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Zusammenfassung

Die heutigen Standardeingabegeräte für graphische Benutzeroberflächen, Maus und Tastatur,
können von Benutzern, deren motorische Fähigkeiten beeinträchtigt sind, nicht verwendet
werden. Beispiele hierfür sind Benutzer mit krankheitsbedingt eingeschränkter Motorik
und Benutzer in Anwendungsdomänen mit manuellen Tätigkeiten. Die vorliegende Arbeit
beschäftigt sich mit dem Forschungsgebiet sprachgesteuerte graphische Benutzeroberflächen,
welches durch den Einsatz von Sprache als Eingabemodalität für graphische Benutzerober-
flächen nach Lösungen für dieses Problem sucht.

Der Stand der Forschung wird zunächst in zwei Gruppen eingeteilt: sprachbasierte
Mausemulation und Kommando-und-Steuerung. Sprachbasierte Mausemulation verwendet
Sprachkommandos zur Emulation der Mausfunktionen, bzw. der Tastatur. Der Benutzer
kann mittels Sprachkommandos indirekt über die Funktionen des Mauszeigers graphische
Objekte manipulieren. Kommando-und-Steuerung verwendet Sprachkommandos zur direk-
ten Steuerung der interaktiven Funktionalität von graphischen Objekten.

Sprachbasierte Mausemulation ist durch die betriebssystemweit verfügbaren Funktionen
des Mauszeigers universell anwendbar, während die Sprachkommandos für Kommando-und-
Steuerung vom jeweils zu steuernden graphischen Objekt explizit unterstützt werden müssen.
Sprachbasierte Mausemulation erfordert mehr Interaktion durch den Benutzer als Kommando-
und-Steuerung, somit können Aufgaben mittels Kommando-und-Steuerung schneller ausge-
führt werden. Die mittels Kommando-und-Steuerung erreichten Ausführungzeiten sind jedoch
derzeit noch um mindestens 50% höher als die Ausführungszeiten, die mit mausgesteuerten
graphischen Oberflächen erreicht werden.

Um die Ausführungzeiten mittels Kommando-und-Steuerung zu verkürzen, schlägt diese
Dissertation den Ansatz Konversation-und-Steuerung vor, welcher auf einer Erweiterung von
Kommando-und-Steuerung durch drei neue Interaktionstechniken, genannt qualifizierte Ak-
tivierung, automatische Behebung von Informationsfehlern und qualifizierte Rückmeldung,
beruht. Qualifizierte Aktivierung und automatische Behebung von Informationsfehlern re-
duzieren die durchschnittliche Anzahl der benötigten Sprachkommandos, während quali-
fizierte Rückmeldung auf eine Reduzierung der durchschnittlichen Länge der Sprachkomman-
dos abzielt. Dadurch wird eine Reduzierung der durchschnittlichen Interaktionszeit erreicht,
was sich in einer reduzierten durchschnittlichen Ausführungzeit niederschlägt.

Die theoretischen Grundlagen für Konversation-und-Steuerung werden von einem in dieser
Arbeit entwickelten formalen Modell für sprachgesteuerte graphische Oberflächen abgeleitet
und formal verifiziert. Um die Machbarkeit von Konversation-und-Steuerung zu zeigen
wird auf Basis des formalen Modells ein Implementierungskonzept entworfen und dessen
Realisierung in Form eines Frameworks für Konversation-und-Steuerung beschrieben. Mit
Hilfe des Frameworks wird ein Experiment durchgeführt, womit die formal prognostizierte
Reduzierung der durchschnittlichen Ausführungszeiten empirisch nachgewiesen wird. Das
Framework diente ferner als Grundlage für die Erstellung von prototypischen Anwendun-
gen mit graphischen Oberflächen aus der Anwendungsdomäne Mobile Wartung, welche
Konversation-und-Steuerung unterstützen.





Abstract

Todays standard input devices for graphical user interfaces, mouse and keyboard, cannot be
utilized by users whose motor functions are limited. Examples include users suffering from
motor restrictions due to illnesses and users in application domains with manual activities.
This dissertation engages in the research area speech-controlled graphical user interfaces
which aims at finding a solution to this problem by utilizing speech as input modality for
graphical user interfaces.

We begin with defining a taxonomy which differentiates the state of the art into two groups:
speech-based mouse emulation and command-and-control. Speech-based mouse emulation
uses spoken commands to emulate the functions of the mouse device (the keyboard, respec-
tively). The user manipulates graphical objects indirectly by the functions of the mouse cursor,
which are triggered by spoken commands. Command-and-control uses spoken commands to
facilitate a direct control of interactive functions of graphical objects.

Speech-based mouse emulation is universally applicable due to the operating system-wide
available functions of the mouse cursor, whereas the spoken commands for command-and-
control must be supported explicitly by each specific graphical object. Speech-based mouse
emulation requires more user interaction than command-and-control. Thus, command-and-
control requires less time to complete tasks than speech-based mouse emulation. However,
the task completion times which can currently be achieved using command-and-control are at
least 50% higher than the task completion times which can be achieved using mouse-controlled
graphical user interfaces.

For achieving lower task completion times with command-and-control we propose the ap-
proach conversation-and-control which is based on an extension of command-and-control by
three new interaction techniques called qualified activation, automatic information error re-
covery and qualified feedback. Qualified activation and automatic information error recovery
aim at reducing the average number of necessary spoken commands, and qualified feedback
aims at reducing the average length of necessary spoken commands. Thus, we achieve a reduc-
tion of the average interaction time which results in a reduction of the average task completion
time.

We derive the theoretical concepts for conversation-and-control from a general model for
speech-controlled graphical user interfaces, which we have developed during this work. In the
first instance, we use a formal approach to verify these concepts. To show the practical feasibil-
ity of conversation-and-control, we develop an implementation concept for conversation-and-
control on the basis of the formal model for speech-controlled graphical user interfaces. We
realize the implementation concept in the form of a framework for conversation-and-control.
Using this framework we conduct an experiment, which provides empirical confirmation of
the formally predicted reduction of the average task completion time of conversation-and-
control compared to command-and-control. We furthermore create prototypes of applications
with graphical user interfaces supporting conversation-and-control in the application domain
mobile maintenance.
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1
Introduction

"A display connected to a digital computer gives us a chance to gain familiarity
with concepts not realizable in the physical world. It is a looking glass into a
mathematical wonderland."

Ivan Sutherland

Overview
This dissertation aims at improving the utilization of speech as input modality for graphical
user interfaces (GUIs). In this chapter we introduce the historical origins of GUIs, which have
become the standard interface type for computing systems of today. GUIs are controlled by
mouse and keyboard, which is problematic for handicapped individuals and users in applica-
tion domains involving manual tasks. A solution to this problem is the utilization of speech to
control GUIs, because speech does not involve the usage of the hands. Speech-controlled GUIs
are GUIs which can be controlled by speech and different approaches for speech-controlled
GUIs exist. However, they do not yet reach the performance of GUIs which are controlled by
mouse and keyboard. We introduce and discuss existing approaches and propose three exten-
sions which we call qualified activation, automatic information error recovery and qualified
feedback. Qualified activation and automatic information error recovery reduce the average
amount of spoken commands while qualified feedback aims at reducing the average length of
spoken commands.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Ivan Sutherland operating the Sketchpad system.

1.1 Graphical User Interfaces
The history of graphical user interfaces (GUIs) reaches back to 1963 when Ivan Sutherland
invented the Sketchpad system [182]. Users could draw graphical primitives, such as straight
lines or circle arcs, onto a cathode ray tube (CRT) screen using a light pen 1 . Users could
change the size and position of a specific graphical primitive by using the light pen to point at it
and by pushing or turning specific buttons. With the Sketchpad system Sutherland established
the basic principles for interacting with a computer using graphics:

1. The user sees a graphical object on the screen.

2. The user points at the graphical object using a pointing device, i.e., the user focuses the
graphical object. We call changing the currently focused graphical object navigation.

3. The user triggers a specific change of the currently focused graphical object, e.g., move-
ment, resizing, morphing, etc., using some other control mechanism which depends on
the available input modalities, such as the push buttons of the Sketchpad system. We
call the triggering of changes of graphical objects activation.

The light pen had a significant drawback: the user was required to hold an arm in front of
the CRT screen for long periods of time, which quickly caused the arm to be sore and tired.
This problem was solved with the invention of the computer mouse by Douglas Engelbart in
1964. The computer mouse was a box-like device which had two gear wheels perpendicular
to each other on its bottom (Figure 1.2(a)). Instead of having to be held in front of the screen
the mouse was placed onto a solid surface, such as a desk. The wheels contacted the surface

1A light pen is a pen-like device which must be held in front of a CRT screen. On its tip it has an optical
sensor which is able to detect the changes in brightness of a specific pixel when that pixel is refreshed by the
electron gun of the CRT screen. Whenever the light pen detects such a change it causes a hardware interrupt
in the computing system that it is connected to. The X-Y position of the light pen on the CRT screen can be
determined from the X-Y position of the electron beam at the time the interrupt from the light pen occurs.
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(a) First computer mouse (b) Mouse cursor (circled) (c) Input devices for the NLS

Figure 1.2: Historical devices for GUI control.

and if the mouse was moved the wheels rotated. The rotation of each wheel was transformed
into electrical signals which represented movement along one axis in the plane (X axis, Y axis,
respectively).

Engelbart showed the feasibility of the mouse as pointing device on the basis of the oNLine
System (NLS). This system was demonstrated to the public in 1968 [55] 2 and allowed for the
simultaneous creation and manipulation of text and graphics. The NLS introduced a special
graphical primitive, called the mouse cursor (Figure 1.2(b)). The mouse cursor was perma-
nently shown on the screen and its X-Y position changed with the position of the mouse
device, i.e., every movement signal from the mouse caused a proportional movement of the
mouse cursor on the screen. With this concept the user was able to point at a specific position
on the screen without having to hold a device in front of the screen. Graphics were created
and manipulated using the mouse, while text was created and manipulated using a keyboard.
Both mouse and keyboard could be placed next to each other on a desk (Figure 1.2(c)).

The NLS is considered to be the first system with a graphical user interface as it coupled the
activation of specific pre-existing graphical objects with the invocation of application function-
ality. An example is the manipulation of text files which were represented by specific graphical
objects 3. In the following we refer to the process of navigating and activating graphical objects
of a GUI as the controlling of a GUI.

Today, mouse and keyboard are the standard input devices for controlling GUIs. However,
the fact that they have to be operated manually is problematic for users who are not able to
use their hands, even if only temporarily. For instance, for users with motor impairments (e.g.
Carpal Tunnel Syndrome [83]) the usage of manually operated input devices is cumbersome
or even painful. Another example are so called hands-busy application domains in which users
are engaged in manually performed tasks and consequently cannot use their hands to control
a GUI – at least not without interruption of the task.

2Video clips of the original demo session can be downloaded from http://sloan.stanford.edu/
MouseSite/1968Demo.html

3The NLS also demonstrated other concepts which are an integral part of today’s GUIs, such as hyperlinks and
multiple windows.
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Some research approaches try to mitigate this problem by developing computers, acces-
sories, and input modalities which require less manual interaction. For instance, the CMU
Dial Device [172] emulates mouse functions by turning a wheel to the left and right and by
clicking on it. Intended to be used in the area of wearable computing, it allows to control a
GUI with one hand instead of two (compared to simultaneous keyboard and mouse usage).
It requires, however, a specific GUI layout and interaction paradigm, so that the cursor can
be moved in a grid environment. Stylus-based computers are typically designed for mobile
usage. They mitigate the input problem by replacing the two devices mouse and keyboard by
one stylus, which is used to point onto a touchscreen. Using a specifically designed draw-
ing scheme, called Graffiti, it is possible to emulate keyboard entry. However, Graffiti must
be learned and trained. Furthermore, stylus-based computers need to be carried, thus, again,
both hands are occupied – one hand holds the stylus and the other hand holds the computer.
This problem is aimed to be solved by accessories like the E-Belt [148] or the Mid-Riff Brain
[149]; these devices are mechanical arms which can be mounted on the hip and a stylus-based
computer can be attached to them. As a result, the hand that formerly held the computer is
now free. However, the mechanical arm is cantilevered, which only makes it usable for mobile
application domains without spatial constraints.

In contrast to the approaches just discussed, this dissertation focuses on research which
deals with the development of hands-free input modalities – input modalities which do not
require the usage of the hands for the generation of input. Thus, no manual operations at all
are needed to control a GUI. In the following we introduce three such research areas: bio
signal interfaces, head orientation and position tracking and speech recognition.

Bio Signal Interfaces These interfaces capture electrical signals generated by the human
body and interpret them for controlling computers. Brain-computer interfaces are bio
signal interfaces which are based on the observation that the pure imagination of a phys-
ical action causes distinct measurable changes in the electrical activity of the human
brain. This activity can be captured by electrodes attached to the head and interpreted
as input for a computing system. Current research topics in the area of brain-computer
interfaces are the definition of models for the brain-computer interface design (Mason
and Birch [121]) and the identification of suitable application domains (Moore [136]).
Functional prototypes of brain-computer interfaces are available, such as a remote con-
trol (Xiaorong et al. [63]) and a system that allows to select from a given set of graphical
symbols (Serby et al. [166]). Other types of bio signal interfaces interpret electrical sig-
nals emerging from muscle contraction. As such, it has been observed that the clenching
of the teeth generates unique electrical signals (Yoshiyuki et al. [183]). This can be ex-
ploited to emulate basic mouse functions. For instance, Jeong et al. [86] show, by a
prototype system, that by combining two different clenching patterns, seven instructions
including rest, up, down, left and right, as well as click and double click can be emu-
lated. Bio signal interface prototypes show the feasibility of this technology, however,
it is currently slow (Penny and Roberts [147]) and lacks accuracy (Pino et al. [144]) –
which results in bad usability. Users have to undergo intensive training sessions in order
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to be able to generate the bio signal activity that the system requires. Furthermore, these
interfaces require gears or electrodes to be attached to the human body, which is not well
suited for mobile and spatially limited environments.

Head Orientation and Position Tracking This technology is based on (a stream of) data
from which the current orientation and position of the head is inferred. One variant is
to process a stream of digital images of the human head. Image processing algorithms
then track specific facial features or artificial artifacts. For instance, Chiu and Chu [36]
extrapolate into which direction the eyes look in order to generate X-Y coordinates for
positioning the mouse cursor on the screen. Eye tracking does, however, not work well
in the presence of large changes in head position and orientation. Therefore, Ashdown
et al. [9] track the orientation of the entire head and use the obtained X-Y coordinates to
move the cursor over large distances, e.g., when multiple monitors are used. Kitajima et
al. [98] track facial features to obtain X-Y coordinates for supporting window-specific
tasks, such as moving, zooming and scrolling. Experiments show that head tracking
based on image data is feasible, but it requires possibly bulky cameras. Furthermore,
image processing is complex and the noise in the image data introduces a noticeable
delay and inaccuracy in the movement of the cursor. This can, however, to a certain
extent be mitigated by applying an (extended) Kalman filter (Welch and Bishop [195])
to the image data stream. Another possibility for head orientation and position tracking
emerges from mounting tilt sensors onto a band that is worn around the head (e.g., the
HeadWay or Lazee Mouse Pro product). The head can be tilted to the left, right, forward
and backward in order to emulate move instructions. Mouse clicks can be emulated by
shortly blowing into a tube equipped with a pressure sensor. Similar devices can be con-
structed using ultrasound (e.g., HeadMaster Plus), gyroscopes (e.g., Boost Tracker) or
infrared sensors (e.g., HeadMouse Extreme), which also capture the tilting movements
of the head. Common to essentially all head tracking solutions and technologies is that
they are physically demanding. Additionally, infrared sensors do not work well in out-
side environments due to the sunlight. Ultrasound- and gyroscope-based devices are
bulky and require cabling, which limits their suitability for environments other than a
desktop environment, such as a mobile environment. Pfrommer [150] provides a further
comparison of head tracking technologies.

Speech Recognition Speech recognition technology transforms spoken language, as-
sumed to be available as an audio signal, into text. The recent advances in speech recog-
nition technology (McTear [124]) have facilitated the development of speech-controlled
computing systems – computing systems which use speech as input modality. Speech-
controlled computing systems have long emerged from academically used systems, e.g.,
CMU Communicator (Rudnicky et al. [160]), to productively used applications, e.g.,
the automatic time table information system of Deutsche Bahn 4 . Today, it is possible
to create speech-controlled computing systems which engage users into a natural dialog,

4The system is reachable by phone under +49 800 1507090.
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where the system accepts natural language as input and gives feedback with naturally
formulated responses, e.g., SENECA [135] and How May I Help You [69]. Furthermore,
speech for input purposes can be standardized: Rosenfeld et al. [158] have transitioned
the Graffiti interaction paradigm, known from stylus-based touchscreen computers, to
the speech-controlled computing systems domain. Thus, they call it Speech Graffiti,
also known as the Universal Speech Interface. A small set of standardized natural lan-
guage command templates, populated with a domain-specific vocabulary, is sufficient
for controlling arbitrary interactions and appliances (Harris and Rosenfeld [73]). The
feasibility of this approach has been shown by the means of prototype systems, includ-
ing MovieLine [159] and AppartmentLine [171]. Experiments further showed, that users
adapt well to the artificial language imposed by Speech Graffiti (Tomko and Rosenfeld
[186]).

The research area of speech-controlled GUIs, which we discuss in the following section,
is a subdivision of speech-controlled computing system research. It deals with the usage
of speech recognition technology as hands-free input modality for GUIs.

1.2 Speech-controlled Graphical User Interfaces
We now give an overview of the basics of speech recognition technology (section 1.2.1) and
introduce two schools of thought for using this technology to control a GUI.

The first school of thought, described in section 1.2.2, is called speech-based mouse emula-
tion and aims at emulating the functionality of mouse and keyboard by speech. In this work
we do not consider the emulation of keyboards by speech, because a keyboard can be repre-
sented by a special GUI which becomes part of the original GUI. This special GUI consists of
several graphical objects, each of them represents a specific key on the physical keyboard and
emulates a key stroke from the physical keyboard. This facilitates alphanumerical input with
the mouse and examples for available systems include built-in tools for Windows XP TabletPC
Edition.

The second school of thought, described in section 1.2.3, is called command-and-control
following the principle of interpreting speech directly as input for navigation and activation of
graphical objects, i.e., without manipulating the mouse cursor.

1.2.1 Speech Recognition Basics
A spoken command is the vocalization of a sequence of words. Speech recognition technology
transforms spoken commands, assumed to be available as audio signals, into the words which
have originally been vocalized. We call software components which implement speech recog-
nition technology speech recognizers. They are based on three data structures: the phoneme
database, the vocabulary and the language model. The phoneme database represents the basic
sound elements of a spoken languages, i.e., the phonemes, as audio signals. The vocabulary
contains all words which are known to the speech recognizer and represents them as sequences
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of phonemes. 5 It may contain several phoneme sequences for a specific word as there might
be several ways to pronounce the word. An example is the English article "a" which is pro-
nounced differently depending on the context in a sentence, additionally there are differences
in British and American English. The language model represents the structure of a language.
A popular language model in the context of speech recognition is the N-gram model (Brown
et al. [29]) – a statistical model which, given N-1 previous words, provides the probability
that the next word will be X (X represents a specific word of the recognizer’s vocabulary).
Another language model for speech recognition are probabilistic context free grammars (Kita
[97], Matsuzaki et al. [122]) – context free grammars which are enhanced by probabilistic
features.

The speech recognizer takes the audio signal and divides it into segments according to a
mathematical analysis process. The details of this process are beyond the scope of this dis-
sertation 6 . By matching the segments against the phoneme database, the audio signal can be
converted into the sequence of phonemes, which most likely represents the vocalization of the
spoken command. The speech recognizer then splits the phoneme sequence into subsequences
and looks up each subsequence in the vocabulary in order to determine the words which have
been spoken. As there are multiple possibilities to split the phoneme sequence the speech rec-
ognizer uses the language model to determine which resulting word sequences are likely and
which ones can be rejected. The word sequence with the highest probability of occurrence in
the language model is returned as the result of the speech recognition process, the so called
recognition result.

The time which passes between the user finishing the spoken command and the speech rec-
ognizer calculating the recognition result is called the recognition delay. The more words
are contained in the vocabulary the more computationally intensive is the speech recognition
process and consequently the higher is the recognition delay. In order to minimize the recog-
nition delay mathematical operations and models, such as Hidden Markov Models (Huang et
al. [79]), are used to reduce the complexity of the internal matching and look up processes.
Additionally, the speech recognizer makes a trade-off between processing time and finding
the optimal recognition result: if the optimal recognition result could not be found within a
specific amount of time, the best result which has been found up to that time is returned as
the recognition result. As such, it is likely that a recognition result is not equal to the original
spoken command. We call such a recognition result a recognition error.

With increasing size of the vocabulary the probability for recognition errors increases, as
the computational intensity increases. The speech recognizer offered by SPIRIT DSP [177]
claims to achieve a word error rate <= 1% for a vocabulary of up to 100 words. Deng et al.
[49] achieve a word error rate of < 5% with a vocabulary of 5000 words. In Nouza et al.
[140] word error rates of up to 30% with a vocabulary of up to 200,000 words are reported.
Experiments show that the probability of recognition errors decreases with the time that users

5In literature the term lexicon is frequently used in place of vocabulary.
6This analysis process represents audio signals as cepstral coefficients. The mathematical foundation of cepstral

coefficients has been established in 1963 (Tukey et al. [189]).
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Speech controlled GUI

Speech based Mouse Emulation Command and Control

Direction based Target based

Discrete Movement Continuous Movement Grid based

Navigation Activation

Restricted Type based Random

Direct Indirect

Discrete Commands Continuous Commands

Figure 1.3: Taxonomy of existing approaches for speech-controlled GUIs.

work with a system. Apparently, users learn how they need to articulate commands, so that
the speech recognizer recognizers them better (Falavigna et al. [56]). While users of speech
recognition-based systems tend to regard the occurrence of recognition errors as immature
technology, some researchers believe that recognition errors are inevitable (e.g. Danis and
Karat [45]). With state-of-the-art technology it is possible to achieve a recognition error rate
below 5% (Huang et al. [78], Mohan et al. [153]).

The introduction into speech recognition technology given in this section is sufficient for
the scope of this dissertation. For further studies, a comprehensive introduction into speech
recognition technology can be found in Huang et al. [80] and Kotelly [103].

In the following we will subsequently discuss different speech-controlled GUI approaches,
finally resulting in the taxonomy depicted in Figure 1.3, which depicts this taxonomy graph-
ically using the Unified Modeling Language (UML) 7 . We begin with speech-based mouse
emulation in section 1.2.2 and then continue with command-and-control in section 1.2.3. Fi-
nally, section 1.2.4 provides a brief summary.

1.2.2 Speech-based Mouse Emulation

Speech-based mouse emulation aims at emulating the functions of the mouse device by speech.
We identify two approaches for speech-based mouse emulation, the direction-based and the
target-based approach. Both approaches emulate the mouse button using the same technique:
the user speaks commands like "press left button" or "release left button" to emulate the press-
ing and releasing of the physical mouse button. The approaches differ in how they emulate the

7http://www.uml.org/
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movement of the mouse, respectively the movement of the mouse cursor.

Direction-based Approach

With a direction-based approach the user utters the direction along the X or Y axis of the
screen into which the mouse cursor should be moved. Two flavors exist and they differ in
the characteristics of the movement. We call these flavors continuous movement and discrete
movement.

Continuous movement implies that the mouse cursor continuously moves into the direction
spoken by the user. Some variants require discrete commands, i.e., commands consisting
of a finite amount of words, to start the continuous cursor movement. The movement stops
if either the user utters a specific discrete stop command or a border of the screen is reached.
Manaris et al. [118] and Karimullah and Sears [95] use verbal representations for the directions
(e.g. "move left" or "move up"), whereas Gori et al. [46] and Bilmes et al. [20] represent
directions as vowels (e.g., "a" for left or "u" for up). Olwal and Feiner [142] use arbitrary
English words or phrases as commands. Their system analyzes, amongst other parameters, the
duration and loudness of these commands and maps them to characteristics of cursor control,
such as the direction and the speed of the cursor movement. Other variants of continuous
movement use continuous commands to move the cursor, i.e., the cursor moves as long as
the user vocalizes. An example is the work of Igarashi and Hughes [81]: the user speaks the
direction into which the cursor should be moved, immediately followed by the vocalization
of a vocal which lasts until the cursor has reached the desired destination (e.g., "move up
aaaaaaaaaaaaaaaa"). A continuous movement allows for cursor positioning over long distances
with minimal user interaction – once the cursor moves no further interaction is required, except
if continuous commands are utilized. However, continuous movement lacks precision due to
the recognition delay: the cursor movement will not immediately stop after the user speaks the
stop command or the user stops vocalizing – it keeps moving as long as it takes to recognize the
stop command, respectively, until the speech recognizer detects the silence. As such, the faster
the cursor moves the lower the precision and vice versa (Karimullah et al. [94]). A predictive
cursor is an image of the cursor projected in the line of movement, indicating where the
cursor would halt if the stop command was uttered. It does not significantly improve accuracy
because users can estimate a halting point with or without the predictive cursor (Sears et al.
[163]) – however, this estimate is not accurate enough.

Discrete movement requires that the user, additionally to the direction, utters the distance
which the cursor should be moved relative to the cursor’s current position. Manaris et al. [118]
display a coordinate system on the screen so that the user can express the relative distance by
the number of units that the mouse cursor should be moved (e.g. "move three down" or "move
four left"). Yoshiyuki et al. [134, 133] see the current position of the mouse cursor as the
point of origin of a virtual X-Y coordinate system. Along the axes of this virtual coordinate
system they display ghost cursors, that is, images of the actual cursor, in specific intervals.
The user specifies the distance as the number of ghost cursors that lies between the current and
the new position. Discrete movements are more precise than continuous movement because
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the user specifies the distance that the mouse cursor should be moved, instead of guessing
where the continuous movement would stop. However, the distance is specified in virtual
units which range over several pixels. The pixels between the virtual units cannot be addressed
and consequently the mouse cursor cannot be positioned there. Brøndsted and Aaskoven [27]
propose a solution to this problem: the current position of the mouse cursor represents the
intersection point of eight rulers which are oriented like a compass, i.e., one ruler to the north,
one to the north-east, etc. – therefore this approach is referred to as the compass mouse. Each
ruler marks a point every 100 pixels from the center and the user repositions the mouse cursor
by uttering commands of the form "move north-east two hundred and ten pixels". Brøndsted
and Aaskoven show that with their approach the mouse cursor can be positioned to every pixel
on the screen by uttering maximal two commands. User experiments, however, show that even
trained users need more than two commands which is due to the fact that users cannot precisely
estimate the number of pixels between the center of the compass and the desired location on
the screen – which leads to corrections.

Target-based Approach

A target is a specific area on the screen which has been assigned a speakable identifier, such as
a label. The identifier is displayed on the screen somewhere close to the target. If the user utters
an identifier the mouse cursor is positioned to a specific position within the corresponding
target; the exact position depends on the target.

Graphical objects of GUIs can be used as targets (e.g., QPointer VoiceMouse [117] and
Dragon NaturallySpeaking Preferred 8) . The identifiers are derived from properties of the
graphical objects, such as textual attributes (e.g., the name of a button), and added dynam-
ically to the speech recognizers vocabulary 9 . Using graphical objects as targets is a fairly
straight forward approach, however, an exact positioning of the cursor within the target is not
possible. This causes problems with modern GUIs which provide graphical objects which be-
have differently depending on where inside the object the cursor is positioned. For instance
a drop down box object allows for entering a new menu item or opens a drop down menu
depending on where inside the object’s area the mouse cursor is positioned.

Dai et al. [44] propose a solution to this problem. They use a grid to divide the entire screen
into a specific number of regions (e.g. 3x3 regions). It is assumed that at least one region
overlaps with the graphical object to be targeted, with a specific position within a graphical
object, respectively. Each region is associated with a number. The user utters the number of a
region that overlaps with the target. This causes the mouse cursor to be placed to a dedicated
position within the respective region, such as the region’s center. If the mouse cursor is not
yet at the desired position within the target the enclosing region can recursively be divided
into smaller regions. The smaller regions are again associated with numbers and the cursor
can again be positioned to a dedicated position inside them. Additionally to recursing into

8http://www.nuance.com/naturallyspeaking/preferred/
9Dynamically changing the vocabulary is supported by current technology, e.g., Java Speech API [127] or

Microsoft’s Speech Development Kit [126]
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regions the user can shift the entire grid along the X and Y axis. Dai et al. show that with
their grid-based approach every pixel on the screen can be reached within a finite sequence of
grid recursions and shifts which is logarithmic in the size of the screen. However, the average
number of user interactions is higher than with direction based approaches.

1.2.3 Command-and-Control

The key idea of command-and-control is to interpret spoken commands directly for controlling
a GUI, i.e., for navigating and activating graphical objects, without manipulating the mouse
cursor. In the following we discuss navigation and activation separately.

Navigation

We distinguish three types for navigation called restricted navigation, type-based navigation
and random navigation.

Restricted navigation applies a specific order to graphical objects, called the navigation
order, which assigns each graphical object a predecessor and a successor. Only the predecessor
or the successor of the currently focused graphical object can be navigated to. An example
is a speech tool that comes with Windows XP TabletPC Edition. It allows for navigation of
graphical objects by speaking "next" and "previous" using a navigation order that is determined
by the operating system (e.g. from the layout of the graphical objects) or by the programmer
of the GUI 10 .

Type-based navigation extends restricted navigation by using the type of graphical objects
as navigation filter. Graphical objects of which the type does not match the current filter setting
are skipped when predecessor and successor of the currently focused object are determined.
Type-based navigation is faster than restricted navigation but requires domain knowledge to
determine the type of a graphical object. An example for type-based navigation is the work of
Olsen et al. [91] who have developed a speech-controlled GUI for a calendar application. The
GUI consists of graphical objects for months, weeks and days. Week objects are aggregated
from day objects and month objects are aggregated from week objects. The user can navi-
gate month-wise ("next month"), week-wise ("next week") or day-wise ("next day"). Another
example is the work of Arnold et al. [7] who have developed a speech-controlled graphical
editor for high-level programming languages. The syntactic elements of a program are repre-
sented by graphical objects and the user can navigate the elements by their syntactic type. For
instance "move down statement" would navigate to the next object that represents a statement,
whereas "move up if" would navigate to the first previous object that represent an if clause.

Restricted and type-based navigation are slow because objects between the currently fo-
cused object and the desired object have to be navigated to – regardless of whether type-
filtering is applied or not.

Random navigation solves this issue by allowing navigation to any graphical object at any

10This specific order is commonly referred to as the Tab-order.
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time, provided that the respective graphical object has a speakable identifier (similar to target-
based mouse emulation). An example for random navigation is Conversay Voice Surfer [43]
which is a plug-in for Microsoft Internet Explorer that facilitates speech-controlled web brows-
ing. It provides random navigation by generating labels for each interactive object contained
in the currently viewed web page (e.g. hyperlink or form element). The user navigates to a
specific interactive object by speaking its label. Another example is the work of James et al.
[85] who have created a speech-controlled GUI for SAP Workplace 11 , where users navigate
tree menus by speaking the labels of respective menu items.

Activation

We distinguish two types of activation called direct activation and indirect activation. Com-
mon to both approaches is the fact that each graphical object defines specific commands for
each specific activation. The approaches differ in how the activations are triggered.

With direct activation the triggering of an activation is only possible if the respective graph-
ical object is focused. As such, the user first has to navigate to the desired graphical object and
then has to utter the desired activating command(s).

Indirect activation triggers a specific predefined activation of a graphical object at the mo-
ment the object is focused. An example is the invocation of a button action at the time the but-
ton is navigated to. Thus, the activation occurs with the user speaking a navigation command.
For activations which are not coupled with a specific navigation, direct activation applies.

Indirect activation is faster than direct activation because the user, at least for specific acti-
vations, does not have to utter commands explicitly. Existing systems, however, tend to mix
direct and indirect activation. For instance Conversay Voice Surfer [43] opens the drop down
menu of a drop down box if the user speaks the corresponding label (indirect activation). In
order to enter a value into an input field the user explicitly has to spell the respective characters
(direct activation). Another example of a system that mixes direct and indirect activation is a
prototype of a speech-controlled GUI for the maintenance domain developed by Sipek [174].
The user is presented a list of tasks which need to be completed. Each task is represented by a
numbered list item. The user can view the details of a task by speaking the respective number
(navigation) and then uttering "view" which causes the task details to be displayed (direct ac-
tivation). The task details display contains a "Save" button, which, if the command "save" is
spoken, causes changes to the task details to be persisted (indirect activation).

1.2.4 Summary

Speech-based mouse emulation and command-and-control are two schools of thought for
speech-controlled GUIs. The mouse can be emulated by the direction-based approach which
lets the user move the mouse cursor continuously or discrete into a specific direction. The
target-based approach lets the user position the mouse cursor to specific targets on the screen,

11SAP Workplace is a management application for the SAP runtime environment.
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Approach Synopsis Pro Con
Dir.-based mouse emulation.,
continuous movement

Commands control continuous
movement of mouse cursor

Simple commands; easy to
learn; universally applicable

Slow; inaccurate due to recog-
nition delay

Dir.-based mouse emulation.,
discrete movement

Absolute placement of mouse
cursor using real or virtual
screen coordinates

Precise positioning; faster than
continuous movement

Preciseness depends on granu-
larity of coordinates; complex
commands

Target-based mouse emulation Placement of mouse cursor into
dedicated and named areas (tar-
gets)

Intuitive, e.g., graphical objects
as targets

Positioning within target is ar-
bitrary; approach does not sup-
port complex graphical objects

Grid-based mouse emulation Commands control grid which
defines targets on screen

Preciseness achieved by grid
recursion and shifting

Higher number of com-
mands necessary compared
to direction-based mouse
emulation

Restricted navigation All graphical objects are or-
dered; commands change focus
to next graphical object in order

Analogy to keyboard-based
navigation via Tab-key

Slow

Type-based navigation Similar to restricted navigation,
but filters objects in navigation
order based on type

Faster than restricted naviga-
tion for heterogeneous and hi-
erarchical structures

Slow for homogeneous struc-
tures

Random navigation Commands change focus to
any graphical object

Fast and intuitive Increased recognition
complexity due to large
vocabulary

Direct activation Specific commands trigger spe-
cific activations of currently fo-
cused object

Separation between navigation
and activation

Slow

Indirect activation Automatically trigger specific
activation if graphical object is
focused

Faster than direct activation Increased risk of misunder-
standings

Table 1.1: Summary of speech-controlled GUI technology

e.g., to graphical objects. The grid-based approach is a special target-based approach that uses
grid cells as targets. Command-and-control uses spoken commands to emulate navigation and
activation of graphical objects. While activation is typically performed by spoken commands
which verbally describe the intended activation, navigation can be performed restricted (only
specific graphical objects can be navigated), type-based (only graphical objects of a specific
type can be navigated) or randomly (any graphical object can be navigated). Table 1.1 sum-
marizes our survey on speech-controlled GUI technology.

1.3 Performance of Speech-controlled GUIs

A common metric for measuring the performance of applications is the metric task completion
time [50]. It measures the total time a user needs to complete specific predefined tasks with the
application, starting with the point in time where the user performs the first interaction with
the user interface of the application, and ending with the application being in the desired state.
The shorter the task completion time the better the quality of the application.

Early studies with speech-controlled applications from the medical domain showed that

13



CHAPTER 1. INTRODUCTION

speech recognition as input modality increases the task completion time by 400% as compared
to a conventional application with graphical menus (Leeming et al. [105]). Recent studies of
applications with speech-controlled GUIs showed that the percentage by which speech con-
trol increases the task completion time, could be reduced to approximately 50% compared to
mouse-controlled GUIs – at least for specific application domains, specific speech-controlled
GUI approaches and GUI instances (Dai et al. [44], Van Buskirk and LaLomia [32], Christian
et al. [37], Arnold et al. [7]).

In this dissertation we aim at further improving the achievable performance of applications
with speech-controlled GUIs, i.e., we aim at reducing the percentage that speech-control adds
to the task completion time compared to mouse-controlled GUIs. We focus on command-and-
control for two reasons: first, as the discussion in section 1.2 shows, a lot more research has
been conducted and a lot more different approaches and systems exist in the area of speech-
controlled mouse emulation than in the area of command-and-control. Second, we argue that
speech-controlled mouse emulation adds an additional – unnecessary – level of indirection to
the interaction: the user controls the mouse cursor, which is the metaphor of the physical posi-
tion of a non-present mouse device, in order to control graphical objects, which are a graphical
metaphor of application functionality. It is a generally accepted hypothesis that speech by the
virtue of being natural is a natural input modality for computing systems 12 . As such we
argue that command-and-control is the approach which is better suited for controlling a GUI
by speech, as it does not involve a metaphor of a physical device. Command-and-control,
although the system is not responding verbally, has a flavor of performing a conversation with
the GUI.

In the following we refer to a speech-controlled GUI adhering to a command-and-control
approach as a command-and-control interface. We motivate our proposed improvements of
command-and-control interfaces (section 1.3.2) by an examination of the different temporal
components of task completion time in the following section. The examination will reveal that
only a few specific components of the task completion time depend on the characteristics of
the command-and-control interface – and thus provide possibilities for improvements.

1.3.1 Temporal Components of Task Completion Time

The time to complete a task with an application equipped with a command-and-control inter-
face is a cumulation of three main temporal components which we call the application delay,
the user delay, and the user interface delay, as depicted in Figure 1.4 on the facing page.

The application delay denotes the time which is consumed by the application processing or
accessing data. It influences the task completion time, but it is independent of the inherent
performance of the command-and-control interface: for instance, consider an application with
a command-and-control interface running on one computer, accessing a database running on
another computer. The database also has clients different from our application. If this database

12There is, however, empirical evidence which contradicts this hypothesis for special tasks/domains, such as
non-trivial situations in text editing Karl et al. [96].
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TaskCompletionTime

CognitiveDelay

Distraction

ApplicationDelay

InteractionDelay

UserInterfaceDelayUserDelay

DataAccessDelayDataProcessingDelayPresentationDelay

Task specific UserInterface specific InputConveyDelay InputProcessingDelay

Figure 1.4: Constituents of task completion time.

is under heavy load then data access is slow, causing our application to be slow – which results
in a high task completion time. If the database is idle then data access is fast, causing the
application to be fast, which results in a low task completion time. However, the inherent per-
formance of the command-and-control interface remains the same – independently of whether
the database (the application layer, respectively) is slow or fast. As such it is not feasible to
increase the performance of command-and-control by reducing the application delay.

The user delay denotes the time which the user spends on actions other than interacting
with the command-and-control interface. For instance, it includes times where the user is
distracted while being in the middle of performing a task (e.g., due to a phone call). Another
example is task-specific cognitive load, such as reviewing and evaluating data presented by
the command-and-control interface. The user delay influences the task completion time, but
it is, like the application delay, independent of the performance of a command-and-control
interface. For instance, the user reviewing data for a long time results in a high task completion
time, whereas the user reviewing data quickly results in a low task completion time. However,
the inherent performance of the command-and-control interface remains the same. As such it
is not feasible to increase the performance of command-and-control interfaces by reducing the
user delay.

The user interface delay represents the time spent on the plain interaction with the
command-and-control interface. It consists of the presentation delay, the interaction delay,
and the user interface-specific cognitive load.

The presentation delay denotes the time needed to present the user interface itself (data,
respectively). Regarding a command-and-control interface it denotes the time needed for ren-
dering graphical objects. We assume that a command-and-control interface is based on today’s
available GUI toolkits (e.g. Java Swing [132, 200] or MFC [151]) and argue that the presenta-
tion delay induced by command-and-control interfaces has reached an optimal level. As such
it is not feasible to increase the performance of command-and-control interfaces by reducing
their presentation delay.
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The user interface-specific cognitive load denotes the time that the user spends on thinking
about how to interact with a specific user interface. We argue that continuous training can
reduce this cognitive load to a specific minimum: if a user repeatedly performs specific tasks
with a specific user interface then the task completion time for these tasks will decrease down
to a certain (at least user-specific) level. While researches generally observe that the cognitive
load of speech-controlled user interfaces is higher than the cognitive load of mouse-controlled
user interfaces (e.g., Christian et al. [37]) we conclude that the user of a command-and-control
interface at some point in time knows "instinctively" which commands to speak. This has been
observed for other speech-controlled user interfaces as well, e.g., ShortTalk by Klarlund [99].
This requires, however, that there is a fixed set of available commands that can be trained (e.g.,
restricted or type based navigation). Alternatively, there must be a simple and easy to learn
schema for dynamically changing commands (e.g., random navigation) which users must be
trained to use. We will show in the remainder of this work that all discussed speech-controlled
GUI approaches, especially command-and-control, use a fixed set of valid commands or an
easy to learn schema. While we generally consider it a good idea to aim at reducing the
cognitive load induced by command-and-control we argue that it is not a feasible approach,
since cognitive load cannot be measured directly: only symptoms which indicate cognitive
load can be measured (DiDomenico [51]) 13.

The remaining temporal component of task completion time is the interaction delay. It
denotes the time that the user spends on the pure interaction with the user interface. It can
generally be decomposed into the input convey delay and the input processing delay. The
input convey delay denotes the time needed to convey input using a specific input modality,
whereas the input processing delay denotes the time to process the input and to determine
further actions. Applied to command-and-control the interaction delay denotes the time that
the user spends on uttering commands, the time that is needed to recognize the commands
and the time for the interpretation of commands. In the following section we propose how the
interaction delay of command-and-control can be reduced.

1.3.2 Proposed Interaction Techniques

In this dissertation we show that the interaction delay of a specific speech-controlled GUI
approach, especially of command-and-control, can be determined from quantitative and qual-
itative characteristics of a model for speech-controlled GUIs, which we specify in chapter
2. In order to further improve the achievable task completion time using a command-and-
control interface, we propose to reduce its interaction delay using the new techniques qualified
activation, automatic information error recovery and qualified feedback. We explain these
techniques in the following.

Qualified activation defines that spoken commands only trigger activations of graphical ob-
jects and that the respective command must be qualified with information necessary to iden-

13The empirical validation of our proposed improvements suggest both a low increase in cognitive load and the
ability to compensate this cognitive load by further training.
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tify the activation – explicit navigations are not performed. Necessary information includes
the speakable identifier of the graphical object and an identifier for the type of the activation.
If a command does not include all required information, we consider it an information error
and will provide a collection of automatic mechanisms which aim at resolving the information
error. For example, if the user wants to select the menu item "Munich" from the menu "Cities"
the command "select Munich from Cities" would achieve this, provided that the user knows
which items are available. If the user changes his mind and wants to change the previously
selected item (e.g., from "Munich" to "Pittsburgh") he could utter the command "Pittsburgh".
This is an information error in the first place, as the speakable identifier is missing. But consid-
ering that the user just has activated the "Cities" menu, the information error can automatically
be resolved by selecting the "Pittsburgh" option from the "Cities" menu. Assuming that the
"Cities" menu would be the only menu on the screen that has a menu item "Munich", its initial
selection could also be achieved by just the command "Munich": this is also an information
error in the first place, but the system can automatically infer that the "Cities" menu must
be meant, since there is only one graphical object with the menu item "Munich". We claim
that qualified activation and automatic information error recovery reduces the average amount
of spoken commands which are necessary to interact with a GUI by speech, because a sin-
gle command contains more information, respectively, is evaluated under consideration of the
current context, such as the command history or the GUI state. Thus, qualified activation and
automatic information error recovery reduce the interaction delay.

There are, however, information errors which cannot be resolved automatically. In these
cases we propose that the speech-controlled GUI ought to give qualified feedback as to why
the information error cannot be resolved. For instance, if the user says "select Munich from
Cities" but the speech recognizer recognized "select from Cities" the following feedback would
be generated: "Which item in menu Cities do you mean?". The user would respond with "Mu-
nich" and under consideration of the command history the "Munich" item of the "Cities" menu
could be determined. In order to realize qualified feedback we represent activations as sets of
name-value pairs. The semantic information of a command is used to populate the name-value
pairs according to a specific algorithm (which we present later in this work). Depending on
which name-value pairs are populated, the activation is triggered or a feedback question re-
garding the missing property(ies) is generated. This mechanism can also be used to detect
and handle ambiguous situations. For instance, assume that there is a menu "Origin" and a
menu "Destination" and both menus would contain a menu item "Munich". The command
"Munich" would fill a specific name-value pair on both the activation for "Origin" and "Des-
tination", leading to an ambiguity: should "Munich" be selected from the "Origin" or the
"Destination" menu? To resolve the ambiguity the feedback question "Do you mean Origin
or Destination?" could be generated. The user would for instance respond with "Origin" and
under consideration of the command history the "Munich" item on the "Origin" menu would
be selected.

We claim that qualified feedback reduces the average length of commands which are needed
to interact with a speech-controlled GUI. Currently, recognition results are simply rejected if
a recognition error occurs. The user has to repeat the very same spoken command. Qualified
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feedback induces commands which are shorter than the command that was mis-recognized –
thus, it reduces the interaction delay.

As discussed in section 1.2.3 command-and-control with random navigation and indirect
activation is currently the fastest command-and-control approach, to which we refer in the
following as conventional command-and-control. By extending conventional command-and-
control with qualified activation, automatic information error recovery and qualified feedback
we arrive at a new approach for speech-controlled GUIs which we call conversation-and-
control. Using a formal approach we show that conversation-and-control has a lower average
interaction delay than conventional command-and-control. In order to show the feasibility
of conversation-and-control we have developed a framework, called the conversation-and-
control framework. Based on this framework we designed, implemented and conducted an
experiment to validate conversation-and-control empirically. As predicted by our formal ap-
proach, the average task completion time of conversation-and-control is lower than the average
task completion time of conventional command-and-control. We also show that the framework
is feasible to create conversation-and-control interfaces for applications for the mobile main-
tenance domain.

1.4 Outline
In chapter 2 we develop a model for speech-controlled GUIs which serves as the basis for
a formal model for the interaction delay in chapter 3. Chapter 4 describes interaction delay
calculations of several speech-controlled GUI approaches, including conventional command-
and-control. The results motivate the theoretical ideas for conversation-and-control, which
we present in chapter 5. Chapter 6 evaluates conversation-and-control regarding its im-
plementability and its interaction delay. The chapter further describes a user experiment a
conversation-and-control interface and reports about its results. Chapter 7 gives a summary of
this work and provides an outlook onto future work which we regard as necessary in order to
transition the concepts presented in this dissertation into productive applications.
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2
The Speech-GUI Model

"All models are wrong. Some models are useful."

George Box [25]

Overview
This chapter presents the speech-GUI model – a model which abstracts the core components
of speech-controlled GUIs: control actions, speech functions, commands, speech recognizers
and recognition result interpreters. Control actions generalize activation and navigation allow-
ing the specification of GUI-specific tasks independently of utilized input modalities. Speech
functions abstract the functionality of a specific speech-controlled GUI approach that is used
to perform control actions. Speech functions abstract the functionality which is provided by
the input modality speech. Speech functions are invoked by the means of uttering commands,
which are recognized by a speech recognizer. Speech recognizers model the speech recog-
nition process as an abstract function which transforms commands into recognition results.
Recognition result interpreters encapsulate the semantic analysis of speech recognition re-
sults. They identify the speech function which the given recognition result – and as such the
initially uttered command – addresses.

The speech-GUI model is useful in two regards: first, it is used as the foundation for deriv-
ing a model for the interaction delay for speech-controlled GUIs (chapter 3) based on which
we perform interaction delay calculations (chapter 4). Second, it is the conceptual basis for
conversation-and-control (chapter 5) and the conversation-and-control framework.
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2.1 Design Goals

The speech-GUI model is based on the following design goals.

Encapsulation of Speech Recognition Process Speech-controlled GUIs are based on
speech recognition, however, the inherent characteristics of this technology are out of the
scope of this dissertation. The speech-GUI model must therefore provide an abstraction
which encapsulates the details of the speech recognition process. The abstraction must,
however, specify and expose characteristics which affect the performance of speech-
controlled GUIs, such as the recognition delay and the probability by which recognition
errors occur. The speech-GUI model must furthermore be applicable to the character-
istics of currently available speech recognition development kits, such as Microsoft’s
Speech Development Kit [126], and speech recognition APIs, such as Java Speech API
[127, 131].

Duration of Input Speech is a temporal input modality denoting that the conveying of in-
put to a computing system via speech takes a significant amount of time. This time
corresponds to the input convey delay as defined in section 1.3.1. Regarding differ-
ent speech-controlled GUI approaches the input convey delay may vary depending on
which and how many commands need to be uttered in order to achieve a specific goal.
As such, the input convey delay is a specific characteristic of each speech-controlled
GUI approach and must be reflected by the speech-GUI model.

Coverage One purpose of the speech-GUI model is to provide the basis for the derivation
of a model for the interaction delay of speech-controlled GUIs. Therefore, it must be
possible to describe existing approaches with the speech-GUI model, i.e., the speech-
GUI model must at least cover the approaches which have been introduced in this work
(see section 1.2).

Implementability Another purpose of the speech-GUI model is to serve as the foundation
for the design of the conversation-and-control framework. As such, the characteristics
and properties of the speech-GUI model must be checked for practical implementability.

Extensibility The speech-GUI model must propose a general concept for the design of
speech-controlled GUI approaches. Therefore it must be possible to extend the model
at a later point of time to such new approaches, unless they can already be covered with
the existing model stage.

In the following sections we will introduce the core components of speech-controlled GUI
approaches. For each core component we will provide a detailed textual explanation as well
as a specification in the form of a UML class diagram. We will furthermore relate each core
component, where applicable, to the Goals, Operators, Methods, and Selection rules (GOMS)
model, which has (in its initial form) been introduced in 1980 (Card et al. [34]). The GOMS
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model, which we explain in the following, has become accepted as a means for analyzing
routine human-computer interactions (John [89]), and has been extended to a family of variants
(John and Kieras [88]) since its initial introduction. The first version of GOMS is referred
to as the Keystroke-Level Model (KLM-GOMS). It allows making predictions regarding the
expected task completion time with user interfaces involving the keyboard (and the mouse).
KLM-GOMS describes the task that a user intends to perform as a goal and distinguishes
between high-level goals (e.g., WRITE-THESIS ) and low-level goals (e.g., TYPE-WORD ).
It has soon been recognized that the possibility to decompose goals into a hierarchy of sub
goals is required, which has been formalized in the Card-Morn-Newell GOMS (CMN-GOMS)
in 1983 (Card et al. [33]). Methods describe how to achieve goals or sub goals and are
composed from a sequence of operators, whereas an operator is an atomic perceptual, motor
or cognitive action. The duration of an operator models the time to execute it, thus, from the
overall duration of the involved operators in accomplishing a goal, the task completion time
can be inferred. If there are multiple methods for performing a task, then a set of selection
rules models the user’s behavior of selecting a method.

Having explained the basics of GOMS modeling we now go into the details of the speech-
GUI model. Section 2.2 begins with control actions followed by speech functions in section
2.3, and commands in section 2.4. Speech recognizers are introduced in section 2.5 followed
by recognition result interpreters in section 2.6. After discussing the core components sepa-
rately we provide a consolidated UML class diagram of the speech-GUI model in section 2.7,
which also provides a high-level UML sequence diagram to visualize the dynamic aspects.
The chapter closes with a discussion of the speech-GUI model regarding the fulfillment of
the design goals and inherent limitations, and compares the speech-GUI model to other user
interface models (section 2.8).

2.2 Control Actions

Control actions are generalizations of navigation and activation 1 , i.e., navigation and acti-
vation are subclasses of control actions. Each graphical object defines a specific finite set of
control actions, which represent its interactive functionality. Consider for example the simple
GUI G depicted in Figure 2.1 on the next page, which consists of a graphical object repre-
senting a push button which we call Save-button in the following (the black rectangle that
encloses the Save-button shall represent the boundaries of the screen). For the Save-button
two control actions exist: a navigation that sets the focus to the Save-button (NSAVE ) and
an activation which triggers an application-specific function associated with the Save-button
(ASAVE ), e.g., a saving process of data to a file.

Control actions are, just like navigation and activation, independent of the input modality
that is used to control the GUI. They can therefore be regarded as a GUI-specific instance of
a low-level GOMS goal. Consider for example the two control actions defined for the Save-

1These terms were introduced in section 1.1.
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Figure 2.1: Exemplary GUI G.
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Figure 2.2: Relationships of control actions, navigations, activations and sessions.

button. If a mouse is available then the user would perform a sequence of mouse movements
to position the mouse cursor over the button and then perform a click to activate the button. If
a keyboard is available the user might use the arrow keys to position the mouse cursor over the
button and then hit the space bar to activate the button. As each graphical object defines a spe-
cific finite set of control actions, the interactive functionality of a GUI is a finite set of control
actions, which results as the union of all control actions of all graphical objects in the GUI.
Control actions denote a model which allows for an input modality-independent specification
of GUI-specific tasks. We call a sequence of control actions which represents a specific task
a session. It can therefore be considered to be a GUI-specific instance of a GOMS high-level
goal. Correspondingly, by performing a session we understand the performing of all control
actions contained in that session. The UML diagram depicted in Figure 2.2 specifies the rela-
tionships between control actions, navigations, activations, sessions and GUIs. Figure 2.3 on
the next page describes the control actions of the simple GUI G in UML, based on the classes
defined in Figure 2.2. In the following section we describe how control actions are performed
by the means of speech functions.

2.3 Speech Functions
Speech functions model the atomic functions which a specific speech-controlled GUI approach
provides for controlling a GUI by the means of speech. For instance, given direction-based
mouse emulation with continuous movement (such as described by Karimullah and Sears
[95]), the following speech functions would be available:

1. Start continuous mouse cursor movement to the left (SFML ).

2. Start continuous mouse cursor movement to the right (SFMR ).
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ControlAction

ActivationNavigation

NSAVE ASAVE

Figure 2.3: Control actions of simple GUI G.

3. Start continuous mouse cursor movement upward (SFMU ).

4. Start continuous mouse cursor movement downward (SFMD ) .

5. Stop mouse cursor movement (SFSTOP ).

6. Perform a mouse button click (SFCLICK ).

Speech functions are an analogy to the functions which a mouse device provides to control a
GUI, such as movements, clicks and double clicks. In a mouse-controlled GUI the user utilizes
the mouse functions to control the GUI, i.e., to perform a session. As such, the user maps a ses-
sion to a specific sequence of mouse functions. The situation with speech-controlled GUIs is
analog: here, the user utilizes the speech functions to perform a session and correspondingly
maps a session to a specific sequence of speech functions. We call the sequence of speech
functions to which a user maps a session the user’s intention – as the user intends to perform
the session by this specific sequence of speech functions. It is tempting to consider speech
functions and intentions to be an analogy of operators and methods in terms of the GOMS
model. However, speech functions and intentions represent an intermediate abstract level be-
tween goals and operators/methods. Anticipating the discussion in section 2.4, commands will
correspond to operators, they represent the actual interaction with the system. This abstraction
layer allows us to model alternative commands for the same functionality. The UML diagram
in Figure 2.4 on the following page depicts speech functions and their relationship to control
actions.

The number of speech functions of an intention does not need to be equal to the number
of control actions in the session, i.e., there is not necessarily a 1:1 mapping between control
actions and speech functions. In order to illustrate this coherence we will give examples which
emanate from the simple GUI G (Figure 2.1 on the preceding page, Figure 2.3, respectively).
We assume that the user is given the task to activate the Save-button with the precondition that
the Save-button is currently not focused. Therefore, the user has to navigate to the Save-
button (NSAVE ) before it can be activated (ASAVE ). We refer to this sequence of control
actions as the session SG := (NSAVE, ASAVE) which is described in UML diagram in Figure
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Figure 2.4: Speech functions and their relationship to control actions.
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Figure 2.5: Session SG.

2.5. In the following UML diagrams objects, i.e., instances of classes, will be depicted with a
gray background.

In the following we give three examples for performing the session SG using different
speech-controlled GUI approaches. The first example assumes that command-and-control
with random navigation and direct activation is used. It shows that the number of control ac-
tions can be equal to the number of speech functions. In the second example direction-based
mouse emulation with continuous movement is available, showing that the number of control
actions can be lower than the number of speech functions. The third example shows that the
number of control actions can be greater than the number of speech functions considering the
approach command-and-control with random navigation and indirect activation.

Command-and-Control with Random Navigation and Direct Activation

In this example we assume that command-and-control with random navigation and direct ac-
tivation is available, which assigns graphical objects a speakable identifier. Users navigate to
graphical objects by uttering the identifier. Figure 2.6 on the next page depicts the initial situ-
ation for this example: there is no mouse cursor and the Save-button is assigned the identifier
"Save".

For the context of this example we define two speech functions: one speech function causes
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Figure 2.6: Initial situation for example 1.

SpeechFunction

SFSAVEFOC SFSAVEPUSH

Figure 2.7: Speech functions of example 1.
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1:SFSAVEFOC

Intention

IG1:Intention

Session

SG:Session

ASAVE:ActivationNSAVE:Navigation

2:SFSAVEPUSH

Figure 2.8: Intention IG1.

the GUI to set the focus to the Save-button (SFSAVEFOC ) and one speech function that
causes the Save-button to be pushed, given that it has been navigated to before (SFSAVE-
PUSH ). These speech functions are expressed in UML in Figure 2.7.

The user is able to perform the navigation to and the activation of the Save-button by
invoking the speech function SFSAVEFOC followed by the speech function SFSAVEPUSH.
Consequently, in the context of this example, the session SG, consisting of two control actions,
is mapped to the intention IG1 := (SFSAVEFOC, SFSAVEPUSH) as illustrated in Figure 2.8.

This example shows that there are cases where the number of control actions is equal to
number of speech functions in the corresponding intention. This denotes that a (sub-)sequence
of control actions of length n can be mapped to a (sub-)sequence of speech functions with the
length m, where n = m.
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SpeechFunction

SFSAVE SFMR SFMD SFMU SFSTOP SFCLICK

Figure 2.9: Speech functions of example 2.

(a) Initial situation (b) Sequence of speech
functions by which the ses-
sion SG is performed

Figure 2.10: Initial situation for example 2.

Direction-based Mouse Emulation with Continuous Movement

We will provide an example where the number of speech functions is greater than the number
of control actions. For this example we assume that continuous direction-based mouse emula-
tion is used and the available speech functions, as introduced in the beginning of this section
on page 22, are described in UML in Figure 2.9.

In the following we refer to Figure 2.10. Figure 2.10(a) depicts the initial situation for this
example: the mouse cursor is positioned in the north-west of the Save-button. Continuous
direction-based mouse emulation only permits orthogonal movements of the mouse cursor
along the axes of the screen. Therefore, given this initial situation, SG can be performed by

1. invoking the speech function that sets the mouse cursor in downward motion along the
screen’s Y axis (SFMD ),

2. invoking the speech function that stops the movement of the mouse cursor when it is
positioned in the west of the Save-button (SFSTOP ),

3. invoking the speech function that sets the mouse cursor in rightward motion along the
screen’s X axis (SFMR ),

4. invoking the speech function that stops the movement of the mouse cursor when it is
positioned over the Save-button (SFSTOP ),
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Figure 2.11: Intention IG2.

Figure 2.12: The initial situation example 3.

5. invoking the speech function that emulates the mouse button click (SFCLICK ); as illus-
trated in Figure 2.10(b).

In the context of this example the session SG, consisting of two control actions, can be
mapped to the intention IG2 := (SFMD, SFSTOP, SFMR, SFSTOP, SFCLICK) which con-
sists of five speech functions as illustrated in Figure 2.11.

This example shows that the number of control actions in a session can be lower than the
number of speech functions in the corresponding intention. This denotes that a (sub-)sequence
of control actions of length n can be mapped to a (sub-)sequence of speech functions with the
length m, where n ≤ m.

Command-and-Control with Random Navigation and Indirect Activation

We will now provide an example for the mapping of sessions to intentions where the num-
ber of control actions is greater than the number of speech functions. For this we assume
that command-and-control with random navigation and indirect activation is available. With
this approach graphical objects are assigned an identifier which the user speaks in order to
trigger navigation and, possibly, an indirect activation (e.g., Conversay Voice Surfer [43]).
Figure 2.12 depicts the situation for this example: there is no mouse cursor and the Save-
button is assigned the identifier "Save". We assume that in this example the navigation to
the Save-button (NSAVE ) is coupled with its activation (ASAVE ), i.e., the navigation to the
Save-button indirectly performs its activation. We abstract this as the only available speech
function SFSAVE, depicted in Figure 2.13 on the following page. As such, the user is able to
perform the navigation to and the activation of the Save-button by invoking a single speech
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Figure 2.13: Speech functions of example 3.
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Figure 2.14: Intention IG3.

function. Consequently, in the context of this example, the session SG, consisting of two
control actions, is mapped to the intention IG3 := (SFSAVE) as illustrated in Figure 2.14.

This example shows that there are cases where the number of control actions is greater
than the number of speech functions in the corresponding intention. This denotes that a
(sub-)sequence of control actions of length n can be mapped to a (sub-)sequence of speech
functions with the length m, where n ≥ m.

To summarize, the relationship between speech functions of a specific speech-controlled
GUI approach and control actions of a specific GUI in general is a many-to-many relationship.
It might depend on the current state of the GUI, e.g., the current position of the mouse cursor.
We define that a specific speech-controlled GUI approach defines a finite set of GUIs and based
on this definition, we explain in the following section how speech functions are invoked.

2.4 Commands

Commands are sequences of words which the user utters in order to trigger the invocation
of speech functions. We assume that for each speech function contained in an intention one
command has to be spoken. We require that a specific command does not invoke more than
one speech function. We do, however, permit that a specific speech function can be invoked
by more than one command (e.g. to provide commonly used command alternatives), however,
the set of commands which invoke a specific speech function must be finite. We also permit
that there might be no command which invokes a specific speech function, for instance, to
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Valid Command(s) Speech Function
"left", "move left" SFML
"right", "move right" SFMR
"up", "move up" SFUP
"down", "move down" SFMD
"stop", "halt SFSTOP
"click" SFCLICK
Invalid Command(s) Speech Function
"left right", "press up",
"move", "hello"

-

Table 2.1: Exemplary valid and invalid commands for direction-based mouse emulation with con-
tinuous movement, as described by Karimullah and Sears [95].

model a situation where the state of the speech-controlled GUI currently does not allow the
invocation of this specific speech function. As such, the relationship between commands and
speech functions is many-to-one.

Commands which do invoke a speech function are called valid commands, whereas com-
mands which do not invoke a speech function are called invalid commands. Since the number
of speech functions of a speech-controlled GUI approach is finite and since a finite number of
commands invokes a specific speech function, the number of valid commands is finite as well.
In Table 2.1 we present exemplary valid and invalid commands for direction-based mouse em-
ulation with continuous movement. Hereby it is important to note that the speech recognizer
would distinguish between the separate commands "left" and "right", and the single command
"left right" by detecting a significantly long enough pause between the single words. This
pause is usually configurable. Each command requires a certain amount of time to be uttered
and we call this time the duration of the command. It can be determined by summing up the
times required to utter the words of which the commands consists. Correspondingly, we call
the time to utter a word the duration of the word. We assumed in the introduction of this sec-
tion that per speech function one command has to be uttered, correspondingly, users map their
intention to a corresponding sequence of commands. We call this sequence of commands an
interaction. Referring back to the discussion about GOMS operators in section 2.3 it is now
clear why commands correspond to GOMS operators: commands have a duration which, how-
ever, depends on the particular composition from words. Commands are uttered by the user
in a sequence called interaction, thus, interactions, and not intentions, correspond to GOMS
methods.

Early commercially available speech recognition systems were discrete speech recognition
systems which required the user to pause between the spoken words. These systems had a
vocabulary of about 20,000 words and in order to achieve a word recognition rate of about
95% users had to speak no faster than 50 words per minute (Stuckless [180]). The speech-
GUI model, however, assumes the availability of a continuous speech recognizer, i.e., it as-
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Figure 2.15: Commands and their relationship to speech functions.

sumes that the user does not make artificial pauses between words. While researches at Stan-
ford found that early continuous speech recognizers were lacking performance (Detmer et al.
[197]) 2 , later systems supported a speaking speed of about 150 words per minute with a word
recognition rate of about 95% (Zafar et al. [13]). The speaking speed supported by speech
recognizers does just reach the lower bound of the speed range by which individuals com-
municate, which lies between 130 and 250 words per minute depending on the domain (e.g.
Reed [152] and Arons [8]). However, if people talk to a computer then they tend to reduce
their speaking speed to about 105 words per minute (Karat et al. [93], Lewis [107]). For the
speech-GUI model we therefore assume a speaking speed of 105 words per minute which de-
notes an average duration of a word of 571ms. This value can, if needed, easily be adapted to
model users which speak faster or slower.

The UML diagram depicted in Figure 2.15 specifies the relationships between intentions,
interactions, commands and speech functions. In the following section we discuss the recog-
nition of commands by speech recognizers.

2Low performance denotes low speaking speed and low word recognition rate.
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2.5 Speech Recognizers

In section 1.2.1 we have introduced speech recognizers as software components which process
digital audio signals – digital representations of the vocalization of a command. Digital audio
signals are obtained by capturing the wave form that the human sound apparatus generates.
In the context of speech-controlled GUIs this is usually achieved by a sound card to which a
microphone is connected. The microphone captures the wave form and transforms it into an
analog audio signal. The sound card transforms the analog audio signal into a digital audio
signal. From the digital audio signal a recognition result is calculated under consideration of
the phoneme database, the vocabulary and the language model (as discussed in section 1.2.1).

The characteristics of audio signals, their creation processes, as well as the details of the
speech recognition process are beyond the scope of this dissertation, and are therefore not
included in the speech-GUI model. We model a speech recognizer as a black box component
which transforms one sequence of words, i.e., the spoken words of a command, into another
sequence of words, i.e., the recognized words of a recognition result. We do, however, not
specify how this transformation takes place.

Having defined a speech recognizer as a black box component requires us to define valid
input and the expected output – otherwise the output of a black box component with respect to
a specific input would be undefined, and as such it would be ill-defined. We define the entirety
of the valid commands of a specific speech-controlled GUI approach as the valid input for the
speech recognizer. All other commands, i.e., the invalid commands, are invalid input for the
speech recognizer and as such the output of the speech recognizer for invalid commands is
undefined. We base this definition on the following two assumptions.

First, we assume that the user is aware of the available valid commands of the respective
speech-controlled GUI approach, i.e., we assume that the user knows which valid commands
exist. This can for instance be achieved by training the user prior to using the speech-controlled
GUI (as discussed in section 1.3.1).

Second, we assume that the user adheres to the Cooperative Principle for Conversations
(Grice [71]). This principle requires, amongst other requirements, that all parties involved in a
conversation – in our case the user and the speech-controlled GUI – must talk about the same
conversation topic(s); otherwise the conversation is likely to break down. We consider valid
commands to be the conversation topics, and later in chapter 5 we will provide a more detailed
abstraction of conversation topics.

Consequently, our definition of valid input for the speech recognizer is feasible: the user
knows about the valid commands and the speech-controlled GUI approach determines the
valid commands – as such both parties know about them. For avoiding a conversation break-
down, both user and speech-controlled GUI have to utter/understand the valid commands. The
reason for constraining valid input to valid commands will become obvious in chapter 3 when
we specify the interaction delay model.

We call the output of the speech recognizer the recognition result. If the recognition result
is equal to the input of the transformation process, i.e., the valid command, we say that the
command has been recognized correctly and call the recognition result a recognition success.
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Otherwise, if the input to the transformation process is not equal to the recognition result,
we call the recognition result a recognition error and we say that the command has not been
recognized correctly.

The speech recognizer has two attributes which denote commonly used quality measures
of the transformation of valid commands to recognition results: the recognition delay and the
word error rate. We describe the integration of these quality measures into our model in the
following two sections.

2.5.1 Recognition Delay

The recognition delay denotes the time after which a recognition result is available after the
user has stopped uttering a command (as discussed in section 1.2.1). In the following we will
derive an estimation for the recognition delay that can be used for concrete calculations based
on our model.

Today it is possible to create speech recognizers which perform speech recognition in about
computational real time (Sprex, Inc. [10]). Computational real time denotes that the time to
calculate a result from a specific input takes as long as the length of the input 3 . Applied to
speech recognition this means that calculating a recognition result takes as long as the duration
of the command.

Thus, we would expect that after the user has finished uttering the command, the recogni-
tion result would be available after a recognition delay that is (approximately) as long as the
duration of the command. However, the recognition delay is independent of the duration of
the command (Glass et al. [66]). This can be explained by the stream-oriented processing
which speech recognizers apply to audio signals. A speech recognizer starts calculating the
recognition result as soon as it receives the first bit of the digital audio data. In other words, the
speech recognizer starts computing the recognition result as soon as the user starts speaking
and while the user is speaking – not after the user has stopped speaking. We would conse-
quently expect, considering that speech recognition can be performed in computational real
time, that the recognition result is available right after the user has stopped speaking; that is,
with a recognition delay of 0. This is, however, not reality. Computational real time can only
be achieved under optimal conditions in a laboratory 4 . These conditions do by far not reflect
the conditions which a speech recognizer is exposed to when it is used in an application.

By evaluating empirical studies of the recent past (as discussed in the following) it becomes
clear that the recognition delay lies in the magnitude of seconds. A chronological comparison
of these studies reveals that the recognition delay could be reduced significantly. On the one
hand this is due to the technological advances in speech recognition theory and improvements
of the underlying models. On the other hand, since speech recognition is a computational
intensive task, the reduction of the recognition delay is also due to the increase in available
computational power. In the following we report about empirical studies with the goal to

3The length of the input is measured specifically to the application domain.
4Small vocabulary, low environmental noise, and good microphone quality
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Correct: Did mob mission area of the Copeland ever go to m4 in nineteen eighty one

Recognized: Did mob mission area ∗ ∗ the copy land ever go to m4 in nineteen east
one

Figure 2.16: Examples for word errors.
Substitutions are printed bold, insertions are printed in italics and deletions are denoted as ∗.

derive and justify a constant value for the recognition delay that will be used in our model 5 .
In an experiment performed by Glass et al. [66] the utilized speech recognizer was equipped

with a vocabulary of roughly 2000 words and achieved a recognition delay of < 1s in 85%, and
a recognition delay of < 2s in 99% of all monitored utterances. In [11] Mastan reports about
a beta test of Microsoft Speech Server 2004 6 in which the speech recognizer has achieved a
recognition delay of < 1.5s in 95% of all monitored utterances. SPIRIT DSP [177] claims that
their speech recognizer 7 reaches a recognition delay < 500ms – however, this only applies
to a vocabulary of up to 10 words which can for instance be used to recognize digits for a
speech-controlled phone in a car. We conclude that a recognition delay of < 2s, depending
on the environment of the experiment, the size of the vocabulary, and the specifically utilized
speech recognizer, is realistic. As we will later show in section 3.2.1 the vocabularies used
for speech-controlled GUI approaches have a maximum size < 70. Thus, our model is based
on a recognition delay of 1.5s (Glass et al. [66]) – it can, however, easily be adapted to other
values. In the following section we discuss the word error rate of a speech recognizer.

2.5.2 Word Error Rate

The word error rate denotes the average frequency by which word errors occur during the
recognition process. According to Huang et al. [80] there are three types of word errors,
called substitution, deletion and insertion.

Substitution an incorrect word was substituted for a correct word

Deletion a correct word was omitted in the recognition result

Insertion an extra word was included in the recognition result

In Figure 2.16 we depict an example from [80] that illustrates substitutions, deletions and
insertions. For calculating the word error rate one has to align the correct text string and the

5In literature the recognition delay is also referred to as the recognition latency.
6http://www.microsoft.com/speech/default.mspx
7Data sheet available at
http://www.spiritdsp.com/pdf/SPIRITAutomaticSpeechRecognitionDataSheet.
pdf
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recognized text string and then compute the number of substitutions (subs), deletions (dels)
and insertions (ins) 8. The word error rate can then be calculated as

WordErrorRate = 100% · subs + dels + ins
n

where n > 0 denotes the number of words in the correct text (there must be at least one word
in the correct text). It is important to note that the word error rate might become greater than
100%. Consider for instance a case where each word in the correct text is substituted and after
each substituted word another word is inserted. This would make up n substitutions and n
insertions leading to a word error rate of 200%.

In our model we define that the word error rate is an inherent property of a speech recognizer.
It denotes the average rate by which word errors occur per spoken word, given a specific set
of environmental conditions, e.g., a measure for the amount of environmental noise. As such,
a word error rate of 50% means that, on the average, a word error happens with every second
word. A word error rate of 100% means that a word error happens, on the average, with
every word. We neglect word error rates above 100% in our model because it is irrelevant if
more than one word error happens with one word – already with a word error occuring with
every word of a command, the average probability of a word of a command being correctly
recognized is 0. It remains 0 even if the word error rate increases above 100%. As a matter of
fact we will later show in section 3.2.3 that the average word error rate of a speech recognizer
for speech-controlled GUIs must be below the so called critical word error rate to be usable –
which is typically below 100%.

Our interpretation of the word error rate is a simplification compared to the actual definition.
We assume that the probability of a word error with a specific word is equally distributed over
all words in the speech recognizer’s vocabulary. As such, we model the speech recognition
process as a random experiment with constant probabilities for each of the possible events.
This includes the assumption that only one word error can happen per word. The reality with
speech recognizers, however, is different, as the recognition probability distribution varies be-
tween different words. The reason for this is that different words are composed from different
phonemes. There are phonemes (phoneme sequences, respectively) which are "easy" to rec-
ognize, such as vowels, and phonemes which are "more difficult" to recognize, such as silent
consonants as depicted in Figure 2.17 on the next page (refer to Huang et al. [78]). Depending
on their composition from phonemes the recognition probability of words in the vocabulary is
therefore in fact not equally distributed.

We make this simplification for the sake of facilitating further calculations as the real proba-
bility distribution for word errors for words in the vocabulary is a priori unknown. It is further-
more virtually impossible to specify it precisely, as the speech recognition process is affected
by a priori unknown factors, including environmental noise or limitations in the models used
for speech recognition. Our interpretation represents a black-box view of speech recognizers
and we believe that it is appropriate for speech recognizers with small vocabularies (Cole et

8This process is called the maximum substring matching problem, described in Huang et al. [78].
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Figure 2.17: Example of silent consonants "p" and "c" speaking the words "free speech" taken
from Zafar et al. [13].

al. [40]), such as speech-controlled GUI approaches.

2.5.3 Summary

The UML diagram depicted in Figure 2.18 on the following page specifies a speech recognizer
and the concepts discussed in this section. The association from recognition error to command
is of theoretical nature to be able to specify invariants for recognition success and recognition
errors in Object Constraint Language (OCL) 9 . We found it surprising that the GOMS model,
up to the time of writing this thesis, has not been extended to (speech) recognition based
user interfaces. There have, indeed, been efforts to model the act of speaking in the scope of
analyzing the performance of human telephone operators (John [90], Stuart and Gabrys [179]),
but the characteristics of a speech recognizer have not yet been integrated. As such, we see
our concept of a speech recognizer and especially the interaction delay model (chapter 3) as
an extension of GOMS in this direction: our model allows predicting the execution time for a
speech function under consideration of the recognition delay and the word error rate. In the
following section we explain the interpretation of recognition results.

2.6 Recognition Result Interpreters

Whenever a new recognition result becomes available – be it a recognition error or a recogni-
tion success – it is processed by the recognition result interpreter. It has knowledge about the
valid commands of a specific speech-controlled GUI approach. It determines if the recognition
result matches a valid command, i.e., if there exists a valid command of which the sequence
of spoken words is equal to the sequence of recognized words.

9http://www.uml.org/
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Figure 2.18: Speech recognizer.

We do not specify how this matching should take place. For instance, a specific recognition
result interpreter might represent valid commands as strings (e.g. by concatenating the spoken
words) and determine a match by walking through the strings and comparing them against
the concatenation of the recognized words. Another recognition result interpreter might use
context free grammars or semantic grammars to represent valid commands, and use a corre-
sponding parser to determine which valid command the recognized words match. In fact, spe-
cialized context free grammars are commonly used to parse recognition results. For instance,
probabilistic context free grammars (e.g., Huang et al. [78] allow the parser to consider the
probability of a specific parse path to occur in a real world language. Semantic grammars (e.g.,
Gavalda ([64])) allow for directly generating a representation of the semantic information in a
recognition result from the parse tree.

If the recognition result interpreter was able to determine a match, we assume that it provides
a reference to the speech function which is associated with the matching command. If no
match could be determined, the recognition result interpreter provides a reference to a value
that indicates that no speech function could be determined, such as ⊥. Some other component
of a speech-controlled GUI, for instance a controller object, can then invoke the returned
speech function, or, if no match could be determined, generate a feedback message for the
user, stating that the input could not be processed – such as "Sorry, I could not understand
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Figure 2.19: Recognition result interpreter.

your request. Please repeat!".
As such, we model a recognition result interpreter as a black box component which accepts

recognition results from a speech recognizer as valid input. The output of the recognition
result interpreter given a specific valid input is either a speech function or ⊥.

Depending on the value which the recognition result interpreter outputs we are able to spe-
cialize recognition errors. The specialization reflects the user’s experience regarding the reac-
tion of a speech-controlled GUI on a recognition error. In the following we introduce rejection
and misunderstanding as specialized recognition errors.

A rejection is a recognition error for which the recognition result interpreter outputs ⊥. It
occurs if the recognition error does not match a valid command that the recognition result
interpreter knows of. For instance, if the user uttered "move left" (which would be a valid
command according to Table 2.1), but the speech recognizer returned the recognition error
"move" (which would be an invalid command) then no valid command matches the recog-
nition result and the recognition result interpreter returns ⊥. In other words, a rejection is a
recognition error which matches an invalid command.

A misunderstanding is a recognition error for which the recognition result interpreter returns
a reference to a speech function, although the recognized words are not equal to the originally
spoken words. This happens if – per coincidence – the recognized words of the recognition
error match a valid command. For instance, if the user uttered "move left" but the speech rec-
ognizer returned "move right" the recognition result is not equal to the command that the user
uttered, however, "move right" is a valid command that invokes the speech function SFMR.
The UML diagram depicted in Figure 2.19 summarizes the concepts discussed in this section.
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aUser:User

aIntention

Intention

aInteraction

Interaction

aSpeechRecognizer

SpeechRecognizer

aInterpreter

RecognitionResultInterpreter

aSpeechFunction

SpeechFunction

aSession

Session

aSystem

System

for(Command aCommand in aInteraction)

if(aSpeechFunction != null)

else

2.2.2.1.5: reactOnRejectionOrMisunderstanding():void

2.2.2.1.4.1: generateFeedbackMessage():void

2.2.2.1.3.1: invoke():void

2.2.2.1.2: aSpeechFunction:=interprete(aRecognitionResult):SpeechFunction

2.2.2.1.1: aRecognitionResult:=recognize(aCommand):RecognitionResult

2.2.2: interact(Interaction):void

1:

2.2.1:

2.2: aInteraction:=utter(aIntention):Interaction

2.1:

2: aIntention:=perform(aSession):Intention

Figure 2.20: Dynamic speech-GUI model.

2.7 Consolidated Speech-GUI Model

Figure 2.20 depicts a dynamic model of a speech-controlled GUI approach, based on the
classes defined in the preceding sections. Note that the System class models the actual
speech-controlled GUI, i.e., it is an abstraction of the "glue" between the components of a
speech-controlled GUI. We explain the dynamic model in the following.

The user begins with instantiating a session (1). The session can be seen as a mental model
of the task that the user performs with the GUI, e.g., a predefined task from a user interface
evaluation test. Next, the user performs the session (2) in order to instantiate a new inten-
tion (2.1). The new intention contains a sequence of speech functions by which the given
session can be performed. In (2.2) the newly instantiated intention is uttered causing the in-
stantiation of a new interaction (2.2.1). The new interaction contains a sequence of commands
which invoke the speech functions of the previously instantiated intention. The user passes
the interaction to the system (i.e., the vocalization of the command(s) gets digitalized). For
each command which is contained in the interaction the system calls the speech recognizer to
recognize it (2.2.2.1.1). The system receives the resulting recognition result and passes it to
the recognition result interpreter to interpret it (2.2.2.1.2). After that the system receives the
result of the interpretation. If the interpretation result is a reference to a speech function the
system invokes this speech function (2.2.2.1.3.1), otherwise, if the interpretation result is ⊥,
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a feedback message is generated (e.g. "Sorry, I could not understand you!") in (2.2.2.1.4.1).
By (2.2.2.1.5) we abstract the user’s reaction to rejections (the interpretation result is ⊥) or
misunderstandings (the interpretation result is a speech function which was not intended). We
will deal with this reaction in more details later on in chapter 3.2.3 when we discuss the im-
plications of recognition errors to an interaction.

Finally, Figure 2.21 on the next page depicts the static portion of the speech-GUI model as
a UML class diagram (consolidation of the class diagrams in Figures 2.3, 2.4, 2.15, 2.18 and
2.19) .

2.8 Discussion
In this chapter we have presented the speech-GUI model. It abstracts a speech-controlled GUI
as control actions, speech functions, commands, speech recognizers and recognition result in-
terpreters, and defines interaction rules between them, including the data objects which are
exchanged. We have compared the speech-GUI model to the GOMS model, a commonly used
means for analyzing routine human-computer interactions. The speech-GUI model partially
overlaps with GOMS, e.g., control actions and sessions can be considered to be low-level and
high-level GOMS goals. There are, however, two differences: first, the speech-GUI model
introduces an intermediate layer between goals and operators/methods in order to allow for
abstracting the actual speech-controlled functions from the commands by which they are trig-
gered. Second, we include model aspects to cover the characteristics of speech recognition,
which are specified in more detail in chapter 3. We now discuss the speech-GUI model re-
garding the realization of the initial design goal (section 2.8.1) and inherent limitations (sec-
tion 2.8.2). We conclude this chapter by comparing our model to other existing models for
(graphical) user interfaces (section 2.8.3).

2.8.1 Reconsidering the Design Goals
The goals which have driven the design of the speech-GUI model were the encapsulation of
the speech recognition process, the consideration of the duration of the input, the coverage,
the implementability, and the extensibility.

Encapsulation of Speech Recognition Process The speech recognizer of the speech-
GUI model represents a black box component which encapsulates the speech recogni-
tion process. The interface of this component represents the externally visible aspects of
the speech recognition process and consists of two parts: the first part is a method which
models the transformation of a command (its vocalization, respectively) into a recogni-
tion result. The second part of the interface constists of attributes recognition delay and
(average) word error rate. They give information about the quality of the transformation,
i.e., the first part of the interface, without revealing details of the implementation of the
transformation. As such, the speech-GUI model encapsulates the speech recognition
process as required.
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Figure 2.21: Static speech-GUI model.
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Duration of Input The duration of the speech-based input has been considered by the dura-
tion of words, commands, respectively. The duration of a word reflects the time needed
to utter a word and the duration of a command is the sum of the duration of all words
that the command is composed of. As there is no other speech-based interaction than
uttering commands the speech-GUI model considers the duration of the speech-based
input.

Coverage The coverage of the speech-GUI model will be shown in chapter 4 where we
perform an analysis of the speech-controlled GUI approaches which we have introduced
in this dissertation. For each approach we provide a mapping to the speech-GUI model
showing its coverage.

Implementability The conversation-and-control framework, presented in chapter 6, is based
on the speech-GUI model for speech-controlled GUIs. We show the required imple-
mentability by several conversation-and-control prototypes using the conversation-and-
control framework.

Extensibility The speech-GUI model can be extended to other speech-controlled GUI ap-
proaches. We show this in chapter 5 where we introduce conversation-and-control as
a new speech-controlled GUI approach. Conversation-and-control has not been consid-
ered during the design of the speech-GUI model. Particularly in sections 5.1 and 5.2
we design and apply changes to the speech-GUI model in order to reflect the needs of
this new approach. However, a general statement about the extensibility to other, possi-
bly new approaches of speech-controlled GUIs cannot be made, as the characteristics of
such new approaches are a priori unknown.

2.8.2 Limitations

The speech-GUI model, which we have presented in this chapter, accomplishes the design
goals of section 2.1 to a certain extent, as discussed in section 2.8.1. However, our model has
some limitations which we discuss in the following.

Implications of Recognition Errors The model treats an interaction as an atomic object.
Thus, the model does not consider the implications which are induced by recognition
errors, such as for instance the necessity to repeat a command if it was rejected. A
model for these implications is provided in chapter 3 where we derive a model for the
interaction delay of speech-controlled GUIs. It can be seen as an enhancement of the
speech-GUI model for covering the side effects of recognition errors.

Temporal vs. Instantaneous Interaction with Graphical Objects We abstract the
interactive functions of graphical objects by control actions. A specific control action
represents an instantaneous change of a graphical object or a navigation. Examples for
such instantaneous functions include the click on a button, the selection of a menu item,
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or the checking of a check box. There exist, however, graphical objects which provide
interactive functions that range over a specific period of time (Myers [137]), such as re-
sizing a graphical object, drawing a frame for cutting out a specific region of an image,
or moving a graphical object. Such interactive functions are called temporal interactions
as they begin at a specific point in time and end in a later point in time. They cannot
be described by control actions as control actions do not incorporate a temporal model.
It is currently unclear how temporal interactions can be described by control actions,
respectively, in what regards the model of control actions needs to be enhanced.

Confidence Specific existing implementations of speech recognizers augment recognition
results with so called confidence values. A confidence value can be regarded as a per-
centage which indicates "how certain", i.e., "how confident", a speech recognizer is
about the correctness of the respective recognition result. As such the speech recog-
nizer aims at evaluating the correctness of its internal models. Confidence values can
be used by recognition result interpreters to reject recognition results before attempting
to interpret them, with the goal to minimize misunderstandings: if the confidence of a
recognition result is below a specific confidence threshold then the recognition result is
rejected by default. Otherwise it is attempted to be interpreted.

While the evaluation of confidence values can retroactively be integrated into a frame-
work design that is based on our model, it complicates further calculations which we
perform in chapter 3. The reason is that the probability of a specific confidence value
being above or below the confidence threshold is a priori unknown, since the word error
rate – upon which the confidence value depends – is not constant during the runtime of a
speech recognizer (as explained in section 2.5). Therefore we neglect confidence values
in our model.

2.8.3 Other User Interface Models
We compare the speech-GUI model to the model view controller design pattern (Reenskaug
[154]), the linguistic model (Foley and Wallace [59]), the interactor model (Myers [137]), the
Seeheim model (Green [70]), and the Arch model (Bass et al. [16]).

Model View Controller The model view controller (MVC) pattern has first been described
in 1979 in the context of writing GUIs in Smalltalk by Trygve Reenskaug in [154] 10 .
It has long emerged into a de-facto standard for the design of complex software systems
(Gamma et al. [62]). MVC is originally an object-oriented technique for separating
program code for GUIs into three modules called the model, the view and the controller.
The model describes the structure of the data that the GUI presents and implements
functionality to maintain it. The view aggregates program code which is responsible
for presenting the data, the model, respectively. The controller coordinates the commu-
nication and the data flow between the model and the view. Each module defines an

10At that time Trygve Reenskaug called it the thing-model-view-editor.
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interface for the communication with the other modules. Input from the user is captured
by the view which reacts on it, e.g., changes graphical objects, and which propagates the
input to the controller. This might then lead to changes in the model which are in turn
reflected by the view. MVC can recursively be applied to decompose subsystems and
subcomponents.

The model view presenter pattern (MVP) (Ullenboom [190]) is a variant of MVC which
is optimized for rich clients, i.e., clients which a large amount of graphical objects and
a large amount of dependencies between them. With MVC the interactive behavior of
graphical objects is handled by the view, e.g. the disabling of a specific set of objects
if a specific menu item is selected. MVP separates this behavior into a separate pre-
senter object which first handles the input as it is relevant for the presentation and then
propagates it to the controller. This reduces the view to its original purpose: a "dumb"
component which simply presents the data.

MVC2 (Seshadri [167]), or Model 2, is another variant of MVC which is optimized
for stateless web-based applications. In MVC the state of the view, i.e., the state of
each graphical object, is encapsulated in the view itself. MVC2 factors out the state of
the view into the controller which lives on the server, because views in the context of
web-based applications are stateless (e.g., HTML pages).

The relationship between the MVC pattern (its variants, respectively) and the speech-
GUI model is twofold. On the one hand the speech-GUI model can be seen as a sug-
gestion for decomposing a controller for speech-controlled GUI approaches, assuming
that the graphical objects represent the view and the underlying application represents
the model. The user in our model would represent the object that controls the data
flow within the controller. Session, intentions, and interactions would describe different
representations of input data which the controller processes and which it internally trans-
forms into each other. Speech recognizers and recognition result interpreters could be
seen as helper classes which are used to determine suitable actions which the controller
has to perform with the obtained data. On the other hand the MVC pattern has been
applied to the design of the speech-GUI model for speech-controlled GUI approaches:
the user acts as the controller, sessions represent the model and intentions and interac-
tions represent two different views of the model – as a session is mapped to an intention
which directly corresponds to an interaction.

Linguistic Model The linguistic model for user interface management is described by Foley
and Wallace in [59]. The linguistic model is a layered model which focuses on the
processing of input by a user interface. It separates a user interface into three layers
called the lexical layer, the syntactic layer and the semantic layer, corresponding to the
layers from formal language theory.

The lexical layer defines units (functions, respectively) of input, the so called lexemes,
from which input to a computing system can be composed. Lexemes are indivisible (i.e.,
atomic) and represent the smallest units of semantical meaning. For example, the input
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functions of a mouse device would be represented by a lexeme for each possibility to
convey a movement (such as up, down, left, right). A lexeme for both the pressing and
the releasing of the mouse button would exist. Regarding the speech-GUI model each
word from the speech recognizer’s vocabulary would be represented by one lexeme.

The syntactic layer defines valid sequences of lexemes, so called tokens. For instance,
considering the mouse lexemes (as mentioned above), the lexeme for pressing the mouse
button followed by the lexeme for releasing the mouse button denotes a "click". Or, the
lexeme for pressing the mouse button followed by an arbitrary sequence of movement
lexemes followed by the lexeme for releasing the mouse button denotes "drag-and-drop".
Regarding the speech-GUI model a token corresponds to a command and its composition
from specific words.

The semantic layer of the linguistic model describes the functionality of the user inter-
face as a set of functions and defines which tokens are necessary to invoke a specific
function. As such, the semantic layer would define functions for triggering specific
changes of graphical object, and would define (sequences of) tokens which invoke the
specific functions. The speech-GUI model introduces an additional indirection here.
The functions of the linguistic model do not directly correspond to control actions. In-
stead, they correspond to speech functions, and for each speech function a specific set
of commands is defined (analogously to tokens).

As shown, there are analogies between the linguistic model and the speech-GUI model
as core components of the speech-GUI model can be mapped to concepts of the lin-
guistic model. However, the linguistic model is a theoretical model which does not
propose a particular system architecture that could be implemented. This is in contrast
to the speech-GUI model which proposes an implementable architecture of a speech-
controlled GUI approach.

Interactor Model The interactor model, introduced by Myers [137], abstractly describes
the interactive functions of pointing-device operated GUIs by so called interactors. An
interactor is an object which represents the interactive behavior of an entire class of
graphical objects, such the class of menus or the class of buttons. Each graphical object
has an interactor that corresponds to its class. The interactor captures and handles the in-
put that is generated by a pointing device and modifies the graphical object accordingly.
Myers defines six types of interactors: the menu interactor, the move-grow interactor,
the new-point interactor, the angle interactor, the text interactor and the trace interactor.
Each interactor can be parameterized by a specific set of general properties which allows
for describing different types of graphical objects of the same class. Myers shows that
six interactors are sufficient to describe the interactive behavior of pointing device-based
GUIs (GUIs as of 1990, respectively).

The interactor model is specific to the input modality pointing device. It is, however,
independent of the specific type of pointing device, e.g., mouse, trackball, light-pen,
etc. Control actions, by which the speech-GUI model abstracts interactive functions,
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are independent of the input modality by which the GUI is controlled. As mentioned
in section 2.8.2 the interactor model is able to describe both temporal and instantaneous
interaction, whereas the speech-GUI model only allows for describing instantaneous
interaction.

Seeheim Model The Seeheim model was first introduced by Green in 1985 [70]. It is, like
the linguistic model, a logical model, i.e., it does not provide a proposal of how to
implement a GUI. It proposes, however, similar to the linguistic model, to separate an
application with a GUI into three layers, called the presentation layer, the dialog layer
and the application layer.

The presentation layer describes the "static" part of the GUI, i.e., the screens which make
up the GUI and the graphical objects as they are composed into screens. The dialog layer
models the "dynamic" portion of the GUI, such as the reaction of graphical objects on
user input, the invocation of application-specific functionality and controlling the data
flow between the presentation layer and the application layer. The application layer
represents the functionality that the application implements as an interface to which the
dialog layer has access.

We argue that the Seeheim model is closely related to MVC: the presentation layer
compares to the view, the dialog layer corresponds to the controller, and the application
layer can be mapped to the model. MVC, however, is more general than the Seeheim
model. While the Seeheim model describes the separation of applications with GUIs into
separate components, MVC can be applied to any computer program that manipulates
and presents data. As such we consider the Seeheim model as an instance of MVC.
The speech-GUI model can be seen as an architecture proposal for the dialog layer of a
Seeheim model instance that describes speech-controlled GUIs.

Arch Model The Arch model (Bass et al. [16]) is a specialization of the Seeheim model
which introduces mediators between the application layer and the dialog layer, respec-
tively between the dialog layer and the presentation layer. Consequently, instead of three
layers, the Arch model consists of five layers, called component categories, into which
the constituents of a graphical user interface are grouped: interaction toolkit compo-
nents, presentation components, dialog components, domain adapter components, and
domain-specific components.

Domain-specific components represent domain-specific data or domain-specific func-
tions. They correspond to the application layer of the Seeheim model. Interaction toolkit
components implement the (physical) interaction between the computing system and the
user, i.e., the communication between input modality and software which captures the
input from the input modality. They compare to platform specific graphical object of
currently available GUI toolkits (such as Java Swing [132] or MFC [151]) and thus cor-
respond to the presentation layer of the Seeheim model. Dialog components correspond
to the dialog layer of the Seeheim model and are responsible for managing function calls
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#Core
Items

Synopsis Architecture-
oriented

Input-
oriented

MVC 3 User interface decomposed into a model compo-
nent, a view component and a controller compo-
nent; inter-component interaction possible, con-
troller is core interaction coordinator

yes no

Linguistic
Model

3 Data from input modality is abstracted into lexical
layer, syntactic layer and semantic layer

no yes

Interactor
Model

1 (6) Abstract interactor models mouse and keyboard in-
teraction with graphical objects; defines 6 concrete
interactor for state-of-the-art interactions

no yes

Seeheim
Model

3 User interface decomposed into presentation layer,
dialog layer and application layer; strictly layered
interaction

yes no

Arch Model 5 User interface decomposed into component
classes: interaction toolkit components, pre-
sentation components, dialog components,
domain adapter components and domain-specific
components

yes yes

Table 2.2: Summary of user interface models

and data flow between domain-specific components and interaction toolkit components.
Presentation components act as mediators between interaction toolkit components and
dialog components. Compared to the Seeheim model they reside in a layer between
the dialog layer and the presentation layer. Presentation components are platform in-
dependent abstractions of interaction toolkit components. For instance the presentation
object "selector" can abstract the interaction toolkit components "menu" or "radio but-
ton". Speaking in terms of MVC the interaction toolkit components represent the view
whereas the presentation objects represent the model of a graphical object (refer to the
Pluggable-Look-And-Feel framework of Java Swing 11). Domain adapter components
provide a user interface specific abstraction of domain-specific components intended to
be accessed by dialog components. For instance, if data that should be presented is
distributed over several domain components a specific domain adapter component hides
this fact to the dialog components and encapsulates the originally distributed informa-
tion as one domain adapter object.

The speech-GUI model can be seen as an architecture proposal for the dialog layer of
a Seeheim model instance that describes speech-controlled GUIs (see previous para-
graph). The Arch model is a specialization of the Seeheim model. Thus, the com-
ponents of the speech-GUI model can be seen as domain adapter components, dialog
components and presentation components.

Table 2.2 summarizes the core features of the user interface models discussed.

11http://java.sun.com/products/jlf/ed2/book/
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3
The Interaction Delay Model

"Do not worry about your problems with mathematics, I assure you mine are far
greater."

Albert Einstein

Overview
In this chapter we present the interaction delay model which allows for calculating the inter-
action delay of speech-controlled GUI approaches. The interaction delay, in the context of
speech-controlled GUI approaches, consists of the time needed for uttering and processing the
spoken commands of an interaction. We begin with discussing the requirements that drive the
design of the interaction delay model. Then, we derive the interaction delay model from prop-
erties of the speech-GUI model, as presented in chapter 2, such as the number of commands
in an interaction, the recognition delay, and the word error rate. We discuss mathematical
characteristics and limitations of the interaction delay model. The characteristics suggest, as
a direction of future work derived from this dissertation, that calculating the interaction delay
could be used as a metric for speech-controlled GUI approaches. In this regard we conclude
the chapter with a comparison of the interaction delay model against existing user interface
metrics.
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3.1 Requirements
We discuss the requirements that led the design of the interaction delay model.

Coverage The interaction delay model must be applicable to speech-controlled GUI ap-
proaches which are based on the speech-GUI model, i.e., the interaction delay model
must at least cover the approaches which have been introduced in this work (see section
1.2).

Quality of Speech Recognition Today’s speech recognition technology is available in the
form of components or APIs (e.g. Java Speech API [131], Microsoft’s Speech Devel-
opment Kit [126]). This allows the speech recognizer, which is used for a particular
speech-controlled GUI approach implementation, to be exchangeable. Therefore, we
require the interaction delay model to consider the quality of speech recognizers, which,
according to the speech-GUI model, is measured by the (average) recognition delay and
the (average) recognition rate. The recognition delay directly influences the interaction
delay, as it denotes the time after which a recognition result becomes available after hav-
ing stopped speaking. The recognition rate indirectly influences the interaction delay, as
rejected or misinterpreted commands requiring the user to utter additional commands.

Non-empirical Data A common issue with evaluating user interfaces is the necessity of
performing an empirical experiment to obtain data to which a metric can be applied
(we discuss some of these metrics later on in section 3.4.2). Empirical experiments are
costly as they consume time to be designed and are, to a certain extent, not reproducible.
To avoid the need for empirically gathered data it must be possible to calculate the
interaction delay from quantitative and qualitative properties of the speech-GUI model.

3.2 Interaction Delay
This section is partitioned into three parts. In the first part we provide a definition of inter-
action delay based on properties of the speech-GUI model (section 3.2.1). In the second part
we derive an initial iteration of the interaction delay model, called the nominal interaction
delay, which allows for calculating the interaction delay without considering the implications
of recognition errors (section 3.2.2). In the third part we examine the implications of recog-
nition errors. We integrate our findings into the nominal interaction delay which results in an
enhanced iteration of the interaction delay model which we call the expected interaction delay
(section 3.2.3).

3.2.1 Definition
The interaction delay of a session is the time needed for uttering and processing the commands
necessary to invoke all speech functions in the corresponding intention. From the speech-GUI
model we conclude that the interaction delay is comprised of

48



3.2. INTERACTION DELAY

1. the duration of each command contained in the interaction,

2. the recognition delay that occurs for the recognition of each command in the interaction,
and

3. the time that the recognition result interpreter needs to determine a match for each re-
spective recognition result, i.e., the time that is needed to interpret a recognition result.

The speech-GUI model defines the duration of a command and the recognition delay as proper-
ties of commands, speech recognizers, respectively. The speech-GUI model specifies a recog-
nition delay of 1.5 seconds (as derived in section 2.5.1). The average duration of a command
spoken in the English language is also in the magnitude of seconds (as discussed in section
2.4). Regarding the time for interpreting a recognition result we have conducted an empirical
study of which we present a summary here. For more details refer to appendix B.1.

The goal of this study was to show that the time to interpret a recognition result does not
carry weight in comparison to the duration of commands and the recognition delay. We based
our study on three conclusions which we have drawn from examining the various research pa-
pers which have been published for the speech-controlled GUI approaches (see discussion in
section 1.2). First, we conclude that a speech recognizer used for a specific speech-controlled
GUI approach needs a per-screen vocabulary with a maximum size of maximal 70 words.
Second, we conclude that a specific speech-controlled GUI approach defines a maximal num-
ber of roughly 8000 valid commands per screen over the speech recognizers vocabulary. It
is important to note that the size of the vocabulary and the number of valid commands can
(dynamically) be minimized specifically to the current screen, which improves the word er-
ror rate and which reduces interpretation complexity (Smailagic and Siewiorek [175]). Since
we do not consider this possibility because the screen is a priori unknown, we examine the
worst case. Third, we conclude that the valid commands of a specific speech-controlled GUI
approach have a length ≤ 5. The speech-GUI model defines a maximum word error rate of
100% (see section 2.5), therefore a recognition result, induced by a command of length 5, has
a maximum length of 10 if all occurring word errors are insertions.

For the study we created a Java program which generated 8000 random word sequences
with a length of 5 from a vocabulary of 70 words. These commands represented the valid
commands; as such we examined the worst case where all valid commands have a length of
5. The valid commands were stored in a hash table using the respective command itself as the
key. After that we generated 2,000,000 random commands from the same vocabulary with a
maximum length of 10 words to simulate recognition results, and looked them up in the hash
table. If the hash table contained the newly generated command we interpreted this as a match,
otherwise the newly generated command was rejected.

The study revealed that the interpretation of a command can be done in an average time of
3 · 10−4ms – as such, it is by a factor of 107 lower than the recognition delay and the duration
of a command. We argue that the interpretation time can consequently be neglected for the
remainder of this dissertation – no user will notice if the user interface reacted 3 ·10−4ms faster
or slower.
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3.2.2 Nominal Interaction Delay

By dC we represent the duration of the command C (as defined in the speech-GUI model,
section 2.4), which lets us provide an initial estimate for the interaction delay. The estimate
calculates the interaction delay by walking through all commands in an interaction, summing
up their durations and the occurring recognition delays.

Definition 1 Nominal Interaction Delay
Let S be a session. Let n ∈ N, let (Cx)x=1,...,n be the sequence of commands in the interaction
corresponding to S and let r ∈ R+ be the recognition delay. We define

∆nom(S) :=
n∑

x=1

(dCx + r) = n · r +
n∑

x=1

dCx

We call ∆nom(S) the nominal interaction delay.

If a recognition error occurs the recognition result interpreter either rejects the recognition
result or a misunderstanding occurs. Both rejection and misunderstanding have the effect that
the user has to utter commands which have not been included in the nominal interaction delay.
In the case of a rejection the recognition result interpreter does not invoke any speech function
(refer to the definition of the recognition result interpreter in section 2.6). We assume that in
this case the user repeats the command which was rejected 1 . In the case of a misunderstanding
the recognition result interpreter invokes a speech function which was not intended by the user.
Consequently, the user has to undo the invocation of the incorrect speech function and then
has to repeat the command which was misunderstood. For this we assume that every speech-
controlled GUI provides a speech function called SFUNDO, which undoes the most recently
invoked speech function 2 . To summarize, if a recognition error occurs the user has to utter
additional commands. We call these additional commands corrections. As explained above
there is one correction per rejection (the repetition), and two corrections per misunderstanding
(the undo followed by the repetition).

If a recognition error occurs during the recognition of a correction the recognition result
interpreter either rejects or misunderstands the correction – and the user, recursively, needs to
react as above: if the correction was rejected it needs to be repeated. Otherwise, if the cor-
rection was misunderstood, the user needs to undo it, and then perform the repetition of the
correction. It becomes clear that a single recognition error can lead to an entire cascade of cor-
rections of which the duration and the recognition delay significantly increase the interaction
delay.

1The user might as well try to reformulate the command, however, this process depends on the specific user and
there is no known model about this process. Developing such a model is out of the scope of this dissertation.

2Please note that SFUNDO is a theoretical component in our model. It should be seen as a proposal for
future implementations of speech-controlled GUIs. It is up to the speech-controlled GUI approach designer
if SFUNDO is provided. It further depends on the application domain if the invocation of speech functions
can be undone at all, e.g., if the speech function which was misunderstood triggered an atomic transaction.
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We call a command that is contained in an interaction an intended command. Corrections,
which are caused by recognition errors during the recognition of an intended command, are
called level-1 corrections. Correspondingly, we call corrections which are caused by recogni-
tion errors during the recognition of a level-1 correction level-2 corrections – and so on. In the
following section we will provide an estimate of the interaction delay under consideration of
the additional delay induced by corrections.

3.2.3 Expected Interaction Delay

The expected interaction delay denotes the interaction delay of a session under consideration
of the duration and recognition delay induced by corrections. In the following we derive a
formula for the expected interaction delay in four steps. In the first step we approximate the
probabilities for rejections and misunderstandings. These probabilities are crucial for deter-
mining the expected number of corrections, because a rejection implies one correction (the
repetition) whereas a misunderstanding implies two corrections (the undo and the repetition).
In the second step we will estimate the expected number of level-1 corrections. Generalizing
the results from the second step, we estimate the totally expected number of corrections in step
three. In step four we finally arrive at a formula for the expected interaction delay.

Step 1: Probabilities of Rejection and Misunderstanding

Let V be a set of words which represents the vocabulary of a speech recognizer. Let CMD
denote the set of commands which can be constructed from V , i.e., CMD contains all word
sequences which can be constructed from words in V . As such, CMD contains all possible
recognition results. Let CMDvld ⊆ CMD represent the valid commands for a specific speech-
controlled GUI approach which is based on the vocabulary V .

With the just defined terminology we aim at providing an estimate for the probability of a
rejection, which happens, if a recognition error does not match a valid command. Since we
modeled a speech recognizer as a black box component we do not know about the characteris-
tics of the recognition process. We consequently assume that a recognition error can match any
command with the same probability – be it valid or invalid. The number of invalid commands
is determined by |CMD|− |CMDvld|. Therefore, with the above assumption, we estimate the
probability of a rejection, under the precondition that a recognition error has happened, by the
term 3

|CMD| − |CMDvld|
|CMD|

The issue hereby is that CMD is an infinite set: given an arbitrary finite set (such as V) an
infinite number of sequences of elements from that set can be constructed. Consequently, since
CMDvld is finite (see section 2.4), the probability of a rejection under the precondition that a

3If we were exact we would estimate the denominator of the term as |CMD| − 1, since one command would
have been correct. We do, however, neglect the correct command to simplify further estimations.
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recognition error happened would be 1, because

lim
|CMD|→∞

|CMD| − |CMDvld|
|CMD|

= 1 (3.1)

The correctness of (3.1) is discussed in appendix A.1. Equation (3.1) would mean that our
model expects any recognition error to be rejected and no recognition error to be misunder-
stood. For this behavior to be practical the speech recognizer would have to have the ability
to mark a recognition result as a recognition error, so that the recognition result interpreter
can decide to reject it. This is, however, not possible: a recognition result is the word se-
quence which the speech recognizer believes to match best the characteristics of the incoming
audio signal according to its internal models. With currently available speech recognition
technology there is always a specific inherent probability of this match being incorrect, i.e.,
this probability is induced by the algorithms of speech recognition process (as discussed in
section 1.2.1). Therefore, the speech recognizer cannot determine if the recognition result is a
recognition error or not. And consequently, the recognition result interpreter cannot determine
which recognition results should be rejected before the interpretation process starts. 4

In order to provide a more realistic approximation of the probability of a rejection we need
to consider a suitable finite subset of CMD. We arrive at this subset by reconsidering a con-
straint in the speech-GUI model that was introduced in section 2.5: the valid input of a speech
recognizer is constrained to the valid commands of the respective speech-controlled GUI ap-
proach, i.e., constrained to CMDvld. Let nmax be the length of the longest valid command,
i.e., nmax is the length of the longest word sequence in CMDvld. As discussed in section 3.2.1,
given the maximum error rate of 100%, the longest recognition result has a length of 2 · nmax.
As such, we will only need to consider elements of CMD which have a maximum length of
2 · nmax. We represent this subset by CMD2nmax and obviously CMDvld ⊆ CMD2nmax . The
number of elements in CMD2nmax is finite and can be calculated as follows:

|CMD2nmax | := |V|︸︷︷︸
#seq. of length 1

+ |V|2︸︷︷︸
#seq. of length 2

+ |V|3︸︷︷︸
#seq. of length 3

+... + |V|2·nmax︸ ︷︷ ︸
#seq. of length 2·nmax

=
2·nmax∑

x=1

(|V|)x =

{
|V|2·nmax+1−1

|V|−1
− 1, for |V| 6= 1

2 · nmax, for |V| = 1
(3.2)

Equation (3.2) is a geometric series of the form
n∑

k=1

xk = xn+1−1
x−1

− 1, as we derive in section

A.3. We are now able to approximate the probability of a rejection (Rej), under the precondi-

4Current speech recognizers might provide a so called confidence value which denotes "how confident" the
speech recognizer is about the recognition result really matching what was uttered. As such, the recogni-
tion result interpreter could reject any recognition result below a specific confidence threshold, however, the
confidence is not included in the speech-GUI model (as discussed in section 2.8.2).
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tion that a recognition error happened (RecoError), as

P (Rej|RecoError) =
|CMD2nmax| − |CMDvld|

|CMD2nmax|

P (Rej|RecoError) is well defined, because

CMDvld ⊆ CMD2nmax ⇒ |CMD2nmax| − |CMDvld| ≥ 0

CMDvld ⊆ CMD2nmax ⇒ |CMD2nmax | − |CMDvld| ≤ |CMD2nmax |

|V| > 0 (per definition, section 2.5) ⇒ |CMD2nmax | > 0

⇒

0 ≤ P (Rej|RecoError) ≤ 1

We consider it important to note that the above estimation of P (Rej|RecoError) and
P (Mis|RecoError) is unrealistic, if we allowed that CMDvld, i.e., the valid commands,
would contain a small number of extremely long commands. In that case, nmax would be
extremely high, thus, |CMD2nmax | would also be extremely high and again, similar to (3.1),
P (Rej|RecoError) would move towards 1 and P (Mis|RecoError) would move towards 0.
However, as we will show in chapter 4, our estimation is reasonable from a practical perspec-
tive, where nmax is reasonably small (≤ 5).

A recognition error is either rejected or misunderstood; therefore rejection and misunder-
standing, under the condition that a recognition error happened, are mutually exclusive events.
Consequently, the probability of a misunderstanding under the condition that a recognition
error happened calculates as

P (Mis|RecoError) = 1− P (Rej|RecoError)

If no recognition error happened (RecoError) then no command is rejected or misunderstood,
therefore P (Rej|RecoError) = P (Mis|RecoError) = 0. Under consideration of the total
probability theorem for two mutually exclusive events A and B (Papoulis [146]), which is
given below

P (A) = P (A|B) · P (B) + P (A|B) · P (B)

we calcuate

P (Rej) = P (Rej|RecoError) · P (RecoError) + P (Rej|RecoError) · P (RecoError)

= P (Rej|RecoError) · P (RecoError)

and

P (Mis) = P (Mis|RecoError) · P (RecoError) + P (Mis|RecoError) · P (RecoError)
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= P (Mis|RecoError) · P (RecoError)

= (1− P (Rej|RecoError)) · P (RecoError)

What is missing to be able to calculate P (Mis) and P (Rej), according to the above formu-
las, is P (RecoError). It denotes the probability that a recognition error happens during the
recognition of a command. The speech-GUI model does not define P (RecoError), however,
it defines the average word error rate of a speech recognizer as the average rate by which word
errors occur per spoken word. We represent the word error rate by w. The probability of a
word being recognized correctly, i.e., no word error happens, is consequently 1−w. As such,
1−w denotes the probability of a command of length 1 being recognized correctly. In section
2.5.2 we modeled the word error rate as being equal for each word in the speech recognizer’s
vocabulary. Consequently, the probability of a command of length 2 being correctly recog-
nized is (1 − w)2. The probability of a command of length 3 being correctly recognized is
(1− w)3. And so on.

As we have pointed out in section 2.5 the word error rate, according to its actual definition,
can be greater than 100%, in which case this would mean that 1 − w < 0. However, we
have restricted the word error rate to be between 0 and 1 (inclusively) – which means that
0 ≤ 1 − w ≤ 1. We furthermore defined, that not more than one word error can happen
per word. What still can happen under these conditions, is, that two word errors of different
words neutralize themselves, e.g., an insertion followed by a deletion. As this would still
result in a correctly recognized command, we neglect this case in the following. With these
considerations we provide the following definition of the command recognition rate.

Definition 2 Command Recognition Rate
Let w ∈ [0; 1] be the word error rate of a speech recognizer and let C be a command of length
n (n ∈ N, n > 0). The command recognition rate, RC , is defined as

RC := (1− w)n

The definition of the command recognition rate is idealized – we assume that the probability
for the successful recognition of a word within the command does not depend on which words
occur before that word. In other words, we assume that the probability for recognizing a word
A and then, in a different recognition process, the word B, is stochastically independent of the
probability of recognizing the word sequence AB in a single recognition process. In reality this
is not true because, as explained in section 1.2.1, speech recognizers rely on a language model
from which they conclude which word sequences are or are not likely to occur. Therefore,
the recognition rate of single words A and B, which are essentially commands of length 1,
is in general different from the recognition rate of AB. Furthermore, Thus, our definition of
command recognition rate is an approximation which we make for the sake of simplifying
further calculations. We argue that an exact calculation would require knowledge about the
language model and would have to be performed with conditional probabilities – which would
make a formal analysis of different speech-controlled GUI approaches very cumbersome and
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time consuming 5 .
With the definition of the command recognition rate we can calculate P (RecoError) for a

command C as follows:

P (RecoError) = 1−RC, for a command C

We arrive at formulae for the probabilities of rejection and misunderstanding of C:

P (Mis) = (1− P (Rej|RecoError)) · P (RecoError)

= (1− |CMD2nmax| − |CMDvld|
|CMD2nmax|

) · (1−RC)

and
P (Rej) = P (Rej|RecoError) · P (RecoError)

=
|CMD2nmax | − |CMDvld|

|CMD2nmax |
· (1−RC)

According to (3.2) |CMD2nmax| > 0. The probabilities for rejection and misunderstanding
are the basis for estimating the number of level-1 corrections in the next step.

Step 2: Expected Number of Level-1 Corrections

We estimate the expected number of level-1 corrections for a specific command C. Let NC,1

be a random variable that denotes the number of level-1 corrections for C with P (NC,1 = x)
denoting the probability that NC,1 has the value x. We expect no level-1 corrections if no
recognition error occurs, one, if a rejection occurs and two, if a misunderstanding occurs.
Consequently, x ∈ {0, 1, 2}. This allows us to specify the probability distribution of NC,1 as
follows.

P (NC,1 = 0) = RC (command recognized correctly) (3.3)
P (NC,1 = 1) = P (Rej) (command rejected) (3.4)

P (NC,1 = 2) = P (Mis) (command misunderstood) (3.5)

Correspondingly, the expected amount of level-1 corrections for C is the expectation of NC,1.
Let lC denote the length of the command C, then the expectation of NC,1, E(NC,1), calculates
as follows:

E(NC,1) = 0 · P (NC,1 = 0) + 1 · P (NC,1 = 1) + 2 · P (NC,1 = 2)

= P (Rej) + 2 · P (Mis) (3.6)
5Provided that these conditional probabilities could a priori be determined at all, since the recognition process

is affected by external factors, such as a priori unknown environmental noise.
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= P (Rej|RecoError) · P (RecoError) + 2 · (1− P (Rej|RecoError)) · P (RecoError)

= P (Rej|RecoError) · P (RecoError) + (2− 2P (Rej|RecoError)) · P (RecoError)

= 2P (RecoError)− P (Rej|RecoError) · P (RecoError)

= 2P (RecoError)− P (Rej)

= 2(1−RC)−
|CMD2nmax| − |CMDvld|

|CMD2nmax|
· (1−RC)

= (1−RC) ·
(

2− |CMD2nmax| − |CMDvld|
|CMD2nmax|

)
(3.7)

= (1− (1− w)lC) ·
(

2− |CMD2nmax| − |CMDvld|
|CMD2nmax|

)
(3.8)

According to (3.2) |CMD2nmax| > 0. To summarize the results of this step, if a user utters a
specific command C, we expect an average of E(NC,1) level-1 corrections.

Step 3: Totally Excepted Number of Corrections

In this step we derive a formula for the totally expected number of corrections by identifying
a common pattern during the derivation of expected level-2 and level-3 corrections.

The expected number of level-2 corrections for C depends on how many level-1 corrections
are expected to be recognized incorrectly. The command recognition rate of a level-1 com-
mand that was induced by a rejection of C is equal to the command recognition rate of C - as
in that case the level-1 command is a repetition of C. The situation is different for a level-1
command that was induced by a misunderstanding of C, as the level-1 command could either
be the command that invokes the undo function or the command that repeats C. In the latter
case, the repetition of C, the command recognition rate of the level-1 command is equal to the
command recognition rate of C. In the former case, the command that invokes the undo func-
tion, the command recognition rate is a priori unknown as we have not specified the command
for the undo function. However, in order to simplify further calculations we approximate the
command recognition rate of the command that invokes the undo function by the command
recognition rate of C.

With the above considerations we may assume that level-1 corrections are recognized incor-
rectly with the same probability than the initial command C, because two subsequent recog-
nition processes are stochastically independent – unless the speech recognizer implements
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machine learning algorithms which we neglect. This means that with a probability of P (Rej)
a level-1 command will be rejected and with a probability of P (Mis) a level-1 command will
be misunderstood. Analogously to a recognition error occurring with a level-1 correction the
user needs to utter one level-2 correction for every level-1 correction which is rejected, and
two level-2 corrections for each level-1 correction which is misunderstood. This allows us to
estimate the number of level-2 corrections by

E(NC,1)︸ ︷︷ ︸
#exp. l.−1 corr. cmds.

·P (Rej)

︸ ︷︷ ︸
#l.−1 corr. cmds. rejected

·1 + E(NC,1)︸ ︷︷ ︸
#exp. l.−1 corr. cmds.

·P (Mis)

︸ ︷︷ ︸
#l.−1 corr. cmds. misunderstood

·2

= E(NC,1) · (P (Rej) + 2 · P (Mis)) = 6

E(NC,1)
2

which makes an expected number of level-1 and level-2 corrections for C of

E(NC,1)︸ ︷︷ ︸
#expected level−1 corr. cmds.

+ E(NC,1)
2︸ ︷︷ ︸

#expected level−2 corr. cmds.

With a probability of P (Rej) a level-2 command will be rejected, which requires the user
to utter one level-3 correction. With a probability of P (Mis) a level-2 command will be mis-
understood, which requires the user to utter two level-3 corrections. Accordingly, we estimate
the number of level-3 corrections by

E(NC,1)
2︸ ︷︷ ︸

#exp. l.−2 corr. cmds.

·P (Rej)

︸ ︷︷ ︸
#l.−2 corr. cmds. rejected

·1 + E(NC,1)
2︸ ︷︷ ︸

#exp. l.−2 corr. cmds.

·P (Mis)

︸ ︷︷ ︸
#l.−2 corr. cmds. misunderstood

·2

= E(NC,1)
2 · (P (Rej) + 2 · P (Mis))

= E(NC,1)
3

which makes an expected number of level-1, level-2 and level-3 corrections of

E(NC,1)︸ ︷︷ ︸
#expected level−1 corr. cmds.

+ E(NC,1)
2︸ ︷︷ ︸

#expected level−2 corr. cmds.

+ E(NC,1)
3︸ ︷︷ ︸

#expected level−3 corr. cmds.

Following this pattern the total number of corrections for a specific command C can be
calculated as

6P (Rej) + 2 · P (Mis) = E(NC,1), refer to (3.6) on page 55
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∞∑
x=1

E(NC)
x

= E(NC,1)
1 + E(NC,1)

2 + E(NC,1)
3 + · · ·

= −E(NC,1)
0 + E(NC,1)

0 + E(NC,1)
1 + E(NC,1)

2 + E(NC,1)
3 + · · ·

= −E(NC,1)
0 +

∞∑
x=0

E(NC,1)
x

=

(
∞∑

x=0

E(NC,1)
x

)
− 1

The above formula contains the infinite geometric series
∞∑

x=0

E(NC,1)
x. As E(NC,1) ≥ 0 the

following conditions are satisfied (Forster [60]):

E(NC,1) < 1 ⇒
∞∑

x=0

E(NC,1)
x =

1

1− E(NC,1)
− 1 (3.9)

E(NC,1) ≥ 1 ⇒ lim
x→∞

∞∑
x=0

E(NC,1)
x = ∞ (3.10)

From (3.9) we conclude that, if E(NC,1) < 1, we can calculate the totally expected number of
corrections as a function against E(NC,1). From (3.10) we conclude that, if E(NC,1) >= 1,
i.e., if for command C one or more level-1 corrections have to be expected in average, the total
number of expected corrections is infinite. This would mean that the user never finishes the
interaction in which C is involved. This special case is examined in more detail later on in
section 3.3.1. Given the above considerations we arrive at a definition for the totally expected
number of corrections for a specific command as the outcome of this step.

Definition 3 Totally Excepted Number of Corrections
We call ncorr(C) the totally expected number of corrections for a command C and define

ncorr(C) as follows:

E(NC,1) < 1 ⇒ ncorr(C) :=
1

1− E(NC,1)
− 1

E(NC,1) ≥ 1 ⇒ ncorr(C) := ∞
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Step 4: Expected Interaction Delay

We now arrive at a formula for the interaction delay which considers the additional delay
that is introduced by corrections. We call this formula the expected interaction delay, as it,
additionally to the duration and the recognition delay of each command, sum up the duration
and the recognition delay for each expected correction.

Definition 4 Expected Interaction Delay
Let S be a session. Let n ∈ N, let (Cx)x=1,...,n be the sequence of commands in the interaction
corresponding to S and let r ∈ R+ be the recognition delay. We define

∆eff (S) :=
n∑

x=1

(dCx + r + ncorr(Cx)(dCx + r))

We call ∆eff the expected interaction delay.

In Theorem 1 we show that for a word error rate of 0%, i.e., a command recognition rate of
100%, the expected interaction delay is equal to the nominal interaction delay. Hence, we
show that the nominal interaction delay is a special case of the expected interaction delay.

Theorem 1 Let w ∈ R be a word error rate and let S be a session. Let n ∈ N and let
(Cn)x=1,...,n be the sequence of commands in the interaction corresponding to S, then

w = 0 ⇒ ∆nom(S) = ∆eff (S)

Proof From the definitions of ∆nom and ∆eff we conclude that the claim is fulfilled if

w = 0 ⇒ ∀Cx : E(NCx,1) = 0

We show this in the following. Let x ∈ {1, 2, 3, .., n} and let w = 0. According to (3.8) we
write

E(NCx,1) = (1− (1− 0)lC) ·
(

2− |CMD2nmax | − |CMDvld|
|CMD2nmax |

)
= 0 ·

(
2− |CMD2nmax| − |CMDvld|

|CMD2nmax|

)
= 0

�

As a consequence of Theorem 1 we use the term interaction delay as a synonym for the
expected interaction delay. Thus, the term interaction delay model will in the following refer
to the formula for the expected interaction delay. We symbolize the interaction delay of a
session by Λ(S) and discuss its mathematical characteristics in the following section.
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3.3 Characteristics of the Interaction Delay

We now point out several mathematical characteristics of the interaction delay model. We
will use these characteristics later in chapter 4 to interpret the results of interaction delay
calculations. Given the characteristics we hypothesize that the interaction delay model could
be utilized as metric for speech-controlled GUIs, possibly for user interfaces in general. We
do, however, not further investigate this hypothesis in this dissertation, but regard it as one
possible direction of future work (refer to section 7.3).

3.3.1 Critical Word Error Rate

Depending on whether the value for E(NC,1), which is the essential parameter of the interac-
tion delay, is < 1 or ≥ 1, an infinite amount of corrections has to be expected. We examine
under which conditions E(NC,1) can get≥ 1, which leads to the definition of the critical word
error rate. According to (3.7) we write

E(NC,1) ≥ 1 ⇔ (1−RC) · (2−
|CMD2nmax| − |CMDvld|

|CMD2nmax|
) ≥ 1

As |CMDvld| > 0 and |CMD2nmax | > 0 per definition, the equation is satisfied for

RC ≤
|CMDvld|

|CMD2nmax |+ |CMDvld|
(3.11)

The derivation of (3.11) is discussed in appendix A.2. In order to count on a finite number
of corrections for all valid commands it needs to be ensured that the inequality (3.11) holds
for any command C. Since the command recognition rate decreases with increasing command
length, it is sufficient to ensure that (3.11) holds for command with length nmax. We call
the recognition rate of the longest command(s) Rcrit. With (3.11) the following condition for
Rcrit must be satisfied:

Rcrit >
|CMDvld|

|CMD2nmax|+ |CMDvld|
⇔

(1− w)nmax >
|CMDvld|

|CMD2nmax |+ |CMDvld|
⇔

w < 1−
(

|CMDvld|
|CMDnmax|+ |CMDvld|

) 1
2nmax

:= wcrit (3.12)

The derivation of (3.12) is discussed in appendix A.2. We call wcrit the critical word error rate.
If the word error rate of a speech recognizer reaches or rises above wcrit then the user has to
expect an infinite number of corrections depending on which specific command is recognized
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Figure 3.1: 3D plots of critical word error rate.

incorrectly. As |V| > 1 (section 2.5) we use equation (3.2) on page 52 to expand |CMD2nmax|
which lets us arrive at

wcrit = 1−

 |CMDvld|
|V|2·nmax+1−1

|V|−1
− 1 + |CMDvld|

 1
nmax

Figure 3.1 shows plots of the critical word error rate against the size of the vocabulary and
the number of valid commands for nmax = 5. The plots for nmax < 5 are not significantly
different. From the plots we recognize, that vocabulary sizes above 10 words, the critical
recognition rate is above 90%. Since speech-controlled GUIs typically have far more than 10
words in the vocabulary, (refer to the considerations in section 3.2.1) we argue that with a word
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CHAPTER 3. THE INTERACTION DELAY MODEL

error rate above 90% the user would have given up interacting with the speech-controlled GUI
long before noticing, that the respective task cannot be completed. The critical word error
rate is therefore a theoretical concept allowing us to simplify mathematical proofs of the now
following theorems.

3.3.2 Word Error Rate-Monotony
A low word rate results in a low value for the interaction delay and vice versa. We call this
property the word error rate-monotony of the interaction delay, expressed in Theorem 2.

Theorem 2 Let w1, w2 ∈ [0; 1] be the word error rates of two different speech recognizers
and let S be a session. Both w1 and w2 are below the critical word error rate of the respective
speech-controlled GUI approach. Let Λ(S)w1 denote the interaction delay using the speech
recognizer with the word error rate w1; analogously for w2 and Λ(S)w2 . Then

w1 < w2 ⇒ Λ(S)w1 < Λ(S)w2

Proof The expected number of corrections for a command C, ncorr(C), is the only variable
in Λ(S) that depends on the word error rate. It is defined on the basis of E(NC,1) (refer to
definition 3). For E(NC,1) ≥ 1 : ncorr(C) is infinite. For this to occur the word error rate
must be equal or greater than the critical word error rate. Thus, as per preconditions of the
theorem the critical word error rate is not exceeded, this case can be neglected. Let therefore
E(NC,1) < 1 then

ncorr(C) =
1

1− E(NC,1)
− 1

Let E(NCx,1)w1 < 1 denote E(NC,1) for any command Cx in the corresponding interaction
(E(NCx,1)w2 defined analogously). What remains to be shown is

w1 < w2 ⇒ E(NCx,1)w1 < E(NCx,1)w2 , for all Cx

Let now w1 < w2. Let F :=
(
2− |CMD2nmax |−|CMDvld|

|CMD2nmax |

)
, then, with (3.8) from page 56, we

write
E(NCx,1)w1 < E(NCx,1)w2 ⇔

(1− (1− w1)
lC) · F < (1− (1− w2)

lC) · F ⇔

as F > 0 per definition of its constituents

1− (1− w1)
lC < 1− (1− w2)

lC ⇔

(1− w1)
lC > (1− w2)

lC ⇔
lC
√

1− w1 > lC
√

1− w2 ⇔

w1 < w2, asw1, w2 ∈ [0; 1]

�
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3.3. CHARACTERISTICS OF THE INTERACTION DELAY

3.3.3 Recognition Delay-Monotony

A low recognition delay results in a low value for the interaction delay and vice versa. We call
this property the recognition delay-monotony of the interaction delay, expressed in Theorem
3.

Theorem 3 Let r1, r2 ∈ R+ be the recognition delays of two speech recognizers and let S be a
session. Let Λ(S)r1 denote the interaction delay assuming r1 and a specific speech-controlled
GUI approach; analogously for Λ(S)r2 and r2. Then

r1 < r2 ⇒ Λ(S)r1 < Λ(S)r2

Proof We rewrite the formula for the interaction delay (definition 4 on page 59):

n∑
x=1

(dCx + r + ncorr(Cx)(dCx + r))

=
n∑

x=1

(r · (1 + ncorr(Cx)) + dCx + ncorr(Cx) · dCx)

The components dCx and ncorr(Cx)) are ≥ 0 and independent of the recognition delay – thus,
they are constant in the scope of this theorem. As also r ≥ 0 all summands in the sum are≥ 0.
Consequently, with increasing r the sum increases.

�

3.3.4 Command Length-Monotony

Short commands result in a low value for the interaction delay and vice versa. We call this
property the command length-monotony of the interaction delay, expressed in Theorem 4.

Theorem 4 Let S be a session and let A and B represent two speech-controlled GUI ap-
proaches using the same speech recognizer, i.e., word error rate and recognition delay are
constant for A and B. The word error rate is below the critial word error rate for A and B.
Let i, j ∈ N+ and let (CAk

)k=1,...,i and (CBl
)l=1,...,j represent the interaction to perform S using

approach A, respectively B. The term lCx denotes the length of the command Cx. Then

(i = j) ∧ (∃y ∈ {1, 2, .., i} : lCAy
< lCBy

∧ (lCAs
= lCBs

, s 6= y)) ⇒ Λ(S)A < Λ(S)B

Proof We rewrite the formula for the interaction delay in definition 4 on page 59:

n∑
x=1

(dCx + r + ncorr(Cx)(dCx + r))
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=
n∑

x=1

(dCx + r + ncorr(Cx) · dCx + ncorr(Cx) · r))

=

(
n∑

x=1

r

)
︸ ︷︷ ︸

U

+

(
n∑

x=1

dCx

)
︸ ︷︷ ︸

V

+

(
n∑

x=1

ncorr(Cx) · dCx

)
︸ ︷︷ ︸

W

+

(
n∑

x=1

ncorr(Cx) · r

)
︸ ︷︷ ︸

Z

The components r, dCx and ncorr(Cx) are ≥ 0 per definition, therefore the terms U , V , W , and
Z are ≥ 0. The term U is independent of lCx , therefore it can be neglected. What remains to
be shown is that V , W , and Z increase monotonously with monotonously increasing lCx . With

dCx = lCx · 571

the term V obviously increases monotonously with monotonously increasing lCx . Furthermore,
since r is constant and ≥ 0 and dCx also occurs in the term W it remains to be shown is that
ncorr(Cx) increases monotonously with monotonously increasing lCx .

Let F :=
(
2− |CMD2nmax |−|CMDvld|

|CMD2nmax |

)
. For the scope of this proof F is constant due to the

preconditions of the theorem. With definition 3, (3.8) and the fact that the critical word error
rate is not exceeded per definition, we write:

ncorr(Cx) =
1

1− (1− (1− w)lC) · F
− 1

As lC > 0 and w ∈ [0; 1] per definition the term (1 − w)lC decreases with increasing lC
7 .

Therefore the term (1 − (1 − w)lC) increases with increasing lC which denotes that the term
(1−(1−w)lC)·F also increases with increasing lC . Consequently, the term 1−(1−(1−w)lC)·F
decreases with increasing lC which has as consequence that ncorr(Cx) increases with increasing
lC .

�

3.3.5 Command Count-Monotony

Few commands result in a low value for the interaction delay and vice versa. We call this
property the command count-monotony of the interaction delay, shown in Theorem 5.

Theorem 5 Let S be a session and let A and B represent two speech-controlled GUI ap-
proaches using the same speech recognizer, i.e., word error rate and recognition delay are
constant for A and B. Let i, j ∈ N+ and let (CAk

)k=1,...,i and (CBl
)l=1,...,j represent the inter-

action to perform S using approach A, respectively B. The term lCx denotes the length of the

7For w = 0 there are no corrections and theorem would have been proofed already.
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command Cx. Then

(i < j) ∧ (∀y ∈ {1, 2, .., i} : lCAy
= lCBy

) ⇒ Λ(S)A < Λ(S)B

Proof Consider the formula for the interaction delay (definition 4 on page 59):

n∑
x=1

(dCx + r + ncorr(Cx)(dCx + r))

What needs to be shown is that any summand in the sum is≥ 0, i.e., any command contributes
a non-zero interaction delay. We claim

∀x ∈ {1, 2, .., n} : dCx + r + ncorr(Cx)(dCx + r) > 0

Let x ∈ {1, 2, .., n} then
dCx + r + ncorr(Cx)(dCx + r)

= lCx · 571 + r + ncorr(Cx) · lCx · 571 + ncorr(Cx) · r , since lCx >= 1 and r, ncorr(Cx) ≥ 0

≥ lCx · 571 >= 571 > 0

�

3.3.6 Summary

We showed that the interaction delay increases monotonically by monotonically increasing
the word error rate, the recognition delay, the command length or the number of commands.
Word error rate and recognition delay are characteristics of the utilized speech recognizer
whereas the length and number of commands depend on the respective speech-controlled GUI
approach. The critical word error rate is an inherent property of a specific speech-controlled
GUI approach. It can be used during the design of the approach, e.g., to determine quality
requirements for the utilized speech recognizer.

The characteristics suggest that the interaction delay can be used as a metric for speech-
controlled GUIs: the better the speech recognizer (i.e., the lower the word error rate and the
lower the recognition delay), the lower the (average) length of commands and the lower the
(average) number of commands, the better the speech-controlled GUI approach. We consider
the question of whether the interaction delay is a suitable metric for speech-controlled GUIs
as future work. In order to emphasize the feasibility of this possible direction for future work
we compare the interaction delay, under the assumption that it would be a suitable metric, to
other user interface metrics in section 3.4.2.
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3.4 Discussion

The interaction delay model can be seen as an extension to the GOMS model towards speech
recognition-based user interfaces. It defines a model of the time required to successfully rec-
ognize a command and commands map to GOMS operators (see section 2.4). Since the in-
teraction delay model furthermore allows to calculate the interaction delay of a single control
action, i.e., a session of length 1, it extends GOMS with the possibility to asses the time for
executing a GOMS goal using speech recognition as input modality (control actions map to
GOMS goals, as explained in section 2.2).

We now discuss the fulfillment of the initial requirements by the interaction delay model
and conclude the section with a comparison of the interaction delay to currently existing user
interface metrics.

3.4.1 Reconsidering the Requirements

The requirements for the interaction delay model were the coverage, the inclusion of the qual-
ity of currently available speech recognition technology, and the operation on non-empirical
data.

Coverage We will show in chapter 4 that the interaction delay model can be applied to
the speech-controlled GUI approaches which have been discussed in this dissertation.
Currently it is unclear if the interaction delay model can be applied to other speech-
controlled GUI approaches. We do, however, show in chapter 4 as well that the interac-
tion delay model can also be applied to conventional mouse-controlled GUIs.

Quality of speech recognition The recognition delay and the recognition rate are explicit
parameters of the formula by which the interaction delay is calculated. If other measures
for the quality of speech recognizers become available the interaction delay model must
be redesigned, or revised, respectively.

Non-empirical data The core data for calculating the interaction delay is the session, i.e.,
a sequence of control actions that should be performed with the GUI. This sequence
can be determined without an empirical experiment, e.g. it could be determined by
the designer of a GUI. There is, however, no reason against using a session which has
been determined empirically, e.g. by a previously performed user study. The (average)
recognition delay and the (average) recognition rate are parameters of the interaction
delay which are usually determined empirically. We do, however, assume that these
values are known in advance, i.e., before the interaction delay of a specific speech-
controlled GUI approach is determined.
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3.4.2 Interaction Delay and User Interface Metrics

In this section we compare the interaction delay, under the assumption that it would be a
suitable user interface metric, to the metrics subjective satisfaction, number of mouse clicks
and task success rate.

Subjective Satisfaction Subjective satisfaction is a general metric for user interfaces. Test
candidates perform a given number of tasks with a user interface and fill out a USE
Questionnaire – USE stands for usefulness, satisfaction, and ease of use (Lund [111]). In
such a questionnaire the test candidates give answers to multiple-choice questions which
query the subjective opinion about test candidates’ satisfaction with the user interface.
The answers are associated with a score and optionally associated with a weight factor.
The score of all answers (including the weight factors) is calculated per questionnaire
and correlated to the maximal achievable score from which conclusions about the quality
of the user interface are drawn. For instance, the higher the (average) score the higher
the quality of the user interface. An example for a USE Questionnaire, however, using
a different terminology, is given by Duggan in [52].

Subjective satisfaction is an empirical metric as each test candidate physically performs
the test and records results. The interaction delay can be determined non-empirically for
a specific speech-controlled GUI, at least if the specific session is known in advance.

The scores from the questionnaires reflect the subjective opinion of each specific test
candidate at the time the test candidate performed the test. It is likely that if the very
same candidate performed the same test a second time with some temporal distance (e.g.
several days) the questions are answered differently. As such the subjective satisfaction
metric has weaknesses regarding the reproducibility whereas the interaction delay pro-
duces exactly the same result for the same session (here a session corresponds to the test
which the candidates perform).

Number of Mouse Clicks Number of mouse clicks is a metric for GUIs which are operated
with a mouse device. It could however be applied to other user interfaces which require
a mouse. The metric counts the number of mouse clicks which a user needs to complete
a specific task with the GUI in question. The lower the number of mouse clicks after
completing the task the higher the quality of the GUI.

Although number of mouse clicks is usually determined empirically it could be mea-
sured formally from a specification of the layout and the functionality of the GUI. This
is common with the interaction delay which can also be calculated formally.

However, number of mouse clicks just considers activation. Navigation between graph-
ical objects is neglected, because the time to move the mouse cursor from one location
to another is not considered. This means that regardless of how the graphical objects are
laid out – as long as they are all equally accessible and visible – the number of mouse
clicks, and therefore the quality of the GUI, does not change. The interaction delay also
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does not consider the time that the user interface inherently needs for navigation – only
the interaction delay for navigation is considered. However, other than the number of
mouse click metric, it considers the input operations (i.e., the speech functions) which
the user needs to invoke in order to perform navigation

Number of mouse clicks can only be applied to user interfaces which can be operated
with a mouse device, to user interfaces which know the concept of a click, respectively.
The interaction delay has been designed for speech-controlled GUIs independently of
whether the respective approach emulates a mouse or incorporates other concepts. The
interaction delay can however, as we show later on in section 4.4, be applied to mouse-
controlled user interfaces. As such the interaction delay covers a broader range of user
interface types than number of mouse clicks.

Task Success Rate Task success rate (Nielsen [138]) is another general user interface met-
ric. Similar to subjective satisfaction candidates perform a given number of tasks with
the user interface under consideration. Instead of letting the users fill out a questionnaire
after the tasks have been performed, task success rate considers if the users were able to
perform the tasks at all. The number of successfully completed tasks per test candidate
is counted and correlated to the total number of tasks which had to be performed. From
this correlation conclusions about the quality of the user interface are drawn, e.g. the
more tasks have been completed (in average) the better the quality of the user interface.

The criteria for whether a task has been successfully completed or not depends on the
application domain. With task success rate one cannot compare the quality of two dif-
ferent user interface approaches A and B (e.g., if A uses a different input modality than
B or if A and B use the same input modality but in a different fashion). For instance if
both A and B had the same task success rate but with A the majority of the users need
less time to successfully complete the tested tasks, the quality of A and B would never-
theless be considered equal. This is different with the interaction delay which considers
the approach by which the input modality speech is utilized, however, without consider-
ing the cognitive load associated with that approach. Additionally, the interaction delay
can be applied to other input modalities beyond speech, as we will show later in section
4.4. Consequently, the interaction delay considers characteristics of the input modality
which the task success rate does not.

Finally, task success rate requires an empirical experiment to obtain data, whereas the
interaction delay can be calculated non-empirically.
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4
Interaction Delay Calculations

Overview
This chapter is about calculating the interaction delay of speech-controlled GUIs which serves
three purposes: first, based on the results, we show that conventional command-and-control
has the lowest interaction delay amongst the approaches introduced in this thesis. Second, the
obtained results for conventional command-and-control serve as the reference values against
we compare the interaction delay of conversation-and-control in chapter 6. Third, we show
that the speech-GUI model as well as the interaction delay model cover the speech-controlled
GUI approaches that are discussed in this dissertation as required (refer to sections 2.1 and
3.1). The chapter is organized into four logical parts as follows.

In the first part we define a specific type of session, called execution, which we use as the ba-
sis for our calculations. This is mandated by the interaction delay formula requiring a specific
session as parameter and we will show that executions represent the building blocks for ap-
plication domain-specific sessions. Thus, specifying representative executions and calculating
their interaction delay is sufficient. In the second part of the chapter we calculate the inter-
action delay of representative executions for conventional command-and-control, command-
and-control with random navigation and direct activation, direction-based mouse emulation
with continuous movement, direction-based mouse emulation with discrete movement, target-
based mouse emulation, and grid based mouse emulation. For each particular calculation we
present a summary in this chapter – detailed results are documented in appendix B.2. The
third part is an outlook to emphasize the feasibility of speech-GUI model and the interac-
tion delay model: we enhance the speech-GUI model consistently with the interaction delay
model, so that we can describe and calculate the interaction delay of mouse-controlled GUIs.
The chapter finishes with a discussion of the obtained results.
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4.1 Preliminaries

In this section we perform preliminary considerations and preparations, which allow us to
calculate the interaction delay of speech-controlled GUis using the interaction delay model.
In section 4.1.1 we introduce a catalog of representative graphical objects and model each
graphical object as a set of control actions according to the speech-GUI model. In section
4.1.2 we show that specific control actions, which emerge from a single graphical object,
can be aggregated to special types of sessions, called executions. An execution models the
inherent purpose of a graphical object and, as we will show, is a building block for application
domain-specific tasks with a GUI. Finally, in section 4.1.3, we explain the general calculation
procedure.

4.1.1 The Swing Catalog

GUIs of today are composed from a basic set of graphical objects provided by so called GUI
toolkits – frameworks and code libraries which facilitate the implementation of GUIs in a
specific programming language. The GUI toolkit Java Swing [200] is based on the platform
independent programming language Java (Ullenboom [190]). We use Java Swing as the basis
for our calculations, because other GUI toolkits, such as MFC [151] for Windows or Cocoa
[75] for Max OS X, would restrict our results to specific platforms.

Table 4.1 on the facing page depicts a catalog of graphical objects from Java Swing. We
refer to this catalog as the Swing catalog, and it includes only a subset of the graphical objects
which Java Swing provides. The graphical objects which are omitted are specializations or
aggregations of the ones which are included. Examples for specializations include the scrollbar
object (specialization of a slider) and the text area object (specialization of the input field).
Aggregated objects are for instance the scroll pane (aggregation of pane and scroll bar), the
tabbed pane (aggregation of multiple panels), or the table object (aggregation of panels and
labels). A detailed introduction into Java Swing can be found in Zukowski [200].

In the following we will explain the interactive functionality of each graphical object in the
Swing catalog and model this functionality as sets of control actions. As a matter of fact in
Java Swing each graphical object can be focused 1 , however, not every graphical object has a
graphical representation of its focused state. For instance, if a specific menu item of a list is
focused it is presented with a blue background. If a button is focused then its outline is drawn
with a blue shadow 2 . In contrast, if a label or a panel is focused, then there is no graphical
indication of that. In terms of the speech-GUI model, however, this coherence denotes that
every graphical object can be navigated to. We reflect this as the navigation NAV of which an
instance is provided by every graphical object. Furthermore, graphical objects of Java Swing
can logically be decomposed into a number of graphical sub-objects. A list, for example,
is composed from one graphical sub-objects per option. We will use this observation in the

1JComponent.requestFocusInWindow()
2This applies if the Windows UI manager is used.

70



4.1. PRELIMINARIES

Graphics Name Description
Panel A container for Java Swing objects, including panel.
Label Text which is displayed on the screen.

Button Represents a button that can be pushed.

Checkbox An object that supports two states called ’checked’ and
’unchecked’.

Radio Button
(Group)

Group of radio buttons. Each radio button supports two
states called ’selected’ and ’deselected’. Usually used in
groups where only one radio button of the group can be se-
lected at the same time.

List
A list of options which can be selected. Multiple selection
possible.

Drop Down Box

A list of options which can be selected. Only single selec-
tion possible. Options are initially in a hidden state and can
be revealed by clicking the ’arrow’ next to the currently se-
lected option.

Menu

A list of actions that can be invoked. One action can be
invoked at a time. List of actions is initially hidden and can
be revealed by clicking the name of the menu.

Tree

A graphical object that displays hierarchically arranged data
as a tree. Each piece of data/hierarchy level is represented as
a node that can be expanded or collapsed.

Input Field An area into which the user can enter alphanumeric charac-
ters.

Spinner Specialized text field. Accepts numeric input. Provides two
buttons which increase or decrease current value.

Slider A graphical object that allows to select from a range of val-
ues.

Table 4.1: The Swing catalog. The ’Graphics’ column shows exemplary graphics.

following discussion, of which we provide a summary in the form of a UML class diagram in
Figure 4.7 on page 76.

Panel and Label The panel object is a container for Java Swing objects, including the panel
itself, and does not provide any interactive functionality. The label object displays static
text on the screen with which the user cannot interact. We argue that the user would not
navigate to a graphical object that provides no interactivity; hence, we will not include
panels and labels in our calculations explicitly.
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Figure 4.1: A checkbox in the checked and unchecked state.

Button Button objects are graphical metaphors for push buttons – physical buttons which
can be pushed. We model the pushing of a button by the activation PUSH allowing us
to model a button as the control action set {NAV, PUSH}.

Checkbox Checkboxes are graphical objects which have two states, called checked (check
mark is shown) and unchecked (check mark is hidden), as depicted in Figure 4.1. The
state of a specific checkbox is independent of the state of other checkboxes. Also, the
setting of the state is idempotent: if a checked checkbox is set to checked it remains
checked 3 . This allows us to model the setting of the checkbox states as two control
actions which we call CHECK and UNCHECK. Correspondingly we model a checkbox
as the control action set {NAV, CHECK, UNCHECK}.

Radio Button Radio buttons support have two different states, called selected and dese-
lected. Once a radio button is selected the user cannot bring it back to the deselected
state 4 . Radio buttons are usually utilized in groups of at least two radio buttons in
which only a single radio button may be in the selected state. The user can unselect
a radio button by selecting a different one from the same group – but not by directly
deselecting the currently selected radio button. Thus, a radio button does only provide
one interactive function – being selected. We model this as the activation SELECT and
correspondingly we model a radio button as the control action set {NAV, SELECT}.

Item and Pop-up Item and Pop-up are two helper objects which we introduce to facilitate
further modeling. An item is an abstract object that inherits from the label. We will
further specialize the item in the following paragraphs. A pop-up is a specialized panel
which may only contain items. It has two states of visibility called visible and invisible.
In the visible state the items of the pop-up are rendered on the screen, whereas in the
invisible state the items are not rendered. The pop-up does not provide control actions
for setting its visibility, instead, other graphical (sub-)objects which use the pop-up will
provide for respective control actions. We will show the usage of the pop-up in the
following.

Drop Down Box A drop down box offers a list of options from which the user can select
(see Figure 4.2 on the next page). Only one option may be selected at a time and there
is always one option selected. Options cannot be deselected directly – the user needs

3In a mouse-controlled GUI the user does not notice this: as the user can only change the state of a checkbox
by clicking the mouse button, the checkbox appears as an object that toggles its state between checked and
unchecked with every click.

4At least not in a mouse-controlled GUI which was created with Java Swing using the standard radio button
object.
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Figure 4.2: Arrow button (dashed line) and option (dotted line) of a drop down box.

to select a different option to deselect the currently selected option 5 . We represent an
option of a drop-down box by a special item called the select-item. A select-item has
the state selected to which it can be set by the activation SELECT. If the state of a select
item is not selected we consider its state undefined. We model a drop down box to have
as many select-items as it offers options. The drop down box furthermore has a pop-
up which contains all its select-items. Additionally, the drop down box has a graphical
sub-object called arrow button (see Figure 4.2). The arrow button can be navigated to
(NAV ) and toggles the visibility of the pop-up via its activations OPEN (pop-up visible)
and CLOSE (pop-up hidden). If the option list contains more options than the pop-up is
able to display in vertical direction, e.g. if the pop-up’s size in Y direction is constrained
by the programmer or the screen, then a scroll bar appears allowing to scroll to currently
invisible options. For the scope of this thesis we assume that the pop-up is always able
to display all options, i.e., we assume that no scrolling is necessary. In the following we
refer to this assumption as the scrolling assumption. To summarize, we model a drop
down box as a set of control actions consisting of

1. one navigation that focuses the drop down box itself (NAV ),

2. one navigation that focuses the arrow button (NAV ),

3. two activations (OPEN and CLOSE ) to toggle the visibility of the pop-up,

4. two activations (NAV and SELECT ) per select-item.

List Like a drop down box a list offers a set of options from which the user can select. It dif-
fers from the drop down box in three ways. First, the visibility of the options cannot be
toggled – they are always visible. Second, the list allows for selecting multiple options.
Third, options can be deselected. We represent each option of a list by a specialized
item called select-deselect-item. It inherits the selected state and the activation SELECT
from the select-item. It defines the additional state deselected along with the activation
DESELECT to set this new state. We model as list as being composed from as many
select-deselect-item as it offers options. Similar to a drop down box, if there are more
options than the list is able to display in vertical direction, the scrolling assumption ap-
plies. In summary, we model a list as a set of control actions consisting of one navigation
NAV that focuses the list itself and three control actions (NAV, SELECT, DESELECT )
per select-deselect-item.

5At least, this applies to Java Swing.
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Figure 4.3: Name (dashed line) and action (dotted line) of a menu.

Figure 4.4: Expansion and collapsing icons (dotted line), labels and representative icons
(dashed line) of a tree.

Menu A menu offers a list of application functions, called actions, which the user can in-
voke. We represent an action by a special item called the action-item. An action-item is
stateless and provides an activation called INVOKE, which triggers the invocation of the
action that it represents. A menu has a pop-up which contains all its action-items. The
visibility of the pop-up is toggled by a graphical sub-object called the name of the menu
(see Figure 4.3), for which it has the activations OPEN (pop-up visible) and CLOSE
(pop-up hidden). A menu furthermore has as many action-items as it offers application
functions, and, like with other graphical objects, the scrolling assumption applies. We
model a menu as a set of control actions consisting of

1. one navigation that focuses the menu itself (NAV ) ,

2. one navigation that focuses the name of the menu (NAV ) ,

3. two activations (OPEN and CLOSE ) to toggle the visibility of the pop-up,

4. two activations (NAV and INVOKE ) per action-item.

Tree A tree is a graphical object which presents hierarchical data in the form of a tree. Each
node in the tree represents a hierarchy level or a data instance. Typically, this is done by
a label which names the level or data instance, and a representative icon 6 . Each tree
node can be selected and deselected. Independently from being selected or deselected
tree nodes can be expanded and collapsed via the expansion and collapsing icons (see
Figure 4.4). We assume that the expansion/collapsing icons are in horizontal alignment
with the label of a tree node. If a tree node is collapsed then all of its descendants are

6In Figure 4.4 a hierarchy level is represented by a folder icon whereas a data instance in represented by a bullet.
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Figure 4.5: Decrease button (dotted line) and increase button (dashed line) of a spinner.

hidden. If a tree node is expanded then its children are visible – the visibility of further
descendants depends on them being collapsed or expanded.

We represent a tree node as a special select-deselect-item which we call tree-item. It
inherits the selected and deselected state and corresponding activations. Additionally, it
defines two new states called expanded and collapsed which are independent from the
inherited states. It has two new control actions: an activation called EXPAND which
sets expanded state and an activation called COLLAPSE which sets the collapsed state.
We consider a tree as being composed from tree-items – one tree-item per level or data
instance in the hierarchy. This allows us to model a tree as a set of control actions
consisting of one navigation NAV that focuses the tree itself and five control actions
(NAV, EXPAND, COLLAPSE, SELECT, and DESELECT ) per tree-item.

Input Field An input field is a rectangular area on the screen where the user can en-
ter alphanumeric characters. We assume that newly added characters are appended
to the characters which already exist in the input field, thus, we neglect the abil-
ity of real Swing input fields, to insert characters between other characters. We
model the appending of a specific character x as the activation APPENDx. With-
out restricting the generality of input fields we assume that input fields accept the
characters a-z and 0-9. The activation DELETE deletes the last character that was
appended. This allows us to model an input field as a set of 38 control actions
{NAV, APPENDa, · · · , APPENDz, APPEND0, · · · , APPEND9, DELETE}.

Spinner A spinner is a special input field which differs from an input field in two ways.
First, only numeric characters can be entered – with the assumptions made for the
input field it accepts the digits 0-9. Second, the spinner allows for increasing or de-
creasing the value which is currently entered by two respective buttons. We call these
buttons the increase button and the decrease button as illustrated in Figure 4.5. We
model the functionality of the increase and decrease button by two activations called IN-
CREASE and DECREASE, allowing us to model a spinner as a set of 14 control actions
{NAV, APPEND0, APPEND1, · · · , APPEND9, INCREASE, DECREASE, DELETE}.

Slider Sliders, depicted in Figure 4.6 on the next page, let the user move a mark between
two fixed positions on the so called slider axis. The positions are called the slider’s
boundaries. If there are a few specific predefined positions for the mark on the slider
axis then we call the slider a discrete slider (Figure 4.6(a)). If the are no such positions
then we call the slider a continuous slider (Figure 4.6(b)). However, we consider a
continuous slider a special case of a discrete slider where each pixel of the graphical
representation of the slider axis denotes a predefined position – positions in between
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(a) Discrete slider (b) Continuous slider

Figure 4.6: Different types of sliders.
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Figure 4.7: Graphical objects in the Swing catalog expressed as control actions.

these pixels cannot be represented graphically therefore the mark cannot be positioned
there. In Java Swing the mark can be manipulated by using one of two methods. First,
by clicking on the new position. Second, by pressing the mouse button while the mouse
cursor is over the mark, moving the mouse cursor to the new position (the mark will
move together with the mouse cursor), and then releasing the mouse button. The first
method selects a specific position directly. It corresponds to selecting an option from
a menu and can therefore be modeled by control actions. The second method is an
application of drag-and-drop and can therefore not be modeled by control actions (as
discussed in section 2.8.2). With this consideration we represent each position on the
slider axis by a special item which we call slide-item. Each slide-item provides an
activation called SLIDEx which causes the mark to be positioned on the position x.
Thus, we model a slider as a set of control actions consisting of one navigation NAV
that focuses the slider itself and two control actions (NAV, SLIDE ) per slide item.

As a summary of the section, we present the graphical objects just discussed as a UML class
diagram in Figure 4.7 . In the following we explain the concept of executions of graphical
objects.
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4.1.2 Executions

We now use the control actions just defined to derive representative sessions for our calcula-
tions, as required by the interaction delay model.

The purpose of a graphical object denotes a specific effect which it accomplishes. The
purpose of a button, for instance, is the activation of a specific function of the application.
The purpose of a drop down box is to select an option. Graphical objects can have multiple
purposes; for instance, one purpose of a list is the selection of an option, and another purpose
of a list is the deselection of an option. Consequently, the task-directed interaction with a GUI,
that is, the performing of a domain-specific task, can be abstracted as a sequence of purposes.
Consider an email application as example. First, the user selects the recipient from a drop
down box (purpose of a drop down box). Then, the user composes the message content by
entering characters into a text field, text area, respectively (purpose of a text field). Finally, the
user triggers a function that sends the email by clicking the corresponding button (purpose of
a button).

An execution is a session of minimal length, which, when performed, accomplishes a pur-
pose. Executions are formal representations of purposes and therefore executions are the ba-
sic building blocks for task-directed interaction with GUIs. It is therefore sufficient for our
calculations to identify the executions of each graphical object from the Swing catalog, and
then measure the interaction delay of each execution for different speech-controlled GUI ap-
proaches. The interaction delay of a concrete task-directed interaction can then be determined
by identifying the involved executions and by summing up the corresponding interaction de-
lays. In the following we give a more detailed definition of executions.

We define executions for graphical objects which are currently not focused. As such, execu-
tions consist of navigations and activations from one specific graphical object. We divide the
navigations in an execution into two categories. The first category includes navigations which
focus the graphical object as a whole. We call such navigations inter-object navigations. The
second category includes navigations within a graphical object, i.e., between graphical sub-
objects (as discussed in section 4.1.1). We call these navigations intra-object navigations.
Now, with the terminology of inter- and intra-object navigation, we consider the navigation
NAV as the superclass of two specialized navigations NAVinter and NAVintra. Hence, exe-
cutions begin with an instance of NAVinter, as executions are only defined on currently not
focused graphical objects. Executions have additional instances of NAVintra depending on
whether the graphical object is logically composed from graphical sub-objects.

We require that in an execution an intra-object navigation of a specific graphical object
must be preceded by an inter-object navigation to that respective graphical object, and call
this requirement the cascading navigation requirement. This seems unrealistic at first sight:
consider for instance a list which is currently not focused. Cascading navigation could be
interpreted as such that, given speech-based mouse emulation, the user has to click somewhere
onto the list before being able to click on the desired option. In reality, the mouse cursor can
be positioned over the desired option directly, followed by a click that selects the option. This
is, however, not a violation of cascading navigation: inter- and intra object navigations are
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control actions, thus, they describe navigation independently of the utilized input modality.
Control actions are mapped to speech functions and there is a many-to-many relationship
between control actions and speech functions (refer to section 2.2). Thus, the required inter-
and intra-object navigations do not have to be mapped to speech functions one by one. Instead,
depending on the functionality of the input modality, specific speech functions might be able to
cover multiple control actions. In the above example, the speech functions which directly place
the mouse cursor over the option cover both the required inter- and intra-object navigation.

Having provided a definition of executions we now present the executions of graphical ob-
jects from the Swing catalog. A summary of these executions is provided in Table 4.2 on
page 80.

Button The purpose of a button is the invocation of a specific application function. We
call the execution of a button Ebutton and it consists of NAVinter to focus the button,
followed by the control action PUSH, which triggers the function that is associated with
the button.

Checkbox A checkbox has two executions called Echeckbox−check and Echeckbox−uncheck which
check/uncheck the checkbox. Echeckbox−check consists of NAVinter followed by the
activation CHECK. Echeckbox−uncheck consists of NAVinter followed by the activation
UNCHECK.

Radio Button The purpose of a radio button is to get selected – which implies the deselec-
tion of other radio buttons in the same group. We call its execution Eradio and it consists
of NAVinter followed by the activation SELECT.

Drop Down Box The purpose of a drop down box is the selection an option. The options
are displayed by a pop-up, which is initially invisible. Thus, the user needs to open the
pop-up to review the options, an option needs to be selected, and then the pop-up needs
to be closed. As options cannot be deselected explicitly, a drop down box has a single
execution called Edropdown. It consists of an instance of NAVinter to navigate to the drop
down box, followed by the control actions NAVintra and OPEN to reveal the pop-up
(navigation and activation of the arrow button), followed by the control actions NAVintra

and SELECT to navigate and select the desired option, followed by the control actions
NAVintra and CLOSE to hide the pop-up (navigation and activation of arrow button) 7 .

List The list allows for selecting multiple options including an explicit deselecting of options.
Options can be selected/deselected directly, i.e., without having to open a pop-up. Con-
sequently, a list has the executions Elist−select and Elist−deselect. They both consist of an
instance of NAVinter to navigate to the list, an instance of NAVintra to navigate to the
option, and an instance of SELECT /DESELECT to select/deselect the option.

7A drop down box in Java Swing automatically closes the pop-up when an option is selected. In the context
of our model this denotes that the speech functions with trigger the selection of the option also trigger the
closing of the pop-up.
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Menu The purpose of a menu is the invocation of one of its actions. We call the menu’s
execution Emenu. It consists of an instance of NAVinter to navigate to the menu, followed
by the control actions NAVintra and OPEN to navigate to the menu’s name and to reveal
the pop-up, followed by the control actions NAVintra and INVOKE to navigate and
invoke the desired action item, followed by the control actions NAVintra and CLOSE to
hide the pop-up (navigation and activation of the menu’s name) 8 .

Tree For the tree we make four assumptions. First, we assume that the root node of the tree
– if it is visible at all – is always expanded, i.e., it cannot be collapsed. Second, we
assume that all descendants of the root node are initially collapsed. Third, we assume
that the user intends to select (or deselect) a node which is represented by a tree-item
in depth ndepth. Hereby, ndepth = 0 denotes the child nodes of the root note (as the
root node cannot be expanded nor collapsed) 9. Fourth, we assume that the path to
the intended item can be inferred by the labels of the respective parent nodes 10 . This
allows as to set up two executions for the tree, called Etree−select and Etree−deselect. The
execution Etree−select consists of an instance of NAVinter to navigate to the tree, followed
by ndepth pairs of the control actions NAVintra and EXPAND to drill down into the
tree until the desired tree item becomes visible (navigation and activation of ndepth tree
items), followed by the control actions NAVintra and SELECT to navigate and select the
desired tree item. For Etree−deselect we assume that the desired tree item is visible. As
such, Etree−deselect consists of an instance of NAVinter to navigate to the tree, an instance
of NAVintra to navigate to the tree-item and an instance of DESELECT to deselect it.

Input Field The purpose of an input field is to input alphanumerical characters and we as-
sume that the user intends to enter ntext characters. The execution of an input field,
called Einput, consists of an instance of NAVinter to navigate to the input field, followed
by ntext instances of APPENDx to enter ntext characters into the input field.

Spinner The spinner is a special case of an input field of which the purpose is to enter a
numeric value consisting of ndigit digits 11 . The spinner has three executions. The first
execution, called Espinner, consists of an instance of NAVinter to navigate to the spinner,
followed by ndigit instances of APPENDx. The second execution is called Espinner−inc

and represents the spinner’s purpose to increase the current value of the spinner. It

8A menu in Java Swing automatically closes the pop-up when an action has been invoked. In the context of our
model this denotes that the speech functions with trigger the invocation of the action also trigger the closing
of the pop-up.

9Refer to Figure 4.1 on page 71: the root note is labeled "JTree" and the tree nodes in depth 0 are the nodes
labeled "colors", "sports" and "food"

10The first and the second assumption denote a worst case scenario where the user must drill down through a
maximum of tree levels to reach the desired node. The fourth assumption represents a typical tree search
algorithm where the path to a specific tree node is determined by information about the tree item to be
searched an information in the respective tree node. As such we rule out that the user performs a linear search
through potentially all tree nodes.

11The value is a positive integer, as the input field, from which a spinner inherits, accepts the digits 0-9.
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Graphical Object Execution Control Action(s)
Button Ebutton (NAVinter, PUSH)
Checkbox Echeckbox−check (NAVinter, CHECK)

Echeckbox−uncheck (NAVinter, UNCHECK)
Radio Button Eradio (NAVinter, SELECT)
Drop Down Box Edropdown (NAVinter, NAVintra, OPEN,

NAVintra, SELECT, NAVintra, CLOSE)
List Elist−select (NAVinter, NAVintra, SELECT)

Elist−deselect (NAVinter, NAVintra, DESELECT)
Menu Emenu (NAVinter, NAVintra, OPEN,

NAVintra, INVOKE, NAVintra, CLOSE)
Tree Etree−select (NAVinter,

NAVintra, EXPAND, · · · , NAVintra, EXPAND︸ ︷︷ ︸
ndepth

,

NAVintra, SELECT)
Etree−deselect (NAVinter, NAVintra, DESELECT)

Input Field Einput (NAVinter, APPEND, · · · , APPEND︸ ︷︷ ︸
ntext

)

Spinner Espinner (NAVinter, APPEND, · · · , APPEND︸ ︷︷ ︸
ndigit

)

Espinner−dec (NAVinter, NAVintra, INCREASE)
Espinner−inc (NAVinter, NAVintra, DECREASE)

Slider Eslide (NAVinter, NAVintra, SLIDE)

Table 4.2: Basic executions of graphical objects in the Swing catalog.

consists of an instance of NAVinter to navigate to the spinner, followed by the control
actions NAVintra and INCREASE to navigate and activate the increase button. The
third execution is called Espinner−dec and represents the spinner’s purpose to decrease
the current value of the spinner. It is defined analogously to Espinner−inc.

Slider The purpose of a slider is the selection of a specific value x represented as a slide
position. Its execution, which is called Eslide consists of an instance of NAVinter to
navigate to the slider, followed by the control actions NAVintra and SLIDEx to navigate
and activate the desired slide position.

In Table 4.2 we provide a summary of the executions just discussed. For the remainder
of this document we will refer to the executions in Table 4.2 as the basic executions. The
following section describes the general procedure by which we calculate the interaction delay
of basic executions.
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4.1.3 Calculation Procedure

The calculation of the interaction delay is currently not supported by tools. Therefore, we now
explain, how we performed the interaction delay calculations "manually". This is in contrast
to the GOMS model, for which such tools exist: John et al. present Apex [87], which is a tool
that generates CPM-GOMS models from a hierarchical task decomposition. Using Apex, the
model is presented as a PERT chart(s) which visualizes parallel behavior of the tasks. For
further reading about GOMS modeling tools refer to Baumeister et al. [18].

The interaction delay of a session S, according to definition 4 on page 59, is defined as
follows:

Λ(S) =
n∑

x=1

(dCx + r + ncorr(Cx)(dCx + r))

Hereby, n ∈ N, n > 0 denotes the number of commands needed to perform S, (Cx)x=1,...,n

denotes the commands in the interaction used to perform S, r ∈ R
+
0 denotes the recognition

delay, and dCx denotes the duration of the command Cx. In the following we will expand the
formula so that all further parameters which are needed are visible.

The recognition delay and the duration of a word are defined by the speech-GUI model: the
recognition delay is 1500ms and the duration of a word is 571ms. We will adopt these values
for our calculations. Let lC denote the length of the command C, then dC = lC · 571, and we
arrive at

Λ(S) =
n∑

x=1

(lCx · 571 + 1500 + ncorr(Cx)(lCx · 571 + 1500))

Now we expand ncorr which was defined as

ncorr(C) :=
1

1− E(NC,1)
− 1

for E(NC,1) < 1 (refer to definition 3 on page 58). The case E(NC,1) ≥ 1 will not be
considered, because then ncorr →∞. We arrive at

Λ(S) =
n∑

x=1

(
lCx · 571 + 1500 +

(
1

1− E(NC,1)
− 1

)
(lCx · 571 + 1500)

)
(4.1)

According to equation (3.8) on page 56 we may expand E(NC,1) as follows (w ∈ [0; 1] is the
word error rate):

E(NC,1) = (1− (1− w)lC) ·
(

2− |CMD2nmax| − |CMDvld|
|CMD2nmax|

)
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With equation (3.2) on page 52 we write 12 for |V| > 1:

E(NC,1) = (2−
|V|2·nmax+1−1

|V|−1
− 1− |CMDvld|

|V|2·nmax+1−1
|V|−1

− 1
)(1− (1− w)lC)

Hence, if we insert the expanded value for E(NC,1) in formula (4.1), which we omit for rea-
sons of clarity, the interaction delay calculates as a function against the recognition delay, the
duration of a word, the number of necessary commands for a specific a session, the length of
each command, the size of the vocabulary, the total number of valid commands, the length of
the longest valid command (nmax), and the word error rate. The recognition delay and duration
of words have already been adopted from the speech-GUI model. In the following we explain
how we intend to obtain values for the remaining parameters to facilitate concrete calculations.

For each approach that is to be calculated we will specify the available speech functions
and their corresponding commands. The union of these commands denotes the set of valid
commands for that approach. Thus, we can determine the number of valid commands and
the length of the longest valid command. The size of the vocabulary can be determined by
counting all distinct words occurring in any valid command. The basic executions serve as
sessions of which the interaction delay is calculated. Using the specified speech functions we
can set up intentions and corresponding interactions for each basic execution. 13 As such, the
lengths of the occurring commands can be determined by counting the words in each command
of each interaction.

Regarding the word error rate we need to consider that the environmental conditions, which
a speech recognizer is exposed to, may vary during its runtime. For instance, the intensity of
environmental noise may change, as well as the quality of the articulation of the user. Thus,
the word error rate, as it depends on these environmental conditions, cannot assumed to be
constant. We therefore calculate the interaction delay for the following word error rates: 0%
(nominal interaction delay, refer to Theorem 1 on page 59), 1%, 5%, 10%, 20%, 30%, 40%,
and 50%. Hereby, we assume that, at the latest, with a word error rate of over 50%, i.e., with a
word error happening with every second word, users would be too frustrated to continue using
the system. The value of 50% is, however, arbitraty and can be adapted. As already stated in
section 3.2.1, the size of the vocabulary and the number of valid commands can (dynamically)
be minimized specifically to the current screen, which improves the word error rate and which
reduces interpretation complexity (Smailagic and Siewiorek [175]).

From the obtained calculation results we then determine the minimum, the average, and
the maximum interaction delay per basic execution per word error rate. With calculating the
average we assume that every basic execution is equally likely to occur. If this assumption
does not hold, then we suggest calculating a weighted average based on the relative frequency
of each basic execution, which is certainly specific to a particular GUI and/or task. In our

12Cases where |V| = 1 will not occur in our calculations, however, for |V| = 1 the formula becomes simpler, as
show in equation (3.2) on page 52.

13The respective intentions and interactions are presented in detail in appendix B.2 for reasons of clarity.
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situation, however, the relative frequency of each basic execution is a priori unknown. For
calculating these cumulated figures we omit the interaction delay values for Etree−select, Einput,
and Espinner, as they contain the a priori unknown values ndepth, ntext and ndigit.

In the following sections we calculate the interaction delay of command-and-control and of
speech-based mouse emulation. We do this, however, without further calibrating the interac-
tion delay model, i.e., we regard the calibration by the word duration and the recognition delay
obtained from literature research as sufficient. To achieve a better calibration we suggest to
use empirically measured values for the word duration and the recognition delay if the users as
well as the speech recognizer is known. Furthermore, a program could be created, that takes
the parameters of a specific interaction delay calculation as input (i.e., the expected word error
rate, a sequence of commands, etc.), and which determines the interaction delay by simulation
– possibly for a large number of iterations of the same interaction. This could, eventually, lead
to the definition of specific regression coefficients for the model, by which characteristics of
the environment, the task, or the user could be integrated. Thus, we regard a more accurate
calibration of the interaction delay model as future work (see also section 7.3).

4.2 Command-and-Control

We now calculate the interaction delay of command-and-control in order to obtain reference
values based on which we will show the reduced interaction delay of conversation-and-control
in chapter 6. We will first discuss general conditions for the calculations of command-and-
control in section 4.2.1. Then we calculate conventional command-and-control (random nav-
igation and indirect activation) in section 4.2.2, followed by command-and-control with ran-
dom navigation and direct activation in section 4.2.3. In section 4.2.4 we summarize and
interpret the results.

4.2.1 General Conditions

We introduce a generally applicable schema for speakable identifiers, define common speech
functions and commands for command-and-control, and explain the spelling mode for entering
alphanumeric characters into input fields and spinners.

Speakable Identifiers

With command-and-control all graphical objects are assigned a speakable identifier. Some
variants use textual properties of graphical objects to obtain the identifiers (e.g., Sipek [174]),
while other variants define a specific schema to generate the identifiers. An example for the
latter method is Conversay Voice Surfer [43] which uses subsequent integer numbers, starting
with 1 (Figure 4.8 on the next page). Regardless of how the identifiers are obtained or gen-
erated, the vocabulary of the utilized speech recognizer must contain the words from which
the identifiers are composed. In order to be able to specify the size of the vocabulary, which
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Figure 4.8: Conversa Voice Surfer displays numeric identifiers as bubbles attached to graphical
objects.

is a parameter of the interaction delay formula, we derive and justify a finite set of speakable
identifiers in the following.

We require that a well-designed GUI may only consist of a specific maximum number of
graphical objects 14 , called gomax. Otherwise, if the number of graphical objects exceeds
gomax, we consider the GUI as ill-designed. The feasibility of this requirement is supported
by Constantine’s Visibility Principle and Structure Principle of good user interface design [42],
and for the remainder of this dissertation we will neglect ill-designed GUIs.

Our calculations are not based on a specific GUI instance and therefore, even by just con-
sidering well-designed GUIs, we do not a priori know of which particular graphical objects
the GUI consists. Thus, we cannot use textual properties of graphical objects for generat-
ing speakable identifiers, as we do not know which textual properties exist. Using numeric
identifiers, however, allows us to specify the vocabulary in advance: a well-designed GUI is
composed from maximal gomax graphical objects, and hence, a finite set of integer numbers
as identifiers, ranging from 1 to gomax, is required. The verbal representations for integer
numbers between 1 and gomax can be described by a grammar that regards distinct words as
terminal symbols (e.g. "one", "two", "fourteen", etc.). The set of required terminal symbols is
finite and represents the subset of the vocabulary needed for speakable identifiers. For being

14In this regard we consider graphical objects consisting of multiple sub-objects as single graphical objects. An
example is a table (e.g., JTable from Java Swing) which potentially consists of several 100 interactive table
cells.
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able to perform concrete calculations we set 15 gomax = 100. A grammar that describes verbal
representations of integer numbers between 1 and 100 consists of 28 terminal symbols (refer
to appendix B.1) – thus, the vocabulary of the speech recognizer has a subset of 28 words for
recognizing numbers between 1 and 100.

Assuming numeric identifiers does not affect the correctness of our calculations. Indeed,
textual identifiers might require far more than 28 words than numeric identifiers, as every
graphical object must have a unique identifier which might in turn consist of multiple words.
This might result in different results for different methods to generate speakable identifiers.
However, we will adhere to numeric identifiers as defined here wherever speakable identifiers
are needed. Thus, all speech-controlled GUI approaches which involve speakable identifiers
are treated equally, and as such speakable identifiers are a constant throughout our calculations.

Common Speech Functions and Commands

Command-and-control allows navigating to graphical objects by uttering their speakable iden-
tifiers. With the above considerations, command-and-control provides 100 speech functions
which cause a navigation to a graphical object, referred to as SFNAVid, id ∈ {1, 2, . . . , 100}.
It furthermore provides 100 corresponding commands consisting of the respective speakable
identifiers, referred to as CMDNAVid, id ∈ {1, 2, . . . , 100}. For facilitating concrete calcula-
tions we will assume that each command CMDNAVid consists of two words – which, accord-
ing to the grammar in appendix B.1, corresponds to the worst maximum length of a command
that triggers a navigation.

We define that, whenever a graphical object has been navigated to, the graphical sub-objects,
of which it is possibly composed, are assigned a speakable identifier and, as such, become nav-
igable as well. This defined behavior is in accordance with observations of currently available
technology and we call it the navigation precedence. An example is the drop down box. If it is
navigated to it opens its pop-up and reveals the available options due to indirect activation, as
described later in Table 4.4 on page 87. Each select-item of the drop down box is then assigned
a speakable identifier. For our calculations we assume that the identifiers for graphical sub-
objects are taken from the "pool" of the available 100 identifiers. In order to practically avoid
a situation where the identifier pool would be exhausted – all 100 identifiers being assigned
to graphical objects – we argue that the vocabulary for the 100 identifiers is also sufficient for
describing identifiers of up to 999 (see grammar in appendix B.1). As such, SFNAVid can be
used to perform inter- and intra-object navigation.

We further define SFACTx as a speech function of command-and-control which triggers
the activation x of a currently focused graphical object. For example, the speech function
SFACTOPEN would open the pop-up of a drop down box (or a menu) if the drop down box
(or the menu) is currently focused. We define CMDACTx as a command of command-and-
control which invokes the speech function SFACTx and Table 4.3 on the next page presents

15The value of gomax can easily be adapted. It can be seen as a parameter to formal interaction delay calculations
of command-and-control.
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Command Words
CMDACTPUSH "push"
CMDACTCHECK "check"
CMDACTUNCHECK "uncheck"
CMDACTSELECT "select"
CMDACTDESELECT "deselect"
CMDACTOPEN "open"
CMDACTCLOSE "close"
CMDACTINV OKE "invoke"
CMDACTEXPAND "expand"
CMDACTCOLLAPSE "collapse"
CMDACTAPPEND "append <c>", <c>∈ {”a”, ”b”, . . . , ”z”, ”zero”, . . . , ”nine”}

respectively
<c> ∈ {”alpha”, ”beta”, . . . , ”zulu”, ”zero”, . . . , ”nine”}

CMDACTDELETE "delete"
CMDACTINCREASE "increase"
CMDACTDECREASE "decrease"
CMDACTSLIDE "slide"

Table 4.3: Common commands with command-and-control.

representative commands 16 .

Spelling Mode

According to the above terminology, the speech functions SFACTAPPENDx invoke the ac-
tivations APPENDx, which append the character x to an input field or a spinner (x ∈
{a, b, . . . , z, 0, 1, . . . , 9}). The speech function SFACTDELETE removes the most recently ap-
pended character from an input field or spinner. In the following we refer to these speech func-
tions as spelling functions. Each of the commands CMDACTAPPENDx and CMDACTDELETE

triggers a specific spelling function. We therefore refer to these commands as the spelling
commands. For the remainder of this document we will refer to the entirety of spelling func-
tions and spelling commands as spelling mode, as the entering of alphanumeric characters
by spelling commands has a flavor of spelling the words or numbers that should be entered.
Spelling mode defines 37 commands - one command per appending a character or digit and
one command for the deletion. It requires a vocabulary subset of 38 words - the word "delete"
and "append" and one word per character or digit.

In the following two sections we calculate the interaction delay of conventional command-
and-control and command-and-control with random navigation and direct activation.

16The commands are either derived from literature or, in cases where the respective graphical object has not been
used with command-and-control, invented by ourselves.
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Graphical Object Indirectly Performed Activations
Button PUSH (inter-object navigation)
Checkbox 1. CHECK (inter-object navigation if unchecked)

2. UNCHECK (inter-object navigation if )
Radio Button SELECT (inter-object navigation)
List 1. SELECT (intra-object navigation to deselected select-item)

2. DESELECT (intra-object navigation to selected select-item)
Drop Down Box 1. OPEN (inter-object navigation)

2. (SELECT, CLOSE) (intra-object navigation to select-item)
Menu 1. OPEN (inter-object navigation)

2. (INVOKE, CLOSE) (intra-object navigation to action-item)
Tree EXPAND (intra-object navigation to collapsed tree-item)

Table 4.4: Indirectly triggered activations with conventional command-and-control.

4.2.2 Conventional Command-and-Control

From the discussion in the previous section we know that conventional command-and-control
uses 100 valid commands for inter- and intra-object navigation and 37 valid commands for
the spelling mode. Navigation requires a vocabulary subset of 28 distinct words and spelling
mode requires a vocabulary subset of 38 distinct words, however, these two subsets have a
non-empty intersection – the words "one" - "nine" are contained in both subsets. Thus, for
navigation and spelling mode, a vocabulary subset of only 28+38−9 = 57 words is required.

Regarding valid commands and corresponding vocabulary subsets for the activation of the
remaining graphical objects, i.e., other than input field and spinner, we need to consider that
indirect activation is used. This means that specific activations are performed automatically
whenever the respective graphical object is navigated to. Thus, we may neglect the commands
which would usually trigger the speech functions for invoking these activations. We present the
indirectly performed activations in Table 4.4, and we conclude that the activations SELECT,
DESELECT and COLLAPSE of the tree, and the activations INCREASE and DECREASE of
the spinner are not invoked indirectly. Correspondingly, conventional command-and-control
defines 5 additional valid commands for activation, which require 5 additional words in the
vocabulary.

In total, we have 100+37+5 = 142 valid commands, requiring a vocabulary of 57+5 = 62
words. The length of the longest valid command is 2, such as uttering an identifier or uttering
a spelling command. With the considerations taken in this section we have derived inten-
tions and interactions for the basic executions, and have calculated their interaction delays for
different word error rates (refer to appendix B.2, Tables B.1 and B.2, for a detailed documen-
tation). We summarize the results in Table 4.5 which depicts the minimum, the average, and
the maximum interaction delay per basic execution of conventional command-and-control.
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Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 2642 2696 2927 3262 4128 5392 7339 10568
Average 4481 4567 4936 5468 6839 8828 11871 16888
Maximum 7355 7483 8035 8825 10845 13742 18130 25279

Table 4.5: Calculated minimum, average and maximum interaction delay per basic execution of
conventional command-and-control.

Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 4713 4788 5107 5563 6717 8350 10791 14710
Average 6379 6484 6934 7578 9213 11540 15036 20684
Maximum 9426 9575 10215 11126 13434 16701 21581 29420

Table 4.6: Calculated minimum, average and maximum interaction delay per basic execution of
command-and-control with random navigation and direct activation.

4.2.3 Command-and-Control with Random Navigation and Direct
Activation

The only difference of command-and-control with random navigation and direct activation
compared to conventional command-and-control is, that for each activation the corresponding
speech function(s) must be triggered explicitly, i.e., any activation must be performed directly.
This may happen as soon as the desired graphical object has been navigated to. In other words,
any graphical object must be focused before it can be activated.

Reconsidering Table 4.4 we conclude that command-and-control with random navigation
and direct activation, compared to conventional command-and-control, defines 8 additional
valid commands for being able to directly perform any activation – all other commands can be
reused. To be able to recognize the additional commands the vocabulary must be augmented
by 8 corresponding words.

In total, we have 142 + 8 = 150 valid commands, requiring a vocabulary of 62 + 8 = 70
words. Similar to conventional command-and-control, the length of the longest valid com-
mand is 2. With the considerations taken in this section we have derived intentions and in-
teractions for the basic executions, and have calculated their interaction delays for different
word error rates (refer to appendix B.2, Tables B.3 and B.4, for a detailed documentation).
We summarize the results in Table 4.6 which depicts the minimum, the average, and the max-
imum interaction delay per basic execution of command-and-control with random navigation
and direct activation.
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Figure 4.9: Calculated interaction delay graphs of command-and-control approaches.

4.2.4 Summary

We now discuss the results that we obtained from calculating the interaction delay of conven-
tional command-and-control and command-and-control with random navigation and direct
activation. Considering the vocabulary and the set of valid commands for both approaches we
find that these are not equal but, indeed, very similar. In fact, the vocabulary and the valid com-
mands for conventional command-and-control are subsets of the vocabulary and the valid com-
mands of command-and-control with random navigation and direct activation. Considering
this coherence and the command length-monotony (Theorem 4) it is a tempting prognosis that
both approaches might have similar interaction delays. However, as the diagram in Figure 4.9
illustrates, the average interaction delay per execution of conventional command-and-control
is, for every calculated word error rate, considerably lower than of command-and-control with
random navigation and direct activation. The same applies for the respective minimum and
maximum interaction delay values (refer to Tables 4.5 and 4.6). For word error rates which
can nowadays be accomplished by speech recognizers (i.e., 5% - 20%) the difference in the
average interaction delay per execution is between 42% and 34%.

Looking at the detailed interactions in Tables B.1 on page 196 and B.3 on page 198 the
reason for this becomes obvious. If we neglect the order of the commands than we find that
the interactions of conventional command-and-control are sub-interactions of the interactions
used for command-and-control with random navigation and direct activation. Several interac-
tions of command-and-control with random navigation and direct activation have additional
commands. In other words, with command-and-control with random navigation and direct
activation the user utters the same commands as with conventional command-and-control,
but, in several cases, needs to utter additional commands. Consequently, according to the
command count-monotony (Theorem 5), the interaction delay of command-and-control with
random navigation and direct activation must be higher – which is reflected by our results. In
the following we examine the actual difference.

Let us first examine the interaction delay for a word error rate of 0%. The minimum and the
maximum interaction delay per basic execution (Tables 4.5 and 4.6) differ by 2071ms – which
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is exactly the sum of the recognition delay and the duration of a command of length 1. If we
compare the detailed interaction delays for each execution (Tables B.1 and B.3) we find that the
difference is x·2071ms (x ∈ {0, 1, 2}). This conforms to the different characteristics of the two
approaches: as conventional command-and-control uses indirect activation it requires up to
two commands less than command-and-control with random navigation and direct activation.
Consequently, the interaction delay of the former is up to two times the interaction delay of
an activating command lower than the interaction delay of the latter. The difference of the
average values for the two approaches for 0%, however, is with 1900ms lower than 2071ms.
This is due to the fact that there are, indeed, some interactions in both approaches which are
equal, for instance, the interactions for the execution Espinner−inc, or where the interactions
differ by two commands for direct activation, e.g., the execution Edropdown.

Comparing the minimum, maximum, and the absolute interaction delay values per execution
for word error rates other than 0%, we find that the difference is always zero, one, or two
times the interaction delay of a direct activation command under consideration of corrections.
The difference of the average values is, for the reasons discussed above, always by a specific
percentage lower than the interaction delay of one command for direct activation.

In summary, conventional command-and-control has, in average, an interaction delay that is
by the interaction delay of one command for direct activation lower then command-and-control
with random navigation and direct activation. For some basic executions, both approaches
have an equal interaction delay. For other basic executions the interaction delay differs by two
times the interaction delay of a command that triggers a direct activation.

4.3 Speech-based Mouse Emulation

In this section we will calculate the interaction delay of speech-based mouse emulation ap-
proaches. We will first discuss generally applicable conditions for speech-based mouse emu-
lation approaches in section 4.3.1. Then we calculate direction-based mouse emulation with
continuous movement (section 4.3.2), direction-based mouse emulation with discrete move-
ment (section 4.3.3), target-based mouse emulation (section 4.3.4) and grid-based mouse em-
ulation (section 4.3.5). In section 4.3.6 we summarize and interpret the results.

4.3.1 General Conditions

We now introduce a model of the mouse device, which allows us to explain how mouse func-
tionality is emulated by speech functions. We furthermore define common speech functions
and commands for speech-based mouse emulation approaches, and explain how we deal with
input fields and spinners, which cannot be operated by just emulating the mouse device.

90



4.3. SPEECH-BASED MOUSE EMULATION

*

1..*

2

11

MouseSignal

MOVELEFTSIG MOVERIGHTSIGMOVEUPSIG MOVEDOWNSIG PRESSBUTTONSIG RELEASEBUTTONSIG

MFCLICK

MFDOUBLECLICKMFMOVEMENT

MFPOINTING

Mouse

MouseFunction

MOVEMENTSIG BUTTONSIG

Figure 4.10: Mouse signals and mouse functions.

Mouse Device Model

A mouse, as discussed in section 1.1, is a electro-mechanical device that sends electrical sig-
nals to a computing system, based on how the user physically operates the mouse. By mouse
signals we understand abstract representations of these electrical signals in a computing sys-
tem. Mouse signals are divided into movement signals and button signals. The movement
signals MOVEUP, MOVEDOWN, MOVELEFT and MOVERIGHT indicate that the mouse
device has been moved to the left or right, upward or downward, . The button signals PRESS-
BUTTON and RELEASEBUTTON indicate the pressing and the releasing of the mouse but-
ton 17 . Mouse signals can be composed into mouse functions which represent the functionality
of a mouse device on a high abstraction level. A movement (MFMOVEMENT ) is a mouse
function which represents an arbitrary movement of the mouse. It is composed from a se-
quence of movement signals. A pointing (MFPOINTING ) is a movement with a minimal
number of movement signals which moves the mouse cursor from one position to another. A
click (MFCLICK ) is a pair of a PRESSBUTTON signal and a RELEASEBUTTON signal. A
double click (MFDOUBLECLICK ) is a pair of two clicks. Figure 4.10 depicts mouse signals
and mouse functions and their relationships as a UML class diagram.

Common Speech Functions and Commands

Speech-based mouse emulation approaches provide speech functions which generate mouse
signals (sequences of mouse signals, respectively) without a physical mouse device being

17Modern mouse devices have multiple buttons, correspondingly, each button would send specific instances of
PRESSBUTTON and RELEASEBUTTON signals.
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available. A study of literature regarding speech-based mouse emulation reveals that the same
speech function for emulating clicks is used throughout different approaches. This speech
function generates a PRESSBUTTON signal followed by a RELEASEBUTTON signal –
which makes a click. Therefore, for the remainder of this work, we assume that every speech-
based mouse emulation approach provides a speech function called SFCLICK which emulates
a click. We define that SFCLICK is invoked by the command "click", as this command is used
in the majority of respective approaches 18 . Thus, speech-based mouse emulation approaches
differ in how they emulate movement signals.

Operating Input Fields and Spinners

Input fields are essential constituents of modern GUIs, however, speech-based mouse emu-
lation, at least in its pure forms (e.g. Karimullah and Sears [95] and Gori et al. [46]), does
not provide for inputting alphanumeric characters. Researches have recognized this draw-
back and combined speech-based mouse emulation with speech-based keyboard emulation,
e.g., SUITEKeys (Manaris et al. [118]). Such combined approaches allow the entering of
alphanumeric characters in a manner which is similar to the spelling mode of command-
and-control (as defined on page 86). Since the characteristics of speech-based keyboard-
emulation are beyond the scope of this dissertation (refer to section 1.2) we assume the
spelling mode to be available for input fields and spinners. As such, the speech functions
SFACTAPPENDx and SFACTDELETE and their corresponding commands CMDACTAPPENDx

and CMDACTDELETE , are available for every speech-based mouse emulation approach. 19

Speech-based mouse emulation consequently defines 38 common valid commands (1 for the
click and 37 for the spelling mode), which are composed from a common vocabulary subset
consisting of 39 words (1 for the click and 38 for the spelling mode).

In the following sections we calculate the interaction delay of representative speech-based
mouse emulation approaches.

4.3.2 Direction-based Mouse Emulation with Continuous
Movement

Direction-based mouse emulation with continuous movement (and discrete commands) em-
ulates mouse movements by letting the user utter the direction into which the mouse cursor
should continuously be moved. The movement will stop if the user utters a respective stop
command. As already described during the introduction of speech functions in section 2.3, the
following speech functions are available (e.g., Karimullah and Sears [95]):

1. Start continuous mouse cursor movement to the left (SFML ).

18The emulation of a double click or other mouse buttons is done analogously, however, none of the graphical
objects that we are considering for our calculations requires a double click or other mouse buttons

19In fact, speech-based keyboard emulation is not significantly different from the spelling mode.
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2. Start continuous mouse cursor movement to the right (SFMR ).

3. Start continuous mouse cursor movement upward (SFMU ).

4. Start continuous mouse cursor movement downward (SFMD ) .

5. Stop mouse cursor movement (SFSTOP ).

A straight movement of the mouse cursor along one of the screen’s axes can correspondingly
be emulated by invoking a speech function which sets the cursor in motion, followed by the
speech function SFSTOP which stops the movement. For the scope of this section we define
the abstract speech function SFMOVEAX as

SFMOVEAX := (SFML|SFMR|SFMU|SFMD), SFSTOP

which is invoked by the abstract command SFMOVEAXcmd:

SFMOVEAXcmd := ("left"|"right"|"up"|"down"), "stop"

Diagonal movements of the mouse cursor are not supported. An arbitrary pointing, i.e., an
arbitrary repositioning of the mouse cursor with a minimum of movements, can therefore be
achieved by at most two straight movements which are orthogonal to each other (refer to
section 2.3). If the current position and the new position of the mouse cursor lie on a straight
line in parallel to the screen’s X or Y axis, one straight movement is sufficient. However, in
general, the coordinates of current and desired position are a priori unknown. Therefore, for
our calculations, we assume the worst case by defining that a pointing requires two straight
movements orthogonal to each other. For the scope of this section we define the abstract
speech function SFPOINT as

SFPOINT := (SFMOVEAX, SFMOVEAX)

which is invoked by the abstract command SFPOINTcmd, defined as

SFPOINTcmd := (SFMOVEAXcmd, SFMOVEAXcmd)

With the above considerations, any movement, especially pointings, can be realized with a
total of 5 valid commands, which require a vocabulary subset consisting of the 5 words "left",
"right", "up", "down" and "stop". Together with the commonly available valid commands,
direction-based mouse emulation with continuous movement defines 38 + 5 = 43 valid com-
mands of which the longest one has a length of 2 (spelling mode). The required vocabulary
contains 39 + 5 = 44 words. With the considerations taken in this section we have derived in-
tentions and interactions for the basic executions, and have calculated their interaction delays
for different word error rates (refer to appendix B.2, Tables B.5 and B.6, for a detailed docu-
mentation). We summarize the results in Table 4.7 which depicts the minimum, the average,
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Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 10355 10460 10900 11506 12944 14793 17258 20710
Average 11391 11506 11990 40270 14238 16272 18984 22781
Maximum 16568 16735 17440 184089 20710 23669 27613 33136

Table 4.7: Calculated minimum, average and maximum interaction delay per basic execution of
direction-based mouse emulation with continuous movement.

Figure 4.11: The compass mouse.

and the maximum interaction delay per basic execution of direction-based mouse emulation
with continuous movement.

4.3.3 Direction-based Mouse Emulation with Discrete Movement

Direction-based mouse emulation with discrete movement emulates mouse movements by
letting the user utter both the direction into which the mouse cursor should be moved and the
relative distance that the movement should bridge. Several variants of this approach exist.
They differ in the directions into which the cursor can be moved and the manner by which the
relative distance can be specified (refer to the introductory discussion in section 1.2.2).

We base our calculations on a variant called the compass mouse (Brøndsted and Aaskoven
[27]). We consider it the most generic variant in the sense of a superclass - other variants
discussed in section 1.2.2 could be derived from it. The compass mouse considers the current
position of the mouse cursor as the intersection point of eight rulers which are oriented like a
compass, i.e., one ruler to the north, one to the north-east, etc. (refer to Figure 4.11). Each
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ruler marks a point every 100 pixels from the center and the user repositions the mouse cursor
by uttering commands of the form

<repos> := <direction> <distance>;
<direction> := ("north"|"west"|"east"|"south"|"northeast"|"southwest"|

"northwest"|"southeast");
<distance> := ("one" | "two" | ...);

An example is the command "northeast two hundred ten", which would position the mouse cur-
sor to the 210th pixel northeast from the center. We represent one repositioning of the mouse
cursor using the compass mouse by the abstract speech function SFMOVECOMP which is
invoked by the abstract command SFMOVECOMPcmd, defined like <repos>. Brøndsted
and Aaskoven show that with the compass mouse the mouse cursor can be positioned to
every pixel on the screen – which corresponds to a pointing – by uttering two commands
SFMOVECOMPcmd in the worst case 20 . Correspondingly, for the scope of this section, we
define the abstract speech function

SFPOINT := (SFMOVECOMP, SFMOVECOMP)

which is invoked by the abstract command SFPOINTcmd, defined as

SFPOINTcmd := (SFMOVECOMPcmd, SFMOVECOMPcmd)

For our calculations we assume that <distance> represents verbal forms of the numbers 1
through 999, allowing us to specify the distance with a vocabulary of 28 words (see grammar
in appendix B.1). As such we cover a maximum screen resolution of at least 999 x 999 pixels
and in the following we examine the valid commands and the required vocabulary for the
compass mouse.

The mouse cursor can be moved into eight directions. Thus, 8 · 999 = 7992
SFMOVECOMPcmd commands with an average length of 4.7 words exist. Together with
38 commonly available valid commands for the spelling mode and the click, direction-based
mouse emulation with discrete movement defines 7992 + 38 = 8030 valid commands. The
longest valid command has a length of 5, e.g., "north nine hundred ninety nine".

The SFMOVECOMPcmd commands require a vocabulary subset of 36 distinct words – 8
words for the directions and 28 words for the distance (numbers from 1 - 999). Spelling mode
requires a vocabulary subset of 38 words, however, as with command-and-control, these two
subsets have a non-empty intersection. The words "one" - "nine" are contained in both subsets.
Thus, a common vocabulary subset of only 36+38−9 = 65 words is required. The command
for the mouse click adds one additional word, so that direction-based mouse emulation with
discrete movement requires a total vocabulary of 66 words.

With the considerations taken in this section we have derived intentions and interactions for
the basic executions, and have calculated their interaction delays for different word error rates
20Depending on the relative position of current mouse cursor location and desired mouse cursor location one

SFMOVECOMPcmd is sufficient.
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Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 10438 10864 12829 16030 26471 47692 95768 221628
Average 11481 11944 14080 17558 28893 51912 104037 240442
Maximum 16693 17342 20333 25196 41000 73017 145378 334513

Table 4.8: Calculated minimum, average and maximum interaction delay per basic execution of
direction-based mouse emulation with discrete movement.

(refer to appendix B.2, Tables B.7 and B.8, for a detailed documentation). We summarize the
results in Table 4.8 which depicts the minimum, the average, and the maximum interaction
delay per basic execution of direction-based mouse emulation with discrete movement.

4.3.4 Target-based Mouse Emulation

With target-based mouse emulation (e.g. QPointer VoiceMouse [117]), specific areas on the
screen, the so called targets, have been assigned speakable identifiers. Targets are for instance
graphical objects or specific graphical sub-objects. Whenever the user speaks an identifier, the
mouse cursor is placed to a specific position within the target. Thus, target-based mouse emu-
lation allows performing pointings to targets by speaking the identifier of the desired target.

Like with command-and-control approaches we assume well-designed GUIs (refer to sec-
tion 4.2.1); this means that a maximum of 100 speakable identifiers is needed. This allows us,
for the scope of this section, to define the abstract speech function SFPOINT which emulates
a pointing and which is triggered by the abstract command SFPOINTcmd. The SFPOINTcmd

command is the verbal form of a numeric identifier and, like with command-and-control, we
assume a worst case length of SFPOINTcmd of 2 words.

As we have 100 possible speakable identifiers we have 100 valid commands for reposi-
tioning the mouse cursor. Together with the commonly available speech functions we have
100 + 38 = 138 valid commands for target-based mouse emulation. The speakable identi-
fiers require a vocabulary subset of 28 distinct words and spelling mode requires a vocab-
ulary subset of 38 distinct words. Again, these two subsets have a non-empty intersection.
The words "one" - "nine" are contained in both subsets, as such, a vocabulary subset of only
28 + 38 − 9 = 57 words is required. The command for the mouse click adds one additional
word, so that target-based mouse emulation requires a total vocabulary of 58 words.

With the considerations taken in this section we have derived intentions and interactions for
the basic executions, and have calculated their interaction delays for different word error rates
(refer to appendix B.2, Tables B.9 and B.10, for a detailed documentation). We summarize
the results in Table 4.9 on the facing page which depicts the minimum, the average, and the
maximum interaction delay per basic execution of target-based mouse emulation.

96



4.3. SPEECH-BASED MOUSE EMULATION

Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 4713 4788 5107 5563 6717 8350 10791 14710
Average 5499 5586 5958 6490 7837 9742 12590 17162
Maximum 9426 9575 10215 11126 13434 16701 21581 29421

Table 4.9: Calculated minimum, average and maximum interaction delay per basic execution of
target-based mouse emulation.

(a) (b) (c)

Figure 4.12: Example for grid-based mouse-emulation.

4.3.5 Grid-based Mouse Emulation
Dai et al. [44] use a grid to divide the screen into specific regions which are assigned a number.
It is assumed that at least one region overlaps with the graphical object under consideration.
The user utters the number of a region that overlaps with the graphical object, causing the
mouse cursor to be placed to a dedicated position within the respective region, such as the
region’s center. If the mouse cursor is not yet at the desired position within the graphical object
the enclosing region can recursively be divided into smaller regions. The smaller regions are
again associated with numbers and the cursor can again be positioned to a dedicated position
inside them. Additionally to recursing into regions the user can shift the entire grid along the X
and Y axis, i.e., to the left or right, upward or downward. We depict an example of grid-based
mouse emulation in Figure 4.12. In Figure 4.12(a) the initial grid is shown. The desired object
is marked by the little box and the center of each region is marked with a ’+’. Figure 4.12(b)
shows the grid after region 1 has been recursed in. Figure 4.12(c) shows the grid after region
1 of the recursive grid has been recursed in - the center of region 9 is now within the gray box.

Correspondingly to the functionality of this approach we define the following speech func-
tions, called grid functions, along with corresponding commands, called grid commands, to
emulate mouse movements.

1. SFONE, SFTWO, . . ., SFNINE select one of the nine grid targets. The speech function
SFONE is triggered by the command "target one", SFTWO by the command "target
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two", and so on.

2. The speech functions SFGRIDLEFT, SFGRIDRIGHT, SFGRIDUP and SFGRID-
DOWN shift the grid to the left, right, upward or downward. The corresponding com-
mands are "left", "right", "up" and "down".

For the context of this section we represent a pointing by the abstract speech function SF-
POINT triggered by the abstract command SFPOINTcmd. SFPOINT is a sequence grid func-
tions and SFPOINTcmd is a sequence of grid commands. Dai et al. show that every graphical
object can be reached by triggering N grid functions, where

N := logn(
D

A
)

and A denotes the size of the rectangular outline of the graphical object, D denotes the size
of the screen, and n denotes the number of columns/rows in the utilized grid. They conducted
an experiment by which they found out that, using a 3x3 grid, an average number of 3.18
grid commands are necessary to point at targets of sizes between 1.6 and 13.3mm in distances
between 18.9 and 57.0mm. Thus, we set N = 3.18. Dai et al. further found out that 14% of
the grid commands were grid shifts. Consequently, SFPOINTcmd is, in average, composed of
0.45 shift commands and 2.43 target selection commands. Let ishift be the interaction delay
of a shift command and let iselect be the interaction delay of a target selection command, then
the interaction delay of a pointing is

0.45 · ishift + 2.73 · iselect

For calculating concrete values for ishift and iselect we first need to specify the number of
valid commands, the longest valid command and the size of the vocabulary. There are 13 grid
commands and 38 commonly available valid commands, which makes 51 valid commands in
total. The longest valid command has a length of 2, e.g., spelling mode. The grid commands
require a vocabulary subset of 14 distinct words, of which 9, i.e., "one" - "nine", are already
contained in the vocabulary subset for the spelling mode. This leaves 5 new words which the
grid commands add to the vocabulary, so that we arrive at a vocabulary for grid-based mouse
emulation that consists of 44 words in total.

Now, a concrete value for ishift can be calculated by defining a dummy session Sdummy

that is mapped to an intention Idummy which consists of a specific grid shift function. The
intention Idummy is mapped to a interaction with consists of exactly one command, i.e., the
command that is required to trigger the grid shift function. The interaction delay of the dummy
session Sdummy corresponds to the value for ishift. A value for iselect can be calculated analo-
gously. For a detailed documentation of respective values for ishift, iselect, and corresponding
interaction delay values for pointings consult Table B.12 on page 206 in appendix B.2.

With the considerations taken in this section we have derived intentions and interactions
for the basic executions, and have calculated their interaction delays for different word error
rates (refer to appendix B.2, Tables B.11 and B.13, for a detailed documentation). We sum-
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Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 9423 9585 10273 11263 13784 17023 22839 31686
Average 10592 10774 11533 12591 15202 18545 24301 33123
Maximum 16436 16716 17830 19232 22294 26152 31612 40310

Table 4.10: Calculated minimum, average and maximum interaction delay per basic execution of
grid-based mouse emulation.
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Figure 4.13: Calculated interaction delay graphs of speech-based mouse emulation.

marize the results in Table 4.10 which depicts the minimum, the average, and the maximum
interaction delay per basic execution of grid-based mouse-emulation.

4.3.6 Summary
We now discuss the calculation results of direction-based mouse emulation with continuous
movement (Cont-ME), direction based mouse emulation with discrete movement (Discr-ME),
target-based mouse emulation (T-ME) and grid-based mouse emulation (G-ME). In the fol-
lowing we refer to the graphs in Figure 4.13.

What first strikes the eye is that the average nominal interaction delays (0% word error rate)
per execution of Discr-ME, Cont-ME and G-ME are all in a range between approximately
10600ms and 11500ms. In contrast, the nominal interaction delay of T-ME is about 50%
lower. As the nominal interaction delay does not consider corrections, the differences in the
vocabularies and the valid commands are not significant for this observation. Instead, the rea-
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son is the quality of the respective interactions (for a detailed documentation refer to appendix
B.2), which we explain in the following. The average number of commands per (basic) exe-
cution with T-ME is 2.3 and the average command length with T-ME is 1.5. Cont-ME only
uses commands of length 1, but requires, in average, 5.5 commands per execution. Discr-ME
uses less commands in average than Cont-ME, i.e., 3.3, however, the average length of the
commands is 3.4. With 1.7 the average command length of G-ME is similar to T-ME, how-
ever, an average number of 4.9 commands per execution is required to work with the grid. The
nominal interaction delay of T-ME is consequently the lowest, because it allows to perform the
basic executions with a few short commands. The other approaches require more commands,
use longer commands, or both, which, according to the command count- and the command
length monotony (Theorems 5 and 4), results in the nominal interaction delay distribution as
calculated.

The behavior of the graphs in Figure 4.13 for growing word error rates is particularly inter-
esting. We observe two significant characteristics which we discuss in the following.

First, although the nominal interaction delays of Discr-ME, Cont-ME and G-ME are in the
same magnitude, their expected interaction delays grows considerably different of each other
for increasing word error rates. Discr-ME increases faster than G-ME, which, in turn, increases
faster than Cont-ME. 21 The interaction delay of T-ME can be regarded as increasing similar
to the interaction delay of Cont-ME. The reason for these differently growing interaction de-
lays has to be searched in the sets of valid commands. As discussed above, Discr-ME is the
approach with the highest average command length per execution. With 3.4 it is significantly
higher than for the other approaches. This means that for a specific word error rate the com-
mands of Discr-ME are more likely to be recognized incorrectly than with other approaches,
because the command recognition rate decreases with increasing command length. Thus, with
Discr-ME more corrections than with other approaches are expected, and consequently more
recognition delays and word durations, have to be accounted for. The average command length
of G-ME is lower than the one of Discr-ME, therefore its interaction delay grows slower than
Discr-ME. It is, however, higher than the average command length of Cont-ME and T-ME,
therefore the interaction delays of Cont-ME and T-ME grow slower than the others.

The second significant growing characteristic is that the graphs for Discr-ME and G-ME
intersect between a 1% and 5% word error rate. For low word error rates the interaction
delay of Discr-ME is lower than the interaction delay of G-ME. For high word error rates this
relationship changes the other way round, which can be explained as follows. Discr-ME uses,
in average, 3.3 commands per execution with an average length of 3.4. G-ME requires, in
average, 4.9 commands of a length of 1.7. The recognition delay is about 2.6 times higher
than the duration of a command, therefore, as a matter of the interaction delay model, the
nominal interaction delay of G-ME is higher than the nominal interaction delay of Discr-
ME. However, as Discr-ME has the higher average command length its commands are more
likely to be recognized incorrectly. Thus, with growing word error rate, more corrections are

21We have omitted drawing Discr-ME and G-ME for high word error rates to keep the scale of the Y axis
reasonably small.
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expected with Discr-ME than with G-ME, and consequently G-ME has a higher interaction
delay than Discr-ME.

In summary, the lowest interaction delay can be achieved with T-ME. The other three ap-
proaches have a nominal interaction delay that is about 50% higher than with T-ME. The
expected interaction delay of Cont-ME, Discr-ME and G-ME is approximately equal if the
speech recognizer has a low word error rate. If the word error rate increases, the interaction
delay of Discr-ME increases significantly faster then the interaction delay of G-ME, which
increases significantly faster then the interaction delay of Cont-ME.

4.4 Mouse-controlled GUIs

In this section we estimate the interaction delay of mouse-controlled GUIs. For this to ac-
complish we present enhancements to the speech-GUI model, which allow for the description
of mouse-controlled GUIs and speech-controlled GUIs with a common model. The enhance-
ments are consistent with the interaction delay model, thus, we are able to reuse the formula
for the expected interaction delay (definition 4 on page 59) to calculate the interaction de-
lay of mouse-controlled GUIs (section 4.4.2). The enhancements of both models prove their
extensibility as required in sections 2.1 and 3.1. In fact, the enhancements do not denote a spe-
cialization — they are merely a generalization, since the enhanced models are then applicable
to a broader range of interfaces. We summarize our findings in section 4.4.3.

4.4.1 Enhancing the Speech-GUI Model

The enhancements of the speech-GUI model were done in four steps. First, we identified
which components of mouse-controlled GUIs correspond to speech functions, commands,
speech recognizers and recognition result interpreters. Second, we defined appropriate gen-
eralizations for corresponding components in speech- and mouse-controlled GUIs. Third,
we refactored attributes and methods into the generalizations where appropriate. Fourth, we
adapted recognition results, intentions and interactions to reflect the relationships to the new
generalizations. The result after performing these four steps is shown in Figure 4.14 on the
next page to which we refer in the following. In the Figure, new entities have a white back-
ground and already known entities have a black background. Control actions and sessions
have been omitted in Figure 4.14 – they remain unchanged as they are already independent of
any utilized input modality.

Mouse functions, introduced in section 4.3.1, correspond to speech functions. They are both
specializations of so called input functions – high level abstractions of input functionality that
a specific input modality allows to trigger. For instance, with speech the user is able to trigger
a function that starts a continuous movement of the mouse cursor. With the mouse device
the user is able to trigger a function that moves the mouse cursor to the right for a specific
distance. Correspondingly, intentions now consist of a sequence of input functions instead of
a sequence of speech functions (refer to speech-GUI model diagram on page 40). Intentions
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Figure 4.14: Speech-GUI model enhancements for mouse-controlled GUIs.

do, however, in the special context of speech-controlled GUIs, consist of speech functions.
Commands correspond to mouse signals. They are both specializations of so called input

signals – high level abstractions of input modality specific signals which are transmitted to a
computing system. With speech the user (the microphone or sound card, respectively) trans-
mits audio signals, whereas the mouse device transmits characteristic electrical signals for each
operation that the user performs with it. Correspondingly, interactions, to which intentions are
mapped, now consist of a sequence of input signals instead of a sequence of commands. Inter-
actions do, however, in the special context of speech-controlled GUIs, consist of commands.

Input signal recognizers receive the input signals from the input modality. The input sig-
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nal recognizer assumes that the input signals are transmitted via a potentially noisy channel,
therefore, it aims at recognizing the original signal that was transmitted in the first place. The
speech recognizer is a special input signal recognizer which transforms the vocalizations of
commands back into the text that was originally uttered. It has been introduced in section 2.5.
The mouse driver is the speech recognizers equivalent in mouse-controlled GUIs. It is an input
signal recognizer which recognizes mouse signals. Mouse signals are de-facto transmitted via
a channel that is not noisy (refer to the RS232 protocol, the PS/2 protocol or the USB protocol
for mouse devices), therefore we do not expect a mouse signal to be recognized incorrectly.
Furthermore, the recognition of mouse signals does not involve complex models so that the
recognition delay of mouse signals tends to be 0 – in fact it is in the magnitude of nanoseconds
which is not noticeable by users.

Input signal recognizers generate recognition results, which now have two associations to
input signals, called the original signal and the recognized signal. The original signal is of
theoretical nature for being able to specify OCL constraints. It refers to the signal that led to
the recognition result, i.e., that was transmitted in the first place. The recognized signal denotes
the signal as it was recognized by the input signal recognizer, and as such corresponds to the
former association between recognition results and recognized words. Recognition errors and
recognition successes keep their semantics in the enhanced model, however, they are now
being defined based on the original signal and recognized signal being equal or different.

Recognition results are received by interpreters. Depending on the semantic information of
the received recognition results, the interpreter determines corresponding input functions and
invokes them. A special interpreter is the recognition result interpreter which processes recog-
nition results from a speech recognizer. It has been introduced in section 2.6. The operating
system of a computing system can be seen as a interpreter for mouse signals, as, depending on
which mouse signals it receives, it generates mouse events which manipulate the state of the
mouse cursor.

To summarize, we enhanced the speech-GUI model by adding a higher level of abstraction
to generalize the core components. The dynamic and static properties of speech-controlled
GUIs have been refactored into this new abstraction layer consistently, thus, the interaction
delay model can be reused. This allows us to reuse the formula for the interaction delay
for calculating the interaction delay of mouse-controlled GUIs. In the following section we
calculate the interaction delay of the basic executions under the assumption that a mouse-
controlled GUI is available.

4.4.2 Interaction Delay
Before we are able to calculate the interaction delay of mouse-controlled GUIs, we need to
determine the duration of mouse signals. Endo et al. [54] performed an experiment with the
goal to determine the time which is spent on clicking the mouse button. They found that
users needed approximately 500ms to press and release the mouse button. Expressed with the
terminology of our model this means that the sum of the duration of the PRESSBUTTONSIG
signal and the RELEASEBUTTONSIG signal is 500ms. Since, in our model, these two signals
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occur in the context of a click, where they are in a strict sequence, we model their duration as
follows:

context PRESSBUTTONSIG

inv: duration = 250

context RELEASEBUTTONSIG

inv: duration = 250

The duration of a single MOVEMENTSIG signal has not yet been determined, however,
by using Fitts’ Law (Fitts [58]), which we explain in the following, we are able to determine
the duration of an entire sequence of MOVEMENTSIG signals. Fitts’ Law is a model of
human psychomotor behavior. It models the act of pointing with a hand or finger and can be
applied to pointing in the area of computers, for example with a mouse. Fitts’ Law predicts
how long a human needs to point at a target in a specific distance using specific device. It is
based on the distance D between a specific starting point the center of a target to be pointed at.
Fitts’ Law, in its original form, considers one-dimensional movements, therefore the target is
represented by its width W . The characteristics of the respective device and the characteristics
of the pointing are represented by two regression coefficients A and B. They are determined
empirically, e.g., MacKenzie et al. [113] have analyzed pointing with a mouse, a tablet and a
trackball, which led to respective regression coefficients. With T denoting the (mean) time for
the pointing, the original form of Fitts’ Law it depicted below.

T := A + B log2

(
2D

W

)
Variations of Fitts’ Law, which provide a better fit with empirical observations, have been
proposed by Welford [196]

TWelford := A + B log2

(
D

W
+ 0.5

)
and MacKenzie [114] 22

TMacKenzie := A + B log2

(
D

W
+ 1

)
The original form and the variants of Fitts’ Law model only one-dimensional pointings,

respectively targets. Pointings in our context, however, are two-dimensional, as the user can
point upward, downward, to the left or right. Also the targets, i.e., the graphical objects, are
two-dimensional. This problem has been recognized by MacKenzie et al. and in [112] they
enhance their own variant of Fitts’ Law to be able to cope with two-dimensional situations.

22TMacKenzie is also known as the Shannon Formulation as it exactly mimics the information theorem underly-
ing Fitts’ Law.
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They include a representation of the height H of a target, so that graphical objects can now be
represented by their height and width. The enhanced form, which we call T2D, is given below.

T2D := 230 + 166 log2

(
D

min(W, H)
+ 1

)
, [T2D] = ms

Experiments performed by MacKenzie et al. in [112] show that the times spans which are
predicted using T2D are about equal to time that passes between the start of the physical move-
ment of the mouse and the arrival of the mouse cursor over the target. From this we conclude
for our model that T2D predicts the cumulated duration of all MOVEMENTSIG signals which
are involved in a pointing. MacKenzie et al. performed an experiment where they let users
point to differently sized targets (0.48cm ≤ min(W, H) ≤ 3.83cm) in different distances
(0.96cm ≤ D ≤ 15.3cm). They obtained a grand mean of 743ms for pointing. For our
model we consequently define that, in average, all MOVEMENTSIG signals from which a
POINTING is composed have a cumulated duration of 743ms.

With the considerations taken in this section we have derived intentions and interactions for
the basic executions using mouse-controlled GUIs, and have calculated their interaction delays
for different word error rates (refer to appendix B.2, Table B.14, for a detailed documentation).
With mouse-controlled GUIs the average interaction delay per basic execution is 1450ms. The
minimum achievable interaction delay per basic execution is 1234ms, whereas the maximum
interaction delay per basic execution is 2486ms.

4.4.3 Summary

We described enhancements of the speech-GUI model which allow us to describe speech-
controlled GUIs and mouse-controlled GUIs with the same model. To enhance the speech-GUI
model we identified corresponding components in both speech- and mouse-controlled GUIs
and defined suitable super classes. After having refactored attributes and methods into the
super classes where appropriate, we adapted any affected component to reflect relationships to
the new super classes. The changes integrated seamlessly into the interaction delay model. A
design goal of the speech-GUI model was the extensibility to other speech-controlled GUI ap-
proaches (section 2.1). While the extension to mouse-controlled GUIs is not a direct support of
this design goal, it does show that the speech-GUI model is even extensible to completely dif-
ferent GUI types. The extensibility to other speech-controlled GUI approaches will, however,
be shown in chapter 5.

Users of mouse-controlled GUIs do not have to deal with corrections, at least not if the
mouse hardware and the underlying mouse driver is functioning correctly. Therefore, the
nominal interaction delay formula can be applied to calculate the interaction delay of mouse-
controlled GUIs. To facilitate these calculations we derived the duration of mouse signals
from empirical experiments documented in relevant literature. Our calculations resulted in
an average interaction delay per execution of 1450ms. The minimum (maximum) interaction
delay per execution we found to be 1234ms (2486ms).
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4.5 Discussion

The minimum, average and maximum interaction delays per execution of all speech-controlled
GUI approaches are significantly higher than the corresponding values of mouse-controlled
GUIs. Our calculations show that for specific executions the interaction delay with speech-
controlled GUIs is about 50% higher than with mouse-controlled GUIs. An example is the
clicking of a button (Ebutton): with conventional command-and-control an interaction delay
of 2642ms could be calculated, whereas the interaction delay with mouse-controlled GUIs is
1234ms. This coherence might be interpreted as such that for specific application domains and
GUI instances the 50% increased task completion time with speech-controlled GUIs compared
to mouse-controlled GUIs (refer to section 1.3) is due to a 50% increase of the interaction
delay. Generally speaking, however, we recognize that the average interaction delay per basic
execution is far more than 50% higher than with mouse-controlled GUIs. Provided that there
is a (somewhat linear) dependency between task completion time and interaction delay, these
results denote that the 50% increase in task completion time for speech-controlled GUI is the
best case that can currently be achieved with any speech-controlled GUI approach.

Amongst the approaches that have been calculated, conventional command-and-control has
the lowest minimum, average and maximum interaction delay per basic execution. The inter-
action delay of target-based mouse emulation is close to the interaction delay of command-
and-control with random navigation and direct activation. The reason is that both approaches
use verbal forms of speakable identifiers as commands for navigations. Both approaches use
exactly one command of length 1 to perform a specific activation. A majority of their inter-
actions is equal, considering the number and length of commands, but for some specific exe-
cutions, e.g., Espinner−inc, target-based mouse emulation uses less commands than command-
and-control with random navigation and direct activation. This leads to the observation that
both approaches have identical minimum and maximum interaction delays per basic execu-
tion, however, the average interaction delay of target-based mouse emulation is lower than of
command-and-control with random navigation and direct activation.

The minimum, average, and maximum interaction delay of all remaining speech-based
mouse emulation approaches (other than target-based mouse emulation) are significantly
higher than of command-and-control.

A tempting hypothesis, motivated by these results, is that the relative distribution of the
average interaction delays per basic execution is equal to the relative distribution of task com-
pletion times that can be achieved with the respective approaches. A direction of research
that we consequently motivate is the empirical examination of the impact that the interaction
delay has on the task completion time in general. We propose, as future work, to conduct a
user study in several different application domains with mouse-controlled GUIs and different
speech-controlled GUI approaches. The goal of this study is to support or reject the hypothesis
that there is a general formal relationship between the interaction delay and the task comple-
tion time.

In the following chapter we will use the calculation results obtained for command-and-
control to motivate our proposed improvements.
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5
Conversation-and-Control

"Initiative in a conversation occurs at an instant of time when a person seizes
control of the conversation by making an utterance that presents a domain goal
for the participants to achieve"

Robin Cohen [39]

Overview
In this chapter we introduce a new speech-controlled GUI approach, which we call
conversation-and-control. It is based on an extension of conventional command-and-control
by three techniques, called qualified activation, automatic information error recovery and
qualified feedback, which we motivate from the interaction delay calculation results from the
previous chapter. At first we present qualified activation, which can be seen as the core prin-
ciple for conversation-and-control. By qualified activation we reduce the average number of
commands which are necessary for performing a basic execution. Then we present automatic
information error recovery and qualified feedback, which emerge from qualified activation
and which avoid, if possible, the rejection of recognition errors. As such, both techniques
contribute to reducing the average number and length of corrections – which in turn decreases
the interaction delay. By the application of qualified activation, automatic information error
recovery and qualified feedback, the interaction with a command-and-control interface obtains
the flavor of a conversation, i.e., a dialog, of which we present a model in this chapter. We con-
clude the chapter which discussing the characteristics of the conversation-and-control dialog
model and by comparing it to relevant pieces of related work.
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5.1 Qualified Activation

In section 4.2 (appendix B.2, respectively) we have derived interactions, i.e., command se-
quences, for basic executions using command-and-control. On close examination of these
interactions we recognize two types of commands. The types can be distinguished by the
information which the words of the command represent and by the speech functions which
the commands trigger. With the first command type the words represent navigational infor-
mation, such as the speakable identifier of the graphical object of which an activation should
be performed. Such commands exclusively trigger the performing of navigations and we call
them navigational commands. With the second command type the words represent activating
information, such as an identifier of the activation class that is referred to (e.g., "select" or
"push"). Such commands exclusively trigger the performing of activations and therefore we
call them activating commands. There is no overlap between these two command types, i.e., a
command is either a navigational or an activating command. We further observe that activat-
ing commands are preceded by a set of navigational commands, which identify the graphical
object to which the activation, that the activating command refers to, belongs (i.e., which set
the focus).

In order to reduce the interaction delay of command-and-control we merge activating com-
mands and their preceding navigational command(s) into a single command. This reduces the
number of commands in the interaction, and thus, according to the command count-monotony
(Theorem 5), the interaction delay decreases. Consider a sequence of n, n ∈ N+ correspond-
ing navigational and activating commands. Then, assuming that the merged command would
contain all the words from the originating commands, the interaction delay would decrease by
n − 1 times the recognition delay – since a single command instead of n commands has to
be recognized. As a result, explicit navigational commands and explicit activating commands
become obsolete. Every merged command now de facto refers to an activation and contains
respective navigational and activating information, such that a specific activation instance can
unambiguously inferred from the merged command. We call such a merged command a qual-
ified activation command and the principle of qualified activation denotes, that an interaction
may only consist of qualified activation commands. We consequently refer to such an interac-
tion as qualified interaction.

The speech functions which qualified activation commands trigger are called qualified
speech functions. A specific qualified speech function can be seen as the merger of the speech
functions, which the separate navigational and activating commands, from which the quali-
fied activation command has been merged, would have triggered. As such, a qualified speech
function performs exactly those control actions which the separate speech functions would
have performed. In particular, qualified speech functions perform multiple navigations and
one activation, since a qualified activation command has been merged from multiple navi-
gational commands and one activating command. However, the particular activation which
a qualified speech function performs, is not predetermined, because we define that qualified
speech functions may logically group activations of the same type into activation groups. The
particular activation from the activation group of a qualified speech function is then selected
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Figure 5.1: Enhancements of the speech-GUI model induced by qualified activation.

by specific information contained in the qualified activation command and we will go into
the details of this selection process later in this section. As such, there is a 1:N relationship
between qualified speech functions and activations. An example is the spinner. It provides 10
activations of type APPEND of which each appends a specific digit between 0 and 9 to the
spinner. These activations form a specific activation group and the specific digit that should
be appended is expected to be specified as part of the activation information of the qualified
activation command. Activation groups can also just contain a single activation, i.e., if there is
only one activation of a particular type, such as the PUSH activation of a button. The concepts
which have been introduced so far are described in UML in Figure 5.1. In the Figure, entities
which are already known from the speech-GUI model (Figure 2.21), are drawn with a black
background.

Per definition, a qualified activation command contains the navigational and activating infor-
mation which was formerly distributed over multiple commands. Thus, we expect a qualified
activation command to be longer than the lengths of the original commands, which might
compensate the interaction delay reduction achieved by the merger: the increased command
length increases the duration of the command, and consequently, according to the command
length-monotony (Theorem 4), the interaction delay increases. We go against the compensa-
tion effect by hypothesizing that it is possible to construct qualified activation commands in a
way so that the interaction delay achieved by the command merger is practically not compen-
sated. This hypothesis, which we call construction hypothesis, is motivated by the recognition
delay being about 2.6 times higher than the duration of a word. Thus, for example, given 2
original commands, a qualified activation command can have 2 more words than the sum of
the lengths of the original commands – the interaction delay would still be reduced by 0.6
times the duration of a word (analogously for more than 2 original commands). We prove
the construction hypothesis in section 6.1.3, where we present a framework, which defines
qualified activation commands for graphical objects from the Swing catalog.

Qualified activation is related to indirect activation, which conventional command-and-
control is based on. Both concepts allow navigating and activating a graphical object with
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one command, however, indirect activation persistently couples a specific navigation and a
specific activation. In contrast, qualified activation allows combining any navigation with any
activation. An example is the tree node: with indirect activation only the expansion and the
collapsing of the tree node can be done by a single command (refer to Table 4.4). For selecting
and deselecting, two separate commands are required. With qualified activation, however, the
navigational information for the specific tree node can be combined with the activating infor-
mation that either expands, collapses, selects, or deselects the tree node. In particular, with
qualified activation the user could utter "expand <nodeid>", "collapse <nodeid>", "select
<nodeid>" or "deslect <nodeid>", where <nodeid> is the speakable identifier of the tree
node. Thus, we consider qualified activation to be a generalization of indirect activation.

Qualified activation breaks with the navigation precedence principle of command-and-
control (refer to section 4.2.1), which denotes, that graphical sub-objects cannot be focused
before their enclosing graphical object has been focused. Qualified activation further requires
that any graphical object has a speakable identifier at any time. An example is the tree node
just discussed: once the user knows its speakable identifier, it can be expanded, collapsed,
selected or deselected without having to focus the actual tree. In contrast, with command-and-
control, the user first would have had to focus the tree with one command and then expand the
tree node with another command. It is important to note that qualified activation still fulfills
the cascading navigation requirement (refer to section 4.1.2), i.e., the requirement that intra-
object navigations must be preceded by inter-object navigations – it is just that now a single
command is required to perform inter- and intra-object navigation.

Qualified activation commands can, in principle, be interpreted in the same way, in which
the commands for other speech-controlled GUI approaches are interpreted. For instance, the
recognition result interpreter could derive the set of valid commands and match each newly
available recognition result against it. Upon a match, the qualified speech function, that the
matching valid command is associated with, could be triggered. Otherwise, the qualified ac-
tivation command could be rejected. Rejections can occur due to information errors, that is,
if the user does not specify the entire navigational and activating information that is required,
if the user incorrectly combines navigational information with activating information, or if a
recognition error leads to one of the two former conditions. We find that such a rigid rejection
behavior – rejection without informing the user why the command was rejected – results in
bad usability. We will therefore show in the following sections how the system can detect and
handle information errors gracefully, i.e., how the system can automatically or in cooperation
with the user resolve the information error. As a side effect, the user no longer needs to re-
peat commands for correcting information errors (at least for specific conditions). Instead, the
user can utter corrections – if corrections need to be uttered at all – which are shorter than the
originally uttered command, thus, the interaction delay is further reduced.
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5.2 Interpretation of Qualified Activation Commands

We now derive the theoretical framework for the interpretation of qualified activation com-
mands, based on which we will later in this chapter introduce autmatic information error re-
covery and qualified feedback. We will first present a general model for the interpretation
in section 5.2.1. Based on a sample GUI, which we present in section 5.2.2 and which we
will use for our explanations throughout the remainder of this chapter, we define two concrete
principles for the interpretation of qualified activation commands in sections 5.2.3 and 5.2.4.

5.2.1 Interpretation Model

We will first define a data structure by which we represent navigational and activating in-
formation. Then we will present an abstract process by which navigational and activating
information is extracted from new recognition results and evaluated.

Interpretation Data Structure

Navigational information consists of words which represent a speakable identifier. The words
of which activation information consists can be separated into two categories. The first cat-
egory is called the activation name and encompasses words which represent an identifier for
the type of the activation, e.g., "select" for the SELECT activation. The second category is
called parameter information. It consists of words which further specify a specific activation
from an activation group, e.g., the digit to identify a specific APPEND activation

For a specific qualified speech function to be determined, exactly the above introduced
information is necessary. As such, a qualified speech function instance can be determined by a
speakable identifier, an activation name and parameter information – if it has parameters at all.
We refer to these three types of information as the qualifier of the qualified speech function and
model the qualifier as a set of name-value pairs, which we call slots. The qualifier consists of a
speakable identifier slot, an activation name slot and multiple parameter slots. The speakable
identifier slot and the activation name slot are called the identification slots. If there is currently
no value associated with a slot then we say that the slot is empty. Otherwise, we say that the
slot is populated. Populating a slot means assigning a value to a slot that was previously empty.

Depending on which slots of a qualifier are populated, we define different qualifier states.
The empty state denotes that no slots of the qualifier are populated, whereas the populated
state denotes that all slots of the qualifier are populated. If the state of a qualifier is not empty
and not populated, we call its state partially populated, which is an abstraction of two sub-
states called parameters incomplete and parameters complete. Parameters incomplete denotes,
additionally to the qualifier being partially populated, that at least one parameter slot is empty.
Parameters complete denotes that, indeed, the qualifier is partially populated, but all parameter
slots are populated. In other words, parameters complete denotes that the parameter slots are
all populated but at least one identification slot is empty.

The concepts which we have introduced so far are summarized as a UML class diagram in
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Figure 5.2: Qualified activation commands and qualified speech functions.

Figure 5.2. The Figure specifies a general data structure that we will use to specify an abstract
interpretation process of recognition results, which we describe in the following.

Abstract Interpretation Process

We define that each qualified speech function has a semantic analyzer, which provides an
operation called semantic update. This operation takes a recognition result as input and per-
forms the following two actions. First, semantic update extracts exactly this navigational and
activating information from the recognition result, which the associated qualified speech func-
tion requires. Therefore, knowledge about the syntactic structure of the information must be
encapsulated by the semantic analyzer. We do, however, not specify how this knowledge is
represented. A specific semantic analyzer could use string matching or keyword spotting,
while other semantic analyzers could use more advanced technologies like robust parsing or
probabilistic grammars (Huang et al. [78]). By the second action of semantic update the se-
mantic analyzer populates the slots of the qualifier of the associated qualified speech function
with the previously extracted information. Therefore, the semantic analyzer also requires the
encapsulation of semantic knowledge, since it must know which syntactic constructs may be
assigned to which qualifier slot. In other words, the semantic analyzer requires to know which
syntactic constructs represent a speakable identifier or an activation name. Again, we do not
specific how this semantic knowledge should be represented. While both syntactic and se-
mantic knowledge can be kept separate on the representational level it is possible – even more
feasible due to performance reasons – to use one representation for both types of knowledge
(McTear [124]). We argue that the solutions for representing syntax mentioned above are also
suitable to represent the semantic knowledge, e.g., grammars can be annotated by rules which
populate slots upon productions which recognize specific syntactic constructs.
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Figure 5.3: Qualifier state transitions.

Based on the specific slots which get populated by a semantic update, the qualifier under-
goes specific state transitions, which are depicted in Figure 5.3. Initially the qualifier is in
the empty state. The transition from empty to populated denotes that a semantic update has
populated all slots at once. If the semantic update could not populate any slot, the qualifier re-
mains in the empty state. Otherwise, i.e., if the semantic update could populate some slots, the
qualifier moves on to the partially populated state. In the partially populated state, depending
on whether all parameter slots could be populated or not, the qualifier transitions into the pa-
rameters complete or the parameters incomplete state. Upon subsequent semantic updates, the
qualifier might remain in its current state or transition towards the populated state as depicted
in Figure 5.3. It is important to note that there are no backward transitions – once a slot has
been populated, it cannot be unpopulated.

With the considerations from above, instances of qualified speech functions, qualifiers and
semantic analyzers always occur in triplets, and are, within a triplet, associated amongst each
other. We call such a triplet a conversation topic and there is one conversation topic per
qualified speech function that is available. The conversation topic, to which we shortly refer
to as topic in the following, is de facto a composition of one qualified speech function, one
qualifier and one semantic analyzer. Therefore, for the remainder of this document, we make
the following terminology definitions: the state of a topic denotes the state of its qualifier.
The semantic update of a topic denotes executing semantic update of the semantic analyzer
of the topic. Triggering a topic denotes triggering the qualified speech function of the topic,
and since there is a 1:1 relationship between topics and qualified speech functions, we say
that a speech-controlled GUI provides a specific number of topics. The population of a topic
denotes the population of its associated qualifier. The conversation topic and its relationship
to the other discussed entities is depicted in Figure 5.4 on the following page as a UML class
diagram.

We call the specific qualified speech function, which the user intends to trigger by a qualified
activation command, the intended speech function. Thus, the intended speech function is
represented by a specific topic, which we call the intended topic. Once the intended topic has
been determined, it can be triggered. Initially, e.g., after system boot-up, no information about
the intended topic is available – it could be any topic that is provided by the speech-controlled
GUI. Once the user has uttered a qualified activation command, the information from the
corresponding recognition result can be used to determine the intended topic as follows. We
define that a newly available recognition result is used to perform semantic updates of any
available topic, which possibly leads to a population of some of them. A specific topic only
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Figure 5.4: Conversation topic.

gets populated if the recognition result contains information, which the topic "understands".
Thus, the "degree" of population of a topic – which is reflected by its state – is an indication
regarding the intended topic. A topic which is empty after a semantic update indicates that the
recognition result did not contain any meaningful information for it. Thus, this topic is most
likely not the intended topic. If a topic is partially populated it is a candidate for the intended
topic, since the recognition result apparently contained some meaningful information for it –
however, not the entire required information. A topic being in the populated after a semantic
update is most likely the intended topic.

Depending on which specific topics are available and depending on which specific infor-
mation is contained in the recognition result, various distributions of topic states can occur
after a semantic update. In the following we will discuss specific topic state distributions,
which we illustrate based on the example of a sample GUI introduced in section 5.2.2. In
section 5.2.3 and 5.2.4 we will define two heuristics based on specific topic state distributions,
called isolated-topic-distribution heuristic and peering-topic-distribution heuristic, which the
intended speech function can immediately inferred. Any other topic state distribution will be
considered as a manifestation of an informational error and we will present mechanisms by
which these error conditions can be resolved automatically (section 5.3) or be resolved with
subsequent interaction with the user (section 5.4).

5.2.2 Sample GUI

Figure 5.5(a) on the next page contains the GUI based on which we will illustrate our expla-
nations in the following. The GUI consists of a button, labeled "Apply" (apply button), two
spinners, which are labeled with "Voltage" (voltage spinner) and "Amps" (amps spinner), and
a list labeled "Config" (config list) with two options "Day" and "Night" (day option and night
option). We assume, without restricting the generality, that the labels of the graphical objects
are their speakable identifiers.

The spinners can each be represented by three topics, which we name after the activa-
tions which their qualified speech functions define (activation group types, respectively). As
such, each spinner provides the INCREASE -topic, the DECREASE -topic and the APPEND -
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(a) Sample GUI
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(b) Conversation topics of sample GUI

Figure 5.5: Sample GUI for illustrating conversation topic distributions.

topic. We omit the DELETE -topic it will not provide further insights into our explanations.
The APPEND -topic defines one parameter, named digit, which it refers to the actual digit
that should be appended to the spinner – thus, it identifies the specific APPENDx activation
(x ∈ {0, 1, 2, .., 9}) in the activation group of the APPEND -topic. The apply button de-
fines a single topic, namely the PUSH -topic. The list provides the SELECT-topic and the
DESELECT-topic, each of which has a parameter named "option". This parameter identifies
the specific select-items, i.e., option, that should be selected or deselected. For simplifying
further discussions we will denote topics and their respective states as depicted below.

Empty: ParametersIncomplete: ParametersComplete: Populated:

Consequently, the sample GUI can be described by the notion in Figure 5.5(b). In the following
two sections we will describe two topic state distributions, from which the intended topic can
immediately be inferred.

5.2.3 Isolated-Topic-Distribution Heuristic
We call a topic state distribution where a single topic is in the populated state and all other
topics are in the empty state the isolated-topic distribution. We define that if after a seman-
tic update the isolated-topic distribution can be detected, the intended topic is the populated
topic. Although this definition is straight-forward, it is still a heuristic, because upon a mis-
understanding, the populated topic is in fact not the topic intended by the user. Therefore, we
call this approach to infer the intended topic the isolated-topic-distribution heuristic.

Let us assume that the sample GUI from Figure 5.5 has just booted up. The respective topics
in their initial empty state are depicted below:

Config Voltage Amps Apply

S D I D A I D A P
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Let us now assume that the recognition result "push apply" becomes available. It contains the
word "push", which the semantic update of the PUSH-topic will recognize as its activation
name. The recognition result further contains the word "apply" which the semantic update
of the PUSH-topic will recognizer as its speakable identifier. Thus, both identification slots
of the PUSH-topic are populated. As the PUSH-topic has no parameter slots it transitions to
the populated state immediately. Any other topic does not "understand" the recognition result,
thus, all other topics remain empty, as depicted below.

Config Voltage Amps Apply

S D I D A I D A P

This topic state distribution matches the definition of the isolated-topic-distribution heuristic
as only the PUSH-topic is populated and all other topics are empty. Consequently, the PUSH-
topic is inferred per definition as the intended topic. Assuming that the user really has uttered
"push apply" the user’s intention has been correctly inferred. Otherwise, a misunderstanding
has happened, which we deal with in section 5.6.2.

Since now the PUSH-topic is the intended topic, it gets triggered. This may, in general,
cause changes in the state of the GUI. Consequently, the available topics must be regenerated
as new graphical objects might become visible, or currently visible graphical object might
become invisible or change their state. However, for our explanations, we assume that the
sample GUI does not change its state, i.e., that it always consists of the very same graphical
objects as in Figure 5.5(a). Therefore, the same topics as in Figure 5.5(b) are available after
the triggering of the PUSH-topic. In the following section we introduce another topic state
distribution upon which a heuristic must be applied to infer the intended topic.

5.2.4 Peering-Topic-Distribution Heuristic

We call a topic state distribution where a single topic is in the populated state and all other top-
ics are in any but the populated state the peering-topic distribution, as virtually the populated
topic peers out of the other topics. We define that if after a semantic update the peering-topic
distribution can be detected, the intended topic is the populated topic. This is a heuristic def-
inition, since obviously the information that matches the populated topic completely was also
"understood" by other topics, however, not entirely. Therefore we call this approach to infer
the intended topic the peering-topic-distribution heuristic. As we will see with the following
example, the peering-topic-distribution heuristic is practical.

Let us again consider our sample GUI from Figure 5.5(a). Since in the previous example
the intended topic was triggered, all topics have now been re-derived (reset, respectively) as
depicted below:
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Config Voltage Amps Apply

S D I D A I D A P

We now assume that the recognition result "increase voltage" becomes available. It con-
tains the word "increase" which represents the activation name of all INCREASE -topic, thus,
the activation name slots of any INCREASE -topic gets populated with the value "increase".
The word "voltage" corresponds to the speakable identifier of the voltage spinner, and con-
sequently, the speakable identifier slots of any topic that refers to the voltage spinner gets
populated with the value "voltage". The topic state distribution after the semantic update is
depicted below:

Config Voltage Amps Apply

S D I D A I D A P
The INCREASE -topic of the voltage spinner is populated because both its activation name slot
and the speakable identifier slot are populated (there are no parameter slots for this topic). The
DECREASE -topic of the voltage spinner is partially populated (indicating parameters com-
plete as there are no parameter slots) because its speakable identifier slot contains "voltage".
The APPEND -topic of the voltage spinner is also partially populated, because its speakable
identifier slot contains "voltage". Since it has parameter slots, but none of which are popu-
lated, it indicates parameters incomplete. The INCREASE -topic of the amps spinner is par-
tially populated (indicating parameters complete as there are no parameter slots) because its
activation name slot contains "increase". There is consequently a single topic in the populated
state and the others are in different states, which matches the criterion for the peering-state
distribution. Consequently, the INCREASE -topic of the voltage spinner is selected as the in-
tended topic and gets triggered. Assuming that the user really has uttered "increase voltage"
the user’s intention has been correctly inferred. Otherwise, a misunderstanding has happened,
which we deal with in section 5.6.2.

5.2.5 Summary

With the abstraction of the conversation topic and the conversation topic state distribution we
have presented a simple, yet effective, model for the interpretation of qualified activation com-
mands. On the example of a sample GUI we have introduced the isolated-topic-distribution
heuristic and the peering-topic-distribution heuristic, which, if they apply, allow the direct in-
ferring of the intended topic. In the following section we will show how the system can detect
information errors and aim at automatically resolving them.
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5.3 Automatic Information Error Recovery

We consider any topic state distribution other than the isolated-topic distribution and the
peering-topic distribution to be an information error. In general, two cases can happen: ei-
ther there is more than one topic in the populated state or there is no topic in the populated
state. We call the former case – two or more topics populated – the illegal distribution, as it
denotes a situation where the information from the recognition result completely matched the
information required for the triggering of two different qualified speech functions. It is illegal,
because of the recognition result were a recognition success, two or more populated topics are
a strong indication for a GUI design error. However, the illegal distribution could also have
been caused by a recognition error and we will see in section 5.6.2 how the system deals with
it. The case that no topic is in the populated state remains, and in the following we will present
the relative-maximum-identification heuristic (section 5.3.1) and the procedure resolution-by-
historical-topic (section 5.3.2) for automatically recovering from the information error. We
summarize the heuristic and the procedure by the term automatic information error recovery.

5.3.1 Relative-Maximum-Identification Heuristic

We derive the relative-maximum-identification heuristic considering our sample GUI from
Figure 5.5 as example, and similar to the beginning of the previous two examples, we begin
with all topics being in the empty state. Now we assume that the recognition result "select
night" becomes available. The semantic update with this recognition result causes the activa-
tion name slot of the SELECT -topic of the config list to be populated. It furthermore causes
the option parameter slot of both the SELECT - and the DESELECT -topic of the config list to
be populated, which leads to the following topic state distribution:

Config Voltage Amps Apply

S D I D A I D A P

We recognize that no topic is in the populated state and multiple topics are in the partially pop-
ulated state. Consequently, the state distribution does neither meet the criteria for the isolated-
topic-distribution heuristic, nor the peering-topic-distribution heuristic. Since the state dis-
tribution is not illegal we are facing an information error. From a human perspective, what
should happen is obvious – the night option from the config list should be selected for two
reasons: first, there is not other thing that can be selected ("select"), and second, there is no
other thing that has the night option ("night").

In order to formalize this human inferring we define the relative-maximum-identification
heuristic. The precondition for the application of this heuristic is the presence of an informa-
tion error. In the following we call all partially populated topics of an information error the
ambiguous topics. The key idea of the relative-maximum-identification heuristic is to deter-
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mine the topic which has the most identification slots populated 1 . If exactly one such topic
exists it is considered to be the intended topic. As such, the heuristic basically counts the num-
ber of populated identification slots for each ambiguous topic and determines the maximum,
called idmax. If there is exactly one topic which has idmax identification slots populated, then
it is considered to be the intended topic. Otherwise, if multiple topics with idmax identifica-
tion slots populated exist, the relative-maximum-identification heuristic has failed and other
mechanism, as described later in this chapter, will be applied.

Going back to our example, the SELECT - and the DESELECT -topic of the config list are
ambiguous. The DESELECT -topic has no identification slots populated – only the parameter
slot is populated. The SELECT -topic has one identification slot populated, i.e., the activation
name slot. To visualize the population state of the identification slots we will augment our
notation of topics as follows. A small circle left of the topic represents the activation name slot,
a small circle right of the topic represents the speakable identifier slot. If a small circle is filled,
the respective slot is populated, otherwise empty. Thus, our current topic state distribution look
as follows:

Config Voltage Amps Apply

S D I D A I D A P

According to the relative-maximum-identification heuristic, the SELECT -topic of the config
list is selected as the intended topic. It is not populated, however, it can be triggered right
away since all parameter slots are populated. Otherwise, the parameter slot value would still
be unclear, and it would have to be determined by a mechanism that we describe in section
5.4.3.

In the following section we examine an information error where the relative-maximum-
identification heuristic fails and show how the information error can automatically be resolved
by considering the previously triggered topic.

5.3.2 Resolution-by-Historical-Topic

Similar to the relative-maximum-identification heuristic we derive resolution-by-historical-
topic by considering our sample GUI from Figure 5.5 as example. Again, we begin with
all topics being in the empty state. We assume, as precondition, that the recognition result
"decrease amps" has become available previously, which, according to the mechanisms dis-
cussed above, has caused the triggering of the DECREASE -topic of the amps spinner. We
now assume that the user intends to append the digit ’5’ to the amps spinner. For this, the user
utters the command "append five" and we assume that the recognition result "append five"
becomes available. The semantic update with this recognition result has two consequences.
First, the APPEND -topics of both the amps and the voltage spinner get their activation name

1Identification slots are, according to section 5.2.1, the activation name slot and the speakable identifier slot.

119



CHAPTER 5. CONVERSATION-AND-CONTROL

slot populated with "append". Second, both these topics get their parameter slot named "digit"
populated with "five" 2 . Thus, the following topic state distribution has occurred:

Config Voltage Amps Apply
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Both APPEND -topics are partially populated and neither the isolated-topic-distribution
heuristic nor the peering-topic-distribution heuristic applies. The state distribution is, however,
not illegal. Thus, we are facing an information error – it is a priori not clear to which spinner
the digit ’5’ should be appended. As both ambiguous topics have an equal amount of iden-
tification slots populated, i.e., their activation name slot, the relative-maximum-identification
heuristic fails as well. From the user’s perspective, however, the situation seems clear: the user
has previously decreased the amps spinner and now, by uttering "append five", its the user’s
intention to append ’5’ to the very same spinner.

The system, however, cannot infer this intention by just considering the current topic state
distribution. Instead, it must consider the previously triggered topic – just like the user implic-
itly does. We call the topic that was triggered right before the current topic state distribution
occurred, the historical topic – in our case it is the DECREASE -topic of the amps spinner
In the following we specify a procedure, called resolution-by-historical-topic, to resolve the
information error under consideration of the historical topic:

1. Identify the topic set M as the specific subset amongst the ambiguous topics, which
have a maximum number of identification slots populated3.

2. Of every topic within M determine the names of the empty slots.

3. For every distinct (empty) slot name n

a) determine the value v of the slot n from the historical topic; if the historical topic
does not exist or if the slot name does not exist in the historical topic v = ⊥;

b) perform a semantic update of all topics in M using v as pseudo recognition result
(we define that semantic update will do nothing if ⊥ is passed the recognition
result).

4. Possible outcomes: if the obtained topic state distribution after the semantic update is
the peering-topic distribution, apply the peering-topic-distribution heuristic to identify
intended topic; otherwise

2We assume that the respective semantic analyzers recognize "five" as a value for the parameter slot digit
3This is similar to the first step of the relative-maximum-identification heuristic. In other words, the relative-

maximum-identification heuristic determines the candidate topics for resolution-by-historical-topic.
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a) if the topic state distribution has not changed as compared to before the semantic
update with the pseudo recognition result, resolution-by-historical-topic has failed;
otherwise, i.e., if the topic state distribution has changed:

i. if the obtained topic state distribution is illegal, resolution-by-historical-topic
has failed;

ii. else apply the relative-maximum-identification heuristic to identify the in-
tended topic; if this fails, resolution-by-historical-topic has failed;

5. if resolution-by-historical-topic has failed discard the topic state distribution obtained
by the semantic update with the pseudo recognition result

It is important to note that in the step "Possible outcomes" the isolated-topic-distribution
heuristic does not have to be considered, since we are facing an information error, where at
least two topics are not empty. Resolution-by-historical-topic basically examines the chang-
ing of the topic state distribution of the ambiguous topics under the assumption, that the cur-
rent recognition result would have contained exactly the information from the historical topic,
which is now simultaneously missing in any slot of the ambiguous topics. If resolution-by-
historical-topic fails, other mechanisms, which we describe in the remainder of this chapter,
will be invoked.

Let us go back to our example. The first step of resolution-by-historical-topic reveals, that
the speakable identifier slots of all ambiguous topics are missing (illustrated by respective
empty small circles on the right of each partially populated topic). Then, resolution-by-
historical-topic would determine the value "amps" as the value of the speakable identifier
slot from the historical topic. It would then (temporarily) perform a semantic update using
the pseudo recognition result "amps" on all ambiguous topics. This causes only the speakable
identifier slot of the APPEND -topic of the amps spinner to get populated – the other ambigu-
ous topic does not accept "amps" as speakable identifier. Consequently, one topic is on the
populated state as depicted below:

Config Voltage Amps Apply
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The topic state distribution now corresponds to the peering-topic distribution and resolution-
by-historical-topic has determined the APPEND -topic of the amps spinner as the intended
topic. This is in correspondence with our previous assumption that the user intends to append
’5’ to the amps spinner.

It is important to note that resolution-by-historical-topic would also have led to a success
if the recognition result "five", instance of "append five", had become available, e.g., due to a
recognition error. In this case, only the parameter slots of the APPEND -topics get populated
and prior to applying resolution-by-historical-topic the following topic state distribution is
given:
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Config Voltage Amps Apply
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Resolution-by-historical-topic then determines, that both the speakable identifier slot and the
activation name slot of each APPEND -topic are missing. The corresponding slot values from
the historical topic are "amps" and "decrease". The slot value "decrease" does not lead to any
further population of a slot of the two ambiguous topic, however, the "amps" value populates
the speakable identifier slot of the APPEND -topic from the amps spinner, as depicted below:

Config Voltage Amps Apply
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Thus, the application of the relative-maximum-identification heuristic on the above topic state
distribution, as defined by resolution-by-historical-topic, determines the APPEND -topic of the
amps spinner as intended topic.

5.3.3 Summary

We showed that information errors can be detected by the absence of any populated topic
and by the presence of multiple (including 1) partially populated topics. The situation can
attempted to be resolved by applying the relative-maximum-identification heuristic, which
selects the topic with the maximum number of populated identification slots, if a unique such
topic exists. If the relative-maximum-identification heuristic fails, the procedure resolution-
by-historical-topic can attempted to be applied next, which aims at resolving the information
error by considering the historical topic. From a practical perspective, resolution-by-historical-
topic facilitates repeated activations with a low average command length. For example, if the
number ’789’ should be entered in the initially empty amps spinner, then the commands "amps
append seven" followed by "eight" followed by "nine" would accomplish this. If resolution-by-
historical-topic would not be available, then the user would have to utter "amps append seven"
followed by "amps append eight" followed by "amps append nine", which is four words longer.
In the following section we explain how information errors can be resolved if even resolution-
by-historical-topic fails.

5.4 Qualified Feedback
In this section we will show that there are information errors which cannot automatically be
resolved by the mechanisms explained in the preceding sections. We present mechanisms,
referred to as qualified feedback, by which such information errors can be resolved. We will
first explain, in section 5.4.1, how the system can generate a prompt for the user in which
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it asks the user to clarify the information error with the subsequent utterance. We call this
procedure resolution-by-clarification-question. In section 5.4.2 we show how the system can
detect and handle situations, where the user does not respond to the prompt as expected by a
procedure which we call topic-state-backtracking. Section 5.4.3 presents a procedure called
clarify-parameter, which is designed for the system to be able to prompt the user for missing
parameter information. Finally, in section 5.4.4 we summarize qualified feedback.

5.4.1 Resolution-by-Clarification-Question
We assume again that all topics from our sample GUI (Figure 5.5) are in the empty state. The
recognition result "amps" becomes available. The semantic update with this recognition result
causes the speakable identifier slot of any topic from the amps spinner to be populated with
"amps". All other topics remain empty. Thus, both the INCREASE - and the DECREASE -
topic of the amps spinner are partially populated indicating parameters complete. The amps
spinner’s APPEND -topic is also partially populated. It indicates, however, parameters incom-
plete. This situation is depicted below, including the population state of the identification slots
as small circles:

Config Voltage Amps Apply
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No topic is in the populated state, some topics are partially populated and all topics have one
identification slot populated. Thus, we are facing an information error which cannot by re-
solved by the relative-maximum-identification heuristic – it is not clear which activation of
the amps spinner should be performed and possibly with which parameters. Resolution-by-
historical-topic is currently the last known option to resolve the information error. The com-
monly missing slot amongst the ambiguous topics is the activation name slot and the value of
the activation name slot from the historical topic is "append" (see section 5.3.2). The seman-
tic update of the ambiguous topics using the pseudo recognition result "append" causes the
activation name slot of the APPEND -topic to be populated. The state of this topic, however,
remains unchanged as still the parameter slots are empty. Since resolution-by-historical-topic
only takes further actions if the state of at least one topic changes, resolution-by-historical-
topic fails as well.

To resolve the situation we define a procedure which we call resolution-by-clarification-
question. The idea of this procedure is, as the name suggests, to clarify the ambiguous topics
actively with the user, i.e., to generate and present a clarification question of which the ex-
pected response provides enough information to resolve the information error. If resolution-
by-clarification-question would, hypothetically, be performed by a human, then the question
that the human would most likely ask would be "Do you want to increase or decrease Amps,
or append a digit?". 4 The semantic information in the human clarification question is twofold.

4The deletion of a digit from a spinner is, as mentioned in the introduction of this discussion, not considered.
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First, it reflects that there are three possible actions that can be performed with the amps spin-
ner. Second, it contains names for each of the three actions that can be performed.

Exactly the same information can be inferred from the ambiguous topics: there are three
ambiguous topics which expect a specific activation name. Consequently, by iterating over
the ambiguous topics, a question could be generated that looks like "Do you mean ’increase’,
’decrease’, or ’append’?". Given a different situation where the ambiguous topics were origi-
nating from different graphical objects, the speakable identifier of the graphical objects would
have to be considered as well: assume, for instance, that instead of "amps" the recognition
result "increase" had become available. The INCREASE -topic of the amps and the voltage
spinner would be partially populated, and the question could then look like "Do you mean ’in-
crease amps’ or ’increase voltage’?". In any case, the clarification question would be presented
to the user and if the user answers as expected, the information would lead to a resolution of
the ambiguity as we describe further down in this section. The steps which make up resolution-
by-clarification-question are as follows:

1. Identify the topic set M as the subset amongst the ambiguous topics, which have a
maximum number of identification slots populated5.

2. Determine the number da of distinct activation names represented by topics in M .

3. Determine the number dg of distinct speakable identifiers represented by topics in M .

4. Let q represent the clarification question and append the string "Do you mean " to q.

5. For every topic n in M do

a) If da > 1 append to q the activation name expected by n .

b) If dg > 1 append to q the speakable identifier expected by n.

c) If there are more topics in M append " or " to q.

6. Append "?" to q.

7. Present p to the user.

8. Perform semantic update with the subsequent recognition result on any available topic.

a) If the topic state distribution changes, apply known heuristics and procedures;

b) otherwise fall back to a different mechanism, which we describe in the following
section.

5This is similar to the first step of the relative-maximum-identification-heuristic. It restricts the clarification
question to those ambiguous topics, which have the most identification information
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It is important to recognize that the semantic update with the recognition result that follows
the clarification question is performed with all currently available topics – and not on just he
ambiguous ones. This facilitates the detection of the user changing the intention, which we
explain in section 5.4.2.

Going back to our example, we consequently assume the generation of the question "Do
you mean ’increase’, ’decrease’, or ’append’?" and the system expects "increase", "decrease"
or "append" as subsequent recognition result. We will, for now, assume that the user answers
as expected, i.e., uttering "increase", "decrease" or "append". Such assumptions have also
been made by others (Kacioglu and Ward [92]), as it is mandated by the Cooperative Principle
(Grice [71]) (introduced in section 2.5) in order to avoid conversation break-down. Thus, we
will, for now, assume that the user answers "decrease" and that a corresponding recognition
result becomes available. The semantic update with the "decrease" recognition result causes
the activation name slot of any DECREASE -topic to be populated. Thus, the topic state
distribution is now as follows:

Config Voltage Amps Apply

S D I D A I D A P
This topic state distribution matches the criteria of the peering-topic distribution, as one topic
is populated and some others are partially populated. Thus, the DECREASE -topic of the amps
spinner is selected as the intended topic according to the peering-topic-distribution heuristic.

To summarize, we have shown that information errors might occur which cannot be auto-
matically resolved. Such information errors can be resolved by a clarification question gener-
ated from the properties of those ambiguous topics, which have the most identification slots
populated. We believe that there is a specific maximum number of topics, from which it is
reasonable to generate a clarification question. We have not investigated towards this maxi-
mum in our work and consider it as a direction of future work. In the following section we
will discuss the situation that arises, if the user does not respond as expected by resolution-by-
clarification-question.

5.4.2 Topic-State-Backtracking
For explaining topic-state-backtracking let us consider the topic state distribution from the
previous scenario after the "amps" recognition result had become available. The topic state
distribution, after semantic update with this recognition result, as depicted below

Config Voltage Amps Apply

S D I D A I D A P

Let us further assume that the system has successfully generated and presented the clarification
question "Do you mean ’increase’, ’decrease’, or ’append’?". Consequently, the system now
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expects "increase", "decrease" or "append" as subsequent recognition result.
Let us now assume that the user answers "push apply" – which is not the expected answer

– and that the corresponding recognition result becomes available. The user would expect
that now the system pushes the apply button, i.e., that it triggers the PUSH-topic of the apply
button, just like it did in section 5.2.3. Such an unexpected answer could be motivated by
the user changing his mind, as to not anymore intending to perform something with the amps
spinner. To cope with the situation, three capabilities are required. First of all, the system must
be able to detect such a situation. Second, it must get rid of the belief that "user intends to
perform something with the amps spinner". Third, the system must infer the new intention and
react accordingly. In the following we examine several unexpected user answers, including the
above one.

At first, let us consider the situation that arises if the recognition result "push apply" becomes
available. The semantic update with it causes both speakable identifier slot and activation name
slot of the PUSH -topic to be populated. The topic state distribution looks as follows:

Config Voltage Amps Apply

S D I D A I D A P
The system can consequently detect that the user has answered unexpected by the topic state
changes occurring with topics other than the original ambiguous topics. We further recognize
that, although the user has answered unexpected, the new intention of the user manifests as the
peering-topic distribution. Thus, the peering-topic-distribution heuristic correctly identifies
the PUSH-topic of the apply button as the intended topic.

Let us now examine what had happened after the semantic update with "increase voltage",
i.e., if the user changed mind differently. The word "increase" will populate any corresponding
activation name slot, unless not already populated, and "voltage" will populate any speakable
identifier slot of the voltage spinner. Thus, the topic state distribution would look as follows:

Config Voltage Amps Apply

S D I D A I D A P

What first strikes the eye is that two topics are in the populated state, i.e., we are facing the
illegal distribution. If the user had responded to the clarification question as expected, there
would not have been an illegal distribution. Thus, the user answering unexpected can be
detected by an illegal state after the user’s response to a clarification question.

If the user had answered "five" then the parameter slots of both APPEND -topics get popu-
lated, leading to the following topic state distribution:

Config Voltage Amps Apply

S D I D A I D A P
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The states have, indeed, changed, but there are even more ambiguous topics than before, and
neither previously known heuristic or procedure is successful. Thus, the user answering unex-
pected, can be detected by an increasing number of ambiguous topics.

If the user had answered "amps" again the topics states would not have changed at all, as
"amps" has led to the information error in the first place. Thus, another indicator for the user
not having responded as expected is, if the topic states remain unchanged.

For summarizing this discussion we refer to the isolated-topic-distribution heuristic,
the peering-topic-distribution heuristic and the relative-maximum-identification heuristic as
heuristic resolving. If the intended topic can be inferred by heuristic resolving after a se-
mantic update with a recognition result that becomes available as response to a clarification
question, we have the situation as discussed in section 5.4.1 – the question of whether the
intended topic could be inferred from an expected or unexpected response is not significant.
Otherwise, if the illegal distribution occurs or if the intended topic could still not be inferred,
topic-state-backtracking will be invoked. It is described in the following.

1. Discard the two latest topic state distributions.

2. If now all topics are empty, start the interpretation of the command/response from
scratch;

3. otherwise:

a) Perform semantic update with user’s response.
b) Perform heuristic resolving.
c) If illegal distributions was accomplished or if heuristic resolving failed, continue

with step 1.

Topic-state-backtracking is a recursive algorithm which terminates on two conditions. Either,
if during its execution the intended topic could be inferred by heuristic resolving. Or if all
previous topic state distributions have been discarded, i.e., backtracked, until the initial situ-
ation, where all topics are empty, has been reached. Before topic-state-backtracking begins,
there have at least two topic state distributions been considered – the distribution that led to
the information error and the distributions after applying the users response to the clarification
question. Thus, there are at least two latest topic state distributions (see step 1 of topic-state-
backtracking).

Let us go back to our example and we consider the unexpected response "increase voltage".
The situation before the application of topic-state-backtracking looks as follows:

Config Voltage Amps Apply

(0)

(1) 

(2) 

S D I D A I D A P
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The topic state distribution marked with (0) is the initial distribution. Distribution (1) is after
the semantic update with the recognition result "amps" from which the clarification question
"Do you mean ’increase’, ’decrease’, or ’append’?" has been generated. Finally, distribution
(2) is the illegal state after the recognition result "increase voltage" became available. Since
the illegal distribution (2) occurred while a response to a clarification question was expected,
topic-state-backtracking is invoked. Distribution (2) is discarded, followed by the discarding
of distribution (1). As now all topic states are empty, we start the entire recognition result
interpretation from scratch, i.e., "increase voltage" is applied to state (0). The semantic update
with "increase voltage" leads to a partial population of the INCREASE -topic of the amps
spinner. Additionally, the INCREASE -topic of the voltage spinner is populated. As such, as
illustrated below, the illegal distribution (2) has been transitioned into the legal distribution
(1)* by topic-state-backtracking. Furthermore, to (1)* the peering-topic-distribution heuristic
can successfully be applied:

Config Voltage Amps Apply

(0)

(1) 

(2) 

S D I D A I D A P

Config Voltage Amps Apply

(0)

S D I D A I D A P

(1)* 

In the next section we show how we deal with empty parameter slots.

5.4.3 Clarify-Parameter
In the previous examples we have, for reasons of reducing complexity, omitted to discuss how
empty parameter slots are dealt with. We will catch up with this in this section.

In any situation where the relative-maximum-identification heuristic has inferred a sin-
gle topic which is in the parameters incomplete state, we must deal with empty parameter
slots – independently of whether this situation was induced by the direct application of this
heuristic or by indirect application from within resolution-by-historical-topic, resolution-by-
clarification-question or topic-state-backtracking. As a representative example let us assume
that all topics are in the empty state and that the recognition result "amps append" becomes
available. The subsequent semantic update causes all activation name slots of APPEND -topics
and all speakable identifier slots of topics from the amps spinner to be populated. The resulting
information error is depicted below:

Config Voltage Amps Apply

S D I D A I D A P

There is no topic in the populated state, therefore the relative-maximum-identification-
heuristic will at some point in time be invoked. It succeeds in extracting the APPEND -topic
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of the amps spinner, as this is the topic with the most identification information. However, the
situation has, compared to the preceding examples, a different quality: according to the defini-
tion of the relative-maximum-identification-heuristic, the resulting APPEND -topic represents
the intended topic – this is, indeed, the case in reality, but as the topic is in the parameters
incomplete state, it cannot be triggered. It can obviously not be triggered, as the digit, that
should be appended to the amps spinner has not been specified. We do not consider it a good
idea to infer the missing parameter information automatically, e.g., from the historical topic.
Parameters might be of equal type, but their semantics in the context of different graphical ob-
jects might vary significantly. It might, however, be worthwhile to give this idea more attention
as future work (refer to section 7.3).

To still resolve the situation we introduce a procedure which we call clarify-parameter and
which queries the missing parameter value(s) from the user. Let us, again, temporarily assume
a human. Then, obviously, the human would ask the user a question like "Which digit do
you want to append to the amps spinner?". The semantic information in this question is the
name of the graphical object ("amps"), the name of the activation ("append"), and the name
of the missing parameter ("digit"). Exactly this information can be inferred from the topic
that is in the parameters incomplete state. It expects a specific activation name and a specific
speakable identifier. Furthermore, the name of the missing parameter must be the name of the
parameter slot which is empty. From this information a prompt like "Append amps, specify
digit!" can be generated. Then, with the next recognition result becoming available, the system
behaves as described in section 5.4.2 – there is one slight difference, however: the possibility
that the states of the topics do not change after a semantic update with the response. does not
necessarily mean that the recognition result was unexpected: if multiple parameter slots of the
respective topic are empty, it will not change its state until all parameters have been populated.
In particular, unless the recognition result is unexpected, it will not change the state of any
topic, as such clarify-parameter can be applied iteratively to clarify all missing parameter slots.
Thus, changes in the number of populated parameter slots must be considered as well as a state
change. Other than that, the very same mechanism as described in section 5.4.2, including
dialog state backtracking, can be used to interpret a response to clarify-parameter. However,
the Swing catalog (section 4.1.1) does not involve topics with more than one parameter.

Going back to our example let us assume that the system generated "Append amps, specify
digit!" and the recognition result "seven" becomes available. This causes the parameter slots
of the APPEND-topic of both voltage and amps spinner to be populated and the topic state
distribution changes as follows:

Config Voltage Amps Apply

S D I D A I D A P

According to the peering-topic-distribution heuristic, the APPEND-topic of the amps spinner
is correctly identified as the intended topic.

In summary, clarify-parameters is the procedure to actively inquire missing parameter infor-
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mation. It is used whenever the relative-maximum-identification-heuristic determines a single
topic with missing parameters, and as such can be seen as an extension to this heuristic.

5.4.4 Summary

We have discussed information errors which cannot be resolved automatically. Such informa-
tion errors can be detected by a failure of heuristic resolving and by resolution-by-historical
goal. In order to resolve such information errors we have defined a collection of procedures
which we call qualified feedback. These procedures generate clarification questions based on
the characteristics of the information error, or process the recognition results which become
available after a clarification question has been presented to the user.

5.5 Dialog Model for Conversation and Control
The result of the explanations in the previous sections is a set of techniques for the interpre-
tation of qualified activation commands and for the detection and resolving of information
errors. The techniques are, indeed, defined generically, however, their interplay when dealing
with concrete cases has just been discussed on the basis of several examples. These exam-
ples are, indeed, representative, but there is still the lack of a generic core algorithm that
can by used to create a working user interface. As the interaction with a speech-controlled
GUI that is augmented by the introduced techniques has a flavor of a conversation, we call it
a conversation-and-control interface. In particular, since there are two parties involved, the
user and the system, such a core algorithm is generally referred to as a dialog model. In this
section we will derive a dialog model for conversation-and-control, called the conversation-
and-control dialog model. It manages the spoken interaction between those two parties, and it
is therefore, in literature, also referred to as the dialog management strategy.

Dialog models are typically used in the research area of spoken dialog systems. According
to Fraser [65] a spoken dialog system is a computer system which interacts with humans
on a turn-by-turn basis and in which natural language plays an important role in facilitating
this interaction. Spoken dialog systems have long emerged from a mainly research oriented
focus, e.g., CMU Communicator (Rudnicky et al. [160]), TRAINS (Allen et al. [4]), or the
Philips automatic train timetable information system (Aust et al. [15]), to productively used
applications, e.g., the automatic train time table information system of Deutsche Bahn 6 , the
voice banking portal of Postbank 7 , or the voice-based cinema information service of Cinecitta
8 . However, spoken dialog systems with cognitive and verbal skills as sophisticated as the
HAL 9000 computer in the movie "2001: A Space Odyssey" [38] are still science fiction.

According to Fraser’s definition a speech-controlled GUI is not quite a spoken dialog sys-
tem: indeed, the process of uttering a command and awaiting the system’s reaction can be

6Available at +49 800 1507090.
7Available at 0180 3040 700 (Germany) or +49 69 47867684 (international)
8Available at +49 911 20 666 7
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regarded as a turn, however, the user does not use a natural language – at least, the com-
mands "feel artificial". Artificial spoken languages for interaction with a computing system
improves performance, since the languages, due to their design, improve the command recog-
nition rate. Examples include Computer Pidgin Language (Hinde and Belrose [178]) and
Universal Speech Interface (Rosenfeld et al. [157]). Users adapt well to these artificial lan-
guages (Tomko and Rosenfeld [185]). Some experiments show that they even prefer them over
natural language (Tomko and Rosenfeld [186]). We therefore conclude that natural language
is no prerequisite for a spoken dialog system. Instead, we interpret the concept of a spoken
dialog system more broadly. We include any system that uses speech recognition technology
as input and which has an internal dialog model, according to which it generates responses,
prompts the user or triggers other actions.

Going back to the initial objective of this section, the definition of the conversation-and-
control dialog model, we give an overview of dialog models as they are currently used with
spoken dialog systems in section 5.5.1. We continue in section 5.5.2 with the definition of a
data structure upon which we base the specification of the core algorithm of the dialog model
for conversation-and-control (section 5.5.3) and summarize the dialog model in section 5.5.4.

5.5.1 Dialog Model Categories

According to McTear [124] three high-level categories of dialog models can be distinguished,
called the graph-based dialog model, the template-based dialog model and the agent-based
dialog model. Common to all categories is that the models have an understanding of the dialog
state, that is, a representation of the systems view regarding the semantic information that has
been exchanged with and received from the user 9 . The dialog model categories differ in how
they represent the dialog state, in how they perform semantic updates, and in how they decide
about subsequent actions. Another significant differentiation criterion is the manner in which
they allow the user to take the initiative in the dialog, i.e., if and when they allow the user to
seize control of the dialog by making an utterance, that introduces a (new) conversation topic
for both user and system (Cohen et al. [39]). We discuss the three categories in the following.

Graph-based Dialog Model

A graph-based dialog model represents the dialog flow as a graph. Edges denote alternatives
in the dialog flow in respect to the user’s input. Nodes represent the system’s reaction to the
user’s input, e.g., the acceptance or rejection of recognition results, the generation of respective
prompts, or the calls of application functions. As such, each node in the graph represents a
specific dialog state and thus, graph-based dialog models represent their dialog state implicitly.
Therefore, they are commonly not referred to as being dialog-state-driven, although clearly, it
is the dialog state that determines subsequent actions in respect to the next recognition result.

9In literature, the dialog state is also referred to as discourse state. This terminology is more generic as there
might possibly be more than two parties involved in the conversation. For the scope of this thesis, however,
we assume a dialog and stick to the term dialog state.
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Graph-based dialog models typically restrict the user’s input to responses of carefully de-
signed system prompts. Thus, the mode of the resulting interaction is called system-initiative,
as the system actively leads the user through the dialog. System-initiative mode is not limited
to graph-based dialog models. While graph-based dialog models tend to use system-initiative
mode throughout the conversation, other dialog models, as we show later in the section, use
system-initiative if they detect that the user needs guidance in the dialog or when the system
intends to recover from an error. An exemplary system-initiative dialog from a graph-based
air travel system is given below. We discuss this example in the following.

(1) System: "What is your destination?"
(2) User: "London."
(3) System: "London. What day do you want to leave?"
(4) User: "Friday, at 10 AM."
(5) System: "London on Friday. What time?"
(6) User: "10 AM."

The advantage of graph-based models is that the required configuration data for the speech
recognizer, e.g., the vocabulary, is simple and can precisely be specified in advance. This
decreases the likelihood of recognition errors (Smailagic and Siewiorek [175]). In the above
example, the vocabulary required to recognize utterance (2) can for instance be restricted to
the destination airports known to the system. However, graph-based dialog models inhibit the
user’s opportunities for taking the initiative in the dialog or for asking questions. For instance,
after the system prompt in (1) the user has no other choice than specifying the destination
airport. Another example is utterance (4) where the user, by including "10AM", specifies
more information than the system is able process in the current state of the dialog. Thus, the
user has to specify this information again when the system is prepared to process it in (5) and
(6). Corrections of recognition errors have to be described explicitly by a graph as well, which
increases the complexity of the model.

An example for a spoken dialog system based on a graph-based dialog model is the tele-
phone banking application for Lloyds TSB Telephone Banking 10 of which an overview is
given in McTear [124]. Today, the creation of graph-based dialog system is supported by
(commercially available) architectures and frameworks, such as VoiceXML [170] – an XML
based language to describe and manage spoken dialogs between a computer and a user. Voice-
XML provides an abstract interface to speech recognition and speech synthesis technology.
Voice-XML provides further support in declaratively specifying the dialog flow based on a
finite state model. As Voice-XML was originally designed for spoken dialog systems which
are accessed by phone, it provides built-in support for DTMF-based 11 input. SpeechObjects
[191, 82] is a commercially available framework for creating graph-based spoken dialog sys-
tems using object-oriented techniques. Developers create atomic dialogs, e.g., for specifying

10http://www.prnewswire.co.uk/cgi/news/release?id=20233
11Dual Tone Multi-Frequency - the sounds that telephones use for dialing.
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numbers or dates, and encapsulate the necessary dialog control logic into so called speech ob-
jects. Speech objects can be programmed directly by using a built-in Java library, or by wrap-
ping Voice-XML. Using object-oriented techniques, speech objects can then be assembled to
entire working spoken dialog systems, possibly using Voice-XML for the overall dialog con-
trol. Hartl [74] introduces audio widgets which also aims at introducing fine grained, reusable
dialog units. However, their approach is more abstract, clearly separating the implementa-
tion of the dialog unit from its underlying model. As such, audio widgets are independent of
VoiceXML. Furthermore, Hartl aims to address the issues of localization (i.e., reusing dialog
units across different languages) and the dealing with speech recognizer-specific (i.e., pro-
prietary) features. The CSLU Toolkit [123] is a tool that supports rapid creation of spoken
dialog systems by letting developers graphically specify the graph that underlies the dialog
model. The tool further supports to compile the graphical representation into a working spo-
ken dialog system. The need for supporting the design phase of spoken dialog systems has
been recognizers by Anoop et al. [173]. They have created SUEDE, a prototyping tool for
designing and testing dialog models without having to implement the actual spoken dialog
system before testing can take place. Using SUEDE, a dialog model can be specified graphi-
cally and tested by the system emulating the functions of the resulting spoken dialog system,
including the simulation of recognition errors. Graph-based dialog models can also be used as
the basis for multi-modal interactions which involve spoken input. An example is described
by MacWilliams et al. [116] who use a petri-network for modeling a point-and-speak user
interface for an augmented reality application.

Template-based Dialog Model

A template is an object which defines multiple placeholders for specific types of informa-
tion instances. As such, a specific template can be considered as the specification of the
information which a system requires to perform a specific application function. With a
template-based dialog model the system populates the placeholders of a specific template
with the information that it extracts from newly available recognition results. Thus, the dialog
state is essentially the union of all currently available, possibly populated, templates. We will
illustrate this technique considering the following example:

(1) System: "What is your destination?"
(2) User: "London."
(3) System: "London. What day do you want to leave?"
(4) User: "Friday, at 10 AM."
(5) System: "London on Friday, 10AM. Window or Aisle?"

On first sight the dialog seems similar to the example that was used for graph-based dialog
model. However, on closer examination, some interesting lessons can be learned. Let us ex-
amine the system’s reaction on utterance (4): the user gives the expected response ("Friday"),
but additionally gives the information that 10AM is the desired departure time. Apparently,
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the system is able to recognize and process this additional information, as it is included in the
correct context in utterance (5). With the graph-based example, the system just recognized
"Friday" and went on with prompting for the time although the user had already specified it.
In contrast, the template-based system goes on with asking about the desired seat location (5).
This behavior can easily be understood, if we consider that the template-based dialog model
for this particular situation might have the following template: a placeholder for the destina-
tion, for the departure day, for the departure time and for the desired seat location. This is
analog to conversation topics, which have placeholders for the speakable identifier, the acti-
vation name and parameters. From the information in utterance (2) the system can populate
the destination placeholder. It then chooses the next empty placeholder, i.e., the departure day
placeholder. Based on meta information, like the placeholders name or a pre-defined prompt,
the system asks the question in utterance (3). From the information given in (4) the system
can populate the departure day placeholder, but as well the departure time placeholder.

With template-based dialog models the actual dialog flow is not pre-determined. It merely
depends on the information that is contained in the respective recognition result. Both user
and system can, to a certain extent, take over the initiative in the dialog. For instance, the
system has the initiative when it asks the user for the departure day. The user responds as
expected but at the same time takes over the initiative by specifying the additional information
about the departure time. Thus, the mode of communication with a template-based dialog
model is called mixed-initiative. However, for mixed-initiative mode, a specific level of natural
language understanding is required, as not just the expected information must be expected by
the system, but also additional information that is likely to occur. Similar to graph-based
dialog models there are architectures and frameworks which support the creation of spoken
dialog systems based on template-based dialog model, such as work from Papineni et al. [145]
and Denecke [48], which we discuss in section 5.6.4.

Agent-based Dialog Model

Like template-based dialog models, agent-based dialog models do not pre-define the dialog
flow. Any partner in the conversation can take over the initiative in the dialog at any time,
however, in contrast to template-based dialog models, in more elaborate ways. For instance,
both user and system can introduce new topics, or can make informational contributions which
are not otherwise constrained by the preceding prompt or utterances. Agent-based dialog
models are better prepared for unanticipated input from the user. Thus, like template-based
dialog models, agent-based dialog models operate in mixed-initiative mode. Agent-based
dialog models are not constrained in the way they represent the dialog state. It is usually a
complex data structure upon complex operations are defined, as for instance the information
state established in the TRINDI project (Traum and Larsson [187]). It could, however,
also be a simpler, template-like structure. In agent-based dialog models it is common, that
more than one internal component modifies the dialog state, following the metaphor of a
blackboard. The blackboard, i.e., the dialog state, contains the cumulated knowledge which
all components have contributed. Whenever the dialog state changes, e.g., due to a component
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having contributed information, other components contribute more information based on the
current information on the blackboard. Agent-based dialog models are further characterized
by their view of the dialog as an information exchange between entities, which are able to
reason about their own actions and their beliefs – possibly, also about the action and beliefs of
the respective partner in the communication. As such, an agent-based dialog model typically
includes a model of the user and the user’s beliefs as the following extract from a sample
communication from Sadek and de Mori [161] shows:

(1) User: I’m looking for a job in the Calais area. Are there any servers?
(2) System: No, there aren’t any employment servers for Calais. However, there is an employment
server for Pasde-Calais and an employment server for Lille. Are you interested in one of these?

In (1) the user asks for job offers in a specific area which the system answers negatively.
However, not just by uttering "no" – instead, the system is more cooperative and infers, that
the user could be interested on other job offers which are in the local area. For this to be
realized the system, i.e., the respective agent, must have a model about the users possible
interests and, as such, is able to anticipate possible next questions from the user. The details
of agent-based dialog models, however, are beyond the scope of this dissertation and we refer
to McTear [124] for continuative reading. In the following we give examples for existing
architectures, frameworks and systems which employ agent-based dialog models.

An early piece of work in the domain of agent-based dialog models is GALAXY (Goddeau
et al. [67]), first introduced in 1994, which is a client-server architecture for spoken dialog
information systems – spoken dialog system by which users can access information, e.g., from
databases. Its core characteristic is that it employs a central hub, via which all components
of the system communicate. In 1996, a significant architectural redesign was performed to
permit access to GALAXY-based systems via a web browser (Lau et al. [104]). As of 1998,
GALAXY-II (Seneff et al. [164]), which emerged from GALAXY, was used as the reference
architecture for the DARPA Communicator program 12 with the challenge task to create a spo-
ken dialog information system for the air travel planning domain. Within this program several
air travel planning systems have been created and compared with specific metrics (Walker et al.
[193]). Example systems include the CMU Communicator (Rudnicky et al. [160]) and Mer-
cury (Seneff and Polifroni [165]). GALAXY was also used to create spoken dialog systems
in different application domains, such as the weather information system JUPITER (Zue et al.
[199]). RavenClaw (Bohus and Rudnicky [23]) is rooted in the GALAXY architecture and
aims at rapid-prototyping of complex spoken dialog information systems, providing transpar-
ent support for the CMU Sphinx speech recognizer (Huang et al. [77]) and the Festival speech
synthesizer (Black and Lenzo [21]). It further includes a rich set of domain-independent con-
versational behaviors. As such, in contrast to former GALAXY-based applications, the system
development effort is more focused on the specification of the dialog task. Several systems

12The DARPA Communicator Program is now closed and has turned into the GalaxyCommunicator Open Source
Software Infrastructure http://communicator.sourceforge.net/
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based on RavenClaw exist, including Let’s Go (Raux et al. [1]) or RoomLine 13 .
Agent-based dialog models are typically used in application domains where both user and

system have partial knowledge about a task to be completed – neither user nor system can
perform the task alone. An example is problem solving and an early representative in this
domain is the Circuit-Fix-It Shop system (Biermann et al. [19]), which helps users to fix an
electronic circuit by engaging them in a spoken dialog. Another example in this domain is
TRAINS (Allen et al. [4]), where both the system and the user decide about routing trains
trough a network of railways. Tutoring is another application domain for agent-based dialog
models. Examples include the DIALOG project (Buckley and Benzmüller [30]), which aims
at creating a spoken dialog system that is capable of tutoring naive set theory, and the BEETLE
system (Zinn et al. [198]), which tutors basic electronics.

Verification

By verification we understand the actions which a spoken dialog system performs in order to
make sure that it has correctly understood what the user has said. Verification can be charac-
terized by two features which are orthogonal to each other.

The first feature denotes the point within the dialog flow where the system performs verifi-
cation. To variants, which we call just-in-time verification and delayed verification are com-
monly used: with just-in-time verification the system verifies the input before it moves on to
the next dialog state or before the dialog state gets updated. The advantage is that the input is
verified right when the user provides it. With delayed verification the system verifies the input
right before an application function is invoked. The advantage is that this type of verification
is more natural, however, the user might have to verify input that has been specified several
dialog turns in the past.

The second feature is whether verification is performed explicitly or implicitly. With
explicit verification the system formulates an explicit prompt in which it asks the user whether
a specific input is correct or not. The user is expected to answer with "yes" or "no" and an
example is given below:

(1) System: "What is your destination?"
(2) User: "London."
(3) System: "Is London correct?"
Implicit verification means that the system reiterates the input but in the same utterance does
something else, e.g., asks for another bit if information. An example is given below

(1) System: "What is your destination?"
(2) User: "London."
(3) System: "London. What day do you want to leave?"
Implicit verification is more natural than explicit verification, however, it requires more
13A description of RoomLine, including sample dialogs, are available at http://www.cs.cmu.edu/

~dbohus/RoomLine/
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natural language understanding and a flexible dialog model, as the user, in cases where
the input was misrecognized, answers like "No, I meant Paris". Thus, explicit verification
is more frequently used by graph-based dialog models and implicit verification more with
template-based or agent-based dialog models. The above examples denote just-in-time
verification. The same example, using delayed verification, could look like:

(1) System: "What is your destination?"
(2) User: "London."
(3) System: "What day do you want to leave?"
(4) User: "Friday."
(5) User: "Book a flight to London on Friday?."

To summarize, we have introduced three dialog model categories which are currently used
for spoken dialog systems. Common to the categories is that they have an internal model of
the dialog state. They differ in how they represent the dialog state, in how they determine
the system’s reaction upon a new recognition result, and how and when they allow the user
to take the initiative in the dialog. Based on this background knowledge we now specify a
dialog model for conversation-an-control in two steps. In the first step (section 5.5.2) we
introduce a data structure which we call the dialog state. It represents, as the name suggests,
the current state of the dialog between the user and the conversation-and-control interface.
It provides several operations, e.g., an encapsulation of the semantic update process. In the
second step (section 5.5.3) we specify a generic algorithm, i.e., the actual dialog model, based
on the dialog state. As it will become clear to the reader, the dialog model we are suggesting
is template-based.

5.5.2 Dialog State

The design of the dialog state is based on four observations made by examining the exam-
ples from sections 5.2 through 5.4 . First, the systems reaction is always derived from (a
subset of) the current topic state distribution. Thus, the dialog state is based on topic sets.
Second, as in specific situations not only the current topic state distribution must be con-
sidered, but also previously obtained topic state distributions (e.g., topic-state-backtracking),
we use a stack of topic sets. 14 . Third, in specific situations, the most recently triggered
topic must be considered. Therefore, the dialog state has an association to the respective
historical topic. Fourth, we observe a specific reoccurring cascade of heuristics and proce-
dures upon the current topic state distributions. We will specify this cascade as an opera-
tion on the dialog state, along with other operations which will prove useful for specifying

14We imply that the reader is familiar with the concept of a stack as this is one of computer science’s most
fundamental data structures. Otherwise, Knuth [102] provides an introduction into the characteristics of a
stack.
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0..*

0..*

0..1

historicalTopic

1

DialogState

+isEmpty():boolean
+push(d:TopicSet):void

+pop():void

+clear():void

+cascadeHeuristics():TopicSet

+semanticUpdate(r:RecognitionResult):void
+setHistoricalTopic(d:ConversationTopic):void

+semanticUpdateByHistoricalTopic():void

+isIllegal():boolean

+hasChanged():boolean

TopicSetStack

ConversationTopic

Figure 5.6: Dialog state for conversation-and-control.

the dialog model in section 5.5.3. As such, we define the following operations on the dia-
log state: IsEmpty, Push, Pop, Clear, CascadeHeuristics, SemanticUpdate,
SetHistoricalTopic, SemanticUpdateByHistoricalTopic, IsIllegal and
HasChanged. Figure 5.6 shows a diagram of the dialog state in UML. We explain the effects
of the methods, the operations, respectively, in the following.

IsEmpty The IsEmpty operation takes no argument and returns the boolean value false
if the stack contains elements, and true otherwise.

Push The operation Push has no return value and takes a topic set as argument which it
pushes onto the stack.

Pop The Pop operation takes no argument and does not return a value. If the stack is not
empty it removes the top element, i.e., the top most topic set, from the stack; otherwise
the method has no effect.

Clear The Clear operation takes not argument and has no return value. It removes all
elements from the stack.

CascadeHeuristics This operation takes no argument and returns a topic set according
to the following rules:

1. If the stack is empty then the return value is an empty topic set.

2. If the stack is not empty the operation checks the top most element of the stack for
the isolated-topic-distribution heuristic. If it applies, the operation returns a topic
set that contains the isolated topic as only element.

3. Otherwise:

a) The operation applies the peering-topic-distribution heuristic to the top most
element of the stack. If it succeeds, the operation returns a topic set that
contains the peering topic as only element.
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b) Otherwise, if the peering-topic-distribution heuristic fails, the return value of
the operation is defined as the topic set determined by the relative-maximum-
identification heuristic, i.e., the operation returns the topics with a maximum
number of identification slots populated (this can be a single topic or multiple
topics.

SemanticUpdate This operation takes a recognition result as argument and returns no
value. The operation performs the following steps:

1. Create a clone of all topics in the top most stack element.

2. Perform a semantic update on each topic clone with the given recognition result.

3. Put the clones into a new topic set and push the topic set onto the stack.

SetHistoricalTopic This operation takes a topic as argument and returns no value. The
argument is set to be the historical topic of the dialog state.

SemanticUpdateByHistoricalTopic This operation takes no argument and returns
no value. If the historical topic is defined, the operation performs resolution-by-
historical-topic on the top most element of the stack, and pushes the result as a new
topic set onto the stack. Otherwise, if the historical topic is not defined, the operation
performs the operation SemanticUpdate with an empty pseudo recognition result.

IsIllegal Takes no argument and returns a boolean value. Returns true if the top most
stack element is in the illegal distribution. Otherwise, the operation returns false.

HasChanged Takes no argument and returns a boolean value. If the stack has no or one ele-
ment, the operation returns false. Otherwise, the operation returns true if the topic
state distribution of the top most stack element is different from topic state distribution
the second top most element. If those topic state distributions are equal, the operation
returns false.

5.5.3 Core Algorithm

We now specify the core algorithm for conversation-and-control dialog model as a UML se-
quence diagram. We have, for reasons of clarity, divided the actual diagram into three separate
Figures. Figure 5.7 on the next page shows the main processing loop and defines the neutral
mode and the clarification mode, depicted in Figures 5.9 on page 142 and 5.8 on page 141.
We begin with explaining the high level processing loop.

The conversation-and-control dialog model is represented by an object which receives a
new recognition result from the speech recognizer (1). If the dialog state is empty, e.g., if
the system just has booted-up or if previously an activation was successfully performed, the
dialog model generates new topics from the current state of the GUI (1.1.1) and pushes them,
as initial topics, onto the dialog state (1.1.2). Then the dialog model triggers a semantic update
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dialogState

DialogState

strategy

ConversationAndControlDialogModel

:SpeechRecognizer

if(dialogState.isEmpty)

if(neutralMode)

else

else-if(response != null)

while((response == null) AND (intendedTopic == null))

if(intendedTopic != null)

1: receiveRecognitionResult(recoResult):void

1.3.2.1: doClarificationMode():void

1.3.1.1: doNeutralMode():void

1.5.1: presentResponse(response):void

1.4.1: triggerTopic(intendedTopic):void

1.2: semanticUpdate(recoResult):void

1.6: resetResponseAndIntendedTopic():void

1.1.2: push(initialTopics):void

1.1.1: initialTopics:=generateInitialTopicsFromGui():TopicSet

1.4.3: clear():void

1.4.2: setHistoricalTopic(intendedTopic):void

Figure 5.7: Conversation-and-control dialog model, main processing loop.

of the dialog state with the just obtained recognition result (2). After the semantic update
has been performed, the dialog model repeats a sequence of steps (while-loop) in which
it either determines the intended topic (intendedTopic) or generates a system response
(response). 15 Within the loop, the dialog model distinguishes between the neutral mode
and the clarification mode. Clarification mode is entered (1.3.2.1), if the dialog model, by
the just received recognition result, expects the user’s response to a previously presented
clarification question. Otherwise (1.3.1.1), the neutral mode is entered. We will explain both
modes in the following paragraphs. If either a response has been generated or the intended
topic has been found, the loop terminates. Upon the identification of the intended topic, the
dialog model triggers it (1.4.1), stores it as the historical topic (1.4.2) and finally clears the
dialog state (1.4.3). Otherwise, if a response has been generated, the dialog model presents it
to the user (1.5.1) and leaves the dialog state it is, so that it can be merged with the semantics

15We will later in this section see that the system does not only generate clarification questions.
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dialogState

DialogState

strategy

ConversationAndControlDialogModel

if(dialogState.isEmpty())

else

else

if(ambiguousGoals.size() == 1)

1.1: ambiguousTopics:=cascadeHeuristics():TopicSet

1: doClarificationMode(recoResult):void

1.3.4.1: semanticUpdate(RecognitionResult):void

1.3.3.3: setIsClarifying(false):void

1.3.3.2: semanticUpdate(recoResult):void

1.3.3.1: push(initialTopics):void

1.3.2: pop():void

1.3.1: pop():void

1.2.1: identifySingleAmbigTopic_Or_GenerateParamClarification():void

Figure 5.8: Conversation-and-control dialog model, clarification mode.

of the subsequent recognition result. Finally, the dialog model resets, i.e., discards the just
identified topic or response (1.6).

We now go into the details of the neutral mode (Figure 5.9 on the following page), i.e.,
the processing of a recognition result, if the dialog model does not expect an answer to a
clarification question. A sequence diagram showing the neutral mode is depicted in Figure
5.9, to which we refer in the following. The dialog model will only take further actions, if
the semantics of the recognition result changed the dialog state or of the dialog state then
is not illegal. Otherwise, the dialog model causes the presentation of a "Sorry, I did not
understand"-response (1.2.1) and clears the dialog state (1.2.2). The clearing is performed,
so that if possibly the state of the GUI has changed, e.g., due to an external event, the dialog
model generates up-to-date topics (see (1.1.1) of Figure 5.7). If, however, the dialog state
in fact changed, the dialog model performs heuristic resolving (1.1.1). If this led to the
identification of a single topic, the dialog model still has to check, whether this topic can
be triggered as is – if it is in the parameters complete or the populated state – or if the
dialog model still has to clarify parameters with the user. These are the only possibilities,
as, if the topic would have been in the empty state, it would not have been identified by the

141



CHAPTER 5. CONVERSATION-AND-CONTROL

dialogState

DialogState

strategy

ConversationAndControlDialogModel

if(ambiguousGoals.size() == 1)

else

if((dialogState.hasChanged() AND !dialogState.isIllegal()))

if(newAmbiguousTopics.size() == 1)

else

if(response == null) AND (intendedTopic == null))

if(dialogState.hasChanged() AND !dialogState.isIllegal())

else

else

1: doNeutralMode(recoResult):void

1.1.3.4.1.1: setIsClarifying(true):void

1.1.3.4.1: response:=generateDisambiguationQuestion(ambiguousTopics):String

1.1.3.3.1: pop():void

1.1.3.2.3.1: pop():void

1.1.3.2.2.1: identifySingleAmbigTopic_Or_GenerateParamClarification():void

1.1.3.2.1: newAmbiguousTopics:=cascadeHeuristics():TopicSet

1.1.3.1: semanticUpdateByHistoricalTopic():void

1.1.2.1: identifySingleAmbigTopic_Or_GenerateParamClarification():void

1.1.1: ambiguousTopics:=cascadeHeuristics():TopicSet

1.2.2: clear():void

1.2.1: setResponse("Sorry, I did not understand!"):void

Figure 5.9: Conversation-and-control dialog model, neutral mode.

heuristics. For clarity reasons we encapsulate the evaluation of this single topic by the method
identifySingleAmbigTopic_Or_GenerateParamClarification (1.1.2.1)
which is, in pseudo code, defined as follows:

Topic topic = getTheOneAmbiguousTopic();
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if (topic.isParamsComplete() OR topic.isPopulated()) {
intendedTopic = topic;

} else {
response = generateParameterClarification(topic);
setIsClarifying(true);

}

The identifySingleAmbigTopic_Or_GenerateParamClarification method
will occur in two further places, thus, it can be regarded as a macro. A such, by the step
(1.1.2.1) the dialog model has either identified a topic or generated a system response – as
such, the termination criterion for the main loop has been achieved.

We now discuss the remaining case – the heuristics have determined multiple ambiguous
topics. In this case, according to the explanations in section 5.3, the dialog model first attempts
resolution-by-historical-topic (1.1.3.1). This might have two outcomes: either, resolution-by-
historical-topic leads to an illegal state or does not change the dialog state at all, in which
case the dialog model discards the state obtained by resolution-by-historical-topic (1.1.3.3.1).
In the opposite case, the dialog model applies heuristic resolution again, this time, however,
on the topics as they have been changed by resolution-by-historical-topic (1.1.3.2.1). If the
heuristics could now identify a single topic, the dialog model will check, whether the topic
can be triggered as is, or if parameters must be inquired (1.1.3.2.2.1) – in any case, the termi-
nation criterion for the main loop has been satisfied. Otherwise, the dialog state obtained by
resolution-by-historical-topic is discarded (1.1.3.2.3.1).

If resolution-by-historical-topic has succeeded, the dialog model does nothing, so that the
main loop will be iterated through from the beginning. Otherwise, if neither a response has
been generated nor a topic has been identified by resolution-by-historical-topic, the dialog
model now invokes resolution-by-clarification-question. This is done by two steps. First,
the dialog model generates a clarification question from the originally ambiguous topics
(1.1.3.4.1). This satisfies the termination criterion of the main loop so that the response will be
presented to the user. As the dialog model now expects a response from the user, it sets a flag
(1.1.3.4.1.1) by which the main loop will enter the clarification mode if the next recognition
result becomes available.

We will now discuss the characteristics of clarification mode, of which a sequence diagram
is depicted in Figure 5.8. In clarification mode, differently to the neutral mode, the dialog
model will take further actions regardless of whether the latest semantic update changed the
dialog state. The reason is, as discussed in section 5.4.3, that parameter clarification might
not necessarily change the state of a topic, i.e., if more than one parameter is missing. Thus,
the dialog model, in clarification mode, immediately begins with heuristic resolving (1.1.1).
If this succeeds, i.e., if a single topic is obtained, the topic’s parameter state needs to be
considered (1.2.1). Otherwise, i.e., the dialog model may assume that the user has answered
unexpectedly (see discussion in section 5.4.2), and consequently the dialog model enters dialog
state backtracking (1.3.1) and (1.3.2). If the dialog state is empty after discarding the last two
topic state distributions, the recursion of dialog state backtracking must terminate. This is
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achieved by pushing the initial topics onto the dialog state (1.3.3.1), by performing a semantic
update in the just initialized dialog state (1.3.3.2) and by resetting the mode flag to neutral
mode (1.3.3.3). As the termination criterion of the main loop has not yet been accomplished,
the main loop will be entered again, but now the neutral mode will be considered. This is
feasible, since apparently the (unexpected) recognition result did not lead to the successful
inferring of the intended activation or a suitable response using dialog state backtracking. As
such, the dialog model will start from scratch (dialog state is just initialized and neutral mode
will be entered), which immediately results in a "Sorry, I did not understand"-response, the
identification of a topic or a subsequent clarification.

If the dialog state is not empty after the discarding or already backtracked topic sets, the
dialog model just performs a semantic update (1.3.4.1). The termination criterion is not ac-
complished so that the loop will be reentered in clarification mode upon another historical
dialog state.

5.5.4 Summary

We have introduced a generic model for managing the dialog between the user and the
conversation-and-control interface. The model is based on several types of topic state dis-
tributions, and involves different heuristics and procedures based on topic state distributions,
from which the intended topic can be inferred in a cascading manner. That is, topic state distri-
butions, heuristics and procedures are subsequently applied if the respective successor failed.
This process is partially encapsulated by the dialog state data structure, which models the cur-
rent state of the dialog as the top most element of a stack of sets of topics. The dialog history
is represented by the dialog state as well: one the one hand by the maintaining a reference to
the historical topic, and on the other hand by the elements of the stack which are not the top
most one.

The dialog model for conversation-and-control dialog model is clearly dialog-state driven,
as any decision that the generic algorithm makes, is based on it. Furthermore, the dialog
state is represented explicitly, as a stack of sets of topics. The conversation-and-control dialog
model is not graph-based as it does not involve a graph to represent the dialog flow. Although
the conversation-and-control dialog model allows for mixed-initiative interaction (as discussed
below) it is clearly not agent-based, since the model does not reason about its own beliefs and
the beliefs of the user. The conversation-and-control dialog model is therefore template-based
and the topic(s) represent(s) the template(s).

The user primarily has the initiative in the conversation, because the dialog model, unless
an information error occurs, just reacts on the user’s commands. If, however, an information
error occurs the model has two characteristics which emphasize its mixed-initiative character.
First, the dialog model claims the initiative through disambiguation questions or parameter
clarification questions. Second, by being able to detect unexpected responses to the above
questions and by adjusting the dialog state accordingly, the user is able to re-claim the initiative
without causing a conversation break-down (refer to sections 5.4.1, 5.4.2 and 5.4.3).
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5.6 Discussion

Conversation-and-control is a new speech-controlled GUI approach which is based on en-
hancements of the speech-GUI model (section 5.2.1). This shows, that the speech-GUI model
is extensible to new speech-controlled GUI approach, as required by the discussion in sec-
tion 2.1. We now summarize the characteristics of the conversation-and-control dialog model
(section 5.6.1) and discuss inherent limitations (section 5.6.1). After that, in section 5.6.3, we
clarify the role of speech synthesis technology – a key technology for spoken dialog systems
– in the scope of conversation-and-control. Finally, in section 5.6.4 we discuss other related
work.

5.6.1 Characteristics of the Dialog Model

We call the characteristics of the conversation-and-control dialog model decentralized encap-
sulation, legacy emulation and simple pronoun resolution, and discuss them in the following.

Decentralized Encapsulation This characteristic denotes that there is no no central se-
mantic analyzer component which has the entire knowledge for analyzing recognition
results. We employ multiple, decentralized components, i.e., the semantic analyzer com-
ponents of a conversation topic, of which each encapsulates exactly the syntactic and
semantic knowledge required for a specific qualified speech function This is in con-
trast to existing architectures for spoken dialog systems, such as GALAXY-II (Seneff et
al. [164]) or RavenClaw (Bohus and Rudnicky [23]), which employ a central seman-
tic analyzer component that holds the entire syntactic and semantic knowledge for the
application domain. We argue that decentralized encapsulation our approach is more
flexible regarding changes or enhancements of the application domain. For instance, if
due to usability studies, the syntactic structure of a specific qualified activation com-
mand should be changed, only one (at least only a few) semantic analyzer objects must
be altered. Also, if new graphical objects should be supported, the necessary knowl-
edge can simply be "plugged-in" into the existing knowledge by providing respective
conversation topics.

Legacy Emulation It has to be pointed out that the conversation-and-control dialog model
can emulate conventional command-and-control, i.e., command-and-control with indi-
rect activation and random navigation. This can be achieved by defining that a topic
is not associated with a qualified speech function, but with an ordinary speech func-
tion as it is used with conventional command-and-control. As such, a navigation can
be performed by uttering a speakable identifier, similar to conventional command-and-
control. In the conversation-and-control dialog model this would lead to the popu-
lation of the speakable identifier slot of one specific topic, and in turn, the relative-
maximum-identification-heuristic would identify this topic as the intended topic. An
indirect activation, i.e., an activation that is coupled with a navigation, is transparent for
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the conversation-and-control dialog model, as the speech function, which is triggered
by just a navigational command, performs it. Regular activations are performed by ut-
tering their activation name following by a parameter, e.g., "append five". Assuming
that the user has previously navigated to a specific graphical object, as it is required by
conventional command-and-control, the procedure resolution-by-historical-topic would
resolve the missing speakable identifier in the above command. While this characteris-
tic might not necessarily have consequences for the actual usage of conversation-and-
control, it facilitated the creation of a testing framework with which we could easily
measure and compare task completion times with conversation-and-control and conven-
tional command-and-control using the very same GUI.

Simple Pronoun Resolution The conversation-and-control dialog model is, to a certain
extent, able to deal with anaphoric relationships in the form of pronouns. Referring to
our exemplary GUI in Figure 5.5 consider that the recognition result "append amps five"
becomes available, which would have caused the digit ’5’ to be appended to the current
value of the amps spinner. Let us now consider that the user utters "increase it", which
contains the activation name of the INCREASE activation and the pronoun "it". After
the initial semantic analysis, any topic that represents an INCREASE activation would
consequently get its activation name slot get populated, as depicted below:

Config Voltage Amps Apply

S D I D A I D A P

As there is no topic in the populated state, the peering-topic-distribution heuristic
fails. The relative-maximum-identification heuristic fails as well, as there are multi-
ple INCREASE-topics with one identification slot populated. Resolution-by-historical-
topic determines that the identification slot is missing on the maximal identified topics,
and the corresponding value from the historical topic, "amps", changes the states of the
topics as follows:

Config Voltage Amps Apply

S D I D A I D A P

Thus, the peering-topic-distribution heuristic will correctly identify the INCREASE-
topic of the amps spinner, even though the user used a pronoun. However, the capability
to deal with anaphoric expression is not due to resolving the anaphoric expression ex-
plicitly – it is merely achieved by ignoring it, however, for the speech-GUI domain, this
way of dealing with anaphoric expressions is sufficient.

Nevertheless, the conversation-and-control dialog model also has inherent limitations,
which we discuss in the following section.
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5.6.2 Limitations

We now point out and discuss inherent limitations of the conversation-and-control dialog
model.

Identification Precedence The conversation-and-control dialog model weights identifica-
tion information higher than parameter information, which we call identification prece-
dence. This can lead to unexpected, i.e, unintuitive side effects. Given our sample GUI
from Figure 5.5 let us a situation after system-boot up, i.e., all dialog topics are in the
empty state and there is no historical topic. The user utters "increase day" which includes
the name of an option of the config list and the name of the INCREASE activation, so
that the topics get populated as follows.

Config Voltage Amps Apply

S D I D A I D A P
The dialog model will apply resolution-by-clarification-question, as neither the peering-
topic-distribution heuristic nor the relative-maximum-identification heuristic is success-
ful, and a historical topic is not available. From a human perspective we would then
expect the system to clarify between the config list, the amps spinner and voltage spin-
ner, as all three graphical objects are "affected" by the utterance. However, as the base
topics for resolution-by-clarification-question are delivered by the relative-maximum-
identification heuristic, as such, the dialog model just clarifies between the amps spinner
and the voltage spinner ("Do you mean ’Amps’ or ’Voltage’?"). Another such situation
may arise if we assume that the user had initially uttered "increase Voltage", which
causes the voltage spinner to be increased. If now the user utters "increase day", we
have the same topic states as above, however, now a historical topic is available. As the
commonly missing slot amongst the ambiguous topics is the speakable identifier slot,
the corresponding value of the historical topic with by used by resolution-by-historical-
topic, and we face the dialog states as depicted below:

Config Voltage Amps Apply

S D I D A I D A P

Consequently, according to the peering-topic-distribution heuristic, the INCREASE-
topic of the voltage spinner will be identified, and the INCREASE activation of the
voltage spinner will be invoked. From a human perspective we would have expected a
clarification between the three graphical objects as above.
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Verification Absence Input from the user is not verified as long as the dialog model does
not detect an error condition. In other words, if the conversation-and-control dialog
model identifies a topic, it is triggered without re-presenting to the user what the speech
recognizer has delivered. In the case of errors, e.g., an ambiguous situation or a situation
of missing information, the dialog model implicitly verifies the input by the way it asks
clarification question, however, the clarification question might already be generated
from corrupt data. While we argue that explicit clarification in general would unneces-
sarily lengthen the interaction, we regard it as valuable from a developers perspective, if
the dialog model could be configured to explicitly verify the user’s input for specific crit-
ical activations. An example is a button that triggers the deletion of data from a database.
We further believe that the conversation-and-control dialog model would benefit from
an implicit verification mechanism, which kicks in if the confidence of the recognition
result drops below a specific threshold. The incorporation of verification capabilities is
considered as future work 7.3.

Dealing with Misunderstandings It is the nature of a misunderstanding that both parties
in the dialog are convinced of their beliefs about the respective other party, and in the
further flow of the dialog it becomes obvious that at least one of these beliefs was wrong.
Even humans do not have the ability to detect the misunderstanding at the time it oc-
curs, so it is not surprising that there is currently no spoken dialog system which has this
ability. The very same applies, of course, for conversation-and-control – once a misun-
derstanding has happened, i.e., if the intended topic has not been correctly inferred, the
associated qualified speech function still gets triggered.

We argue that this limitation of conversation-and-control can be mitigated. The speech-
controlled GUI could be equipped with a speech function SFUNDO, which the user
could trigger by uttering "undo" (this solution idea was already in section 3.2.2 when
we presented the interaction delay model) and which would undo the most recently per-
formed speech function. However, this solution does not work for application functions
which cannot be undone. Thus, the effects of misunderstandings could further be miti-
gated by enhancing the mechanism as described in the context of verification absence:
not only if the confidence of the recognition result drops below a specific threshold an
explicit verification is required, but in general for any application function that cannot
be undone.

Misunderstandings can be detected indirectly after they have happened. For instance,
a communication break down can very likely occur due to a misunderstanding. One
line of research in detecting communication breakdowns aims at using specific prosodic
features of an audio signal to detect the user’s emotional state, e.g., frustration or an-
noyance (Ang et al. [6]), which can, amongst other things, indicate the occurrence of
(subsequent) misunderstandings. Thus, the evaluation of the user’s emotional state can
influence the way a spoken dialog system reacts (Holzapfel et al. [76]). For instance,
if a user is frustrated, an automated call routing system could decide to transfer the call
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to a human operator versus risking the user to hang up. The system could also try to
calm down the user even if the actual problem cannot be solved (Klein [101]) Applica-
tion domains, where there is currently a strong emphasis in the detection of the user’s
emotional state for design of spoken dialog, include tutoring (Litman and Forbes-Riley
[109]) and social robotics (Oudeyer [143]), i.e., robots, which interact with humans.
Another feature that can be extracted from audio signals and which indirectly indicates
misunderstandings is hyperarticulated speech, where users try to speak "extremely clear
and slow" (Soltau and Waibel [176]).

Concatenated Activations With conversation-and-control, as with all other speech-
controlled GUI approaches, activations have to be performed sequentially with sequen-
tial commands. This complies with the usual way of working with a GUI, and we argue
that the sequential performance of activations is a relict of the mouse-based operation.
We believe that, since with speech complex semantic information can be conveyed, it
should be possible to perform sequential activations with a single command. In other
words, we suggest that it should be feasible to concat the commands for two different
activations into a single command and call this technique concatenated activations. This
technique is not supported by conversation-and-control: the presence of the identifica-
tion and parameter information of two different activations, i.e., two different topics, in
a single command would most certainly lead to an illegal state, as two topics would be
populated. It is currently unclear how conversation-and-control can be augmented to
support concatenated activations and if this would help to decrease the interaction delay.

5.6.3 The Role of Speech Synthesis Technology

The term speech synthesis stands for technology that allows for generating, i.e., synthesizing
human speech. A speech synthesizer is generally any device which implements speech syn-
thesis technology. The details of speech synthesis are beyond the scope of this thesis. Speech
synthesis is, however, a key technology for creating spoken dialog systems, since it gives a
spoken dialog system the ability to respond verbally to the user’s verbal input. A conversation-
and-control interface is inherently a graphical user interface, as such, there is no immediate
necessity to use a speech synthesizer to present system responses – the responses are available
as text and can be presented by the graphical output channel directly. We consider the usage
of a speech synthesizer for conversation-and-control as an option. We believe that it is an in-
teresting direction of future work to investigate if system responses, in the speech-controlled
GUI domain, should be rendered on the screen, played back by the sound card, or both (see
section 7.3). Since consequently speech synthesis is closely related to our work, we give a
brief overview.

Today, speech synthesizers exist in the form of software components, but their history
reaches (at least) back to 1779, where the Russian Professor Christian Kratzenstein created
a mechanical apparatus, which could produce vowel sounds. The first fully electrical sound
synthesis device was introduced by Stewart in 1922, and it was also limited to vowel sounds.
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The basics for software-based speech synthesizers components were laid by Allen, Hunnicutt,
and Klatt, who demonstrated the MITalk system [3] and the Klattalk system [100]. Their sys-
tems established the theoretical foundation for speech synthesizers of today, such as Festival
[21], Rethorical [156], or FreeTTS [181]. Refer to Lemmetty [106] for a review of speech
recognition technology. The input for a speech synthesizer is a specific representation of the
speech to be synthesized. They transform the text into digital audio signals, which can then
be played back using sound cards. Possibly, the text can be augmented with pronunciation
information, so that the speed, the pitch, the loudness, or other characteristics of speech can be
influenced (e.g., Java Speech Grammar Format [128] or Speech Synthesis Markup Language
[192]).

Speech synthesis technology can roughly be divided into two classes. The first class is based
on pre-recorded audio samples of words, e.g., one sample for each word in the vocabulary
of a specific application domain. The synthesis process consists of concatenating the audio
samples corresponding to the sequence of words in the textual input, and the resulting speech
is called pre-recorded speech. The second class is based on a set of mathematical functions
against the time, which model the wave forms of the available phonemes of a specific world
language. The synthesis process consists of concatenating the mathematical functions over the
time, corresponding to the phonemes that the textual input represents. The resulting speech is
called artificial speech. Experiments show that users prefer pre-recorded speech over artificial
speech (Lines et al. [108] and Atkinson et al. [14]), as it sounds more natural, i.e., not robotic,
and that it is better understood than synthesized speech (Tsimhoni et al. [188]). Pre-recorded
speech, however, is not suited for the presentation of highly dynamic data, as the speech that
can be produced is limited to sequences of permutations of the pre-recorded samples. For this
task, artificial speech is better suited – as a real world language can be modeled satisfactory by
a limited amount of phonemes, artificial speech covers a greater range of words. Hybrid speech
synthesis approaches aim at solving this problem by primarily using pre-recorded speech, and
by falling back to artificial speech if pre-recorded samples for words do not exist. Experiments,
however, show that users understand hybrid speech even worse than pre-recorded speech and
synthesized speech (Gong et al. [68]). Speech synthesis is closely related to the research
area of natural language generation which deals with the generation of natural language in
the form of text, which can then by used as the input for a speech synthesizer. An overview
into the technological details of natural language generation and further references is given by
Reiter and Dale [155].

5.6.4 Related Work

In this section we present work that relates to conversation-and-control. In particular, we
discuss work from Papineni et al. [145], extensions of this work by Denecke [48], Speech
Application Language Tags (SALT) [162, 125], Mercator (Edwards and Mynatt [53]), ICIE-
Voice Olsen et al. [91] and LARRI (Bohus and Rudnicky [22]).

Dialog Goals Papineni et al. [145] present a generic spoken dialog system, that is, a spoken
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dialog system which can be configured for different application domains. Their system
abstracts the application as a set of functions and models each function a set of name-
value pairs, called a dialog goal. The semantic information of recognition results leads
to the population of specific dialog goals. Application specific dependencies between
particular application functions, such as the execution of one function as a precondition
of another (e.g., first login then accessing data) are modeled by the concept of admis-
sibility. The configurator of the spoken dialog system specifies, which dialog goals are
initially admissible (e.g., the dialog goal that represents a login function). The config-
urator further specifies which dialog goals become newly admissible after a currently
admissible dialog goal could be executed.

Specific characteristics of the system of Papineni et al. correspond to the conversation-
and-control dialog model. Most obviously, dialog goals and conversation topics cor-
respond to each other – we just introduced the name slot for a name-value pair. Fur-
thermore, both dialog models represent the currently available functionality as a set of
dialog goals, conversation topics, respectively. Another communality is that semantic
information in a recognition result directly populates any matching name-value pair or
slot. Both dialog models allow for a specific degree of freedom in the dialog flow. While
the conversation-and-control model potentially allows for every available conversation
topic to be invoked at any time, Papineni et al. restrict the available dialog goals to the
currently admissible ones. Within a specific dialog goal, the dialog flow is unconstrained
and both models apply heuristics to the respective population state of the conversation
topics/dialog goals to determine the next action. However, a conversation topic is spe-
cialized to the domain of controlling of a GUI, which manifests in the fact that specific
slots have specific semantic meaning to the dialog model. An example is the speak-
able identifier slot which indicates that the recognition result contained the identifier of
a specific graphical object. With our dialog model, the dialog flow is therefore influ-
enced by the qualitative population state, that is, the dialog model employs heuristics
which are defined on specific types of slots (such as the relative-maximum-identification
heuristic defined in section 5.3.1, which only operates on identification slots). Thus, our
dialog model has a deep understanding of the application domain that it is used with,
which allows for an application specific handling of recognition errors (e.g., resolution-
by-historical-topic, section 5.3.2). In contrast, the dialog model of Papineni et al. is
application-blind. They do not assign any special semantic meaning to the name-value
pairs of dialog goals, and thus, the dialog flow is only determined by the quantitative
population state. That is, the dialog model includes heuristics which are defined on
quantitative measures, such as the current number of populated name-value pairs per
dialog goal or changes of the populated name-value pairs per dialog goal between sub-
sequent semantic updates.

Ariadne Ariadne (Denecke [48]) is a rapid prototyping environment for spoken dialog sys-
tems. Like the system of Papineni et al. it is generic, i.e., it can be configured for
specific application domains. It also employs the concept of a dialog goal, however, it
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uses typed features structures (Carpenter [35]), which are enhanced with object-oriented
concepts (Denecke [47]), to model the dialog goals. This allows describing complex ap-
plication entities, which in turn allows for the system to be configured for a wider range
of application domains than the system of Papineni et al. However, the configuration
process is complex. Not only the application domain must be configured, but also spe-
cific elements of the dialog model, including system prompts, clarification questions for
each name-value pair, recognition grammars and recognition result parsing grammars.
Our dialog model and domain entity representation (i.e., the conversation topic) is sim-
pler since the application domain that it is targeted to (the controlling of GUIs) does
not involve complex domain entities. Instead, the assigning of a semantic meaning to
each slot, which is known to the dialog model, allows for the automatic generation of
clarification questions, instead of having to specify them for each particular usage (see
section 5.4). Common to Ariadne and our dialog model is the abstraction of the quan-
titative population state. As such, both dialog models are aware of an empty population
state (no information present), a complete population state (all information present) and
a partial population state (some information present). Our model, however, further de-
composes the partial population state under consideration of the quantitative population
state (parameters complete and parameters incomplete), which allows for a deeper un-
derstanding of the information content in the conversation topic.

SALT Speech Application Language Tags (SALT) [162, 125] is an extension to XML-based
user interface markup languages (like HTML) providing an abstract interface to speech
recognition and speech synthesis technology. This interface consists of a set of spe-
cific speech events (e.g., an event that represents a new recognition result) and a set of
corresponding event handlers (e.g., onreceive, which is invoked if a new recognition
result is available). The developer has access to the interface via specific XML elements,
the SALT tags. A SALT-enabled browser detects and interprets them in the context of
the current XML document. Given a web browser, the developer could for instance
implement the onreceive-event handler as a JavaScript function which analyzes the
recognition result and which populates a web form accordingly. The advantage of SALT
is that it provides transparent support for speech-related services from within web pages
and potentially across specific web browsers. The disadvantage is that it only supports
the input and output technologies for spoken dialog systems – it is the developers tasks
to design and implement the "glue", e.g., the dialog model and the semantic analysis
algorithms. However, using SALT as interface to speech services the conversation-and-
control dialog model could be implemented according to our framework specification
(see section 6.1).

Mercator Mercator (Edwards and Mynatt [53]) is an early system that aims at supporting vi-
sually impaired or blind users in the usage of GUIs, by mapping the GUI to an auditory
interface. For this, Mercator defines audio interface components (AIC) for commonly
used graphical objects. AICs, speaking in terms of the MVC pattern (see section 2.8.3),

152



5.6. DISCUSSION

can be considered as the auditory views of graphical objects. Thus, a graphical object
has both a graphical view, which it has inherently, and an auditory view, which is cre-
ated by Mercator. The system generates and manages a tree of AICs corresponding to
the tree structure of the graphical objects visible on the screen. Mercator keeps this tree
in synchronization with the screen throughout the usage of the system. Users physically
perform navigation and activation on the original graphical objects via keyboard com-
mands, e.g., via the cursor keys. Whenever the focus changes, Mercator detects this
and presents the AIC corresponding to the newly focused graphical object. Thus, the
user gets an auditory cue as to which graphical object is currently focused or in which
state the object currently is. Since Mercator relies on conventional input via mouse and
keyboard, conversation-and-control is an orthogonal approach that could be combined
seamlessly with Mercator to create a 1:1 mapping of a GUIs to spoken dialog systems.
Such a combined system could provide access to GUIs for users, who suffer from both
visual and motor impairments.

ICIE-Voice The ICIE environment (Olsen et al. [141]) is an architecture and a framework
for providing pervasive access to applications. ICIE-Voice (Olsen et al. [91]) is part
of the ICIE environment and facilitates pervasive access to GUIs via a speech-only
channel, such as a phone line. With ICIE-Voice, graphical objects are augmented with
semantic information, such as their name, their type, the spatial relationship to other
graphical objects and information about the containment in other (groups of) compo-
nents. From this semantic information, a spoken representation of a specific graphical
object is generated and presented via synthesized speech. In order to make the spo-
ken presentation configurable, each graphical object has an optional speech descriptor
which defines further rules for generating the synthesized speech. Similar to Merca-
tor, and in contrast to conversation-and-control, ICIE-Voice does not allow for spoken
activation of graphical objects. Only navigation of graphical objects is possible, and
the currently focused graphical object is presented to the user as described above. Us-
ing spoken commands for navigation, ICIE-Voice offers two different navigation types:
type-based navigation and geometry-based navigation. With type-based navigation the
user navigates between graphical objects of the same type using "next <type>", "pre-
vious <type>", "first <type>" or "last <type>" commands (this was already described
in section 1.2.3). Hereby ICIE-Voice silently assumes that programmers include an or-
dering into the screen objects, e.g., graphical objects representing days in a calendar
application. Geometry-based navigation allows for moving upward or downward in the
graphical object hierarchy with respect to the current position, or based on the spatial
relationship to each other. This is in contrast to conversation-and-control which employs
random navigation – any graphical object can be navigated to at any time.

LARRI The Language-based Agent for Retrieval of Repair Information (LARRI) described
in Bohus and Rudnicky [22], is a multi-modal application for supporting activities in
the maintenance and repair domain. Due to the preponderance of hands- and eye-busy
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situations in this domain, the system has a GUI which is designed for being run on
a wearable computer with a head-mounted display, and which can be controlled by a
rotary mouse (Siegel et al. [172]) or by spoken dialog. LARRI and applications built
with our conversation-and-control framework (described later in section 6.1) share the
commonality that the user can seamlessly switch between spoken input and conventional
input (mouse, rotary mouse, respectively) to control the GUI – depending on which input
modality better suits the current situation. However, our approach is application-blind
as the conversation-and-control dialog model is designed to control the functionality of
graphical objects. It is therefore applicable to different application domains, whereas
the dialog model in LARRY is specific to the repair and maintenance domain. It is,
however, based on a generic dialog model, described in Wei and Rudnicky [194].
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6
Validation

"The most exciting phrase to hear in science, the one that heralds the most dis-
coveries, is not ’Eureka!’ (I found it!) but ’That’s funny...’ "

Isaac Asimov (1920 - 1992)

Overview
In this chapter we validate the conversation-and-control approach in three steps. First, we
introduce the design and implementation of a conversation-and-control framework based on
which we have created prototype systems from the technical maintenance domain. This shows
the practical feasibility of conversation-and-control interfaces. Second, we calculate the in-
teraction delay of conversation-and-control and compare it to the interaction delay of conven-
tional command-and-control. The results of these calculations show, that the interaction delay
of conversation-and-control is, as expected, significantly lower than the interaction delay of
conventional command-and-control. Third, we have conducted an experiment with 16 test
subjects to empirically validate the reduction of the task completion time. The results of the
experiment, which we discuss in detail, demonstrate a significant reduction of the average task
completion time.
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6.1 Conversation-and-Control Framework
In this section we describe a conversation-and-control framework. We begin with the core
requirements in section 6.1.1 which influenced the design, described in section 6.1.2. The
implementation of the framework is discussed section 6.1.3 and section 6.1.4 explains a new
heuristic which emerged from testing experience during the implementation phase. Finally,
section 6.1.5 describes prototype systems from the technical maintenance domain which have
been created with the framework.

6.1.1 Requirements

The following requirements have led the design of the conversation-and-control framework.

Core Component We require that a reusable core component for conversation-and-control
interfaces exists, which is independent of the characteristics of the graphical objects that
it controls.

Swing Catalog The framework must support the Swing catalog (section 4.1.1), since we
used the Swing catalog as the conceptual basis for developing conversation-and-control.

Extensibility The framework must be extensible beyond the Swing catalog, beyond Java
Swing, respectively, so that it can also be implemented for other GUI toolkits (e.g.,
Microsoft Foundation Classes [151] or Standard Widget Toolkit (SWT) [139, 115].

Mode Switching The framework must support the command mode, allowing controlling
graphical objects by conventional command-and-control. Furthermore, the conversa-
tional mode must allow for controlling graphical objects by conversation-and-control.
This will reduce the implementation effort for the experiment that measures the task
completion time of command-and-control versus conversation-and-control.

Markup Language-based GUIs and Native GUIs The framework must support both
markup language-based GUIs and native GUIs. This requirement was driven by the
mobile maintenance project (see section 6.1.5).

6.1.2 Design

The framework design is based on state-of-the-art software design patterns. Detailed expla-
nations of software design patterns, including the ones we used, can be found in Brügge and
Dutoit [26], Shalloway and Trott [168] and Gamma et al. [62]. Crucial to our framework
design is the combination of the adapter pattern and the bridge pattern. The adapter pattern
adapts different interfaces of components or objects. Its characteristics will become clear in
the remainder of our discussion. The bridge pattern helps to "decouple an abstraction from
its implementation so that the two can vary independently" (Gamma et al. [62]). Since its
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Figure 6.1: Bridge pattern.

characteristics are complex, we explain them in the following, before we go into the details of
its application to the conversation-and-control framework design.

A client (refer to Figure 6.1) accesses the functionality of a supplier via a standardized inter-
face. Internally, the supplier is separated into the so called abstraction and the implementor.
The abstraction represents the standardized interface for the client, therefore, any (internal)
refinements of the abstraction (e.g., subclassing) are transparent to the client. The abstrac-
tion has an association to a specific implementor which provides the actual functionality of
the supplier. The implementor has a standardized interface as well, which is, however, only
exposed to the abstraction. Therefore, the implementor can change independently from the ab-
straction, and therefore independently from client. The actual association between abstraction
and implementation could even be changed dynamically, e.g., by using the factory pattern.
An example for an application of the bridge pattern is networking. Consider the abstraction
(the supplier, respectively) to be an object which represents a network link. It could provide
a generic interface to send and receive data, however, it could use different implementors to
send and receive data via the TCP or the UDP protocol (Tanenbaum [184]). The abstraction
itself could vary in that a secure refinements exists, which could apply an encryption algorithm
before sending the data – either via TCP or UDP, depending on the current implementor.

Having explained the bridge pattern we now look into in the essentials of the conversation-
and-control framework design, referring to Figure 6.2 on the following page. The
conversation-and-control manager encapsulates both the conversation-and-control dialog
model and the dialog state 1 . It exposes a simplified interface to the logic of the conversation-
and-control dialog model, and can therefore be considered as a facade (facade pattern). This
interface includes the methods setConversationMode() and setCommandMode(),
which toggle the operational mode of the conversation-and-control dialog model between
conversation mode and command mode (refer to the legacy emulation characteristic, section
5.6.1). This fulfills the mode switching requirement.

1These objects were introduced in section 5.5.
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Figure 6.2: Conversation-and-control framework design.

The clients from the bridge pattern map to the conversation topics, which are also depicted
in Figure 6.2. Each specific conversation topic represents a specific control action of a specific
graphical object, thus, each conversation topic intends to call specific functions of a graphical
object. We decouple conversation topics from concrete graphical objects by introducing an
abstraction layer, called graphical object controllers. Each such controller abstracts functions
and properties of a specific type of graphical object, and thus, provides a standardized interface
for respective conversation topics. Graphical object controllers map to the abstractions from
the bridge pattern. However, as there might be common functions and properties of graphical
objects, there is an entire hierarchy of graphical object controllers. We indicate this coher-
ence in the Figure using the example of the button controller, the checkbox controller and the
respective conversation topics PUSH, CHECK and UNCHECK. In order to support different
GUI toolkits as required, we introduce an additional abstraction layer, called the graphical
object adapters. A specific graphical object adapter adapts the interface of a concrete graphi-
cal object to the interface which the corresponding graphical object controller expects. Thus,
the same graphical object controller can, transparent to the conversation topic, control differ-
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ent implementations of graphical objects. Consequently, the (hierarchy of) graphical object
adapters map to the implementors from the bridge pattern.

The application of the bridge pattern inherently suggests that the conversation-and-control
framework design is extensible. This covers the Swing catalog requirement, the extensibility
requirement and the requirement for markup language-based and native GUIs.

6.1.3 Implementation

The applications from the mobile maintenance domain, which we dealt with in the scope of
the mobile maintenance project (section 6.1.5), are based on Java 2 Enterprise Edition (J2EE)
[2], of which we give a brief overview in section 6.1.3. As a logical consequence, we created
an implementation of the conversation-and-control framework in J2EE and describe its core
characteristics in sections 6.1.3 and 6.1.4.

J2EE

J2EE is a specification for web-based client-server applications using Java. It merges together
many of the Java API extensions and defines interaction rules between them. J2EE enhances
the classical high level 3-tier application architecture (presentation layer, application layer and
persistent storage layer) by splitting the presentation layer across the client and the server.
Thus, J2EE specifies four layers: the client tier, the web tier, the Enterprise Java Bean (EJB)
tier and the Enterprise Information System (EIS) tier. Client tier and web tier emerge from the
split of the presentation layer: the client tier models the part of the presentation logic which
runs on the client, and the web tier models the part of the presentation logic which runs on the
server. A typical example is a J2EE application which involves a web browser-based GUI: the
web tier provides or generates the HTML pages 2 of which the GUI consists, and the client
tier presents the HTML pages (e.g., the web browser). The EJB tier of J2EE represents the
application layer and is initially based on the EJB specification. The EIS tier represents the
persistent storage layer and involves Java technologies like JDBC or Hibernate 3 .

J2EE provides a set of tools and technologies which is more than sufficient for the creation
of web-based client-server applications, however, the actual creation process is often unstruc-
tured and ad-hoc. This problem has been recognized and different solutions have been pro-
posed. For instance, in Löhr et al. [110], we concentrate on the J2EE client and web tier and
describe a framework for creating web browser-based GUIs in J2EE. It encapsulates solutions
to common problems occurring with this task, e.g., stale web browser requests and missing
support for reusing HTML components. In Bass et al. [17] we describe a case study with the
Luther Architecture, a high level architecture for J2EE applications, which suggests to assem-
ble J2EE applications from generic components that live in any of the four J2EE layers. The

2Various technologies for creating HTML can be used in the scope of J2EE, e.g., JSP [129], Java Servlets [130],
or Java Server Faces.

3Hibernate is not part of the J2EE specification but is commonly used as a light-weight substitute of the EJB
technology.
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Figure 6.3: Conversation-and-control framework implementation.

Luther architecture also employs multiple J2EE-specific software design patterns, as described
in Alur et al. [5]. Such patterns also have been used by other architecture proposals, such as
JAFAR (Guelfi and Sterges [72]). However, since the applications from the technical mainte-
nance domain, for which we provided prototype conversation-and-control interfaces, are also
based on the Luther architecture, we describe the integration of the conversation-and-control
framework with the Luther architecture in the following section.

Conversation-and-Control and the Luther Architecture

We created a Java implementation of the generic core components of the conversation-and-
control framework, called the conversation component. We furthermore created two imple-
mentations of the graphical object adapter hierarchy (using Java as well): the Swing adapter
was implemented against Java Swing to support the Swing catalog requirement and the native
GUI requirement, and the UIML adapter was implemented against the User Interface Markup
Language (UIML) 4 in order to support the markup language-based GUI requirement. For
the latter we reused a UIML rendering component and a corresponding UIML vocabulary
provided by Funck [61]. As a result, we obtained a Java Swing-based implementation of the
conversation-and-control framework, which we call Swing implementation and a UIML-based
implementation which we call UIML implementation, as depicted in Figure 6.3.

In order to integrate the conversation-and-control framework implementations with the
J2EE environment, with the Luther architecture, respectively, we performed three further
steps. First, by extending a Java framework for server-based speech services 5 with the Java
Speech API [131], provided by Sipek [174], we created a middleware component for dis-
tributed speech recognition that can be deployed both in the J2EE client tier and the J2EE web

4http://www.uiml.org
5We consider speech recognition and speech synthesis to be speech services.
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Figure 6.4: Conversation-and-control framework in J2EE.

tier. We call this middleware component the speech framework and it consists of a speech
client and a speech server. The speech client lives in the J2EE client tier and provides trans-
parent access to the speech server, which lives in the web tier. Second, we distributed the
particular components of our conversation-and-control framework implementations over the
client and the web tier as follows: the entire Swing implementation was embedded into the
J2EE client tier, accessing the therein living speech client. The UIML renderer of the UIML
implementation was embedded into the client tier and accessed the therein living speech client
as well, forming together the so called UIML client. The UIML instance of the conversation
component and the UIML adapter were embedded into the web tier. Then, as a third step,
reusing conceptual ideas from our framework for web browser-based J2EE clients (Löhr et al.
[110]), we created a J2EE web tier component for generating UIML-based GUIs, called the
UIML generator. Similar to Java Servlets or JSPs it generates UIML which is delivered to and
rendered by the UIML renderer. The UIML generator, the UIML instance of the conversation-
and-control component and the UIML adapter together form the UIML Server. We depict this
setup in Figure 6.4.

6.1.4 Self-Elimination Heuristic

During the implementation of the framework we created several conversation-and-control in-
terfaces as test cases. We observed, that the conversation-and-control dialog model asked
clarification questions although the user’s intention was clear from the current internal state of
the affected graphical object. For instance, if a specific selection item of a list was currently
deselected and the user uttered its speakable identifier, the system asked question like "Do you
mean select or deselect?". This is in accordance with the model definition: by uttering just
the selection items identifier, eventually, the relative-maximum-identification heuristic would
return the respective SELECT - and DESELECT -topic for being clarified by resolution-by-
clarification-question. From a usability perspective, it should however be obvious, that the
user intends to invoke the respective SELECT -topic, as the selection item is currently not
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selected.
To solve the above described problem, we took advantage of the fact that the conversation

topic, as being designed for a specific graphical object, knows about the internal state of a
graphical object (the interface of the respective graphical object controllers just needs to be
enhanced). We defined a procedure for the implementation of the SemanticUpdate opera-
tion of conversation topics, called self-elimination, which is described below:

1. Perform the semantic update just as required for the conversation topic.

2. Before returning the call, validate the contents of the populated slots against the state of
the graphical object.

3. If the slot content is inconsistent with the graphical object state, remove the values of all
slots.

4. Return call.

Thus, whenever a conversation topic detects, that the current state of the graphical object
is not consistent with the semantic information from the recognition result, it clears out all
values from its slots. Self-elimination would, however, break with the principle that the state
of a conversation topic cannot move towards the empty state (see section 5.2.1). To avoid
compromising the logic of the dialog model, we only apply self-elimination on conversation
topics which are currently empty. As a result, a topic that eliminates itself remains empty after
a semantic update and the dialog model is not aware of the existence of self-elimination.

Going back to the introductory example, the DESELECT -topic would get the parameter
slot populated with the identifier that the user intends to select. By determining the selection
state of item identified by the value in the parameter slot, the DESELECT -topic can infer, that
"the user can actually not mean to invoke it" – the item is not selected, therefore it cannot be
deselected. Thus, it eliminates itself. For the dialog model, it would remain empty and the
relative-maximum-identification heuristic would just identify the SELECT -topic.

Self-elimination supports the legacy emulation characteristic of conversation-and-control,
since, as described with the example, it allows to omit activation names – at least for specific
activations.

6.1.5 Prototype Systems
We are particularly interested in the question as to whether conversation-and-control is appli-
cable to real application domains and, if so, how it then will perform. This leaves, however,
the question as to which application domain should be chosen. We recognized that there is
currently little experience with speech-controlled applications in industrial domains (Bürgy
et al. [31]), such as technical maintenance. Since the technical maintenance domain typ-
ically involves graphical data, it seems to be a promising fit for speech-controlled GUIs 6

6This has also been recognized by others, as for instance the creators of the LARRI system (Bohus and Rudnicky
[22]).
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. Therefore, within the mobile maintenance project in the scope of the High-Tech-Offensive
Zukunft Bayern program of Bayerische Staatskanzlei, we created two conversation-and-control
interfaces for the maintenance applications Mentor and Publisher [84]. Partial results of the
mobile maintenance project are documented in Atabey and Kayali [12]. The conversation-and-
control interfaces prove the practical feasibility of conversation-and-control from a develop-
ers perspective, i.e., they show that using the very same conversation-and-control framework,
multiple, different applications can be created. At the same time it prepares and motivates
future work emerging from this dissertation towards validating the conversation-and-control
approach one the one hand, and, on the other hand, towards gathering more experience with
speech-controlled industrial applications in the field.

Describing the created conversation-and-control interfaces in detail goes beyond the scope
of this dissertation, therefore, we only give a brief overview. Both Mentor and Publisher are
J2EE applications based on the Luther architecture (refer to sections 6.1.3 and 6.1.3) em-
ploying web browser-based user interfaces. The Luther architecture clearly defines the actual
application logic as a facade (see facade design pattern in Gamma et a. [62]) to a therein
encapsulated assembly of generic Luther components, such as a generic component for user
management, for document management or for workflow management. The facade, inter-
nally, defines interaction rules between the generic components and applies domain specific
logic, which it exposes via a well-defined interface, to which we refer as the application in-
terface. Any user interface, such as the respective web browser-based user interfaces of Men-
tor and Publisher, access the application interface. Following this paradigm we have created
conversation-and-control interfaces for both Mentor and Publisher, which accessed their re-
spective application interfaces. Although, up to now, we only implemented a limited set of the
available functionality, the design of the conversation-and-control framework integrated well
with the Luther architecture. To conclude this chapter, we present and briefly discuss selected
screen shots.

Mentor (Figure 6.5 on the next page) is a configurable application platform which allows
for processing of encapsulated data packages, so called documents, by multiple users. Docu-
ments are sent through roles of a workflow and are manipulated by users which are assigned
to participate in respective roles. In Figure 6.5(a) appears the login screen of the web based
Mentor user interface. It consists of two input fields for the user name and the password and an
image button to submit this information to the server. Figure 6.5(b) shows the corresponding
screen from the conversation-and-control interface. Note, that we substituted the input field
for the user name by a drop down box containing registered users, which speeds up logging
in. To further improve this, it might be reasonable to personalize the respective client instal-
lation, so that the name is pre-populated. We further omitted, i.e., neglected, the password
field. It contradicts security to spell out loud a password, therefore, we propose to use other
authentication mechanisms, such as speaker recognition 7 . The image button has been re-
placed by an ordinary button, so that the user knows what to speak. Figure 6.5(d) shows the

7Speaker recognition, as opposed to speech recognition, is the task of recognizing users from their voice pat-
terns.
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(a) Login screen, web (b) Login screen, conversation

(c) Inbox screen, web (d) Inbox screen, conversation

(e) Document screen, web (f) Document screen, conversation

Figure 6.5: Screenshots of Mentor conversation-and-control interface and web interface.

so called inbox of Mentor, which gives access to the documents which the currently logged
in user may manipulate. Each table row represents a document and gives status information.
The buttons at the end of the row represent specific document functions, such as propagation
in the workflow or deletion. The link on the left of each row opens the respective document.
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In the conversation-and-control interface (Figure 6.5(c)) we have modeled the inbox as a ra-
dio button list and factored out the buttons for the document functions as a button bar on the
bottom of the screen. They become enabled as soon as a document has been selected. Figure
6.5(e) depicts a document view in the web browser-based interface and Figure 6.5(f) contains
its conversation-and-control counterpart. Image links/buttons have been replaced by ordinary
buttons.

Publisher (Figure 6.6 on the following page) is a display system for class 4 and 5 interac-
tive electronic technical manuals (IETM) [41, 57]. Figure 6.6(a) contains an exemplary screen
from a German television broadcasting amplifier maintenance IETM (refer to Atabey and Kay-
ali [12]). The transition to the conversation-and-control interface (Figure 6.6(b)) is straight
forward 8 , although the conversation-and-control framework is currently limited in the avail-
able screen elements (e.g., graphics are not yet supported). Figures 6.6(c) and 6.6(d) contain
further screen shots from Publisher’s conversation-and-control interface, depicting standard
IETM content. Our approach in creating a conversation-and-control interface corresponding
to the existing web browser-based interface of Publisher exploits the fact that users are already
familiar with it. We argue that this results in a smaller learning curve, because users "only"
have to learn the new input modality speech, instead of additionally facing the burden of fa-
miliarizing with a new GUI (cp. LARRI [22]). The validation of this argument is, however,
considered future work. Also, for future research, we propose to create a user experiment with
the presented conversation-and-control interfaces, to evaluate their performance in a domain-
specific, i.e., hands-free, environment.

6.2 Interaction Delay of Conversation-and-Control

We now deal with the interaction delay of conversation-and-control. In section 6.2.1 we cal-
culate the interaction delay according to the interaction delay model (presented in chapter 3)
and in section 6.2.2 we discuss and compare the results against the interaction delay of con-
ventional command-and-control.

6.2.1 Calculations

Calculating the interaction delay requires us, like with the analyses of other speech-controlled
GUI approaches in chapter 4, to derive the vocabulary and the set of valid commands. In
section 4.2.1 we have identified a vocabulary superset for command-and-control approaches
of 70 words. This superset represents the entire vocabulary of conversation-and-control: the
contained words make up the constituents of speakable identifiers, define the names of all
occurring activations and include the constituents of textual representations of all possible pa-
rameters for these activations – at least, in the scope of the Swing catalog. Regarding the
number of valid commands we refer to Table 6.1 on page 167, which defines qualified activa-

8To save space we have cut out only the content area of the manual.
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(a) Publisher, manual view, web

(b) Publisher, manual view, conversation (c) Publisher, manual view 2, conversation

(d) Publisher, manual view 3, conversation

Figure 6.6: Screenshots of Publisher web interface and conversation-and-control interface.
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Execution Interaction with Conv.-and-Ctrl.
Notion x⊕y denotes concatenation
of command x and y.

Interaction with Conventional
Cmd.-and-Ctrl.

Ebutton (CMDNAVid) (CMDNAVid)
Echeckbox−check (CMDNAVid) (CMDNAVid)
Echeckbox−uncheck (CMDNAVid) (CMDNAVid)
Eradio (CMDNAVid) (CMDNAVid)
Edropdown (CMDNAVid ⊕ CMDNAVid) (CMDNAVid, CMDNAVid)
Elist−select (CMDNAVid ⊕ CMDNAVid) (CMDNAVid, CMDNAVid)
Elist−deselect (CMDNAVid ⊕ CMDNAVid) (CMDNAVid, CMDNAVid)
Emenu (CMDNAVid ⊕ CMDNAVid) (CMDNAVid, CMDNAVid)
Etree−select CMDNAVid, . . . , CMDNAVid︸ ︷︷ ︸

ndepth

,

CMDACTSELECT ⊕ CMDNAVid)

(CMDNAVid,
CMDNAVid, . . . , CMDNAVid︸ ︷︷ ︸

ndepth

,

CMDACTSELECT )
Etree−deselect (CMDNAVid ⊕ CMDACTDESELECT

⊕CMDNAVid)
(CMDNAVid, CMDNAVid,
CMDACTDESELECT )

Einput (CMDNAVid ⊕ CMDACTAPPENDx ,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ntext−1

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ntext

Espinner (CMDNAVid ⊕ CMDACTAPPENDx ,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ndigit−1

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ndigit

Espinner−dec (CMDACTDECREASE ⊕ CMDNAVid) (CMDNAVid, CMDACTDECREASE)
Espinner−inc (CMDACTINCREASE ⊕ CMDNAVid) (CMDNAVid, CMDACTINCREASE)
Eslide (CMDNAVid ⊕ CMDNAVid) (CMDNAVid, CMDNAVid)

Table 6.1: Qualified activation commands for basic executions, specified using terminology that
has been established in Table 4.3 on page 86.

tion commands for basic execution from the Swing catalog. Three characteristics of Table 6.1,
which we discuss in the following, strike the eye.

First, we recognize that the qualified activation commands contain very few activation
names, although qualified activation requires the commands to contain activating informa-
tion. Instead, many commands just consist of two concatenated speakable identifiers. This
is, however, no violation of the qualified activation principle: missing activation information,
e.g., activation names, just denotes an information error which the system must aim to resolve.
As we showed previously in section 6.1.4, self-elimination is suited for dealing with missing
activations names. Thus, the commands in Table 6.1 are optimized regarding their length,
under consideration of the system’s capabilities to automatically resolve information errors.

The second characteristic of Table 6.1 is, that the length of some qualified activation com-
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mands is equal to the sum of the words of the commands that they are merged from – however,
this only applies to interactions which already consisted of one command only, e.g., the in-
teractions for Ebutton or Echeckbox−check. Other than that, Table 6.1 proves the construction
hypothesis from section 5.1: qualified activation commands can be constructed from N com-
mands, so that their increased length does not compensate the interaction delay reduction,
which was gained from saving N − 1 recognition delays.

Third, some qualified activation commands contain information which might not (yet) be
visible on the screen at the time the user starts uttering the command. For instance, the inter-
action for Edropdown contains the identifier of the option to be selected, although the drop down
box might not be open. We argue that the necessity to open a drop down box (or for instance
a menu) is a relict of its mouse based operation – as long as the options are not visible they
cannot be navigated to with the mouse. The situation is different if speech is used as input
modality, and if we assume that the user is skilled in using the particular GUI instance. In
other words, we assume that the user recalls, e.g., from previous working sessions, which op-
tions the drop down box contains. Then, with speech, there is no need to open the drop down
box first – the desired option can be selected right away, and we show the practical feasibility
of this assumption later on when we discuss the outcome of the experiment (section 6.3.6).
There are, however, preconditions for this assumption to be feasible. The drop down box must
not be populated with dynamically changing information, and the speakable identifiers for the
respective options must be constant. If the user does not remember the option’s identifier or
the preconditions do not hold, the user can still "fall back" to open the drop down box prior
to selecting an option. This would, however, not reduce the interaction delay compared to
conventional command-and-control for this particular graphical object.

We now derive the number of valid commands for conversation-and-control. We argue that
each word in the vocabulary represents a valid command, namely, a correction – any speakable
identifier of length 1, any character and digit, and any activation name is subject to be spoken
by the user as an answer to a clarification question. Thus, we initially have 70 valid commands
(corrections) of length 1. Conversation-and-control inherits 100 possible speakable identifiers,
of which each is a valid command according to Table 6.1. The verbal forms of the digits 1−9,
which are speakable identifiers as well, have already been accounted for – they occur as distinct
words in the vocabulary. Thus, we have 91 additional valid commands representing a single
speakable identifier, e.g., the pushing of a button. Looking at Table 6.1 we further recognize
that some executions can be performed by uttering a concatenation of a pair of speakable iden-
tifiers. Since we do not restrict the way according to which speakable identifiers are assigned to
graphical objects, there are 100 · 99 possible combinations of speakable identifier pairs, which
makes another 9900 valid commands. In addition to that, the formerly separate commands
CMDACTSELECT , CMDACTDESELECT , CMDACTDECREASE and CMDACTINCREASE can
be concatenated with any speakable identifier, which makes an additional 400 valid commands
9 . Additionally, the command CMDACTDESELECT can also occur in combination with two

9The conversation-and-control dialog model "understands" more then the given concatenations of formerly
separate commands with speakable identifiers, e.g., it understands (CMDACTPUSH ⊕ CMDNAVid),
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Interaction
Delay in ms

Word Error Rate

0% 1% 5% 10% 20% 30% 40% 50%
Minimum 2642 2696 2927 3262 4128 5392 7339 10568
Average 3356 3473 4005 4839 7379 12085 21759 44647
Maximum 4355 4579 5628 7375 13290 25912 56006 139360

Table 6.2: Calculated minimum, average and maximum interaction delay per basic execution of
conversation-and-control.

speakable identifiers, which makes another 9900 valid commands. Finally, the spelling mode,
which conversation-and-control inherits as well, defines 37 commands which can either occur
separately or concatenated with a speakable identifier – which adds another 3737 valid com-
mands. In total, conversation-and-control defines 70+91+9900+9900+400+3737 = 24098
valid commands out of a vocabulary of 70 words. The length of the longest valid command is
5 (Etree−deselect).

With these considerations we have calculated the interaction delays for different word error
rates of basic executions using conversation-and-control (refer to appendix B.2, Table B.15, for
a detailed documentation). The intentions, which the interactions are based on, are the same
as with conventional command-and-control. We summarize the results in Table 6.2 which
depicts the minimum, the average, and the maximum interaction delay per basic execution
of conversation-and-control. Like with the cumulative interaction delay tables in chapter 4
we exclude the basic executions Etree−select, Einput and Espinner, as they contain the a priori
unknown values ndepth, ntext and ndigit (also refer to section 4.1.3). In the following section
we compare the results for conversation-and-control to conventional command-and-control.

6.2.2 Comparison to Conventional Command-and-Control

From the discussion in sections 4.2.4 and 4.4.3 we know that conventional command-and-
control has the lowest average interaction delay amongst the speech-controlled GUI ap-
proaches which have been considered by this work. We now compare the average inter-
action delay of conventional command-and-control to conversation-and-control, referring to
Figure 6.7 on the next page. The Figure graphically depicts the development of the average
interaction delay of both approaches against growing word error rates (derived from Tables 4.5
and 6.2). We will first discuss the graphs’ behavior for the average nominal interaction delay
(0% word error rate) and for low word error rates (< 15%), and then examine their behavior
for higher word error rates (≥ 15%) 10 .

(CMDACTUNCHECK ⊕ CMDNAVid) or (CMDACTOPEN ⊕ CMDNAVid). While this is merely to in-
crease its usability, for our calculations we only examine the smallest set of valid commands by which the
basic executions can be successfully performed.

10We have omitted drawing conversation-and-control for a 50% word error rate to keep the scale of the Y axis
reasonable small.
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Figure 6.7: Calculated interaction delay graphs of conventional command-and-control and
conversation-and-control.

The average nominal interaction delay of conversation-and-control is significantly, i.e., by
25% lower than the average nominal interaction delay of conventional command-and-control.
The nominal interaction delay does not consider corrections, which rules out differences in the
vocabularies or the valid commands to be responsible for this observation. Instead, the rea-
son is the quality of the interactions by which the basic executions can be performed, which
we explain as follows. From Table B.1 (appendix B) we derive that the average number of
commands per basic execution with conventional command-and-control is 1.75 and the aver-
age command length of this approach is 1.86. From Table 6.1 we derive that conversation-
and-control only requires 1 command per basic execution, which leads to a reduction of the
interaction delay according to the command count-monotony (Theorem 5). In fact, the aver-
age number of commands per basic execution could thus be reduced by 43%. The average
command length of conversation-and-control increased, compared to conventional command-
and-control, by 75%, namely to 3.25. This has, according to the command length-monotony
(Theorem 4), a tendency of compensating the interaction delay reduction from the reduced
number of commands. However, this situation was anticipated: qualified activation com-
mands result from merging multiple conventional command-and-control commands, therefore
it is not surprising that their lengths grow. The fact that, in total, the nominal interaction de-
lay of conversation-and-control is lower than conventional command-and-control is due to the
recognition delay being about 2.6 times higher than the duration of a word. Thus, the interac-
tion delay reduction from minimizing the average number of commands is not compensated
by the increase in the average command length. If the recognition delay were 0, the nominal
interaction delay of both approaches would be equal, as the products of average command
number and command lengths of both approaches are alike 11 . For this case, which is of hy-
pothetical nature from the perspective of the current state-of-the-art in speech recognition, we
argue, that users prefer conversation-and-control over conventional command-and-control, as

111.75 · 1.86 = 3.225 ≈ 1 · 3.25
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Figure 6.8: Calculated interaction delay graphs without considering the tree for conversation-and-
control.

the qualitative feedback from our experiment suggests (discussed later in section 6.3.6).
We now discuss Figure 6.7 for growing word error rates. The Figure shows, that for word

error rates <15% the average interaction delay of conversation-and-control remains below the
average interaction delay of conventional command-and-control. Their absolute difference,
however, decreases. In other words, with growing word error rate, the interaction delay of
conversation-and-control increases faster than with conventional command-and-control. The
reason for this observation will become clear in the next paragraph.

Between the word error rate of 10% and 20% we observe an intersection of the two graphs at
roughly 15%. For word error rates above this intersection we observe that the interaction delay
of conversation-and-control is significantly higher than conventional command-and-control.
Furthermore, we observe that it grows significantly faster than conventional command-and-
control. We explain this behavior as follows 12 . Conventional command-and-control, in aver-
age, requires 1.75 commands of an average length of 1.86, whereas conversation-and-control
requires fewer commands in average (1) with a higher average length (3.25). Due to their
average length, the conversation-and-control commands are more likely to be mis-recognized
if the word error rate increases, because the command recognition rate decreases with increas-
ing command length. Thus, with conversation-and-control we expect more corrections than
with command-and-control for high word error rates. Therefore, for high word error rates,
conversation-and-control has the higher interaction delay. For low word error rates, the effect,
which conversation-and-control achieves by sparing 1 or 2 times the recognition delay, pre-
vails: in average, it does not matter if a long command is sometimes mis-recognized, as the
majority of the long commands is correctly recognized. Thus, for low word error rates, the in-
teraction delay of conversation-and-control is lower than conventional command-and-control.

We regard the execution Etree−deselect as being mainly responsible for the early intersection

12In fact, this behavior is due to analog reasons as observed with grid-based mouse emulation and direction-based
mouse emulation with discrete movement, as discussed in section 4.3.6
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point between the two graphs of Figure 6.7. The reason is that the interaction for Etree−deselect

inherently has an interaction delay, which is nominally by 33% higher than the average of the
others. This affects the total average interaction delay of conversation-and-control. Hypothet-
ically, if we would not consider the tree for conversation-and-control, the graphs would look
like as depicted in Figure 6.8 – the intersection point moved to the right (now at 20% instead
of 15%) and the increase of conversation-and-control’s interaction delay is not as drastic as
before. We conclude, that the tree might be a graphical object which is not suitable to be
controlled by conversation-and-control. We do, however, not provide further evidence for this
and regard it as future work.

It is important to note that the fast growing of conversation-and-control’s interaction delay
for high word error rates is, most likely, not as drastic as it is depicted in the Figure 6.7.
This reason is, that the interaction delay model assumes, that the user’s reaction on a rejection
is a repetition. Conversation-and-control tries to avoid rejecting and repeating commands
by qualified feedback. Thus, it is likely, that the command that follows a mis-recognized
command is in fact shorter than the actual mis-recognized command. This effect is, however,
not accounted for by the interaction delay model, as this effect is difficult to quantify – the
quality of a recognition error is a priori unknown.

The executions Etree−select and Einput have not been considered in the discussion, as they
contain a priori unknown variables (as discussed in section 4.1.3 Espinner is a special case of
Einput, as a spinner is an input field limited to numeric characters). We will, however, show in
the following, that conversation-and-control also suggests a lower interaction delay for these
executions on a theoretical basis. Representatively, we calculate the reduction ∆ of the average
nominal interaction delay of Etree−select and Einput (the respective values are taken from Tables
B.15 and B.2).

∆Einput
= ntext · 2642 + 2642− ((ntext − 1) · 2642 + 3784) = 1500

∆Etree−select
= (ndepth + 1) · 2642 + 2071− (ndepth · 2642 + 3213) = 1500

Thus, conversation-and-control reduces the average nominal interaction delay of Etree−select

and Einput by 1500ms (Espinner, respectively) .

6.3 User Experiment

We now describe an experiment with a conversation-and-control interface by which we mea-
sured the task completion time against conventional command-and-control. We begin with
formally setting up the research hypothesis for the experiment (section 6.3.1) and discussing
the utilized test subjects (section 6.3.2). Then, in sections 6.3.3 and 6.3.4, we describe the de-
tails of the actual experiment, of which the results are presented in section 6.3.5 and discussed
in section 6.3.6.
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6.3.1 Research Hypothesis

We hypothesize that the interaction delay reduction involved with conversation-and-control
significantly reduces the task completion time compared to conventional command-and-
control. Let µcmd and µconv denote the measured average task completion time using con-
ventional command-and-control and conversation-and-control. Thus, we formulated the null
hypothesis (H0) and the research hypothesis (H1) as follows.

H0 : µcmd = µconv

H1 : µcmd > µconv

We designed an experiment, where test subjects complete a specific set of tasks with both
conventional command-and-control and conversation-and-control. The acceptance or rejection
of H0 can be then be inferred using statistical inference methods on the measured average task
completion times as follows.

The t-Test (Bortz [24]) is a statistical significance test which allows to infer, if the average
values of two normally distributed groups of measurement values differ significantly, respec-
tively, if the average value of one group is significantly greater or lower than the average value
of the other group. In our case, the two groups are determined by the two speech-controlled
GUI approaches. A t-Test is therefore suitable to determine the acceptance or rejection of
H0, provided that we can assume normal distribution of the task completion times within each
group. In fact, we may assume a normal distribution, since the experiment tasks are fixed;
we will, however, perform both a Kolmogorov-Smirnov-Test with Lilliefors correction and a
Shapiro-Wilk-Test (Shapiro and Wilk [169]) on our data – statistical tests which allow to infer
if empirical results are sufficiently normally distributed.

T-Tests usually assume that the variance of the groups are equal, however, due to individual
capabilities of test subjects we expect differences in the variances of the groups. We will there-
fore use the paired t-Test, a t-Test variant, which is robust to these differences by considering
dependent pairs of measurement values across the groups 13 . In our case, the dependency
between the two groups is given by the fact that each test subject "generates" one value in each
group, since each test subject performs the task with both speech-controlled GUI approaches.
In other words, the paired t-Test determines, if on the average the difference per test subject is
significantly large enough. If it is, H0 can be rejected.

6.3.2 Test Subjects

We used a total of 16 test subjects for our experiment; 5 of these were female and 11 were
male. All of the test subjects were between the age of 20 and 30 and had different professions:
physician (6), physics student (2), insurance agent (1), software engineer (1), computer sci-
entist (2), architect (1), industrial engineer (1), electrical engineer (1) and business economist

13The paired t-Test is therefore also called dependent t-Test.
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Figure 6.9: Conversation-and-control interface from the experiment.

(1). All of them had significant experience with controlling GUIs by mouse and keyboard. All
test subjects were German native speakers, however, all test subjects had significant experi-
ence with speaking English due to their profession or education. This was important for the
experiment, as we used an English language speech recognizer (as described in section 6.3.4).
The computer scientists and two physicians had experience in using applications that involved
speech recognition technology (e.g., a dictation program for radiologic reports), but none of
the test subjects had experience with speech-controlled GUIs.

6.3.3 Experiment GUI
Using the Swing implementation of the conversation-and-control framework (section 6.1) we
created the experiment GUI, depicted in Figure 6.9. Derived from the experiment GUI we
defined a sequence of 32 tasks and each task involved a single basic execution. The exper-
iment GUI provided two instances of each graphical object 14 , and thus, the task sequence
contained at least two instances of each basic execution. For Edropdown four tasks existed:
for two tasks we specified the option that should be selected, and for the other two tasks, we
just told the test subjects to select an option other than the current one. By this setup we
wanted to test, if the test subjects could exploit recalling the options in the drop down box, so
that, with conversation-and-control, there would be no need to open the drop down box. Ta-
14Since a standalone radio button does not provide any useful possibility for interaction – it can never be dese-

lected – we have used a radio button list object.
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ble B.16 on page 210, appendix B.1, documents the task sequence in detail. Due to the mode
switching feature of the conversation-and-control framework (described in section 6.1.1), the
tasks could be performed using either conventional command-and-control (command mode)
or conversation-and-control (conversation mode).

The experiment GUI, the underlying application, respectively, did not provide any domain
specific functions. Thus, a misunderstanding did not have a consequence on the domain level,
which is why we omitted the explicit implementation of an undo function (cp. SFUNDO as
introduced in 3.2.2). Instead, for undoing activations, we relied on the fact that most activa-
tions essentially have a complementary activation, which can be considered to be the undo
function if no application logic is present, e.g., SELECT versus DESELECT, or APPENDx

versus DELETE. However, this does not imply that misunderstandings have no negative ef-
fect on the task completion time: just like if application logic were present, the state that a
misunderstanding could bring the experiment GUI into, affected the completion of tasks. For
instance, consider a situation where a misunderstanding causes the appending of a character to
an input field, although a button should have to be activated. The appending might not have an
impact on the current task, just like a misunderstanding might not immediately affect the work
with a real application. But if a subsequent task involves this input field, the test subject must
take care of the mis-appended character to be removed – otherwise, the completion criteria of
the input field task, which might require that the input field contains a specific value, would
not be fulfilled. Additionally, we designed several sources of potential information errors, so
that the testing of automated error recovery and qualified feedback would not depend on the
occurrence of recognition errors alone. For instance, two of the four selection items from the
"Origin" and the "Destination" radio button list overlap.

The experiment GUI does not use numbers as speakable identifiers, as the conversation-
and-control framework lacks consistent support for these identifiers. It does provide numbered
speakable identifiers only for specific graphical objects, e.g., for the options of a drop down
box (see later in section 6.1.5). Instead, it uses speakable names as identifiers 15 . There-
fore, for reasons of consistency, we completely relied on speakable names for our experiment.
This does not contradict the assumption of numeric identifiers used for the interaction delay
calculations, for the following two reasons. First, the utilized names do not exceed a length
of 2, which corresponds to the assumed maximum length of a numeric speakable identifier.
Second, the conversation-and-control framework configures the speech recognizer with the
maximally available vocabulary, regardless of the mode. In other words it does not exploit
the fact that vocabulary and valid commands can be minimized specific to the current screen
(state) in order to increase speech recognition performance. While this might in general be a
drawback for a productive application, it was harmless for our experiment, as the increased
size of the vocabulary (now 107 versus 70 assumed) affected the word error rate for both com-
mand mode and conversation mode. Thus, the therefore increased interaction delay equally
affects both modes. This behavior of the framework also simplified the statistical evaluation

15In Figure 6.9 the names of graphical objects are printed in bold, whereas the names of graphical sub-objects,
such as the names of selection items or tree nodes, are printed in normal font.
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of the collected data: the speech recognizer was equally configured for both modes, therefore,
our results were independent of it. Finally, there is empirical evidence that test subjects prefer
named identifiers over numeric ones (Christian et al. [37]). We do, however, encourage as
future work to augment the conversation-and-control framework with screen-specific speech
recognizer configuration capabilities.

6.3.4 Procedures
The order in which the sequence of tasks should be completed was predefined and constant
throughout the experiment; by a test run we consequently understand the performing (comple-
tion) of the 32 tasks in their predefined order. Each task consisted of a short textual instruction,
which the experiment GUI displayed to the test subject at the beginning of each task. We de-
veloped a model for the completion criteria of a specific task, so that our experiment system
could automatically detect the completion of a task and switch to the next task in the sequence.
This facilitated the automatic recording of the task completion time of each test run.

We divided the test subjects randomly into 2 groups of 8 members each, called group A and
B. Members of group A first performed test runs in command mode and then in conversation
mode, whereas members of group B first performed test runs in conversation mode and then
in command mode. As such, for taking the overall average, we compensated for order effects:
the test subjects become more familiar with speech-controlling the experiment GUI with in-
creasing experiment duration independently of the respective mode. With our setup we do not
favor a specific mode by putting it second. Additionally, this setup allows us to detect order
effects and interpret them accordingly.

The actual experiment session was divided into three parts. In the first part the test subject
was given a thorough introduction into speech-controlled user interfaces. In the second part
the test subject trained an individual speech profile of the Microsoft Speech SDK (MS SDK),
version 5.1, which the available Swing implementation of the conversation-and-control frame-
work was based on. In particular, each test subject used the "Microsoft English Recognizer
v5.1, SAPI5, Microsoft" recognition engine of MS SDK, which is a speech recognizer for the
English language. Finally, in the third part of the experiment each test subject performed two
test runs with each mode, i.e., a total of four test runs per test subject was performed. The first
run was considered training in order to make the subject familiar with the experiment GUI and
the respective first mode as determined by the group membership. Prior to starting the training
test run, the test subjects were, again, given a thorough introduction into the characteristics of
the respective mode. The second test run was performed in the same mode as the first test run,
however, test subjects were told that now the system would record a protocol. The third and
forth test run were conducted in the same fashion using the remaining mode.

All test subjects used the Logitech Internet Chat Headset for both training the speech recog-
nizer and performing the experiment. The microphone of the headset had a specified frequency
range of 100 – 10,000Hz and a specified sensitivity of -59dBV/uber, -39dBV/Pa +/-4dB. Both
the MS SDK and the experiment GUI were installed on a Dell Dimension 8400 workstation
with 1GB of RAM and with a Pentium IV processor running at a speed of 3.19 GHz. The
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Command Mode Conversation Mode Reduction
Avg. group A 257 (41.0) 203 (45.0) 21.0%
Avg. group B 255 (48.9) 223 (52.3) 13.0%
Avg. Total 256 (44.0) 213 (48.2) 16.8%

Table 6.3: Average task completion times in seconds with standard deviation in parenthesis.

operating system was Windows XP Professional, Service Pack 2.

6.3.5 Results

Prior to performing the paired t-Test on the experimental results we need to test if our data can
assumed to be normally distributed. Using SPSS 14.0 we applied the Kolmogorov-Smirnov-
Test with Lilliefors correction and the Shapiro-Wilk-Test to our data. The Kolmogorov-
Smirnov-Test produced a low boundary for the significance of 0.2; the Shapiro-Wilk-Test re-
sulted in a significance of 0.295 for the command mode data and in 0.124 for the conversation
mode data. This allowed us to assume that our measurement values are significantly normally
distributed 16 . The command mode test series had a variance of 1902 and the conversation
mode test series of 2331. Thus, as expected, the variances are not equal which supports the
usage of the paired t-Test.

The type 1 error probability is the probability of rejecting H0 when it is actually true. It can
be deterined from the respective test data. The α value is a parameter for the t-Test and denotes
the highest allowed type 1 error probability for rejecting H0. Thus, the α value is also referred
to as the confidence level for the t-Test. Per global statistical convention we set α = 0.05. The
df value is another parameter for the t-Test and denotes the degrees of freedom which, in our
case, is the number of test subjects minus 1, i.e., df = 15. Both α and df determine the so
called cut-off value. If the result of the t-Test is above the cut-off value, we can reject H0 with
the respective confidence level. With our values for α and df we obtain 17 a cut-off value for
the paired t-Test of 1.75. We defined the following decision rule for the acceptance or rejection
of H0 based on the t-Test result t:

rule(t) :=

{
reject H0, thus, accept H1, if t ≥ 1.75

accept H0, thus, reject H1, if t < 1.75

Using Microsoft Excel, Version 11.8012.6568 (SP2), we performed a paired t-Test on our
data. The result was 7.74, thus, according to the above rule we reject H0 and accept H1. In
other words, our results indicate that conversation-and-control reduces the task completion
time as compared to conventional command-and-control. This result is statistically significant
at a confidence level of α = 0.05, p = 6.5 · 10−7 < α.

16The default configuration of SPSS denotes that test results > 0.05 indicate a sufficient adherence to a normal
distribution.

17Statistics applications deliver cut-off values automatically.
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Figure 6.10: Average task completion times, graphically.

We summarize the outcome of the experiment by depicting the mean task completion times
for each mode within each group and in total in Table 6.3 on the preceding page. The numbers
in parenthesis denote the respective standard deviation. Figure 6.10 illustrates the content
of Table 6.3 graphically. Conversation-and-control achieves an overall task completion time
reduction of 16.8% compared to conventional command-and-control. Group A achieved a
reduction of 21% in average, whereas group B achieved a reduction of only 13% in average.

6.3.6 Discussion

The outcome of the experiment supports the claim of this dissertation: conversation-and-
control reduces the achievable task completion time with speech-controlled GUIs compared
to existing art. In the following we will discuss the results of our experiment in more detail.

All of the test subjects could successfully complete all tasks of each test run. However, as the
standard deviation figures in Table 6.3 show, the individual results do indeed vary. We discuss
three likely reasons for this. First, we observed that during training the MS SDK’s speech
recognition engine, some test subjects were "understood better" than others. This manifested
in some test subjects having to speak more slowly and possibly with slight pauses between the
words, than others. This experience of whether the test subject could speak fast or slow was
carried over to working with the sample GUI: test subjects also spoke slowly or fast during
the experiment, which could be responsible for the task completion time variations. Second,
without having empirical evidence, though, we believe that there is a difference between the
cognitive processes amongst the test subjects. For instance, we observed that even within the
third and fourth test run, some test subjects were sometimes searching for the graphical object
that was involved in the task, whereas other test subjects could remember the position of the
graphical objects instantaneously. Thus, some test subjects made a significant pause between
reading the instructions, while others did not. This certainly contributed to some variance
in the individual results. Third, recognition errors and the therein involved corrections and
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answers to clarification questions lengthened individual test runs. Obviously, a test run with no
or a low amount of recognition lasts shorter than a test run with a high number of recognition
errors, and the concrete amount of recognition errors depends, amongst other factors, on the
voice of the respective test subject.

Clarification questions were helpful if they were short, i.e., if they provided only two alter-
natives to select from, e.g., a clarification between two graphical object names, or specifying
a missing parameter value. Whenever the clarification question was long, i.e., more than two
alternatives, it confused the test subject instead of providing further guidance, and it took a
considerably long amount of time to understand their meaning. There are several explana-
tions. First, we observed that clarification questions frequently did not provide an alternative
which corresponded with the test subject’s intention. In these cases the test subject was con-
fused, since the clarification seemed to have "nothing to do" with what was uttered, and the
test subject fell back repeating the original command. This phenomenon is probably due to
the fact that the conversation-and-control dialog model does not consider confidence values 18

of recognition results. As such, it could happen that the system asked a clarification question
based on a recognition result of which even the speech recognizer "thinks that it is wrong".
Consequently, the clarification question did not make sense in the context of the test subject’s
intention. Second, we believe that test subjects had difficulties with long clarification questions
because there was no visual connection between the alternatives provided and the graphical
objects which were ambiguous or which were requiring more information. Test subjects spent
time on thinking about the meaning of the question and mapping it to the state of the GUI.
They were not always clear about why the system asked this particular question. We believe
that a visual indication of the graphical objects that the question affects and a visual model of
the current state of the dialog model could be beneficial (see section 7.3).

Several test subjects found it "cumbersome" to interact in command mode, in particular,
they complained about the necessity to explicitly navigate to a graphical object. In contrast,
they found it more natural to interact in conversation mode, especially, if they had already
knowledge about the characteristics of the GUI. The latter effect can also be derived from our
result data, because there is an order effect between the test groups. The test subjects in group
A began with command mode. Their task completion time was reduced by 21.0%. The test
subjects in group B began with command mode, achieving a task completion time reduction
of only 13.0%. We interpret this order effect as follows. We may assume, that after having
completed the respective first half of the experiment, the test subjects had reached a certain
level of familiarity with the experiment GUI. Thus, group A could exploit this familiarity and
transition it into more task completion time reduction, whereas group B was forced to perform
every thing "step by step", as several of our test subjects mentioned. As such, the test subjects
in group A could benefit from recalling details about the properties of graphical objects when
they were interacting in command mode. Consider the drop down box as example. As stated in
section 6.3.3 we have included a total of 4 instances of the Edropdown execution. As depicted in

18Confidence values indicate "how confident" a speech recognizer is about the correctness of a recognition result;
they were discussed in section 2.8.2.
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Interaction delay for experiment
in s for word error rates of

0% 1% 5% 10% 20%
Conventional Command-and-
Control

175 178 193 214 268

Conversation-and-Control 133 137 158 190 288

Table 6.4: Predicted interaction delay for completing experiment.

Table B.16, 2 of these 4 tasks explicitly stated the selection item to select (specified selection),
whereas the other 2 instructed the test subject to select an arbitrary item other than the currently
selected item (unspecified selection). Obviously, with a specified selection, the test subjects
could utter both the speakable identifier of the drop down box and the selection item, as these
were merely given in the instruction. However, test subjects also did this in the unspecified
case – which means that they recall the options from prior test runs or tasks. Conversation-
and-control allows them to exploit this knowledge, whereas with conventional command-and-
control test subjects have to open the drop down box, regardless of whether they know the
options.

However, the order effect can also be interpreted as such that conversation-and-control re-
quires more training in order to be more effective than conventional command-and-control.
From the fact that group B required more time for the conversation mode test runs than group
A (see Table 6.3), we conclude that conversation-and-control might initially impose more
cognitive load in mentally constructing the commands, whereas conventional command-and-
control, due to being more explicit, imposes less initial cognitive load. However, as our results
show, the increase in cognitive load is marginal, as otherwise group B would not have had a
13.0% increase in task completion time or the difference would have been negative. Neverthe-
less, the observation of the order effect suggests a hybrid dialog model distinguishing between
novice and expert mode. In novice mode, users interact with command-and-control, in order
to spent less cognitive effort on learning the characteristics of the GUI than on controlling it.
Once users become familiar with the GUI, they can switch to expert mode and control the GUI
using conversation-and-control.

We found it particularly interesting to compare the measured average task completion times
with the expected interaction delays predicted by the interaction delay model. For this we
first calculated the predicted interaction delay for our 32 tasks for different word error rates
up to 20% – above 20% conversation-and-control has a higher interaction delay than con-
ventional command-and-control. The calculations are based on the previously obtained basic
execution-specific interaction delays for conventional command-and-control (Table B.2) and
for conversation-and-control (Table B.15). The result of these calculations are given in Ta-
ble 6.4. Then, we estimated the average word error rate of the speech recognizer from the data
gathered by our experiment; it was approximately 11% and the predictions for a 10% word
error rate are consequently the closest ones. Thus, our model predicts an interaction delay of
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214 seconds for conventional command-and-control. The measured average task completion
time with this approach was 256 seconds, which makes a difference of 42 seconds (16% from
measured value). The difference between measurement and prediction is expected: the inter-
action delay model only describes the time spent on the plain interaction. The time difference
emerges from the remaining temporal constituents of task completion time (see decomposition
in section 1.3.1), such as the time required to read and understand the task’s instructions and
to mentally construct the command. Looking at conversation-and-control our model predicts
an interaction delay of 190 seconds for a word error rate of 10%. The measured average task
completion time with this approach was 213 seconds, which makes a difference of 23 seconds
(11% from measured value). Again, the difference is spent on other temporal components
of task completion time. We interpret the results of this comparison in two ways. First, the
interaction delay model is well-defined – the difference between measurement and prediction
must be a positive value, since the interaction delay model only describes the time spent on
the plain interaction. Second, the interaction delay model correctly predicts the reduction of
the task completion time: if we have a significantly lower interaction delay for a specific ap-
proach compared to another approach, we expect tasks to be completed faster with the former
approach. We argue, however, that it is not feasible to draw any further conclusions. For
such conclusions to be feasible the interaction delay model must be calibrated according to the
experiment situation. In particular, the actual average word duration of test subjects and the
actual average recognition delay must be measured and used as corresponding parameters in
the interaction delay model – our current parameters are derived from literature research and
do not necessarily match our experiment setup. We consider further experiments in this direc-
tion as future work in the context of improving the calibration of our models (refer to section
7.3). Thus, once the interaction delay model is calibrated to a specific experiment setup, the
difference between measured task completion time and predicted interaction delay can be used
to draw further conclusions, e.g., towards a model for the cognitive load imposed by a specific
speech-controlled GUI approach.

To conclude our discussion, we informally provide further interesting qualitative results.
Two test subjects noted, that it would be helpful for an input field or spinner to have a CLEAR -
topic by which the entire content could be cleared out. Especially upon misunderstandings
which wrongly append more than one character, this could help minimizing the impact to the
task completion time. We found that although none of the test subjects was a native English
speaker, the speech recognizer performed well during the experiment. We argue that this was
due to the test subjects having significant experience in English conversations due to their
professions and education. The good performance of the speech recognizer during the exper-
iment was, however, not anticipated by the experience during its training, where the amount
of recognition errors was significantly higher than during the experiment. We explain this by
the training session involving a much larger vocabulary then our experiment. Furthermore, the
MS SDK speech recognizer was fairly robust to environmental noise, which could not entirely
be ruled out. For instance, during one test run we had church bells in the background which
did not noticeable affect the speech recognizer’s performance.
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6.4 Summary
We have specified a framework for conversation-and-control interfaces and implemented
the framework in J2EE. Using the framework we have created prototype conversation-and-
control interfaces for applications from the technical maintenance domain and thus show, that
conversation-and-control interfaces are feasible. The claim of this thesis is supported by both
a formal and an empirical validation.

Formally, we have calculated the interaction delay of conversation-and-control by deriving
a generic vocabulary and valid commands under the conditions established in chapter 4. The
results of these calculations showed, that the interaction delay of conversation-and-control is
significantly lower than the interaction delay of conventional command-and-control – at least
for word error rates below 15% (20% without considering the tree object). The reason for
the decrease is the quality of the qualified activation commands: they allow to reduce the
average number of required commands for a basic execution by 43%, which spares multiple
times the recognition delay. This effect is not compensated by qualified activation commands
being longer than conventional command-and-control commands. In the following section we
provide empirical evidence for the core claim of this dissertation, stating that conversation-
and-control reduces the task completion time as compared to conventional command-and-
control.

Empirically, we have performed a user experiment to support the hypothesis that
conversation-and-control significantly reduces the task completion time compared to conven-
tional command-and-control. Using a specific GUI, created with the Swing implementation of
the conversation-and-control framework, we collected data from which we could statistically
infer the acceptance of this hypothesis. In particular, we used a total of 16 test subjects and
showed that conversation-and-control is capable of reducing the task completion time by 21%.
This result is statistically backed by a dependent t-Test which is significant at α = 0.05. From
qualitative user feedback during the experiment we conclude that the test subjects preferred
conversation-and-control over command-and-control, which supports our statistically inferred
result. However, the experiment also indicated, that conversation-and-control has limitations,
which need to be dealt with in future research projects, such as improving the generation of
clarification questions.

182



7
Conclusion

Overview
This chapter concludes the dissertation by reflecting on our work on conversation-and-control.
We further summarize the contributions which this thesis offers to the research community,
and point out directions for future research.
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7.1 Thesis Summary

Speech-controlled GUIs allow manually impaired users to control GUIs by spoken commands
versus the utilization of mouse and keyboard. The approach command-and-control currently
promises the lowest achievable task completion times, however, experimental results show
(Dai et al. [44], Van Buskirk and LaLomia [32], Christian et al. [37], Arnold et al. [7]), that
the achievable task completion times with speech-controlled GUIs, including command-and-
control, are still at least 50% higher than with mouse and keyboard.

In order to decrease the achievable task completion times we proposed the approach
conversation-and-control, which reduces the interaction delay, that is, the time spent on
uttering and recognizing spoken commands. Conversation-and-control is an extension of
command-and-control by the techniques qualified activation, automatic information error re-
covery and qualified feedback. Qualified activation achieves an interaction delay reduction
by identifying sets of n formerly separate commands, which it merges into single commands.
Now, the user needs to utter a single command instead of n commands; thus, qualified acti-
vation reduces the interaction delay by n− 1 times the time that a speech recognizer requires
for recognizing a command. Automatic information error recovery defines a set of heuristics
and procedures, by which the system can automatically recover from specific recognition er-
rors, which lead to missing or ambiguous information. These recognition errors are called
information errors and by attempting to automatically resolve them, we avoid the rejection of
mis-recognized commands. This technique is motivated by the observation that, although mis-
recognized, the recognition error might contain information from which the user’s intention
can be inferred by consulting other sources of knowledge, e.g., the command history. Thus,
automatic information error recovery avoids the repetition of commands, which in turn, re-
duces the interaction delay. Qualified feedback is a procedure by which we actively involve
the user in clarifying information errors, with the objective to induce a user’s response, which
is shorter than the original command. Thus, qualified feedback reduces the interaction delay
as well – instead of repeating the entire command, qualified feedback just requires uttering a
fraction of the original command.

For verifying and quantifying the interaction delay reduction of conversation-and-control
we first developed the speech-GUI model, a new generic model for speech-controlled GUIs.
Then, from quantitative and qualitative properties of the speech-GUI model we derived the
interaction delay model, a generic formalism for calculating the interaction delay of a specific
speech-controlled GUI approach. The formalism calculates the interaction delay as a function
against the average word error rate of the utilized speech recognizer, the size of the speech
recognizer’s vocabulary, the number of valid commands in the respective speech-controlled
GUI approach and specific characteristics of the task that is to be performed. It distinguishes
between the nominal interaction delay and the expected interaction delay. The nominal inter-
action delay does not consider the effects of recognition errors, i.e., it assumes a word error
rate of 0%. The expected interaction delay accounts for the effects of recognition errors and
subsequent corrections for a specific average word error rate.

We calculated a reduction of the nominal interaction delay of conversation-and-control
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compared to command-and-control of 25%, which is due to a reduction of the number of
necessary commands by 43%. For word error rates < 20%, the expected interaction delay
of conversation-and-control is lower than of command-and-control, whereas for word error
rates ≥ 20% the expected interaction delay of conversation-and-control is higher. In order
to validate the claim that conversation-and-control also reduces the task completion time we
conducted an empirical experiment, in which users performed a series of tasks using both
command-and-control and conversation-and-control. By capturing the respective task com-
pletion times we found, that conversation-and-control, involving a real error-prone speech
recognizer, is capable of reducing the task completion time by 21%.

7.2 Contributions

With this thesis we offer contributions to the area of speech-controlled GUI research, which
we summarize in the following.

The thesis introduces conversation-and-control, which is a novel speech-controlled GUI
approach, emerging from an extension of prior art. The novelty of conversation-and-control is
threefold. First, the user needs fewer commands to control the GUI than the current state-of-
the-art, which results in lower task completion times. Second, our approach allows the user to
speak more naturally. Third, by asking clarification questions to resolve error conditions, our
approach engages the user into a natural dialog. For this, we developed a specialized dialog
model for conversation-and-control, which is based on heuristic evaluation of the semantic
information provided by a recognition result. The dialog model is application-blind; it can be
transitioned to different application domains and to different GUI toolkits.

Conversation-and-control is based on two new models in the domain of speech-controlled
GUIs, which build upon each other: the speech-GUI model and the interaction delay model.
The speech-GUI model is a common model for describing different speech-controlled GUI ap-
proaches on a common basis. It is extensible to new speech-controlled GUI approaches, such
as conversation-and-control. The interaction delay model is derived from quantitative and
qualitative characteristics of the speech-GUI model and predicts the time which a user spends
on the plain interaction with a speech-controlled GUI; that is, the time which is needed for
speaking commands and for the utilized speech recognizer to recognize these commands. The
interaction delay model considers the word error rate of the speech recognizer and estimates
the additional time delay that is introduced to correct the effects of incorrectly recognized
commands. Both speech-GUI model and interaction delay model extend the GOMS model for
analyzing interaction towards speech recognition in two regards. First, by introducing an ab-
straction layer between GOMS operators and goals, the speech-GUI model covers alternative
spoken commands for the same functionality. Second, the interaction delay model predicts
the duration for successfully performing a GOMS low-level goal under consideration of the
inherent limitations of speech recognition technology.

We have implemented the underlying theory of conversation-and-control as a framework for
conversation-and-control interfaces, using state-of-the-art object-oriented software engineer-
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ing techniques. The framework hides the details of speech recognition and language process-
ing from the developer. This allows for the creation of conversation-and-control interfaces in
the same manner as developers create conventional GUIs today, i.e., by assembling graphi-
cal components without dealing with low level input details. Using the framework we have
created prototype systems from the technical maintenance domain, which show the practical
feasibility of conversation-and-control.

We further validated conversation-and-control by the means of a user experiment, which was
designed to compare task completion times with conversation-and-control against existing art.
The experiment confirmed, with statistical significance, that conversation-and-control allows
for a task completion time reduction of 21%. The outcome of our experiment suggests the
usage of a hybrid dialog model for conversation-and-control interfaces, which distinguishes
between a novice and an expert mode. In novice mode the user interacts according to the
current state-of-the-art, i.e., the user utters multiple simple spoken commands to control the
GUI. This allows to memorize the characteristics of the GUI and to understand the character-
istics of speech-based GUI control in general. In expert mode the user interacts according to
conversation-and-control. This approach allows exploiting the previously gained knowledge
in a way so that the necessary information for controlling the GUI can be conveyed with less
commands than in novice mode – which reduces the task completion time.

7.3 Future Work

This thesis is a first step into the domain of conversation-and-control. We show that this
approach is feasible, however, its current limitations and the results from the user experiment
point out further directions of research in this area.

Our user experiment showed that clarification questions were not always helpful. It hap-
pened, that the clarification question confused the test subject instead of providing further
guidance – especially, if the clarification question provided more than two alternatives to se-
lect from. We motivate more research regarding a mechanism allowing for reducing the set
of alternatives offered by clarification questions. An interesting piece of work towards this
goal is Mankoff et al. [119], who developed a model for ambiguity in recognition-based sys-
tems. Their work could be adapted to the speech-controlled GUI domain and used to filter
ambiguous conversation topics.

We developed a basic set of heuristics and procedures for resolving information errors,
however, more research towards finding new such heuristics or towards improving the provided
ones, is promising. For instance, the dialog model could "try out" different paths in identifying
the user’s intention, by considering the N-best recognition results which a speech recognizer
possibly provides for the users utterance.

Currently, the user’s input is not verified before a specific control action of a graphical
object is triggered. Our experimental results indicate that this is not problematic as long as the
speech recognizer has a low word error rate. However, for situations where the word error rate
increases (e.g., due to environmental noise), research towards a suitable verification concept
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is necessary. It would improve robustness by avoiding misunderstandings. Verification could
for instance be configured to be necessary for critical and unrecoverable operations, such as
the deletion of data. Furthermore, a confidence threshold could be established, below which a
recognition result is rather rejected than being evaluated.

Test subjects did not always recognize that the system was asking a clarification question
although it was printed in large font, bold, and red. We propose future research regarding the
utilization of speech synthesis technology to present clarification questions aurally, i.e., to give
them a more ubiquitous presence.

Qualitative feedback from our experiment indicates that at the time the system poses a clar-
ification question, the test subjects felt to be "out of control". The reason was, that the test
subjects first had to read the question and then infer as to why the system asked the question.
We propose to more intensively make use of the graphical output channel, to make the mean-
ing of clarification questions more clear. For example, the system could mark the graphical
objects which are currently under clarification, so that users get a visual feedback as to which
graphical objects are "affected" by the information error.

As stated in section 4.1.3 we have performed interaction delay calculations without further
calibrations, i.e., with regarding the calibration values obtained from literature research as
sufficient. We made suggestions regarding a more accurate calibration, but we also motivate
research towards integrating further factors that would improve its preciseness. For instance,
currently, the reduced length of corrections being answers to clarification questions is not
considered.
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A
Appendix: Mathematics

Overview

This appendix explains mathematical calculations of which the results have been used in this
dissertation.

A.1 Theoretical Limit of P(Rej)

In section 3.2.3 we have initially approximated the probability of a recognition error, P (Rej),
by the term

|CMD| − |CMDvld|
|CMD|

(A.1)

where CMD denotes the number of commands which can be built using a specific speech
recognizer’s lexicon, and CMDvld denotes the valid commands of a speech-controlled GUI
approach that is built using this specific speech recognizer. The number of elements in CMD
is infinite, because, given an arbitrary finite set (such as the speech recognizer’s lexicon) an
infinite number of sequences of elements from that set can be constructed. The number of
elements in CMDvld is finite (see section 2.4).

Per definition |CMD| ≥ 1, |CMDvld| ≥ 1, and |CMD| ≥ |CMDvld|. We have used the
application Maple [120] to calculate the limit of (A.1) for |CMD| → ∞ using the commands
which are depicted in Figure A.1. As such,
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Figure A.1: Maple commands to calculate the theoretical limit of P(Rej).

Figure A.2: Maple commands to calculate the critical command recognition rate.

lim
|CMD|→∞

|CMD| − |CMDvld|
|CMD|

= 1

A.2 Calculating the Critical Word Error Rate
In section 3.2.3 we have derived the inequality

(1−RC) · (2−
|CMD2nmax | − |CMDvld|

|CMD2nmax |
) >= 1 (A.2)

With the preconditions that |CMDvld| > 0, |CMD2nmax | > 0 and 0 ≤ RC ≤ 1 we have used
the application Maple [120] to solve (A.2) using the commands which are depicted in Figure
A.2. As such (A.2) has solutions if the following condition is satisfied:

RC ≤
|CMDvld|

|CMD2nmax|+ |CMDvld|
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A.3. GEOMETRIC SERIES STARTING AT 1

Figure A.3: Maple commands to calculate a formula for the critical word error rate.

We have furthermore derived the inequality

wnmax >
|CMDvld|

|CMD2nmax|+ |CMDvld|
(A.3)

With the preconditions that nmax >= 1, |CMDvld| > 0, |CMD2nmax | > 0 and 0 ≤ w ≤ 1 we
have used the application Maple [120] to solve (A.3) using the commands which are depicted
in Figure A.3. As such (A.3) has solutions if the following condition is satisfied:

w < 1− e
ln

�
|CMDvld|

|CMD2nmax |+|CMDvld|

�

nmax ⇔

w < 1−
(

e
ln
�

|CMDvld|
|CMD2nmax |+|CMDvld|

�) 1
nmax

⇔

w < 1−
(

|CMDvld|
|CMD2nmax|+ |CMDvld|

) 1
nmax

A.3 Geometric Series starting at 1

A geometric series has the general form

n∑
k=0

xk (x ∈ <, n ∈ N)

191



APPENDIX A. APPENDIX: MATHEMATICS

For |x| < 1 the following claim is satisfied (Bronstein et al. [28])

x 6= 1 ⇒
n∑

k=0

xk =
xn+1 − 1

x− 1

x = 1 ⇒
n∑

k=0

xk = n + 1

We apply conversions to arrive at a convenient formula for
n∑

k=1

xk.

n∑
k=0

xk = 1 +
n∑

k=1

xk ⇔

n∑
k=1

xk =
n∑

k=0

xk − 1

As such:

x 6= 1 ⇒
n∑

k=1

xk =
xn+1 − 1

x− 1
− 1

x = 1 ⇒
n∑

k=1

xk = n
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APPENDIX B. APPENDIX: CALCULATIONS AND STUDIES

B.1 Time to Interpret a Recognition Result

We performed an empirical experiment to measure the time for interpreting a recognition re-
sult, i.e., the time for determining, if a recognition result matches a valid command or not.
We based our study on three conclusions which we have drawn from examining the various
research papers which have been published for the speech-controlled GUI approaches (see
discussion in section 1.2). First, we conclude that a speech recognizer used for a specific
speech-controlled GUI approach needs a per-screen vocabulary with a maximum size of max-
imal 70 words. Second, we conclude that a specific speech-controlled GUI approach defines
a maximal number of roughly 8000 valid commands per screen over the speech recognizers
vocabulary. The size of the vocabulary and the number of valid commands can (dynamically)
be minimized specifically to the current screen, which improves the word error rate and which
reduces interpretation complexity (Smailagic and Siewiorek [175]). However, the figures of
70 words and 8000 commands are maximum values as the current screen context is a priori un-
known in our situation. As such, we examine the worst case. Third, we conclude that the valid
commands of a specific speech-controlled GUI approach have a length ≤ 5. The speech-GUI
model defines a maximum word error rate of 100% (see section 2.5), therefore a recognition
result, induced by a command of length 5, has a maximum length of 10 if all occuring word
errors are insertions.

For the study we created a Java program which generated 8000 random word sequences with
a length of 5 from a vocabulary of 70 words. To obtain the vocabulary of 70 words we used
a grammar for representing integer numbers between 1 and 999 depicted in Figure B.2 on the
next page – which provided 28 words. For the remaining 42 words we chose different distinct
words as the occur in commands for speech-controlled GUIs and other arbitrary words with
the same average number of characters. These commands represented the valid commands,
as such we examined the worst case where all valid commands have a length of 5. The valid
commands were stored in a hash table using the respective command itself as the key. After
that we generated 2,000,000 random commands from the same vocabulary with a maximum
length of 10 words to simulate recognition results, and looked them up in the hash table. If the
hash table contained the newly generated command we interpreted this as a match, otherwise
the newly generated command was rejected. We compiled the Java program using Sun’s Java
compiler for Windows platforms in the version 1.5.0_01 and ran the program using Sun’s Java
Virtual Machine (same version) on a Dell Dimension 8400 workstation with 1GB of RAM
and with a Pentium IV processor running at a speed of 3.19 GHz. The operating system was
Windows XP Professional, Service Pack 2. The study revealed that the interpretation of a
single command can be done in an average time of 3 · 10−4ms (refer to exemplary output of
the test program in Figure B.1 on the facing page).
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B.2. DATA FOR INTERACTION DELAY CALCULATIONS

Figure B.1: Output of recognition result interpretation test.

<number> := [<digit> hundred] (<digit>|<teen>|<tenner> [<digit>]);
<digit> := (one|two|three|four|five|six|seven|eight|nine);
<teen> := (ten|eleven|twelve|thirteen|fourteen|fifteen|sixteen|

<seventeen|eighteen|nineteen);
<tenner> := (twenty|thirty|forty|fifty|sixty|seventy|eighty|ninety);

Figure B.2: Grammar for positive integer numbers between 1 and 999.

B.2 Data for Interaction Delay Calculations
This section contains tables which model intentions and interactions for basic executions of
graphical objects from the Swing catalog. Also in this sections are tables, which contain
detailed interaction delay calculations for the respective basic executions.

B.3 Tasks from the User Study
Table X depicts the tasks which we used during the user study.
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Execution Intention Interaction
Ebutton (SFNAVid) (CMDNAVid)
Echeckbox−check/
Echeckbox−uncheck

(SFNAVid) (CMDNAVid)

Eradio (SFNAVid) (CMDNAVid)
Edropdown (SFNAVid, SFNAVid) (CMDNAVid, CMDNAVid)
Elist−select/
Elist−deselect

(SFNAVid, SFNAVid) (CMDNAVid, CMDNAVid)

Emenu (SFNAVid, SFNAVid) (CMDNAVid, CMDNAVid)
Etree−select (SFNAVid,

SFNAVid, . . . , SFNAVid︸ ︷︷ ︸
ndepth

,

SFACTSELECT )

(CMDNAVid,
CMDNAVid, . . . , CMDNAVid︸ ︷︷ ︸

ndepth

,

CMDACTSELECT )
Etree−deselect (SFNAVid, SFNAVid,

SFACTDESELECT )
(CMDNAVid, CMDNAVid,
CMDACTDESELECT

Einput (SFNAVid,
SFACTAPPENDx , . . . , SFACTAPPENDx)︸ ︷︷ ︸

ntext

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ntext

Espinner (SFNAVid,
SFACTAPPENDx , . . . , SFACTAPPENDx)︸ ︷︷ ︸

ndigit

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ndigit

Espinner−inc/
Espinner−dec

(SFNAVid, SFACTINCREASE)/
(SFNAVid, SFACTDECREASE)

(CMDNAVid, CMDACTINCREASE)/
(CMDNAVid, CMDACTDECREASE)

Eslide (SFNAVid, SFNAVid) (CMDNAVid, CMDNAVid)

Table B.1: Intentions and interactions for basic executions using conventional command-and-
control.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 2642 2696 2927 3262 4128 5392 7339 10568
Echeckbox−check/
Echeckbox−uncheck

2642 2696 2927 3262 4128 5392 7339 10568

Eradio 2642 2696 2927 3262 4128 5392 7339 10568
Edropdown 5284 5391 5855 6523 8256 10784 14678 21137
Elist−select/
Elist−deselect

5284 5391 5855 6523 8256 10784 14678 21137

Emenu 5284 5391 5855 6523 8256 10784 14678 21137
Etree−select (ndepth

+1) ·
2642+
2071

(ndepth

+1) ·
2696+
2092

(ndepth

+1) ·
2927+
2180

(ndepth

+1) ·
3262+
2301

(ndepth

+1) ·
4128+
2589

(ndepth

+1) ·
5392+
2959

(ndepth

+1) ·
7339+
3452

(ndepth

+1) ·
10568+
4142

Etree−deselect 7355 7483 8035 8825 10845 13742 18130 25279
Einput 2642

+
ntext

·
2642

2696
+
ntext

·
2696

2927
+
ntext

·
2927

3262
+
ntext

·
3262

4128
+
ntext

·
4128

5392
+
ntext

·
5392

7339
+
ntext

·
7339

10568
+
ntext

·
10568

Espinner 2642
+
ndigit

·
2642

2696
+
ndigit

·
2696

2927
+
ndigit

·
2927

3262
+
ndigit

·
3262

4128
+
ndigit

·
4128

5392
+
ndigit

·
5392

7339
+
ndigit

·
7339

10568
+
ndigit

·
10568

Espinner−inc/
Espinner−dec

4713 4788 5107 5563 6717 8350 10790 14710

Eslide 5284 5391 5855 6523 8256 10784 14678 21137

Table B.2: Interaction delay calculation details of conventional command-and-control.
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Execution Intention Interaction
Ebutton (SFNAVid, SFACTPUSH) (CMDNAVid, CMDACTPUSH)
Echeckbox−check (SFNAVid, SFACTCHECK) (CMDNAVid, CMDACTCHECK)
Echeckbox−uncheck (SFNAVid, SFACTUNCHECK) (CMDNAVid, CMDACTUNCHECK)
Eradio (SFNAVid, SFACTSELECT ) (CMDNAVid, CMDACTSELECT )
Edropdown (SFNAVid, SFACTOPEN ,

SFNAVid, SFACTSELECT )
(CMDNAVid, CMDACTOPEN ,
CMDNAVid, CMDACTSELECT )

Elist−select (SFNAVid, SFNAVid,
SFACTSELECT )

(CMDNAVid, CMDNAVid

CMDACTSELECT )
Elist−deselect (SFNAVid, SFNAVid

SFACTDESELECT )
(CMDNAVid, CMDNAVid

CMDACTDESELECT )
Emenu (SFNAVid, SFACTOPEN

SFNAVid, SFACTINV OKE)
(CMDNAVid, CMDACTOPEN

CMDNAVid, CMDACTINV OKE)
Etree−select EX := (SFNAVid, SFACTEXPAND), then

(SFNAVid, EX, . . . , EX︸ ︷︷ ︸
ndepth

, SFACTSELECT)
EX := (CMDNAVid, CMDACTEXPAND), then

(CMDNAVid,
EX, . . . , EX︸ ︷︷ ︸

ndepth

, CMDNAVid, CMDACTSELECT)

Etree−deselect (SFNAVid, SFNAVid,
SFACTDESELECT )

(CMDNAVid, CMDNAVid,
CMDACTDESELECT

Einput (SFNAVid,
SFACTAPPENDx , . . . , SFACTAPPENDx)︸ ︷︷ ︸

ntext

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ntext

Espinner (SFNAVid,
SFACTAPPENDx , . . . , SFACTAPPENDx)︸ ︷︷ ︸

ndigit

(CMDNAVid,
CMDACTAPPENDx , . . . , CMDACTAPPENDx)︸ ︷︷ ︸

ndigit

Espinner−inc (SFNAVid, SFACTINCREASE) (CMDNAVid, CMDACTINCREASE)
Espinner−inc (SFNAVid, SFACTDECREASE) (CMDNAVid, CMDACTDECREASE)
Eslide (SFNAVid, SFNAVid

SFACTSLIDE

(CMDNAVid, CMDNAVid

CMDACTSLIDE)

Table B.3: Intentions and interactions for basic executions using command-and-control with ran-
dom navigation and direct activation.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 4713 4788 5107 5563 6717 8350 10791 14710
Echeckbox−check 4713 4788 5107 5563 6717 8350 10791 14710
Echeckbox−uncheck 4713 4788 5107 5563 6717 8350 10791 14710
Eradio 4713 4788 5107 5563 6717 8350 10791 14710
Edropdown 9426 9575 10215 11126 13434 16701 21581 29420
Elist−select 7355 7483 8035 8825 10845 13742 18130 25278
Elist−deselect 7355 7483 8035 8825 10845 13742 18130 25278
Emenu 9426 9575 10215 11126 13434 16701 21581 29420
Etree−select 2642

+
ndepth

·
4713
+
2071

2696
+
ndepth

·
4788
+
2092

2927
+
ndepth

·
5107
+
2180

3262
+
ndepth

·
5563
+
2301

4128
+
ndepth

·
6717
+
2589

5392
+
ndepth

·
8350
+
2959

7339
+
ndepth

·
10791
+
3452

10568
+
ndepth

·
14710
+
4142

Etree−deselect 7355 7483 8035 8825 10845 13742 18130 25278
Einput 2642

+
ntext

·
2642

2696
+
ntext

·
2696

2927
+
ntext

·
2927

3262
+
ntext

·
3262

4128
+
ntext

·
4128

5392
+
ntext

·
5392

7339
+
ntext

·
7339

10568
+
ntext

·
10568

Espinner 2642
+
ndigit

·
2642

2696
+
ndigit

·
2696

2927
+
ndigit

·
2927

3262
+
ndigit

·
3262

4128
+
ndigit

·
4128

5392
+
ndigit

·
5392

7339
+
ndigit

·
7339

10568
+
ndigit

·
10568

Espinner−inc 4713 4788 5107 5563 6717 8350 10791 14710
Espinner−dec 4713 4788 5107 5563 6717 8350 10791 14710
Eslide 7355 7483 8035 8825 10845 13742 18130 25278

Table B.4: Interaction delay calculation details of command-and-control with random navigation
and direct activation.
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Execution Intention Interaction
Ebutton (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Echeckbox−check/
Echeckbox−uncheck

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eradio (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Edropdown (SFPOINT, SFCLICK,

SFMOVEAX, SFCLICK
(SFPOINTcmd, ”click”, )
SFMOVEAXcmd, ”click”)

Elist−select/
Elist−deselect

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Emenu (SFPOINT, SFCLICK
SFMOVEAX, SFCLICK)

(SFPOINTcmd, ”click”, )
SFMOVEAXcmd, ”click”)

Etree−select (SFPOINT, SFCLICK︸ ︷︷ ︸
ndepthtimes

SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”︸ ︷︷ ︸
ndepth,times

)

SFPOINTcmd, ”click”)
Etree−deselect (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Einput (SFPOINT, SFCLICK,

SFACTAPPENDx︸ ︷︷ ︸
ntexttimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner (SFPOINT, SFCLICK,
, SFACTAPPENDx︸ ︷︷ ︸

ndigittimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner−inc/
Espinner−dec

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eslide (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Table B.5: Intentions and interactions for basic executions using direction-based mouse emulation
with continuous movement.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 10355 10460 10900 11506 12944 14793 17258 20710
Echeckbox−check/
Echeckbox−uncheck

10355 10460 10900 11506 12944 14793 17258 20710

Eradio 10355 10460 10900 11506 12944 14793 17258 20710
Edropdown 16568 16735 17440 18408 20710 23669 27613 33136
Elist−select/
Elist−deselect

10355 10460 10900 11506 12944 14793 17258 20710

Emenu 16568 16735 17440 18408 20710 23669 27613 33136
Etree−select (ndepth

+1) ·
10355

(ndepth

+1) ·
10460

(ndepth

+1) ·
10900

(ndepth

+1) ·
11506

(ndepth

+1) ·
12944

(ndepth

+1) ·
14793

(ndepth

+1) ·
17258

(ndepth

+1) ·
20710

Etree−deselect 10355 10460 10900 11506 12944 14793 17258 20710
Einput 10355

+
ntext

·
2642

10460
+
ntext

·
2696

10900
+
ntext

·
2927

11506
+
ntext

·
3261

12944
+
ntext

·
4128

14793
+
ntext

·
5392

17258
+
ntext

·
7339

20710
+
ntext

·
10568

Espinner 10355
+
ndigit

·
2642

10460
+
ndigit

·
2696

10900
+
ndigit

·
2927

11506
+
ndigit

·
3261

12944
+
ndigit

·
4128

14793
+
ndigit

·
5392

17258
+
ndigit

·
7339

20710
+
ndigit

·
10568

Espinner−inc/
Espinner−dec

10355 10460 10900 11506 12944 14793 17258 20710

Eslide 10355 10460 10900 11506 12944 14793 17258 20710

Table B.6: Interaction delay calculation details of direction-based mouse emulation with continu-
ous movement.
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Execution Intention Interaction
Ebutton (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Echeckbox−check/
Echeckbox−uncheck

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eradio (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Edropdown (SFPOINT, SFCLICK,

SFMOVECOMP, SFCLICK
(SFPOINTcmd, ”click”, )
SFMOVECOMPcmd, ”click”)

Elist−select/
Elist−deselect

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Emenu (SFPOINT, SFCLICK
SFMOVECOMP, SFCLICK)

(SFPOINTcmd, ”click”, )
SFMOVECOMPcmd, ”click”)

Etree−select (SFPOINT, SFCLICK︸ ︷︷ ︸
ndepthtimes

SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”︸ ︷︷ ︸
ndepth,times

)

SFPOINTcmd, ”click”)
Etree−deselect (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Einput (SFPOINT, SFCLICK,

SFACTAPPENDx︸ ︷︷ ︸
ntexttimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner (SFPOINT, SFCLICK,
SFACTAPPENDx︸ ︷︷ ︸

ndigittimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner−inc/
Espinner−dec

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eslide (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Table B.7: Intentions and interactions for basic executions using direction-based mouse emulation
with discrete movement.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 10438 10864 12829 16030 26471 47692 95768 221628
Echeckbox−check/
Echeckbox−uncheck

10438 10864 12829 16030 26471 47692 95768 221628

Eradio 10438 10864 12829 16030 26471 47692 95768 221628
Edropdown 16693 17342 20333 25196 41000 73017 145378 334513
Elist−select/
Elist−deselect

10438 10864 12829 16030 26471 47692 95768 221628

Emenu 16693 17342 20333 25196 41000 73017 145378 334513
Etree−select (ndepth

+1) ·
10438

(ndepth

+1) ·
10864

(ndepth

+1) ·
12829

(ndepth

+1) ·
16030

(ndepth

+1) ·
26471

(ndepth

+1) ·
47692

(ndepth

+1) ·
95768

(ndepth

+1) ·
221628

Etree−deselect 10438 10864 12829 16030 26471 47692 95768 221628
Einput 10438

+
ntext

·
2642

10864
+
ntext

·
2696

12829
+
ntext

·
2927

16030
+
ntext

·
3262

26471
+
ntext

·
4128

47692
+
ntext

·
5392

95768
+
ntext

·
7339

221628
+
ntext

·
10568

Espinner 10438
+
ndigit

·
2642

10864
+
ndigit

·
2696

12829
+
ndigit

·
2927

16030
+
ndigit

·
3262

26471
+
ndigit

·
4128

47692
+
ndigit

·
5392

95768
+
ndigit

·
7339

221628
+
ndigit

·
10568

Espinner−inc/
Espinner−dec

10438 10864 12829 16030 26471 47692 95768 221628

Eslide 10438 10864 12829 16030 26471 47692 95768 221628

Table B.8: Interaction delay calculation details of direction-based mouse emulation with discrete
movement.
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APPENDIX B. APPENDIX: CALCULATIONS AND STUDIES

Execution Intention Interaction
Ebutton (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Echeckbox−check/
Echeckbox−uncheck

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eradio (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Edropdown (SFPOINT, SFCLICK,

SFPOINT, SFCLICK
(SFPOINTcmd, ”click”, )
SFPOINTcmd, ”click”)

Elist−select/
Elist−deselect

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Emenu (SFPOINT, SFCLICK
SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”, )
SFPOINTcmd, ”click”)

Etree−select (SFPOINT, SFCLICK︸ ︷︷ ︸
ndepthtimes

SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”︸ ︷︷ ︸
ndepth,times

)

SFPOINTcmd, ”click”)
Etree−deselect (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Einput (SFPOINT, SFCLICK,

SFACTAPPENDx︸ ︷︷ ︸
ntexttimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner (SFPOINT, SFCLICK,
SFACTAPPENDx︸ ︷︷ ︸

ndigittimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner−inc/
Espinner−dec

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eslide (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Table B.9: Intentions and interactions for basic executions using target-based mouse emulation.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 4713 4788 5107 5563 6717 8350 10791 14710
Echeckbox−check/
Echeckbox−uncheck

4713 4788 5107 5563 6717 8350 10791 14710

Eradio 4713 4788 5107 5563 6717 8350 10791 14710
Edropdown 9426 9575 10215 11126 13434 16701 21581 29421
Elist−select/
Elist−deselect

4713 4788 5107 5563 6717 8350 10791 14710

Emenu 9426 9575 10215 11126 13434 16701 21581 29421
Etree−select (ndepth

+1) ·
4713

(ndepth

+1) ·
4788

(ndepth

+1) ·
5107

(ndepth

+1) ·
5563

(ndepth

+1) ·
6717

(ndepth

+1) ·
8350

(ndepth

+1) ·
10791

(ndepth

+1) ·
14710

Etree−deselect 4713 4788 5107 5563 6717 8350 10791 14710
Einput 4713

+
ntext

·
2642

4788
+
ntext

·
2696

5107
+
ntext

·
2927

5563
+
ntext

·
3262

6717
+
ntext

·
4128

8350
+
ntext

·
5392

10791
+
ntext

·
7339

14710
+
ntext

·
10568

Espinner 4713
+
ndigit

·
2642

4788
+
ndigit

·
2696

5107
+
ndigit

·
2927

5563
+
ndigit

·
3262

6717
+
ndigit

·
4128

8350
+
ndigit

·
5392

10791
+
ndigit

·
7339

14710
+
ndigit

·
10568

Espinner−inc/
Espinner−dec

4713 4788 5107 5563 6717 8350 10791 14710

Eslide 4713 4788 5107 5563 6717 8350 10791 14710

Table B.10: Interaction delay calculation details of target-based mouse emulation.
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APPENDIX B. APPENDIX: CALCULATIONS AND STUDIES

Execution Intention Interaction
Ebutton (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Echeckbox−check/
Echeckbox−uncheck

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eradio (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Edropdown (SFPOINT, SFCLICK,

SFPOINT, SFCLICK
(SFPOINTcmd, ”click”, )
SFPOINTcmd, ”click”)

Elist−select/
Elist−deselect

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Emenu (SFPOINT, SFCLICK
SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”, )
SFPOINTcmd, ”click”)

Etree−select (SFPOINT, SFCLICK︸ ︷︷ ︸
ndepthtimes

SFPOINT, SFCLICK)

(SFPOINTcmd, ”click”︸ ︷︷ ︸
ndepth,times

)

SFPOINTcmd, ”click”)
Etree−deselect (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)
Einput (SFPOINT, SFCLICK,

SFACTAPPENDx︸ ︷︷ ︸
ntexttimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner (SFPOINT, SFCLICK,
SFACTAPPENDx︸ ︷︷ ︸

ndigittimes

)
SFPOINTcmd, ”click”,
CMDACTAPPENDx︸ ︷︷ ︸

ntexttimes

Espinner−inc/
Espinner−dec

(SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Eslide (SFPOINT, SFCLICK) (SFPOINTcmd, ”click”)

Table B.11: Intentions and interactions for basic executions using grid-based mouse emulation.

Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

ishift 2071 2092 2180 2301 2589 2959 3452 4142
iselect 2642 2696 2927 3262 4128 5392 7339 10568
Int. Del. of
Pointing
0.45ishift +
2.73iselect

8145 8301 8971 9941 12434 16052 21589 30715

Table B.12: Values for ishift and iselect for specific word error rates.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 10216 10393 11151 12242 15023 19011 25041 34857
Echeckbox−check/
Echeckbox−uncheck

10216 10393 11151 12242 15023 19011 25041 34857

Eradio 10216 10393 11151 12242 15023 19011 25041 34857
Edropdown 20432 20786 22302 24484 30046 38022 50082 69714
Elist−select/
Elist−deselect

10216 10393 11151 12242 15023 19011 25041 34857

Emenu 20432 20786 22302 24484 30046 38022 50082 69714
Etree−select (ndepth

+1) ·
10216

(ndepth

+1) ·
10393

(ndepth

+1) ·
11151

(ndepth

+1) ·
12242

(ndepth

+1) ·
15023

(ndepth

+1) ·
19011

(ndepth

+1) ·
25041

(ndepth

+1) ·
34857

Etree−deselect 10216 10393 11151 12242 15023 19011 25041 34857
Einput 10216

+
ntext

·
2642

10393
+
ntext

·
2696

11151
+
ntext

·
2927

12242
+
ntext

·
3262

15023
+
ntext

·
4128

19011
+
ntext

·
5392

25041
+
ntext

·
7339

34857
+
ntext

·
10568

Espinner 10216
+
ndigit

·
2642

10393
+
ndigit

·
2696

11151+
ndigit

·
2927

12242
+
ndigit

·
3262

15023
+
ndigit

·
4128

19011
+
ndigit

·
5392

25041
+
ndigit

·
7339

34857
+
ndigit

·
10568

Espinner−inc/
Espinner−dec

10216 10393 11151 12242 15023 19011 25041 34857

Eslide 10216 10393 11151 12242 15023 19011 25041 34857

Table B.13: Interaction delay calculation details of grid-based mouse emulation.
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APPENDIX B. APPENDIX: CALCULATIONS AND STUDIES

Execution Intention Interaction Delay in ms
Ebutton (MFPOINTING, MFCLICK) 1243
Echeckbox−check/
Echeckbox−uncheck

(MFPOINTING, MFCLICK) 1243

Eradio (MFPOINTING, MFCLICK) 1243
Edropdown (MFPOINTING, MFCLICK,

MFPOINTING, MFCLICK
2486

Elist−select/
Elist−deselect

(MFPOINTING, MFCLICK) 1243

Emenu (MFPOINTING, MFCLICK
MFPOINTING, MFCLICK)

2486

Etree−select (MFPOINTING, MFCLICK︸ ︷︷ ︸
ndepthtimes

MFPOINTING, MFCLICK)

(ndepth + 1) · 1243

Etree−deselect (MFPOINTING, MFCLICK) 1243
Espinner−inc/
Espinner−dec

(MFPOINTING, MFCLICK) 1243

Eslide (MFPOINTING, MFCLICK) 1243

Table B.14: Intentions for basic executions using mouse-controlled GUIs.
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B.3. TASKS FROM THE USER STUDY

Execution Interaction delay in ms with a word error rate of
0% 1% 5% 10% 20% 30% 40% 50%

Ebutton 2642 2696 2927 3262 4128 5392 7339 10568
Echeckbox−check/
Echeckbox−uncheck

2642 2696 2927 3262 4128 5392 7339 10568

Eradio 2642 2696 2927 3262 4128 5392 7339 10568
Edropdown 3784 3939 4646 5767 9238 15760 29198 60544
Elist−select/
Elist−deselect

3784 3939 4646 5767 9238 15760 29198 60544

Emenu 3784 3939 4646 5767 9238 15760 29198 60544
Etree−select ndepth

·2642+
3213

ndepth

·2696+
3311

ndepth

·2927+
3747

ndepth

·3262+
4407

ndepth

·4128+
6275

ndepth

·5392+
9367

ndepth

·7339+
14875

ndepth

·10568+
25704

Etree−deselect 4355 4579 5628 7375 13290 25912 56006 139360
Einput 3784

+
ntext

−1)·
2642

3939
+
(ntext

−1)·
2696

4646
+
(ntext

−1)·
2927

5767
+
(ntext

−1)·
3262

9238
+
(ntext

−1)·
4128

15760
+
(ntext

−1)·
5392

29198
+
(ntext

−1)·
7339

60544
+
(ntext

−1)·
10568

Espinner 3784
+
ndigit

−1)·
2642

3939
+
(ndigit

−1)·
2696

4646
+
(ndigit

−1)·
2927

5767
+
(ndigit

−1)·
3262

9238
+
(ndigit

−1)·
4128

15760
+
(ndigit

−1)·
5392

29198
+
(ndigit

−1)·
7339

60544
+
(ndigit

−1)·
10568

Espinner−inc/
Espinner−dec

3213 3311 3747 4407 6275 9367 14875 25704

Eslide 3784 3939 4646 5767 9238 15760 29198 60544

Table B.15: Interaction delay calculation details of conversation-and-control.
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APPENDIX B. APPENDIX: CALCULATIONS AND STUDIES

Nr. Execution Description
1 Ebutton Activate button "Activate"
2 Edropdown Select the fruit "<currentlyUnselectedFruit>"
3 Echeckbox−check Check "Backup"
4 Elist−select Select the pizzas "<currentlyUnselPizza>" and "<currentlyUnselPizza>"
5 Eslide Select level "<currentlyUnselLevel>"
6 Edropdown Select month other than "<currentlyUnselMonth>"
7 Echeckbox−uncheck Uncheck "Backup"
8 Edropdown Select a fruit other than "<currentlySelectedFruit>"
9 Elist−select Select the toppings "<currentlyUnselTopping>" and "<currentlyUnselTop-

ping>"
10 Eslide Select grade "<currentlyUnselGrade>"
11 Ebutton Activate button "Process"
12 Etree−deselect Unselect "Fish" from "Animals"
13 Espinner Enter ’12’ into the amps field
14 Elist−select Select origin "<currentlyUnselOrigin>"
15 Etree−deselect Unselect "Devices" from "Computer"
16 Einput Enter ’vet’ into the job field
17 Emenu Invoke arbitrary menu item from "Search"
18 Espinner−inc Increase the voltage field
19 Elist−deselect Unselect the topping "<currentlySelTopping>"
20 Einput Enter ’tom’ into the name field
21 Emenu Invoke arbitrary menu item from "Edit"
22 Elist−select Select destination "Pittsburgh"
23 Espinner Enter ’45’ into the voltage field
24 Espinner−dec Decrease the amps field
25 Echeckbox−check Check "Amplify"
26 Edropdown Select the month "<currentlyUnselectedMonth>"
27 Etree−select Select an arbitrary mammal from animals
28 Espinner−inc Increase the amps field
29 Etree−select Select an arbitrary device from computers
30 Espinner−dec Decrease the voltage field
31 Elist−deselect Unselect the pizza "<currentlySelectedPizza>"
32 Echeckbox−check Uncheck "Amplify"

Table B.16: Tasks to be completed in the experiment.
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