1 describes the example application scenario for EOS systems where Web docu-
ments are being classified and semantically indexed. Several ways of making use of document
markup in information extraction are presented. In this context, we will give an outline on
how markup elements may be mapped to ontology concepts in order to support the knowledge
acquisition procedure. In Section 4.2 we are presenting how the exemplary EOS system im-
plements epistemological processes in the document classification scenario. This includes
integrating conceptual representations of documents and their intellectual content (knowledge
acquisition), as well as querying this ontological information (knowledge retrieval), with a
special focus on how to optimize return values by semantic query rewriting (knowledge gen-
eration). In this context Subsequently, in Section 4.3 we will examine possible representation
formats for ontologies, a discussion that leads to our preferred format for EOS ontologies that
is based on XML. Section 4.4 characterizes how EOS ontologies can be effectively managed
using database technology, and 4.5 concludes Chapter 4 by presenting details of an EOS pro-
totype implementation.

This overview of the EOS approach completes the reader’s guide that we used to motivate
the subject matter of this thesis and the agenda it is committed to. The subsequent chapters
will now develop a detailed view on the different aspects of EOS that form the groundwork
needed to put an epistemological ontology-driven system for knowledge processing to work.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 27

Chapter 2 EOS Ontologies

The aim of this chapter is to give a concise explanation of the theoretical foundation of the
EOS approach and subsequently develop the ontology formalism we designed for our ap-
proach. At the heart of this formalism that we call Concept Theory is the notion of concepts,
formalizations of existents, i.e. entities of and facts about a given domain of interest, or,
generally speaking, about reality. Concepts are simple but powerful constructs carrying
clearly defined semantics as provided by Concept Theory. As such they are an adequate
means for developing knowledge representations. In particular, Concept Theory offers a
formalism that is versatile enough for a satisfactory clarification of the semantics of formal
ontologies, which has remained a pressing, yet unresolved problem since the advent of on-
tology engineering in the late 1980ies.

2.1 Knowledge Representation
In order to establish a well-founded position apt to motivate and describe a formalism for
ontologies, this section will lay out our perspective on knowledge representation. We will
take a look at the philosophical foundations of ontologies and use arguments found here for
specifying a theoretical basis for formal ontologies. Coming from this perspective we will
subsequently stress canonical requirements for formally representing knowledge in a way
that it represents a substantial input for knowledge processing.

Knowledge Representation aims at encoding human knowledge in such a way that this
knowledge is not only understandable by humans but can also be used by computer systems.
A successful representation of some piece of knowledge must, therefore, cause the system
using this knowledge behave as if it knows it. The surmise that this goal can be achieved
has been made popular as the Knowledge Representation Hypothesis:

“Any mechanically embodied intelligent process will be comprised of structural ingre-
dients that a) we as external observers naturally take to represent a propositional ac-
count of the knowledge that the overall process exhibits, and b) independent of such ex-
ternal semantical attribution, play a formal but causal and essential role in engendering
the behavior that manifests that knowledge.” [68]

CHAPTER 2 EOS ONTOLOGIES

 28

During the past two decades the notion of knowledge in the AI community experienced a
notable shift from a primarily functional view that was focused on modeling human ration-
ality towards a new perspective that put emphasis on modeling systems in the world [16],
[41]. We call the former understanding of knowledge the narrow view as it is foremost
task-driven, i.e. solely knowledge relevant to a specific, pre-defined problem is taken into
consideration. Opposed to this notion is the general view of the latter approach where
knowledge is expected to describe not only details for particular tasks but an entire problem
domain. Thus the general view is closely related to the objective reality of the problem do-
main and in itself independent of possible applications. It therefore gives a systemic per-
spective on an application area by providing an adequate formal description of the corre-
sponding domain. In this thesis we are concentrating on this general view, moreover, the
EOS framework is precisely aimed at describing systems that operate on this understanding
of knowledge that has also been the underlying motivation for developing highly sophisti-
cated knowledge representations such as formal ontologies.

Knowledge representations are generally applied to tasks where computer systems need
additional input (domain knowledge) in order to adequately process data, e.g. texts in natu-
ral language. The system is regarded as possessing knowledge about a problem domain via
its formal representation that it accepts as an input. Knowledge in this sense consists of data
while application logics, i.e. knowledge on how this data may be used, is usually not part of
such knowledge representations. The manner in which this data is processed by a computer
system mainly relies on its own design and implementation, not on processing instructions
included in the knowledge representation itself. Thus knowledge representations actually
address structural aspects of a domain while the definition of problem-solving processes
that use elements of these representations are mostly part of the algorithmic implementation
of the system. Yet, at this point we are still lacking the proper arguments concerning what
we can and should demand from such knowledge representations. The following sections
are therefore intended as a brief outline of a feasible approach to knowledge representation
committed to the general view.

2.1.1 Philosophical Foundations
The foundations for the formal models of basically any means of knowledge representation
have been laid out in a long tradition of writings in Metaphysics, a branch of Philosophy
prominent since the time of Aristotle (384 – 322 BC). Metaphysics, roughly speaking, is
concerned with the nature of reality, and has therefore developed a complex apparatus for
examining “being qua being” [2]. Following this initial definition of their enterprise meta-
physicians have ever since elaborated diverse theories on structuring and explaining the
world. As the subject matter of such theories is the nature of reality, a central task they have
to address is that of defining existents (“things that exist”), the objects they encounter when
examining reality. In other terms, given a specific existent a metaphysical theory must be
able to produce a satisfactory answer for the question “What is it?”. According to Aristotle,
the kinds, or categories, under which a thing falls enable us to say what the thing in question
is. This yields immediately to further considerations like “What categories are there?” and
“How are categories related to the existents they are attributed to?”. Thus categories and
their application are fundamental constituents of metaphysic theories and can therefore be
found in basically any metaphysical treatise, ranging from Aristotle’s catalogue of ten cate-

SECTION 2.1 KNOWLEDGE REPRESENTATION

 2929

gories21 to Immanuel Kant’s table of twelve categories22 on to modern category theories (a
comprehensive survey on category theory is given in [69], [68]).

Predominant in modern Metaphysics is the distinction between particulars and univer-
sals that form the two fundamental categories of existents (cf. [18], [52]). The category of
particulars includes what one typically thinks of as ‘things’ – individual objects like human
beings, animals, plants and inanimate bodies or events. Aside from these material objects
most theories also know immaterial particulars like human minds. A further distinction is
drawn between concrete particulars that exist in space/time and abstract particulars like
numbers that do not. Universals on the other hand are commonly divided into two broad
groups: qualities (or unary properties, attributes) like an object’s mass or color, and
polyadic relations (or relational properties) such as the dyadic relation longer-than. Uni-
versals may be exemplified, or instantiated, by particulars, i.e. universals are construed as
repeatable existents. In fact at any given time, one and the same universal can be instanti-
ated by several different spatially discontinuous particulars. Accordingly several distinct
automobiles can simultaneously exhibit the same shape and color, as well as the same virtue
may be exemplified by different people. A schematic summary of the notion of universals
and particulars is shown in Table 2.1.

Existents

Universals Particulars

Qualities

(e.g. mass, color)

Relations

(e.g. longer-than)

abstract

(e.g. numbers)

concrete

(e.g. people)

material

(e.g. tables)

immaterial

(e.g. human minds)

Table 2.1: Outline of Metaphysical Realism

Metaphysics cannot be regarded as a uniform discipline or science. As sketched above many
philosophers have suggested various and very different metaphysical models for explaining
reality, some even denying the existence of universals, or particulars, respectively. Common
to these approaches, nevertheless, is the manner in which metaphysical questions are ad-
vanced. Examining metaphysical theories we can ordinarily identify

 a set of fundamental categories
 a commitment to some specific model on how to apply these categories

The set of fundamental categories is traditionally called ontology (cf. introduction to
Chapter 1). Thus, an ontology claims a certain view on reality, e.g. metaphysical Realism
assumes that reality consists of both, universals and particulars, while metaphysical nomi-
nalism denies the existence of universals. Consequently, realists and nominalists will de-
velop quite different ontologies for explaining reality in their own ways. The arguments for
the internal structures of their ontologies are drawn from their respective ontological com-
mitments, i.e. the specific view on reality underlying, e.g. realism or nominalism.

In summary, an ontology is a means for classifying and explaining all actually occurring
and intelligible existents. In order to do so, each ontology provides its own set of fundamen-

21 Aristotle’s categories are: Substance, Quality, Quantity, Relation, Activity, Passivity, Having, Situatedness, Spatiality

and Temporality
22 Kant’s categories are: Quantity (Unity, Plurality, Totality), Quality (Reality, Negation, Limitation), Relation (Inherence,

Causality, Community), Modality (Possibility, Existence, Necessity)

CHAPTER 2 EOS ONTOLOGIES

 30

tal categories and an accompanying theoretical model. Philosophers traditionally stress the
importance of the underlying model as they use ontologies predominantly for explaining
reality, i.e. any resulting classification of existents is usually regarded as a (welcome) side-
effect. Knowledge representation on the other hand tries to meet another claim, namely pro-
viding coherent descriptions of entities and their correlations that may be used as an input
for computerized systems. Accordingly, classification and other means for facilitating auto-
mated processing and reasoning play a major role in knowledge representation.

For our discussion of methods for and systems using knowledge representation we will
adopt the holistic perspective and vocabulary of metaphysical Realism as laid out in this
section. A simple graphical view on metaphysical Realism is depicted in Figure 2.1. Reality,
i.e. the entirety of all existents, is divided into universals and particulars. This view will
serve as a basis for developing and explicating our approach to knowledge representation
and, specifically, formal ontologies.

Relations

Qualities

ParticularsUniversals

concrete

abstract

material

immaterial

Existents

Figure 2.1: Metaphysical Realism

Once human knowledge is formalized and made part of some knowledge representation it is
necessary to determine how this knowledge may be used, e.g. in order to infer new knowl-
edge or to perform other tasks that rely on the knowledge held in ontologies. Ontologies are
concerned with the nature of reality, i.e. the nature of objects of knowledge, and are there-
fore static in nature. Using knowledge, on the other hand, involves dynamic processes that
use and create such objects of knowledge. This observation is examined in philosophical
theories of knowledge that study the nature of knowledge itself.

Ontological conceptions, such as metaphysical realism, serve as an essentially required
basis for theories of knowledge as ontologies give a notion of being and truth, which are
fundamental to knowledge. Theories of knowledge have a long tradition in philosophy, in
fact, an entire philosophical discipline, Epistemology, is dedicated solely to the study of
knowledge. Epistemology focuses on questions about the nature of (human) knowledge, i.e.
what is knowledge and what can be known. Modern analytical philosophy stresses the pro-
positional structure of knowledge and uses mathematical logic for arguing about proposi-
tions. The general idea is that true propositions describe situations in the world, which pre-
supposes objective truth that may be attributed to propositions. In order to turn a true propo-
sition into knowledge its truth has to be proven, or justified (see also Section 3.1.1). This
leads to the most prominent definition of knowledge as ‘justified true belief’ that has been
given by the Greek philosopher Plato and is still at the center of current debates.

SECTION 2.1 KNOWLEDGE REPRESENTATION

 3131

The distinction between objects of knowledge and knowledge itself as demonstrated in
Metaphysics and Epistemology may act as a directional role for knowledge representation.
Any knowledge representation will necessarily describe solely objects of knowledge but the
way knowledge is encoded is crucial for its employment in epistemological processes. Just
as each epistemic conception is (implicitly or explicitly) built upon its own ontological
foundation, so does any knowledge processing system rely on the expressiveness of the
knowledge representation it receives as a basis for the tasks it has been designed to carry
out. Knowledge representation, therefore, must meet a high standard concerning quality and
usability. At present, the most promising examples of high quality knowledge representa-
tions used for knowledge processing are formal ontologies [29].

2.1.2 Formal Ontologies in Information Science
Knowledge representations try to mirror the logics of a domain of interest, similarly to a
metaphysical ontology that aims at giving an account of the nature of reality in general [67].
Thus it comes as no surprise that metaphysical terminology made its entrance to theories on
knowledge representation as the scope and demands in this field of research grew more so-
phisticated. The aspired goal is to find methods for designing knowledge representations
that are on the one hand thoroughly independent of a specific application, i.e. on a very high
level of abstraction, and on the other hand a precise and complete, i.e. applicable model of a
given domain. This goal and accompanying questions are addressed in information science
where formal ontologies have been introduced as promising candidates for bridging the gap
between general representations and the concise employment of knowledge in computer
systems. Formal ontologies comprise abstract knowledge representations that convey a
shared understanding of a domain of interest [72]. Necessarily, a formal ontology will entail
its own worldview with respect to the domain, defining the existents involved. This is re-
ferred to as conceptualization and, accordingly, formal ontologies are often characterized as
specifications of conceptualizations [40].

Despite their widespread use – formal ontologies are frequently cited as the key technol-
ogy used to describe the semantics of information exchange [32] – the common understand-
ing of ontologies is still an unsettled matter. Such conceptualizations take on a variety of
forms and therefore differ greatly in structure and formality, ranging from highly informal
ones expressed loosely in natural language, to rigorously formal ones using precisely de-
fined terms with formal semantics, theorems and proofs of such properties as soundness and
completeness [72]. This formal diversity stems from the unfortunate fact that there is no
agreed meaning of the term ‘ontology’, even within the ontology engineering community
[42].

For our discussion it will suffice to follow the general understanding of a formal ontol-
ogy as an agreement about a shared conceptualization for a domain of interest, aimed at
knowledge sharing and reuse. The quality and usability of an ontology therefore depends on
how, regarding adequacy and completeness, it represents the target domain. Yet, as already
indicated, there is no commonly agreed upon understanding of ontologies. The reason for
this deficiency lies in the, at times, careless usage of the term ‘ontology’. Unfortunately, it
has become distressingly fashionable among scientists to call any knowledge representation
an ontology, hence the vast diversity. This obliterates the fact that formal ontologies are
conceptualizations that have been designed for a specific purpose, namely to enable and
support sophisticated knowledge processing. As an ontology describes a domain of interest
its usefulness strongly depends on how the knowledge it encodes can be utilized to perform

CHAPTER 2 EOS ONTOLOGIES

 32

knowledge tasks such as inference based on the knowledge it provides. This means that an
ontology needs to be epistemologically valuable with respect to the knowledge it represents
which leads to three basic requirements for formal ontologies:

 Generality. A formal ontology should exhibit a high degree of generality concerning its
possible uses. Ontologies comprise knowledge about domains and should therefore be
designed to be task-independent.

 Significance. All significant aspects central to a domain have to be captured by a corre-
sponding formal ontology. This requirement cannot be easily formalized because sig-
nificance may be subject to personal opinions and expertise (e.g. of ontology designers).
Nevertheless it is an important claim that an ontology be a thorough representation of a
domain not lacking any essential knowledge thereof.

 Expressiveness. The knowledge formalized within an ontology should be useful for a
variety of tasks. Therefore it must be capable of defining not only domain terms but also
their interrelations and axioms or rules that govern these relations. Hence, simple
thesauri and type hierarchies alone cannot be regarded as full-fledged ontologies.

Many knowledge representations cannot meet these requirement, and are in fact not de-
signed to do so as they are tailored to a single, very specific task. Knowledge representa-
tions of this kind may be optimized for their specific purpose and thus – in their context –
prove more useful than more general approaches. Yet, employing formal ontologies also
pursues a different goal, namely describing and communicating knowledge on heterogene-
ous subject domains across different systems. This requires a broad applicability of ontol-
ogy formalisms which is mirrored in the generality requirement as already described above.
Task-dependent, as well as partial and constricted knowledge representations lack the onto-
logical soundness (in the philosophical sense of the word) that is required as a basis for their
general epistemological applicability. For this reason it would be misleading to call such
knowledge representations ontologies. In order to clarify the notion of formal ontologies we
developed Concept Theory, a formalism that we consider suitable for serving as a theoreti-
cal framework for specifying general, significant and expressive EOS ontologies. Epistemo-
logical and practical applications for EOS ontologies will then be the subject of the follow-
ing chapters.

2.2 Concept Theory
The following sections will lay out the formalism we call Concept Theory, the theoretical
foundation we developed for our approach. It is strongly influenced by the basic considera-
tions and arguments presented in section 2.1.1. Starting from a first (informal) introduction
to the notion of concepts based on Definition 2.1 of this section, we will further discuss and
concretize what concepts are in terms of Concept Theory. Definition 2.4, then, determines
the formal structure of such concepts. Subsequently, we are describing how concepts can be
used for designing formal ontologies.

Definition 2.1 (informal): Concept

A concept is a formal representation of an existent.

If we assume the totality of all intelligible existents as being represented by a set of univer-
sals and particulars (as metaphysical realists do) the claim made here is that for each univer-

SECTION 2.2 CONCEPT THEORY

 3333

sal and particular there exists a concept that represents it. In other words, any describable
fact about reality is expressed by a corresponding concept.

Example 2.1: Some concepts of the domain Society

For explanatory purposes examples given in this section will frequently refer to an il-
lustrative domain, Society, that describes people, their environment and social relation-
ships.

The concept FAMILY refers to the universal ‘family’ and is part of the domain Society.
A simple definition for FAMILY would be that it depends on other concepts like
MOTHER, FATHER and CHILD. We may also know about particular families like ‘the
Smith family across the road’ that can be represented by the concept SMITH_FAMILY.
In the same way we may find concepts for all members of the Smith family, e.g.
BARRY for Barry Smith, the husband of Mary Smith and father of their son John.

Note: The naming conventions for concepts are, of course, irrelevant to the model itself
as concept names are technically not more than identifiers or indices to the set of all
concepts. For better readability, though, we will continue to use concept names like
FATHER and BARRY, always assuming that these names are uniquely addressing
one single existent. Accordingly, in our example the concept BARRY only represents
the individual Barry Smith, not ‘all persons called Barry’, or ‘the name ‘Barry’’.

Being a formal definition of an existent each concept establishes a statement of knowledge
about this existent. It follows that concepts promise to be naturally suited for constructing
knowledge representations, in particular formal ontologies. In addition, with the notion of
concepts being grounded in metaphysical realism, Concept Theory possesses a strong theo-
retical basis that is missing in other approaches. The semantics of concepts will be devel-
oped on this basis and are thus clearly tangible.

In concluding these informal considerations on concepts we will accentuate their repre-
sentational properties that follow immediately from Definition 2.1. Hence, concepts consti-
tute explicitly formalized pieces of knowledge about existents. On this account each concept
may act as:

 a reference to a specific thing in the world (referential property)
 a structural description of the thing in the world it refers to (definitional property)

In Concept Theory, a complete formal description of any given target domain will generally
consist solely of concepts, referring to universals and particulars prominent within the do-
main. Thus it follows that Concept Theory itself is unicategorical, i.e. it knows only one
category, namely concepts.

Definition 2.2: Universe of Concepts

The total set of all formally definable concepts is called the Universe of Concepts (or
Universe) Φ.

Analogous to the distinction between universals and particulars in general, we put em-
phasis on the two elementary subsets of the Universe of Concepts Φ:

CHAPTER 2 EOS ONTOLOGIES

 34

 ΦU ⊂ Φ is the set of all concepts that refer to universals
 ΦP ⊂ Φ is the set of all concepts that refer to particulars

It follows from the properties of universals and particulars that the Universe of Con-
cepts is disjointedly divided into these two subsets:

 ΦU ∩ ΦP = ∅, as universals and particulars are distinct categories
 ΦU ∪ ΦP = Φ, as reality is constructed from universals and particulars only.

The Universe of Concepts is the elementary set of Concept Theory (cf. Definition 2.2). All
metaphysical existents, universals and particulars, are represented by concepts of ΦU and
ΦP, respectively. Each concept is a concise formal definition of a single existent, i.e. itself
an existent with singular properties and a specific structure. Thus, metaphysically speaking,
all concepts are concrete particulars, instantiating from the universal concept. This meta-
physical status of concepts is depicted in Figure 2.2. Arrows pointing from ΦU to universals
and from ΦP to particulars are indicating the referential property of concepts towards all
existents.

Relations

Qualities

ParticularsUniversals

concrete

abstract

material

immaterial

PU

Existents

Universe of Concepts

Figure 2.2: Concepts within Metaphysical Realism

On this theoretical basis we will subsequently develop the syntactical and semantical fea-
tures of Concept Theory. Section 2.2.1 presents the syntax of Concept Theory, including the
formal definition of concepts. Sets of concepts, i.e. Φ and significant subsets are discussed
in section 2.2.2. In section 2.2.3 we will further examine two kinds of concepts, namely
conceptual universals of ΦU and conceptual particulars of ΦP. The semantics of concepts,
which are established with respect to the ontological relation specialization are central to
section 2.2.4. This section concludes with a formal definition of ontologies that arises as a
direct consequence from the semantic features of Concept Theory.

2.2.1 Syntax
Concept Theory is based on its own notion of ‘concepts’ that goes well beyond the ordinary
usage of the term. Concepts are not merely abstract or generic ideas generalized from par-

SECTION 2.2 CONCEPT THEORY

 3535

ticular instances (cf. Merriam-Webster) but explicit descriptions of existents and as such
concrete entities exhibiting structure and semantics. Each concept constitutes an object of
knowledge and can be addressed by its concept label.

Definition 2.3: Concept Label

A concept label is a name (a character sequence) that acts as an unambiguous reference
to its corresponding concept, i.e.

 ∃ function l: Φ → CHAR*
 ∀ C1, C2 ∈ Φ: if l(C1) = l(C2) then C1 = C2 (i.e. function l is injective).

For each concept there exists a corresponding concept label that identifies it uniquely. The
relation between concepts and their labels is thus well defined, according to the injection
that associates each concept with its corresponding label.

Example 2.2: Concept Label

Let MOTHER, FAMILY ∈ ΦU be concepts describing the universals mother and family.
The corresponding concept labels can be defined as

 l(MOTHER) := ‘Mother_Concept’

 l(FAMILY) := ‘Family_Concept’

Note that the only way to talk about concepts is, in fact, by reference. Strictly speaking,
‘MOTHER’ itself is not a concept but only a name, a reference just like the label
‘Mother_Concept’ is. Therefore, from a practical point of view, we will not differentiate
anymore between the syntactical representation of concepts and their labels. Within Con-
cept Theory, expressions like ‘MOTHER’ and ‘Mother_Concept’ are thus treated equally.
With concept labels being introduced we can now give a formal definition of concepts
themselves, as Concept Theory addresses them.

Definition 2.4 (formal): Concept

A formal concept (or concept) C is a tuple C:=(n, L) where

 n ∈ N0 denotes the arity of concept C, i.e. the number of concepts in L
 L is an ordered tuple of n concept labels l1, l2, ..., ln.

The tuple L of concept labels determines the internal structure of concept C, i.e. it ac-
counts for other concepts that are part of C. These concepts contained in C are called its
subconcepts, or components.

Note:

CHAPTER 2 EOS ONTOLOGIES

 36

 As a short notation for referring to labels of the tuple L we adopt the one used for
designating the elementary relation for sets, i.e. we use

l(CONCEPT)∈L
instead of

l(CONCEPT):∃ i∈N: l(CONCEPT) = L[i].
 An integrity rule for conceptual particulars arises immediately from the notion of

components, which are representing the constituents (i.e. the parts) of the existents
a conceptual particular is describing. As existents cannot be proper parts of them-
selves, for any conceptual particular C:=(n, L) ∈ΦP and the set φC of all of its (re-
cursive) components it follows that:

l(C) ∉ φC.

A concept is by definition directly related to the existent it describes, i.e. defining a new
concept immediately implies that there is a designated part of reality it is a referent of. From
a knowledge representational point of view, the semantics of concepts (or any other knowl-
edge representation entity) usually fail to fully describe the existents they are referring to,
e.g. it is very hard to completely capture the meaning of the concept FAMILY using a formal
model. Yet, this is not the intended use of concepts and formal ontologies. The semantics of
existents themselves that are referenced and described by concepts are fixed in separate
theories of other disciplines – e.g. the natural sciences or metaphysics – which are beyond
the scope of this thesis. This thesis concentrates on the use and semantics of concepts in
Concept Theory, which will be developed throughout this and the following chapter.

As mentioned above, a first approach to the semantics of concepts is that they possess a
referential property and a definitional property. The referential property of concepts im-
plies that each concept references something (an existent), and does so uniquely in a sense
that concepts are – contrary to terms in natural language – unambiguous. There are no two
concepts describing the same existent, and one concept always refers to a single existent
alone. ‘Frank’, for example, is an English word that has very different meanings, depending
on its uses as a noun (the name ‘Frank’), an adjective (being ‘frank’, openly showing
thoughts and feelings), or a verb (to ‘frank’ a letter). Yet, as names, properties and activities
clearly are different existents the three senses of ‘frank’ would certainly yield three different
concepts. A fourth concept may describe the English homonym ‘frank’ that is ambiguous,
while the corresponding concept is not, as it is simply a description of a particular word
having several meanings. Generally, linguistic ambiguities like homonyms, synonyms, etc.
do not affect Concept Theory.

The definitional property of concepts is realized by a structural explication of the meta-
physical existents they represent. This is achieved by the ordered tuple of concept labels
that, metaphysically speaking, denote the constituents of the respective existents. As an ob-
vious integrity rule, only labels referring to previously defined concepts may be used within
concept definitions. Thus, at its core, any formal ontology in Concept Theory relies on a
fundamental singular concept like EXISTENT23 that represents the most basic universal exis-
tent. All other concepts can be defined on that basis. Without loss of generality we will as-

23 The choice for the name EXISTENT is obvious, yet of course arbitrary. Regardless of this naming convention, the

existence of such a fundamental ‘root’ concept plays an important role in the construction of EOS ontologies.

SECTION 2.2 CONCEPT THEORY

 3737

sume EXISTENT as the fundamental concept common to all EOS ontologies within the
scope of this thesis.

Example 2.3: The Concepts EXISTENT and FAMILY

The fundamental concept EXISTENT is defined as

EXISTENT := (0, ()).

Subsequent concepts can now use the label EXISTENT in their own concept defini-
tions. This way, more specific concepts possessing an arbitrary number of subconcepts
may be designed that will finally lead to the concept definitions for MOTHER, FA-
THER and CHILD. Applying these to the specification of the concept FAMILY as men-
tioned in Example 2.1 will yield

FAMILY := (3, (MOTHER, FATHER, CHILD)).

Note: It may be reasonable to define singular, or bare concepts besides EXISTENT, i.e.
concepts that do not contain any other subconcepts. Determining subconcepts would
mean to set a specific structure which may neither tenable nor wanted for these con-
cepts. A short notation for expressing bare concepts omits the information about arity
and concept labels. Thus, a definition of EXISTENT equivalent to the one above
would be

 EXISTENT := ().

Concept labels refer to concepts as a whole, i.e. FAMILY denotes the universal family, re-
gardless of its internal structure. If subconcepts of concepts have to be addressed directly
this can be done with concept references.

Definition 2.5: Concept Reference

Let Φ denote the set of all valid concepts. A concept reference is a function

cref: Φ×N → Φ

that for a given concept C:=(n, L) ∈Φ and an integer i∈N returns L[i], the i-th concept
of the tuple L.

Note: As an equivalent way of expressing a concept reference cref(C, i) we introduce
the shorter notation C[i].

Trivially, there are no concept references to bare concepts as these concepts do not contain
any components. The semantic difference between concept labels and concept references is
that the latter reference (sub)concepts within the context of another concept. Thus, concept
references pertain to the structure of a concept while labels pertain to the concept as such.

Example 2.4: Concept Reference

Two references for the concept FAMILY := (3, (MOTHER, FATHER, CHILD)) are:

CHAPTER 2 EOS ONTOLOGIES

 38

 cref(FAMILY, 1) = FAMILY[1] = MOTHER

 cref(FAMILY, 3) = FAMILY[2] = CHILD

Having introduced the fundamental components of Concept Theory we will briefly interpret
them along the lines of metaphysical realism. Concepts are explicit definitions of existents
and as such, metaphysically speaking, particulars, more precisely particulars instantiating
the universal concept. Analogously, concept labels and references are particulars of the uni-
versals concept label and concept reference.

Recurring to the formal definition of concepts we are now in a position to examine
mereological24 and set properties of concepts. A mereological approach to concepts stresses
their internal structure, i.e. the relation between concepts and their subconcepts, whereas the
set oriented view on concepts regards them as elements of meaningful sets (such as ontolo-
gies) that represent parts of reality. Sets of concepts are discussed in section 2.2.2. The sub-
sequent sections will then concentrate on the properties of concepts with respect to their
subconcepts.

2.2.2 Sets of Concepts
This section concentrates on sets of concepts significant to Concept Theory. The set com-
prising all intelligible25 concepts is the Universe of Concepts Φ (cf. Definition 2.2) and, con-
sequently, all other sets are per definition subsets of Φ. Trivially, the Universe is a (not only
enumerable) infinite set. This superset of all intelligible concepts e.g. clearly contains sub-
sets that are themselves infinite sets, like the set {One, Two, ...} of all concepts that de-
scribe individual integers. Although we are taking Φ to be an infinite set, it should be clear
that all ontologies that are modeled using concepts are of course finite, i.e. consisting of a
finite set of concepts. For theoretical reasons we will nevertheless sometimes mention con-
siderations where not only finite ontologies are regarded but Φ as a whole.

Definition 2.6: Denominator

Let sub(Φ) ⊆ Φ denote a subset of the Universe of Concepts, let (sub(Φ)) be the lexico-
graphically ordered26 tuple of all concepts of the subset sub(Φ) and |sub(Φ)| the cardi-
nality of this subset. The denominator den ∈ΦU of this subset is the concept

den(sub(Φ)) := (|sub(Φ)|, (sub(Φ)))

 that acts as a representative of the subset.

Note that from a theoretical point of view, the notion of concepts as formal definitions of
existents implies a logical paradox. As any such definition is itself an existent, so is the ‘ut-
most’ denominator den(Φ):=(|Φ|,(Φ)) of the Universe of Concepts. Considering that Φ per
definition contains the totality of all intelligible concepts this, consequently, must also valid

24 Mereology is a philosophical discipline embracing all formal theories of part and whole (cf. Simons, Parts)
25 Concepts and existents correspond with each other, i.e. for any existent we assume a concept that describes it. Different

theories may produce different existents they are working with and new theories may introduce new kinds of existents,
all being represented by their corresponding concepts. The set of all of these (possible) concepts that are necessarily
based on according theories of existents is what we call the set of all ‘intelligible’ or ‘conceivable’ concepts.

26 This ordering is implied by the lexicographical order of the concept names.

SECTION 2.2 CONCEPT THEORY

 3939

for den(Φ), i.e. den(Φ) ∈ Φ. Thus den(Φ) references itself ad infinitum (cf. [12]). Fortu-
nately, this paradox is not relevant for practical applications as knowledge representations
are always finite.

Definition 2.7: Domain, Domain Space

A concept domain (or domain) D is a finite or infinite subset of the Universe Φ: D ⊆ Φ.

The domain space Ψ of all valid domains, is Ψ ⊂ 2Φ, a subset of the power set of Φ,
where all domains D∈Ψ satisfy the condition that they be sensible in terms of model-
ing reality (a condition that cannot be captured syntactically but has to be evaluated and
ascertained by a human expert).

Technically, any subset of the Universe is a valid domain, while the domains interesting for
knowledge representation will only amount to a small fraction of all possible subsets. No
formal notion of ‘interestingness’ concerning domains can or should be defined at this level
and thus be integrated into Concept Theory. Domains act foremost as abstractions, (possibly
infinite) sets that cannot necessarily be described by extension but are better captured by
intension. Regardless of infinite sets, extensionally specifying a domain may prove itself
inadequate in many cases, and may even be unwanted, as domains are rather mental con-
structs used for modeling a knowledge representation than an actual part of it. Note in this
context that domains can contain several concepts that pertain to the same metaphysical
existent, which accounts for the fact that there may be various equally suited ways of de-
scribing this existent.

Concept Theory does not restrict domains to be subsets of ΦU alone, i.e. concepts de-
scribing particulars may very well be elements of domains. Consequently, domains may
change over time, taking into account that new particulars may come to existence, and al-
ready present particulars may be altered or cease to exist. This understanding of domains is
an immediate consequence of the epistemological import of domains. Useful knowledge
about a meaningful portion of reality – and this is what domains are supposed to represent –
will necessarily entail both, abstract background knowledge and concrete facts about reality.

Example 2.5: The Domain Society

The domain Society ∈Ψ is to be defined as the set of all concepts referring to universals
and particulars that explain or are part of a human society:

 extensional definition: Society := { FAMILY, MOTHER, Mary, FATHER, Barry, Pe-
ter, CHILD, ... }

 intensional definition: Society := { C ∈Φ | C refers to society }

While the natural way to describe domains is intensional, knowledge representations in gen-
eral and formal ontologies in particular, are defined as extensional enumerations of their
different components, concepts in the case of Concept Theory.

Definition 2.8: Formal Ontology

CHAPTER 2 EOS ONTOLOGIES

 40

Let D ∈Ψ be a domain. A corresponding formal domain ontology (or formal ontology,
ontology) O(D) is a finite subset of D where

∀ci,cj ∈O(D):
ci represents a metaphysical existent e ∧ cj represents the same existent e ⇔ ci=cj,

i.e. within a formal ontology each concept refers to an existent uniquely, which implies
that two concepts possessing different names will reference different existents.

This definition of formal ontologies implies that there may exist more than one formal on-
tology for a given domain which reflects an intuitive fact: there are different and potentially
equally suited ways of modeling a formal description of one and the same domain. A simple
ontology of the domain Society is given below.

Example 2.6: An Ontology of the Domain Society

A very simple ontology of the domain Society is

O1(Society) := (FAMILY, PERSON, FATHER, MOTHER, CHILD).

O1(Society) is represented by the corresponding denominator

SOCIETY := (5, (O1(Society))).

Respective concept definitions are:

FAMILY := (3, (FATHER, MOTHER, CHILD))
PERSON := ()
MOTHER := ()
FATHER := ()
CHILD := ()

where PERSON, MOTHER, FATHER and CHILD are described as bare concepts.

Note that the concepts PERSON, MOTHER, FATHER and CHILD of Example 2.6 are actu-
ally referring to qualities (monadic relations) pertaining to individuals, e.g. being a mother
can be instantiated by a woman, say, Mary Smith. Thus MOTHER could be defined more
precisely as

MOTHER := (1, (WOMAN)).

The less specific definition of MOTHER within O1(Society) as a bare concept does not give
this information. This lack of detail is not (necessarily) a sign for an erroneous ontology
design. Depending on the intended focus of an ontology, the universal mother may be de-
scribed by a more or less detailed concept. The degrees of granularity and significance can
be determined independently from each other when modeling a domain.

Technically, each ontology is also a domain of its own as any subset of a given domain is
itself a domain. But this point of view ignores the aim of knowledge representation, namely
providing an adequate formal description of some meaningful portion of reality (i.e. a do-
main). The quality and usability of an ontology therefore depends on how, regarding ade-
quacy and completeness, it represents the target domain with respect to a predefined task.
While it is true that virtually any set of concepts is trivially a knowledge representation on

SECTION 2.2 CONCEPT THEORY

 4141

its own account, its actual value can only be judged by specifying the domain it has been
designed to describe.

Regarding concepts from this perspective stresses their set theoretic properties. In this
sense concepts form the basic constituents of larger bodies, sets of concepts like ontologies,
domains and, ultimately, the Universe. On the other hand concepts are formal definitions of
existents that are highly structured. Each concept may be regarded as an mereological ob-
ject, a single unit organized by a tuple of component labels that mark its subconcepts. The
following sections will concentrate on this latter view on concepts.

2.2.3 Kinds of Concepts
In this section we will present two important kinds of concepts, namely conceptual relations
and particulars, by referring to their mereological properties. While the preceding sections
have introduced concepts as formal definitions of existents and treated them as elements of
domains, meaningful sets of concepts, we will now concentrate on their expressive power.
Specifically, concepts should be able to describe existents of arbitrary kind. Based on argu-
ments drawn from metaphysical realism we claim that conceptual relations and particulars
own precisely the expressiveness needed to do so.

The ontology O1(Society) shown in Example 2.6 is very limited not only due to the small
number of concepts it encompasses but in expressiveness. It simply does not give much
information about the participating concepts, e.g. the fact that mothers, fathers and children
are persons is missing, although concepts MOTHER, FATHER, CHILD, and PERSON are
actually part of the ontology. In order to increase expressiveness, facts of this kind, i.e. rela-
tions between concepts, should therefore be stressed within the ontology. Accentuating in-
terrelations between concepts is an important concern as it means giving more and useful
information on the respective domain which is the central task of an ontology.

Concepts are set in relation to each other by, yet again, concepts. It follows from the in-
ternal structure of concepts that two or more concepts are interrelated if they are contained
in the same concept. In other words, a concept may be regarded as a relation on its compo-
nents, represented by the corresponding tuple of concept labels. The only concept of
O1(Society) possessing subconcepts at this point is FAMILY. The components of FAMILY are
MOTHER, FATHER, and CHILD, i.e. these three concepts are set into relation by their su-
perordinate concept FAMILY.

This relational view on concepts (as opposed to a view where concepts are regarded as
mere entities) can be comprehensibly illustrated by referring to the theoretical foundation as
outlined by metaphysical Realism. Realism divides reality into universals and particulars,
and Concept Theory claims that elements of both categories of existents can be referenced
and defined by single constructs of the same kind, namely concepts. The two main subcate-
gories of universals are qualities and relations, where qualities, in fact, are themselves mo-
nadic relations pertaining to only one existent. In Concept Theory relations are generally
expressed through conceptual relations, concepts possessing subconcepts.

CHAPTER 2 EOS ONTOLOGIES

 42

Definition 2.9: Relation

A conceptual relation (or relation) is a concept R := (n, L) ∈ΦU where

n > 0 ∧ ∃ l ∈L, ∃C ∈ΦP: l(C)= l ,

i.e. R does contain subconcepts and at least one of these subconcepts references a uni-
versal.

Per definition, not all subconcepts of a conceptual relation will reference a particular. This
demand follows immediately from the realist point of view. Relations, according to realists,
are universals that can be exemplified, or instantiated (by particulars), e.g. what is meant by
the relation family can be instantiated by several particular groups of persons. Relations, as
treated by Concept Theory, must reflect this. Thus they have to possess at least one subcon-
cept that can be further exemplified, i.e. that is not itself a description of a metaphysical
particular. Being referents to universals, conceptual relations consequently are elements of
ΦU, which is just the set of all concepts referring exclusively to universals.

Example 2.7: Relation

The concept FAMILY is a triadic relation. All of its subconcepts are themselves ele-
ments of ΦU:

FAMILY := (3, (FATHER, MOTHER, CHILD)) ∈ΦU
Let Barry ∈ ΦP denote the individual Barry Smith. The relation

ANOTHER_FAMILY := (3, (Barry, MOTHER, CHILD)) ∈ΦU
describes all families satisfying the restriction that the father of these families be Barry
Smith – which in the special case of families can only be true for one family. Neverthe-
less the definition of ANOTHER_FAMILY still references a universal (that may theo-
retically be instantiated by only one metaphysical particular, the Smith family).

If a concept were to contain only subconcepts referencing particulars it would be fully de-
termined. Accordingly, it could not be referencing a universal (a relation) anymore but an
actual particular that instantiates a relation. Such a concept is called a conceptual particular.

Definition 2.10: Particular

A conceptual particular (or particular) is a concept p := (n, L) ∈ΦP where
∀ C∈L: C∈ΦP,

i.e. all subconcepts in L reference solely particulars.

Such particulars are concepts that hold volatile information about a given domain in a sense
that they represent actual occurrences27 that may be created, be subject to change and cease
to exist. As an example, a specific family like the Smith family has been started at some

27 Until their formal definition in Definition 2.14 we regard occurrences as – particular or universal – specializations of

universals.

SECTION 2.2 CONCEPT THEORY

 4343

point in time, the members will change over the years, and the Smith family may also be
ended, e.g. by divorce.

Example 2.8: Particular

Let Barry, Mary and John ∈ΦP denote the individuals Barry, Mary and John Smith. The
concept

Smith_family := (3, (Barry, Mary, John)) ∈ΦP

is a particular representing the very family of Barry, Mary and John Smith. All subcon-
cepts are fully determined, i.e. themselves elements of ΦP which cannot be further in-
stantiated.

Syntactically, conceptual universals and particulars possess the same structure as they
are both concepts. In order to distinguish between concepts of ΦP and ΦU on an ontol-
ogy modeling level, as a syntactical convention, particular names in Concept Theory
are indicated either by the prefix ‘PARTICULAR:’, or by using lowercase letters – as
opposed to universal names that only contain uppercase letters. Thus, ‘Smith_family’
designates a particular ∈ΦP while ‘FAMILY’ is a universal ∈ΦU.

While relations state unchangeable facts about a domain, particulars express its present
status at a given point in time. The analogy to the relationship between schema and data in
database technology or classes and objects in object-oriented systems is obvious but also
misleading. There is a fundamental difference in terms of abstraction and actuality between
a database schema and the data (including the physical representation of the schema in da-
tabase relations) stored in the respective database according to the schema. The same
applies to classes that define the properties of objects and the objects themselves that exist
and interact at runtime. There is no such functional difference between relations and
particulars in Concept Theory. Both are structurally equal constructs: concepts referring to
existents. The objects concepts are referencing may be different in their nature, i.e. be
metaphysical universals or particulars, but concepts refer to all existents in the same
manner, by specifying them individually and determining their internal composition.

Regarding concepts from this perspective stresses their relational properties. The internal
structure of a concept defines the subconcepts it relates to each other. This view, combined
with the set theoretic and mereological perspectives form the cognitive background of Con-
cept Theory. Each concept is an individual unit and may be alternately regarded as

 an element of a larger, meaningful set of concepts (e.g. ontologies and domains)
 a definition of the existent (universal or particular) it references
 a relation on its subparts

Relational properties of concepts will be further analyzed in the following sections. The
impact of these properties on ontologies consisting of formal concepts is central to Concept
Theory.

CHAPTER 2 EOS ONTOLOGIES

 44

2.2.4 Semantics of Concepts
On the basis of the set theoretic and mereological properties of concepts as examined in
sections 2.2.2 and 2.2.3 we will now discuss their semantics in detail. The fundamental se-
mantics of concepts are based on a special concept, ISA, a conceptual relation that repre-
sents specialization and generalization. The goal of this section is to motivate and demon-
strate requirements for formal ontologies, which will finally lead to a formal definition of a
valid ontology within Concept Theory. Among several other definitions central to Concept
Theory, ISA accounts for the semantics of occurrences and instances (as special cases of
occurrences). As the notion of occurrences is helpful for explaining some of the ideas in this
section we will briefly introduce them here, before they are formally defined in section
2.2.4.2 in their appropriate theoretical context. Informally, occurrences are concepts that are
examples of other concepts, e.g. MOTHER is an occurrence of PERSON, as mothers are
examples of persons, and so is Mary. Note, as implied in this example, that occurrences may
be elements of both, ΦU and ΦP.

Metaphysical Realism claims that universals are instantiated by particulars. This pertains
to qualities as well as polyadic relations: a chair instantiates a certain shape and color, as
well as a group of people instantiate being a family, etc. One of the characteristics of uni-
versals is that they can be instantiated by more than one particular at a time, e.g. from our
experience we know that there are many chairs exhibiting the same shape, we will find nu-
merous objects of the same color and there are also many different groups of people instan-
tiating what it means to be a family. In other words, at any time it is possible that various
occurrences of one and the same universal are exemplified.

That is to say that there exists a fundamental relation between each occurrence of a uni-
versal and the universal itself: the Smith family and the Simons family both are families,
occurrences of the universal family, to be more exact. Moreover, the scope of this funda-
mental relation is not limited to hold only between universals and their related particulars
but also among universals alone, e.g. a middle-class family is a family, too. Thus, the fun-
damental relation generally expresses specialization and generalization, the utmost spe-
cializations being the ones from universals to their respective occurrences, i.e. particulars.
What makes this relation fundamental is that, without exception, any existent takes part in
an occurrence of it. Therefore it comes as no surprise that metaphysicists regard this relation
with special interest – as pointed out in section 2.1.1 the intention to answer the question
“What is it?” for all existents has been a central motivation for designing ontologies in the
first place.

2.2.4.1 Ontological Status of the Concept ISA
Specialization and generalization express the answer to the metaphysical question “What is
it?” by positioning existents in relation to each other and in relation to ontological catego-
ries. In Concept Theory specialization and generalization are expressed through the concept
ISA.

Definition 2.11: The Fundamental Relation ISA

The relation ISA is defined as the concept

ISA := (2, (EXISTENT, EXISTENT)) ∈ΦU

SECTION 2.2 CONCEPT THEORY

 4545

implying the following semantics for the components of ISA:

 ISA[1] ∈Φ is a concept that is generalized by ISA[2],
 ISA[2] ∈ΦU is a concept that is specialized by ISA[1].

Note: Occurrences of ISA are marked as such by the prefix ISA:, e.g.

ISA:isa_occurrence := (2, (APPLE, FRUIT)) ∈ΦP

The prefix ISA: thus distinguishes occurrences of ISA syntactically from all other dy-
adic concepts.

The semantics of ISA are a declared part of Concept Theory, the relation is thus ontologi-
cally prior to all other concepts that may be defined within an actual formal ontology. Only
with ISA being included in Concept Theory it is possible to capture specialization and gen-
eralization among existents semantically.

Example 2.9: Some Examples of the Relation ISA

Let MOTHER, Mary and PERSON be concepts of the ontology O1(Society). We can
now formulate that Mary is a mother, and that mothers are persons:

ISA:isa_mary := (2, (Mary, MOTHER))
ISA:isa_mother := (2, (MOTHER, PERSON))

The prefix ISA: identifies these two concepts as occurrences of ISA. Otherwise, the
semantics of ISA could not be expressed as shown in the following example where
Isa_mary is defined without the prefix, i.e. without explicitly stating that this concept
represents a specialization.

Isa_mary:= (2, (Mary, MOTHER))
Note that at this point Isa_mary is not yet identified as an occurrence of ISA. It is still
ontologically equal to all other dyadic concepts relating Mary and MOTHER. In order
to mark it as an occurrence of ISA we could add a new concept:

EXAMPLE_OF_ISA := (2, (Isa_mary, ISA))

But, yet again, EXAMPLE_OF_ISA itself is just another dyadic concept providing no
further semantics than that it relates Isa_mary and ISA. What this relation expresses
semantically remains unresolved. In fact we can define an infinite number of concepts,
each relating the former to ISA, but the underlying semantics that the respective con-
cepts refer to examples of specializations could never be caught. Therefore the funda-
mental specializations from ISA to its occurrences need to be made explicit within the
syntax definition of Concept Theory and this is exactly what is achieved by using the
prefix ISA:. With the fundamental specializations being semantically tangible in this
way all other specializations between existents can be modeled on this basis. In fact,
ISA:isa_mary actually symbolizes two occurrences of specialization: (a) the particular
specialization that marks the relation that exists between the particular Mary and the
universal mother as an occurrence of the universal specialization and (b) the particular
specialization from mother to Mary itself.

CHAPTER 2 EOS ONTOLOGIES

 46

This definition of the relation ISA and its occurrences (Definition 2.11) reflects the self-
referential quality of specialization/generalization: a specific relation between, two exis-
tents, e.g. Mary and mother, is a specialization, and stating this fact is a specialization of the
universal specialization itself, etc. Concept Theory is able to express this recursion to an
arbitrary depth while the semantics of specialization/generalization are being preserved at
any time. Otherwise a formal ontology could not coherently model relationships between
existents as the concepts forming the ontology would be distinguishable, yet isolated in
meaning, e.g. two occurrences of families could still be referenced by their corresponding
concepts (that will both exhibit the same structure, i.e. number of components) but the fact
that these concepts actually represent examples of the universal family would be lost. ISA
provides the model with the semantic power that is needed to express such relationships.

The reason for the self-referential quality of specialization/generalization lies in the na-
ture of universals, specialization being one of them. As universals can be instantiated by
several particulars at a time, each particular takes part in its own private instantiation of a
universal that is numerically different from all other instantiations of that same universal.
Analogously, there must also be distinct conceptual particulars of ISA, each describing one
of the numerically different instantiations. But then their common property, namely that
they really are occurrences of ISA is not yet expressed. This has to be done by self-reference
of ISA, i.e. each specialization among arbitrary concepts implies a self-referential occur-
rence of ISA of the form

ISA:self-reference := (2, (ISA:isa_occurrence, ISA))

that describes the respective specialization among concepts also as specialization of the con-
cept ISA itself.

2.2.4.2 Properties of the Concept ISA
ISA is the fundamental relation of Concept Theory. It represents specialization and gener-
alization among existents and exhibits semantic properties that can be used for defining the
structure of formal ontologies:

 Self-referentiality. The self-referential quality of ISA has been discussed in detail in sec-
tion 2.2.4.1. Its integration into the syntactical definition of concepts is the semantic ba-
sis of Concept Theory. For any concept C, viewed from a relational perspective, ISA is
identifying all concepts that are occurrences of C.

 Reflexivity. Trivially, any existent is its own specialization, which in Concept Theory is
expressed by the rule that,

∀ C∈Φ: ∃ an ISA occurrence ISA:occ :=(2, (C, C)) ∈Φ
notwithstanding whether this occurrence of ISA is stated explicitly within an actual on-
tology or not.

 Antisymmetry. Specialization is an antisymmetric relation, i.e.
∀ Ci, Cj ∈Φ: if ∃ ISA:occ1:=(2, (Ci, Cj)) ∈Φ ∧ ∃ ISA:occ2:=(2, (Cj, Ci)) ∈Φ ⇒ Ci = Cj.

 Transitivity. The transitive property of ISA and its impact on the semantics of formal
ontologies will be presented in section 2.2.4.2.1.

 Stringency. ISA is stringent in that it is necessarily related to all concepts of a formal
ontology through one of its occurrences. The resulting graph structure and its implica-
tions will be discussed in section 2.2.4.2.2.

SECTION 2.2 CONCEPT THEORY

 4747

 Continuity. Within a formal ontology, the internal structure of concepts is being pre-
served by ISA, i.e. concepts inherit the structure of their parent concepts. This structural
continuity will be further explained in section 2.2.4.2.3.

Based on these properties of the concept ISA we are in a position to develop a clearly de-
fined notion of formal ontologies, and moreover, give semantic and syntactical conditions
for valid ontologies.

2.2.4.2.1. Transitivity
Specialization is a transitive relation, i.e. from two ISA occurrences

ISA:occ1 := (2, (A, B)) and ISA:occ2 := (2, (B, C))
we can infer a third ISA occurrence

 ISA:occ3 := (2, (A, C))

that is implied by the first two occurrences. Transitivity is an important semantic property of
ISA as it allows for deducing new concepts, therefore explicitly manifesting implicit knowl-
edge present within an ontology. The impact of transitivity on concepts is expressed by the
principle of reducibility.

Definition 2.12: Reducibility

Let O be an ontology and S∈O and G∈O be two concepts of O. S is reducible to G in
O if there exists a transitive sequence

ISA:isa1:=(2,(S,C1)), ISA: isa2:=(2,(C1,C2)), …, ISA: isaN:=(2,(CN-1,G)) ∈O

of ISA occurrences from S to G.

Basically, reducibility expresses categorization within Concept Theory, i.e. if a concept S is
reducible to another concept G, then S is of kind G, or falls into the category G. Note that
any concept is trivially reducible to itself because of the reflexive quality of ISA, which is a
semantically natural way of looking at concepts – any concept C is of kind C.

Example 2.10: Reducibility

Let O be an ontology and

ISA:occ1 := (2, (WOMAN, PERSON)), ISA:occ2 := (2, (Mary, WOMAN))

be ISA occurrences ∈O. From ISA:occ1 and ISA:occ2 we can infer

 ISA:occ3 := (2, (Mary, PERSON))

i.e. Mary is reducible to PERSON.

Reducibility is a useful means for explaining the semantic implications of ISA seen from
a relational point of view. As a transitive relation on other concepts ISA defines structure
within ontologies, which leads to the constructive properties of ISA that are examined in the
following section.

CHAPTER 2 EOS ONTOLOGIES

 48

2.2.4.2.2. Stringency
Concept Theory acknowledges the fundamental significance of ISA in that it demands for
any ontology in order to be valid to relate all of its non-ISA concepts by occurrences of ISA.
This requirement is a direct consequence from the basic considerations presented in section
2.1.1 where we laid out that an ontology has to be able to answer the “What is it?” question
for any existent it encompasses, which corresponds with the semantics of ISA. The underly-
ing assumption is that any existent is of a certain kind and thus inhibits a definite and unam-
biguous position within an ontology.

The stringency of ISA immediately leads to far-reaching structural properties of ontologies.
Occurrences of ISA are associated with all other concepts of an ontology, thus specifying a
hierarchy of concepts, starting from the ones describing the most general universals to the
ones referring to the most determined existents, i.e. particulars. In fact, the relation ISA de-
fines a complete leveled graph with all other concepts being nodes that are connected by
edges delineated by the set of occurrences of ISA.

Definition 2.13: Concept Graph, Ontology Graph

Let O be a formal ontology. A concept graph GC:=(VC, EC) of a concept C:=(n, L) is a
directed graph defined by

 the set of vertices VC⊆O where ∀ v∈VC: v is reducible to C in O, i.e. VC contains C
and all of its specializations, and

 the set of edges EC⊆VC×VC where ∀ (v1,v2)∈EC: ∃ ISA:occ:=(2, (v2,v1))∈O, i.e. EC
is defined by occurrences of ISA, and edges are pointing from general to special-
ized concepts.

An ontology graph GO is the concept graph of the fundamental, most general concept
EXISTENT∈O, i.e. GO := GEXISTENT:=(VEXISTENT, EEXISTENT).

The ontology graph GO regards ISA as a relation on all other concepts. It is leveled in that it
possesses a root vertex (usually EXISTENT) that has no incoming edges. The levels of GO
are delineated by ISA edges. As an ontology graph is the complete graph of all concepts of
an ontology O, i.e.

O = VEXISTENT ∪ EEXISTENT,

there is a path from the root concept to any other concept (excluding ISA occurrences, the
vertices of the graph). The distance from the root concept, i.e. the length of the longest path
leading from the root concept to a vertex concept, then indicates the level of the particular
vertex concept. Thus, an ontology graph level comprises all concepts of the same distance
to the root concept. Obviously, as can be deduced from the semantics of ISA, there are no
backward edges from child to parent vertices.

2.2.4.2.3. Continuity
For any concept there exists a subgraph of the ontology graph GO featuring this concept as
an ‘intermediate’ root concept. All subsequent concepts of this subgraph represent speciali-
zations, and thus occurrences of the intermediate root concept. There is a common property
of these child concepts that is associated with their internal structure in comparison with the
inner structure of the intermediate root concept. We paraphrase this common property as

SECTION 2.2 CONCEPT THEORY

 4949

structural continuity which accounts for the general pattern that all occurrences ‘inherit’ the
internal structure of the intermediate root concept, similar to inheritance in object-oriented
design [66]. Accordingly, the intermediate root concept can be regarded as a class/type defi-
nition for its subsequent concepts, or in metaphysical terms, as a category that all child con-
cepts are reducible to. As we will show, this property holds for simple as well as for multi-
ple inheritance where a subsequent concept represents a specialization of several, more gen-
eral concepts.

From the transitive property of ISA it follows that there exists a direct specialization
from a general concept G to any of its child concepts S, i.e. there is an ISA occurrence

ISA:occ := (2, (S,G))

that contains S and G as subconcepts. This ISA occurrence, next to defining a specialization
from G to S, establishes a structural relationship between these two concepts. The structural
relationship is on the respective subconcepts of G and S, as defined by their label tuples,
and allows for a formal definition of the syntactic properties of concept occurrences. Occur-
rences preserve the subconcept structure of their general concept. If an occurrence S of G
does not possess any additional subconcepts it represents an instance of G.

Definition 2.14: Occurrence, Instance

Let S:=(n, LS) and G:=(m, LG) be two concepts of an ontology O. S is an occurrence of G
in O if S is reducible to G.

S is a valid occurrence of G if

 S is reducible to G,
 n≥m for S∈ΦU and n=m for S∈ΦP,
 ∀ li∈LG ∃ lj∈LS: the concept labeled by lj is reducible to the concept labeled by li,

according to a function role: N→N0 that maps indices of LS uniquely to indices of
LG:

 ∀ 1≤j≤n: role(j):= k, for 0≤k≤m, where
 ∀ 1≤j1,j2≤n ∧ (role(j1)≠0 ∨ role(j2)≠0): role(j1)=role(j2) ⇔ j1=j2, and
 ∀ 1≤i≤m ∃ 1≤j≤n: role(j):= i.

i.e. for any component of the more general concept G there exists a corresponding com-
ponent of occurrence S that exclusively represents its specialization. The function
role() is expressing this mapping of components. Accordingly, the components of G are
called the roles of the subconcepts of S. The components of S that take over the roles
defined in G are named occupants. As it is allowed that n>m, i.e. the number of com-
ponents of S may be greater than the number of components of G, it is possible that, a
component lj∈LS is not an occupant of a role in G (although all components of G are
occupied). In this case, role(j):=0 and lj is said to be its own occupant.

S is an instance of G if

 S is a valid occurrence of G and
 n = m,

i.e. all subconcepts of S are occupants, covering all roles in G.

CHAPTER 2 EOS ONTOLOGIES

 50

In valid occurrences, without exception, all components of the more general concept are
generalizations of designated subconcepts of the more specialized concept. This concept
may possess more concepts than its generalization but it is an essential requirement for it to
be a valid occurrence that all subconcepts of the more general concept find their distinct
specializations within its own subconcepts. Put in other words, the tuple of subconcepts of a
valid occurrence comprises valid occurrences of all components of the general concept.

Note that the mapping between components of parent and child concepts, formally intro-
duced with function role(), must be an explicit part of an ontology, as Concept Theory al-
lows for multiple inheritance among concepts. The relation between roles and their occu-
pants is expressed through the concept ISA using concept references, e.g.

ISA:occ:=(2, (S[1], G[2]))
For stating that the first component of concept S is an occupant of the second component of
concept G.

Example 2.11: Occurrence, Instance

Let PERSON, CHILD and SON be concepts of O2(Society), a second ontology of the
domain Society, where

PERSON := (2, (NAME, GENDER)),
CHILD := (4, (NAME, GENDER, FATHER, MOTHER)),
SON := (4, (NAME, MALE, FATHER, MOTHER)),

and

ISA:isa1 := (2, (CHILD, PERSON)),
ISA:isa2 := (2, (SON, CHILD)),

assuming that concepts NAME, GENDER, MALE, FATHER, MOTHER are also defined
within O2(Society), along with appropriate ISA occurrences like

ISA:isa3 := (2, (MALE, GENDER))
ISA:isa4 := (2, (CHILD[1], PERSON[1])),
ISA:isa5 := (2, (CHILD[2], PERSON[2])), etc.

CHILD is a valid occurrence of PERSON as

 CHILD is reducible to PERSON because of ISA:isa1,
 the number of components of CHILD∈ΦU, 4, is greater than that of PERSON, 2,
 all components of PERSON, PERSON[1]=NAME and PERSON[2]=GENDER,

have occupants in CHILD, CHILD[1]=NAME and CHILD[2]=GENDER,
 all occupants in CHILD of roles in PERSON are unique, i.e. no ISA occurrences be-

sides ISA:isa4 and ISA:Iisa5 that are regulating the component mapping between
CHILD and PERSON are defined in O2(Society).

Analogously, SON is a valid occurrence of CHILD, again assuming that O2(Society)
contains a correct component mapping. SON is also an instance of CHILD as the num-
ber of subconcepts of the two concepts is identical.

Note that the notion of instances is different from the one in e.g. object-oriented systems.
The object-oriented paradigm identifies instances with concrete objects existing at runtime,
as opposed to classes, the definitions of objects. These objects, being fully determined exis-

SECTION 2.2 CONCEPT THEORY

 5151

tents, correspond with conceptual particulars in Concept Theory. Yet, instances in Concept
Theory are not equaled with particulars of ΦP. Definition 2.14 allows for concepts of ΦU to
be instances, as long as they represent specializations of their parent concepts. In fact, Con-
cept Theory does not differentiate between specialization and instantiation as being two
different relations but regards instantiation as a particular case of specialization, represented
by ISA. Instances are identified syntactically as concepts solely possessing components that
are reducible to the subconcepts of the more general concepts they are valid occurrences of.

It is a syntactic convention of Concept Theory that, for simple inheritance, the order of
subconcepts of the general concept is preserved by its occurrences, i.e. for any occurrence S
of a concept G the rule

S[i] is reducible to G[i]
holds for all subconcepts of G. This way, roles and their occupants can be related to each
other by tuple positions. In case of multiple inheritance, this rule may only hold for one par-
ent concept. The general way to express reducibility from occupants to their roles is by in-
troducing occurrences of ISA that use concept references of the form

ISA:OCC:=(2, (S[j], G[i]))
where it is possible that i ≠ j. The general postulate of Definition 2.1 that all roles of G are
taken over by occupants in S is thus not affected by multiple inheritance.

Note that this definition also allows that one and the same component of a child concept
may simultaneously act as an occupant for roles in different parent concepts – as long as the
property that for each parent concept all roles have to be distinctly occupied is not violated.
This means that, in case of two parent concepts G1 and G2 of a child concept S, a component
S[j] of S can be an occupant of both, roles G1[i] and G2[k]:

ISA:occ1:=(2, (S[j], G1[i]))
ISA:occ 2:=(2, (S[j], G2[k])),

where indices i, j, and k are not necessarily (but possibly) identical. Therefore, two-way
inheritance and more complex correlations among concepts can be elegantly expressed in
Concept Theory.

Example 2.12: Two-way Inheritance

Let PERSON, MALE_PERSON, CHILD and SON be concepts of the ontology O2(Soci-
ety), where

PERSON := (2, (NAME, GENDER)),
MALE_PERSON := (2, (NAME, MALE)),
CHILD := (4, (NAME, GENDER, FATHER, MOTHER)),
SON := (4, (NAME, MALE, FATHER, MOTHER)),

and

ISA:ISA1 := (2, (MALE_PERSON, PERSON)),
ISA:ISA2 := (2, (CHILD, PERSON)),
ISA:ISA3 := (2, (SON, CHILD)),
ISA:ISA4 := (2, (SON, MALE_PERSON)).

We speak of two-way inheritance if a concept is the specialization of two concepts that
are, themselves, reducible to the same parent concept. As determined by the four ISA

CHAPTER 2 EOS ONTOLOGIES

 52

occurrences this is the case with concept SON. SON possesses subconcepts that are oc-
cupants of roles in both parent concepts, e.g.

ISA:ISA5 := (2, (SON[2], CHILD[2])),
ISA:ISA6 := (2, (SON[2], MALE_PERSON[2])),

indicate that subconcept SON[2]=MALE is an occupant of both, CHILD[2]=GENDER
and MALE_PERSON[2]= MALE.

Structural continuity has been introduced with the notion of occurrences by referring to the
semantics of ISA and the basic categories of Concept Theory, relations and particulars.
Naturally, conceptual particulars do not possess any further specializations and therefore,
graphically, can only represent the leaves of an ontology graph. Furthermore, from a seman-
tical point of view, conceptual particulars should be regarded as instances, not only as oc-
currences of a single concept representing a universal, which affects multiple inheritance to
conceptual particulars. Metaphysically speaking, a particular instantiates universals (proper-
ties), yet not directly but through its membership to a certain kind, i.e. a single universal
relation covering all these properties. Transferred to Concept Theory this concisely means
that a conceptual particular should be an instance of solely one conceptual universal, inher-
iting its internal component structure. Accordingly, a requirement for valid ontologies is
that they only allow for simple inheritance to conceptual particulars. This presents no limi-
tation in expressiveness, as it can be easily proven that any ontology allowing for multiple
inheritance to particulars can be converted into an ontology where each particular is only an
instance of a single concept.

Proof 2.1

Let O be a formal ontology. From any two concepts G:=(n, LG) and H:=(m, LH) ∈O
one can construct a common valid occurrence S:=(k, LS) ∈O, either

(a) by simply combining the components of concepts G and H:

 k := n+m
 LS := (lG1, lG2, …, lGn, lH1, lH2, …, lHm), or

(b) by merging semantically equal roles of G1 and G2 to their respective occupants in S
so that:

 Max(n, m) ≤ k ≤ n+m
 ∀ lGi∈LG ∀ lHj∈LH ∃ lS∈LS: lS=lGi ∨ lS=lHj ∨ lS=lGi=lHi.

In any case, the resulting concept S is a syntactically correct valid occurrence of G as:

 S is reducible to G, which is a premise of the proof, expressed by the ISA occur-
rence ISA:occ1:=(2, (S,G)).

 k ≥ n, for k is defined as n+m in case (a) and k≥Max(n, m) in case (b).
 All components of G are addressed as roles by occupants in S. In case (a) this is

done directly by copying the components of G. Considering the reflexive property
of ISA, it follows for any subconcept of G that there is an identical subconcept in S
that is trivially reducible to its counterpart in G. In case (b) this property follows di-
rectly from the rule how semantically equal roles are losslessly merged to subcon-
cepts of S.

SECTION 2.2 CONCEPT THEORY

 5353

 Analogously, it follows from copying the subconcepts of G in case (a) and from
the manner in which subconcepts of parent concepts are merged in case (b) that all
specializations from roles to their occupants in S are distinct.

As concepts G and H can be regarded symmetrically in relation to S, the above consid-
erations apply analogously to concept H as well, which proves that S is also a valid oc-
currence of H.

Consequently, for any child concept of multiple parent concepts we can introduce an inter-
mediate parent concept that inherits from all initial parent concepts and acts further on as
the sole parent of the child concept. Thus, any ontology containing multiple inheritances to
particulars can be turned into one that only allows for simple particular inheritance by add-
ing intermediate parent concepts in the explicated manner.

Definition 2.15: Valid Ontology, Saturated Ontology

Let O be a formal ontology. O is a valid ontology if

 the ISA occurrences of O define a connected, acyclic, directed ontology graph GO,
 all concept occurrences in O are valid, and
 particulars only have one parent.

A valid ontology is saturated if all leaves of the ontology graph are particulars ∈ΦP
and all inner nodes are concepts ∈ΦU, i.e. within a saturated ontology all universals are
exemplified by at least one particular.

A valid ontology, therefore, is a directed graph spanned by occurrences of ISA complying
with the syntactical properties and semantics as outlined in Definition 2.15. From a graph
theoretical point of view the specification of occurrences and instances in Definition 2.14
with reference to ISA identifies them as child concepts of more general ones within the on-
tology graph GO. This definition also determines a general property of valid ontologies con-
cerning their ontology graph structure. The number of concept components may never de-
crease from parent to child node but either increases or, in case of instances, stays the same.
Hence, the degree of specialization that, per definition, increases along the ISA hierarchy, is
coupled with the number of concept components, which reflects the intuitive fact that the
most specialized existents also show the most properties. Accordingly, the most determined
concepts of an ontology graph are its leaves, conceptual particulars, characterized by their
(structurally identical) immediate parent concepts, the most specialized concepts referring to
metaphysical universals.

As any concept may canonically be regarded as a category of its own – being a formal
definition of an existent a concept remains an abstract, and thus general description, even if
it references a metaphysical particular – and categorization is already included in the seman-
tics of ISA, Concept Theory does not stipulate an extra definition of conceptual categories.
All concepts capable of possessing further specializations, i.e. the concepts in ΦU, represent
categories for their occurrences, in particular for their instances.

Concept Theory is the formalism used within the EOS framework for defining valid on-
tologies with clear semantics as outlined in the course of this chapter. It has been designed
with reference to metaphysical realism, which provides a strong theoretical basis for model-

CHAPTER 2 EOS ONTOLOGIES

 54

ing formal ontologies. Furthermore, Concept Theory provides a thorough derivation of an
appropriate, unicategorical syntax and accompanying semantics of valid ontologies, thus
clarifying a suitable notion of formal ontologies. EOS ontologies are general because they
are built from most basic constituents, formal concepts referring to existents. As such they
are very well suited for capturing the significant aspects central to any domain of interest in
an expressive way. Expressiveness in terms of epistemological sufficiency will be the cen-
tral topic of Chapter 3 where the EOS framework is described in detail.

2.3 Graphical Notation for Concept Theory
As presented in the previous sections, EOS concepts can be defined using ordered tuples.
While this syntax is formally concise, for human readers a graphical notation provides a
more intuitive access to the subject matter conveyed by ontology concepts (cf. other graphi-
cal notations employed e.g. in software engineering such as UML [66], or in database de-
sign, as used for developing E/R models [15]). Therefore, this section introduces a simple
but powerful graphical notation for EOS concepts. This notation has been designed with
regard to its employment in a graphical user interface for ontology engineering. By offering
a clear translation of concepts – as understood by Concept Theory – into a graphical meta-
phor, it is intended to support the work of domain experts when designing EOS ontologies,
regardless of their personal mathematical background. The graphical metaphor we are em-
ploying for symbolizing a concept is that of a “bubble”, which is represented by an oval
bearing the name of the respective concept. As a first example, Figure 2.3 shows the graphi-
cal equivalent to the universal EXISTENT:=() and two alternative ways of representing the
particular Five whose value is “5”28.

EXISTENT

Five “5”

Figure 2.3: Graphical Representation of the Concept EXISTENT

EXISTENT and Five are defined as a bare concepts, i.e. they possess no components of their
own. Other concepts that were described in this chapter, on the other hand, do have an in-
ternal subcomponent structure, e.g. FAMILY and MOTHER. Figure 2.4 depicts these two
concepts and their components as nested bubbles reflecting the definitions FAM-
ILY:=(3,(MOTHER, FATHER, CHILD)) and CHILD:=(4,(NAME, GENDER, FATHER,
MOTHER)). As concept components are ordered in Concept Theory, the graphical notation
must reflect this by aligning the component bubbles within a concept bubble in a predefined
way. This is done by lining up component bubbles from left to right, e.g. the component
MOTHER of the concept FAMILY in Figure 2.4 occupies the first component bubble on the
left, i.e. it holds position FAMILY[1], while the FATHER and CHILD bubbles are placed at
FAMILY[2] and FAMILY[3], respectively. In case a concept possesses a large number of
components, these may be arranged in several consecutive lines.

28 Note the alternative way of displaying particulars using their values is not as precise as using their exact concept names.

Concepts, by definition, are unique references to existents while their values may possibly be the same, e.g. Five and
Age_of_Peter can have the same value, “5”, but are denoting semantically different facts about the world. An EOS
user interface can therefore offer an extra “value view” on particulars, but will always operate by default on the specific
concept names.

SECTION 2.3 GRAPHICAL NOTATION FOR CONCEPT THEORY

 5555

FAMILY

FATHERMOTHER CHILD

CHILD

GENDERNAME FATHER MOTHER

Figure 2.4: Graphical Representation of the Concepts FAMILY and CHILD

Note that representing concepts and their components by nested bubbles may be used for
graphically displaying different representation granularities. This means that one and the
same concept can be represented in different levels of detail in terms of its subcomponent
structure. Figure 2.5 exemplifies a “drill-down” into the component structure of the concept
FAMILY. An EOS user interface may offer this drill-down capacity to the user in order to
display an arbitrary detailed view on (parts of) an ontology.

FAMILY
FAMILY

FATHERMOTHER CHILD

FAMILY

FATHERMOTHER

CHILD

GENDERNAME FATHER MOTHER

Figure 2.5: Three Representations of the Concept FAMILY in different Levels of Detail

For depicting an arbitrary number of components of the same kind, we introduce the “*”
operator. Applied to the CHILD component of FAMILY this indicates that a family may pos-
sess not only strictly one, but also zero or several children. A correspondingly expanded
FAMILY concept is shown in Figure 2.6.

FAMILY

FATHERMOTHER CHILD *

Figure 2.6: An alternative Definition of the Concept FAMILY

Next to single concepts, the graphical EOS notation can also be used for depicting the over-
all structure of EOS ontologies, i.e. the ontology graph as introduced in Section 2.2.4.2. An
ontology graph is a representation of the concepts of an EOS ontology where all ISA occur-
rences are displayed as directed edges between the remaining concepts.

CHAPTER 2 EOS ONTOLOGIES

 56

PERSON

DAUGHTER SON

CHILD

Figure 2.7: Graphical Representation of the Specialization Hierarchy

A fraction of an ontology describing the domain Society is presented in Figure 2.7. ISA oc-
currences are depicted as arrows pointing from the more general concept to its specializa-
tions. For example ISA:cp:=(2,(CHILD,PERSON)) is being represented by the arrow going
from the PERSON to the CHILD bubble. In the same way, the edges between the CHILD
node and its specializations correspond to ISA:dc:=(2,(DAUGHTER,CHILD)) and
ISA:sc:=(2,(SON,CHILD)). Thus, using this graphical notation based on the bubble meta-
phor, an ontology engineer can define all concepts of an EOS ontology and arrange them
into an ontology graph according to the specialization hierarchy of a given domain. Note
that Figure 2.7 only portrays the specialization hierarchy among concepts and does not
show any component mappings (cf. Section 2.2.4.2). If necessary, these can be also in-
cluded in the graphical representation. As Figure 2.8 indicates, component mappings are
also depicted using directed arrows.

PERSON

GENDERNAME

CHILD

GENDERNAME MOTHERFATHER

SON

MALENAME MOTHERFATHER

DAUGHTER

FEMALENAME MOTHERFATHER

Figure 2.8: The Specialization Hierarchy Including Concept Mappings

The ISA occurrences that are describing the respective component mappings are defined by
corresponding concept references, e.g. ISA:GENDER_MAPPING:=(2,(DAUGHTER[2],
CHILD[2])) denotes the mapping between the GENDER component of CHILD and the FE-
MALE component of DAUGHTER. In the graphical EOS notation, such mappings can either
be depicted by arrows as shown in Figure 2.8, or directly as independent concept bubbles
containing reference components. Figure 2.9 demonstrates how concept references are rep-

SECTION 2.4 EXTENDED EXAMPLE

 5757

resented within component bubbles by referring to ISA:GENDER_MAPPING that is defined
as just mentioned.

ISA:GENDER_MAPPING

CHILD[2]DAUGHTER[2]

Figure 2.9: Graphical Representation of Concept References

In certain cases (e.g. when modeling epistemological concepts, see Section 3.2) concepts
may contain complete ontological substructures as their components, i.e. these components
refer to concepts and their corresponding ISA occurrences. Then, an alternate presentation
form of the encompassing concept is to depict its components as subgraphs in the same way
an ontology graph is drawn. This is exemplified in Figure 2.10 for the concept CHILD_INFO
that contains all concepts of Figure 2.7, including the respective ISA occurrences29.

PERSON

DAUGHTER SON

CHILD

CHILD_INFO

PERSON

DAUGHTER SON

CHILD

CHILD_INFO

ISA:CP

PERSONCHILD

ISA:SC

CHILDSON

ISA:DC

CHILDDAUGHTER

Figure 2.10: Two Alternative Representations of the Concept CHILD_INFO

This completes the basic syntax of the graphical notation for EOS ontologies. Whenever
appropriate we will use this notation throughout this thesis for illustrating our examples. An
extended example referring to points central to ontological design that were raised in this
chapter will be presented in the following section.

2.4 Extended Example
This concluding section will present an extended example of a formal ontology. As with the
previous examples we will refer to an ontology of the domain Society. Any ontology re-
quires a most general, or graphically speaking, a fundamental root concept that all other
concepts are reducible to. This concept, here as in the preceding sections, is EXISTENT, in
concordance with the ontological perspective of metaphysical realism. Following meta-
physical realism, the basic structure of the formal ontology O3(Society) is as depicted in
Example 2.13a.

29 Note that the graph representation of concept components does not portray the correct component order. However, if

this way of representing the component structure of a concept is chosen, the emphasis will anyhow lie in the ontological
view on the specialization hierarchy. An EOS user interface may offer functionality to switch between these two views.

CHAPTER 2 EOS ONTOLOGIES

 58

Example 2.13a: A Simple Ontology of Metaphysical Realism as Part of O3(Society)

EXISTENT := ()
UNIVERSAL := ()
PARTICULAR := ()
QUALITY := ()
RELATION := ()
ABSTRACT_PARTICULAR := ()
CONCRETE_PARTICULAR := ()
MATERIAL_PARTICULAR := ()
IMMATERIAL_PARTICULAR := ()

ISA:isa1 := (2, (UNIVERSAL, EXISTENT))
ISA:isa2 := (2, (PARTICULAR, EXISTENT))
ISA:isa3 := (2, (QUALITY, UNIVERSAL))
ISA:isa4 := (2, (RELATION, UNIVERSAL))
ISA:isa5 := (2, (ABSTRACT_PARTICULAR, PARTICULAR))
ISA:isa6 := (2, (CONCRETE _PARTICULAR, PARTICULAR))
ISA:isa7 := (2, (MATERIAL _PARTICULAR, PARTICULAR))
ISA:isa8 := (2, (IMMATERIAL_PARTICULAR, PARTICULAR))

The corresponding ontology graph GO of the formal ontology of Example 2.13a is shown in
Figure 2.11. Concepts are graphically represented as ovals that form the nodes of the ontol-
ogy graph. The vertices of the graph are simple arrows pointing from general concepts to
their specializations as determined by the ISA occurrences of Example 2.13a. Note that the
names of child concepts of PARTICULAR are abbreviated, e.g. we use ‘ABSTRACT_P.’
instead of ‘ABSTRACT_PARTICULAR’ for keeping the representation of the graph com-
pact.

QUALITY RELATION

UNIVERSAL

IMMATERIAL_P.

PARTICULAR

EXISTENT

MATERIAL_P.ABSTRACT_P. CONCRETE_P.

Figure 2.11: Basic Ontology Graph of O3(Society)

With the basic outline, all consecutively defined concepts of O3(Society) can be specified
and categorized accordingly. This way, the domain Society is modeled with respect to meta-
physical realism as described in section 2.1.1. Note that this is not at all a requirement of
Concept Theory. O3(Society) need not necessarily contain any of the concepts mentioned so
far, as long as it is syntactically a valid formal ontology. The semantics of Concept Theory
have been motivated by referring to metaphysical realism, yet what a particular ontology is
expressing may very well disregard or even contradict this philosophical theory. Accord-

SECTION 2.4 EXTENDED EXAMPLE

 5959

ingly, we could also have chosen, e.g. SOCIETY as the fundamental (root) concept of
O3(Society) and developed the ontology from there on.

Example 2.13b: Some Universals of the Domain Society represented in O3(Society)

COLOR := ()
BLUE := ()
ISA:isa9 := (2, (COLOR, QUALITY))
ISA:isa10 := (2, (BLUE, COLOR))

FAMILY := (3, (MOTHER, FATHER, CHILD))
ISA:isa11 := (2, (FAMILY, RELATION))

PERSON := (2, (NAME, GENDER))
ISA:isa12 := (2, (PERSON, RELATION))

FEMALE_PERSON := (2, (NAME, FEMALE))
MALE_PERSON := (2, (NAME, MALE))
CHILD := (4, (NAME, GENDER, FATHER, MOTHER))
ISA:isa13 := (2, (FEMALE_PERSON, PERSON))
ISA:isa14 := (2, (MALE _PERSON, PERSON))
ISA:isa15 := (2, (CHILD, PERSON))

MOTHER := (3, (NAME, FEMALE, CHILD))
FATHER := (3, (NAME, MALE, CHILD))
DAUGHTER := (4, (NAME, FEMALE, FATHER, MOTHER))
SON := (4, (NAME, MALE, FATHER, MOTHER))
ISA:isa16 := (2, (MOTHER, FEMALE_PERSON))
ISA:isa17 := (2, (FATHER, MALE_PERSON))
ISA:isa18 := (2, (DAUGHTER, FEMALE_PERSON))
ISA:isa19 := (2, (DAUGHTER, CHILD))
ISA:isa20 := (2, (SON, MALE_PERSON))
ISA:isa21 := (2, (SON, CHILD))

Note: Some components of concepts, e.g. GENDER, and according ISA occurrences for
depicting roles and occupants, e.g. ISA:isa21a:=(2,(SON[2],CHILD[2])), are not
listed, here, because this would lengthen our example immoderately. A complete
enumeration of O3(Society) must certainly contain these concepts.

The universals mentioned in Example 2.13b illustrate mainly family relations of people.
Figure 2.12 depicts the correspondingly expanded ontology graph of O3(Society). Concept
components have been omitted, here, for better readability.

CHAPTER 2 EOS ONTOLOGIES

 60

QUALITY

BLUE FEMALE_PERSON MALE_PERSON

COLOR

RELATION

UNIVERSAL

PERSON

IMMATERIAL_P.

PARTICULAR

EXISTENT

FAMILY

MATERIAL_P.ABSTRACT_P. CONCRETE_P.

FATHERMOTHER DAUGHTER SON

CHILD

Figure 2.12: Ontology Graph of O3(Society), extended by Universals

Finally, Example 2.13c presents some particulars of O3(Society) that are occurrences of
SON and FAMILY. Note that metaphysical realism describes humans and events as concrete,
material particulars. This is incorporated into O3(Society) by using the conceptual universals
PARTICULAR_SON and PARTICULAR_FAMILY.

Example 2.13c: Some Particulars of the Domain Society represented in O3(Society)

Before defining John and Peter as sons, or Smith_family as a family, we introduce two
intermediate universals representing their metaphysical status:

PARTICULAR_SON := (4, (NAME, MALE, FATHER, MOTHER))
ISA:isa22 := (2, (PARTICULAR_SON, SON))
ISA:isa23 := (2, (PARTICULAR_SON, CONRETE_PARTICULAR))
ISA:isa24 := (2, (PARTICULAR_SON, MATERIAL_PARTICULAR))

PARTICULAR_FAMILY := (3, (MOTHER, FATHER, CHILD))
ISA:isa25 := (2, (PARTICULAR_ FAMILY, FAMILY))
ISA:isa26 := (2, (PARTICULAR_ FAMILY, CONRETE_PARTICULAR))
ISA:isa27 := (2, (PARTICULAR_ FAMILY, MATERIAL_PARTICULAR))

The concept definitions of particulars John, Peter and Smith_family thus are:

John := (4, (John_name, M, Barry, Mary))
Peter := (4, (Peter_name, M, Scott, Beth))
Smith_family := (3, (Mary, Barry, John))
ISA:isa28 := (2, (John, PARTICULAR_SON))
ISA:isa29 := (2, (Peter, PARTICULAR_SON))
ISA:isa30 := (2, (Smith_family, PARTICULAR_FAMILY))

SECTION 2.4 EXTENDED EXAMPLE

 6161

Note: These definitions of conceptual particulars exemplify the important difference
between the semantics of the domain model represented by O3(Society) and the se-
mantics of Concept Theory itself. John is reducible to the concept PARTICULAR but
this does not yet account for it to be a particular in terms of Concept Theory. From a
conceptual point of view, PARTICULAR is simply a bare concept of equal status to
other bare concepts like RELATION. Only the different writing of ‘John’ (using low-
ercase letters) marks this concept as a particular according to Concept Theory.

Figure 2.13 shows the complete ontology graph of O3(Society) to the extent it has been pre-
sented in the previous examples.

QUALITY

PARTICULAR_FAMILYBLUE

Smith_familyJohn

PARTICULAR_SON

FEMALE_PERSON MALE_PERSON

COLOR

RELATION

UNIVERSAL

PERSON

IMMATERIAL_P.

PARTICULAR

EXISTENT

FAMILY

MATERIAL_P.ABSTRACT_P. CONCRETE_P.

FATHERMOTHER DAUGHTER SON

CHILD

Peter

Figure 2.13: Ontology Graph of O3(Society), extended by Universals and Particulars

This concludes the discussion of the formal foundation of EOS, Concept Theory, a novel
formalism for designing valid formal ontologies, knowledge representations based on the
semantics of concepts. Concepts are formal constructs for defining and referring to any exis-
tents, abstract or concrete objects of reality. We discussed the syntactical and semantic fea-
tures of Concept Theory by examining different sets and kinds of concepts. Special empha-
sis has been put on the semantics and properties of the fundamental concept ISA that repre-
sents specialization and generalization in Concept Theory. Subsequent chapters will use the
ontological basis of Concept Theory for defining the epistemological characteristics of the
EOS framework and the EOS system.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 63

Chapter 3 EOS Epistemology

This chapter will present the application environment of EOS ontologies. As a motivation we
will first discuss a general architecture for knowledge processing systems and subsequently
develop the EOS framework for ontology-based knowledge processing that is formally
grounded in Concept Theory as introduced in Chapter 2. This discourse is used for identifying
the different tasks of computerized knowledge processing, and for motivating a consistent
approach covering the questions immanent in these tasks. While the previous chapter devel-
oped a sound formalism for defining formal ontologies, we will now concentrate on the en-
tailments of utilizing the knowledge ontologies are representing. This also marks an important
shift regarding the understanding of knowledge. Ontologically, knowledge about existents can
be categorized and formalized, i.e. molded into a particular formal representation. Examining
knowledge epistemologically, as we will do in the following sections, however means to ex-
plore practical ways of employing it. Specifically, our interest lies in explaining the implica-
tions of this epistemological perspective in terms of knowledge processing systems where
‘active’ epistemological knowledge is used by a computer system in order to perform tasks on
the basis of ‘static’ ontological knowledge.

3.1 Knowledge Processing
Knowledge processing can be understood in two separate ways. One is to stress the purpose
of a knowledge processing system to work on input data, such as text, audio or video, that is
expected to carry information, or knowledge, of some kind (see also Section 1.2.1). In this
sense, knowledge processing entails dealing with knowledge as facts encoded in input data,
and is thus foremost occupied with decoding and extracting this knowledge. Commonly, this
knowledge is expected to pertain to a domain that can be determined in advance, which im-
plies that the system works better if it possesses a formal understanding of the domain, i.e.
ontological knowledge. Knowledge processing in this respect can apparently be interpreted as
‘processing (knowledge in) data on the basis of ontological knowledge’. The second way of
approaching knowledge processing is to concentrate on the behavior of a knowledge process-
ing system. Processing data of any kind (including ontological knowledge) requires certain
strategies, application semantics, that define the manner in which data has to be treated in
order to produce some desired result. The particular behavior of such a system is generally
determined by a set of processing instructions, the system’s epistemological knowledge, that
is exercised on the data. Knowledge processing in this second sense may therefore be para-

CHAPTER 3 EOS EPISTEMOLOGY

 64

phrased as ‘processing data using epistemological knowledge’. We put emphasis on this dis-
tinction between ontological and epistemological knowledge, which may not be ignored when
discussing knowledge processing.

Note that these two perspectives on knowledge processing are by no means contradicting
each other. On the contrary, it is only feasible to regard a knowledge processing system as
one that is ‘processing data on the basis of ontological knowledge using epistemological
knowledge’. In fact, this definition mirrors our understanding of knowledge processing that is
recognizing both perspectives on knowledge equally. Specifically, our approach promotes
epistemological knowledge processing on the basis of EOS ontologies. The motivations and
implications of this decision will be the central theme of the following sections. With this
program in mind we will subsequently approach and clarify the complex undertaking of
knowledge processing from a theoretical point of view. Section 3.1.1 presents a short outline
of a theoretical perspective on knowledge processing, which will be used for concretizing the
impact of an epistemological treatment of knowledge. These results are then motivating our
assessment of the general framework for knowledge processing systems as presented in Sec-
tion 3.1.2 and the discussion of the EOS framework for knowledge processing in Section
3.1.3.

3.1.1 Philosophical Perspective
In this section we will briefly sketch some basic positions of Epistemology, the philosophical
theory of knowledge, and draw conclusions for the task at hand, computerized knowledge
processing using formal ontologies. Epistemology tries to answer the questions

 ‘What is knowledge?’ and, subsequently,

 ‘How can knowledge be acquired?’

(cf. [70]). We will concentrate on epistemological arguments brought forward in reply to
these questions as they are valid for any in-depth consideration on dealing with knowledge
practically. Arguments on determining the nature of knowledge help structuring the task of
knowledge processing, while a general discussion on ways of acquiring knowledge gives sug-
gestions on how to implement this task.

Note that this epistemological perspective on knowledge differs from the ontological un-
derstanding of knowledge in Chapter 2. As already pointed out in Section 1.2.1 we can, and
must, regard knowledge ontologically and epistemologically. The ontological perspective of
Chapter 2 has treated knowledge as facts about reality that may be analyzed and categorized
according to metaphysical theories, or according to a knowledge representation formalism
such as Concept Theory. Hence a formal ontology is a formalized body of knowledge (per-
taining to a domain), i.e. ontologies represent knowledge, they are concrete products of mod-
eling processes that involve human expertise in the respective domains. How, on the other
hand, knowledge may be generally utilized is not within the scope of an ontological view-
point. However, this pertains to the epistemological perspective on knowledge, which is the
subject of the current chapter. Using knowledge appropriately presupposes a concrete notion
of knowledge and a basic understanding of the modalities of acquiring it – and these are pre-
cisely the central topics Epistemology is dedicated to.

In search of an adequate response to the first question about the nature of knowledge
(‘What is knowledge?’) Plato proposed to specify it as ‘justified true belief’ (see also section
2.1.1), a definition that is still important because of its theoretical significance. According to
Plato, all three parts of this definition express necessary conditions for knowledge. Even

SECTION 3.1 KNOWLEDGE PROCESSING

 6565

though some modern philosophical conceptions of knowledge deny the necessity of one or
two of these parts, their proponents still have to argument along the lines of this definition
and explain the validity of their own approach with reference to ‘justified true belief’:

 Belief. A belief may be any idea or thought that can be expressed in a statement, i.e. be-
liefs can be articulated verbally or in written form, be it in a natural or formal language.
Consequently, knowledge representations, in particular formal ontologies, when regarded
epistemologically are collections of beliefs. That is to say that any concept of Concept
Theory, actually states a belief, e.g. the concept ISA:AF:=(2,(APPLE, FRUIT)) conveys
the belief that an apple is a fruit, and the concept FAMILY:=(3,(MOTHER, FATHER,
CHILD)) implies that families consist of mothers, fathers and children.

 Truth. Beliefs may be incorrect, e.g. ISA:AM:=(2,(APPLE, MAMMAL)) would imply that
an apple is a mammal, which is a false statement. In fact, ISA:AM is a syntactically correct
concept, yet for it to count as epistemological knowledge its semantics have to be accurate
as well30. Philosophers, here, are demanding objective truth of beliefs that are anchored in
an ontological reality.

 Justification. A true belief is only seen as knowledge if the believer can give an account
that justifies it correctly, i.e. in terms of objective reality. Various theories on justification
permissible in this sense have evolved and lead to different modes of justifying beliefs:
- Foundationalism holds that there are some beliefs that are fundamentally true and

therefore independent of their relationship to other beliefs. These other beliefs, then,
are justified because of their relationship to other beliefs.

- Coherentism denies the existence of fundamental beliefs, i.e. it recognizes only one
kind of beliefs. Justification is therefore regarded as an act of proving or refuting a be-
lief by referring to a body of beliefs of equal epistemological status.

Foundationalism and coherentism are internalist theories of justification, i.e. they relate to
the inner awareness of a thinker. Important to internalist theories are the conditions that
have to be fulfilled in order to guarantee valid justification for the thinker. Justification it-
self is then a deductive process based on the thinker’s conviction, be it foundational or
coherent. In Concept Theory, an ontology is a set of concepts that can be regarded analo-
gously to true beliefs. Next to the simple domain concepts as presented in Chapter 2, Con-
cept Theory also knows epistemological concepts which will be the central theme of Sec-
tion 3.2. On the basis of these fundamental epistemological concepts other concepts can
be tested, queried or generated. Therefore, Concept Theory is foundational concerning the
internalist perspective.
 On the other hand, externalist theories of justification concentrate on the thinker’s evi-
dence, e.g. produced by perception. Sense-data may be false, as optical illusions or misin-
terpretations of distant voices illustrate, and externalist theories are arguing with respect
to this phenomenon:

- Reliabilism concentrates on the manner how a belief comes to existence. The idea is to
ground justification in the reliability of belief-forming processes, i.e. a belief is re-
garded as justified if it has been produced by a reliable procedure. Concerning sense-
data a reliable procedure for determining the color of an object would be, for example,
to take a look at the object in bright daylight as this is the natural condition for colors
to appear correctly (assuming that the observer also has a normal eyesight).

30 Note that ISA:AM:=(2,(APPLE, MAMMAL)), according to the semantics of Concept Theory, is only a (valid) concept if it

refers to a corresponding metaphysical existent – because concepts, per definition, actually are references to existents. In
our outline of metaphysical realism we have not restricted reality to consist of true existents alone, in fact, practically all
realist theories allow for ‘false’ existents, universals that are ideas which are not, or cannot be instantiated by particulars,
e.g. unicorns or square circles are mere intellectual pastimes, yet still universals.

CHAPTER 3 EOS EPISTEMOLOGY

 66

Externalist theories thus interpret justification as a reliable way of producing beliefs while
internalist theories analyze adequate preconditions for deducing the truth or falsity of be-
liefs.

As the preceding paragraphs have indicated, the second epistemological question on how to
acquire knowledge (‘How can knowledge be acquired?’) is closely connected to justifying
beliefs. We can identify two fundamental ways of acquiring knowledge, namely by deducing,
or proving, it from already existing knowledge, or by extracting it from fallible sources in a
reliable way. The latter option is directed towards an objective perspective on reality while
the former is grounded in syllogistic arguments [10], or more generally, in formal logic.

These considerations have exemplified a basic notion of knowledge, along with crucial
distinctions for treating, and therefore processing, knowledge. The facts, or beliefs, that con-
stitute knowledge must satisfy a high quality standard (truth) that can be obtained in several
ways. On the one hand, knowledge can be proven and inferred, which requires a deductive
basis as internalist theories are stressing. On the other hand, externalist theories show that
appropriate ways of judging reality need to be observed. Applying these observations to a
technical view on computerized knowledge processing we can formulate some fundamental
conclusions:

 Internal View. Any knowledge processing task exhibits two different kinds of knowledge,
a basic set of true facts (ontological knowledge) and a set of rules how to utilize these
facts (epistemological knowledge). Thus, ontological knowledge represents the essential
basis of epistemological processes (cf. internalist theories). Ontological knowledge may
be an integral part of a knowledge processing system, i.e. belonging to its algorithmic im-
plementation, or given to the system as an input. In the latter case, knowledge representa-
tions, in particular formal ontologies, can be used to provide the system with the ontologi-
cal knowledge they are formalizations of. Note that in terms of the internal view, a knowl-
edge processing system is necessarily attributing truth to all facts of ontological knowl-
edge, as any epistemological activity grounds in an ontological basis – inference needs
facts (or beliefs) to draw from. For knowledge processing systems this means that all con-
cepts of a formal ontology are regarded as being true (per definition), which directly fol-
lows from the internalist perspective on concepts. Concepts are the ontological basis, i.e.
justified true belief.

 External View. The main focus of knowledge processing systems is not restricted to inter-
nal deductive processes but focuses on the utilization of knowledge for a particular pur-
pose, e.g. intelligent information retrieval [4] or document management [21]. Thus the
system accepts data from external sources that has to be processed according to its internal
ontological and epistemological knowledge. The basic assumption for knowledge process-
ing in this context is that the input data carries knowledge that can be extracted, stored and
analyzed by reliable procedures. The definition of such reliable procedures is naturally
easier for data that may be interpreted as structured information, which allows for exploit-
ing its syntactical features. Still the ‘knowledge’ extracted in this way has a lower status
than the ontological and epistemological basis of the system, and from that point of view it
is at this stage ‘insecure knowledge’ – epistemologically speaking, insecure knowledge
comprises beliefs that have not yet been justified internalistically but only externalisti-
cally, through suitable procedures. Depending on the reliability of these procedures, inse-
cure knowledge may fully qualify for justified knowledge or not. We may certainly as-
sume that there is a reliable procedure for passing EOS ontologies to an EOS system, i.e.
EOS ontologies are encoded in a way known to the system. Yet, this assumption cannot be
maintained for arbitrary input data, e.g. original Web documents. Parsing these documents
for instances of implicitly contained ontology concepts yields results that may be fallible,

SECTION 3.1 KNOWLEDGE PROCESSING

 6767

depending on whether the data has been interpreted correctly or not. However, this inse-
cure knowledge still leaves the option for proving or falsifying it according to the internal,
and thus secure, knowledge of the system.

 Epistemological Limits. Knowledge processing is dependent on ontological knowledge,
the basis of epistemological processes, and has therefore no possibility of any semantic
evaluation of ontological knowledge. In other words, truth (or semantical soundness) of a
formal ontology is a premise that cannot be proven, only its syntactical correctness.
Hence, the semantics inherent in the syntactical structure of formal ontologies is an impor-
tant criteria for their practical applicability. For that reason, Concept Theory has been de-
signed with a clear semantic foundation based on that of the fundamental concept ISA.
This conceptual relation is being used as a constructive element for defining the internal
graph structure of EOS ontologies. The properties of ISA account for the syntactical defi-
nition of instances and, ultimately, that of a valid ontology. But these semantics incorpo-
rated into Concept Theory certainly cannot guarantee truth. It is a matter of modeling and
validation techniques to ensure semantic correctness of formal ontologies.

 Knowledge processing relies on epistemological knowledge, the semantics of episte-
mological processes. Again, these logical rules cannot be proven valid in terms of truth
pertaining to an objective reality. Even the basic requirement that they form a body of
rules free from any semantical contradictions is outside the scope of computerized knowl-
edge processing in its strict sense, as these systems are merely applying, not validating
them. Defining these rules is, like modeling domain knowledge, an intellectual process of
human experts (or based on a formal procedure, which in return has to be designed by
humans). What we can ultimately expect from knowledge processing is thus delineated by
the ontological and epistemological knowledge it has at its disposition, while the validity
of both kinds of knowledge is a necessary presumption. It is within these limits where
knowledge processing has to be examined.

The epistemological perspective on knowledge has led to some theoretical insights that can be
applied to knowledge processing in general. Regarding the semantics of knowledge process-
ing, these always depend on two kinds of knowledge, ontological and epistemological facts.
On this basis computer systems can extract and process knowledge from external sources.
Before integrating externally received information into the internal body of knowledge, its
validity has to be secured. This can be done either by reliable methods of input interpretation
or by deducing its correctness from ontological knowledge. Information that cannot be vali-
dated in either way may be regarded as ‘insecure knowledge’ that has a different status than
the secure ontological and epistemological basis underlying knowledge processing. Unless it
can be justified, e.g. on the basis of newly acquired knowledge, it may not be used actively
during knowledge processing, i.e. deduction grounded in insecure knowledge may produce
unwanted and false conclusions.

We will refer to this theoretical outline during our discussion on knowledge processing. In
particular, the preceding observations allows for identifying the different areas of epistemo-
logical processes:

 Knowledge Acquisition. Knowledge can be acquired by a knowledge processing system
from external sources through reliable procedures. In this sense, knowledge acquisition
can be equated with extracting knowledge from input data.

 Knowledge Generation. Once knowledge has been acquired from external sources it can
be integrated into the internal ontological and epistemological knowledge representation
of the system. Deductive processes can then be utilized to increase this ontological basis.

CHAPTER 3 EOS EPISTEMOLOGY

 68

Hence, knowledge generation means applying epistemological rules in order to produce
new ontological knowledge.

 Knowledge Retrieval. The goal of knowledge processing is to provide external parties,
human users or application systems, with information. For that reason, knowledge proc-
essing systems must provide facilities for querying the internally stored knowledge.
Knowledge retrieval is therefore occupied with processing queries.

Knowledge acquisition is directed towards the external view on knowledge processing sys-
tems. Knowledge generation and retrieval both touch on the internal view. Defining formal
descriptions for the realization of these three areas of epistemological processes is the main
focus of this chapter. In fact, all of Section 3.2 may be read as a coverage of these topics cen-
tral to knowledge processing as such. Beforehand, the following sections will locate knowl-
edge acquisition, generation and retrieval within knowledge processing systems seen from the
information science perspective. Section 3.1.2 will motivate a general architecture for knowl-
edge processing systems, and section 3.1.3 will present the EOS framework, which is a re-
finement of the general architecture.

3.1.2 Knowledge Processing in Information Science
Knowledge processing in computer systems comprises all tasks and methods concerned with
employing domain knowledge and application semantics for enabling a desired system per-
formance, e.g. in the fields of intelligent knowledge management, information search, elec-
tronic and web commerce, to name but a few. In this section we will present a commonly
agreed upon design for knowledge processing systems and point out its shortcomings [76].
We will later use this discussion in Section 3.1.3 for motivating a novel and undiluted, epis-
temological perspective on knowledge processing and present how it may be implemented by
the EOS framework.

In order to motivate our considerations we will sketch an exemplary knowledge processing
system that may be used for intelligent information retrieval from heterogeneous information
sources such as the Web, interpreted as a vast knowledge base. This choice enables us to
demonstrate ontological as well as epistemological aspects of knowledge processing in an
illustrative way. Within the Web environment we find an area where all characteristics of
knowledge processing can be immediately exemplified. Recurring to the definition of a
knowledge processing system as one that is processing data that carries semantics on the basis
of ontological knowledge using epistemological knowledge, we can identify

 data carrying semantics: Web documents (of a certain domain)
 ontological knowledge: a domain model for the intellectual contents of these documents
 epistemological knowledge: processing strategies, e.g. for querying Web documents.

Representative systems falling into this category of knowledge processing systems are [30]
and [53]. The internal domain model can be influenced or completely defined by a suitable
knowledge representation, in advanced systems typically a formal ontology. This ontological
knowledge describes some domain of interest and is used to extract and evaluate domain spe-
cific information from external sources, e.g. Web pages. The information acquired in this way
is subsequently available as part of the ontological knowledge of the system to all internal
processes. It can therefore be stored as such persistently, e.g. in a knowledge base attached to
the system, and may from this point on serve as a repository for providing external applica-
tions with data, or for answering ad-hoc user queries. Computer systems that use an explicit
modeling of domain knowledge and consequently accept this knowledge representation as an
input, generally exhibit a basic layout as depicted in Figure 3.1. From a functional point of

SECTION 3.1 KNOWLEDGE PROCESSING

 6969

view such a knowledge processing system will accept input data and process it according to
the internal knowledge representation. As indicated, the system returns structured information
that may, on its own part, serve again as a new input to the system.

Ontological
Components

Epistemological
Components

Epistemological

Processes

Knowledge
Representation

Operational Data,
Queries

(possibly) Formalized Components

Implemented Ontological Components

Implemented Epistemological Components

Figure 3.1: A General Outline of Knowledge Processing Systems

We will discuss the general system architecture presented in Figure 3.1 with reference to the
theoretical results of Section 3.1.1. The internal view on knowledge processing systems is
dominated by the distinction between ontological and epistemological knowledge that influ-
ence the behavior of such systems. In that respect we will examine the internal components of
knowledge processing systems. The external view, on the other hand concentrates on com-
municating with external systems or humans, i.e. questions arising here are concerning input
and output data. The different system components can be explicated as follows:

 Internal System Composition. From a theoretical point of view, knowledge processing
systems are internally divided into ontological and epistemological components that sup-
port epistemological processes.

 Ontological Components. For any knowledge processing task the system needs some
basic information, domain knowledge, in order to perform it. Domain knowledge can be
an integral part of the implementation of the system, or, to a certain extent, given to it as a
formal knowledge representation. Other ontological components are knowledge about
data formats, their syntactical features and semantics, etc. We put emphasis on the fact,
that it is certainly not possible to provide all ontological facts as an input to the system, as
any computer system needs at least some algorithmical ontological basis for interpreting
the data it accepts. The extent to which a knowledge processing system relies on an exter-
nally provided knowledge representation may vary from system to system. Figure 3.1
shows the difference between system immanent ontological knowledge and externally
supplied information by a difference in color. The share of system immanent knowledge is
shaded gray.

 Epistemological Components. The ontological basis is being used according to guide-
lines, axioms or rules, which can be domain or task dependent (e.g. semantic implications
of domain entities, instructions for handling data formats), as well as independent of the
application area (e.g. rules for logical deduction). These system components form the

CHAPTER 3 EOS EPISTEMOLOGY

 70

epistemological foundation of a knowledge processing system and are usually integrated
into the implementation of knowledge processing systems. As graphically indicated in
Figure 3.1, some advanced knowledge processing systems (cf. [33]) are also accepting
simple epistemological facts on domain knowledge in the form of logical axioms as part
of knowledge representations. The application of these axioms to knowledge processing
tasks, i.e. the main share of epistemological knowledge, is then again part of the algorith-
mical realization of these systems.

 Epistemological Processes. The reasoning capacities of the system utilize the ontologi-
cal and epistemological knowledge of the system and produce structured information from
the previously received input data. Inference semantics and all associated mechanisms for
processing a knowledge representation instance are integral parts of the system. Naturally,
epistemological processes are used within the system in order to extract and deduce
knowledge. This knowledge can then be formalized and issued as a return value for que-
ries, and possibly reenter (presumably modified) the system again. On the other hand, in-
ferred knowledge may also be integrated into the ontological basis and this way become
an explicit part of the system itself.

 Input Data. We can identify several kinds of input data serving different purposes, opera-
tional data that has to be processed by the system, a knowledge representation that may be
integrated into the system itself, and queries against the system.

 Operational Data. Any type of documents (e.g. structured or unstructured text files,
graphics, audio, video, etc.) containing information that corresponds to the internally held
ontological knowledge is regarded as operational data. For performance reasons it may be
stored and indexed separately, e.g. inside a knowledge base attached to the system. Note
that, here, we make no assumption on whether the semantic content of operational data is
eventually made part of the ontological basis of the system, or not. Both variants are pos-
sible, depending on the main focus of the system.

 Knowledge Representation. Essential to the overall performance of a knowledge proc-
essing system is its ontological knowledge. Parts thereof, in particular domain knowledge,
can be formalized into a knowledge representation that models the application area of the
system. The knowledge representation is held persistent within the system and serves as a
basis for advanced tasks such as epistemological processes. As this framework is intended
to present an outline of knowledge processing systems applicable in general, we do not
stipulate a specific type or format of knowledge representations. After all, as pointed out
in Section 2.1.2, the majority of formal ontologies used in current systems are not meeting
the quality standards we are endorsing with EOS ontologies. In many cases, the knowl-
edge representations used do not contain any epistemological semantics at all (which is
indicated by the dotted arrow in Figure 3.1). Moreover, knowledge representations are an
optional input, as the ontological basis of a system may very well be hard-coded into the
system.

 Queries. User interaction with the system, as well as automated processes, may trigger
queries against the knowledge processing system. Queries can address the system’s onto-
logical knowledge itself, or be directed towards the structural or semantic content of op-
erational data. Thus, queries may be document-related, e.g. ‘return all addresses men-
tioned in document D’, ‘return all London addresses mentioned in documents’, or do-
main-related, e.g. ‘return entities that can have addresses’. The inferential complexity of
queries depends on the way knowledge is held internally within the system. If the onto-
logical basis is held minimally, most queries will result in a series of inference operations
(cf. deductive database systems). On the other hand, it is possible to materialize deduced

SECTION 3.1 KNOWLEDGE PROCESSING

 7171

knowledge as part of the ontological basis of the system. In this case, queries will consist
merely of directly scanning this knowledge, as in conventional database systems.

 Output Data. The system returns structured information computed from operational data
and/or the internal ontological basis. Return values from operational data can comprise
e.g. specific information held within documents, or meta-information such as classifica-
tions and indices. Usually, knowledge processing systems use identical input and output
formats, which makes it possible to pass an output produced by the system back into it.

As depicted by this general layout, the formalization of epistemological knowledge is almost
entirely hard-coded into the algorithmical implementation of present knowledge processing
systems. In fact, to the best of our knowledge, there is no knowledge processing system that
goes beyond formalizing logical axioms on ontological knowledge, while a formal access to
the actual modes of application of epistemological knowledge has not been tackled in any
approach to knowledge processing so far [76]. Consequently, knowledge processing systems
generally act as black boxes when it comes to the heart of their enterprise, namely processing
knowledge. The semantics of knowledge processing, therefore, remain not only hidden but
cannot be influenced at all. This leads to several drawbacks:

 Knowledge processing systems must be designed for very specific tasks and domains as
the corresponding semantics may differ to a great extent, e.g. natural language processing
and deduction on chemical data require very different application semantics. Note that this
is neither a matter of format nor of the modeling paradigm applied. Of course two differ-
ent domains can be modeled using the same ontology language, which ensures a uniform
syntax and modeling guidelines. Yet, semantical implications of e.g. words and sentences
are very different from the meaning of molecules – and this has to be observed when de-
signing knowledge processing systems.

 For similar reasons exchanging knowledge representations among different systems poses
serious problems. Again, foreign knowledge representations must, apart from modeling
paradigms, comply with native application semantics of a given knowledge processing
system in order to render it capable of processing it adequately. Even knowledge represen-
tations exhibiting a native syntactical makeup may be interpreted incorrectly as there is no
direct coupling between the objects of the knowledge representation and its semantic im-
pact. This accentuates a serious shortcoming of the utilization knowledge representations
in common approaches. Conventional knowledge representations are only considering on-
tological facts, leaving epistemological semantics about the employment of these facts
aside. This way, one and the same knowledge representation may very well be interpreted
very differently from two distinct systems. Ironically, the lack of specifying epistemologi-
cal knowledge within knowledge representations can therefore lead to a disagreement
(among different systems) concerning the actual semantics of this representation – while
the initial intent to introduce knowledge representations was to create shared understand-
ings.

 Moreover, common systems are highly inflexible regarding conceptual changes of the
knowledge representation used, i.e. only a restricted class (in terms of expressiveness, not
limited to representation formats) of knowledge representations can be processed by a par-
ticular system. Increasing the expressive power of a knowledge representation that would
require a modified system behavior must therefore result in a costly system redesign. The
reason for this lies in the general flaw that common knowledge processing systems pro-
vide no access to their active epistemological components.

 Similarly, as epistemological processes rest inaccessibly hidden within these systems, the
ontological knowledge held within a knowledge representation can only be used in a sin-

CHAPTER 3 EOS EPISTEMOLOGY

 72

gle, very specific way, depending on the fixed system design. Respective changes tackling
the system behavior, again, require extending the system functionality, which means add-
ing or altering its existing implementation.

In summary, the lack of an adequate formalism that allows for modeling both, ontological and
epistemological aspects of a domain, leads to knowledge representations that cannot provide
enough semantics for their uniform employment. Knowledge processing systems must conse-
quently suffer from this representational shortcoming which results in the common drawbacks
as just mentioned. This is where the EOS approach offers a new direction. The EOS frame-
work as presented in Section 3.1.3 combines ontological and epistemological components,
and promotes according knowledge representations, EOS ontologies, that are apt to express
both. The necessary extensions to Concept Theory for expressing epistemological facts in the
form of EOS concepts will then be the subject of Section 3.2.

3.1.3 EOS Framework

Based on the preceding considerations we will now introduce the EOS framework for knowl-
edge processing systems as shown in Figure 3.2. The EOS framework refines and extends the
general layout of knowledge processing systems (cf. Section 3.1.2) by introducing different
semantic layers to the internal knowledge representation.

Ontological
Components

Epistemological
Components

Epistemological

Processes
EOS Ontology

Operational Data,
Queries

Onto-epistemic
Objects

Epistemic
Objects

Ontological
Objects

Formalized Components

Implemented Ontological Components

Implemented Epistemological Components

Figure 3.2: The EOS Framework

The EOS approach regards a knowledge processing system as a highly parameterized soft-
ware tool. An EOS system will consequently accept a comprehensive knowledge representa-
tion, in particular an EOS ontology, that provides it with the information necessary to manage
its knowledge processing tasks. As indicated in Section 3.1.1, this involves ontological, as
well as epistemological knowledge, where the latter has unfortunately been neglected by
common knowledge representation methods. The EOS framework, on the other hand, allows
for differentiating between several kinds of objects of ontological and epistemological knowl-
edge that may be part of an EOS ontology. As portrayed in Figure 3.2, these kinds are ele-
mentary ontological objects, onto-epistemic objects that provide meta-information about other
objects, and purely epistemic objects that refer to the employment of other objects of knowl-
edge during knowledge processing. According to Concept Theory, all of these objects can be
represented uniformly by concepts. In particular, this means that EOS ontologies consist of

SECTION 3.1 KNOWLEDGE PROCESSING

 7373

the static domain model, as well as application semantics, which is a novel approach to de-
signing knowledge processing. In this way, epistemological knowledge can be modeled on
the same terms as ontological knowledge, which leads to a seamless and complete formaliza-
tion of a domain where the gap between application semantics and the formal domain model
has been bridged. Moreover, epistemological processes that work on EOS ontologies are on
the one hand regulated by epistemological knowledge, and on the other hand, they can also be
executed on it, i.e. epistemic objects can define a system behavior concerning themselves.
This underlines the powerful possibilities of Concept Theory as a modeling formalism. Its
expressiveness grounds in the different kinds of objects of knowledge it comprises:

 Ontological Objects of Knowledge. Regarding a domain ontologically is to specify and
categorize its existents. How this can be achieved was the central topic of Chapter 2 and
led to the notion of EOS ontologies. We have shown that EOS ontologies are apt to de-
scribe existents using formal concepts. The semantics of an EOS ontology are expressed
by its graph structure that is derived from the fundamental ontological relation specializa-
tion, represented by the concept ISA. Therefore, ontological domain knowledge in the
EOS approach is being organized into a directed graph that mirrors the specialization hier-
archy within the domain. All elementary nodes of this graph, i.e. all concepts mirroring
this hierarchical domain structure, are ontological objects of knowledge. This is the onto-
logical basis of the computer system on top of which processing semantics can be defined.

 Onto-epistemic Objects of Knowledge. The ontological basis of an EOS system must be
interpreted in a way that complies with the correlations among the existents of the real-
world domain that is represented by an EOS ontology. So far, the only semantics that have
been incorporated into Concept Theory are that of the concept ISA. Technically, this
means that an EOS system must treat occurrences of ISA differently from other concepts,
i.e. the system knows the semantics of ISA. Concepts that are merely representing onto-
logical objects of knowledge, on the other hand, possess as such no other semantics for an
EOS system than that they are formalizations of existents, expressing some relation
among their components. The semantical implications of conceptual relations cannot be
conveyed exclusively on the basis of ISA. In order to exemplify this, we are referring to
the previous examples that centered around modeling family relations. A specialization of
the concept FAMILY could be GENETIC_FAMILY:=(3,(MOTHER,FATHER,CHILD)) that
possesses the same internal component structure as its parent concept. Yet, the semantics
of GENETIC_FAMILY are that there exist additional relations on its components, namely
that mother and father are both real parents of their child. Thus, an according EOS ontol-
ogy will also include concepts like IS_REAL_MOTHER:=(2,(MOTHER,CHILD)). What
such an EOS ontology then has to be able to express is that all occurrences of GE-
NETIC_FAMILY satisfy the condition that the mother of this ‘genetic family’ is also the
real mother of the child. Any such rule on concepts and the conditions it defines are onto-
epistemic objects of knowledge. Rules and conditions themselves can, of course, be ex-
pressed by concepts (as any such correlation among existents is, metaphysically speaking,
itself an existent). Nevertheless, the semantical status of the concepts RULE and CONDI-
TION is different from that of purely ontological concepts, such as GENETIC_FAMILY
and IS_REAL_MOTHER. Occurrences of these concepts must be interpreted by the system
as specific rules and conditions, i.e. they express statements about other concepts, and
carry as such epistemological knowledge directed towards a semantic specification of the
concepts they are attributed to. In this sense, onto-epistemic objects complete the onto-
logical domain model by providing domain-specific details to the ontological objects of
knowledge. A concise introduction to the notion of conditions and rules is given in Sec-
tion 3.2.2.

CHAPTER 3 EOS EPISTEMOLOGY

 74

 Epistemic Objects of Knowledge. Ontological and onto-epistemic objects of knowledge
describe the static domain model, i.e. they name existents and sketch their semantics in
terms of conditions. The task of knowledge processing is to utilize this knowledge in order
to enable a desired system performance. This comprises deducing new knowledge as well
as answering queries, and mastering related processes. It requires epistemological knowl-
edge to do so, i.e. instructions on what kind of behavior will yield valid computations
within a certain domain. Processing instructions of this sort which are referring to onto-
logical and onto-epistemic objects of a domain model, are epistemic objects of knowledge.
In Concept Theory, concepts that are representing epistemic objects are called laws, oc-
currences of the concept LAW. Laws specify the fundamental patterns for knowledge re-
trieval, generation and acquisition. As such they are formalizations of problem solving
methods (PSMs) (cf. [36], [58]) in knowledge processing systems. An example for a law
on ontological concepts would be that from two particular instances
is_real_Mother1:=(2,(MARY,John)) and is_real_Mother2:=(2,(Sue,MARY)) of the concept
IS_REAL_MOTHER the knowledge processing system can generate, a new particular
is_Grandmother1:=(2,(Sue,John)), an instance of the concept IS_GRANDMOTHER. Laws
represent the epistemological domain model and define how the ontological domain model
should be used during knowledge processing. Obviously, as with rules, occurrences of the
concept LAW are treated differently by an EOS system, compared to ontological concepts.
This means that the semantics generally needed for interpreting occurrences of the concept
LAW have to be known to an EOS system in order to be able to execute the epistemologi-
cal content of such a law. Laws and their application to knowledge processing will be cov-
ered in Section 3.2.3.

In order to motivate this distinction between different kinds of objects of knowledge we are
referring, as an analogy, to a specific class of knowledge processing systems, namely rela-
tional database systems. Ontological objects of knowledge comprise universals and particu-
lars of a domain of interest. The universals of a domain can be compared with the relational
database schema that defines relations and thus domain entities, whereas particulars would
represent the tuples, i.e. concrete instances of the domain entities. Onto-epistemic objects in
this context would be, for example, integrity constraints on these relations. Epistemic objects
of knowledge, on the other hand, pertain to the actual behavior of the database system, i.e.
they would be located on the application programming side that uses the services of the data-
base management system, e.g. for answering user queries in a desired way.

As described above, the EOS approach defines a detailed perspective on knowledge proc-
essing that allows for identifying and specifying different kinds of knowledge that render a
computer system capable of managing the tasks involved. Our claim is that a great share of
this knowledge can be formalized into an EOS ontology using ontological, onto-epistemic and
epistemic objects of knowledge. With this distinction at hand the modalities of knowledge
processing become visible, particularly advanced possibilities of using knowledge representa-
tions in areas that have been traditionally regarded as pertaining to the algorithmical realiza-
tion of knowledge processing tasks. Conventional approaches are often limited to addressing
ontological objects of knowledge alone. There are only a few systems that allow for modeling
onto-epistemic objects of knowledge and none at all that uses formalized epistemic objects of
knowledge [76]. Yet, these latter actually depict the core epistemological semantics that de-
fine the essential tasks of a knowledge processing system, namely the modes of knowledge
acquisition, generation and retrieval within a certain domain of interest. Missing to formalize
these semantics for using them as an input to the system therefore means not just a loss of
generality but also hard-coding domain knowledge into the system implementation, although
this is exactly what knowledge representations should help to avoid.

SECTION 3.1 KNOWLEDGE PROCESSING

 7575

What sets EOS systems apart from conventional knowledge processing systems is thus a
richer inventory for formalizing knowledge on the basis of Concept Theory, along with ade-
quate mechanisms for interpreting this knowledge, which requires a thorough formal defini-
tion of the semantics expressed by the respective concepts. Compared to other approaches, the
share of formalized knowledge that is passed to an EOS system has been extended signifi-
cantly, in terms of scope and integrity. The scope of an EOS ontology encompasses both, on-
tological and epistemological knowledge. Its integrity concerning a domain of interest is re-
flected in the assertion that it covers the (ontological as well as epistemological) domain
model more completely than other approaches. Unlike these approaches, an EOS system con-
sequently does not possess any hard-coded domain knowledge at all, it must only be able to
interpret concepts. It therefore expects a complete ontological domain model (ontological
objects of knowledge), and accompanying application semantics (onto-epistemic and epis-
temic objects of knowledge).

In summary, epistemological knowledge comprises onto-epistemic and epistemic objects
that define metadata about the static domain model of an ontology, foremost semantic proc-
essing rules. Again, this epistemological knowledge has to be understood and executed by
software components but the invaluable benefit it provides when explicitly specified is a ho-
mogeneous formal description of the semantic and syntactic implications of such processes.
Epistemic objects may be regarded as task templates describing these processes. Thus, they
are expressing how to perform knowledge processing tasks for certain kinds of ontological
objects using the semantics of onto-epistemic objects. For elucidating the different roles of
these objects of knowledge we will present another example where new ontological objects
are generated from already existing ones on the basis of laws and rules. We can assume par-
ticular instances of BROTHER_OF(2,(BROTHER,PERSON)) and CHILD_OF(2,(CHILD,
PERSON)) satisfying the condition that the occupants of BROTHER_OF[1] and
CHILD_OF[2] are identical, i.e. the occupant concept is a brother of a person and at the same
time father of a child. From this we can deduce an instance of AUNT_OF, if
BROTHER_OF[2] is a female person. In this example, BROTHER_OF, CHILD_OF and
AUNT_OF all are ontological objects. The epistemic object would be a law, the concept
GENERATE_AUNT_OF_INSTANCE that defines that the system may produce an instance of
AUNT_OF according to AUNT_OF(2,(BROTHER_OF[2],CHILD_OF[1])). An onto-epistemic
object in this context would be the rule setting the condition that BROTHER_OF[2] must be
female.

As indicated by the preceding considerations, the scope of and the distinction between dif-
ferent objects of knowledge that make part of an EOS ontology implies far-reaching proper-
ties of an actual EOS system that is able to process these objects. The EOS framework ad-
dresses the underlying semantics of knowledge processing and, by doing so, pinpoints the
share of knowledge that can and should rather be explicitly formalized and passed to an EOS
system than be part of its implementation. This leads to a number of important features of the
EOS framework:

 The EOS framework acknowledges a detailed view on knowledge processing along two
dimensions. On the one hand, it tackles the distinction between ontological and epistemo-
logical knowledge. On the other hand it balances implemented versus formalized compo-
nents. Regarding explicitly formalized knowledge, i.e. knowledge representations, the
EOS framework differentiates between ontological, onto-epistemic and epistemic objects
of knowledge that do not only model static domain knowledge but also its application in
epistemological processes. Thus, it describes knowledge processing holistically, but inde-
pendent from specific application areas or programming paradigms. It therefore offers a

CHAPTER 3 EOS EPISTEMOLOGY

 76

very detailed architecture for evaluating and comparing the capabilities of different
knowledge processing systems.

 The EOS framework draws from the advantages of knowledge representation that allow
for more flexible computer systems. By altering or exchanging the ontological basis, i.e.
by feeding new ontologies to it, the system can be taught to process operational data of
different format and domains. Unlike conventional systems, the EOS framework expressly
allows for modeling epistemological knowledge in the form of epistemic and onto-
epistemic objects. Hence, an EOS systems can also be tuned regarding the application
side, i.e. concerning the utilization of static knowledge. As the EOS approach allows for
defining dynamic uses of a static domain model, one and the same EOS system may be
deployed for very different tasks on the same exact static ontological knowledge. This can
be easily achieved by replacing an actual set of formalized epistemic objects (and, possi-
bly, onto-epistemic objects) by another, while keeping the original ontological objects of
knowledge. Therefore, EOS systems are also flexible concerning their behavior.

 Formal ontologies are explicit domain models that are human readable and that can also
be communicated across different computer systems. Yet, current approaches to ontolo-
gies are concentrating on the static domain model. From a modeling perspective, the evi-
dent advantage of being able to explicitly model application semantics is that the employ-
ment of a static domain model becomes visible, and thus discussible. Concept Theory, as a
modeling paradigm for ontologies, offers an abstract and declarative access to the seman-
tics of a domain. A human domain expert can use Concept Theory for describing both, the
static domain model and its semantics31 – within the bounds of knowledge acquisition,
generation and retrieval. In this way, a scientific community can communicate the objects
of their domain plus their understanding of these objects. This understanding may differ
from group to group within the community, and these semantics should be explicitly ex-
pressible within an ontology. Concept Theory provides the semantic primitives (epistemic
objects) to do so.

 As a practical consequence, exchanging EOS ontologies across different knowledge proc-
essing systems is greatly facilitated. The common problem when transferring knowledge
representations to a foreign system is that the static domain model must be interpreted cor-
rectly, i.e. according to the application semantics of the native system (that follows a spe-
cific understanding of the domain model). EOS ontologies include epistemic objects that
render the epistemological impact of the static domain model explicit while remaining part
of the ontologies (as their metadata). This way the shortcomings of introducing new on-
tologies into different environments can be overcome. In conclusion, processing ontolo-
gies and passing them over to other EOS systems poses no problems because the applica-
tion semantics of the domain model objects is being supplied along with the ontology.

With the basic implications of the EOS framework in mind, the following sections are aimed
at motivating an epistemological perspective on Concept Theory. In order to do so, we are
referring to the principal areas of knowledge processing which have been introduced in Sec-
tion 3.1.1, namely knowledge acquisition, knowledge generation and knowledge retrieval. We
are taking a look at these fields with respect to our notion of formal concepts, which allows us
to formulate requirements for modeling epistemological knowledge using concepts.

31 A survey on different (to some extent machine-supported) methodologies for creating ontologies can be found in [51] and

[57].

SECTION 3.1 KNOWLEDGE PROCESSING

 7777

3.1.3.1 Ontological Outset for Knowledge Processing in EOS
The first step of translating application semantics into EOS concepts has already been taken
by defining the three main areas of knowledge processing, knowledge acquisition, knowledge
generation and knowledge retrieval. Our next step involves examining the semantics needed
in order to master these tasks. Accordingly, the subsequent sections will discuss what (epis-
temological) knowledge the system needs in order to master them. Concretely, this means
specifying new (epistemological) concepts that must be integrated into Concept Theory.
These epistemological concepts will then be the basis of the actual behavior of an EOS sys-
tem, i.e. such a knowledge processing system will interpret these concepts differently than
mere ontological concepts. Ontological concepts draw all of their semantics from their posi-
tion within the ontology graph and their internal structure. Epistemological concepts, on the
other hand, have a predefined meaning that is known to the EOS system in the same sense
that it knows the concept ISA. It is part of the algorithmical implementation of an EOS system
to know how to process occurrences of ISA, while the definition of these occurrences is a
matter of modeling a domain. The same applies to epistemological concepts. Their semantics
must also be familiar to the system, which allows for a specific interpretation of their respec-
tive occurrences. Thus, in the following it is our interest to determine these semantics that
will be used later on (in Section 3.2) for extending Concept Theory accordingly.

Beforehand, we will first briefly stress the semantics already at hand, namely those of the
ontological basis as provided by EOS ontologies. Concepts, on the one hand, define relations
as structured entities possessing components, and on the other hand, they are subject to rela-
tions when used as subconcepts by other concepts. This dualism has been used to establish the
internal structure of EOS ontologies which are based on the semantics of the relation ISA.
These are the only ontological semantics Concept Theory stipulates – besides the explicit
accentuation of instances of ISA (using the concept name prefix ISA:) and the syntactical dis-
tinction between particulars and universals (denoted by the prefix PARTICULAR: for particu-
lars, or, respectively, by using lowercase names for particulars). The semantic properties of
ISA define an EOS ontology structurally as an ontology graph whose composition mirrors
these properties (see Section 2.2.4). For example, from its position within the ontology graph
one can immediately delineate the ontological kinds a concept belongs to, and, moreover,
instances of concepts exhibit the same internal component structure as their parent concepts.
Yet, the semantics of any concept other than ISA, in particular conceptual relations, are not
determined ontologically, which complies with the understanding of ontologies as presented
in 0.

What an ontological perspective has to accomplish is to specify the kinds, or categories,
something, a concept, belongs to – and this is exactly what the semantics of specialization and
generalization, i.e. of ISA, are supplying. Ontological knowledge is thus static in nature, and
directed towards identifying and categorizing the existents of a domain. Conceptual particu-
lars may vary over time but the overall ontological structure of a domain, i.e. the anatomy of
its ontology graph, will naturally stay the same. This graph structure, along with its semanti-
cal implications, forms the basis for all dynamic processes that work on it in order to generate
and query this ontological knowledge.

The epistemological perspective on knowledge processing requires the basic semantics for
expressing guidelines for the behavior of respective computer systems concerning knowledge
acquisition, generation and retrieval. As already motivated in our discussion of the EOS
framework, the EOS approach promotes a solution that provides semantic constructs we call
conditions, rules and laws. The exact connotations of these constructs and how they are inte-

CHAPTER 3 EOS EPISTEMOLOGY

 78

grated into Concept Theory will be the main focus of Section 3.2. Here, we will restrict our-
selves to presenting the general intent of conditions, rules and laws.

 Conditions are the conceptual equivalent to truth statements, e.g. there are conditions that
express logical conjunctions (A AND B), or disjunctions (B OR C), as well as combinations
thereof (A AND (B OR C)).

 Rules are used to attribute conditions to concepts, e.g. for stating that certain conditions
are valid for specific components of a concept.

 Laws, finally, are used for defining the way in which rules should be applied, e.g. for gen-
erating new concepts or during query processing.

Within Concept Theory, conditions, rules and laws are represented by the concepts CONDI-
TION, RULE and LAW. The semantics of these concepts must be known to an actual EOS
system, just like it must be able to interpret the concept ISA. Before these concepts are for-
mally defined in Section 3.2, we will first characterize the different fields of their employ-
ment in order to get a better notion of what semantics they must be able to express. The fol-
lowing sections can thus be read as an outline of the different application areas of conditions,
rules and laws.

3.1.3.2 Knowledge Acquisition
Knowledge acquisition is concerned with understanding external information sources. Corre-
sponding tasks a knowledge processing system has to manage are extracting knowledge from
input documents in various formats, e.g. XML text files, and integrating this knowledge into
the ontological basis of the system, i.e. into its internal ontology. Consequently, knowledge
acquisition involves many practical aspects concerning data formats and related extraction
techniques. Questions arising in the context of extracting knowledge will therefore be covered
in Chapter 4 when we are discussing issues concerning the realization of an actual EOS sys-
tem. Here, we will focus on describing the general process of integrating newly acquired
knowledge into an EOS ontology. In terms of Concept Theory this raises the question how a
new concept can be integrated correctly into an EOS ontology.

At this point we differentiate between two kinds of acquisition procedures. Reading in an
EOS ontology itself can be regarded as a procedure that is absolutely reliable in a sense that
the encoding format of ontologies is predefined and known to the system. Therefore, integrat-
ing an EOS ontology into a knowledge processing system consists of directly parsing native
syntax, extracting the respective concepts and storing them internally for later access. The
acquisition procedure, here, can interpret incoming data reliably as concepts belonging to a
uniform ontology. The second class of acquisition procedures involves foreign data formats
that encode knowledge differently, e.g. in natural language. This means that these acquisition
procedures must first translate the data content into concepts that can then be integrated into
the ontological basis of the system. Relevant techniques, here, involve natural language proc-
essing and information wrapping methods that help identifying and extracting concepts from
foreign sources. Note also the difference in scope of these procedures: reading in an ontology
can be directed towards both, universals and particulars of a domain, while extracting con-
cepts from foreign sources will necessarily be only oriented to particulars that can be identi-
fied on the basis of the already known (universal) concepts.

Incorporating a foreign concept into an existing EOS ontology is not at all an arbitrary
process. On the contrary, we can expect that the extraction procedure is reliable in a sense that
this new concept can be identified as an instance of some specific conceptual universal. For
example, the result of an extraction procedure may be the concept PARTICU-

SECTION 3.1 KNOWLEDGE PROCESSING

 7979

LAR:NEW_ADDRESS that is, according to the semantics of the reliable procedure, an occur-
rence of the ontology concept ADDRESS. Note that PARTICULAR:NEW_ADDRESS is a
conceptual particular, which is not a specialty of this example. In fact, all concepts extracted
from foreign documents will necessarily be particulars, while input describing EOS ontolo-
gies (containing universals) are regarded as native documents. In Section 3.1.2 we have pre-
sented the different kinds of input data for knowledge processing systems, in particular
documents and knowledge representations, in our approach EOS ontologies that comprise
ontological, onto-epistemic and epistemic objects of knowledge32. An EOS ontology contains
the domain model as such, and therefore all conceptual universals that are necessary to de-
scribe the respective domain of interest, such as e.g. the universal ADDRESS. We can assume
that there is a reliable procedure that reads in an EOS ontology directly and generates an in-
ternal representation of the concepts involved. Our focus in knowledge acquisition lies not
here, but in integrating new particular concepts that enter the system after this initialization
phase.

Documents from other sources carry concrete information belonging to actual entities of
that domain, represented by conceptual particulars like PARTICULAR:NEW_ADDRESS.
When integrating such a foreign concept into an EOS ontology, the outset of the knowledge
processing system is that this concept is a particular, and the task of the system is to deter-
mine the most specialized parent concept of the particular within the set of all occurrences of
the specific parent concept the extraction procedure has proposed. For PARTICU-
LAR:NEW_ADDRESS this means finding its most specialized parent that is also an occur-
rence of ADDRESS. At a first glance it seems to suggest itself to immediately chose the al-
ready detected parent concept ADDRESS. Yet, the purpose of an ontology is to determine –
most accurately – all existents, universals and particulars, of a domain. The more specialized
a particular can be described the more knowledge about it is held within an ontology. It does
make a difference in terms of expressiveness whether PARTICULAR:NEW_ADDRESS is an
occurrence of ADDRESS, or one of its occurrences, e.g. GERMAN_ADDRESS or ENG-
LISH_ADDRESS. Consequently, it must be the aim of all integration processes to find the
ontologically most differentiated position for any new concept.

Integrating this new concept into an existing EOS ontology means finding its correct posi-
tion within the corresponding ontology graph. The assumption, here, is that the domain model
represented by the ontology is sound in a sense that each domain particular can be non-
ambiguously assigned as an instance of a specific universal. If this were not the case, the do-
main model would not reflect the domain correctly and require modifications. For example,
any particular possesses an immediate parent, i.e. a most specialized universal. If there were a
domain particular that could be attributed to several of these most specialized universals, it is
an instance of all of them. Yet, this implies that the particular integrates the semantics of all of
its parent concepts, which also entails the existence of another, intermediate universal that
should be a child concept of these universals and the single parent concept of the particular
(see also Section 2.2.4.2.3 and Proof 2.1 for a discussion on single immediate parent concepts
of ontology particulars).

In fact, the new particular will be a leaf of the concept graph determined by the acquisition
procedure. In our example, this procedure found a particular PARTICULAR:NEW_ADDRESS
that is expected to be an occurrence of ADDRESS, i.e. a leaf of the concept graph GADDRESS.
This can be immediately derived from the graph structure that represents the specialization

32 Integrating these ontological concepts into the system is, of course, a straight forward procedure. The syntax of an ontol-

ogy file is previously known to the system and contains a complete EOS ontology, i.e. the position of each of these con-
cepts within the ontology is already fully determined.

CHAPTER 3 EOS EPISTEMOLOGY

 80

hierarchy. Specifically, we can expect that PARTICULAR:NEW_ADDRESS is a child con-
cept of one of the most specialized universal occurrences of ADDRESS, i.e. of a conceptual
universal whose only specializations are particulars. Additionally, the internal component
structure of such possible parent concepts can be verified, which means checking whether the
particular is a structural instance of the universals in question. All necessary tests in that re-
spect can be run on the ontology and concept structures alone.

Yet, this syntactical testing may yield several candidates that possess the required internal
structure but convey different semantics, e.g. HOME_ADDRESS and OFFICE_ADDRESS.
This shows that structural properties alone may not suffice for a correct interpretation of a
new particular in relation to its prospective parent concepts. What is needed is a way of ex-
pressing semantic facts about these concepts. Such semantic facts can be expressed by condi-
tions, conceptual relations which must be valid for all occurrences of specific concepts, e.g.
that a HOME_ADDRESS pertains to the actual residence of persons. Rules that define condi-
tions for concepts can then be used by the system to determine the correct parent concept of a
newly acquired particular. In this way, the potential parent concepts of PARTICU-
LAR:NEW_ADDRESS could be accordingly distinguished, which allows for a correct attribu-
tion of the particular to its unique parent. The algorithmical solution for integrating a new
concept into the ontology graph according to these rules can be described by an according
law, the concept ACQUIRE.

3.1.3.3 Knowledge Generation
Knowledge generation comprises all processes that result in new concepts computed from
already existing ones. It can therefore be straightforwardly paraphrased as deriving concepts
on the basis of an ontology. Here, we can differentiate between processes that produce new
conceptual particulars and those that infer new conceptual universals. Inferring new univer-
sals results in a more detailed domain model, i.e. the ontological knowledge is being aug-
mented by new conceptual relations. Producing new particulars means materializing the cur-
rent status of actuality a system possesses about a certain domain. Hence, particulars repre-
sent the immediate facts about reality a knowledge processing system has at its disposition.

Conditions in terms of knowledge generation will concern the internal component structure
of ontological concepts, as well as their properties as relations, such as transitivity or symme-
try. Rules, then, attribute these conditions to specific concepts which can be used by laws that
govern the generation of new concepts. The according algorithmical application of these rules
is represented by the concept GENERATE.

3.1.3.4 Knowledge Retrieval
Knowledge retrieval in knowledge processing systems is concerned with computing return
values for queries against the ontological basis. Queries will thus concern information about
domain universals or particulars, as well as a combination thereof. Generally, we can differ-
entiate between structural queries that pertain to the internal makeup of an ontology, and se-
mantical queries that are directed towards the intellectual content an ontology represents.
Typical structural queries would be ‘return all (mediate) occurrences of a concept C whose
distance from C is a path of length 3’ or ‘return all concepts that have three components’.
Semantical queries will be asking for (kinds of) concepts satisfying certain conditions, e.g.
‘return all (particular) occurrences of PERSON that work at a university X’, ‘return the num-
ber of (particular) occurrences of PERSON are working at university X’, or ‘return if there is
a department of computer science at university X’. We will mainly concentrate on the latter
type of queries, as these semantical queries are the main interest of human users who depend

SECTION 3.1 KNOWLEDGE PROCESSING

 8181

on the services of knowledge processing systems. Human information needs will generally be
met by the semantic content of the ontological basis of the system, not by its concrete struc-
tural aspects.

Knowledge retrieval in knowledge processing systems is typically directed towards three
kinds of semantical queries. Most commonly, queries will be asking for information on exis-
tents, usually particulars, of a domain. Considering EOS ontologies this means that such que-
ries are retrieving sets of concepts of a certain type, possibly narrowed down further by satis-
fying specific conditions, e.g. all particular instances of PERSON that are called ‘John’. Sec-
ondly, numerical values computed from such result sets can be of interest. Regarding the pre-
vious example, a possible numerical value would be the total number of concepts that satisfy
the above query, i.e. how many particular instances of PERSON actually can be found that
are called ‘John’. Thirdly, it is useful to find out whether certain conditions are true for do-
main existents, i.e. whether they are met by concepts of the ontology, e.g. if there is a known
particular instance of PERSON that is called ‘John’. Consequently, queries against formal
ontologies will typically expect one of three kinds of return values, sets of concepts, numeri-
cal values, or truth values. At this point we are leaving aside any further computations that are
outside the immediate ontological scope of knowledge processing, like conversions (e.g. from
one currency to another, between units of measurement, temperatures, etc.), determining the
average of numerical values, or performing any other higher level calculations. All of these
computations can be regarded as secondary processing that can also be handled by applica-
tions that build upon the primary services provided by a knowledge processing system.

We will thus restrict our focus on the properties of the above mentioned three essential
kinds of semantical queries immediately touching on the ontological basis of a knowledge
processing system:

 Sets of Concepts. Queries related to sets of concepts can be immediately translated into
the makeup of ontologies as graph representations. Whenever specializations, i.e. occur-
rences or instances, of concepts are searched for the system is, graphically speaking, proc-
essing their subtrees. Generalizations, on the other hand, are marked by the paths leading
from these concepts to the root concept of the ontology graph. Within result sets we can
differentiate between conceptual universals and particulars, if called for by a query. Note
that this kind of queries is, from a semantical point of view, certainly not limited to spe-
cialization and generalization. Sets of concepts can also consist of components of con-
cepts, i.e. of concepts that are set in relation by any other concept, or family of concepts.
Such a query could be searching, e.g. for all conceptual particulars that are part of a fam-
ily, i.e. for all particular components of occurrences of the concept FAMILY.

 Numerical Values. Instead of returning a set of concepts it may already be sufficient to
specify the cardinality of this set. The manner in which such queries are processed is es-
sentially the same, before the result set is transformed into a numerical value. We will
therefore not treat this kind of query separately on a theoretical basis but regard all impor-
tant aspects and problems already covered by queries that are directed towards sets of con-
cepts.

 Truth Values. A knowledge processing system must be able to test conditions on concepts
and return the according truth values, true or false. As introduced in section 3.1.1, con-
cepts can be equated with epistemological beliefs, and during knowledge processing it
must be possible to proof or falsify the statement this belief, or concept, represents against
the background of the ontological basis.

CHAPTER 3 EOS EPISTEMOLOGY

 82

Next to different kinds of return values33, queries show another dimension that has not been
relevant in knowledge acquisition and generation, namely external users. Processing queries
is a form of interaction of an EOS system with the outside world, i.e. applications or human
users. In any case it might be feasible to model individual and groups of users in order to pro-
vide personalized views and access restrictions. Conditions and rules on queries will therefore
concern both, target concepts and user properties. The algorithmical realization of queries
itself is constituted by a class of laws, the concept QUERY.

3.1.3.5 Epistemological Outset for Knowledge Processing in EOS
Knowledge acquisition, knowledge generation and knowledge retrieval as motivated in the
previous sections depict a classification model for epistemological processes within an EOS
system. Such processes operate on ontological concepts with respect to their semantical prop-
erties. Concept properties are described by conditions and rules. Conditions are representing
truth statements that may be attributed to ontology concepts by according rules. These rules
are, at their part, associated with laws. Laws, generally speaking, specify procedures that are
utilizing rules in order to manage epistemological processes. As such, they are representing
the algorithmical realization of these processes, offering parameterizations for them. The fol-
lowing sections will discuss how conditions, rules and laws can be incorporated into the for-
mal body of Concept Theory, i.e. how epistemological knowledge can be formalized and in-
tegrated into an ontological domain model.

3.2 Epistemology in Concept Theory
This section will present how epistemological facts can be modeled in Concept Theory. In
Section 2.2 we have learned the derivation of concepts from metaphysical realism, their es-
sential syntax and their semantics, which are delineated by the semantics of specialization. To
this point, Concept Theory knows only ontological semantics, represented by ISA, and a no-
tion of parthood, as components are parts of concepts. These semantics are syntactically mir-
rored in the structural makeup of EOS ontologies. An EOS ontology is thus a directed graph
marking the specialization structure of a domain of interest. While this structure represents a
concrete formalization and categorization of this domain, its ontological expressiveness can-
not exclusively account for all questions arising when processing knowledge. Knowledge
processing covers several different areas of epistemological processes that have already been
introduced in Section 3.1.1: knowledge acquisition, generation and retrieval.

Epistemological semantics are statements about ontological facts or, in terms of Concept
Theory, statements about concepts. Examples of such statements would be those about the
meaning of concepts like ‘the SHAPE of a BALL is ROUND’, and others about properties of
concepts, such as ‘TALLER_THAN is a transitive concept’. These examples show the differ-
ent perspectives of knowledge representation and processing. Knowledge representation is
concerned with formalizing facts about a domain, which leads to the notion of formal ontolo-
gies. This ontological knowledge can then be utilized, e.g. for knowledge generation or re-
trieval, which requires an understanding that allows for a correct interpretation of the onto-
logical facts. All according statements about ontological knowledge is what we call epistemo-
logical knowledge.

33 We are here concentrating on semantical queries that are addressing ontology concepts, e.g. ‘return all occurrences of

concept C that satisfy condition X’. It would also be possible to query an ontology structurally, e.g. ‘return all concepts
whose ISA distance to concept C lies within a path of length 2’. The return values for these kinds of queries can also be
expressed using sets of concepts, numerical and truth values.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 8383

3.2.1 On Modeling Epistemological Rules
Conditions in Concept Theory express statements that must be satisfied (true) within the con-
text of the concepts they are attributed to. Accordingly, conditions are statements about con-
cepts, and may be true for one concept and false for another. In this sense, they may be used
to define rules or expressions for concepts, e.g. the rule that all persons called ‘John’ are
males. This example illustrates a basic ontological property of such rules – the scope of rules
is not limited to single concepts. A rule that applies to the concept PERSON will also be valid
for all occurrences of the concept. For example a CHILD is an occurrence of PERSON (cf.
Example 2.1c), and all instances of CHILD called ‘John’ (i.e. where the NAME component is
occupied by JOHN_NAME) are certainly males as well. As pointed out in Section 2.2.4.2.1,
each concept can be regarded as an ontological kind of all of its occurrences because of the
semantical properties of specialization. Accordingly, rules pertaining to a concept will at the
same time touch on all representatives of this ontological kind, i.e. these rules must also be
valid for all occurrences of this concept within a formal ontology.

Rules are onto-epistemic objects and form part of the epistemological domain model that
should be integrated seamlessly into the ontological domain model, represented in our ap-
proach by EOS ontologies. Thus it is of importance to examine how rules may be incorpo-
rated into Concept Theory. Obviously, in metaphysical terms, rules are universals and as such
describable by conceptual relations, i.e. in Concept Theory rules are simply concepts. How-
ever, the exact structure of conceptual rules and their employment, as well as their exact se-
mantics within the theoretical body of Concept Theory has yet to be developed. In order to
illustrate the syntactical and semantical aspects of rules concerning Concept Theory, we will
elaborate an example rule and discuss its implications. We argue that ontological semantics
alone cannot account for rules, i.e. the semantics of rules must be regarded from an epistemo-
logical perspective. Based on these considerations we will then give a precise definition of
conceptual rules and describe their epistemological semantics.

Our example describes rules on the concept LANDLORD, another occurrence of PERSON.
The statement ‘a landlord owns a building’ is a rule for what it means to be a landlord, be-
sides being a person, which implies having a name, etc. In a first approach to modeling this
rule using concepts, the fact that a landlord owns a building could naturally be expressed by a
concept like OWNS_BUILDING:=(2,(LANDLORD,BUILDING)). However, the semantics of
OWNS_BUILDING are not what ‘a landlord owns a building’ is actually intended to denote.
OWNS_BUILDING itself merely states the kinds of components that are valid for its own oc-
currences such as e.g. OWNS_BUILDING_OCC:=(2,(BARRY,SMITH_MANSION)). The ac-
tual semantics of OWNS_BUILDING can best be explicated by referring to its ontological
context. It is very probable that an ontology comprising OWNS_BUILDING also contains a
parent concept of the form OWNS:=(2,(OWNER,PROPERY)) that models ownership.
OWNS_BUILDING, as an instance of OWNS, can therefore be only interpreted as a special
case of ownership, and not as a fact about landlords. While the statement ‘a landlord owns a
building’ may be formally described as

∀ x, x is a landlord: ∃ building b: x owns b
the concept OWNS_BUILDING thus really conveys

∃ x, x is an ownership: x.owner is a landlord ∧ x.property is a building.

What OWNS_BUILDING obviously fails to express is a direct relationship with the concept
LANDLORD. Note that this cannot be redeemed by using another concept operating with con-
cept references, e.g. denoting identity with concept LAND-
LORD_IDENTITY:=(2,(LANDLORD, OWNS_BUILDING[1])). The semantics of this concept,

CHAPTER 3 EOS EPISTEMOLOGY

 84

again, are describing a special case of identity, and not LANDLORD itself. The impact of this
becomes clear when regarding instances of the two concepts LANDLORD and LAND-
LORD_IDENTITY. Again, there is no way of assuring that there exists an appropriate instance
of LANDLORD_IDENTITY for each instance of LANDLORD. In fact, one can even specify
syntactically correct instances of LANDLORD_IDENTITY that explicitly, and falsely, state the
identity of two non-identical occurrences of LANDLORD. Note that this is not a matter of
modeling a domain correctly, i.e. all concepts of an ontology are supposedly sensible, but of
ontological expressiveness. The semantics of EOS ontologies so far are solely based on spe-
cialization and parthood, represented by ISA and the status of concept components. These
alone simply cannot account for conditions whose scope is intended to cover all occurrences
of a concept intensionally (besides the semantics of specialization themselves, of course).
When modeling the statement ‘a landlord owns a building’ in an ontological way (i.e. based
on specialization) one may consequently only refer to LANDLORD itself, or concepts related
to it along the ISA hierarchy, in particular its parent concepts and components.

There are two explicit ways to incorporate such a rule ontologically into an EOS ontology,
namely isolated by (a) introducing a new component BUILDING to LANDLORD or, respec-
tively, by (b) defining an appropriate parent concept BUILDING_OWNER of LANDLORD.
These two possibilities are depicted in Figure 3.3. Concept components in this figure are rep-
resented by ovals enclosed by concept ovals.

PERSON

LANDLORD

GENDERNAME BUILDING

GENDERNAME

PERSON

LANDLORD

BUILDING_OWNER

GENDERNAME BUILDING

BuildingNAMEGENDERNAME

(a) (b)

Figure 3.3: Ontological Explanation of the Concept LANDLORD

Yet, further exemplifications of LANDLORD may pose difficulties when modeling them onto-
logically, i.e. by specialization or structure only. The statement ‘a landlord owns a building
or a piece of land’,

∀ x, x is a landlord: ∃ building b: x owns b ∨ ∃ land l: x owns l,
cannot be easily translated directly into an ontology, as the disjunction or in this context is not
supported by ontological structures (nor are more complex statements such as ‘a landlord
owns a building or a piece of land and rents it to a tenant’). One of the problems arising here
is that ontological specializations are conjunctive, and are therefore not apt for expressing
disjunctive statements. For this reason Concept Theory treats inheritance of concept compo-
nents as Figure 3.4 indicates – a child concept per definition occupies all components of all of
its parent concepts (see also Definition 2.14). The implication of the graph structure of Figure
3.4 thus can be paraphrased as ‘a landlord owns a building and a piece of land’,

∀ x, x is a landlord: ∃ building b: x owns b ∧ ∃ land l: x owns l,
(derived from the ontology semantics that LANDLORD is a specialization of the three con-
cepts LAND_OWNER, PERSON and BUILDING_OWNER, defining a relation on its four sub-
concepts NAME, GENDER, LAND and BUILDING). The disjunction or has thus been turned
into the conjunction and, which is not the intended content of the original statement.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 8585

LANDLORD

GENDERNAME LAND

BUILDING_OWNER

BuildingNAME

PERSON

GENDERNAME

LAND_OWNER

LANDNAME

BUILDING

Figure 3.4: Conjunctive Property of Specializations

A correct, but inconvenient way to convey the meaning of ‘a landlord owns a building or a
piece of land’ ontologically, would be to specify an additional concept LAND-
LORD_PROPERTY that is a parent of both, LAND and BUILDING. This concept can then be
used as a component of LANDLORD (cf. Figure 3.5). The concept LANDLORD_PROPERTY
acts as a generalization of LAND and BUILDING, i.e. it may be specialized either by LAND or
BUILDING, which models a disjunctive ontological structure.

PERSON

LANDLORD
GENDERNAME LANDLORD_PROPERTY

GENDERNAME
LANDLORD_PROPERTY

LAND BUILDING

Figure 3.5: Refined Ontological Explanation of the Concept LANDLORD

Still, we cannot describe arbitrary rules for a concept C ontologically by introducing accord-
ing components to C. This is for example the case if these components are themselves interre-
lated through another concept R, but within the context of C. As an example we will discuss
the already mentioned extended statement ‘a landlord owns a building or a piece of land and
rents it to a tenant’,

∀ x, x is a landlord: ∃ t, t is a tenant:
(∃ building b: x owns b ∧ t pays for b) ∨ (∃ land l: x owns l ∧ t pays for l).

Clearly, there exists a relationship between a landlord and his property (the landlord owns it)
as well as between a landlord and a tenant (the person the landlord rents the property to). On
the other hand, there is a relationship between the tenant and the landlord’s property (the ten-
ant pays for using it). The implication, here, is that the property owned by the landlord is the
very same property the tenant is paying the landlord for. Analogously to the initial considera-
tion to use a concept OWNS_BUILDING for expressing ownership, one could define the con-
cept PROPERTY_DEAL:=(3,(LANDLORD,TENANT,PROPERTY)) for depicting this relation-
ship. Yet again, PROPERTY_DEAL does not, as it should, directly attribute to the definition
of LANDLORD, nor does it ensure that LANDLORD and TENANT relate to the same PROP-
ERTY. This means that one could construct a valid instance PROPERTY_DEAL_INST:=
(3,(L_P1,T_P2,P1)) of PROPERTY_DEAL, implying that the property P1 really is owned by
the landowner L_P1 but the tenant T_P2 is actually using another property P2. Thus, what
cannot be expressed ontologically, here, is identity (or any other relation) among components
of concepts. Analogously, even defining LANDLORD:=(4,(NAME,GENDER,PROPERTY,
TENANT)) as a concept comprising TENANT as a component (besides being not feasible from

CHAPTER 3 EOS EPISTEMOLOGY

 86

a modeling point of view) still cannot account for the semantic relationship between TENANT
and PROPERTY.

As a last option one might want to solve this referential problem by using the technique
shown previously in Figure 3.5, i.e. by nesting concepts. It is possible to define LANDLORD
with reference to the concept TENANT that now encapsulates LANDLORD_PROPERTY as
indicated in Figure 3.6. But specified in this way LANDLORD is only indirectly related to
LANDLORD_PROPERTY through TENANT, which contradicts any intuitive notion of defin-
ing concepts like LANDLORD.

PERSON

GENDERNAME

LANDLORD TENANT
GENDERNAME LANDLORD_PROPERTYGENDERNAME TENANT

Figure 3.6: Nested Ontological Explanation of the Concept LANDLORD

In conclusion, the structural properties of specialization, which are representing the inter-
nal structure of an ontology, do not account for interrelationships between concept compo-
nents. Put more general, this means that conditions and rules on concepts cannot be expressed
ontologically but belong to the epistemological perspective on a domain. How this epistemo-
logical perspective can be modeled within Concept Theory will thus be the central topic of
the following sections.

3.2.2 Conditions and Rules
Epistemological knowledge can be subdivided into onto-epistemic and epistemic objects of
knowledge (cf. Section 3.1.3). The latter are represented by conceptual laws while the former
are expressed by conceptual conditions and rules, where conditions state properties that are
related to ontological concepts via rules pertaining to these concepts. In this sense, conditions
of a concept C are formalizations of propositions (or parts thereof) that are true for C. In gen-
eral, any statement expecting a truth value with respect to concepts can be regarded as a con-
dition. When modeling an ontology, conditions can be attributed to arbitrary concepts by ac-
cording rules. Thus they are related to specific concepts at designated positions within an
EOS ontology. From the structural properties of ontologies, in particular continuity (cf. Sec-
tion 2.2.4.2.3), it then immediately follows that a condition defined for a concept C also af-
fects all specializations of C.

In order to test conditions expressing logical statements within a given EOS ontology, the
notion of truth values for concepts must be defined. This is the central question of Section
3.2.2.1. Subsequently, conceptual rules and applying identity conditions are formally intro-
duced in Section 3.2.2.2. Testing rules for given concepts is then discussed in Section 3.2.2.3.
Section 3.2.2.4 shows how complex truth statements can be formulated using logical condi-
tions, and Section 3.2.2.5 demonstrates the applicability of rules for modeling general relation
properties.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 8787

3.2.2.1 Truth in EOS Ontologies
Conditions interpret concepts as truth values, and are embodiments of statements about con-
cepts and their occurrences. Truth properties for concepts can be defined by an according
function IO that interprets each concept as either logically true or false.

Definition 3.1: The Interpretation Function IO

Let O be an EOS ontology. The interpretation function IO: Φ → BOOL for ontology O
is defined as follows:

 IO(C) = true ∀ C∈O
 IO(C) = false ∀ C∉O

The interpretation function IO yields the Boolean value true for all concepts of O, i.e. all
ontology concepts can be interpreted as true statements about the domain they are model-
ing.

This understanding of concepts as true statements, or beliefs, is in accordance with the gen-
eral perspective on knowledge as laid out in Section 3.1.1, where true beliefs have been iden-
tified as the basis for knowledge processing. In this sense, ontology concepts form the funda-
mental set of beliefs for epistemological processes. Thus, the domain model itself is accepted
by an EOS system as a true perspective on the domain of interest. Any new concept
NEW_CONCEPT (e.g. provided by external sources) that enters the system can be tested on
this basis. Thus, a concept will either get rejected if it does not comply with the ontology, or it
is integrated into the ontology once it has been judged compatible with the other ontology
concepts.

This testing procedure builds upon conceptual rules that are specifying conditions for
given concepts. Therefore, rules act as integrity constraints on concepts and are, as such, a
means for determining the compatibility of NEW_CONCEPT with the respective ontology: if
a rule applies to it, this rule must accordingly be tested on NEW_CONCEPT. Only if it satis-
fies all rules pertaining to it, NEW_CONCEPT can be made part of the ontology. The applica-
tion of (general) rules to new (specific) concepts is delivered from the specialization hierar-
chy of the ontology, i.e. a rule defined for a concept C will also be valid for its occurrences.
Thus, for NEW_CONCEPT all rules apply that refer to the concepts it is reducible to. Gener-
ally, rules are defined for ontology concepts, e.g. the rule ‘each mother has a child’ refers to
the concept MOTHER and specifies that HAS_CHILD:=(2,(MOTHER,CHILD)) must be true,
i.e. a condition, for it. A rule valid for an ontology concept such as MOTHER is also binding
for all occurrences of it. This means that the rule ‘each mother has a child’ is not restricted to
MOTHER alone, but will still be valid analogously for its occurrences e.g. SINGLE_MOTHER
and WORKING_MOTHER, as well as for their particulars. If NEW_CONCEPT can be deter-
mined as e.g. a particular SINGLE_MOTHER, and is therefore also an occurrence of
MOTHER, then the rule ‘NEW_CONCEPT has a child’ (and all other rules for mothers as
well) must hold for NEW_CONCEPT, too. Thus, if this and all other rules for MOTHER can
be validated, NEW_CONCEPT will be regarded as a true concept and integrated into the on-
tology.

3.2.2.2 Rules and Identity Conditions
Conditions and rules, themselves, are relations, and are thus describable by Concept Theory.
Conceptual rules interpret their internal components as conditions. Such a rule is expected to

CHAPTER 3 EOS EPISTEMOLOGY

 88

be in itself true – syntactically as a concept of the ontology, and also semantically concerning
the truth statements they are representing.

Definition 3.2: The Concept RULE

Rules are represented by the fundamental relation RULE, which is defined as the concept

RULE := (2, (EXISTENT, EXISTENT)) ∈ΦU

where

 RULE[1] is a condition specifying the concepts the rule is valid for and
 RULE[2] is the condition that applies for these concepts.

An occurrence of RULE states that whenever the condition of RULE[1] is true within an
ontology, RULE[2] must be true as well.

Note: As rules are semantically distinct from other concepts, their occurrences are syn-
tactically marked by according prefixes, i.e. RULE:.

The simple exemplary rule ‘each mother has a child’ of the previous section is then formal-
ized as shown in Example 3.1.

Example 3.1: A Rule for the Concept MOTHER

Let O be a formal ontology, let MOTHER, CHILD, HAS_CHILD:=(2,(MOTHER, CHILD))
and their components be ∈ O. The rule ‘each mother has a child’ can be expressed by
the conceptual rule

RULE:MOTHER

HAS_CHILD

CHILDMOTHERMOTHER

where MOTHER is the concept the rule RULE:MOTHER refers to, and HAS_CHILD
specifies the condition that has to be met by all occurrences of MOTHER.

The rule RULE:MOTHER is binding for all occurrences of MOTHER. Yet, its definition
alone, as depicted in Example 3.1, does not account for the semantic implications between its
components MOTHER and HAS_CHILD. In particular, RULE:MOTHER does not express, the
relationship between MOTHER mentioned in RULE:MOTHER[1] and MOTHER of
RULE:MOTHER[2][1], i.e. as the first component of the condition HAS_CHILD. This rela-
tionship, which is valid in the context of RULE:PERSON, depicts that RULE:MOTHER[1]
and RULE:MOTHER[2][1] refer to the same concept, which is trivially true for MOTHER but
must also be assured for all occurrences of this concept. For example, for a particular PAR-
TICULAR:MARY with value “Mary” the according rule must correctly be

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 8989

RULE:MARY

HAS_CHILD_MARY

CHILD“Mary”“Mary”

.

This example has shown that in order to transport the correct semantics of rules, a correlation
between their components (possibly to an arbitrary depth) must be specified. Defining such
correlations in Concept Theory is done using identity conditions.

Definition 3.3: The Condition IDENTITY

The condition IDENTITY, is defined as the concept

IDENTITY := (2, (EXISTENT, EXISTENT)) ∈ΦU,
where IDENTITY[1] and IDENTITY[2] delineate concept references pertaining to concept
components of occurrences of RULE and LAW (see Section 3.2.3) that must be occupied
by the same concept within an ontology. It follows that IDENTITY[1] and IDENTITY[2]
must be of the same conceptual category, i.e. there must exist a specialization between
them:

let O be an ontology, then
∀ identity conditions IDENTITY:COND ∈O:

∃ ISA:COND1_2:=(2,(IDENTITY:COND[1], IDENTITY:COND[2])) ∈O ∨
 ∃ ISA:COND2_1:=(2,(IDENTITY:COND[2], IDENTITY:COND[1])) ∈O.

Note that occurrences of IDENTITY can be syntactically identified by the prefix IDENTITY:.
Furthermore, IDENTITY is a symmetric concept, i.e. within any ontology O, an identity condi-
tion IDENTITY:AB:=(2,(REF_A, REF_B)) implies a second, symmetric condition IDEN-
TITY:BA:=(2,(REF_B, REF_A)). Without loss of generality one can assume that all mutually
symmetric identity conditions are materialized in O. This assumption allows for defining a
general integrity constraint for identity conditions in Concept Theory. Let RULE:R be any
conceptual rule in O, and let IDCONRULE:R be the set of identity conditions that apply to
RULE:R. All identity conditions of IDCONRULE:R must obey the following integrity constraint
within ontology O:

∀ identity conditions IDENTITY:A, IDENTITY:B ∈IDCONRULE:R:
IDENTITY:A[1]=IDENTITY:B[1] ⇔
∃ IDENTITY:C:=(2,(IDENTITY:A[2], IDENTITY:B[2])) ∈IDCONRULE:R,

i.e. whenever two identity conditions relate one rule (sub)component with two distinct other
(sub)components, these in turn must also be associated with an according identity condition.
This assures that no rule (sub)component can be interpreted inconsistently when testing this
rule on ontology concepts (see Section 3.2.2.3).

Identity conditions delineate the semantical structure of rules by specifying which concepts
are bound to each other. Example 3.2 shows how an identity condition can be used for speci-
fying the correlation between RULE:PERSON[1] and RULE:PERSON[2][1] of Example 3.1.

CHAPTER 3 EOS EPISTEMOLOGY

 90

Example 3.2: An Identity Condition for RULE:MOTHER

The rule ‘each mother has a child’, which is expressed by the conceptual rule
RULE:MOTHER

HAS_CHILD

CHILDMOTHER
MOTHER

implies that RULE:MOTHER[1] and RULE:MOTHER[2][1] must be identical for all ap-
plications of this rule. The corresponding identity condition is:

 IDENTITY:MOTHER_RULE := (2, (RULE:MOTHER[1], RULE:MOTHER[2][1])).

where MOTHER is the concept the rule RULE:MOTHER refers to, and HAS_CHILD
specifies the condition that has to be met by all occurrences of MOTHER. For depicting
identities graphically, the EOS notation is extended by edges used for connecting con-
cepts that are being identified. Where emphasis on their individual function is necessary,
these edges may be labeled with their concept names. The resulting graphical representa-
tion of RULE:MOTHER, including IDENTITY:MOTHER_RULE is then:

RULE:MOTHER

HAS_CHILD

CHILDMOTHERMOTHER

IDENTITY:MOTHER_RULE

Rules, in combination with identity conditions, determine semantical aspects of ontology con-
cepts. As such they are trivially true for the very concepts they have been defined for. More-
over, a rule defined for a concept C will also apply to all specializations of C, which demands
a uniform procedure for testing rules on these occurrences. This procedure that examines
whether a rule is applicable and true for a given concept will be discussed in the following
section.

3.2.2.3 Testing Rules

Conditions in Concept Theory represent statements about concepts, and as such truth values.
Either a condition is met by a concept C, in this case the condition is true for C, or this is not
the case, which renders the condition false for C. They are defined explicitly for specific con-
cepts, and are valid for these ontological kinds as wholes, i.e. for all of their occurrences. This
property makes conditions very useful for epistemological processes, e.g. when answering
queries against EOS ontologies, as they introduce new semantics on top of purely ontological
semantics, i.e. semantics that are based on specialization alone (cf. Section 2.2.4). Rules bind
conditions to concepts and determine integrity constraints for these concepts, as well as for
their specializations, within a given ontology. This requires testing a (general) rule on these
specializations, a procedure that proves or confutes a rule for them within the bounds of an
EOS ontology. Here, the difference between syntactical and semantical truth of rules becomes
obvious:

 Syntactical Truth. Any rule that is part of an EOS ontology O is syntactically true within
O, as it is an element of O. Syntactical truth of rules (and all other concepts) is defined by

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 9191

the interpretation function IO (cf. Section 3.2.2.1) that determines the truth of concepts
with reference to a given ontology O.

 Semantical Truth. Rules represent true statement about ontology concepts, i.e. they are
true by virtue of their semantical content. Semantical truth of rules is defined by another
interpretation function, IO,M that decides on the truth of rules with respect to a specific
minting M within a given ontology O.

Definition 3.4: Concept Minting

A concept minting of a concept C ∈ΦU is defined as the concept MC ∈Φ where

MC is a valid occurrence of C.

Note that the concept C may possess very complex substructures, i.e. components that
themselves have their own components, etc., up to an arbitrary but finite depth (smaller
than the cardinality |O| of the ontology O of which C is an element of). The set of all of
these nested components encapsulated by C is called φC.

MC is a valid concept minting of a concept C ∈ΦU, if

 MC is a valid occurrence of C, and
 ∀ identity conditions i∈Φ ∧ (i[1]∈φC ∧ i[2]∈φC): i holds for MC,

i.e. all identity conditions that are defined for C are also satisfied by its minting MC.

Note: The set of all mintings for a concept C thus describes the set of all concepts that are
structurally compliant with C. This set is not identical with all semantically correct oc-
currences of C, as some mintings may fail to satisfy rules defined for C.

The interpretation function IO,M which defines whether a rule is true for a given concept can
now be specified.

Definition 3.5: The Interpretation Function IO,M

Let O be an EOS ontology. The interpretation function IO,M: Φ → BOOL for a rule
RULE:R ∈O is defined as follows:

 IO,M(RULE:R) = true ⇔
M is a valid minting of RULE:R[1]

 ∧ ∃ C∈O: C is a valid minting of RULE:R[2]
 ∧ ∀ identity conditions i∈O ∧ (i[1]∈φRULE:R[1] ∧ i[2]∈φRULE:R[2]):

i holds for RULE:R
 IO,M(RULE:R) = false else.

The interpretation function IO,M yields the Boolean value true only for valid mintings of
rules in O, i.e. IO,M tests whether a given concept satisfies a rule or not.

How rules can be tested according to the semantics of the interpretation function IO,M is shown
in Example 3.3.

Example 3.3: Testing Rules

CHAPTER 3 EOS EPISTEMOLOGY

 92

Let GENETIC_FAMILY and GENETIC_MOTHER be two concepts of an ontology O:

GENETIC_FAMILY

FATHERMOTHER CHILD

GENETIC_MOTHER

CHILDMOTHER

where GENETIC_FAMILY is an instance of FAMILY and GENETIC_MOTHER implies
that all conceptual particulars of this relation touch on children and their real mothers.
Let one such particular of O be:

PARTICULAR:BETH_MOTHER

“Peter” “Beth”

If a new concept has to be integrated into O, e.g. this concept has been extracted from an
external source, it has to be decided, what ontological position it should receive. Let

PARTICULAR:NEW_FAMILY

“Scott”“Beth” “Peter”

be a newly extracted concept that has been identified as an instance of FAMILY. For de-
termining PARTICULAR:NEW_FAMILY as precisely as possible, it is important to know,
if it pertains to a specific class of families (of universal occurrences of FAMILY), e.g. if it
is an instance of GENETIC_FAMILY. Let this be the case according to its ontological
structure, i.e. all of its components are reducible to their respective roles in GE-
NETIC_FAMILY. Yet, epistemologically, a rule has to be fulfilled for all instances of
GENETIC_FAMILY, namely that the concept occupying the MOTHER role is the real
mother of the occupant of the CHILD role. This rule is expressed by the concepts

RULE:GFAMILY_RULE

GENETIC_FAMILY

FATHERMOTHER CHILD

GENETIC_MOTHER

CHILDMOTHER

The new concept PARTICULAR:NEW_FAMILY can now be tested against this rule. In
order to do this the system creates new instances of these conditions that pertain to PAR-
TICULAR:NEW_FAMILY. The newly created rule is of the form

RULE:NEW_GFAMILY_RULE

PARTICULAR:NEW_FAMILY

“Scott”“Beth” “Peter”
PARTICULAR:NEW_GENETIC_MOTHER

“Peter”“Beth”

where PARTICULAR:NEW_FAMILY occupies the first component of RULE:NEW_G-
FAMILY_RULE and the new concept PARTICULAR:NEW_GENETIC_MOTHER the sec-
ond. Thus, PARTICULAR:NEW_FAMILY is the minting of GENETIC_FAMILY of
RULE:GFAMILY_RULE. The minting PARTICULAR:NEW_GENETIC_MOTHER has
been constructed from its role GENETIC_MOTHER on the basis of the according iden-
tity conditions (which is highlighted by the arrows along the identity edges in the graphi-
cal representation of RULE:NEW_GFAMILY_RULE).

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 9393

For determining if concept PARTICULAR:NEW_FAMILY is an epistemologically valid
instance of GENETIC_FAMILY, the system has to test whether the rule RULE:NEW_G-
FAMILY_RULE applies to it, i.e. if this rule is true. This were the case if all of its com-
ponents are true. Per hypothesis this is the case for PARTICULAR:NEW_FAMILY but it
still has to be tested for PARTICULAR:NEW_GENETIC_MOTHER. The task, therefore,
is to find an instance of GENETIC_MOTHER within O that possesses the components of
PARTICULAR:NEW_GENETIC_MOTHER. If this test is positive, the rule RULE:G-
FAMILY_RULE applies to PARTICULAR:NEW_FAMILY. As indicated above, this is the
case because PARTICULAR:BETH_MOTHER is part of O.

In summary, conditions and rules thus represent general truth statements about concepts with
respect to a given ontology. For all particulars and universal occurrences of an ontology con-
cept, the rules concerning it will also hold for them. This is an important property of concepts
regarding epistemological processes. Knowledge acquisition procedures can make use of such
rules when determining the ontology graph position of new concepts, rules must be met when
generating new concepts, and query processing is facilitated as semantical properties of con-
cepts can be determined at an early level (relatively close to the root concept) of the ontology
graph. A concept is regarded as being true within an ontology if it is an actual element of the
ontology graph, i.e. trivially, any ontology concept is in itself true. For any non-ontology con-
cept (e.g. extracted from foreign sources), rules can be tested and found satisfied or not,
which corresponds to assigning the truth values true and false to these concepts on the basis
of a certain rule.

3.2.2.4 Rules and Logical Conditions

Ontologically (regarding only the specialization hierarchy of an ontology), relations among
concept components can only be expressed in their general form, i.e. outside the scope of a
specific concept (cf. the motivation for modeling rules in Section 3.2.1). Identity conditions,
on the other hand, allow for defining component correlations that can be used in other condi-
tions and rules (as well as for laws). Specifically, this allows for concept mintings on rules. In
this way, rules can be tested for a given concept. So far, rules can only contain simple condi-
tions, i.e. ontological domain concepts. For expressing more complex truth statements, logical
conditions that combine several conditions by conjunction, disjunction or negation must be
defined in Concept Theory. Logical Conditions for rules and laws in Concept Theory are rep-
resented by the concepts AND, OR and NOT.

Definition 3.6: The Conditions AND, OR and NOT

Concept Theory knows the semantics of several logical conditions:

 AND := (2, (EXISTENT, EXISTENT)) ∈ΦU
 OR := (2, (EXISTENT, EXISTENT)) ∈ΦU
 NOT := (1, (EXISTENT)) ∈ΦU

with occurrences of AND, OR and NOT being delineated by the prefixes AND:, OR: and
NOT:, carrying the semantics:

 ∀ occurrences AND:OCC of AND:
IO(AND:OCC) = true ⇔ IO(AND:OCC[1]) = true ∧ IO(AND:OCC[2]) = true

 ∀ occurrences OR:OCC of OR:

CHAPTER 3 EOS EPISTEMOLOGY

 94

IO(OR:OCC) ⇔ IO(OR:OCC[1]) = true ∨ IO(OR:OCC[2]) = true
 ∀ occurrences NOT:OCC of NOT:

IO(NOT:OCC) = true ⇔ IO(NOT:OCC[1]) = false

where IO is the interpretation function for concepts C of an ontology O.

Notes:
 As occurrences of conditions are syntactically emphasized using respective prefixes,

they need not be explicitly modeled as such in EOS ontologies, i.e. it suffices to de-
fine, e.g. a condition AND:OCC without specifying ISA:ANDOCC:=(2,(AND:OCC,
AND)). Implicitly, any EOS ontology certainly possesses all condition concepts and
according ISA occurrences.

 Without loss of generality one can assume occurrences of AND with arbitrary arity,
e.g. conjunctions of several concepts with nested AND occurrences, such as

AND:NESTED_AND := (2,(EXISTENT, AND:1)),
AND:1 := (2,(EXISTENT, AND:2)),
AND:2 := (2,(EXISTENT, AND:3)), …
AND:n-1 := (2,(EXISTENT, AND:N)),

 can be equivalently expressed using a single n-ary AND occurrence:
 AND:N-ARY_AND := (n, (EXISTENT, …, EXISTENT)),

which is due to the associative property of conjunctions. For example the AND occur-
rence AND:ABC:=(3,(A,B,C)) conveys a meaning that is semantically equal to both,
AND:A_BC:=(2,(A,AND:BC)) and AND:A_BC:=(2,(AND:AB,C)), for the matching
conjunctions AND:AB:=(2,(A,B)) and AND:BC:=(2,(B,C)). As conjunctions are also
commutative, AND:ABC:=(3,(A,B,C)) is also equal to, e.g. AND:BAC:=(3,(B,A,C)) or
AND:CBA:=(3,(C,B,A)). Thus, the concept AND:ABC can be seen as a representative
of all of its commutative and associative variations.

The same applies analogously for occurrences of the condition OR.

Note that it is essential to observe the semantics of these conditions compared to those of
other concepts. Condition occurrences are attributed epistemological semantics of their own,
i.e. their meaning is not limited to their ontological status. Ontologically, they are nothing but
elements of an EOS ontology, i.e. specializations of the root concept EXISTENT. Epistemo-
logically, they are expressing truth statements. Unlike other concepts, conditions therefore
have an ontological as well as an epistemological scope and can thus be used for formulating
predicates. Logical conditions, such as occurrences of AND and OR, are conceptual relations
that can be nested in order to express more complex statements.

From the basic outset of Concept Theory, concepts act as relations on their components
and specializations of these components, respectively. This means that components can be
replaced by their specializations while the outer relation remains valid. The formal basis for
this has been presented in Definition 3.4 that describes the semantics of concept minting.
Valid concept mintings for conceptual relations are their syntactically correct occurrences.
For example, the concept FAMILY:=(3,(MOTHER, FATHER, CHILD)) implies a valid occur-
rence of the form MARY’S_FAMILY:=(3,(Mary, FATHER, CHILD)) if there exists an according
ISA:MARY:=(2,(Mary, MOTHER)). Yet, usually, replacing concept components with their
specializations will not be an arbitrary process, e.g. INCORRECT_FAMILY:=(3,(Mary, Peter,
John)) may very well possess the correct syntactical structure for families, yet be a semanti-
cally incorrect occurrence of FAMILY if Mary and Peter are not a married couple, or John is

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 9595

not their child (supposing that the semantics of FAMILY are defined in that way). This can be
translated into rules such as ‘within a family, mother and father must be a married couple’
and ‘within a family, the child must be the real child of the mother’. Logical conditions, in
this context, allow for combining such statements into a single rule. In order to illustrate this
we will model the rule ‘within a family, mother and father must be a married couple and the
child is the real child of the mother ’ as depicted in Example 3.4.

Example 3.4: A Simple Rule for the Concept FAMILY

Let O be a formal ontology, let FAMILY:=(3,(MOTHER, FATHER, CHILD)), COU-
PLE:=(2,(WIFE, HUSBAND)), CHILD_OF:=(2,(CHILD, MOTHER)) and their components
be ∈ O. The rule ‘within a family, mother and father must be a married couple and the
child is the real child of the mother’ can be expressed by the concept:

 RULE: FAMILY

AND: COUPLE_AND_CHILD

COUPLE

HUSBANDWIFE

CHILD_OF
MOTHER CHILD

FAMILY
FATHER MOTHER CHILD

In this way, arbitrary complex truth statements can be defined by means of logical conditions.
This also leaves an option to formalize the rule for landlords of our motivating example in
Section 3.2.1. The characteristics of the concept LANDLORD can therefore be defined episte-
mologically using the appropriate conditions for delineating the rule ‘a landlord owns a
building or a piece of land and rents it to a tenant’ for it. An according excerpt of an EOS
ontology is given in Example 3.5 below.

Example 3.5: A Rule for the Concept LANDLORD

The statement ‘a landlord owns a building or a piece of land and rents it to a tenant’,
formally expressed as ‘∀ x, x is a landlord: ∃ t, t is a tenant: (∃ building b: x owns b ∧ t
pays for b) ∨ (∃ land l: x owns l ∧ t pays for l)’ is represented by the concept
RULE:LANDLORD, which is defined as follows (assuming that concepts LANDLORD,
TENANT, OWNER, PROPERTY, LAND, and BUILDING have been previously defined).

Let OWNS be a concept expressing ownership, let OWNS_LAND and OWNS_BUILDING
be two instances of OWNS:

OWNS_LAND

LANDOWNER

OWNS_BUILDING

BUILDINGOWNER

OWNS

PROPERTYOWNER

CHAPTER 3 EOS EPISTEMOLOGY

 96

Let RENTS be an according concept denoting the activity of renting property, with in-
stances RENTS_LAND and RENTS_BUILDING:

RENTS

PROPERTYTENANT

RENTS_BUILDING

BUILDINGTENANT

RENTS_LAND

LANDTENANT

The two conjunctions of the statement can then be specified as

AND:BUILDINGAND:LAND

RENTS_BUILDING

BUILDINGTENANT

OWNS_BUILDING

BUILDINGOWNER

OWNS_LAND

LANDOWNER

RENTS_LAND

LANDTENANT

IDENTITY:ID4IDENTITY:ID3

while the disjunction of the statement is defined as

OR:LAND_OR_BUILDING

AND:BUILDINGAND:LAND

.

Accordingly, the complete definition of the rule for the concept LANDLORD, including
all identity conditions involved, is34:

AND:BUILDINGAND:LAND

OR:LAND_OR_BUILDING

RULE:LANDLORD

LANDLORD
RENTS_BUILDING

BUILDINGTENANT

OWNS_BUILDING

BUILDINGOWNER

OWNS_LAND

LANDOWNER

RENTS_LAND

LANDTENANT

IDENTITY:ID4IDENTITY:ID3
IDENTITY:ID2

IDENTITY:ID1

3.2.2.5 Rules and Relation Properties
Rules specify true statements about ontology concepts, i.e. they can be used to define the
properties of these concepts with reference to a given ontology. The previous sections have
presented examples of rules, e.g. for the concepts PERSON (Example 2.1), FAMILY (Example
3.4) and LANDLORD (Example 3.5). Generally, a rule RULE:R associates concepts of the
condition RULE:R[1] with the concepts of condition RULE:R[2], e.g. LANDLORD, the first
component of RULE:LANDLORD in Example 3.5 has been associated with the concepts
OWNS_LAND, RENTS_LAND, OWNS_BUILDING, RENTS_BUILDING of the condition
RULE:LANDLORD[2]. Semantically, this means that LANDLORD is correlated with these
concepts in the way that RULE:LANDLORD and its according identity conditions determine.

34RULE:LANDLORD is equivalent to the predicates Landlord(owner,land) ← OwnsLand(owner,land), Rent-

sLand(tenant,land). Landlord(owner,building) ← OwnsBuilding(owner,building), RentsBuilding(tenant,building).

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 9797

In cases where the (non-conditional) concepts of RULE:R[1] and RULE:R[2] are identical,
i.e. both conditions of RULE:R refer exclusively to one and the same concept C, this rule de-
scribes a relation property of C. Examples for simple relation properties are symmetry, or
transitivity as shown in Example 3.6.

Example 3.6: Transitivity of TALLER_THAN

Let TALLER_THAN:=(2,(EXISTENT,EXISTENT)) be a concept of an ontology O with
the semantics that TALLER_THAN[1] is an existent that is higher in stature than the exis-
tent TALLER_THAN[2]. The transitivity of TALLER_THAN can be expressed by the con-
ceptual rule

RULE:TALLER_THAN

AND:TALLER_THAN

TALLER_THAN

EXISTENTEXISTENT

TALLER_THAN

EXISTENTEXISTENT

TALLER_THAN

EXISTENTEXISTENT

IDENTITY:ID3IDENTITY:ID2
IDENTITY:ID1

The exposition of rules and conditions as presented in this and the preceding sections has mo-
tivated how semantical aspects besides specialization can be modeled for ontology concepts.
Rules in Concept Theory are a powerful means for describing simple and complex properties
of ontology concepts. As just explicated, rules are apt to define relational properties that are
restricted to one ontological kind (i.e. a conceptual relation), as well as concept properties on
a general level where a concept is associated with other ontology concepts. Utilizing such
properties concerns the application of rules and associated conditions in the context of epis-
temological processes. The semantics of these processes follow the guidelines of specific con-
ceptual laws, which will be discussed in the following sections.

3.2.3 Laws
Laws are representing methods for managing epistemological processes, in particular knowl-
edge acquisition, knowledge generation and knowledge retrieval.

Definition 3.7: The Concept LAW

The fundamental concept LAW is defined as

LAW := () ∈ΦU

and constitutes the generic category of epistemological objects in Concept Theory. Oc-
currences of LAW embody algorithmical solutions to specific epistemological processes.

The semantics of laws must be known to an EOS system in order to interpret them correctly.
In this way, occurrences of laws can be used to model the activity of the system. In the fol-
lowing sections we will discuss the different (universal) occurrences of the fundamental con-
cept LAW that Concept Theory provides for modeling the system behavior. The crucial ques-
tions, here, are:

CHAPTER 3 EOS EPISTEMOLOGY

 98

 What is the basic set of laws?
Laws are a methodological way of approaching application semantics of an actual knowl-
edge processing system. Hence, they represent algorithmical components of the system in
a declarative way. We can think of the algorithmical implementation of a knowledge proc-
essing system as a set of methods that consist of more basal operations. Such basal opera-
tions can concern e.g. finding occurrences or generalizations of an ontological concept
within an EOS ontology, while methods using these operations would be to process cer-
tain rules or queries. In this context, it is of decisive importance for the epistemological
system model to determine the level of granularity in which implemented system compo-
nents can be addressed by laws, i.e. whether laws are representing single operations or
more complex methods – and if so, then which methods.

The EOS approach promotes a high level of abstraction concerning the representation of
epistemological knowledge. Therefore, laws are specifying methods, not basal operations.
In fact, Concept Theory supports exactly three kinds of laws (i.e. three universal occur-
rences of the concept LAW), namely ACQUIRE, GENERATE and QUERY (cf. Sections
3.1.3.2, 3.1.3.3 and 3.1.3.4). From a practical point of view, this decision takes into ac-
count that it should not be a matter of knowledge representation to determine the system
behavior at an algorithmical level. If this were the case, the correct syntactical usage of
the semantics of concepts, in particular those of conditions and rules, in specific epistemo-
logical contexts would reside on the ontology modeler’s side. Yet, a domain expert should
in any case be freed from having to model correct algorithms on the basis of a particular
ontology structure – which is an error prone and costly process. On the other hand, model-
ing epistemological facts should be held simple and easily applicable to an ontological
domain model, and thus be seamlessly integrated into the body of a formal ontology. For
these reasons, EOS allows for a mere semantical definition of complete epistemological
processes, i.e. using conceptual laws with predefined semantics. Immediately, the ques-
tion arises, what kinds of laws an EOS system must support in order to provide the ser-
vices of a full-fledged knowledge processing system. The arguments for the different
kinds of epistemological processes and their implications have already been presented in
detail in Section 3.1. Accordingly, Concept Theory operates with a basic set of laws con-
sisting of ACQUIRE, GENERATE and QUERY, that represent the identified areas of epis-
temological processes knowledge acquisition, generation and retrieval.

 What are the semantics of laws?
Next to the mere fact that laws are representing methods for managing epistemological
processes, the way how this can be achieved is decisive to Concept Theory. We may think
of laws as parameterizable entities, similar to method declarations in programming lan-
guages. While the abstract parent concept LAW of all laws does not possess a specific in-
ternal structure, the concise definitions of its occurrences ACQUIRE, GENERATE and
QUERY, as we will show in the subsequent sections, each comprise their characteristic
component tuples. Continuing the analogy between methods in programming languages
and laws, these components define the parameters that are used as an input to the episte-
mological processes the respective laws are representing. Modeling laws for a domain,
then, simply means specifying instances of ACQUIRE, GENERATE and QUERY, using
domain concepts as occupants of the roles these kinds of laws are defining. These in-
stances of laws are, analogously, representing specific method calls.
As ACQUIRE, GENERATE and QUERY are corresponding with epistemological proc-
esses, they also embody the paradigm these processes are following. According to Con-
cept Theory, there are two main categories of concepts, namely the set of all conceptual
universals ΦU, and the set of all conceptual particulars ΦP. The decisive difference be-

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 9999

tween possible algorithmical realizations of these processes lies in the decision, how con-
ceptual particulars are treated. Conceptual particulars are representing concrete facts of a
domain, e.g. a particular address PARTICULAR:BOB’S_ADDRESS as opposed to defini-
tions of different kinds of addresses, which are conceptual universals such as GER-
MAN_ADDRESS or ENGLISH_ADDRESS. The two possible perspectives concerning the
treatment of particulars can be paraphrased as the closed world and the open world para-
digm:
- Closed World Paradigm35. If an EOS system will accept solely particulars that struc-

turally comply with its internal domain model, it conforms to the closed world para-
digm. In other words, for each particular the system integrates into its ontology, there
must exist a suitable universal parent concept that exactly describes its structure, i.e.
the particular is a valid occurrence of the universal. Particulars of an unknown struc-
ture are rejected by the system.

- Open World Paradigm. If an EOS system will also accept structurally unfamiliar par-
ticulars, it follows the open world paradigm. This implies that the system must adap-
tively create new universals for categorizing these particulars.

The interpretation of conceptual laws has to follow one of the following paradigms. For
the remainder of this chapter we will concentrate on the closed world paradigm as this
view portrays the general position of ontology engineering, where a domain is modeled in
advance and domain facts are interpreted according to the domain model, i.e. the respec-
tive ontology. We will come back to the possibilities of EOS systems concerning the open
world paradigm in our discussion of a wider application area of the EOS approach in Sec-
tion 5.2.

Based on these preliminary considerations on laws the following sections will define the dif-
ferent kinds of laws and demonstrate the interplay between laws and the algorithmical imple-
mentation of an EOS system. Section 3.2.3.1 presents the generic algorithm for EOS systems
that reacts on external input. In section 3.2.3.2 we will present the law ACQUIRE and its im-
pact on knowledge acquisition. Section 3.2.3.3 introduces the law GENERATE for knowledge
generation and Section 3.2.3.4 explains how knowledge retrieval can be modeled using the
law QUERY.

3.2.3.1 Generic Algorithm for EOS Systems

The overall algorithm of an EOS knowledge processing system recurs to the system architec-
ture of the EOS framework (cf. Section 3.1.3).

35 The closed world paradigm of EOS should not be confused with the ‘closed world assumption’ (CWA) in logic program-

ming languages (e.g. PROLOG), theorem provers and databases. CWA entails that any proposition P that cannot definitely
proven to be true is assumed false (cf. Harcourt: www.harcourt.com/dictionary). The implication of the EOS closed world
paradigm, on the other hand, refers to the syntactical properties of conceptual particulars: only particulars that can be
structurally associated with existing ontology universals may be integrated into the ontology.

CHAPTER 3 EOS EPISTEMOLOGY

 100

while(true) do
{
 accept input concept c;
 if(c is an occurrence of ACQUIRE)
 {
 // invoke the knowledge acquisition procedure acquire():
 acquire(c); // see Section 3.2.3.2
 }
 elsif(c is an occurrence of QUERY)
 {
 // invoke the knowledge retrieval procedure query():
 query(c); // see Section 3.2.3.4
 }
}

Figure 3.7: The Generic Algorithm for EOS Systems

As shown in Figure 3.7, an EOS system waits for external input data in the form of concepts
as defined by Concept Theory. Generally, input data may consist of concepts extracted from
operational data (e.g. Web pages), an EOS ontology, or query concepts that are passed to the
system via an according interface (see also Section 3.1.2). New ontology concepts introduced
to the system are processed by the knowledge acquisition procedure that we will discuss in
the subsequent Section 3.2.3.2. Queries against an EOS system are managed by the knowl-
edge retrieval procedure as presented in Section 3.2.3.4. These two procedures handle the
system’s direct interaction with external processes. Internally, both, knowledge acquisition
and knowledge retrieval, are closely connected to knowledge generation, the creation of new
concepts on the basis of according GENERATE laws. The respective knowledge generation
procedure that governs such operations will be laid out in detail in Section 3.2.3.3.

3.2.3.2 Knowledge Acquisition and the Concept ACQUIRE
Knowledge acquisition from foreign sources presupposes the existence of two individual pro-
cedures:

 Knowledge Extraction Procedure. This procedure provides an EOS system with new con-
cepts. Strictly speaking, the extraction procedure is not system immanent. It can consist of
one or several distinct applications and user interfaces that collect data and transform this
information into concepts. In this sense, the extraction procedure realizes the reliable pro-
cedure that provides externalist justification (cf. Section 3.1.1). In conceptual form, the
new concepts are handed over to the system. The knowledge extraction procedure pro-
poses a potential category for the new concept within the original ontology, i.e. a possible
parent concept that has to be subsequently evaluated by the acquisition procedure of the
system (cf. Section 3.1.3.2).

 Knowledge Acquisition Procedure. This procedure is system immanent and integrates new
concepts into the internal ontology of an EOS system, provided these concepts comply
syntactically and semantically with the ontology. Syntactically, the concept structure must
be according to the internal structure of the parent concepts as proposed by the extraction
procedure. Semantically, all rules and associated conditions of the parent concepts must be
met by the new concept. If this is the case, the knowledge acquisition procedure will inte-
grate the new concept into the ontology. Thus, the acquisition procedure realizes the in-

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 101101

ternalist justification of new concepts on the basis of foundational beliefs, i.e. the onto-
logical basis of the system.

As pointed out, any new concept C is predetermined in a sense that the reliable extraction
procedure suggests a probable category for C. In terms of Concept Theory, this category is a
concept of the original ontology, and C is reducible to it. The outset for system immanent
knowledge acquisition processes is thus an ISA occurrence of the form

ISA:NEW := (2, (C, PARENT_CONCEPT)),
alongside an according mapping between the components of C and PARENT_CONCEPT.
This mapping, at its part, is expressed by ISA occurrences using concept references (cf. Sec-
tion 2.2.4.2), e.g.

ISA:MAPPING1 := (2, (C[1], PARENT_CONCEPT[1])),
for specifying the first component of C as an occupant of the first component of PAR-
ENT_CONCEPT. The complete set of such mapping concepts may then be combined con-
junctively to a condition, here shown for the case of three components, resulting in the three
specializations ISA:MAPPING1, ISA:MAPPING2 and ISA:MAPPING3:

AND:TWO_COMPONENTS := (2, (ISA:MAPPING1, ISA:MAPPING2))
AND:COMPLETE_MAPPING := (2, (AND:TWO_COMPONENTS, ISA:MAPPING3)).

Note that it is possible that C possesses more components than its PARENT_CONCEPT. If C
is a universal, this simply means that it has a richer internal structure than PAR-
ENT_CONCEPT. In case C is a particular (i.e. actually PARTICULAR:C), the parent concept
proposed by the extraction procedure, then, is too general and the acquisition procedure must
find a more specialized universal occurrence of PARENT_CONCEPT. The system immanent
acquisition procedure is represented by the concept ACQUIRE.

Definition 3.8: The Epistemological Concept ACQUIRE

The law ACQUIRE is defined as the concept

ACQUIRE:= (2, (EXISTENT, EXISTENT)) ∈ΦU

used for introducing a new concept into an EOS ontology.

 ACQUIRE[1] specifies either a single occurrence of ISA (simple inheritance), or an
(n-ary) AND condition combining several ISA occurrences (multiple inheritance).
The new concept is the first component of all ISA occurrences of ACQUIRE[1].

 ACQUIRE[2] is either an (n-ary) AND condition determining the component mapping
for ACQUIRE[1], a single occurrence of ISA (only one component mapping between
the new concept and one of its parents), or left unspecified (no component mapping
at all).

Note: Occurrences of ACQUIRE that do not specify any component mappings (e.g. be-
cause all parent concepts of the new concept are bare concepts) leave ACQUIRE[2]
unchanged as EXISTENT.

Occurrences of the law ACQUIRE are generated by the knowledge extraction procedure and
passed to the EOS system. Naturally, the extraction procedure must be aware of the structure
of concepts as defined by Concept Theory, and – if available – the system’s ontology for
identifying specific concepts within source documents. In order to do this, it must be able to
perform a mapping between the (raw) data it is processing and the conceptual vocabulary of
the ontology. Different ways of achieving this mapping in a concrete implementation of an

CHAPTER 3 EOS EPISTEMOLOGY

 102

extraction procedure will be exposited in our discussion of the realization of EOS systems in
Chapter 4 (see Section 4.1.3). For explaining the notion and employment of laws, it suffices
to presume the existence of such a procedure that provides an EOS system with new concepts,
i.e. conceptual universals and particulars described by occurrences of ACQUIRE. An illustra-
tion of such an ACQUIRE law is shown in Example 3.7.

Example 3.7: The Law ACQUIRE:DAUGHTER

Let O be a formal ontology, let NAME, FEMALE, GENDER, FATHER, MOTHER,
FEMALE_PERSON := (2, (NAME, FEMALE)), and
CHILD := (4, (NAME, GENDER, FATHER, MOTHER))
be ∈O. The law specifying the universal DAUGHTER as an occurrence of FE-
MALE_PERSON and CHILD is defined as

AND:MAPPING

FEMALE_PERSON

FEMALENAME

CHILD

GENDERNAME MOTHERFATHER

DAUGHTER

FEMALENAME MOTHERFATHER

FEMALE_PERSON

AND:D

CHILD

DAUGHTER

ACQUIRE:DAUGHTER

The law ACQUIRE:DAUGHTER thus contains the concept definition of DAUGHTER, its
parent concepts and the according component mappings, which comprises all the infor-
mation needed for integrating the concept DAUGHTER into ontology O.

In general, conceptual universals are read in from input documents containing EOS ontologies
in a native format, while particulars are mostly extracted from foreign sources. The input on-
tology in a native format provides complete information about the internal ontology structure,
i.e. these concepts can be immediately integrated into the ontology representation of an EOS
system as their definition is complete and free from contradictions (per hypothesis, cf. Section
3.1.3.2). On the other hand, the acquisition of new universals and particulars from foreign
sources may be more unspecific, i.e. a parent concept as proposed by the extraction procedure
may be too general. The aim of the system immanent acquisition procedure is to find the most
specialized position for any new concept. Graphically, this means pushing the new concept
down along the edges of the ontology graph until its immediate parent concepts are deter-
mined. While the ontology graph position of new universals may be somewhere along the ISA
hierarchy of their parents, particulars must necessarily be integrated as leaves. This integrity
constraint of EOS ontologies demands that whenever the extraction procedure has chosen a
parent concept that is not at the lowest universal level of the ontology graph, the acquisition
procedure must consequently find such a most specialized universal parent concept. There-
fore, the system’s knowledge acquisition procedure that processes occurrences of ACQUIRE
must find the most specialized universal parent concept of PARTICULAR:C within the ontol-
ogy graph. As already pointed out, this is especially of importance if PARTICULAR:C pos-
sesses more components than its proposed parent concept. Then, it is a matter of the acquisi-

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 103103

tion process to determine the correct roles of these components within a yet to be identified
(universal) occurrence of the parent concept within the ontology. In case the acquisition pro-
cedure cannot resolve such an appropriate parent, the concept will be rejected if the system
adheres to the closed world paradigm.

At the heart of the algorithm for the acquisition procedure are the two methods acquire()
and determinePosition(), which are shown in Figure 3.8. Their short description is as fol-
lows. The base types used in these (and all subsequent) methods are Concept,
ConceptVector, Integer, Boolean, and Void with their obvious semantics:

 acquire(Concept a):
processes a, an instance of the law ACQUIRE. The components of a are being analyzed
and handed over to the recursive method determinePosition() if the new concept is a
valid minting of the proposed parent concepts.

 determinePosition(Concept c, ConceptVector p, ConceptVector m):
determines the ontology position of a new concept c. The concepts in p have been deter-
mined by the extraction procedure as possible parent concepts of c, and m comprises the
component mappings between c and its possible parents. The method determinePosi-
tion() tests whether there are more specialized concepts within the ontology that are oc-
currences of the concepts in p and can act as parent concepts of c. In fact, the task of de-
terminePosition() is to find the most specialized parent concepts of c, i.e. a structur-
ally compliant lowest level universal that solely possesses particulars as child concepts
(cf. Section 2.2.4.2.3 on the existence of single parents for each particular). Only if such a
universal can be found, c will be integrated into the ontology (closed world paradigm).

Supporting methods in order of appearance in acquire() and determinePosition() are:

 IsValidMinting(Concept c, ConceptVector v, ConceptVector m):
tests whether concept c is a valid minting of all concepts in v, where m specifies the
according mappings between c and the proposed parent concepts in v.
Return Value: Boolean.

 getCommonSpecializations(ConceptVector v):
returns all concepts that form the set of the most general common occurrences of all
concepts in v.
Return Value: ConceptVector.

 testRules(Concept c, Concept p):
tests rules defined for concept p on concept c.
Return Value: Boolean.

 propagateMappings(Concept c, ConceptVector p, ConceptVector m,
ConceptVector n):
computes and returns all concept mappings between concept c and a set of ontology
concepts n on the basis of mappings m between c and its parents p. The precondition is
that all concepts of n are immediate child concepts of all concepts in p and themselves
generalizations of c. The component mappings between concepts of n and p are part of the
ontology.
Return Value: ConceptVector.

CHAPTER 3 EOS EPISTEMOLOGY

 104

 isParticular(Concept c):
tests if concept c is a particular.
Return Value: Boolean.

 integrate(Concept c, ConceptVector p, ConceptVector m):
adds a new concept c, recursively all of its components, and all associated specializations
and component mappings to the ontology. At each step, p denotes all parent concepts of c,
i.e. ISA occurrences of the form ISA:p:=(2,(c,p)) will be added to the ontology, plus the
according component mappings m.
Return Value: Void.

 count(ConceptVector v):
returns the number of elements of v.
Return Value: Integer.

 isLowestLevelUniversal(Concept c):
tests if concept c is a universal whose child concepts are, without exceptions, particulars.
Return Value: Boolean.

ConceptVector o; // o is the ontology representation of the system

acquire(Concept a)
// Concept a: Instance of ACQUIRE, holding new concept c and its n parents
{
 ConceptVector specializations := a[1],
 mappings := a[2];
 Concept c := specializations[1][1];
 ConceptVector parents :=(specializations[1][2],…,specializations[n][2]);

 if(IsValidMinting(c,parents,mappings)==false)
 {
 // c does not comply with proposed parents;
 // c will not be integrated into o (closed world paradigm)
 return false;
 }
 else
 {
 // Evaluate the most specialized position of c in ontology:
 return determinePosition(c,parents,mappings);
 }
}

determinePosition(Concept c, ConceptVector parents, ConceptVector m);
// Concept c: New concept whose ontology position has to be determined
// ConceptVector parents: Currently proposed parent concept of c
// ConceptVector m: concept Mappings between c and parents
{
 ConceptVector new_parents := getCommonSpecializations(parents);
 Boolean continue_search := false;

 forall p in new_parents do
 {
 if(testRules(c,p)==false)
 {
 // skip this universal
 }

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 105105

 else
 {
 continue_search := true;

 // Continue search with child concepts:
 new_parents_mappings := propagateMappings(c,parents,m,new_parents);
 determinePosition(c,new_parents,new_parents_mappings);
 }
 }

 if(continue_search==false)
 // c does not comply with any child;
 {
 if(isParticular(c)==false)
 {
 // c is a universal.
 // The search is complete, integrate c with current parent(s):
 integrate(c,parents,m);
 return true;
 }
 else
 {
 // c is a particular.
 // Test integrity of parents:
 if(count(parents)==1 && isLowestLevelUniversal(parents[1]))
 {
 // We found the immediate parent of c
 integrate(c,parents,m);
 return true;
 }
 else
 {
 // c does not comply with a lowest level universal parent,
 // which violates the ontology model;
 // c will not be integrated into o (closed world paradigm)
 return false;
 }
 }
 }
}

Figure 3.8: The Acquisition Procedure in Pseudo-Code

The acquisition procedure as defined in Figure 3.8 will integrate a new concept described by
an occurrence of ACQUIRE into the system ontology if it complies structurally with this on-
tology. This means that it must be a valid minting of the proposed parent concepts, which is
tested in acquire() in method IsValidMinting(). The new concept must also be semanti-
cally valid, i.e. obey all rules of its parents, which is tested in determinePosition() using
method testRules(), which is executed at each recursive step. In case of conceptual particu-
lars, this method also ensures that the new particular is only accepted, if a single, lowest level
universal (cf. Section 2.2.4.2.3) can be determined as its sole parent, i.e. if it can be fully clas-
sified according to the ontology (closed world paradigm). Thus, acquire() and determine-
Position() represent a correct realization of the acquisition procedure that processes occur-
rences of the law ACQUIRE.

The method determinePosition() computes the adequate parent of a new concept by de-
scending recursively down the ISA hierarchy of the ontology graph. As the ontology is finite
and the ontology graph is free of loops, determinePosition() will trivially reach its result
the latest after a full traversal of the graph, i.e. its complexity is O(n), where n is determined

CHAPTER 3 EOS EPISTEMOLOGY

 106

by the number of elements of the ontology. Certainly, the ontology will gradually grow with
each accepted ACQUIRE concept. Yet, when processing a specific occurrence of ACQUIRE,
for each application of determinePosition() the number of ontology concepts and thus the
paths from the root concept to the graph leaves stays constant and finite.

Note that the order in which new concepts are passed to an EOS system may be decisive
for it to get accepted as a valid ontology concept, e.g. a concept C that is a component of an-
other concept A must be acquired before A can be accepted (as the component kinds must be
known in order to verify rules and mappings). This is not a matter of the acquisition proce-
dure that simply works on a single new concept at a time, but of the extraction procedure that
has to assure that the concepts it produces are handed over to the system in a sensible order.
Usually, the extraction procedure will generate a whole set of concepts that can be expected
to be interrelated, e.g. taken from the same Web page. If no precise sequence for passing
these concepts to the system can be determined from the source document alone, the extrac-
tion procedure may retry to pass over previously rejected concepts in a deterministic fashion.
A simple algorithm for this is depicted in Figure 3.9.

ConceptVector aset := generate set of acquire concepts from source;
Boolean continue := true;

while(continue==true) do
{
 continue := false;
 forall a in concepts do
 {
 if(acquire(a)==true)
 {
 eliminate a from aset;
 continue := true;
 }
 }
}

Figure 3.9: General Algorithm of the Knowledge Extraction Procedure

The general algorithm of the extraction procedure will continue to pass previously rejected
concepts to the EOS system as long as at least one new concept has been accepted in the pre-
ceding iteration. This behavior takes into consideration that any newly accepted concept may
complete the preconditions for admitting another new concept. Only if an iteration did not
yield a successful call of the method acquire(), the extraction procedure can finally reject
all remaining concepts in aset.

3.2.3.3 Knowledge Generation and the Law GENERATE
Knowledge generation is the process of producing new concepts from already existing ones
by using according laws, i.e. occurrences of the concept GENERATE. The EOS approach
promotes a materialized view on the domain knowledge an EOS systems is holding, where
the modalities of the materialization is defined by occurrences of GENERATE36. In particular,

36 It is possible to define GENERATE laws for a specific ontology that would yield an infinite materialization. Practically, an

EOS system could include mechanisms for detecting such cases and handle them e.g. in that it stops executing the knowl-
edge generation procedure after a fixed number of iterations. However, the present discussion presents the theoretical
framework for knowledge generation and at this point we will not restrict this model to a limited class of GENERATE laws

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 107107

this implies that knowledge generation is not an implicit part of complex procedures (such as
knowledge retrieval) that rely on a complete view on ontological knowledge, but is regarded
as primordial to these procedures. In these terms, an EOS ontology is regarded as an explicit
and materialized representation of the domain knowledge the respective EOS system pos-
sesses. This is a valuable property, as it allows for simplified query processing and knowledge
acquisition techniques.

Domain knowledge naturally consists of concrete facts, represented by conceptual particu-
lars, and general knowledge about the structure and categories of these facts, formalized in
Concept Theory as conceptual universals. It is an important question in terms of knowledge
generation, what kinds of concepts can sensibly be produced from other concepts, which ad-
dresses the semantics of the law GENERATE. On a general level, it is possible to produce
both, universals and particulars, but it has to be examined what this presupposes in the con-
text of the closed world paradigm we are committed to in this chapter. The closed world para-
digm claims that only particulars of a known kind will be integrated into an ontology during
knowledge acquisition. This also implies that no new ontological kinds, i.e. domain univer-
sals, that would be apt to describe any particulars of a structure unknown to the domain model
as such, are needed. Therefore, concerning the creation of new ontological universals, there
are two possibilities thinkable within the closed world paradigm:

 Generating structurally compliant specializations from already existing universals.

This method produces new universals by specializing one or several components of an on-
tology universal. For example, from PERSON:=(2,(NAME,GENDER)) the system could
generate specializations PERSON_SPEC1:=(2,(NAME,FEMALE)) and PERSON_-
SPEC2:=(2,(NAME,MALE)) if the ontology includes the information that male and female
are genders, i.e. ISA:1:=(2,(MALE,GENDER)) and ISA:2:=(2,(FEMALE,GENDER)). The
combination of component specializations can be driven to an arbitrary level, even to par-
ticulars – provided that at least one component remains universal, e.g. PERSON_-
SPEC3:=(2,(PARTICULAR:BARRY_NAME,MALE)) would still be a valid universal de-
rived from PERSON. Yet, the benefit of such new universals is questionable on an onto-
logical level as they do not provide a better or more complete domain model. The number
of different particulars that can be categorized according to these new universals does not
increase. In fact, all domain particulars have already been classified in a way (i.e. accord-
ing to the original ontology) that allowed for the generation of structurally compliant uni-
versals in the first place. Therefore, this option can be left aside.

 Generating universals as combinations of already existing ones.
The second method for generating ontological universals from ones already existing
within an ontology is by introducing new specializations of universals that are themselves
not occurrences of each other. In this way, arbitrary parent combinations are possible, yet
not necessarily feasible, e.g. concepts COLOR and TALLER_THAN could be combined to
yield a common specialization COLOR_TALLER_THAN whose semantics remain ques-
tionable. Moreover, there are no clear criteria for component combinations, i.e. questions
on how the component order of the new universal should be determined from its parents,
or whether parent components of the same kind should be merged to a single occupant in
the new universal, are not resolvable. This reveals two basic problems, namely that simply
creating the set of all possible universal combinations does not necessarily yield sensible
universals, and consequently, that the majority of these new universals would not mirror
the structure and semantics of concrete domain facts (i.e. particulars). Yet, this is exactly

that cannot possibly produce infinite materializations. We will further detail in different modes of materialization later on
in Sections 3.2.3.3.2 and 3.2.3.3.3.

CHAPTER 3 EOS EPISTEMOLOGY

 108

what an ontology should provide. Since the closed world paradigm demands that univer-
sals have to be defined prior to any acquisition of particulars, the structure of unknown
but actually occurring domain facts is not at disposition for determining inference rules.
For this reason, this option can also be rejected.

In conclusion, neither option of creating new ontological universals is advisable with respect
to the closed world paradigm. Under this paradigm, the overall ontology structure as defined
by conceptual universals will only be altered during knowledge acquisition and remains stable
during knowledge generation processes. Hence, on the ontological level, the automatic gen-
eration of new concepts is restricted to particulars. Concerning epistemological universals, i.e.
rules and laws, the closed world paradigm yields a restricted perspective:

 Generating rules and laws.
Ontologies under the closed world paradigm represent static domain models in a sense
that they are only altered structurally by knowledge acquisition processes, and quantita-
tively by adding particulars, which may also be provided during knowledge acquisition, or
automatically computed by the knowledge generation procedure. The presumption, here,
is that a structurally complete domain model is being handed over to the system, which
then has to materialize the maximum set of domain facts, i.e. its particulars. Thus, inte-
grating automatically generated rules or laws into the system ontology is beyond the
closed world paradigm. There is one special case, though, that makes creating new occur-
rences of specific laws feasible, yet only during query processing, and not materialized in
the ontology. In particular, the EOS approach allows to define a preprocessing for occur-
rences of the law QUERY that are handed over to the system before the actual processing
of the query takes place. The exact procedure for this semantic query rewriting is laid out
in detail in the exposition of knowledge retrieval in Section 3.2.3.4. For the present dis-
cussion of knowledge generation it suffices to record that the closed model paradigm al-
lows for an restricted automated creation of epistemological concepts, namely QUERY
occurrences that are not integrated into the system ontology but are only used (temporar-
ily) while executing the knowledge retrieval procedure.

Knowledge generation under the closed world paradigm thus concerns particulars and occur-
rences of the law QUERY. The general definition for the conceptual law that specifies the
modalities of knowledge generation is given in Definition 3.9.

Definition 3.9: The Epistemological Concept GENERATE

The law GENERATE is defined as the concept

GENERATE := (2, (EXISTENT, EXISTENT)) ∈ΦU

where

 GENERATE[1] specifies either an n0-ary AND condition37 that is the outset of a con-
cept generation step, i.e. whenever GENERATE[1] is true within an ontology, the
new concepts as determined in GENERATE[2] can be generated.

 GENERATE[2] is an n0-ary AND condition of concepts that can be generated from
GENERATE[1].

37 The expression ‘n0-ary AND condition’ is a short notation for referring to either a single, non-conditional concept or an n-

ary AND condition of such concepts.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 109109

Note: Correlations between concepts of GENERATE[1] and GENERATE[2] are ex-
pressed using identity conditions, that allow for the concepts of GENERATE[2] to be
minted according to the particulars that act as an input to GENERATE[2].

Definition 3.9 describes the basic structure for defining the knowledge generation procedure
in Concept Theory. When applying a specific GENERATE law GENERATE:G, its first com-
ponent GENERATE:G[1] is minted by an according input set of concepts. This minting can
then be propagated to GENERATE:G[2] via the respective identity conditions on GENER-
ATE:G. The resulting concepts of GENERATE:G[2] can subsequently be integrated into the
ontology or themselves used as an input to further epistemological processes. An exemplary
occurrence of GENERATE is demonstrated in Example 3.8.

Example 3.8: The Law GENERATE:UNCLE_OF

Let O be a formal ontology, let PERSON, MOTHER, CHILD, BROTHER, UNCLE, MO-
THER_OF:=(2,(MOTHER,CHILD)), BROTHER_OF:=(2,(BROTHER,PERSON)) and
UNCLE_OF:=(2,(UNCLE, NEPHEW)) be ∈O. The law that generates particular in-
stances of UNCLE_OF from particular instances of MOTHER_OF and BROTHER_OF is
defined as

GENERATE:UNCLE_OF

AND:MB

UNCLE_OF

NEPHEWUNCLE

MOTHER_OF

CHILDMOTHER

BROTHER_OF

PERSONBROTHER

IDENTITY:ID3IDENTITY:ID2
IDENTITY:ID1

The law GENERATE:UNCLE_OF determines that an instance of UNCLE_OF can be pro-
duced from two instances of MOTHER_OF and BROTHER_OF, given the identity condi-
tion IDENTITY:ID1 is satisfied between them, denoting that the MOTHER of CHILD has
also a brother (that accordingly is the UNCLE of the CHILD). Consequently, IDEN-
TITY:ID1 is the precondition that has to be satisfied by a concrete concept minting of
GENERATE:UNCLE_OF[1], while IDENTITY:ID2 and IDENTITY:ID3 define how the
new instance of UNCLE_OF is to be created from this minting.

Note that particular producing occurrences of GENERATE are syntactically similar to occur-
rences of RULE, yet they differ in their semantics. A RULE:R states integrity constraints that
must be fulfilled by all occurrences of the non-conditional concepts in RULE:R[1], while a
GENERATE:G is producing particulars whenever the condition GENERATE:G[1] is met by a
set of particulars. It may be unwanted to use the total set of rules of an ontology for automatic
knowledge generation, as this might lead to an unwanted materialization of concepts. GEN-
ERATE laws are a means of controlling this process.

A further difference between conceptual rules and particular producing GENERATE laws
is that the latter are subject to several syntactical restrictions, such as, e.g. without exception,
all concepts of the right-hand side of particular producing GENERATE laws must be fully
determined by left-hand side concepts. In particular, this means that all universals of the right-
hand side of such a GENERATE instance must be determined by components of the left-hand

CHAPTER 3 EOS EPISTEMOLOGY

 110

side by according identity conditions, either directly, or through their components. As de-
picted in Example 3.8, this is the case in GENERATE:UNCLE_OF: both components of UN-
CLE_OF are related to concepts of GENERATE:UNCLE_OF[1] through identity conditions
IDENTITY:ID2 and IDENTITY:ID3.

3.2.3.3.1. Performing Knowledge Generation

During each knowledge generation step, an occurrence GENERATE:G of the law GENER-
ATE is used as a schema for creating new concepts on the basis of input concepts that
represent a valid minting for GENERATE:G[1]. The respective method generate() for such
a generation step is listed in Figure 3.10. Its short description is:

 generate(Concept c, Concept g):
processes g, an instance of the law GENERATE using concept c as a minting of g[1], the
first component of g. The minting of g[1] is propagated to g[2], respecting the identity
conditions defined for g. It returns the resulting minting for g[2].
Return Value: Concept.

Supporting methods in order of appearance in generate() are:
 computeMappings(Concept c, Concept s):

 computes the concept mapping of two concepts c and s according to their definition and
the ontology.

 Return Value: ConceptVector.

 mint(Concept t, Concept s, ConceptVector m):
 mints a concept t according to another concept s, respecting the mapping m between

them.
 Return Value: Concept.

generate(Concept c, Concept g)
// Concept c: A valid minting of g[1]
// Concept g: Instance of GENERATE
//
// precondition: All concepts of g[2] transitively related to concepts in
// g[1] by identity conditions within g[2] to concepts that
// are directly related to concepts in g[2] are themselves
// directly related to the respective concepts of g[1].
{
 Concept source := g[1],
 target := g[2];

 ConceptVector m := computeMappings(c,source);

 // mint component(s) of source:
 source := mint(source,c,m);

 // mint bound component(s) of target from minted source component(s):
 m := computeMappings(source,target);
 target := mint(target,source,m);

 return target;
}

Figure 3.10: General Algorithm for a Knowledge Generation Step

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 111111

The outset of applying such knowledge generation steps is a ‘stable’ status of the internal
knowledge representation of an EOS system. In terms of the materialized domain model the
ontology is representing this means that all GENERATE laws have already been applied to all
ontology particulars, so that any new employment of these laws will not yield any new con-
cepts. Trivially, this is true with any EOS system before reading in its EOS ontology. Once
this initialization phase has been carried out, all generation laws can subsequently be applied
to the ontology (provided the ontology already contained particulars), resulting in the stable
status of the system. This process is visualized in Figure 3.11. With the acquisition of concept
C, this new concept is being integrated into the Ontology. Subsequent knowledge generation
steps are using C for materializing more concepts on the basis of according GENERATE laws,
which finally results in the new stable status Ontology’.

acquisition of
new concept COntology Ontology + C

knowledge
generation Ontology’

Figure 3.11: Knowledge Generation in EOS Ontologies

This procedure implies that with any newly acquired particular, the ontology’s generation
laws must be tested in order to guarantee complete information. The algorithmical structure of
the knowledge generation procedure is illustrated in Figure 3.12. The method
manageGeneration() accepts a concept, either a particular or a QUERY occurrence, that trig-
gers the according concept generation processes (indicated by the two while loops). It uses
the supporting method push():

 push(Concept c, ConceptVector v):
 adds concepts c to the concept vector v and returns the enlarged vector.

Return Value: ConceptVector.

CHAPTER 3 EOS EPISTEMOLOGY

 112

manageGeneration(Concept c)
// Concept c: a new particular or QUERY occurrence
{
 ConceptVector cset := (); push(c,cset);
 Boolean continue := true;

 if(IsParticular(c)==true)
 {
 // perform particular generation:
 while(continue==true) do
 {
 … // see Section 3.2.3.3.2
 }
 // integrate all particulars newly created in this while loop
 // (and stored in cset) into the ontology:
 integrate cset into ontology (omitting c);
 }
 else
 {
 // perform universal generation (semantic query rewriting):
 while(continue==true) do
 {
 … // see Section 3.2.3.3.3
 }
 }
}

Figure 3.12: The Overall Structure of the Knowledge Generation Procedure

As suggested by the algorithm structure of Figure 3.12, generating new concepts can be a
continued process, i.e. concepts generated by application of a GENERATE law may trigger
other concept generation steps. It is therefore of great importance to ensure that this overall
process terminates in all cases. Hence, a substantial part of this section will thoroughly exam-
ine the modalities of such sequences of generation steps within concept generation under the
closed world paradigm. Section 3.2.3.3.2 discusses particular generation, while producing
QUERY instances for semantic query rewriting38 is the subject of Section 3.2.3.3.3. The line
of reasoning in both sections first stresses modeling constraints for GENERATE laws and
then draws conclusions for the manner in which they should be executed.

3.2.3.3.2. Generation of Particulars under the Closed World Paradigm
GENERATE laws are a means for formulating patterns that define how new particulars can be
produced from already existing ones. Knowledge generation, here, means therefore material-
izing new domain facts that can be deduced from other facts. The aim of the knowledge gen-
eration procedure is to maximize the set of domain particulars on the basis of GENERATE
laws. Hence, using occurrences of the concept GENERATE, a domain expert can determine
which kinds of facts are to be (automatically) materialized from other ontology particulars. In
order to motivate the algorithm of the concept generation procedure that processes occur-
rences of GENERATE, we will briefly sketch the outset for modeling such concepts. An oc-
currence of the law GENERATE depicts a production step, specifying the input concepts in its
first component, and the desired output concepts in its second component. For a better read-
ability we will use a graphical notation for illustrating single production steps and sequences.

38 Semantic query rewriting in EOS systems entails the application of GENERATE laws for modifying queries passed to the

system in a predefined and structured manner, which allows for amending query semantics and for modeling personalized
access to the ontology data. For a more detailed discussion on semantic query rewriting consult Section 3.2.3.4.1 where it
is presented in the context of our treatment of knowledge retrieval.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 113113

Concepts of GENERATE[1] and GENERATE[2], along with their components are depicted in
the already introduced fashion. GENERATE occurrences themselves are represented by la-
beled arrows. In this way, the law GENERATE:UNCLE_OF of Example 3.8 can therefore be
expressed as displayed in Figure 3.13.

GENERATE:UNCLE_OF
UNCLE_OF

NEPHEWUNCLE

MOTHER_OF

CHILDMOTHER

BROTHER_OF

PERSONBROTHER

Figure 3.13: Alternative Representation of the Law GENERATE:UNCLE_OF

The schematic way of representing such an GENERATE occurrence is shown in Figure 3.14.
We will use this level of abstraction for discussing the different structures of GENERATE
laws.

a C

XY

A

X

B

Y

Figure 3.14: Abstract Form of the Law GENERATE:UNCLE_OF

Note that in this schematic way of expressing GENERATE laws, we will generally use single
components for portraying sets of components, and only use more than one component in
cases where differentiating between different concept components is important for the argu-
ment. Making use of this graphical method, we will subsequently develop the constraints and
structure of knowledge generation under the closed world paradigm. In the course of this dis-
cussion, we will treat (a) determinateness, (b) self-containment of concepts, (c) concept nest-
ing, (d) structurally identical copies of concepts, (e) structural additions, and (f) concept gen-
eration chains. In this way, syntactical correctness of GENERATE laws (determinateness),
general syntactical restrictions (self-containment, concept nesting, structurally identical cop-
ies, structural additions), and the impact of repeated executions of GENERATE laws (concept
generation chains) is being examined. The resulting treatment of particular generation under
the closed world paradigm draws upon the two determinants of concepts: specialization (i.e.
the ISA hierarchy among concepts) and parthood (i.e. the component structure within con-
cepts).

a) Determinateness
As the closed world paradigm only allows for the generation of particulars, within any GEN-
ERATE law GENERATE:G, the components of GENERATE:G[2] must be fully determined:

∀ GENERATE:G:
∀C∈φGENERATE:G[2], C∈ΦU:
 (∃P ∈φGENERATE:G[1]:
 ∃ IDENTITY:ID:=(2, (GENERATE:G<P>,GENERATE:G<C>))) ∨
 (∀COMP ∈φC, COMP∈ΦU ∃Q ∈φGENERATE:G[1]:
 ∃ IDENTITY:ID:=(2, (GENERATE:G<Q>,GENERATE:G<COMP>))),

CHAPTER 3 EOS EPISTEMOLOGY

 114

where GENERATE:G<X> denotes the concept reference of a concept X within GENERATE:G,
i.e. all conceptual universals of GENERATE:G[2] must be determined by components of
GENERATE:G[1] by identity conditions, either directly, or via their components. Without
loss of generality we presuppose, that these identity conditions between GENERATE:G[1]
and GENERATE:G[2] are materialized, even in cases, where identity conditions within GEN-
ERATE:G[2] would suffice to propagate an identical GENERATE:G[1] minting for a concept
of GENERATE:G[2] to other concepts of GENERATE:G[2]. As already stated, determinate-
ness also forbids ISA occurrences in GENERATE:G[2], as all ISA[2] components are per
definition universals.

b) Self-containment
According to the formal definition of concepts, particulars cannot contain themselves (cf.
Definition 2.4), an obvious constraint that is depicted in Figure 3.15. Figure 3.15a shows a
conceptual universal that contains itself, which is very well possible, e.g. an ORGANIZATION
can be part of another, bigger ORGANIZATION. Yet, this ORGANIZATION cannot be a proper
part of itself, which renders Figure 3.15b incorrect. The identity condition insinuates that for
all concepts that mint A, their component must be identical with themselves. With universals
this poses a true statement as the ORGANIZATION example has shown. This is why Figure
3.15a is a semantically correct concept. Only when concepts are minted by particulars, which
is the case with GENERATE laws under the closed world paradigm, minting concepts must
not be self-containing. However, this is what the identity condition expresses for A particu-
lars. Consequently, no occurrence of GENERATE may contain concepts of this type.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 115115

A

A

A

A

(a) (b)

Figure 3.15: Legal and Illegal Self-containment of Concepts

Self-containment of concepts must also be avoided in the context of actually producing con-
cepts, i.e. no GENERATE law may be formulated in a way that would create concepts that are
nested within themselves. The schema for such illegal nestings is depicted in Figure 3.16. The
according integrity constraint for GENERATE occurrences is thus:

∀ GENERATE:G, ∀Ci ∈φGENERATE:G[1], ∀Cj ∈φGENERATE:G[2]:
¬ (IDENTITY:ID1:=(2,(GENERATE:G<Ci>,GENERATE:G<Cj>)) ∧
 IDENTITY:ID2:=(2,(GENERATE:G<Ci>,GENERATE:G<Ck>))),
where Ck ∈φCj,

i.e. no concept in GENERATE:G[2] may be related by an identity condition to a concept in
GENERATE:G[1] if one of its components is also identified with that same concept of GEN-
ERATE:G[1].

a A

X

A

X

Figure 3.16: Illegal Self-containment in GENERATE Laws

c) Concept Nesting
Closely related to cases of self-containment in GENERATE occurrences is illegal concept
nesting as depicted in Figure 3.17. The schema differs from self-containment in that A and B
are not set equal by an identity relation. This implies that a new particular of B is generated by
nesting A into it, a process that can be infinitely continued if either A = B, or B is a specializa-
tion of A, which not only syntactically produces a vicious recursion but also is semantically
incorrect. Recurring to the example of an ORGANIZATION nested within an ORGANIZA-
TION, this generation schema would produce an infinite number of encompassing ORGANI-
ZATION instances, i.e. starting from a PARTICULAR:O a new PARTICULAR:O2 would be
created that contains PARTICULAR:O, subsequently a PARTICULAR:O3 from PARTICU-
LAR:O2, etc. Yet, this would not yield a true statement about the original PARTICULAR:O
but be an arbitrary process. An organization PARTICULAR:O may very well be nested within
other organization, however this cannot be decided independently from other domain facts. It
follows the integrity constraint for GENERATE laws:

∀ GENERATE:G, ∀A∈φGENERATE:G[1], ∀B∈φGENERATE:G[2]:
(B is a valid occurrence of A) ⇔
∄Bi ∈φB: IDENTITY:IDi:=(2,(GENERATE:G<A>,GENERATE:G<Bi>)),

CHAPTER 3 EOS EPISTEMOLOGY

 116

i.e. concepts of the same kind may not be nested.

a B

A

A

X

Figure 3.17: Illegal Concept Nesting in GENERATE Laws

d) Structurally Identical Copies
Generating particulars under the closed world paradigm results in new particulars that are
numerically distinct39 from all other concepts of an ontology. Theoretically, it is possible to
produce an infinite number of structurally identical particulars from a single concept. The
schema of such a GENERATE occurrence is illustrated in Figure 3.18. Given that universal B
is a specialization of A (or B = A) and the generation of B particulars is solely dependent of A
and its components, this GENERATE law produces with each application an instance of B
that can itself be used again as an input to A. Consequently, this GENERATE occurrence pro-
duces a vicious recursion, which leads to the integrity constraint

∀ GENERATE:G, ∀A ∈φGENERATE:G[1], ∀B ∈φGENERATE:G[2]:
(B is a valid occurrence of A)
∧ ∀Bj ∈φB ∃Ai ∈φA: IDENTITY:IDi:=(2,(GENERATE:G<Ai>,GENERATE:G<Bj>)) ⇒
∃ IDENTITY:ID:=(2,(GENERATE:G<Ck>,GENERATE:G)),
where Ck ∈φGENERATE:G[1]\φA,

i.e. whenever B represents an identical structural copy of A whose components are determined
solely from A’s components in their original order, it must be assured, that B itself is not gen-
erated from A, but depends on another concept Ck that is not a part of A. In other words, B is
not generated from A, it only receives A’s components, and is actually generated (or altered)
from Ck. GENERATE laws of this kind can be used in order to change the properties of al-
ready existing particulars B in terms of a newly acquired concept A, or for generating a new
concept B from concepts Ck and minting it according to another concept A.

a B

X

A

X

Figure 3.18: Illegal Structurally Identical Copies in GENERATE Laws

Generally, structurally identical particulars of the same universal are very well possible, e.g.
two persons may possess the same ADDRESS, as they are roommates (see Figure 3.19). What
has to be avoided is that an infinite number of such structurally identical but numerically dis-
tinct copies is produced. This is the case with the schema of Figure 3.18, as B is determined

39 The term numerically distinct refers to particulars of the same type and properties, e.g. two undistinguishable wine glasses,

or, in terms of object-oriented programming, two objects of the same class with identical attribute values. Numerically dis-
tinct entities cannot be distinguished in terms of their own structure, but only using external properties, such as space/time
for real-world objects, or object identifiers during program execution for class instances.

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 117117

by A alone. The generation step of the example in Figure 3.19, on the other hand, is legal be-
cause the new instance of PERSON has been delivered from another concept, ROOMMATE.

a PERSON

ADDRESS

PERSON

ADDRESS

ROOMMATE

PERSON PERSON

Figure 3.19: A Legal Structurally Identical Copy

e) Structural Additions
Concepts in Concept Theory possess a fixed component structure. Hence, it is not allowed to
define structural additions to concepts as shown in Figure 3.20. In both schema examples of
Figure 3.20, a new component is added to concept A. Strictly speaking, such additions do not
change A’s structure but define a new type of concept, i.e. a new universal, that is falsely de-
clared as of kind A. Figure 3.20 demonstrates two variations of structural additions. While
Figure 3.20a does define a structurally extended version of A that is independent of any other
concept of the left-hand side of the generation schema, the schema of Figure 3.20b assumes a
second concept A supplying the additional component Y. Both schemas are illegal because of
this supplementary concept Y, where Figure 3.20a also violates the determinateness constraint
(given that Y is a particular) that all conceptual universals of the right-hand side of GENER-
ATE laws must be determined by their left-hand side components. The general description of
this obvious constraint is that no concept C:=(n, L) may be redefined within Φ, and is made
explicit here only for reasons of completeness.

(a)
a AA

X YX

(b)
a AB A

X YY X

Figure 3.20: Illegal Structural Additions in GENERATE Laws

f) Concept Generation Chains
The preceding constraints are complete in that they avoid vicious recursion that may be de-
fined within single GENERATE laws. The different aspects these constraints are aiming at for
any GENERATE occurrence are:

 syntactical correctness in terms of Concept Theory for GENERATE laws and their com-
ponent, i.e. avoiding illegal self-containment of single concepts, and redefinitions of con-
cepts,

 determinateness according to the closed world paradigm,

 non-recursive generation steps, i.e. avoiding GENERATE laws that may produce particu-
lars that can reenter the same generation steps infinitely.

CHAPTER 3 EOS EPISTEMOLOGY

 118

The possible sources for recursive generation steps are an immediate consequence of the
structural definition of concepts as C:=(n, L) in Concept Theory:

 producing (structurally identical) copies of C on the basis of itself,
 illegally adding new components, thus increasing n and L, and
 misusing the component vector L for an infinite nesting of concepts of the same kind.

All of these possibilities for producing infinite loops within single GENERATE laws are pre-
vented from actually creating such hazardous concept generation by the previously discussed
constraints. The remaining exercise is to assure, that no cause for loops can reappear when
executing several different GENERATE laws consecutively. As a preliminary consideration in
this respect, structural additions to concepts are in itself illegal, i.e. they play no role in con-
cept generation chains as they must not be used in any occurrence of GENERATE. Concept
nesting in such generation chains can also be disregarded as the according constraint already
forbids them. This is illustrated in Figure 3.21 in an example with three generation steps a, b
and c, each representing a distinct GENERATE occurrence. Step a is correct, provided A ≠ B,
and no component of A is a specialization of B. Analogously, step c can only be valid if X ≠
A, and no component of X is a specialization of A. Yet, according to step b, exactly this is the
case. In fact, b denotes an illegal GENERATE occurrence, as X is a component of its left-hand
side concept B (through step a), and B at its part again a component of X according to the
right-hand side of b. For nesting A (falsely) into itself, an unbroken chain of generation steps
that are nesting concepts into each other is necessary. However, this chain of generation steps
must also necessarily contain one step that produces an X, the component of A used in c. Yet,
this preceding step would necessarily have to be of form b, and b represents, as just shown, an
illegal GENERATE occurrence that cannot be modeled at all. Thus, concept nesting holds no
risks for loops in concept generation chains.

a
A

X

B

A

B

A

B

A

X

B
b

B

A

A

X
c

Figure 3.21: Illegal Concept Nesting in a Chain of GENERATE Laws

The only remaining possible cause for a vicious recursion within concept generation chains is
therefore the creation of structurally identical copies, which has to be avoided by the knowl-
edge generation procedure. A simple version of such an hazardous chaining is presented in
Figure 3.22.

a
A

X

B

A

B

X

B

A

A

X
b

Figure 3.22: Creation of Structurally Identical Copies in a Chain of GENERATE Laws

As Figure 3.22 illustrates, the knowledge generation procedure must assure that generation
steps of type b may not be executed with the same particular X that has been produced by a.
Put more generally, no particular of kind A may be produced solely from the components (in

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 119119

the original component tuple order) of another particular of A (or a specialization thereof).
This is portrayed in Figure 3.23a where generation step b would yield a structurally identical
but numerically distinct copy of the original particular of kind A was the outset of the former
step a. Note that this is not the case with Figure 3.23b because generation step c yields a new
particular of kind A whose components represent a permutation of the components of the
original particular, i.e. the new concept is not identical with the original particular. The obvi-
ous precondition in this case is that X = Y, but we left the naming conventions of Figure 3.23a
in order to stress the argument. A further illustration is given in Figure 3.23c, again presup-
posing that X = Y. It shows that for a symmetric relation A, one execution of generation step d
that yields the symmetric counterpart of an original particular is legal while its second appli-
cation would, again, produce an illegal copy.

(a)
BA

ba
A

X

B

A

B

XY

B

A

C

Y X Y

(b)
BA

ca
A

X

B

A

B

XY

B

A

C

Y Y X

(c) d
A

X Y

BA
d

X YY X

A

Figure 3.23: Illegal and Legal Concept Creation in a Chain of GENERATE Laws

Formally, this demands the following constraint for chained executions of GENERATE laws:

Let Si be a sequence of i generation steps sj:=(Lj,Rj) representing the execution of a respec-
tive GENERATE occurrence GENERATE:G:=(2,(L,R)) with particulars Rj generated from
particulars Lj according to GENERATE:G, i.e. Lj and Rj are the specific concept mintings of
L and R at sj (after the execution of sj). Let {Sj}, j≤i denote the set of all distinct concept
mintings within the sequence s1, s2, …,sj ∈Si, and let φ{Sj} be the set of all (recursive)
components of {Sj}. Let KC be the kind of a concept C∈{Sj} as determined by the GEN-
ERATE occurrences that are used within Sj. Let O be an ontology and OP the set of
particulars in O. It follows:

∀sj,sj+1∈Si, 1≤j<i, ∀C:=(nC,LC) ∈φRj+1:

∄P:=(nP,LP)∈{Sj}∪φ{Sj}∪OP: (∃U∈O: KC,KP are valid occurrences of U) ∧ nC=nP ∧
LC=LP,

i.e. no new particular may be created that possesses a component tuple identical to any other
concept within the sequence or the ontology, given that they are type compatible, thus occur-
rences of the same universal (which includes identity).

The algorithm of the knowledge generation procedure can use this constraint for avoiding
loops in chains of generation steps. As already mentioned, the outset of the knowledge gen-

CHAPTER 3 EOS EPISTEMOLOGY

 120

eration procedure is an input concept, a newly acquired particular or an occurrence of the law
QUERY. Depending on the kind of concept, i.e. whether it is a particular or a query, the pro-
cedure will act according to the respective constraint. In case of particulars, the above con-
straint holds. The procedure thus needs to keep track of the information needed to test this
constraints. This can be achieved by marking all concepts that take part in concept generation
steps. First of all, this will be the newly acquired particular that has been handed over to the
generation procedure, and secondly, all other concepts that join this particular as an input to
generation steps. These can be ontology concepts, as well as particulars produced in previous
steps.

As particulars are fed to the system by the knowledge acquisition procedure, it is in this con-
text that the knowledge generation procedure is triggered. Specifically, this is done inside the
method integrate() that is adding newly acquired concepts to the ontology. In case of a
new particular c, integrate() passes c to the knowledge generation procedure
manageGeneration(). The algorithmic solution for managing particular generation that has
not been further fleshed out in Figure 3.12 is listed here in Figure 3.24. Supporting methods
are:

 mark(Concept c):

marks c (e.g. by inserting it into a global concept vector).
 Return Value: Void.

 isMarked(Concept c):

tests if c has been marked (e.g. by inspecting the respective global concept vector).
 Return Value: Boolean.

 ban(Concept c, Concept g):

marks c as already used in GENERATE law g (e.g. by inserting them as a tuple into a
global vector).

 Return Value: Void.

 isBanned(Concept c, Concept g):

tests if c has been marked with GENERATE law g (e.g. by inspecting the respective
global concept vector).

 Return Value: Boolean.

 isStructuralCopy(Concept c, ConceptVector cset):

tests the loop constraint for particular c on the set of concepts in concept vector cset and
the ontology.

 Return Value: Boolean.

// Concept c: a new particular
// ConceptVector cset: a concept vector containing c
// Boolean continue: determines whether execution continues

while(continue==true) do
{
 continue := false;
 ConceptVector gset := all GENERATE laws in the ontology that contain c;

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 121121

 forall g in gset do
 {
 ConceptVector mset := all mintings for g computed from cset∪OP;
 mark(all particulars in mset);

 forall m in mset do
 {
 if(isBanned(m,g)==true)
 {
 // skip this generation step
 }
 else
 {
 // we found a minting that may be executed,
 // i.e. a new while loop iteration is possible
 // with the concepts that will be now generated.
 continue := true;

 // execute this generation step:
 Concept new := generate(m,g);

 Boolean doban := true; // determines whether m must be banned
 forall n in φnew do
 {
 if(isStructuralCopy(n,cset)==true)
 {
 // skip this concept, it is an illegal structural copy
 }
 else
 {
 // n is a legally created new concept,
 // i.e. m produced a valid new particular with g
 // and must not be banned.
 doban := false;
 integrate n into the ontology;
 mark(n);
 cset := push(n,cset);
 }
 }
 if(doban==true) ban(m);
 }
 }
 }
}

Figure 3.24: The Knowledge Generation Procedure for Particulars

The while loop terminates once no application of GENERATE laws on particular c and on
the concepts produced within the accompanying generation steps yields any new particulars.
In order to decide whether the newly generated concepts are structural copies of already exist-
ing particulars (in the ontology or in the vector cset of all new concepts), the method
isStructuralCopy() is invoked for each of the currently created concepts (see Figure 3.25
for a listing of this method). If all new concepts of a generation step are structural copies, the
respective GENERATE minting is marked as ‘banned’ by calling ban(), i.e. the knowledge
generation procedure will not use this minting again on the specific GENERATE occurrence.
This manner of processing GENERATE laws ensures that no structural copies of existing con-
cepts are being produced.

CHAPTER 3 EOS EPISTEMOLOGY

 122

isStructuralCopy(Concept c, ConceptVector cset)
{
 Boolean return_value := true;

 forall component in φc[1] do
 {
 forall x in cset∪OP do
 {
 if(haveCommonParent(c,x)==false ||
 haveIdenticalStructure(c,x)==false)
 {
 return_value := false;
 }
 }
 }
 return return_value;
}

Figure 3.25: Testing the Particular Generation Constraint

Thus, in combination with isStructuralCopy() of Figure 3.25, the methods shown in
Figure 3.24 correctly implement particular generation under the closed world paradigm as
motivated in the argument of this section. As looped execution of generation steps is avoided
and an ontology is necessarily a finite set of concepts, the algorithm terminates after all possi-
ble mintings related to the initial concept c that triggered the generation procedure in the first
place have been tested. Therefore, the maximum complexity of this procedure is reached in
cases where all possible combinations (permutations) of all ontology particulars OP and c
have to be computed for all (non-bare) ontological universals in OU, i.e. O(|OU|*|OP|!). Yet,
this worst-case is virtually impossible to occur in actual EOS systems, as this would require a
domain model where all conceptual relations are of the form

C := (n, (EXISTENT, EXISTENT, …, EXISTENT)),
implying that n is the number of particulars |OP|, the semantics of these universals allow for
arbitrary permutations of all particulars for a minting of their components, and there actually
are GENERATE laws that produce all component permutations. In real applications, the com-
plexity of generation sequences is certainly considerably smaller, and depends foremost on
the number of GENERATE laws that are defined on universals that possess large numbers of
particulars. As already mentioned, a predominant intention for modeling GENERATE laws is
to control the materialization of domain facts within the system. It is thus up to the domain
modeler to decide on this matter. Concept Theory simply provides the means to do so.

3.2.3.3.3. Generation of Universals under the Closed World Paradigm
The closed world paradigm encompasses the automated generation of new QUERY concepts
from another occurrence of QUERY that has been handed over to the knowledge generation
procedure by the knowledge retrieval procedure for semantic query rewriting (cf. Section
3.2.3.4.1 on semantic query rewriting). Handling QUERY concepts is similar and less com-
plex than producing particulars for several reasons:

 Within each generation step, exactly one QUERY concept is created. This assumption that
only single QUERY concepts and not sets thereof are being created, poses no restriction in
generality, which is due to the fact that any number of coherent queries can also be formu-
lated in a single (more complex) QUERY concept (assuming that the definition of genera-

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 123123

tion steps that result in sets of mutually conflicting QUERY concepts can be shut out be-
cause this would be in itself a sign of an incorrect domain model).

 On a similar line of thought, GENERATE laws for QUERY concepts can be expected to
be sensibly modeled in that the set of all GENERATE laws pertaining to one and the same
QUERY concept will not produce conflicting new concepts. In particular, this implies that
- the order of execution of the respective GENERATE laws is insignificant to the result-

ing concept, and
- since the generated QUERY concepts are coherent, no other GENERATE laws besides

the initially determined set will become applicable after any generation step, i.e. this
set of laws defines the complete generation sequence.

If the domain model includes semantically incorrect sets of GENERATE laws that do not
possess these properties, the generation procedure will still be able to perform semantic
query rewriting. Yet, the final QUERY concept which is the result of subsequently apply-
ing the specific set of GENERATE laws may be different for different execution orders.
However, as already pointed out, this is a semantical modeling mismatch, and cannot be
prevented by the syntactical definitions of Concept Theory that pertain to single concepts
alone40.

 Newly generated QUERY concepts will not be integrated into the ontology, as they are
only an intermediate byproduct of the knowledge retrieval procedure. Each generation
step thus simply substitutes the current QUERY concept for another. The result of a se-
quence of such concept generation steps is therefore a single, final QUERY occurrence
(that in the end will be processed by the knowledge retrieval procedure), not a set of con-
cepts.

QUERY concepts contain other universals as components, which necessitates an examination
of syntactical constraints and how to avoid looped generation sequences, analogously to the
discussion of Section 3.2.3.3.2.

a) Determinateness
Determinateness plays no role in semantic query rewriting, as QUERY concepts are contain-
ing universals. Consequently, a right component minting GENERATE:G[2] of a law GEN-
ERATE:G will comprise universals which do not necessarily have to be determined by the
minting of GENERATE:G[1]. Theoretically, GENERATE laws for QUERY concepts do not
need to be subject to any identity condition at all, namely in cases where the original QUERY
concept is substituted by another on behalf of some property (i.e. components), regardless of
its other properties.

b) Self-containment
The previously defined self-containment constraint applies to all concepts, regardless of
whether they are particulars or universals.

c) Concept Nesting
Concept nesting, too, is independent of the ontological status of the minting concepts. Thus,
the according constraint as defined for particular generation also applies here.

d) Structurally Identical Copies

40 It is of course possible to test the complete set of GENERATE laws of an ontology by an according algorithm. In this way,

the semantic domain model can be cross-checked syntactically by examining whether the ontology complies with the con-
straint that different sequential execution of coherent GENERATE laws (i.e. applicable to the same QUERY concept) will
yield different results.

CHAPTER 3 EOS EPISTEMOLOGY

 124

The existence of numerically distinct but structurally identical universals is not possible, i.e.
the definition of a metaphysical universal within an ontology is unique. Hence, no structural
copy can define a new existent but refers to one and the same metaphysical universal.

e) Structural Additions
Structural additions are illegal, notwithstanding whether the concept is a particular or a uni-
versal. The respective constraint, therefore, applies here as well.

f) Concept Generation Chains
As already mentioned, the chained execution of GENERATE laws for queries takes on a spe-
cial form where only a single new QUERY instance is created in each generation step, while it
is impossible that structural copies are numerically distinct. Therefore, the knowledge genera-
tion procedure only has to test whether a newly generated QUERY has already been part of
the current generation sequence in order to avoid loops during execution. The system ontol-
ogy need not be tested against these concepts, as they are only created temporarily during
query processing, i.e. checking for ontology duplicates is not necessary because the new
QUERY concepts are not being integrated into the ontology. The loop constraint for QUERY
universals is thus:

Let Si be a sequence of i generation steps sj:=(Lj,Rj) representing the execution of a respec-
tive GENERATE occurrence GENERATE:G:=(2,(L,R)) with QUERY concept Rj generated
from QUERY concept Lj according to GENERATE:G, i.e. Lj and Rj are the specific concept
mintings of L and R at sj (after the execution of sj). Let {Sj}, j≤i denote the set of all distinct
concept mintings within the sequence s1, s2, …,sj ∈Si. Let O be an ontology. It follows:
∀sj,sj+1∈Si, 1≤j<i, ∀C:=(nC,LC) ∈Rj+1: ∄P:=(nP,LP)∈{Sj}: nC=nP ∧ LC=LP,

i.e. no QUERY concept may be produced that has already been part of the generation chain.
The according algorithmic solution for managing universal generation under the closed world
paradigm is presented in Figure 3.26 and completes the definition of the knowledge acquisi-
tion procedure that has been introduced in Figure 3.12.

// Concept c: a new QUERY concept
// ConceptVector cset: a concept vector containing c
// Boolean continue: determines whether execution continues

while(continue==true) do
{
 continue := false;
 ConceptVector gset := all ontology GENERATE laws pertaining to c;

 Concept current := c;

 forall g in gset do
 {
 // mark current concept:
 mark(current);

 // execute next generation step:
 current := generate(current,g);

 if(isMarked(current)==true)
 {
 // the current concept has already been part of the
 // generation sequence, i.e. a loop occurred;
 // proposed solution:

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 125125

 // stop execution and return the original concept c:
 return c;
 }
 else
 {
 // current is a legally created new QUERY concept,
 // mark it as already produced:
 mark(current);
 }
 }
 // return the final result of the semantic query rewriting process:
 return current;
}

Figure 3.26: The Knowledge Generation Procedure for QUERY concepts

The code listed in Figure 3.26 implements the knowledge generation procedure for QUERY
concepts as motivated in the preceding discussion. Note that the while loop, unlike with the
algorithm for particular generation, actually has no effect on the execution, as the Boolean
variable continue is set to false and not changed afterwards. It has only been included here
for keeping the parallel structure of the two parts of the complete knowledge generation pro-
cedure, including both, particular and universal generation under the closed world paradigm.
Thus, the termination of the algorithm depends solely on the respective constraint that no
QUERY concepts may occur twice within a generation sequence (defined by the finite set of
GENERATE laws gset) because this would mean a loop. In order to avoid such a loop, all
concepts of the generation sequence are marked and the constraint is being tested by checking
this marking at each generation step against the newly created QUERY concept. The execu-
tion complexity is therefore linear, i.e. O(n), with respect to the number of GENERATE laws
that are being applied.

3.2.3.4 Knowledge Retrieval and the Law QUERY
Knowledge Retrieval encompasses the epistemological processes necessary for querying the
knowledge held within an ontology, comprising domain universals and particulars. Laws con-
trolling knowledge retrieval are occurrences of the concept QUERY.

Definition 3.10: The Epistemological Concept QUERY

The law QUERY is defined as the concept

QUERY := (3, (EXISTENT, EXISTENT, EXISTENT)) ∈ΦU

where

 QUERY[1] defines the target(s) of the query, ontology concepts whose occurrences
make up the result set of the query. Thus, QUERY[1] is an n0-ary AND condition of
such non-conditional concepts.

 QUERY[2] is a condition on QUERY[1] that restricts the result set to target occur-
rences that comply with this condition.

 QUERY[3] is a condition on the ontology itself and defines a specific view on the on-
tology. Without loss of generality this condition can be constructed as a conjunction
of NOT occurrences, i.e. the condition determines which ontology concepts are ex-
cluded from this view. Excluded are all non-conditional concepts of QUERY[3] and
their occurrences.

CHAPTER 3 EOS EPISTEMOLOGY

 126

Occurrences of QUERY may be either produced by a query interface for human interaction or
passed to the system by other applications. The system then processes this query and returns
the results. As mentioned in Section 3.1.3.4, different kinds of return values are possible: sets
of concepts, numerical and Boolean values. Yet, on a system internal level it suffices to solely
consider sets of concepts as numerical and Boolean values concerning these sets can be com-
puted on their basis. Thus, the definition of QUERY need not include any component deter-
mining a specific kind of return value. Per default, each query is answered by producing the
respective set of concepts, while further result processing is left to other applications.

Example 3.9: The Law QUERY:FAMILY_AND_COMPANY

Let O be a formal ontology, let PERSON, MOTHER, FATHER, CHILD, COMPANY,
FAMILY:=(3,(MOTHER,FATHER,CHILD)), and WORKS_AT:=(2,(PERSON, COM-
PANY)) be ∈O. The QUERY law that represents the query ‘Return all families along
with companies, where both, mother and father, work at the same company’ is defined as

QUERY:FAMILY_AND_COMPANY

AND :3 TARGET

COMPANYFAMILY

AND :3 CONDITION

WORKS_AT

COMPANYPERSON

WORKS_AT

COMPANYPERSON

FAMILY

CHILDFATHERMOTHER

AND:DEFAULT

NOT:2
GENERATE_FANCY

NOT:1

RESTRICTED

Next to the target concepts in AND:TARGET and the target condition AND:CONDITION,
the law QUERY:FAMILY_AND_COMPANY also specifies an ontology view, as defined
by AND:DEFAULT. Assuming that

 RESTRICTED is an ontology universal that signifies classified information that
should not be accessible to all users of the system41, and

 GENERATE_FANCY is a similar ontology universal that groups a set of GENERATE
laws for semantic query rewriting,

the condition AND:DEFAULT describes that this query may not yield any classified con-
cepts (occurrences of RESTRICTED) and excludes a specific set of GENERATE laws for
application during query processing.

Note the difference in semantics of the two conditions of QUERY:FAMILY_AND_COMPANY.
The target condition QUERY:FAMILY_AND_COMPANY[2] refers solely to the concepts that
are searched for, while the view condition QUERY:FAMILY_AND_COMPANY[3] addresses
the ontology as such. The decisive difference of the two query conditions, however, lies in the
way the query is processed. The target condition is tested on occurrences of the target concept
in order to sort out all valid query values, i.e. this condition is an integral part of all iterative
steps when traversing the ontology (view) graph. On the other hand, the view condition
should be seen as part of the query preprocessing. As already discussed in Section 3.2.3.3.3,
GENERATE laws can also be defined on QUERY concepts in order to enable semantic query
rewriting (see also Sections 3.2.3.3.3 and 3.2.3.4.1 in this chapter). Obviously, this rewriting
is performed prior to processing the final query – and the view condition influences this proc-
ess by defining which GENERATE laws are applicable in the context of this query and which
are not. The advantage of this way of processing queries is that it allows for personalized

41 Marking an ontology concept C as ‘restricted’ is, then done by an according ISA occurrence ISA:=(2,(C,RESTRICTED)).

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 127127

knowledge retrieval. Thus, the view condition AND:DEFAULT of
QUERY:FAMILY_AND_COMPANY should be interpreted as an instruction to process the
query in the specific way defined for default users, while another view condition
AND:PRIVILEDGED_USER may yield different query results with identical target concept
and target condition definitions. Depending on the users (or user groups) included in the on-
tology, and on the granularity in which they are referring to ontological concepts, an arbitrar-
ily detailed level of personalization can be achieved. Naturally, the view condition for differ-
ent users will be generated automatically by the query interface (with respect to user profiles),
while the target concepts and their condition can be individually defined by the users of the
EOS system.

As Example 3.9 implies, the target condition QUERY[2] of a QUERY concept can be used
to formulate arbitrary complex statements about the target concepts in QUERY[1]. Specifi-
cally, the target condition may be useful for defining intersections and unions between target
concepts. This is feasible whenever the target concepts have common occurrences, e.g. the
universals FATHER and LANDLORD within an ontology will most probably have a common
subset of concepts that contains fathers that also are landlords. According queries are dis-
cussed in Example 3.10.

Example 3.10: The Law QUERY:FATHER_AND_LANDLORD

Let O be a formal ontology, let
QUERY:FATHER_AND_LANDLORD

AND:DEFAULT

...

AND:CONDAND:FL

LANDLORDFATHER ...

be a query against O that yields all occurrences of the concepts FATHER and LAND-
LORD. The target condition AND:COND contains statements that restrict the result set of
the query. Specifically, it may comprise restrictions that pertain to the target concepts
alone, thus defining different intersections:

 Return occurrences of FATHER and LANDLORD, omitting concepts that are both.
An according condition is NOT:ISA_FL:=(1,(ISA:FL)), with ISA:FL:=(2,(FATHER,
LANDLORD)), where the components of ISA:FL are related through identity condi-
tions with their partner target concepts:

QUERY:FATHER_AND_LANDLORD

AND:COND

AND:DEFAULT

...

ISA:FL

LANDLORDFATHER

NOT:ISA_FL

AND:FL

LANDLORDFATHER

 Return only occurrences of FATHER and LANDLORD that are both.
A possible condition here is simply ISA:FL:=(2,(FATHER,LANDLORD)), where the
components of ISA:FL are again related through identity conditions with their partner
target concepts:

CHAPTER 3 EOS EPISTEMOLOGY

 128

QUERY:FATHER_AND_LANDLORD

AND:COND

AND:DEFAULT

...

ISA:FL

LANDLORDFATHER

AND:FL

LANDLORDFATHER

The cases where one of the two target concepts is completely shut out from the result set,
e.g. by using NOT:FATHER:=(1,(FATHER)), as well as the case where neither occur-
rences of FATHER nor of LANDLORD are searched for at all, are obsolete, as the this
would contradict the specification of target concepts.

Technically, in comparison to relational database systems, QUERY concepts are similar to
SQL queries. However, the semantics of QUERY concepts cannot be simply translated into
SQL as the relational algebra knows no taxonomic structure but only relations. Concepts, on
the other hand, next to defining relations, must also be viewed as parts of a hierarchical do-
main model. For example, the QUERY:FAMILY_AND_COMPANY of Example 3.9 could be
paraphrased using SQL syntax:

SELECT *
FROM FAMILY, COMPANY
WHERE AND:CONDITION AND AND:DEFAULT

where the impact of AND:DEFAULT in terms of semantic query rewriting, of course, cannot
be accounted for. This statement regards FAMILY and COMPANY as relations that are being
joined in order to produce the desired result. Concept components, here, are interpreted as the
attributes of relational algebra. Note that this analogy does not hold without restraints, as in
Concept Theory, occurrences of a concept may very well possess more components, which
exceeds the notion of relations in relational algebra. Depending on their context, concepts are
either relations, or objects that are subject to other relations, i.e. attributes. As the preceding
discussion has shown, this is a very useful property for modeling ontological, as well as epis-
temological knowledge.

Another way of translating QUERY:FAMILY_AND_COMPANY into SQL syntax would be:

SELECT FAMILY, COMPANY
FROM ontology (view)
WHERE AND:CONDITION AND AND:DEFAULT

where the target concepts are seen as attributes of the ontology (view), interpreted as a single
relation encompassing all concepts. Again, the exact semantics of nested components within
concepts are not satisfactorily mirrored in this approach. The reason for this lies in the differ-
ent semantic models of Concept Theory and the relational algebra. Relational algebra draws a
clear line between schema and facts, while this distinction is ‘soft’ in Concept Theory. Al-
though there is an acknowledged difference between ontology universals and particulars, it is
very well possible to define a universal that contains particulars as components. For example,
in 3.2.2.4 we introduced a universal MARY’S_FAMILY:=(3,(Mary, FATHER, CHILD)). Rela-
tions do not recognize such a coupling between schema and data.

A direct analogy between concepts and relations according to the relational algebra can be
built on a restricted level, though: lowest level universals may be interpreted directly as rela-
tions on their instances. Each particular instance, then is a tuple of this relation. The hierar-
chical domain model on top of these two lowest ontology graph levels, then, is strictly speak-

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 129129

ing beyond the relational model. This is also the case with most epistemological concepts.
While rules in Concept Theory may be interpreted as functional dependencies or constraints
in relational systems, there is no equivalent to laws that model the system behavior.

3.2.3.4.1. Semantic Query Rewriting

During semantic query rewriting, a query that is handed over to an EOS system is being trans-
formed into another, similar query with amended semantics. As already stated in the previous
section, query rewriting does not affect the view condition of a QUERY concept that stays the
same throughout all generation steps (i.e. GENERATE laws that do change the third compo-
nent QUERY[3] of a query are semantically incorrect). What semantic query rewriting affects,
are thus the target concepts and the respective condition as determined in QUERY[1] and
QUERY[2].

 Modifying target concepts.
Possible modifications concerning target concepts are concept additions and deletions. For
example, it might be useful to define GENERATE laws that add concepts (semantically)
related to the target concepts, as it is done with online shopping or information services:
customers that are looking for e.g. books of a certain author are also presented with books
falling in the same category, or with audio and video products that are associated with this
author. On the other hand, it may also be feasible to replace or simply remove target con-
cepts, if it can be assumed that these concepts will yield a huge number of (actually un-
wanted) hits that might blur the query result. This is seen analogously to the common
practice of search services to ignore ‘stop words’ like ‘and’, ‘the’, etc. that are part of vir-
tually all Web documents. In the context of ontologies, one could e.g. avoid to search for
a concept whose specializations are also part of the target set. As a simple example, if a
target set consists of FATHER, LANDLORD and PERSON, it may be wise to omit PER-
SON completely as the target condition will probably also be valid for occurrences of
PERSON that are neither FATHER or LANDLORD, yet it can be assumed from this target
set, that only their occurrences are searched for.

 Modifying target conditions.
The target condition can also be altered, for reducing or expanding the number of hits, or
ameliorating the quality of the return set. Typically, the aim will be to render queries more
restrictive for keeping the result set manageable.

The extent of semantic query rewriting might differ from system to system. Especially EOS
systems where personalization and user profiles play an important role, queries will naturally
be modified more often. In these cases, GENERATE laws will not only be defined with re-
spect to target concepts and conditions but also depending on the view condition that defines
the (user) perspective taken for the respective query.

3.2.3.4.2. Processing EOS Queries
The knowledge retrieval procedure query() that is processing QUERY concepts is demon-
strated in Figure 3.27. Supporting methods not already discussed in the previous sections are:

 createView(ConceptVector o, Concept c):
 computes an ontology view from an ontology o on the basis of condition c. The knowl-

edge retrieval procedure uses this view as its private ‘ontology’. Note that it is not neces-
sary to materialize this view as the view condition can also be tested during program exe-
cution whenever the target condition is tested. Yet, assuming a materialized ontology sim-
plifies the code of query(), which is the only reason why we chose to use it here.

CHAPTER 3 EOS EPISTEMOLOGY

 130

 Return Value: ConceptVector.

 getConcepts(Concept t, Concept cond, ConceptVector v):
 computes the set of concepts in ontology (view) v that are occurrences of t complying

with condition cond and returns this set (including t itself).

 Return Value: ConceptVector.

 IsElement(Concept c, ConceptVector v):
 tests whether concept c is part of the concept vector v.

 Return Value: Boolean.

 satisfiesCondition(Concept t, ConceptVector cond, ConceptVector v):
 tests whether concept t satisfies condition cond within an ontology (view) v.

 Return Value: Boolean.

ConceptVector o;

query(Concept q)
// Concept q: instance of QUERY
{
 Concept view_condition := q[3];

 // create ontology view according to view_condition
 ConceptVector view := createView(o,view_condition);

 // perform semantic query rewriting:
 Concept query := manageGeneration(q),
 target := query[1],
 condition := query[2];

 ConceptVector target_set :=();
 forall t in target[1], …, target[n] do
 {
 target_set := push(t, target_set);
 }

 forall t in target_set do
 {
 result_set := push(getConcepts(t,condition,view),result_set);
 }

 return result_set;
}

getConcepts(Concept t, Concept cond, ConceptVector v)
// Concept t: a target concept of a query
// Concept cond: the condition on t
// ConceptVector v: the ontology (view) for the query
{
 if(isElement(t,v)==false)
 {

// t is not an element of view v;
// reject t (and its occurrences):
return;

 }
 else
 {

SECTION 3.2 EPISTEMOLOGY IN CONCEPT THEORY

 131131

 // test cond on t:
 if(satisfiesCondition(t,cond,v)==false)
 {

 // t does not comply with cond;
 // reject t (and its occurrences):

 return;
 }
 else
 {
 // t is part of ontology view v and complies with condition cond;
 // return t and test its child concepts:
 ConceptVector result_vector := push(result_vector,t);
 forall s in getCommonSpecializaions(t);
 {
 result_vector := push(result_vector,getConcepts(s,cond,v));
 }
 return result_vector;
 }
 }
}

Figure 3.27: The Knowledge Retrieval Procedure

The algorithm shown in Figure 3.27 determines the set of all valid occurrences of the (univer-
sal) target concepts by traversing their respective concept graphs all the way down to their
particulars, testing the target condition of the query in the process for filtering out occurrences
that do not satisfy this condition. As all concept graphs are subgraphs of the ontology (view)
graph, and the ontology is free of loops, so are the concept graphs. Thus, the algorithm termi-
nates after the all particulars of all target concepts have been determined. The maximum com-
plexity, therefore, is a complete linear traversal of the whole ontology, i.e. O(n).

These remarks round up the discussion of knowledge retrieval within EOS systems and, on
a more general level, concludes the treatment of the realization of epistemological processes
as defined by the EOS framework that we have laid out at the beginning of this chapter (in
Section 3.1.3). This completes the epistemological model of the EOS approach and its inte-
gration into the formal framework of Concept Theory.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 133

Chapter 4 EOS Systems

This chapter will present central aspects concerning the practical realization of an actual EOS
system whose domain knowledge and behavior is based on an EOS ontology. For this purpose
we will motivate document management on the World Wide Web as a possible EOS applica-
tion scenario. In this context, an EOS system must perform knowledge extraction on Web
pages, a procedure that may take advantage of document markup as found e.g. in XML docu-
ments. Based on this discussion, specific knowledge acquisition, generation and retrieval pro-
cedures will be exemplified. We will also motivate our preferred representation techniques for
EOS ontologies, which encompasses an EOS markup language as well as a translation of EOS
ontologies into a relational database schema. Remarks on our prototype implementation of an
EOS system that operates within the application scenario will round up this chapter.

4.1 Application Scenario
In Chapter 1 the notion of ontologies was introduced by stressing the role of metadata in digi-
tal libraries (DL) and, as one prominent application area of metadata in this context, how bib-
liographical records are being used for classifying library stocks. Ontologies in this context
can be employed in a variety of ways. Apparently, ontologies may be used to model different
cataloging schemas (such as MAB and MARC), e.g. for classifying new records according to
these schemas. On the other hand, an ontology may function as a general model for biblio-
graphic data that includes and harmonizes different cataloging schemas. This would enable a
DL system to manage records of incompatible schemas, e.g. in order to translate records from
one format to another, or to search, compare and organize bibliographical data originating
from heterogeneous record sets. As the discussion of Chapter 1 has shown, cataloging formats
exhibit very strict category schemas that have been defined in specific international standards,
e.g. MARC. Yet, in information processing, it cannot be generally presumed that data is al-
ways complying to such well-known standards. In fact, the common situation seems to be that
a knowledge processing system must be able to handle a huge variety of different data for-
mats where single records (or documents) may not be easily related to an immediately deter-
minable schema that would allow for a correct semantical interpretation of the information
content and context of the data. Here, ontologies covering domain knowledge, i.e. formally
defined concepts relating to the intellectual content, may pose a means to enable machine-
processing tasks such as classifying, organizing and indexing this data based on its semantics,
not on syntactical features alone.

CHAPTER 4 EOS SYSTEMS

 134

An interesting application area for ontology-driven document management is the World
Wide Web and its information environment. The Web can be regarded as a vast source of
information that consists of a huge set of (partially interlinked) electronic documents of dif-
ferent formats (e.g. HTML, XML, PDF, MSWord, etc.) covering practically any topic of hu-
man interest. The sheer size and heterogeneity of the Web poses a serious problem as to how
its intellectual content can be successfully managed and put at disposal for human users. This
concerns e.g. managing linguistic diversity (relating documents written in different languages
and coping with synonyms, homonyms, etc. within the same language), automated document
classification, and providing enhanced search services, to name but a few challenges in this
area. In order to provide a basis for more sophisticated Web services of this kind, the Web is
currently starting to move from its first generation to the second generation, the Semantic
Web [5]. Tim Berners-Lee characterizes this new Semantic Web as one that should supply
much more automated services based on machine-processable semantics of data and heuris-
tics that make use of these metadata [6]. In this context, ontologies providing explicit shared
domain models are regarded as key assets as they supply the basic vocabulary and coinciding
semantics that are necessary to effectively access and communicate the information stored on
the Web. In a nutshell, ontologies may provide the basis for linking related Web documents
based on their content, regardless of the physical topology of the Web (as defined by URIs
and Web links). And this, exactly, is what the Semantic Web is supposed to offer – a semantic
linking of human knowledge, complemented with machine-processability.

The next sections will discuss key aspects that must be considered if the transition of the
World Wide Web into a Semantic Web using ontologies shall be successful. As a practical
example we suppose an example EOS system, i.e. a knowledge processing system complying
to the architecture as described in Section 3.1.3. This EOS system is used for classifying Web
documents according to their intellectual content, which results into a semantic linking as it is
demanded for the Semantic Web. For this purpose the EOS system uses an according EOS
ontology representing domain knowledge that is used for identifying concepts within Web
documents. Based on this ontology, the documents are classified according to an interpreta-
tion of their content, a process that relies on a suitable mapping between document data and
ontology concepts. Section 4.1.1 analyzes different levels of structure found in Web docu-
ments, which leads to a detailed discussion on document markup within semi-structured data
in Section 4.1.2. Section 4.1.3, then, examines different approaches for utilizing document
markup in Web documents in order to support information extraction, which will finally lead
to our suggested technique for coupling markup tags and EOS ontology concepts.

4.1.1 Data on the Web
Considering the topology and information content on the Web, an EOS system managing
Web documents is confronted with a vast and very heterogeneous information environment.
Even within the same domain, documents typically exhibit very different properties concern-
ing their format and linguistic ambiguities of their textual content. Regarding these properties,
we can differentiate between several levels of data organization and their impact on knowl-
edge extraction:

 Unstructured data. Plain texts in natural language, as well as binary data formats for im-
ages, video or audio, offer no explicit structure in form of a schema that could be used to
syntactically interpret them. As such they consist of schemaless, or unstructured, data.
This means that with unstructured data contextual information to help interpreting the data
is missing. The context, and therefore assumptions about the meaning of the data, thus has
to be determined (or conclusively guessed) by other means. Next to pattern detection in
images, the central research effort concerns natural language processing of plain texts. The

SECTION 4.1 APPLICATION SCENARIO

 135135

aim, here, is to find and link relevant information in natural-language documents while ig-
noring extraneous and irrelevant information. In order to achieve this goal, these tech-
niques use context and string patterns within linguistic analysis that produce a valid inter-
pretation of unstructured documents. Known obstacles in this area are linguistic ambigui-
ties, such as homonyms and synonyms that are usually resolvable for humans but pose
great difficulties in automatic processing. As a consequence, determining the semantical
context of the intellectual content of the data in automated processing, which could pro-
vide a reliable basis for correctly interpreting the data, remains an error-prone procedure.

 Semi-structured data. The most prominent examples of semi-structured data formats are
those used in the Web environment, such as HTML and XML. The specialty of semi-
structured documents is that they can be described by schemata (DTDs in case of XML),
yet they are not fully determined by them. For example, pieces of data (as expected by a
schema) may be missing, and on the other hand, documents can contain extra information
like annotations. Moreover, there is no strict typing in semi-structured data, and the struc-
ture of such documents is usually partial, i.e. they can contain elements which are not ac-
cessible through the schema e.g. graphics, or plain text that are possibly holding very de-
tailed, even schema-related information which, nevertheless, is not mirrored in a schema
compliant way. The most common approach to extract information from semi-structured
data, in particular Web documents, is through software agents called wrappers [23]. Wrap-
pers parse source documents in order to provide a basis for mapping source data into a
structured, or another semi-structured format with native semantics. In other words, the
task of wrappers is to guess the schemata of the documents they are parsing, which yields
a concise interpretation of this data.

 Structured data. Fully structured information, such as data stored in relational database
systems, complies to a predefined schema. This schema is first determined (during a mod-
eling phase) and later populated with domain facts. Thus, all data follows, without excep-
tion, the structural pattern of the schema. If the schema is publicly available and the data
accessible, it can be queried by standard query languages such as SQL. Yet, this is usually
not the case, as data is usually only held in a structured way within a information system,
while it provides this information to the outside world in a semi-structured format (e.g. in
the form of Web documents) or even unstructured format (e.g. as a PDF text file).

Structure is an important means for making information machine-processable. While struc-
tured data offers best exploitability in terms of correctly interpreting data, e.g. according to a
relational database schema, the vast majority of publicly available data consists of semi-
structured data, i.e. Web pages containing document markup. Document markup describes the
logical structure of Web pages, thus providing metadata on the respective documents along
with the actual information content. Recently, research activities have been concerned with
the development of higher standard techniques for providing a more sophisticated access to
the information found on the Web [1]. This encompasses e.g. better search services, compre-
hensive Web directories, multi-lingual querying and browsing, etc. Document markup has
become an acknowledged enabling technique for realizing such services. In order to utilize
document markup effectively and thus provide a means for putting the vision of the Semantic
Web into effect, we propose the employment of EOS ontologies that are offering a practical
way of interpreting semi-structured data containing document markup according to the onto-
logical and epistemological knowledge that is supplied by these ontologies. Underlining the
points made here, in this chapter we will discuss document markup from two different per-
spectives. On the one hand, document markup can be used to add semantic metadata to Web
documents, and on the other hand, EOS ontologies themselves may be expressed using semi-
structured data.

CHAPTER 4 EOS SYSTEMS

 136

4.1.2 Semi-structured Data and Document Markup
Document markup is used to provide metadata for electronic documents as found in public or
restricted networks. Syntactically, markup elements often take the form of tags, reserved
words put between pointy brackets e.g. tags like <title>, <table>, or <form>. A markup lan-
guage, then, is a specification of a particular set of markup tags, how they may be combined,
along with a fixation of their meaning. Text can be marked by enclosing it with an opening
tag (<…>) and an according closing tag (</…>), e.g.

<title>Der aus dem Grab der Vergessenheit wieder erstandene Simplicissimus</title>

marks the words between the two tags as a (book) title. Markup elements can be nested,
which produces hierarchical structures such as

<title>…… … .. … </title>,

where <title> tags are enclosing several occurrences of tags. Stripped from its textual
content, the logical makeup of any such document is laid out by the tree structure of its
markup tags. As parts of nested structures the elements of markup languages can be used to
indicate document content of the same kind (e.g. several text passages that are enclosed in
 tags) and to group document content into more complex units (e.g. all text and markup
information within <title> tags). In this sense, documents containing markup are structured.
Nevertheless, such documents are commonly regarded as semi-structured data, because their
markup must not necessarily instantiate a specific schema as is the case with structured data
such as relations in RDBS. For example, markup elements may be omitted or repeated arbi-
trarily within a document, and usually they are not strictly typed.

The most wide-spread and also well-known markup language on the Web is HTML (Hy-
perText Markup Language). It provides rendering information about the content of Web
pages, e.g. text between the tags and is marked to be displayed in bold face by Web
browsers. However, HTML tags are not suited for describing the information content itself,
e.g. the HTML specification does not contain any <author> tags that could be used for mark-
ing the names of authors occurring in the text. Moreover, HTML offers no mechanisms for
defining new markup elements. This must be done using a meta-language that, in turn, can be
used for defining markup languages such as HTML. The most prominent such meta-language
is the eXtensible Markup Language (XML). XML has become the universal format for struc-
tured documents and data on the Web42. Using XML, it is possible to define the syntax and
structure of a markup language by specifying a corresponding Document Type Definition
(DTD) that outlines a schema for a class of documents. DTDs consist of a structured enu-
meration of XML elements and their attributes, which defines markup tags, and, in its en-
tirety, the complete syntax of a markup language. Although, historically, the original HTML
specification emerged before XML, it is technically possible to define HTML using an XML
DTD. Another example XML DTD is given in Section 4.3.3. The following sections will pre-
sent how specific markup languages have been used in the past in order to introduce metadata
to Web documents.

4.1.3 Coupling of Formal Ontologies and Document Markup
There are two main approaches to combine ontologies and markup languages, firstly, by de-
fining new markup which is directly tied to a predefined ontology or, secondly, by translating

42 Originally, XML was developed as a subset of SGML, providing the benefits of SGML concerning markup definition, yet

stripped of some of SGML’s features for a simplified, lean markup language for the Web. In this respect, XML has been
designed for ease of implementation and for interoperability with both SGML and HTML. The base specifications of
XML, as provided by the World Wide Web Consortium (W3C), are XML 1.0, W3C Recommendation Feb '98, and Name-
spaces, Jan '99. The XML Activity Statement explains the W3C's work on this topic in more detail.

SECTION 4.1 APPLICATION SCENARIO

 137137

foreign markup into native concepts of the local ontology. Related research projects can be
found in the area of information extraction from Web documents, e.g. SHOE [53] and Onto-
broker [30], [33]. The most common technique for automated information extraction from
Web documents is using software agents called wrappers that are able to interpret the content
of Web pages [23], [54]. Simple wrappers may only be able to parse a small class of Web
documents complying to a specific structure or a set of keywords they have been defined to
identify (e.g. for extracting standardized information from a DL interface). More advanced
approaches are trying to make use of (semantic) document markup whose correct interpreta-
tion relies on a semantic model, e.g. supplied by an ontology. Then, successful information
extraction depends, on the on the one hand, on the scope of the ontology and, on the other
hand, on the ability of the software agent to map markup tags into ontology concepts. The
following discussion will detail on some important approaches in that field of research, focus-
ing on the manner in which they are employing document markup and ontologies43. Starting
from simple HTML annotations, we will subsequently take a closer look at two ontology-
driven approaches, SHOE and HTMLA.

4.1.3.1 HTML
HTML, is used to indicate the structure and layout of Web documents, i.e. their syntactical
features. Accordingly, HTML consists of a fixed set of tags that, in the first place, allow for a
syntactical document markup. Yet, some of these tags have also been used to transport se-
mantic annotations. Historically, the first attempts at representing semantic aspects within
Web documents relied on HTML META tags [7]. Although their expressiveness is limited,
META tags can be used for stating global document properties that apply to an entire Web
document, such as Dublin Core [22] information about author, date of creation, etc.:
<META NAME="author" CONTENT="Barry Smith">
<META NAME="date" CONTENT="2001">

With the HTML 4.0 specification [62] two new markup elements have been added that are
candidates for semantic annotations: SPAN and (the practically equivalent) DIV. The SPAN
element is defined as a generic container of any text element offering a generic mechanism
for adding structure to documents. In this sense it has been designed in the first place for
specifying layout, i.e. simple generic stylesheet mechanisms. Nevertheless, the HTML 4.0
specification expressly suggests the use of the SPAN element to express the semantic structure
of a document, e.g.:
Barry Smith
2001

Yet, despite its possible uses, SPAN has hardly been used at all in Web documents. HTML
META tags, on the other hand, found some limited application, e.g. in assisting Web crawlers
with identifying annotations on Web pages.

4.1.3.2 SHOE
SHOE is an acronym for Simple HTML Ontology Extension. As the name implies, SHOE is
used to specify machine-readable extensions, i.e. annotations that can be incorporated into
HTML files. The aim is to provide semantic content that can be parsed (and understood) by
Web agents (like crawlers). The assumption here is, of course, that the annotations used in
Web pages are known to the agent, e.g. through a corresponding ontology the agent is aware

43 A related question is how suitable a specific ontology is for interpreting a set of Web pages (following some markup

scheme). Resolving this question is beyond the scope of this thesis. Instead, we refer to an heuristic approach for evaluat-
ing the suitability of an ontology in].

CHAPTER 4 EOS SYSTEMS

 138

of. In this way, agents are able to directly gather meaningful information, metadata, about the
Web documents they are parsing. This is used to facilitate knowledge acquisition procedures
and search mechanisms, as document semantics are presented in a format that allows agents
to interpret it correctly without any need for syntactical or linguistic analysis.

The semantics of Web annotations are predefined in a formal ontology that can be parsed
by a Web agent. SHOE ontologies encompass taxonomic classifications, i.e. specialization
hierarchies of classes. Additionally, it is possible to define relationships and inferences in the
form of horn clauses (where SHOE does not allow disjunction or negation). Other SHOE on-
tologies or previous versions of an ontology can be addressed from within a current ontology.
Employing SHOE is a two-phase process (cf. Example 4.1 and Example 4.2): first, a SHOE
ontology is defined describing a valid classification of objects and their relations, and second,
HTML pages are annotated according to this ontology. These Web annotations refer to arbi-
trary data entities within an HTML page and can be used to categorize them according to an
explicitly declared SHOE ontology. Data entities can also be related to each other by using
relationships defined within such an ontology.

Example 4.1: A Simple SHOE Ontology
<HTML>
<HEAD>

 <!-- Document is conformant with SHOE 1.0: -->
 <META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0">
 <TITLE> A Simple Bibliographic Ontology </TITLE>
</HEAD>
<BODY>

 <!-- The current ontology's name and version: -->
 <ONTOLOGY ID="biblio-ontology" VERSION="1.0">
 <!-- SHOE's "base-ontology": -->
 <USE-ONTOLOGY ID="base-ontology" VERSION="1.0" PREFIX="base"
 URL="http://www.cs.umd.edu/projects/plus/SHOE/base.html">

<!-- Excerpt from the ontology's classification hierarchy: -->
<DEF-CATEGORY NAME="Person" ISA="base.SHOEEntity">

 <DEF-CATEGORY NAME="Author" ISA="Person">
<DEF-CATEGORY NAME="Date" ISA="base.SHOEEntity">

<!- - A relationship declaration: - ->
<DEF-RELATION NAME="Publication">

 <DEF-ARG POS="1" TYPE="Author">
 <DEF-ARG POS="2" TYPE="Date">
 </DEF-RELATION>

</ONTOLOGY>
</BODY>

</HTML>

Example 4.1 indicates that entity Person subcategorizes from “base.SHOEEntity”, the cate-
gory “SHOEEntity” as defined in the fundamental SHOE ontology “base-ontology”.
“SHOEEntity” is the uniform root category for all categories declared in any SHOE ontology.
With the biblio-ontology defined shown in this example, its categories and relations can be
used within the same or other HTML files in order to annotate them. A portion of such a Web
page is presented in Example 4.2. Note that the information on this document has, strictly
speaking, been duplicated because the author Barry Smith is mentioned as such in both,
SHOE markup and the text passage. Generally, SHOE markup is purely additional to any ac-
tual Web page content (in natural language) intended for human users.

SECTION 4.1 APPLICATION SCENARIO

 139139

Example 4.2: Employing a SHOE Ontology
<HTML>
…
<BODY>

 <!-- A unique identifier (e.g. the URL of the Web page itself): -->
 <INSTANCE KEY="http://any.unique.url/">
 <!-- Reference to the location of the "society-ontology": -->
 <USE-ONTOLOGY ID="biblio-ontology" VERSION="1.0" PREFIX="biblio"
 URL="http://unique.url.of/biblio-ontology.html">

<!-- A relationship instance: -->
<RELATION NAME="biblio.Publication">

 <ARG POS="1" VALUE="Barry Smith">
 <ARG POS="2" VALUE="2001">
 </RELATION>

</INSTANCE>
…
Barry Smith is the Author of this book which was published in 2001. His
treatment of…
</BODY>
…
</HTML>

In terms of the EOS approach, SHOE annotations could in principle be used for knowledge
acquisition. Concepts may be expressed through annotations and interpreted directly as such.
In this way, the KEP could ignore all other Web page content and concentrate solely on
SHOE markup, which has to comply with an according EOS ontology (e.g. expressed in
SHOE syntax). An obvious drawback of SHOE, as indicated above, is that the information of
Web documents has to be duplicated, i.e. SHOE annotations are pure additions to Web pages,
encapsulated within INSTANCE tags. This means that despite the fact that a specific informa-
tion may already be stated within the text passages of a document, information providers must
observe that it still has to be formulated a second time using SHOE syntax.

4.1.3.3 HTMLA

HTMLA is an annotation language used in the project Ontobroker [33]. As the name implies it
represents an extension to the common HTML syntax, namely an extra ONTO attribute for
HTML anchors. Similar to SHOE, an ontology consisting of classes, attributes and relations
must be defined in Frame Logic [49] for representing some domain of interest. With Onto-
broker, this ontology is declared globally for a community that may use ontology classes in
their Web pages using HTMLA syntax, e.g.

specifies an instance of class Publication whose Author attribute is set to the value Barry Smith
and whose Date is defined as 2001. As indicated in this example, each class instance is re-
quired to be defined using a unique identifier, here realized through the URI
“http://www.smithsite.com/Barry/mayPub.html”. An excerpt of an Ontobroker ontology
describing class Publication and its attributes could be:
Object[].
Publication::Object.
Publication[

CHAPTER 4 EOS SYSTEMS

 140

 Author =>> STRING;
Date =>> STRING].

While an Ontobroker ontology is held separately, complying HTMLA annotations are inte-
grated into the Web pages themselves. Restricting annotations to HTML anchors, though,
poses a certain drawback, as these tags cannot be nested. As a consequence, in the above ex-
ample the global identifier “http://www.smithsite.com/Barry/myPublication.html”
must be used in all value assignments (i.e. [Author=‘Barry Smith’] and [Date=‘2001’])
for attributes of the Publication. As with SHOE, Ontobroker relies on a specific syntax in
order to be able to identify and parse document markup correctly.

4.1.3.4 Document Markup in the EOS Approach

The previous examples for realizing semantic annotations on Web pages have shown different
forms of document markup and its relation to domain knowledge. While the HTML 4.0 speci-
fication does not mention any model for specifying the semantics of META, SPAN and DIV
instances, SHOE and HTMLA annotations refer to particular ontologies that allow for a cor-
rect interpretation of the markup elements they define. Yet, the ontologies are used differently
in these approaches. SHOE ontologies are embedded in Web pages, whereas HTMLA annota-
tions used in Ontobroker rely on a centrally stored (within the Ontobroker system) ontology –
and are defined using a different representation language44. Both, SHOE and Ontobroker, pro-
vide their own syntax extensions to HTML and suffer from similar disadvantages:

 Neither SHOE nor HTMLA emerged to become part of any standard or industry initiative.
Consequently, their application remains very limited.

 Web page content must be explicitly duplicated, i.e. all ontology-related information has
to be expressed using specific SHOE or HTMLA syntax, regardless of the remaining
document content, in particular further markup information (provided most commonly us-
ing XML tags).

 SHOE and Ontobroker do not make use of any other document markup besides their own
HTML extensions.

Considering these drawbacks of previous ontology approaches, we promote no specific EOS
syntax but propose to use XML markup for realizing semantic document annotations. XML
has already become a widely accepted standard, including tool support. Moreover, since XML
seems to become the new de-facto standard for Web documents, one can expect that a rapidly
growing portion of information on the Web will contain XML markup. It is only reasonable
to make use of this development.

EOS markup, essentially, consists of XML tags that are providing meta information on the
textual content of Web pages. Similar to approaches like SHOE and Ontobroker, an EOS sys-
tem relies on its own ontology. Apparently, a mapping between ontology concepts and docu-
ment markup must be defined. This mapping, in its simplest variant, may consist of a 1–1
mapping between concepts and identically named tags, e.g. AUTHOR – <AUTHOR>. Yet,
the employment of a mapping function also allows for more flexible 1–n relations between
one concept and several tags, e.g. AUTHOR – <AUTHOR>, <Author>, <author>, <writer>,
<auteur>, <Verfasser>, etc. As this example indicates, a mapping like this could be used to
cope with different spellings, multilingual information environments, and may even allow for

44 We will not go into detail concerning the specifics of the ontology representations used in SHOE and Ontobroker. We

agree with [32] that both representations are essentially equal in expressiveness.

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 141141

interpreting foreign documents that were not tagged with respect to a specific EOS ontology45.
Thus, an XML document containing the following text passage could be directly interpreted
by an EOS system (assuming there exists a suitable mapping to ontology concepts):
<Publication>
<Source>http://www.smithsite.com/Barry/myPublication.html</Source>
<Author>Barry Smith</Author>
<Date>2001</Date>

</Publication>
The possibility of directly using Web page content reveals some decisive advantages. Firstly,
there is no need for defining a distinct EOS markup language as any document markup may
be the target for the EOS knowledge extraction procedure. Consequently, document informa-
tion need not be duplicated, which allows information providers to keep their documents
compact and easier to manage, relieving them from the burden to express document content in
a foreign syntax. For these reasons, the EOS approach endorses to exploit document markup
using an appropriately defined mapping function (addressing markup elements of any kind)
and not to fixate the system on one specific syntax. For our discussion of the EOS application
scenario we will assume that the information environment the exemplary EOS system is
working in is (syntactically) restricted to a large set of XML documents (possibly with multi-
lingual content and complying to a number of different DTDs). Thus, the mapping function
uniformly consists of a set of XML tags and their corresponding ontology concepts. The EOS
system uses this mapping to parse XML documents for identifiable information and subse-
quently classifies them according to its internal ontology.

4.2 Classifying Web Pages Using an Exemplary EOS System
The preceding discussion has shown how a mapping between EOS ontologies and document
markup can be realized for accessing the semantic content of Web pages. In this section we
will now turn to describing the functionality of the exemplary EOS system for managing Web
documents. Naturally, examining how such an EOS system works, reflects EOS epistemology
as introduced in Chapter 3:

 Classifying Web documents is one example for knowledge acquisition that involves on
the one hand a knowledge extraction procedure (KEP) and on the other hand the knowl-
edge acquisition procedure itself, represented by the law ACQUIRE. Making use of the
according mapping, the KEP translates document information into concepts. In our exam-
ple, these concepts are typically new particulars for universals as defined by the EOS on-
tology, e.g. an author or title previously unknown to the ontology (where AUTHOR and
TITLE are ontology universals). These concepts are passed to the EOS system using the
law ACQUIRE, i.e. for each new concept the KEP constructs an according ACQUIRE par-
ticular that is then processed by the EOS system. In addition to the concepts referring to
document contents, the KEP also creates a new DOCUMENT particular for each Web
document it parses. These, too, are passed to the EOS system that organizes them con-
forming to the internal ontology. This results in a document classification dictated by the
ontology, e.g. a Web document containing information that has been identified as MP par-
ticulars could reasonably be categorized as a particular of the universal POLI-
TICS_DOCUMENT. Knowledge acquisition is discussed in more detail in Section 4.2.2.

45 Of course, a mapping to foreign tagging schemas can be error prone and may involve some tuning of the mapping func-

tion. Nevertheless, the possibility of making use of document markup of foreign documents offered on the Web is a prom-
ising perspective.

CHAPTER 4 EOS SYSTEMS

 142

 Human users (or applications such as software agents) can access the system via an inter-
face that allows for querying the EOS system about the documents it manages, a knowl-
edge retrieval procedure driven by the law QUERY. The query interface takes a user re-
quest and transforms it into an equivalent QUERY particular which is then passed to the
EOS system. Typical queries in this context would be e.g. “Return all documents on topic
X”, or “Return all (particular) concepts of type Y satisfying condition Z in documents on
topic X”. Knowledge retrieval is the topic of Section 4.2.3.

 In order to provide a better service to its users, the EOS system performs semantic query
rewriting, which is an application area for knowledge generation using the law GENER-
ATE. During query processing the EOS system is checking whether the internal ontology
contains GENERATE particulars that can be applied to the current query. If this is the
case, the original queries (represented by according QUERY particulars) are transformed
into semantically different QUERY particulars. For example a query “Find all documents
on members of the political party CDU” could be transformed into the rewritten query
“Find all documents on members of the political parties CDU or CSU”. Semantic query
rewriting as an example of knowledge generation is presented in Section 4.2.4.

Beforehand, the basis for any epistemological process in this application scenario must be
provided by a consorting EOS ontology. The outline of such an ontology that may be utilized
for document classification is given in the following Section 4.2.1.

4.2.1 An EOS Ontology for Document Classification
This section will sketch the makeup of an EOS ontology used for document classification. For
this purpose an ontology engineer must commit to a specific and explicit domain model. Ac-
cording to the scenario of Section 4.1 the EOS ontology is intended for classifying news arti-
cles and related documents published on the Web. This means that the ontology should in-
clude a concept describing a (news) document, along with a concept hierarchy that organizes
a number of document categories (e.g. politics, economics, science, sports, etc.) and a portion
of “world knowledge” that contains concepts relating to the topics addressed by the document
categories (e.g. the concepts PARLIAMENT, MP or PARTICULAR:FISCHER46 are candidates
for identifying a POLITICS_DOC). All of these concepts belong to the purely ontological side
of the domain model. Additionally, the EOS ontology will include EOS rules (e.g. for speci-
fying constraints for document categories) and EOS laws (e.g. for personalized query rewrit-
ing). The outline for such an ontology is given in Figure 4.1.

46 Mr. Joseph (Joschka) Fischer, member of the German Green Party (Bündnis90/Grüne) has been the German Federal For-

eign Minister since October 1998.

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 143143

POLITICS_DOC SPORTS_DOC

DOCUMENT

EXISTENT

PARTY

RULE

PERSON

LAW

“SPD”

“CDU” “CSU”

“B90/Grüne”

ATHLETE

MAYOR MP

POLITICIAN

QUERY ACQUIRE

GENERATE

PARTICULAR:FISCHER

AUTHOR

Figure 4.1: Outline of an EOS Ontology for Document Classification

For better readability, this ontology excerpt does not yet include specific EOS laws and shows
only the overall concept hierarchy, omitting the internal component structure of these con-
cepts. As we move on with our EOS application example we will go into more detail concern-
ing the (ontological and epistemological) concepts involved if necessary. Here, we will only
motivate the component structure of the concept DOCUMENT in order to point out the basic
understanding of documents that we will follow in the classification scenario. Generally, a
Web document may be characterized through different properties, e.g. its location, author or
content. Thus, for modeling the concept DOCUMENT some components such as URI, AU-
THOR and TOPIC suggest themselves. In fact, as our discussion of standardizing biblio-
graphical data using cataloging formats in Section 1.1.3 has shown, there are very elaborate
cataloging schemas that are suggesting several hundred bibliographic categories (all of which
could be represented by components of DOCUMENT).

Yet, in our application scenario we are actually intending to stress a different point. The
example EOS system is dealing with documents published on the Web, i.e. with a very het-
erogeneous environment where information is presented with very different degrees and qual-
ity of usable markup. The EOS application scenario does assume some degree of document
markup, which allows to define a direct mapping between ontology concepts and markup
tags. In order to keep the mapping function simple we assume that the Web documents in the
application scenario are complying to XML syntax. Yet, we do not restrict the scenario to a
set of documents following the same schema (which would apply for software tools like
wrappers who are able to parse and interpret only specific classes of documents), or some
limited set of schemas. Moreover, the information provided by markup tags is usually not a
satisfactory description of a Web document in terms of giving a complete account of its bib-
liographical data and intellectual content. The example EOS system should be able to accept
basically any Web document that provides some markup which can mapped to its internal
ontology. Therefore, we should not assume any particular document structure at all, which
leads to the notion of DOCUMENT as a set of (presumably correlated) concepts of arbitrary
size.

CHAPTER 4 EOS SYSTEMS

 144

DOCUMENT

EXISTENT *

Figure 4.2: A General Definition of the Concept DOCUMENT

The conceptual definition of DOCUMENT in Figure 4.2 reflects this perspective. It is held in a
most unrestricted form, determining neither the exact number of nor any category for DOCU-
MENT components that is more specific than EXISTENT, the root concept and therefore the
most general concept of the ontology. This essentially defines DOCUMENT as a container for
any type of information, which is the basic assumption underlying the discussion of knowl-
edge processing procedures that, in the succeeding sections, will be used to describe the be-
havior of the example EOS system in more detail.

4.2.2 Knowledge Acquisition: Classification of Web Documents
Knowledge Acquisition in EOS is a two-phase process involving a knowledge extraction pro-
cedure (KEP) and the knowledge acquisition procedure (KAP) that accepts ACQUIRE con-
cepts as an input. As already mentioned, the KEP must parse Web documents, identify
markup tags and map these tags to ontology concepts. The EOS framework does not specifi-
cally demand this, but it is very well possible to formulate the mapping function used in this
context using Concept Theory and make it part of the internal ontology of the EOS system,
e.g. using the concept MAPS_TO as exemplified in Figure 4.3.

MAPS_TO

EXISTENTTAG

MAPS_TO_AUTHOR

AUTHOR“<author>”

Figure 4.3: Mapping Markup Tags and Concepts

Clearly, the KEP must be aware of the semantics of these ontological concepts and interpret
them as mapping between tags and concepts – something the EOS system itself, of course, is
not able to do. According to Concept Theory, the EOS system only knows the semantics of a
specific set of concepts, such as ISA, RULE and LAW. Purely ontological concepts can only
be interpreted in terms of their position within the ontology graph and their ontological cate-
gory, i.e. whether they are representing universals or particulars. Therefore, the relationship
between the KEP and the EOS system is that of a software agent using the EOS system for
gathering specific information, i.e. occurrences of the concept MAPS_TO, which the KEP
(not the EOS system) understands as extension of the mapping function. The KEP may thus
formulate queries like “Return all tags that map to concept AUTHOR”. The representation of
such a query in Concept Theory is shown in Figure 4.4. In this section we will not yet flesh
out the manner in which queries are processed by the EOS system as our focus will remain
with knowledge extraction and acquisition. Knowledge retrieval will be the topic of Section
4.2.3. For the current discussion it suffices that the KEP may use the EOS system in order to
retrieve mapping information.

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 145145

QUERY:MAPS_TO_AUTHOR

TAG

MAPS_TO

AUTHORTAG EXISTENT

Figure 4.4: Example Query of the Knowledge Extraction Procedure

Using this mapping information, the KEP is able to detect concepts within tagged Web docu-
ments. A short excerpt of such a document is shown in Figure 4.5. The passages show two
tagged strings (“Angela Merkel” and “CDU”) that must be tested against the mapping func-
tion.

 …
 On Friday <MemberOfParliament>Angela Merkel</MemberOfParliament> announced
that…
 …
 <Party>CDU</Party>
 …

Figure 4.5: Sample Web Document

Provided that the KEP actually can find an appropriate mapping, e.g. because the internal
ontology of the EOS system contains concepts as shown in Figure 4.6., it can now start to
pass document information to the EOS system.

Figure 4.6: Mapping Concepts

According to the application scenario, when parsing a Web document the KEP will suggest
new concepts to the EOS system. On the one hand this will cover particulars it found within
the document, and on the other hand it will create a new DOCUMENT particular representing
the Web page itself. Passing new concepts to the EOS system is done using the knowledge
acquisition procedure that processes ACQUIRE concepts. Thus, the KEP must construct AC-
QUIRE occurrences according to the information it identified within a Web page. Applied to
the sample Web document of Figure 4.5 this means e.g. that the KEP can assume that “An-
gela Merkel” is the value of a new PARTICULAR:ANGELA_MERKEL (“Angela Merkel”)
that is a specialization of the universal MP. An according ACQUIRE concept is shown in
Figure 4.7. ACQUIRE concepts consist of two components. The first component is an ISA
occurrence suggesting the category (MP) of a new concept (PARTICU-
LAR:ANGELA_MERKEL) that is going to be passed to the EOS system. The second compo-
nent is intended for providing a component mapping between the new concept and its sug-
gested generalization. Assuming that MP is a bare concept not possessing any components, no

CHAPTER 4 EOS SYSTEMS

 146

component mapping has to be specified, as is indicated in Figure 4.7 by leaving the second
component (EXISTENT) unspecialized.

ACQUIRE: AM

ISA: AM_MP

MP“Angela Merkel” EXISTENT

Figure 4.7: An ACQUIRE concept for acquiring PARTICULAR:ANGELA_MERKEL

The knowledge acquisition procedure accepts ACQUIRE:AM as an input and checks whether
the suggested new concept (PARTICULAR:MERKEL) makes a valid concept according to its
internal ontology. In this example, this is the case, semantically, if all conceptual rules of the
ontology pertaining to the suggested parent (MP) are also true for the new concept, and, struc-
turally, if PARTICULAR:MERKEL is a valid minting of MP47. For keeping this initial example
simple, we are presuming that there are no rules on MP. During the knowledge acquisition
process the EOS system also tries to find occurrences of the suggested parent, that are candi-
dates for more specialized parent concepts for the new concept. If the ontology does contain
such concepts, the EOS system will check their rules on the new concept, too. The overall
goal of the knowledge procedure is to find the most specialized position within the ontology
graph the new concept complies to. If the new concept is not valid according to the respective
rules of a tested parent, it must be rejected as its specialization (and the new concept will be-
come the child concept of the formerly tested parent). This means that the new concept must
be rejected completely if it does not comply to the rules of the parent concept originally sug-
gested in the ACQUIRE concept. The ontology presented in Figure 4.1 contains neither uni-
versal specializations of MP, neither any rules against the new PARTICULAR:MERKEL.
Therefore, the EOS system will integrate it into the ontology as proposed by ACQUIRE:AM.
The second new concept the KEP detected in the Web page, PARTICULAR:CDU (“CDU”),
on the other hand, will be rejected as it is already part of the ontology48.

Next to passing concepts representing newly found information to the EOS system, the
KEP also creates conceptual representations of the Web pages it parses49. These DOCUMENT
particulars are also handed to the EOS system using according ACQUIRE concepts and sub-
sequently integrated into its internal ontology at the most specialized position the KAP can
determine. In this way, the KAP classifies documents in accordance with the EOS ontology it

47 For the remainder of this chapter we will not detail any further into structural aspects. Instead, we will focus on the role of

EOS rules and other semantic facets of knowledge processing. Our examples are held in a way that structural differences
between new concepts and their proposed parents are of minor importance.

48 Note in this context that an ontology may very well contain several distinct particulars having the same value, i.e. a new
particular is not necessarily rejected if another particular with the same value exists within the ontology. This is, for exam-
ple, the case with homonyms. The term “kiwi” may depict a bird, a fruit, and (then spelled with a capital ‘K’) an Austra-
lian citizen. For each of these different meanings we can presume that the KEP will produce ACQUIRE concepts suggest-
ing different parent concepts for the respective particulars bearing the same value, e.g. “kiwi” could once be suggested to
fall into category ANIMAL, and then into category PLANT. This would result in two distinct ontology particulars (PAR-
TICULAR:KIWI_BIRD and PARTICULAR:KIWI_FRUIT) that both carry the same value “kiwi”. This actually shows one of
the advantages of ontology-based knowledge processing: linguistic ambiguities can be resolved by respecting the semantic
context of terms.

49 Note that in the current application scenario only conceptual representations of Web documents (i.e. occurrences of
DOCUMENT) are being integrated into the ontology, not the Web pages themselves. This is due to the general definition of
the concept DOCUMENT as given above. A more detailed definition of DOCUMENT could, of course, contain components
such as URI (for storing the Web location of the document) and CONTENT (for storing a file copy of the document itself).
In any case, the EOS system will always and exclusively work with concepts, in our example DOCUMENT particulars (that
may or may not contain the original Web page content).

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 147147

is working on. For example, it is desirable that a Web document such as the one depicted in
Figure 4.5 will become an occurrence of POLITICS_DOC. What is needed to successfully
achieve this classification are ontology rules indicating that a Web page exhibiting some set
of properties (identified through its markup information) falls into a specific category. One
such rule is shown in Figure 4.8 (left). RULE:POLDOC expresses that any occurrence of
POLITICS_DOC must possess a POLITICIAN concept (or a specialization thereof) as a com-
ponent. The second rule of Figure 4.8, RULE:SPORTSDOC pertains to occurrences of
SPORTS_DOC and states that sports documents are expected to mention either an athlete or a
sport. As indicated in this example, the right-hand side of RULE concepts may consist of a
simple or composite condition (of arbitrary complexity).

POLITICS_DOC

EXISTENT *

RULE:POLDOC

POLITICIAN
SPORTS_DOC

EXISTENT *

RULE:SPORTSDOC

OR:SPORTS

ATHLETE SPORT

Figure 4.8: Simple rules for the concepts POLITICS_DOC and SPORTS_DOC

Generally, the KEP will not provide a complete classification but only suggest a new DOCU-
MENT particular50, in our example PARTICULAR:AMDOC as depicted in Figure 4.9. Struc-
turally, PARTICULAR:AMDOC contains all concepts the KEP could identify within the Web
page. This conceptual information about the document content becomes the basis for the clas-
sification process.

ISA:AM

PARTICULAR:AMDOC

MP“Angela Merkel” DOCUMENT

PARTY“CDU”

ISA:AM

AMDOC
[1]

DOCUMENT
[1]

AND:AM_MAPPING

…

ACQUIRE:AMDOC

Figure 4.9: An ACQUIRE concept for acquiring PARTICULAR:AMDOC

Whenever the KAP processes a candidate for DOCUMENT it will traverse the ontology graph
along the specialization hierarchy, testing all rules that are defined for the respective concepts
on the new particular (and rejecting it for a parent whose rules it violates). This process ends
at the lowest universal level within the ontology graph where concepts may possess only spe-
cializations that are particulars. In some cases, the KAP may find several parent universals,
which may be due to an incomplete or possibly poorly designed ontology (i.e. the ontology
does not provide a domain model that is specific enough to successfully classify new con-
cepts), or due to insufficient input from the KEP (i.e. the KEP was not able to determine

50 Suggesting that a new particular falls into some category (such as DOCUMENT) of course already is a classification of

some sort, yet a preliminary one. Evidently, the KEP and the KAP approach concepts from different perspectives. The
KEP operates in some specific application context (in our example it parses Web pages) and may use this context (e.g. it is
aware that the files it processes are documents and that text enclosed within markup tags translates to concept values) for
proposing the ontological kind of a new concept. The KAP, on the other hand, uses the ontology as its context. Depending
on the ontology graph structure it may refine a classification suggested by the KEP.

CHAPTER 4 EOS SYSTEMS

 148

enough useful information, which could stem from a poor document markup or an incomplete
tag–concept mapping). There are different ways of dealing with such a situation. The EOS
system could e.g. extend its ontology by creating a new universal that specializes all parents
detected by the KAP and will inherit all their child particulars, plus the new particular. On the
other hand, the EOS system might not alter the ontology as such but either duplicate the new
particular and assign a copy51 to each of the possible parent concepts, or (arbitrarily) sort out
one single concept among them as the only parent. The current KAP definition in Section
3.2.3.2 suggest this latter approach (as it presupposes a complete ontology model), yet a dif-
ferent behavior in this respect may very well be arguable. The decision mainly depends on a
trade off between storage space (creating additional concepts causes costs here) and access
time (the more information is materialized within the ontology the faster query return values
can be computed). In any case, the KAP will classify incoming DOCUMENT concepts accord-
ing to the internal EOS ontology. This information, organized in the form of an ontology
graph, may subsequently be queried using the knowledge retrieval procedure.

4.2.3 Knowledge Retrieval: Querying Information on Web Documents

Knowledge Retrieval in an EOS system is entirely based on the notion of concepts and their
organization into an ontology graph. The EOS system accepts QUERY concepts that will be
processed by the knowledge retrieval procedure (KRP). QUERY concepts own three compo-
nents specifying the query target (a set of concepts the query is aiming at), the query condi-
tion (on the target concepts), and a view condition (on the ontology itself). In this section we
will mainly concentrate on the usage of the first two components of QUERY concepts. How
ontology views may be used in EOS queries will be outlined later in the context of semantic
query rewriting (see Section 4.2.4). As a return value the KRP computes a set of ontology
concepts that are representing the outcome of the query, including all (particular and univer-
sal) occurrences of the target concept that are satisfying the query condition within the query
view. Human users may want to use a query interface that translates their information needs
into QUERY concepts which are then passed to the EOS system. In terms of the EOS system,
the query interface is a software agent calling the in-built KRP that will answer the query.
The concepts yielded by the KRP can then be used by the query interface to produce a result
representation intended for human users.

An example query that refers to the document classification ontology is presented in
Figure 4.10. The semantics of QUERY:CDU_DOCS are such that it asks for occurrences of
DOCUMENT (query target) mentioning members of parliament (MP) that are members of the
political party CDU (query condition) without any restriction on the ontology (view condition
is the root concept EXISTENT). Thus, QUERY:CDU_DOCS may be translated to “Return all
documents (i.e. document representations) reporting on CDU members”.

51 Note that “copying” the particular would not result in an ontology where one and the same particular occupies several

ontology graph leaves but in an integration of several distinct particulars (possessing different labels) of identical compo-
nent structure. This would be analogous to the customary employment of several reference cards (e.g. one for an author
index and another for a title or subject index) for the same book in library card catalogues.

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 149149

EXISTENT

QUERY:CDU_DOCS

MEMBER_OF

MEMBER PARTICULAR:CDU
DOCUMENT

EXISTENT * MP

Figure 4.10: Querying the Document Classification Ontology

In the general form of the KRP we introduced in Section 3.1.3.4, the result set for this query
contains the query target DOCUMENT and all its particular and universal occurrences. In our
document classification scenario, this would minimally yield concepts DOCUMENT, POLI-
TICS_DOC and the newly acquired PARTICULAR:AMDOC (cf. Figure 4.11). Recall that the
KRP traverses the ontology graph in a top-down manner, checking whether the query condi-
tion is violated. If this is not the case, the respective concept (be it universal or particular) will
be added to the result set. This may very well include universal specializations of DOCU-
MENT like SPORTS_DOC (unless there was a RULE concept within the ontology ruling out
that members of the CDU party can appear in occurrences of SPORTS_DOC), and also
SPORTS_DOC particulars (e.g. if the respective news document reported that a CDU party
member participated in a marathon, or that some sport event was sponsored by the party).

RULE:POLDOC

RULE:SPORTSDOC

POLITICS_DOC

PARTICULAR:AMDOC

SPORTS_DOC

DOCUMENT

EXISTENT

PARTY

RULE

PERSON

LAW

“SPD”

“CDU” “CSU”

“B90/Grüne”

ATHLETE

MAYOR MP

POLITICIAN

QUERY ACQUIRERELATION

MAPS_TO

MAPS_TO_MP MAPS_TO_PARTY

GENERATE

PARTICULAR:FISCHER PARTICULAR:MERKEL

AUTHOR

Figure 4.11: Extended Version of the Document Classification Ontology

It is a preliminary decision whether the query result set should include all ISA occurrences
needed to construct the ontology subgraphs the query is addressing, i.e. if the return value
also includes the arcs of the respective subgraphs. We suggest that the query interface is de-
manding this for supplementary processing (e.g. for generating a browsable graphical display
of the query result in the form of concept hierarchies). Therefore, it may augment the target
concept set in order to obtain the required information. A generic solution to this problem
involves adding ISA occurrences to the target set, along with according IDENTITY concepts.
The basic idea is to couple each target concept with an extra ISA concept whose second com-
ponent (that generalizes the first component) is identified with the target concept (through an
IDENTITY concept). Figure 4.12 shows this for QUERY:CDU_DOCS (where components
new to Figure 4.10 are shaded grey in order to highlight the additions made).

CHAPTER 4 EOS SYSTEMS

 150

EXISTENT

QUERY:CDU_DOCS

MEMBER_OF

MEMBER PARTICULAR:CDU

DOCUMENT

EXISTENT * MP

DOCUMENT

EXISTENT * MP

ISA

DOCUMENT

AND

Figure 4.12: Extended Target Set for QUERY:CDU_DOCS

This extension to the original target set is semantically equal to the statement “Next to com-
puting occurrences of the original concepts, return also all ISA occurrences that depict spe-
cializations of these concepts”. Practically, this would suffice in order to supply the query
interface with the complete subgraph information to the original query. In fact, it would even
produce too many ISA occurrences, namely those who mention specializations of target con-
cepts that were eventually rejected from the result set because they violated the query condi-
tion. Thus, in order to omit returning redundant information of this kind, all conditions per-
taining to the original target concepts must also be tested for the first component of the re-
spective ISA concept. In Figure 4.12 this is indicated through the identity conditions equating
MP and MEMBER for both, the DOCUMENT and the ISA concept. Hence, the query condition
is now also being tested within the ISA target concept, and unnecessary ISA occurrences are
going to be filtered out from the result set.

As already mentioned, the query interface could change any user query in this manner and
thus obtain the complete subgraph information for the query result. This example was con-
structed from the external perspective of a software application (here, the query interface) that
uses the services of the EOS system in a specific way. Taking an internal perspective, i.e.
concerning the actual ontology the EOS system is using, we can identify another solution to
achieve the same effect, namely through semantic query rewriting. If the EOS ontology con-
tained an according GENERATE law, all queries against the EOS system could be modified
to also return the complete subgraph information (see Section 4.2.4 for a more detailed dis-
cussion on this topic). Yet, before we turn to discussing semantic query rewriting in the appli-
cation scenario, we will shortly stress some general aspects concerning the KRP.

A number of basic types of queries against an EOS system are conceivable (cf. the discus-
sion in Section 3.1.3.4). EOS queries can be differentiated according to the return values they
are expecting:

 Sets of concepts, e.g.: “Return all documents reporting on CDU members”
 Numerical values, e.g. “Return the number of all documents reporting on CDU members”
 Truth values, e.g. “Return whether there are documents reporting on CDU members”

As already mentioned, the general version of the KRP as presented in Section 3.2.3.4 only
allows for queries expecting sets of concepts, which does not affect the applicability of an
EOS system (as, firstly, numerical and truth values can be easily computed – e.g. by the query
interface – from queries targeting sets of concepts, and, secondly, the KRP can well be ex-
tended to handle such queries). A distinction of another kind between EOS queries (on sets of
concepts) concerns the type of concepts expected within the return set:

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 151151

 Particulars, e.g. “Return all particular persons (within the ontology)”, which addresses the
information status of the EOS system – the more particulars an EOS system possesses in
addition to the overall domain model, the more concrete information it has gathered, e.g.
the number of particular documents categorized by the document classification ontology.

 Universals, e.g. “Return all universal persons”, which is asking about the role and exten-
sion of specific concepts (here PERSON) within the specialization hierarchy of an EOS
ontology. For example, a domain expert could be interested in finding out whether the on-
tology contains all relevant specializations of a domain concept (and possibly extend the
ontology if necessary).

 Universals and particulars, e.g. “Return all persons”, which encompasses both, domain
particulars and their ontological relation to the query target concepts.

We have shown that the KRP in its basic form supports the latter, which leaves it to the query
interface to filter out universals or particulars if the user query is demanding this. Again, only
slight changes to the general KRP would be necessary to provide this functionality. The last
classes of EOS queries we want to point out are constituted by the semantics of their condi-
tions:

 Conditions on the target concepts alone, e.g. “Return all sports documents that were pub-
lished in 2002”. Most user queries will be of this type.

 Conditions referring to the hierarchical makeup of an EOS ontology, e.g. “Return all con-
cepts that have the same ontological status as sports documents (i.e. all sister concepts to
sports documents according to the ontology)”. These are queries aiming at the structure of
the ontology graph.

Queries against the structure of the domain model, represented by the ontology graph, will
fall into three main categories, depending on their orientation in relation to the target con-
cept(s):

 Downwards, concerning child concepts
 Upwards, concerning parent concepts
 Sideways, concerning sister concepts

The KRP, by definition, operates in a downward fashion, returning all occurrences, i.e. child
concepts, of a target concept that are satisfying the query condition. In order to obtain parent
or sister concepts, one must explicitly navigate through the ontology graph. A generic way to
do so is depicted in the subsequent figures.

QUERY:SISTER_CONCEPTS

EXISTENT

ISA

EXISTENTA EXISTENT

ISA

EXISTENTEXISTENT

AND

Figure 4.13: Determining Sister Concepts of Concept A

Figure 4.13 shows how a query on the sister concepts of some concept A can be formulated
using according ISA and IDENTITY concepts in the query condition. Similarly, Figure 4.14
exemplifies how to determine parent concepts of A within the ontology graph. Note that
QUERY:ORDER2_PARENT_CONCEPTS yields the second generation parents (i.e. the
“grand parents”) of A. The order (i.e. the path length that is being traversed within the ontol-

CHAPTER 4 EOS SYSTEMS

 152

ogy graph) depends on the number of ISA concepts that are tied together in the query condi-
tion. Immediate parent concepts may accordingly be found employing only one ISA concept,
grand-grandparents using three ISA concepts, etc.

QUERY:ORDER2_PARENT_CONCEPTS

EXISTENT

ISA

EXISTENTA EXISTENT

ISA

EXISTENTEXISTENT

AND

Figure 4.14: Determining Second Generation Parent Concepts of Concept A

This concludes the general discussion of knowledge retrieval using EOS system. The follow-
ing section will now highlight the impact of EOS query rewriting, a technique which may be
used to transform user queries according to epistemological guidelines (i.e. expressed through
GENERATE laws that make part of the ontology).

4.2.4 Knowledge Generation: Semantic Query Rewriting for Querying Documents

In Section 3.2.3 knowledge generation in EOS systems was described in two different con-
texts, firstly for deducing new concepts from information stored in the ontology applied to
newly acquired concepts (then triggered by the KAP), and secondly for semantic query re-
writing (then invoked by the KRP). In any case, the knowledge generation procedure (KGP)
uses GENERATE laws for producing new concepts. For our discussion of the document clas-
sification scenario we will concentrate on using EOS knowledge generation for semantic
query rewriting (SQRW). The general idea behind SQRW in the EOS framework is that an
EOS system should be able to transform user queries depending on the context provided by its
internal ontology for providing a better service to the user. SQRW does not tackle physical
query processing and its optimizations (this is the task of the underlying DBMS used by the
EOS system) in terms of e.g. return times, but it is concerned with the semantic implications
of queries. Hence, SQRW aims at optimizing the output an EOS system is producing for spe-
cific user queries. Depending on the ontology structure the focus of a user query can e.g. be
enlarged or narrowed down by adding, deleting or replacing target, condition and/or view
components of the original QUERY concept. The domain knowledge that advises such query
transformations (presumably defined by a domain expert) is part of the internal ontology of
the EOS system and represented by respective GENERATE concepts. During SQRW the KGP
is checking whether there exists a GENERATE law that may be exerted on the original
QUERY concept. If this is the case, the KGP computes the new QUERY concept, which then
will replace the original one. Figure 4.15 shows an example of a semantically interesting
query transformation that could reasonably be applied to QUERY:CDU_DOCS. The figure
indicates that the original QUERY:CDU_DOCS is being transformed by applying GENER-
ATE:CDU_IMPLIES_CSU to it. The transformation brings about that the semantics of
QUERY:CDU_DOCS (“Return all documents mentioning members of parliament that are
members of the CDU party”) are extended to QUERY:CDU_OR_CSU_DOCS (“Return all
documents mentioning members of parliament that are members either of the CDU or of the
CSU party”)52.

52 In Germany, within the parliamentary context (indicated through the target concept component MP – the query requires the

target documents to provide information on members of parliament) it is reasonable not to differentiate between CDU and

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 153153

EXISTENT

QUERY:CDU_OR_CSU_DOCS

OR

EXISTENT

QUERY:CDU_DOCS

MEMBER_OF

MEMBER PARTICULAR:CDU
DOCUMENT

EXISTENT * MP

MEMBER_OF

MEMBER PARTICULAR:CDU
DOCUMENT

EXISTENT * MP

MEMBER_OF

MEMBER PARTICULAR:CSU

GENERATE:CDU_IMPLIES_CSU

Figure 4.15: Semantic Query Rewriting on QUERY:CDU_DOCS

In order to achieve this change in semantics, the example query transformation presented in
Figure 4.15 only needs to address the query condition of QUERY:CDU_DOCS. Other exam-
ples of SQRW may also involve modifying the query target and/or query view concepts.
Figure 4.16 displays how the law GENERATE:CDU_IMPLIES_CSU may be formulated. The
overall structure of GENERATE:CDU_IMPLIES_CSU shows a QUERY concept as its first
component, i.e. it may only be applied to concepts of type QUERY, which implies that it will
only be utilized during SQRW. GENERATE laws (or, concepts of Concept Theory in general)
are built in a constructive way, based on structural patterns. The first component indicates the
architecture some concept must follow for the GENERATE law to be applicable to it. GEN-
ERATE:CDU_IMPLIES_CSU, for example, expects a QUERY concept whose condition (its
second component) contains e.g. a MEMBER_OF concept of the given form. The second
component of a GENERATE law, then, describes the component structure of the desired out-
come of the concept generation process it is representing. With laws designed for SQRW, the
first and second component will mostly depict very similar QUERY concepts, as it is the case
with GENERATE:CDU_IMPLIES_CSU (the design of its two QUERY concepts is identical,
except for a disjunctively used new MEMBER_OF and an additional IDENTITY concept, both
part of the query condition).

GENERATE:CDU_IMPLIES_CSU

QUERY

AND

MEMBER_OF
MEMBER PARTICULAR:CDU

EXISTENT *

IDENTITY

EXISTENT MEMBER

EXISTENT *EXISTENT *

QUERY

AND

MEMBER_OF
MEMBER PARTICULAR:CSU

IDENTITY

EXISTENT MEMBER

EXISTENT *EXISTENT *

MEMBER_OF

OR

IDENTITY

EXISTENT *

Figure 4.16: Concept Structure of GENERATE:CDU_IMPLIES_CSU

CSU members as they are forming one single parliamentary group. Only on a (federal) state level the distinction between

CHAPTER 4 EOS SYSTEMS

 154

The task of the KGP, now, is to generate a new QUERY concept out of an actual QUERY con-
cept it accepted from the KRP that, in our example, matches the structure of the first compo-
nent of GENERATE:CDU_IMPLIES_CSU. The KGP does so by respecting the IDENTITY
conditions between the components the GENERATE law (depicted through connecting lines
between these components), i.e. the KGP takes the design plan of the second QUERY concept
of GENERATE:CDU_IMPLIES_CSU and fills in particular and universal values (as provided
by the input concept) according to the instructions given by the consorting IDENTITY condi-
tions. As Figure 4.16 displays, query target and view concepts are being copied directly with-
out any alterations. SQRW in this example concerns only the query condition. Figure 4.17
presents a detail view of this, leaving all concepts of GENERATE:CDU_IMPLIES_CSU aside
that are not involved in the construction of the new query condition.

AND

MEMBER_OF
MEMBER PARTICULAR:CDU

EXISTENT *

IDENTITY

EXISTENT MEMBER

AND

MEMBER_OF
MEMBER PARTICULAR:CSU

IDENTITY

EXISTENT MEMBER

MEMBER_OF

OR

IDENTITY

Figure 4.17: Detail View of GENERATE:CDU_IMPLIES_CSU

GENERATE:CDU_IMPLIES_CSU is intended to transform a query pertaining to CDU mem-
bers into one that also asks for CSU members (cf. Figure 4.15). Therefore, some existing
MEMBER_OF concept relating to PARTICULAR:CDU must be converted into an OR condi-
tion comprising two MEMBER_OF occurrences, one addressing PARTICULAR:CDU and one
PARTICULAR:CSU. Straightforwardly, this is done in Figure 4.17, and IDENTITY conditions
(the lines between the MEMBER_OF on the left-hand side and the first component of the OR
concept on the right-hand side, and between the two MEMBER concepts) signify how the
KGP should copy the concepts involved. Next to the MEMBER_OF information of the
QUERY concept being processed, the accompanying IDENTITY conditions (of this QUERY
concept) must be observed. Taking a look at QUERY:CDU_DOCS in Figure 4.15, one can see
that there exists an IDENTITY condition between the MP component of DOCUMENT and
MEMBER of MEMBER_OF. This IDENTITY condition within QUERY:CDU_DOCS is generi-
cally represented in GENERATE:CDU_IMPLIES_CSU using the IDENTITY concept that is
explicitly stated inside the left-hand side query condition. This IDENTITY concept is identi-
cally copied to the right-hand side, where also an additional IDENTITY concept is created.
This new concept is added in order to represent identities such as the one introduced in
QUERY:CDU_OR_CSU_DOCS, the transformation result after the KGP applied GENER-
ATE:CDU_IMPLIES_CSU on QUERY:CDU_DOCS. Thus, the structure of the GENERATE
law ensures that the IDENTITY condition expressing “members of parliament that are mem-
bers of the CDU party” in the original QUERY:CDU_DOCS will be turned into “members of
parliament that are members of the CDU or of the CSU party” in QUERY:CDU_-
OR_CSU_DOCS.

CDU and CSU becomes important.

SECTION 4.2 CLASSIFYING WEB PAGES USING AN EXEMPLARY EOS SYSTEM

 155155

Following the instructions of a GENERATE law on QUERY concepts, the KGP can thus
realize SQRW for an EOS system. In this context, it should be noted that SQRW is a service
to the user, defined by domain experts and offered within an EOS ontology in the form of
GENERATE laws. Yet, SQRW is not a dictate but may be suppressed if a (human or soft-
ware) user should choose to do so. This can be achieved using the view condition of QUERY
concepts. View conditions determine which parts of an ontology are visible for knowledge
processing (cf. 3.2.3.4). A generic example of an EOS query that prevents SQRW is presented
in Figure 4.18. The view condition of QUERY:OMIT_SQRW excludes all GENERATE laws
from being applied to this query, and hence prevents any SQRW that wholly depends on
them. Generally, ontology views – especially in combination with GENERATE laws – can be
used to manage the behavior of the KRP and, thus, are a means for realizing e.g. access re-
strictions and personalized knowledge retrieval.

EXISTENT

QUERY:OMIT_SQRW

NOT
GENERATEEXISTENT

Figure 4.18: A Generic Query Suppressing Semantic Query Rewriting

The focus of GENERATE laws may be arbitrarily narrow or general, i.e. it is possible to de-
fine SQRW guidelines for a very specific set of queries (e.g. GENER-
ATE:CDU_IMPLIES_CSU only refers to queries on documents that are satisfying a particular
condition), on the other hand a GENERATE concept may pertain to QUERY concepts in gen-
eral. Figure 4.19 shows an example for such a general SQRW definition. GENER-
ATE:SUBGRAPH resumes the discussion on query return values of the previous section. The
KRP, by default, returns a set of result concepts that are occurrences of the target concepts,
yet without supplying ISA occurrences that determine the respective subgraph structures (cf.
Figure 4.12 where it is shown how to extend QUERY:CDU_DOCS in order to obtain this in-
formation). Figure 4.19 demonstrates how QUERY concepts can be generically altered to re-
turn all according ISA occurrences by using GENERATE:SUBGRAPH in SQRW.

QUERY

GENERATE:SUBGRAPH

AND

EXISTENT *

IDENTITY
EXISTENT EXISTENT

EXISTENT *

EXISTENT *

QUERY

EXISTENT *

AND

IDENTITY
EXISTENT EXISTENT

EXISTENT *

IDENTITY
EXISTENT EXISTENT

AND

ISA
EXISTENT EXISTENT

EXISTENT *

Figure 4.19: Adding Subgraph Information To Arbitrary Queries

CHAPTER 4 EOS SYSTEMS

 156

GENERATE:SUBGRAPH determines that the target concept set is supplemented by ISA con-
cepts and also defines according IDENTITY conditions. These are ensuring that the compo-
nents of the newly added ISA concepts will be correctly minted. If GENERATE:SUBGRAPH
is defined for an EOS ontology, all queries (as the first component of GENER-
ATE:SUBGRAPH in its generic form applies to any QUERY concepts) will be changed to
return the complete subgraph information.

4.3 Representing EOS Ontologies in XML
Ontology engineering requires predefined languages for representing ontologies. There are
several possible approaches to define such languages. Following [7], current ontology repre-
sentations fall into two main groups that are either Web-based (e.g. using RDF, XML,
HTML), or based on logic rules (e.g. first-order logic or frame logic languages). Each ap-
proach promotes its own perspective on formalizing knowledge. Web-based ontology repre-
sentations put emphasis on the ‘static’ domain model, i.e. the definition of domain concepts
and their interrelations. Common application areas are specifications of catalogues or indexes
for information retrieval, and thesauri in computational linguistics. Rule based languages
stress the inference semantics characterizing a domain and therefore focus on the ‘dynamic’
domain model and how it may be used, e.g. by a knowledge based system. The EOS frame-
work acknowledges static and dynamic aspects equally and combines them in a uniform
model based on Concept Theory (cf. 3.1.3). The concept hierarchy spanned by an EOS ontol-
ogy graph encompasses the hierarchy of all domain concepts. This includes the ‘static’ onto-
logical and onto-epistemic concepts (such as BOOK, AUTHOR, TITLE and appropriate EOS
rules and conditions), as well as ‘dynamic’ epistemological concepts (namely EOS laws) with
distinct semantics as laid out by Concept Theory. The discussion of Concept Theory in
Chapter 2 and Chapter 3 has shown that any object of knowledge (be it ontological, onto-
epistemic or epistemological) within the EOS framework is expressed through the same con-
struct, a concept. Thus, a language for defining EOS ontologies can be held very compact,
which facilitates the process of ontology engineering. The following sections give an outline
on how and on what grounds such a representation for EOS ontologies could be defined.

EOS Ontologies contain metadata on objects of a certain knowledge domain, e.g. a “Bibli-
ography Ontology” could consist of all concepts denoting bibliographic entities (e.g. AU-
THOR, TITLE, ITEM, WORK), their interrelations in the form of EOS rules (e.g. COPY_OF,
SECONDARY_TO) and EOS laws determining how to apply them in knowledge processing
tasks. Being metadata, from a knowledge processing point of view the concepts of an EOS
ontology themselves are only a specific kind of data. They must be represented using a prede-
fined terminology and can be created, altered, communicated to third parties (e.g. software
agents), parsed and stored in electronic form. Thus, the same considerations that are valid for
information representation in general are also pertaining to the representation of ontologies.
Significantly, the most prominent examples for defining ontologies can be found in the area
of Web languages and associated techniques. We will therefore discuss the key aspects of this
field of research, taking the perspective of ontology engineering, which will then lead to our
preferred representation technique for EOS ontologies.

4.3.1 RDF and RDFS
The Resource Description Framework (RDF) has gained some importance as a format for
representing machine-processable semantics of on-line information resources (cf. [7]). It is
actually an application of XML, introduced for standardizing the representation of metadata
for Web pages. The data model behind RDF consists of three basic types: resources, proper-
ties and statements. A resource is an arbitrary entity that is addressable by a URI, e.g. a Web

SECTION 4.3 REPRESENTING EOS ONTOLOGIES IN XML

 157157

page or specific parts of it. Properties are attributes or relations (1- or n-ary properties) used
to describe a resource. Finally, statements combine resources, properties and their values, i.e.
a statement describes the value of a property for a particular resource. In order to specify on-
tologies, however, a fixed set of modeling primitives (classes, relations, etc.) is needed. Such
a set is provided by the RDF Schema (RDFS) specification. However, these extensions have
not proven to be sufficient for rendering RDF a suitable ontology representation language.
Ontologies formulated in RDF are still limited in their expressiveness, e.g. it is not possible to
derive properties of properties, or subproperties thereof (cf. [58]), there is no support for Boo-
lean operators, etc. For this reason several higher-level ontology languages have been pro-
posed, either on top of RDF (such as DAML+OIL) or based on (first-order) logic.

4.3.1.1 Logic-based Languages
Description logics (cf. [8], [3]), also known as terminological logics, form a class of logic-
based knowledge representation languages. They originated in the area of semantic networks
and define a formal and operational semantics for them. Description logics are commonly
based on a fragment of first-order logic with acceptable expressive power which still allows
for decidable inference procedures (cf. [56]). Systems operating on description logics, such as
LOOM, KL-ONE and FaCT, provide formal semantics with reasoning support.

The second important class of logic-based approaches in ontology engineering are based
on frame logic. Frame logic has been used to express ontologies in projects such as Ontobro-
ker (see also Section 4.1.3.3). Frames, essentially, are classes that may possess properties
called attributes. In this way, a frame provides a certain context for modeling one specific
aspect of a domain, similar to classes in object-oriented approaches. Ontology representation
languages for frame-based systems are XOL [48] and the Open Knowledge Base Connectivity
(OKBC) [13], [14].

An example for a language based on predicate logic is the Knowledge Interchange Format
(KIF) (cf. [34], [35]), which has been designed for interchanging knowledge among disparate
systems. Semantically, KIF knows four categories of modeling primitives, called constants:
objects, functions, relations, and logical constants expressing truth conditions. While KIF has
rarely been used to express ontologies, it is the formal basis of Ontolingua, a representation
language that found some recognition within the ontology engineering community. The dis-
cussion on Ontolingua has shown the dilemma of full-fledged logic-based approaches to de-
fining ontologies. One main reason for introducing such languages in the first place, their
high expressive power, has also become one of their decisive disadvantages. [47] argues that
the expressiveness of such languages in ontology engineering has not been met by adequate
software tools that could supply means to control their complexity. In the case of Ontolingua,
for example, no reasoning support has ever been provided. For that reason, the ontology engi-
neering community has lately been focusing its research efforts towards representation lan-
guages offering only restricted expressive power in terms of reasoning capacity, and whose
syntax is based on Web standards (such as XML and RDF). The most prominent example of
such a rather compact ontology language is DAML+OIL.

4.3.2 DAML+OIL
The Defense Advanced Research Projects Agency (DARPA) Agent Markup Language and
Ontology Interface Layer (DAML+OIL) is an ongoing research effort that is trying to com-
bine aspects provided by different communities. It offers an XML- and RDF-based syntax in
combination with modeling primitives borrowed from logic-based systems. Although
DAML+OIL is an important research project, its designers have not yet decided on a definite
set of modeling primitives that would allow for a fixed epistemological interpretation of the

CHAPTER 4 EOS SYSTEMS

 158

language. Extensions to DAML+OIL will be the result of further research and more practical
experience with the current specification (cf. [17]). However, it is interesting to note that the
designers of DAML+OIL chose to base the representation format for this language on XML
syntax and RDF in order to align with current standards of the (Semantic) Web community.

4.3.3 An XML DTD for EOS Ontologies
Various formalisms and data formats for expressing ontologies have been proposed. Among
the most prominent representation approaches are RDF, RDFS and DAML+OIL, all of which
are build upon XML and associated with their specific semantics. The very basic and simple
structure of EOS ontologies, which understands a domain formalization as a set of concepts,
could be expressed in any of these languages. Yet, EOS actually does not depend upon the
semantics underlying such languages. In fact, it is feasible to describe EOS ontologies di-
rectly using an appropriate XML DTD for EOS ontologies, such as shown in Figure 4.20.

<?xml version="1.0" standalone="yes" ?>
<!DOCTYPE ONTOLOGY [
 <!ELEMENT CONCEPT (NAME? | DESCRIPTION? | VALUE? | COMPONENT*)>
 <!ELEMENT NAME (#PCDATA)>
 <!ELEMENT DESCRIPTION (#PCDATA)>
 <!ELEMENT VALUE (#PCDATA)>
 <!ELEMENT COMPONENT (NAME? | DESCRIPTION? | REFERENCE? | COMPONENT*)>
 <!ELEMENT REFERENCE EMPTY>

 <!ATTLIST CONCEPT id ID #REQUIRED>
 <!ATTLIST CONCEPT category (particular|universal) #REQUIRED>
 <!ATTLIST CONCEPT type
 (isa|identity|and|or|not|rule|acquire|generate|query) #IMPLIED>
 <!ATTLIST COMPONENT id ID #REQUIRED>
 <!ATTLIST COMPONENT type
 (isa|identity|and|or|not|rule|acquire|generate|query) #IMPLIED>
 <!ATTLIST COMPONENT card (#PCDATA) #IMPLIED>
 <!ATTLIST COMPONENT idref IDREF #IMPLIED>
 <!ATTLIST REFERENCE idref IDREF #REQUIRED>
]>

Figure 4.20: The EOS DTD, an XML DTD for EOS Ontologies

The XML elements CONCEPT, COMPONENT and REFERENCE of this DTD mirror the basic
constituents of Concept Theory as presented in Chapter 2. NAME and DESCRIPTION are
optional elements that can be utilized for explicating CONCEPT and COMPONENT elements in
a human readable form. The VALUE element is used for specifying actual values of CONCEPT
elements that are representing particulars. An according graphical outline of the element hier-
archy as defined by the EOS DTD of Figure 4.20 is displayed in Figure 4.21.

CONCEPT

NAME VALUEDESCRIPTION COMPONENT

NAME REFERENCEDESCRIPTION COMPONENT

Figure 4.21: The Element Hierarchy of the EOS DTD

Next to the element hierarchy, the EOS DTD also defines element attributes and their values.
The core elements CONCEPT, COMPONENT and REFERENCE possess various attributes in

SECTION 4.3 REPRESENTING EOS ONTOLOGIES IN XML

 159159

order to define them precisely according to the semantics of Concept Theory. The XML at-
tribute category allows for determining whether a given CONCEPT represents a universal
or a particular, while the type attribute pertains to the different kinds of concepts as recog-
nized by Concept Theory. The cardinality of concept components can be specified using
card. Finally, id and idref specify unique element identifiers and their references that are
used for modeling Concept Theory’s concept labels and references. The following sections
give a concise introduction to the syntax definitions of the EOS DTD that have been briefly
sketched in this outline.

4.3.3.1 The XML Document Type ONTOLOGY
The root element of an XML document compliant with a given XML DTD is specified by the
document type declaration (marked with the key word DOCTYPE). The EOS DTD of Figure
4.20 defines the root element as
<!DOCTYPE ONTOLOGY [

…
]>.

Strictly speaking, this document type declaration is not part of the actual document type defi-
nition (DTD) that is given within its opening and closing parenthesis. Thus, in its strict sense,
the DTD of DOCTYPE ONTOLOGY must be equated with the listing of all XML elements and
attributes specified in between the document type declaration parenthesis. Following common
practice, though, we will identify the listing of Figure 4.20 as a whole (presumably stored in a
separate file) with the EOS DTD that defines the syntactical composition of XML documents
containing EOS ontologies. The basic structure of any such XML document then is
<?xml version="1.0" ?>
<ONTOLOGY>

…
</ONTOLOGY>

where all associated concept definitions (represented by CONCEPT elements) must be given
subsequent to the starting tag <ONTOLOGY> and preceding to the ending tag
</ONTOLOGY>. Naturally, as Concept Theory is unicategorical, any EOS ontology ex-
pressed in XML will consist simply of an arbitrary number of such CONCEPT elements, pos-
sibly containing subelements. A tabular overview of this structural makeup is presented in
Table 4.1.

Document Type ONTOLOGY

Element Arity Description Example

CONCEPT 0-n The DTD element represent-
ing a (universal or particular)
concept C.

<CONCEPT id="20" category="particular">
 …
</CONCEPT>

Table 4.1: The Document Type ONTOLOGY

The complete explanation of all EOS DTD elements, including their attributes and subelements,
will be delivered in the following sections.

4.3.3.2 The XML Element CONCEPT
The XML Element CONCEPT, as the name implies, is representing the notion of concepts as
defined by Concept Theory. The EOS DTD definition of the element CONCEPT (cf. Figure

CHAPTER 4 EOS SYSTEMS

 160

4.20) specifies its four subelements and their arities. This specification determines that for
any XML file conforming to the EOS DTD, within the starting and ending tags of a CON-
CEPT element, one may place one or zero instances of each of the first three subelements
NAME, DESCRIPTION and VALUE. Additionally, an arbitrary number (n or zero) of in-
stances of the subelement COMPONENT can be added. An overview of all subelements of
CONCEPT and their semantics is listed in Table 4.2.

Element CONCEPT

Subelement Arity Description Example

NAME 0-1 The concept name of a con-
cept C in natural language.

<NAME>PARTICULAR:FISCHER</NAME>

DESCRIPTION 0-1 A description of concept C in
natural language.

<DESCRIPTION>
 The German politician
 Joschka Fischer
</DESCRIPTION>

VALUE 0-1 The (particular) value of the
concept C.

<VALUE>Joschka Fischer</VALUE>

COMPONENT 0-n A component (subconcept) of
concept C.

<COMPONENT … >

 see Table 4.5

</COMPONENT>

Table 4.2: Subelements of the DTD Element CONCEPT

The subelement NAME identifies a concept in natural language, while DESCRIPTION is in-
tended for giving an explanation of the concept for human users. A VALUE subelement is
used for specifying particular values. Finally, the COMPONENT subelement is depicting con-
cept components. The structure of such a COMPONENT will be discussed separately later on
in Section 4.3.3.3. Next to subelements, the representation of EOS concepts in XML also
makes use of a specific set of XML attributes providing additional information for the CON-
CEPT element, namely id, category and type. Table 4.3 lists these attributes of CON-
CEPT and their usage in XML files.

Element CONCEPT

Attribute Status Description Values

id #REQUIRED A unique identifier for a CONCEPT element. 0, 1, 2, 3, …

category #REQUIRED The ontological category (kind) a CONCEPT
element is representing.

particular,
universal

type #IMPLIED The type of the concept C according to Concept
Theory. If left unspecified, C is regarded as
representing a common existent (e.g. PERSON
or PARTICULAR:FISCHER) as opposed to
semantically distinct concepts recognized by
Concept Theory, i.e. occurrences of ISA, condi-
tions, rules or laws.

isa,
identity,
and,
or,
not,
rule,
acquire,
generate,
query

Table 4.3: Attributes of the DTD Element CONCEPT

The XML representation of any EOS concept is based on this set of subelements and attrib-
utes of the element CONCEPT. The first attribute, id, determines a unique identifier for the
respective CONCEPT. Attributes category and type are used for specifying its EOS clas-

SECTION 4.3 REPRESENTING EOS ONTOLOGIES IN XML

 161161

sification. Table 4.4 shows the particular PARTICULAR:FISCHER and the universal PER-
SON in XML syntax.

Concept XML Syntax

“Joschka Fischer”

 <CONCEPT id="20" category="particular">
 <NAME>PARTICULAR:FISCHER</NAME>
 <DESCRIPTION>The German politician Joschka Fischer.</DESCRIPTION>
 <VALUE>Joschka Fischer</VALUE>
 </CONCEPT>

PERSON

 <CONCEPT id="2" category="universal">
 <NAME>PERSON</NAME>
 <DESCRIPTION>A person.</DESCRIPTION>
 </CONCEPT>

Table 4.4: Two EOS Particulars in XML Syntax

Both, PARTICULAR:FISCHER and PERSON, in this example are defined as bare concepts,
i.e. they possess no components of their own. Modeling more complex concept structures in
XML, including components and references, will be the subject of the following section.

4.3.3.3 The XML Elements COMPONENT and REFERENCE

EOS concepts usually exhibit some internal structure which is expressed using components.
According to the EOS DTD, concept components can be represented by the subelement COM-
PONENT. Table 4.5 gives an overview on possible subelements of COMPONENT. The subele-
ments NAME and DESCRIPTION are used analogously to their employment in CONCEPT
elements. REFERENCE, on the other hand, depicts a concept references, as needed e.g. in
IDENTITY concepts. COMPONENT elements themselves may also contain other COMPONENT
subelements.

Element COMPONENT

Subelement Arity Description Example

NAME 0-1 The name of a component D of a
concept C in natural language
(corresponds to a concept name
within the same ontology).

<NAME> … </NAME>

DESCRIPTION 0-1 A description of the concept
component in natural language.

<DESCRIPTION>
 …
</DESCRIPTION>

REFERENCE 0-1 A reference to a concept C. <REFERENCE idrefs=…

 (see Table 4.9)
/>

COMPONENT 0-n A subcomponent of component
D.

<COMPONENT>

 … (see Table 4.7)
</COMPONENT>

Table 4.5: Subelements of the DTD Element COMPONENT

The attributes of the COMPONENT element are listed in Table 4.6. As with CONCEPT ele-
ments, any COMPONENT is assigned a unique id. The type and cardinality of a COMPONENT
may be stated using type and card, respectively. Finally, the idref attribute (realized
through an XML IDREF) is a means to address any CONCEPT element within a given ontol-
ogy.

CHAPTER 4 EOS SYSTEMS

 162

Element COMPONENT

Attribute Status Description Values

Id #REQUIRED A unique identifier for a COMPONENT element. 0, 1, 2, 3, …

Type #IMPLIED The type of the component D. isa,
identity,
and,
or,
not,
rule,
acquire,
generate,
query

Card #IMPLIED The cardinality of a COMPONENT. *, 2, 3, …

Idref #IMPLIED A link (IDREF) to a CONCEPT or COMPO-
NENT.

0, 1, 2, 3, …

Table 4.6: Attributes of the DTD Element COMPONENT

An example for a concept with two components is ISA:PE, an ISA occurrence stating that a
person is an existent. The XML representation of this concept is developed in Table 4.7.

Concept XML Syntax

EXISTENT

 <CONCEPT id="1" category="universal">
 <NAME>EXISTENT</NAME>
 <DESCRIPTION>
 An existent, the most general concept
 and therefore the root element of the
 ontology.
 </DESCRIPTION>
 </CONCEPT>

PERSON

 <CONCEPT id="2" category="universal">
 <NAME>PERSON</NAME>
 <DESCRIPTION>A person.</DESCRIPTION>
 </CONCEPT>

EXISTENTPERSON

ISA:PE

 <CONCEPT id="3" type="isa" category="universal">
 <NAME>ISA:PERSON_EXISTENT</NAME>
 <DESCRIPTION>A PERSON is an EXISTENT.</DESCRIPTION>
 <COMPONENT id="4" idref="2">
 <NAME>PERSON</NAME>
 </COMPONENT>
 <COMPONENT id="5" idref="1">
 <NAME>EXISTENT</NAME>
 </COMPONENT>
 </CONCEPT>

Table 4.7: Specialization among Universals in XML Syntax

As shown in Table 4.7, an idref of a COMPONENT element (e.g. idref="2" of the
PERSON component whose own identifier is id="4") links to another COMPONENT or
CONCEPT id (e.g. id="2" of the PERSON concept definition), thus realizing EOS concept
labels. EOS concept references, on the other hand, are expressed by the idref attribute of
REFERENCE elements (cf. Table 4.8). As all CONCEPT and also COMPONENT elements pos-
sess their own unique id, a REFERENCE need not be formulated using the complete compo-
nent path but can directly address the respective concept or (sub)component. For example,
ISA:PE of Table 4.7 possesses two components, PERSON and EXISTENT, which can be ex-
pressed as ISA:PE[1] and ISA:PE[2]. Yet, as the components of ISA:PE are assigned their

SECTION 4.3 REPRESENTING EOS ONTOLOGIES IN XML

 163163

own unique ids in the XML representation, these ids, namely "4" and "5", can be used
directly in REFERENCE elements53.

Element REFERENCE

Attribute Status Description Values

idref #IMPLIED A link (IDREF) to a CONCEPT or COMPO-
NENT.

0, 1, 2, 3, …

Table 4.8: Attributes of the DTD Element COMPONENT

Table 4.9 shows a complete example in XML notation, taken from the document classifica-
tion scenario. Listed are QUERY:MAPS_TO_AUTHOR (see also Figure 4.4 in Section 4.2.2)
and the set of concepts it refers to, including the IDENTITY condition between its TAG com-
ponents.

Concept XML Syntax

EXISTENT

 <CONCEPT id="1" category="universal">
 <NAME>EXISTENT</NAME>
 <DESCRIPTION>
 An existent, the most general concept
 and therefore the root element of the
 ontology.
 </DESCRIPTION>
 </CONCEPT>

AUTHOR

 <CONCEPT id="6" category="universal">
 <NAME>AUTHOR</NAME>
 <DESCRIPTION>
 The author of a (Web) document.
 </DESCRIPTION>
 </CONCEPT>

TAG

 <CONCEPT id="7" category="universal">
 <NAME>TAG</NAME>
 <DESCRIPTION>An XML tag.</DESCRIPTION>
 </CONCEPT>

EXISTENT TAG

MAPS_TO

 <CONCEPT id="8" category="universal">
 <NAME>MAPS_TO</NAME>
 <DESCRIPTION>
 The mapping between XML tags and ontology
 concepts.
 </DESCRIPTION>
 <COMPONENT id="9" idref="7">
 <NAME>TAG</NAME>
 </COMPONENT>
 <COMPONENT id="10" idref="1">
 <NAME>EXISTENT</NAME>
 </COMPONENT>
 </CONCEPT>

53 Note that this is possible because the component ids in the XML representation are distinct from concept ids, e.g. the

concept definition of PERSON in Table 4.7 has been attributed with id="2", while the component PERSON of
ISA:PERSON_EXISTENT has been assigned the value id="4".

CHAPTER 4 EOS SYSTEMS

 164

QUERY:MAPS_TO_AUTHOR

TAG

MAPS_TO

AUTHORTAG EXISTENT

 <CONCEPT id="11" type="query"
 category="universal">
 <NAME>QUERY:MAPS_TO_AUTHOR</NAME>

 <DESCRIPTION> A KEP query54. </DESCRIPTION>
 <COMPONENT id="12" idref="7">
 <NAME>TAG</NAME>
 </COMPONENT>
 <COMPONENT id="13" idref="8">
 <NAME>MAPS_TO</NAME>
 <COMPONENT id="14" idref="7">
 <NAME>TAG</NAME>
 </COMPONENT>
 <COMPONENT id="15" idref="6">
 <NAME>AUTHOR</NAME>
 </COMPONENT>
 </COMPONENT>
 <COMPONENT id="16" idref="1">
 <NAME>EXISTENT</NAME>
 </COMPONENT>
 </CONCEPT>

QUERY:MAPS_TO_AUTHOR[2][1]

QUERY:MAPS_TO_AUTHOR[1]

IDENTITY:TAGS

 <CONCEPT id="17" type="identity"
 category="particular">
 <NAME>IDENTITY:TAGS</NAME>
 <DESCRIPTION>
 The identity condition valid between the
 TAG components of QUERY:MAPS_TO_AUTHOR.
 </DESCRIPTION>
 <COMPONENT id="18">
 <NAME>QUERY:MAPS_TO_AUTHOR[1]</NAME>
 <REFERENCE idref="12"/>
 </COMPONENT>
 <COMPONENT id="19">
 <NAME>QUERY:MAPS_TO_AUTHOR[2][1]</NAME>
 <REFERENCE idref="14"/>
 </COMPONENT>
 </CONCEPT>

Table 4.9: Specialization among Universals in XML Syntax

In this manner, all ontology concepts can be represented conforming to the XML DTD for
EOS ontologies. While this representation is useful as an input/output format for exchanging
data with and among EOS systems, it is not necessarily an ideal internal storage format. For
small ontologies referring to a domain with only a limited number of particulars it might suf-
fice to store an EOS ontology in the form of an XML document and query this information
using an appropriate XML parser, e.g. Xerces55. However, the size of an ontology will usually
grow quickly with the acquisition of new particulars, the actual domain data. Simple parsing
techniques on large XML files will therefore soon prove inadequate for providing fast access
to bigger ontologies. Here, database technology including indexing techniques, standardized
query language support and physical query optimization offers a better solution. Thus, data-
base technology can be seen as an enabler for efficient ontology data management in EOS
systems. For this reason, in the following section we will sketch how EOS ontologies could
be represented in a RDBS.

4.4 Representing EOS Ontologies in a RDBS
An EOS system such as the one motivated in the document classification example of this
chapter must be able to persistently store, alter and efficiently query its internal ontology.

54 See also 4.2.2 for a discussion on how such a query may be used by the knowledge extraction procedure (KEP) in the

context of knowledge acquisition.
55 http://xml.apache.org/xerces2-j/index.html

SECTION 4.4 REPRESENTING EOS ONTOLOGIES IN A RDBS

 165165

Requirements of this kind are classically met by the services of database management systems
(DBMS). DBMS offer persistent storage of data, along with higher-level query language sup-
port, transaction management, data integrity, as well as data security and recovery mecha-
nisms, etc. Our discussion will focus on storing EOS ontologies using relational DBMS
(RDBMS) that are generally supporting SQL as a standardized query language. In this sec-
tion, we will motivate how the structure of EOS ontologies may be translated into a relational
database schema and how an EOS system may make use of an relational database that stores
ontology concepts according to this schema. In particular, we will show how ontology con-
cepts stored in a relational database can be indexed for efficient access. As indicated in Sec-
tions 3.1.3.4 and 4.2.3, the main classes of query operations we can expect against an ontol-
ogy are:

 Returning occurrences of a concept C (with a possibility to determine whether particulars,
universals or both kinds of concepts should be included in the result set).

 Returning (mediate and immediate) parent concepts of a concept C.

Our relational approach to EOS ontologies recognizes this and provides a solution with regard
to these kinds of queries. The indexing strategy we are employing takes advantage of the spe-
cific structure of EOS ontology graphs in order to support these queries effectively.

4.4.1 Graph Representation
The overall structure of an EOS ontology is that of a directed acyclic graph56 (DAG) that mir-
rors the specialization hierarchy (cf. Chapter 2), starting from a root node (the most general
ontology universal which, throughout this thesis, has been EXISTENT) to the leaf nodes (ei-
ther universals possessing no further specializations, or ontology particulars). Commonly,
within an EOS ontology the share of particulars will outnumber that of universals by a con-
siderable margin. This is consistent with the general idea underlying EOS that universals are
used for providing domain categories (e.g. PERSON) while particulars are representing nu-
merous concrete domain facts (e.g. PARTICULAR:FISCHER, PARTICULAR:MERKEL, etc.)
reflecting the current information extent of an EOS system. Thus, the outset of representing
EOS ontologies in a relational way is that we can expect a limited number of universals that
are describing the domain model in the form of a specialization hierarchy, and a comparably
large number of particulars that are instantiating these universals. Figure 4.22 shows a corre-
sponding schematic ontology graph representation. From Section 2.2.4.2.3 we can assume
that any particular of the ontology graph possesses only one immediate parent. For universals
this may not be the case as Concept Theory allows for multiple inheritance, e.g. node E in
Figure 4.22 has two parent nodes, A and B. Furthermore, only nodes representing universals
can have child nodes (as particulars cannot be further instantiated). Considering their dissimi-
lar properties, it is reasonable to treat these two kinds of concepts differently in terms of their
role in the ontology graph. While universals define the structured part of an ontology graph
(the actual specialization hierarchy), particulars will only mark immediate extensions to on-
tology universals. For the following discussion on effectively indexing an ontology graph for
efficient access when stored in a RDBS, we will therefore focus on the basic structure as de-
termined by universals.

56 An ontology graph is acyclic in that it represents a domain’s specialization hierarchy where arcs are corresponding to ISA

occurrences that are relating concepts of any other kind, the nodes of the graph. The semantics of ISA (cf. Section 2.2.4.2)
rule out that concepts are being defined as generalizations of more general concepts, i.e. graphically speaking, outgoing
arcs will always be oriented in the direction away from the root node. Trivially, there is one possible exception to this rule,
namely arcs that are pointing back to the concept node C they originated from, which presupposes ISA occurrences of the
kind ISA:SELF:=(2, (C,C)) expressing the trivial statement “a C is a C”. Without loss of generality we will leave aside such
self-references and regard an ontology graph as a DAG.

CHAPTER 4 EOS SYSTEMS

 166

A

F G H J

D

B C

E

a d... ... x z...... Particulars

Universals

K

Figure 4.22: Structure of Ontology Graphs

As already pointed out in Section 2.2.4.2.2, within an ontology graph each node belongs to a
level, where graph levels are made up of nodes with equal distance from the root node. This
implies that levels are reflecting the path length from any given graph node to the root node,
A in case of Figure 4.22, where a path consists of the ISA arcs leading from A to the graph
node, and the path length is determined by the number of ISA arcs involved.

A

F G H J

KD

B C

E

Figure 4.23: The Ontology Graph of Universals

Figure 4.23 depicts the graph of universals of Figure 4.22, amplified by graph levels (denoted
by dotted lines).We informally introduce the notation

(NODE1, NODE2, …, NODEn)

for referring to a path that is delineated by arcs representing the ISA occurrences

ISA:1:=(2,(NODE1,NODE2)), ISA:2:=(2,(NODE2,…)), …, ISA:N-1:=(2,(…,NODEn)).

SECTION 4.4 REPRESENTING EOS ONTOLOGIES IN A RDBS

 167167

Concerning the assignment of nodes into their levels we can distinguish two special cases.
Graph nodes possessing more than one immediate parent may be accessible from the root
node by paths of different lengths, e.g. the paths (A,B,E,H) and (A,E,H) both lead to node H.
In such a case, the respective node, here H, is situated in the level determined by the longest
path, 3 for node H. On the other hand, nodes that could be situated in two (or more) different
levels, e.g. C may theoretically be attributed to both, level 1 and 2, will be placed in the up-
permost possible level (which corresponds to their actual distance from the root node), i.e. C
is placed in level 1.

This graph structure must be translated into a relational schema. Straightforwardly, this
may be done by simply storing it directly in relations, e.g. by associating child nodes with
their parents as done in Figure 4.24. The schema for the relations Universals and Particulars
is identical with attributes Concept, Parent and ISA Arc. Each tuple of these relations relates a
concept node to one of is parents, reporting also the specific ISA occurrence involved. Note
that all concept names are unique within an ontology, i.e. the attribute Concept can serve as
part of the primary key for these relations57.

Universals Particulars

Concept Parent ISA Arc Concept Parent ISA Arc

A NULL NULL a F ISA12

B A ISA1 d F ISA13

C A ISA2 x K ISA14

D B ISA3 z K ISA15

… … … … … …

Figure 4.24: Relations for a Simple Ontology Graph Representation

As reported in Section 3.1.3.4 and further exemplified in Section 4.2.3, the main task for an
EOS system in knowledge retrieval is to find a specific concept within the ontology graph and
return it along with all of its occurrences (provided they are consistent with the query condi-
tion). Following the simple solution of Figure 4.24 for representing an ontology graph using
relations, it is obvious that locating a specific concept C poses no problems, as concept names
are unique and can be ordered alphabetically. However, computing mediate parent concepts,
as well as the complete set of occurrences of C would imply a series of costly self-joins
within the Universals relation. For providing a more efficient solution to this problem that is
avoiding multiple self-joins, we propose an extra indexing strategy for ontology graphs. The
basic idea is to index the ontology graph in a way that each concept is assigned a numerical
concept identifier (CID) and an end identifier (EID) that together mark a range that comprises
all CIDs of the concept’s occurrences. In other words, let GO:=(V,E)58 be an ontology graph,
let CIDn and EIDn be the CID and EID of a node n∈V. It follows that

∀a,b∈V, a≠b: CIDa < CIDb ≤ EIDa ⇔ a is an (immediate or mediate) ancestor of b,

57 Note also that at this point we are only focusing on representing the graph structure as such in relational tables. For a

complete translation of an EOS ontology into relations more attributes and/or tables are needed for storing information on
concept components and particular values. A complete relational schema for EOS ontologies will be developed later in
Section 4.4.4.

58 See Definition 2.13 for the concise definition of ontology graphs.

CHAPTER 4 EOS SYSTEMS

 168

a property that allows to select the occurrences of a concept C using a single, simple SQL
statement.

Universals Particulars

Concept CID EID Parent ISA Arc Concept CID EID Parent ISA Arc

… … … … … … … … … …

Figure 4.25: Modified Relations for an Optimized Ontology Graph Representation

Supposing correspondingly modified relations Universals and Particulars as depicted in
Figure 4.25, all universal (or particular) occurrences of concept C can then be queried accord-
ing to this schema:

SELECT
FROM
WHERE

Concept
Universals
(CIDC < CID) AND (CID ≤ EIDC)

SELECT
FROM
WHERE

Concept
Particulars
(CIDC < CID) AND (CID ≤ EIDC)

The union of both statements produces all particular and universal occurrences of C. For com-
puting all ancestors of C we can use the same index property, which leads to the SQL state-
ment schema:

SELECT
FROM
WHERE

Concept
Universals
(CID < CIDC) AND (CIDC ≤ EID)

SELECT
FROM
WHERE

Concept
Particulars
(CID < CIDC) AND (CIDC ≤ EID)

In this way, the most frequent and important types of queries an EOS system depends on can
be efficiently processed using an index that provides the above property. The following sec-
tions will show how such an index can be computed for an EOS ontology graph.

4.4.2 The Indexing Algorithm

The ontology graph is a leveled directed DAG that may possibly include nodes with multiple
parents, e.g. node J in Figure 4.23 has two incoming edges. In a first approach to an indexing
technique for arbitrary ontology graphs, we will first regard a specific class of such graphs,
namely trees where each node may only possess one incoming edge (which corresponds to a
domain model that does not allow for multiple inheritance). The sought for index property

∀a,b∈V, a≠b: CIDa < CIDb ≤ EIDa ⇔ a is an (immediate or mediate) ancestor of b,

for a complete ontology tree GO:=(V,E) can then be achieved by using a depth-first number-
ing scheme. Note that the indexing algorithm of this section only considers the graph GUniver-

sals spanned by nodes representing universals alone, i.e.

GUniversals:=(V,E), and ∀v∈V: v represents a concept ∈ ΦU.

Graph nodes representing particulars are assigned the CIDs and EIDs of their parents. An
algorithm that computes node CIDs and EIDs for GUniversals is displayed in Figure 4.26. The
recursive algorithm index_tree() traverses an ontology tree in a depth-first manner, using a
global index i that is incremented in each recursion for computing the values CIDn and EIDn
of the current graph node n. The current value of i determines CIDn and is afterwards incre-
mented. This assures that each node is assigned a unique CIDn that is greater than the CID of

SECTION 4.4 REPRESENTING EOS ONTOLOGIES IN A RDBS

 169169

the parent node. For leaf nodes59 the algorithm determines equal values for their CIDn and
EIDn. If the current node n possesses child nodes, index_tree() is called for them, too60.
Then, EIDn equals the EID of the last child node. In this way, the index property holds for all
tree nodes. Trivially, index_tree() terminates as the ontology tree is acyclic and finite.

Integer i:= 0;
index_tree(root_node);

index_tree(Node n)
{
 CIDn := i;
 i := i+1;

 forall(c in child nodes of n) do { index_tree(c); }

 EIDn := i;
}

Figure 4.26: Indexing Algorithm for Ontology Trees

This algorithm indexes the ontology tree spanned by universals in the desired manner. How-
ever, if the domain model should change and new universals have to be integrated into the
ontology tree, this would mean a costly recomputation of CID and EID values. Although it is
rarely the case that the domain model changes structurally – usually only particulars are
added to an otherwise static domain model, and particulars possess no independent CIDs and
EIDs – it is advisable to modify the increment of index_tree() so that (a limited number of)
new universals can be added to the graph without having to change the CID and EID indexes
of other tree nodes. Deciding on the exact range of a tree node n (i.e. the maximum number of
child nodes it may possess) is a choice that a domain expert who is designing an ontology
should at least to some degree be able to influence. We propose to define a uniform range for
all nodes of an ontology tree level, while the ranges of different levels may vary. The capacity
of a tree node n in level k, i.e. the maximum number of all siblings of n, can then be recur-
sively formulated as

 capacityk := 0 for k=MaxULevel
 capacityk := rangek + rangek∗capacityk-1 = rangek ∗ (1 + capacityk-1) for k<MaxULevel.

As capacityk denotes the number of possible siblings of a node n in level k, it follows that

 EIDn = CIDn + capacityk.

The capacities of each ontology tree level can be computed separately and then be used in
function index_tree() of the indexing algorithm. This is depicted in Figure 4.27. A com-
plete example for an indexed ontology tree using the improved indexing algorithm is given in
Section 4.4.4.

Integer i:= 0;

compute capacities for all levels;
index_tree(root_node);

59 Note that these leaf nodes are representing universals, not particulars, as in this section we are only regarding GUniversals (cf.

Section 4.4.1).
60 Note that this algorithm is not apt for parallelization as it depends on the consecutive incrementation of index i.

CHAPTER 4 EOS SYSTEMS

 170

index_tree(Node n)
{
 CIDn := i;
 EIDn := CIDn + level capacity of n;
 i := i+1;

 forall(c in child nodes of n) do { index_tree(c); }

 i := EIDn+1;
}

Figure 4.27: Improved Indexing Algorithm for Ontology Trees

4.4.3 The Transformation Algorithm
The indexing algorithm of the previous section has been defined for ontology trees that do not
allow for multiple inheritance. In this section we are presenting a transformation algorithm
that restructures an arbitrary ontology graph into an equivalent tree representation, so that the
indexing algorithm can be applied to it. The transformation algorithm eliminates multiple
incoming edges for a graph node by introducing a single, new parent node that is representing
the set of former parent nodes. Figure 4.28 shows the amendments that have to be done for
transforming the graph of Figure 4.23 into an ontology tree, where changes are highlighted in
gray. Arcs that are being eliminated are crossed out, while the names of newly created parent
nodes indicate the set of former parents they are substituting.

EC

BAC

A

F G H J

D E

B C

Level 0

Level 2

Level 3

Level 1

K

Figure 4.28: Transforming an Ontology Graph into an Ontology Tree

The transformation algorithm is depicted in Figure 4.29. The function transform_tree()
presupposes the existence of two node vectors, concept_vectorn and parent_vectorn, for
each graph node n. Initially, the concept_vectorn of all original ontology graph nodes will
only contain one single concept name, namely of the concept that n is representing. After
transformation, the ontology tree will contain nodes whose concept_vector may include
more than one concept name. This is the case with all nodes that have been newly created by
the transformation algorithm. The other vector, parent_vectorn, comprises all immediate
parent nodes of n.

SECTION 4.4 REPRESENTING EOS ONTOLOGIES IN A RDBS

 171171

Integer l:= MaxLevel; // start with graph level containing universals
 // with longest distance from root node

forall(n in nodes) do
{
 NodeVector concept_vectorn[]:= all concepts involved in n;
 NodeVector parent_vectorn[] := all immediate parents of n;
}

transform_tree(Node n)
{
 do
 {
 forall(n in nodes of level n) do
 {
 if(number of nodes in parent_vector > 1) // n has multiple parents
 {
 delete all incoming arcs of n;
 if(a node p with concept_vectorp[]==parent_vectorn[]
 does not yet exist in level l-1)
 {
 create new parent node p in level l-1;
 concept_vectorp[] := parent_vectorn[];
 parent_vectorp[] := all parents of nodes in concept_vectorp[];
 }
 parent_vectorn[] := (p);
 }
 }
 l := i;

 } while(l>0)
}

Figure 4.29: Transformation Algorithm for Ontology Graphs

The algorithm processes the ontology graph level by level in a bottom-up fashion, i.e. starting
from the deepest level (MaxLevel) of graph nodes still representing universals. A new parent
node p is created whenever a node n possesses more than one parent (unless there already
exists a parent candidate with the desired concept_vector). Note that the parent_vectorp
of parent node p is then assigned all parent nodes of all nodes it is substituting. For example,
node J in the original graph of Figure 4.23 has parents E and C. The new node EC with con-
cept_vector[]:=(E, C) will consequently get a parent_vector[]:=(A, B, C) because the
parent of C is A, and additionally those of E are A, B and C. Hence, this method ensures that
the new path from the root node to n includes nodes bearing all former ancestors of n in their
concept_vectors, i.e. the complete generalization information for n that was originally ex-
pressed by the ontology graph structure is now condensed in the concept_vectors of nodes
belonging to the direct path to the root node. Taking this into consideration, the resulting on-
tology tree bears information that is equivalent to the original graph. The transformation algo-
rithm also terminates because it iterates through a finite number of graph levels, and the num-
ber of new parent nodes created in one iteration is also finite (as a maximum, within levels
MaxLevel to 2, each node may be assigned a new parent in an iteration step, while at levels 1
and 0 no new nodes are being created – the root node in level 0 possesses no parents, and all
nodes of level 1, per definition, have the root node as their only parent).

CHAPTER 4 EOS SYSTEMS

 172

4.4.4 Relational Schema for Ontology Graphs
The preceding sections have presented the basic outset for translating an ontology graph into
relations that can be stored in a RDBS. An ontology graph is first transformed into a semanti-
cally equivalent ontology tree. Afterwards, the CIDs and EIDs for tree nodes are computed
using the indexing algorithm. Figure 4.30 shows the indexed61 ontology tree for the graph
example of Section 4.4.1 (CIDs are attached to the left-hand side of tree nodes and EIDs on
their right-hand sides). On this basis we will now develop a complete relational schema for
ontologies, based on the specific structure of ontology trees that are containing nodes repre-
senting parent node sets of the original graph. For example, node EC in Figure 4.30 substi-
tutes nodes E and C of the original ontology graph of Figure 4.23. The special semantics of
these nodes must be observed firstly in the schema design and secondly when querying the
respective relations.

Level 3

D

J

BAC C

H

E

A

KEC

F G

B

Level 0

Level 2

Level 1

+0

+3

+12

+39

Figure 4.30: An Indexed Ontology Tree

In our approach, such nodes are not stored as independent entries of the relation Universals
but they are used to provide extra indices on the original concepts they are representing. We
will further illustrate this method with an example referring to the indexed ontology tree of
Figure 4.30. The attributes of relation Universals are described in Figure 4.31.

Relation Universals
 Attribute Description Type
 Concept The unique concept name of the universal. CHAR(*)

 Type The type of the universal (NULL, ISA, etc.). CHAR(*)

 CID A concept identifier of the universal, computed
by the indexing algorithm.

INTEGER

 EID An end identifier of the universal, computed by
the indexing algorithm.

INTEGER

 Status Reports whether CID and EID belong to an
original graph node (Status=1), or to a node
created by the transformation algorithm
(Status=0).

INTEGER

61 In this example we chose range=3 for all levels of the ontology graph. The resulting level capacities are listed on the left-

hand side of Figure 4.30.

SECTION 4.4 REPRESENTING EOS ONTOLOGIES IN A RDBS

 173173

Relation Universals Parents
 Attribute Description Type
 Concept The unique concept name of the universal. CHAR(*)

 Parent An immediate parent concept of the universal. CHAR(*)

Figure 4.31: The Relations Universals and Universals Parents

Following this schema, the relation Universals will contain several entries for nodes E and C,
one for each node they are part of, e.g. three different tuples refer to node C because it is part
of the tree nodes BAC, C and EC. Where the value for the attribute “Status” is 1, the tuple is
describing the original position of node C62:

Universals

Concept Type CID EID Status

… … … … …

C NULL 14 26 0

C NULL 19 22 0

C NULL 27 39 1

E NULL 15 18 1

E NULL 19 22 0

… … … … …

This method of representing graph nodes allows to formulate graph queries according to the
schemas that were introduced in Section 4.4.1:

 Return all siblings of C (that are universals):

 SELECT U2.Concept
 FROM Universals U1, Universals U2
 WHERE U1.Concept EQUALS “C”

AND (U1.CID < U2.CID) AND (U2.CID ≤ U1.EID)
AND U2.Status = 1

 Return all ancestors of C:

 SELECT DISTINCT U2.Concept
 FROM Universals U1, Universals U2
 WHERE U1.Concept EQUALS “C”

AND (U2.CID < U1.CID) AND (U1.CID ≤ U2.EID)

A corresponding schema for the relation Particulars is depicted in Figure 4.32, along with a
second relation for storing the specific values of particulars.

62 Note that the composite nodes BAC and EC of the ontology tree are not stored at all in relation Universals, as they are only

required for providing extra index information on concepts.

CHAPTER 4 EOS SYSTEMS

 174

Relation Particulars
 Attribute Description Type
 Concept The unique concept name of the particular. CHAR(*)

 Type The type of the particular (NULL, ISA, etc.). CHAR(*)

 Parent The parent universal of the particular. CHAR(*)

 CID A concept identifier of the parent universal,
computed by the indexing algorithm.

INTEGER

 EID63 An end identifier of the parent universal, com-
puted by the indexing algorithm.

INTEGER

Relation Particulars Values
 Attribute Description Type
 Concept The unique concept name of the particular. CHAR(*)

 Value64 The value of the particular. CHAR(*)

Figure 4.32: The Relations Particulars and Particulars Values

The relations mentioned so far are describing universals and particulars as nodes in an ontol-
ogy graph and are indexed by CID and EID values in a way that allows for an efficient re-
trieval of occurrences and generalizations of concepts. Hence, these relations pertain to the
overall structure of an ontology. The internal structure of concepts, i.e. their component in-
formation, can be extracted from the relation in Figure 4.33.

Relation Components
 Attribute Description Type
 Concept The unique concept name of the universal or

particular.
CHAR(*)

 Component A component of the concept. CHAR(*)

 Position The position of the component within the con-
cept.

INTEGER

Figure 4.33: Components Relation for Universals and Particulars

Finally, concept descriptions in natural language for human readers are being stored in a sepa-
rate relation called Descriptions as presented in Figure 4.34. This completes the relational
schema for EOS ontologies.

63 Strictly speaking, the EID attribute for relation Particulars is redundant as CID = EID for all particulars. However, we

chose to keep the EIDs for Particulars as this allows us to formulate queries pertaining to relations Universals and Par-
ticulars symmetrically.

64 The Value attribute has not been integrated into the Particulars relation because not every particular has necessarily a
value of its own. Particulars that have other particulars as components will not be listed in relation Particulars Values.

SECTION 4.5 PROTOTYPE IMPLEMENTATION

 175175

Relation Descriptions
 Attribute Description Type
 Concept The unique concept name of a universal or

particular.
CHAR(*)

 Description A description of the universal or particular in
natural language.

CHAR(*)

Figure 4.34: Descriptions for Universals and Particulars

This relational database schema, along with the transformation and indexing algorithms for
preparing an ontology graph to be loaded into a RDBS can be used by an EOS system in the
way we just described. The following section will present an EOS prototype that is using
these techniques for internally storing and querying its ontology.

4.5 Prototype Implementation
This section is intended to offer a more technical view on EOS systems. In the beginning of
this chapter, we have already presented an application scenario for EOS systems that involves
classifying Web documents on the basis of an EOS ontology. Now, we will sketch how a con-
crete implementation of such a system can be designed and successfully put into practice. For
providing an actual means for testing the theoretical points made in this thesis, we imple-
mented a prototype EOS system that we used to categorize the information displayed on a
restricted class of university Web sites.

All active system components were implemented in Java65, version 1.3.1, using the devel-
opment environment Borland Jbuilder466. The employment of Java as a programming lan-
guage allowed us to develop the EOS prototype as a platform independent application. The
primary test environment for the prototype implementation was Microsoft Windows 2000.
For the persistent storage of the EOS ontology we utilized a database that complies with the
relational schema as presented in Section 4.4. The RDBMS we used for managing this data-
base was TransBase67 (version 5.2.2) of TransAction Software for Microsoft Windows
NT/2000. Active system components of the EOS prototype can access the database using the
TransBase JDBC driver that implements the standard JDBC (Java DataBase Connectivity)
interface. Figure 4.35 shows the overall system architecture of the EOS prototype.

EOS DB
Acquisition
Engine

Query
Engine

Generation
Engine

Wrapper

EOS Prototype

Query User
Interface

Web Documents

Figure 4.35: The EOS Prototype Architecture

65 http://java.sun.com/
66 http://www.borland.com/jbuilder/
67 http://www.transaction.de/de/home/home.html

CHAPTER 4 EOS SYSTEMS

 176

As lined out in Section 4.3, we propose XML as an exchange format for ontologies. The EOS
prototype accepts an input ontology expressed in XML according to the EOS DTD, and cre-
ates a respective graph representation. This ontology graph is then indexed by the transforma-
tion and indexing algorithms we introduced in Sections 4.4.2 and 4.4.3, and finally stored
inside the database the EOS prototype is using for persistent storage. Next to the ontology
itself, the EOS prototype also accepts ACQUIRE and QUERY concepts as an input and proc-
esses them accordingly. ACQUIRE instances are created by an independent wrapper compo-
nent that implements the knowledge extraction procedure (cf. Sections 3.2.3.2 and 4.2.2).
Another separate system component, the query user interface of the EOS prototype, provides
facilities to formulate queries which are then translated into QUERY concepts and passed to
the query engine. Both, the acquisition engine and the query engine may trigger the genera-
tion engine that performs knowledge generation steps as defined by the GENERATE concepts
of the ontology.

The core Java classes and methods that were developed to implement this functionality for
the EOS prototype are grouped into two main packages, eos.graph and eos.wrapper:

 eos.graph.∗ comprises classes and methods concerning the structure of ontology graphs.
It also provides the functionality of the knowledge acquisition, generation and retrieval
engines. In particular, it contains an interface for translating between the XML, graph and
relational representations of EOS concepts and ontologies.

 eos.wrapper.∗ includes all classes and methods needed for parsing Web sites and extract-
ing new concepts from them.

In the following sections we will lay out the essential Java classes of these two packages and
describe their attributes and methods where appropriate.

4.5.1 Java Classes in Package eos.graph
The classes of this Java package implement the core functionality of the EOS prototype.
Classes eos.graph.Node and eos.graph.Graph define the structure of ontology graphs and
provide methods for converting an XML representation of an EOS ontology into an equiva-
lent ontology graph, and vice versa. As an auxiliary tool for parsing XML files,
eos.graph.Graph uses Apache’s Xerces Java Parser v.1.3.1, which supports the XML 1.0 rec-
ommendation of W3C and contains advanced parser functionality, such as DOM Level 2
v.1.0, and SAX v.2. All methods needed to store EOS ontologies in and to extract them from
a relational database are included in class eos.graph.Graph2Db. Finally, classes
eos.graph.RuleChecker and eos.graph.executeQuery provide methods to perform knowledge
acquisition, generation and retrieval.

 Class eos.graph.Node
Represents an ontology graph node.

Attributes:
Next to graph specific attributes (hashtables for successor and predecessor nodes, etc.),
eos.graph.Node also contains attributes pertaining to concept attributes and EOS graph
algorithms:

String name, description, value: the concept name and its natural language description
String type, category: the ontological classification of the concept
Vector components: the components of the concept the node is representing
String value: the value of a particular
int cid, eid: the CID and EID of the node

SECTION 4.5 PROTOTYPE IMPLEMENTATION

 177177

int status: reports whether the node has been created by the transformation algorithm
Vector concepts: the concepts such a node is substituting

Methods:
The methods for graph nodes mainly concern updating the graph specific attributes when
the ontology graph is built up, transformed or indexed.

 Class eos.graph.Graph
Represents the overall ontology graph structure.

Attributes:
eos.graph.Graph contains different data structures for efficiently accessing nodes during
graph operations. Additionally it comprises ontology graph specific information:

String root: the root node of the graph
int numLevels: the number of levels of the graph
Vector capacities: the node capacities (cf. 4.4.2) for all graph levels

Methods:
Next to methods managing graph modifications, eos.graph.Graph also provides facilities
for importing and exporting ontology information in XML:

public void loadGraphXml(String XmlFile): reads in an XML file containing an EOS
ontology and builds an equivalent ontology graph.
Public String putGraphToXml(): outputs the ontology graph in XML format.

 Class eos.graph.Graph2Db
Manages the persistent storage of an EOS ontology in a RDBS. Class
eos.graph.Graph2Db utilizes the transformation and indexing algorithms we introduced in
Sections 4.4.3 and 4.4.2.

Methods:
static Graph getTree(Graph g): implements the transformation algorithm.
Public void indexTree(Graph g): implements the indexing algorithm.
Public static void tree2Db(Graph g, String dbname): inserts the ontology tree g into
the database dbname.
Public String db2Xml(String dbname): extracts the complete ontology stored in data-
base dbname and returns it in XML format.
Public static void concept2Db(String XmlFile, String dbname): stores a newly ac-
quired or generated concept in database dbname.

 Class eos.graph.RuleChecker
Is able to interpret EOS RULE, ACQUIRE and GENERATE concepts..

Methods:
public static boolean check(eos.graph.Node node, eos.graph.Node rule): checks
whether rule holds for the concept node (cf. Section 3.2.2.3).
public void acquire(eos.graph.Node acquire): implements the knowledge acquisition
procedure (cf. Section 3.2.3.2).
public void generate(eos.graph.Node generate): implements the knowledge generation
procedure (cf. Section 3.2.3.3).

 Class eos.graph.executeQuery

CHAPTER 4 EOS SYSTEMS

 178

Is able to interpret EOS QUERY concepts.

Methods:
public void query(eos.graph.Node query, String database): implements the knowl-
edge retrieval procedure (cf. 3.2.3.4). The user query is transformed into an SQL state-
ment (cf. Section 4.4.4) and passed to the database.
Public eos.graph.Node rewriteQuery(eos.graph.Node query): performs semantic
query rewriting (cf. Section 4.2.4 for examples on semantic query rewriting).

Supplementary to the eos.graph.executeQuery class, we also developed a graphical user in-
terface for formulating ad-hoc queries. The user interface was implemented using the Javax
Swing environment. It offers a query editor that may be used to browse the ontology that is
stored in the internal database of the EOS prototype, and build an EOS QUERY. Optionally,
the user interface also accepts QUERY concepts in XML syntax. Return values are, per de-
fault, displayed in XML syntax.

4.5.2 Java Classes in Package eos.wrapper
The Java package eos.wrapper implements a wrapper for university Web pages. The wrapper
consists of a simple and fault tolerant parser. The corresponding ontology describes, on the
one hand, the expected structure of the Web documents, e.g. regularities that can be observed
on staff pages. On the other hand, it models the university domain that includes concepts like
STUDENT, PROFESSOR, LECTURE, etc. The parser segments Web documents to any de-
sired level, and interprets the parsed data according to the ontology concepts that relate to the
information found. If the ontology contains no applicable pattern for some document portion,
the parser will skip it and continue its execution with the next relevant document fragment.
The wrapper is further equipped with methods to extract document links and navigate along
them. The information identified within documents, e.g. the name of a person or chair, is sub-
sequently molded into ACQUIRE concepts. After successfully parsing Web documents, the
wrapper calls the acquisition procedure of the EOS prototype. The essential class of the
eos.wrapper package is class eos.wrapper.Parser:

 Class eos.wrapper.Parser
Provides the parser functionality for university Web pages. It implements the knowledge
extraction procedure.

Attributes:
Along with attributes storing information specific to the standard Java ParserCallback
functionality, eos.wrapper.Parser also includes:

Vector concepts: the information found in Web pages translated into EOS concepts, i.e.
particulars of the university domain.

Methods:
The parser methods provide heuristics for identifying patterns in natural language texts,
and utilizing the structural patterns defined in the EOS ontology for the university domain.
Methods in this context are of the form:
public static boolean isOccurrence(String target, String universal): decides whether
a text fragment target falls into a certain ontological category (universal).

In combination, the Java packages eos.wrapper and eos.graph are defining a simple imple-
mentation of the EOS framework.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 179

Chapter 5 Conclusion

This thesis has introduced EOS, a new approach to knowledge representation and processing
that is based on Concept Theory, a unicategorical formalism for defining formal ontologies.
Ontologies, as they are used in the ontology engineering community today, are a means for
knowledge sharing and reuse. We have shown that they are providing a formalized common
understanding of a domain that can be communicated between people and heterogeneous,
possibly widely spread, application systems [29]. Domain knowledge in current approaches is
foremost identified with a static model on the entities of a particular application area. More
advanced systems are providing inference engines that allow for deducing new domain facts.
The EOS approach takes on a broader perspective and combines both, the static ontological
domain model and the semantics of epistemological processes that operate on this domain
model, into the formal framework of Concept Theory.

5.1 Current Scope of EOS
Concept Theory provides the formal foundation of EOS. Its development has been motivated
mainly by two fields of research, Web technologies used for formalizing and representing
knowledge that have become of vital importance in the Semantic Web community, and logic
based approaches for processing knowledge. These considerations have lead to the specific
notion of EOS concepts underlying Concept Theory. Such concepts are apt to describe do-
main entities as well as logic statements and processing semantics in knowledge acquisition,
generation and retrieval. Generally, we differentiate between two categories of concepts, uni-
versals and particulars. Universals are representing abstract existents, while particulars are
describing concrete domain facts that report on the current state of the domain as known to an
EOS system.

In this thesis, EOS concepts have been first introduced from a purely ontological perspec-
tive, i.e. pertaining to the formalization of domain existents. An ontological concept unambi-
guously refers to one specific existent and describes its component structure. The ontological
view on EOS concepts includes one special kind of concepts with predefined semantics,
namely ISA. Occurrences of ISA define specialization and generalization among EOS con-

CHAPTER 5 CONCLUSION

 180

cepts. Hence, they delineate the overall specialization hierarchy inherent in the domain
model. Graphically speaking, the specialization hierarchy of an EOS ontology defines a lev-
eled DAG, the ontology graph. ISA occurrences serve as the edges of the ontology graph,
while the remaining set of concepts are the nodes of the graph.

The epistemological perspective of Concept Theory distinguishes more predefined seman-
tics for special classes of concepts. Onto-epistemic RULE concepts, along with the logical
EOS conditions AND, OR and NOT allow for defining constraints on concepts. Such condi-
tions are also used in epistemological concepts, called EOS laws, like ACQUIRE, GENER-
ATE and QUERY that are providing a standardized view on the corresponding epistemologi-
cal procedures. These procedures are part of the EOS framework for knowledge processing
systems. On its part, this framework defines a general architecture for EOS systems. An EOS
system, finally, is a software tool that is able to interpret EOS concepts and to perform the
epistemological procedures for knowledge acquisition, generation and retrieval. This indi-
cates that the theoretical foundation provided by Concept Theory, is the basis of the behavior
of an actual EOS system. How such an EOS system can be put to practice has further been
elaborated by describing a concrete application scenario for EOS systems that involves classi-
fying Web documents. In this context, practical aspects of realizing EOS knowledge process-
ing have been addressed:

 A graphical notation for EOS ontologies

 A representation language for EOS ontologies based on a specific XML DTD
 Examples for modeling ontological and epistemological concepts in the document classi-

fication scenario
 A detailed discussion on semantic query rewriting based on these examples
 A solution for coupling ontology concepts and document markup in Web pages for ex-

tracting knowledge from foreign documents
 A relational database schema for storing EOS ontologies in a RDBS
 Indexing and querying techniques for efficient knowledge retrieval from such a RDBS

Considering the scope of the EOS approach as just sketched, this thesis covers a thorough
guide to developing ontology-driven knowledge processing systems. EOS provides the theo-
retical foundation for harmonizing knowledge representation and processing, as well as prac-
tical solutions for concretizing and implementing the respective system components, while
recurring to well-established standards, such as XML and RDBS technology. Thus, the cur-
rent scope of EOS demonstrates an at the same time applicable and powerful way of employ-
ing formal ontologies with rich semantics. Further research may refine and extend this
groundwork.

5.2 The Road Ahead
In this section we will cover interesting perspectives for future research on EOS. Based on the
EOS framework as covered in the preceding chapters, we will motivate in Section 5.2.1 how
the limitations of the closed world paradigm (cf. Section 3.2.3) can be lifted in EOS systems.
Finally, Section 5.2.2 will present three examples for advanced knowledge processing scenar-
ios.

5.2.1 Integration of Particulars under the Open World Paradigm
EOS as presented in this thesis has assumed the closed world paradigm. Under the closed
world paradigm, an EOS system will only accept new particulars in knowledge acquisition

SECTION 5.2 THE ROAD AHEAD

 181181

that conform to its internal ontology. This means that particulars of an unknown component
structure will be rejected by the system. An interesting research topic, here, is to adapt the
EOS approach to also support the open world paradigm and admit structurally unfamiliar par-
ticulars by offering mechanisms to interpret them semantically. This pertains to the epistemo-
logical side of an EOS system, which is governed by EOS laws. Particularly, the open world
paradigm affects knowledge acquisition and generation, as new particulars have to be read
into the system (knowledge acquisition) and then be further processed according to the guide-
lines provided by GENERATE laws (knowledge generation). The EOS framework has been
defined in such a way that only minor changes are necessary to allow for particular integra-
tion under the open world paradigm. We will shortly sketch a solution for this problem:

 We can ontologically define a concept UNKNOWN, a specialization of the root concept
EXISTENT, that acts as an upper category for all concepts with unknown semantics. The
knowledge extraction procedure that is providing new concepts will mark a particular it
cannot interpret otherwise (as a whole or concerning one or more of its components) ac-
cording to its EOS ontology, as an occurrence of UNKNOWN.

 The functionality of the knowledge acquisition procedure itself then needs to be changed
in only one respect, namely in that it creates a new universal that is an occurrence of UN-
KNOWN and will act as an immediate parent concept for this particular, bearing the same
component structure of the particular. For unknown components of the particular, the re-
spective component of the new parent universal will be of type UNKNOWN, while com-
ponents the extraction procedure could interpret are related to their ontological categories.
In this way, particulars are structurally integrated into the ontology, yet without a clear
classification in terms of their semantics.

 Finally, the knowledge generation procedure must include new functionality for occur-
rences of UNKNOWN. Ontologically, the occurrences of UNKNOWN build a bushy sub-
tree of the ontology graph. The epistemologically interesting task, now, is to group “simi-
lar” particulars together by eliminating their immediate parents that are replaced by one
single universal, and, analogously, to merge similar universals. This means that the knowl-
edge generation procedure, next to its capacity to create concepts, must be able to delete
concepts from the ontology graph (the obsolete universals and ISA occurrences). The cir-
cumstances that have to be fulfilled for merging ontology concepts can then be defined by
GENERATE laws, i.e. they are part of the epistemological domain model. Contextual help
for this must be available in the ontological part of the domain model. This may comprise,
for example, information on which particulars were taken from the same document or
Web site, which particulars coincided on the original Web page, etc. Naturally, the catego-
ries defining the specific information that is needed to support the formulation of GEN-
ERATE laws must be an integral part of the EOS ontology, i.e. it is on the part of domain
experts to design a suitable domain model. The EOS approach simply provides the fea-
tures to formulate such a model.

Thus, only minor changes to the epistemological procedures of EOS are necessary to allow
for particular integration under the open world paradigm. However, this involves a sophisti-
cated ontology for modeling advanced knowledge processing tasks. The following section
will hint on some further aspects that tackle more sophisticated problems in knowledge proc-
essing.

5.2.2 Modeling Sophisticated Knowledge Processing Tasks
EOS laws are representing formalized descriptions on how to solve knowledge processing
tasks on the basis of ontological knowledge. Some interesting problem areas that require a

CHAPTER 5 CONCLUSION

 182

more sophisticated employment of EOS ontologies, and thus deserve a closer examination in
further research projects, are:

 Vagueness: The query, ‘Find the address of a philosopher living nearby’, contains an in-
exact, or vague, concept: NEARBY. The meaning of NEARBY depends on the context of
the query, as there are different notions of closeness in the context of buildings, countries
and persons. In such cases, the context needs to be established by respective ontology con-
cepts.

 Incomplete Knowledge: When trying to answer a query like the one above, an EOS system
may find that it lacks some information crucial for computing the result set. For example,
the vague ontology concept NEARBY may not be defined for ADDRESS. This indicates
incomplete knowledge which prevents the system from successfully calling the knowledge
retrieval procedure. However, as the query interface of an EOS system can interpret the
exact context of the query, it need not reject the query completely but can start a user in-
teraction asking for the required information. The byproduct of this enhanced service to
the end user is that the internal ontology is being enriched with new information about the
domain model.

 Uncertainty: Not all concepts passed to an EOS system can be regarded as reliable infor-
mation. For example, the ontology may include concepts provided by untrusted users (e.g.
when treating incomplete knowledge), or the knowledge extraction procedure may be mis-
taken about the ontological categories it determined for concepts it extracted from some
information source (e.g. because it is processing natural language texts, or non-native
markup). Therefore, the semantics of such concepts are uncertain. An ontology universal
IS_UNCERTAIN:=(1,(EXISTENT)) could then act as a relation that marks such concepts.
Hence, the extraction procedure (or the user interface, respectively) has the possibility to
indicate an uncertain concept C it is passing to the EOS system accordingly, i.e. it pro-
vides an additional concept C_IS_UNCERTAIN:=(1,(C)). GENERATE laws must then be
formulated in a way that recognizes this (concepts generated from uncertain concepts may
themselves be uncertain).

With these prospects for future research activities we conclude our treatment of the EOS ap-
proach to knowledge representation and processing. The different chapters of this thesis have
reflected the scope and focus we chose for discussing our contribution to the relatively young
but lively and rapidly emerging ontology engineering community. As such, EOS can be seen
as one step in an ongoing joint research effort for a better understanding and practical em-
ployment of knowledge, the road ahead.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 183

Bibliographic References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web. From Relations to Semistruc-
tured Data and XML, Morgan Kaufmann Publishers, San Francisco, USA, 2000.

[2] Aristotle. Metaphysics, Book Z. Harvard University Press, Cambridge, MA.

[3] F. Baader et al. Terminological knowledge representation: A proposal for a termino-
logical logic. Technical Memo TM-90-04, Deutsches Forschungszentrum für Künst-
liche Intelligenz GmbH (DFKI), 1991.

[4] R. Baeza-Yates, B. Ribero-Neto. Modern Information Retrieval. Addison Wesley
Longman, 1999.

[5] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American, 2001.

[6] T. Berners-Lee, M. Fischetti, H. Francisco. Weaving the web: The original design and
ultimate destiny of the World Wide Web by its inventor, 1999.

[7] J. Broekstra, C. Fluit, F. v. Harmlen. The State of the Art on Representation and Query
Languages for Semistructured Data. Deliverable 8, EU-IST On-To-Knowledge IST-
1999-10132, 2000.

[8] R. Brachman, J. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171—216, 1985.

[9] T. Bray. The Annotated XML Specification. 1998,
http://www.xml.com/axml/testaxml.htm.

[10] T. Buchheim. Aristoteles. Herder/Spektrum, Freiburg, Basel, Wien, 1999.

[11] M. Burnyeat, The Theaetetus of Plato. Hackett Publishing Company, Indianapolis,
1990.

[12] G. Cantor. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts.
Springer-Verlag, Berlin, 1932.

[13] V. K. Chaudhri et al. Open knowledge base connectivity 2.0. Technical Report KSL-
98-06, Knowledge Systems Laboratory, Stanford, 1997.

BIBLIOGRAPHIC REFERENCES

 184

[14] V. K. Chaudhri et al. OKBC: A programmatic foundation for knowledge base interop-
erability. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-98) and of the 10th Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-98), pp. 600-607. AAAI Press, 1998.

[15] P. P.-S. Chen. The entity relationship model – toward a unified view of data. ACM
Press, New York, 1976.

[16] W. J. Clancey. The Knowledge Level Reinterpreted: Modelling Socio-Technical Sys-
tems. International Journal of Intelligent Systems, 8: 33-49, 1993.

[17] D. Connolly et al. DAML+OIL (March 2001) Reference Description. W3C Note 18,
2001, http://www.w3.org/TR/daml+oil-reference.

[18] T. Crane. Universals. In Philosophy 1, pp 204-213. Oxford University Press, New
York, 1999.

[19] R. Davis et al. What is a Knowledge Representation?, AAAI, 1993.

[20] L. Dempsey et al. Specification for resource description methods. Part 1. A review of
metadata: a survey of current resource description formats. DESIRE Project Deliver-
able, RE 1004, 1997.

[21] M. Dixon. An Overview of Document Mining Technology, 1997.

[22] Dublin Core Metadata Initiative, http://dublincore.org/.

[23] D. W. Embley et al. Ontology-Based Extraction and Structuring of Information from
Data-Rich Unstructured Documents. 1998.

[24] D. W. Embley et al. Ontology Suitability for Uncertain Extraction of Information from
Multi-Record Web Documents. 1999.

[25] B. Eversberg. Rules for Formal Cataloging. http://www.allegro-c.de/formate/rak-
0e.htm.

[26] B. Eversberg. On the Theory of Library Catalogs and Search Engines. 2002,
http://www.allegro-c.de/formate/tlcse.htm.

[27] B. Eversberg et al. REUSE+, The Part → Whole Relationship in German and Ameri-
can Cataloging Data, 1998.

[28] B. Eversberg et al. REUSE, A Contribution to the Enhancement of International Bib-
liographic Compatibility,
http://www.oclc.cataloging/reuse_project/reuse_final_report.htm.

[29] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, New York, 2001.

[30] D. Fensel, S. Decker, M. Erdmann, R. Studer. Ontobroker: The Very High Idea. In Proceed-
ings of the 11th International Flairs Conference (FLAIRS-98), Sanibal Island, Florida, USA,
131-135, Mai 1998.

[31] D. Fensel et al. OIL in a nutshell. In: Knowledge Acquisition, Modeling, and Manage-
ment, Proceedings of the European Knowledge Acquisition Conference (EKAW-2000),
R. Dieng et al. (eds.), Lecture Notes in Artificial Intelligence, LNAI, Springer-Verlag,
October 2000.

[32] D. Fensel et al. OnToKnowledge: Ontology-based Tools for Knowledge Management. In Pro-
ceedings of the eBusiness and eWork 2000 (EMMSEC 2000) Conference, Madrid, Spain, Oc-
tober 2000.

 185185

[33] D. Fensel et al. On2broker: Semantic-Based Access to Information Sources at the WWW.

[34] M. R. Genesereth. Knowledge interchange format. In J. Allen, R. Fikes, and E. Sande-
wall, editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Second International Conference (KR'91). Morgan Kaufmann Publishers, San
Francisco, California, 1991.

[35] M.R. Genesereth, R.E. Fikes. Knowledge interchange format, version 3.0, reference
manual. Technical Report Logic-92-1, Computer Science Dept., Stanford University,
1992.

[36] A. Gomez-Perez, V. R. Benjamins. Overview of Knowledge Sharing and Reuse Components:
Ontologies and Problem-Solving Methods. In Proceedings of the IJCAI-99 Workshop on On-
tologies and Problem-Solving Methods (KRR5), Stockholm, Sweden, August 1999.

[37] R. Gömpel, E. Niggemann. RAK und MAB oder AACR und MARC?, Strategische Überlegun-
gen zu einer – weil immer noch – aktuellen Diskussion.

[38] A. C. Grayling. Philosophy, a guide through the subject. Oxford University Press, Oxford,
1999.

[39] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993.

[40] T. R. Gruber. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In
Formal Ontology in Conceptual Analysis and Knowledge Representation, edited by N.
Guarino and R. Poli. Kluwer Academic Publishers, 1993.

[41] N. Guarino. Formal Ontology, Conceptual Analysis and Knowledge Representation.
International Journal of Human and Computer Studies, special issue on The Role of
Formal Ontology in the Information Technology edited by N. Guarino and R. Poli, vol
43 no. 5/6, 1995.

[42] N. Guarino, P. Giaretta. Ontologies and knowledge bases – towards a terminological
clarification. In N.J. Mars, editor, Towards Very Large Knowledge Bases – Knowl-
edge Building and Knowledge Sharing, 1995, pp 25-32. IOS Press, Amsterdam, 1995.

[43] N. Guarino, C. Masolo, G. Vetere. OntoSeek: content-based access to the web. In IE-
EE Intelligent Systems, p. 70-80.

[44] H. Haddouti. VD17, Cooperative Cataloging in a Scalable Digital Library System.
Ph.D. Thesis, Technische Universität München, 1999.

[45] H. Haddouti, Wolfgang Wohner, Rudolf Bayer. Towards a Scalable System Architec-
ture in Digital Libraries. DEXA 1999: 852-861, Florence, Italy, 1999.

[46] A. S. Hornby, S. Wehmeier, ed. Oxford Advanced Learner’s Dictionary of Current English,
Oxford University Press, Oxford, 2000.

[47] I. Horrocks et al. The Ontology Inference Layer OIL,
http://www.cs.vu.nl/~dieter/oil/Tr/oil.pdf.

[48] P. D. Karp, V. K. Chaudhri, J. Thomere. XOL: An XML-based ontology exchange lan-
guage. Version 0.3, 1999.

[49] M. Kifer, G. Lausen, J. Wu: Logical Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, 42, 1995.

BIBLIOGRAPHIC REFERENCES

 186

[50] R. Klemke. Context Framework – an Open Approach to Enhance Organizational
Memory Systems with Context Modelling Techniques. In Proceedings of the Third Int.
Conf. On Practical Aspects of Knowledge Management (PAKM2000), Basel, Switzer-
land, 30-31 Oct. 2000.

[51] F. M. Lopez, Overview Of Methodologies For Building Ontologies. In Proceedings of
the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm,
Sweden, August 1999.

[52] M. J. Loux, Metaphysics, a contemporary introduction. Routledge, New York, 1998.

[53] Luke, S., Heflin J. SHOE 1.01. Proposed Specification. SHOE Project. February 2000.
http://www.cs.umd.edu/projects/plus/SHOE/spec1.01.htm.

[54] S. Luke, L. Spector, D. Rager, J. Hendler. Ontology-based Web Agents. In Proceedings of
First International ConferenceonAutonomous Agents, 1997.

[55] M. Münnich. REUSE or Rule Harmonization – just a project?, ALA pre-conference, Wash-
ington D.C., 1998.

[56] B. Nebel. Artificial intelligence: A computational perspective. In G. Brewka, editor,
Principles of Knowledge Representation, Studies in Logic, Language and Information.
CSLI publications, Stanford, 1996.

[57] B. Omelayenko. A Survey of Ontology Learning Approaches,.

[58] B. Omelayenko et al. Meta Data and UPML, Deliverable D5, IBROW Project IST-1999-
19005, 2000.

[59] M.-F. Plassard, ed. Functional Requirements for Bibliographic Records. Final Report,
UBCIM Publications - New Series Vol 19, K.G. Saur, München, 1998.

[60] Project page “Harmonization of Anglo-American Cataloguing Rules and Russian
Cataloguing Rules”. http://webdoc.gwdg.de/ebook/aw/reuse/harmony

[61] Project page “Project REUSE: Aligning International Cataloging Standards”.
http://webdoc.gwdg.de/ebook/aw/reuse

[62] D. Raggett et al. HTML 4.01 Specification. W3C Recommendation, 1999,
http://www.w3.org/TR/html4/

[63] Report on the project “ Harmonization of Anglo-American Cataloguing Rules and Rus-
sian Cataloguing Rules”.
http://webdoc.gwdg.de/ebook/aw/reuse/harmony/harmony_report1.htm

[64] Report on the project “Retrokonversion – Konversion von Zettelkatalogen in deutschen
Hochschulbibliotheken. Methoden, Verfahren, Kosten”. Berlin 1993, Deutsches Bib-
liotheksinstitut (dbi-Materialien 128)

[65] Report on the project “UseMARCON – User controlled generic MARC converter”.
http://www.kb.nl/kb/sbo/bibinfra/usema-en.html

[66] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language Reference Man-
ual. Addison-Wesley, Boston, 1998.

[67] B. Smith. Ontology: Philosophical and Computational, 2000,
http://wings.buffalo.edu/philosophy/faculty/smith/articles/ontologies.html.

[68] B. C. Smith. Reflection and Semantics in a Procedural Language. PHD Thesis. MIT
Laboratory for Computer Science. 1982.

 187187

[69] J. F. Sowa. Knowledge Representation. Logical, Philosophical and Computational
Foundations. Brooks/Cole, Pacific Grove, USA, 2000.

[70] S. Sturgeon, M.G.F. Martin, A.C. Grayling. Epistemology. In Philosophy 1, pp 7-60.
Oxford University Press, New York, 1999.

[71] S. E. Thomas. Kooperation der Library of Congress mit deutschen Bibliotheken im
Erschließungsbereich. In 86. Deutscher Bibliothekartag in Erlangen 1996 – Ressour-
cen nutzen für neue Aufgaben, pp. 266-272.

[72] M. Uschold, M. Grüninger. Ontologies: Principles, Methods and Applications, In
Knowledge Engineering Review, Volume 11 Number 2, 1996.

[73] L. Vieille. From Data Independence to Knowledge Independence: An on-going Story.
In Proceedings of the 24th VLDB Conference, New York, USA, 1998.

[74] S. Weibel, J. Miller, R. Daniel. OCLC/NCSA metadata workshop report. OCLC, 1995,
http://www.oclc.org:5046/conferences/metadata/dublin_core_report.html.

[75] W. Wohner. A Modest Proposal: Reasoning Beyond the Limits of Ontologies. In Pro-
ceedings of IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle,
Washington, August 4 - 5, 2001.

[76] W. Wohner. EOS: Making the Epistemic Impact of Ontologies in Knowledge Process-
ing Explicit. In Proceedings of KI-2001 Workshop on "Ontologies", Vienna, Austria,
September 18, 2001.

[77] W3C. Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommenda-
tion 6 October 2000. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, editors,
2000. http://www.w3.org/TR/REC-xml.

[78] M. M. Yee, S. Shatford-Layne. Improving Online Public Access Catalogs. ALA, 1998.

[79] M. H. Zack. Managing Codified Knowledge. Sloan Management Review, Volume 40,
Number 4, pp. 45-58, 1999.

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 189

Appendix: Indexes and Tables

Table of Figures

Figure 1.1: MAB Example.. 8
Figure 1.2: MARC Example ... 10
Figure 1.3: DC Example ... 11
Figure 2.1: Metaphysical Realism... 30
Figure 2.2: Concepts within Metaphysical Realism.. 34
Figure 2.3: Graphical Representation of the Concept EXISTENT... 54
Figure 2.4: Graphical Representation of the Concepts FAMILY and CHILD.. 55
Figure 2.5: Three Representations of the Concept FAMILY in different Levels of Detail.................................. 55
Figure 2.6: An alternative Definition of the Concept FAMILY... 55
Figure 2.7: Graphical Representation of the Specialization Hierarchy... 56
Figure 2.8: The Specialization Hierarchy Including Concept Mappings.. 56
Figure 2.9: Graphical Representation of Concept References .. 57
Figure 2.10: Two Alternative Representations of the Concept CHILD_INFO .. 57
Figure 2.11: Basic Ontology Graph of O3(Society) .. 58
Figure 2.12: Ontology Graph of O3(Society), extended by Universals .. 60
Figure 2.13: Ontology Graph of O3(Society), extended by Universals and Particulars.. 61
Figure 3.1: A General Outline of Knowledge Processing Systems .. 69
Figure 3.2: The EOS Framework.. 72
Figure 3.3: Ontological Explanation of the Concept LANDLORD.. 84
Figure 3.4: Conjunctive Property of Specializations .. 85
Figure 3.5: Refined Ontological Explanation of the Concept LANDLORD .. 85
Figure 3.6: Nested Ontological Explanation of the Concept LANDLORD.. 86
Figure 3.7: The Generic Algorithm for EOS Systems .. 100
Figure 3.8: The Acquisition Procedure in Pseudo-Code... 105
Figure 3.9: General Algorithm of the Knowledge Extraction Procedure ... 106
Figure 3.10: General Algorithm for a Knowledge Generation Step ... 110
Figure 3.11: Knowledge Generation in EOS Ontologies.. 111
Figure 3.12: The Overall Structure of the Knowledge Generation Procedure... 112
Figure 3.13: Alternative Representation of the Law GENERATE:UNCLE_OF ... 113
Figure 3.14: Abstract Form of the Law GENERATE:UNCLE_OF... 113
Figure 3.15: Legal and Illegal Self-containment of Concepts .. 115
Figure 3.16: Illegal Self-containment in GENERATE Laws .. 115
Figure 3.17: Illegal Concept Nesting in GENERATE Laws ... 116
Figure 3.18: Illegal Structurally Identical Copies in GENERATE Laws .. 116
Figure 3.19: A Legal Structurally Identical Copy... 117
Figure 3.20: Illegal Structural Additions in GENERATE Laws ... 117
Figure 3.21: Illegal Concept Nesting in a Chain of GENERATE Laws... 118
Figure 3.22: Creation of Structurally Identical Copies in a Chain of GENERATE Laws............................. 118
Figure 3.23: Illegal and Legal Concept Creation in a Chain of GENERATE Laws 119
Figure 3.24: The Knowledge Generation Procedure for Particulars... 121
Figure 3.25: Testing the Particular Generation Constraint ... 122
Figure 3.26: The Knowledge Generation Procedure for QUERY concepts ... 125
Figure 3.27: The Knowledge Retrieval Procedure.. 131
Figure 4.1: Outline of an EOS Ontology for Document Classification .. 143
Figure 4.2: A General Definition of the Concept DOCUMENT ... 144
Figure 4.3: Mapping Markup Tags and Concepts... 144

APPENDIX: INDEXES AND TABLES

 190

Figure 4.4: Example Query of the Knowledge Extraction Procedure... 145
Figure 4.5: Sample Web Document.. 145
Figure 4.6: Mapping Concepts.. 145
Figure 4.7: An ACQUIRE concept for acquiring PARTICULAR:ANGELA_MERKEL 146
Figure 4.8: Simple rules for the concepts POLITICS_DOC and SPORTS_DOC..................................... 147
Figure 4.9: An ACQUIRE concept for acquiring PARTICULAR:AMDOC .. 147
Figure 4.10: Querying the Document Classification Ontology... 149
Figure 4.11: Extended Version of the Document Classification Ontology... 149
Figure 4.12: Extended Target Set for QUERY:CDU_DOCS ... 150
Figure 4.13: Determining Sister Concepts of Concept A ... 151
Figure 4.14: Determining Second Generation Parent Concepts of Concept A ... 152
Figure 4.15: Semantic Query Rewriting on QUERY:CDU_DOCS .. 153
Figure 4.16: Concept Structure of GENERATE:CDU_IMPLIES_CSU ... 153
Figure 4.17: Detail View of GENERATE:CDU_IMPLIES_CSU ... 154
Figure 4.18: A Generic Query Suppressing Semantic Query Rewriting .. 155
Figure 4.19: Adding Subgraph Information To Arbitrary Queries ... 155
Figure 4.20: The EOS DTD, an XML DTD for EOS Ontologies... 158
Figure 4.21: The Element Hierarchy of the EOS DTD... 158
Figure 4.22: Structure of Ontology Graphs .. 166
Figure 4.23: The Ontology Graph of Universals .. 166
Figure 4.24: Relations for a Simple Ontology Graph Representation .. 167
Figure 4.25: Modified Relations for an Optimized Ontology Graph Representation ... 168
Figure 4.26: Indexing Algorithm for Ontology Trees... 169
Figure 4.27: Improved Indexing Algorithm for Ontology Trees .. 170
Figure 4.28: Transforming an Ontology Graph into an Ontology Tree.. 170
Figure 4.29: Transformation Algorithm for Ontology Graphs ... 171
Figure 4.30: An Indexed Ontology Tree... 172
Figure 4.31: The Relations Universals and Universals Parents .. 173
Figure 4.32: The Relations Particulars and Particulars Values... 174
Figure 4.33: Components Relation for Universals and Particulars... 174
Figure 4.34: Descriptions for Universals and Particulars ... 175
Figure 4.35: The EOS Prototype Architecture.. 175

 191191

Table of Definitions
Definition 2.1 (informal): Concept ... 32
Definition 2.2: Universe of Concepts ... 33
Definition 2.3: Concept Label... 35
Definition 2.4 (formal): Concept .. 35
Definition 2.5: Concept Reference.. 37
Definition 2.6: Denominator ... 38
Definition 2.7: Domain, Domain Space.. 39
Definition 2.8: Formal Ontology .. 39
Definition 2.9: Relation .. 42
Definition 2.10: Particular .. 42
Definition 2.11: The Fundamental Relation ISA.. 44
Definition 2.12: Reducibility .. 47
Definition 2.13: Concept Graph, Ontology Graph.. 48
Definition 2.14: Occurrence, Instance .. 49
Definition 2.15: Valid Ontology, Saturated Ontology .. 53
Definition 3.1: The Interpretation Function IO.. 87
Definition 3.2: The Concept RULE ... 88
Definition 3.3: The Condition IDENTITY .. 89
Definition 3.4: Concept Minting... 91
Definition 3.5: The Interpretation Function IO,M... 91
Definition 3.6: The Conditions AND, OR and NOT.. 93
Definition 3.7: The Concept LAW ... 97
Definition 3.8: The Epistemological Concept ACQUIRE .. 101
Definition 3.9: The Epistemological Concept GENERATE.. 108
Definition 3.10: The Epistemological Concept QUERY .. 125

Table of Proofs
Proof 2.1 ... 52

Wolfgang Wohner: EOS: An Epistemological Ontology-driven System for Knowledge Processing 193

