
Distributed Object Computing
Caching and Prefetching

Christoph Vilsmeier

Institut für Informatik
Technische Universität München



Institut für Informatik

der Technischen 
Universität München

Distributed Object Computing
Caching and Prefetching

Christoph Vilsmeier

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität 
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt
Prüfer der Dissertation: 1. Univ.-Prof. B. Brügge, Ph. D.

2. Univ.-Prof. A. Feldmann, Ph. D.

Die Dissertation wurde am 03.11.2005 bei der Technischen Universität München eingereicht 
und durch die Fakultät für Informatik am 07.07.2006 angenommen.



ABSTRACT

Distributed Object Computing eases the development of distributed applications by providing 
location transparency for remote method calls to distributed objects. Since remote method 
calls involve a network roundtrip, they are expensive compared to local method calls. Several 
existing approaches reduce the number of remote method calls but they require a high 
implementation effort. 

The dissertation presents a novel approach that improves the performance of distributed 
applications with minimal implementation effort by caching and prefetching remote method 
result values. By caching of method result values, network roundtrips can be avoided for 
methods that are already in the cache. By prefetching method result values, the cache can be 
filled in advance, so that subsequent method calls do not need to be transferred over the 
network. 

An abstract Distributed Object Computing Caching and Prefetching (DOC-CaP) framework 
was developed to provide caching and prefetching in the stub layer of distributed applications, 
thereby ensuring location transparency for client and server. An extension to the IDL language 
called XIDL was introduced to allow the specification of object interfaces and characteristics 
of the method implementations. The DOC-CaP IDL compiler generates the stub layer of any 
distributed application automatically from the XIDL definitions. Thus DOC-CaP allows 
developers to use the caching and prefetching approach without any manual additions to their 
code.

An instance of the DOC-CaP framework was implemented in CORBA and used to 
experimentally evaluate the caching and prefetching approach against a standard industry 
benchmark and a real-world industry application. Our evaluation results show that the DOC-
CaP approach is applicable to a wide area of distributed applications and can improve the 
remote communication performance of distributed applications by factors of up to 60. 
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11..  IINNTTRROODDUUCCTTIIOONN  

1.1. Contribution 

 
Caching and prefetching have been used to increase the performance of computer memory 
systems, file systems, databases and the World Wide Web. This work extends well known 
caching and prefetching strategies to the field of Distributed Object Computing. The main 
contribution of this work is to show that caching and prefetching mechanisms can be used to 
improve the performance of distributed applications.  
 
The promise of commercially available Distributed Object Computing products is to relieve 
programmers of distributed applications from network communication issues. Instead, the 
programmer can develop a given application like a local, in-process application. After design 
and implementation of the application, the subsystems of the application can be distributed 
across multiple computers and the network communication is handled by the Distributed 
Object Computing product. In this work we show that this promise is generally not met with 
today’s Distributed Object Computing products. We demonstrate that serious performance 
problems arise and present current practice approaches that are used by application 
developers to speed up distributed application performance. 
 
We then present a number of novel caching and prefetching mechanisms that increase the 
performance of distributed applications and show how it can be integrated with Distributed 
Object Computing products.  
 
The mechanisms can be used to speed up not only newly developed applications, but also 
legacy systems. They do not require compiler knowledge or source code knowledge about the 
distributed application. In addition, an application programmer does not have to modify the 
source code: A single recompilation cycle of the network communication layer is sufficient 
for incorporating the caching and prefetching mechanisms into an existing distributed 
application. In contrast to prefetching approaches where the application itself has the 
responsibility to advise the prefetching subsystem about its future needs (also known as 
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‘informed’ prefetching in [01] and [02]), the required prefetching information is automatically 
gathered.  
  
To validate the concept, we present three case studies along with performance measurements. 
First, we introduce a simple application (‘Address Book’), which we use for illustration 
purposes throughout this work. Then we use a real-world application built according to the 
industry-standard object benchmark suite ‘TPC-W benchmark’. Finally we present a 
distributed application used in an automobile company to show how our system can be used 
to speed up real-world applications.  
 
 

1.2. Distributed Object Computing 

 
Object-oriented programming is nowadays considered the method of choice for developing 
and maintaining complex software systems. With concepts like information hiding, interface 
inheritance and implementation inheritance, the object-oriented programming approach 
promises the development of more reusable and maintainable software systems. 
 
With object-oriented programming, software systems are based on objects that communicate 
with each other via method calls. Figure 1 shows two objects, called ‘Client’ and ‘Server’, 
communicating with each other. Because the communicating objects are located in the same 
address space ‘P1’ in the same process, the method call is called ‘local’. 
 

 
Figure 1: A Local Method Call 

 
The Client object calls a method foo() that is provided by the Server object. The client 
has to know the signature of the called method, i.e. the method name, the list of parameter 
types and the type of the result value. Upon receipt of the method call, the server’s method 
implementation is executed. After the method implementation has finished executing, a result 
value is returned to the client object. If the client is blocked while the method implementation 
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is executing, the method call is synchronous. If the method call returns immediately, and the 
client can go on while the method implementation in the server is executing, the method call 
is asynchronous. In both cases, the he internals of the server object’s state and the details of 
its method implementations are unknown to the client. The collection of the method 
signatures exported by an object is called its ‘interface’. 
 
Figure 2 shows a sequence diagram of a synchronous local method call1.  
 

 
Figure 2: Sequence Diagram Of A Local Method Call 

 
The Client object C calls a method foo() provided by the Server object S. If the method 
call is synchronous, the Client C has to wait while the method implementation in S is 
executing. After the method implementation is finished, the result value is returned and the 
thread of control is given back to C. If the method call is asynchronous, the method call 
returns immediately and C does not have to wait until the method implementation of foo() 
has finished. Instead, the thread of control is back at C immediately and the execution of 
foo() in S is executed in parallel to the execution of C. C can retrieve the result value later by 
polling the server or getting notified when S has finished executing the foo() method 
implementation. 
 
It is important to note that high-level method calls cannot be executed by the computer 
hardware directly. Instead, a compiler translates the high-level source code into machine 
instructions that can be executed by the underlying hardware processor. The high-level 
programmer does not need to know the details of the compilation process or the machine 
instructions the compiler generates. 
 

                                                 
1 UML Sequence Diagrams are used throughout this document to illustrate the communication of objects. For an introduction to UML, see 
[03]. 
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Figure 3: Remote Method Call 

 
When objects are located in different address spaces ‘P1’ and ‘P2’, as shown in Figure 3, 
object communication via local method calls is not possible. Instead, the communication has 
to be done over a communication medium that connects Client and Server2, for example a 
computer network or inter-process communication mechanisms like Named Pipes or Shared 
Memory (see [69] and [70]). 
 
Modern computer networks are designed in a highly structured way. To reduce their design 
complexity, the networks are organized as a series of layers, each one built upon its 
predecessor. Decomposing a computer network system into layers has the advantage that each 
network subsystem can be replaced as long as it is ensured that the interface to its upper and 
lower layer stays the same. Two well-known layered network architectures are the seven-
layer ISO-OSI reference architecture [05] and the four-layer TCP/IP reference architecture 
[04]. 
 
The OSI reference architecture model was developed by the International Organization for 
Standardization (ISO, see [06]). The model is called OSI (Open Systems Interconnection) 
Reference Model because it deals with connecting open systems - systems that allow for 
communication between heterogenous systems.  
 
The OSI model has seven layers, based on the following design principles:  

1. A layer should be created where a different level of abstraction is needed.  
2. Each layer should perform a well-defined function.  
3. The function of each layer should be chosen with respect to internationally 

standardized protocols.  
4. The layer boundaries should be chosen to minimize the information flow across the 

interfaces.  

                                                 
2 Here, we use the term ‘Client’ in the sense of caller and ‘Server’ in the sense of callee. It should not be confused with the term client/server 
architecture. 
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5. The number of layers should be large enough that distinct functions need not be 
realized together in the same layer, and small enough that the architecture does not 
become unwieldy.  

 

 
Figure 4: The ISO-OSI Reference Architecture 

 
Figure 4 presents the OSI Reference Model. Seven layers are defined: 

1. Physical Layer. The physical later is concerned with transmitting raw bits over a 
communication channel, e.g. a copper wire or a radio frequency connection.  

2. Data Link Layer. The main task of the data link layer is to take an unreliable 
transmission facility and transform it into a line that hides transmission errors from the 
network layer. Commonly used techniques include framing, using checksums and 
acknowledge frames. 

3. Network Layer. The main task of the network layer is routing data packets and making 
sure that they are transferred from the source to the destination.  

4. Transport Layer. The basic function of the transport layer is to accept data from the 
session layer, split it up into smaller units if necessary, pass these to the network layer, 
and ensure that they arrive correctly at the destination. 
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5. Session Layer. A session might be opened and closed and might be used, e.g., to allow 
a user to log into a remote time-sharing system or to transfer a file between two 
machines.  

6. Presentation Layer. Unlike all the lower layers, which are just moving bits reliably 
from one place to another, the presentation layer is concerned with the syntax and 
semantics of the information transmitted. It translates user-defined data into sequences 
of bytes and passes these bytes to the session layer. 

7. Application Layer. The application layer defines the application protocol that is used 
by user applications to communicate with each other. Examples are file transfer 
protocols, electronic mail protocols and protocols for sending remote method calls. 

 
Compared with the OSI architecture, the TCP/IP reference architecture leaves out OSI layers 
5 and 6 (Session Layer and Presentation Layer) and combines OSI layers 1 and 2 (Physical 
Layer and Data Link Layer) into a single layer (Host-To-Network Layer). The TCP/IP model 
is shown in Figure 5. 
 

 
Figure 5: The TCP/IP Reference Architecture 

 
The TCP/IP Reference Model defines four layers: 

1. Host-To-Network Layer. The Host-to-Network layer provides the interfaces to the 
physical network. The layer only specifies that the host has to connect to the network 
using some protocol so it can send IP packets over it. 

2. Internet Layer. The task of the internet layer is to inject packets into any network and 
have them travel independently to the destination. The layer defines IP (Internet 
Protocol) for its official packet format and protocol. Packet routing is one of the main 
tasks of this layer.  

3. Transport Layer. The transport layer adds services to the internet layer that provide 
end-to-end communication to the application layer. The transport layer defines TCP 
(Transport Control Protocol) for reliable connection-based communication and UDP 
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(User Datagram Protocol) for unreliable connection-less communication as its 
protocols. 

4. Application Layer. The original TCP/IP specification described a number of different 
applications that fit into the top layer of the protocol stack. These applications include 
Telnet, FTP, SMTP and DNS. Moreover, any network application that uses an 
implementation of a TCP/IP model for network communication, is located at the 
application layer.  

 
The main difference between the OSI and the TCP/IP architectures is that TCP/IP is widely 
used and OSI is not. Implementations of the TCP/IP architecture are available for almost 
every operating system and computer platform.  
 
The Berkeley Socket Interface, the de-facto standard for network programming provides an 
application-programming interface (API) that a developer can use to read and write data to 
and from TCP/IP communication networks. A socket is an abstraction of an application-layer 
communication endpoint that can be connected to another socket and used for reading and 
writing data. Using sockets, the process of building data packets, wrapping them in network 
frames, enforcing communication reliability, routing packets from source to destination, 
detecting data collisions and packet losses and so on, is completely hidden from the 
application. Figure 6 shows where client and server applications are located in the TCP/IP 
reference architecture. 
 

 
Figure 6: TCP/IP Client/Server Communication 

 
But even with the availability of TCP/IP implementations and the Berkeley Socket Interface, 
realizing distributed data communication over a computer network is still difficult and error-
prone. For example, the programmer of an application faces the following tasks: 
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1. Define a message-based application protocol for client/server communication. The 
client sends a service request message to the server, which executes the service and 
sends back a response message to the client.  

2. Establish a socket connection between client and server object. If a client wishes to 
invoke a service implemented by a server, it has to know the network address of the 
server.  

3. Generate a service request description of the service to be executed by the server, i.e. 
the service’s name and parameter values. 

4. Transform the service request description into an array of bytes and send it across the 
network, using a socket connection. 

5. Wait for the response message and read it from the network. The response message 
arrives as a byte array and the result value has to be extracted. 

6. Close the client-server connection if it is no longer needed. 
7. Deal with error conditions like communication failures, network errors and unwanted 

server shutdowns.  
 
Implementing client/server request/response communication by hand has several problems. 
The application programmer has to make sure that both the client and the server understand 
the same application protocol. The implementation of the network communication protocol in 
the client as well as server requires considerable development effort. When software 
requirements change, for example when a new service is added to an existing server, the 
application protocol has to be re-defined and the client and server software have to be 
changed accordingly, increasing software maintenance effort. If the communication medium 
changes, for example from socket-based communication to inter-process communication 
using shared memory, the communication protocol has to be re-implemented. The 
client/server application protocol must specify the details of the client/server network 
communication, like connection establishment, connection shutdown and data exchange 
formats. Application specific communication protocols may also lead to systems that are not 
interoperable, in the sense that a client program from vendor A cannot communicate with a 
server program from vendor B. 
 
With the advent of the Remote Procedure Call (RPC) mechanism [07], a higher level of 
abstraction was introduced in client/server communication. The basic idea of the RPC 
mechanism is to replace message-based network programming with method call semantics.  
 
Figure 7 illustrates how these additional abstractions are incorporated in the TCP/IP 
architecture. A Client Stub is located at the client side of a distributed application and acts 
as a proxy for the Server object. Analogous, a Server Stub is located at the server side 
and acts as a proxy for the Client object. 
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Figure 7: RPC Client/Server Communication 

The TCP/IP Application Layer is replaced by an Implementation Layer and a Stub Layer. The 
Client Stub and the Server Stub are located in the Stub Layer and communicate with 
each other via the RPC Stub Protocol. Client and Server implementations are located in 
the Implementation Layer and communicate with each other via local method calls. 
 

 
Figure 8: Sequence Diagram Of A Remote Method Call 
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Figure 8 presents a simplified sequence diagram of a remote method call and shows how the 
abstraction of local method calls is realized. 
 
If a Client wants to invoke a method foo() provided by a Server, the Client calls the 
appropriate method (foo() in Figure 8) in the Client Stub. The Client Stub generates 
a request message that describes the remote method call (including the network address of the 
server, method name and parameter values). This request message is then converted to a data 
format that can be passed to the network transport layer. This conversion process is called 
‘marshalling’. The request then travels down the TCP/IP layers, which involves a number of 
calls to the TCP/IP library, operating system functions, network adapter device driver calls, 
etc. Upon receipt of the request packet, the Server Stub extracts the method call request 
information from the incoming byte stream and converts it back into a request message, the 
conversion process called ‘unmarshalling’. Then the Server Stub calls the appropriate 
method implementation of the Server. After the method implementation has finished 
executing, the method result value is marshalled into a response message and sent back to the 
Client Stub. The Client Stub unmarshalls the response and returns the method result 
value to the Client object. 
 
The Client Stub provides exactly the same methods as the Server. This way, the Client 
can issue method calls as if it is calling the Server directly via a local method call. The 
Client Stub handles the network communication transparently to the Client. At the 
server side, the Server is called through its interface, as if the method calls would originate 
directly from the Client. The Server cannot tell whether methods are invoked from the 
Client or a Server Stub. The fact that method calls and method result values are 
transferred over a network is transparent to both the Client and the Server.  
 
The source code of the Stub Layer does not need to be provided by the application 
programmer. Instead, it can be generated automatically from an abstract description of the 
Server interface. We leave out an explanation of the stub generation for now, as we will 
explain it later in great detail. 
 
The RPC mechanism supports remote application communication via method call semantics, 
but RPC does not provide object-oriented semantics like object interfaces, inheritance and 
object-oriented method calls. Thus, RPC is not directly suited for object-oriented systems, 
where remote object communication is desired3. In the next section we introduce the 
‘Distributed Object Computing’ mechanism, which extends the functionality of RPC to 
support remote object communication. 
 

                                                 
3 RPC can be seen as the C programming language [71], where an application provides only global functions, as opposed to the C++ 
programming language, which extends C by introducing object-oriented paradigms like object interfaces, inheritance and polymorphic 
methods. 
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Figure 9 presents a client/server system where the server application – in contrast to Figure 7 
– hosts a number of Server objects that provide services to remote Client objects. For each 
Server object, there is a Client Stub object at the client side and a Server Stub 
object at the server side. If a Client wishes to invoke a method in a certain Server object, 
it has to call a method on the Client Stub that represents the method in the Server 
object. The Client Stubs communicate with the Server Stubs using a stub 
communication protocol. (In fact, many Distributed Object Computing implementations use a 
modified RPC-like protocol for data communication, for example Microsoft DCOM [08] and 
the very first implementations of CORBA [10]) 
 

 
Figure 9: Distributed Object Computing 

 
In the following section we develop an abstract framework for Distributed Object Computing 
systems. This framework provides the functionality for remote object communication, as 
shown in Figure 9. We will use the framework for illustrating purposes throughout the 
dissertation. Figure 10 presents a simplified class diagram for the Distributed Object 
Computing Framework. Note that the class diagram does not show Client and Server 
implementations that implement the functionality of a specific application domain. Client 
and Server implementations will be added and discussed later in this section, see Figure 11.  
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Figure 10: Distributed Object Computing Framework 

 
The classes introduced in Figure 10 implement the functionality of sending and receiving 
Request and Response objects over a network.  
 
Request is a container class that holds the information about a single remote method call: 
The attribute ObjectId is used to identify the ServerStub that should receive this 
Request. The attributes MethodName and ParameterList contain the information about 
the method to be invoked and its parameter values. For simplicity reasons the data types for 
the attributes ObjectId, MethodName and ParameterList are not specified. For now it is 
sufficient to assume that these attributes can be of any data type. 
 
The Response class holds the information about the method result value of the method in its 
attribute ResultValue. Again, the data type is not specified. 
 
ClientStub is the abstract base class for all client stub objects. It has an ObjectId that is 
used to uniquely identify the server side ServerStub that this ClientStub represents. The 
invoke() method is used to send a Request over the network and wait for the Response. 
 
Communication provides the connection to the network layer, which can be a TCP/IP 
network for example. The method writeRequest() marshals a Request object into a data 
format that can be transferred over the network and writes it to the network transport layer. 
The method readRequest() reads data from the network and unmarshalls it into a 
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Request object. The methods writeResponse() and readResponse() are used for 
marshalling and unmarshalling Response objects. 
 
RequestDispatcher is a class that every ServerStub must register with. The request 
dispatcher has a main loop that looks for Request objects from the network, via 
Communication.readRequest(). Upon receipt of a Request, the Request is dispatched 
to the ServerStub with the matching ObjectId.  
 
ServerStub is a base class for all server side stubs. The field ObjectId is used for the 
identification of a ServerStub. The invoke() method is called by the 
RequestDispatcher to forward a Request to the ServerStub, which in turn calls the 
method implementation of the Server object (not shown in Figure 10). After executing the 
method implementation, the ServerStub creates a Response object, sets its ResultValue 
attribute and returns it to the RequestDispatcher. 
 
After describing how method calls are transferred over a network in Distributed Object 
Computing, we introduce now an application sample that makes use of this functionality: 
Figure 11 presents a class diagram that contains a sample interface Person with a sample 
method getName(). The abstract base classes ClientStub and ServerStub are provided 
by the Distributed Object Computing Framework and are shown in Figure 10. 
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Figure 11: Sample Application Domain Classes 

 
Person specifies the interface of all the methods provided by the Server object 
implementation. It was a single method getName() that returns a character string value. The 
interface Person is the specification between the Server object implementation and a 
Client. The Server object implementation must implement all methods that are specified 
by the interface. The client may call all methods specified by the interface. 
 
PersonServerStub is the stub object that receives incoming requests (by extending 
ServerStub from Figure 10) and forwards them to the Server object implementation by 
calling the appropriate method, getName() in our example. 
 
PersonClientStub is the client side counterpart of a PersonServerStub object. In our 
example, it implements the interface Person; thereby making sure that it provides the 
method getName(). It extends the class ClientStub in Figure 10, therefore inheriting the 
invoke() functionality. 
 
PersonImpl is the server side Server object implementation. By convention, we append a 
trailing ‘Impl’ to Server implementation classes. The programmer has to make sure that this 
class implements the interface Person and can be invoked via the invoke() method. This is 
done by making PersonImpl a subclass of PersonServerStub.  
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The dynamic model of the Distributed Object Computing Framework illustrates the 
interaction between the Distributed Object Computing framework objects and the sample 
application domain objects. Since Client and Server do not communicate via local method 
calls we present two sequence diagrams, one for the client side and one for the server side, 
shown in Figure 12 and Figure 13, respectively. 
 

 
Figure 12: Sample Dynamic Model Of A Remote Method Call (Client Side) 

 
Here, the Client calls getName() in the Person interface, which is realized by calling 
getName() in the PersonClientStub object that implements the Person interface and 
represents the server side PersonServerStub. After creating a Request object, the stub 
calls the writeRequest() method of a Communication object to send the Request over 
the network. Then it waits for the Response and reads it from the network, using the 
readResponse() method of the Communication object. After reading the Response, the 
method result value is extracted from the Response and returned to the Client. Note that 
waiting for the Response and reading it from the network is a synchronous operation, which 
means that the PersonClientStub is blocked while waiting for the Response4.  
 

                                                 
4 Note that, unless indicatd otherwise, remote method calls are synchronous, which means that the client is blocked until the method call has 
finished executing and the result value has been returned to the client. 
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Figure 13: Sample Dynamic Model Of A Remote Method Call (Server Side) 

 
Figure 13 presents the server side of the remote method call. The RequestDispatcher 
continuously waits for incoming Requests from the network through a Communication 
object. When a Request comes in, the RequestDispatcher reads it from the network 
using the readRequest() method, chooses an object implementation based on the 
ObjectId of the incoming Request, and forwards the Request to that object. In the case 
shown in Figure 13, it is a PersonImpl that the Request is forwarded to.  
 
Note that PersonImpl, which is a subclass of ServerStub, is the Server implementation 
and the server stub at the same time. The PersonImpl reads the MethodName and 
ParameterList attributes of the incoming Request and invokes the method 
implementation of getName(). When the implementation of getName() has finished, the 
PersonImpl creates a Response object, stores the method result value (the name of the 
Person) in its ResultValue attribute and returns the Response object it to the 
RequestDispatcher, which in turn sends it back to the network.  
 
Figure 14 combines the classes of the Distributed Object Computing framework (see Figure 
10) and the classes of the sample application domain (see Figure 11) in a single class diagram.  
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Figure 14: Distributed Object Computing Application Development 

 
A developer creates and uses these classes as follows: 

1. First, the developer specifies the interface of the Server, using an abstract interface 
definition language (IDL), resulting in an abstract specification of the server interface. 

2. After the Server interface is specified, the source code of Person, ClientStub and 
ObjectAdapter are generated. A compiler that takes the interface definition and 
generates the source code of the ClientStub and ObjectAdapter classes as well as the 
Server interface can execute this step automatically. In this case, the interface Person 
and the classes PersonClientStub and PersonServerStub are generated. 

3. The server objects (here PersonImpl) can now be implemented. Each class and each 
method that was specified by the abstract interface definition has to be implemented 
by the programmer. 

4. The Distributed Object Computing system provides the classes ClientStub, 
ServerStub, Request, Response, RequestDispatcher and Communication. 
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The Distributed Object Computing Framework eases the development of distributed 
applications by hiding network transport issues from the programmer. Distribution of objects 
and network communication are transparent to the programmer who implements the Client 
and Server objects as if they communicate with each other through local method calls.  
 
In practice however, developers of distributed applications have to be aware that remote 
method calls are slower than local method calls, since remote method calls involve parameter 
marshalling, network communication and request dispatching. 
 
In the following we illustrate why remote method calls can easily lead to performance 
problems in distributed applications. 
 

 
Figure 15: Remote Method Call: Client Waiting Time 

 
Figure 15 shows the sequence diagram of a remote method call, annotated with time labels. If 
the programming model is synchronous, a client initiating a method call has to wait until the 
method call returns. This waiting time is called Twait and is the sum of three components: 
The marshalling time Tmar, which is the sum of Tmar1, Tmar2, Tmar3 and Tmar4 in Figure 
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15. Tmar is the time it takes to marshal and unmarshal Request and Response objects and 
dispatching them to the appropriate ServerStub and ClientStub. The second component 
is the network time Tnet, which is the sum of Tnet1 and Tnet2. This is the time it takes for 
the Request and Response objects to be transferred from the client to the server. The third 
component is Timpl, the time it takes for the server to execute the method implementation.  
 
The client waiting time Twait depends on a number of factors. In the context of our work, we 
regard the following factors:  

• Marshalling rate. The marshalling rate defines how fast a Distributed Object 
Computing system can marshal method parameters and method result values 
into data packets that can be sent over a computer network. The marshalling 
rate depends, among other factors, on the type of a given method parameter. 
Marshalling user-defined structure types typically takes long than marshalling 
native types like integer values or character strings. 

• Number and size of method parameters and result values. The network time – 
as well as the marshalling time – depends on the number and the size of 
method parameters and result values. Bigger request and response messages 
will take longer to be marshalled and transferred over the network than short 
data packets. 

• Network Bandwidth. The available network bandwidth constrains how fast a 
data packet of a given size can be transferred over the computer network that 
connects client and server. 

• Network Latency. The time it takes for a single byte to travel from client to 
server is determined by the ‘distance’ between client and server, the network 
hardware and topology, the network protocol and the number of network 
devices (routers, switches, relays, modems, satellite connections, etc) between 
client and server. 

• Method implementation. The execution time of a method implementation is 
highly application dependent. For example, a method that triggers a complex 
database query will take significantly longer than a method that returns pre-
computed data. 

 
In the next section we show how these factors affect the client waiting time Twait, and 
therefore the performance of a distributed application built with a Distributed Object 
Computing system. 
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1.3. Distributed Object Computing Performance 

 
Distributed Object Computing systems help to ease the development of distributed 
applications by providing location transparency and handling network communication issues. 
Location transparency means the programmer of a distributed application does not need to 
know whether client and server objects are located in the same address space in the same 
process or located across process boundaries, communicating with each other using remote 
instead of local method calls. However, although remote method calls may seem to behave 
like local method calls from the client’s as well as the server’s point of view, there is a 
difference when comparing local with remote method calls. The difference is the client 
waiting time Twait. If the client calls the server using a remote method call, Twait is 
 

 Twait = Tmar + Tnet + Timpl 
 
whereas in the case of a local method call, Twait is simply Timpl if we leave out the time it 
takes to execute a local method call. 
  
In the following we discuss how Tmar and Tnet affect the client waiting time Twait. In 
order to do this, we present a test application that executes remote method calls using a 
Distributed Object Computing system. The test application implements a very simple 
interface, which was introduced in Figure 11 in section 1.2. Figure 16 presents an IDL 
definition of this sample interface. 
 

 
Figure 16: Test Application Interface 

 
The interface Person provides a single method getName(). The server side method 
implementation of getName() returns a pre-computed string value of a fixed length. The 
hardware and software configuration of the test bed is described in detail in Appendix 9.1.  
 
The goal of the test run is to find out how the method result length, the network delay and the 
network bandwidth affect the marshalling time Tmar, the network time Tnet and thus the 
client waiting time Twait for the sample Person interface. 

1. Method Result Length. The range of the method result length (the length of the 
character string that the getName() method implementation returns) goes from 0 to 
32000 characters.  

2. Network Delay. The range of the network delay goes from 0 to 160 milliseconds. A 
delay value of 0 milliseconds is the theoretical lower limit for all computer networks. 
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3. Network Bandwidth. The range of the network bandwidth goes from 1600 Kilobytes 
per second down to 50 Kilobytes per second. 

 
The results of the test runs5 show that the method result length, the network delay value and 
the network bandwidth affect the client waiting time Twait:  

1. Method Result Length. If the method result value increases, the marshalling time Tmar 
and the network time Tnet of the remote method calls increase as well. 

2. Network Delay. The greater the network delay, the longer it takes for both Request 
and Response objects to be transferred over the network. Thus, the network time 
Tnet depends on the network delay. 

3. Network Bandwidth. Higher bandwidth means faster data transfer. Therefore, if the 
bandwidth grows, the network time Tnet decreases. 

 

 
Figure 17: Twait For Different Network Delays 

 

                                                 
5 The complete test results are shown in the Appendix, section 9. 
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Figure 18: Twait For Different Bandwidths 

 
The test run results shown in Figure 17 and Figure 18 indicate that, for the testbed 
environment described in Appendix 9.1 and the sample application, the client waiting time 
Twait is a linear function of the network delay Tdelay, the network bandwidth bw and the 
method result length l and can be written as: 
 

Twait(Tdelay, bw, l) = T0(Tdelay) + c(bw)*l 
 
T0 is the offset of the Twait function and is determined by the network delay Tdelay. The 
growth factor c of the Twait function and is determined by the network bandwidth bw.  
 
Based on the measurement results, Twait can be written as: 
 

Twait(Tdelay, bw, l) = 1  +  2 * Tdelay  +  1.00156 * l/bw 
 
As one can see from the test runs, the overhead of calling a remote method is significantly 
higher than the overhead of a local method call: Calling a remote method over a network with 
a near-zero network delay takes from 1 millisecond (method result length is 0) to 30 
milliseconds (method result length is 32000 characters). 
 
Even if we let the marshalling time Tmar approach zero for all remote method calls, this 
would lead to a considerable performance speedup only for near-zero delay networks, because 
Tmar is a relatively small component that adds to the client waiting time Twait.  
 
Increasing the network bandwidth usually yields considerable performance speedups. 
However, while it might be possible to switch to high-speed networks (High-Speed ATM or 
Gigabit Ethernet, for example) in local area networks (LANs), the real world provides 
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networks that do not provide unlimited network bandwidth and – even more severe – are too 
expensive to upgrade. Decreasing the amount of data that has to be transferred over the 
network is a technique to improve the bandwidth usage of a given network. The programmer 
of a distributed application has to make sure that no more data is transferred over the network 
than is needed.  
 
The network delay affects the performance of remote method calls considerably. 
Unfortunately, decreasing the network delay is not always possible for real-world networks, 
since it is determined by the network technology, topology and hardware. The only thing a 
programmer can do is to make sure that as few remote method calls as possible are sent over 
the network. As indicated by our test runs, it is better to call a few remote methods with big 
result values than calling many methods with small result values. The benefit B of combining 
n method calls into one single remote call can be written as: 
 

B = n*Twait(Tdelay,bw,l)-Twait(Tdelay,bw,n*l) = 
 
= n*(1+2*Tdelay+1.00156*l/bw) – (1+2*Tdelay+1.00156*n*l/bw) = 
 
= (n-1)*(1+2*Tdelay) 

 
In the following section we present a sample application to evaluate how the number of 
remote method calls affects distributed application performance in our test environment. We 
will then introduce the technique of packaging remote method calls and discuss its effect on 
performance. 
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1.4. Problem Statement 

 
In the previous section we have discussed and evaluated the performance of remote method 
calls and we have shown how factors like network bandwidth, network delay and method 
result length affect the client waiting time. In this section, we focus on the application level to 
evaluate how the number of remote method calls affect distributed application performance. 
We introduce a sample application and evaluate the performance of this application. We will 
then use the performance test results to 

1. discuss the relationship between the number of remote method calls and the 
performance of a distributed  application, 

2. discuss a number of current-practice approaches which can be applied to speed up 
distributed application performance, and  

3. discuss current-practice approaches in terms of performance gains and development 
effort. 

 
 

1.4.1. Address Book Sample Application 

 
The sample application is a distributed client-server system that is used to store and retrieve 
data about persons, like their name, email addresses and phone numbers. Moreover, users can 
create, edit and remove person entries and can use a search function to search person entries 
by name. The use case model of the Address Book application is shown in Figure 19. 
 

 
Figure 19: Address Book Use Case Model 

 
For the rest of this section, we concentrate on the ‘Search By Name’ use case, since this is 
sufficient for the discussion of the performance aspects. The analysis class model of the 
Address Book application is rather simple, as shown in Figure 20: Only the methods needed 
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by the ‘Search By Name’ use case are shown. The class AddressBook is a container for the 
Person objects. Each Person object has a name, an email address and a phone number, 
which can be retrieved by get-methods.  
 

 
Figure 20: Address Book Analysis Model 

 
A sample deployment of the Address Book application is shown in Figure 21: The Address 
Book Server provides access to Person objects to Address Book Clients. A Database Server 
stores the data of all persons. 
 

 
Figure 21: Address Book Deployment Diagram 
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Figure 22: Search And Display Person Entries 

 
The sequence diagram in Figure 22 illustrates the steps required for searching for a person 
and displaying the search result. After user u initiates ‘Search By Name’, the remote method 
call search() is sent to the server, with a search expression x as method parameter. The 
result of this method call is a list of Person interfaces. In this example, the search yields a 
result of two persons. To display the search result, three remote method calls getName(), 
getEmail() and getPhone() are initiated for each Person entry.  
 
More general, the number of method calls, Nm, depends on the size of the search result list:  
 

Nm = 1 + Na * Np 
 
Nm is the number of remote method calls, Np is the number of Person entries returned by 
search() and Na is the number of attributes per Person. The time to get the Person list and 
iterating over it, calling three get() methods for each Person entry is called the ‘cycle 
time’. 
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1.4.2. Address Book Implementation 

 
We now describe a CORBA [10] implementation of the Address Book sample application, 
according to the development process introduced in Figure 14. Starting with the interface 
specification, we will describe the code generation of ClientStub and ServerStub source 
code. Then we present pseudo code fragments of the client and server implementations. 
Finally we will show the interaction between the application client, the stub and adapter 
objects, the CORBA system and the server implementation.  
 
CORBA is an abstract specification of a Distributed Object Computing system and defines 
the stub protocol (see Figure 9) of remote method calls, mappings of objects to object 
references and remote lookup services for finding and locating remote objects. Moreover, the 
CORBA specification [10] describes a Naming Service that client applications use to find 
objects across a network, and vertical application-dependent services to be used, e.g., for 
medical applications and banking systems. In this dissertation we focus on the remote method 
call mechanism provided by the CORBA specification. The CORBA implementation that is 
used throughout this dissertation is described in Appendix 9.1.  
 
In CORBA, the server interface is defined by an abstract interface definition language called 
CORBA IDL. The IDL definition serves as a contract between client and server and describes 
the data types, interfaces and methods that the server provides to clients. The abstract 
interface definition shown in Figure 23 is derived from the analysis class model of Figure 20 
and specifies the list of object interfaces, data types and method signatures that the Address 
Book sample server implements. Since CORBA IDL does not provide object arrays, a new 
collection PersonList is defined, which holds a list of Person instances (line 7 in Figure 
23). 
 

 
Figure 23: Address Book IDL Definition 

 
An IDL compiler reads the IDL definition file and generates source code for the ClientStub 
and ServerStub classes in the destination language, which is Java [50] in our case. Note 
that IDL is language independent and IDL compilers exist for other destination languages 
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such as C/C++, Ada, and Perl. The CORBA standard specifies the mapping of IDL entities 
and data types to destination language classes, interfaces and data types. Since we are using 
Java as destination language, each IDL-defined interface generates a Java interface, a 
ClientStub, a ServerStub and a Helper class. Note that the CORBA nomenclature of 
stub objects differs from the names in our Distributed Object Computing Framework 
presented in section 1.2. According to the CORBA standard, a trailing ‘Stub’ stands for a 
ClientStub type and a trailing ‘POA’ (Portable Object Adapter) stands for a ServerStub 
type. 
 

 
Figure 24: AddressBook IDL Compiler Output 

 
Figure 24 shows the generated classes for the IDL entities AddressBook, Person and 
PersonList. The interfaces AddressBook and Person define the methods that are 
specified via IDL. The client stub classes PersonStub and AddressBookStub extend the 
respective interfaces and provide implementations for the inherited methods. These 
implementations handle parameter marshalling, creating and sending Request objects, 
receiving Response objects and unmarshalling method result values. The server stub classes 
PersonPOA and AddressBookPOA provide the _invoke() method that is called by a 
RequestDispatcher to forward incoming Requests.  
 
The POA classes do not provide implementations of the IDL-defined methods. Instead, 
implementation classes (shown in the next section) must extend the POA classes, and must 
provide an implementation for each method.  
 
The helper classes PersonHelper and AddressBookHelper provide methods for writing 
and reading instances of the respective classes to and from data streams. A narrow() method 
provides for type-safe casting (also called ‘narrowing’) an untyped object reference to an 
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object reference of the desired type. For the data type PersonList, no stub classes or 
interfaces are generated. Only a helper class, which is used to narrow, read and write 
PersonList objects is provided. 
 
Server Implementation 
 
The generated source code described above handles the mechanism of remote method calls: 
Sending Requests, waiting for Responses, dispatching incoming method call Requests 
to server stubs and so on. The actual implementations of the IDL-defined methods are still 
missing. The Address Book implementation classes are shown in Figure 25. The shaded 
interfaces and classes were generated by the IDL compiler, see Figure 24. 
 

 
Figure 25: Address Book Implementation Classes 

 
By convention, we use the suffix ‘Impl’ for implementation classes. AddressBookImpl 
holds a list of PersonImpl objects. Both implementation classes, AddressBookImpl and 
PersonImpl, are subclasses of their respective POA classes, thereby inheriting the ability to 
receive remote method call Requests and send back Response objects.  
 
Figure 26 presents a simplified pseudo code of the server implementation. Upon startup, the 
server creates an AddressBookImpl object (line 5) and registers it with the CORBA 
Naming Service, a system-wide registry that maps string names to object references (line 6). 
It then enters the CORBA main loop by calling wait_for_invocations(), a method that 
blocks until the user shuts down the server program (line 7). 
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Figure 26: Pseudo Code Of The Address Book Server Implementation 
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The AddressBookImpl – upon creation – loads a list of PersonImpl instances from a 
backend database (line 17). The implementation of the search() method (lines 20-28) 
iterates over the PersonImpl list and adds each PersonImpl that matches the search 
expression to a result list. This result list is then returned. The PersonImpl class is merely a 
container for the 3 attributes Name, Email and Phone.  
 
Client Implementation 
 

 
Figure 27: Pseudo Code Of The Address Book Client  

 
Figure 27 presents the pseudo code for the Address Book sample client that implements the 
‘Search By Name’ use case. To get an object reference for the initial AddressBook, the 
client queries the CORBA Naming Service (line 3). The object reference is then converted in 
an AddressBook type (line 4). This AddressBook object reference represents the server 
side AddressBookImpl object implementation.  
After calling the search() method that returns a list of Person object references (line 5), 
the client displays the person list on the screen by iterating over the search result list, calling 
getName(), getEmail() and getPhone() for each Person (lines 6-9). 
 
In the next section we will discuss the interaction of the application objects and the CORBA 
implementation when the client queries the CORBA Naming service, executes the search() 
method and displays the resulting list of Person attributes. 
 



36  1. Introduction 

1.4.3. Remote Method Call Object Interaction 

 
In this section we present the interaction of the application objects and the CORBA 
implementation based on the Address Book sample application. We assume that both the 
CORBA Naming Server and the Address Book server application are running and ready to 
receive requests. The first task of the Address Book client is to query the Naming Service to 
get an initial reference for an AddressBook. 
 
Query Naming Service 
 

 
Figure 28: Query Naming Service 

 
Figure 28 illustrates the steps that are executed when the client queries the CORBA Naming 
Service. The client calls the resolve() method of the CORBA Naming Service, which 
creates and returns an untyped object reference. That object reference represents a server side 
object implementation, an AddressBookImpl object in our case. The 
AddressBookHelper narrow() method is then used to convert the untyped object 
reference into a typed one: An AddressBookStub object is created and its AddressBook 
interface is returned to the client (see also Figure 27, line 4). So, the client can call all 
methods that are part of the AddressBook interface. The fact that the interface is 
implemented by an AddressBookStub is unknown to the client.  
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Execute Search Function 
 

 
Figure 29: Execute The Search Function 

 
In Figure 29, the client calls the search() method of the AddressBookStub. The stub 
creates a Request that contains a description of the method to be remotely called: The name 
of the method, an identifier of the object that should be called, and so on. The Request is 
forwarded to the CORBA Runtime system, which sends the Request over the network and 
waits for a Response. Note that we do not show network communication objects, as in 
Figure 12 and Figure 13. Instead, we assume that the network communication subsystem is 
contained in the CORBA Runtime object.  
 
At the server side, the RequestDispatcher receives the Request and forwards it to the 
according object implementation, which is an AddressBookImpl in this case. The 
implementation object extracts the search expression string from the Request object and 
calls the method implementation of search(). The result value of search() is a list of 
Person objects. The AddressBookImpl object creates a Response object, inserts the 
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method result value into it and returns it back to the RequestDispatcher, where it is sent 
back to the client.  
 
In the meantime, the AddressBookStub has been waiting for the Response of the 
search() remote method call. When the Response arrives, the AddressBookStub reads it 
from the network subsystem of the CORBA Runtime.  
 
This process is shown in greater detail in Figure 30. The AddressBookStub uses a 
PersonListHelper to read a PersonList, which is actually an array of Person 
interfaces, from the network. The PersonListHelper reads the number of list entries from 
the Response data and then uses the read() method of a PersonHelper to read as much 
Person object references from the Response data as indicated. For each Person object 
reference, a PersonStub is created (in this example, the result list contains 2 entries). 
Finally, the list of Person objects is returned to the AddressBookStub and the client (see 
line 5 in Figure 27). 
 

 
Figure 30: Read Search Result 

  
Display Result List 
 
After having received the search() result list, the client can now iterate over the result list 
and retrieve the attributes of all result list entries. The client calls getName(), getEmail() 
and getPhone() for each of the Person entries that matched the search expression and are 
returned by the search() method.  
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Figure 31 presents a sequence diagram of getting the name of a Person. The client calls the 
getName() method, not knowing that the receiver of the call is actually a PersonStub 
object that initiates a remote method call and receives a result value that it returns to the 
client. Calling getEmail() and getPhone() work analogous. 
  

 
Figure 31: Get Attribute Value 

 
 

1.4.4. Address Book Performance 

 
In this section we present performance measurements of the Address Book sample 
application, based on the implementation presented in section 1.4.2 and the testbed 
configuration described in Appendix 9.1. For an exact description of all test run parameters as 
well as a complete list of measurement result values see Appendix 9.3 
 
A test run consists of fetching the Person list by calling search() and then iterating over 
the result list of Person entries. The length of the result list returned by search() was set to 
a fixed value of Np=10 and the number of attributes per Person was set to Na=3, therefore 
the number of remote method calls per test run was Nm=31. Each attribute had the fixed 
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length of 10 characters. Figure 32 shows the test run times for different network delay and 
bandwidth configurations. 
 

Search Result Length (Np) Fixed Np = 10 
Attributes Per Person (Na) Fixed Na = 3 
Attribute Length (l) Fixed 10 Characters 
Network Delay Variable 0 to 160 ms 
Network Bandwidth Variable 50 to 1600 Kbyte/s 

 

 
Figure 32: Test Run Time For Different Network Parameters 

 
The most important result of the test run is that the test run time (the time it takes to retrieve 
the person list and the attribute values of its entries) is determined almost exclusively by the 
network delay. The influence of the bandwidth is negligible. Since the marshalling time is 
very small compared to the network time, it is negligible, too, except in the case where the 
network delay is zero, in this case Tmar > Tnet. The result of the test run is that the 
application performance is determined mostly by the network delay and the number of remote 
method calls per test run. 
 
The second test run illustrates further how the number of remote method calls affect 
application performance. In this test run we varied the number of attributes of a Person from 
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Na=3 down to Na=0. Having this, the number of remote method calls decreases from Nm=31 
down to Nm=1, according to the formula presented in section 1.4.1.  
 
Search Result Length (Np) Fixed Np = 10 
Attributes Per Person (Na) Variable Na = 0 to 3 
Attribute Length (l) Fixed 10 Characters 
Network Delay Variable 0 to 40 ms 
Network Bandwidth  Fixed Not limited 

(Full Ethernet speed) 
 

 
Figure 33: Test Run Time For Different Number Of Person Attributes 

 
Figure 33 presents the performance measurement results in a graphical representation. The 
test run time is a linear function of the number of attributes and the number of remote method 
calls. In the case Na=0, only 1 remote method is called per test run, namely the search() 
method. In the case Na=1, 11 remote methods are called per test run: search() and 
getName() for each Person contained in the result list, where the number of Person entries is 
Np=10. The exact result numbers can be found in Appendix 9.3. 
 
For real-world network installations, the network delay is determined by the physical 
hardware, the number and performance of the routers, switches, hubs, satellites, 
telecommunication relays, and any other network components between two communication 
endpoints. Moreover, the network delay is determined by the distance of two communication 
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endpoints. The larger the network delay gets, the more the distributed application 
performance is affected by the number of remote method calls. Actually, the issue of the 
number of remote method calls is the most important issue that makes single process 
application programming different from distributed object application programming.  
 
In object-oriented programming it is common practice to have a large number of highly 
specialized methods. Having every method focus on one small aspect leads to fine-grained 
object interfaces. This is no problem as long as client and server object are in the same 
address space, since local method calls can be executed very fast. In fact, having a large 
number of highly specialized methods helps in dealing with the complexity of software 
development, as method concerns are focused and redundancy is kept low. 
 
However, when the cost of executing remote method calls is high – as in distributed 
applications – programmers must strive for coarse-grained object interaction where the 
number of remote method calls is kept as low as possible. In practice, programmers of 
distributed applications use common practice approaches to reduce the number of remote 
method calls. Some of them are presented in the next section. 
 

1.5. Current Practice 

 
A straightforward transformation of a fine-grained analysis object model into an 
implementation object model can lead to severe performance drawbacks if the application is 
deployed over a distributed network of computers. Since every remote method invocation 
involves a full network roundtrip, performance goes down as the network delay value grows. 
Thus, the number of remote method calls must be kept as low as possible if application 
performance is critical.  
 
In this section we present current practice approaches of reducing the number of remote 
method calls:  

1. Fat Operations. “Combine several methods into one single method.” 
2. Data Structures. “Give up object orientation by defining data structures that are 

passed by value.” 
3. Objects By Value. “Pass objects by value, not by reference, and execute object 

methods locally.” 
4. Asynchronous Method Invocation. “Use asynchronous invocation model.” 

 
The descriptions of the approaches use the Address Book sample application introduced in 
section 1.4.1. We measure the performance gains and discuss the advantages and drawbacks 
of each approach. 
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1.5.1. Fat Operations 

 
The idea of the “Fat Operations” design pattern [19] is to reduce the number of remote 
method calls by adding coarse-grained methods that combine the calls to several existing fine-
grained methods in one call. The AddressBook interface defines three attributes per 
Person, each of them having its get() accessor method. Applying the Fat Operations 
design pattern, a new method is introduced that returns all attributes of a specific Person 
object in one single remote method call. Figure 34 shows the IDL definition of the Address 
Book application, introducing a new method getAll() that returns a StringList.  
 

 
Figure 34: Fat Operations IDL Definition 

 
The implementation of getAll() creates a new StringList object and inserts the Name, 
Email and Phone attribute values of the Person object implementation. The resulting 
StringList object is then marshalled and transferred back to the client in one piece. The 
client can now extract the attribute values from the StringList and display them on the 
screen. The getAll() method is called for each of the Person objects included in the 
search() result list. Therefore, the number of remote method calls in the Address Book 
sample is reduced to 
 

Nm = 1  +  Np * 1 
 
where Nm is the number of remote method calls per test run and Np is the number of search 
result entries. 
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Figure 35: Calling A Fat Operation 

 
Figure 35 presents a sequence diagram of calling the getAll() method. The sequence 
diagram looks similar to Figure 31, except with getAll(), all attribute values of a Person 
object are marshalled and transferred in one single remote method call, whereas is Figure 31 
three remote methods must be called per Person object, one for each attribute. 
 
By using fat operations, the number of network roundtrips can be reduced. In the Address 
Book sample application, the number of network roundtrips is no longer proportional to the 
number of attributes of a person. Instead, all attributes of a Person can be retrieved in one 
single remote method call. In general, the performance speedup of calling a fat operation 
depends on how many fine-grained method calls are saved by calling the fat operation.  
 
However, these benefits do not come for free. The drawbacks of this approach are: 
 

• Implementation effort. If a new method is introduced in the IDL definition, the 
ClientStub and ServerStub source code has to be re-generated and re-
compiled. The client and server implementation has to be re-written and re-
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compiled too, to support the new fat operations. After implementing, testing and 
documenting all affected parts of the software system, the new client and server 
software has to be shipped and deployed. Thus, introducing fat operations is 
expensive if an application is already deployed. 

• Reuse. Most fat operations are tailored to one specific client task. If the Address 
Book client application has to display all attributes of a Person, the getAll() 
method is exactly what the client developer is looking for. However, if the client 
should only display the name and the email address of a Person object, the client 
developer has two choices. First, the fat operation getAll() is used anyway. 
Since the getAll() method transfers all attributes of a Person object, network- 
and server resources are wasted. Second, the client developer uses getName() 
and getEmail() directly, in which case the network latency problem comes up 
again. In any case, the client developer should have a method 
getNameAndEmail(), which fulfills the client’s needs in one single network 
roundtrip. 
Anticipating what the client exactly needs is not always possible. For example, in 
many address book applications that are commercially available, the user can 
configure which Person attributes are displayed on the screen. Ideally, the IDL 
interface of a distributed address book application would provide a get() method 
for each possible combination of Person attributes, which is generally not 
feasible, due to combinatory explosion. 

• Maintenance. Fat operations introduce redundancy, with all its disadvantages. 
First, the principle of one-method-per-task and one-task-per-method is violated. 
Every fat operation does the tasks of all the fine-grained operations. Second, 
additionally maintenance is needed when the set of the fine-grained operations 
change. If for example a new method getFirstName() is introduced, the fat 
operation getAll() and all software parts that use getAll() must be updated 
accordingly. This is similar to databases, where controlled denormalization 
improves application performance at the cost of introducing redundancy into the 
data model. 
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1.5.2. Data Structures 

 
The ‘Data Structures’ approach uses data structures in addition to object interfaces and 
returns result values ‘by value’ instead of ‘by reference’. Figure 36 shows – next to the 
original Person interface – a data structure PersonData that declares three attribute 
elements. When a client calls searchData(), the method implementation of 
searchData() constructs a sequence of PersonData structures, fills in the attribute values 
of all Person objects and returns the sequence to the client. In Figure 36, the client has the 
choice of getting a list of Person object references by calling search() or getting a list of 
PersonData structures by calling searchData(). 
 

 
Figure 36: Data Structures IDL Definition 

 
Since the sequence of data structures is marshalled and transferred over the network in one 
piece, a performance speedup is achieved by reducing the number of remote method calls. In 
case of the Address Book sample, the number of remote method calls per test run (get the 
PersonDataList and iterate over it) is reduced to 
 

Nm = 1 
 
where Nm is the number of remote method calls per test run. 
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Figure 37 show a sequence diagram where a client calls the searchData() method to 
retrieve a list of PersonData data structures from the Address Book server in a single 
remote method call.  
 

 
Figure 37: Using Data Structures 

 
The ‘Data Structures’ approach has the following drawbacks: 
 

• Implementation effort. Integrating this approach into an already existing and 
deployed system yields a considerable implementation effort. Since clients and 
servers have to be extended to support the newly introduced data structures, the 
software development has to go through a full design/implement/deploy cycle. 
Another issue that has to be considered when using data structures is data 
staleness. If a client receives a sequence of PersonData objects and holds it for a 
long time, it has to make sure that it fetches the list from the origin server from 
time to time to avoid working with old and timed-out data. When using interface 
methods like getName(), getEmail(), data freshness comes for free, as each 
method result is fetched from the server each time. 



48  1. Introduction 

• Reuse. As with fat operations, data structures are tailored to a specific client task. 
The attributes of the data structure should match the client task as precisely as 
possible. If the client needs – for a specific task – more attributes than held by the 
data structure, it has to revert to the original object-oriented interface, which 
results in additional network roundtrips. If on the other hand the data structure 
defines more attributes than the client needs, network time and server resources 
are wasted. This may not be harmful with small data values, but if the Address 
Book application were designed to display bitmap images too, marshalling and 
transferring these images in vain would be a waste of resources, especially if large 
high-resolution images are used. So the benefit of data structures depends on 
whether the IDL developer can anticipated the clients’ needs, which is generally 
not possible but for the near future. 

• Maintenance. Since data structures are self-describing, adding or removing an 
attribute is straightforward, but not without implementation effort. When 
introducing a new method or attribute for an object interface, the according data 
structure in the IDL specification may have to be updated, too, as well as the 
server and client source code.  

• No Object-Orientation. A further drawback of the data structures approach is that 
data structures are values instead of objects. Therefore, there are no references to 
data structures that can be passed around like object references, hindering the use 
of pass-by-reference call semantics. Another drawback is that there is no 
inheritance between data structures, which restricts the reusability of data 
structures. Finally, since structures are passed by value, modifying an attribute 
value is only local and does not update the server state.  
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1.5.3. Objects By Value 

 
The ‘Objects By Value’ approach [11] is an extension to the CORBA standard and fills the 
gap between CORBA interfaces and CORBA data structures by introducing a new IDL 
language construct ‘value object’. The CORBA standard states that  
 

“…there are many occasions in which it is desirable to be able to pass an object 
by value, rather than by reference. This may be particularly useful when an 
object’s primary ‘purpose’ is to encapsulate data, or an application explicitly 
wishes to make a ‘copy’ of an object.”.  

 
The idea of the Objects By Value approach is to have a language construct ‘value object’ that 
acts part as an object and part as a data structure. A value object differs from a regular object 
in that it potentially carries attributes and that the method implementations are executed 
locally. When used as a remote method result value, a copy of the value object is created on 
the receiver’s side, thereby employing pass-by-value semantics.  
 

 
Figure 38: Objects By Value IDL Definition 

 
When the Objects By Value approach is applied to the Address Book sample application, the 
IDL interface definition looks like shown in Figure 38. The interface Person with its get() 
accessor methods remains untouched. The new value object PersonV (declared with the 
‘valuetype’ keyword in Figure 38) declares 3 class-private attributes. It is further declared 
as ‘supports Person’, which means that it implements the Person interface with its 
accessor methods getName(), getEmail() and getPhone(). The implementation of these 
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get() methods simply return the private attributes of the value object. The declaration of the 
search() method is modified in that it returns a list of PersonV value types instead of 
Person object references.  
 

 
Figure 39: Objects By Value 

 
If the client now calls search(), as shown in Figure 39, a list of PersonVImpl objects is 
created by the method implementation of search(). Since PersonV is defined as value 
object, the state of each value object (the attributes Name, Email and Phone) is marshalled 
and transferred back to the client side. The unmarshalling process in the client-side CORBA 
Runtime instantiates new PersonVImpl value objects, restores their state, and returns the 
result list to the client. The client can now call getName(), getEmail() and getPhone() 
on these value objects like with Person objects, with the notable difference that the get() 
methods are now implemented by the local PersonVImpl objects and do not initiate remote 
method calls. The PersonVImpl implementations of the get() methods simply return the 
value of the private attributes Name, Email and Phone.  
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The number of remote method calls for one test run (execute search() and iterate over the 
result list) is now 
 

Nm = 1 
 
where Nm is the number of remote method calls per test run. 
 
The difference between data structures and value objects is that data structures are simple 
record-type values containing data, whereas value objects are real objects that contain data 
and code. The difference between value objects and normal CORBA remote objects is that 
remote objects are located in the server and clients use objects references to refer to remote 
objects. When a client invokes a method on an object, the method call is forwarded to the 
object implementation in the server. Value objects are always local to the client, so calling a 
method on a value object is executed in the address space of the client. No remote method call 
is initiated. Based on this behavior, value objects provide semantics of pass-by-value similar 
to that of standard programming languages. Switching from pass-by-reference to pass-by-
value semantics can reduce the number of remote method invocation.  
 
The Objects By Value approach has advantages over Data Structures, including the following:  
 

• Reuse. Since value objects can encapsulate class-private data, the information 
hiding principle is maintained. Moreover, value objects support interface 
inheritance. Therefore, using value objects has advantages over data structures as 
far as reuse is concerned. 

• Maintenance. Since valuetypes are self-describing, adding or removing an 
attribute or a method is straightforward and the extra effort for remote operations 
is low. The encapsulation of object references in valuetypes makes it possible to 
implement some methods as remote methods, whereas other methods of the same 
value object can be implemented locally. The decision where the implementation 
of a method resides – locally on the client or remote on the server – is private to 
the value object and can be changed without the need to update any software that 
is using the value object. 

 
However, using the Objects By Value approach has some disadvantages over using object 
references and remote method calls, including implementation effort: 
 

• Implementation effort. Introducing value objects provides backward compatibility 
for the client implementation. Since value object can be declared as extensions to 
already existing interfaces, an already existing and deployed client continues 
working. However, server implementations have to be updated and extra code for 
the value object implementation classes has to be written, so introducing value 
objects does not come for free in terms of implementation effort. Also, as with 
data structures, the issue of data staleness has to be addressed.  
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1.5.4. Asynchronous Method Calls 

 
Distributed Object Computing systems are designed to mimic the behavior of local method 
calls: The client calls a method, waits until a result value is available and then goes on with 
the next instruction. The advantage of this synchronous programming model is that it is well 
understood by developers. However, sometimes it is desirable to let a client continue with the 
execution while a method implementation at the server is in progress. The client can fetch the 
method result later, either by polling, or by being notified when the method implementation 
has finished executing and the result value is available. The ‘CORBA Asynchronous 
Messaging Interface’ [12] includes a specification for an asynchronous programming model: 
The client calls a method but instead of being blocked until the result value is available, a 
placeholder object is created and control is given back to the client immediately. When the 
result value is available, it is stored in the placeholder object and can be retrieved later by the 
client.  
 

 
Figure 40: Asynchronous Method Calls IDL Definition 

 
The Asynchronous Messaging Interface definition was introduced for situations where a 
client could continue to do useful work during the time of the method execution, for example 
when the method implementation executes a complex database query. In the following we 
experiment with the Asynchronous Messaging Interface, executing performance 
measurements, to see if an asynchronous method call model can speed up the Address Book 
sample application. The client task of getting the attributes of a Person entry is presented in 
Figure 41. The client calls the get() methods of the PersonStub and is not blocked. It is 
not defined when and in which order the get() method calls are forwarded to the 
PersonImpl object. Later, the client uses the ReplyHandler placeholder object to retrieve 
the method results. 
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Figure 41: Asynchronous Method Calls 

  
The advantage of the Asynchronous Invocation Model is that the IDL definition of the 
software system does not need to be changed - the IDL definition shown in Figure 40 is the 
same as the original Address Book IDL definition – thus, reuse is high. Moreover, the 
Asynchronous Messaging Interface is entirely a client side feature, the server implementation 
is never aware whether it is invoked synchronously or asynchronously, which means that 
server implementation code does not need to be modified when using the Asynchronous 
Messaging Interface. 
 
However, the disadvantages of using the Asynchronous Messaging Interface are: 
 

• Implementation effort. The implementation of the client has to be modified to 
query the return values asynchronously. The issue of concurrent execution and 
race conditions has to be addressed, for example by definition of critical sections. 

• Maintenance. Introducing asynchronous operations to any software system yields 
extra maintenance effort, because when two methods a() and b() are called 
sequentially, there is no guarantee that the result values are available in the same 
order. This is a characteristic that is so integral to standard programming 
languages that giving it up leads to code that is hard to maintain. For example, if 
method parameters depend on result values of other methods, which must be 
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called previously, mechanisms of distributed concurrency control must be 
implemented, adding complexity to the system source code. 

 
 

1.5.5. Performance And Discussion 

 
In this section we present performance measurement results of the current practice approaches 
discussed so far. The hard- and software configuration of the test bed is described in 
Appendix 9.1. Here, we only present summaries of the test runs, as well as an interpretation 
of the measurement results. An exact description of the test runs as well as the complete list 
of measurement result values is included in Appendix 9.4.  
 
Figure 42 shows a graphical representation of the client waiting time Twait for each of the 
current practice approaches, Figure 43 shows the network time Tnet for each approach. One 
can see from the diagrams and the result numbers listed in Appendix 9.4 that for the Address 
Book sample, the main component that adds to the client waiting time Twait is the network 
time Tnet. Only in the case of asynchronous method calls, there is a major gap between Tnet 
and Twait, as the marshalling time Tmar is relatively high in this case. 
 

 
Figure 42: Test Run “Current Practice” / Twait Values 

 
While using the Fat Operations approach can speed up the Address Book performance, using 
the Data Structures or Objects By Value approach is far more beneficial for performance, 
especially with high network delay times. Using the Data Structures approach or the Objects 
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By Value approach does not make any measurable difference in terms of performance. The 
performance of the asynchronous method calls lies inbetween the Fat Operations and the Data 
Structures and Objects By Value approach.  
 

 
Figure 43: Test Run “Current Practice” / Tnet Values 

 
The measurement result values (see Appendix 9.4) indicate that for the Address Book sample 
test runs: 
 

• The waiting time Twait is dominated by the network time Tnet. The influence of the 
marshalling time Tmar is marginal, except in the case where the network delay time 
Tdelay is set to 0. In this case, the marshalling time Tmar is equal or greater than the 
network time Tnet. 

• The network time Tnet is dominated by the number of remote method calls Nm and 
the network delay time Tdelay. 

• Similar to Tnet, Tmar depends on the number of remote method calls: Marshalling 
many small request and response messages takes longer than marshalling all data into 
one large package. It is up to the Distributed Object Computing system to provide an 
explanation for this behavior. Examining the marshalling performance of existing 
Distributed Object Computing systems is out of scope for this dissertation. For the 
interested reader, we refer to Distributed Object Computing performance research, 
e.g.[18]. 

 
To summarize: All of the current practice approaches that we presented in this chapter can be 
applied to any distributed application system. The performance speed-up will depend on how 
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many remote method calls can be avoided by applying an approach. All approaches have the 
drawback that the application client and/or server implementation source code has to be 
modified to implement the changes made by introducing a current practice approach. Thus, 
the presented approaches are not transparent to client and server implementation. 
 
The claim of this dissertation is that caching and prefetching remote methods can speed up 
distributed applications by avoiding network roundtrips. In the remainder of this dissertation 
we present such a caching and prefetching system, and a CORBA-based implementation of 
the system and its validation.  
 



22..  CCAACCHHIINNGG  AANNDD  PPRREEFFEETTCCHHIINNGG  

Remote method calls are costly and the performance of distributed applications can be 
substantially improved by reducing the number of remote method calls. The basic hypothesis 
of our work is that the number of remote method calls can be reduced by caching and 
prefetching method result values.  
 
After describing caching and prefetching in general we address issues like cache consistency 
(the cache has to represent the data of the origin server), cache replacement (if the cache gets 
filled up, cached data items have to be evicted from the cache memory to make room for new 
data items) and prefetching prediction (the system has to decide which data items should be 
prefetched). An exhaustive overview over research work on caching and prefetching is 
beyond the scope of this dissertation, we concentrate on caching and prefetching techniques 
that are applicable to our work.  
 

2.1. Caching 

 
In this section we explain how caching and prefetching can be used to increase application 
performance and present approaches for ensuring cache consistency and managing cache 
replacement.  
 
Caching of data items can be applied whenever there is a client/server architecture where the 
server provides data items to a client (see Figure 44a). Caching means that a copy of the data 
item requested by a client is stored as a cache item in a cache near the client (see Figure 44b), 
so that, if the same data item is requested again, the client can access the cache item faster 
than retrieving the data item from the server. Examples are network file systems and the 
Internet.  
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Figure 44: Client/Server Caching Architecture 

 
A popular application of caching in the Internet is the Web: Web browsers communicate with 
Web servers to request Web documents like html files, images and multimedia content via the 
Hypertext Transfer Protocol (HTTP) [22] The Web browser acts as the client and the Web 
server acts as the server. Typically, these Web documents are stored in the file system of the 
Web server. Alternatively, a Web server can generate Web documents on-demand, which is 
the case for weather forecasts, stock numbers and news pages, for example. There are two 
common caches in the Web. One local at the client and one that is located on the network 
between client and server. The later is often called a Web proxy server6. 
 
In the case of network file systems, a server hosts files and any application program that reads 
a remote file acts as a client. Most often, a network file system is realized as an extension of 
the client operating system, where typical file operations like open, read, write and close are 
forwarded to the remote server, transparent to the client. The cache can either be the harddisk 
or the main memory of the client computer. 
 
In all cases described so far, if requesting data items from the cache is faster than requesting it 
from the server, performance speedups can be gained by caching data items and the potential 
speedup that can be gained when accessing an already-cached data item is determined by a 
number of factors, among them the ratio of the client-server and the client-cache connection 
speeds and network delay times. 
 

2.1.1. Cache Consistency 

 
If the state of all cache items stored in the cache mirrors the state of the respective data items 
on the server, then the cache is called consistent. When a data item is updated on the server, 

                                                 
6 A program that caches Web documents and acts as a Web server when contacted by a client.  
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but not in the cache, then the cache becomes inconsistent. If a client requests data that is 
served from the cache, out-of-date data may be delivered to the client. 
 
In the following we present a classification of three types of inconsistency and then discuss 
how the issue of cache consistency has been addressed in network file systems and Internet 
Web caching. We distinguish three types of cache inconsistencies: local inconsistency, system 
inconsistency and global inconsistency. 
 
Local inconsistency can occur when a client write operation bypasses the cache, for example 
when a client reads a data item from a cache or server, modifies the data item and then writes 
the same item back to the server. If the modification is not executed on the cache item, too, 
then the next read operation will return the cache item, which is out-of-date by now.  
 
The second type of inconsistency is system inconsistency, where the source of cache 
inconsistency is not local to the receiver of out-of-date data, but within the system defined by 
the client and the server. For example, system inconsistency can occur when two or more 
clients are connected to the same server and execute concurrent read and write operations on 
the server. If a client reads a data item from the server, a copy of the data item is stored in the 
cache. If another client modifies the same data item on the server, then the cache item of the 
first client becomes inconsistent because it does not represent the state of the data item on the 
server. 
 
Global inconsistency occurs when some backend data storage, which the server uses for 
storing data items, is modified by a third entity. Then the cache of each client that has 
previously requested and cached that data item is inconsistent. 
 
In the following we briefly present four approaches for ensuring cache consistency. Strong 
cache consistency means that the cache of each client is consistent at any time, whereas weak 
cache consistency means that a cache may hold out-of-date data items, which is justifiable for 
a number of applications.  
 
Expiration Model 
In this approach, each cache item gets a timestamp (expiration time, also called ‘time-to-live 
value’) that expresses how long the cache item, once being received from the server and put 
in the cache, should be considered up-to-date. If a client requests a data item, the cache tests 
whether a cache item exists for the requested data item. If there is a cache item and it has not 
yet expired, it is delivered to the client. If there is no cache item or it has expired, the data 
item is fetched from the server and a new cache item, possibly with a new expiration time, is 
stored in the cache. 
 
Client Validation 
In this approach, the client validates the up-to-dateness of a cache item by checking the server 
for eventual modifications on the requested data item before taking the cache item from the 
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cache. If the cache item represents the current state of the respective data item, it can be taken 
from the cache, otherwise the data item is fetched from the server. 
 
Server Invalidation 
With server invalidation, the server, upon each modification of one of its data items, notifies 
all clients about the update. Each notified client then flushes its cache, thereby ensuring that 
the data items are fetched from the server the next time it will be requested. The granularity of 
the notification is application specific. If a client receives an update notification, it can decide 
to flush the complete cache or only for those data items that are reported to have changed in 
the server.  
 
Leases 
The Leases approach is an extension of the Server Invalidation approach. Here, the client tells 
the server that it wishes to be notified upon server modifications. The notification request is 
called lease and is valid for a certain time interval (lease-time). After the lease-time has 
elapsed, the client is no longer notified upon server modifications. It can then negotiate a new 
lease if it whishes to be notified again. Alternatively, the client can now switch to other cache 
consistency approaches like expiration model or client validation.  
 
There exist more advanced cache consistency approaches than the ones described here, which 
can be not described in this dissertation due to the sheer number of approaches. Therefore we 
representatively focus on two cache consistency approaches, one for a network file system 
and one for the Internet. 
 
The NFS [20] network file system allows clients to work on remote files using normal system 
calls like open(), read(), write() and close(). The fact that files are residing on remote hard 
disks is hidden by the NFS implementation. The NFS protocol uses RPC [07] for client/server 
communication. NFS clients cache recently used portions of files in order to increase the NFS 
performance by reducing the number of RPC calls to the server. Maintaining consistency 
between these caches is a problem whenever a client writes to a file and one or more other 
clients read the file, which is called ‘write sharing’ in NFS and can lead to system 
inconsistency according to our classification. If the writer closes the file before any readers 
open the file for reading, which is called sequential write sharing, NFS maintains cache 
consistency by requiring the writer to forward all the writes to the file server on close and 
having readers check to see if the file has been modified upon open. If the file has been 
modified, the client flushes the cache for this file and reloads it from the file server.  
A more complex case is concurrent write sharing, where write operations are intermixed with 
read operations. Cache consistency in this case requires that a reader always receives the most 
recently written data. The NFS file system does not provide full cache consistency. The 
simplest mechanism for maintaining full cache consistency is the one used by the Sprite [37] 
file system, which disables all client file caching whenever concurrent write sharing might 
occur [21]. The Sprite file server maintains a list of currently open files and detects write 
sharing when a file open request for writing is received and the file is already open for 
reading or vice versa.  
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In the case of local inconsistency, cache consistency is ensured by the client flushing its own 
cache if a file is written. The case of global inconsistency cannot occur with network file 
systems, because all file modifications can only be done by the NFS server daemon, which is 
a program that manages all files that are potentially accessible by remote clients. 
 
The Hypertext Transfer Protocol (HTTP/1.0) [78] is used for transferring Web documents like 
html files, images and multimedia files from Internet servers to clients. The goal of caching in 
HTTP/1.0 is to reduce the number of network round-trips and to reduce the amount of data 
that has to be transferred over a network. Moreover, caching helps in reducing the load of 
Web servers by intercepting HTTP/1.0 requests and serving them from caches. 
To reduce the number of network roundtrips, HTTP/1.0 clients store copies of Web 
documents – once requested – in a local cache and reuse these copies when the documents are 
requested again. This approach is only applicable if documents are not subject to change. For 
example, dynamically generated Web pages (weather information, news tickers, and so on) 
are marked by the HTTP/1.0 server as ‘non-cachable’ and are therefore not cached by 
HTTP/1.0 clients or proxy servers. Documents that are not marked as ‘non-cachable’ may be 
marked with an expiration date that specifies when the document has to be considered out-of-
date and must be reloaded from the Web server. In the Internet, global inconsistency can 
occur if a Web administrator uploads new html pages on a server and thereby modifies Web 
documents that may be already cached by clients or by proxy servers. When a client has a 
cached copy of one of these Web documents, it may use the cached copy as long as its 
expiration time has not yet expired, thereby possibly presenting the user an out-of-date Web 
document. After the expiration time has elapsed, the client fetches the Web document from 
the server, thereby receiving the new version of the Web document. A Web user who suspects 
that out-of-date Web documents are displayed by the Web browser can use the ‘Reload’ 
button of the Web browser to force the Web browser to fetch the Web document from the 
server, bypassing the cache.  
A Web client may use the Client Invalidation approach to ensure that Web documents 
displayed to the user are up-to-date. Therefore, Web clients send to the server a ‘conditional 
request’, which contains the last modification date of the cached copy that the client possesses 
for the requested Web document. If the server has a newer version of the Web document, it 
sends it to the client. Otherwise the cached copy is used by the Web client. This approach 
reduces the network transfer volume between Web client and Web server.  
The cache consistency strategy described by the HTTP/1.0 specification provides weak cache 
consistency for cachable Web documents by a combination of the Expiration Model and the 
Client Validation cache consistency approach. HTTP/1.1 [22] described more advanced 
caching mechanisms, the difference between HTTP/1.0 and HTTP/1.1 caching is described in 
[79]. 
Ongoing research work on Web caching indicates that strong cache consistency is feasible 
with little or no extra cost than current weak consistency approaches ([80], [81]). 
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2.1.2. Cache Replacement 

 
Typically, the size of a cache is limited and if it gets filled up, the cache will have to evict 
some cache items to make room for new data. Two widely applied examples of cache 
replacement strategies are Least-Recently-Used (LRU) (see [44] for a description) and Least-
Frequently-Used (LFU) (see [45] for a description), which are also used in other application 
areas, e.g., database systems and memory systems. LRU discards the least recently used items 
first, that is, the cache item that has not been used for longest time in the past is deleted from 
the cache. The LFU strategy maintains a counter for each cache item and increases the 
counter whenever a cache item is accessed by the client. The cache items that are used least 
often, i.e. that have the smallest counter value, are removed from the cache first. The SIZE 
replacement strategy discards the biggest cache items first. Cost, modification and expiration 
time (aging) are factors that are commonly integrated in variants of cache replacement 
strategies.  
 
According to Belady [47] the optimal cache replacement strategy is the one which replaces 
the object that will not be used for the longest time in the future. Obviously, this optimum can 
only be achieved if the cache knows about all future data accesses, which is generally not the 
case. However, it poses the theoretical limit for a cache replacement algorithm. 
 
In Internet caching, there are a number of approaches for cache replacement, a survey and a 
comparison of these approaches is presented by Podlipnig and Boeszoermenyi in [43].  
 

2.2. Prefetching 

 
While caching is used to gain performance when data items are accessed repeatedly, 
prefetching is used to speed up the very first access of a data item. The idea of prefetching 
(also called predictive caching or proactive caching) is to transfer data from the server to the 
client cache before the data is explicitly requested. At the time the client needs the data, it is 
already in the cache and can be accessed faster than fetching it from the server. In the 
following we explain how prefetching can be used to speed up caches and we present how 
prefetching is used in the Internet to speed up user-perceived Internet latency 
 
As Dan Duchamp writes in his article [24] on prefetching Web documents: “The idea of 
prefetching Internet Web pages has surely occurred to many people as they used their 
browsers. It often takes ‘too long’ to load and display a requested page, and thereafter several 
seconds often elapse before the user’s next request. It is natural to wonder if the substantial 
time between two consecutive requests could be used to anticipate and prefetch the second 
request.” 
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A prefetching cache for the Internet tries to predict the Web documents that the user will 
request in the near future. It then preloads the predicted documents from the Web server and 
stores them in a cache. If the user requests a document that was prefetched before, the latency 
of sending a request to the server and waiting for the response is eliminated. For the user, the 
Internet connection seems to become faster. Web prefetching exploits the fact that Web 
documents can be loaded in the background, while the user is reading another page.  
 
Care has to be taken to only prefetch those Web documents that can be stored in the cache. In 
the Internet, not all types of documents can be cached, since they contain cookies [25] or are 
dynamically generated by CGI [26] programs, for example. Prefetching such documents is a 
waste of network bandwidth, since the cache can never be used for these documents, they 
have to be always fetched from the server. 
 

2.2.1. Prefetching Prediction 

 
Prefetching prediction strategies decide which data items have to be pre-loaded from the 
server. Obviously, prefetching all possible data would be the best prefetching strategy. 
Basically, this strategy replicates the whole server in the client cache. However, a client 
usually needs only a portion of the data that a server provides. If this is the case, a prefetching 
prediction strategy has to be implemented that tells the cache what to prefetch.  
 
The prediction strategy has to ensure accurate prefetching, which means that data that is not 
needed by the client later should not be prefetched and data that is needed by the client should 
be prefetched with a probability as high as possible. In the former case, too much data is 
prefetched and network resources as well as server resources are wasted and the cache is 
flooded with useless data. In the later case, a high prefetching accuracy ensures a high 
probability that the client can access needed data fast, which is beneficial for application 
performance. 
 
Computer memory systems use prefetching to move data from the main memory to the CPU’s 
cache memory before an application program requests the data. As processors have become 
faster, the system bus has become one of the main bottlenecks in modern PCs. Typical bus 
speeds are 66 MHz, 100 MHz, 133 MHz or 400 MHz on Intel Pentium based systems [30]. 
The speed of accessing the cache is orders of magnitude higher than the speed with which the 
main memory can be accessed. An early hardware prefetching work, which was reported by 
Smith [31], proposes a one-block lookahead scheme for prefetching. That is, when a memory 
access instruction brings block n into the cache, block n+1 is prefetched and loaded into the 
cache as well. This simple prefetching prediction strategy made use of the fact that memory 
accesses often occur in sequential order. More recent work combines hardware prefetching 
with software prefetching: Gornish et.al. propose in [51] that a language compiler is used to 
identify the earliest point in a program where a data block is accessed and can be prefetched. 
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The prefetching information is gathered at compile time and is not volatile. Therefore, a high 
prefetching accuracy can be achieved.  
 
In file systems, predicting future file accesses enable the file system of the operating system 
to preload the files from the harddisk into the filesystem cache. Kroeger and Long describe a 
system that monitors file accesses and dynamically builds a tree-like data structure that 
describes file access interdependencies ([49], [53]). If the client requests a file, the system 
forecasts the probabilities of the files which may be accessed next. All files with a probability 
above a certain threshold value are then preloaded into the filesystem cache. The authors 
compared their predictive cache to an LRU cache and found a 15% to 22% improvement in 
cache hits of their approach.  
The algorithm assumes that file access patterns are repetitive, which means that the client 
accesses the same sequence of files over and over. Thus, the authors argue that a data 
compression mechanism can be used to build a probability model of file interdependencies 
and to use this model for prediction. 
 
The idea of using data compression techniques for prefetching was first advocated by Vitter 
and Krishnan in [32] and [33]. The intuition is that data compressors (like the Lempel-Ziv 
algorithm [34]) typically operate by postulating (either implicitly or explicitly) a dynamic 
probability distribution on the data to be compressed. Data expected with high probability are 
encoded with few bits, and unexpected data with many bits. Thus, if a data compressor 
successfully compresses the data, then its probability distribution on the data must be realistic 
and can be used for effective prediction.  
 
In the Internet, each Web document is identified by a Uniform Resource Locator (URL). If a 
client requests a Web document from the server, it sends the URL of the desired Web 
document and waits for the Web document to be transferred. A survey of Web prefetching 
systems is given in [24]. Two commonly used approaches are request graphs and structural 
analysis, which we describe in the following. 
 
Monitoring the URLs that a client requests enables a prefetching algorithm to derive URL 
interdependencies that may be used for predicting the URLs that a client will request in the 
future. This approach is used in [76] and [77], for example. 
 
Another prediction approach that is used in the Internet is structural analysis of Web 
documents, as described in [46] for example. When a client receives a Web document, a 
background process parses the Web document and extracts the embedded links. All links are 
then prefetched in the background, while the user is reading the page. When the user clicks on 
a link, the probability is high that the requested URL is already in the cache. Structural 
analysis is also used in processor architectures, where the machine code of a program is 
searched for memory access instructions. The referenced memory pages can than be 
transferred to the CPU cache in advance, improving the overall execution speed of the 
program. 
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Prefetching prediction can be implemented either in the client or in the server. With client-
side prediction, the prediction algorithm has to forecast only the future needs of its client. 
With server-side prediction, the server establishes information about what will be requested 
next and gives hints to clients. Each of the approaches has its advantages, we will discuss the 
advantages and disadvantage of each approach later, in the context of our work.  
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33..  DDOOCC  CCAACCHHIINNGG  AANNDD  PPRREEFFEETTCCHHIINNGG  

In the previous chapter we described caching and prefetching in general and its applications 
in domains like network file systems and the Internet. Now we concentrate on caching and 
prefetching for Distributed Object Computing. After introducing the basic idea of our 
approach, Distributed Object Computing Caching and Prefetching (DOC-CaP), we present a 
sample deployment of the Address Book application and discuss how caching and prefetching 
can be applied to this sample application, thereby addressing cache consistency, cache 
replacement and prefetching prediction. Finally, we present alternative approaches and related 
work on caching and prefetching for Distributed Object Computing systems. 
 

3.1. Introduction 

 
In DOC-CaP, the result values of remote method calls are prefetched and stored in a client-
side cache. When a client calls an already cached method, the result value is taken from the 
cache, thereby avoiding a remote method call. The cache system has to ensure that the cache 
items that are returned to clients are up-to-date. That means that a method result value taken 
from the cache has to be equal to the result value that a remote method call would return. If 
this is not the case, out-of-date cache items may be returned to the client. 
 
In the following we describe the DOC-CaP approach with the Address Book sample 
application introduced in section 1.4.1. 
 
Figure 45 illustrates the basic idea of the DOC-CaP approach with the AddressBook sample 
application: Whenever the Client calls a method, for example getName(), the 
PersonClientStub predicts the method calls that are likely to be called in the future. The 
PersonClientStub then creates a MultiRequest, which is a container for multiple 
Request objects. The PersonClientStub sends the MultiRequest to the server and 
waits for a MultiResponse.  
The server side RequestDispatcher (see Figure 46), after receiving a MultiRequest, 
extracts and iterates over the contained Requests and forwards them to the object 
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implementations, one by one. After having executed all method implementations, the 
RequestDispatcher creates a MultiResponse, which is a container for multiple 
Response objects, and sends it back to the ClientStub.  
After extracting all result values from the MultiResponse, the PersonClientStub stores 
the result values in a cache and returns the result value of the originally called method, 
getName() in Figure 45, to the Client. If the Client calls a method that is already in the 
cache, the PersonClientStub takes the result value from the cache, thereby avoiding a 
remote method call. 
 

 
Figure 45: Prefetching And Caching Method Result Values (Client Side) 
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Figure 46: Prefetching And Caching Method Result Values (Server Side) 

 
The DOC-CaP approach uses caching and prefetching for reducing the number of network 
roundtrips. Care has to be taken to ensure cache consistency and to achieve a high accuracy of 
prefetching prediction. These issues will be discussed in the following sections, based on 
ideas that have been presented in chapter 2.  
 

3.2. DOC-CaP Caching 

 
The deployment diagram in Figure 47 demonstrates this problem with the AddressBook 
sample application introduced in section 1.4.1. For the discussion in the following sections, 
we assume that the Address Book application uses a database for storing all person data. The 
AddressBook Server implements the AddressBook object model and provides its functionality 
via a Distributed Object Computing system. Finally, two AddressBook clients are connected 
to the AddressBook server. 
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Figure 47: Address Book Sample Deployment Diagram 

 

3.2.1. DOC-CaP Cache Consistency 

 
In section 2.1.1 we introduced three types of cache inconsistency: local inconsistency, system 
inconsistency and global inconsistency. In this section, we address these types of 
inconsistency for DOC-CaP and present our cache consistency approach ‘Expiration Model 
with Client Invalidation’. 
 

 
Figure 48: Person IDL Definition 

 
Local inconsistency in DOC-CaP can occur when a client calls and caches a method a() and 
then calls a method b() and the method implementation of b() modifies the state of the 
server in a way that another call of a() would yield a result value not equal to the cached 
value. As an example, let’s assume we have a new method setName() in the Person 
interface, which sets the name of a Person (see Figure 48).  
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Figure 49 shows a series of method calls that leads to local inconsistency. When the Client 
calls getName() the first time, the PersonStub executes a remote method call and stores 
the getName() result value in the cache. The client then calls setName(), which results in a 
remote method call, updating the name of the Person. The client then calls getName() 
again, and one would expect that the new name should be returned. But instead, the 
PersonStub takes the method result from the cache, thus returning an out-of-date data item 
to the client, which is denoted by the lightning bolt in the sequence diagram. According to the 
default behavior of Distributed Object Computing systems (sending one Request per method 
call) the second invocation of getName() would have been forwarded to the server, 
returning the up-to-date name of the person7. 
 

 
Figure 49: Sequence Diagram Of Local Inconsistency 

 

                                                 
7 Without loss of generality we assume that method calls are served by server implementations in the same order as they are received. 
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System inconsistency in Distributed Object Computing systems occurs when two or more 
distributed clients execute method calls concurrently on the same server and calling one 
method affects the result value of the other method. Figure 50 shows a scenario where 
client1 calls getName() in a PersonStub p1 (for simplicity, we left out the 
Communication objects). The PersonStub p1 sends a remote method Request, waits for 
the Response and stores the result value in the cache. Then, client2 calls setName() on a 
PersonStub p2 that represents the same server side Person implementation as p1. The 
setName() call modifies the name of the server side Person implementation. When 
client1 calls getName() again, p1 returns the cached value, which is out-of-date by now, 
indicated by the lightning bolt in the sequence diagram.  

 
Figure 50: Sequence Diagram Of System Inconsistency 

 
Global inconsistency in Distributed Object Computing systems occurs when some backend 
data source, which the server relies on, is modified. Figure 51 shows an example where a 
Client calls getName() and the result value is stored in the cache. Then, a database 
administrator updates the database that is used for data storage by the server. If the Name 
entry of the Person that is represented by the PersonStub p1 is modified, the Client 
receives out-of-date data the next time it calls getName() again, which is denoted by the 
lightning bolt in the sequence diagram. 
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Figure 51: Sequence Diagram Of Global Inconsistency 

 
In section 2.1.1 we introduced three approaches for ensuring cache consistency: Expiration 
Model, Client Validation and Server Invalidation. In the following we will discuss for each 
cache consistency approach its applicability in DOC-CaP. After discussing the approaches, 
we present our cache consistency mechanism, ‘Expiration Model with Client Invalidation’.  
 
Expiration Model in Distributed Object Computing systems 
With this approach each method result value stored in the cache is tagged with a time-to-live 
value that expresses how long the cache item should be considered up-to-date. If a client calls 
a method, the cache system tests whether the requested method result value is stored in the 
cache and still fresh. If it is, then the cached result value is returned. Otherwise, a method 
Request is sent to the server and the method result value is retrieved from the server.  
Figure 52 presents the case when a client calls a method with the result value already in cache 
and not yet expired. The cached result value can be safely returned to the calling client, 
thereby saving a remote method request. Figure 53 illustrates the case where the time-to-live 
value of a cache item has expired. A remote method request is created and sent to the server. 
After receiving the method response, the method result value is stored in the cache and then 
returned to the client. 
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Figure 52: Expiration Model (Cache Value Not Expired) 

 

 
Figure 53: Expiration Model (Cache Value Expired) 

 
The advantage of the expiration model is that a simple time comparison operation is sufficient 
to evaluate whether the cache item is up-to-date. Since validating a cache item is done by the 
client and no remote server interaction is necessary for checking the up-to-dateness of a cache 
item, the expiration model is suitable for applications where a high number of clients is 
connected to the server. 
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The drawback of the expiration model is that it does not guarantee cache consistency in all 
cases. If the server state is modified while the time-to-live time of a requested cache item has 
not yet elapsed, a client may receive an out-of-date method result value from the cache that 
does not represent the current server state.  
When using an expiration based cache consistency protocol, finding the right time-to-live 
values for cache items is an important yet hard-to-solve issue. There is a tradeoff between 
cache consistency and performance. The higher the time-to-live value for cached method 
result values, the longer will cache items be stored in the cache and considered to be fresh, 
thus saving network roundtrips. On the other hand, short time-to-live values lead to an 
increase of the number of remote method invocations, because the cached data is more often 
considered out-of-date. 
Time-to-live values can be set automatically (as, for example, in [58], where time-to-live 
values are dynamically adjusted based on the rate-of-change of a data item) or set manually 
by the programmer. Since we consider time-to-live values for method result values as highly 
application dependant in Distributed Object Computing applications, they cannot be set 
automatically. The rate of change of a method result can range from once per millisecond 
(think for example of a method returning the current time in milliseconds) to almost never 
(the getName() method result value of a specific Person will certainly change rarely, if at 
all).  
Moreover, the time-to-live value for a method result is highly dependent on what constraints 
the application programmer sets on the cache consistency for a certain method result value. 
For example, for a person's name, the application developer may decide that it would be not 
harmful to risk a cache inconsistency of e.g. five minutes. In contrast, a fire department would 
expect that an incoming fire alarm, although a rarely occuring event, should be displayed 
promptly.  
 
Client Validation in Distributed Object Computing systems 
In this approach, the client side cache system validates the freshness of a cache item by 
checking the server for eventual modifications on the requested data item before taking the 
data item from the cache. For example, when a client (see Figure 54) calls getName(), the 
PersonStub could send a conditional Request to the server, where a conditional request 
contains information about the cached result value. If the cached result value is equal to the 
result value of the method implementation on the server, nothing has to be done and an empty 
Response can be returned to the PersonStub, thereby denoting that the cached result value 
can safely be returned to the client. If the method implementation returns a result value that is 
not equal to the cached result value, the new result value has to be added to the Response 
and stored in the client-side cache, thereby overwriting the old result value. 
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Figure 54: Client Validation 

 
In Web caching, client validation is successfully used for reducing the network transfer 
volume, as described in section 2.1.1. However, client validation does not reduce the number 
of network roundtrips, as for each method invocation by the client, a complete network 
roundtrip is needed to send a conditional request to the server and receive the – possibly 
empty – response.  
In Distributed Object Computing, one might think that the client invalidation approach 
assures that the client does never receive out-of-date method results, thereby ensuring strong 
cache consistency. However, there are cases where even with client validation out-of-date 
data is returned to the client. The scenario shown in Figure 55 illustrates how this can happen. 
Let’s assume that two clients, client1 and client2, are connected to the same server. 
Let’s further assume that each client uses a PersonStub to communicate with a server side 
Person object implementation and that both PersonStub objects represent the same server 
side Person object implementation. 
In the scenario shown in Figure 55, client1 calls getName(), and the currently cached 
result value for getName() is “John”, which is also the current name of the server side 
Person object. Now p1 sends a conditional request to the server and expects the server to 
answer with a response containing the new person name or an empty response. In the 
meantime, client2 calls setName(), with intent to set the person name to “Jake”. 
The question is now whether p1 will receive the new person name, which is “Jake” or 
whether it will receive an empty Response, which indicates that “John” is still the current 
name. The answer is that it depends on which Request, the one sent by p1 or the one sent by 
p2, reaches the server first and is executed. If the p1 Request the server before the p2 
Request, the server side Person name is still “John” and the server will send an empty 
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Response back to p1. Otherwise, if the p2 Request reaches the server first, the person 
name is updated before the p1 Request reaches the server and the new person name is sent 
back to p1.  
 

 
Figure 55: Race Conditions With Client Validation 

 
In distributed systems, the time it takes for a network packet to travel from one point to 
another is not deterministic and generally cannot be foreseen. Particularly, it is not guaranteed 
that network packets sent by a number of clients reach the server in the order in which they 
are sent. As Lamport pointed out in his classic paper [23], there is generally no explicit clock 
which could be used to synchronize events in distributed systems. Therefore, if a distributed 
application relies on the ordering of events, which may be the ordering of method calls in 
Distributed Object Computing applications, a synchronization protocol has to be 
implemented. If no synchronization protocol is used, as is the case in standard Distributed 
Object Computing systems, client invalidation does not guarantee strong cache consistency. 
 
Server Invalidation in Distributed Object Computing systems 
With server invalidation, the server notifies all clients to inform them about updates. Each 
notified client then invalidates its cache. Figure 56 shows an example of server invalidation. 
Client1 queries the name of a Person by calling getName() in a PersonStub. If the 
result value is in the cache, no remote method call is sent to the server. Then, another 
client2 calls setName(), modifying the name attribute of the Person implementation in 
the server. Upon this modification, the server notifies all connected PersonStubs that it has 
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been modified and caches must be cleared. (Here, the notification is received by a 
Communication object and forwarded to the PersonStub.) 
 

 
Figure 56: Server Invalidation 

 
How the notification is done in detail is a matter of implementation. For example, the server 
could just tell the clients that ‘something’ has changed, in which case each client would have 
to completely invalidate its cache. Or, the server could specify more exactly what has 
changed, thereby giving the clients a chance to invalidate just a small part of their caches. 
However, in each case a network roundtrip from the server to all clients must be initiated. 
The advantage of this approach is that network communication is only necessary in the case 
of server state updates.  
The drawback of this approach is that upon each server update, a callback from the server to 
the client is needed. In practice, there are approaches like piggypacking [82] (the invalidation 
notification is appended to a normal method response) and delayed notification (multiple 
notifications are sent to a client in one single network roundtrip) that help to reduce the 
number of remote client notifications. But even with these approaches, each method call that 
updates the server state triggers a burst of callbacks from the server to a number of clients. 
The higher the number of clients, the more network roundtrips will be necessary to notify all 
clients.  
Moreover, server invalidation does not guarantee that all client caches stay up-to-date. If a 
client calls a method that updates the server and shortly thereafter, a second client calls a 
method that is read from the cache before the notification of the first client’s call is received, 
out-of-date data may be returned to the second client.  
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The server invalidation approach works best if the server has complete control over its data. 
In file systems, for example, the operating system has complete control over file read and 
write actions. A file cannot be modified without knowledge of the operating system. This is 
not the case in Distributed Object Computing, where it is generally not possible for a server 
application to know when its state has been updated. For example, if the server application 
stores some of its data in a remote database and a third instance (e.g. a database administrator) 
updates the database, the server state would have been modified. But because the database 
was modified without knowledge of the server application, no client is notified. 
 
Leases in Distributed Object Computing systems 
With leases, a server notifies all its clients about server state modifications for a certain time 
(lease-time). If the lease time has elapsed for a client, it can request a new lease from the 
server or switch to alternative cache consistency approaches like expiration model or client 
validation. The granularity of a lease can be chosen by a client: The client can request to be 
notified upon any server modifications, or it can chose to be notified upon modifications of a 
specific subset of the server data. Thus, the lease approach helps to adapt the network traffic 
of the server invalidation approach to the client needs. However, the same issues as in the 
server invalidation approach apply to the lease approach, for example the problem of 
maintaining cache consistency in all cases. 
 
DOC-CaP Consistency Approach: Expiration Model With Client Invalidation 
The cache consistency approach in our Distributed Object Computing Framework is based on 
an expiration model extend by client invalidation.  
Whenever a client calls a method in a ClientStub, the cache checks whether the result 
value of the requested method is in the cache and is not yet expired. If both conditions are 
true, the cache item is returned to the client. Otherwise, a remote method request is sent to the 
server, the method result value is stored in the cache and returned to the ClientStub. 
Additionally, the expiration time for the new cache item is set. If the client calls the same 
method again within the expiration time, its result value is considered fresh and returned to 
the client without sending a remote method call to the server, thus avoiding one network 
roundtrip. 
With the expiration model, the risk of returning out-of-date data is high if time-to-live values 
for cache items are high or the server state changes often. Therefore, we combine the 
expiration approach with client invalidation: Whenever a client calls a method that might 
change the server state, the client invalidates its own cache. No update notifications are sent 
to other clients.  
 
The drawback of using an expiration model approach is that even with client invalidation, 
out-of-date cache items might be returned to a client. In the following we describe how this 
can happen, and we discuss the likelihood of out-of-date cache items. 
 
For the discussion, we use a modified version of the AddressBook sample application 
introduced in section 1.4.2. The IDL definition is shown in Figure 57. 
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Figure 57: Address Book IDL Definition 

 
The AddressBook interface is used to get a list of Person references. Each Person has a 
name, which can be retrieved by getName() and set by calling setName() with the new 
name as parameter. Let’s further assume that the Address Book system consists of one 
AddressBook server that is connected to a database management system for storing the 
Person data, and a number of AddressBook clients that are connected to the AddressBook 
server via a network (see also the deployment diagram in Figure 47).  
 
For the discussion of the DOC-CaP cache consistency approach, we make the following 
assumptions about distributed applications using DOC-CaP:  
 

1. The distributed application consists of one or more clients and one server8. The clients 
communicate with the server via remote method calls.  

2. Remote method calls are synchronous. A client calling a stub method is blocked until 
the stub method returns.  

3. Clients are single-threaded9: If a client calls two methods, one after another, it is 
guaranteed a Request for the second method is not sent before the Response for the 
first method has been received by the client. Consequently, it is guaranteed that the 
method implementations are called in the same sequential order as called by one client 
(i.e. the implementation of the second method does not start executing before the 
implementation of the first method has finished executing). Note that this assumption 
is not made for two methods that are called by two different clients.  

4. A method sent to the server can be of two kinds: If a method does not - under any 
cicumstances - modify the state of the server, we call this method a ‘get’ method. If a 
method might change the server state, we call this method a ‘set’ method. 

 
 

                                                 
8 A server may be single-threaded or multi-threaded. A single-threaded server can execute at most one remote method implementation at a 
time. A multi-threaded server can execute any number of remote method implementations concurrently. 
9 The programmer is still free to implement multi-threaded clients, where a client can invoke methods concurrently in different threads. In 
this case, we view each thread as a single-threaded client on its own. 
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Discussion Of Local Inconsistency 
Local inconsistency occurs if a client modifies the state of a server in such a way that the 
cache of that client becomes outdated. In the following we demonstrate that local 
inconsistency cannot occur with the DOC-CaP cache consistency approach. 
 

 
Figure 58: Local Inconsistency 

 
Figure 58 presents an example of client invalidation. Let’s assume that the name of the 
Person the PersonStub refers to is “x”. Without caching, the first call to getName() 
returns “x”. The setName() call updates the server state by setting the Person name to “y”. 
Since it is guaranteed that the second getName() method is executed after the setName(), 
it is ensured that the second call to getName() returns “y”.  
With caching, the first call to getName() is forwarded to the server. The result value “x” is 
stored in the cache and returned to the client. Upon setName(), the client clears its cache, 
since setName() modifies the server by setting a new Person name. Note that with client 
invalidation, only this client’s cache is cleared. At the time the second getName() is called 
by the client, the getName() call is forwarded to the server, since there is no cache item for 
getName(). The result value “y” is then stored in the cache and returned to the client.  
 
For the general discussion of local inconsistency we make some further assumptions about 
distributed applications using DOC-CaP:  
 

1. The distributed application consists of one single-threaded client and a server. The 
client communicates with the server via remote method calls. Note that this 
assumption includes a client communicating with two or more different servers, as 
each server can be treated as one or more separate threads within one multi-threaded 
server.  

2. The state of a server does not change between the execution of two successive remote 
method calls. In particular, no entity can change the state of the server but the client 



82  3. DOC Caching And Prefetching 
 

that is connected to that server, via the invocation of a ‘set’ method. (For example, 
there exists no server-side database that is read and written by the server and that can 
be modified by a database administrator.)  

 
While the client is executing, it sends remote method calls to the server, one after another. At 
any time, the client can call either a ‘get’ or a ‘set’ method. 
 
If the client calls a ‘set’ method, then the client-side cache is cleared and a remote method 
request is sent to the server. The result value is returned to the client, without being stored in 
the client-side cache. Therefore it is assured that, after a ‘set’ method has been called, the 
method result value reflects the server state and the cache is empty and does not contain 
outdated data. 
 
If the client calls a ‘get’ method, then we have to consider two cases: If the result value of the 
called method is already in the cache and has not expired, it is returned to the client 
immediately, without contacting the server. It is sure that the cache value is still fresh, since 
no modification of a server state could have happened since the last ‘set’ method of this client 
(see assumptions). 
If the result value of the called method is not in the cache or has expired, a remote method 
request is sent to the server and the method implementation is executed. The fresh result value 
is then stored in the client-side cache and returned to the client. 
 
We conclude that local inconsistency (a client outdating its own cache) cannot occur in DOC-
CaP if the assumptions stated above are met.  
 
 
Discussion Of System Inconsistency 
Client invalidation does not guarantee cache consistency in the case of system inconsistency, 
because only the client that initiated the update on the server state is invalidated. The other 
clients across the network remain untouched and possibly out-of-date.  
As an example, Figure 59 shows two clients, client1 and client2. We assume that the 
two clients are running on two different computers. Moreover, we assume that the two person 
stubs p1 and p2 represent the same server side Person implementation. First, client1 calls 
getName(), the result value is “x”. Then, client2 calls setName() and sets the Person 
name to “y”. Then, client1 calls getName() the second time. According to Figure 59, the 
result value of the second getName() invocation should be “y”, because the Person name 
has been set to “y” by client2.  
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Figure 59: System Inconsistency 

 
With the cache consistency approach used in DOC-CaP, there are two possible result values 
for the second invocation of getName(). If the expiration time of the first getName() result 
has not elapsed by the time getName() is called the second time, the cached result value “x” 
is returned. If it has elapsed in the meantime, a method request is sent to the server, and the 
result value is “x”. 
 
For the general discussion of system inconsistency we make some further assumptions about 
distributed applications:  
 

1. The distributed application consists of two or more single-threaded clients 
communicating with a server.  

2. The network connection between clients and servers is unreliable insofar as there is is 
no guarantee about packet delivery times. In particular, the network does not 
guarantee that a network packet that was sent before a second network packet reaches 
its destination before the second packet reaches its destination. (An example of such a 
network is TCP/IPv4 over Ethernet, where network delays and packet losses 
contribute to a delivery time that cannot be assessed in advance.)  

3. The state of the server does not change in between the execution of two successive 
remote method calls. In particular, no entity can change the state of the server but the 
clients that are connected to that server, via the invocation of ‘set’ methods.  

4. The clients are not synchronized, they run independently from one another. In 
particular, there is not client-to-client communication.  

 
While the clients are executing, they send remote method calls to the server. At any time, a 
client can call either a ‘get’ or a ‘set’ method.  
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As long as all clients are calling only ‘get’ methods, the server state is not modified and 
system inconsistency cannot occur. If one client calls a ‘set’ method, the state of the server 
may change and system inconsistency may occur. The likelihood with which system 
inconsistency may occur depends, among other factors, on the expiration time of method 
result values that are stored in the cache of the clients.  
 
It is up to the application programmer to trade off between the likelihood of system 
inconsistency and application performance: The programmer may decide that system 
inconsistency can be tolerated for a distributed application. Then caching does not need to be 
disabled for this application. Or, the programmer may decide that system inconsistency 
cannot be tolerated for a given application.  
 
If system inconsistency can be tolerated for a distributed application, the programmer can 
fine-tune the likelihood of system inconsistency by setting the expiration time of cached 
remote method result values. If the expiration time for a cached result value is high compared 
to the rate-of-change of the server state reflecting this value, then the likelihood of system 
inconsistency may increase.  
 
If system inconsistency cannot be tolerated for a distributed application, the programmer may 
chose to disable caching for certain parts of the application. An example of such an 
application would be a stock exchange information system, where one client writes current 
stock price values to a server and another client reads prices from the server and displays it to 
a user. A programmer may decide that caching of these values may be turned off to ensure 
that stock price values are displayed as fast and accurate as possible. However, even when 
caching is turned off, there is still the network roundtrip time that delays the propagation of 
price values from the server to the user, and that roundtrip time cannot be guaranteed in 
advance. If an application depends on guaranteed times, QoS-enabled networks and real-time 
operating systems must be used.  
 
One may argue that the problem of system inconsistency can be avoided by disabling caching 
for remote method result values. But even when caching is disabled, the result values of 
remote methods called by a client might be the same as with caching enabled. This happens 
when, due to high a network delay, a ‘set’ method called by a second client does not reach the 
server until the ‘get’ method of the first client has finished executing. This example can easily 
be applied to the general case, where a number of unsynchronized clients communicate a 
server calling ‘set’ and ‘get’ methods interchangeably.  
 
If a distributed application is using a Distributed Object Computing system as defined in 
section 1.2 and is deployed on an unreliable network (according to the above assumption), it 
is not guaranteed that if a client calls a method m1 before another client calls a method m2, the 
two methods reach the server in the same order or are executed in the same order as they have 
been called by the clients. If the server is multi-threaded, then the order of execution of 
remote method requests is up to the server, even if the method requests reach the server in the 
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‘correct’ order, thereby introducing another level of uncertainty. If a distributed application 
has to ensure the ‘correct’ execution order of methods, it must use some sort of 
synchronization between clients and/or servers, for example by using locking/unlocking 
strategies (see [85] for an exmple). In practice, there exist a number of synchronization 
mechanisms for distributed applications, e.g. the CORBA Concurrency Control Service [86].  
 
 
Discussion Of Global Inconsistency 
As an example of global inconsistency, Figure 60 shows a client, client1, and a Database 
Administrator who has access to the AddressBook database. First, client1 calls 
getName(), the result value is “x”. Then, the Database Administrator updates the person’s 
name entry to “y” directly in the database. Without caching, if the client now calls 
getName() again, the method call is forwarded to the server. The server might query the 
database now in order to get the person’s name. In that case, the getName() result value 
would be “y”. If the server holds the person’s name in memory and does not query the 
database, the getName() result value would be “x”. 
With caching enabled, the getName() result depends on whether the cache item “x” that 
originated from the first invocation of getName() is already expired or not. If it is still fresh, 
“x” is returned to the client from the cache. If it is expired, the method call is forwarded to the 
server, which can return “x” or “y”, depending on whether it queries the database or not.  
 

 
Figure 60: Global Inconsistency 

 
For the general discussion of global inconsistency we make some further assumptions about 
distributed applications:  
 

1. The distributed application consists of one or more single-threaded clients 
communicating with a server.  
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2. The state of the server may change at any time. In particular, the server state may 
change between the execution of two successive remote method calls.  

 
As long as all clients are calling only ‘set’ methods, no method result values are stored in the 
cache and each ‘set’ method call is forwarded to the server. Global inconsistency cannot 
occur in this case. If a client calls a ‘get’ method, the result value of this method may or may 
not be in the cache. If the result value is not in the cache (or has expired), the ‘get’ method is 
forwarded to the server. If the result value is in the cache and not expired, the cache value is 
returned to the client and global inconsistency may occur.  
 
The likelihood with which global inconsistency may occur depends, among other factors, on 
the expiration time of method result values that are stored in the cache of the clients, and on 
the update rate of the server state.  
 
Like in the case of system inconsistency, it is up to the application programmer to trade off 
between the likelihood of global inconsistency and application performance. It is up to the 
programmer to control the likelihood of global inconsistency by adjusting the cache 
expiration times for remote method result values.  
 
We conclude that global inconsistency (a modification of the server state outdating client 
caches) may occur in DOC-CaP. The likelihood of global inconsistency can be controlled by 
the application programmer. 
 
 
Conclusion 
The DOC-CaP cache consistency approach ensures that local inconsistency cannot occur with 
DOC-CaP. System inconsistency and global inconsistency may occur. The application 
programmer can controll the likelihood of system inconsistency and global inconsistency by 
adjusting the expiration time for remote method result values and by disabling caching for 
certain parts of a distributed application. We will describe in section 4 how expiration times 
can be adjusted and caching can be enabled or disabled in DOC-CaP. 
 

3.2.2. DOC-CaP Cache Replacement 

 
When a method is invoked by a client or prefetched by the DOC-CaP prefetching system, the 
method result value is stored in a client side cache. In DOC-CaP, the cache stores method 
result values in main memory. Since memory space is limited, the issue of cache space has to 
be addressed, for example by implementing a cache replacements strategy like described in 
section 2.1.2. The replacement strategy chosen in DOC-CaP is to tie the life cycle of cache 
items to the life cycle of ClientStub objects, which is described in the following. 
 



3. DOC Caching And Prefetching  87 

Each ClientStub object has a lifecycle that is composed of three stages. First a 
ClientStub is created. For a client, calling a method that returns object references is the 
only (implicit) way of creating a ClientStub object. Particularly, ClientStub objects 
cannot be created by the client explicitly. 
The client uses the ClientStub object as a representative of a server side object 
implementation. The client invokes methods in the ClientStub and these method calls are 
then forwarded to the server side object implementation.  
After the client does not need to communicate with the server side object implementation any 
longer, it releases the respective ClientStub object. The implementation of releasing a stub 
object can vary between different Distributed Object Computing systems. In the case of 
CORBA, for example, the client programmer must call the method _release() provided by 
every ClientStub object. If the client is programmed in Java, the Java Garbage Collector 
takes care of releasing unused ClientStub objects that are no longer referenced. 
 
When a ClientStub object is released and deleted, the cache contents of this stub object are 
also deleted. Thus, the lifecycle of a cache item is the same as the lifecycle of the 
ClientStub object that the cache item is assigned to. 
 
Theoretically, the client cache may run out of memory, for example if a prefetching action 
yields method result values that are larger than the client side cache memory. However, we 
consider these cases very seldom and argue that methods that may return vary large result 
values should be defined as non-cachable by the programmer. (We will describe in section 4.2 
how methods can be defined as non-cachable.) For the integration of a cache replacement 
strategy as described in section 2.1.2, we refer to future work. 
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3.3. DOC-CaP Prefetching 

 
Prefetching is used to reduce network roundtrips for methods that are called for the first time. 
In this section we describe which methods can be prefetched and outline characteristics of the 
DOC-CaP prefetching prediction strategy.  
 

3.3.1. Prefetchable Methods 

 
In DOC-CaP, not every method can be prefetched. Whether a method is prefetchable depends 
on its side effects. A method is said to have side effects if calling the method might change 
the server state. A method is called ‘without side effects’ if it is sure that calling the method 
does not change the server state under any circumstances. 
 
Methods without side effects are also called read-methods or get-methods. If such a method is 
prefetched and later called by the client, the result can be taken from the cache. If it is 
prefetched and never called by the client later on, network resources as well as server CPU 
time is wasted.  
 
There is, however, a problem with prefetching methods that do have side effects. If such a 
method is prefetched, the method implementation is executed and the server state might be 
modified. If the client does not call this method later on, the server state is modified without 
the client wanting to do so. This can lead to serious problems. Consider the Address Book 
sample application presented in section 1.4.1. Let’s introduce a new method removeThis() 
in the Person interface that should delete a person entry from the address book, see Figure 
61.  
 

 
Figure 61: A Method With Side Effects 

 
If removeThis() is executed on a Person object, the Person entry is removed from its 
AddressBook. If the server keeps its person data in a database, a table row in a database is 
deleted. If this method is prefetched, without the client application ever invoking 
removeThis(), the person entry would have been deleted without the client wanting to do 
so. Consequently, we must not prefetch any methods that may possibly modify the server 
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state, which leads to the prefetching restriction that methods with side effects are not 
prefetchable. 
 
Server state denotes not only the state of the server side object implementation that is invoked 
by a method but also any resources (referenced object instances, database entries, data files, 
memory contents) used by the method implementation. 
 
Determining whether a method has side effects is not a trivial task. Theoretically, one can 
analyze the source code of a system and tell which method implementations are merely read-
implementations, i.e. have no side effects. However, to the best of our knowledge, there are 
no practical tools that can automatically derive side effect information from application 
source code and externalize that information, although we consider it feasible under certain 
circumstances10.  
Other projects that have to have knowledge about method side effects rely on information that 
has to provided by the programmer. For example, the ICE Middleware [48] introduces the 
‘nonmutating’ operation qualifier to denote whether a method implementation is ‘const’, 
which means that it does not change the state of its object. This information is then used for 
the implementation of error recovery mechanisms. Another example is the C++ programming 
language [28], where the ‘const’ keyword, applied to a method declaration, denotes that the 
method implementation does not modify the state of its object. A C++ language compiler can 
ensure that a ‘const’ method does indeed not modify the state of its object, but a C++ 
compiler cannot automatically detect whether a method is ‘const’. 
 
 
Prefetching Methods With In-Parameters 
 
In-parameters are used in Distributed Object Computing systems to pass information from the 
caller of a method to the method implementation. When calling a method with in-parameters, 
the parameter values are marshalled and added to the method request. When the server 
receives the method request, it unmarshalls the parameter values and passes them to the 
method implementation. Since in-parameters cannot be used to pass information back to the 
caller, they are not included in the method response sent back to the client.  
 
When the DOC-CaP prefetching system predicts a certain method to be prefetched and the 
predicted method has in-parameters, the prefetching system must also predict the value of 
these call parameters before prefetching the method. Let’s assume we add a method 
getAttribute() to the Person interface, as in Figure 62.  
 

                                                 
10 For very easy method implementations, it is conceivable that an automatic tool can discover whether the method implementation is free of 
side effects. But this is generally not possible for all kinds of methods and all kinds of programming languages.  
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Figure 62: Ingoing Parameters 

 
The method getAttribute() returns the value of the person attribute specified by the in-
parameter attributeName, which can be “name”, “email”, “phone” and so on. If the client 
issues a call such as getAttribute(“name”), the name of the remote person object is 
returned.  
 
Whether a method with in-parameters is prefetchable depends on the prefetching prediction 
algorithm that is used. If the prediction algorithm is able to predict, along with the name of 
the methods that will be called in the future, the values of in-parameters, then methods with 
in-parameters are prefetchable. If the prediction algorithm is not able to predict in-parameter 
values, then these methods will not be prefetchable.  
 
 
Prefetching Methods With Out-Parameters 
 
Out-parameters are used to pass information from the method implementation back to the 
caller of the method. Out-parameters are not marshalled and added to the method request. 
After the method implementation has finished its execution and the value of the out-
parameters have been set, they are marshalled into the method response and sent back to the 
client. The client can now retrieve the value of each out-parameter.  
 
In Distributed Object Computing systems, out-parameters are often used if a method has more 
than one result value. This technique is also known in C++ programming, where pointers to 
variables are used to overcome the ‘one-result-value-per-method’ constraint. For example, the 
fread() file read function defined by ANSI C has to return the number of bytes actually 
read from the file, the bytes, or an error code in case the file read did not succeed. The 
fread() function returns the number of bytes that were read from the file, and the byte 
content itself is stored in a byte array that is passed to fread() as a pointer to a byte array. 
 
When prefetching a method in DOC-CaP, the result values of all prefetched methods are 
stored in the cache. This is true for the normal method result value as well as all out-
parameters of the prefetched method. From a logical view, out-parameters are the same as 
method result values.  
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Prefetching Methods With In/Out-Parameters 
 
In/out-parameters are a combination of in- and out-parameters and are used to pass 
information from the caller of a method to the method implementation and back. In/out-
parameters are marshalled both into the method request and, after the method implementation 
has finished and eventually modified the value of the in/out-parameter, the parameter value is 
marshalled into the method response. 
 
It depends on the prefetching prediction algorithm whether methods with in/out-parameters 
are prefetchable. If the prediction algorithm is able to predict in -parameter values, then 
methods with in/out-parameters are prefetchable as well. Otherwise, methods with in/out-
parameters will not be prefetchable. 
 

3.3.2. Prefetching Prediction in DOC-CaP 

 
In this section we describe the characteristics of prefetching prediction in DOC-CaP and show 
the differences to prefetching in file systems and memory systems. 
 
In DOC-CaP, prefetching is initiated upon a method call, as shown in Figure 45 and Figure 46 
in section 3.1, and the prefetching takes place synchronously. The prefetching starts when a 
method is called by the client and ends when the method response is received by the 
ClientStub.  
 
One design goal of the DOC-CaP approach is transparency for client and server. This 
excludes the possibility of using an ‘informed prefetching’ approach like described in [01] 
and [02], where the client application issues hints about its future needs to the prefetching 
system. The prefetching system has to be self-learning and must be adaptable to changing 
client behaviors. Moreover, no structural information about method interdependencies are 
available, like in Web prefetching, where analyzing the hyperlinks in a Web page yields 
valuable information about prefetching candidates. A theoretical source of structural 
information would be the client code (source code or object code). Yeung and Kelly show in 
their work [29] that byte code analysis can be used to gain knowledge of a client’s behavior. 
Their system is based on Java and RMI [72]. However, since DOC-CaP is language neutral, 
byte code analysis techniques cannot be applied.  
 
A characteristic of Distributed Object Computing applications is that they develop repetitive 
patterns of method invocations and client-server communication. Monitoring these method 
calls and the sequence in which they occur yields information about the client behavior. In 
[32], Vitter and Krishnan argue that data compression techniques can be used to analyze 
repetitive patterns of data access events and propose a technique for using the Lempel-Ziv 
compression algorithm [34] for prefetching prediction. In [33], Curewitz et. al. describe the 
practical issues of applying the technique. 
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The choice of a prefetching approach depends not only on design goals like transparency for 
client and server, but also on the location where prefetching prediction is implemented: 
Prefetching prediction can be performed either by the client (the consumer of data) or by the 
server (the data source).  
 
Client Prediction Approach 
In this case the prefetching prediction is implemented at the client side. The prediction 
algorithm collects information about past invocations of its client and incrementally builds up 
an invocation pattern model. Based on this pattern model, it predicts the methods that will be 
invoked by the client in the future. One advantage of the client prediction approach is that the 
invocation pattern model is built on a per-client basis. It automatically adjusts to the 
invocation patterns of a client. Since invocation patterns can vary between different clients, 
client prediction helps to increase the accuracy of the prediction results. The client invocation 
pattern can vary if different users are using different kinds of client software. Think for 
example of our address book application introduced in section 1.4.1, where one type of client 
software can be used to search names and read phone numbers, and another type of client 
software, the administrator client software, can be used to insert, update and delete person 
entries. The first type of client software will invoke different methods than the second type. If 
different types of users use two instances of the same client software, patterns of method 
invocations can also differ to a high degree. Since each user has its own preferences and ways 
to use a type of client software, maybe because the users differ in experience levels, the client 
will invoke different methods in a different order for each user. 

 
Server Prediction Approach  
When using this approach, the prefetching prediction subsystem is implemented at the server 
side. The server intercepts incoming method invocation requests, collects this information and 
builds up an invocation pattern model, which in turn is used for predicting future invocation 
requests. The advantage of this approach is that new clients do not need to build up invocation 
models. Instead, the server stores these models and predicts the future requests for a client. 
The prediction algorithm is running in one single place, not spread over all clients. This helps 
to reduce overall distributed application resource consumption like CPU cycles and memory 
space. 
The drawback is that the invocation model used by the server side prediction algorithm does 
not distinguish between different types of clients. If the server, upon an incoming invocation 
request, does not know the originating client, the invocation model cannot be built on a per-
client basis. For example, this is the case with CORBA, where the server does not know 
which client issued a remote method invocation. 
 
DOC-CaP uses the client prediction approach, because it aims at supporting multiple client 
types with different invocation patterns. Moreover, each client can decide on its own whether 
it wants to use caching and prefetching.  
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3.4. Related Work 

 
The problem of fine-grained object interfaces is the subject of many ongoing research 
projects. In the following, we present design patterns and research projects that also aim at 
using caching and prefetching for reducing the number of network roundtrips. While 
discussing each solution, we point out the differences to the DOC-CaP approach.  
 
 
Fine-Grained Framework 
 
The Fine-Grained Framework design pattern proposed by Mowbray [52] describes a 
mechanism for reducing the number of remote method calls for fine-grained object interfaces 
while enforcing client transparancy. Mowbray’s idea is to organize object instances into 
working sets where objects likely to be used together are in the same working set. Next, a 
cache is defined and implemented by the application programmer that for a single retrieval 
operation retrieves the complete working set and for a single update operation updates the 
complete working set. The proposed cache implementation is at the stub layer to enforce 
client transparancy, that means that the client accesses a fine-grained interface and is not 
aware of caching that occurs in the stub layer.  
 
When an object is invoked, the client stub checks if the object already exists in the object 
cache. If not, the stub retrieves the working set this object belongs to. Once the object is 
available in the cache, the client stub can perform the requested operation on the cached 
object rather than performing a remote invocation. The Fine-Grained Framework does not 
propose a solution for cache invalidation and update propagation, thus the problem of 
maintaining cache consistency is left to the application programmer who implements the 
cache. Mowbray proposes that cached object values should periodically be propagated to the 
server. 
 
By proposing object working sets and having a complete working set being retrieved upon the 
first invocation of an object, a prefetching mechanism is implemented. However, the problem 
of side effects is not addressed by Mowbray’s proposal. 
 
Manually defining working sets and thus defining the granularity of object access is beneficial 
to application performance in many cases, as the programmer of a distributed application 
knows best which objects will be invoked together. Implementing a cache consistency 
strategy by hand is beneficial as well, since the programmer is free to decide where to enforce 
strong cache consistency, using a transaction-based mechanism, and where weak consistency 
may be sufficient. 
  
However, the drawback of this approach is that its implementation effort is exceedingly high 
and the possibility of reusing the cache implementation of an application for other 
applications is very limited, as the framework is specifically tailored to object 
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implementations and applications. Moreover, the granularity of the prefetching strategy is 
defined at design time, thus not supporting run-time adjustment of prefetching granularities.  
 
While the Fine-Grained Framework design pattern is merely a proposal for the restructuring 
of object communication and does not provide an implementation, there are research projects 
that aim at providing a solution that can be transferred to an application-independent and 
reusable implementation. 
 
 
Client-side Component Caching 
 
Pohl and Schill describe in [58] a system for caching attributes values of Enterprise 
JavaBeans [55]. An Enterprise JavaBean (EJB) can be seen as an object that implements an 
interface that is composed of methods and attributes, much like an object in Distributed 
Object Computing systems11. Attributes can be read and written, while for each attribute a 
get/set method pair is generated by the underlying EJB platform. 
 
The system described by the authors relies on markup tags that classifies an attribute as ‚read-
only’ (changes never), ‚cachable’ (changes rarely) or ‚volatile’ (changes often, non-cachable). 
These markups tags are provided by the application programmer at design time. Alternatively, 
the cache system can keep track of an attributes rate of change and decide automatically how 
to classify an attribute. 
 
The caching code is located at the stub layer of the application, thus ensuring client 
transparency. The authors assume that object attributes are more often read than written, thus 
making attribute values suitable for caching. A source code generation tool is used to 
automatically generate the implementation of the caching functionality and the CORBA 
Interceptor facility [56] is employed to hide the cache functionality from the client. 
 
Cache consistency is realized with an expiration time model where the time-to-live value of 
an attribute is calculated automatically: The system keeps track of attribute changes and uses 
the mean time of change as the time-to-live value.  
 
Pohl’s and Schill’s system implements caching in the stub layer of a distributed application, 
thus enforcing client transparency. Moreover, since the caching implementation is 
automatically generated by a generator tool, implementation effort is minimized and the 
approach can be considered applicable to a vast number of different applications. 
 
However, the drawback of the approach is that it lacks a fully developed cache consistency 
approach. Taking the mean time of change as the expiration time for an attribute means that 

                                                 
11 An Enterprise JavaBean is basically a CORBA object that implements application-specific functionality as well as functionality required 
by the EJB platform. 
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the system is not suitable for scenarios where attributes change rarely but updates have to be 
propagated to clients as fast as possible, for example in alert systems. In DOC-CaP, the time-
to-live values for each method is specified by the application programmer at design time, thus 
allowing the adaption of the level of cache consistency to client needs. 
 
Moreover, the authors do not provide a case study so that possible performance gains can 
only be estimated. Prefetching attribute values is not mentioned in their work, although an 
extension in this direction seems feasible. 
 
By caching only attribute values and excluding the caching of method result values, the 
project makes the assumption that the retrieval of an attribute value from the server cannot 
have side effects. While this may be a considerable heuristic, one has to consider that 
retrieving an attribute value is implemented as a method by the underlying EJB platform. 
Theoretically, there may be side effects in this method, in which case the attribute should not 
be cached. 
 
 
Method-based Caching 
 
Pfeier and Jakschitsch describe a method-based caching system for multi-tiered server 
applications [61] based on the Java 2 Enterprise Edition Platform [59]. Result values of 
remote method calls are stored in a client-side cache, and upon invocation of the same 
method, the cached result value is returned, thereby saving a network roundtrip. 
 
The authors distinguish between read and write methods. If a method is guaranteed to not 
modify any of the other method’s result values, it is called a read method. Otherwise it is 
called a write method. 
 
A cache model must be defined by the application programmer, which specifies in a formal 
way how methods modify each other’s result values. Upon invocation of a write method, the 
system invalidates the cache entries for each read method that might be affected by the write 
method. The authors argument that their system provides strong cache consistency in the case 
where only one client is connected to a server and the server state does not change in-between 
method calls of that client. 
 
If  two or more clients are connected to the server or if the server state is updated by a third 
entity, the client-side cache may become out-of-date. We called these cases ‚system 
inconsistency’ and ‚global inconsistency’ in the discussion of cache consistency mechanisms, 
see sections 2.1.1 and 3.2.1. These sources of cache inconsistencies are called ‚cache 
bypassing’ by Pfeier and Jakschitsch and are not handled by their system at the time of their 
publication. Possible solutions are proposed only briefly as future work, for example various 
server invalidation approaches or an expiration-based approach. 
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In the evaluation of the approach, the authors report on speedup factors of 6 to 10 in their 
specific test setup, which included an object benchmark based on RUBiS [54] and a Web 
frontend generated by Java Server Pages [60]. 
 
Pfeier’s and Jakschitsch’s system provides strong cache consistency for the local case (only 
one client connected to one server) through the use of a formal cache model and cache 
invalidations upon write methods. The cache model has to be manually created by the 
application programmer. Analogous to our observation, the authors state that automatically 
deriving the cache model from the source code of a given application will not be feasible with 
today’s development tools and programming languages. 
 
The authors did not report about any intentions to integrate prefetching mechanisms into their 
work, although this is feasible as the proposed cache model contains information about 
method side effects. However, for method prefetching it is not sufficient to have a model of 
method interdependencies. Instead, the system has to have knowledge about method side 
effects on the server, even for methods that do not affect the result values of other methods. 
The DOC-CaP approach asserts that methods with side effects are not prefetched, see section 
3.3.1 for a discussion. 
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The goal of DOC-CaP is to speed up distributed application performance by prefetching and 
caching remote method result values. For maximum reusability, maintainability and ease of 
use, prefetching and caching are implemented and executed transparently to the client and the 
server software. To avoid the need for client hints as in informed prefetching approaches, the 
prefetching system in DOC-CaP is self-learning. It gathers knowledge about client behavior 
while the distributed application is running. 
 
DOC-CaP implements caching and prefetching functionality in the stub layer of a distributed 
application. This approach has two major advantages. First, the client source code as well as 
the server source code of a distributed application project can be written and tested as if no 
caching or prefetching takes place. Second, since all prefetching and caching code resides in 
the stub layer and the stub layer is automatically generated by an IDL compiler (see section 
1.2), the effort of adding caching and prefetching functionality to the distributed application is 
minimal. 
 
As described in section 3.3.1, a method may have side effects. Additionally, each method 
result value has a certain time-to-live value. Both of these properties affect the way in which 
DOC-CaP handles caching and prefetching the result value of a method. Therefore, DOC-CaP 
has to have knowledge of these method properties: The programmer supplies information 
about method side effects and time-to-live values in the IDL definition of a given application. 
The IDL definition is then used by an IDL compiler to automatically generate the stub layer 
of the application.  
 
Inserting caching and prefetching code in the stub layer makes the DOC-CaP approach highly 
suitable for existing systems, in particular legacy applications that are built with Distributed 
Object Computing systems. The only thing that has to be done to incorporate caching and 
prefetching into an existing application is to annotate the IDL definition, generate the stub 
layer with the DOC-CaP IDL compiler and recompile the application. 
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We introduced an IDL definition language which provides constructs that let the programmer 
specify side effect and time-to-live information in a declarative manner. These declarations 
serve two things. First, the cache consistency approach implemented in DOC-CaP uses the 
information to invalidate cached data items. Second, the prefetching prediction uses the 
information to decide which methods are prefetchable. The cache consistency approach used 
in DOC-CaP, “Expiration Model With Client Invalidation” is described in detail in section 
2.1.1. The prefetching algorithm is described in section 4.3.  
 

4.1. DOC-CaP Framework 

 
The DOC-CaP Framework provides the functionality for remote object communication with 
caching and prefetching and is derived from the Distributed Object Computing framework 
introduced in section 1.2. Figure 63 presents the major abstractions of the DOC-CaP 
Framework. Note that the class diagram does not show Client and Server 
implementations, as these are not affected by the DOC-CaP extensions.  
 
The main difference between the Distributed Object Computing framework and the DOC-CaP 
framework is the addition of caching and prefetching facilities. The DOC-CaP framework is 
described in the following. 
 
Request is the base class of two specified subclasses: SingleRequest and 
MultiRequest. A SingleRequest object holds information about the remote method call, 
whereas a MultiRequest is a container for Request objects and as such holds information 
about a number of remote method calls. Request objects are forwarded to a 
Communication object for transfer to the server. The Communication class converts a 
Request – which can be a SingleRequest or a MultiRequest – into binary data and 
sends this data over the network. The classes Request, SingleRequest and 
MultiRequest are designed according to the Composite Design Pattern [36]. 
 
The Response class and its subclasses SingleResponse and MultiResponse hold the 
information about the method result values. For each SingleRequest sent to the server, the 
server answers with a SingleResponse. For each MultiRequest, the server answers with 
a MultiResponse, where the sequence of Response objects contained in a 
MultiResponse matches the sequence of Request objects contained in the 
MultiRequest. 
 
CcClientStub is the abstract base class for all client stub classes that incorporate caching 
and prefetching. It is derived from the ClientStub base class and inherits the ObjectId 
and the invoke() method for sending a Request to the network and waiting for a 
Response. Additionally, a CcClientStub object has an association with a Cache and a 
StubData object.  
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Figure 63: DOC-CaP Framework 
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A Cache object stores result values of prefetched methods for a stub. The methods of the 
Cache class are used to store result values, query the Cache if it contains the result value of a 
certain method and retrieve the result value. Additionally, the invalidate() method is used 
to invalidate the cache by clearing its contents. Note that a Cache does not support the 
removal of single result values, as this is not needed by the DOC-CaP cache replacement 
approach described in section 3.2.2. 
 
The CacheManager is a container that holds associations to all Cache objects of the 
distributed application. When a Cache is created, it is added to the CacheManager through 
the add() method. When the Cache is deleted, it is removed from the CacheManager with 
the remove() method. The invalidateAll() method calls the invalidate() method of 
all Cache objects that are currently registered with this CacheManager.  
 
StubData is an abstract base class for a container class that is used by implementations of 
the DOC-CaP framework to store information about a CcClientStub, for example a unique 
id of the stub and statistical information. It is an abstract class because different 
implementations of the DOC-CaP Framework will require different StubData 
implementations. 
 
Stat is the abstract base class for the implementation of a specific prefetching prediction 
algorithm. New prediction algorithms can be incorporated in the DOC-CaP Framework by 
subclassing Stat and implementing the algorithm in the subclass. The abstract base class 
Stat provides the method addStubCall() to be called by the DOC-CaP Framework 
whenever a stub method is called by the client application. The DOC-CaP Framework passes 
three parameters to addStubCall(). The StubData object contains information about the 
CcClientStub that was called. The Method object contains data for uniquely identifying 
the called stub method. The SideEffects parameter is a boolean flag indicating whether 
this method has side effects or not. The method predictFutureCalls() is called by the 
DOC-CaP Framework to start the prediction algorithm and to get a Prediction object that 
holds information about the stub methods that are likely to be called in the future. The DOC-
CaP Framework passes information about the stub and the called stub method through a 
StubData and a Method object. 
 
Communication is the connection to the network. The method writeRequest() marshalls 
a Request object into a data format that can be transferred over the network and writes it to 
the network transport layer. The method readRequest() reads data from the network 
transport layer and unmarshalls it into a Request object. The methods writeResponse() 
and readResponse() are used for marshalling and unmarshalling Response objects. 
 
CcServerStub is the base class for all server side stubs that are part of a DOC-CaP 
Framework implementation. The field ObjectId is used for the identification of a 
CcServerStub. The invoke() method is called to forward a SingleRequest to the 
object implementation that this CcServerStub represents. The CcServerStub calls the 
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method implementation of the Server object implementation (Server object 
implementations are not shown in Figure 63 since they are not part of the DOC-CaP 
Framework). After executing the method implementation, the CcServerStub creates a 
SingleResponse object, sets its ResultValue attribute and returns it. 
 
Every CcServerStub must register with RequestDispatcher. The 
RequestDispatcher has a main loop that looks for Request objects from the network, via 
Communication.readRequest(). Upon receipt of a Request, the RequestDispatcher 
unfolds the Request object, which contains of SingleRequest and MultiRequest 
objects. Each SingleRequest contained in the Request is forwarded to the 
CcServerStub with the matching ObjectId. When the Request object is traversed and 
all SingleRequests have been executed,  the RequestDispatcher creates a Response 
and sends it back to the client through Communication.writeReponse(). 
 
In section 1.2 we have described how the components of a Distributed Object Computing 
system interact with each other to realize remote method calls. In the following we present the 
pseudo code for two sample stub methods, one for Distributed Object Computing systems, 
and one for the DOC-CaP system. Both samples are automatically generated by an IDL 
compiler. The sample stub methods are based on the AddressBook sample application 
introduced in section 1.4.1.  
 
The source code in Figure 64 presents the getName() method of the PersonStub. It shows 
how stub methods are implemented in Distributed Object Computing systems. The 
implementation of Distributed Object Computing stub methods expose the following pattern: 
A Request is created (line 3), then the request is invoked by calling the invoke() method of 
the PersonStub (line 4) and the result value is returned (line 5). 
 

 
Figure 64: Pseudo Code Of An IDL Stub Method 

 
The source code in Figure 65 presents the getName() method of the PersonStub class that 
implements caching and prefetching by using the DOC-CaP Framework. We assume that the 
getName() method has a time-to-live value of 5000 milliseconds and that it does not have 
any side effects.  
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Figure 65: DOC-CaP Stub Method (Cachable) 

 
The stub method queries the cache whether it has already a Response for the getName() 
method (line 4). If the getName() result value is in the cache and its time-to-live time has 
not yet expired, then the Response is taken from the cache (lines 6-7). If the getName() 
result value is not in the cache or its time-to-live time has expired, the prefetching prediction 
algorithm is asked what stub calls are likely to happen in the future (line 11). The resulting 
Prediction object contains the methods that the prediction algorithm chooses for 
prefetching. Then, a Request is created that contains the getName() method as well as all 
methods that were predicted to be called next (line 12). This Request is then sent to the 
server by calling invoke() (line 13). The method invoke() marshalls all method requests 
into one message12 and sends it over the network to the server side. At the server side, the 
RequestDispatcher receives and unfolds the Request and forwards all contained 
SingleRequest objects to the according ServerStub objects. Then it creates a Response 
and sends it back to the client.  In the meantime, the stub waits for the Response, which 
contains the result values of all Request method requests. All result values contained in the 
Response are then stored in the cache for later retrieval (line 14). The result value of the 
originally called method – getName() in this case – is returned to the calling client (line 15). 
Before the getName() result value is returned to the client, the occurrence of this 
getName() stub call is reported to the prediction algorithm via Stat.addStubCall() (line 
17). 
 
As described in section 3.3.1, methods with side effects are not prefetchable. Moreover, if a 
method with side effects is invoked by the client, the client cache must be invalidated, which 

                                                 
12 On the network transport layer, the message can be split up into multiple packets, depending on the network technology that is used. 
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means that the Cache of all client-side stubs have to be invalidated. The source code in 
Figure 66 presents an example of a method that has side effects on the server. The method 
Person.setName() sets a new name for a person and returns the new name as a String 
object.  
 

 
Figure 66: DOC-CaP Stub Method (Not Cachable) 

 
Since the setName() method has side effects and is not cachable, the stub method does not 
look in the cache for a Response for the setName() method. Instead, the CacheManager is 
called to invalidate all Cache objects (line 3). The CacheManager invalidates all Caches by 
calling the invalidate() method for each registered Cache object. Then the prediction 
algorithm is asked to predict future calls (line 4). Note that while setName() is not 
prefetchable itself, it can still serve as a prefetching trigger upon which other methods might 
be prefetched. A Request for setName() and all predicted methods is created and the name 
parameter is added to the Request (line 5-6). Then the Request is invoked (line 7). Upon 
return of the invoke() method, all Response objects are stored in the cache and the 
prediction algorithm is informed about the current setName() stub call through 
Stat.addStubCall() (line 9). Finally, the result value of the originally called method is 
returned to the client (line 10). 
 
 

4.2. XIDL – Extended IDL 

 
In Distributed Object Computing systems, the stub layer of a distributed application is 
automatically generated from an Interface Definition Language (IDL) description. The IDL 
description specifies the object interfaces that the server implementation of a distributed 
application provides to its clients. One example of an IDL is the OMG IDL, which is part of 
the CORBA standard. The OMG IDL definition for the AddressBook sample application was 
shown in section 1.4.2, Figure 23.  
 
We have extended the OMG IDL syntax by constructs that let the developer of a distributed 
application supply information about remote methods. This extended IDL is called XIDL in 
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the remainder of this document. Additionally, we have implemented an XIDL compiler, 
which automatically generates the stub layer of a distributed application from an XIDL file. 
The XIDL format as well as the implementation of the DOC-CaP XIDL compiler are 
described in this section. 
 
Figure 67 presents the XIDL definition for the AddressBook sample. For backward 
compatibility, we decided that the information needed by the DOC-CaP XIDL compiler has to 
be provided via IDL comments. This assures that any XIDL definition can still be passed to a 
standard IDL compiler for producing standard non-caching stubs. In XIDL, the developer can 
specify for each method its time-to-live value and information about method side effects. This 
information affects the way how the DOC-CaP XIDL compiler generates caching and 
prefetching source code into the stub layer of the distributed application. 
 

 
Figure 67: AddressBook Sample XIDL definition 

 
The time-to-live value of a method result value is given in a ttl comment. The ttl construct 
specifies the time-to-live value for the result value of a method in milliseconds. Specifying a 
time-to-live value on an interface is a shortcut for specifying the time-to-live value for each 
method of this interface. In Figure 67, each of the three Person methods, getName(), 
getEmail() and getPhone() have a time-to-live value of 5000 milliseconds. The 
search() method of the AddressBook interface has a time-to-live value of 5000 
milliseconds as well. 
 
The information about method side effects is given in a modifies comment. The developer 
of the distributed application uses the modifies none declaration to express that a method 
does not have side effects. Methods without the modifies none construct might have side 
effects13.  
 

                                                 
13 The problem of automatically deciding whether a method has side effects is discussed in section 3.3.1. 
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What happens if a method does not have side effects but a developer leaves out a modifies 
none declaration? In this case, the DOC-CaP XIDL compiler must assume that the method 
might have side effects. Consequently, the method will never be prefetched and upon calling 
this method, the cache will be invalidated. If a method does have side effects and the 
developer accidentally adds a modifies none declaration for this method, the DOC-CaP 
XIDL compiler assumes that the method does indeed have no side effects and might decide to 
prefetch this method. Moreover, upon calling this method, the client cache is not invalidated. 
Obviously, application correctness cannot be guaranteed in this case. The developer has to be 
careful to add modifies none declarations only for those methods that are guaranteed to 
have no side effects. 
 
When the DOC-CaP XIDL compiler is invoked on a XIDL input file, it produces Java source 
code using the DOC-CaP Framework implementation classes for caching and prefetching 
methods. Moreover, the DOC-CaP XIDL compiler can be advised to generate source code for 
monitoring stub calls and the invocation of remote requests. This functionality is enabled or 
disabled with two command-line options:  
 
-optimize If this command line option is passed to the XIDL compiler, it generates 

DOC-CaP caching and prefetching code into the stubs and skeleton classes. If 
the ‘optimize’ option is left out, normal CORBA stub classes are generated, 
similar to the output of commercial OMG IDL compilers, for example 
JacORB [14]. 

-monitor If this command line option is passed to the XIDL compiler, it generates 
additional code into the client stubs, which helps to track stub calls and 
remote method calls. So, the developer can see when remote method calls 
(normal CORBA requests as well as DOC-CaP requests) are transferred to the 
CORBA network layer. 

 
The DOC-CaP XIDL compiler generates source code for a stub layer that uses DOC-CaP 
Framework classes for implementing caching and prefetching for distributed applications.  
 

4.3. Prefetching Prediction Algorithm 

 
While caching facilities are built into the DOC-CaP Framework, no prefetching prediction 
algorithm is provided by the framework. The DOC-CaP Framework supports the 
implementation of different prefetching prediction algorithms via the abstract class Stat. To 
implement a new prefetching prediction, one has to subclass from the Stat class and 
implement the desired prediction algorithm in the subclass. This section presents the 
prefetching prediction algorithm used in our implementation of the DOC-CaP Framework. 
 
Before describing the prefetching prediction algorithm used in our implementation of DOC-
CaP, we introduce two types of prefetching prediction spaces, fixed prediction spaces and 
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dynamic prediction spaces. In both cases, we look at sets of data entities that might be 
scheduled for prefetching by the prediction algorithm. A data item that may be scheduled for 
prefetching is called a prefetching candidate. 
 
With fixed prediction spaces, the number of prefetching candidates is fixed and the data 
entities that are subject to prefetching can be numbered from 0 to a maximum value. For 
example, the main memory of a computer can be seen as a flat storage area where the 
individual memory blocks can be numbered from 0 to n where n is the address of the last 
memory block. A prediction algorithm for memory prefetching has to calculate the function 
next(x) where x is the number of the memory block that has been requested by the CPU 
and the result value of next(x) contains the numbers of the memory blocks that should be 
prefetched. In file systems, the prefetching space can be organized as harddisk sectors, for 
example. In Web prefetching, the prefetching space is organized as Web documents, which 
can be addressed by unique URLs14. 
 
If prefetching one data item produces more prefetching candidates, then the set of prefetching 
candidates is dynamic. This is the case in Distributed Object Computing systems. The number 
of remote methods that can be called by a client cannot be numbered from 0 to a maximum 
value. Instead, each method of an object can create and return objects, which can again have a 
number of methods. Since the number of objects might be changing with every prefetching 
action, the number of methods is changing as well. An example is the Address Book method 
search(). This method returns a number of Person objects, and each Person object has a 
number of methods (getName(), getEmail(), ...) that could be prefetched along with the 
call to search().  
 
Each method call is initiated by a client and is targeted against an object that implements the 
called method. In the case of Distributed Object Computing systems, method calls are 
targeted against stub objects, therefore we call them ‘stub calls’. Figure 68 presents a scenario 
of the Address Book sample application: A client calls the methods getName() and 
getEmail() in PersonStub objects p1 and p2.  
 

                                                 
14 This assumption does not apply for dynamically generated pages with changing query URLs. 
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Figure 68: AddressBook Prediction Scenario 

 
The question is if the client will call the method p3.getEmail() and if the result value of 
p3.getEmail() should be prefetched at the time p3.getName() is called. Since 
getName() was followed by getEmail() in the case of p1 and p2, the probability is high 
that getEmail() will be called next in p3 too.  
 
In the following we present the DOC-CaP prefetching prediction algorithm used in our 
implementation and in the evaluation of the DOC-CaP approach. The algorithm has two parts. 
The first part, accessed via the addStubCall() method of the Stat class, keeps track of 
the stub calls initiated by a client. The algorithm maintains a data structure used to store 
information about methods that were called in the past. The second part is responsible for 
predicting future stub calls. This functionality can be accessed through the 
predictFutureCalls() method of the Stat class. 
 
The algorithm uses a tree-like data structure to keep track of stub calls. There is one tree per 
IDL interface and each tree node contains information about a stub call (e.g. the method 
name) and a counter that indicates how often the stub method has been called by the client. 
We call such a tree an ‘invocation tree15’. At the beginning, the invocation tree does not 
contain any nodes except a ‘root’ node that is labeled with the name of the IDL interface that 
the invocation tree represents. If a client invokes a method in a stub, a stub call event is 
reported to the prefetching prediction algorithm via the addStubCall() method of the Stat 

                                                 
15 Note that the term ‘invocation tree’ is also used in other fields of computer science, for example in language compilers and processor 
architectures. Here, we use the term ‘invocation tree’ to describe the internal data structure that is used by our prefetching prediction 
algorithm.  
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class. The abstract method addStubCall() was introduced in the DOC-CaP Framework in 
section 4.1. In this section, we present the implementation of addStubCall(). 
 
Figure 69 presents the pseudo code of our implementation of the addStubCall() method. 
 

 
Figure 69: Pseudo Code Of addStubCall() 

 
The stubData object contains information about the CcClientStub object that was called 
by the client. For example, each CcClientStub object has a reference to the invocation tree 
node that represents the method that was last recently called in the CcClientStub. This 
node is called the ‘current’ node of the CcClientStub object. If a CcClientStub object is 
created, a StubData object is created, too, and the current node is the root node of the 
invocation tree for that CcClientStub.  
 
The method object contains an identifier of the method that was called by the client. The 
identifier is a string value that uniquely describes a stub method. 
 
The hasSideEffects parameter is set false if the method has a modifies none declaration in 
the IDL description, otherwise it is set true.  
 
Depending on hasSideEffects, the current node is set as either the root node of the 
invocation tree for this stub or the current node that is stored in the StubData object (lines 
4-11 in Figure 69). Then, a sub node of the current node is searched, which represents the 
called method. If no such child node is found, one is created implicitly (line 12). The counter 
of the child node is incremented by one (line 13) and then the child node is set as the current 
node of the StubData (line 14). Thus, each branch of an invocation tree represents a 
sequence of stub calls where each stub call method is without side effects. Each tree node has 
a counter that represents how often the sequence of methods from the root down to this tree 
node has been called by a client. 
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An example of an invocation tree for the Address Book sample scenario is shown in Figure 
68. The first method that the client calls is the getName() method of the PersonStub p1, 
which implements the Person interface. At the beginning, the stubData’s current node is 
the root node of the Person invocation tree. The algorithm retrieves the child node of the 
current node that represents the method that was called, getName() in this case. If no child 
node exists for this method, a new invocation tree node is created for the called method and 
its counter is set to zero. Now the counter is incremented by one and the child node is set as 
the current node of the PersonStub that was called. Figure 70 shows the invocation tree 
after the getName() stub call.  
 
 

 

 

Figure 70: Invocation Tree (1) Figure 71: Invocation Tree (2) 

 
 
The next call issued by the client is p1.getEmail(). Again, the algorithm takes the current 
node, creates a new child node representing the getEmail() method, increments the node 
counter by one and sets the new child node as the current node for the PersonStub p1. The 
invocation tree for the Person interface after this call is shown in Figure 71. 
 
The client calls now p2.getName(). Since the PersonStub p2 is called the first time, its 
current node is still the root node. This time, a child node for getName() exists already, its 
counter is incremented by one and it is set as the current node of p2. When p2.getEmail() 
is called, the already existing getEmail() node is increment by one and the invocation tree 
for the Person interface looks like shown in Figure 72, which is the same tree as in Figure 71 
but with the counter values for both the getName() node and the getEmail() node set to 2. 
Figure 73 shows the invocation tree after the client calls p3.getName(). 
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Figure 72: Invocation Tree (3) Figure 73: Invocation Tree (4) 

 
If a method is called in a stub, the stub method asks the prediction algorithm to predict future 
stub calls. The prediction algorithm uses its invocation trees to find the methods that are 
likely to be called in the future. The prediction functionality is accessed through the 
predictFutureCalls() method of the Stat class. With the invocation tree shown in 
Figure 73, the algorithm would predict that a getName() method call will be followed by a 
getEmail() method call with a probability of 0.66.  
 
The prefetching prediction scenario described so far is a scenario of a fixed prediction space. 
Upon a method call in a Stub object, the future calls that can be predicted are the methods 
that are implemented by that Stub object and the set of these methods is fixed.  
 
However, there are cases where it is beneficial to extend the prediction algorithm for dynamic 
prediction spaces. In the following we present an extension to the prefetching algorithm to 
support dynamic prediction spaces as encountered in Distributed Object Computing systems. 
 
With Distributed Object Computing systems, clients access server-side objects through client-
side stubs. If a client does not have a stub for a server-side object, it cannot communicate with 
that object16. If a client wants to communicate with a server-side object, it has to gain access 
to a stub for that object. Since a client cannot create a stub object directly, the only way of 
getting a stub is via the invocation of a method that returns one or more object references. If a 
stub method is called that produces new stubs, the called stub is called the ‘parent stub’ and 
the newly created stubs are called ‘child stubs’. 
 
An example is the search() method of the AddressBook interface, see Figure 23 in section 
1.4.2. This method returns a list of Person object references that are implemented as 
PersonStub objects. For each of the Person reference contained in the result list, the 

                                                 
16 Some Distributed Object Computing systems do support dynamic invocation interfaces, where a stub is not needed. Caching and 
prefetching is not supported with these types of remote method calls. 
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methods getName(), getEmail() and getPhone() are called in the sample scenario of 
the AddressBook Sample application in section 1.4.2. If the search() result list contained 
100 Person references, the invocation tree would look like shown in Figure 74. The parent 
stub of all PersonStub objects is the AddressBookStub that implements the search() 
method. 
 

 
Figure 74: Invocation Tree (4) 

 
The prediction algorithm would predict that getEmail() and getPhone() would follow a 
getName() call with a probability of 1.0. For each getName() call, the methods 
getEmail() and getPhone() would be predicted to be called next and scheduled for 
prefetching. Therefore, for iterating over the person list of 100 entries, 300 stub calls would 
result in 100 remote method invocations.  
 
Whenever a remote method is called that returns object references, child stubs are created on 
the fly. We have extended the invocation tree prediction algorithm to support the prefetching 
of methods that are implemented by newly created child stubs. For example, when the 
AddressBook.search() method is called, it would be beneficial if the methods of the 
resulting child stub objects, which are PersonStubs, would be prefetched along with the 
search() remote invocation. Having this, iterating over the person list and invoking 
getName(), getEmail() and getPhone() for each Person entry of the search() result 
list would involve no remote method invocations, because all PersonStub methods would 
have been already prefetched in the search() remote invocation.  
 
We have introduced a pseudo method ‘create_stub’ that is reported to the invocation tree 
prediction algorithm whenever a stub is created. Having this, the Person invocation tree 
would look like shown in Figure 75 after a client has invoked the search() method and has 
iterated over the resulting person list, calling getName(), getEmail() and getPhone() 
for each person entry: 100 PersonStub objects have been created and for each stub, 
getName(), getEmail() and getPhone() have been called once. Figure 75 shows also 
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the invocation tree for the AddressBook interface: One AddressBookStub has been 
created and the search() method has been called once.  
 

 
Figure 75: Invocation Tree (5) 

 
The prediction algorithm can now predict that if a PersonStub is created, getName(), 
getEmail() and getPhone() will be called with a probability of 1.0. The DOC-CaP XIDL 
compiler knows from the XIDL interface definition that search() returns Person 
references. Additionally, it knows from the XIDL interface that the Person methods 
getName(), getEmail() and getPhone() do not have side effects. Therefore, it creates 
code into the search() stub method that prefetches getName(), getPhone() and 
getEmail() for the Person entries in the search() result list along with the search() 
call itself. 
 
The prediction algorithm described so far can predict, upon a stub call, which methods of the 
same stub and which methods of newly created stubs will be called. However, there are 
situations where the sequence of method calls depends on the methods that were called in the 
past. We call the sequence of stub methods that were called in the past the ‘call context’ of a 
stub. In the next section we extend the Invocation Tree algorithm to use call context 
information for predicting future stub calls more precisely. For a motivation of the call 
context approach, we present a sample that is based on the AddressBook sample IDL 
definition introduced in section 1.4.2.  
 
Figure 76 shows the definition of an AddressBook sample interface where a new method 
searchEmail() is added to the AddressBook interface. We assume that a sample 
AddressBook client provides the functionality of searching for email addresses and displaying 
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the search result list. The email address list should only display the email address of a person, 
not its name nor its phone number. 
 

 
Figure 76: AddressBook XIDL Definition 

 
If a client calls the search() method of the AddressBook, it will call getName(), 
getEmail() and getPhone() for all Person references of the search() result list. If, 
however, the client calls searchEmail(), it will only call getEmail() for each Person 
reference of the searchEmail() result list. Let’s assume that the user of an AddressBook 
client activates the search function and the search() result list contains 100 Person 
entries. The client has to display the Person attributes and therefore iterates over the 
PersonList, calling getName(), getEmail() and getPhone() for each PersonList 
entry. At the end of the iteration, the invocation trees for the AddressBook and Person 
interfaces look like shown in Figure 75. Then the user activates the ‘search email’ function 
and the result list of searchEmail() contains 50 entries. The client displays the email 
addresses to the user, calling getEmail() for each PersonList entry. At the end of the 
iteration, the invocation trees look like shown in Figure 77. The problem here is that the next 
time getEmail() is called, the prediction algorithm will predict that getEmail() is 
followed by getPhone() with a probability of 100/150. If the prefetching threshold is 
greater than or equal to 100/150, getPhone() will be prefetched every time getEmail() is 
called, even when searchEmail() was called and it is guaranteed that getPhone() will 
never be called by the client in this case. If the prefetching threshold is lower than 100/150, 
getPhone() will never become prefetched upon a getEmail() call, even if search() was 
called and it is sure that getPhone() will be called next. The problem is that in the first case 
too much data is prefetched and in the second case, not enough data is prefetched. The 
difficulty is that the exact sequence of stub calls depends on the method call that has created 
the Person stubs. 
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Figure 77: Invocation Tree (6) 

 
To solve this problem we add information about the call context of parent stubs to the 
prefetching algorithm. Each ‘create_stub’ node is created as a child node of a call context 
node. The call context for a stub is defined as the name of the last recent stub call. If we insert 
call context nodes, the invocation trees for the AddressBook and the Person interfaces look 
like shown in Figure 78. Here, the Person invocation tree has two branches, one for the 
AddressBook.search() call context and one for the AddressBook.searchEmail() 
call context. For the AddressBook.search() call context, 100 Person stubs were created 
and getName(), getEmail() and getPhone() were called on each stub. For 
AddressBook.searchEmail() call context, 50 stubs were created and getEmail() was 
called 50 times.  
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Figure 78: Invocation Tree (7) 

 
When predicting future calls, the prefetching prediction algorithm searches the current call 
context of the parent stub. If such a context exists, the tree branch of this call context is used 
for predicting future calls. If the call context is not found, the whole tree is used for 
calculating the probability of future stub calls. The DOC-CaP Framework implementation that 
uses the prefetching prediction algorithm described in this section is evaluated in the next 
section.  
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55..  EEVVAALLUUAATTIIOONN  

In this section we experimentally evaluate the performance of the DOC-CaP system with 
three test applications. For each of the evaluation experiments, we provide an implementation 
that uses CORBA for client-server communication and one that uses DOC-CaP. We then 
measure the performance of these applications and compare the numbers of the CORBA-
based implementation and the DOC-CaP-based implementation. We conclude that the DOC-
CaP approach can increase distributed application performance significantly.  
 
It is important to note that the user-perceived performance of a distributed application has 
several factors, as described in section 1.4.4. For example, the time that is consumed by 
network communication depends on the number of remote method calls and the amount of 
data that has to be transferred between client and server. Additionally, the time it takes for a 
server to execute the method implementation adds to the client waiting time. The evaluation 
applications are implemented in a way that assures that the time it takes to execute a method 
implementation can be considered negligible. Therefore, our performance comparison of the 
evaluation applications considers only the communication overhead. 
 
To evaluate the DOC-CaP approach, we chose the following applications: 
 
Address Book Sample Application 
The Address Book sample application was introduced in section 1.4 and referenced 
throughout this work. The Address Book server stores person data for retrieval by an Address 
Book client. The Address Book client program can be used to search for persons and display 
their names, email addresses and phone numbers. 
 
TPC-W Benchmark  
The Transaction Processing Council (TPC) [35], a consortium of several leading companies 
of the computer industry, has specified and standardized a number of benchmark applications. 
The TPC-W benchmark [65] simulates an electronic book store much like amazon.com, 
where a customer can browse books, add books to a shopping cart, and so on.  
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AQUA: Automobile Quality Assurance Application 
This system is part of a quality assurance system developed at an automobile company. The 
AQUA system is used by automobile workers, Quality Assurance (QA) personnel and staff 
managers to collect, distribute and archive data about vehicles that do not meet the desired 
quality standards.  
There are a number of reasons why vehicles fail to meet the quality standards: If they do not 
pass QA tests, or if some worker notices a damage while assembling parts of a vehicle, for 
example. When such an incident occurs, the affected vehicles are locked, which means that 
they cannot be shipped unless the damage is repaired. The AQUA system is used to keep 
track of such QA incidents.  
Upon appearance, an incident can be created by entering data about a failure or a damage in 
the AQUA system: What types of vehicles are affected, how many parts are affected, who has 
noticed the damage, who is responsible for managing the repair process, descriptions of the 
incident, part numbers, vehicle identification numbers, and so on.  
Whenever an incident is created, a repair process is started. A typical repair process lasts from 
one to several days and involves in-house repair personnel as well as external vehicle part 
suppliers. Each repair action is entered into the AQUA system for long-term storage and 
retrieval.  
 
Evaluation Test Bed 
The DOC-CaP implementation used for the experimental evaluation is based on Java and 
CORBA. The evaluation test bed, the Java implementation and the CORBA implementation 
are described in Appendix 9.1. Since the DOC-CaP-based test runs use the same CORBA 
implementation as the CORBA-based test runs, it is ensured that the evaluation results reflect 
the performance speedup the can be gained through caching and prefetching of method result 
values. 
 
The DOC-CaP Caching and Prefetching  approach can be applied to other Distributed Object 
Computing systems as well. Moreover, other programming languages can be used for 
implementing distributed applications with DOC-CaP, like C++ for example.  
 
However, the performance numbers presented in this evaluation cannot be directly transferred 
to other Distributed Object Computing systems nor can they be transferred to other 
programming languages. The choice of both will affect the performance numbers of 
distributed applications built with or without DOC-CaP. This section presents the empiric 
evaluation of the DOC-CaP approach using CORBA and Java. 
 

5.1. Address Book Application 

 
For evaluation purposes, we concentrate on the ‘Search By Name’ use case, where a user uses 
the search function of the address book application to display a list of person entries. The 
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complete use cases and classes of the Address Book sample application are described in 
section 1.4, see Figure 19 and Figure 20.  
 
Each person has 3 attributes, a name, an email address and a phone number. Each attribute 
can be retrieved by the client via getName(), getEmail() or getPhone(), respectively.  
 

 
Figure 79: Address Book XIDL Definition 

 
Figure 79 presents the XIDL definition for the address book application. All person attributes 
have a TTL value of 5000 milliseconds. None of the specified methods have side effects on 
the server, denoted by a ‘modifies none’ comment for all methods. The Person’s get() 
methods are all prefetchable, since they do not modify the server state and do not have any 
ingoing parameters. The AddressBook search() method cannot be prefetched or cached, 
since it has an ingoing parameter. 
 

 
Figure 80: AddressBook Client Pseudo Code 

 
Figure 80 presents the pseudo code of the AddressBook evaluation test client. The code 
fragment shown here executes the ‘Search By Name’ test case by invoking the search() 
method of an AddressBook object and iterating over the resulting person list, calling 
getName(), getEmail() and getPhone() for each Person entry.  
 
In our implementation of the ‘Search By Name’ test case, the search() method yields a list 
of 10 Person entries and each Person attribute value is a pre-computed string of a fixed 
length of 10 characters that the server stores in memory. Thus, the execution times of the test 
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runs are comparable and the execution times of the server side method implementations can 
be neglected. The test measurements reflect only CORBA communication performance, not 
any implementation issues like database access or LDAP server lookups for retrieving person 
data.  
 
The test case involves 31 remote method calls in standard CORBA: one for the search() 
method and 30 for iterating over the resulting Person list. With DOC-CaP, the test case 
involves only one remote method call, as the result values for getName(), getEmail() and 
getPhone() for each Person entry are prefetched when search() is called. 
 
We executed the ‘Search By Name’ test case several times to get stable average values. A 
detailed description of the test setup and the test method can be found in Appendix 9.1 and 
the evaluation result values can be found in Appendix 9.5. 
 
 
Figure 81 presents the speedup factors for the Address Book evaluation, for various network 
delay and bandwidth configurations. The speedup is calculated as 
 

 
 
where Twait_1 is the client waiting time Twait using normal CORBA and Twait_2 is the 
client waiting time Twait using DOC-CaP. 
 
The x-axis shows the bandwidth, from 160 KB/s down to 5 KB/s. The y-axis shows the 
speedup factor. The network delay time has been set from 0 milliseconds to 160 milliseconds. 
The most important result is that the speedup factor depends mainly on the network delay 
time. The higher the network delay time, the greater is the speedup factor.  
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Figure 81: AddressBook Speedup Factors 

 
By using the DOC-CaP approach, the performance of the AddressBook sample application 
can be increased significantly. The performance gain depends on a number of factors. First, 
the number of search() result length and the number of Person attributes determines the 
factor by which the number of remote method invocations can be reduced. Second, the 
network parameters (delay time and bandwidth) affect the performance speedup that can be 
gained by using DOC-CaP.  
 

5.2. TPCW-W Benchmark 

 
While the Address Book sample application has only two interfaces and the invocation 
pattern is simple, real-world applications typically do have more complex interfaces and 
invocation patterns. We investigate these applications by implementing an application based 
on the TPC-W Benchmark [65]. 
 
The TPC-W Benchmark specifies an E-Commerce workload that simulates the activities of a 
bookstore company website, like amazon.com for example. Emulated users can browse and 
order product items from the website. In the case of TPC-W the items are books. A user is 
emulated by a ‘Browser Emulator’ that simulates the same network traffic as a real customer 
would see using a Web browser. At the server side, a database stores information about 
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registered customers, books and orders. A Web server dynamically produces Web pages that 
are then sent to the client-side Browser Emulator. 
 
The TPC-W specification describes in detail the 14 different Web pages of the website. The 
first page the user will see is the bookstore homepage. It includes the bookstore logo, 
promotional items, a list of best selling books, a list of new books, search pages, the users 
shopping cart, and order status pages. For each book there is a product page, which will give 
the user detailed information about that book. The user may order books by entering the order 
and shopping cart pages. The user can place an order, enter the quantity, or delete a book 
from the shopping cart. When the user wishes to buy, credit card information has to be 
entered and the order can be submitted. The system will present the user with an order 
confirmation page. At any later date the user can view the status of the last order. 
 
The purpose of the TPC-W Benchmark is to provide a standardized basis for the performance 
evaluation of a given ‘System Under Test’. The System Under Test comprises all hardware 
and software components that are part of the application being simulated. This includes 
network connections, Web servers, application servers, database servers, etc. The outcome of 
a TPC-W benchmark test run is the number of emulated user interactions per seconds.  
 
For the purpose of evaluating the DOC-CaP system, we have implemented the TPC-W entity 
model in an object-oriented way, using CORBA and Java. The TPC-W Entity Relationship 
Model is shown in Figure 82. Each attribute can be a character string, a number, a date value 
or a reference to another entity. The entity ITEM specifies two image attributes: 
I_THUMBNAIL and I_IMAGE. The TPC-W specification states that these attributes can be 
binary image data or references (filenames, URLs, etc.) to image data that is stored 
somewhere else in the system. In our implementation, the I_THUMBNAIL and I_IMAGE 
attributes are character strings and store image names instead of binary image data. 
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Figure 82: TPC-W Database Entities And Relationships 

 
We defined a CORBA interface for each entity, and a get method for each string, number and 
date attribute. For each reference, we defined a get-method that returns a reference to the 
respective interface. The interface definitions contain additional methods that are used to add 
references or remove references. The TPC-W evaluation class diagram is shown in Figure 83 
and the XIDL interface is shown in Appendix 9.6. 
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Figure 83: TPC-W Benchmark Class Diagram 
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Figure 84: TPC-W Benchmark Use Case Diagram 

 
The TPC-W suite specifies a number of use cases, which are shown in Figure 85. In our 
implementation, we use a fixed sequence of user transactions to obtain a basis for 
reproducible and comparable test results. A test run consists of the following user 
transactions:  

1. Register User. The emulated user registers with the system by providing a username 
and a password. A new user account is created by the system and the user is ready for 
login. 

2. Login. The emulated user logs in by providing a username and a password. The 
username and password must be known by the system, which means that a user 
registration has to be executed before. After successfully logging in, a welcome 
message is displayed and 5 randomly chosen promotional items are displayed.  

3. Show New Items. The emulated user requests the list of new items to be displayed. The 
system displays 50 new items as well as 5 randomly chosen promotional items. 
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4. Show Bestsellers. The emulated user requests the list of bestseller items to be 
displayed. The system displays 50 bestseller items as well as 5 randomly chosen 
promotional items. 

5. Show Shopping Cart. The emulated user requests the shopping cart to be displayed. At 
this time, the chopping cart is empty. The system displays the shopping cart page 
along with 5 randomly chosen promotional items. 

6. Show Product Detail. The emulated user requests the product details of a specific item 
to be shown. In our implementation, the item to be displayed is identified by an index 
value that goes from 0 to the number of items stored in the server minus one.  

7. Add Item To Cart. The emulated user adds the item to the shopping cart. 
8. Show Shopping Cart. The emulated user requests the shopping cart to be displayed. At 

this time, the chopping cart contains 1 item. The system displays the updated shopping 
cart page along with 5 randomly chosen promotional items. 

9. Show Buy Request. The emulated user requests a buy request page to be displayed. 
The system displays a page that contains the emulated user’s billing and shipment 
information along with the price of the current shopping cart items. 

10. Submit Buy Request. The emulated user fills out the shipment and credit card 
information and submits the buy request page. The system then displays a buy 
confirmation page, which contains the pricing information and a success message. 

11. Show Last Order. The emulated user requests the last order page to be displayed.  
 
The TPC-W test application consists of a TPC-W test server and a TPC-W test client that 
emulates a real user by initiating the sequence of user interactions, i.e. calling the respective 
methods in the server.  
 
Upon startup, the TPC-W test server populates its database. It is important to note that we did 
not use a database management system, but programmed the test server to hold all data in 
memory. Thus, we can safely assume that the performance measurements are not perturbed by 
the time it takes for accessing an external database. We implemented the TPC-W test client as 
a test driver that automatically emulates a user and executes the use cases of the TPC-W 
benchmark. Therefore, we can also assume that the performance measurements are not 
affected by user think times. 
 
The TPC-W test runs were conducted in two configurations, with normal CORBA and with 
DOC-CaP. For each test run, the network delay time was set to a value between 0 and 160 
milliseconds. The client waiting time Twait of each test run was recorded and the result 
values are is shown in Figure 85. The exact test run result numbers are listed in Appendix 9.6. 
 
As the network delay increases, so does the client waiting time Twait. Roughly one can say 
that in the case of normal CORBA, Twait is proportional to the network delay time. With 
DOC-CaP enabled, the Twait time values are significantly lower than without DOC-CaP. The 
speedup factors for the network delay times of 0 ms to 160 ms are shown in Figure 86. 
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Figure 85: TPC-W Benchmark Test Run Duration (Twait) 

 

 
Figure 86: TPC-W Benchmark Speedup 
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5.3. AQUA: Automobile Quality Assurance Project  

The AQUA system is part of a quality assurance system developed at an automobile 
company. After delivery of the first AQUA software release, users complained about the poor 
performance of the system on the corporate intranet WAN network. The reason for relatively 
low application performance was that the corporate WAN exhibited high network delays (5 to 
20 milliseconds). A second release with Data Structures (see section 1.5 for an explanation of 
the ‘Data Structures’ approach) was implemented to increase user-perceived application 
performance. 
 
Figure 87 shows the use case diagram for the AQUA system. The actor QAUser can create, 
list and edit incidents as well as access the incident overview page and the repair action list. A 
QAUser cannot show the QA summary page, as this is reserved for the actor QAManager. A 
QAManager is a QAUser and can as such execute all QAUser use cases. Additionally, a 
QAManager can invoke the QA summary page. 
 

 
Figure 87: AQUA Use Case Diagram 

 
The Use Cases of the AQUA system as described in the following: 
 

• Create Incident. This test case starts with the Client Applet displaying a empty user 
interface where the user can enter data for a new incident. When the complete data is 
entered, the user presses the ‘Save’ button and the data is transferred to the Incident 
Server, where it is stored in the database.  

• Incident List. The system displays the table of incidents, one incident per row. Each 
line has 10 columns that show the most important data items: The keyword, a short 
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description, the date when the incident was created, the name of the creator and so on. 
Moreover, each line contains a link to each of the overview pages for that incident. 

• Edit Incident. The test case starts with the Client Applet displaying all incident data to 
the user. The user can then edit data that is already entered. Displaying the incident 
data involves the invocation of remote get-methods to retrieve the incident attributes. 
After the user has done editing the incident, a number of set-methods are called for 
transferring the data from the client to the server. Typically, only a small number of 
set methods are called, as the QA users make only small modifications to the incident 
data at a time.  

• Incident Overview. The incident overview page contains detailed information about an 
incident. It lists the workers, repair personell, QA personell that are involved with this 
incident, a description, a short summary of the repair process, and so on. 

• Repair Action List. The repair action list shows all repair actions that are executed in 
the past for this incident. Each repair action is displayed with a short description, the 
date of execution, a short description of the results, the person who was responsible 
for the repair, and so on.  

• QA Summary. The QA summary page is intended for the QA managers to get a brief 
overview of an incident and its repair status. Besides QA-related incident attributes, it 
displays the list of workers and QA staff members who are involved in that incident. 
For each worker of staff member, the name, department and phone number is 
displayed. 

 

 
Figure 88: AQUA System Deployment 
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Figure 88 shows a deployment diagram of the AQUA system. The server application 
(Incident Server) is implemented as a Java application and manages database access, email 
notifications, user management and access control. The client application for creating and 
editing incidents is implemented with Java applet technology. The creation of the HTML 
overview pages is implemented with Java Servlet technology. The AQUA system is deployed 
on a Wide Area Network (WAN) where the Incident Server is residing in the central 
computing center, to which each plant of the automobile company is connected.  
 
The Client Applets use the WAN connection to access the server functionality via its CORBA 
interface. Each plant owns its own WebServer that generates HTML overview pages using 
Java Servlet technology. The Java servlets that create the overview pages use CORBA to 
access the incident server and retrieve data that has to be displayed in the overview pages. 
 
The AQUA system was designed and implemented according to the specification provided by 
the QA department of the automobile company. The functional requirements were specified 
as a GUI prototype that showed all input fields for an incident. In addition, the GUI prototype 
showed the fields that should be displayed in each of the overview pages. The non-functional 
requirements included the specification of the Java version to be used for implementation as 
well as the Web server and the database managements system.  
 
The specification did not include any performance requirements. The customer decided that 
the performance of the system should be of minor importance at project start time. The idea 
was to build a first release of the system and use this release for performance tests. Then, 
having the performance test results, the customer wanted to decide whether the performance 
of the system is acceptable or performance optimizations should be built into the system. 
 
In the first implementation of the AQUA project, an object model of the AQUA system was 
designed, using a straightforward approach of converting each input field into a class 
attribute. The object model had 18 classes: 7 classes main classes with an average of 13 
attributes per class and 11 helper classes with an average of 2 attributes per class. After 
converting the object model into an IDL specification and generating the stub layer, the 
application was implemented and deployed on a Local Area Network in one plant of the 
automobile company.  
 
The performance of the system was acceptable. Then the application was deployed on the 
company-wide intranet, using a WAN connection between the incident server and its clients. 
This network connection suffered from longer network delay times than the LAN connection 
that was used for performance assessment of the first prototype.  
 
For increasing application performance, the ‘Data Structures’ approach described in section 
1.5.2 was adopted. After re-implementing the Incident Server, the Client Applets and the 
client servlets to use data structures instead of fine-grained interfaces, the performance of the 
system was accepted by the customer. 
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In the following performance evaluation, we investigate how applying the DOC-CaP 
approach could speed up the performance of the AQUA system, as far as communication 
overhead is concerned. The AQUA server application, as it is deployed at the company, uses 
several external systems: An external database to store the application data, an LDAP server 
to get information about users of the system, and an email server to send notification emails to 
users of the system. 
 
In our evaluation version of the AQUA server, we removed all accesses to these external 
systems. All application-specific data and user information is stored in memory, and the email 
notification service is disabled. The AQUA client is implemented as an automated test driver 
that executes the test cases (which are derived from the AQUA use cases, see Figure 87) of 
the AQUA performance evaluation without user interaction. It is important to note that the 
source code for this test drivers was derived directly from the AQUA client source code that 
is deployed at the company. No methods were added nor did we remove any method calls. 
This approach assures reliable performance data that reflects the performance of the real-
world distributed application but does not depend on user think time or the execution speed of 
external systems17.  
 
We built a test driver that implemented the test cases ‘Create Incident’, ‘Edit Incident’, 
‘Incident List’, ‘Incident Overview’, ‘Repair Action List’ and ‘QA Summary’. We compiled 
the test driver and the AQUA incident server in three configurations: normal CORBA with a 
straightforward implementation, normal CORBA with the Data Structures approach, and a 
DOC-CaP-based implementation. We have measured the client waiting time (Twait) for 
different network delay times ranging from 0 milliseconds to 160 milliseconds. The resulting 
Twait values were recorded and compared with each other, and a speedup factor was 
calculated that indicates the performance gain achieved by using the Data Structures approach 
and DOC-CaP. The test bed configuration is described in appendix 9.1. The test run result 
numbers are listed in appendix 9.7. Figure 89 and Figure 90 presents the test run speedup 
factors for Data Structures and DOC-CaP, for different test cases and network delay values. 
The speedup factor is calculated as 
 

 
 
where Twait_1 is the client waiting time for the straightforward configuration and Twait_2 
is the client waiting time for the Data Structures test or for the DOC-CaP test, respectively.  
 

                                                 
17 It is important to note that the performance of the AQUA application depends on the size of the database. The more data is stored in the 
AQUA database, the longer it takes for e.g. a list of vehicle identification numbers to be transferred from the server to a client. Unfortunately, 
due to non-disclosure agreements, the exact numbers cannot be disclosed in this dissertation. We have therefore avoided to give any concrete 
numbers that would violate the non-disclosure agreements. However, we will present relative number where appropriate. 
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Figure 89: Speedup Factor per Test Case (Data Structures) 

 
With Data Structures, the speedup factors for all test cases are greater than 1, which means 
that Twait_2 is lower than Twait_1 for all test cases. The ‘Create Incident’ test case 
involves many set-methods which are called one after another, so the performance gain is not 
high in this case. For the ‘Incident Overview’ and ‘Repair Action List’ test cases, the speedup 
factors are around 12 and 7, respectively. These test cases involve the invocation of many 
consecutive get-methods in the straightforward implementation and can benefit from using 
data structures instead of calling fine-grained interface methods. For the rest of the test cases, 
the speedup factor is around 2 to 3.  
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Figure 90: Speedup Factor per Test Case (DOC-CaP) 

 
With DOC-CaP, the speedup factor for the ‘Create Incident’ test is less than 1, which means 
that Twait_2 is greater than Twait_1 in these cases. This is because the ‘Create Incident’ 
test involves many set-methods with side effects and are therefore not prefetchable or 
cachable. Consequently, each stub call involves one remote method call that has to be 
transferred to the server. Additionally, the DOC-CaP implementation overhead of creating 
and transferring a MultiRequest, as well as the overhead of the DOC-CaP statistic 
algorithm add to the client waiting time Twait_2.  
 
As the AQUA test runs indicate, the benefit from using DOC-CaP is high when many 
consecutive remote methods are involved that do not have side effects on the server. This is 
the case in the ‘Repair Action List’ and ‘Incident Overview’ test cases, where remote method 
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calls are used to transfer data for an incident from the server to a client and all remote 
methods that are called are prefetchable. Moreover, the invocation pattern is repetitive, which 
means that the prefetching prediction algorithm can very accurately predict which methods 
will be called in the future. Consequently, the ‘Repair Action List’ and ‘Incident Overview’ 
test cases yield high speedup values of around 40 and more even for a relatively small 
network delay value of 5 milliseconds.  
 
We assume that the speedup factor for the AQUA performance evaluation is determined by 
the number of remote method calls that can be saved by using Data Structures or DOC-CaP. 
To validate this assumption, we present the number of remote calls (RC) per test case and test 
configuration in Figure 91. The first column shows the name of the test cases. The next three 
columns show the number of remote (method) calls. The last two columns show the factor by 
which the number of remote calls is reduced by applying Data Structures or DOC-CaP instead 
of using the Straightforward approach. 
 

 
Figure 91: Number Of Remote Calls (RC) Per Test Case 

 
For example, The ‘Incident List’ test case involves 15 remote calls in the Straightforward 
configuration. With Data Structures, the number of remote calls is reduced to 5 (reduction 
factor is 3), whereas the DOC-CaP implementation sends 1 remote call to the server (giving a 
reduction factor of 15). By comparing the reduction factors in Figure 91 with the speedup 
factors in Figure 89 and Figure 90, one can see that the speedup factors converge against the 
reduction factor. Although the speedup factors do not reach the reduction factors, we can 
conclude that the speedup factor increases when the number of remote calls decreases. 
 
In the AQUA system, not all use cases are executed the same number of times. For example, 
it is relatively seldom that a ‘Create Incident’ use case is executed, compared to the execution 
of a ‘Incident Overview’ use case. In order to be able to judge the benefit of using DOC-CaP 
in the AQUA project, we have calculated a ‘weighted’ speedup factor. It takes the client 
waiting time of each of the test cases and multiplies it with the number of how often that use 
case is executed in a certain time interval (e.g. one day). The relative weight for each use case 
is shown in Figure 92. Although we cannot disclose the exact numbers of how many incidents 
are created in a certain time interval, we can however publish relative numbers. 
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Figure 92: Weight Per Use Case 

 
If we apply the use case weight factors, we get weighted speedup factors for the Data 
Structures and the DOC-CaP configurations of the AQUA system as shown in Figure 93. 
 

 
Figure 93: Weighted Speedup Factors 
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Distributed Object Computing (DOC) systems provide a comfortable way of implementing 
object-oriented communication through remote method calls. The mechanisms of transferring 
method parameters and method result values are transparent to the client and the server, and 
the developer does not need to know whether client and server are located on the same 
machine or across a computer network.  
 
The goal of this dissertation was to deal with performance problems of Distributed Object 
Computing systems and to validate the hypothesis that caching and prefetching method result 
values can increase the performance of distributed applications.  
 
After presenting current practice solutions, which require a high implementation effort, we 
have introduced a novel approach of automatically adding caching and prefetching 
functionality to the stub layer of distributed applications, thus ensuring client and server 
transparency with a minimal implementation effort. A CORBA-based implementation served 
as the basis for an experimental performance evaluation.  
 
The results of our work are summarized in section 6.1. Remaining problems are described in 
section 6.2. 
 

6.1. Results 

 
Remote method calls are significantly slower than local method calls. Since calling a remote 
method involves parameter marshalling and network transfer, the client has to spend more 
time waiting for a remote method call than waiting for an in-process method call. We 
discussed current practice approaches that developers of distributed applications implement to 
overcome these performance losses. Current practice requires that developers must manually 
change the code to reduce the number of remote method calls to a minimum. The 
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performance speedup of distributed applications is directly related to the number of remote 
method calls that can be saved. 
 
We introduced a new approach for increasing the performance of distributed applications by 
reducing the number of remote method calls. We have implemented this approach in the 
DOC-CaP Framework as a basis for adding caching and prefetching functionality to 
distributed applications. Since the DOC-CaP Framework is located at the stub layer of a 
distributed application, it is transparent to client- and server software. Thus, the DOC-CaP 
approach does not require a redesign or re-implementation of the distributed application, 
effectively keeping the implementation effort at a minimum. The only information that has to 
be provided to the DOC-CaP Framework is specified by declarative tags in XIDL,  an 
extension to the interface definition language (IDL) specification. Therefore, the DOC-CaP 
approach is very well suited for improving the performance of newly developed applications 
as well as legacy applications. 
 
For an experimental evaluation of our approach  we  provided an implementation of the DOC-
CaP Framework in Java and CORBA and used three test applications as case studies. The first 
application is a distributed AddressBook sample application that stores and displays 
information of person objects like names, email addresses and phone numbers. For each test 
run, we recorded and analyzed the time for method marshalling and unmarshalling as well as 
the time for the network transfer of a marshalled method requests and responses. 
Additionally, we analyzed the overall time that a client has to wait for executing remote 
method calls.  
 
The second application is TPC-W, a standard industry benchmark designed to evaluate the 
performance of E-Commerce systems. We implemented the benchmark business-object model 
in Java and CORBA. Additionally, we implemented a test driver client that emulates a user by 
executing the test cases defined by the TPC-W benchmark specification. The performance 
measurement results show the speedup factor that can be achieved by DOC-CaP, is 
significant.   
 
The third application, a real-world industry application, was developed for a major 
automobile company as part of a quality assurance system in the company-wide intranet, 
which spans several subsidiaries of the company across several hundred kilometers. Our 
evaluation shows that DOC-CaP can reduce the overhead of remote method calls in this 
application by a factor of 20 to 30 in the average case and 50 to 60 in the best case, with a 
minimal implementation effort. In contrast, implementing the application with the data 
structure approach reduced the overhead of remote method calls by a factor of 6 in the 
average case and 12 in the best case, but only with an extraordinary high implementation 
effort . This test demonstrates the viability of our approach for distributed legacy applications.  
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6.2. Future Work 

 
While the DOC-CaP Framework presented in this dissertation can speed up distributed 
application performance significantly and is applicable to a wide range of distributed 
applications, there are still problems that need to be addressed by further work. 
 
The prefetching algorithm presented in this dissertation works well for predicting future 
method calls in Distributed Object Computing applications. The prefetching algorithm is 
based upon method call probabilities and a fixed threshold value. If the probability of a 
method call is greater than or equal to the threshold value, the method will be prefetched. If 
the probability of a method call is below the threshold value, the method will not be 
prefetched.  
Once a method has been prefetched, the DOC-CaP system keeps track of how often this 
method is called later on, thus calculating the benefit of the prefetch. The cost of the prefetch 
can be derived from the time it takes to transfer the request and response of this method over 
the network plus the time it takes for the method implementation to execute.  
If a client calls the method not at all, the benefit is zero and time has obviously been wasted 
by prefetching this method. If the prefetched method is called later on, the benefit can be 
calculated as the saved network delay time.  
Based on the cost/benefit information, the prefetch threshold could be dynamically adjusted 
and we assume that by doing so, the prefetching accuracy could be improved. 
 
The cache consistency approach used by the DOC-CaP framework is based on an expiration 
model with client invalidation. Each cache item is invalidated after its expiration time has 
elapsed. Additionally, whenever a client invokes a method that has side effects, the client 
cache is invalidated. In some cases it might actually be sufficient to invalidate only a small 
portion of the client cache, instead of the whole cache. For methods that have side effects 
only to attributes in the class in which the methods are defined, it would be sufficient to 
invalidate only the portion of the client cache that relates to instances of this class. We assume 
that such a finer-grained cache consistency would be lead to even higher speedup factors. 
 
The problem of deciding whether a method can potentially have side effects is left to the 
developer of a distributed application. The developer uses the IDL specification to indicate 
for each method whether it has side effects or not. It is crucial for application correctness that 
the method side effect information given in the IDL description is correct.  
For large-scale systems, keeping track of side effect information in the IDL specification is an 
additional task in system development and has to be carefully integrated in the software 
development process. Moreover, by providing side effect information in IDL, implementation 
details are disclosed in the interface specification which violates the principle of information 
hiding.  
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99..  AAPPPPEENNDDIIXX  

9.1. Test Bed Configuration 

 

In this section we describe the test bed that we used for evaluating the performance of the test 
applications presented in our work. We describe the hardware and software configuration as 
well as the performance measurement setup. 

 

9.1.1. Hardware and Software Configuration 

 
The test bed for all performance tests conducted in our work consists of three computers 
connected by an Ethernet network: A client, a server and a router, which acts as a gateway 
between client and server. The testbed setup is shown in Figure 94.  
 

 
Figure 94: Testbed Hardware Setup 
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Client 
The client machine is a Laptop (Dell Inspiron 8100, 384 MB, Intel Pentium III mobile 800 
MHz) running MS Windows XP, Service Pack 1. The network card is a 10/100MBit Ethernet 
Card (FASTline PCMCIA 10/100 MBit Fast-Ethernetadapter). 
 
Server 
The server machine is PC (265 MB, Intel Pentium II 600 MHz) running MS Windows 2000 
Professional, Service Pack 4. The network card is a 10/100MBit Ethernet Card (SMC 
EtherPower II 10/100 PCI Ethernet Adapter). 
 
Router 
The router is a Linux-based PC configured as a TCP/IP router and running the ‘NIST Net’ 
TCP/IP network emulator (see [17] and [73]). The NIST Net package allows emulating packet 
delay and bandwidth limitation. The router machine hosts two 10/100MBit network cards 
(3Com 3c905CX-TX-M PCI) 
 
TCP/IP Trace Utility 
The WinPcap/Windump package (see [67] and [68]) was used to capture network packets at 
the client and server machine. We installed WinPcap/Windump on both the client machine 
and the server machine and configured the utility so that it resides between the network 
transport layer and the application program and captures any ingoing or outgoing TCP/IP 
packets and stores them in a capture file. The capture file is analysed later (off-line) and 
network roundtrip times are extracted. Dedicated test runs showed that the capturing process 
does not slow down network traffic measurably. 
 
CORBA implementation 
The CORBA system installed at the client and server machine is the JacORB 2.0 [14] 
CORBA implementation, which was developed at Freie Universität Berlin and is distributed 
under an open-source license, see [74] for a description of JacORB. The product and its 
source code are free, and it is widely used in the industry, in research projects and in open 
source projects, for example in the JBoss [14] application server. JacORB 2.0 provides a 
CORBA 2.3 compliant IDL compiler to produce client- and server-stubs, Objects By Value 
[11] and Asynchronous Messaging Interface [12]. 
 
Programming Language 
The client and server software as well as the JacORB CORBA implementation is written in 
Java [15]. The Java Runtime Environment for executing the test runs is Java 1.4.0, Java(TM) 
2 Runtime Environment, Standard Edition (build 1.4.0-b92), Java HotSpot(TM) Client VM 
(build 1.4.0-b92, mixed mode). 
 
CPU and network load 
All background processes that are not part of the operating systems of the client, server or 
router machine are disabled. The network connection is not used by any other computers, 
which is the basis for reproducible test results.  
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9.1.2. Performance Measurement Setup 

 
The primary goal of the performance measurements presented in the following sections is to 
evaluate the performance of CORBA-based and DOC-CaP-based distributed applications 
under different network delay values, different network bandwidths, different amounts of data 
to be transferred, and so on. The most important performance criteria for the user of a 
distributed application is the perceived application performance, which is - among other 
factors - affected by the time that is needed by a client stub to perform a remote method call. 
This time, which is called Twait throughout this dissertation, is the time that elapses between 
the invocation of a stub method and the return of that stub method. 
 
Since our test applications are implemented in Java and Java does not provide a high-
resolution timer, we have implemented a Java Extension in C (using the Java Native Interface 
JNI, see [83]) that provides a high-resolution timer using the Windows 
QueryPerformanceCounter and QueryPerformanceFrequency system calls. The 
QueryPerformanceCounter system call returns the current value of the high-resolution 
clock and the QueryPerformanceFrequency system call returns the frequency with which 
the clock is incremented. The frequency depends on the installed hardware and is 3579545 on 
the client machine used in our test runs, resulting in a timer resolution of around 0.3 
microseconds. The QueryPerformanceCounter system call itself takes about 0.02 
milliseconds. 
 
The Twait values for stub calls are measured by placing a high-resolution timer query 
directly before a stub call and another timer query immediately after the stub call. The 
difference of both values is taken as the execution time of the stub call, which is Twait. 
 
In our test runs, the client waiting time Twait is composed of several factors. The two most 
important factors are the network time Tnet, which is the time for transferring remote method 
requests and responses between client and server, and the marshalling time Tmar, which is the 
time for marshalling and unmarshalling remote method requests and responses at the client 
and server side. 
 
When a client calls a stub method, the stub first converts all method parameters into a byte 
array and creates a remote method request. Then it sends the method request, along with the 
marshalled method parameters, across the network to the server. The basic control flow of a 
remote method call is discussed in section 1.2 and shown again in Figure 95, annotated with 
time markers. Since the JacORB CORBA implementation used in our test runs uses TCP 
sockets for network communication, a TCP/IP connection between client and server is used to 
transfer the method request. For a description of TCP/IP network communication details we 
refer to [84]. For the understanding of our test measurements, it is important to note that the 
TCP/IP protocol does not send the method request to the server at once (as presented in 
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Figure 95). Simplified, it splits the byte array into small TCP packets and transfers them over 
the network one by one. After a certain number of packets have been sent, the client TCP 
waits for an acknowledgement from the server. Having received the acknowledgement, it 
continues sending TCP packets. This procedure is repeated until all data is sent to the server. 
The same procedure is repeated for the remote method response, which is again split into 
several TCP packets and sent back to the client, the server TCP waiting for acknowledgement 
messages from the client. The size of the TCP packets depends on the configuration of the 
operating system and is 1500 bytes in our test runs. The number of packets that can be sent 
before waiting for an acknowledgement message, the so-called TCP window size, is up to the 
TCP/IP implementation. Most implementations – among them the TCP/IP implementation 
used in our test runs – dynamically adjust the TCP window size to maximize network 
throughput. 
 

 
Figure 95: Performance Measurement Timestamps 

 
We have measured the network time of a remote method call by installing the 
WinPcap/Windump package (version 3.8.3, see [67] and [68]) on both client and server 
machine and tracing all network traffic that belonged to the application under test. For 
measuring the network time, we analyzed the Windump traces on the client machine and 
calculated the time between the first outgoing TCP packet of the method request (t1 in Figure 
95) and the last incoming TCP packet of the method response (t4 in Figure 95). This time is 
the network time Tnet plus the server-side marshalling time plus the execution time of the 
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server-side method implementation. Since the server-side method implementations return pre-
computed values, the execution time of the server-side method implementation can be 
neglected for all test runs and the server-side marshalling time can be calculated as the time 
that elapses between the last incoming TCP packet of the method request (t2 in Figure 95) 
and the fist outgoing TPC packet of the method response (t3 in Figure 95). 
 
The formulas for calculating Twait, Tnet and Tmar are presented in the following: 
 
Twait = (t5 – t0) 

Tnet  = (t4 – t1) - (t3 – t2) 

Tmar  = Twait - Tnet = (t5 – t0) - (t4 – t1) + (t3 – t2) 

 
The test runs result numbers presented in the following sections are average numbers. Each 
test run was executed several times (short-running test runs were executed more often than 
long-running test runs) and the result numbers of all test runs were logged in trace files. Later 
we analyzed these trace files (using off-line trace analyzer scripts) and extracted the timing 
information shown in Figure 95. We cut the top 10 percent and the bottom 10 percent of all 
numbers and calculated the average values of the rest of the performance numbers. By 
applying this procedure, outliers that result from java garbage collection, operating system 
background activities, and so on, are ignored. This principle of ignoring outliers is described 
in [66]. 
 

As described in section 9.1.1 the client machine is not directly connected to the server 
machine. Instead, the TCP/IP traffic is going through a router. We have installed the NIST 
Net package (version 2.0.12) on the router, which allows for emulating network delay and 
bandwidth limitations in a controlled manner. It is important to note that the existence of the 
NIST Net network emulation is transparent to both the client and the server.  
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9.2. Distributed Object Computing Performance 

 
The purpose of the test runs ‘Distributed Object Computing Performance’ is to show how 
network parameters and marshalling time affect the client waiting time. The test scenarios are 
described in section 1.3: The test server implements one single method getName(). In all 
test runs, the implementation of getName() returns a pre-computed value. The 
implementation time Timpl is below a measurable value and can be neglected. 
 
Varying Network Delays 
 
The first series of test runs shows how the client waiting time Twait of a remote method call 
depends on the network delay time Tdelay. The test scenario for this test run is described in 
section 1.3. The test results are shown in Table 1, Table 2 and Table 3, a graphical 
representation of the Twait values is presented in Figure 96: The x-axis represents the length 
of the getName() result value, from 0 to 32000 characters. The y-axis represents the time for 
Twait in milliseconds. The diagram contains 6 data series, one for each configured network 
delay time. In this test run, no bandwidth limitation is configured on the router machine, 
which means that the full speed of the network could be utilized. 
 

 
Figure 96: Twait For Different Network Delays 
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As one can see from the test results, Tmar and Tnet grow as the method result value grows. 
As a consequence, the client waiting time Twait depends on the length of the method result 
value that has to be transferred over the network. As we can see from the test result values, 
even if the method result length is 0, the network time Tnet and the marshalling time Tmar 
are still above zero. This is because even when there is no method result value to transmit, 
there are still Request and Response objects to be created, marshalled and transferred over 
the network. A discussion of the test result numbers can be found in section 1.3. 
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  Network Delay Time [ms] 
  160 ms 80 ms 40 ms 20 ms 10 ms 0 ms 

0 321,43 161,06 81,25 41,17 21,20 1,14  
800 322,19 161,94 82,09 41,95 22,00 1,96  

1600 323,21 163,04 83,08 43,14 23,13 3,00  
2400 323,91 163,65 83,76 43,77 23,77 3,70  
3200 324,64 164,44 84,59 44,54 24,57 4,45  
4000 325,35 165,11 85,20 45,22 25,18 5,12  
4800 326,08 165,86 86,01 45,97 26,00 5,90  
5600 326,84 166,68 86,72 46,56 26,66 6,53  
6400 327,59 167,36 87,48 47,43 27,43 7,35  
7200 328,20 168,05 88,22 48,08 28,09 7,98  
8000 329,08 168,76 88,96 48,96 28,95 8,78  
8800 329,80 169,64 89,82 49,72 29,73 9,56  
9600 330,58 170,34 90,39 50,35 30,27 10,22 

10400 331,33 171,00 91,26 51,10 31,11 11,06 
11200 331,99 171,73 91,96 51,85 31,87 11,33 
12000 332,70 172,59 92,71 52,67 32,66 12,22 
12800 333,54 173,31 93,35 53,35 33,35 12,95 
13600 334,30 174,01 94,41 53,96 34,06 13,62 
14400 334,92 174,71 94,84 54,77 34,77 14,38 
15200 335,66 175,76 95,80 55,66 35,82 15,37 
16000 336,41 176,40 96,58 56,33 36,45 16,02 
16800 337,37 177,17 97,33 57,10 37,30 16,82 
17600 338,21 178,03 98,01 57,87 38,15 17,36 
18400 338,78 178,57 98,82 58,41 39,06 18,17 
19200 339,45 179,40 99,52 59,65 39,22 18,92 
20000 340,26 180,15 100,37 59,96 39,82 19,49 
20800 341,02 180,77 101,11 60,93 40,81 20,42 
21600 341,83 181,68 101,69 61,75 42,17 21,12 
22400 342,60 182,45 102,55 62,47 42,10 22,04 
23200 343,27 182,98 103,19 63,11 43,10 22,60 
24000 344,06 183,79 103,99 63,98 43,93 23,46 
24800 344,89 184,62 104,76 64,75 44,64 24,20 
25600 345,61 185,34 105,41 65,41 45,74 24,79 
26400 346,34 186,15 106,22 66,19 46,56 25,65 
27200 346,92 186,79 106,94 66,85 47,20 26,44 
28000 347,77 187,65 107,74 67,76 47,77 27,07 
28800 348,62 188,74 108,57 68,48 48,71 27,83 
29600 349,38 189,10 109,29 69,36 49,43 28,58 
30400 350,05 189,98 109,92 69,99 50,14 29,39 
31200 350,84 190,73 110,66 70,96 50,95 29,93 
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32000 351,56 191,34 111,42 71,67 51,69 30,63 

Table 1: Twait For Different Network Delays 
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  Network Delay Time [ms] 
  160 ms 80 ms 40 ms 20 ms 10 ms 0 ms 

0 320,62 160,36 80,58 40,52 20,53 0,39  
800 321,38 161,18 81,29 41,22 21,22 1,13  
1600 322,13 161,98 82,03 42,11 22,09 1,90  
2400 322,67 162,49 82,63 42,63 22,60 2,47  
3200 323,31 163,15 83,35 43,29 23,26 3,10  
4000 323,88 163,69 83,83 43,80 23,77 3,67  
4800 324,49 164,35 84,52 44,48 24,48 4,30  
5600 325,15 164,97 85,08 44,98 24,98 4,87  
6400 325,72 165,53 85,74 45,72 25,66 5,53  
7200 326,29 166,17 86,37 46,24 26,26 6,08  
8000 326,89 166,76 86,91 46,90 26,89 6,72  
8800 327,64 167,43 87,65 47,57 27,56 7,37  
9600 328,18 168,01 88,16 48,10 28,04 7,93  
10400 328,75 168,65 88,84 48,80 28,76 8,57  
11200 329,41 169,23 89,40 49,30 29,21 9,00  
12000 330,03 169,87 90,06 50,01 30,00 9,70  
12800 330,62 170,50 90,58 50,59 30,53 10,20 
13600 331,29 171,09 91,26 51,20 31,15 10,87 
14400 331,79 171,67 91,85 51,83 31,77 11,47 
15200 332,55 172,40 92,45 52,38 32,45 12,12 
16000 333,08 172,87 93,07 53,01 33,00 12,63 
16800 333,75 173,57 93,76 53,57 33,62 13,32 
17600 334,33 174,16 94,31 54,34 34,40 13,92 
18400 334,86 174,75 94,97 54,89 34,78 14,47 
19200 335,56 175,51 95,59 55,57 35,38 15,16 
20000 336,17 175,95 96,17 56,03 35,92 15,66 
20800 336,79 176,54 96,76 56,82 36,68 16,32 
21600 337,29 177,22 97,34 57,38 37,33 16,91 
22400 338,02 177,87 98,02 58,02 37,71 17,52 
23200 338,52 178,38 98,56 58,50 38,32 18,06 
24000 339,16 179,01 99,23 59,21 39,14 18,74 
24800 339,83 179,73 99,82 59,86 39,71 19,36 
25600 340,49 180,24 100,41 60,42 40,43 19,92 
26400 341,06 180,96 101,09 61,08 40,95 20,55 
27200 341,63 181,46 101,66 61,59 41,58 21,12 
28000 342,34 182,14 102,30 62,32 42,24 21,75 
28800 342,90 182,71 102,80 62,81 42,78 22,30 
29600 343,52 183,38 103,46 63,45 43,46 22,90 
30400 344,07 183,91 104,09 64,02 43,99 23,50 
31200 344,73 184,55 104,67 64,69 44,68 24,07 
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32000 345,32 185,13 105,29 65,24 45,21 24,64 

Table 2: Tnet For Different Network Delays 
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  Network Delay Time [ms] 
  160 ms 80 ms 40 ms 20 ms 10 ms 0 ms 

0 0,82 0,70 0,67 0,65 0,68 0,74 
800 0,82 0,77 0,80 0,73 0,77 0,83 

1600 1,08 1,06 1,06 1,04 1,04 1,10 
2400 1,24 1,16 1,13 1,14 1,17 1,23 
3200 1,33 1,29 1,24 1,24 1,31 1,35 
4000 1,47 1,42 1,37 1,42 1,42 1,45 
4800 1,60 1,51 1,49 1,49 1,53 1,59 
5600 1,69 1,70 1,64 1,58 1,68 1,66 
6400 1,88 1,83 1,74 1,72 1,77 1,82 
7200 1,91 1,88 1,84 1,84 1,83 1,90 
8000 2,19 2,01 2,05 2,06 2,05 2,06 
8800 2,15 2,20 2,17 2,15 2,18 2,19 
9600 2,39 2,33 2,24 2,25 2,23 2,29 

10400 2,58 2,35 2,43 2,31 2,35 2,50 
11200 2,58 2,51 2,56 2,56 2,66 2,33 
12000 2,67 2,72 2,64 2,66 2,66 2,52 
12800 2,92 2,80 2,77 2,77 2,82 2,75 
13600 3,01 2,92 3,14 2,76 2,91 2,75 
14400 3,13 3,04 2,98 2,94 3,01 2,91 
15200 3,11 3,36 3,35 3,28 3,37 3,25 
16000 3,33 3,54 3,51 3,32 3,46 3,39 
16800 3,62 3,60 3,57 3,53 3,68 3,50 
17600 3,88 3,87 3,70 3,54 3,75 3,43 
18400 3,91 3,82 3,85 3,51 4,28 3,70 
19200 3,89 3,88 3,92 4,09 3,84 3,76 
20000 4,09 4,20 4,20 3,93 3,90 3,83 
20800 4,23 4,23 4,35 4,11 4,13 4,10 
21600 4,54 4,46 4,35 4,37 4,84 4,22 
22400 4,58 4,58 4,53 4,45 4,38 4,52 
23200 4,76 4,60 4,63 4,61 4,78 4,54 
24000 4,90 4,79 4,76 4,77 4,79 4,72 
24800 5,06 4,89 4,94 4,89 4,92 4,84 
25600 5,12 5,10 5,00 4,99 5,31 4,87 
26400 5,28 5,20 5,13 5,12 5,62 5,10 
27200 5,29 5,33 5,29 5,26 5,62 5,32 
28000 5,43 5,51 5,43 5,43 5,53 5,33 
28800 5,72 6,03 5,77 5,67 5,93 5,53 
29600 5,87 5,72 5,83 5,91 5,97 5,67 
30400 5,98 6,07 5,83 5,97 6,15 5,90 
31200 6,10 6,18 5,99 6,27 6,27 5,87 
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32000 6,23 6,21 6,13 6,43 6,47 5,99 

Table 3: Tmar For Different Network Delays 



9. Appendix  161 

 
Varying Network Bandwidth 
 
The second test runs illustrates how the client waiting time Twait depends on the network 
bandwidth, see Table 4. Again, the marshalling time Tmar depends only on the length of the 
method result. It does not depend on the bandwidth of the network connection. The network 
time Tnet depends on the bandwidth and on the method result length. Figure 97 presents the 
Twait timing results for 6 bandwidth settings, going from 50 KByte/s to 1600 KByte/s. For 
all bandwidth settings, the network delay time is set to zero. 
 

 
Figure 97: Twait For Different Bandwidths 

 
The bandwidth limitation test run shows that the bandwidth affects the growth of the data 
series. The growth does – in the long run – not depend on the network delay time, whereas the 
offset values of the data series do not depend on the configured bandwidth limitation. 
In Figure 97, one can observe that the test series are not linear but develop a sawtooth pattern. 
This behavior can be noticed across all bandwidth configurations. To explain this ‘sawtooth’ 
effect we have to illustrate how the NIST Net package, which is used on the router machine to 
emulate network delay and bandwidth limitations is working.  
As opposed to real networks, the NIST Net does not implement bandwidth limitations on a 
bits-per-second basis but on a packet-per-second basis. That is, each time an IP packet is 
received by the NIST Net package, it is held back until a certain time interval (depending on 
the configured bandwidth) has elapsed. After this time interval has elapsed, the IP-packet is 
sent out. In the test runs, the method result value increment is 800 characters, which translates 
to 800 bytes at the TCP/IP level. Since the IP packet size is greater than 800 bytes in the test 
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run configuration, an additional IP-packet has to be created only every other 800-byte 
increments, which means that the hold-back time of the IP-packets increases only every other 
800-byte-unit. Therefore the test run result values produce a sawtooth pattern. 
 

  Network Bandwidth [K/s] 
  50 K/s 100 K/s 200 K/s 400 K/s 800 K/s 1600 K/s 

0 1,52 1,09 1,09 1,14 1,10 1,10  
800 2,59 1,99 2,00 1,97 1,92 1,92  

1600 33,99 16,90 9,17 5,55 3,59 2,97  
2400 33,88 17,55 10,07 6,25 4,42 3,64  
3200 66,70 33,26 17,00 9,41 5,66 4,40  
4000 66,90 33,04 18,01 10,40 6,57 5,08  
4800 94,88 47,15 24,78 13,59 7,84 5,85  
5600 93,29 48,18 25,56 14,25 8,49 6,51  
6400 130,81 64,17 32,85 17,70 10,10 7,25  
7200 132,71 66,45 33,60 18,49 10,78 7,93  
8000 163,97 81,08 40,54 21,55 12,14 8,72  
8800 182,52 92,57 47,52 25,03 13,74 9,51  
9600 183,44 93,40 48,49 25,87 14,53 9,91  

10400 212,87 107,71 55,23 28,95 15,78 10,70 
11200 213,73 108,57 56,06 29,64 16,54 11,30 
12000 246,49 123,36 63,05 33,17 18,13 12,16 
12800 249,11 125,23 64,62 33,86 18,83 12,88 
13600 279,70 138,93 70,86 37,05 20,19 13,53 
14400 280,66 140,41 71,84 37,83 20,82 14,39 
15200 312,29 155,50 78,71 41,30 22,50 14,99 
16000 313,53 156,67 79,55 41,99 23,25 15,71 
16800 343,73 171,87 86,45 45,14 24,56 16,79 
17600 363,67 183,60 93,64 48,63 25,88 17,42 
18400 364,50 184,71 94,57 49,44 26,77 18,07 
19200 394,37 198,80 101,36 52,56 27,96 18,89 
20000 395,51 199,69 102,11 53,40 28,85 19,54 
20800 427,66 214,36 109,31 56,79 30,60 20,37 
21600 427,69 215,36 110,13 57,55 31,24 21,05 
22400 460,21 229,96 117,02 60,66 32,67 21,87 
23200 461,60 230,85 117,98 61,48 33,31 22,53 
24000 493,09 246,16 124,99 64,92 34,89 23,39 
24800 514,48 259,39 131,91 68,08 36,23 24,08 
25600 515,30 261,78 132,72 68,79 36,92 24,69 
26400 544,89 274,87 139,82 72,27 38,52 25,48 
27200 545,76 275,81 140,57 72,97 39,35 26,24 
28000 575,23 289,88 147,48 76,24 40,65 26,86 
28800 577,69 291,13 148,24 77,11 41,56 27,84 
29600 607,47 305,58 155,36 80,60 43,06 28,42 
30400 609,55 306,50 156,23 81,22 43,88 29,14 
31200 640,92 320,84 163,25 84,41 45,18 29,93 
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32000 642,22 321,50 163,86 85,17 45,89 30,68 

Table 4: Twait For Different Bandwidths 
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The Tmar values of this test run are the same as in Table 3 and therefore not shown here.  
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9.3. Address Book Sample Performance 

 
The following test runs results measure the performance of the AddressBook sample 
application as described in section 1.4. The test bed configuration is as described in Appendix 
9.1. 
 
Test Run 1, Varying Network Parameters 
 
This test runs presents the performance of the Address Book sample application under 
different network conditions. The parameters of the test run are listed in Table 5. The 
measurement results for Twait, Tnet and Tmar are listed in Table 6, Table 7 and Table 8. A 
graphical representation of Twait (which is the same as the cycle time) is shown in Figure 98. 
 
Number Of Search Result Entries Np=10 
Number Of Attributes Per Person Na=3 
Number Of Remote Method Calls Per Test Cycle Nn=31 
Method Result Length l=10 
Network Delay Time Tdelay=0…160 ms 
Network Bandwidth b=50..1600 Kbyte/s 

Table 5: Test Run 1 Parameters 

 
  Bandwidth [Kb/s] 
  1600 Kb/s 800 Kb/s 400 Kb/s 200 Kb/s 100 Kb/s 50 Kb/s 

0 ms 31 30 30 33 45 88 
5 ms 345 345 345 344 344 350 

10 ms 655 655 655 655 655 655 
20 ms 1277 1276 1276 1276 1276 1276 
40 ms 2519 2519 2519 2519 2519 2519 
80 ms 4996 4996 4996 4996 4996 4996 

D
el

ay
 

160 ms 9963 9963 9964 9964 9963 9963 

Table 6: Test Run 1, Twait Result Values 
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  Bandwidth [Kb/s] 
  1600 Kb/s 800 Kb/s 400 Kb/s 200 Kb/s 100 Kb/s 50 Kb/s 

0 ms 14 14 14 14 28 70 
5 ms 327 328 328 328 328 334 

10 ms 638 638 638 638 638 638 
20 ms 1258 1259 1259 1259 1259 1259 
40 ms 2500 2500 2500 2500 2500 2500 
80 ms 4976 4975 4976 4976 4975 4976 

D
el

ay
 

160 ms 9940 9940 9940 9940 9940 9940 

Table 7: Test Run 1, Tnet Result Values 

 
  Bandwidth [Kb/s] 
  1600 Kb/s 800 Kb/s 400 Kb/s 200 Kb/s 100 Kb/s 50 Kb/s 

0 ms 17 17 16 19 16 18 
5 ms 17 17 17 16 16 16 

10 ms 18 17 17 17 17 17 
20 ms 18 18 18 18 18 17 
40 ms 19 19 19 19 19 18 
80 ms 21 20 20 20 20 20 

D
el

ay
 

160 ms 23 23 23 23 23 23 

Table 8: Test Run 1, Tmar Result Values 
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Figure 98: Test Run1, Twait / Cycle Time Result Diagram 

 
Test Run 2, Varying Number Of Attributes Per Person 
 
This test run evaluates the performance of the AddressBook sample application with different 
numbers of attributes per Person. The parameters of the test run are listed in Table 9. The 
measurement results for Twait are listed in Table 10. A graphical representation of Twait 
(which is the same as the cycle time) is shown in Figure 99. 
 
The number of remote method calls is given as: 
 
Nm = 1 + Np * Na 
 
Where  
Nm is the number of remote method calls per test cycle 
Np is the length of the search() result list, the number of matching Person entries 
Na is the number of attributes per Person. 
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Number Of Search Result Entries Np=10 
Number Of Attributes Per Person Na=0…3 
Number Of Remote Method Calls Per Test Cycle Nm=1+10*Na (=0...31) 
Method Result Length l=10 
Network Delay Time Tdelay=0…40 ms 
Network Bandwidth No Limitation  

(full Ethernet speed) 

Table 9: Test Run 2 Parameters 

 
 Number Of Attributes Per Person (Na) 
  Na = 0 Na = 1 Na = 2 Na = 3 
  Nm = 1 Nm = 11 Nm = 21 Nm = 31 

0 ms 4 13 23 32 
10 ms 24 235 446 657 
20 ms 44 456 867 1278 D

el
ay

 

40 ms 84 896 1708 2520 

Table 10: Test Run 2, Twait / Test Cycle Time Result Values [ms] 

 

 
Figure 99: Test Run 2, Twait / Cycle Time Result Diagram 

The main result of this test run is that the cycle time is a linear function of the number of 
remote method calls. The growth of the function is determined by the network delay time, 
which could have been expected, because each remote method call needs a network roundtrip, 
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and the roundtrip time is twice the configured network delay time. The bandwidth was not 
limited, so the full ethernet speed (see Appendix 9.1) could be utilized. 
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9.4. Current Practice Performance 

 
The following test runs results present the performance of the Address Book sample 
application as described in section 1.4. The test bed configuration is as described in Appendix 
9.1. The Address Book sample application was implemented in several different ways, as 
described in section 1.5: 
 

1. Straightforward Implementation. See section 1.4.4. 
2. Fat Operations. See section 1.5.1. 
3. Data Structures. See section 1.5.2. 
4. Objects By Value. See section 1.5.3. 
5. Asynchronous Method Calls. See section 1.5.4. 

 
The network delay was set from 0 to 160 ms, the network bandwidth was not limited.  
 
Number Of Search Result Entries Np=10 
Number Of Attributes Per Person Na=3 
Number Of Remote Method Calls Per Test Cycle Nm, see test run descriptions below. 
Attribute Length l=10 characters 
Implementation Execution Time Timpl=0 ms 
Network Delay 0 ms ... 160 ms 
Network Bandwidth No Limitation 

(full Ethernet speed) 

Table 11: Test Run Parameters 

 
In each test run, the client was calling the search() method and iterating over the result list. 
We measured for each remote method call the client waiting time, the network time and the 
marshalling time. All times were then summed up and are presented in the data tables (Table 
12 to Table 15) as Twait, Tnet and Tmar, rounded to the nearest millisecond value. The 
implementation times Timpl of all method implementation can be considered as 0 ms, all 
result values are pre-computed and stored in memory. 
 
 Straightforward Implementation (Nm=31) 
  Twait [ms] Tnet [ms] Tmar [ms] 

0 ms 32 14 18 
10 ms 657 638 19 
20 ms 1276 1259 17 
40 ms 2520 2502 18 
80 ms 4996 4975 19  N

et
w

or
k 

D
el

ay
 

160 ms 9961 9942 19 

Table 12: Straightforward Implementation Result Values 

 
 Fat Operations (Nm=11) 
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  Twait [ms] Tnet [ms] Tmar [ms] 
0 ms 15 6 9  

10 ms 236 228 8 
20 ms 457 448 9 
40 ms 899 889 10 
80 ms 1776 1768 8 N

et
w

or
k 

D
el

ay
 

160 ms 3536 3528 8 

Table 13: Fat Operations Result Values 

 
 Data Structures (Nm=1) 
  Twait [ms] Tnet [ms] Tmar [ms] 

0 ms 2 1 1 
10 ms 22 21 1 
20 ms 42 41 1 
40 ms 82 81 1 
80 ms 162 161 1 N

et
w

or
k 

D
el

ay
 

160 ms 322 321 1 

Table 14: Data Structures Result Values 

 
 Objects By Value (Nm=1) 
  Twait [ms] Tnet [ms] Tmar [ms] 

0 ms 2 1 1 
10 ms 22 21 1 
20 ms 42 41 1 
40 ms 83 81 2 
80 ms 162 161 1 N

et
w

or
k 

D
el

ay
 

160 ms 322 321 1 

Table 15: Objects By Value Result Values 

 
 Asynchronous Method Calls (Nm=31) 
  Twait [ms] Tnet [ms] Tmar [ms] 

0 ms 154 6 148 
10 ms 198 45 154 
20 ms 301 85 216 
40 ms 434 165 270 
80 ms 776 324 452 N

et
w

or
k 

D
el

ay
 

160 ms 1397 712 684 

Table 16: Asynchronous Method Calls Result Values 

 
The result values for Twait, Tnet and Tmar are shown in Figure 100, Figure 101 and Figure 
102. 
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Figure 100: Test Run “Current Practice” / Twait Values 

 

 
Figure 101: Test Run “Current Practice” / Tnet Values 
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Figure 102: Test Run “Current Practice” / Tmar Values 
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9.5. Address Book Evaluation 

 
The following tables and diagrams present the Address Book evaluation test result values, as 
described in section 5.1. The DOC-CaP approach was applied to the address book sample 
application (see section 1.4.1 for a description of the sample application) and evaluated using 
the testbed setup described in section 9.1.  
 

Number Of Search Result Entries Np=10 
Number Of Attributes Per Person Na=3 
Method Result Length l=10 
Network Delay Time 0 ms … 160 ms 
Network Bandwidth 5 KB/s … 160 KB/s 

 

 
Table 17: AddressBook Evaluation, Twait Result Values 

 

 

Table 18: AddressBook Evaluation, Tnet Result Values 
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Table 19: AddressBook Evaluation, Tmar Result Values 

 

 
Table 20: AddressBook Evaluation, Twait Speedup Factors 
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9.6. TPC-W Evaluation 

 
TPC-W XIDL Definition 
 
 
 typedef long long Date;  
 
 interface CCXact // ttl 5000 
 { 
  string getTYPE(); // modifies none 
  long getNUM(); // modifies none 
  string getNAME(); // modifies none 
  Date getEXPIRY(); // modifies none 
  string getAUTH_ID(); // modifies none 
  float getXACT_AMT(); // modifies none 
  Date getXACT_DATE(); // modifies none 
 }; 
 
 
 interface Country  // ttl 5000 
 { 
  long getID(); // modifies none 
  string getNAME(); // modifies none 
  float getEXCHANGE(); // modifies none 
  string getCURRENCY(); // modifies none 
 }; 
 typedef sequence<Country> CountryList; 
 
 
 interface Address  // ttl 5000 
 { 
  string getSTREET1(); // modifies none 
  string getSTREET2(); // modifies none 
  string getCITY(); // modifies none 
  string getSTATE(); // modifies none 
  string getZIP(); // modifies none 
  Country getCOUNTRY(); // modifies none 
 }; 
 
 
 interface Author // ttl 5000 
 { 
  long getID(); // modifies none 
  string getFNAME(); // modifies none 
  string getLNAME(); // modifies none 
  string getMNAME(); // modifies none 
  Date getDOB(); // modifies none 
  string getBIO(); // modifies none 
 }; 
 
 
 interface Item // ttl 5000 
 { 
  long getID(); // modifies none 
  string getTITLE(); // modifies none 
  Author getAUTHOR(); // modifies none 
  Date getPU_DATE(); // modifies none 
  string getPUBLISHER(); // modifies none 
  string getSUBJECT(); // modifies none 
  string getDESC(); // modifies none 
  Item getRELATED1(); // modifies none 
  Item getRELATED2(); // modifies none 
  Item getRELATED3(); // modifies none 
  Item getRELATED4(); // modifies none 
  Item getRELATED5(); // modifies none 
  string getTHUMBNAIL_NAME(); // modifies none 
  string getIMAGE_NAME(); // modifies none 
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  float getSRP();  // modifies none 
  float getCOST(); // modifies none 
  Date getAVAIL(); // modifies none 
  long getSTOCK(); // modifies none 
  string getISBN(); // modifies none 
  long getPAGE(); // modifies none 
  string getBACKING(); // modifies none 
  string getDIMENSIONS(); // modifies none 
 }; 
 typedef sequence<Item> ItemList;  
 
 
 interface CartItem // ttl 5000 
 { 
  Item getITEM(); // modifies none 
  long getQTY(); // modifies none 
  void setQTY( in long qty ); // modifies world 
 }; 
 typedef sequence<CartItem>CartItemList;  
 
 
 interface Cart // ttl 5000 
 { 
  Date getDATE(); // modifies none 
  float getSHIP_COST(); // modifies none 
  CartItemList getCartItems(); // modifies none 
  void addItem( in long itemId, in long qty ); // modifies world 
  void removeItem( in long itemId ); // modifies world 
 }; 
 
 
 interface OrderLine  // ttl 5000 
 { 
  Item getItem(); // modifies none 
  long getQTY(); // modifies none 
  string getCOMMENTS(); // modifies none 
 }; 
 typedef sequence<OrderLine>OrderLineList; 
 
 
 interface Order  // ttl 5000 
 { 
  long getID(); // modifies none 
  Date getDATE(); // modifies none 
  string getSHIP_TYPE(); // modifies none 
  Date getSHIP_DATE(); // modifies none 
  Address getSHIP_ADDR(); // modifies none 
  string getSTATUS(); // modifies none 
  OrderLineList getOrderLines(); // modifies none 
  CCXact getCCXact(); // modifies none 
 }; 
 
 
 interface Customer // ttl 5000 
 { 
  long getID(); // modifies none 
  string getUNAME(); // modifies none 
  string getPASSWD(); // modifies none 
  string getFNAME(); // modifies none 
  string getLNAME(); // modifies none 
  Address getADDRESS(); // modifies none 
  string getPHONE(); // modifies none 
  string getEMAIL(); // modifies none 
  Date getSINCE(); // modifies none 
  Date getLAST_VISIT(); // modifies none 
  Date getLOGIN(); // modifies none 
  Date getEXPIRATION(); // modifies none 
  float getDISCOUNT(); // modifies none 
  float getBALANCE(); // modifies none 
  float getYTD_LIMIT(); // modifies none 
  Date getBIRTHDATE(); // modifies none 



9. Appendix  177 

  string getDATA(); // modifies none 
 
  Cart getCart(); // modifies none 
  Order placeOrder ( in string shipStreet1, in string shipStreet2,  
   in string shipCity, in string shipState, in string shipZip,  
   in long countryId, in string ccType, in string ccName, 
   in long ccNumber, in Date ccExpiration,  
   in string shipType ); // modifies world 
  Order getLastOrder(); // modifies none 
 }; 
 
 
 interface TPCWServer // ttl 5000 
 { 
  void populate(); // modifies world 
  void reset(); // modifies world 
  CountryList getCountries(); // modifies none 
  Customer login( in string uname, in string passwd ); // modifies world 
  void registerCustomer ( in string UNAME, in string PASSWD,  
   in string FNAME, in string LNAME, in string STREET1,  
   in string STREET2, in string CITY, in string STATE,  
   in string ZIP, in long COUNTRY_ID, in string PHONE,  
   in string EMAIL, in Date BIRTHDATE, in string DATA ); // modifies world 
  ItemList getPromoItems(); // modifies none 
  ItemList getNewItems(); // modifies none 
  ItemList getBestsellers(); // modifies none 
  Item findItem( in long id );  // modifies none 
  ItemList search( in string field, in string expr ); // modifies none  
 }; 
 
TPC-W Evaluation Result Values 
 

 
Table 21: TPC-W Evaluation, Twait Result Values 
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9.7. Automobile Quality Assurance Project Evaluation 

 
Table 22: AQUA Evaluation Result 
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Table 22 shows the result values of the AQUA evaluation test runs. Each test case is executed 
with a variable network delay in the range of 0 to 160 milliseconds. (Note that a network 
delay of 0 milliseconds is a theoretical value.) Each test case was executed 40 times and the 
outliers were removed by removing the 10% largest and 10% smallest values, a method 
described in [66]. The table shows the average client waiting time (column ”Twait”) in 
seconds for each test case and each test configuration. The table shows also the standard 
deviation  as an absolute value in seconds (column ”StdDev”) and a percentage value, which 
is calculated as the absolute standard deviation divided by the Twait average value. 
 
 


