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Abstract

State-of-the-art robot mapping approaches are capable of acquiring impressively accurate
2D and 3D models of their environments. To the best of our knowledge, few of them repre-
sent structure or acquire models of task-relevant objects. In this work, a new approach to
mapping of indoor environments is presented, in which the environment structure in terms
of regions and gateways is automatically extracted, while the robot explores. Objects, both
in 2D and 3D, are modeled explicitly in those maps and allow for robust localization. We
refer to those maps as structured object-oriented environment representations or Region
¢ Gateway Maps (RG Maps). The process of building such maps is called Region &
Gateway Mapping (RG Mapping).

RG Maps and RG Mapping make several contributions to the field of map building of
indoor environments. First, RG Mapping automatically recovers the structure of large
classes of indoor environments and represents them explicitly. Therefore, novel algorithms
have been developed for the detection and recognition of gateways, i.e. transitions between
regions. Second, it detects rectangular 2D /3D objects using laser range as well as image
data that are used for gateway detection and localization. Third, the semantic description,
i.e. annotation of regions and objects, is obtained from human-machine interaction in
the context of task assignment. Fourth, a compact Region & Gateway Graph is easily
extracted from RG Maps, and it is used for efficient path planning on the global scale.
It allows reasoning about the feasibility of a given path and learning of the properties
of path segments while the robot moves through the environment. Fifth, due to the
clustering of metric data into regions, region-based localization and path planning only
need to consider the respective region data. Thus, the complexity of the data association
problem for localization and the search space for metric path planning is substantially
reduced.

The RG Mapping and Navigation System has been fully implemented as a distributed
(module-based) system, and runs in real-time on a real robot. Due to its architecture,
the system can be easily ported to different platforms, provided that similar sensor data
is available. In order to support reliable exploration of and navigation within RG Maps,
the presented system features a novel approach to collision avoidance and low-level control.
The low-level control allows for very precise and fast pursuing of short trajectory segments,
which can be changed at any time. The collision avoidance generates trajectory segments
based on the interpretation of the current sensor data and short-distance targets from the
path planning process. As a result, the navigation behaviour of the robot is reproducible
and predictable, which is a very desirable feature for high-level planning.
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Chapter 1

Introduction

Designing mobile autonomous and intelligent systems has been a research objective for over
thirty years. But since even longer, people have been carrying and expressing ideas about
intelligent machines that have an understanding of their environment and that are able
to execute a given task reliably, efficiently and accurately. The respective research fields
investigate the problems of perception, the control of dynamics (mobile robot, manipu-
lator), the generation of plans for complex tasks (navigate to pick up an object, parallel
user requests), the immediate response to unforeseen situations, as well as safety aware-
ness towards humans, technical equipment and the environment in general. The resulting
systems were always meant to support humans in the industrial fabrication of a variety of
products (machinery, electronic devices, furniture etc.), in the working environment (de-
livery or carriage tasks), and in daily life, in particular assisting elderly or handicapped
people.

As a consequence, automation was successfully applied to many different fields in the
industry in the last century, even though the systems have not been very adaptive. They
were restrictively programmed to perform considerably simple tasks as fast and as accurate
as possible, without noticing too much in their periphery. But in the last two decades,
the research focus moved more and more towards the development of intelligent systems
that can autonomously adapt to different tasks and respond deliberately to unexpected
situations. Most of the applications in industry are related to immobile manipulators that
pick up, place and paint parts, drill holes, grind, saw etc. In automated warehouses mobile
vehicles drive autonomously along rails or magnetic leads and perform delivery tasks. In
the end of the nineties, mobile robots have guided visitors autonomously through crowded
museums [110, 14, 108] and today similar technology can be bought or rent!. Additionally,
autonomous and intelligent systems have proven to be applicable and successful in space
missions [6, 86, 119].

Lsee for example http://www.bluebotics.com



CHAPTER 1. INTRODUCTION

In order to navigate reliably through an environment and plan the assigned tasks properly,
an autonomous mobile platform needs to have a model of its surroundings and relevant or
useful objects within it. In robotics acquiring this knowledge is commonly referred to as
map building and navigation. Different sensors like odometry, sonar, laser range finder,
cameras and others are used to capture the characteristics of the environment. Appropriate
algorithms have to deal with the problem of inherent sensor noise and ambiguities, i.e. a
high degree of uncertainty. Research topics in mobile robotics also seek to answer the
questions of localization with respect to a given map, path planning, collision avoidance
and control of robot dynamics.
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Figure 1.1: Detailed section of the RG Map of our department floor at TUM IX (Garching,
Munich), see also Figure 1.2

The mapping and navigation system presented in this work focuses on building structured
maps that contain 2D /3D objects. Figure 1.2 (upper right part) shows a robot that drives
along a hallway and keeps track of its position despite severe odometry errors. To gener-
ate the complete map of our department floor the robot traveled about 350 meters and
collected 1248 laser scans. The mapping process works on-line, that is, the system de-
tects doors, hallway turns and crossings and upon traversing them, it starts mapping the
new region (office, hallway, lobby). Thus, the sensor data obtained in an environment is
continuously clustered according to the observed regions. A rough estimate of the region
description is generated while the robot explores a region. Upon leaving that region, the
acquired sensor data is interpreted to build a more compact and accurate representation.



Figure 1.2: RG map of our department floor at TUM IX (Garching, Munich). Raw data:
1248 laser scans, i.e. over 200 000 point measurements. The left images show the region
description in 2D and 3D. The lower part marked with a rectangle is enlarged in Figure 1.1.
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CHAPTER 1. INTRODUCTION

Such a description, among others, comprises a 2D line segment map and 2D /3D objects
for localization and path planning, as well as a list of adjacent gateways. Regions and
3D objects can be used for either referencing them explicitly, e.g. “Go to the closet.”, or
interaction, e.g. “Fetch the book from the table.”.

Figure 1.2 (left) shows how an office environment is represented as a Region & Gateway
Map. The lower section is depicted in more detail in Figure 1.1. The map comprises
objects that describe the nineteen offices and two hallways by means of 41 regions and 58
gateways. Thereby nineteen gateways have either not yet been traversed or belong to the
same region, i.e. they are only useful for localization. Since vision was not used in the
depicted experiment, the system detected not only doors as gateways but narrow passages
in general. The representation of an office contains only the information gathered within
that office, and the doors describe possible transitions between those entities. We refer
to the before mentioned entities as Regions and to the transitions as Gateways. Together
they form a Region & Gateway Map (RG Map). The process of building such maps is
called Region & Gateway Mapping (RG Mapping).

In the context of navigation, RG Maps have several advantages compared to state-of-the-
art approaches such as pure metrical [107] or topological maps [22, 121, 94]. This is partly
due to the fact that RG Maps present a mixture of both, but in detail differ considerably
from classic hybrid approaches [109, 113, 112]. First, a compact Region & Gateway Graph
can be easily extracted from RG Maps, see Figure 1.1. It is used to plan a path on
region and gateway level. In the description, costs for gateway or region traversal are
explicitly represented, and thus, can be easily adapted, i.e. automatically learned when
navigating through the environment. Fast graph search algorithms allow for real-time
reasoning on the level of regions and gateways. Second, global localization can be performed
based on regions, instead of using the latest observation together with all acquired metric
information. That means, when the system does not know in which region it is located, it
explores the current region, i.e. builds a region description, generates a compact feature
vector and performs region recognition on that level. After the localization has converged
to a single region, it only needs to determine the relation of the current observation to the
respective region data. Thus, the dimension of the data association problem is strongly
reduced, because only a subset of the map data has to be considered. Thereby, localization
gives additional proof for gateway traversal by projecting particles into adjacent regions,
when the robot approaches a gateway.

RG Maps are applicable to a wide range of indoor environments, because buildings, in
particular office buildings, share salient design characteristics in order to be functional,
well-priced and efficient. Such environments are structured into rooms that can be en-
tered through doorways and are connected by hallways. Examples include but are not
necessarily limited to hospitals, office and apartment buildings as well as homes for elderly
or handicapped people. Usually such environments contain tables, shelves, closets, door
frames, posters etc., which can explicitly be represented in RG Maps.



RG Mapping implicates additional contributions to the field of map building for indoor
environments. First, it automatically recovers the structure of large classes of indoor envi-
ronments and represents them explicitly. As a result, the complexity of data interpretation
is significantly reduced, and high-level planning or human operators can explicitly refer to
places in the environment. Novel algorithms have been developed for the detection and
recognition of gateways, i.e. transitions between regions. Second, RG Mapping detects
2D /3D objects using laser range as well as image data, see Figure 1.3. The focus lies
on a more general segmentation instead of model-based recognition. For now, the object
recognition is restricted to arbitrary rectangular objects in 2D /3D. It is important to note
that the system has no further apriori knowledge about pose, size or appearance of those
objects. The assignment of objects to regions is done automatically, along with the struc-
turing process. Third, semantic descriptions are obtained from human-machine interaction
in the context of task assignment. That means, if a human operator specifies a region or
object that has no name assigned to it, the system initiates a dialog to extend the semantic
description of the map, i.e. requesting additional information from the user.

Figure 1.3: Reconstructed 3D objects in an office environment
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Finally, the presented mapping and navigation system has two other important aspects,
which are intended to support reliable exploration of, and navigation within RG Maps. It
is important to note that these contributions are not only applicable to a system based
on RG Maps, but their properties are particularly well suited for directed and intelligent
exploration in the context of structured maps. First, contrary to common approaches for
collision avoidance, the low-level control of the robot movement and the reasoning about
collision free paths are strictly separated. The low-level control allows for very precise and
fast pursuing of short trajectory segments, which can be changed at any time. The collision
avoidance generates trajectory segments based on the interpretation of the current sensor
data and short-distance targets from the path planning process. Additionally, the execution
of low-level control is continuously monitored and, if necessary, adapted with respect to
dynamic changes in the environment. The second aspect is the fact that the presented
work has been fully implemented by means of a distributed (module-based) system, and
runs in real-time on a real robot. Due to its architecture, the system can be easily ported
to different platforms, provided that similar sensor data is available. Also, it facilitates
simple incorporation of new algorithms for object or gateway recognition, localization, path
planning etc.

As mentioned before, gateway detection/recognition is a crucial precondition in structured
mapping, because it defines subsets of sensor data by means of regions. Thus, the main
problem in RG Mapping is to reliably recognize gateways, despite changing illumination,
partial occlusion and dynamic objects. This raises the question of how to define classes
of gateways, and which features to use to describe those classes. But it also asks for
fast and robust recognition algorithms. Such algorithms should be as generic as possible,
because gateways may appear different in different environments. Also, the framework
for the gateway detection has to be extendable to support the incorporation of new or
improved recognition approaches. Finally, such algorithms have to deal with noisy data,
false positives and apriori knowledge in case a place has been visited before.

On the other hand, a compact and appropriate description of regions based on the sen-
sor data gathered within that region is necessary to guarantee granularity of the given
information, unique identification of regions and scalability of the approach. RG Mapping
integrates data from a laser range finder and cameras, which poses the problem of data
fusion. Appropriate algorithms have to balance accuracy versus compactness along with
reproducibility and robustness. The representation of a region must allow for robust lo-
calization and path planning, but at the same time should be compact in the sense of the
amount of data that has to be stored. In addition, as for gateway detection, the genera-
tion of region descriptions includes the problem of noisy data, and furthermore data from
dynamic objects. The latter addresses the problem of updating the region representation
upon repeated observation.

The next chapter introduces and defines Region ¢ Gateway Maps and discusses the steps
necessary to build such maps. It describes the concepts of regions and gateways, and how



they form RG Maps. In this context, we also explain the notion of the Region & Gate-
way Graph, how it is generated from RG Maps and how it is used for path planning. The
last section in Chapter 2 gives an overview of different mapping methods and discusses the
relation of Region € Gateway Maps/Mapping to those approaches.

Chapter 3 focuses on the generation of object models based on laser and vision data.
Thereby, we restrict ourselves to rectangular 2D /3D objects, which present a prominent
subclass of objects in indoor environments. It addresses the problem of 2D line segment
grouping and presents an approach that is well suited for 2D laser data as well as for
2D line segments generated from image data. The latter is a precondition for our fast and
accurate 3D reconstruction algorithm. The results from both laser and vision are utilized to
align objects/observations in 3D with the respective 2D observations from a laser scanner.
Finally, we present experimental results for the 2D segmentation and 3D reconstruction
based on real-world scenarios.

Algorithms for the detection of gateways are described in
Chapter 4. First, we present a novel approach for laser based
recognition and classification of crossings and turns. It intro-
duces a feature language well suited to describe the proper-
ties of such gateways, and a probabilistic recognition based
on Hidden Markov Models. The second contribution in this
chapter is the recognition of doors based on laser and vision.
Thereby, we combine the results of Chapter 3, namely the
3D reconstruction of arbitrary rectangular 3D objects, with a
simple detection algorithm that is based on laser range scans.
We will present results for both approaches, and finally dis-
cuss and summarize our work on gateway detection.

The before mentioned algorithms for object recognition and
gateway detection along with the principles of RG Maps have
been implemented in a module based framework - the Tum-
Bot Mapping €& Navigation System on a real robot (B21r)?,
depicted in Figure 1.4. Chapter 5 gives an overview of the
overall system and describes the functionality of the differ-
ent modules, including path planning, localization, collision
avoidance and robot motion control. In particular, path plan-
ning and localization have been developed with special focus
on RG Maps. It will be shown that both of these problems can be handled efficiently
and that they explicitly gain in transparency and usability due to the properties and ad-
vantages of RG Maps. In the last section of this chapter we present a novel approach to
collision avoidance. It utilizes trajectory segments, laser range data and stereo vision to
plan collision-free paths. In this context we will also discuss the related work.

Figure 1.4: B21r robot

2Product from iRobot Corp., formerly known as Real World Interfaces
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CHAPTER 1. INTRODUCTION

In Chapter 6 we present experiments conducted with the overall system both based on ex-
ternal data sets and using a B21r robot. We will show that RG Mapping is both well suited
and indeed capable of acquiring structured and object-oriented representations of large in-
door environments. An important part of our evaluation is the discussion of structural
consistency in RG Maps and the limitations of the presented mapping system.

The last chapter summarizes this work its contributions and results, along with a discussion
of future work.



Chapter 2

The Principles of
Region & Gateway Maps

In order to generate an appropriate path to a given target position a mobile robot needs to
localize itself within its environment. Since the goal is to reach that target safely and in a
reasonable amount of time, the robot is expected to reason about the feasibility of different
solutions. When a plan has been chosen and a certain path is followed, the robot must
recognize whether that path is blocked, e.g. because a door is closed or a chair is in the
way, and should then react deliberately, based on the given environment representation.
Therefore, an autonomous system needs information to identify objects that are used for
localization along the path, e.g. door frames, hallway turns and crossings. This includes
objects that have a descriptive meaning with respect to the topology of the environment and
eventually the feasibility of a given path, but also objects that contain useful information
like room numbers on door plates or signposts on a wall. In addition, the robot needs
to have knowledge about movable objects like office chairs, small boxes etc. that can
eventually be displaced if they block a given path. This leads to the following questions:

e What additional information, besides 2D metric descriptions, would enhance the
ability of mobile robots to successfully navigate through an environment and fulfill
complex tasks?

e How can such maps be generated automatically by a mobile robot?
What are the key problems that have to be solved?

We propose Region € Gateway Maps (RG Maps) along with Region € Gateway Mapping
(RG Mapping) as novel answers to these questions. RG Maps explicitly refer to regions,
gateways and 2D /3D objects to give a structured object-oriented representation. RG Map-
ping aims at the autonomous acquisition of structured models of indoor environments, in
particular office-, hospital- and museum-like environments.



CHAPTER 2. THE PRINCIPLES OF REGION & GATEWAY MAPS

In this chapter, we will first describe the general principles of RG Maps in Section 2.1,
along with the definition of regions, gateways and the RG Graph. Section 2.2 formalizes
the process of RG Mapping. The last section in this chapter gives a comprehensive overview
of existing mapping approaches with a focus on indoor environments. We will also discuss
how RG Maps and RG Mapping relate to existing approaches.

2.1 Region & Gateway Maps

Region & Gateway Maps (RG Maps) are described using a set of Regions and a set of Gate-
ways. In general, the term Region refers to a contiguous area which is self-contained in the
sense that it can only be entered or left through certain transitions (gateways). Gateways
can be understood as the structuring elements in this mapping approach. They represent
identifiable transitions between regions. “identifiable” means that they can be detected in
the first place and recognized later on. More formally, an RG Map is represented by a tuple
(R, G), where R denotes a set of Regions and G is a set of Gateways that represent possi-
ble transitions between regions. Each region contains references to the adjacent gateways,
and each gateway “knows” to which regions it is linked to. Thus, RG Maps are in general
of topological nature, but they differ from classical topological maps in that they provide
metrical information for all places that have been visited/explored, not only for certain
places (nodes), see also Section 2.3. Moreover, within a region, task-relevant objects are
explicitly represented. That means, a Region is a tuple (M, O, P, Gret), where M denotes
some metrical description, O is a set of object hypotheses, P refers to a set of characteristic
properties, and G'r.s contains references to the adjacent gateways. Accordingly, Gateways
are tuples (M, P, Rgef), with M and P as for regions, and Rpg.s holding the references to
the adjacent regions. The single most important property of a Gateway is its class label,
defining how many regions it connects and in which fashion.

2.1.1 Region

In this section we will discuss the term Region with respect to indoor environments. It
has already been mentioned that regions represent contiguous, bounded and self-contained
areas. That means that all the data or observations collected within a region are only
accessible/ “visible” within that region. In other words, all information gathered within a
region is stored in an encapsulated region object with a unique identification number and
eventually a name tag. Hence, the data acquired in a large scale indoor environment is
automatically clustered into separated units, i.e. regions. The data is then utilized to gen-
erate a detailed region description, which allows for accurate region-based localization and
path planning. Region-based sensor data interpretation can achieve more accurate met-
ric descriptions because it prevents the merging of observations that cannot result from

10



2.1. REGION & GATEWAY MAPS

the same object, such as distance measurements of opposite sides of a wall. Furthermore,
by providing object hypotheses, regions support the semantic annotation of task-relevant
objects, e.g. by human-machine interaction, and thus semantic high-level planning. Char-
acteristic properties of regions are utilized to globally distinguish, i.e. recognize, regions.
The different aspects for the use of regions in the context of RG Mapping are described in
detail in Chapter 5.

We will now focus on the description of regions in the context of indoor environments, where
a region can be an office, a hallway, an entrance hall or a room in an apartment. It can be
entered or left through different kinds of doors, wide-narrow transitions, hallway crossings
or turns. In the practical system, we use laser range and vision sensors. Therefore, regions
are metrically described using a set of 2D line segments and 2D/3D object hypotheses.
Each region uses its own coordinate system. We decided to employ a 2D line segment map
because it is more compact than occupancy grids [85, 34] or a list of laser scans [44, 76],
but still holds enough information for localization and path planning. As mentioned above,
regions contain sets of object hypotheses, where we restrict ourselves to object classes in
3D that are rectangular, such as pictures or doors, and objects that can be represented
by bounding cuboids, such as desks. In addition, rectangular 2D object hypotheses are
generated from the 2D line segments. The respective algorithms are outlined in detail in
the next chapter. Other characteristic properties of regions are:

e 2D bounding rectangle (bounding box), based on the metrical description
e main axes/directions of the 2D line segments
e 2D freespace, explicitly represents the obstacle free area within a region

e measure of accuracy and completeness for the metric description

From the 2D freespace feature further information like size or center of gravity with respect
to the bounding box is calculated and used for global localization, i.e. region recognition.
It is also utilized in region based localization, see Section 5.3. The measure of accuracy
and completeness trigger the exploration process. That means, they describe how well
the metric description fits to the acquired sensor data and whether or not there are still
unexplored areas in that region.

2.1.2 Gateway

Gateways are the most important component of Region € Gateway Maps. They represent
transitions between regions, and hence, they are the structuring element in the process of
building such maps. A number of researchers including Kortenkamp [62], Youngblood [122]
and Chown [23, 22, 24] have proposed gateways as first class objects in map representations:

11



CHAPTER 2. THE PRINCIPLES OF REGION & GATEWAY MAPS

“In buildings these are typically doorways... Therefore a gateway occurs where there is at
least a partial visual separation between two neighboring areas and the gateway itself is a
visual opening to a previously obscured area. At such a place one has the option of entering
the new area or staying in the previous area.”, Chown et. al. [22, page 32].

“... they provide a natural way to divide an environment up into smaller, more manage-
able, pieces. Gateways can be thought of as occurring at the transition between regions.
Eventually gateways can be used to organize these regions in a more abstract, hierarchical
structure...”, Chown [23, page 10].

The main problem is to detect gateways based on sensor data, i.e. to decide whether some
gateway is present or not. But it is also very important that gateways can be recognized,
when they are observed again, and that there exists a method to determine whether or
not a gateway has been traversed. To summarize, gateways form perceptually recognizable
places in the environment that often open new views that could not be observed before
traversal.

o U ®To —'ﬁ.—
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Figure 2.1: Examples for gateways: Right/Left-Turn (1,2), X-Crossing (3), LeftT- and
T-Junction (4,5), Narrow Passage (6), Right /Left Opening (7,8), Combination of Gateways
(9); (e gateway point, o crossing point, < traversal direction, ... region border)

In indoor environments, several types of gateways can be distinguished, e.g. X-Crossings,
LT/T/RT-Junctions and L/R-Turns in hallways, Narrow Passages like doors and changes
from a rather narrow hallway into an open room, e.g. a lobby. The different types of
gateways are depicted in Figure 2.1. Gateways are specified by a class label, some metric
description, adjacent regions and characteristic properties, such as gateway points, cross-
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ing points and traversal directions. The latter two are used to detect when a gateway is
entered and left. Gateway points are generated from the observations taken by laser range
and vision sensors. They support recognition and tracking of gateways. In Chapter 4
we will present approaches for the detection of different gateway classes in structured in-
door environments, and Chapter 5 shows their application in our mapping and navigation
system.

2.1.3 Region & Gateway Graph

The purpose of the Region €& Gateway Graph (RG Graph) is to provide a compact graph
representation for an RG Map that allows for fast, adaptive and intelligent path planning
on the level of regions and gateways. Strictly speaking, the RG Map itself already presents
a graph, where nodes refer to regions and edges to gateways or the other way around. For
two reasons these interpretations are not very useful for graph based path planning. First,
there could be more than one direct connection between two nodes, which would complicate
the search. For example, two regions could be connected by more than one gateway, e.g.
a large room and a hallway that share two doors. Second, if a gateway or a region refers
to a node, it would be difficult to assign costs to it, and consider them in the planning
algorithm. But we certainly want to incorporate costs for gateway or region traversal into
path planning. Based on the definition of gateways, in particular the property we call
crossing points, we can define a very suitable graph representation, i.e. the RG Graph.
Each node refers to a crossing point, and is annotated with the identification number (ID)
of the gateway and region that the crossing point belongs to. As a consequence, each
edge in the graph describes the costs between two crossing points, which refers to either a
gateway or a region traversal. Furthermore, it can be easily determined whether an edge
presents a route through a region, i.e. both nodes have the same region id, or through a
gateway, where both nodes have the same gateway id. Figure 2.2 shows an example of an
RG Graph.

Since crossing points are generated during gateway detection and stored in the RG Map, the
proposed graph representation can be easily obtained. To build the graph, an arbitrarily
chosen crossing point presents the first node in the graph. Adjacent crossing points are
then iteratively added. If a new region is added, we only need to add the respective node
to the graph representation. As a result, each node in the RG Graph has only one or no
connection to any other node in the graph. And each edge describes a meaningful route
either through a region or a gateway. In order to apply the A* search algorithm to the
RG Graph, we need to define a cost heuristic. Because the coordinate transformations
between regions are stored in the gateway objects, it is easy to transform all crossing
points into a global frame of reference while adding them to the graph. Thus, our initial
heuristic uses the FEuclidean distance between crossing points. When moving through a
region, these costs can be adapted, e.g. by estimating the real distances and accounting
for the time needed. For gateways, one could observe how often it was traversable, e.g.
the door was open, and use this information to adapt the costs and thus bias the path
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Figure 2.2: Region & Gateway Graph: red lines depict edges, end points refer to crossing
points annotated with region and gateway ID.

planning. We will come back to that point in the context of the path planning module
presented in Chapter 5.4.

2.2 The Process of Region & Gateway Mapping

Having introduced Regions, Gateways and the general concepts of RG Maps, this section de-
scribes how the mapping process works and how it is integrated within a navigation system.
A very general formalization of the Region & Gateway Mapping task is: Given methods
to robustly/reliably detect and recognize gateways, algorithms for data interpretation by
means of metrical mapping and object recognition, and methods to robustly /reliably recog-
nize regions, compute the environment representation that best explains the observations.
For the mapping approach we are going to present, this formalization can be subdivided
into three tasks as illustrated in Figure 2.3. This is the formal basis of the implemented
mapping and navigation system, we will present in Chapter 5 and 6.

Region & Gateway Mapping

1. Generate a topology based on the observation of gateways

2. Calculate a description for each region utilizing all
observations/measurements collected within that region

3. Calculate a description for each gateway utilizing all
observations/measurements collected within and around that gateway

Figure 2.3: Simple overview of the process of RG Mapping
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The general description of RG mapping poses several questions. How can we detect gate-
ways based on laser range data and 3D features from stereo vision? How must the path
planning and localization be adapted to work for those structured maps? The reconstruc-
tion of objects from laser and image data is described in the next chapter. Chapter 4
presents solutions to the gateway detection problem, and Chapter 5 discusses the overall
navigation system, including localization and path planning. For now we assume that
modules, which handle those problems are available.

d .
Laser Seans a(‘;“-)ecxs Gateway Detection
\ar
1ang®
3p Re 1

Sensor Da.ta Aligned Laser Scans and
Interpretatlon 3D Rectangular Objects

> Region & Gateway Mapping Kernel
List of Regions, List of Gateways, RG Graph

Collision Avoidance / \
and Low-Level Control

of Robot Dynamics
< Path Planning D Localization

| ||

Human-Machine Interaction & High-Level Planning

Figure 2.4: Overview of the Region & Gateway Mapping system

That leaves the question of how the structuring process works, and how the modules
interact? Figure 2.4 gives a schematic overview of the Region & Gateway Mapping system.
The central mapping process runs in the Region & Gateway Mapping kernel (RGM Kernel).
The task can be formalized as follows. Given a set of aligned laser scans, object and gateway
hypotheses, consistently structure the environment representation and calculate compact
descriptions for each region and gateway. This problem can be solved online as long as
gateways can robustly be detected based on the present data, and data interpretation
(laser, vision) can be carried out in real-time. The mapping process can be divided into
the following steps. After entering a new region the RGM Kernel stacks all the incoming
data, gradually adding new scans to the current 2D line segment map and properly aligning
object hypotheses to that map. At this point the information of the current region is already
available to the Path Planning and Localization Modules, although it may be incomplete.
When the region is left, the Gateway Detection triggers the RGM Kernel that in turn
evaluates which scans and objects belong to the previous region. The respective data is
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then coherently interpreted so as to give the best description for that region. If the region
has not been visited before, it is added to the RG Map. Otherwise the former description
is updated based on the newly acquired data.

RG Maps and RG Mapping make several important technical contributions to existing
mapping techniques, in particular to Gutmann’s scan matching [44]. First, RG Mapping
infers compact yet accurate 2D line segment-based geometric descriptions. Because these
2D line maps describe areas as a small number of line segments they yield smaller search
spaces for generating object hypotheses and localization. Second, RG Maps capture topo-
logical structures that are typically found in indoor environments such as office buildings
and apartments. Third, RG Maps store mission relevant objects in the environment. As
a result, the complexity of path planning and localization is significantly reduced, which
will be discussed in detail in Chapter 5. Furthermore, RG Maps offer an intuitive repre-
sentation of indoor environments, which eases semantic annotation of regions and objects
by human-machine interaction, as well as high-level planning.

Table 2.1 on page 17 summarizes all features of regions and gateways. Whereas “in general”
refers to the more general description of features, “in particular” points out what has been
implemented already or is currently worked on in the context of our mapping and navigation
system.

2.3 Related Work on Map Building

The research of map building for mobile robots is commonly divided into approaches for
indoor and outdoor environments [28, 107]. In the following we will focus on indoor en-
vironments, because it is the scenario we have chosen to show the applicability of our
approach. Algorithms in this class of mapping problems differ in the degree they capture
structure, objects and accurate metrical description. In the literature they are referred to
as metrical, topological and hybrid approaches.

Metrical and topological mapping are somewhat contrary in their weaknesses and strengths.
The former provides rich metric description of the environment, but lacks structure. Such
representations often involve huge amounts of data to be maintained and considered, when
extending or utilizing the map, in particular for large-scale environments. Because the
data describes a global map, it is rather difficult to generate more compact descriptions
that can still be easily updated or extended in the event of new observations. On the other
hand, topological maps contain only distinctive places and a description of how the robot
can move from one to the next. The necessary amount of data depends on the choice of
such places, but is in general much smaller compared to metrical maps. The problem is to
resolve ambiguities between distinctive places, which is more often rather difficult, due to
the fact that there is no metric information available between those places. That means the
robot can only localize itself at distinctive places. Hybrid approaches intend to combine
the properties of both. They do so by extracting the topology of the generated metric map
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Region

Gateway

in general

in particular

in general

in particular

Metric 2D/3D data
for sensor based
localization

2D line segment map

2D /3D Object
hypotheses

2D /3D rectangles,
2D circle

Feature Vector for
recognition and

bounding rectangle,
2D freespace and its

classification 1st/2nd order
moments, main axes

Characteristic accuracy,

measures completeness

Connected Gateways

list of references to
adjacent gateways

Characteristic
features for detection,
recognition and
traversal observation

gateway points,
crossing points
plus traversal
directions

Class Label

X-Crossing,
L/R-Turn,
LT/T/RT-
Junction,
Narrow Passage,
(Wide/Narrow-
Transition)

Adjacent regions

list of references
to neighboring
regions

Metric 2D/3D data

not yet

List of Sub-Regions not yet supported

supported

Table 2.1: Summary of the Features for Regions and Gateways

by means of Voronoi graphs [109, 112]. Such a topological description allows for fast path
planning, but is not necessarily related to the structure, in the way a human would perceive
it. Table 2.2 gives a brief comparison of the three basic classes of mapping algorithms, with
respect to their characteristics described above. It is important to note that RG Maps do
not represent a class on its own, but technically belong to hybrid approaches. We mention
it explicitly because it differs from classical hybrid mapping in the way it handles objects
and environment structure. Although, topological and hybrid approaches capture some
structure of the environment, it strongly depends on the method for finding distinctive
places in order to be useful for human-machine interaction or high-level planning. We will
come back to that point in Subsection 2.3.2.

To each of the basic mapping classes for indoor environments belongs a huge number of
different approaches. For the sake of completeness we will briefly summarize the research
on metrical mapping in the next subsection. In Subsection 2.3.2 we will discuss approaches
that deal with environment structure, i.e. topological and hybrid mapping. In particular,
it will be discussed that RG Mapping is closely related to the Spatial Semantic Hierarchy
(SSH) by Kuipers and Byun [66, 69] and Yeap’s theory of Absolute Spatial Representations
(ASR) [121], but differs in some aspects.
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Properties/ represents | represents | accurate ) has applical')le
structure objects metrical implementations

Approach description for large scale
environments

Metrical Maps no no yes, globally yes

Topological Maps yes no only for no

distinctive
places
Classical Hybrid yes no yes yes
Maps
RG Maps yes yes yes yes
(hybrid approach)

Table 2.2: Summary of Mapping Approaches

2.3.1 Metric Maps

Most of the successful mapping approaches, e.g. [108, 14, 13, 110, 83, 46, 32, 44, 43|, mea-
sure the environment outline metrically by means of some sensor, e.g. sonar, laser range
or cameras. A global metrical map is built in an exploration phase, and afterwards the
robot navigates through the environment. It is assumed that the environment is more or
less static and that therefore measurements are similar when visiting known places. As
a consequence, such places can be recognized, i.e. the platform can autonomously and
continuously localize itself with respect to the given map. Few mapping approaches explic-
itly deal with dynamic environments, either by estimating and suppressing implausible,
unreliable measurements using the expectation-maximization (EM) algorithm [48] or by
modeling objects in 2D [7, 1]. Since they need to iterate over all obtained measurements to
generate a global map, they can not incrementally build and update maps while the robot
explores its environment. Also, it is not addressed how the information about objects is
integrated into a consistent and useful map representation. Other approaches estimate the
position and displacement of dynamic objects, i.e. perform object/people tracking [47],
and use this information in the mapping process.

There exist a great number of approaches for building detailed 3D environment models
using cameras or laser [84, 2, 123, 55, 74, 45, 99]. In [28] Kak gives a recent and compre-
hensive survey of vision-based navigation and map building for mobile robots. It shows
that, based on appropriate 3D models, mobile robots can perform localization solely based
on vision [63]. Position tracking without prior knowledge using cameras [65] will soon be
an adequate alternative to laser based approaches. Several researchers build terrain maps
from stereo vision [51, 53, 72, 57], which we believe will play a key role in mapping of
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unstructured outdoor environments. Nevertheless, to the best of our knowledge, almost
all practical mapping and navigation systems to date that autonomously map large and
cyclic indoor environments and robustly navigate through them, rely on two-dimensional
representations based on laser or sonar sensors.

Methods for metrical mapping can be roughly characterized by the representation they
use [20, 34, 73, 76|, and either they work incrementally [42, 44, 83, 46] or globally [76].
According to Thrun, virtually all algorithms for metrical mapping are based on probabilistic
methods. He gives an extensive and comprehensive survey in [107], along with a discussion
of their differences, weaknesses and strengths. Of particular interest are the algorithms that
map and localize concurrently, because they enable mapping and navigation systems that
can perform robust life-long learning. They are referred to as simultaneous localization and
mapping (SLAM) or concurrent mapping and localization (CML), and to date a number of
solutions exist [83, 46, 32, 44, 29, 26, 30, 19, 41, 111].

Region & Gateway Mapping relies in its core on a fast, robust and accurate SLAM algo-
rithm. It is important to note that literally any incremental SLAM algorithm could be
utilized within the RG Mapping framework. Since occupancy grid maps [85, 34| present
a discretization of the environment, they are not well suited for generating compact yet
accurate geometric descriptions. Nevertheless, they could be used as such without fur-
ther processing or compression. Instead, we decided to use an approach that provides the
raw sensor readings, after incremental pose estimation. We found Gutmann’s solution to
SLAM [42, 44] to be fast, considerably robust and accurate, and easy to integrate. A
thorough comparison of SLAM approaches and a discussion of its foundations is beyond
the scope of this work, because RG Mapping works on top of incremental SLAM, rather
than presenting a contribution to SLAM on its own. RG Mapping aims at real-time in-
terpretation of the acquired sensor data in order to generate a structured representation
with explicit reference to 2D/3D objects. In this sense, RG Mapping can be seen as a
layer on top of classical metrical SLAM approaches, with the important difference that the
acquired data is automatically clustered. There is no global frame of reference. Thus, the
generation of compact metric representations is greatly simplified, because only small parts
of the data, namely for regions, must be considered. Consequently, inaccuracies or errors
in the geometric description of a region have only impact on the localization performance
within that region. Such errors are mainly caused by odometric measurements. Further-
more, once such deficiencies are detected, the robot simply gathers new data within the
respective region, i.e. explores, and builds a new region representation.

2.3.2 Topological and Hybrid Maps

Another class of mapping approaches captures the topology of the environment in terms
of distinctive places and connections between those places by means of motor commands,
paths or directions. The idea is based on cognitive maps [68], which are inspired by the
biological and psychological analogue, i.e. by animals and humans [77, 90, 100]. Classical
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approaches build a topology of places, where each place contains information that supports
its identification upon later traversal. That means, the robot can localize with respect to
those places. Such a map can be compactly represented by a graph, where the nodes refer
to places in the environment, and the edges describe how the platform can get from one
node to the next. The representation used for place recognition mainly depends on the
sensor data. Often it is based on sonar or laser, thus two-dimensional metric descriptions
are applied, as discussed in Subsection 2.3.1. Vision based systems mostly use feature
representations, i.e. vertical lines [61, 16] or points [64].

One of the major problems is to decide when to add a new place to the topology, or in other
words, how to characterize or classify such places. Chown and Kortenkamp [22] suggested
gateways to present such places in structured environments, that is, places that naturally
subdivide the environment, see also Subsection 2.1.2. In '93 Kortenkamp presented an
implementation of PLAN [62] that he called RPLAN, which used sonar to detect gateways
and visual cues to describe the gateways [61]. Impressive as it was fifteen years ago, the
system could not deal with strongly cluttered or dynamic environments. This is because it
uses a complex state automaton to detect openings and closings in the sonar readings, and
that automaton is based on the assumption that the robot follows a wall. Nevertheless, it
showed that topological maps based on the notion of gateways can be autonomously built
by a mobile robot and used for localization.

Kuipers has been one of the first to suggest topological maps for environment representation
in the context of mobile robots [68]. Later he and Byun [66, 69] formalized the topological
mapping problem with their theory of the Spatial Semantic Hierarchy (SSH) inspired by
the properties of human cognitive maps [77]. The SSH forms a hierarchy of representations,
which consist of several levels, both quantitative and qualitative. The sensor level abstracts
over the sensory system of the mobile robot and provides quantitative measurements,
e.g. from camera, laser range finder or sonar sensors. Control laws are generated in the
control level. They describe how the robot should move along a given path between two or
more nodes. The causal level abstracts from the control and the sensor level by building
a discrete model, which is described in terms of sensory views, actions, and the causal
relations among them. For example, wall-following or more general trajectory-following
define discrete actions, which are related to certain sensory views, whereas the continuous
control is hidden in the control level. Places, paths, regions and their topological relations
are maintained at the topological level. It presents a discrete model of the environment
that describes which place is linked to which other place, and the path between those
places. Finally, the metric level supports the generation of a global metric map within
a single frame of reference. Kuipers states that this level “may be useful but is seldom
essential” [69, page 198|.

For RG Maps, from our point of view, the sensor abstraction is directly linked into the
region processing, which implicates detailed and accurate metric descriptions for regions.
Under these circumstances, control laws for reaching a certain point within a region are
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generated on the fly and do not need to be stored, see also Section 5.5. Therefore, RG Maps
do not contain a control level. By the same rationale it does not seem to be necessary
to store causal descriptions for the robot’s movements. Instead, the robot chooses the
appropriate trajectories or control laws based on the current observations and the planned
path. Thereby, it operates within the frame of a region and considers only the respective
data. We agree that the global metric map is not needed for the robots performance
in that case, but possibly for the human machine interaction. As a consequence, global
metric maps are not explicitly generated and maintained within RG Maps, but they can
be extracted easily on demand.

RG Maps contain a very strong topological level, which supports features similar to those
suggested in the SSH. RG Maps represent the environment in terms of connected areas
and distinctive places between those areas, i.e. the gateways. But instead of storing paths
or actions that describe how to traverse the distance between two gateways, a compact
metric description is utilized, to determine the necessary actions while the robot moves.
Each of the entities of an RG Map contains topological attributes by means of connectivity
and reachability. This information can be directly retrieved from the references to adjacent
regions or gateways. Visibility of metric data is implicitly modeled, because regions and
gateways are encapsulated objects, in that they comprise only data, acquired in the context
of those objects. Furthermore, the RG Graph that can be easily extracted from an RG Map,
describes environment properties in terms of traversability, which allows for fast, adaptive
and reactive path planning.

The notion of regions as an important component of topological and cognitive maps has
also been addressed by Yeap [121] in terms of Absolute Spatial Representations (ASR). He
argues that it is important “to compute and recognize local environments” and “that identi-
fication of exits is the cornerstone to computing a description of the local space” [121, page
265 and 273]. Local environments are presented by ASRs, which are two-dimensional rep-
resentations based on line segments. They are built and extended gradually while the robot
moves around. Their interconnections follow from the order they have been observed. Exits
are defined by the shortest edge that covers an occluded area. In this context “occluded”
does not necessarily mean that the space behind that edge is not directly observable, but
the robot has to cross it in order to get there. Because this definition seems to be focused
on two-dimensional observations, it is unlikely to result in a meaningful representation in
highly cluttered regions. It is not clear, if Yeap’s Computational Theory of Cognitive Maps
can be easily extended to account for three-dimensional observations. Reviewing RG Maps
with respect to Yeap’s nomenclature suggests that gateways correspond to exits, and re-
gions to ASRs. Thus, the main ideas seem to be very similar, but RG Maps also differ in
at least two aspects. First, the separation of the environment is based on distinctive places
that are supposed to be meaningful with respect to the environment. Namely, RG Maps
implement the gateway paradigm as suggested by Chown [22; 24], which is more closely
related to distinctive places in the sense of the SSH than to the exits in Yeap’s theory.
Second, based on this structuring process all data acquired within a region is utilized to
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generate compact region descriptions, including three-dimensional features and/or objects.
While the role of regions with respect to RG Maps is comparable to the notion of ASRs,
they differ in the way they are built and interpreted.

Recently, Beeson et al. [4, 67, 3] have presented algorithms and experiments for the deter-
mination of distinctive places in the framework of the Spatial Semantic Hierarchy (SSH).
They define distinctiveness measures based on local metric maps by means of the extended
Voronoi graph. The approach seems very promising, and it would be interesting to investi-
gate how his method could be combined with the search for meaningful distinctive places
in RG Mapping, i.e. gateways as defined in Subsection 2.1.2, and how it performs. For
now, further investigations are beyond the scope of this work.

We mentioned in the introduction of this section that some approaches extract the topology
from metrical maps after a global metric map has been built [109]. Since these approaches
present a mixture of metrical and topological maps, they are referred to as hybrid mapping.
The main purpose of the topological description is to speed up path planning by means of
a fast graph search algorithm. Therefore, the graph is often not related to the structure
of the environment, as a human would perceive it, and can thus hardly be used for high-
level planning or human-machine interaction. Also, these approaches do not exploit an
important advantage of topological mapping, that is, the decreased influence of odometric
errors on the map building process. We have outlined before that in RG Maps odometric
errors have only impact within a region, i.e. locally, and can thus be compensated for more
easily. In the worst case, the respective region must be explored again, but not the whole
environment.

2.3.3 Discussion

Building environment representations for mobile autonomous systems is a very active and
challenging research field. A huge amount of approaches exist which build impressively
accurate two-dimensional global metric maps while the robot moves through the envi-
ronment (SLAM/CLM problem). But for complex tasks involving object manipulation,
human-machine interaction or representation/interpretation of dynamic environments they
hardly seem to be sufficient. Different theories tackle the problem of representation from
a cognitive point of view by means of topological mapping, and algorithms to account for
some of the before mentioned scenarios, e.g. people tracking in dynamic environments.
Only few of the topological approaches seem to be able to reliably map large scale en-
vironments and localize the robot over long periods of time and traveled distance. As
a consequence, there have been several suggestions to close the gap between those two
main classes of mapping approaches, and the work presented here falls into this category.
We combine the gateway paradigm, the notion of local spatial representations, topological
structure, objects and metric representation in a single framework that we call Region &
Gateway Mapping.
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Chapter 3

Acquiring Models of Task-Relevant
2D /3D Objects

In the last chapter, Region & Gateway Maps have been introduced as a novel representation
for structured indoor environments. It has been pointed out that the region description
does not only comprise metric information from the laser scans (2D line segment map), but
also explicit hypotheses of task-relevant 2D /3D objects. In this context task-relevant means
that the 2D objects give hints for possible 3D objects, so they support the map building
process. But 2D/3D objects can also be used for feature based localization. Furthermore,
those objects can be referred to by a human operator, e.g. a door or a desk.

For a better explanation let us consider the following example. The outline of a desk that
can be observed from all sides by a laser range finder is found to be a rectangle in 2D. Then
the mapping process segments this object and adds it to the region description. Later on
a human operator gives the robot the task to pick up a book from Frank’s desk, which is
the object the robot just added to the map. But at this point the robot has no name for
the 2D rectangle (or 3D cube), hence it asks and in turn annotates the respective object.
Next time the robot knows which object in the map refers to Frank’s desk. Thus, task-
relevant objects denote useful information for exploration behaviour, gateway detection
(doors), human-machine interaction and high level planning. Additionally, 2D objects give
an initialization for 3D reconstruction.

The first step in either laser or vision-based reconstruction is segmentation by means of
extracting lines from the sensor data. In fact, for RG Maps, the 2D data is already present
in form of a 2D line segment map. For image-based reconstruction, we need to segment
lines in the image, which is described briefly in Section 3.3.1. The next step is to group
those lines to form either 2D rectangles (in case of the laser data) or 2D quadrangles
(in case of image data). The 2D grouping problem can be solved in a similar fashion
for both cases. In Section 3.1 we propose an algorithm which is considerably robust and
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fast, and gives a plausible set of rectangle/quadrangle hypotheses. As a result we obtain
2D rectangular objects from 2D line segment maps (section 3.2), and 2D quadrangles
(hypotheses for 3D rectangles) from images. The latter are used for reconstruction of
rectangular 3D objects, which is described in detail in Section 3.3. The chapter concludes
with a discussion and summary.

3.1 2D Line Grouping to Quadrangular Objects

In this section we present an algorithm for grouping 2D line segments with respect to
quadrangle hypotheses. The most straightforward approach would be to iterate over all
combinations of four lines (out of all N given lines), hence considering (]Z ) configurations.
It is clear that this implies a very high computational cost. The approach can be subdivided
by first considering only two lines. Certain constraints for these lines must be defined and
fulfilled. On the next level the third line is considered for valid two line configurations and
so on. Thus, the search space is decreased in each step, which results in a faster generation
of hypotheses. Defining these constraints for two, three and four line configurations is a
difficult task, and chances are high that some valid quadrangle hypotheses would not be
considered. Also, the rate of false positives can be quite high, when at the same time the
rules are supposed to be rather general in order not to miss hypotheses.

Figure 3.1: Examples for none-restrictive 2D line grouping of line segments.

For these reasons and to further speed up the grouping process, we suggest a two stage
approach. In the first step all two line configurations are considered, i.e. (J;r ), whereas
the constraints are fairly simple, i.e. angle and distance. In the second step, we consider
all combinations of those “corners”. We distinguish the restrictive (for rectangles in 2D)
and the non-restrictive case (for quadrangles in images). That means for 2D rectangles we
assume all pairs of line segments (here (1,2), (2,3), (3,4), (4,1)) to be considerably close,
i.e. distance < DNp,,,. In images it often happens that parts of lines are missing, in
particular the lower edge of a door when it is open. Nevertheless, this edge can be “found”
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1. For all pairs of line segments [; and [;:

o i < man{ angle(l;, ;) } < ez AND  distance(l;,1;) < DNpay
= set of valid pairs Ip;;

2. For all pairs of pairs of line segments Ip;;, [py:
Assuming the first pair Ip;; refers to the first and second line segment, and Ipy
refers to the third and fourth, there are only two possible valid configuration -
quad(l;,1;, 1, ;) and quad(l;, 1,1, lk)

e Calculate distances d,, for (1, 1), (l;, ), (1, k), (L, 1)

e Compare those distances to DN,z
= bk, bi, bji, bj;, where b,,,,, can be either true or false,
depending on whether the condition (d,,, < DNpq.) is fulfilled or not

e Invalid configurations:
( bir =true AND bj, = true ); ( by = true AND bj = true );
( by, =true AND b; = true ); ( bj, = true AND b = true );
( by, = false AND b, = false AND b; = false AND b;; = false)

e Valid configurations:
A) Non-restrictive case:
— [, is direct neighbour of [}, and/or [; is direct neighbour of [,
( bix =true OR bj = true )
AND ( amin < min{ angle(l;, 1) } < Qnaz )
AND ( aypin < min{ angle(l;, ;) } < maz )
AND ( distance(l;,l;) > DOy )
AND ( distance(l;,ly) > DOpn )
— [, is direct neighbour of [; and/or [; is direct neighbour of I,
( by =true OR by, = true )
AND ( amin < min{ angle(l;, 1)) } < Qmaz )
AND ( apmin < min{ angle(l;, 1) } < Qs )
AND ( distance(l;, 1) > DO,in )
AND ( distance(l;,l;) > DOy, )
B) Restrictive case:
Similar to the non-restrictive case, but:
Replace OR by AND in the first condition,
i.e. if [; is direct neighbour of [, than [; must be direct neighbour
of {; in terms of the distance criterion

Figure 3.2: Grouping of 2D line segments to 2D quadrangles
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by extending the wall-floor transition if it is detectable. That means for images, we want to
consider configurations as depicted in Figure 3.1. Only four parameters must be specified
for this algorithm, and they have a clear geometric motivation:

® (pin, Omaz - Minimum/maximum angle between two neighbouring line segments
e DN,,.. - maximum distance between two neighbouring line segments

e DO,,;, - minimum distance between opposite line segments

The function min{ angle(l;,l;) } returns the smaller of the two intersection angles be-
tween the lines defined by [; and [;. The smallest distance between two line segments
(distance(l;,1;)) is zero if a real intersection exists. Otherwise it is the minimum of all
distances of the end points and virtual intersections of the line segments with respect to
each other or each others end points. The algorithm is summarized in Figure 3.2.

The next sections shows how the presented 2D line grouping algorithm can be used to
generate 2D rectangular objects from 2D line segment maps. In Section 3.3.1 the same al-

gorithm is applied to obtain 2D quadrangle hypotheses for the reconstruction of rectangular
3D objects.

3.1.1 Merging 2D Line Segments

We have seen that the presented 2D line grouping algorithm scales strongly with the
overall number of line segments N, and of course with the number of valid quadrangles
in the given array of line segments. By merging the line segments beforehand, we can
decrease the number of line segments to be considered, and hence speed up the grouping
process. We will briefly outline how this merging of line segments is performed. The goal
is to combine one or more line segments into a larger line segment, if and only if:

e The line segments lie approximately on the same line (angle and distance).

e The line segments overlap or the smallest distance
between their endpoints is below a certain threshold.

In the first step the 2D line segment array is sorted according to the angle to the x-axis,
whereas the angle itself is only calculated once per line segment. Because of the sorting,
we do not compare each line with all others, but instead operate in a window (down- and
upwards in the array) around the current line segment given by a maximum deviation of
the angle. This way the algorithm runs approximately in O(N), where N is the number of
line segments. If the angle between two line segments is smaller than a threshold a4, We
consider the distance Dy, as follows. The endpoints of each line segment are orthogonally
projected onto the other line segment, and the distance d; of an endpoint P; to its projection
P! is computed. The distance Dy, between two line segments is then given by the averaged
sum over those four distances, see Figure 3.3.
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P4 (x4, y4)
P1 (x1,y1) 'y

Figure 3.3: Merging of two line segments

The line segments are not considered further if D; > D7**. Otherwise, the minimum
distance Dgy,, between the endpoints along the common line is calculated. The lines are
merged if they do either overlap or Dy, is below a threshold Diii*. Thereby the new
line segment is defined by the endpoints of the given line segments, which have the largest
distance. Altogether, three parameters have to be specified for the presented merging

algorithm:
® (g - Maximum angle between two line segments
e D7 _ maximum (overall) distance between two line segments

e D" - maximum gap between two line segments,
that are considered to lie on the same line

The unit of the distance parameters is millimeter or pixel, depending on whether we con-
sider laser range or image data. An example is depicted in Figure 3.4.

Figure 3.4: Example for line merging: left: line segments generated by edge detection,
e.g. with Sobel or Canny edge detectors; right: Resulting line segments after merging
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3.2 (Generating Rectangular 2D Objects

From Chapter 2 we know that after a region has been fully explored one component of its
description is the 2D line segment map. To generate 2D object hypotheses, the algorithm
described in Section 3.1 is applied to this map. As a preprocessing step the given line
segments are merged according to Subsection 3.1.1. Since laser distance measurements are
very accurate, the parameters have been chosen very restrictive, i.e.:

Qmaz = 3 degree; D" =20 millimeter; Dy = 150 millimeter

For the 2D line grouping we applied the restrictive case and found the following parameters
to give good results: Qmin = 80 degree; Qe = 100 degree;

DN,or = 200 millimeter;  DO,,;, = 200 millimeter

As described before, DO,,;, mainly defines the minimum size of the objects to be con-
sidered, here the opposite sides should be at least 200 millimeters apart. By increasing
DNz, €.g. to 800 millimeters, more hypotheses are generated. When deleting all hy-
potheses that are contained in others or strongly overlap the resulting segmentation denotes
larger regions of interest, see Figure 3.5 (left).

Figure 3.5: RG Map and the odometry-corrected raw data

3.3 Reconstruction of Rectangular 3D Objects

Model based object recognition, localization and tracking has been a field of extensive
research for over thirty years. Many approaches are based on the object’s appearance in
the image by means of 2D shape [79, 116, 5], texture, e.g. using color histograms [105, 104]
or image signatures like the parametric eigenspace [10], just to name a few. Ray and Weiss
presumed a 3D wire frame model and used invariants to match the model with an edge
image [118]. Similar methods are used in the context of object tracking. It is commonly
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assumed that the model and an approximate initial position are given. Special effort has
been put into face detection because of its importance in human machine interaction as
well as in surveillance and rescue scenarios. There exist fast algorithms that initialize and
track faces in image sequences [117, 96, 89].

Other researchers use point features like the Harris corner detector [49] or SIFT by Lowe [75,
98] to learn object classes. They extract those features from images, cluster them and
decide which features are important for a given unknown class of objects. It is assumed
that in the set of training images the most or only stable image content is of the class to
be learned. In addition, the configuration of those point features is learned once it has
been decided which features are meaningful [36]. Although these approaches manage to
automatically detect objects of a pre-learned class in an image, it is difficult to incorporate
this information into a robot map. This is due to the fact that point features (and their
texture environment) change strongly with lighting conditions and view point, and little is
learned about the general outlines of those object classes.

In this section we present an algorithm for automatically acquiring models of arbitrary
and unknown rectangular 3D objects based on stereo vision. The algorithm makes little
assumptions on the object class in the first place, besides that the objects share some
general geometric outline, e.g. rectangular or cubic in 3D. In many indoor environments
such as office buildings, hospitals or museums, rectangular objects play key roles in building
structured maps, localization and human-machine interaction. Examples for such objects
and their representation in maps are depicted in Figure 3.6. In particular, in the next
chapter we use the rectangular shape of a door frame for the robust detection of doors. Also,
many other objects, such as pieces of furniture, e.g. closets, shelves etc., are composed of
rectangular objects. Once the object has been reconstructed, one could apply methods from
above to draw conclusions about its class, e.g. door, poster, table etc.. The main advantage
is that the description of objects in terms of geometric primitives, like 3D rectangles or
3D cubicles, is very compact and holds enough information for navigation.

Figure 3.6: left images: Many of the task-relevant objects in office environments have
rectangular shape, e.g. doors, monitors, shelfs etc.. right images: An illustrative view of
the visual recognition of rectangular objects in images and how they are stored in maps.
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The acquisition of object models is performed as follows. First, object hypotheses, i.e. quad-
rangles in R? that may be projections of rectangular objects in R3, are extracted from a
single image. Then, the plane normal ny is calculated based on projective geometry. Given
a depth measurement for at least one corner point, all other corner points of the rectangu-
lar object can be reconstructed in R?® by ray-plane-intersection. This yields the description
of an object in the camera coordinate system (CCS). Finally, region-based (or global) reg-
istration, e.g. scan matching based on laser range data [44], is applied to transform those
object representations into a region based (or global) coordinate frame.

In the ideal case, the presented algorithm provides perfect reconstruction. In this case
“ideal” means that no spatial discretization by the sensor and exact depth measurements for
single points are assumed. Both are obviously not the case in a real world application, but
practical experiments have shown that the approach is robust against such error sources,
i.e. discretization or quantization, and erroneous measurements. Furthermore, most false
hypotheses are automatically rejected in the step of ray-plane intersection.

Our method advances the state of the art in object acquisition and map building in the
following ways. It uses methods from stereo image processing and projective geometry to
detect 3D rectangular objects and autonomously acquire 3D models for them. Rectangular
and cubic objects, which are composed of rectangles, are probably the single most impor-
tant object classes in many indoor environments. The method is shown to be impressively
accurate and to work for a wide range of distances and viewing angles.

The remainder of this section is organized as follows. Subsection 3.3.1 gives a short de-
scription of how we generate quadrangle hypotheses from the images. The method for es-
timating the plane normal of the 3D rectangle and the calculation of the 3D corner points
is described in Subsections 3.3.2 and 3.3.3, respectively. Finally, we evaluate the presented
algorithm (Subsections 3.3.4) and show how the generated objects can be integrated into
a global or region-based metric map (Subsections 3.3.5).

3.3.1 Generating Object Hypotheses in the Image Plane

Pixels in the image that represent edges are detected by an edge filter, e.g. Sobel, Canny [18],
Deriche [27] etc.. The pixels are then concatenated to line segments. The resulting set of
line segments is compressed applying the merging algorithm described in Subsection 3.1.1.
Thereby, we have choosen the following parameters:
Qmaz = 1 degree; D7 =2 pizel;  Dgii® = 70 pixel

Additionally, small single line segments (< L,,q.) are rejected. Based on this set of M line
segments, hypotheses are generated by grouping according to Section 3.1. For images, we
use the non-restrictive case with the following parameters:

Qmin = 20 degree;  Qunqe = 160 degree;

DN,por = 25 pizel; DO, = 15 pixel
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For two reasons, the line merging is reversed after grouping:

1. Merging as presented in Section 3.1 introduces
small inaccuracies in the measured line segments.

2. Measurements from images are already erroneous,
due to the discretization in the sensor.

In order to achieve the best accuracy in the reconstruction, it should be based on the real
image measurements. Therefore, after grouping, several hypotheses are extracted from one
according to the line segments that originally contributed to a merged line segment. Some
of which can be immediately disregarded by topology /plausibility checks. As a result we
obtain sets of four line segments, which describe the quadrangle hypotheses.

Figure 3.7: Examples for quadrangular object hypotheses in the image plane

3.3.2 Estimating the Plane Normal

Assuming a rectangular object, which lies in the plane II, we estimate the plane normal ny
by means of projective geometry. In the projective space P", points P¥ and lines L are
specified in homogeneous coordinates (of dimension n + 1), in particular for PY, LY ¢ P2

PP = (p1,p2,p3) and LY = (ly,l,13)

R 2 __ _ Py _ (p1 p2
where P™ e R* = (z,y) = f(P7) = (&, B2)
The cross product of two points in P? defines the line in P?, which connects those two
points. And similarly, the cross product of two lines in P? defines the intersection point of
those two lines in P2. Considering two lines which are parallel in R? with their projection
on the image plane being LY and LY. The intersection of LY and LI is called vanishing
point PF.

PP =LV x LY (3.1)
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Taking all possible sets of parallel lines in R3, which lie in the same plane (including
rotation, translation and scaling within the plane), results in a set of vanishing points
in P2, which lie all on the same line in P2. This is the vanishing line LY. For each plane
in R? (and its parallels), there exists exactly one vanishing line in P2, and the corresponding
relationship can be utilized to calculate the plane normal in R? (see equation 3.2). For
more detail on projective geometry and the point-line-dualism in P? refer to the well-
written book by Hartley and Zissermann [50].

Given a calibrated camera with camera matrix C, the plane normal ny in R? is calculated
from the vanishing line by:

np=C".LP (3.2)

The camera parameters are determined in advance by calibration procedures. Hence, radial
distortion can be removed from the images. We assume the principal point (C,, Cy) to lie in
the center of the camera coordinate system (CCS). That means, it is necessary, to perform a
translation by (C,, C,) on the point features extracted from the image, prior to calculating
the plane normal. The following camera matrix C' results from those considerations and is
used to determine the plane normal:

L 0.0 00

S

c =100 £ 00

S

0.0 00 1.0

Where f denotes the focal length and (s, s,) refer to width and height of a pixel, respec-
tively. Note that (C,, C,) must also be known.

The algorithm can be summarized as follows:

1. Transforming the given lines from R? to P2.

A line LE is described by two points (PR, PF) € R%.

We transform the single points from R? into P?

and determine the line in P? with the cross product:

PP = (p17p27p3> = f(PR,CI,Oy) = (37 - Cza y_cya 1.0 )
LY = PP x PP

(2

2. Calculate the vanishing points Pl, Pl for the two sets of opposite lines with equa-
tion 3.1.

3. Calculate the vanishing line L7 = Pl x P

4. Calculate the plane normal with equation 3.2
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3.3.3 Ray-Plane Intersection

Considering a pinhole camera model, all rays intersect in the camera center P¢, which has
been chosen to be the origin of the CCS. The original point P; in R* and the projected
point P/ both lie on this ray and the following relation ship holds:

PCP, = PC+ )\;- PCP! ie(1.4)
P! = (2,9}, f) € R3, {is the focal length
and since P¢ = (0,0,0) ¢ R3:

Po=X\-P ie(l.4) (3.3)

(2

On the other hand, a vector v; can be constructed, which is orthogonal to np, i.e.:
ni - v =MNg V1, Ny vy, 0, cv, =0
And from there, vector vs can be determined according to:
vy = ng X Uy
Given one corner point P of the rectangular object in R? we can derive a plane equation
Pi=P7 +pul vy +pdovg de(1d), phu?eR (3.4)

All other 3D points can then be calculated by ray-plane intersection, i.e. solving the system
of linear equations (3.3, 3.4) for the points P; in R3, i.e. set equation 3.3 = 3.4 and solve
for \;. In fact it is not neccesary to compute u} and p?, except for performing tests on the
results for debugging purposes. Due to erroneous measurements for the corner points in 3D,
they must not exactly lie on the respective ray P¢P! from the camera center. Therefore,
all given 3D corner points are first orthogonally projected onto the ray PC—P[ This gives a
very efficient method to fuse the results for different corner points, which straight-forward
would be the average over the corner points of the reconstructed rectangles:

e Take one of the given corner points P;” to be the base point Pg].

e Using the ray-plane intersection by means of equations 3.3 and 3.4
to calculate Pg; based on another given corner point P (i # 1).

base

and calculate the other corner points P (i = 2,3,4) from P2, (= Pf")

e Average over the different corner points for P{": P2 = % ZZN:1 Pg. 1<N <5

Note, the points P® (i = 1..4) ¢ R? from the image must first be transformed into the

(2

CCS. Thereby, the z-coordinate is the focal length.

It is also possible to choose an arbitrary distance for one corner point and determine
all 3D points by means of equation 3.3 and 3.4. If the considered 2D quadrangle is in
fact a projection of a 3D rectangle, the reconstruction is correct up to a scaling factor.
That means, in general it is possible to verify or reject the hypothesis without any depth
measurements.

33



CHAPTER 3. ACQUIRING MODELS OF TASK-RELEVANT 2D/3D OBJECTS

3.3.4 Evaluation

The presented reconstruction algorithm is exact, if we neglect discretization in the image
sensor and inaccuracies of depth measurements. That means, given a projected 3D rect-
angle, i.e. a quadrangle in 2D, the plane normal can be exactly calculated. Given the
ray-plane intersection, the 3D rectangle can be determined up to scaling and translation
along the optical axis. Both factors are directly correlated. Adding the 3D coordinates of
one corner point, defines the rectangular object uniquely.

In this subsection, we will empirically evaluate the accuracy and robustness of the model
acquisition of rectangular objects from stereo. We have stated in the introduction of this
section that for non-discrete sensors with accurate 3D measurements, our method is exact.
In this section we will vary the discretization resolution and apply the reconstruction
method to images captured by our B21 robot in order to evaluate the method under
realistic conditions and in real settings.

To do so, we will first evaluate the influence of pixel discretization on reconstruction ro-
bustness and accuracy based on simulation (section 3.3.4.1). The use of simulation enables
us to make more controlled experiments, in which we can vary the discretization resolution
of non-discrete image sensors (which cannot be done with the real imaging devices) and
access ground truth data easily. We will then assess the impact of inaccuracies in 3D mea-
surements based on results that are obtained in experiments with our B21 robot (3.3.4.2).

3.3.4.1 Influence of spatial discretization by the image sensor

The experimental setting for assessing the impact of discretization in the image sensor on
the reconstruction results is as follows. We first generate a virtual image sensor for the
specified resolution of the image sensor discretization. We then systematically generate sets
of rectangular objects in 3D space, project them into 2D space in order to produce the input
data for our virtual sensor. Our 3D reconstruction method is then applied to the output
of the virtual sensor and then compared to the real 3D position of the rectangular object.
We classify the outcome into three categories: first, the reconstruction failed; second, the
reconstruction succeeded but was inaccurate; and third, the reconstruction was accurate.

To give an intuition about which 3D poses can be accurately reconstructed and which ones
not, we have visualized both sets in Figure 3.8. In this particular experiment, we have
placed a 3D rectangle at z = 1 meter and the camera at z = - 3 meter. Then the rectangle
was rotated stepwise in 3D by 36 degree around the z-, x- and y-axis, which gives us a
total of 1000 3D poses of the object. The parameters of the virtual camera are set to
766580 pixels resolution, sx~sy= 8.3 - 107 meter, C,=391.685, C,=294.079 and focal
length of 0.00369 meter, which are the estimated parameters of the cameras on the robot.
The accuracy is defined as the length of the error vector between the reconstructed and
the original 3D point.
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Figure 3.8: Reconstructible (left) and non-reconstructible (right) projections due to spatial
discretization in the image sensor

Our results show that despite the inaccuracies caused by discretization, the algorithm still
gives very good result. From some projections reconstruction is not possible. But those
cases can clearly be classified, as can be seen later. Figure 3.8 (left) shows the set of
projections that can accurately be reconstructed. These are 968 of the 1000 poses that
are reconstructed with an error of less than 10 centimeters. In the majority of cases the
error is substantially smaller. Figure 3.8 (right) shows the 32 projections which cannot
be reconstructed. It can be seen that these 2D quadrangles are characterized by very
large (more than 150 degree) and very small internal angles. We have also performed this
experiment with smaller angle step sizes in order not to miss any other special cases. But
there are none. In fact, the percentage of non-reconstructible projections is always about
eight percent of the whole considered set. This is due to the before mentioned special cases
of quadrangles. Furthermore, we found that projections with bad reconstruction results
are close to the configuration where the reconstruction failed.

To get additional evidence for these findings, we have learned rules for predicting whether
or not a reconstruction of a rectangular object will be accurate or at least possible. We
have trained a decision tree with the angles of 64000 projected objects and whether or
not the reconstruction has been successful. The angle « for each of these projections was
determined as follows: 4

a = digla =3

Where «; denote the internal angles of the quadrangle in R?. We take the deviation of the
internal angles to 90 degree as criterion, because we assume from the experiments above
that reconstruction problems result from very large and very small internal angles. The
learning algorithm came up with compact rules that predict when the reconstruction will
fail and when it will succeed. As a result, two rules have been learned:
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Rule 1:

sum_angle <= 284.865

-> class true [98.2)] (53796 used samples)
Rule 3:

sum_angle > 314.908

-> class false [79.2%] (3992 used samples)

For interpretation purposes we also consider the average deviation:  Qpean = §

Rule 1 says that if o is smaller than 284 degrees the prediction will succeed. This rule has
captured more than 80% of the cases and a prediction accuracy of 98%. That means, we
have a high probability that the reconstruction will succeed for a,,eqn < 71 degree, hence

for 19 degree < «; < 161 degree.

The second rule that predicts failure applies if « is larger than 314 degrees with an expected
prediction accuracy of about 80%. With the same rationale, we can conclude that «; >
168 degree and a; < 12 degree causes critical cases. We conducted the same experiment
for projections with good and bad reconstruction results, where bad refers to errors larger
then 5 centimeters. Thereby the cases where the reconstruction would fail have been
neglected. In this case, more than two rules have been learned, but the conclusions are the
same. In a certain range of angle «;, we have a high probability that the reconstruction
error is smaller than 5 centimeters, and outside of this range the error increases. That
means, by limiting the internal angles for the quadrangle hypotheses to be considered, we
can not only guarantee with high probability that the reconstruction will succeed, but also
that the error does not exceed a certain upper bound.

We conclude from these experiments that the presented algorithm can robustly deal with
effects of pixel discretization, and rectangles can be very accurately reconstructed, as long
as the internal angles of the projection, i.e. the 2D-quadrangle, lie in a certain range
around 90 degree (26 degree < a; < 154 degree).

3.3.4.2 Influence of inaccurate 3D-measurements

We have studied the influence of errors in depth measurements with real world image data.
Depth measurements have been generated with the Small Vision System from SRI [59].
As stated above inaccuracies from 3D measurements can be evaluated by means of scaling
errors. We have chosen the width and height of the rectangular objects as the criterion for
quality measures. In all figures the depicted white quadrangles are backward projections of
the reconstructed 3D rectangles into the image. It can be seen that these back projections
fit very well to the image data. The question is, how well the reconstructed rectangle
describes the actual rectangular object.
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Very prominent rectangular objects in a variety of indoor environments are door frames.
All door frames depicted here (fig. 3.9) are 210 centimeter high and 101 centimeter wide.
Smaller 3D rectangles include for example posters or white boards (fig. 3.10, left) as well as
computer monitors (fig. 3.10, right) in office environments. The noisy depth measurements
are depicted on the right in all those figures. Table 3.1 summarizes the reconstruction
results for the presented examples.

Figure 3.10: White board in a hallway (left), Monitor in office environment (right)

experiment original size! | reconstructed size!
Door 1 210x101 207.2x104.3
Door 2, LeftFront 210x101 208.5x105.3
Door 2, RightFront 210x101 207.9x105.6
Door 2, RightBack 210x101 192.0x107.8
White board 21.4x30.2 21.1x30.9
Monitor 27.0x33.8 27.5x34.04

Table 3.1: Summary of reconstruction results.
! The values for original and reconstructed size denote height xwidth in centimeters.

It can be seen that the reconstruction for different scenarios and rectangular objects is very
accurate. This leads to the conclusion that the presented approach is very well suited for
automatic generation of representations for 3D rectangular objects in indoor environments.
The accuracy increases if more than one 3D corner point can be measured and is given to
the reconstruction algorithm.
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3.3.5 Integrating 3D Objects into a Common Frame of Reference

The reconstruction algorithm presented in this section generates 3D object hypotheses
which are described metrically with regard to the robot coordinate system. Since the
robot moves around in the environment, objects are reconstructed from different positions.
Thus, in order to determine a consistent region description, the 3D objects have to be
aligned with the 2D line segment map generated from the laser data, which corresponds to a
transformation into a common frame of reference, either global or region based. This is done
using the corrected odometry measurements generated by laser-based metric SLAM [44].
Given an object in robot coordinates the idea is to obtain a pair of poses, i.e. raw and
corrected odometry, that define a transformation between the two coordinate systems.
This transformation is commonly assumed to be locally linear and constant and can than
be applied to the given object.

Even though the incremental scan matching corrects the odometry readings this approach
turned out to be nontrivial because the mapping algorithm that was applied optimizes the
position for a chain of observations. That means for the current pose it converges after
several new poses and scans have been incorporated. The general problem is that in fact the
transformation between the raw and corrected odometry coordinate system is nonlinear and
not constant due to the arbitrary odometry error. Additionally, the odometry correction is
naturally performed in discrete steps. That means, scans are matched for discrete positions
having a certain difference in position and orientation. Given an observation from stereo
or laser and the respective odometry pose, we first search for the closest odometry pose
available from the scan mapping process. Defining “closest” in terms of Euclidean distance
might introduce arbitrary errors because the resulting pose might refer to an earlier visit
of the same place. Therefore the search is further specified by a scan ID. That is, each scan
has a unique ID. When objects are reconstructed from image data, this ID is retrieved and
stored with the objects.

To increase the accuracy of this transformation, laser scans could be integrated more often
within the scan matching process, i.e. at shorter distance or angle intervals. Obviously,
this leads to more data storage and slower matching performance. Another possibility is
to acquire a scan whenever an object has been reconstructed and to use this scan along
with scan matching to determine the correct transformation. We used both those ideas in
our experiments. In praxis, however, this is not suitable due to the mentioned drawbacks.
Here the transformation of objects and the fusion of observations must be delayed until,
and/or repeated when reliable pose estimates are available.

38



3.4. SUMMARY

3.4 Summary

In this chapter we first presented an algorithm that generates 2D quadrangle hypotheses
from a set of 2D line segments. We showed its use for finding objects of rectangular shape
in 2D line segment maps generated from laser range data. For vision based reconstruction
we applied the grouping algorithm to line segment sets obtained from image segmenta-
tion in order to find quadrangle hypotheses. These hypotheses present the input to a
new algorithm that automatically acquires models of arbitrary and unknown rectangular
3D objects. We showed that the resulting models are very accurate and that the presented
method is robust with respect to the discretization of the image sensor and erroneous depth
measurements. In addition, we can build predictive models for the accuracy and success
of applying the method to a given group of lines which can be used in autonomous explo-
ration. That means, if the robot detects that a particular reconstruction is not promising
it can infer a position from which the reconstruction of the hypothesized object is likely to
succeed.

The reconstruction results can be additionally verified by projecting the reconstructed
rectangle into the image of the second camera. Thereby, the observations (line segments)
of that camera are compared with the projected (reconstructed) 3D rectangle to either
reject or accept the hypotheses. Also, it can be expected that tracking those 3D object
hypotheses over time and merging the corresponding observation will lead to a further
increase of robustness and accuracy.

39






Chapter 4

Gateway Detection

From Chapter 2 we know, that gateways form perceptually recognizable, characteristic
transitions between two or more adjacent regions. They can be traversed in any direction
and are the only possibility to pass from one region into another. It is a key problem
of the presented mapping algorithm to detect and recognize gateways, when the robot
approaches or traverses them. This is not a drawback in itself, but a natural necessity for
the generation of structured maps. Nevertheless, it is a difficult task, and to date there
exist only few approaches which tackle it [62, 4, 3].

To illustrate the importance of gateway detection in the context of RG Mapping, lets con-
sider the following two scenarios:

Exploration. During exploration, a map is built and continuously updated by the map-
ping process. That means the Region & Gateway Map is automatically structured based
on the gateways detected in the sensor data. The actual class of the gateway is not impor-
tant in the first step, but the fact that some kind of gateway might be present is essential
for the structuring process. This is because it is more difficult to split a region than to
merge two.

Navigation. For navigation through explored areas, path planning and localization are
based upon the present region data. After gateway traversal, the system has to switch to
the new region data. If a gateway is not detected, the system may fail to perform this
context switch which in turn may cause the loss of global localization.

In this chapter we present and evaluate algorithms to detect and recognize two main
classes of gateways. The first comprises crossing gateways in Section 4.1, which refer to
hallway crossing and junctions like L/R-Turns and T-Junctions. The second deals with
Narrow Passages, in particular doors of different form, e.g. width, double doors etc., see
Section 4.2. Whereas crossing gateways are detected and classified solely based on laser
range data, doors are found using both laser and vision data.
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Figure 4.1: :Left: Classes of Gateways - Right/Left-Turn (1,2), X-Crossing (3),
LeftT/T/RightT-Junction (4,5), Narrow Passage (6), Right/Left Opening (7,8), Com-
bination of Gateways (9); (e gateway point, o crossing point, «— traversal direction, ...
region border); Right: Example environment - letters denote gateways, numbers denote
regions

4.1 Laser-Based Detection of Turns & Crossings

We will investigate the gateway recognition problem by first introducing wvirtual line mod-
els (VLMs) as an appropriate feature language for the detection and classification of cross-
ing gateways. It is described in detail how VLM hypotheses can be computed from laser
scan data. Next, we introduce different measures for VLMs constructed from laser scans
that enable us to assess the similarity of the perceived VLM hypotheses and the different
gateway classes. Based on these measurements we present different classification methods
that we empirically evaluate and compare, see Subsection 4.1.4.

The computational problem of recognizing and classifying crossing gateways can be for-
mulated as follows: Given a single scan or a sequence of scans provided by a laser range
finder and a set of gateway models, autonomously detect and classify crossing gateways.
We will solve the gateway recognition problem in a computational process that executes a
sequence of three steps:

1. Generating hypotheses for virtual line models (VLMs), Subsection 4.1.1

2. Determining weights according to general and specific gateway models,
Subsection 4.1.2

3. Using the generated observation vectors and sequences for classification,
Subsection 4.1.3
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4.1.1 Generating Hypotheses for Virtual Line Models (VLMs)

In order to represent gateway hypotheses we propose virtual line models (VLMs) as an
appropriate feature language. VLMs are based on the assumption that environments are
rectangular and hallways have approximately the same width. The VLM consists of a left,
right and front virtual line as well as a hidden virtual line, see Figure 4.2. To generate
VLM hypotheses, we first extract low-level features, i.e. virtual lines and depth singularities
from the line segment and point scan, respectively. In the next step, those virtual lines are
grouped to form hypotheses with respect to the VLM as depicted in Figure 4.2. To generate
estimates for the hidden line we use the depth singularities and prior knowledge about the
hallway width. An extension of this approach could take additional point features into
account, e.g. corners, and intersections.

4.1.1.1 Low-level Feature Extraction

In the first processing step the algorithm generates a line segment scan Ljg from the point
scan Lp by means of linear regression according to [42]. Additionally, depth singularities
are determined based on the point scan.

Virtual Lines. Line segments from L;g which lie approximately on the same line are
grouped and represented by that line, also referred to as virtual line, see Figure 4.2 (left
and middle).

Depth Singularities. This point feature is extracted from Lp and denotes discontinuities
in the distance measurements of a laser scan, see Figure 4.2 (right). The parameter Ad,,;,,
indicates the minimum distance difference of two consecutive distance measurements to
represent a depth singularity. P; € Lp is the point where the distance measurement d;
ends. P are the points at the depth singularities.
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: virtual virtual 7
: left line line
: virtual
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depth
© © C singularities

right
virtual
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Figure 4.2: Point scan of an X-Crossing (left); Virtual Line Model for Crossing Gateways,
i.e. X-Crossing, L/R-Turn, T-Junction (middle); Depth singularities in a laser scan (right)
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4.1.1.2 Virtual Line Grouping

Based on the virtual lines and depth singularities we generate hypotheses for VLMs, which
indicate that a crossing gateway of some kind may be present. To generate candidates for
the virtual left and right line, we search for parallels among the virtual lines, where the
robot is in between. Virtual front lines intersect a pair of parallels approximately in a right
angle and in front of the robot. Finally, we estimate the virtual hidden lines. Therefore, we
consider depth singularities that are close to the virtual left or right line. The hidden line
is constructed such that it is parallel to the virtual front line and intersects with the given
depth singularity. To deal with situations where no valid depth singularities are present in
the point scan, e.g. due to clutter, we add hypotheses where the estimation of the hidden
line is solely based on the environment assumptions. That means, the distance to the
virtual front line is given by the hallway width. This may lead to identical VLMs, which
are deleted before further processing. As a result, we obtain a set of annotated virtual
line quadruples, which represent hypotheses for VLMs. The annotation of the virtual lines
refers to the VLM in terms of virtual left, right, front and hidden line, see Figure 4.2
(middle). The gateway points are defined by the intersections of those virtual lines.

4.1.2 Evaluating the VLM Hypotheses

In the previous subsection we introduced the virtual line model (VLM) as a feature lan-
guage for the recognition of crossing gateways, and described how VLM hypotheses can
be generated from laser scans. Given such hypotheses and the raw sensor data, the task is
to assess the similarity of the perceived VLM and the different gateway classes. We pro-
pose the following two measures. The first reflects the general model quality with respect
to rectangularity and hallway width, the second accounts for the match with a specific
gateway class. As a result we obtain an observation vector for each VLM hypothesis.
Additionally, we track VLM hypotheses over consecutive measurements while the robot is
moving towards the gateway to generate observation sequences.

4.1.2.1 Measures with respect to the General Model

To quantify the similarity of the generated VLM hypotheses with a given VLM, we compute
measures, which scale with the deviation of certain properties from the model, namely the
deviation from the expected hallway width and rectangularity. Considering the deviation
for a distance measurement between two gateway points, small inaccuracies mainly arise
from imperfect measurements whereas inaccurate or false hypotheses occur due to clutter
(people, flower pots). The same holds for the inner angles of the convex quadrangle given
by the VLM hypotheses.
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Distance Measure. The expected hallway width d,, has been manually measured. De-
viations from this value are weighted according to:

7 _ A
Weistance = 1- dhw
_ 4 i
Wd =0.25- Zizl Wyistance

Whereas d; is the Fuclidean distance between two neighboring gateway points and W,
denotes the averaged distance weight.

Rectangularity Measure. The rectangularity criterion refers to the inner angles o
(1 = 1...4) of the convex quadrangle, given by the VLM. We define the rectangularity by

the deviation of the inner angles a; from 7.

Wy=1-5 30,0~ 3

s 2

Figure 4.3: Distance measurement (left) and rectangularity (right)

4.1.2.2 Measures with respect to a Specific Gateway Class

As we have seen in Subsection 4.1.1 the VLM is a general model that does not explicitly
account for specific classes of crossing gateways. In this section we introduce measures,
which support the discrimination between different gateways. Thereby, it is important to
ensure comparability of those measures.

Freespace Measure. Considering the VLM as depicted in Figure 4.2 (middle), we define
three pairs of gateway points, namely on the virtual left, right and front line. According to
those pairs of gateway points, we divide the sensor data into three sectors, Figure 4.4. Each
sector S; comprises Ng, measurements. Based on those definitions we propose the freespace
measure (FSM) as a quantity for the match of a hypothesis to the sensor data. In each of
the three sectors the sensor measurements should either be close to a given line (On Line
FSM) or should cross a given line (Over Line FSM). The gateway class determines which
of the two FSM variants applies to a certain sector. For example, considering an L-Turn
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the measurements in the front sector are expected to match the virtual front line (On Line
FSM). Whereas for an X-Crossing, measurements in the same sector are expected to cross
the virtual front line (OQuer Line FSM), see Figure 4.4.

On Line FSM. P, denotes a laser measurement from the point scan Lp and d(F;) is the
respective distance measurement. We compute a point P! on the considered virtual line
and its distance to the robot d(PP), whereas P; and P lie on the same ray from the robot.
Then we count all measurements for which the difference of d(F;) and d(P}!) lies between
a given lower and upper threshold. Finally, we normalize this on-line-count (C,;) with the
overall number of measurements in the sector:

S

WS _ Gy

on line Ng,

Over Line FSM. This measure only applies to the front sector. We construct a line [,
parallel to the virtual front line and set back by a given distance. Then we count all
measurements which intersect /,,,, and normalize the resulting over-line-count. Analogous
to the On Line FSM we get W see also Figure 4.4.

over line?

parallel moved
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Figure 4.4: From Left to Right: Freespace measure (FSM) for different cases - On Line
FSM (1,3), Over Line FSM (2), (e gateway point, — laser scan measurement, - - line for
free space evaluation); FSM configurations for X-Crossing (4) and L-Turn (5)

4.1.2.3 Generating Gateway Weights and Observation Sequences

Utilizing the proposed measurements, we define weights for each VLM hypothesis with
respect to a certain gateway class GW:

W(GW,VLM) = m - (Wy(VLM) + W, (VLM)) + 122 . 373 Wi, (GW)

Whereas f, and fg, denote weighting factors for the general and gateway specific mea-
surements, respectively. As a result we obtain an observation vector for each VLM hy-
pothesis, where the entries quantify the similarity of the hypothesis to a specific gateway
class. In most practical cases the mobile platform approaches the gateway area. Thus,
we observe the same VLM hypotheses from different positions, where the distance to the
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gateway is continuously decreasing. The VLM hypotheses tracking is based on the gate-
way points and Euclidean distances. If all gateway points of two VLM hypotheses have an
approximate match, they are considered to be identical. Based on this tracking, we obtain
sequences of observation vectors. A sequence starts when the hypothesis is first observed
and the distance falls below a threshold. It is finished or corrupted when it is either lost
or the robot enters the gateway.

4.1.3 Classification

In the previous sections we described a sensor model based on laser range data, which
provides observation sequences for gateways in hallway environments, i.e. X-Crossings,
T/LT/RT-Junctions and L/R-Turns. We added two special cases, namely Deadend and
Hallway, to counterbalance situations where an VLM hypothesis may be present, but does
not refer to any of the considered gateway classes. As a result we obtained sequences of
observation vectors, which are based on the same VLM hypothesis, and contain measure-
ments which have been obtained from different positions. In fact, we assume that the
mobile platform is steadily approaching the gateway area, hence the distance is continu-
ously decreasing. The start of the sequences is defined by the first appearance of a certain
VLM hypothesis and a maximum distance. The sequence is finished when the robot is
closer to that VLM hypotheses than a minimum distance. It is important to note that
there are no sequences for approaching a Hallway, since this is an explicit counterbalance
measurement. For Deadend however, VLM hypotheses can be generated, hence we obtain
observation sequences. The task at hand is to classify those sequences with regard to a
certain gateway class.

Several approaches have been investigated and will be outlined in the following subsec-
tions. First, we consider classification methods solely based on the observation vector
closest to the gateway area (subsection 4.1.3.1). We extend those classifiers to account
for the whole sequence by calculating the weighted average over all observation vectors in
a sequence (subsection 4.1.3.2). Finally, we show how Hidden Markov Models (HMMs)
can be applied to generate discrete probability distributions over the types of sequences
(subsection 4.1.3.3).

4.1.3.1 Single Observation based Classification

Observations close to a gateway imply a more complete coverage of the gateway area
by the sensors, hence they are in general the most informative. The first classification
method we present ignores the fact that observation sequences have been obtained and
considers only the observation vector closest to the gateway area. That means, the single
observation classifier (SOC) determines the gateway at hand by selecting the maximum
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weight in the observation vector. This approach demonstrates the discrimination power
of the freespace measurements and the resulting weights. It is, however, very sensitive to
sensor noise, occlusions and dynamic changes in the environment. As a matter of fact,
in dynamic environments, the last observation is not necessarily the best. For example,
when considering L/R-Turns, the robot might cut the corner and still observe the gateway.
Since the laser sensor does not fully cover the gateway, the classification of the generated
hypothesis is likely to fail, see Figure 4.5. Also, since the Hallway detector gives large
weights in particular for X-Crossings and LT/RT-Junctions, because there is open space
to the front, these weights had to be ignored. As a consequence the SOC makes no use
of this counterbalance class, i.e. if an observation vector is present the classifier always
decides for one of the gateway classes.
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Figure 4.5: Dynamic changes that decrease the number of observable features can introduce
arbitrary errors in the classification if only a single view is used.

The approach can be extended by considering special characteristics of the maximum, e.g.
distance to the second or third maximum. In this case heuristics would have to be found
and applied. We did not further investigate such extensions because we believe that it is
clear that the SOC is not sufficient for the given task, see also Subsection 4.1.4.

4.1.3.2 Averaged Sequence based Classification

In order to increase the robustness in case of clutter or ambiguities it seems necessary to
evaluate the whole observation sequence. A simple solution is the fusion of consecutive
measurements by calculating a weighted average over the observation sequence, where the
weights are inversely proportional to the distance. Afterwards, the maximum weight is
used to determine the gateway at hand, analogous to the SOC. Whereas the average se-
quence based classification (ASC) considers the complete observation sequence, it does not
fully exploit probabilistic properties of observations and temporal relations between them.
Additionally, choosing the weighting function is not an easy task, and finally, Hallway
measurements had to be ignored by the same rational as for the SOC.
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4.1.3.3 Classification based on Hidden Markov Models (HMMs)

A more promising approach to gateway classification is the use of Hidden Markov Models
(HMMs). They provide mechanisms to model temporal structures in sequences, by the
use of probabilistic observation and state transition models. A detailed description of the
theory can be found in [93]. In the next paragraphs we briefly outline the steps necessary
to use HMMs in the context of gateway detection based on the introduced sensor model.

Clustering the Data. Since our sensor model provides continuous measurements we use
HMMs with continuous outputs, i.e. a sensor model based on mixture of Gaussians. To
deal with the implicated complexity of such HMMs we explicitly cluster the data using the
k-means-algorithm [78, 33]. The clusters are represented by Gaussian distributions and
used to built the observation model (mean and covariance matrices), and to define the
structure of the HMM.

We expect the data to represent clusters for different distance intervals, because the cover-
age of the gateway area by the sensor differs for different positions. The start values for the
k-means algorithm are computed accordingly. Theoretically, these values could be chosen
arbitrarily, however, in the presented case, the clustering performs better and more robust
when they are drawn from the data. Therefore, the training data is first sorted according
to distance. The data refers to all observation vectors from all sequences with regard to a
certain gateway class. Then we slide a window over the data and calculate k mean vectors.
The size of the window is given by k, the number of observation vectors and a predefined
window overlap. The resulting mean vectors are fed into the k-means algorithm.

The distance assumption is verified by the fact that the mean vectors are only altered
slightly by the k-means clustering. To get a further intuition we labeled each observation
vector according to distance intervals: Iy, I, I3. A distance of zero meter refers to the
center of the gateway. That means the closest observations we get are half of the hallway
width, e.g. 1 meter for 2 meter hallways. After clustering, we sorted the clusters according
to the intervals, and counted how much of the prelabeled data has been assigned to which
cluster. In Table 4.1 it can be seen that all of the clusters contain a reasonable amount of
samples (over all sum), and that clusters are built according to distance intervals (max/min
distance). They contain either observations from disjunctive or slightly overlapping dis-
tance intervals or represent different distributions for approximately the same interval.
Those findings are very important for the choice of the HMM structure and initialization,
but they also allow for interpretation of the learned model.

Initializing the Hidden Markov Model. Based on the clustering and the knowledge of
the data, the initial observation model and thereby the structure of the HMM is generated
automatically. All clusters Cj that cover approximately the same distance interval are
assigned to the same HMM state .S;. More precisely, the covariance matrix and the mean
of each (), add a dimension to the observation model of S;. New states are added to the
HMM, for any new distance interval. Considering Table 4.1, we obtain an HMM with five
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cluster id 1 2 3 4 5 6 7 8
I, =Tm...4m 475 508 685 795 2 1 0 0
I, =4m..2m 0 0 0 16 277 252 1143 44
I3 =2m... 0 0 0 0 0 0 32 437

| overallsum | 475 [ 508 | 685 | 811 [ 279 [ 253 | 1175 | 481 |
mean distance | 6112 [ 5796.4 [ 5770.2 | 4455 | 3796.8 [ 3538.3 [ 2706.2 | 1755.5
max distance | 6872.2 | 6956.1 | 6976.3 | 4968.7 | 4009.4 | 4103.6 | 3591.7 | 2310.3
min distance | 4854.5 | 4960.8 | 4878 | 3954.8 | 3438.6 | 3037.8 | 1775.9 | 1427.9

Table 4.1: Clustering for T-Junction data, columns refer to different clusters, rows depict
cluster properties; all distance measurements in millimeter

states, where [C], Cy, Cs] present the first state, Cy the second, [Cs, Cg| the third, C7 and
Cg the fourth and fifth, respectively. The mixture matrix M,,;, is initialized uniformly,
the dimension is given by the number of states () and the maximum number of mixture
components M. The states are arranged to form a left-right HMM, and according to the
sequences, left refers to large and right to small distances. Although, in a left-right HMM
consequently all entries below the diagonal of the transition matrix 7" are zero, we initialized
the full matrix with 1/Q. The motivation was to verify that the EM algorithm for learning
the HMM parameters, would converge to a left-right HMM, when using the described
initialization and observation sequences. The same holds for the prior. We expect the
probability that a sequence starts in a certain state, to decrease from left to right. The
parameters of the HMM are denoted with A, according to [93]. Figure 4.6 shows a left-
right model, where the arrows denote the possible transitions from state .S; to S; with
probabilities p;;.
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Figure 4.6: Graph of Left-Right HMM

Learning and Evaluation of the Hidden Markov Model. We fix the observation
model obtained from clustering and use expectation-maximization (EM) learning to de-
termine appropriate values for T, M,,;, and the state prior, according to [93]. Since the
observation space given by our sensor model is filled very sparsely and the covariances of
the data are all considerably small, we encountered problems of overfitting. That means,
observation probabilities tend to zero and cause numerical instabilities. To anticipate those
problems, we add noise to the clustering data, to artificially spread the distributions.
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The task to find the best HMM is to optimize the learning with regard to the number of
clusters and the noise to be added. Too many clusters cause some clusters to not cover a
sufficient number of samples, and too few reduce the discrimination power. On the other
hand, too much noise reduces the discrimination power but increases the generality of the
model. None or little noise results in over-selective HMMs. By now we semiautomatically
search for an optimal solution. Figure 4.7 shows the graph of the HMM and its transition
matrix that were learned for the case presented in Table 4.1. As expected we obtained a
left-right model (no backward transitions), and most states are only connected with the
next state.
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Figure 4.7: Learned HMM for case presented in Table 4.1; Also given is the transition
matrix 7', presenting the respective transition probabilities p;;.

4.1.4 Experimental Results

In this section, we will empirically evaluate the proposed approaches. To acquire a sufficient
amount of data for different hallway environments we used a simulator (RHINO Navigation
Software [15]) which provides laser measurements, based on the sensor model of the real
SICK LMS200 laser range finder. Also, we annotated the maps, in order to automatically
label the recorded observation sequences. As a result we obtained about 200000 obser-
vation vectors for eight different environments, which adds up to approximately 20000
observation sequences (divided in training and test data). The environments differ in the
amount of clutter that is present, and the width of hallways (2, 2.5 and 3 meter). The
environment depicted in Figure 4.1 is referred to as 2m uncluttered. In Figure 4.8 the same
environment is depicted for the slightly and strongly cluttered case.

It can be seen from Tab. 4.2 that in some cases the recognition rate for the single observation
classifier is very high, but in particular for L/RTurn it is rather poor. This is due to the
fact that the last observation is not necessarily the best, e.g. when the robot is cutting the
edge in a left or right turn. The classifier “last but one” in Tab. 4.2 works like the SOC but
considers the observation before the last. It improves the classification for some classes, but
for others, like T-Junction, it slightly degrades. This implies that it is difficult to determine
which single observation should be used for SOC. Furthermore, the classification is slightly
worse when clutter is present, due to ambiguous measurements. For the averaged sequence
classifier (ASC) the classification is strongly dependent on the weighting function, the
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’ Gateway Class ‘ X-Crossing ‘ T-Junction ‘ LT-Junction ‘ RT-Junction ‘ L-Turn ‘ R-Turn ‘

2m uncluttered 581 390 200 198 99 106
ASC 86.8% 96.9% 98% 99.5% 14.1% | 41.5%
SOC - last obs 86% 100% 95.5% 97.5% 50.5% | 100%
SOC - last but one 86.8% 100% 99% 99.5% 100% 100%
2m cluttered 148 169 70 42 30 38
ASC 83.7% 39.6% 90% 61.9% 6.7% 2.6%
SOC - last obs 95.6% 93.5% 77.2% 57.2% 40% 94.7%
SOC - last but one 98.2% 90.5% 97.2% 59.5% 46.7% | 97.4%

Table 4.2: Classification results for the SOC (last observation, and last but one) and the
averaged sequence classifier (ASC); DeadFEnds have 100% recognition rate for all cases.

more we rely on the closer measurements the better. Whereas the classification results
are comparable to the SOC, we gain a little more robustness due to the averaging. The
classification results can be improved when the weights for Hallway/Deadend are ignored,
but this way it is difficult to evaluate ambiguous situations.

The EM learning converged to left-right HMMs with expected apriori probabilities for all
types of sequences and training data from one or more environments. When we train the
HMM for a single environment only, the classification rate is 100 percent for the respective
test data, which shows the validity of the HMM approach. Since it is difficult to determine
the optimal HMM for a certain gateway type and data from different environments, we did
not yet obtain an optimal set of HMMs to handle all classes with satisfying discrimination
power. But we give examples for pairwise classification in Tab. 4.3. The experiments
have been performed on the same test data used for the SOC/ASC evaluation. It can be
seen that the hallway width does not influence the discrimination power, but as for the
SOC/ASC, the recognition rate decreases in the presence of clutter. Besides the difficulty
of finding the optimal HMMs, the presented approach seems to be very promising in the
context of the automatic generation of structured robot maps. The advantage is that the
resulting HMM classifier provides probabilities for observation sequences with regard to the
different gateways. Thus, it is possible to globally fuse the results of different observation
sequences formally, using Bayes filter.

’ environment ‘ 2m uncluttered ‘ 2m cluttered ‘ 2.5m cluttered ‘ 3m uncluttered ‘
lturn /rturn 100/100% 100/100% 96.3/100% 100/100%
lturn /tcrossing 100/100% 100/93.5% 98.75/93.5% 100/100%
rturn/tcrossing 100/100% 100/92.9% 100/23% 100/100%
lturn/xcrossing 100/100% 100/100% 99.4/100% 100/100%

Table 4.3: HMM based classification; given data of two gateways to the respective HMMs
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Figure 4.8: Slightly cluttered (top) and strongly cluttered (bottom) hallway environments

4.2 Detecting Doors using Laser and Vision

In Chapter 3 it has been shown how 3D rectangular objects can be efficiently and ac-
curately reconstructed using stereo vision. In this section we are particularly interested
in door frames to extend a simple laser range based detector for Narrow Passages to a
robust method for the detection and recognition of doors. In Subsection 4.2.1 we present
the detection of Narrow Passages based on distance measurements and discuss its limits
with respect to door detection. The fusion of these detection results with observations of
appropriate 3D rectangles is described in detail in Subsection 4.2.2.
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4.2.1 Laser Based Detection of Narrow Passages

Figure 4.9 shows the raw laser readings as acquired by a laser range finder. In the middle
of the 2D point scan we can recognize an opening, which in this case is a door. The left
and right margin of the opening are marked with black circles. According to Chapter 2,
those marks are called gateway points. They define the pose of the gateway. The first step
is to detect those points or possible candidates within the 2D point scan:

1. Divide the field of view of the scanner into a left and right range. The middle is defined
by the viewing direction «,,, hence the left and right range by a,, — Aa < a < ay,
and «a,, < o < au, + Aa, respectively.

2. Find the closest distance measurement within the left and right range, and calculate
the distance D, for the respective 2D points Py and Pigne. anp is the enclosed
angle, see also Figure 4.9. Due to the construction, the 2D line segment given by
the two closest points has an intersection P;, with the line of sight of the scanner.
The pose of the scanner is (Pse, ), and Dyp = ||PisPsc||3 is the distance of the
scanner/robot to the narrow passage.

<— left range ,' right range —»

; nearest left obstacle ..‘ nearest right obstacle

x o
d Pleft\ * Py ' Dy, /Prlght
0 00 00000000 00 Q—‘—» 000 00000000 000
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RN

(PSC3 am)

Figure 4.9: left: Narrow passage in a laser scan, right: The model used to generate
hypotheses for narrow passages from laser data.

The second step is to evaluate the calculated features with respect to the robot’s ability to
traverse narrow passages. That means, the robot can only move through narrow openings
if they are larger than a minimum distance Dj*™. A rough estimate for Dj"" /2 is given
by the sum of the robot’s radius plus a security distance. The actual value is determined
by the collision avoidance that is applied.

1. Dyp < D%, since chances for ambiguities are high, the observation is irrelevant if
the scanner/robot is further away than a given distance.

2. D < Dy, i.e. the width of the opening should be large enough to allow the robot
to safely traverse it.
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Further considerations analyze the measurements between Py and Pgns to assess if the
given hypothesis offers new views after traversal. Basically, this idea is also used in frontier
based exploration [120]. The question is, if there are hidden frontiers or visible openings
of reasonable size behind the narrow passage. The algorithm iterates from P towards
Prignt and vice versa as long as the distance between consecutive measurements is below
Dy and the distance to the opposite gateway point is still large enough (> D) for the
robot to traverse it. This procedure either declares the considered passage as being valid or
invalid, and eventually results in additional candidates for Pes; and/or P;gn as depicted
in Figure 4.10. If the observation is declared to be invalid, it is ignored, see Figure 4.11
for examples. This way, most observations that do not seem to offer the possibility for the

robot to enter a new region are neglected.

additional
gateway point

\..

Figure 4.10: Additional gateway point that defines another hypothesis

If only laser data is used to detect narrow passages the aperture angle ayp and the gateway
width Dy, are assumed to lie in a certain range. The range is specified by minimum
and maximum thresholds which are derived from the expected door width for a given
environment.

invalid narrow passage invalid narrow passage

too small
for traversal —_ large enough

. for traversal
:'.’ fe—

valid narrow passage

Figure 4.11: Valid and invalid hypotheses for narrow passages with respect to open space
behind the gateway line
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CHAPTER 4. GATEWAY DETECTION

Different hypotheses for Py and P,gn lead to different pairs of gateway points, where the
pair with minimum distance is chosen. Nevertheless, it is clear that using only 2D laser
range data can hardly account for all possible configurations. This is partly due to to
the fact that only a single laser scan is considered, but also because of the limitations of
2D perception.

4.2.2 From Narrow Passages to Doors using Stereo Vision

We have seen in the previous section that openings or narrow passages can be detected
using 2D laser range data, but the methods are not suitable to differentiate a door from a
passage between a table and a closet. Therefore, observations from a stereo camera rig are
used to increase the reliability of that decision. That means, first 3D rectangular objects
are reconstructed from the images. Then candidates, which may present door frames, are
chosen and correlated with the laser observation. Appropriate rectangles are determined
according to size, i.e. height and width including tolerance intervals, and orientation, i.e.
the normal vector should have a very small z-component. The left and right vertical line
are projected into 2D and transformed towards the position where the laser scan has been
obtained, and finally compared to the 2D measurements for the gateway points in terms
of Euclidean distance. If a hypothesis attained from the laser range data is supported by a
3D rectangle, the observation is considered to represent a door. The described algorithm
assumes that the pose of the camera with respect to the robot coordinate system has been
determined by means of external calibration. We discussed the inherent problems in the
alignment of 3D objects with respect to a common frame of reference in Chapter 3.3.5.

4.3 Summary

In this chapter we presented methods to detect and classify different classes of gateways.
For turns and crossing we proposed a new algorithm that uses Hidden Markov Models to
classify sequences of observations. The observation models for each state are represented
by Mixtures of Gaussian which are automatically determined based on k-means clustering.
Compared with simple heuristic classification the new algorithm shows superior perfor-
mance in both generalization and classification results. To detect doors we developed a
method based on 2D laser data and the 3D reconstruction of door frames. The experi-
mental evaluation and discussion of these methods along with our mapping system will be
given in Chapter 6.
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Chapter 5

TumBot Mapping & Navigation
System Based on RG Maps

In this chapter we will present a module based implementation of Region & Gateway Map-
ping along with localization, path planning, collision avoidance and robot motion control.
We believe that consequent modularity by means of parallel and encapsulated processes is
an important precondition for a complex mapping and navigation system to run robustly
on a real robot. In principle, any module could encounter a situation that it cannot handle,
either because of a hardware failure or because of some software bug. In other words, no
software can be guaranteed to run error-free for ever. But it is relatively seldom that all
components get stuck at the same time. Thus, several watchdog processes can observe the
performance of working modules, and restart them when necessary, without influencing
modules that wait for incoming data. Any module of the TumBot Mapping & Navigation
System can be restarted at any time independent of the others. And considering the worst
case, i.e. some module crashes unexpectedly, it would neither harm nor influence any other
module. This is an important and desirable feature, because it does not only ease the de-
velopment of complex systems but also allows the system to analyze itself and properly
react to error situations. Furthermore, from the software development point of view such
an architecture supports simple integration/replacement of different projects/modules and
concurrent development. Therefore, two requirements must be met:

1. The module based framework must be generic and transparent.

2. The interfaces for the communication between modules must be well-defined

We will discuss the principles of our modular architecture in detail in Section 5.1. Currently,
we run the system on a B21r mobile robot from iRobot Corporation. It is equipped with
a 180 degree laser range finder (SICK LMS 220) that is facing horizontally to the front at
a height of about forty centimeters. A stereo camera rig is mounted on top of the robot,
comprising two parallel cameras (Leutron Vision) and a pan-tilt unit (Directed Perception
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CHAPTER 5. TUMBOT MAPPING & NAVIGATION SYSTEM BASED ON RG MAPS

Inc.). The cameras are located approximately 125 centimeters above the ground plane.
The robot features a four-wheel-synchro drive, which has small odometric errors, when
employed in indoor environments. Additionally, the robot provides sonar, infrared and
bumper sensors as well as a compass, power control and two Dual-Pentium III processors
with a clock rate of 800 MHz. For visualization and user interaction we use a laptop that
is attached on top of the robot. The platform is connected to an external network through
a 54 MBit/sec wireless LAN adaptor. Due to its four batteries the robot can be operated
for about five to six hours without recharge.

Figure 5.1 depicts the overview of the mapping and navigation system. The sensor data
is first synchronized with odometry readings in order to properly fuse different measure-
ments (laser, vision) within one map. The Gateway Detection Module uses either original
or aligned laser scans to recognize gateways. Therefore, laser scan packets are fed into
the ScanMapper Module that aligns the scans using Gutmann and Konolige’s Local Reg-
istration/Global Correlation (LRGC) algorithm [44]. These scans are also utilized by the
RG Mapping Module to generate a compact map of 2D line segments. The maps are used
for localization, path planning and to calculate 2D object hypotheses (rectangle, circle)
for the region description. The High-Level-Planning Module controls the behavior of the
robot, i.e. it controls the exploration process, allows for user interaction and generates
plans to fulfill subsequent tasks or parallel user requests. Based on the input from those
modules, the Path Planning Module generates an appropriate list of intermediate and final
targets that is then sent to the Collision Avoidance Module (CAM). The CAM steers the
robot using the trajectory based motor control.

Until now, little has been said about the lower part of Figure 5.1. It is an illustration of our
vision module and its interactions. As for laser and sonar, after images have been captured,
they are synchronized with odometry. Our system comprises a stand alone Image Capture
Module (ICM) that can also be started within another module, here the Vision Module.
The rationale behind this is to prevent the huge amount of image data to be transferred
between processes. As soon as the necessary bus capacity becomes available, the ICM is
started as a single process. The same holds for the different image processing tasks, as long
as it is meaningful. For example, the generation of 2D obstacle maps from dense stereo
has only little interaction with the 3D reconstruction, thus they could and should be run
as parallel processes. For now, parallelization within the Vision Module is implemented on
the level of threads (according to the POSIX standard).

As outlined in Chapter 2, the structuring process of RG Mapping is encapsulated in the
RG Mapping Kernel. This module processes the results from gateway detection, scan
alignment and object recognition to build and provide a consistent RG Map, i.e. accu-
rate region and gateway descriptions as well as the RG Graph. Section 5.2 gives a more
detailed description, along with the Gateway Detection, Vision and ScanMapper Modules.
Localization and path planning based on RG Maps are described in Section 5.3 and 5.4,
respectively. Two additional modules handle the low-level control of the mobile platform,
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Figure 5.1: Overview of the TumBot Mapping & Navigation System based on Region &
Gateway Maps. Depicted is the module based interaction for laser range data (top) and
image-based data (bottom). The view has been divided for the sake of clarity.
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CHAPTER 5. TUMBOT MAPPING & NAVIGATION SYSTEM BASED ON RG MAPS

namely the robot dynamics and collision avoidance. In fact, contrary to all approaches we
know, our mapping and navigation system features a collision avoidance that is completely
separated from motor control. This has several advantages. First, because the robot is
steered by a feedback control that is activated about twenty times per second, trajectory
following is very accurate, predictable and reproducible. Depending on the accuracy of the
odometry, this is true even for longer distances. Second, reasoning about collision free paths
is done on trajectory level, i.e. explicitly in Euclidean space that allows for smooth control
of the robot and strongly reduces the possibilities of deadlocks and local minima. Third,
apriori knowledge about the environment can be easily incorporated. We will present our
approach to collision avoidance and motor control in more detail in Section 5.5.

5.1 The TumBot Module Architecture

There probably exist almost as many different approaches to software architecture for robot
systems as there are robotic research groups. One of the first, as far as we know, mapping
and navigation software used by several different groups around the world was developed
at Bonn University /Germany (starting from some CMU sources). According, to the name
of their robot (RHINO), we call it Rhino Mapping & Navigation Software [13, 110]. It fea-
tures occupancy grid based mapping and localization (Markov and Monte Carlo/particle
filter), path planning, 2D simulation and collision avoidance as well as modules that con-
trol the hardware, perform people tracking and many more. Parts of this software have
been commercialized together with iRobot Corporation (formerly known as Real World
Interfaces). The interprocess communication was based on the TCX Module Architecture,
developed by Christopher Fedor [35] in 1990. Later in 1994, Simmons developed the In-
ter Process Communication Package (IPC), which is for example applied in the Carnegie
Mellon Robot Navigation Toolkit (CARMEN)'. The ideas of TCX and ICP are based on
the Task Control Architecture (TCA) by Reid Simmons [101]%.

The Rhino Software supports distributed processes and a central module (TCX-server)
which organizes the initialization of the communication between modules. After that, the
modules can exchange messages, provided that an appropriate message handler exists.
However, the serious development of the Rhino Software stopped somewhere in the last
years, and the CARMEN-Project can be considered a follow-up, providing modules for
base and sensor control, obstacle avoidance, localization, path planning, people-tracking,
and mapping. Another robotics software platform that recently became more popular is
the Player /Stage project hosted by SourceForge . For now, its main purpose is to provide
a generic interface to the robots hardware that can be easily replaced by a 2D multi-
robot (Stage) or a 3D simulator (Gazebo). Nevertheless, there already exist a couple of

thttp:/ /www.cs.cmu.edu/~carmen
http://www.cs.cmu.edu/afs/cs/project/ TCA /www/TCA-history.html
3http://playerstage.sourceforge.net
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5.1. THE TUMBOT MODULE ARCHITECTURE

modules/drivers, e.g. for collision avoidance, localization, path planning, speech synthesis
and blob tracking.

All the frameworks mentioned so far (and there exist a lot more) use different interface
architectures (also called communication protocols) based on TCP/IP. A whole different
set of software architectures is based on the Common Object Request Broker Architecture
(CORBA), which is first and foremost a language and platform independent specification
for interprocess communication*. A process only needs to know the interface to another
that is described by means of the Interface Description Language (IDL). The two processes
can run on different operating systems and can be programmed in different languages. But
no CORBA implementation itself provides a convenient module based framework. Conse-
quently, lots of researchers implemented their ideas of such a framework like Miro [115],
SmartSoft [17], DARA [31], DyKnow [52] etc., just to name a few. iRobot Corporation that
has been mentioned in the beginning, changed from the TCX Architecture to a CORBA
based module architecture they call Mobility. We started to use Mobility for two reasons.
First, it provided hardware server for our robot, so we could operate the robot immedi-
ately. Second, it was relatively easy to understand and to use, and it was not particularly
specialized on robotics. It could be used for any project that involves interprocess com-
munication. Nevertheless, we incorporated some extensions, with focus on reusability of
the implemented algorithms and transparency for someone who works with a module that
he/she did not develop.

Communication Client Library

- declaration of function — implements exactly the same
interface (IDL) and data methods as defined in class A
types to be exchanged (IDL) / — uses IDL and conversion methods
according to class A defined to hide communication aspects
in the functional library

— definition/implementation of
the respective conversion methods

Server Module

— inherits from some base class,
that hides the CORBA related code,
i.e. instantiation, registration

- registers the state object

State Ob4ect Functlonalllerarvl '
“T““fj“* - declaration and implementation
— inherits from some base class,

that hides the CORBA related code Zf mo?giilfzgiiéﬁnallty’

— inherits from class A defined B uég.client libraries of
in the functional library

_ inherits the IDL function other modulgs to obtain data etc.
interface and implements the - clgss A defines the frontend of
respective methods using the thls.llbrary’ most or a}l of the
conversion methods from above publ}c methods present }nte;faces
and then calling directly the for interprocess communication
respective methods from class A

Figure 5.2: TumBot Module Architecture, (for now) using the CORBA based Mobility
framework, arrows depict dependencies

4For detailed information about CORBA, please visit http://www.omg.org

61



CHAPTER 5. TUMBOT MAPPING & NAVIGATION SYSTEM BASED ON RG MAPS

As a result, the functionality of all modules in the TumBot System is completely separated
from the communication. That means, Mobility could be replaced by any other preferably
CORBA based module framework in a reasonable amount of time. This is true even for
module interconnections, because a client library (for each module) hides all communication
details, i.e how to connect to another server, how to call methods using CORBA /Mobility
etc. Therefore, each object, i.e. class or structure that is supposed to be exchanged
between modules/processes, needs an additional definition in IDL and conversion methods
that convert from one to the other representation. Even though the conversion of data
types costs time, we found that on state-of-the-art computers, this time is neglectable,
compared to the transparency it provides. Server and clients simply incorporate these
methods and do not add any other functionality but interprocess communication to the
system. Accordingly, the implementation of server modules and client libraries is fairly
simple, see also Figure 5.2. We believe that it is possible to automate most of this process,
but further investigation is beyond the scope of this work. The TumBot System is solely
implemented in C++.

5.2 RG Mapping Modules

Several modules in the TumBot Mapping € Navigation System contribute to the RG Map-
ping process, namely the Gateway Detection, the ScanMapper and the Vision Module as
well as the RG Mapping Kernel. The purpose of this section is to describe briefly the
interactions between these modules and their functionality in order to built RG Maps.

As presented in Chapter 4, the Gateway Detection Module (GDM) utilizes distance mea-
surements from laser range data and rectangular 3D objects to detect gateways. The
detection and classification of crossing gateways (turns and junctions) was implemented
and tested using Matlab, and to this date has not been fully integrated into the TumBot
framework. Therefore, we concentrate on the detection of narrow passages/doors using
range and vision data. The GDM continuously acquires raw laser readings and analyzes
them according to Subsection 4.2.1. Additionally, it requests rectangular 3D objects from
the vision module that fulfill several characteristics with respect to doors. That means,
the GDM considers only 3D rectangles with a certain width and height. More importantly,
the plane normal is supposed to possess a very small z-component, because the orienta-
tion of doors is usually vertical, i.e. orthogonal to the ground plane which in our case is
the z-plane. The corner points of the 3D rectangle are than projected into the plane of
the laser readings. A hypothesis for a narrow passage from the laser based detection is
defined by the two gateway points. If the distance between those points and the projected
corner points from the rectangle falls below a given threshold, the hypothesis is assumed
to present a door. The GDM stacks this information in a buffer that is processed by the
RG Mapping Kernel. Thus, the GDM provides a single interface to access the buffer of
gateway hypotheses.

62



5.2. RG MAPPING MODULES

The ScanMapper Module (SMM) is based on the ScanStudio library from Steffen Gutmann.
Because the scan matching results are fused with odometry using a Kalman filter, certain
dynamic constraints have to be fulfilled. These constraints are defined by the dynamic
model that the Kalman filter applies. In practice that means, scans are expected to be
acquired at certain distance or angle intervals. Therefore, the SMM buffers the incoming
laser scans and filters them according to the before mentioned restrictions. These scans
are than aligned using Gutmann’s scan matching. The SMM provides full access to the
resulting scans that are corrected with respect to their position to compensate odometric
errors. Apart from the range readings, the scans comprise a unique ID and the original
odometry pose. This way they can be related to scans that have been processed by the
GDM. The interface of the SMM supports the request of single scans or a range of scans
by means of their IDs.

In Chapter 3 we described the generation of models for task-relevant 2D /3D objects. One
such task in RG Mapping is the detection of doors or door-like gateways. Therefore,
the Vision Module (VM) captures images from the framegrabber, reconstructs rectangular
3D objects and provides the results in an output buffer. The VM supports an interface
to request this information. Furthermore, the VM generates 2D obstacle maps from dense
stereo and estimates 3D planes. The former is utilized in collision avoidance, i.e. it is
fused with observations from the laser range finder. Since 2D laser range data naturally
misses a number of obstacles like table tops, staircases etc., we use vision to complete the
perception of the environment, in order to increase the robustness of collision avoidance.
3D plane estimates are integrated into the region description. They are also used to check
the plausibility of reconstructed rectangular 3D objects. Figure 5.3 depicts the integration
of the VM into the TumBot system. For reasons of clarity, the figure focuses on the vision
part and the interaction of those modules with other TumBot components. As outlined in
the introduction of this chapter, parallelization within the VM is realized on thread level.
The only reason to do so is the performance gain, due to the reduced amount of data that
must be transfered between the different vision tasks.

Finally, the instance where all the provided information is interpreted and merged is the
Region € Gateway Mapping Kernel (RGMK). It continuously requests new scans from the
ScanMapper Module and 3D objects from the Vision Module in order to generate a compact
description for the current region. This preliminary region map is used by localization, path
planning and high-level planning, e.g. to create an exploration strategy. Additionally, in
a parallel execution procedure, the RGMK waits for new information from the Gateway
Detection Module, i.e. gateway hypotheses. If a new gateway has been detected and
traversed, the RGMK finalizes the interpretation of the previous region data, i.e. the
respective range of scans and the list of 3D objects. It builds a compact map of 2D line
segments from the laser readings and aligns the 3D objects with respect to this map. In
addition, it calculates a bounding rectangle for the scans belonging to that region, whereas
only measurements inside the region are considered. That means, laser beams that cross
a gateway are filtered out. The freespace map is a binary occupancy grid map, where
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Figure 5.3: Vision components within the TumBot framework

for each cell only one bit is stored, indicating whether the cell is considered to be free or
occupied. This should not be confused with a probabilistic occupancy grid map, where
each cell is holds a probability value for its occupancy. In fact, a freespace map for a
30 square meter region with a resolution of 15 centimeter in x- and y-direction requires
only about 200 byte. For comparison, a probabilistic grid map that uses floating point
values for the probabilities, would need more than 5300 bytes. We use the freespace map
in the region based localization to ensure that new particles are only generated for plausible
locations, i.e. places which are not occupied. Furthermore, it allows to quickly check if a
given particle lies in the current region.

Generating 2D line segment maps from laser data. Laser range scans acquired
in a single region are considered for the region’s 2D line segment map. First, they are
matched consecutively with respect to each other by applying the ScanStudio-Library®
from Steffen Gutmann, for details refer to Gutmann’s work [42, 44]. After each new scan
has been successfully matched, the 2D line segment map is updated. Therefore, the scans

5The software was used with kind permission of Steffen Gutmann.
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are converted to line scans and then the line segments are merged based on position and
angle. As a result the region keeps a compact 2D line segment map, which is used for
localization. Considering Figure 5.4, for a fully explored region, described by 30 scans
each containing about 150 to 180 measurements, the data adds up to about 4500 points.
Most of those points refer to the same features in the environment, since the scans do
strongly overlap. The respective 2D line segment map comprises roughly 40 line segments,
which corresponds to 80 points. Thus, we have a compression factor of about 50. Even
though the line segments represent an abstraction of the points, and in some cases may not
exactly approximate the laser readings, experiments showed that the maps hold enough
information for robust localization [97]. Note that a 2D line segment map contains lines
that are outside a region’s bounding box. This is because these lines can be seen through
the gateways, and they are necessary for robot self-localization.

T -

7

=

Figure 5.4: Generating 2D line segments maps from laser scan data, a - 5042 scan points
from 30 scans, b - after line merging, 38 line segments

5.3 Localization with RG Maps

Given a 2D or 3D metric description of the environment and sensor data that is reflected
in the representation, a mobile system can estimate its position with respect to the given
map. This process is called localization and it has been thoroughly studied over the last
decades. For the two-dimensional case based on an accurate global and static map and
range data this problem is more or less solved [38, 40, 43]. Even for 3D representations
there exist a number of approaches [64], though limited processing power restricts their
wide application. Another problem in the context of camera based localization, is to
deal with changing illumination. And a more general and unsolved question is, how can
accurate, complete, metric 3D models be acquired and updated.

65



CHAPTER 5. TUMBOT MAPPING & NAVIGATION SYSTEM BASED ON RG MAPS

The region based localization in the TumBot system is mainly based on 2D maps and laser
range data using a particle filter. For details about this localization method the interested
reader may refer to [40]. In this section we want to describe the differences of localization
within the context of Region & Gateway Maps. Let us first assume that the region in
which the robot is located is known. The Localization Module (LM) requests the data for
this region from the RG Mapping Kernel, including a list of adjacent gateways. The LM
also requests and stacks the data for the neighboring regions, if they exist. The motivation
is that when the robot approaches the region boundary, particles beyond gateways are
projected into the respective known neighboring regions and evaluated there. Thus, the
evaluation is always based on the data of the correct region (if it already exists). Also, this
procedure gives additional proof whether a gateway has been traversed or not, because in
each step the localization estimates the most probable position within the particle cloud and
considers this to be the real pose. For now we simply consider the particle with maximum
probability to represent the current pose. If this estimated pose lies at a reasonable distance
behind the gateway, with respect to the current region, the localization assumes that the
gateway has been passed.

For global localization within RG Maps it is necessary to be able to recognize regions.
Different features from the region description like size, number of connected gateways,
binary gridmap for freespace etc. have to be considered in order to solve this problem. In
addition, an action history can be utilized to not consider all possible regions but only the
most likely according to the path the robot has taken. However, in the current version of
the presented mapping system global localization is not implemented.

5.4 Path Planning with RG Maps

Path planning within the TumBot Mapping and Navigation System is divided into two
parts, i.e. global and region-based planning. The former is based on the Region & Gateway
Graph (RG Graph). 1t applies A* search to find the optimal path according to the costs
along the edges. The result is a list of crossing points, which in pairs belong to either the
same region or the same gateway. As discussed in Section 2.1.3, the edges in the RG Graph
refer to traversals through gateways or regions. The cost for an edge is initialized with the
Euclidean distance of the adjacent crossing points (nodes). During navigation the robot
measures the real distances and time and changes the costs accordingly. Additionally,
traversability over time is a very useful property for gateways, in particular for doors,
because they can be open or closed on repeated observations. For now, we apply a simple
but efficient mechanism, that is, we decrease or increase the cost of a door-edge by adding
a fixed, possibly negative, length to the Euclidean distance, whenever the door could or
could not be traversed, respectively. The lower bound for the costs is given by the real
distance between the adjacent crossing points. When incorporating hallway gateways,
this lower bound for doors can be increased in general, so that the resulting path prefers
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hallway crossings and turns to doors. Technically, the search algorithm determines the
“shortest” path, because it only considers distances. But, due to the manipulation of
those distances, the result is not necessarily the shortest path with respect to the real
environment. It rather presents a path with high probability for success and moderate
navigation complexity. The latter also implies, that even though the resulting path might
not be the shortest in the Euclidean sense, it can still be traversed considerably fast. That
means, the path is optimized with respect to feasibility and travel time. Due to the inherent
heuristics of this approach, it is not possible to compare this solution to a global optimum,
whereas it is also not clear how to determine that global optimum. The approach always
returns a path that is consistent with the map representation and valid in the sense that
it has been traversed before, an example is depicted in Figure 5.5.

Figure 5.5: Example for global path planning based on the Region & Gateway Graph
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a) Value Iteration combined b) Graph from Grid Map c) Graph from Grid Map
with equally sized Cells using Quadtree

with Steepest Descent

d) Graph from Grid Map e) like d but with increased
using Framed Quadtree cost for cells near obstacle

. M

Figure 5.6: Comparison of different methods for metric path planning. The path search in

b to e is performed using A* search in the generated graph. In our system we decided to
apply the approach shown in e.

The task of the region based path planning is to consider the metric representation of the
environment, i.e. of a region. We apply a graph based approach, where the graph is built
from a grid representation of the region data, namely the map of 2D line segments. The
line segments are first rendered into a traditional occupancy grid using the 2D Bresenham
algorithm [11]. Then a quadtree structure is extracted from the grid [88], which strongly
diminishes the necessary number of grid cells, and thus, the size of the graph. The resulting
path seemed to be suboptimal, when cells of small resolution adjoin large quads. This is
because the nodes represent the center of cells. That means, if the quad is large, it causes
the distance to its center to be large as well, and thus, if the shortest path would only lead
through a part of that quad the distance will still be based on the distance to its center.
Figure 5.7 illustrates this deficiency. Therefore, we added a frame of the smallest resolution
to each quad. This representation is known as framed quadtrees [106, 21], and it allows
to traverse large quads in all directions, compare Figure 5.6. A final optimization step
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smoothes the path. First, the start and target positions are adapted, because they do not
necessarily lie in the center of a cell. Second, intermediate path points are eliminated, if
they would lead to a longer path and if the alternative path is collision free, see Figure 5.8
(left). Due to the graph representation, it is easy to consider navigation constraints, e.g.
the robot should avoid moving too closely along walls. It is integrated by means of increased
costs for the respective nodes. As a result, the generated path “stays” away from walls and
obstacles, i.e. it exploits freespace where possible as can be seen in Figure 5.6. Additionally,
the presented approach naturally favors the traversal of wider passages towards narrow
ones, see Figure 5.8. For a detailed comparison an evaluation of the investigated methods
see also [91].

HEEN
Quadtree Balanced Quadtree FramedQuadtree

Figure 5.7: left: If the Euclidean shortest path would traverse only small parts of a large quad,
this path can not be found in the graph. This is because nodes in the graph are represented by the
cell center and thus the ideal shortest path is not contained in the graph. middle: Constraining
the difference in size for adjacent cells (balanced quadtrees) improves the situation presented
here, but this can not be guaranteed for all cases. right: Generating the search graph from a
framed quadtree representation always returns the correct shortest path.

Figure 5.8: left: Path optimization right: Increasing the cost of cells near obstacles leads to
paths that “stay” away from obstacles and prefer wider passages to narrow ones.
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5.5 Collision Avoidance & Robot Motion Control

Given intermediate target poses and a final destination pose from a path planning mod-
ule the task of collision avoidance is to navigate collision-free along the given path. This
includes the reasoning about obstacle free space as well as the generation of motor com-
mands, i.e. in most cases translational and rotational velocities. Existing approaches for
collision avoidance consider different sensors like bumpers, sonar, infrared, laser range find-
ers and vision. They also differ in the way they represent the environment, e.g. Vector
Field Histogram [9, 114], Velocity Space [37], Nearness Diagram [81, 82] etc. But from
our viewpoint the main difference lies in the strategy which is applied to generate appro-
priate motor commands, i.e. whether it is locally-reactive or foresightedly-planning. In
the next subsections we will explain these two strategies and give references to respective
approaches. In Subsection 5.5.3 we briefly present our new approach to collision avoidance.

5.5.1 Locally-Reactive Collision Avoidance

Reactive approaches consider the current dynamic state, the general direction of the next
intermediate target and the sensor data to generate the immediate next motor command.
The dynamic state is generally described by a position and an orientation of the robot as
well as its current velocities. That means, reactive approaches “plan” only one step ahead
and they integrate the reasoning about obstacle free space and control considerations within
one iteration. The goal is to move the robot approximately in the direction of the next
intermediate target without causing collisions. As the name implies these approaches react
reasonably fast to changes in dynamic environments and can result in smooth driving
behaviour. But mostly, several parameters have to be adjusted, which are not always
intuitive and often differ for different mobile platforms. Also, reactive strategies run the
risk of getting trapped in local minima and their behaviour is neither predictable nor
reproducible. A detailed discussion of existing methods is beyond the scope of this work.
Common approaches include the Potential field methods [8], Interpreted Polar Scan [9, 114,
81, 82] and the Dynamic Window Approach [37, 39, 102, 12]. The latter has been validated
in impressing experiments, e.g. on the mobile robots RHINO and Minerva [13, 14, 108].
The Nearness Diagram Method [82] offers a rule-based and simple to implement alternative.

5.5.2 Planning Collision Avoidance

On the other hand, several approaches generate not only the next motor command but plan
forward in time to the next intermediate target pose or further. This results in a sequence
of future dynamic states that specify the navigation of the robot. The motivation is that
for example service robots often operate in slowly changing environments. That means,
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movable objects like chairs, boxes or handcarts may change their position but they are
usually fixed when a mobile robot passes them. The problem is that these changes are
not always represented in the environment map and thus the planned path may intersect
with obstacles. While little has been written about the feasibility of such approaches in
highly dynamic environments involving groups of human, foresightedly-planning strategies
for collision avoidance offer several advantages. The behaviour of the platform is to a
certain extent predictable and reproducible, and local minima can be actively avoided.

Latombe distinguishes different path planning algorithms according to their environment
representation, i.e. roadmap, potential field and cellular decomposition [71] and suggests
continuous fast replanning. Because repeatedly generating the complete path, while the
robot moves, implies a huge amount of redundant calculation, the idea is to construct
the plan only once and then reactively adapt it during traversal. This might be prob-
lematic if an obstacle moves slowly towards the path, and thereby “pushes” it away until
the free corridor, e.g. between the obstacle and the wall, is completely blocked. In this
case, the obstacle should be passed on the opposite side, which means that a new plan
should be generated. Choosing between adaption and replanning seems to be difficult. An
example for a “plan once and then adapt” approach is the FElastic Bands Method [92], and
Konolige [60] presented a new fast approach for the “always replan”-strategy. Another
interesting approach is to search in the full state space for an optimal trajectory [103]. To
achieve real-time feasibility the resulting huge search space is expanded only in parts and
an efficient A* heuristic search accelerates the computation of the path. Even though the
solution has been shown to be reasonably close to the full search and is optimal with regard
to time, the approach relies on a global map and robust localization. Thus, inaccuracies
in localization could induce suboptimal or wrong trajectories, and the applicability during
exploration even in static environments is difficult.

5.5.3 Trajectory-Based Collision Avoidance

To robustly navigate our mobile robot and to better exploit the features of RG Maps we de-
veloped a novel approach to collision avoidance that falls into the category of foresightedly-
planning strategies. It abstracts from the dynamic states by means of simple trajectory
segments and completely separates the reasoning from the control task. That means,
we apply a Lyapunov feedback controller [54] that reliably follows given trajectories by
controlling translational and rotational velocities about twenty times per second. The re-
spective module is called Low-Level-Drive (LLD). Extensive experiments showed that the
LLD guarantees very precise and reproducible traversal of given trajectories. To simplify
the trajectory based collision avoidance we implemented a library of geometric primitives
like conic, elliptic and straight segments, arcs of circles, clothoids and some combinations
of those. If possible, these trajectory segments are directly determined given start and end
poses. They are geometrically described by a few parameters which prevents the storage
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and transmission of large amounts of data. Note that the representation is irrelevant to
the Collision Avoidance Module (CAM). Applicability of certain trajectory segments is
determined from the changes of the robots orientation and velocities.

The task of the CAM is to generate consecutive trajectory segments given the target poses
from the path planning, the current dynamic state, constraints on the robots dynamics
and the sensor data. The distance between intermediate target poses lies between 0.5 and
2 meters. The resulting trajectories are send to the LLD and its execution is continuously
observed. If a collision is detected the respective trajectory segments are replanned in
time. Even though the actual implementation level is rather prototypical the experimental
results are very promising. First, the prediction for the time needed to traverse a chain of
trajectory segments is very accurate. Assuming the environment is correctly represented
this optimal time estimate can be calculated very fast for the overall path. Hence, it
can be used to evaluate different possible paths or even transportation tasks on a higher
level. Second, since the pursuing of trajectory segments is very precise, the length of the
overall path can also be predicted and used for path evaluation. In particular, this feature
supports very accurate navigation, e.g. for docking maneuvers or exploration based on best
viewpoint algorithm [25, 80, 95, 58]. Finally, the presented approach to collision avoidance
provides accurate reproducibility, which is very useful for real world experiments.

Additionally we applied stereo vision to augment the laser based perception of the CAM.
In order to efficiently calculate depth information from two images the cameras have been
calibrated. Calibration and stereo correlation are mainly based on commercially available
software packages, i.e. Halcon [87, 70] from MvTec® and the Small Vision System [59,
56] distributed by Videre Design’. As a result we obtain a 3D point cloud in camera
coordinates. External calibration allows to transform those points into the robot coordinate
system. The points are then rendered into a 3D occupancy grid map to explicitly model
free space and filter outliers. The observations from stereo and laser are merged only in
the respective grid layer, i.e. at the height of the laser. Thereby sensor fusion is performed
per grid cell using a mechanism similar to the Kalman filter. That is, the occupancy value
of the grid is assumed to present the mean value and the variance refers to the reliability
of the different sensors. The fusion per grid cell is a weighted mean according to the
sensors reliability. After this step the 3D grid is projected into 2D along the columns by
multiplying the respective occupancy probabilities. The resulting grid map is used to reason
about collision-free trajectories. Figure 5.9 depicts a scenario where two obstacles are in
the robots path which are not properly represented in the laser measurements, i.e. a table
and a chair. Shown is an image of the environment and the traveled path. In Figure 5.10
the stereo data and the respective occupancy grid maps show the improved representation.
The images beneath the disparity images refer to the gridmaps from the laser range finder,
simple 2D projection of 3D Data, projection of 3D Data using 3D occupancy gridmaps and
the result of the sensor fusion (from left to right). It can be seen that free space is properly

Shttp://www.mvtec.com
"http://www.videredesign.com /products.htm
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modeled using 3D occupancy gridmaps and the resulting map accurately represents the
objects not visible to the laser.

Figure 5.9: Collision avoidance scenario in our robot laboratory. The lower image presents
the traveled path from topview along with the odometry corrected laser measurements.
The red rectangles depict the objects that are not visible to the laser range finder.
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Figure 5.10: image and 3D data for the table (top) and chair (bottom) along with gridmaps
from laser, simple projection, projection using 3D gridmaps and the resulting map.



Chapter 6

Experimental Results

In this chapter we evaluate the TumBot Mapping € Navigation System’s applicability to
indoor environments. The following sections illustrate that Region ¢ Gateway Mapping
is both well suited and capable of acquiring structured and object-oriented representations
of large indoor environments. Due to the incremental SLAM inherent in the map building
process, the TumBot Mapping € Navigation System generates very accurate metric region
descriptions. It also appropriately closes loops in the environment and adds 3D object
hypotheses during map building.

The TumBot Mapping € Navigation System has been tested using our B21r robot but also
a variety of data sets that stem from different robots and environments. Whenever possible
we will give explicit references as to who provided the data, where it has been recorded, and
what kind of robot has been used. However, most of those data sets were obtained from
Radish: The Robotics Data Set Repository' and the website of Cyrill Stachniss?. Assuming
a navigational speed of 0.3 to 0.6 meter/second, all processing is carried out in real-time.
With respect to the data sets, that means, maps could have been built while the robots
move around. In fact, in all experiments we run the whole mapping part of the system as
described in the previous chapters only that acquiring data from a laser scanner is replaced
by reading it from a file.

In Section 6.1 we evaluate the structuring capabilities of our mapping system when it uses
only 2D laser range data. We discuss different scenarios with emphasis on the consistency
of the generated maps and the performance of gateway detection. An experimental evalu-
ation of the vision part of our mapping system in conjunction with laser-based odometry
correction is given in Section 6.2.

Thttp://radish.sourceforge.net /index.php
http://www.informatik.uni-freiburg.de/~stachnis/research /rbpfmapper
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6.1 RG Mapping based on Laser Range Data

It has been described in Chapter 4 and 5 that the presented mapping and navigation system
uses laser range data as its primary source to generate structured maps. In addition, vision
is utilized to reconstruct 3D objects within regions and to robustly detect doors. In this
section, we evaluate the system’s structuring capabilities when only laser data is provided.
The following aspects will be addressed:

e Structural consistency of Region & Gateway Maps

e Detection performance with respect to doors, i.e. does the system detect all doors
and how many of the detected gateways do probably not correspond to doors

With consistency of RG maps we first of all mean that the generated description complies to
the definition of regions and gateways as given in Chapter 2. That is, regions are contiguous
areas which are connected by gateways and the relationship is uniquely defined. Obviously,
consistency depends strongly on the observation of gateways not as much in which order
but whether or not they are detected in the first place and than visited again. We will
discuss this in more detail in Subsection 6.1.1.

As mentioned before, the pure metric descriptions that were generated are very accurate
and geometrically consistent due to the underlying laser-based incremental map building
(SLAM). However, for some data sets the deployed SLAM method was not able to built
consistent maps. A discussion of the reasons would mean to analyze the metric SLAM
problem itself which is beyond the scope of this work. Several other approaches, including
FastSLAM, have been proposed that overcome the limitations of the SLAM method we
applied. A brief overview has been given in Chapter 2.3.

Because of the limitations of 2D perception, it can be expected that “false” gateways,
in particular narrow passages between tables and closets, will appear in the maps. A
quantitative evaluation will be presented in Subsection 6.1.3.

6.1.1 Structural consistency of Region & Gateway Maps

To better illustrate which situations must be considered to avoid the generation of incon-
sistent RG Maps we will discuss three simple example scenarios along with the experiments
based on real world data. The example environments comprise a circular hallway which is
divided by different numbers of gateways. The first contains only one gateway and after
passing it the representation consists of two regions (R1,R2) which are connected by the
given gateway (G1), Figure 6.1 (left). Assuming the robot keeps going it will at some point
in the future detect this inconsistency. That is, it arrives at the gateway and determines
that it should be in R1 in contrast to its belief of being in R2, Figure 6.1 (middle). The
conclusion here is that R1 and R2 represent the same region, thus they are merged. The
final representation is depicted in Figure 6.1 (right), and will not change further over time.
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Depending on the direction in which the robot follows the circle, i.e. clockwise or counter-
clockwise, the resulting single region could also be R2, but obviously this does not change
the structural description. We refer to gateways, which are connected to the same region
on both sides, as being “neutralized”, because they do not contribute to the navigation
behaviour. However, they can still be used for localization.

Gateway 1 Gateway 1 R1 6 Gateway 1

Figure 6.1: Circular hallway with one gateway

Figure 6.2 illustrates that the number of gateways within the circular hallway has no
impact on the described mechanism as long as they are detected in the first place. The
initial inconsistency is solved upon observing another known gateway within the same
region. A real-world example is shown in Figure 6.3. Gateways are depicted by cyan lines.
Neutralized gateways are not annotated as can be seen in the hallway on the left side.
This particular gateway has been detected on the first traversal of the hallways. During
the second loop the inconsistency was automatically detected and resolved. After this
the robot enters different regions upon detecting the respective gateways and structures
the environment representation accordingly. The separate 2D line segment maps for each
region are shown in different colors.

Gateway 1 Gateway 1 Gateway 1

Gateway 2 Gateway 2 Gateway 2

Figure 6.2: Circular hallway with two gateways

First the robot entered region R3 through gateway G4 and left through gateway G5. The
mapping system consequently assumed that a new region was entered when traversing G5.
Thus R3 was connected with R1 and R4. Later in exploration it became apparent that
R1 and R4 describe the same region and thus they have been merged, leaving the correct
description as depicted in Figure 6.3. Adjacent to the hallway in the lower half of the map
are two gateways G9 and G10 leading into two different regions R8 and R9. From the
map it seems that these regions are actually identical but the robot did not fully explore
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Figure 6.3: Interior of the Intel Research Lab in Seattle. The robot did not yet enter the
part in the middle. Thanks go to Dirk Hahnel and Dieter Fox for providing this data set.
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either of those regions, hence it could not detect this connection. Nevertheless, from the
structural point of view the map is consistent given the observations and can be used for
navigation. For example, if the robot was to travel from a position in R8 to a position in
R9 it would move through G9, then along the hallway belonging to R1, and then into R9
through G10. Given the fact that these two regions are the same, e.g. by human-machine
interaction, the mapping system could easily merge their representation and represent R8
and R9 by a single region.

We have discussed the rationale for the neutralized gateway within the hallway on the left.
Close to this there is another that leads into a region that is now part of region R1. Here the
gateway has not been detected when the robot first entered, but when it left. Considering
Figure 6.4 the problem becomes more transparent. The example comprises three gateways
one of which is not detected upon first traversal (left column). The three rows of Figure 6.4
show different scenarios where this gateway is later detected and initially leads to a false
connection. Upon detection of another of the known gateways this temporary inconsistency
is resolved and results in similar structural representations as depicted in the right column.

Gateway 1 Gateway 1 Gateway 1 Gateway 1

Gateway 2 |00

not detected !

R
not detected ! not detected ! Gateway 3 Gateway 3

Gateway 1 Gateway 1 6 Gateway 1 Gateway 1
R3

not detected !

Figure 6.4: The problem of failing to detect a gateway upon first traversal
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Figure 6.5: University Freiburg, Building 079. Thanks go to Cyrill Stachnis for providing
this data set.

Another example is shown in Figure 6.5. A loop has been correctly closed in the lower
right part and except from the area in the lower left part all observed gateways have been
detected upon first traversal. Thus, for the larger part of the map the structural description
is consistent. However, having a close look at regions R8 to R12 in Figure 6.6 it can be
seen that the map contains one inconsistency. Several factors contribute to this situation.
First, gateway (G16 has been observed before traversing G15, thus it was labeled to connect
R9 and R10. Then, gateway G18 was not detected upon first traversal and gateway G17
was correctly associated with R10 and R11. On return G18 was detected belonging to R10
and another new region R12, which lead to the correction of G15 that now connects R12
and R9. The problem is that G15 and G16 are too close to each other to disambiguate

80



6.1. RG MAPPING BASED ON LASER RANGE DATA

the situation. Clearly one of the two (G15 or G16) should be neutralized, preferably
G15. Performing a global check for consistency on the Region & Gateway Graph is likely
to solve that problem. We discussed this example to show that detecting gateways upon
first traversal is crucial for the presented mapping approach to work robustly. Although for
some of those situations inconsistencies can be resolved, problems may arise when gateways
are too close to each other, i.e. in strongly cluttered narrow environments. Also, passing
more than one gateway without detecting them is likely to introduce inconsistencies into
the structural description.
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Figure 6.6: Enlarged section of the Freiburg data set shown in Figure 6.5

Earlier in this chapter, we presented results for a part of the Intel data set. Figure 6.7
shows how the whole environment is represented as a RG Map. In the center it has a
narrow long hallway which causes numerous gateways to be detected when using only the
provided laser data. Nevertheless, a closer look at this part in Figure 6.8 reveals that even
though the area is oversegmented the structural description is indeed consistent. The only
remaining problem is that region R1 and region R20 are actually the same. This connection
could again not be detected because the robot did not visit another known gateway in R1
after entering R20. Instead it turns around and moves back through the narrow hallway
towards its final destination in the upper part of R1 close to the gateway G15. Moving
around in R1 the robot eventually approaches gateways that belong to region R20, namely
G27 or G28, and then R1 and R20 would be merged.

Figure 6.10 shows the consistent RG Map of our department floor (Munich, Orleanstr.).
The length of one hallway is approximately 50 meters. The robot traveled about 817
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meters, collected 2638 scans and built the map while it was moving. We suppressed the
RG Graph in this figure for visibility reasons. Additional examples of consistent RG Maps
that were automatically generated from other data sets are depicted in Figure 6.11, 6.12,
and 6.13. Figure 6.9 shows a 3D view of the largest region for the Intel Lab data set. Wall

hypotheses have been generated from the 2D line segment map of that region by selecting
line segments whose length exceeds a certain threshold.
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Figure 6.7: Complete RG Map of the Intel Laboratories (Seattle)
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Figure 6.9: 3D view of the Intel Laboratories for region R1, according to Figure 6.7
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Figure 6.10: Department floor of Informatik IX, TU Munich (Orleanstr.). The data set
comprises 2638 scans. The robot traveled a total of about 817 meter.
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Figure 6.11: Castello di Belgioioso. Thanks go to Dirk Hahnel for providing this data set.
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Figure 6.12: This data set has been generated using the RHINO Simulator and a CAD
model of the Interiors of Informatik IIT at Bonn University.
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Figure 6.13: Fort AP Hill. Thanks go to Andrew Howard for providing this data set.

6.1.2 Closing loops in RG Mapping

In the previous subsection we briefly mentioned the problem of loop closing and that it
is implicitly handled by resolving inconsistent observations. All experiments shown there
were based on external data sets. In this subsection we present an experiment carried
out with a B21r robot in our department. The robot traveled about 75 meters in our

department floor, entering and leaving seven different regions: part of hallway - R1, part
of another hallway plus printer lobby - R6 and five offices - R2, R3, R4, R5, R7.

The upper scene in Figure 6.14 shows the robot after it consecutively traversed all regions.
Two gateways have not yet been observed or traversed, and both will lead to cycles in the
environment. In the lower scene the robot added the new gateway G9, and falsely assumes
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that it has entered a previously unknown region (R8). This false assumption is solved upon
observing a known gateway (G1). As a consequence region R1 and R8 are merged which
means the loop is closed, as depicted in the left scene of Figure 6.15. Then, the gateway
(G13 is detected and generates a similar situation, right scene in Figure 6.15. After that the
structural representation is correct and will not change on future visits. The final RG Map
is shown in Figure 6.16 together with the odometry corrected raw data.

Figure 6.14: Closing loops in RG Mapping (part 1)
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Figure 6.16: RG Map and the odometry-corrected raw data
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6.1.3 Evaluation of the Detection of Narrow Passages

When using external data sets to generate 2D environment representations, even for hu-
mans it is not always clear which narrow passages refer to doors and which do not. In these
cases we consider the gateway not to present a door, thus obtaining a rather pessimistic
estimate of the false-positive rate. Only one gateway that was classified as a door was not
correctly detected, thus, it is not represented in the respective map. Gateways in the map
that have not yet been visited, e.g. a door the robot passed by but did not approach, are
not considered.

environment overall number | number | number of neutralized number of
of gateways of doors or not yet traversed | false-positives
gateways
Intel Lab (Seattle) 21 8 5 8
Fort AP Hill 8 8 0 0
Castello di Belgioioso 19 17 0 2
Dep. Informatik IX 58 20 18 20

TUM, Garching

Dep. Informatik IX 100 41 25 34
TUM, Orleanstr

Part of Building 079 14 8 1 5
Freiburg University

Data Set fig. 6.16 8 8 0 0
TU Garching

Dep. Informatik I1I 22 10 3 9
Bonn University

Table 6.1: Gateway detection results for different indoor environments

Table 6.1 summarizes the gateway detection results. The number of neutralized gateways
shows that in most experiments only few narrow passages have not been detected upon
first traversal. Considering the respective RG Maps, almost all of these gateways are
located within cluttered regions, i.e. offices. That means, they do not corrupt the general
structure that refers to offices, rooms, hallways and doors. Clearly, the mapping process
generated a considerable amount of false-positives. This shows that using only 2D laser
data for the structuring process is not sufficient. For path planning, however, any structure
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that consistently represents the environment is advantageous, even though for humans the
representation might not seem to be very intuitive. On the other hand, given the Region &
Gateway representation, structural corrections are easy to accomplish by a simple human-
machine interface, e.g. mouse click to choose regions that are afterwards automatically
merged. Substantially better results can be achieved using vision-based detection of door
frames, as described in Chapter 3, because it allows to resolve ambiguous observations
from the laser-based detection.

6.2 RG Mapping using Laser and Vision

In Chapter 4 we described an algorithm for door detection based on laser range data
and vision. The laser data is used to obtain hypotheses for doors, i.e. narrow passages.
When a narrow passage is detected it triggers a search for 3D rectangles within the region
description that match the given dimensions of a door frame. Note that the laser-based
detection does not trigger the reconstruction process because when a narrow passage is
detected the robot is already close to the door. At this point the door frame is not or only
partially visible, thus, it can not be reconstructed. Instead, the Vision Module reconstructs
3D rectangles continually and independent of the laser-based detector. These rectangles
are stored in the region description. Figure 6.17 shows two typical scenes where the robot
moved along a hallway and reconstructed the door frames. In the lower image it can be
seen that the reconstructed door frames match very well with the laser data (red). The
vertical lines (cyan) on the left depict the narrow passage as it was detected using laser
range data. The two observations together clearly lead to a more robust detection of doors.

We have shown that using 3D vision enables more elaborate detection of doors, but it also
results in maps that contain substantially more information in terms of 3D object hypothe-
ses. In Chapter 3 we have shown that certain prominent object classes, e.g. 3D rectangular
objects, can be very accurately reconstructed using image segmentation, stereo vision and
projective geometry. Aligning all objects within a common frame of reference is accom-
plished using laser-based odometry correction within regions, as described in Chapter 3.3.5.
Figure 6.18 shows an example for a region description as it was built by the TumBot Map-
ping & Navigation System running on our B21r robot. The only information that has been
added manually is the height of the walls. All objects and the position of the walls are
automatically generated from the laser and vision data acquired within that region. It can
be seen that the door is correctly detected (orange) and the alignment of 3D objects, i.e.
table tops, monitor, closets, poster, shelf etc., is very accurate. The position of the walls
has been determined from the bounding rectangle of the 2D line segment map.

Figure 6.19 gives additional prove for those findings. 3D wireframe models (red for the door
and green else) of reconstructed objects are projected into the camera image for different
robot poses and camera orientation. The models fit very well to the image data indicating
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the accuracy of the 3D reconstruction algorithm. The left part of the two upper images
shows the generated 3D model as seen from the robot’s view point.

Figure 6.17: Doors detected in hallway scenarios
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Figure 6.18: 3D view of a region showing the reconstructed rectangular 3D objects, the
door (orange) and the walls. Except for the height of the walls the description was fully
generated using only the sensor data associated with that region.
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Figure 6.19: Different views from the robot’s perspective. Overlayed in the images are the
contours of reconstructed objects. The two upper left images are generated from the 3D
model using the camera positions determined by the robot.
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Chapter 7

Conclusion

In this thesis, we presented Region ¢ Gateway Mapping as a novel approach to map build-
ing. It automatically generates Region € Gateway Maps, which are structured representa-
tions of indoor environments, using 2D laser range data and stereo vision. RG Maps extend
the state-of-the-art, in particular metric maps, by providing a compact description of the
environment’s topology and explicit references to 2D/3D objects within the environment.

In contrast to topological approaches, RG Maps provide metric information for all places
that have been visited by means of a region description. Using these structuring mecha-
nisms the complexity of localization and path planning is substantially reduced because
only a subset of the map’s data has to be considered, namely the description of the re-
spective region. Global path planning utilizes the Region ¢ Gateway Graph that is easily
generated from a given RG Map. The edges in the graph represent path segments for gate-
way and region traversals together with their respective properties, such as the path length,
an estimation of the required time, and the probability of the segment being blocked. Thus,
global path planning based on RG Maps simplifies the computational problem of finding
paths for reliable and efficient navigation.

In the context of our mapping system, we developed an algorithm for automatically ac-
quiring models of rectangular 3D objects based on visual information. The algorithm uses
image segmentation, stereo vision and projective geometry, and makes little assumptions
on the object class, besides that the objects share some general geometric outline. For
a variety of different scenes and objects in office environments we have shown that our
method generates very accurate models. In addition, we described a method to determine
the probability of reconstruction success.

Successful RG Mapping requires the robot to reliably and accurately detect and recognize
gateways. To this end, we proposed a new algorithm for the detection and classification
of hallway crossings and turns using Hidden Markov Models. The observation models for
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each state are represented by mixtures of Gaussians which are automatically determined
based on k-means clustering. Extensive evaluation based on 20000 observation sequences
(about 200000 observations) validated the applicability of this approach. Our gateway
classification method outperforms heuristic methods, and generalizes well with regard to
different hallway width, the degree of clutter and other parameters of the environment.
In addition, we developed a method for detecting doors based on 2D laser data and the
3D reconstruction of door frames. This method combines laser-based detection of narrow
passages and our 3D reconstruction algorithm. Our experiments with a number of different
data sets showed that using only laser does not enable the robot to reliably distinguish a
door from a narrow passage between a wall and a compact table. Thus, the combination
of laser range sensing and vision has proven itself both to be necessary as well as sufficient
for reliable doorway recognition.

Finally, based on RG Mapping we developed a distributed mapping and navigation system
that we evaluated in a number of experiments using our B21r robot and a variety of data
sets. We demonstrated that RG Mapping is both well suited and capable of acquiring
structured and object-oriented representations of large indoor environments. The system
also features a novel approach to collision avoidance that uses trajectory segments and
stereo vision.

The approach and ideas presented in this thesis pose a number of interesting and challeng-
ing future research objectives. First of all, active exploration would substantially improve
the robustness of structured mapping. In the context of RG Maps, each region should first
be completely explored before traversing any new gateway. Gateways that have not yet
been traversed can be stored on a stack and then used to direct the exploration behaviour.
Also, it seems advantageous to visit these gateways in a breadth first manner to prevent
ambiguities in loop closing. New methods for gateway detection play an important role in
this context. Another subject of research is the exploitation of region recognition. Being
able to robustly recognize regions would allow for a new SLAM approach based on regions
instead of all observations. The robot would explore the environment region-by-region and
after each completion of a new region, it determines the probability of having observed
this region before. These likelyhoods can then be used in a probabilistic framework to
determine the topological structure, in particular to close loops correctly.
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