Distributed and Parallel Algorithms
and Systemsfor | nference of Huge
Phylogenetic Trees based on the
Maximum Likelihood Method

Alexandros Stamatakis

Lehrstuhl flr Rechnertechnik und Rechnerorganisation

Distributed and Parallel Algorithmsand Systems for
| nference of Huge Phylogenetic Trees based on the
Maximum Likelihood Method

Alexandros Stamatakis

\ollstandiger Abdruck der von der Fakultat fur Informatik der Technischen

Universitat Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

\orsitzender: Univ.-Prof. Dr. Hans Michael Gerndt

Prifer der Dissertation:
1. Univ.-Prof. Dr. Arndt Bode

2. Univ.-Prof. Dr. Christoph Zenger

3. Univ.-Prof. Dr. Thomas Ludwig
Ruprecht-Karls-Universitat Heidelberg

Die Dissertation wurde am 23.06.2004 bei der Technischen Universitat
Minchen eingereicht und durch die Fakultat fir Informatik am 20.10.2004
angenommen.

Abstract

The computation of large phylogenetic (evolutionary) trees from DNA sequence
data based on the maximum likelihood criterion is most probably NP-complete.
Furthermore, the computation of the likelihood value for one single potential tree
topology is computationally intensive.

This thesis introduces a number of algorithmic and technical solutions which
for the first time enable parallel inference of large phylogenetic trees comprising
up to 10.000 organisms with maximum likelihood.

The algorithmic part includes a technique to accelerate the computation of
likelihood values, as well as novel search-space heuristics which significantly ac-
celerate the tree inference process and yield better final trees at the same time.

The technical part covers technical solutions for the acquisition of the enor-
mous amount of required computational resources such as parallel MPI-based and
distributed seti@home-like implementations of the basic sequential algorithm.

Finally, the program has been used to compute a biologically significant ini-
tial small "tree of life" containing 10.000 representative organisms from the three
domains: Bacteria, Eukarya, and Archaea based on data from the ARB database.

Acknowledgements

Many people have contributed to this thesis.

First of all 1 would like to thank Prof. Bode for the excellent working atmo-
sphere at the Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR) and
the trust and freedom he granted me for my research. Furthermore, | am grateful
to Prof. Zenger who agreed to evaluate this thesis as 2nd reviewer. | am particu-
larly thankful to Prof. Ludwig who has been accompanying and supporting me for
many years now during my studies and doctoral research. Dr. Harald Meier, the
leader of the high performance bioinformatics group at the LRR, deserves special
gratitude for providing me fundamental biological knowledge.

From my colleagues at the Technische Universitat Munchen (TUM) | would
like to thank Markus Lindermeier, Martin Mairandres, Jirgen Jeitner, Edmond
Kereku, and Markus Pogl for their kind support on various issues and their good
company over the last years.

I would also like to mention several colleagues from outside the TUM who
have greatly helped me to accomplish this work: Ralf Ebner from the Leibniz
RechenZentrum (LRZ), Gerd Lanferman from the Max-Planck Institut (MPI)
Potsdam, and the HPC team from the Regionales Rechenzentrum Erlangen
(RRZE).

I am especially grateful to my student Michael Ott who contributed to this
thesis by implementing the distributed versions of RAXML.

Finally, I would like to thank my parents for their ever-lasting support of my
work and ideas.

1

Contents

Introduction 1
1.1 Motivation. 1
1.2 Scientific Contribution L. 5
1.3 Structureofthe Thesis 6
Phylogenetic Tree Inference 7
2.1 WhatisaPhylogeneticTree? 7
2.2 Obtaining new Insights from Phylogenetic Trees. 8
2.3 Prerequisites for Phylogenetic Tree Inference 10
2.3.1 Computation of Multiple Alignments 10
2.3.2 Adequate DNAPortions 12
233 The ARBDatabase 12
2.4 Problem Complexity 13
Phylogeny Models and Programs 15
3.1 Basic Model Classification 15
3.2 Distance-based Methods L. 16
321 UPGMA e 16
3.2.2 NeighborJoining, 17
3.3 Parsimony Criterion 17
3.4 Maximum Likelihood Criterion. 20
3.4.1 Calculating the LikelihoodofaTree 21
3.4.2 Optimizing the Branch Lengthsofa Tree 25
3.4.3 Models of Base Substitution 26
3.5 Bayesian Phylogenetic Inference 32
3.6 Measuresof Confidence 34
3.7 Divide-and-Conquer Approaches 38
3.8 Testing & Comparing Phylogeny Programs 39
3.9 Stateofthe ArtPrograms 41
3.9.1 Algorithms for Tree Building & Sequential Codes 41

3.9.1.1 Progressive Algorithms 42

3.9.1.2 Global Algorithms 44

3.9.1.3 Quartet Algorithms 47

3.9.2 Performance of Sequential Codes 47

3.9.3 Parallel & Distributed Codes 49
3.9.3.1 parallel fastDNAmMI 51

4 Novel Algorithmic Solutions 53
4.1 Novel Algorithmic Optimization: AXML 54
4.1.1 Additional Algorithmic Optimization 59

4.2 New Heuristics: RAXML 62
5 Novel Technical Solutions 67
5.1 Parallel and Distributed Solutions for AXML 67
511 Parallel AXML 67

5.1.2 Distributed Load-managed AXML 68
5.12.1 The Load Management System 68

51.2.2 Implementation 70

513 AxMLontheGrid 71
5.1.3.1 The Grid Migration Server 72

5.1.3.2 Implementationof GAXML 74

5.14 PAXML on Supercomputers 77

5.2 Parallel and Distributed Solutions for RAXML 79
521 ParallelRAXML 80

5.2.2 Distributed RAXML 82
5.2.2.1 Technicalissues 83

6 Evaluation of Technical and Algorithmic Solutions 87
6.1 TestData 87
6.2 Test & Production Platforms 89
6.2.1 Adequate Processor Architectures 89

6.2.2 Performance of PC Processors 90

6.3 Run Time Improvement by Algorithmic Optimizations 91
6.3.1 Sequential Performance 91

6.3.2 Parallel Performance 93

6.4 Run Time and Qualitative Improvement by Algorithmic Changes . 94
6.4.1 ExperimentalSetup. 94

6.4.2 Real DataExperiments 96
6.4.3 Simulated Data Experiments 99
6.4.4 Pitfalls & Performance of Bayesian Analysis 99

6.5 Assessment of Technical Solutions 103

6.5.1 Distributed Load-managed AXML 103

6.5.2
6.5.3

Parallel RAXML . .
RAXML@home . .

6.6 Inference of a 10.000-Taxon Phylogeny with RAXML

7 Conclusion and Future Work
7.1 Conclusion
7.2 FutureWork

7.2.1
7.2.2
7.2.3

Bibliography

Algorithmic Issues .
Technical Issues . .
Organizational Issues

11
1.2
1.3

2.1

3.1
3.2
3.3

3.4
3.5

3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2

List of Figures

Growth of sequence data in GenBank 2
Charles Darwin as seen by a contemporary cartoonist 3
Domains of life: Eukarya, Bacteria, and Archaea 4

Phylogenetic subtree representing the evolutionary relationship
between monkeys and the homo sapiens 9

Parsimony score computation by example 18
Parsimony score computation by example: one possible assignment 19
Parsimony score computation by example: another possible as-

SIgNMeENt. 20
Rooted example tree withrootatnode S, 22
Unrooted example tree with virtual root placement possibilities,

likelihood remainsunaffected 25
Schematic representation of the GTR model parameters 27
Hierarchy of probabilistic models of nucleotide substitution 29
Abstract representation of a bayesian MC? tree inference process

with two Metropolis-Coupled Markov Chains 34
Outline of the MCMC convergence problem 35
Example of an unresolved (multifurcating) consensus tree 36
Example for stepwise addition 43
Example for stepwise addition with quickadd option. 44
Possible rearrangements of subtree ST6 45
A possible bisection and some possible reconnections of atree . . 46
All possible nearest neighbor interchanges for one inner branch . . 47

Schematic difference in likelihood distribution over some model
parameter = for a hypothetic final tree topology obtained by

bayesian and maximum likelihood methods 49
Heterogeneous and homogeneous column equalities 54
Global compression of equal column 55

Vi

4.3 Example likelihood-, equality- and reference-vector computation
forasubtreerootedatp
4.4 Rearrangements traversing one node for subtree ST5, branches
which are optimized are indicated by bold lines
4.5 Example rearrangements traversing two nodes for subtree ST5,
branches which are optimized are indicated by bold lines
4.6 Example for subsequent application of topological improvements
during one rearrangementstep

5.1 The components of the Load Management System LMC
5.2 System architecture of DAXML
5.3 System Architecture of GAXML
5.4 GAXML tree visualization with 29 taxa inserted
5.5 GAXML tree visualization with 127 taxa inserted
5.6 Number of improved topologies per rearrangement step for a
SC_150 random and parsimony startingtree
5.7 Parallel program flowof RAXML
5.8 Program flow of distributed RAXML

6.1 AXxML and fastDNAmI inference times over topology size for
quickadd enabled and disabled
6.2 RAXML, PHYML, and MrBayes final likelihood values over tran-
sition/transversion ratios for 150 SC
6.3 RAXML likelihood improvement over time for 500 _ZILLA
6.4 Topological accuracy of PHYML, RAXML and MrBayes for 50
100-taxontrees
6.5 Convergence behavior of MrBayes for 101_SC with user and ran-
dom starting trees over 3.000.000 generations
6.6 150 _SC likelihood improvement over time of RAXML and Mr-
Bayes for the same random startingtree
6.7 150_ARB likelihood improvement over time of RAXML and Mr-
Bayes for the same random startingtree
6.8 Convergence behavior of MrBayes for 500_ARB with user and
random startingtrees
6.9 Average evaluation time improvement per topology class: op-
timized (SEV-based) DAXML evaluation function vs. standard
fastDNAml evaluation function
6.10 JNI and CORBA-communication overhead
6.11 Worker object migration after creation of background load on its
host
6.12 Impact of 3 subsequent automatic worker object replications . . .

6.13 Normal, fair, and optimal speedup values for 1000_ARB with
3,7,15, and 31 worker processes on the RRZE PC Cluster
6.14 Visualization of the 10.000-taxon phylogeny with ATV

vii

viii

List of Tables

2.1 Number of possible trees for phylogenies with 3-50 organisms . . 13
4.1 makenewz()analysis 60
5.1 Summary of technical solutions for AXML and RAXML 84
6.1 Alignmentlengths. 88
6.2 RAXML execution times on recent PC processors for a 150 taxon

tree . . 91
6.3 Performance of AXML (v1.7), AXML (v2.5), and fastDNAmI

(V1.2.2) . 92
6.4 Global run time improvements (impr.) TrEXML vs. ATrExXML . . 93
6.5 Execution time improvement of PAXML over parallel fastDNAmI

onaPentium I Linux cluster 93
6.6 Execution time improvement of PAXML over parallel fastDNAmI

on the Hitachi SR8000-F1 94
6.7 PHYML, RAXML execution times and likelihood values for real

data 97
6.8 MrBayes, PAXML execution times and likelihood values for real

data 97
6.9 Worst execution times and likelihood values for real data from 10

RAXMLIuns 99
6.10 RAXML execution times and final likelihood values for 1000 ARB 107
6.11 Performance of MPI-based distributed RAXML prototype 108

1

| ntroduction

Die Verzerrung der Wahrheit im Bericht ist der wahrheitsge-
treue Bericht uber die Realitat.
Karl Kraus

This initial Chapter provides the motivation for conducting research in high
performance computational biology and phylogenetics, summarizes the scientific
contribution of the work, and describes the structure of this thesis.

1.1 Motivation

The immense accumulation of DNA and other relevant biological raw data
through DNA sequencing techniques during recent years has lead to the emer-
gence of a new interdisciplinary filed in computer science and biology: Bioin-
formatics. One main issue in Bioinformatics is to organize and represent this
huge mass of data appropriately and to keep pace with its constant growth.
As an example the increase of available DNA sequence data in the Gen-
Bank [35] database is outlined in Figure 1.1 (GenBank growth data is available at
WWW.NCBI.NLM.NIH.GOV/GENBANK/GENBANKSTATS.HTML).

Another key objective of Bioinformatics is to extract useful information from
the enormous amount of available data and thereby enable new insights into the
system of life. However, there also exist areas of research in computational biol-
ogy which are not based on DNA sequence data, such as simulation of metabolic
pathways or genetic networks.

Unfortunately, many interesting problems and algorithms in Bioinformatics,
such as inference of perfect phylogenies or optimal multiple sequence alignment
are NP-complete and computationally extremely intensive. Therefore, High Per-

1

1. INTRODUCTION

4e+10 T T T

"GenBankGrowﬂf —_—

3.5e+10

3e+10 | —

2.5e+10

2e+10 | —

1.5e+10

Number of Base Pairs

le+10 E

5e+09

1 1 1 1
1980 1985 1990 1995 2000 2005
Year

Figure 1.1: Growth of sequence data in GenBank

formance Computing Bioinformatics (HPC Bioinformatics) represents a partic-
ular difficult challenge due to its strong interdisciplinarity, since concepts from
Biology, Theoretical Computer Science, and High Performance Computing have
to be integrated into a single computer program. Therefore, progress in this field
can only be achieved by a combination of algorithmic, technical, and biological
advances.

The evolutionary history of mankind and all other living and extinct species
on earth is a question which has been preoccupying mankind for centuries. The
theory of evolution including the survival of the fittest, initially postulated by
C. Darwin [24] lead to rather controversial discussions in the beginning (see
Figure 1.2, taken from WwWW.JULIANTRUBIN.COM/BIOLOGYJOKES.HTML) but
is now broadly accepted.

Typically, evolutionary relationships among organisms are represented by an
evolutionary tree. Therefore, the construction of a “tree of life” comprising all liv-
ing and extinct organisms on earth ranging from simple Bacteria up to the Homo
Sapiens, or vice versa if one prefers, has been a fascinating and challenging idea
since the emergence of evolutionary theory.

2

1.1. MOTIVATION

Figure 1.2: Charles Darwin as seen by a contemporary cartoonist

“Classic” phylogenetic (evolutionary) trees for a set of organisms are con-
structed by comparing the presence/absence of certain distinguishing characteris-
tics of those species, such as the number of legs, type of bones, etc. In contrast
to trees obtained by computational methods which assume hypothetic ancestors
those phylogenies also include known common ancestors. However, the ques-
tion arises how to compare organisms which can not be classified by obvious
phenomenological properties such as Bacteria or Archaea and above all how to
compare those simple organisms with animals or plants. The basic structure of
the tree of life which contains organisms from the three domains Archaea, Bac-
teria and Eukarya is provided in Figure 1.3. Members of these three domains are
mainly distinguished by chemical properties as well as by the structure of their
cell walls and cell membranes.

Archaea and Bacteria differ in that the Archaea usually live in extreme envi-
ronments and are less common in normal environments because they were proba-
bly out-competed by Bacteria. Bacteria are widespread: There exist more Bacteria
in a person’s mouth than there are people in the world. Most human diseases are
caused by the Bacteria, rather than by the Archaea. In fact, no pathogenic Ar-
chaea are currently known. Finally, organisms such as plants, animals, fungi, and
protozoa ! are all members of the Eukarya.

The first computational approaches to phylogenetics date back to the early
60’s [16, 28]. The full potential of molecular phylogeny was revealed in a pa-
per by Zuckerkandl and Pauling [154]. During this period of time the hypothesis
emerged that certain regions of molecular sequences might contain evolutionary
information. The idea of using a special, highly conserved region of the DNA, the

IProtozoa are single-celled creatures with nuclei that show some characteristics usually asso-
ciated with animals, most notably motility and heterotrophy.

1. INTRODUCTION

The three domains
of life

Bacteria

Archaea
Figure 1.3: Domains of life: Eukarya, Bacteria, and Archaea

16S small subunit ribosomal Ribonucleic Acid (ssu rRNA), to conduct evolution-
ary analysis comprising all living species is firstly mentioned in a seminal paper
by G.E. Fox et al. [33].

Thus, since the required biological raw data has now become available and due
to the high algorithmic and computational complexity of underlying algorithms
and models the inference of a “tree of life” containing representative species of
all living organisms on earth is one of the “grand challenges” of Bioinformatics
in our days. Important applications of large phylogenetic trees in medical and
biological research are discussed in Section 2.2 (pp. 8).

In the spirit of this “grand challenge” this thesis covers the development of
novel concepts for inference of large phylogenies based on the maximum likeli-
hood method, which along with bayesian phylogenetic inference has proved to be
the most adequate as well as accurate model for inference of huge and complex

4

1.2. SCIENTIFIC CONTRIBUTION

trees. Thus, the overall goal of this work can be stated as: HOW TO INEXPEN-
SIVELY COMPUTE MORE ACCURATE TREES IN LESS TIME?

1.2 Scientific Contribution

The problem of maximum likelihood phylogenetic tree reconstruction is unfor-
tunately believed to be NP-complete, which induces the necessity to introduce
appropriate heuristics. Furthermore, the computation of the likelihood score for
one single potential tree topology is computationally extremely expensive. Thus,
progress in this field can not be achieved by brute-force allocation of all avail-
able computational resources or simple parallelization of existing sequential algo-
rithms. Instead, progress is driven by algorithmic innovation. Parallelization of
phylogeny programs can only provide the gain of one or two additional orders of
magnitude (in terms of computable tree size) due to the complexity of underlying
algorithms.

Thus, the main contribution of this work consists in two basic algorithmic
innovations (outlined in Chapter 4): The implementation of a novel algorithmic
optimization of the likelihood function and the implementation of very fast and
accurate new search space heuristics. The implementation of those two ideas
in AXML (Axelerated Maximum Likelihood) and RAXML (Randomized AXML)
respectively, lead to significant run-time and qualitative improvements. For ex-
ample, the inference time for a 1000-species tree could be reduced from 18.000
(state of the art 2001) over 9.000 (state of the art 2002) to 17 CPU hours (2003)
yielding a tree with a significantly better likelihood score at the same time.

The parallel and distributed implementations of those basic algorithmic ideas
are considered as useful spin-offs and described in Chapter 5. However, the tech-
nical part of this thesis also generated three interesting results:

Firstly, the non-deterministic parallel implementation of the new search space
heuristics rendered partially superlinear results.

Secondly, in order to provide inexpensive solutions for acquiring the large
amount of required computational resources without using dedicated super-
computers a distributed meta-computing version of the program (similar to
seti@home) has been implemented and successfully tested.

Thirdly, PC clusters and CPU architectures have shown to be the most ad-
equate processor architecture for this type of code, and thus also contribute to
inexpensive tree computations.

Finally, this thesis also contains an interesting biological result which is out-
lined in Section 6.6 (pp. 109). Based on sequence data which has been carefully
selected from the ARB [76] database a first small “tree of life” containing 10.000
important representative species from all three domains: Eukarya, Bacteria, and

5

1. INTRODUCTION

Archaea, could be computed using the methods and computer programs developed
in this thesis. To the best of the author’s knowledge this is the largest phylogenetic
analysis by maximum likelihood to date.

The scientific results of this thesis have been incrementally published in
nine reviewed conference papers [122, 123, 124, 125, 126, 128, 130, 131, 133],
four journal articles [118, 119, 120, 121], two non-reviewed reports [129, 132]
and as conference poster [127]. All papers are available in PDF format at
WWWBODE.CS.TUM.EDU/"STAMATAK/PUBLICATIONS.HTML. Finally, the ex-
periences gathered during 3 years of research in high performance computational
biology will be presented within the framework of a joint half-day tutorial with
Prof. T. Ludwig on “High Performance Computing in Bioinformatics” at the 4th
International Conference on Bioinformatics and Genome Regulation and Struc-
ture (BGRS2004, Novosibirsk, Russia, July 2004).

1.3 Structureof theThesis

The remainder of this thesis is built around the core Chapters 4 and 5. Chapter 2
provides a general introduction to phylogenetic tree inference. The subsequent
Chapter 3 includes the most important models of evolution within the context of
this thesis and gives an extensive description of the maximum likelihood method.
Furthermore, it lists the most important and efficient state of the art sequential
and parallel phylogeny programs based on statistical models of evolution. Fol-
lowing the core Chapters 4 and 5, Chapter 6 describes experimental results and
performance of the respective implementations, including program accelerations,
speedup values and improvements in tree quality. Chapter 6 also covers the bio-
logically relevant inference of the 10.000-species tree based on the methods de-
veloped in the preceding chapters. Finally, Chapter 7 contains the conclusion and
addresses important aspects of future work which will enable inference of even
larger trees.

-2

Phylogenetic Tree I nference

Manchmal sieht man vor lauter Baumen den Wald nicht mehr.
German proverb

This Chapter introduces the relevant biological background, the prerequisites
for computing a phylogeny, outlines the benefits of evolutionary trees for medical
and biological research, and addresses problem complexity.

2.1 What isa Phylogenetic Tree?

First of all, it has to be stated that evolution must not necessarily be represented
by a tree, i.e. using a tree to depict a phylogeny is already an initial assump-
tion. There are some convincing arguments, such as lateral gene transfer between
species which justify other forms of representation. The recent introduction of
phylogenetic networks [40, 117] and respective methods provides an alternative
to the tree model.

However, phylogenetic tree inference and evolution are still not properly un-
derstood and phylogenetic networks further augment the complexity of the prob-
lem. Thus, those alternative models are not well-suited for representation of large
evolutionary relationships, at least at the current state of research. Therefore, this
issue will not be further discussed within this context, although one should always
be aware of the fact that the tree is not the model.

The tree model is further constrained by defining a phylogenetic tree to be a
complete unrooted binary tree, i.e. all nodes have either degree 1 or 3. This is the
standard definition of phylogenies used in almost every computational context.
However, incomplete or n-ary binary trees as obtained by supertree or consensus

7

2. PHYLOGENETIC TREE INFERENCE

tree methods are addressed later on in this work (Sections 3.6 and 3.7, pp. 34
and 38). Methods to determine the root of unrooted binary trees are also out-
side the scope of this work due to the complexity of the problem. However, one
common method to root a tree consists in using so-called outgroup species. This
means that the DNA sequence of a species, which is not closely related to any of
the organisms under consideration, is added to the alignment. After the comple-
tion of the phylogenetic analysis the outgroup species is used to root the tree.

An unrooted complete binary evolutionary tree represents the evolutionary his-
tory of a set of n species, which in the specific case are represented by their DNA
sequences. Those n species are located at the tips of the tree topology, whereas
the n — 2 inner nodes represent hypothetic extinct ancestors of those organisms.
The branch-lengths between nodes usually stand for the time it took one organism
to evolve into another new—not necessarily better—one.

A classic example for a phylogenetic tree is given in Figure 2.1. This subtree
or clade represents the evolutionary relationship between humans and monkeys
projected on a vertical time axis.

2.2 Obtaining new I nsightsfrom Phylogenetic Trees

At this point the question: WHAT DO WE NEED PHYLOGENETIC TREES FOR?
has to be answered.

It has already been mentioned that for microorganisms such as Bacteria, with-
out evident phenomenological characteristics, computing a phylogeny is the only
practical approach to determine their evolutionary history. Furthermore, it is the
only feasible method to summarize the relationships among all living organisms
in one single tree of life.

Such large trees can contribute to medical and biological research in several
ways. For example if a new, unknown, and dangerous bacterium x appears which
threatens humanity, it might be inserted into an existing tree using computational
methods. After insertion of bacterium x the biologist can identify close relatives
of x, for which there exist appropriate treatments. Thus, in a time-critical situation
one can rapidly derive appropriate therapies by consulting phylogenies.

A result published by Korber et al. [64] in Science that times the evolution of
the HIV-1 virus demonstrates that maximum likelihood techniques can be effec-
tive in solving biological problems. Phylogenetic trees have already witnessed ap-
plications in numerous practical domains, such as in conservation biology [6, 29]
(illegal wale hunting), epidemiology [14] (predictive evolution), forensics [88]
(dental practice HIV transmission), gene function prediction [20], and drug de-
velopment [41]. A paper by D. Bader et al. [5] addresses interesting industrial
applications of phylogenetic trees, e.g. in the area of commercial drug discovery.

8

2.2. OBTAINING NEW INSIGHTS FROM PHYLOGENETIC TREES

% o 2
ISRy 2 N >
T o Q @ NIRZ
§ S & SECEN & S
ill AN T F < S NI
Millions of 9 S N S Q IS
Q Qo S N o eI
TR T S o ¥ S
Years Ago = ; © Y y
— < // + ! . g
5 1 > / / I 4
! \ \ s /) /
\ 7z / ” 7/
\ N\, 7
10 ‘ \ \ . V4 , '/
\ \ 7 ” 4 /.
\ Ve
N 4 7
\ \ N7
’
20 \ N ~ ,
N\ ~
25 ' ~ ~
\ ~ < Yi
\
30 N RS !
~ = ~ < 1
35 S S T
~ Il
T~ ~ T
40 ~d
T
45 f
|
50 1
1
55 I

|
Common Ancestor

Figure 2.1: Phylogenetic subtree representing the evolutionary relationship be-
tween monkeys and the homo sapiens

In a recent review [106] Sanderson and Driskell provide a nice overview over
the challenge of constructing large phylogenies and respective current and future
problems as well as directions of research. Potential problems and solutions are
also discussed in Sections 6.6 and 7.2 (pp. 109 and pp. 114) of this thesis as well

as in [123].
Finally, the computation of a tree of life is generally considered to be a “grand
challenge” in the field of HPC Bioinformatics. Not surprisingly, in 2003 the Na-

tional Science Foundation (NSF) in the United States announced a 11.600.000$
tree of life initiative which is co-located at 13 leading research institutions across

the U.S. (project web site: WWW.PHYLO.ORG).

2. PHYLOGENETIC TREE INFERENCE

Thus, the computation of phylogenetic trees is not a “I’art pour I’art” invention
by a bunch of theoretical computer scientists but a practical scientific issue of great
importance.

2.3 Prerequisitesfor Phylogenetic Tree Inference

As already mentioned the inference of phylogenetic trees is usually based on a
multiple alignment of DNA or protein sequence data which serves as input for
phylogeny programs. Therefore, irrespective of the algorithm used, the quality
of the final result can only be as good as the quality of the alignment. Thus, a
“good” multiple alignment of sequences is the most important prerequisite for
conducting a phylogenetic analysis. This section provides a brief introduction to
the computation of multiple alignments and a notion of underlying complexity.

Note however, that—apart from DNA sequence data—higher-level genetic in-
formation such as gene order data can also be used as input for phylogenetic anal-
yses. Phylogenetic inference based on gene order data is however computationally
harder than alignment-based inference and only comparatively small trees com-
prising less then 50 organisms could be computed so far [83]. Some progress has
recently been achieved though, by application of the Markov Chain Monte Carlo
(MCMC) technique [82]. Since the approach is currently not apt for inference of
significantly larger trees it will not be further discussed at this point.

2.3.1 Computation of Multiple Alignments

Sequence alignment is one of the most basic operations in Bioinformatics. The se-
quences obtained from the laboratory are simple strings consisting of the 4 bases
A ,C, G, T (U is equivalent to T for rRNA sequences). An excellent general intro-
duction to sequence alignment can be found in Chapter 3 of [110].

A priori, those sequences have different lengths due to insertions, deletions,
and substitutions of base-characters as well as sequencing errors. The alignment
process corrects those errors and intends to identify corresponding homologous
regions and construct sequences of equal length by insertion of gaps (-) into the
sequence, according to a specified optimality criterion.

Initially, the alignment of two sequences S1,S2 is considered. In this case
the optimality criterion is a scoring function sf(S1;, S2;) which penalizes mis-
matches at position 7 between bases (e.g. —1) or bases and gaps (e.g. —2), and
assigns high scores to matches (e.g. +1). Thus, the optimal alignment of two se-
quences is the one with maximum score according to the selected scoring-scheme.

10

2.3. PREREQUISITES FOR PHYLOGENETIC TREE INFERENCE

For example one can consider the two sequences below:

S1: GACGGATTAG
S2: GATCGGAATAG

One optimal alignment of those two sequences, since there might exist several
optimal alignments, would be the one indicated below:

S1: GA-CGGATTAG
S2: GATCGGAATAG

Note, that sequence comparison comprises two fundamental alignment types:
local alignments of specific substrings and global alignments of the entire se-
guences.

Optimal global and local alignments of two sequences can be computed by
dynamic programming approaches which store the alignment scores of all possi-
ble substrings in a matrix and then perform backtracking to construct the optimal
alignment. The basic algorithms are known as Needelman-Wunsch [84] for global
alignments and Smith-Waterman [113] for local alignments. The improved ver-
sions of those fundamental algorithms run in quadratic time and require linear or
quadratic space as well.

For the computation of multiple alignments of n sequences initially the defini-
tion of the scoring function has to be extended. For example, one function which
is often used is the so-called sum-of-pairs score sp(S1;, ..., Sn;), which takes as
arguments the characters at sequence position 7 of all sequences S1, ..., Sn and is
defined as:

sp(S1y, ..., Sn;) = sf(S1;,52;) + ... + sf(S1;, Sny) + ... + sf(Sn — 1;, Sn;)

Thus, the complexity of such a scoring function is already quadratic in n. For
multiple alignments the same dynamic programming schemes as for pairwise se-
quence alignment can be applied. Unfortunately, it has been shown that computing
optimal multiple alignments is NP-complete under most reasonable scoring func-
tions [148]. Furthermore, both time and space requirements grow exponentially
with the number of sequences. Therefore, multiple sequence alignment is still one
of the most important research issues in HPC Bioinformatics and a plethora of
heuristics, optimizations, parallel algorithms as well as alternative methods and
scoring functions has been proposed for this problem. For example ClustalW [18]
is one of the most widely-used multiple sequence alignment programs. A paper by
Thompson et al. [143] provides a nice overview and in depth performance analysis
of common multiple alignment methods.

Since the computation of multiple alignments is an extremely broad field it
can not be covered in detail within the context of this thesis. This section intends

11

2. PHYLOGENETIC TREE INFERENCE

only to provide a notion of the complexity of the alignment problem and a cer-
tain influence of “religious” beliefs concerning e.g. the choice of the appropriate
scoring function which has significant impact on final results.

2.3.2 Adequate DNA Portions

A somehow different problem, which has caused controversial discussions among
Biologists consists in the selection of the appropriate DNA-portions for inference
of phylogenetic trees. One has to select a region which appears in the DNA of
all organisms of interest and which is highly conserved. In contrast, highly vari-
able regions do not generate a reliable phylogenetic signal. Furthermore, this re-
gion must have some evolutionary significance, since there might very well exist
regions which are highly conserved but do not contain any phylogenetic infor-
mation. The 16S ribosomal rRNA is believed to be one of those adequate regions
since it is universally distributed among organisms, exhibits constancy of function
and changes relatively slowly compared e.g. to most proteins. The importance of
the 16S rRNA for phylogenetic analysis of Prokaryotes has been outlined e.g. in
a paper by Fox et al. [33].

Despite the fact that the selection of an appropriate region is not so important
for the abstract computational problem of phylogenies, it requires serious consid-
eration as soon as one desires to compute biologically significant results.

2.3.3 The ARB Database

The ARB [2, 76] database (arbor, Latin: tree) provides both, a large amount (cur-
rently more than 30.000 organisms) of curated small subunit Ribonucleic Acid
(ssu rRNA) data and an excellent alignment quality. As outlined in the previous
Section those two properties are the essential prerequisites for the computation of
phylogenetic trees.

The ARB software environment has been developed over the last ten years
in a joint initiative by the Lehrstuhl fir Mikrobiologie and the Lehrstuhl fir
Rechnertechnik und Rechnerorganisation of the Technische Universitat Minchen.
About ten years ago an increasing amount of small subunit rRNA raw data was
becoming available from primary databases such as GenBank [8] or EMBL from
the European Bioinformatics Institute [116] (EBI).

ARB represents a so-called secondary database, i.e. a database system which
includes and integrates a large variety of individual tools to maintain, update,
correct, represent, and extract useful information from the primary data.

12

2.4. PROBLEM COMPLEXITY

The two key objectives of the ARB project are to provide:

1. The maintenance of a structured integrative secondary database contain-
ing processed primary structures and any type of additional information as-
signed to the individual sequence entries by the user.

2. A comprehensive selection of directly interacting software tools, along with
a central database which are controlled via a common Graphical User Inter-
face (GUI).

Thus, the in-house availability of the ARB database and the accumulated ex-
perience of over 10 years of ARB development and maintenance in combination
with the biological expertise provided by the involved biologists, provides a solid
basis to select and extract alignments of high quality for inference of large and
biologically significant phylogenetic trees.

2.4 Problem Complexity

The main computational problem of phylogenetic inference consists in the large
number of potential alternative tree topologies, which unfortunately grows expo-
nentially with the number of species. Given n organisms the amount of possible
unrooted binary trees is [28]:

[]i-5)
=3
Some exemplary figures for this formula are outlined in Table 2.1. Note, that
for 50 organisms there exist almost as many alternative tree topologies as there
are atoms in the universe (= 108°).

Number of Organisms | Number of alternative Trees
3 1
4 3
5 15
6 105
7 945
10 2.027.025
15 7.905.853.580.625
20 2.21 % 10?%°
50 2.84 % 107

Table 2.1: Number of possible trees for phylogenies with 3-50 organisms

13

2. PHYLOGENETIC TREE INFERENCE

Due to this combinatorial explosion one can suspect that phylogenetic tree
inference is NP-hard. The fact that the hardness of phylogenetic reconstruction
has been demonstrated for less elaborate discrete phylogeny models (see below)
reinforces this suspicion. The NP-hardness of maximum likelihood is hard to
formalize and prove since the method yields floating point scores and incorporates
branch length optimization (see Chapter 3), i.e. the problem is not discrete.

Some earlier theoretical work in this area of genome analysis focused on find-
ing perfect phylogenies. Perfect phylogenies require that for each character in
each column, the taxa containing that character in that column of the alignment
form a subtree of the phylogeny. Kannan and Warnow have a polynomial time
algorithm for finding perfect phylogenies [61] under certain reasonable restric-
tions. However, like many problems associated with genome analysis, the general
version of the perfect phylogeny problem is NP-complete [9].

While most elaborate tree-scoring functions do not strive to meet this perfect
phylogeny criterion it is still widely believed that computing phylogenies that meet
any sort of effective or reasonable criteria is NP-hard. This has been demonstrated
e.g. for the parsimony criterion (see Section 3.3, pp. 17) in [25]. Note, that for
maximum likelihood this has not been demonstrated so far, due to the significantly
superior mathematical complexity of the model. However maximum likelihood is
widely believed to be NP-hard among involved researchers.

The question which arises at this point is: “How to score those alternative
topologies and how to design appropriate heuristics, in order to find the best pos-
sible (mostly suboptimal) tree according to the selected criterion?”.

In general, a fast scoring function enables the analysis of a greater part of the
search space, whereas slower and more elaborate functions usually return better
trees. This has repeatedly been demonstrated in recent comparative surveys [39,
147]. Thus, there is a “classic” tradeoff between execution speed and expected
final tree quality.

Summary

The current Chapter introduced the biological background and the prerequisites
for computing evolutionary trees. Furthermore, important applications of phylo-
genetic trees in medical and biological research have been mentioned. In addi-
tion, the ARB database was described which represents the main data source for
experiments conducted within the framework of this thesis. Finally, the problem
complexity of phylogenetic analyses was addressed. All fundamental aspects of
phylogenetic tree inference, such as basic tree reconstruction models and search
algorithms, statistical inference methods, as well as current state-of-the-art imple-
mentations are addressed in the following Chapter.

14

3

Phylogeny Models and Programs

Ich habe nie eine einzige Bemerkung allein gemacht, sondern
es fiel mir allzeit noch eine zweite ein.
Jean Paul

This Chapter covers the basic models and algorithms for phylogenetic tree
inference. It describes basic mechanisms to augment confidence into the final
result and discusses methods for comparing phylogeny programs. Furthermore,
it includes a survey of current state of the art sequential and parallel phylogeny
programs which implement statistical models of evolution.

3.1 Basic Modd Classfication

There exist two basic classes of phylogeny models which can be distinguished by
their usage of the information contained in the input alignment of n species.

Thefirst class, makes only indirect use of the data by computing a correspond-
ing symmetric n x n distance matrix A containing all pairwise distances between
sequences, according to some function 6(Sequence;, Sequence;) 1,7 = 1,...,n.
The definition of ¢ and of the respective optimal distance-based tree have sub-
stantial impact on problem complexity. Function ¢ needs to be meaningful in a
biological context.

The second class, the so-called character-based methods make direct use of
the alignment data, by computing tree-scores on a column by column basis. This
means that at each inner node of a topology a vector has to be computed contain-
ing integer or floating point values to score the tree. Those vectors are typically
computed in a bottom-up tree-traversal towards a virtual root vr. The information

15

3. PHYLOGENY MODELS AND PROGRAMS

of the updated vector at vr is then combined by mathematical operations into one
single tree score value.

In general, distance-based methods are faster and less accurate than character-
based methods. Those simple methods can be deployed to rapidly obtain initial
estimates of phylogenies which can also be used as starting trees for character-
based methods (see Section 3.9.1). Furthermore, they represent the only compu-
tationally feasible method for computation of extremely large trees.

Finally, numerous computer studies [51, 52, 66, 103] based on synthetic data
(see Section 3.8) have shown that character-based algorithms recover the true tree
or a tree which is topologically closer related to the true tree more frequently than
distance-based methods.

3.2 Distance-based M ethods

The two most common distance-based methods are the Unweighted Pair-Group
Method with Arithmetic Mean [114] (UPGMA) and Neighbor Joining [105] (NJ).

In those models the distances in matrix A represent the fraction of dissimilar-
ities, i.e. amount of different nucleotide sites, between sequences. It is reasonable
to assume that a pair of sequences is closer related if it differs in only 5% of sites
instead of e.g. 40%. However, the assumption that the more time has passed from
the divergence of two organisms from a common ancestor, the more diverse they
will be, is problematic. This problem arises since different lineages (paths to tips
from a common parent node 7) may evolve at different speeds and/or subsequent
substitutions at the same site (alignment column) are likely to occur. Thus, es-
pecially in the case of subsequent (multiple) substitutions at sites, an organism
j far down the lineage might appear to be closer related to the parent in terms
of §(Sequence;, Sequence;) compared to intermediate organisms of the lineage.
Although some corrective measures have been proposed this remains the basic
problem of distance-based analyses.

Note, that both basic algorithms presented here implicitly assume a model of
minimum evolution, i.e. suppose that nature selected the shortest path in terms of
base substitutions to evolve one organism into another.

321 UPGMA

The UPGMA algorithm starts building the tree by selecting the most closely-
related pair of sequences from A;. Those two sequences are connected by a
branch and a node which is placed in the center of the branch (the branch lengths
correspond to the distances between organisms). In the subsequent step those two
initial sequences are regarded as one, i.e. as cluster. At this step a matrix A, of

16

3.3. PARSIMONY CRITERION

size n — 1 is computed in respect to the clustered pair of sequences. This process
is repeated until A,, has reached a size of 1. Thereafter, the matrix set A,,, ..., A,
is used to construct the respective tree starting at the root.

The UPGMA algorithm contains two intrinsic assumptions: Firstly, that the
tree is additive, and secondly that it is ultrametric. Additivity means that the
length of the path between any pair of leaves i, ; in the tree must be equal
to 0(Sequence;, Sequence;) , while ultrametricity means that all organisms are
equally distant from the root. Those two properties represent rather utopic as-
sumptions and oversimplify the problem.

Due to these implicit assumptions and limitations UPGMA is not frequently
used to establish phylogenies nowadays.

3.2.2 Neighbor Joining

Neighbor joining works in a similar way as UPGMA in that it uses a set of dis-
tances matrices for tree reconstruction as well. However, NJ does not cluster
nodes but computes distances to internal nodes as well, thereby resolving restric-
tions imposed by ultrametricity and additivity (see above) of the UPGMA method.
Initially, NJ computes the divergence of an organism from all other organisms by
summing up the individual distances. Thereafter, NJ calculates a corrected dis-
tance matrix A, selects the pair of sequences with the lowest corrected distance
and connects them via an inner node. At this point the distances between each se-
guence and the inner node are calculated which do not need to be identical. This
inner node is then used to replace the initial pair of organisms in A, of sizen — 1
and the process is repeated. Finally, the tree is reconstructed in the same way as
for UPGMA.

An in-depth discussion of the most common distance measures for Neighbor
Joining is provided in Chapter 11 of [140]. Note, that this algorithm does not auto-
matically yield the tree with the minimum overall distance [45]. A good overview
which covers most common distance methods can be found in a survey conducted
by Swofford et al. [140]. Finally, the program BIONJ [34] by O. Gascuel rep-
resents a recent and very popular open source code implementation of Neighbor
Joining.

3.3 Parsimony Criterion
In the same spirit as distance-based methods maximum parsimony also assumes
a model of minimum evolution. It differs however from distance-based models

since it defines minimum evolution on a site-per-site (column-by-column) basis
of the alignment. Thus, parsimony assumes that the most credible tree is the

17

3. PHYLOGENY MODELS AND PROGRAMS

one which requires the smallest amount of changes, i.e. number of nucleotide
substitutions in the tree.

Therefore, parsimony algorithms intend to find the trees, since there can ex-
ist many equally parsimonious topologies, that minimize the number of required
evolutionary steps.

After those initial considerations the computation of the parsimony score is
outlined by example of a 5-taxon tree which is depicted in Figure 3.1. Only the
computation of the number of changes for one site, i.e. one nucleotide, is con-
sidered since the overall score for an alignment can be obtained by summing up
the parsimony scores of all individual informative sites. This simple addition of
individual column scores also induces the implicit assumption that sites evolve
independently from each other.

Homogeneous alignment columns, i.e. columns that consist of the same base
in all organisms (see also Section 4.1, pp. 54) are called uninformative, since they
do not provide information for the parsimony score.

T
root

C

G
Figure 3.1: Parsimony score computation by example

Initially, the tree which consists of the 5 nucleotides T,G,C,A,C isrooted
attip T . Thereafter, starting bottom-up at the tips the inner nodes of the rooted
tree are assigned sets of possible inner states, i.e. {G,c} , {a,c} , and

{n,G,c} respectively. In a subsequent top-down step the required number
of changes in the tree is computed. Note, that at each inner node a state contained

18

3.3. PARSIMONY CRITERION

in the parent state set has to be selected. If the respective state sets do not over-
lap an arbitrary state is chosen. This choice has however no effect on the overall
score. The computation of the number of changes for two different choices of
inner states in the example tree is outlined in Figure 3.2 and 3.3. Branches where
changes occur are indicated by dotted lines, the parsimony score is 4 for all pos-
sible assignments with the specific root in the example.

After this step the score is computed for all remaining possible rootings of the
tree and the minimum parsimony score obtained during this process corresponds
to the parsimony score of the tree. For example, if the same tree is rooted at
nucleotide G the score will be 3.

root

.
*

4 changes
G
N
N
C
G /
\ o

G
Figure 3.2: Parsimony score computation by example: one possible assignment

The tree building algorithms for maximum parsimony searches face simi-
lar problems and deploy similar techniques as heuristic (maximum) likelihood
searches. Those heuristics are outlined in Section 3.9.1.

As NJ and UPGMA the parsimony scoring-scheme implicitly assumes a con-
crete model of evolution. Furthermore, parsimony faces similar problems as
distance-based methods with long lineages, since it does not account for po-
tentially unobserved nucleotide substitutions, e.g. transitions of type A—A .
Felsenstein [30] found an example for which parsimony fails for trees with
strongly divergent rates of evolution among lineages, whereas Hendy et al. [44]
later suggested the term “long branch attraction” for a more general failure sce-
nario of the parsimony criterion with equal rates of change throughout the tree.

19

3. PHYLOGENY MODELS AND PROGRAMS

T
root ,
1
: 4 changes
A
’
’
Ca A
\
/
y A ®
’
C
¢ C
G
Figure 3.3: Parsimony score computation by example: another possible assign-

ment

Among the most-widely used implementations are the commercial PAUP [92]
package and dnapars from Felsenstein’s PHYLIP package [93] which is available
as open source code. NONA [37] by P.A. Goloboff is also claimed to be very
fast but unfortunately not freely available. A nice, brief discussion of parsimony
analyses can be found in [73] and a more detailed one in [140].

3.4 Maximum Likeihood Criterion

The problem of most topology score functions so far is that the algorithms im-
plicitly assume a model of evolution, mostly minimum evolution or a molecular
clock. The molecular clock assumes that evolutionary events, i.e. nucleotide sub-
stitutions occur regularly at certain time intervals (clock ticks). Thus, the molec-
ular clock does not take into account and does not provide a model for variation
in evolutionary speed at different points in time. Furthermore, distance-based
methods do not fully exploit the information contained in the alignment. In 1981
J. Felsenstein [31] proposed a statistical method which allows for explicit speci-
fication of evolutionary models and which represents a computationally feasible
approach at the same time. In this seminal paper Felsenstein describes how to in-
fer phylogenetic trees under a simple probabilistic model of DNA evolution based
on maximum likelihood.

20

3.4. MAXIMUM LIKELIHOOD CRITERION

Maximum likelihood in this specific case means that one intends to find the
topology which yields the highest probability of producing (evolving) the ob-
served data (alignment). Note, that the likelihood of a tree is not the probability,
that the tree is the correct one.

The problems which arise within this context are how to compute the likeli-
hood of a set of sequences placed in a given tree, how to optimize branch-lengths
in order to obtain the maximum score for that particular tree, and how to devise a
probabilistic model of nucleotide substitution.

Having resolved those problems the most important difficulty still remains
to be solved: HOW TO SEARCH FOR THE TREE WHICH MAXIMIZES THE
LIKELIHOOD OVER ALL POTENTIAL TREE TOPOLOGIES?

As already mentioned this problem is widely believed to be NP-complete,
mainly due to the exponential explosion in the number of possible topologies (see
Section 2.4, pp. 13). The most common search space heuristics are discussed
separately in Section 3.9.1, since the development of fast and precise heuristics
represents the most outstanding algorithmic challenge for the design of maximum
likelihood programs.

3.4.1 CalculatingtheLikelihood of a Tree

The likelihood of a tree can be computed if a model providing the probability that
a sequence S; evolves into sequence S, among a branch ¢ (time-segment) is avail-
able. Furthermore, it is assumed that individual sites (nucleotides) of the sequence
evolve independently. As in the parsimony model this is a very restrictive and crit-
ical assumption from a biologist’s point of view, which however has to be made to
reduce the complexity of computing the likelihood score. Under this assumption
the score of a tree can be computed site by site and finally be obtained by taking
the product of the individual sites. Thus, it is sufficient to concentrate on the com-
putation of the probability for a single site. The function, P;;(¢),:,j = 1,...,4
where values of 7 and j represent the four bases A, C,G, T , gives the probabil-
ity that a base in state 7 evolves into state j after time ¢.

For those base transition probabilities a Markov-process is assumed, i.e. the
probability of i — 7 is independent from the history of i regarding prior evolu-
tionary events.

The only property such a model of base substitution should have is reversibil-
ity: if a base evolves into another, itis replacedby 2,cC,G, T with probabilities
T, To, Tq, Tr. Reversibility requires Vi, j, ¢ :

T Pij(t) = Pyi(t)m;

21

3. PHYLOGENY MODELS AND PROGRAMS

The reversibility property means that the evolutionary process is identic if fol-
lowed forward or backward in time. The reasons for which this property is re-
quired will be explained later on in the current Section.

This very general definition of the evolutionary model used at this point is
known as General Time Reversible model of nucleotide substitution (GTR). It is
however sufficient to explain the mechanism of likelihood computation at a high
level of abstraction. The plethora of different models which have been proposed
deserve a separate discussion in Section 3.4.3.

In the following the computation of the likelihood, given the evolutionary
model, is explained by the simple example tree of Figure 3.4.

Figure 3.4: Rooted example tree with root at node Sy

The branch lengths of the tree are given by b; and the sequences by S, ..., S7.
However the known sequences drawn from the alignment are only S, Sy, Sg, S7
which are located at the tips and Ss, Sy, S5 are unknown common ancestors. Ini-
tially, a rooted tree is considered which has its root at S,. If S5, Sy, S5 were known
the likelihood L could be computed as the product of probabilities of change along
each branch times the prior probability g, at Sy:

L = 75, Ps,5,(b1) Ps,s5 (b1) Psys, (b2) Pss, (b3) Ps, 54 (b5) Ps s, (bs)

22

3.4. MAXIMUM LIKELIHOOD CRITERION

Unfortunately, S3, Sy, S5 are unknown such that the likelihood is the sum over
all possible nucleotide states A, C,G, T atthe inner nodes Ss, Sy and S5 of the
tree:

T T

T
L= Z Z Z 75, Ps,55(01) Ps,55(ba) Ps, s, (b2) Ps, s, (b3) Ps, 55 (bs) Pss s, (be)
Sa=A S3=A Ss=A

This expression contains 4> = 64 terms. However for n species it has 4"~1
terms which rapidly becomes a large number. A reduction in the required number
of arithmetic operations can be achieved by shifting some summations to the right:

L= Y5ams (ShoaPous(b)[Pss,(52)] [Peus (b3)])
(228 Pouss (01) [P (05)] [Psas (05)])

The pattern of the parentheses ([][]) ([]]) in the transformed expression cor-
responds exactly to the structure of the tree topology in this example. Thus, the
expression for the likelihood can be evaluated in a bottom-up scheme starting at
the tips of the tree by application of a postorder tree traversal. One can therefore
define a recursive procedure for the computation of the overall likelihood value
by using conditional likelihoods for subtrees at a node £ of the tree. Let Lfgkk) be
the likelihood of the data in the subtree rooted at %, given that the nucleotide state
s at k is fixed. If k is a tip and consists e.g. of nucleotide 2 L(f) = 1 and
LY =¥ =1 =o.

Otherwise, if nodes ¢ and j are immediate descendants of & all four entries can
be computed by applying:

T T
L5 = (22 Paus)LL) (D Pous, (b)LY))
S;i=A S;j=A

If this procedure is executed recursively until node S, of the example is
reached the four conditional likelihoods become available at Lg, ¥, and the over-
all likelihood of the tree for this specific alignment site is:

T
L= Z 71'54[/54(4)
Sia=A

The probabilities 7 4, through 77 have to be the prior probabilities , often also
called base frequencies, of detecting each of the four bases A, C,G, T atpoint

23

3. PHYLOGENY MODELS AND PROGRAMS

S, of the tree. Those probabilities are usually drawn empirically from the align-
ment data. Since maximum likelihood postulates an evolutionary steady state in
base composition, those probabilities correspond to the overall base composition
of the input alignment. Thus, P;;(¢) needs to be specified such as to guarantee
that the probabilistic process maintains this base composition. Usually, it is as-
sumed that the specific base composition for an alignment is obtained by external
evidence, i.e. it does not directly form part of the maximum likelihood process.
A more detailed discussion of base frequencies is postponed to Section 3.4.3 on
evolutionary models, as well.

At this point it has to be explained for which reason the Markov process needs
to be reversible. Reversibility is required to establish a useful property for the
computation of maximum likelihood-based phylogenetic trees which Felsenstein
calls the “pulley principle”. Therefore, one can consider the last two steps of the
likelihood computation process of the example in Figure 3.4 for nodes S, Sy, S
once again:

T
L= Z TS, (Ps453(b1)L(g?) (PS4S5(b4)L(Ss5))
Sy4=A

A Drief derivation can be deployed to show that the value of L remains un-
changed if the same length = is added to b, and subtracted from b, i.e.

T
L=1'=3" ms,(Pssy (b + 2)1) (Ps,s, (b — 1) LE))
Sia=A

Thus, L exclusively depends on b; and b, via their sum. This means that the
virtual root (node S, in the example) which is required to compute the likelihood
value bottom-up can be placed anywhere between S; and S5. Therefore, the vir-
tual root of the tree can be regarded as pulley, i.e. if all components of the tree
are moved down on one side and moved up on the other side by the same z the
likelihood remains exactly identical. In addition, the above consideration can be
applied recursively to the tree, such that irrespective of the point at which the vir-
tual root is placed to compute the likelihood score of a thereby rooted unrooted
tree the obtained likelihood value will remain unchanged. The unrooted example
tree showing all virtual root (node S_4 in the rooted example) placement possi-
bilities and the way how the virtual root can be moved along a branch is outlined
in Figure 3.5.

In comparison to parsimony this is a great advantage of the maximum likeli-
hood model. Furthermore, it reduces the computational complexity which how-
ever still remains high compared to other methods.

Therefore, the Markov process must be reversible in order to allow for appli-
cation of the important pulley principle. In addition, the pulley principle is very

24

3.4. MAXIMUM LIKELIHOOD CRITERION

move along branch

S1

s’/

S2
S6

placement

virtual root (S4)

Figure 3.5: Unrooted example tree with virtual root placement possibilities, like-
lihood remains unaffected

important for branch length optimization, which is outlined in the subsequent Sec-
tion.

Finally, note that in most computer programs the log likelihood values are
computed due to numerical reasons, e.g. a tree with a log likelihood of -10000 is
better than a tree with a log likelihood of -12000. The likelihood values provided
for real data experiments in Chapter 6 (pp. 87) of this thesis are always the log
likelihood values.

3.4.2 Optimizingthe Branch Lengthsof a Tree

Up to this point it has been demonstrated how one can compute the likelihood
value of an individual unrooted tree.

However, the branch lengths of this individual tree need to be optimized in
order to obtain the maximum likelihood value for the specific topology.

As already mentioned the pulley principle allows the virtual root to be placed
in any branch b; of the tree. Since the value of each b; needs to be optimized such
as to maximize the likelihood of the specific topology the pulley principle can
be deployed to individually optimize each b; in turn with respect to the current
lengths of the other branches. This iterative process can be repeatedly applied to
all of the b; until no further alteration of any b; yields an improved likelihood. Due
to the pulley principle it is guaranteed that during this process the likelihood of
the overall tree will constantly increase until convergence.

25

3. PHYLOGENY MODELS AND PROGRAMS

In order to optimize an individual branch b connecting node .S; with S, the vir-
tual root is placed immediately besides S;, i.e. with a distance of 0 to S;. There-
after, iterative numerical methods can be deployed to progressively improve the
likelihood of the tree by alterations of b.

In [31] Felsenstein proposes a specific case of the general Expectation Max-
imization (EM) algorithm by Dempster et al. [27]. In fastDNAmI [86] the
faster converging Newton-Raphson method is implemented, whereas Gascuel and
Guidon deploy Brent’s [12] simple method for optimization of one-parameter
functions in PHYML [39] which does not require function derivatives. It is im-
portant to note though, that a single phylogenetic tree topology might possess
multiple local optima for distinct branch length and model parameter configura-
tions [22].

3.4.3 Modelsof Base Substitution

One of the main advantages of maximum likelihood over other methods consists
in that it explicitly allows for specification of a model of nucleotide substitution.
Since sequences evolve from a common ancestor via base mutations one has to
specify appropriate probabilities of nucleotide change which in the end will enable
computation of the missing part in the previous Sections: the P;;’s.

The Markov model assumed here means that the substitution probability of
a base does not depend upon its history but only on the immediate predecessor.
Furthermore, it is assumed that those probabilities are identic in the entire tree
(homogeneous Markov process).

The concrete model is represented by a 4 x 4 matrix, which is usually named
. This matrix provides the rate of change for all possible nucleotide mutations
from bases

Alcle|T -> A|c|e]|T

during infinitesimal time dt. The current presentation of evolutionary models in
this Section proceeds top-down, i.e. from the most general to the most special case
of this matrix. The most general form of matrix @ is given below:

—pulamc+brg+cenr) Hame ubmwa Hem

Q= BgT A —u(gma+drg+err) pdrg pemr

B ph 4 wiTc —p(hma+jre+frr) pfrr
PAT A pkmo plre —p(ima+kroHTg)

Factor , is the mean instantaneous substitution rate whereas a, b, ..., [are rel-
ative base parameters which correspond to each of the possible 12 substitution

26

3.4. MAXIMUM LIKELIHOOD CRITERION

types between distinct bases. As already mentioned the variables 7 4, ..., 7 are
the base frequencies of the 4 bases. The expression for mutations among equal
bases, e.g. A->A isdefined such that the sum of elements in the respective row
equals to 0. However, this general model is not time-reversible, since

miPy;(t) = Pji(t)m;

does not hold as different relative rates have been defined for symmetric entries
of the matrix. As already mentioned the pulley principle is of outstanding im-
portance due to computational reasons and requires time reversibility. Thus, the
general model has to be restricted accordingly by defining symmetrical relative
rates, i.e.settingg = a,h=b,i =c,j =d, k =e,l = f.

—plaro+brg+tenr) pamwe ubra HUCTT
Q= pam —u(amp+drg+tent) pdrg perr
N wbma udro —p(br p+dro+frr) wfmr
HeT A perc wfra —p(eratenc+frg)

This matrix represents the most general form of a time reversible nucleotide
substitution process. The General Time Reversible (GTR) model has been pro-
posed independently by Lanave et al. [67] and Rodriguez et al. [102] and is also
implemented in RAXML.

C

C e O

Figure 3.6: Schematic representation of the GTR model parameters

All simpler models can be obtained by further restricting the parameters of this
matrix. An abstract and more readable representation of the transition types in the
GTR model is provided in Figure 3.6. As among general tree scoring methods like

27

3. PHYLOGENY MODELS AND PROGRAMS

neighbor joining, parsimony, and maximum likelihood there is also a tradeoff in
complexity between simple and elaborate models of nucleotide substitution, since
more parameters have to be estimated and more terms have to be evaluated (see
below).

A model which can be implemented in a more efficient way, e.g. in RAXML,
is the HKY85 [42] model (Hasegawa, Kishino, Yano, 1985), which represents a
good tradeoff between accurate modeling and speed. The HKY85 model allows
for distinct base frequencies 7 4, ..., w but only for two classes of nucleotide sub-
stitutions: transitions and transversions. The rationale for this is that transitions
occur between bases

A|G<—>A|G & C|T<—>C|T
which are chemically more closely related and transversion between
A | G<->C | T

Thus, transitions are assumed to occur at a different rate than transversions
which is usually expressed by the transition/transversion ratio ~. The HKY85
model as depicted below is derived from GTR by setting 7g = 74 + g, Ty =
e+, a=c=d=f=1landb=e=xk.

— (kTG + my) UTC UK T

Q- T 4 — (kT + TR) UTG LT

o LT 4 U —pu(Kma + Ty) LT
T 4 UKT G UT G — (ke + TR)

Two simpler models can be derived from HKY85 by either setting 74 = ¢ =
mq = mr = 0.25 to obtain the Kimura-2-Parameter (K2P [63]) model or allowing
only one type of substitution rate, ie.a = b = ¢ =d = e = f = 1inthe
Felsenstein 81 (F81 [31]) matrix. Thus, K2P can be represented by the following
matrix:

—u(k +2) UTC UKT G T

Q- JUTT 4 —u(k +2) UTG KT

- JLKT A pure —p(k+2) prr
[T A KT C pre —p(k+2)

The matrix of the F81 model is depicted below:

—p(mg + 7y) pme PETG P

Q= [T 4 —p(mp + TR) e PRTT

- JUKTT 4 pme —p(ma + 7y) pr
T 4 UKTC 2ye] —u(me + TR)

28

3.4. MAXIMUM LIKELIHOOD CRITERION

The most simple and ancient model is known as the Jukes-Cantor (JC69 [59])
model which has equal base frequencies, i.e. 74 = 7¢ = n¢ = mr = 0.25 and
only one type of substitution,i.e.a =b=c=d=e=f = 1.

- 31 1 1
Py Hyg Py Py
1 31 1
Py —Hy Py Y
Q:
1 1 31
i e
1 1 1 3
| Ky By By TR

Generally, the various substitution models can be classified according to the
number of different substitution types they allow for (minimum 1, maximum 6)
and if they incorporate different or equal base frequencies. An overview over the
hierarchy of the most common models is provided in Figure 3.7.

GTR

6 types of rates
unequal base frequencies

HKY85

2 types of rates
unequal base frequencies

/

F81

single type of rate
unequal base frequencies

K2P

2 types of rates
equal base frequencies

/

JC69

single type of rate
equal base frequencies

Figure 3.7: Hierarchy of probabilistic models of nucleotide substitution

29

3. PHYLOGENY MODELS AND PROGRAMS

It has however still not been specified how to obtain the values for P;;(¢) since
the matrices provide rates of change for d¢. The substitution probability matrix
can be calculated as:

P(t) = @

This expression can be evaluated by decomposing Q into eigenvectors and
eigenvalues by application of well-established mathematical techniques. For most
models there exist simple expressions for eigenvalues, which enable a direct ana-
lytical computation of required values [140].

In the formula (indicated below) of the Jukes-Cantor model (JC69) one has
only to distinguish between two cases, the probability of observing a substitution
or not.

1 + Ze‘”t (i=}))
Py;(t) =

1 ut . .

1 2¢ " G#))

In addition, for the HKY85 model one has to further differentiate if a substi-
tution represents a transition or a transversion. For convenience let 7., (j) =
74 + 7 if nucleotide j forms part of the purines (A, G) of mgum(j) = 7o + 7
if 7 isapyrimidine (C, T). Furthermore let S = 1 4 7, (j)(k — 1).

Bij(t) = { T+ (# - 1> e M 4 (.) e s (i#],Ts)

Tsum () Tsum (J)

;

[(1 —e) (i #j,Tv)

Finally, note that models of sequence evolution can be devised in an analogous
way for protein sequences. The only difference is that those matrices will be of
size 20 x 20.

Unfortunately, the flexibility which maximum likelihood provides through
model choice induces the closely related problem of model choice. Some au-
thors suggest one should select the model which yields the best likelihood for
one specific tree. However, depending on the selected model and rate parameters
optimal topologies for different models of nucleotide substitutions can differ sig-
nificantly. Posada et al. [94] have written a computer program called Modeltest
which seeks to find the appropriate model and optimize model parameters for a

30

3.4. MAXIMUM LIKELIHOOD CRITERION

tree built with Neighbor Joining. Although a neighbor joining tree will not cor-
respond to a “good” maximum likelihood tree in most cases experimental results
in [152] suggest that it is a practicable approach to optimize model parameters for
a suboptimal tree as long as it is not too wrong, i.e. completely chosen at random.
However, Modeltest has not attained great popularity due to its long execution
times for large trees. Usually, the choice of the evolutionary model lies within
the responsibility of the Biologist performing the phylogenetic analysis. If noth-
ing is known about the model which best fits the data the GTR model represents a
good choice if substitution parameters (the 6 rates) are optimized by the respective
computer program.

Another issue within this context is that of rate variation among sites in align-
ments, since mostly not all sites evolve at the same speed. This becomes partic-
ularly severe if e.g. alignments from different genes have been concatenated to
form one large alignment with potentially stronger phylogenetic signal. In this
particular case apart from different substitution rates even different models of nu-
cleotide substitution might be required for distinct regions of the alignment. It has
been demonstrated, e.g. in [152], that maximum likelihood inference under the
assumption of rate homogeneity can lead to erroneous results if rates vary among
sites.

Rate heterogeneity among sites can be simply accommodated by adding an
additional per-site (per alignment column) rate component r,, k = 1, ..., m to the
P,;(t), where m is the length of the alignment. For example in the JC69 model
the probability of change would be:

1 3
(t) phge @=d)
f)ij t -
1 1
1 Zewrkt (i#1J)

Typically, such an assignment of rate categories to sites corresponds to some
functional classification of sites. Moreover, this is usually performed based on
some a priori analysis of the data. G. Olsen has developed a program called
DNArates [85] which performs a maximum likelihood estimate of the individual
per site substitution rates for a given input tree.

A computationally significantly more complex form of dealing with hetero-
geneous rates, due to the fact that one additional parameter has to be estimated,
consists in using either discrete or continuous stochastic models for the rate dis-
tribution at each site. In this case every site has a certain probability of evolving
at any rate contained in a given probability distribution. For example a concrete
distribution of the likelihood for one site is obtained by summing over all prod-
ucts of likelihoods for the discrete rates times the probability from the distribution.

31

3. PHYLOGENY MODELS AND PROGRAMS

In the continuous case likelihoods must be integrated over the entire probability
distribution.

The most common distribution types are the continuous [151] and dis-
crete [152] I distributions.

3.5 Bayesian Phylogenetic | nference

Bayesian phylogenetic inference is relatively new compared to parsimony and
maximum likelihood methods, since its application emerged in the mid-90ies [77,
78, 97]. Recently, it has experienced great impact [49], mainly through the release
of an efficient program called MrBayes [50] by Huelsenbeck et al.

Holder et al. provide an interesting review of traditional and bayesian ap-
proaches in [47] . The fundamental construct of bayesian analysis are posterior
probabilities, i.e. estimated probabilities which are based on some model (prior
expectation). Those are estimated after acquisition of some knowledge about the
data.

Bayesian analysis is closely-related to maximum likelihood from a computa-
tional perspective since the method used to calculate values for individual topolo-
gies corresponds exactly to maximum likelihood. The main difference however
is that while maximum likelihood strives to find the tree which maximizes the
probability of observing the data given the tree, bayesian inference searches the
tree which maximizes the probability of the tree under the data and the model of
evolution. Thus, in the bayesian case likelihoods are scaled to true probabilities,
such that the sum over the probabilities of all potential tree topologies is 1.0. In
contrast to maximum likelihood searches, bayesian inference searches for a set
of best trees, instead of a single optimal tree. Due to the vast amount of tree
topologies it is not feasible to compute posterior probabilities for those trees an-
alytically. Instead, a sampling technique which is known as Metropolis Coupled
Markov Chain Monte Carlo (MC2 [80]) algorithm is implemented e.g. in MrBayes
to sample individual trees from the distribution of posterior probabilities.

A typical bayesian analysis commences with a random or user-specified start-
ing tree and the specification of the model of evolution along with the respective
model parameters. Those input parameters represent the common initial state of
all Markov chains (recommended number of chains: 2-4). Note, that in the man-
ual of MrBayes Huelsenbeck suggests that it is preferable to use a random starting
tree in order not to make any a priori assumptions about the correct tree. How-
ever, in [125] and in Figure 6.8 (p. 103) it is demonstrated that the specification of
user-starting trees computed with maximum likelihood can have positive impact
on bayesian analysis and chain convergence speed.

32

3.5. BAYESIAN PHYLOGENETIC INFERENCE

The chains generally perform the following operation: Each chain conducts
a separate search and carries out state transitions between alternative model-
parameter/topology combinations mt; — mt;,; by applying minor topological
changes and/or minor alterations of the model parameters. Note, that due to the
fact that the mt;, mt;,, of a chain differ only marginally, the evaluation of the
probability is generally significantly faster than for maximum likelihood searches.
This is due to the fact that a large amount of values in the tree remains unchanged
and can therefore be re-used.

Another important property of this model, which should help to avoid local
optima, is that backward moves towards topologies with lower scores are possible
since m,;, is only accepted when Probability(m;.1) > Random(0,1) where
Random/(0,1) is an equally distributed random number between 0 and 1. Oth-
erwise the chain remains in state mt¢; and a different alteration is tested in the
following step ¢ + 2. In addition to this property, Metropolis-Coupling Markov
Chains by occasionally exchanging mt;’s between distinct chains, should further
reduce the risk to get trapped in local optima [80].

This process of state transitions, which are called generations in the related
terminology, has to be repeated thousands of times until the chains have reached
a stable state (converged). The most important part of an MC? implementation
of bayesian phylogenetic inference is the design of a sophisticated tree proposal
mechanism which greatly influences convergence speed and quality of final re-
sults.

An abstract representation of the basic MC? method is provided in Figure 3.8.

The most critical issue of bayesian phylogenetic inference (the $64.000 ques-
tion according to Huelsenbeck) is to determine at which point of time the chains
have reached stable values. This is usually assessed by plotting the best log like-
lihood value from the respective chains over generation numbers. To illustrate
the dangers and surprises which are intrinsic to MC? phylogenetic reconstruction
one has to consider Figure 3.9. In the upper part of Figure 3.9 the chain seems to
have reached stationarity, whereas in the lower part the likelihood might continue
to increase after a long interval of apparent stationarity. The lower diagram of
this Figure also outlines how a reference likelihood computed with a standard ML
program can support decisions about chain convergence. A discussion of potential
pitfalls of bayesian inference which also includes some methodological aspects,
can be found in [48]. A real-world example for failure of bayesian analysis is
provided in Figure 6.5 (p. 101).

An important advantage of bayesian analysis which has mainly triggered its
great popularity is that—in case of convergence—it generates a collection of
“good” trees and allows for estimation of their posterior probabilities. In addi-
tion, it enables assignment of consensus-based clade probability values (see Sec-
tion 3.6). Moreover, these posteriors are based upon the integrated likelihood,

33

3. PHYLOGENY MODELS AND PROGRAMS

GenO0 mt 0

Proposal .
Mechanism

Genl mt_1 mt_1

mt_1" rejected

+ [

Gen 2 mt_1 .
Gen 3 mt_2
Exchacrfge ? %
Gen 4 mt_. 3
[[
[o
[o

Figure 3.8: Abstract representation of a bayesian MC? tree inference process with
two Metropolis-Coupled Markov Chains

i.e. the likelihood averaged over model parameters and branch length values.
Thus, bayesian programs take into account uncertainties that standard maximum
likelihood methods are not able to handle.

3.6 Measuresof Confidence

An important issue which arises when building production trees based upon real
data with distance-based, parsimony, or maximum likelihood methods is how to
obtain confidence into the final result since the true tree is usually not known.
Normally, a maximum likelihood analysis will return a suboptimal tree, due to the
more or less exhaustive heuristics used.

A broadly accepted method to assign confidence values to a specific, biologi-
cally significant tree topology is to compute several distinct trees (typically 100-

34

3.6. MEASURES OF CONFIDENCE

Likelihood

Likelihood

Area of apparent stationarity

Number of Generations or Execution Time

‘ ML Tree Reference Value
I I I
I I
. S
I I I
! Area of apparent stationarity I Likelihhod starts to increase !
again

Number of Generations or Execution Time

Figure 3.9: QOutline of the MCMC convergence problem

35

3. PHYLOGENY MODELS AND PROGRAMS

1.000 trees) for the same input data and exactly the same model of evolution.
Within this context confidence into the tree refers to the reliability of the tree
topology itself rather than of concrete branch lengths.

After computation of this set of trees, a final consensus tree is built using
e.g. the consense [57] program included in Felsenstein’s PHYLIP package.

Tree_l Tree_z
A B A B
F F
N /7
N E , D
N 7/
N 7
N D C 4 C E
N 7
N /7
N 7
N 7/
N /7
N 7
N 7
N /7
AN 7
N Ve
N
A ;& B

Multifurcation

Consensus Tree
D C

Figure 3.10: Example of an unresolved (multifurcating) consensus tree

Consensus tree building methods assign a simple confidence value to each
clade of the output tree. This value indicates in how many of the trees the specific
clade appeared. Thus, given a set of e.g. 100 trees an inner node showing a value
of 95 means that the clade appeared in 95% of all trees and confidence into that
part of the final tree is high. Such a node is called well-resolved. If a node,
divided the tree into identical sequence subsets in only 20% of all trees confidence
is comparatively low (low/bad resolution).

Most consensus programs can produce strict, majority rule, as well as ex-
tended majority rule consensus trees.

Strict consensus trees only include bifurcating nodes if they form part of all
trees and construct multifurcations for non-resolvable nodes, i.e. application of

36

3.6. MEASURES OF CONFIDENCE

this rule does usually not yield binary trees. The problem with this approach is
that those multifurcating (unresolved) trees have to be transformed into binary
ones by some additional algorithmic step.

Note, that the problem of optimal taxon addition to an existing tree is also
a computationally challenging problem. In fact, it has been demonstrated in [10]
that it is NP-complete under the parsimony criterion and thus most probably under
maximum likelihood as well.

Majority rule consensus methods accept clades if they appear in the major-
ity of input trees, i.e. majority rule consensus trees generally also include some
multifurcations but less than strict consensus trees. Finally, the extended majority
rule allows for computation of strictly bifurcating consensus trees. Figure 3.10
provides a simple example of two distinct tree topologies containing the same 7
organisms A,B,C,D,E,F thatcan notbe resolved under the strict or majority
rule consensus methods. The extended majority rule would either yield Tree_1 or
Tree_2 as consensus tree.

Up to this point no method to compute 100 or even 1.000 distinct trees for the
same input data set has been described.

If the tree building algorithm incorporates some non-determinism, such as
RAXML (see Section 4.2, pp. 62), the program can easily be executed several
times and will render distinct output trees. Another good choice consists in using
different programs, a practice which should be adopted anyway since there are
significant differences in the exhaustiveness of searches.

However, if the program is deterministic, i.e. always yields the same output
tree for the same input data, the only way to produce distinct final results is to alter
the input data by a technique called bootstrapping. Bootstrapping an alignment is
a fairly simple operation which consists in randomly selecting columns of the
original alignment and placing them into the new alignment, i.e. some columns
can be deleted and others replicated. The only restriction is that the new alignment
must have the same length as the original one. The individual runs for generating
the required set of trees are then executed with distinct bootstrapped alignments.
An example of an initial alignment and a respective bootstrap for that alignment
is provided below:

initial alignment bootstrapped alignment
12345678 28245786
AATGGGTT ATAGGTTG
CC--GGGC CCC-GGCG
AATGG-CA AAAGGCA-
AAG-G-CC ACA-GCC-

37

3. PHYLOGENY MODELS AND PROGRAMS

Note, that bootstrapping is also important in a statistical context to assess ro-
bustness of the tree under slightly altered input data.

The main problem of such an analysis with maximum likelihood consists in
the immense computational cost, which does not make the approach feasible for
large alignments.

However, there exist some models and programs like treepuzzle and MrBayes
(see [50, 137] and Section 3.9.2) which include consensus-based methods and
statistical approaches for computing confidence values.

3.7 Divide-and-Conquer Approaches

From a computer scientist’s point of view an obvious idea to accelerate computa-
tions of large trees would be to deploy a divide-and-conquer approach. Given the
at least quadratic complexity of most tree building algorithms (see Section 3.9.1)
in the number of organisms (e.g. at least 2n? — 9n + 8 different topologies are
analyzed in one single rearrangement step on the full tree with a rearrangement
setting of 1 [31]), splitting up the alignment into smaller subalignments for which
respective subtrees can be computed more rapidly appears to be a reasonable ap-
proach.

Such a divide-and-conquer approach consists of four basic computational
steps which are outlined below:

1. Divide the original alignment into overlapping subalignments
2. Infer a phylogenetic tree for each subalignment

3. Merge the overlapping subtrees into a single tree, commonly called su-
pertree, using dedicated supertree construction methods

4. Resolve potentially multifurcating nodes of the supertree

Though the approach appears to be fairly simple, it faces various difficult prob-
lems: The requirement to calculate overlapping subtrees is imposed by the su-
pertree building operation in step 3. The subalignments need to overlap, i.e. share
some common sequences in order to provide a hint where they should be recon-
nected. Furthermore, those subalignments should be selected intelligently such
as to facilitate the subtree reconstruction and supertree construction steps as well
as to reduce the number of multifurcating nodes which require resolution. For
distance- and parsimony-based models so called disk covering methods DCM [53]
and DCM2 [54] have been devised for this purpose.

A quite distinct problem concerning DCM and DCM2 is that the authors are
very protective about their codes, such that neither executables nor source code

38

3.8. TESTING & COMPARING PHYLOGENY PROGRAMS

are available to other researchers. To the best of the author’s knowledge there is
currently no method available to subdivide large alignments based on likelihood
metrics.

Despite the fact, that inference of individual subtrees (step 2) can be carried out
easily by using e.g. some standard parsimony or maximum likelihood program,
supertree construction is still a relatively new field.

The most common methods to construct supertrees are the Matrix Representa-
tion with Parsimony [7, 95] (MRP) and the Strict Consensus Merger (SCM). The
SCM-method is a dedicated method for merging subtrees obtained by DCM-based
decompositions.

In one of the few comparative surveys on the performance of supertree against
integral tree building methods [104] DCM decompositions in combination with
SCM (DCM+SCM) have shown to perform better than DCM+MRP as well as
random decompositions with either SCM or MRP in terms of tree scores and
inference times (differences in parsimony scores ranging typically between factor
1.002-1.004 and inference times between 1.2 and 1.4).

However, the best combination according to this survey, i.e. DCM2+SCM,
does not perform significantly better than integral methods in terms of final tree
scores and inference times for parsimony analyses. Furthermore, in the final step
of the DCM2+SCM analyses conducted within the framework of this survey, the
multifurcating nodes were resolved by using a relatively simple and fast procedure
from PAUP [104]. As already mentioned in Section 3.6 resolving multifurcating
trees is a complex problem which has not received enough attention although
it is very important within this context. Thus, this last step requires additional
investigation and algorithmic refinement.

Another current issue is that the performance of DCM2+SCM and integral
methods on large real and simulated data sets requires further comparative sur-
veys. Furthermore, the resolution of multifurcations means that at the end the
final supertree will still require to be globally optimized which justifies the need
for integral phylogeny programs that are able to handle large trees especially in
regard to memory requirements.

Thus, supertree computation is a direction of research which will gain mo-
mentum as available sequence data grows and many important issues remain un-
resolved, in particular for maximum likelihood.

3.8 Testing & Comparing Phylogeny Programs

When one designs a new algorithm or model the question arises how to assess the
performance of the new program.

39

3. PHYLOGENY MODELS AND PROGRAMS

The basic quantitative performance parameters are execution speed and fi-
nal tree quality. Furthermore, the memory requirements of maximum likelihood
or bayesian programs can become a limiting factor (see Section 6.6, pp. 109
and [126]) for computation of large phylogenies consisting of more than 500 to
1.000 organisms. The qualitative properties of programs include e.g. the ability to
handle different types of input data such as DNA and protein sequence alignments,
sophisticated models of evolution, or model parameter optimization methods.

The major problem of performance analysis is the assessment of tree quality.
It would not be so difficult if true trees or optimal trees according to the criterion
were known. Note, that the true tree need not always be the optimal tree. For
example in experiments conducted on simulated data (see below) RAXML and
PHYML frequently encountered trees with better likelihoods than the likelihood
of the synthetic true tree.

Since the problem appears to be NP-complete optimal reference topologies ac-
cording to the selected criterion can only be computed exhaustively for trees with
up to 15 or 20 sequences. Furthermore, an evaluation based on such small trees
might not provide a clear image since any heuristics will still explore a relatively
large fraction of search space compared to the fraction explored for larger trees
(> 100 taxa) and are thus more likely to converge to the true tree.

Usually, for real world data the true tree is not known, except for phyloge-
nies of organisms with evident phenomenological characteristics such as most
animals or plants. Such kind of trees can be established by “traditional” non-
computational methods which nonetheless still represent only an hypothesis. In
case of maximum likelihood or bayesian inference, it has to be assumed that the
best-known tree (in terms of its likelihood score) for a real world data set, repre-
sents the most plausible result. Note, that small deviations (< 1%) between final
likelihood values are significant due to the asymptotic convergence of likelihood
values over time. Furthermore, those apparently small differences in likelihood
show to be significant when e.g. the Shimodaira-Hasegawa [111] likelihood ratio
test is applied to them which provides a measure for the significance of this 6. A
particularly extreme example of asymptotic convergence is outlined in Figure 6.3
on page 98 for a 500 taxon alignment.

Thus, one solution to evaluate program performance for codes using
the same scoring function is to publish a set of real world alignments in-
cluding the respective best-known trees and computation times with vari-
ous programs under a fixed set of parameters (e.g. for maximum likeli-
hood: model of evolution, transition/transversion ratio etc.). The distribution
version of RAXML includes the first phylogenetic benchmark set of 9 real
world alignments comprising 101 up to 1000 sequences (available at: www-
BODE.CS.TUM.EDU/"STAMATAK/RESEARCH.HTML).

40

3.9. STATE OF THE ART PROGRAMS

A completely different approach consists in the utilization of synthetic (simu-
lated) data which can also be used to compare programs based on different scoring
functions. The simulation process starts by building a randomized tree under some
biologically reasonable restrictions using e.g. r8s by M.J. Sanderson [107]. There-
after, a synthetic alignment of a predefined length is generated that fits to the tree
under a specified model of evolution. One of the most widely-used programs for
generation of synthetic alignments is Seg-Gen [96]. In that way, an alignment be-
comes available for which the true tree is known. The phylogeny program under
consideration is then executed for this synthetic alignment. Finally, the topologies
are compared using the Robinson-Foulds rate [101] which provides a relative mea-
sure for topological dissimilarity. Most comparative surveys of phylogeny pro-
grams use synthetic data. Despite the importance of synthetic data for assessing
the quality of different phylogeny methods such as neighbor joining, parsimony,
and maximum likelihood, substantial differences between different heuristics for
maximum likelihood or bayesian searches might not become apparent.

This is due to the fact that synthetic data creates the illusion of a perfect world:
the model of evolution is known a priori and the alignment does not contain gaps
or sequencing errors and thus a strong phylogenetic signal. As a consequence the
inference process for synthetic data converges faster and more steadily to a near-
optimal tree and is less dependent on the heuristics and the phylogeny method
deployed. During analyses of simulated data with RAXML it was observed repeat-
edly that the relative differences in likelihood values between parsimony starting
trees and final trees were significantly smaller than for real data sets.

Thus, in order to obtain a complete and more objective image of program per-
formance, the combination of synthetic and real world data experiments is manda-
tory.

3.9 Stateof the Art Programs

This survey of related work is limited to programs using statistical models since
they have repeatedly shown to be the most accurate methods for phylogenetic
analysis. The focus is on maximum likelihood as well as bayesian methods, and
currently available parallel implementations.

The site maintained by Felsenstein [93] lists most available programs for phy-
logenetic inference.

3.9.1 Algorithmsfor Tree Building & Sequential Codes

In general, heuristic maximum likelihood searches can be implemented in three
basic ways:

41

3. PHYLOGENY MODELS AND PROGRAMS

Firstly, they can start from scratch and insert organisms progressively into the
tree, potentially applying some additional optimizations to the intermediate trees
(intermediate refinement).

Secondly, they can start with an initial global tree already containing all or-
ganisms built by a simpler method such as parsimony, neighbor joining or even
with a random tree. The likelihood of such a starting tree is then progressively
optimized by application of a standard pattern of topological changes.

Thirdly, in a similar way to supertree methods (see Section 3.7) a program
can first construct a set of, or even all, small trees of a fixed size (usually 4-taxon
trees which are also known as quartets) and thereafter reconstruct the whole tree
by application of consensus tree methods to the set of quartets.

39.1.1 Progressive Algorithms

The most widely used progressive algorithm is stepwise addition proposed ini-
tially by Felsenstein in [31] and implemented in dnapars [93]. It starts with the
only possible three taxon tree ¢3 and then progressively inserts the remaining n— 3
taxa into the tree, in the order they appear in the alignment. A new branch is con-
nected to each new taxon £ + 1 and possible insertions into all of the 2k — 3
branches of the currently best tree ¢, comprising k£ sequences are tested. After
each insertion the optimal branch lengths and the likelihood value of the such
generated new topology ., containing organism k& + 1 are computed. The tree
with the best likelihood value among the 2k —3 analyzed topologies of the addition
test phase is then used to insert taxon & + 2. The algorithm terminates when taxon
n has been inserted into tree ¢,, ;. This basic process is outlined in Figure 3.11.

In addition, the tree can optionally be further refined by application of rear-
rangements to the intermediate trees ¢;, £ < n (local rearrangements) and/or the
final tree ¢,, (global rearrangements).

The various topological alteration mechanisms (including subtree rearrange-
ments) to improve the likelihood of a given topology will be discussed in more
detail in the following Section 3.9.1.2.

As already mentioned stepwise addition is implemented in dnapars. A more
recent implementation of this algorithm is fastDNAmI [86], which uses a faster
converging mathematical method for branch length optimization and represents
an extremely efficient implementation on a technical level. Furthermore, fastD-
NAmI implements the optional quickadd option which optimizes only the three
branches adjacent to the insertion point of sequence % + 1 during the addition test
phase. This enables a rapid prescoring of alternative topologies. Furthermore,
since all other branches of tree ¢, remain unchanged through this procedure, a
large number of likelihood vectors can be reused if the tree is traversed in an in-
telligent manner. This alternative method is depicted in Figure 3.12. Branches

42

3.9. STATE OF THE ART PROGRAMS

s1 t 4 S3
S2 S4
é/////” T /o \/8/5/ \\\\\\\\\>
s1 S5 S3 RN s1 S5 S3
s2” Lh_1 s4. | N s2 Lh_4 sS4
sl S5 s3
S2 Lh_3 S4 "

Figure 3.11: Example for stepwise addition

which are optimized are indicated by bold dotted lines, whereas inner nodes at
which the likelihood vector is not updated are marked with circles. The direction
of the insertion traversal is indicated by thin dotted arrows.

The last representative from this class of algorithms which will be mentioned
here is TrEXML [149] which has been derived from fastDNAmI. TrEXML imple-
ments a more exhaustive tree search than fastDNAmI, since an optimal small tree
comprising the first 5-10 sequences (specified by program parameter « for all)
is computed exhaustively. Furthermore, instead of maintaining only one currently
best tree t;, TrEXML maintains a list of such trees. Sequence k +1 is then inserted
into all trees of that list.

An important property of the stepwise addition algorithm is that the final result
depends on the input order of sequences. In order to generate a set of different
final trees one can generate randomized input order permutations, a technique

43

3. PHYLOGENY MODELS AND PROGRAMS

S1_ - S5 S3 s1 S5. .S3
\\ N /\/
S2 | sS4 S2 | s4
s1 S5 S3
| | |
| _a_ |
| / 1
1 S2 ; S4 1
S1 v S3 v
/\\
s27 “s5 sS4

Figure 3.12: Example for stepwise addition with quickadd option

also known as jumbling. The evident idea to compute a good input permutation
in order to obtain better final trees has largely failed [4, 62].

3.9.1.2 Global Algorithms

As already mentioned these algorithms start with a global initial tree which al-
ready contains all organisms of the alignment. Those starting trees are typically
computed by simpler and faster methods like neighbor joining or parsimony.

A rather special case is star decomposition which is implemented e.g. in
PAML [90], where the computation starts with a single inner n-ary center node to
which all sequences are directly connected. This tree is then progressively refined
to an unrooted binary tree.

The most important part of such algorithms is the topological alteration mech-
anism, i.e. a standard tree modification pattern which is repeatedly applied to the
currently best tree until no improved tree in terms of likelihood value can be found.

The three most common techniques are subtree rearrangements (also known
as subtree pruning and regrafting), Nearest Neighbor Interchange (NNI) and
Tree Bisection & Reconnection (TBR).

Subtree rearrangementsare carried out by removing each subtree of the cur-
rent tree at a time and re-inserting it into different branches of that tree. Usually,
a subtree is re-inserted into the surrounding branches of its deletion point. The
depth up to which the subtree will be re-inserted is specified by the rearrangement

44

3.9. STATE OF THE ART PROGRAMS

setting, i.e. a rearrangement setting or rearrangement stepwidth of 1 means that
the subtree is only inserted into the immediate neighbors. Higher rearrangement
settings yield significantly better trees but are computationally more expensive at
the same time. In a worst-case scenario, for a rearrangement stepwidth of 1 : 22
alternative trees have to be evaluated per subtree, for a stepwidth of 2 : 22 4 23
topologies per subtree and for a stepwidth of n : 22 + 23 + ... 4+ 271 respectively.
Usually every alternative rearranged topology is entirely branch-length optimized.
An example for subtree rearrangements is provided in Figure 3.13.

ST5 +o /ST5
ST2 ST2 ST6

ST4 ST4
ST1 ST3 ST1 ST3

ST5 ST5
ST2 ST2 ST6
ST4 +2 NsT4
ST1 v ST3 ST1 ST3
remove subtree A
st6 °10 |
| ST5 | ST5
ST2 y ST2 ST6
+1
+1 OST4 ST4
N //
ST1 .ST6 ST3 ST1 X ST3

Figure 3.13: Possible rearrangements of subtree ST6

Tree bisection & reconnection initially splits the tree into two subtrees by
erasing an inner branch. Thereafter, it reconnects them by placing a branch be-
tween all branch pairs of the two subtrees. TBR is outlined in Figure 3.14.

45

3. PHYLOGENY MODELS AND PROGRAMS

ST5 ST5
ST2 ST2
ST4 ST3 ST4
ST1 <16 ST3 ST1 ST6
| A
disconnect :
| sT5 | sT5
ST2 ' ///4::: ST2
:::k\\\ ST3 ST4 ST3 ST4
ST1 ST6 ST1 ST6
1 :
reconnect i i
" ST5 | ST5
ST2 ST2
ST3 ST4 ST3 ST4

ST1 ST6 ST1 ST6

Figure 3.14: A possible bisection and some possible reconnections of a tree

Near est neighbor interchange exchanges the 4 subtrees located at every inner
branch of the tree, i.e. interchanges subtree positions. A modified version of this
algorithm, which is depicted in Figure 3.15 is implemented in PHYML [39].

Some genetic algorithms which have recently been proposed [71, 72, 112]
traverse tree-space by (sometimes randomly) perturbing a population of trees via
modifications of branch lengths and topologies and combining the best trees until
an optimum is reached. Moreover, due to the fact that these methods build a
number of trees they enable approximation of posterior probabilities of trees or
clades. Furthermore, they allow backward steps, since they occasionally accept
trees with lower likelihood values, to avoid getting caught in local optima.

However, nearly every algorithm which globally optimizes tree topologies (not
necessarily branch lengths), implements a variation of those three basic topology

46

3.9. STATE OF THE ART PROGRAMS

ST1 ST3

ST2 ST4
interchange interchange
v N
ST1 ST2 ST1 ST3

ST3 ST4 ST4 ST2
Figure 3.15: All possible nearest neighbor interchanges for one inner branch

alteration (perturbation) procedures: be it the tree proposal/perturbation mecha-
nism of a bayesian or a genetic implementation, or be it hill climbing heuristics.

3.9.1.3 Quartet Algorithms

Quartet algorithms initially calculate the likelihood values of all 3 possible 4-
taxon trees, or simply quartets, for all (Z) combinations of 4 taxa from the input
alignment.

Thereafter, quartets and single sequences are integrated during the puzzing
step into several potential final trees. Note, that those intermediate trees are highly
dependent from the input order of quartets and sequences.

In the final consensus step a majority rule consensus tree is built from the
intermediate set of trees.

The most popular implementation of quartet puzzling is a program called
treepuzzle [137] which is popular among biologists since the final tree includes a
consensus-based measure of confidence.

However, more recently quartet puzzling algorithms have lost momentum due
to inacceptable inference times and comparatively poor final results [99]. There-
fore, quartet-puzzling is not applicable to inference of large phylogenetic trees
with more than 100 organisms.

3.9.2 Performance of Sequential Codes

A recent comparative survey of widely-used state of the art phylogeny programs
using statistical approaches such as fastDNAmI, MrBayes, PAUP [92], and treep-
uzzle [137] has been conducted by T.L. Williams et al. [147]. The most important

47

3. PHYLOGENY MODELS AND PROGRAMS

result of this paper is that MrBayes outperforms all other analyzed phylogeny
programs in terms of speed and tree quality.

However, this survey is entirely based on synthetic data. As outlined in Sec-
tion 3.8 and demonstrated through experimental results in this thesis as well as
in [124] additional experiments with real data can lead to different conclusions
and a more differentiated image. Furthermore, the largest alignments contained
only 60 sequences. Thus, the results of this survey do not necessarily apply to
inference of large trees and real data sets. In addition, this paper does not cover
genetic algorithms which generally converge faster than MrBayes [39].

More recently, Guidon and Gascuel published a paper about their new pro-
gram PHYML [39], which is very fast and outperforms other recent approaches
including bayesian and genetic algorithms. The program MetaPIGA by Lemmon
etal. [71] represent the currently most efficient genetic algorithm for phylogenetic
analysis.

PHYML is a “traditional” maximum likelihood program which seeks to find
the optimal tree in respect to the likelihood value and is also capable of optimizing
model parameters. The PHYML publication includes a comparative survey based
on both, large real world alignments (218 & 500 taxa), as well as 50 synthetic 100
taxon alignments.

A comparative analysis of MrBayes, RAXML, and PHYML including 9 real
world (101-1000 sequences) as well as the same 50 synthetic data sets used in [39]
is provided in [124] and Section 6.4 (pp. 94).

Thus, to the best of the author’s knowledge MrBayes and PHYML are cur-
rently the fastest and most accurate representatives of bayesian and “traditional”
approaches to phylogenetic tree inference using statistical models of nucleotide
substitution. Therefore, the focus is on those two programs for assessing perfor-
mance of RAXML in this thesis.

One should however be careful when comparing bayesian with maximum like-
lihood methods due to subtle differences in the statistical models as outlined in
Figure 3.16, Chapter 6 (pp. 87), and [47]. This is due to the fact that bayesian
methods optimize topologies by integration of the likelihood over a broader range
of model parameters, whereas maximum likelihood methods search for the peak
likelihood of all topologies with usually fixed or restricted model parameters.
Thus, a bayesian analysis might not yield a tree with a peak likelihood value as
obtained from a maximum likelihood search but a topology which is supported
by a broader range of model parameter combinations. A schematic representation
of this difference between bayesian and likelihood methods is provided in Fig-
ure 3.16 for the likelihood of a hypothetic final tree obtained by likelihood and
bayesian analysis over some model parameter x, e.g. the transition/transversion
ratio.

48

3.9. STATE OF THE ART PROGRAMS

Maximum Likelihood

Likelihood /

Value Bayesian Inference

Model Parameter x

Figure 3.16: Schematic difference in likelihood distribution over some model pa-
rameter z for a hypothetic final tree topology obtained by bayesian and max-
imum likelihood methods

Another important aspect of program quality within the context of comput-
ing large trees for more than 1.000 organisms are memory requirements. The
respective memory consumption of PHYML, MrBayes and RAXML is provided
in Section 6.6 (pp. 109).

3.9.3 Parallel & Distributed Codes

Most popular parallel implementations of phylogeny programs have been de-
signed to run on parallel distributed memory (MIMD, Multiple Instruction Mul-
tiple Data) machines. Therefore, they use the widely-spread Message Passing
Interface [141] (MPI) for communication.

Parallel MPI-based implementations are available for the following popular
sequential programs: DNAmI [17], fastDNAmI [135], treepuzzle [108], and Mr-
Bayes [50]. In addition, Brauer et al. [11] provide a parallel MPI-based imple-
mentation of a genetic search algorithm.

49

3. PHYLOGENY MODELS AND PROGRAMS

There also exists a shared-memory parallelization of fastDNAmI called very-
fastDNAmMI [145] which has rarely been used for phylogenetic analyses however.
It is parallelized with the TreadMarks [142] distributed shared memory system.

On the one hand—except for bayesian approaches—the parallelization of
these codes be it traditional or genetic search algorithms is fairly straight-forward
since alternative tree topologies are evaluated independently by a set of processors
in a standard master-worker scheme. Furthermore, tree topologies are communi-
cated in a short standard string representation. Thus, communication overhead
is not a crucial factor in most parallel implementations, which show *“good” rel-
ative speedup values of around 90% and good scalability up to 64 processors.
The low communication and synchronization costs and infrequent communica-
tion events—especially with growing number of sequences—also allow for grid
and distributed computing approaches as a means of attaining the required com-
putational resources. The only large-scale distributed implementation and execu-
tion of phylogenetic inference the author is aware of has been presented at the
“Supercomputing 2000 (SC2000)” conference by Snell et al. [115]. Snell pro-
posed a distributed approach for computation of large parsimony trees using the
DOGMA [58] framework.

On the other hand Bayesian approaches represent a more difficult challenge
since the MC? process is closely coupled and analyzes a significantly larger num-
ber of similar topologies. The main problem concerns the parallelization of one
single Markov chain, since it is evident that n distinct Metropolis-coupled chains
can be easily distributed and executed on n processors and occasionally exchange
results. However, the creation of n distinct Markov Chains will result in extremely
bad speedup values. Thus, the computations of each individual chain have to be
parallelized, a task which requires a supercomputer with high performance com-
munication links or at least a powerful PC cluster. Parallel implementations of
bayesian analyses deploy similar techniques and face related problems as parallel
fluid dynamics applications [32], such as load balancing and synchronization.

Generally, parallelization of phylogenetic codes results only in the gain of 1
to 2 orders of magnitude in terms of computable tree size, due to the computa-
tional complexity of underlying heuristic algorithms. Thus, parallel programs are
only as good as the search algorithms of underlying sequential programs. There-
fore, according to the author’s personal experience in the field, the main focus
of investigation should be on supporting and observing new algorithmic devel-
opments which sometimes yield advances of several orders of magnitude rather
than executing parallel versions of out-dated—with respect to recent algorithmic
developments—programs such as DNAmI, fastDNAmI, and treepuzzle, on large
supercomputers. In addition, parallelization of maximum likelihood programs
does not represent a scientifically challenging task in most cases and is thus con-
sidered just as useful spin-off of algorithmic development.

50

3.9. STATE OF THE ART PROGRAMS

As an example consider the case of parallel fastDNAmI [135] which was pre-
sented at the “Supercomputing 2001 (SC2001)” conference. The largest tree com-
puted with parallel fastDNAmI on an IBM RS/6000 XP using up to 64 processors
contained 150 sequences. In 2003 RAXML was able to compute the best-known
tree, i.e. better than all of the 10 trees inferred by 10 parallel executions of fastD-
NAmI, for the same 150 taxon alignment within less than 10 minutes on a single
Xeon 2.4GHz CPU.

Another severe example of needless brute-force resource allocation is the HPC
challenge which was conducted during the “Supercomputing 2003 (SC2003)”
conference [139]. A team around C. Stewart (author of parallel fastDNAmI), re-
ceived the price for the most geographically distributed application with a grid
implementation of parallel fastDNAmI [136] based on PACX-MPI [89]. They
conducted a large scale analysis of arthropod evolution * distributed across super-
computer sites on several continents. Despite the fact that the technical achieve-
ment represents an unchallenged success the waste of CPU hours by disregarding
recent algorithmic advances and insisting on the use of the fastDNAmI algorithm
which originally dates back to 1994 yields the whole event less impressive.

3.93.1 parallel fassDNAmI

Despite all criticism concerning parallel fastDNAmI, it is freely available as open
source code and still widely in use on a large variety of supercomputers. In addi-
tion, the algorithmic optimization (yielding ~ 50% of performance improvement
over parallel fastDNAmI) described in Section 4.1 (pp. 54) was implemented in
parallel fastDNAmI and the respective MPI-based program was presented at “Su-
percomputing 2002 (SC2002)” as PAXML [131]. Therefore, parallel fastDNAmI
is analyzed in more detail at this point:

The program implements a simple master-worker architecture, which in-
cludes an additional intermediate foreman component between master and
workers mainly for error handling in the Grid implementations mentioned
above. The master and forman processes are responsible for generating, dis-
tributing, and collecting topology evaluation jobs to the workers and thus hardly
produce load. Apart from some initialization routines the worker processes only
offer a treeEvaluate () service which receives a tree in string representation
and optimizes its likelihood. The resulting tree is then packed again into a string
representation and sent back to the foreman.

For the inference process one can distinguish between two basic phases of
the computation: the stepwise addition phase during progressive insertion of se-
guences and the rearrangement phase, i.e. the rearrangements on intermediate

1The size of the alignment used in this analysis has not yet been published.

51

3. PHYLOGENY MODELS AND PROGRAMS

topologies and the complete tree (see Section 3.9.1.1). Since distinct topologies
can be evaluated independently, the only synchronization points occur between
the different stages of stepwise addition, i.e. t, — ¢, for trees of size ¢, and
tr+1 Where £ < n as well as at the end of individual rearrangement iterations.

The speedup of parallel fastDNAmI typically ranges between values of ~ 5
on 8 workers and ~ 54 on 64 workers.

Summary

This Chapter provided an introduction to basic models and algorithms for phylo-
genetic tree inference and addressed basic mechanisms to obtain confidence into
final results. Moreover, methods for comparing phylogeny programs have been
discussed. Finally, current state of the art sequential and parallel phylogeny pro-
grams which implement statistical models of evolution have been addressed. The
next Chapter describes novel algorithmic optimizations and new heuristics which
enable rapid inference of large maximum likelihood-based trees. Those ideas
have been implemented in a program called RAXML (Randomized Axelerated
Maximum Likelihood) which is able to compute better trees in less time than the
programs and algorithms mentioned in Section 3.9 of the current Chapter.

52

4

Novel Algorithmic Solutions

In Rothenburg ob der Tauber,
Da sitzt ein Akadem;
Und was er fiihlt, ist sauber,
Und was er denkt, System.
Erich Weinert

The main goal of algorithmic improvements for maximum likelihood-based
phylogenetic tree inference is to design algorithms which require less time and
yield equally good or even better trees in terms of final likelihood values than
comparable programs.

Firstly, this goal can be achieved by implementing algorithmic optimizations
of the likelihood function which consumes the by far greatest amount of overall
execution time (usually > 90%) in maximum likelihood programs. Algorithmic
optimizations usually consist in detecting equal patterns and reusing already com-
puted values.

Secondly, both qualitative improvements as well as run-time reductions can be
achieved simultaneously by implementation of novel search space heuristics.

The two Sections of this Chapter cover the design of a novel, purely algorith-
mic optimization of the likelihood function [130, 131, 133] and introduce novel,
fast, and accurate search space heuristics [124] which have been derived from
experimental work [125, 127].

53

4. NOVEL ALGORITHMIC SOLUTIONS

4.1 Nove Algorithmic Optimization: AXML

In order to design an algorithmic optimization of the likelihood function one can
search for identical patterns in the multiple alignment and utilize them to expedite
the process of likelihood computation.

Therefore, the notion of column equalities is introduced. Two columns in an
alignment are equal if they consist of exactly identical bases. All equal columns
of an alignment form part of a column class. Moreover, two types of columns are
distinguished: a homogeneous column consists of identical bases, e.g. contains
only A’s or gaps, whereas a heterogeneous column consists of distinct bases. An
example which illustrates this definition is provided in Figure 4.1.

1 m
S1 ACGTTITTTTTITGGGGGCCCCTTTTTT
NY ACGTTICTTTICTGGGGGCCCCTTTTTT
S3 ACGTTITTTTTITGGGGGCCCCTTTTTT
S4 ACGTTTTTTITTGGGGGCCCCIITTTTT
S5 ACGTTICTTTIGTGGGGGCCCCTTTTTT
[

heterogeneous homogeneous

column equality column equality

Figure 4.1: Heterogeneous and homogeneous column equalities

More formally, let s4, ..., s,, be the set of aligned input sequences as depicted
in the upper matrix of Figure 4.2.

Let m be the number of sequence positions of the alignment. Two columns of
the input data set < and j are equal if Vs, k = 1,...,n : s = si;, Where sy, is
the j-th position of sequence k. One can now calculate the number of equivalent
columns for each column class of the input data set.

After calculating column classes, one can compress the input data set by keep-
ing a single representative column for each column class, removing the equivalent

54

4.1. NOVEL ALGORITHMIC OPTIMIZATION: AXML

1 m

sl ACGTTTTTTTTGGGGGCCCCTTTTTT
s2 ACGTTTTTTTTGGGGGCCCCTTTTTT
s3 ACGTTTTTTTTGGGGGCCCCTTTTTT
s4 ACGTTTTTTTTGGGGGCCCCTTTTTT
S5 ACGTTCTTTCTGG CCCCTTTTTT

compressing equal columns

1
sl ACGTT
S2 ACGTT
s3 ACGTT
s4 ACGTT
s5 ACGTC

1,5,6,12,2 column weights

Figure 4.2: Global compression of equal column

columns of the specific class and assigning a count of the number of columns the
selected column represents, as depicted in Figure 4.2.

Since a necessary prerequisite for a phylogenetic tree calculation is a high-
quality multiple alignment of the input sequences one might expect quite a large
number of column equalities on a global level. In fact, this kind of global data
compression is already performed by most programs.

The fundamental idea of this algorithmic optimization is to extend this com-
pression mechanism to the subtree level, since a large number of column equalities
might be expected on the subtree level. Depending on the size of the subtree, fewer
sequences have to be compared for column equality and, thus, the probability of
finding equal columns is higher.

None the less, the analysis of subtree column equalities is restrained to homo-
geneous columns for the following reason:

55

4. NOVEL ALGORITHMIC SOLUTIONS

The calculation of heterogeneous equality vectors at an inner node p is com-
plex and requires the search for ¢* different column equality classes, where & is
the number of tips (sequences) in the subtree of p and ¢ is the number of dis-
tinct values the characters of the sequence alignment are mapped to. For exam-
ple, fastDNAmI uses 15 different values. This overhead would not amortize well
over the additional column equalities one would obtain, especially when c* > m’
where m' is the length of the compressed global sequence alignment.

Now, one can derive an efficient and easy way to recursively calculate subtree
column equalities using Subtree Equality Vectors (SEVS).

Let s be the virtual root placed in an unrooted tree for the calculation of its
likelihood value. Let p be the root of a subtree with children ¢ and r, relative to
s. Letev_p (ev_g, ev_r) be the equality vector of p (g, r, respectively), with size
m'. The value of the equality vector for node p at position i, where ¢ = 1,...,m/
can be calculated by the following function (see example in Figure 4.3):

ev_p(i) ::{ ?JfQ(Z) Z;e ev_Q(i) = ev_r(i) (4.1)

If pisaleaf, ev_p(i) is set to ev_p(i) := map(sequence_p(i)), where, map()
is a function that maps the character representation of the aligned input sequence
sequence_p, at leaf p to values 0, 1, ..., c. Thus, the values of an inner SEV ev_p,
at position ¢, range from —1,0, ..., ¢, i.e. —1 if column 7 is heterogeneous and
from 0, ..., ¢ in the case of an homogeneous column.

For SEV values 0, ..., ¢ a pointer array ref_p(c) is maintained, which is ini-
tialized with NU L L pointers, for storing the references to the first occurrence of
the respective column equality class in the likelihood vector of the current node p.

Thus, if the value of the equality vector ev_p(j) > —1 and ref_p(ev_p(j)) #
NULL for an index j of the likelihood vector lv_p(j) of p, the value for the
specific homogeneous column equality class ev_p(j) has already been calculated
for an index 7 < j and a large block of floating point operations can be re-
placed by a simple value assignment lv_p(j) := lv_p(i). If ev_p(j) > —1 and
ref_p(ev_p(j)) = NULL, ref_p(ev_p(j)) is assigned to the address of lv_p(j),
i.e. ref_p(ev_p(j)) := adr(lv_p(j)).

The additional memory required for equality vectors is O(n * m'). The addi-
tional time required for calculating the equality vectors is O(m') at every node.

The initial approach renders global run time improvements of 12% to 15% *.
These result from an acceleration of the likelihood evaluation function between
19% and 22%, which in turn is achieved by a reduction in the number of floating
point operations between 23% and 26% in the specific function.

1The percentages mentioned in this section were obtained during initial tests and program
development on a Sun-Blade-1000.

56

4.1. NOVEL ALGORITHMIC OPTIMIZATION: AXML

towards root
N

0-10-111 evp
vO vl v2 v3 Iv_p

evgqg0 00111 010011 evr
Iv_qg|v0 vl vO vl Iv_r

refg(0 1 2 3

Figure 4.3: Example likelihood-, equality- and reference-vector computation for
a subtree rooted at p

It is important to note that the initial optimization is only applicable to the
likelihood evaluation function, and not to the branch length optimization function.
This limitation is due to the fact that the SEV calculated for the virtual root placed
into the topology under evaluation, at either end of the branch being optimized, is
very sparse, i.e. has few entries > —1. Therefore, the additional overhead induced
by SEV calculation does generally not amortize well with the relatively small
reduction in the number of floating point operations (2% - 7%). Note however,
that the SEVs of the real nodes at either end of the specific branch do not need to
be sparse, since this depends on the number of tips in the respective subtrees.

In the following it is demonstrated how to efficiently exploit the information
provided by a SEV, in order to achieve a further significant reduction in the number
of floating point operations by extending this mechanism to the branch length
optimization function.

57

4. NOVEL ALGORITHMIC SOLUTIONS

To make better use of the information provided by an SEV at an inner node p
with children and ¢, it is sufficient to analyze at a high level how a single entry
i of the likelihood vector at p, lv_p(i), is calculated:

lw_p(i) := f(g(lv_q(i), 2(p, q)), g(lv_r (i), z(p, 7)), (4.2)

where z(p, q) (z(p, r)) is the length of the branch from p to ¢ (p to r, respec-
tively).

This exactly corresponds to the formula given in Section 3.4.1 (pp. 23) for
recursively computing the likelihood in the tree:

T T
ngj) — (Z PSqu(Z(p7 q))Lg;))(Z PSpSr(Z(p7r))LA(S:~))
Sg=A Sr=4

Recall from Section 3.4.3 (pp. 30) that the expressions for the Ps s, (2(p, q))
rapidly become complex for more sophisticated models of sequence evolution,
e.g. for the HKY85 model:

;

g + g (#@) - 1) e 4 (%) e (p=q)

Py(t) = Tq + 7 (ﬁ - 1) e M4 (T) e M (p #q,Ts)

Trsum Wsum (Q)

|y (1= o) (b#qTv)

Thus, function ¢() is a computationally expensive function, that calculates the
likelihood of the left (right) branch of p, depending on the branch length z(p, q)
(2(p,r)) and the value of lv_q(i) (lv_r(i), respectively). Whereas f() performs
some simple arithmetic operations for combining the results of g(lv_g(i), 2(p, ¢))
and g(lv_r(i), z(p,r)) into the value of lv_p(i). Note, that z(p,q) and z(p,r)
do not change with 7 according to the definition of the tree likelihood score in
Section 3.4 (pp. 20).

If ev_q(i) > —1 and ev_q(i) = ev_q(j), i < j, then lv_q(i) = lv_q(j) and
therefore g(lv_q(i), z(p,q)) = g(lv_q(j), z(p,q)) (the same equality holds for
node). Thus, for any node ¢ one can avoid the recalculation of g(lv_g(i), z(p, q))
for all j > i, where ev_g(j) = ev_g(i) > —1. Those values are precalculated
and stored in arrays precalc_q(c) and precalc_r(c) respectively, where ¢ is the
number of distinct character-value mappings found in the sequence alignment.

The final optimization consists in the elimination of value assignments of type
lv_q(i) := lv_q(j), for ev_q(i) = ev_q(j) > —1, ¢ < j where i is the first

58

4.1. NOVEL ALGORITHMIC OPTIMIZATION: AXML

entry for a specific homogeneous equality class ev_g(i) = 0, ..., ¢ in ev_g. Those
values need not be assigned due to the fact that lv_g(j) will never be accessed.
Instead, since ev_q(j) = ev_g(i) > —1 and the value of g_q(j) = g_q(i) has
been precalculated and stored in precalc_qg(ev_p(i)), lv_g(i) is accessed through
its reference in ref_q(ev_q(7)).

During the main for-loop in the calculation of [v_p one has to consider 6
cases, depending on the values of ev_g and ev_r. For simplicity p_g(i) instead of
precalc_q(i) and g_qg(i) instead of g(lv_g(i), z(p, ¢)) is used.

[f(p_q(ev_q(d)),p_r(ev_r(i))) if ev_q(i) =ev_r(i) > —1,
ref_p(ev_r(i)) = NULL
skip if ev_q(i) =ev_r(i) > -1,
ref_p(ev_r(i)) # NULL
lw_p(i) == fp_alev_q(i)),p_r(ev_r(i))) if ev_q(i) # ev_r(i),
ev_q(i),ev_r(i) > —1
f(p_q(ev_q(i)), g_r(i)) if ev_q(i) > —1l,ev_r(i)=-1
Flo_a(i), p_r(ev_r(i))) if ev_r(i)>—1ev_g(i) = -1
L f(9_q(i), g_r(i)) if ev_q(i)=—1ev_r(i)=-1
(4.3)

A simple example for the optimized likelihood vector calculation and the re-
spective data-types used is given in Figure 4.3.

4.1.1 Additional Algorithmic Optimization

Since the initial implementation was designed for no particular target platform
and AXML showed to scale best on PC processor architectures (see Section 6.2.2,
pp. 90 and [130]), additional algorithmic optimizations have been investigated
which are especially designed for these architectures. An additional accelera-
tion can be achieved by a more thorough exploitation of SEV information in
function makenewz (.. .), which optimizes the length of a specific branch
b and accounts for approximately one third of total execution time. Function
makenewz (. ..) consists of two main parts : Initially, a for-loop over all align-
ment positions is executed for computing the likelihood vector of the virtual root
s placed into branch b connecting nodes p and ¢. Thereafter, a do-loop is executed
which iteratively alters the branch length according to a convergence criterion.
For calculating the new likelihood value of the tree for the altered branch length
within that do-loop, an inner for-loop over the likelihood vector of the virtual root
s which uses the data computed by the initial for-loop is executed. The basic
structure of this function is outlined in the following pseudo-code. The likelihood
vectors at nodes p, ¢, sarenamed 1h_p[], 1h gll, 1lh_ s[] respectively.

59

4. NOVEL ALGORITHMIC SOLUTIONS

void makenewz (...)

{

for(i = 1; 1 < m’; i++)

{

1h s[i] = compute 1lh(lh p[i], 1h gli], b);

}

do
{
b = alter(b);
for(i = 1; 1 < m’; 1i++)
1h s[i] = compute 1h(lh s[i], b);
}
while (!converged) ;

}

A detailed analysis of makenewz () reveals two points for further optimiza-
tion:

Firstly, the do-loop for optimizing branch lengths is rarely executed more than
once (see Table 4.1). Furthermore, the inner for-loop accesses the data computed
by the initial for-loop. Therefore, the computations performed by the first execu-
tion of the inner for-loop have been integrated into the initial for-loop. In addition
the conditional statement which terminates the iterative optimization process has
been appended to the initial for-loop, such as to avoid the execution of the first
inner for-loop completely.

data | # makenewz() | # makenewz() invocations | average # iterations
invocations with #iterations > 1 when #iterations > 1
SC_10 1629 132 7.23
SC_20 8571 661 6.14
SC_30 21171 1584 6.17
SC_40 39654 2909 6.21
SC_50 63112 4637 6.26

Table 4.1: makenewz() analysis

Secondly, when more than one iteration is required for optimizing the branch
length in the do-loop one can reduce the length of the inner for-loop by using
SEVs. The length of the inner for-loop f = m' can be reduced by nn — ¢ the
number of non-negative entries nn of the SEV at the virtual root s minus the
number ¢ of distinct column equality classes, since one needs to calculate only

60

4.1. NOVEL ALGORITHMIC OPTIMIZATION: AXML

one representative entry for each column equality class. Note, that the weight of
the column equality class representative is the accumulated weight of all column
equalities of the specific class at s. Thus, the reduced length f’ of the inner for-
loop is obtained by f' :=m' — nn + c.

The SEV ev_s of the virtual root s is obtained by applying:

ev_s(i) = { ?)1_17(2) i{se ev_p(i) = ev_q(i) (4.4)

The pseudo-code for the transformed version of maknewz (. . .) is provided
below:

void makenewz (...)
{
b’ = alter(b);
for(i = 1; 1 < m’; i++)
{
ev_s[i] = compute SEV(ev _pl[i], ev_glil]);
lh s[i] = compute 1lh(lh p[i], 1h gli], b);
lh s[i] = compute 1lh(lh s[i], b’);

}

compute (nn) ;
compute (c) ;

while (!converged)

{
b’ = alter(b’);
for(i = 1; 1 < m’ - nn + c; 1i++)
lh s[i] = compute 1lh(lh s[i], b’);
}

Typically, the branch length optimization process requires a relatively large
average number of iterations to converge if it does not converge after the first
iteration. Therefore, the optimization scales well despite the fact that the SEV at
the virtual root s is comparatively sparse, i.e. nn — c is relatively small compared
to m'. Experimental results for some small data sets comprising 10 up to 50
sequences (10_SC,...,50_SC) in Table 4.1 confirm this observation. A detailed
description of the the data sets used is provided in Section 6.1 (pp. 87).

61

4. NOVEL ALGORITHMIC SOLUTIONS

4.2 New Heuristicss RAXML

The heuristics of RAXML belong to the class of algorithms outlined in Sec-
tion 3.9.1 (pp. 41), that optimize the likelihood of a starting tree which already
comprises all sequences. In contrast to other programs RAXML starts by building
an initial parsimony tree with dnapars from Felsenstein’s PHYLIP package [93]
for two reasons:

Firstly, parsimony is related to maximum likelihood under simple evolution-
ary models [144], such that one can expect to obtain a starting tree with a relatively
good likelihood value compared to random or neighbor joining starting trees. For
example, the 500_ZILLA parsimony starting tree already showed a better likeli-
hood than the final tree of PHYML (see Table 6.7 on page 97).

Secondly, dnapars uses stepwise addition as outlined in Section 3.9.1.1
(pp. 42) for tree building and is relatively fast. The stepwise addition algorithm
enables the construction of distinct starting trees by using a randomized input se-
quence order. Thus, RAXML can be executed several times with different starting
trees and thereby compute a set of distinct final trees. The set of final trees can
be used to build a consensus tree and augment confidence into the final result.
To speed up computations, subtree rearrangements and evaluation of parsimony
scores for all possible rootings have been removed from dnapars.

The tree optimization process represents the second and most important part
of the heuristics. RAXML performs standard subtree rearrangements by sub-
sequently removing all possible subtrees from the currently best tree ¢,.,; and
re-inserting them into neighboring branches up to a specified distance of nodes.
RAXML inherited this optimization strategy from fastDNAmI (see Section 3.9.1,
pp. 41). One rearrangement step in fastDNAmI consists of moving all subtrees
within the currently best tree by the minimum up to the maximum distance of
nodes specified (lower/upper rearrangement setting). This process is outlined for
a single subtree (ST5) and a distance of 1 in Figure 4.4 and for a distance of 2
in Figure 4.5 (not all possible moves are shown). In fastDNAmI the likelihood
of each thereby generated topology is evaluated by exhaustive branch length op-
timizations. If one of those alternative topologies improves the likelihood %, is
updated accordingly and once again all possible subtrees are rearranged within
trest- THis process of rearrangement steps is repeated until no better topology is
found.

The rearrangement process of RAXML differs in two major points: In fastD-
NAmI after each insertion of a subtree into an alternative branch the branch lengths
of the entire tree are optimized. As depicted in Figures 4.4 and 4.5 with bold lines
RAXML only optimizes the three local branches adjacent to the insertion point of
the subtree either analytically (fast) or by the Newton-Raphson method (slower,
see Section 3.4.2, pp. 25) before computing its likelihood value. Since the likeli-

62

4.2. NEw HEURISTICS: RAXML

STl: : ST3 ST1 ST3
ST2 ST5 RN 5 ST4 STZ: - ST5 j ; ST4

Rearranging Subtree ST5 STL ST3
with a rearrangement setting
of 1

ST2 ST4

(v
ST1: ST5 :v t ST3 Sle ; STS : ST3
ST2 ST4 ST2 ST4
Figure 4.4: Rearrangements traversing one node for subtree ST5, branches which
are optimized are indicated by bold lines

hood of the tree strongly depends on the topology per se this fast prescoring can
be used to establish a small list of potential alternative trees which are very likely
to improve the score of ¢,.,;. RAXML uses a list of size 20 to store the best 20
trees obtained during one rearrangement step. This list size proves to be a practi-
cal value in terms of speed and thoroughness of the search. After completion of
one rearrangement step the algorithm performs global branch length optimizations
on those 20 best topologies only. The capability to rapidly analyze significantly
more alternative and diverse topologies due to a computationally feasible higher
rearrangement setting (e.g. 5 or 10) leads to significantly improved final trees.
Another important change especially for the initial optimization phase, i.e. the
first 3-4 rearrangement steps, consists in the subsequent application of topologi-
cal improvements during one rearrangement step. If during the insertion of one
specific subtree into an alternative branch a topology with a better likelihood is en-
countered this tree is kept immediately and all subsequent subtree rearrangements
of the current step are performed on the improved topology. The mechanism is
outlined in Figure 4.6 for a subsequent application of topological improvements

63

4. NOVEL ALGORITHMIC SOLUTIONS

ST1 ST6 ST1 ST6

ST4 ST4

ST2 ST5 _ ST3 ST2__ ST5 ST3

ST1 ST6

Rearranging Subtree ST5
with a rearrangement setting
of 2

ST4

ST2 ST3

Figure 4.5. Example rearrangements traversing two nodes for subtree ST5,
branches which are optimized are indicated by bold lines

ST1 LH 1 ST6 ST1 LH 2 ST6
——— e - = >
ST4 ST4
ST5
ST2 ST3 rearrange subtree 5 ST2 ST3
: LH 2>LH 1
I
v
ST1 ST3 ST6 ST1 ST6
subsequent application
- - - - - - - - - =
LH 3
- ST4 ST4
ST5
LH 3>LH 2
ST2 - - ST2

rearrange subtree 3 in
modified tree

Figure 4.6: Example for subsequent application of topological improvements dur-
ing one rearrangement step

64

4.2. NEw HEURISTICS: RAXML

via subtree rearrangements of ST5 and ST3 on the same initial tree. This en-
ables rapid initial optimization of random starting trees as depicted e.g. for two
alignments containing 150 taxa in Figures 6.6 and 6.7 (p. 102 and p. 102).

The exact implementation of the RAXML algorithm is indicated in the C-like
pseudocode below. The algorithm is passed the user/parsimony starting tree t, the
initial rearrangement setting rStart (default: 5) and the maximum rearrange-
ment setting rMax (default: 21). Initially, the rearrangement stepwidth ranges
fromrL = 1torU = rStart. Fast analytical local branch length optimiza-
tion a is turned off when functions rearr (. . .), which actually performs the
rearrangements, and optimizeList20 () fail to yield an improved tree for the
first time. As long as the tree does not improve the lower and upper rearrangement
parameters rL, rU are incremented by rStart. The program terminates when
the upper rearrangement setting is greater or equal to the maximum rearrangement
setting, i.e. rU >= rMax.

RAXML (tree t, int rStart, int rMax)
int rL, rU;

boolean a = TRUE;

boolean impr = TRUE;

while (TRUE)

{

if (impr)
{
rL 1;
rU rStart;
rearr (t, rL, rU, a);
1

else
{
if(la)
{
a = FALSE;
1;
rStart;

R
[l
I

rL += rStart;
rU += rStart;
1
1f (rU < rMax)
rearr (t, rL, rU, a);
else
goto end;
1
impr = optimizeList20();
}

end:

}

65

4. NOVEL ALGORITHMIC SOLUTIONS

Summary

The present Chapter covered the design of a novel algorithmic optimization of the
likelihood function and introduced novel, fast, and accurate search space heuris-
tics. Those two basic ideas significantly contribute to the resolution of the two
main computational problems of maximum likelihood-based analyses: the cost of
the tree evaluation function and the efficient traversal of search space. However,
the computation of huge trees still requires an enormous amount of computational
resources. Thus, parallel, distributed, and Grid-enabled solutions to attain those
resources for AXML (SEV-method) and RAXML (SEV-method and new heuris-
tics) are addressed in the next Chapter.

66

O

Novel Technical Solutions

Dem Ingenieur ist nichts zu schwor.

This Chapter briefly describes a variety of technical solutions which have been
devised to obtain the required computational power for inference of large phylo-
genetic trees with AXML and RAXML respectively.

The CORBA-based distributed implementation of AXML is described in more
detail in a paper presented at the “PaCT2003 conference” [128] whereas an
overview over all technical solutions which have been devised for AXML is
provided in [121]. Finally, the distributed implementation of RAXML is de-
scribed in [120] and two recent papers [122, 126] provide information on parallel
RAXML.

5.1 Paralld and Distributed Solutionsfor AxML

This Section covers the parallel, distributed, and grid-based technical solutions
which have been implemented for AXML. Finally, it addresses a special adaptation
of PAXML to the Hitachi SR8000-F1 supercomputer.

51.1 Parallel AXML

The implementation of Parallel AXML (PAXML) is entirely based on parallel
fastDNAmI which is briefly outlined in Section 3.9.3.1 (pp. 51). Since the core
component of the worker implementation in parallel fastDNAmI consists in the
likelihood evaluation function, the SEV-based version of this function had simply
to be integrated into the existing code, which otherwise remained unchanged.

67

5. NOVEL TECHNICAL SOLUTIONS

Due to the fact, that SEVs only induce a moderate acceleration of the average
evaluation time per topology (30% -60%) the expected speedup values remain un-
affected compared to those of parallel fastDNAmI which typically range between
values of ~ 5 on 8 workers and ~ 54 on 64 workers.

5.1.2 Distributed L oad-managed AXML

DAXML (Distributed AXML), the distributed CORBA-based implementation of
AXML has been developed in cooperation with Markus Lindermeier at the
Lehrstuhl fur Rechnertechnik und Rechnerorganisation who developed the LMC
system (see below) within the framework of his Ph.D. thesis. This Section pro-
vides a brief introduction to the CORBA-based Load Management System and a
description of the respective implementation and adaptation of PAXML. The dis-
tributed code has been derived from PAXML and uses a very similar parallelization
scheme.

5.1.2.1 TheLoad Management System

Nowadays applications do not reside on a single host anymore; they are dis-
tributed all over the world and interact through well defined protocols. Global
interaction is accomplished by so called middleware architectures. The most com-
mon middleware architectures for distributed object-oriented applications are the
CORBA (Common Object Request Broker Architecture) and the DCOM (Dis-
tributed Component Object Model). Environments like CORBA and DCOM
cause new problems because of their distribution. A significant problem is load
imbalance. As application objects are distributed over multiple hosts, the slowest
host determines the overall performance of an application. Load management ser-
vices intend to compensate load imbalance by distributing workload. This guar-
antees both, high performance, as well as scalability of distributed applications.

The load management concept uses objects as load distribution entities and
hosts as load distribution targets. Workload is distributed by initial placement,
migration, and replication.

* Initial Placement stands for the creation of an object on a host that has
sufficient computing resources in order to efficiently execute the object.

» Migration means moving an existing object to another host that promises a
more expeditious execution.

* Replication is similar to migration but the original object is not removed,
such that identical objects called replicas are created. Further requests to

68

5.1. PARALLEL AND DISTRIBUTED SOLUTIONS FOR AXML

Load Management System

Load Monitoring Load Distribution

Runtime Environment

Figure 5.1: The components of the Load Management System LMC

the object are split up among its replicas in order to distribute the workload
(requests) among them.

There are two kinds of overload in distributed object-oriented systems: back-
ground load and request overload. Background load is caused by applications that
are not controlled by the load management system. Request overload means that
an object is not capable to efficiently process all requests it receives. Migration is
an adequate technique for handling background load but the scalability attained by
migration is limited. Replication helps to break this limitations and is an adequate
technique for handling request overload.

These concepts have been implemented in the Load Managed CORBA (LMC)
system [75]. LMC is a load management system for CORBA. The main compo-
nents of LMC are shown in Figure 5.1. These components fulfill different tasks
and work at different abstraction levels. The load monitoring component offers
both, information on available computing resources and their utilization, as well
as information on application objects and their resource usage. This data has to
be provided dynamically, i.e. at runtime, in order to obtain information about the
runtime environment and the respective objects. Load distribution provides the
functionality for distributing workload by initial placement, migration, or replica-
tion of objects. Finally, the load evaluation component decides about load distri-
bution based on information provided by load monitoring. Those decisions can be
attained by a variety of strategies [74].

LMC is completely transparent on the client-side because it uses CORBA’s
Location Forward mechanism to distribute requests among replicas. On the
server-side minor changes to the existing code are necessary for integrating load
management functionality into the application. These changes mainly affect the
configuration of the Portable Object Adapter (POA). All extensions are seamlessly
integrated into the CORBA programming model. Thus, only a minor additional

69

5. NOVEL TECHNICAL SOLUTIONS

effort is required by the application programmer for the integration of the services
provided by LMC.

For a detailed description of the load management system as well as the initial
placement, migration, and replication policies which have been used see [74].

5.1.2.2 Implementation

For designing DAXML, the original parallel code of PAXML was initially simpli-
fied by removing the foreman component entirely from the system, since error
handling can more easily be handled directly by LMC.

Furthermore, the program structure was altered, such as to create all trees of
size k: t; (see Section 3.9.1.1, pp. 42), i.e. all topologies with £ leaves, that can be
evaluated independently at once, and store them as strings in a work queue. This
transformation was performed, in order to provide a means for issuing simultane-
ous topology evaluation requests (see below).

All alternative tree topologies ¢, which are generated either by stepwise addi-
tion or tree rearrangements at step & of the search algorithm form part of topology
class k.

replicated Worker Object

C-code

via JNI

- =

Master Object

Work Queue
calculateTree()

calculateTree()

LMC
calculateTree() \\calculateTree()
' Worker Object

Thread 1

TN A=
Thread 2

C-code

via JNI

< -------->

Figure 5.2: System architecture of DAXML

Note, that several sets of trees from topology class %, which have to be evalu-
ated in sequential order, may be generated, depending on the specified rearrange-

70

5.1. PARALLEL AND DISTRIBUTED SOLUTIONS FOR AXML

ment setting of DAXML. For example one set of trees ¢, from the stepwise addi-
tion step and typically several sets for each iteration of the rearrangement phase
are generated (see Section 3.9.1.1, pp. 42 for details).

Those sets are sufficiently large, such that they do not create a synchronization
problem at the respective transition points between distinct sets.

The overhead induced by first creating and storing all topologies before in-
voking the evaluation function is neglectible, since the invocation of the topology
evaluation function consumes by far the greatest portion of execution time.

Because LMC is based on a modified JacORB [13] version and only provides
services for JAVA/CORBA applications, the simplified code was transformed into
a sequential JAVA program using JNI (JAVA Native Interface). Two JAVA classes
master and worker were designed which offer analogous functionalities as
their counterparts in PAXML. The basic service provided by the worker class
is a method called calculateTree (), for evaluating a specific tree topology,
which in turn invokes the fast native C evaluation function via JNI. The method
calculateTree () corresponds exactly to the treeEvaluate () function
in PAXML and parallel fastDNAmI (see Section 3.9.3.1, pp. 51).

The master component loads and parses the sequence file, passes the input
data to the worker, generates tree topologies and gathers results.

The transformation of the sequential JAVA code into a LMC-based application
was straight-forward, since its class layout already complied with the structure of
the distributed application. The worker class is encapsulated as CORBA worker
object, and provides its topology evaluation function as CORBA service. The
state of the CORBA worker object consists only of the sequence data, which
can be loaded via NFS or directly from the master when a worker object is
created by initial placement, migration, or replication.

Thus, since the sequence data is not modified during tree calculation, replica-
tions and migrations of worker objects do not induce any consistency problems.

In the main work-loop of the master, a number of threads corresponding
to the number of available hosts controlled by LMC is created, in order to per-
form simultaneous topology evaluation requests. This enables LMC to correctly
distribute tree evaluation requests among worker objects on distinct hosts and to
ensure optimal distribution granularity. The system architecture of DAXML is
outlined in Figure 5.2 for a simple configuration with two worker objects.

51.3 AxML ontheGrid

Unlike typical supercomputer applications, such as e.g. hydrodynamic simula-
tions, parallel phylogeny programs such as PAXML can easily and quickly be
interrupted and restarted, i.e. they are well suited for automatic relocation and
execution on available, faster, or more inexpensive resources. Furthermore, they

71

5. NOVEL TECHNICAL SOLUTIONS

do not require an excessive amount of memory and final as well as intermedi-
ate results (checkpoints) of the tree inference process are stored in a simple and
comparatively small in size string format (less than 0.5MB even for 1.000 taxa).

These properties facilitate the implementation of a “phylogenetic grid worm”,
i.e. an application which is able to migrate through the grid to suitable re-
sources, according to a set of migration criteria, during its execution. Note, that
there still exists a plethora of partially unresolved problems in the area of meta-
computing such as the co-scheduling problem, fault tolerant communication pro-
tocols, or additional communication overhead between distant supercomputers
sites [135, 136]. Therefore, the implementation of a “grid worm” represents a
realistic approach for performing high throughput phylogenetic tree computations
on the grid, given the present state of technology.

GAXML (Grid AXML) has been designed by integrating the migration ser-
vices of the high-level GMS [68, 69, 70] (Grid Migration Server) into PAXML
in cooperation with Gerd Lanfermann from the Max-Planck Institute at Potsdam.
Section 5.1.3.1 describes the basic components of the Grid Migration Server. The
respective GMS-based implementation of Grid AXML is outlined in the subse-
quent Section 5.1.3.2.

5.1.3.1 TheGrid Migration Server

The Grid Migration Service is developed at the Max-Planck Institute for Grav-
itational Physics within the framework of the GridLab project. GMS is a tool
originally designed to increase the throughput of large-scale relativistic simula-
tions at the institute by means of automatic migration. The GridLab [38] project
intends to define and explore Grid functionalities, which will are privided by the
Grid Application Toolkit [1].

GMS is a XML-RPC [150] based server system, that provides several RPC
migration methods to clients. The most essential services it provides are
ms_migrate, which issues a migration request and ms_announce, which
continuously provides migration data to the server, without actually requesting
a migration. The latter service and data is useful for automatically restarting the
simulation in case of failure.

GMS operates like any other web service via request calls. Along with a
migration request, the client needs to provide data, which is required to restart the
program on a different host:

» Data Files: The client must specify the files which are required to restart
the program, e.g. checkpoint files, which describe the current state of the
simulation, parameter files, which contain program settings, or other data
files.

72

5.1. PARALLEL AND DISTRIBUTED SOLUTIONS FOR AXML

» Executable: The client must inform the server on the executable that will
be used to restart the program. If the application is moved to a different
hardware architecture, the server has to retrieve or generate an appropriate
executable for the new target platform.

o Startup Command: Since the server has no knowledge on how the pro-
gram needs to be started, the client has to inform the server on its startup
procedure, e.g. the client has to specify its command-line flags and the order
in which input and output files are passed to the application. This informa-
tion can also contain pre- and postprocessing commands.

» Resource Requirements. The client should specify its minimum resource
requirements. This information may consist of the necessary number of
processors, the minimum memory, or restrictions regarding the supported
operating systems and/or supported host systems.

GMS is a high-level service, which is based on low-level services providing
file transfer, machine access, and resource evaluation capabilities. A high-level
migration request invokes several low-level copy and start request.

The Application Information Server: Like the GMS, the AIS (Application In-
formation Server) is a XML-RPC based information base for storing information
on applications, resources and files. It is primarily designed to be accessed by
applications through RPCs, which extract information on the state of services, the
location of files, etc. The AIS maintains and controls the activity status of any
application that registers or de-registers to/from AlS. The AIS can actively track
those applications which are able to respond to ping requests. If an application
is pinged and fails to respond, the AIS declares the respective application as inop-
erational and can either take counter measures to restart it or simply inform the
user about the failure.

Like the AIS, the pAIS (personal AIS) is an information database, but aimed
at providing simulation-specific data to the scientist. For the pAlS the application
provides information on the progress of the computation to the scientist.

In the case of GAXML this information can contain e.g. the current tree, the
number of processes, and the estimated runtime to completion. As the application
is migrating through the grid, the pAIS serves as contact portal for the scientist to
monitor migrating applications. The pAIS abstracts simulation data (like search
progress, etc.) from the actual execution platform/host.

73

5. NOVEL TECHNICAL SOLUTIONS

5.1.3.2 Implementation of GAXML

Integrating migration functionality into a parallel phylogeny program like PAXML
was a challenge, since PAXML was not designed to be executed as migrating
application.

In this Section the necessary modifications to PAXML for the integration of
migration capabilities, i.e. the design of the GAXML client is outlined. Further-
more, the necessary adaptations and extensions on the server-side of the program,
i.e. GMS, AIS are addressed. The overall system architecture is depicted in Fig-
ure 5.3.

Current Ressource

GMS Worker 0

MPI-Communication

Socket Communlcatlo/n: "= Master Foreman °

AlS Worker n-1

Figure 5.3: System Architecture of GAXML

5.1.3.2.1 Client-side Modifications

The master process of PAXML maintains all data required for checkpointing,
shutting down and restarting the whole application. Thus, only minor changes
to the mastexr component were required to integrate migration services into the
program, leaving the foreman and worker components completely unchanged.

All communication with the GMS and AIS is performed via sockets, such
that a number of additional communication routines had to be integrated into the
master process for transmitting requests and status information. Those com-
munication routines transform the respective data structures into serialized XML
code and embed it into a ht tp header structure which is then written to the re-
spective socket. The server receives and deserializes the data and then executes
the respective request.

The Grid Object Description Language (GODsL) Toolkit which provides a
uniform description of objects on a grid including file, hardware, resource, and
service properties has been deployed for this purpose. It is used for describing the

74

5.1. PARALLEL AND DISTRIBUTED SOLUTIONS FOR AXML

resource requirements of GAXML and the location of the various files required
for restarting the program on a distinct host. The GODsL data structure can be
serialized into XML and is therefore compatible with XML-RPC based services,
as provided by the GMS. For a detailed description of the Grid Object Description
Language Toolkit see [38].

The GAXML master process has to provide a migration infrastructure (the
capability to register and communicate status data to the GMS/AIS as well as to
prepare and issue a migration request) on the one hand and migration trigger-
ing mechanisms (the capability to collect internal data for performing migration
decisions and to receive external migration commands) on the other hand.

Migration Infrastructure: For providing the necessary migration infrastructure
the master process of GAXML has been modified as follows:

* Registration: GAxXML announces itself to the Application Information
Server (AIS) and sends information about the machine it currently executes
on by a socket routine, when the master process is started.

* Runtime Information: The master sends information, containing the
currently best tree ¢;, when a checkpoint for ¢, is written. This information
is published by the personal Application Information Server (pAlS).

* Migration: If a migration is initiated, the master shuts down the
foreman and worker processes, automatically generates the restart com-
mand, as well as the restart file, and specifies the resource requirements.
This information is sent to the GMS as part of the migration request. Since
GAXML always requires the initial sequence file and the current checkpoint
file to generate the restart file, two files have to be transferred to the new
host: the actual restart file and the original sequence file. The GAXML
checkpoint, restart, and sequence files are flat ASCII files and therefore
platform-independent.

Migration Triggering: A migration can be initiated when one or more internal or
external migration criteria are met. The following internal criteria are monitored
and implemented in the mastexr process to trigger migrations.

» The main criterion for resource requirements is the number of independent
tree evaluation tasks, which constantly increases during the reconstruction
process. Those tasks are generated by the master, such that if a cer-
tain number of tasks/number of workers threshold ratio is exceeded, the
master initiates a migration request containing a higher number of worker
processes.

75

5. NOVEL TECHNICAL SOLUTIONS

* A new command-line option -z which specifies the time assigned by the
respective batch-queuing system has been added to GAXML. The master
regularly checks if the time is about to expire and initiates a migration if
necessary.

Furthermore, the required infrastructure for issuing external migrations com-
mands to GAXML is provided. External migrations can be triggered either via a
manual migration interface from the user or when “better” resources in terms of
e.g. faster, more inexpensive, or more suitable architectures such as PC clusters
(see Section 6.2.2, pp. 90) become available.

The latter case requires an external service that can gather and evaluate infor-
mation about other resources in the grid. Such tools are a current research topic
in the area of grid computing.

To issue such an automatic or manual external migration one has to provide in-
formation about the new target platform. When an external migration is triggered
GAXML will automatically start the checkpointing, shutdown, and migration pro-
cedure. Thus, the master had to be modified in order to be able to receive
external request.

Since the master process already implements a loop that regularly checks
the expiration of the assigned computing time a socket polling mechanism has
been integrated into that loop to receive incoming external migration requests and
pings (see below) from the AlS.

5.1.3.2.2 Server-side Adaptations

Application Tracking: The AIS actively tracks applications via a ping request.
The ability to respond to such requests has been integrated into GAXML as de-
scribed above. The AIS will treat missing ping responses as program failures.

GAXML Visualization: In a grid migration environment, the execution of the ap-
plication is abstracted from the application data, which is of major interest to the
scientist. In an automated migration environment it is not possible to determine
where the application is currently running or where it will execute next (except in
the case of manual migrations), because these decisions will generally depend on
changing resource availability. However, monitoring the progress of the compu-
tation and assessing the quality of intermediate results is of major importance for
any scientific application.

GAXML offers two possibilities for monitoring the progress of the tree recon-
struction process.

The master regularly sends information about the currently best tree ¢, to the
pAIS viathe ais_info remote procedure call. Upon receipt the pAlS publishes
this information via a web interface.

76

5.1. PARALLEL AND DISTRIBUTED SOLUTIONS FOR AXML

In a more advanced approach, GAXML makes use of the file advertisement
features in Cactus [15]. Although GAXML is not a Cactus application, the GMS
is Cactus-based and its web services permit GAXML to indirectly use Cactus vi-
sualization features. In this case GAXML sends the currently best tree ¢, in its
string representation and an appropriate MIME - Type extension to the pAIS via
an ais info2file remote procedure call. Since these strings are compara-
tively small, they can easily be handled by the ht tp protocol. The MIME-Type
specifies, how a web server advertises this data in a file and how a web browser
treats such a file. A typical extension is e.g. application/postscript for
opening a postscript viewing program. For visualizing tree data the extension
data/phylo has been introduced.

When the pAIS receivesthe ais info2file request, it writes the enclosed
tree data to a file, provided it does not exceed a maximum size, and associates the
transmitted MIME - Type extension with that file. The pAIS then assigns a html
link to the file and publishes the URL on its web-page.

A browser can now be appropriately configured to invoke a phylogenetic tree
visualization tool such as ATV [3, 153]. When the user clicks on a link with the
data/phylo MIME-Type ATV is automatically invoked and displays the cur-
rent tree. Furthermore, ATV has been slightly modified to regularly read in the tree
file which is overwritten when a new tree is received from the master, i.e. ATV
always displays the most recent tree. Thus, independently of where GAXML is
currently executed, the scientist can continuously monitor the reconstruction pro-
cess and see the tree grow on his screen as new sequences are inserted. In Fig-
ures 5.4 and 5.5 two screenshots of ATV at different stages in the reconstruction
of a 150 taxon tree with GAXML are depicted.

5.1.4 PAXML on Supercomputers

This Section briefly addresses the special adaptation of PAXML to the Hitachi
SR8000-F1 supercomputer which is also outlined in [132].

As already mentioned the parallel architecture of PAXML consists of a simple
master-worker model, with the master distributing the tree topologies to be eval-
uated in a simple short string representation to the workers, i.e. communication
overhead is insignificant.

Thus, initial tests were carried out in intra-node MPI-mode, in order to keep
each worker module as compact as possible and to rapidly evaluate the scalability
of SEV-based optimizations (see Section 4.1, pp. 54) to the specific processor
architecture of the SR8000-F1.

The first tests rendered rather unfavorable results in terms of run time im-
provement of PAXML over parallel fastDNAmI, compared to the results obtained
on conventional PC processor architectures (see Chapter 6, pp. 87). The problem

77

5. NOVEL TECHNICAL SOLUTIONS

ATY
Fils Edit Ssarch =Dl View Optians Hslp
[¥] mal brnch lsngths
—+_.—l'\u'br\fuln8' (] 269 name extnodes
"WbrChod 3 [+] 269 nams intnodes
+—_I'Xnm0ryza' 4] =pecies sxtnodes
‘¥nmCampg'] =pacies intnodes
—ENSSE'°”E' (] EG extnodes
"NesGonod” [EGintnodes
‘NmEur3’
o [_] branch length value=
N.Iir:;nnj. [_] bootetr p valuss
o
, . [] duplic v= zpec
';rak::acl'lj [] dizplay orhology
4 ‘BriCepa? [] dizplay =ubtrnaighb
_ L ‘HgpPaliz: [] dizplay =-orhology
f CmaTests' [] eoloraceam to log L
‘LegPneus' []1og L value=
‘AjgHaemo' [=ditabia
\AieCales' lcliek on node to:
'PagAerTa (@) dizplayieditinfomaion
‘Psgplcak’ () eolla pze juncalls pze
EI'AeUHyd 2 () motimmot
"AeOHyd 14" () subtmedpamnt tre
C'thpamz' () awap child en
'Hhlinf44' z0om in X |
+—.I'YerF‘es1U' zoom out X ‘
"YerEnted' T ‘
{'S'ETYP"S‘ zoom outY |
‘Sleparad’ ahow whole \
b :Esccm43: odsraubimes |
" Bsclot4s unccllapss al |
collapse to dee pest \

Figure 5.4: GAXML tree visualization with 29 taxa inserted

could however be quickly identified. The case analysis of formula 4.3 (p. 59) in
Section 4.1 was originally implemented as nested conditional statement within the
computationally expensive for-loops of functions newview (), makenewz (),
and evaluate () which calculate the likelihood. This implementation signif-
icantly perturbs the pipelining and prefetch mechanisms of Hitachi’s hardware
architecture.

Therefore, the for-loops are split up within the newview (), makenewz (),
and evaluate () functions, and a distinct for-loop is executed for each case.
Thus, the evaluation of further conditional statements is not required within the
respective loops.

This modification improved program efficiency both in terms of floating point
performance and run time reduction, although some additional code had to be
inserted for precalculating the loop split.

For example the non-adapted PAXML code rendered 21% of run time improve-
ment compared with 28% for the adapted one over parallel fastDNAmI for a 250
taxon phylogenetic analysis executed on 14 workers.

78

5.2. PARALLEL AND DISTRIBUTED SOLUTIONS FOR RAXML

Fila Edit Seanch S0l Wisw Cptionzs Halp

|w| mal brnch lengths
IE =zaq nams extnodes
[v] =2q name intnodes
[v] =paciss extnodss
D =peciez intnodes

[] EG extnodas

D EC intnodas

] branch length values
[bootsta p values
D duplic vs spac

[dizplay athalogy
D dizplay =ubtrnaighb
|| dizplay =-orthalagy
D coloraccon folog L
[log L walues

[=ditabls

click on node to:

(@) dizplayseditinfomation
{:) colla pzefuncolla pze
) motim maot

(i subtmedpamnt tee

() ewap childmn

zoom in X

zoom out X

zoom in

zoom out

show whole

omarsubtmeas

uncollapze all

colla pee o dee past

Figure 5.5: GAXML tree visualization with 127 taxa inserted

However, due to the significantly superior efficiency of the SEV technique on
PC processors coupled with the substantially lower cost of those platforms, the
largest amount of computations was conducted on large PC clusters.

5.2 Paralle and Distributed Solutionsfor RAXML

This final Section covers the parallel (Section 5.2.1) and distributed (Section 5.2.2)
implementations of the significantly faster algorithm of RAXML. As outlined in
Section 4.2 (pp. 62) RAXML incorporates novel search space heuristics, which
enable inference of 1000-taxon trees in less than 24 hours on a single CPU in
contrast to thousands of CPU hours required by PAXML. The RAXML code in-
herited the SEV implementation from AXML but deploys a significantly different
parallelization scheme.

79

5. NOVEL TECHNICAL SOLUTIONS

521 Parallel RAXML

The parallel implementation is based on a simple master-worker architecture and
consists of two phases.

In phase | the master distributes the alignment file to all worker processes
if no common file system is available, otherwise it is read directly from the file.
Thereafter, each worker independently computes a randomized parsimony starting
tree and sends it to the master process. Alternatively, it is also possible to start the
program directly in phase Il by specifying a tree file name in the command line.

In phase Il the master initiates the optimization process for the best parsimony
or specified starting tree. Due to the high speed of a single topology evaluation of
a specific subtree rearrangement by function rearrangeSubtree () and the
high communication cost, it is not feasible to distribute work by single topologies
as e.g. in parallel fastDNAmI. Another important argument for a parallelization
based upon whole subtrees is that only in this way likelihood vectors at nodes
can be reused efficiently within a slightly altered tree (see Section 3.9.1, pp. 41).
Therefore, work is distributed by sending the subtree ID (of the subtree to be
rearranged) along with the currently best topology t best, to each worker.

The sequential and parallel implementation of RAXML on the
master-side is outlined in the pseudocode of function rearr () which actu-
ally executes subtree rearrangements. Each worker simply executes function
rearrangeSubtree ().

void rearr (tree t_best, int rL, int rU, boolean a)
{
boolean impr;
worker w;
for(i = 2; i < #species * 2 - 1; i++){
if (sequential) {
impr = rearrangeSubtree(t_best, i, rL, rU, a);
if (impr) applySubsequent (t_best, 1i);
}
if (parallel)
if (w = workerAvailable)
sendJob (w, t_best, 1i);
else putInWorkQueue (i) ;

}

if (parallel) {
while (notAllTreesReceived) {
w = receiveTree (w_tree) ;
if (likelihood (w_tree) > likelihood (t_best))
t_best = w_tree;
if (notAllTreesSent)
sendJob (w, t_ best, nextInWorkQueue ()) ;

In the sequential case rearrangements are applied to each individual subtree
i. If the tree improves through this subtree rearrangement t best is updated

80

5.2. PARALLEL AND DISTRIBUTED SOLUTIONS FOR RAXML

250 T T T T
"random_tree"
"parsimony”_tree" ------
@ 200 - —
=)
o
2
S 150 _
B
3 parsimony inference ends at
S step 12
£ 100 - -
]
z
E 50 .
[
0r | | |
0 5 10 15 20 2!

rearrangement step

Figure 5.6: Number of improved topologies per rearrangement step for a SC_150
random and parsimony starting tree

accordingly, i.e. subsequent topological improvements are applied. In the parallel
case subtree IDs are stored in a work queue. Obviously, the subsequent appli-
cation of topological improvements during 1 rearrangement step (1 invocation
of rearr ()) is closely coupled. Therefore, the algorithm is slightly modified
to break up this dependency according to the following observation: Subsequent
improved topologies occur only during the first 3—4 rearrangement steps (initial
optimization phase). This behavior is illustrated in Figure 5.6 where the number
of subsequently improved topologies per rearrangement step for a phylogenetic
reconstruction of a 150 taxon tree with a random and a parsimony starting tree is
plotted.

After the initial optimization phase, likelihood improvements are achieved
only by function optimizeList20 (). This phase requires the largest amount
of computation time, especially with huge alignments (=~ 80% of execution time).

Thus, during the initial optimization phase only one single subtree ID
i=2,...,#species * 2 - 1 is sent along with the currently best tree
t best to each worker for rearrangements. Each worker returns the best
tree w_tree obtained by rearranging subtree i within t best to the
master. If w_tree has a better likelihood than t best at the master,
t best = w_treeissetand the updated best tree is distributed to each worker

81

5. NOVEL TECHNICAL SOLUTIONS

along with the following work request. The program assumes that the initial opti-
mization phase I1a is terminated if no subsequently improved topology has been
encountered during the last three rearrangement steps.

In the final optimization phase Il1b, communication costs are reduced and
granularity is increased by generating only 5 x #workers jobs (subtree ID spans).
Finally, irrespective of the current optimization phase the best 20 topologies
(or #workers topologies if #workers > 20) computed by each worker dur-
ing one rearrangement step are stored in a local worker tree list. When all
#species * 2 - 3 subtree rearrangements of rearr () have been com-
pleted, each worker sends its tree list to the master. The master process merges
the lists and redistributes the 20 (#workers) best tree topologies to the workers
for branch length optimization. When all topologies have been globally optimized
the master starts the next iteration of function RAxML () (see Section 4.2, pp. 62).

Due to the required changes to the algorithm the parallel program is non-
deterministic, since final output depends on the number of workers and on the
arrival sequence of results for runs with equal numbers of workers, during the
initial optimization phase Il1a. This is due to the altered implementation of the
subsequent application of topological improvements during the initial rearrange-
ment steps which leads to a traversal of search space on different paths. However,
this solution represents a feasible and efficient approach both in terms of attained
speedup values and final tree likelihood values (see Section 6.5.2, pp. 105).

The parallel implementation of RAXML is also described in [122]. The pro-
gram flow of the parallel algorithm is outlined in Figure 5.7.

5.2.2 Distributed RAXML

The motivation to build a distributed seti@home-like [109] code is driven by the
computation time requirements for trees containing more than 1.000 organisms
and by the desire to provide inexpensive solutions for this problem which do not
require supercomputers.

The main design principle of the distributed code is to reduce communication
costs as far as possible and accept potentially worse speedup values than achieved
with the parallel implementation. The algorithm of the http-based implementation
is similar to the parallel program.

Initially, a compressed (gzipped) alignment file is transfered to all workers
which start with the computation of a local parsimony starting tree. The parsimony
tree is then returned to the master as in the parallel program.

However, the parallel and distributed algorithms differ in two important as-
pects which reduce communication costs:

82

5.2. PARALLEL AND DISTRIBUTED SOLUTIONS FOR RAXML

Firstly, RAXML@home does not implement phase | la but only phase I 1b of
the parallel algorithm, to avoid frequent communication and frequent exchange of
tree topologies between master and workers.

Secondly, the lists containing the 20 best trees, irrespective of the number of
workers, are optimized locally at the workers after completion of subtree rear-
rangements. The branch lengths of the trees in the list are optimized less exhaus-
tively than in the sequential and parallel program. After this initial optimization
only the best local tree is thoroughly optimized and returned to the master.

This induces some computational overhead and a slower improvement rate
of the likelihood during the initial optimization phase (phase I1a of the parallel
program) but remains within acceptable limits. The distributed program flow is
depicted in Figure 5.8.

5.2.21 Technical issues

Some technical issues concerning the implementation of the http-based version of
RAXML@home regarding communication, redundancy, and security will briefly
be outlined at this point.

The communication infrastructure is provided by a http communication li-
brary. The most expensive part in terms of communication costs is the distribution
of the alignment file which is compressed using gzip. The gzip utility shows
sufficient compression rates for multiple alignments, e.g. a compression factor of
31 for a 1.000-taxon alignment.

To provide redundancy a queue with timeouts is used to ensure that every sub-
tree rearrangement job is computed. Furthermore, failure procedures have been
devised which are able to handle temporary master and worker failures.

An important security scenario is that some workers deliberately return phony
trees. If the tree is not in the correct format, this can easily be detected by the
routine which reads the respective tree string. The only serious security problem
arises when a worker returns a tree that is in the correct format and has a “fake”
likelihood, i.e. a likelihood value which is significantly better than the actual like-
lihood of the topology contained in the message and t _best at the master. In
this case the likelihood of that topology is “quickly” verified by the master pro-
cess. This quick verification only performs a superficial and fast likelihood com-
putation of the tree in order to avoid excessive load of the master component. If
the difference to the claimed likelihood in the tree string is < 1% the tree is ac-
cepted, otherwise it is rejected. Finally, the MD5 [81] (Message Digest number 5)
checksum is used to provide some basic authentification of messages. A detailed
technical description of RAXML@home is provided in [87].

83

5. NOVEL TECHNICAL SOLUTIONS

Summary

This Chapter provided an overview over technical solutions which have been de-
vised to obtain the required computational power for inference of large phylo-
genetic trees with AXML and RAXML respectively. For AXML a parallel, dis-
tributed, and Grid-enabled version has been presented. In addition, a special
adaptation of AXML to the Hitachi supercomputer has been included. Finally,
the parallel and metacomputing implementations of RAXML have been described.
Table 5.1 summarizes the names and provides brief descriptions of all technical
solutions presented in the current Chapter.

RAXML is currently being used to compute a phylogenetic tree containing
2437 mammalian sequences in cooperation with Olaf Bininda-Edmonds from the
Lehrstuhl fir Tierzucht at TUM.

The next Chapter comprises a performance evaluation of the novel algorithmic
and technical solutions which were outlined in Chapter 4 (pp. 53) and the current
Chapter respectively.

Program Name Program Description

PAXML MPI-based implementation of AXML, parallelization
scheme derived from parallel fastDNAmI

DAxXML Load Managed CORBA-based implementation, derived
from PAXML

GAXML Migrating Grid-enabled implementation of PAXML

Parallel RAXML Non-deterministic MPIl-based implementation of
RAXML

Distributed RAXML | Non-deterministic http-based distributed implementa-
tion of RAXML

Table 5.1: Summary of technical solutions for AXML and RAXML

84

5.2. PARALLEL AND DISTRIBUTED SOLUTIONS FOR RAXML

Master

Distribute alignment &

alignment & parsimony job

Worker

parsimony jobs

|

pecified number
of permutations
computed ?

parsimony tree

Generate random
permutation

Build tree with
parsimony

Evaluate tree with
maximum likelihood

PHASE lla

/

Subtree ID & T_best

Distribute single
ubtree ID/T_best

update T_best

work request & W_tree

Rearrange specified
subtree within T_best

Distribute T_best

T_best

Receive T_best

|

work request
subtree 1Ds

Distribute subtree

Rearrange specified
subtrees within T_best

ID spans
\

All Subtrees
rearranged?

Y

work request

request tree_list(20)

get tree_list(20) from

pack list

each worker

merge lists & distribute

tree list (20)

tree topology

'Optimize branches

20 best trees for branch
length optimization

i

Tree improved?

Maximum

rearrangement setting
reached

Increase rearrangement
setting

optimized tree topology

Terminate Master &
Workers

Figure 5.7: Parallel program flow of RAXML

PHASE |

PHASE 11

85

5. NOVEL TECHNICAL SOLUTIONS

Master

Distribute alignment &
parsimony jobs

alignment & parsimony job

Worker

pecified number
of permutations
computed ?

Y

|

Distribute T_best to all
workers

parsimony tree

T_best

Generate random
permutation

Build tree with
parsimony

Evaluate tree with
maximum likelihood

Distribute subtree IDs
to workers

Subtree IDs

Receive T_best

All Subtrees
rearranged?

Y

Instruct workers to
optimize tree_list(20)

Work request

Optimization request

Rearrange subtrees
within T_best

Receive best trees from
workers

Best tree

Fast branch optimization
of tree_list(20)

Tree improved?

Maximum

rearrangement setting
reached

86

Increase rearrangement
setting

Thourough optimization
of best tree

Terminate Master &
Workers

Figure 5.8: Program flow of distributed RAXML

PHASE |

PHASE Il

6

Evaluation of Technical and Algorithmic
Solutions

Ein jeder ist der Nabel seiner Welt. _ _
Nikolaos Patsiouras

This Chapter summarizes the quantitative and qualitative improvements in-
duced by the implementation of the respective algorithmic as well as technical
solutions in AXML and RAXML which are presented in Chapters 4 and 5. Ini-
tially, the test data and platforms for the experiments are described. Thereafter,
the performance of algorithmic ideas is analyzed and compared to current state of
the art programs. The subsequent Section 6.5 covers the performance analysis of
technical solutions for AXML and RAXML. The last Section describes the parallel
inference of a 10.000 taxon phylogeny with RAXML which has been published
in [122].

6.1 Test Data

For conducting experiments alignments comprising 150, 200, 250, 500, 1.000,
2.025 and 10.000 taxa (150_ARB,...,10000_ARB) have been extracted from the
ARB small subunit ribosomal ribonucleic acid (ssu rRNA) database [76]. The
alignments from ARB contain organisms from the domains Eukarya, Bacteria and
Archaea.

In addition, the 56, 101 and 150 sequence data sets (56_SC,
101_SC, 150 SC [135]) were wused, which can be downloaded at
WWW.INDIANA.EDU/"RAC/HPC/FASTDNAML. Those data sets have been
used by C. Stewart et al. to conduct performance analysis of parallel fastDNAmI.

87

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

The 56_SC data set was used to extract some subalignments containing 10, 20,
30, 40, and 50 sequences (10_SC,...,50_SC) respectively. The larger 101_SC
and 150_SC alignments have proved to be very hard to compute, in terms of
convergence to best-known likelihood values, especially for MrBayes. According
to a personal communication with C. Stewart this is due to the fact that these two
data sets contain several hard to classify fungi which randomly scatter throughout
the final trees.

Furthermore, two well-known real data sets of 218 [56] and 500 [21] se-
quences (218_RDPII, 500_ZILLA) were included into the test set. Those two
alignments are considered to be “classic” real data benchmarks. In particular the
500_ZILLA alignment has been extensively studied under the parsimony crite-
rion.

Since Subtree Equality Vectors (SEVs) have also been implemented in
TrEXML (see Section 3.9.1.1, pp. 42) the respective test data sets with 10 up to 16
sequences (10_T,...,16_T) from the original TrEXML publication [149] have also
been used.

Finally, 50 synthetic 100-taxon alignments (100_SIM_1,...,100_SIM_50) with
a length of 500 base pairs each were used. The respective true reference trees
and alignments are available at www.LIRMM.FR/W3IFA/MAAS and are used in
the comparative survey conducted for PHYML in [39] as well. Details on the
generation of those data sets which contain e.g. varying sequence divergence rates
can also be found in the cited paper.

For sake of completeness the number of base pairs (# bp) in each alignment is
provided in Table 6.1 (ilb means: intentionally left blank).

data #bp data #bp data #bp
10_SC 820 10T 1200 150_ARB 3188
20_SC 820 11T 1200 200_ARB 3270
30_SC 820 12 T 1200 250_ARB 3638
40_SC 820 13 T 1200 500_ARB 4030
50_SC 820 14 T 1200 1000_ARB 5547
56_SC 820 15T 1200 2025_ARB 1517
101_SC | 1858 16 T 1200 || 10000_ARB | 1217
150_SC | 1269 || 500_ZILLA | 759 | 100_SIM_1-50 | 500

218 RDPII | 4182 ilb ilb ilb ilb

Table 6.1: Alignment lengths

88

6.2. TEST & PRODUCTION PLATFORMS

6.2 Test & Production Platforms

A large variety of platforms was used to test and execute large production runs
with the sequential, parallel, and distributed versions of AXML and RAXML re-
spectively. For sequential tests various Sun-SPARC, Intel, and AMD processors
have been used. The parallel versions of (R)AXML have been compiled and exe-
cuted on the following platforms:

* Regionales RechenZentrum Erlangen (RRZE [100]): Linux Cluster,
equipped with 168 Xeon 2.66GHz processors, interconnected by Gigabit-
Ethernet.

« Institut flr Wissenschaftliches Rechnen (IWR [43]): HEidelberg LInux
Cluster System (HELICS), with 512 AMD Athlon 1.4GHz processors
linked by Myrinet.

* Leibniz Rechenzentrum (LRZ [46]): Hitachi SR-8000F1 supercomputer.
» Max-Planck Institut fir Strahlenphysik (MPI [79]): SGI Origin 2000.

* Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR [55]): Infini-
band Cluster, based on 12 Xeon 2.4GHz and 8 Itanium2 1.3GHz processors,
connected via Infiniband.

 Chair for Computer Science in Engineering, Science, and Numerical Pro-
gramming (TUM [19]): Linux Cluster with 16 Intel Pentium Il processors
linked by Myrinet.

Finally, up to 50 processors from a cluster of Sun-workstations (Sun-
Halle [138]), which is available to CS students at TUM for conducting their home-
work etc. has been used to carry out initial scalability tests with RAXML@home.

6.2.1 Adequate Processor Architectures

Since neither parallel AXML, nor parallel RAXML have excessive communication
costs, compared e.g. to classic supercomputer applications like numerical simu-
lations of fluid dynamics, the main criterion regarding the selection of adequate
platforms consists in the availability of appropriate processor architectures. Due
to the fact that AXML and RAXML use the same likelihood evaluation function
including an identical SEV implementation the CPU architecture considerations
are analogous for both programs.

Furthermore, the considerations concerning sequential and parallel versions
are identical, since the core of both programs which mainly influences execution
speed is the likelihood evaluation function.

89

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

All experiments conducted so far have clearly shown that standard PC proces-
sor architectures, like the AMD Athlon and Opteron series or the Intel Pentium
and Xeon series represent the best choice for execution of (R)AxML.

The execution time acceleration of AXML over fastDNAmI on these architec-
tures was constantly significantly better (=~ 60%) than on Sun-SPARC architec-
tures (=~ 40%), an SGI Origin 2000 (~ 30%) and the Hitachi SR-8000F1 super-
computer (=~ 30%) for exactly identical input data.

This is mainly due to the specific implementation of SEVs in (R)AXML which
require a larger amount of integer operations to compute the subtree equality vec-
tor at each node. Furthermore, the elaborate conditional statement of Formula 4.3
(p. 59) in Section 4.1 induces a significant number of conditional jumps within the
main for-loops of the program in the likelihood evaluation and branch-length op-
timization functions. In contrast to traditional supercomputer architectures which
have mainly been designed for number crunching and regular access schemes to
large fields of floating point numbers, PC processors are better suited to handle
the increased amount of conditional statements, integer arithmetics, jumps, and
the irregular data access in graphs.

As already mentioned in Section 5.1.4 (pp. 77) an effort has been undertaken
to adapt PAXML to the Hitachi SR-8000F1 supercomputer via appropriate loop
transformations and compiler options [132]. However, PC processor architectures
remain the better choice, not only in terms of expected program acceleration, but
also in terms of hardware cost.

Due to this circumstance in conjunction with the low communication require-
ments, PC processors and clusters represent the most adequate and most inexpen-
sive platform for execution of AXML and RAXML. Finally, RAXML@home does
not even rely on a cluster infrastructure for inference of large phylogenies.

6.2.2 Performance of PC Processors

RAXML has been used among several other applications to benchmark various
recent PC processor architectures at the Lehrstuhl fur Rechnertechnik und Rech-
nerorganisation. For this purpose RAXML was executed with 150 _SC for the
same starting tree such as to generate exactly equivalent runs, on the CPUs which
are listed in Table 6.2. This table also includes the respective compilers which
were used for RAXML with an optimization level of -03. In these experiments
the native Intel compiler (icc) and the popular GNU compiler (gcc) have been
used.

Furthermore, the effect of several advanced compiler options such as e.g. loop
unrolling, frame pointer omission, or higher -0 values was evaluated but no no-
table improvement of execution times could be observed (a similar behavior has
been measured on the Hitachi SR8000-F1 for various compiler switches).

90

6.3. RUN TIME IMPROVEMENT BY ALGORITHMIC OPTIMIZATIONS

The most interesting result is that RAXML executes best on the AMD proces-
sor despite the fact that the program has only been compiled with gcc. This might
be due to some known problems with branch prediction on Xeon processors.

CPU compiler | secs

AMD Opteron 244 gcc-3.3.1 | 335

Intel Xeon 2.4 GHz gcc-3.3.1 | 559

Intel Xeon 2.4 GHz icc-7.1 | 465

Intel Itanium 1.3 GHz (64bit code) | icc-7.1 | 512

Table 6.2: RAXML execution times on recent PC processors for a 150 taxon tree

6.3 Run Time Improvement by Algorithmic Opti-
mizations

This Section summarizes the run time improvements attained by the implementa-
tion of the SEV (Subtree Equality Vector) technique which is outlined in Sec-
tion 4.1 (pp. 54). The performance improvements attained for the sequential
implementation of SEVs are provided in Section 6.3.1 and the following Sec-
tion 6.3.2 describes the effect of SEVs on parallel program performance.

6.3.1 Sequential Performance

The execution time improvements of AXML over fastDNAmI [86] and ATrExXML
(SEV-based version of TrEXML) over TrEXML have been measured for a variety
of data sets to demonstrate the efficiency of SEVs.

For those test the most recent release of fastDNAmI (v1.2.2) has been used.
AXML (v1.7) denotes the initial implementation of SEVs, whereas AXML (v2.5)
represents a more sophisticated version of the same program which contains
the additional SEV-based algorithmic optimizations presented in Section 4.1.1
(Pp. 59).

Note, that all SEV-based implementations yield exactly identical results as the
non-optimized programs, since the optimization is purely algorithmic.

Table 6.3 lists the sequential execution times of AXML (v1.7), AXML (v2.5)
and fastDNAmI for 150 _ARB, 200_ARB, 250 _ARB and 500 _ARB and the run
time improvement between AXML (v2.5) and fastDNAmI (v 1.2.2) on an AMD
Athlon 1.4GHz processor. Those tests were conducted without application of
intermediate and final subtree rearrangements (see Section 3.9.1.1, pp. 42) in order

91

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

data AXML v1.7 || AXML v2.5 | fastDNAmI v1.2.2 | improvement
150 ARB | 748 secs 632 secs 1603 secs 60.57%
200_ARB | 1443 secs 1227 secs 3186 secs 61.49%
250 ARB | 2403 secs 2055 secs 5431 secs 62.16%
500 _ARB | 12861secs | 10476 secs 26270 secs 60.13%

Table 6.3: Performance of AXML (v1.7), AXML (v2.5), and fastDNAmI (v1.2.2)

to speed up computations, i.e. the final likelihood values were poor. Moreover, the
final likelihood values are irrelevant within this context since the goal is to assess
run time improvements for a variety of alignments.

Finally, Figure 6.1 indicates the accumulated evaluation time per topology
class ¢, during the stepwise addition process for AXML and fastDNAmI with the
quickadd option (see Section 3.9.1.1, pp. 42) enabled and disabled. This Figure
demonstrates the impact of the quickadd option on program performance and that

the SEV-technique scales equally well to both program options.

1000

900

800

700 -

600 -

500 -

Time in Secs

400

300 |

200

100

0 Fooonn o

"AXMI_QAdd"

"fastDNAMI" ———
"fastDNAmI_QAdd" -------

AXMI" e %

20

add enabled and disabled

92

25

30

35

40

Number of Taxa

Figure 6.1: AXML and fastDNAmI inference times over topology size for quick-

45 50

6.3. RUN TIME IMPROVEMENT BY ALGORITHMIC OPTIMIZATIONS

In Table 6.4 the run time improvement (in %) of ATrEXML over TrEXML is
listed for the alignment data of the original TrEXML publication. The parameter a
indicates the size of the starting tree which is optimized exhaustively in TrEXML
(see Section 3.9.1.1, pp. 42). These experiments demonstrate the general applica-
bility of SEVs to distinct heuristic search algorithms and implementations. The
test with TrEXML have been conducted on a Sun-Sparc 1000.

data | a | impr. data | a | impr. data | a impr.

10 T|8|38.21% || 10 T | 9| 38.24% || 10_T | 10 | 37.23%
11 T|8|3867% || 11. T |9|3891% || 11 T |10 | 38.39%
12 T|8|3958% | 12.T | 9|39.91% || 12T | 10 | 39.94%
13 T |8|40.02% || 13. T |9 |40.77% || 13_T | 10 | 41.08%
14 T |18(39.87% || 14 T |9 |40.19% || 14 T | 10 | 42.26%
15 T |8|40.68% | 15 T |9 |41.04% || 15 T | 10 | 43.00%
16 T|8|40.71% | 16_T | 9 | 41.10% || 16_T | 10 | 42.26%

Table 6.4: Global run time improvements (impr.) TrEXML vs. ATrEXML

6.3.2 Paralle Performance

Larger test runs for comparison of PAXML with parallel fastDNAmI were con-
ducted using 150_ARB, 200_ARB, and 250_ARB. Intermediate local and final
global rearrangements were conducted with a stepwidth of 1 on the Pentium IlI
Linux cluster at the chair for Computer Science in Engineering, Science, and Nu-
merical Programming at TUM.

The overall good scalability of the optimization to the parallel program is due
to the fact that the tree evaluation function represents the core of the worker
components, which perform the actual computation.

Therefore, in the following tables only the number of worker processes
started is listed since the foreman and master components of parallel fastD-
NAmI and PAXML hardly produce load. Table 6.5 provides the run time im-

data #Workers | improvement
150_ARB 8 62.42%
200_ARB 12 63.29%
250_ARB 12 64.60%

Table 6.5: Execution time improvement of PAXML over parallel fastDNAmI on a
Pentium 111 Linux cluster

93

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

provements in per cent of PAXML over parallel fastDNAmI on the Pentium 111
Linux cluster. Note that, those results are very similar to those obtained for the
sequential version of AXML in Table 6.3, i.e. SEVs scale well to the parallel pro-
gram. This Table demonstrates the actual potential of the SEV technique in terms
of floating point operation reduction, especially on inexpensive processors with
comparatively weak FPUs. On the other hand, the results obtained on the Hitachi
SR-8000F1 confirm the significant impact of hardware architecture on the perfor-
mance improvement of PAXML over fastDNAmI. The values which are listed in
Table 6.6 have been obtained with the especially adapted supercomputer program
version of PAXML which is described in Section 5.1.4 (pp. 77). The obtained run
time improvement of over 26% should not be underestimated however.

data #Workers | Improvement
150_ARB 14 26.57%
200_ARB 14 28.52%
250_ARB 14 28.40%

Table 6.6: Execution time improvement of PAXML over parallel fastDNAmI on
the Hitachi SR8000-F1

Since PAXML does not implement heuristics but only a purely algorithmic
optimization in all tests and on all platforms PAXML and parallel fastDNAmI
render exactly the same output tree, a fact that can be verified by a simple diff
on the output files.

6.4 Run Time and Qualitative Improvement by Al-
gorithmic Changes

This Section provides a comparative performance analysis between MrBayes,
PHYML, and RAXML on synthetic (simulated) as well as real alignment data.
MrBayes and PHYML implement the currently—to the best of the author’s
knowledge—most efficient and exact phylogenetic searches. Thus, those two
programs represent the best state-of-the-art candidates for performance compari-
son with RAXML. Section 6.4.4 covers failure scenarios of bayesian phylogenetic
analysis.

6.4.1 Experimental Setup

To facilitate and accelerate testing the HKY85 [42] model of sequence evolu-
tion has been used. Furthermore, the transition/transversion (ts/tv) ratio (see Sec-

94

6.4. RUN TIME AND QUALITATIVE IMPROVEMENT BY ALGORITHMIC CHANGES

tion 3.4.3, pp. 26) has been fixed at 2.0 except for the 150 _SC (1.24) and 101_SC
(1.45) alignments.

Since the transition/transversion ratio is defined differently in PHYML it has
been scaled accordingly for the test runs. The manual of PAML [90] contains a
nice description of differences in transition/transversion ratio definitions of differ-
ent maximum likelihood implementations.

MrBayes does not provide a possibility to set the transition/transversion ratio
to a specific value such that the program optimized this parameter in the respective
test runs.

However, significant differences in the order of final RAXML, PHYML, and
MrBayes likelihood values for different ts/tv settings could not be observed. This
is illustrated in Figure 6.2 for the likelihood of the respective final 150 _SC topolo-
gies over different transition/transversion parameter settings. The significant dif-
ference between the likelihood values of the bayesian analysis (MrBayes) and the
maximum likelihood analyses (PHYML, RAXML) in this graph indicates that the
bayesian inference failed to converge to a biologically reasonable tree for 150 _SC.
Recall from Section 3.4.1 (pp. 25) that all likelihood values indicated in the cur-
rent Chapter are log likelihood values and that trees with higher likelihood values
are better.

The likelihood values of the final tree topologies of PHYML, RAXML, and
MrBayes have been computed with fastDNAmI since the likelihood value of a
specific topology varies among distinct programs due to numerical differences
in their implementations. For example the final 1000_ARB topologies included
in Table 6.7 yielded a likelihood of -401118.27 (PHYML tree) and -399775.12
(RAXML tree) respectively when evaluated with PHYML. For 218 RDPII the
likelihood values computed with PHYML were -156859.84 (PHYML tree) and
-156562.51 (RAXML tree).

For real data MrBayes was executed for 2.000.000 generations using 4
Metropolis-Coupled MCMC (MC?) chains and the random starting trees (recom-
mended program settings). Furthermore, the sample and print frequency was set
to 5000. To enable a fair comparison all 400 output trees have been evaluated
with fastDNAmI and the value of the topology with the best likelihood and the
execution time at that point is reported. For synthetic data MrBayes was executed
for 100.000 generations using 4 MC? chains and random starting trees. In these
experiments sample and print frequencies were set to 500 and a majority-rule
consensus tree was built using the last 50 trees. Those significantly faster settings
proved to be sufficient since trees for synthetic data converged much faster than
trees for real data in the experiments. Exactly identical settings have been used by
Guidon et al. [39].

95

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

-44000 T T T T T T T T
"RAXML"
"MrBayes" -------
"PHYML" --------

-46000 |
-48000 | I

-50000 - 1

likelihood

52000 f- .
54000 |- -

-56000 | .

_58000 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

transition/transversion ratio

Figure 6.2: RAXML, PHYML, and MrBayes final likelihood values over transi-
tion/transversion ratios for 150 _SC

Finally, the importance of using several real data alignments becomes evident
in these experiments since differences between phylogeny programs can often
only be observed with real data.

All sequential tests were performed on an Intel Xeon 2.4 GHz processor. The
programs were compiled using icc -03 (native Intel compiler).

All alignments including the best final topologies are available along with the
RAXML source code at WWWBODE.CS.TUM.EDU/"STAMATAK.

6.4.2 Real Data Experiments

Tables 6.7 and 6.8 (n/a means: data not available) summarize the final likelihood
values and execution times in seconds or hours obtained with PHY ML, MrBayes,
and RAXML. The results listed for RAXML correspond to the best of 10 runs
with different randomized parsimony starting trees. For sake of completeness the
worst results and worst execution times obtained with RAXML for each data set
are listed in a separate Table 6.9 (ilb means: intentionally left blank).

96

6.4. RUN TIME AND QUALITATIVE IMPROVEMENT BY ALGORITHMIC CHANGES

data PHYML Secs RAXML secs R > PHY | secs
likelihood likelihood likelihood
101 _SC -74097.6 153 -73919.3 617 -74046.9 31
150 _SC -44298.1 158 -44142.6 390 -44262.9 33
150 _ARB -77219.7 313 -77189.7 178 -77197.6 67
200 ARB || -104826.5 | 477 -104742.6 | 272 | -104809.0 | 99
250 ARB || -131560.3 | 787 -131468.0 | 1067 || -131549.4 | 249
500 ARB || -253354.2 | 2235 || -252499.4 | 26124 || -252986.4 | 493
1000_ARB || -402215.0 | 16594 || -400925.3 | 50729 || -401571.9 | 1893
218 RDPII || -157923.1 | 403 || -157526.0 | 6774 | -157807.9 | 244
500 ZILLA || -22186.8 | 2400 | -21033.9 | 29916 || -22036.9 67

Table 6.7: PHYML, RAXML execution times and likelihood values for real data

data MrBayes | hrs || PAXML hrs
likelihood likelihood

101_SC -77191.5 | 11 || -73975.9 | 47
150_SC -52028.4 | 14 || -44146.9 | 164
150_ARB -77196.7 | 8 -77189.8 | 300
200_ARB || -104856.4 | 43 || -104743.3 | 775
250 ARB || -133238.3 | 44 || -131469.0 | 1947
500_ARB || -263217.8 | 102 || -252588.1 | 7372
1000_ARB || -459392.4 | 141 || -402282.1 | 9898
218 RDPII || -158911.6 | 38 n/a n/a
500 ZILLA || -22259.0 | 27 n/a n/a

Table 6.8: MrBayes, PAXML execution times and likelihood values for real data

In addition, since execution times of RAXML might appear long compared to
PHYML column R>PHY indicates the likelihood and the time at which RAXML
passed the final likelihood obtained by PHYML for a distinct series of RAXML
runs. Finally, the last two columns of Table 6.8 show the final likelihood val-
ues and execution times in hours (1) obtained with PAXML. Those results were
obtained from parallel executions of PAXML on the HeLiCs [43] cluster and the
highest feasible rearrangement setting, in terms of acceptable computation times.

The tremendous reduction of execution times between Tables 6.7 and 6.8 il-
lustrates the algorithmic progress in the field over the last two years, i.e. PAXML
can be considered as state-of-the-art program for 2002 but is nowadays easily
outperformed by RAXML and PHYML. To date the main contribution of PAXML
consists in the introduction of the SEV-technique which was inherited by RAXML.

97

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

"500 zilla"
-21000 |- .

-21200 | —

-21400]

likelihood

-21600 - ,

-21800 |- —

-22000 —

1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
time (secs)

Figure 6.3: RAXML likelihood improvement over time for 500_ZILLA

The long overall execution times of RAXML compared to PHYML are due to
the asymptotic convergence of likelihood over time which is typical for the tree
optimization process. A particularly extreme example for this type of convergence
behavior is illustrated in Figure 6.3 for 500_ZILLA. Therefore, the comparatively
small differences in final likelihood values which are usually below 1% should
not be underestimated, in terms of the computational effort required to obtain
those values. In addition, those apparently small differences prove to be signifi-
cant when the likelihood-ratio test is applied (see Section 3.8, pp. 39). Despite the
fact that 90-95% accuracy is often considered excellent in heuristics for hard op-
timization problems, heuristics used in phylogenetic reconstruction must be much
more accurate. Recent work [146] has revealed that trees computed with maxi-
mum parsimony which showed an error rate in respect to the optimal parsimony
score of more than 0.01% yielded topologically poor estimates of the real tree.
Thus, heuristics for maximum parsimony require at least 99.99% accuracy and
probably significantly more on very large data sets to produce topologically accu-
rate (biologically meaningful) trees. At present there exists no analogous survey
for maximum likelihood but it is very likely that the required degree of accuracy
is similar if not higher. The determination of the required level of accuracy for

98

6.4. RUN TIME AND QUALITATIVE IMPROVEMENT BY ALGORITHMIC CHANGES

data RAXML secs data RAXML secs
101 SC | -73982.42 | 1021 | 500 _ARB | -252631.93 | 26124
150 SC | -44159.89 | 467 | 1000 _ARB | -401006.52 | 66902
150 ARB | -77198.98 | 305 | 218 RDPII | -157580.21 | 7432
200 _ARB | -104743.32 | 1236 || 500 ZILLA | -21087.46 | 29916
250 ARB | -131513.04 | 1758 ilb ilb ilb
Table 6.9: Worst execution times and likelihood values for real data from 10
RAXML runs

maximum likelihood-based analyses and the establishment of stopping criteria
represents a current issue of research in phylogenetics.

6.4.3 Simulated Data Experiments

Figure 6.4 provides the topological accuracy (relative Robinson-Foulds rate [101],
see Section 3.8, pp. 39) of PHYML, RAXML, and MrBayes for 50 distinct 100-
taxon alignments which are enumerated on the x-axis.

Recall from Section 3.8 (pp. 39) that the Robinson-Foulds rate provides a
measure of relative topological dissimilarity between two trees. A low RF rate
indicates that the tree under consideration is topologically closer to the reference
tree or true tree in case of synthetic data.

The average Robinson-Foulds rate over the 50 synthetic alignments used in
this study is 0.0796 for PHYML, 0.0808 for RAXML, 0.0818 for RAXML with
a less exhaustive search and 0.0741 for MrBayes. The average execution time of
RAXML was 131.05 seconds and 29.27 seconds for the less exhaustive analysis.
PHYML required an average of 35.21 seconds and MrBayes 945.32 seconds.

The experiments illustrate that there appears to be no significant difference be-
tween PHYML and RAXML for synthetic data in contrast to the results obtained
with real data. Thus, real as well as synthetic data should be used to perform com-
parative analyses of phylogeny programs. Note, that all 3 programs performed
well on synthetic data, since the average topological error rate is below 0.1%.

6.4.4 Pitfalls & Performance of Bayesian Analysis

Two examples which underline potential pitfalls of bayesian analysis with real
world alignment data are outlined in Figures 6.5 and 6.6 for the 101 _SC and
150_SC alignments respectively. In Figure 6.5 the MrBayes likelihood values are
plotted over generation numbers for a MrBayes program execution with a RAXML
and a random starting tree. Figure 6.6 plots the likelihood values for 150 _SC over

99

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

02 T T T T T T T

"RAIXML.Sim"I E—
"PHYML sim" ——---—-
0.18 |- "MrBayes.sim" -------- i

i
A 1
1
0.16 0 i E
i i
R I
| P
0.14 - d A ' i
. I 1 1 I
i I \ 1
1
! 0 I
. i | ' \ o
™ A hoA S \ ! "
0.12 |- [N " WAl in | \ 0 B
1N I VN S \ \ ol
ooy o T VY N \ \ P

g T \ [A RN B

R i . \ I A \ IR o I , '
0.1 | /T 1 T \ el [N VN 1 h A _
. q IS \ [VA I B N " A

[I [T VO (N AV N [P

topological accuracy

I N
008 - AAL L

0.06

0.04 - \’ \\ a"

u ¥ A

/ \
0.02 |- v V |
\

O 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
tree number

Figure 6.4: Topological accuracy of PHYML, RAXML and MrBayes for 50 100-
taxon trees

time for a bayesian and RAXML-based optimization of an identic random start-
ing tree. In addition, Figure 6.6 confirms the rapid tree optimization capabilities
of RAXML for random starting trees (the final tree of RAXML showed a likeli-
hood of -44149.18). An additional example of rapid random tree optimization by
RAXML in comparison to MrBayes is provided in Figure 6.7 for 150 _ARB. The
respective final RAXML topology had a likelihood value of -77189.78. However,
at least in this example MrBayes does not fail to converge.

The two plots in Figures 6.5 and 6.6 underline the main problem of MCMC
analysis which is also pointed out by Huelsenbeck in [48]: When to stop the
chain? In both examples the bayesian analysis of random starting trees seems to
have reached apparent stationarity. The observed behavior confirms the theoretical
concerns about Markov Chain Monte Carlo algorithms described in Section 3.5
(pp. 32) and outlined in Figure 3.9 (p. 35) even though 4 Metropolis-Coupled
chains were used in the real world examples presented at this point.

Furthermore, Figure 6.8 and 6.5 demonstrate that “good” user trees obtained
by RAXML are useful both as reference and starting trees as well as to significantly
accelerate MrBayes.

100

6.4. RUN TIME AND QUALITATIVE IMPROVEMENT BY ALGORITHMIC CHANGES

-70000 T T T T

'101_RANDOM.p' ———
T01_USERp

7B s

-80000 {,4—/ .

-85000 |- 1

LnLh

-90000 [E

-95000 E

-100000 E

-105000 - E

-110000 L L L L L
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Generations
Figure 6.5: Convergence behavior of MrBayes for 101_SC with user and random
starting trees over 3.000.000 generations

This justifies the work on fast “traditional” maximum likelihood methods af-
ter the emergence and great impact of bayesian methods. Thus, RAXML is not
regarded as competitor to MrBayes, but rather as useful tool to improve bayesian
inference and vice versa. Therefore, in order to facilitate the analysis process
RAXML produces an output file containing the alignment and the final tree in
MrBayes input format.

101

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

-40000 7 T T T

"150_SC_RAXML" ——
"150_SC_MrBayes" -------

-45000

-50000

5 BS000 F| N
<]
o
=
©
=
— -60000 4
-65000 i
-70000 i
-75000 4 L L 1 I | !
0 500 1000 1500 2000 2500 3000 3500
time (secs)

Figure 6.6: 150 _SC likelihood improvement over time of RAXML and MrBayes
for the same random starting tree

-60000 fr T

"15O_ARB_IRAXML" —
"150_ARB_MrBayes" -------

-80000

-100000

-120000

likelihood

-140000

-160000

-180000

-200000 Y 1 1 1 1
0 1000 2000 3000 4000 5000

time (secs)
Figure 6.7: 150_ARB likelihood improvement over time of RAXML and MrBayes
for the same random starting tree

102

6.5. ASSESSMENT OF TECHNICAL SOLUTIONS

"500_ARB_USER" ——
“500 ARB_RANDOM" ————

-250000 T]

-300000 |- .

-350000 -/ g
-400000 | | .

-450000 |-/ g

likelihood

-500000 |+ B
-550000 - .
-600000 |- E

-650000 E

_700000 1 1 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

number of generations
Figure 6.8: Convergence behavior of MrBayes for 500 ARB with user and ran-
dom starting trees

6.5 Assessment of Technical Solutions

The present Section covers the performance evaluation of the load balanced dis-
tributed implementation of AXML and the parallel as well as distributed imple-
mentations of RAXML.

6.5.1 Distributed L oad-managed AXM L

Performance analysis tests with DAXML were conducted on 4 Ethernet connected
Sun-Blade-1000 machines of the SUN workstation cluster at the Lehrstuhl fur
Rechnertechnik und Rechnerorganisation. The 20_SC, 30_SC, 40_SCand 50_SC
alignments have been used to evaluate the behavior of DAXML and LMC in terms
of CORBA/JNI overhead, impact of the algorithmic optimizations (SEVs), and
automatic worker object replication/migration. In Figure 6.9 the impact of the
SEV implementation on the speed of the tree evaluation function including JNI
and CORBA overhead is plotted.

Two DAXML test runs with a single worker object were conducted, using the
standard and optimized tree evaluation function on the 40_SC alignment. The
average tree evaluation time per topology class ¢, during stepwise addition (see
Section 5.1.2.2, pp. 70) was measured. The algorithmic optimizations show anal-

103

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

450 T T T
[0 optimized evaluation function
400 - [standard evaluation function] b

350 -]]

300 - I 4

250 — M L i

200 - _ — |

150 - I .

100

average evaluation time per topology class [ms]

ﬁ 20 30 40
\ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000

number of evaluated trees ——=

[$2]
o o
=——=—2

Figure 6.9: Average evaluation time improvement per topology class: optimized
(SEV-based) DAXML evaluation function vs. standard fastDNAmI evalua-
tion function

ogous performance improvements as observed for the parallel and sequential ver-
sion of AXML in Section 6.3. All subsequent tests were performed using the
optimized evaluation function.

Another important issue is the overhead induced by the integration of CORBA
and JNI into DAXML. The communication overhead decreases with increasing
tree size (see Figure 6.10), because average evaluation time per tree increases
during the computation as depicted in Figures 6.9 and 6.10, whereas the amount of
communicated data per topology class remains practically constant. For the same
reasons and despite the fact, that some heavy-weight JNI mechanisms such as
JAVA callbacks from C have been deployed, the JNI overhead becomes neglectible
as the tree grows, since only small amounts of data are passed via JNI.

The average C, JNI, and CORBA tree evaluation times for selected topology
classes of size 4, 10, 20, 30, and 40 were measured. As can be seen in Figure 6.10
during the initial phase of the computation, i.e. for size 4 and 10, the CORBA
overhead is relatively high but decreases significantly with increasing topology
size.

In order to demonstrate the efficiency and soundness of LMC additional test
runs using worker object replication and migration have been conducted.

104

6.5. ASSESSMENT OF TECHNICAL SOLUTIONS

300
T [J tree evaluation time (C—code) 275
[tree evaluation time (JNI/C)
=250 - M tree evaluation time (CORBA/JNI/C) - 244 -
e |
2
© 204
> 200 i
[=2]
E=}
8_ 168 174
IS5 il
g 150 -]
@ 134
£
g 101 105
T 100 - *
=
% 3 71
2
21;) 50 - 35 41 B
5+
9 10
0
4 10 20 30 40

topology class ——

Figure 6.10: JNI and CORBA-communication overhead

Figure 6.11 depicts the correct response of LMC to an increase of background
load on a worker object host. Two independent test runs with 40_SC and a single
worker object were executed, (i.e. the replication mechanism was switched off)
which were located on the same initially unloaded node to measure the evaluation
time per topology. Around the evaluation of the 1750th tree topology during the
first test run external load was created on the worker object host, which provoked
a significant increase in topology evaluation time. The unfavorable situation is
correctly resolved by the load balancer via a migration of the worker object to
an unloaded host. Finally, Figure 6.12 demonstrates how the average evaluation
time per topology class is progressively being improved by 3 subsequent auto-
matic worker object replications performed by LMC, in comparison to a run with
automatic replication switched off.

6.5.2 Parallel RAXML

In order to measure the speedup parallel tests with a fixed starting tree for
1000_ARB were conducted. The program was executed on the Hitachi SR8000-
F1 [46] at LRZ using 8, 32, and 64 processors (1, 4 and 8 nodes) in intra-node
MPI mode, as well as on the 2.66GHz Xeon cluster [100] at RRZE on 1, 4, 8, 16,
and 32 processors. For calculating the speedup values only the number of worker

105

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

300~ -~ testruni A
— testrun2 o

! ‘\ Migration overhead -~ ’
250 - /r \ / - o= |

Migration of worker object |

200

150

evaluation time per tree [ms]

100

50 v |

0 \ \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000

number of evaluated trees ~ ——

Figure 6.11: Worker object migration after creation of background load on its host

300 T \
[J without replication -
O with replication 2nd replication / —]

T T
3rd replication

—_—

N

a1

o
I

1st replication

200] b

150 b

100 L — — b

averag evaluation time per topology class [ms]

1]
o
|

20 30 140

0 L L L
0 500 1000 1500 2000 2500 3000 3500 4000
number of evaluated trees ——=

Figure 6.12: Impact of 3 subsequent automatic worker object replications

106

6.5. ASSESSMENT OF TECHNICAL SOLUTIONS

#workers || Average | Average Execution | Platform | P > S
Likelihood Time (secs)

1 -400964.07 67828 Intel n/a
3 -401025.23 23006 Intel 20117
7 -400917.95 11359 Intel 9233
15 -400951.36 5920 Intel 4779
31 -400942.26 3021 Intel 2199
6 -400911.91 72889 Hitachi n/a
27 -400953.24 24883 Hitachi n/a
57 -400912.86 17676 Hitachi n/a

Table 6.10: RAXML execution times and final likelihood values for 1000_ARB

processes is taken into account, since the master process hardly produces load. In
Figure 6.13 “fair” and “normal’”” speedup values obtained for the experiments with
the 1000_ARB data set on the RRZE PC-cluster are plotted.

“Fair” speedup values take into account the first point of time at which the
parallel code encounters a tree with a better likelihood than the final tree of the
sequential run or vice versa (also indicated in column “P > S” of Table 6.10).
These “fair” values better correspond to real program performance. Furthermore,
“normal” speedup values which are based on the complete execution time of the
parallel program until termination, i.e. the standard speedup definition, irrespec-
tive of final likelihood values are also indicated.

Since the effect of non-determinism on program performance had to be eval-
uated as well, the parallel code was executed 4 times for each job-size and the
average “normal” and “fair” execution times as well as likelihood values were
calculated. Practically every individual execution of RAXML even on the same
number of processors yielded a distinct final tree. Note, that “fair” speedup values
need not be superlinear, since the selection of starting trees has a major impact on
execution times and final likelihood values.

On the Hitachi SR8000-F1 RAXML was executed once on 8 processors (1
node, 6 workers), 3 times on 32 processors (4 nodes, 27 workers), and twice on 64
processors (8 nodes, 57 workers) in intra-node MPI mode to assess performance.

According to their SPEC [134] data the Intel Xeon processors should roughly
be 3-4 times faster than the Hitachi CPUs. A comparison of execution times shows
that the acceleration factor is > 6. The poor performance of the Hitachi supercom-
puter in respect to its SPEC data is due to the arguments listed in Section 6.2.1
of this Chapter. The data from the test runs on the Linux Cluster and the Hitachi
supercomputer is also summarized in Table 6.10 (n/a means: data not available).

107

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

40

35

30

25

20

speedup

15

10

"OP'II'IMAL_SPEEDIUP"
"NORMAL_SPEEDUP"
"FAIR_SPEEDUP"

6.5.3 RAXML @home

Initially, the impact of the altered algorithm and the associated computational
overhead was measured for the MPI-based prototype on the RRZE Linux cluster.
In Table 6.11 the final likelihood values, execution times, and “fair” speedups are

15 20 25 30
number of worker processes

Figure 6.13: Normal, fair, and optimal speedup values for 1000_ARB with 3,7,15,
and 31 worker processes on the RRZE PC Cluster

indicated.
workers | Likelihood | Fair Execution Time | Fair Speedup
1 -400970.31 53002 1
3 -400945.43 17871 2.97
7 -400950.58 10693 4.96
15 -400947.24 7542 7.03

In order to assess if the http-based implementation of RAXML@home exe-
cutes correctly the Xeon 2.4GHz cluster at the LRR was used. In addition, a clus-
ter of 50 relatively slow Ethernet-connected SUN-workstations (SunHalle) was

108

Table 6.11: Performance of MPI-based distributed RAXML prototype

6.6. INFERENCE OF A 10.000-TAXON PHYLOGENY WITH RAXML

used to conduct larger scalability tests. RAXML@home returned “good” final
trees for 2025_ARB on the Xeon cluster as well as for 1000_ARB on the Sun-
Halle and terminated correctly.

Furthermore, the 2025_ARB test returned the best-known tree (compared to
a couple of sequential executions) for this alignment within 8 hours on 9 worker
processes. It is important to mention that the 2.4GHz Linux cluster was heavily
loaded during RAXML@home execution due to computations by other users.

The smaller 1000_ARB alignment required a total running time of 50 hrs on
the 50 machines of the SUN cluster, and returned a likelihood of -4001101.32.
This value is slightly worse than the likelihood value of the best-known tree due
to the non-determinism of the program. The comparatively long execution time
in this case is partially due to the slow hardware of the workstation cluster. Fur-
thermore, the execution times of the http-based version of RAXML@home are
significantly higher than for the sequential and parallel versions as well as for the
MPI-based distributed implementation. In addition, to the more coarse-grained
parallelization, this is caused by a partially redundant job distribution, as well as
the tree verification mechanism for rejection of potentially biased trees which is
outlined in Section 5.2.2 (pp. 82).

6.6 Inference of a 10.000-Taxon Phylogeny with
RAXML

The computation of the 10.000-taxon tree was conducted using the sequential, as
well as the parallel version of RAXML [122].

As already mentioned, one of the advantages of RAXML consists in the ran-
domized generation of starting trees, which enables inference of distinct trees
from different starting points in tree space.

Thus, 5 distinct randomized parsimony starting trees were computed sequen-
tially along with the first 3—4 rearrangement steps on the Infiniband cluster at
LRR. This initial phase required an average of 112.31 CPU hours per tree.

Thereafter, several subsequent parallel runs (due to job run-time limitations
of 24 hrs) starting with the sequential trees on either 32 or 64 processors at the
RRZE 2.66GHz Xeon cluster were executed. The parallel computation required
an average of 1689.6 accumulated CPU hours per tree. The best likelihood for
10000_ARB was -949570.16 the worst -950047.78 and the average -949867.27,
i.e. the final trees did not differ significantly in terms of final likelihood values.

Note, that PHYML reached a likelihood value of -959514.50 after 117.25 hrs
on the Itanium2. Moreover, the parsimony starting trees computed with RAXML
had likelihood values ranging between -954579.75 and -955308.00. The average

109

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

time required for computing those starting trees on the faster Xeon processor was
10.99 hrs.

Since bootstrapping is not feasible for this large data size and in order to gain
some basic information about similarities among the 5 final trees an extended
majority-rule consensus tree with consense [57] from PHYLIP (consense con-
stantly exited with a memory error message when passed more than 5 trees) was
computed.

The consensus tree has 4777 inner nodes which appear in all 5 trees, 1046 in
4,1394in 3,1323in 2, and 1153 in only 1 tree (average: 3.72).

The results from this large phylogenetic analysis including all final trees along
with the consensus tree are available at: WwwWBODE.CS.TUM.EDU/"STAMATAK.

An initial biological analysis of the best final tree clearly showed that Archaea,
Bacteria, and Eukarya correctly clustered in individual major clades of the tree.

The screenshot 6.14 from the visualization of the best final tree using the
ATV [153] visualization tool demonstrates an outstanding problem which arises
with standard tools at huge tree sizes. The visualization is completely confusing
since it does not provide any kind of useful information. However, information is
only valuable as long as it can be properly displayed; a problem which motivates
the need for novel tree visualization concepts.

Finally, it is important to note, that MrBayes and PHYML have particularly
high memory requirements compared to RAXML. Therefore, huge trees can not
be computed using commodity components such as 32-bit PC clusters. For ex-
ample RAXML consumed 199MB of main memory for 1000_ARB, PHYML
880MB, and MrBayes 1.195MB respectively. Furthermore, both MrBayes and
PHYML exited with error messages due to excessive memory requirements for
10000_ARB on an Intel Xeon 2.4GHz processor equipped with 4GB (!) of main
memory.

Therefore, an effort was made to port MrBayes and PHYML to a 64-bit Intel
Itanium2 1.3GHz processor with 8GB of main memory. While MrBayes exited for
unknown reasons which require further investigation, PHYML finally consumed
8.8GB of main memory. In contrast to PHYML and MrBayes, RAXML used only
800MB for this 10.000 taxon alignment. The new problems which arise with huge
trees are discussed in [123].

110

6.6. INFERENCE OF A 10.000-TAXON PHYLOGENY WITH RAXML

ATV: /home/stamatak/project/AxML_at_home/RAxML/trees/1 0000_ARB_TREE_1 -

Fle Edii View Optiens Heb

' wealbrnch kngths
I seq name ext nodes
I seq name int nodes
I specks e nodes
o speces int nodes
o] ECext nodes
o] ECint nodes

1 branch length values
1 boosrap values
4 dupliows spec
- diplyorthology

1 disphy sbr-naight

1 diphy s-orhakgy

1 eokracoord m bg L

Uige 2
I Ty =, - .
- . 4 ediable
.||!-;-_‘-' .. ==t - click on nade to:

(s disphyiedi inforation
) calapseuncolapse

9] rotkeroot

Figure 6.14: Visualization of the 10.000-taxon phylogeny with ATV

Summary

This Chapter addressed the quantitative and qualitative benefits induced by the im-
plementation of the respective algorithmic as well as technical solutions in AXML
and RAXML. It shows that the novel algorithmic ideas which have been integrated
into RAXML yield substantial improvements both in terms of computable tree size
and final results. For real alignment data RAXML currently represents the fastest
and most accurate maximum likelihood program. Furthermore, the efficiency of
the parallel and distributed implementations has been demonstrated. The final
Section of this chapter covered the parallel inference of a 10.000 taxon phylogeny
with RAXML, which represents the largest maximum likelihood-based phyloge-
netic analysis to date. The following Chapter concludes this thesis and addresses
algorithmic, technical, and organizational issues which could enable inference of
even larger trees in the near future.

111

6. EVALUATION OF TECHNICAL AND ALGORITHMIC SOLUTIONS

112

7

Conclusion and Future Work

Aev pofaparl TimoTa, dev eATL(W TLTOTQ, ELILAL AEUTEPOS.
I do not fear anything, I do not hope anything, I am free.)
Nikos Kazantzakis

This final Chapter provides the conclusion of the work conducted and ad-
dresses important aspects of future work in phylogenetics.

7.1 Conclusion

The computation of the “tree of life” containing all living organisms on earth is
still one of the “grand challenges” in HPC Bioinformatics.

The currently most accurate methods for phylogenetic tree inference using
alignments of DNA sequence data are based on statistical models. The most com-
mon models are maximum likelihood and bayesian methods for phylogenetic tree
inference.

MrBayes and PHYML (see Section 3.9.2, pp. 47) are currently the fastest and
most accurate programs for phylogenetic tree inference.

The work presented in this thesis focussed on the design and development of
a sequential program called RAXML which includes novel algorithmic optimiza-
tions as well as new search space heuristics. Furthermore, efficient parallel and
distributed implementations of RAXML have been presented.

In [124] and Chapter 6 (pp. 87) it has been demonstrated that RAXML per-
forms slightly worse than MrBayes and PHYML for synthetic data but signifi-
cantly outperforms both programs on 9 real-world data sets containing 101 up to
1.000 organisms both in terms of speed and final likelihood values. Thus, RAXML
is able to compute better trees for real data in the same time as PHYML and yields

113

7. CONCLUSION AND FUTURE WORK

significantly better final trees according to the likelihood ratio test. As already
mentioned the design of stopping criteria is an issue of current research in the
field.

Furthermore, the parallel implementation of RAXML shows good speedup val-
ues and has been used to compute the—to the best of the author’s knowledge—
first integral, i.e. not using a divide-and-conquer approach, maximum likelihood
tree containing 10.000 representative organisms of the domains: Eukarya, Bacte-
ria, and Archaea (see Chapter 6, pp. 87). The computation of the 10.000-taxon
tree has also become feasible due to the relatively low memory requirements of
RAXML compared to MrBayes and PHYML.

Thus, RAXML is currently one of the fastest and most accurate programs
for inference of phylogenetic trees under maximum likelihood, and implements
a practicable and inexpensive approach for computation of huge phylogenies on
inexpensive PC clusters or clusters of workstations. For example, there exists no
parallel implementation of PHYML which limits the size of computable trees.
Moreover, the algorithm of PHYML is relatively closely-coupled such that a par-
allelization appears to be a difficult task.

However, RAXML needs improvements in two key areas:

Firstly, RAXML is currently not able to handle protein data and does not im-
plement the respective models of amino acid substitution.

Secondly, it does currently not offer the I' model of rate variation (see Sec-
tion 3.4.3, pp. 26), which is however just a minor implementation issue.

MrBayes and PHY ML both provide those advanced features which in general
lead to a further increase in run-time and memory requirements.

On the other hand the tree search algorithm of RAXML is straight-forward to
parallelize/distribute and the code has significantly inferior memory requirements
than MrBayes and PHY ML, which can become a serious problem for large trees
even on 64-bit architectures. This performance problem has been addressed in
Section 6.6 (pp. 109) of this thesis.

At present PHYML and RAXML are still significantly faster by factor 50-200
than MrBayes for large real data trees. The need for maximum likelihood meth-
ods after the emergence of bayesian phylogenetic inference and the necessity and
advantages of combining both methods are also discussed in [124] and Chapter 6
(pp. 87) of this thesis.

7.2 FutureWork

This final Section describes algorithmic, technical, and organizational directions
of future work. The main objective is to further improve RAXML regarding the

114

7.2. FUTURE WORK

previously addressed shortfalls and to develop new methods for inference and
representation of even larger phylogenetic trees.

The goal is and will remain for quite some years the computation of a large tree
of life containing thousands of organisms, as sequence data accumulates and hard-
ware becomes faster. However, the provision of appropriately prepared data is also
an important issue, since the computation of trees containing 30.000 organisms—
approximately the size of the ARB database—might become feasible in two or
three years. Therefore, the collection and preparation of data also forms an inte-
gral part of the NFS-funded tree of life project.

7.2.1 Algorithmic I'ssues

The experience with the development of RAXML has demonstrated that progress
in the field is primarily achieved via algorithmic innovation rather than by par-
allelization and brute-force allocation of all available computational resources.
Thus, the most essential part of future work consists in novel algorithmic devel-
opments.

Towards Complex Models. As already mentioned RAXML lacks the ability
to handle protein data and does not provide for the discrete I' model of rate het-
erogeneity. Thus, the first issue would be to implement those features in order to
offer a complete and flexible phylogenetic inference tool.

Towards Huge Trees: Despite the fact that RAXML currently enables the
computation of comparatively large trees, the size of huge integral trees is limited
by memory consumption. Thus, a divide-and-conquer approach is required to
intelligently select overlapping sub-alignments for computing smaller subtrees.

In addition, so-called supertree methods to merge overlapping subtrees into
one single tree are required. Within this context an urgently required survey com-
paring the quality of supertree with integral tree methods will be conducted. This
survey will be carried out in cooperation with Olaf Bininda-Edmonds (Postdoc-
toral Research Associate in Bioinformatics at Chair of Animal Breeding, TUM),
who is a leading expert in the field of supertree construction.

Towards Better Visualization: An important issue within the context of in-
ferring large trees is the graphical representation of those trees. At present there
is no suitable tool available to visualize the 10.000 taxon tree computed with
RAXML.

In cooperation with the computer science department of the University of
Crete and Prof. I. Tollis (Professor of Computer Science University of Crete, In-

115

7. CONCLUSION AND FUTURE WORK

stitute of Computer Science, Foundation for Research and Technology) who is a
leading expert in the field of graph visualization, new solutions to appropriately
display the information contained in large trees will be exploited.

Towards Improved Tree Proposal Mechanisms? As discussed in Sec-
tion 3.5 (pp. 32) the most important part of bayesian phylogenetic inference is
the tree proposal mechanism of the MCMC analysis. It will be worthwhile to an-
alyze if certain ideas from the RAXML search-space algorithm can be integrated
into the tree proposal mechanism of MrBayes in order to accelerate the program.

7.2.2 Technical Issues

Another key objective of future work consists in the search for inexpensive so-
lutions to acquire the large amount of computing power for large trees (e.g. the
10.000-taxon tree still required ~ 1600 accumulated CPU hours on Intel Xeon
2.4GHz and 2.66GHz processors with RAXML).

Towards Distributed Computation of Subtrees. Once methods for se-
lecting appropriate sub-alignments (containing ~ 500-1.000 organisms) have
been derived there will still exist enormous computational resource require-
ments. Subtrees of that size can still be computed sequentially without excessive
time/memory requirements using RAXML. Furthermore, the independent infer-
ence of a large number of subtrees perfectly suits the distributed programming
paradigm. Based on the experience with the preceding distributed implementa-
tions of RAXML it is planned to design a simple distributed program for inference
of those subtrees.

Towards Utilization of Graphics Processing Units (GPUs): The greatest
part of CPU time (> 90%) consumed by phylogenetic inference consists in float-
ing point operations which update the likelihood vectors at each inner node of the
tree. Those operations can easily be represented as basic vector operations and
are thus easy to parallelize. Kriger and Westermann from the Technische Univer-
sitdt Munchen have demonstrated how GPUs can be used to accelerate programs
containing vector-operations [65]. In December 2003 a common project has been
initiated to port RAXML to GPUs in order to exploit the intrinsic fine-grained par-
allelism of RAXML as well. This cooperation shall be continued and eventually
extended to clusters of GPUs in 2005.

116

7.2. FUTURE WORK

7.2.3 Organizational |ssues

Finally, some important organizational issues are mentioned which might lead to
advances in the field on a European and international level.

Phylogeny Competition: The requirement to establish a standard benchmark
set including real and simulated data alignments for comparison of maximum
likelihood-based programs has lead to the idea of conducting a phylogeny compe-
tition at a major Bioinformatics conference. Different teams which are developing
phylogeny programs should be invited and compete against each other on a set of
alignments which have been selected by an independent committee on identical
platforms. First plans for organizing and conducting such a competition have been
discussed with Tiffani Williams from the University of New Mexico (UNM) and
an agreement has been reached to proceed with the establishment of an organiza-
tional core team.

European Tree-of-Life Initiative: In 2003 the National Science Foundation
(NSF) announced a 11.600.000$ tree of life initiative which is co-located at 13
leading research institutions across the U.S. Thus, the participation in a planned
European counter-initiative with partners in Germany, France, and Greece will be
a key objective.

117

7. CONCLUSION AND FUTURE WORK

118

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

G. Allen, K. Davis, T. Dramlitsch, T. Goodale, I. Kelley, G. Lanfermann,
J. Novotny, T. Radke, K. Rasul, M. Russell, E. Seidel, O. Wehrens. The
GridLab Grid Application Toolkit. In Proceedings of HPDC 2002, 411,
IEEE Press, Edinburgh, Scotland, 2002.

ARB project site: WWW.ARB-HOME.DE, visited Mar 2003.

ATV - a phylogenetic tree display tool:
WWW.GENETICS.WUSTL.EDU/EDDY/ATV, Vvisited Mar 2004.

C. Babel. Design and Implementation of Distance-based Heuristics in a
Program for Genome Sequence Analysis. System Development Project,
Technische Universitat Munchen, 2003.

D.A. Bader, B.M.E. Moret, L. Vawter. Industrial Applications of High-
Performance Computing for Phylogeny Reconstruction. In Proceedings of
SPIE ITCom: Commercial Applicationsfor High-Performance Computing,
4528:159-168, The International Society for Optical Engineering, Denver,
USA, 2001.

C.S. Baker, S.R. Palumbi. Which whales are hunted? A molecular genetic
approach to whaling. In Science, 265:1538-1539, 1994.

B.R. Baum. Combining trees as a way of combining data sets for phylo-
genetic inference and the desirability of combining gene trees. In Taxon,
41:3-10, 1992.

D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp,
D.L. Wheeler. GenBank. In Nucl. Acid. Res., 30:17-20, 2002.

H.L. Bodlaender, M.R. Fellows, M.T. Hallett, T. Wareham, T. Warnow.
The hardness of perfect phylogeny, feasible register assignment and other
problems on thin colored graphs. In Theor. Comp. Sci., 244:167-188, 2000.

119

BIBLIOGRAPHY

[10] M.L. Bonet, M. Steel, T. Warnow, S. Yooseph. Better methods for solving
parsimony and compatibility. In J. Comp. Biol., 5:391-408, 1998.

[11] M.J. Brauer, M.T. Holder, L.A. Dries, D.J. Zwickl, P.O. Lewis, D.M. Hillis.
Genetic algorithms and parallel processing in maximum-likelihood phy-
logeny inference. In Molecular Biology and Evolution 19:1717-1726,
2002.

[12] R. Brent. Algorithms for minimization without derivatives. Prentice-Hall,
Engelwood Clifts, New Jersey, 1973.

[13] G. Brose. JacORB: Implementation and Design of a Java ORB. In Interna-
tional Conference on Distributed Applications and Interoperable Systems
(DAIS 97), International Federation for Information Processing, Cottbus,
Germany, 1997.

[14] R.M. Bush, C.A. Bender, K. Subbarao, N.J. Cox, W.M. Fitch. Predicting
the evolution of human influenza. In Science, 286(5446):1921-1925, 1999.

[15] Cactus Code project site: WWW.CACTUSCODE.ORG, Visited April 2003.

[16] J.H. Camin, R.R. Sokal. A method for deducing branching sequences in
phylogeny. In Evolution, 19:311-326, 1965.

[17] C. Ceron, J. Dopazo, E.L Zapata, M.J. Carazo, O. Trelles. Parallel imple-
menation of DNAmI program on message-passing architectures. In Parallel
Computing, 24:701-716, 1998.

[18] ClustalW project site: Www.EBI.AC.UK/CLUSTALW, Visited Jun 2004.

[19] Chair for Computer Science in Engineering, Science, and Numerical Pro-
gramming (TUM): WWWZENGER.INFORMATIK.TU-MUENCHEN.DE, Vis-
ited Apr 2004.

[20] B.S. Chang, M.J. Donoghue. Recreating ancestral proteins. In Trends Ecol.
Evol., 15:109-114, 2000.

[21] M.W. Chase, D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mish-
ler, M.R. Duvall, R.A. Price, H.G. Hills, Y.L. Qiu, K.A. Kron, J.H. Ret-
tig, E. Conti, J.D. Palmer, J.R. Manhart, K.J. Sytsma, H.J. Michaels,
W.J. Kress, K.G. Karol, W.D. Clark, M. Hedren, B.S. Gaut, R.K. Jansen,
K.J. Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H. Strauss, Q.Y. Xi-
ang, G.M. Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A. Gadek,
C.J. Quinn, L.E. Eguiarte, E. Golenberg, G.H. Learn, Jr., S.W. Graham,

120

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S.C.H. Barrett, S. Dayanandan, V.A. Albert. Phylogenetics of seed plants:
An analysis of nucleotide sequences from the plastid gene rbcL. In Annals
of the Missouri Botanical Garden, 80:528-580, 1993.

B. Chor, M. Hendy, B. Holland, D. Penny. Multiple maxima of likelihood
in phylogenetic trees: An analytic approach. In Mol. Biol. Evol., 17:1529-
1541, 2000.

CONDOR project site: WwWW.CS.WISC.EDU/CONDOR, Visited Apr 2004.

C. Darwin. On the origin of species by means of natural selection. John
Murray, London, 1859.

W.E. Day, D.S. Johnson, D. Sankoff. The computational Complexity of
inferring rooted phylogenies by parsimony. In Math. Bios., 81:33-42, 1986.

R.W. DeBry, L.G. Abele. The relationship between parsimony and max-
imum likelihood analyses: tree scores and confidence estimates. In Mal.
Biol. Evol., 12:291-297, 1995.

A.P. Dempster, M.N. Laird, D.B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. In J. R. Sat. Soc. B., 39:1-38, 1977.

A.W.F. Edwards, Cavalli-Sforza. Phenetic and phylogenetic classification.
In Systematics, 6:67-76, 1964.

D.P. Faith. Genetic diversity and taxonomic priorities for conservation. In
Biol. Conserv., 68:69-74, 1992.

J. Felsenstein. Cases in which parsimony or compatibility methods will be
positively misleading. In Syst. Zool., 27:401-410, 1978.

J. Felsenstein. Evolutionary Trees from DNA Sequences: A Maximum
Likelihood Approach. In J. Mal. Eval., 17:368-376, 1981.

X. Feng, D.A. Buell, J.R. Rose, P.J. Waddell. Parallel algorithms for
Bayesian phylogenetic inference. In Journal of Parallel and Distributed
Computing: Special Issue on High-Performance Computational Biology,
63:707-718, 2003.

G.E, Fox, E. Stackebrandt, R.B. Hespell, J. Gibson, J. Maniloff, T.A. Dyer,
R.S. Wolfe, W.E. Balch, R.S. Tanner, L.J. Magrum, L.B. Zablen, R. Blake-
more, R. Gupta, L. Bonen, B.J. Lewis, D.A. Stahl, K.R. Luehrsen,
K.N. Chen, C.R. Woese. The Phylogeny of Prokaryotes. In Science,
209:457-463, 1980.

121

BIBLIOGRAPHY

[34] O. Gascuel. BIONJ: An improved version of the NJ algorithm based on a
simple model of sequence data. In Mol. Biol. Evol., 14:685-695, 1997.

[35] GenBank project site: WWW.NCBI.NIH.GOV/GENBANK, Visited Jan 2004.

[36] N. Goldman, P. Anderson, A.G. Rodrigo. Likelihood-based tests of topolo-
gies in phylogenetics. In Syst. Biol, 49:652-670, 2000.

[37] P.A. Goloboff. Analyzing Large Data Sets in Reasonable Times: Solutions
for Composite Optima. In Cladistics, 15:415-428, 1999.

[38] GridLab project: WwWW.GRIDLAB.ORG, Visited Apr 2004.

[39] S. Guindon, O. Gascuel. A Simple, Fast, and Accurate Algorithm to
Estimate Large Phylogenies by Maximum Likelihood. In Syst. Bial.,
52(5):696-704, 2003.

[40] D. Gusfield, S. Eddhu, C. Langley. Efficient Reconstruction of Phyloge-
netic Networks with Constrained Recombination. In Proceedings of 2nd
|IEEE Computer Society Bioinformatics Conference (CSB2003), Stanford
Univ., Palo Alto, California, IEEE Press, 2003.

[41] P. Halbur, M.A. Lum, X. Meng, |. Morozow, P.S. Paul. New procine re-
productive and respiratory syndrome virus DNA and proteins encoded by
open-ended frames of an lowa strain of the virus are used in vaccines
against PRRSV in pigs. In Patent-Filing WO9606619-A1, 1994.

[42] M. Hasegawa, H. Kishino, T. Yano. Dating of the human-ape splitting by
a molecular clock of mitochondrial DNA. In J. Moal. Eval., 22:160-174,
1985.

[43] HeLiCS: HEidelberg Linux Cluster System: HELICS.UNI-HD.DE, Visited
Jul 2003.

[44] M.D. Hendy, D. Penny. A framework for the quantitative study of evolu-
tionary trees. In Syst. Zool., 38:297-309, 1989.

[45] D.M. Hillis, C. Moritz, B.K. Mable. In D.M. Hillis, C. Moritz
B.K. Mabel, editors, Molecular Systematics, Applications of Molecular
Systematics:515-543, Sinauer Associates, Sunderland, MA, 1996.

[46] Hitachi SR8000-F1 project site:
WWW.LRZ-MUENCHEN.DE/SERVICES/COMPUTE/HLRB, visited Mar
2004.

122

BIBLIOGRAPHY

[47] M.T. Holder, P.O. Lewis. Phylogeny Estimation: Traditional and Bayesian
Approaches. In Nature Reviews Genetics, 4:275-284, 2003.

[48] J.P. Huelsenbeck, B. Larget, R.E. Miller, F. Ronquist. Potential Appli-
cations and Pitfalls of Bayesian Inference of Phylogeny. In Syst. Bial.,
51(5):673-688, 2002.

[49] J.P. Huelsenbeck, F. Ronquist, R. Nielsen, J.P. Bollback. Bayesian Infer-
ence and its Impact on Evolutionary Biology. In Science, 294:2310-2314,
2001.

[50] J.P. Huelsenbeck, F. Ronquist. MRBAYES: Bayesian inference of phyloge-
netic trees. In Bioinformatics, 17(8):754-5, 2001.

[51] J.P. Huelsenbeck, D.M. Hillis. Succes of phylogenetic methods in the four-
taxon case. In Syst. Biol., 42:247-264, 1993.

[52] J.P. Huelsenbeck. Performance of phylogenetic methods in simulation. In
Syst. Biol., 44:17-48, 1995.

[53] D. Huson, S. Nettles, T. Warnow. Disk-Covering, a fast converging method
for phylogenetic tree reconstruction. In Comp. Biol., 6(3):369-386, 1999.

[54] D. Huson, L. Vawter, T. Warnow. Solving large scale phylogenetic prob-
lems using DCM2. In ISMB99, 118-129, AAAI Press, Heidelberg, Ger-
many, 1999.

[55] INFINIBAND at LRR-TUM:
WWWBODE.CS.TUM.EDU/PAR/ARCH/INFINIBAND, Vvisited Apr 2004.

[56] I. Janse, M. Meima, W. Edwin, A. Kardinaal,G. Zwart. High-Resolution
Differentiation of Cyanobacteria by Using rRNA-Internal Transcribed
Spacer Denaturing Gradient Gel Electrophoresis. In Applied and Environ-
mental Microbiology, 69(11):6634-6643, 2003.

[57] L.S. Jermiin, G.J. Olsen,K.L. Mengersen, S. Easteal. Majority-rule con-
sensus of phylogenetic trees obtained by maximum-likelihood analysis. In
Mol. Biol. Evol., 14:1297-1302, 1997.

[58] G. Judd, M. Clement, Q. Snell. The DOGMA approach to high utiliza-
tion supercomputing. In Proceedings of the 7th IEEE International Sym+
posium on High Performance Distributed Computing HPDC7, 862-873,
IEEE Press, Chicago, USA, 1998.

123

BIBLIOGRAPHY

[59] T. Jukes, C. Cantor. Evolution of protein molecules. In H. Munro (editor),
Mammalian protein metabolism, 111:21-132, Academic Press, New York,
19609.

[60] M. Kallerjso, J.S. Farris, M.W. Chase, B. Bremer, M.F. Fay,
C.J. Humphries, G. Petersen, O. Seberg, K. Bremer. Simultaneous parsi-
mony jackknife analysis of 2538 rBCL DNA sequences reveals support for
major clades of green plants, land plants, seed plants, and flowering plants.
In Plant Syst. Evol., 213:259-287, 1998.

[61] S. Kannan, T. Warnow. A fast algorithm for the computation and enumera-
tion of perfect phylogenies. In SAM J. Comput., 26(6):1749-1763, 1997.

[62] Y.-H. Kim, S.-K. Lee, B.-R. Moon. Optimizing the order of taxon addition
in phylogenetic tree construction using genetic algorithm. In Proceedings
of Pacfic Symposium on Bioinformatics, 2003.

[63] M. Kimura. A simple method for estimating evolutionary rates of base sub-
stitutions by through comparative studies of nucleotide sequences. In J.
Mol. Evol., 16:111-120, 1980.

[64] B. Korber, M. Muldoon, J. Theiler, F. Gao, R. Gupta, A. Lapedes,
B.W. Hahn, S. Wolinsky, T. Bhattacharya. Timing the Ancestor of the HIV-
1 Pandemic Strains. In Science, 288:1789-1796, 2000.

[65] J. Kriger, R. Westermann. Linear Algebra Operators for GPU Implemen-
tation of Numerical Algorithms. In Proceedings of S GGRAPHZ2003, 908—
916, ACM Press, San Diego, USA, 2003.

[66] M.K. Kuhner, J. Felsenstein. A simulation comparison of phylogeny al-
gorithms under equal and unequal evolutionary rates. In Mal. Biol. Eval.,
11:459-468, 1994.

[67] C. Lanave, G. Preparata, C. Saccone, G. Serio. A new method for calculat-
ing evolutionary substitution rates. In J. Mol. Evol., 20:86-93, 1984.

[68] Gerd Lanfermann. Nomadic Migration - A Service Environment for Auto-
nomic Computing on the Grid. Ph.D. thesis, University of Potsdam, 2003.

[69] G. Lanfermann, G. Allen, T. Radke, E. Seidel. Nomadic Migration: Fault
Tolerance in a Disruptive Grid Environment. In Proceedings of CCGRID
2002, 280-281, ACM/IEEE Press, Brisbane, Australia, 2002.

124

BIBLIOGRAPHY

[70] G. Lanfermann, G. Allen, T. Radke, E. Seidel. Nomadic Migration: A New
Tool for Dynamic Grid Computing. In Proceedings of HPDC 2001, 429-
430, IEEE Press, Redondo Beach, USA, 2001.

[71] A. Lemmon, M. Milinkovitch. The metapopulation genetic algorithm: An
efficient solution for the problem of large phylogeny estimation. In Proc.
Natl. Acad. ci. USA, 99:10516-10521, 2002.

[72] P.Lewis. A genetic algorithm for maximum likelihood phylogeny inference
using nucleotide sequence data. In Mol. Biol. Evol., 15:277-283, 1998.

[73] W.H. Li. In Molecular Evolution, Snauer Associates, Sunderland, MA,
112-115, 1997.

[74] alg M. Lindermeier. Ein Konzept zur Lastverwaltung in verteilten objekto-
rientierten Systemen. Ph.D. thesis, Technische Universitdt Miinchen, 2002,

[75] M. Lindermeier. Load management for distributed object-oriented environ-
ments. In Proceedings of 2nd International Symposium on Distributed Ob-
jects and Applications (DOA 00), OMG, Antwerp, Netherlands, 2000.

[76] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar,
A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Ger-
ber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig,
T. Liss, R. Lissmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Sta-
matakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, K.-
H. Schleifer ARB: A Software Environment for Sequence Data. In Nucl.
Acids Res., 32(4):1363-1371, 2004.

[77] B. Mau, M. Newton, B. Larget. Bayesian phylogenetic inference via
markov chain monte carlo methods. In Biometrics, 55:1-12, 1999.

[78] B. Mau, M. Newton. Phylogenetic Inference for binary data on dendro-
grams using markov chain monte carlo. In J. Comp. Graph. Stat., 6:122—
131, 1997.

[79] Max Planck Institute Potsdam:
WWW.AEI-POTSDAM.MPG.DE/FACILITIES/PUBLIC/COMPUTERS.HTML,
visited Apr 2004.

[80] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller. Equa-
tion of state calculations by fast computing machines. In J. Chem. Phys.,,
21:1087-1092, 1953.

125

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

126

MD5 Homepage (unofficial):
USERPAGES.UMBC.EDU/"MABZzUG1/CcS/MD5/MD5.HTML, visited Jun
2004.

I. Miklos. MCMC genome rearrangement. In Bioinformatics, 19(2):130-
137, 2003.

B.M.E. Moret, D.A. Bader, T. Warnow, S.K. Wyman, M. Yan. GRAPPA:
a high-performance computational tool for phylogeny reconstruction from
gene-order data. In Proceedings of Botany 2001, 2001.

S.B. Needelman, C.D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. In J. Mal. Biol.,
48:443-453, 1970.

G. Olsen. DNArates Distribution:
GETA.LIFE.UIUC.EDU/"GARY/PROGRAMS/DNARATES.HTML, visited
Apr 2004.

G. Olsen, H. Matsuda, R. Hagstrom, R. Overbeek. fastdnaml: A Tool for
Construction of Phylogenetic Trees of DNA Sequences using Maximum
Likelihood. In Comput. Appl. Biosci., 10:41-48, 1994.

M. Ott. RAXML@home: Specification and Development of a Globally Dis-
tributed Software-Architecture for Inference of Phylogenetic Trees. Mas-
ter’sthesis, Technische Universitat Minchen, 2004.

C.Y. Ou, C.A. Ciesielski, G. Myers, C.I. Bandea, C.C. Luo, B.T. Korber,
J.I. Mullins, G. Schochetman, R.L. Berkelman, A.N. Economou. Molec-
ular epidemiology of HIV transmission in a dental practice. In Science,
256(5060):1165-1171, 1992.

PACX-MPI: The Grid-Computing library PACX-MPI, Extending MPI for
Computational Grid:
WWW.HLRS.DE/ORGANIZATION/PDS/PROJECTS/PACX-MPI, Visited Apr
2004.

PAML Manual (Information on Tr/Tv definitions: page 20):
BCR.MUSC.EDU/MANUALS/PAMLDOC.PDF, visited Nov 2003.

parallel fastDNAmI project site:
WWW.INDIANA.EDU/ RAC/HPC/FASTDNAML, visited Feb 2003.

PAUP project site: PAUP.CSIT.FSU.EDU, visited May 2003.

BIBLIOGRAPHY

[93] PHYLIP downlaod site and list of phylogeny software:
EVOLUTION.GENETICS.WASHINGTON.EDU, Visited Nov 2003.

[94] D. Posada, K.A. Crandall. MODELTEST: testing the model of DNA sub-
stitution. In Bioinformatics, 14:817-818, 1998.

[95] M.A. Ragan. Phylogenetic inference based on matrix representation of
trees. In Mol. Phyl. Evol., 1:53-58, 1992.

[96] A. Rambaut, N.C. Grassly. Seq-Gen: An application for the monte carlo
simulation of dna sequence evolution along phylogenetic trees. In Comp.
Appl. Biosc., 13:235-238, 1997.

[97] B. Rannala, Z.H. Yang. Probability distribution of molecular evolutionary
trees: A new method for phylogenetic inference. In J. Mol. Eval., 43:304—
311, 1996.

[98] V. Ranwez, O. Gascuel. Improvement of distance-based phylogenetic
methods by a local maximum likelihood approach using triplets. In Mal.
Biol. Evol., 19:1952-1963, 2002.

[99] V. Ranwez, O. Gascuel. Quartet-based phylogenetic inference: Improve-
ments and limits. In Mol. Biol. Eval., 18:1103-1116, 2000.

[100] Regionales Rechenzentrum Erlangen: HPC services:
WWW.RRZE.UNI-ERLANGEN.DE, Visited Oct 2003.

[101] D. Robinson, L. Foulds. Comparison of weighted labeled trees. in Lecture
Notesin Mathematics, 748:119-126, Springer, Berlin,1979.

[102] F. Rodriguez, J.L. Oliver, A. Marin, J.R. Medina. The general stochastic
model of nucleotide substitution. In J. Theor. Biol., 142:485-501, 1990.

[103] M. Rosenberg, S. Kumar. Traditional phylogenetic reconstruction meth-
ods reconstruct shallow and deep evolutionary relationship equally well. In
Mol. Biol. Evol., 19:1823-1827, 2001.

[104] U. Roshan, B.M.E. Moret, T.L. Williams, T. Warnow. Performance of su-
pertree methods on various data set decompositions. In O.R.P. Bininda-
Edmonds (editor) Phylogenetic Supertrees: Combining Information to Re-
veal the Tree of Life, 301-328, to be published. Preprint available at
WWW.CS.UNM.EDU/"TLW/PUBLICATIONS.HTML.

[105] N. Saitou, M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. In Mol. Biol. Evol., 4(4):406-425, 1987.

127

BIBLIOGRAPHY

[106] M.J. Sanderson, A.C. Driskell. The challenge of constructing large phylo-
genetic trees. In Trendsin Plant Science, 8(8):374-378, 2003.

[107] M.J. Sanderson. The r8s software package: GINGER.UCDAVIS.EDU/RSS,
visited Mar 2004.

[108] H.A. Schmidt, K. Strimmer, M. Vingron, A.v. Haeseler. TREE-PUZZLE:
Maximum likelihood phylogenetic analysis using quartets and parallel
computing. In Bioinformatics, 18:502-504, 2002.

[109] Seti@home project site: SETIATHOME.SSL.BERKELEY.EDU, Vvisited Jul
2003.

[110] J. Setubal, J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, Boston, 1997.

[111] H. Shimodaira, M. Hasegawa. Multiple comparisons of log-likelihoods
with applications to phylogenetic inference. In Molecular Biology and Evo-
lution, 16:1114-1116, 1999.

[112] A. Skourikhine. Phylogenetic Tree Reconstruction Using Self-Adaptive
Genetic Algorithm. In Proceedings of |EEE International Symposium on
Bio-Informatics and Biomedical Engineering (BIBE’ 00), 2000.

[113] T.F. Smith, M.S. Waterman. Identification of common molecular subse-
quences. In J. Mal. Biol., 147:195-197, 1981.

[114] P.H.A. Sneath, R.R. Sokal. In Numerical Taxonomy, 230-234, W.H. Free-
man and Company, San Francisco, 1973.

[115] Q. Snell, M. Whiting, M. Clement, D. McLaughlin. Parallel Phylogenetic
Inference. In Proceedings of 13th Supercomputing Conference (SC2000),
2000.

[116] G. Stoesser, W. Baker, A.v.d. Broek, E. Camon, M. Garcia-Pastor, C. Kanz,
T. Kulikova, R. Leinonen, Q. Lin, V. Lombard, R. Lopez, N. Redaschi,
P. Stoehr, M.A. Tuli, K. Tzouvara, R. Vaughan. The EMBL nucleotide se-
quence database. In Nucl. Acid. Res., 30:21-26, 2002.

[117] K. Strimmer, V. Moulton. Likelihood analysis of phylogenetic networks
using directed graphical models. In Mol. Biol. Evol., 17:875-881, 2000.

[118] A. Stamatakis, T. Ludwig, H. Meier. RAXML-III: A Fast Program for
Maximum Likelihood-based Inference of Large Phylogenetic Trees. In
Bioinformatics, accepted for publication.

128

BIBLIOGRAPHY

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

A. Stamatakis, T. Ludwig, H. Meier. RAXML-II: A Program for Sequen-
tial, Parallel & Distributed Inference of Large Phylogenetic Trees. In Con-
currency and Computation: Practice and Experience, accepted for publi-
cation.

A. Stamatakis, M. Ott, T. Ludwig, H. Meier. DRAXML@home: A Dis-
tributed Program for Computation of Large Phylogenetic Trees.In Future
Generation Computer Systems (FGCS), accepted for publication.

A. Stamatakis, T. Ludwig, H. Meier. The AXML Program Family for Phy-
logenetic Tree Inference. In Concurrency and Computation: Practice and
Experience, accepted for publication.

A. Stamatakis, T. Ludwig, H. Meier. Parallel Inference of a 10.000-taxon
Phylogeny with Maximum Likelihood. In Proceedings of Euro-Par 2004,
Pisa, Italy, accepted for publication.

A. Stamatakis, T. Ludwig, H. Meier. Computing Large Phylogenies with
Statistical Methods: Problems & Solutions. In Proceedings of 4th Interna-
tional Conference on Bioinformatics and Genome Regulation and Structure
(BGRS2004), Novosibirsk, Russia, accepted for publication.

A. Stamatakis, T. Ludwig, H. Meier. New Fast and Accurate Heuristics
for Inference of Large Phylogenetic Trees. In Proceedings of 18th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS2004), Pro-
ceedings on CD, Abstract on page 193, Santa Fe, New Mexico, April 2004.

A. Stamatakis, T. Ludwig, H. Meier. A Fast Program for Maximum
Likelihood-based Inference of Large Phylogenetic Trees. In Proceedings
of ACM Symposium on Applied Computing (SAC2004), 197-201, Nicosia,
Cyprus, March 2004.

A. Stamatakis, T. Ludwig, H. Meier. A Fast Program for Phylogenetic
Tree Inference with Maximum Likelihood. In Arndt Bode, Franz Durst, W
erner Hanke, and Segfried Wagner, editors, High Performance Computing
in Science and Engineering, Springer Verlag, accepted for publication.

A. Stamatakis, T. Ludwig, H. Meier. RAXML: A Parallel Program for
Phylogenetic Tree Inference. Poster abstract in Proceedings of 2nd Euro-
pean Conference on Computational Biology (ECCB2003), 325-326, Paris,
France, September 2003.

A. Stamatakis, M. Lindermeier, M. Ott, T. Ludwig, H. Meier. DAXML.:
A Program for Distributed Computation of Phylogenetic Trees Based on

129

BIBLIOGRAPHY

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

130

Load Managed CORBA. In Proceedings of 7th International Conference
on Parallel Computing Technologies (PaCT2003), Volume 2763 of Lecture
Notes in Computer Science, 538-548, Springer Verlag, September 2003.

A. Stamatakis, T. Ludwig, H. Meier. Neues vom Projekt ParBaum ... Par-
allele und verteilte Systeme und Algorithmen zur Berechnung grosser phy-
logenetischer Baume mit Maximum-Likelihood (Parallel and Distributed
Systems and Algorithms for the Inference of big Phylogenetic Trees with
Maximum Likelihood). In KONWIHR Quartl, 34(1):4—7, May 2003.

A. Stamatakis, T. Ludwig. Phylogenetic Tree Inference on PC Architec-
tures with AXML/PAXML. In Proceedings of 17th International Parallel
and Distributed Processing Symposium (IPDPS2003), Proceedings on CD,
Abstract on page 157, Nice, France, April 2003.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf. Accelerating Parallel
Maximum Likelihood-based Phylogenetic Tree Calculations using Sub-
tree Equality Vectors. In Proceedings of 15th Supercomputing Conference
(SC2002), Proceedings on CD, Baltimore, Maryland, November 2002.

A. Stamatakis, T. Ludwig, H. Meier. Adapting PAXML to the Hitachi
SR8000-F1 Supercomputer. In Arndt Bode, Franz Durst, Werner Hanke,
and Segfried Wagner, editors, High Performance Computing in Science
and Engineering, 453-466, Springer Verlag, October 2002.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf. AXML: A Fast Program
for Sequential and Parallel Phylogenetic Tree Calculations Based on the
Maximum Likelihood Method. In Proceedings of 1st IEEE Computer So-
ciety Bioinformatics Conference (CSB2002), 21-28, Stanford Univ., Palo
Alto, California, August 2002.

Standard Performance Evaluation Corporation (SPEC): WWW.SPEC.ORG,
visited Apr 2004.

C. Stewart, D. Hart, D. Berry, G. Olsen, E. Wernert, W. Fischer. Parallel
Implementation and Performance of fastdnaml - a Program for Maximum
Likelihood Phylogenetic Inference. In Proceedings of 14th Supercomputing
Conference (SC2001), November 2001.

C. Stewart, T. Tan, M. Buchhorn, D. Hart, D. Berry, Z. L., E. Wernert,
M. Sakharkar, W. Fisher, D. McMullen. Evolutionary biology and compu-
tational grids. In Technical report, IBM CASCON Computational Biology
Workshop: Software Tools for Computational Biology, 1999.

BIBLIOGRAPHY

[137] K. Strimmer, A.v. Haeseler. Quartet Puzzling: A Maximum-Likelihood
Method for Reconstructing Tree Topologies. In Mol. Biol. Evol., 13:964—
969, 1996.

[138] Sunhalle at TUM: WWWRBG.IN.TUM.DE, Visited Apr 2004.

[139] Supercomputing Conference 2003 HPC challenge:
WWW.SC-CONFERENCE.ORG/SC2003/TECH_HPC.PHP, visited Apr 2004.

[140] D.L. Swofford, G.J. Olsen, PJ. Wadell, D.M. Hillis. In D.M. Hillis,
C. Moritz, B.K. Mabel, editors, Molecular Systematics, Phylogenetic In-
ference: 407-514, 1996, Sinauer Associates, Sunderland, MA.

[141] The Message Passing Interface (MPI) standard:
WWW-UNIX.MCS.ANL.GOV/MPI, Vvisited Jun 2004.

[142] The TreadMarks Distributed Shared Memory (DSM) System:
WWW.CS.RICE.EDU/"WILLY/TREADMARKS/OVERVIEW.HTML, Visited
Jun 2004.

[143] J.D. Thompson, F. Plewniak, O. Poch. A comprehensive comparison
of multiple sequence alignment programs. In Nucleic Acids Research,
27(13):2682-2690, 1999.

[144] C. Tuffley, M. Steel. Links between Maximum Likelihood and Maximum
Parsimony under a Simple Sodel of Site Substitution. In Bull Math Biol,
59(3):581-607, 1997.

[145] veryfastDNAmI distribution:
BIOWEB.PASTEUR.FR/SEQANAL/SOFT-PASTEUR.HTML, Visited Jun 2004.

[146] T.L. Williams, B.M. Berger-Wolf, U. Roshan, T. Warnow. The relationship
between maximum parsimony scores and phylogenetic tree topologies. In
Tech. Report, TR-CS-2004-04, Department of Computer Science, The Uni-
versity of New Mexico, 2004.

[147] T.L. Williams, B.M.E. Moret. An Investigation of Phylogenetic Likelihood
Methods. In Proceedings of 3rd IEEE Symposium on Bioinformatics and
Bioengineering (BIBE’ 03), 79-86, 2003.

[148] L. Wang, T. Jiang. On the complexity of multiple sequence alignments. In
J. Comp. Biol., 1(4):337-348, 1994.

131

BIBLIOGRAPHY

[149] M. Wolf, S. Easteal, M. Kahn, B. McKay, L. Jermiin. TrEXML: A Maxi-
mum Likelihood Program for Extensive Tree-space Exploration. In Bioin-
formatics, 16(4):383-394, 2000.

[150] XML-RPC project site: Www.XMLRPC.COM, Visited Apr 2004.

[151] Z. Yang. Maximum likelihood phylogenetic estimation from DNA se-
quences with variable rates over sites. In J. Mol. Evol., 39:306-314, 1994.

[152] Z.Yang. Among-site rate variation and its impact on phylogenetic analyses.
In Trends Ecol. Evol., 11:367-372, 1996.

[153] C.M. Zmasek, S.R. Eddy. ATV: display and manipulation of annotated phy-
logenetic trees. In Bioinformatics, 17:383-384, 2002.

[154] E. Zuckerkandl, L. Pauling. Molecules as documents of evolutionary his-
tory. In J. Theor. Biol., 8:357-366, 1965.

132

