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1. Introduction 

1. Introduction 
 

Flutter analysis is one of the most important tasks in the design process of a new 
aircraft. To a lesser extent flutter analysis is also important during the operation of an aircraft, 
for example after structural modifications, changes of operational spectrum, introduction of 
new external stores, etc. Flutter analysis concerns with oscillations of aircraft components (or 
the whole aircraft) caused by interaction of the mass and stiffness of the aircraft structure with 
the aerodynamic forces. Beyond a certain speed, the so-called flutter speed, the structural 
oscillation induced by aerodynamic forces becomes unstable, i.e. with growing amplitude, 
which can lead to a catastrophic failure of the aircraft structure. Therefore, the flutter speed of 
an aircraft has to be determined accurately, in order to ensure that the aircraft is free from 
flutter during its operation. According to the safety regulations, it is mandatory that the 
determination of the flutter speed should be carried out using both numerical and 
experimental means. 
 To predict the flutter speed various activities have to be carried out, amongst other the 
normal mode analysis of the structure, prediction of unsteady aerodynamic force due to the 
structural motions, coupling of the aerodynamic with structural parts, etc. For an aircraft, 
which has operational envelope in subsonic or supersonic flow, a computer code based on the 
linear potential flow theory has been proved to be a very useful and sufficient tool for 
unsteady aerodynamic calculations. In this linear approach the unsteady part of the 
aerodynamic forces is  assumed to be independent from the steady part and its calculations are 
carried out efficiently in the frequency domain. Examples of calculation methods of unsteady 
aerodynamic forces based on the linear potential flow theory, are the Lifting Surface Method 
[1] and the Doublet Lattice Method [2]. The first one gives the most accurate solution 
achievable up-to-day. The Doublet Lattice Method has been the default method for the 
computation of unsteady aerodynamic force during flutter analysis for years since it has been 
introduced into the commercial NASTRAN program. It seems the situation would not change. 
 For flight speeds with significant compressible effects, such as in transonic and also 
hypersonic flow, the linear potential flow theory is no longer useful. In particular significant 
interactions between the shear layer near the body surface and compression shocks arise 
which have to be carefully taken into account in the analysis model. At these flow conditions 
the unsteady part of the aerodynamic forces is no longer independent from the steady part. 
Therefore the steady and unsteady parts of the aerodynamic forces have to be computed 
simultaneously and usually are performed in the time domain. The method to handle this type 
of flow is the one that incorporates compressibility and viscous effects in its analysis model. 
Formally such a method would be based on the solution of the Navier-Stokes equations. 
However, computing time, turn around time and costs would penalize this type of method for 
industrial applications. Instead, in the last decades simplification is sought to have a balance 
between costs and performance. This includes methods based on the Euler equations, Full 
Potential (FP) equation and Transonic Small Disturbance (TSD) equation.  
The most important disadvantage of methods based on the flow equations other than the 
Navier-Stokes equations is the inability to model the effect of viscosity. As it has been 
mentioned before this effect is important for some types of flows. 
 A way, that was established in the steady aerodynamics, to include the viscous 
influences succeeds through a so-called ‘Viscous - Inviscid Interaction (VII)’ method, i.e. 
combination of the boundary layer theory with frictionless theories, which are used to 
represent the inner viscous flow and the outer inviscid flow respectively [3, 4]. This VII 
method is expanded in the present work to cope unsteady flows and is also applied for flutter 
analysis, in order to answer the following questions:  

- How far improves the VII Method inviscid calculations ?  
- How far influences the VII Method aeroelastic calculations ? 
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1.1. Objectives and General Approach 
The major aim of this work is to study the coupling techniques between viscous and 

inviscid flow and also the coupling between structural oscillation and aerodynamic forces. 
The objective is to develop a code based on VII method for calculating aerodynamic forces 
and its application for flutter analysis. The developed code should be fast, accurate and 
particularly suitable for industrial applications. The high-Reynolds number flow about airfoils 
and wings in transonic speed regime is the flow case of practical interest and have been the 
primary target in the present investigation. 

In order to be able to calculate shock-dominating flows, the boundary layer theory is 
coupled with non-linear, frictionless theories for the outer flow, which can capture a shock 
wave. For this purpose the TSD equation, the non-linear Euler equations and the Small 
Disturbance Euler (SDEu) equations will be employed under the following considerations:  

- By using the TSD and Euler equations one can observe the influence of the viscous 
aerodynamic model for weak and strong shocks.  

- In order to validate and to proof a VII concept, it is easier to apply the concept to 
the inviscid TSD equation because of its relatively low computational time. The 
TSD equation is the lowest equation in the hierarchy of the non-linear, inviscid 
flow equations. TSD equation can be solved relatively faster than the Euler 
equations. Moreover, grid generation for methods based on TSD equation is 
relatively simpler than that based on the Euler equations.  

- Since the Euler equations are the highest equations in the hierarchy of the non-
linear, inviscid flow equation, one can expect the best results from the VII method 
when the Euler equations are used for the inviscid flow model. 

- As continuation of the research at the Institute of Aerodynamics (formerly Institute 
of Fluid Mechanics -FLM-) of the Technical University of Munich (TUM) under 
the guidance of Prof. Dr. –Ing. Boris Laschka, the VII method is also developed by 
using the SDEu equations, which was developed based on the non-linear Euler 
equations particularly under small disturbance time-linearized assumption. 

The calculation of the boundary layer in this present work is mainly based on the 
integral boundary layer equation because of its simplicity in implementation and less 
computational time, but a differential equation - based calculation method is also described. A 
laminar-turbulent transition prediction is also presented. 
 The results obtained using the present method are compared and validated with those 
obtained using the Navier-Stokes equations and also with some experimental data. It is shown 
that the method proposed in this thesis produces very encouraging results. This is especially 
true as far as its application for calculating the unsteady aerodynamic forces for flutter 
analysis. This proposed approach is therefore a valuable alternative to methods based on the 
Navier-Stokes equations particularly when a large number of computations have to be carried 
out involving large number parameter variation. 
 
1.2. Scope of the Work 

The scope of the present work consists of the following sections:  
- Description and discussion of some VII methods. 
- Description and discussion of the selected viscous aerodynamic models (boundary 

layer models). 
- Description and discussion of the selected inviscid aerodynamic models (TSD, 

Euler and SDEu equations). 
- Validation of each aerodynamic models used in the present study. 
- Application of the VII method for flutter analysis. 
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The steps of the implementation works are described below:  
- Development of a TSD-based computational code. For applications of the 

proposed VII method with the Euler equations, the available Euler and the Small 
Disturbance   Euler Codes – so-called as FLMEu and FLMSDEu codes - in  the 
Institute of Aerodynamics of the Technische Universität München are used. 

- Development of boundary layer computational codes based on the integral    
equations and the differential equation that include a laminar-turbulent transition  
prediction. 

- Development of coupling schemes between the viscous and the inviscid 
aerodynamic models. 

- Development of a computational code for flutter analysis in time domain. 
All computational codes are developed using FORTRAN programming language. 
 
1.3. Outline of the Thesis 

In order to organise the description of the present work, this thesis is divided into 
theoretical and results part. The theoretical part describes the viscous aerodynamic models 
(boundary layer) and the inviscid aerodynamic models (TSD, Euler and Small Disturbance 
Euler) and the coupling between both. The results section describes the validation of the 
developed calculation program for steady and unsteady aerodynamic test cases and its 
application for flutter calculation of airfoils and wings. 
The outline of this thesis may be summarised as follows: 

• Chapter 1 describes the background, objective, scope and outline of the present work.  
• Theory of viscous - inviscid interaction and an overview of researches in this field are 

described in Chapter 2. 
• Chapter 3 concerns with the selected viscous aerodynamic models, i.e. the calculation 

method of the boundary layer for incompressible and compressible flows, laminar and 
turbulent flows including the laminar-turbulent transition.  

• Chapter 4 describes the selected inviscid aerodynamic models, i.e. the TSD equation, 
the Euler equations and the Small Disturbance Euler equations. The form of the 
equations and their numerical solutions are presented in this chapter, followed by the 
description of the coupling between the viscous and the inviscid model.  

• Theory of the fluid - structure interaction (flutter analysis) is presented in Chapter 5. 
• Some selected results will be presented in Chapter 6. Validation of the developed 

methods for steady and unsteady aerodynamic test cases for flat plate, airfoils and 
wings are presented by different flow parameters, with and without consideration of 
the boundary layer.  

• In Chapter 7 the application of VII method in flutter analysis is presented in form of 
the prediction of the transonic dip of an airfoil as well as of a wing.  

• Chapter 8 closes the discussion with the summary of the work and recommendation 
for further work.  

In order to explain some details of the numerical solutions and equations, some appendices 
follow. 
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2. Theory of Viscous – Inviscid Interaction (VII) 
 

In this chapter the theory of viscous - inviscid interaction (VII) with its historical 
background and an overview of researches in this field are presented.  
The presentation will be organised in the following details: 

- Historical Background 
- Overview of researches in VII  
- Basic VII Methods  

 
2.1. Historical Background 
 The existence of a small viscous flow region in flows with small viscosity was 
recognized one hundred years ago at the beginning of the last century pioneered by Prandtl 
with his publication on boundary layers in Mathematical Congress in Heidelberg 1904 (see 
[5]). Prandtl showed how it was possible to analyze viscous flows precisely in cases which 
had great practical importance. He proved that the flow about a solid body can be divided into 
two regions, namely a thin layer around the body (boundary layer), where friction plays 
important role and the inviscid region outside the boundary layer, where friction may be 
neglected.   
 The boundary layer problem is solved by imposing the no-slip boundary condition at 
the solid surface and imposing at a location far away from the solid surface a prescribed 
pressure or velocity distribution, which follows from a known inviscid flow solution. At the 
beginning, the boundary layer theory was developed mainly for laminar flow case in an 
incompressible fluid. Important development of the boundary layer theory was reached by 
Blasius, von Karman, Pohlhausen and Thwaites among others. The theory was extended to 
include the turbulent, incompressible boundary layers which are more important for practical 
applications. Some researchers contributed in this development are Dryden, Schubauer and 
Klebanoff among others. The phenomenon of transition from laminar to turbulent flow was 
investigated among others by Reynolds, Rotta, Tollmien and Schlichting. The extension of the 
boundary layer theory in compressible flow was carried out among others by Ackeret, van 
Driest and Young. As compared to incompressible flow there are at least four additional 
quantities which must be taken into account in the calculation of compressible boundary 
layers, i.e. Mach number, Prandtl number, viscosity function and boundary condition for 
temperature distribution. The velocity boundary layer may interact with the thermal boundary 
layer and shock wave in compressible flow, which increase the degree of complexity.  
 Later on it was attempted to solve the combination of the boundary layer equations 
with an inviscid flow model numerically. This is performed by iterative calculation process, 
which is generally organised as follows: an inviscid flow calculation around the body, using a 
slip boundary condition, determines the pressure distribution over the body surface. This 
pressure distribution will be used to solve the boundary layer equations. An essential 
parameter following from the boundary layer solution is the so-called displacement thickness, 
which represents the displacement of the inviscid flow from the body surface due to the 
presence of the boundary layer. This displacement thickness value will be added to the body 
surface to form a so-called displacement body. The inviscid flow calculation will be carried 
out again subject to this displacement body. This form of iterative calculation process, which 
combines the boundary layer and an inviscid flow equation is known as a kind of viscous – 
inviscid interaction. 
  
2.2. Overview of Researches in Viscous - Inviscid Interaction  

The research within the area of VII can be generally divided into two different 
approximations, i.e. the Zonal and the Thin Layer approximation [6, 7]. In the Zonal 
approximation the inner viscous region is governed by the Navier Stokes (NS) equations and 
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the outer inviscid region is represented either by the TSD, the Full Potential (FP) or the Euler 
equations. The flow parameters must be adapted at the transition of the two regions (matching 
of the solution from inner and outer region). The advantages of this approximation are less 
computational time compared to that if all regions were simulated with NS equations and the 
computation of the viscous layers in the proximity of the body is ensured by the NS equations. 
Therefore one can expect accurate results by using this kind of  approximation. Two things 
must be considered in the Zonal approximation, i.e. the switching process between the NS 
equations and the inviscid equations, and the matching process within the transition area, 
particularly if the inviscid region is solved with TSD or FP equation. The state of variables at 
the outer edge of the inner region, which is solved by NS equations, serves as input for the 
inviscid region. Therefore the state of variables must be transformed into the potential terms. 
This Zonal approximation is more simply performed if the inviscid region was governed by 
Euler equations because one can switch the viscous terms in the NS equations off, if the 
calculation process enters the outer region. Figure 2.1. illustrates the Zonal approximation. Su 
[6] has used the Zonal approximation for the solution of an airfoil in a steady flow by  using 
the NS equations and the FP equation to represent the inner and outer flow region 
respectively. 
       

        
                TSD/FP/Euler in outer Region 

                   NS in inner Region  
 
 
        TSD/FP/Euler in outer Region 
  
 
 
  Figure 2.1. Zonal Approximation 

 
The Thin Layer approximation is the most popular approximation used by many 

scientists. The inner region is simulated by the boundary layer equations (mostly by integral 
boundary layer equations), i.e. the viscous  region is assumed only in the boundary layer and 
the computation of the inviscid outer region with the TSD, FP equation or Euler equations. 
The coupling between the boundary layer and the inviscid solution takes place at the 
boundary condition of the inviscid flow by means of the displacement thickness in form of  
transpiration velocity or modification of the surface slope. As long as the boundary layer 
thickness is thin, the thin layer approximation is sufficient and can supply the best results. It is 
best to be applied for high Reynolds number flows, because the boundary layer thickness is 
thin enough in order of O(Re-1/2). The acceptance of the thin layer approximation is broken 
off, if the boundary layer thickness is large. The advantages of this approximation are less 
computational time and it can be simply constructed. The accuracy of the results depends on 
the quality of the boundary layer calculation method and the coupling scheme. Figure 2.2 
illustrates the thin layer approximation. The interaction method or the coupling scheme in the 
thin layer approximation can generally be classified in six types, i.e. direct, inverse, semi 
inverse, quasi simultaneous, simultaneous and the combination of direct and semi inverse 
interaction. 
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In the direct interaction method the solution of the inviscid equation (velocity or 
pressure) serves as input for boundary layer calculation. The displacement thickness as output 
of the boundary layer calculation will update the boundary condition of the inviscid region.  
 

      
 
      TSD     TSD/FP/Euler in all area + 
       Transpiration in boundary condition 

 
                    Boundary Layer 
      +       
 
 
 
 
 
 
  Figure 2.2. Thin Layer Approximation 
 

The works from Rizzetta [8], Houwink [9] and Rizzetta & Borland [10] are based on the 
direct interaction method. They used the TSD equation coupled with the integral boundary 
layer equations – the Lag Entrainment method from Green et. al. [11] - to simulate an airfoil 
and a wing in unsteady turbulent flow without separation. The advantage of the direct 
interaction method is the straightforward computation of the displacement thickness and 
velocity or pressure. The disadvantage is that the separated flow cannot be simulated because 
of the appearance of a singularity in the boundary layer parameters, the so-called Goldstein 
Singularity [12], as the flow is separating.  

In the inverse interaction method, both of the equations are solved in a reverse input 
output relationship. The boundary layer equations are solved not subject to a given pressure 
distribution, but subject to a given displacement thickness distribution. The output of the 
boundary layer calculation is therefore the pressure distribution. The inverse method for the 
solution of the boundary layer equations was probably introduced at the first time by Chaterall 
& Mangler [13]. The inviscid equation is solved with the given pressure from the result of the 
boundary layer equations. The output of the inviscid equation is the displacement thickness, 
which serves as input for the boundary layer equations. With this method the singularity of 
the boundary layer parameters can be eliminated. The inverse interaction method was not  
developed further because of the difficulties in the inverse solution of the inviscid equation. 
The inviscid equation is more simply solved with the geometry input (straightforward as in 
the direct method) than with pressure distribution input (as in the inverse method).  

For this reason one introduces alternative method, the so-called semi inverse method. 
In the semi inverse method the inviscid equation is solved as in the direct method and the 
boundary layer equations as in the inverse method. The input for the two equations is the 
displacement thickness and the output from the two equations are two velocity distributions, 
one  from the inviscid equation (Ui) and the other one from the boundary layer equations (Uv). 
A relaxation method is additionally needed, until the converged solution (Uv ≈ Ui) is 
achieved. Carter [14], Melnik & Brook [15] and Le Balleur & Lavigne [16] developed the 
semi inverse method among others. They coupled the TSD equation with Lag Entrainment 
integral boundary layer equations, in order to compute the two-dimensional flow with 
separation. Zhilliang & Voss [17] developed a similar method with FP equation plus Lag 
Entrainment integral boundary layer equations for solution of two- and three-dimensional 
problems. 
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The quasi simultaneous method was developed by Veldman [18] and Houwink & 
Veldman [19], in which an Interaction Law, deduced from the asymptotic theory, was used to 
compute the displacement thickness and the viscous  velocity (Uv) simultaneously. The 
procedure of the quasi simultaneous method is similar to the direct method.  

The simultaneous method was developed among others by Drela & Giles [3] and 
Wolles [4]. Both of the inviscid and the boundary layer equations are solved as a set of 
simultaneous equations. Drela & Giles used the Euler equations plus integral boundary layer 
equations, based on kinetic energy equation. Wolles used the FP equation coupled with the 
same integral boundary layer equations for the solution of  two-dimensional steady problem.  

The combination method of the direct and semi inverse method was developed among 
others by Howlett [20] and Edwards [21]. They calculated the boundary layer in attached flow 
by the direct method and the boundary layer in separated flow by the semi inverse method. 
The transition (switch) between the direct and the semi inverse method was controlled by a 
certain value of the shape factor (displacement to momentum thickness ratio). They used the 
TSD equation coupled with Lag Entrainment integral boundary layer equations.  Edwards 
called his code as CAP TSDV (Computational Aeroelastic Program using TSD with 
interactive boundary layer method). He introduced a block control system, in order to 
control/adjust the interaction between the boundary layer and the TSD equation.  

The application of the VII in the aircraft industry was carried out among others by 
Galpin from the British Aerospace [22] and Haase from the Daimler Benz Aerospace AG 
[23]. Both of them coupled the Euler equations plus integral boundary layer equations for the 
computation of the steady and unsteady aerodynamics of airfoil and wing.  

Most of VII methods use the steady two-dimensional integral boundary layer 
equations as the viscous model. For three-dimensional problems one uses the strip theory 
approach, in which the boundary layer at a specified 3D section is assumed as purely two 
dimensional. The search of the three-dimensional integral boundary layer equations was 
published among others by Drela & Mughal [24]. They performed calculations of the 
atmospheric boundary layer. But its application in VII method has not yet been further 
developed. This is probably because the influence of the boundary layer in 
circumferential/span direction is smaller than in normal direction, so it can be ignored (except 
if the cross flow velocity is significant). Also, the computation time for solving three-
dimensional boundary layer equations is longer than for solving two-dimensional ones. 

The VII method with differential boundary layer equations as viscous model has been 
developed by Van Dalsem & Steger [25] among others. They coupled the differential 
boundary layer equations with the FP equation and solved both of the aerodynamic models 
using the finite differences method. Hamilton et. al. [26] solved the differential boundary 
layer equations, in order to obtain the boundary layer parameters of the flow with different 
fluids (ideal gas, CF4 and equilibrium air chemistry). But they did not make the interaction 
between the boundary layer and the inviscid flow. These VII method is not so far developed, 
because the effort and the cost to solve the differential boundary layer equations are more than 
those of the integral boundary layer equations. In order to solve the differential equation, one 
needs a grid system and a turbulence model, which are not needed by solving the integral 
boundary layer equations.  

Most of VII methods use the integral boundary layer equations either for pure laminar 
or  turbulent flow. The application of laminar-turbulent transition in VII method has been 
carried out by Drela & Giles [3] and Wolles [4] among others. The transition prediction was 
carried out by the en method, which has been developed by Smith, Gamberoni & van Ingen 
[3]. It is assumed that the transition from laminar to turbulent flow takes place if the value of 
spatial disturbance amplification n is equal to 9 at a certain location .  

Application of VII method for calculating of aerodynamic forces and flutter analysis 
was also developed by Henke [27] recently and has been used at the Airbus Company as an 
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2. Theory of VII 

alternative calculation method, which is more favourable compared to the Navier-Stokes 
equations - based calculation method.  
 
2.3. Basic VII Methods 

The following methods can be used to perform the interaction between the viscous and 
the inviscid flow equation: direct, inverse, semi inverse, quasi simultaneous and simultaneous 
method. Each method will be described in the following section.  
 
2.3.1. Direct Method  

In this interaction the outer flow region (inviscid model) is computed first subject to 
the slip boundary conditions, e.g. body contour without displacement thickness (  = 0). The 
solution from this step is a velocity distribution along the body ( ). This velocity 
distribution is used as the input for the inner region (viscous model). Afterwards the inner 
region is computed. The solution from this step is the displacement thickness ( ) among 
others, that change the effective body contour. With the new body contour as the input for the 
outer region, the velocity distribution ( ) is computed again. This mechanism runs, until 
the two solutions - displacement thickness ( ) and velocity distribution ( ) - are 
convergent. The iteration scheme of the direct method can be seen in Figure 2.3. 
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 Figure 2.3. Iteration Scheme of the Direct Method 

 
The interaction of the two models and the boundary conditions can be represented by the 
following functional relationship: 
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OF and IF are the functional relations for the outer and inner regions. In and Out denote the 
input and output. I and O are the unknowns of the viscous and the inviscid model. n is the 
iteration number. The iterative mechanism of the direct method can also be analyzed 
graphically. In order to accomplish this representation, the outer and inner region are 
transformed into the relationship between the gradient of the velocity and the gradient of the 
displacement thickness, as in the following [4, 28]: 
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The graphical illustration of the Direct Method can be seen in Fig. 2.4. for several flow 
conditions.  
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  Figure 2.4. Graphical Illustration of the Direct Method 
 
The line OF and IF in Figure 2.4. show the functional relationship of the outer and inner 
regions respectively. The form of the line depends on the value of the function E1, E2, F1 and 
F2. The sequence of iteration runs according to the number. For attached flows the iteration is 
convergent into the point of intersection between the OF and IF lines (Fig. 2.4.a). But this 
mechanism fails, if there is a separation point on the surface (Fig. 2.2.b and c). Computation 
of the displacement thickness becomes singular for separated flows (referred to as the 
Goldstein Singularity, see Appendix 4).  
The advantage of the direct method are:  

• Simple to construct (in sense of programming) 
• The solutions of the outer and inner regions,  and , are supplied immediately, 

because the equations are solved straightforward.  

n
eOFU *

nδ

The disadvantage of the direct method is that it cannot simulate separated flows. The direct 
method is also well-known as ‘weak interaction’, because the interaction is dominated by the 
outer region. 
 
2.3.2. Inverse Method  

In this method the velocity distribution is computed from the inner region (by solving 
the viscous flow model) and the displacement thickness is computed from the outer region (by 
solving the inviscid flow model). With the velocity of the inner region  as the initial 
value, the computation of  is accomplished from the outer region. With the value of  
one computes the new velocity distribution . This mechanism runs, until the two 
solutions - displacement thickness ( ) and velocity distribution ( ) - are convergent. 
The iteration scheme can be seen in Figure 2.5. 
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Figure 2.5. Iteration Scheme of  the Inverse Method 
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The interaction of the two models and the boundary conditions can be represented into 
the following functional relationship: 
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The outer and inner regions will be represented in the relation between the gradient of 
velocity and displacement thickness as follows: 
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The graphical illustration of the Inverse Method can be seen in Fig. 2.6. for several flow 
conditions. 
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  Figure 2.6. Graphical Illustration of the Inverse Method 
 
In the inner region, the boundary layer equations (e.g. the integral boundary layer equations) 
can be transformed into the inverse form, in order to compute the output velocity. The inverse 
procedure of the inviscid model runs as in design process with the velocity as input and 
geometry as output. However it is not simple to transform the inviscid model into the inverse 
form. For attached flow the iteration is not convergent (Fig. 2.6.a). But this mechanism runs, 
if a separation point exists on the body (Fig. 2.6.b and c). The advantage of the inverse 
method is that separated flows can be simulated.  
The disadvantages of the inverse method are:  

•  Attached flows cannot be simulated 
•  The inverse equations (of the two regions) is not simple to construct 
•  The solution of variables of the outer and inner region,  and , needs  longer 

time than with the direct method, because the equations are not solved straightforward.  

n
eIFU *

1+nδ

 
It can be observed that both of the iteration procedures (direct and inverse) diverge for at least 
one of the flow situations when using no relaxation. A direct or an inverse method, which 
assumes the dominance of one flow model over the other, fails to be applied to general flow 
situations. Neither a direct nor an inverse method without relaxation is able to deal with the 
so-call ‘strong interaction’ from both of the flow regions. The direct interaction method can 
only be used in the region upstream of the point of vanishing skin friction, at the other hand 
the inverse interaction method is a valid approach for the region downstream of this point. 
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2.3.3. Semi Inverse Method 
The Semi inverse method is a synergy of the direct and inverse method. The inviscid 

region is solved with the direct method, but the viscous  region is solved with the inverse 
method. In order to fit the solution between the inner region and the outer region, a relaxation 
procedure is additionally used. Initial value of displacement thickness (δ*

0)  is given first. 
Afterwards one calculates the velocity distribution ( ) from the outer region (inviscid 
model), which is computed with the given displacement thickness (δ

1
eOFU

*
0). At the same time one 

computes the velocity distribution ( ) with the inverse procedure from the given 
displacement thickness (δ

1
eIFU

*
0). The new displacement thickness (δ*

1) is determined by a 
relaxation procedure based on the two velocity distribution solutions ( ) and ( ). If all 
parameters (δ

1
eOFU 1

eIFU
*

n,  und ) are convergent, these computations are terminated. The 
iteration scheme can be seen in Figure 2.7. 
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Figure 2.7. Iteration Scheme of the Semi Inverse Method 

 
The interaction of the two models and the boundary conditions can be represented into 

the following functional relationship: 
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Here RL designates the functional relationship of the relaxation procedure. The advantage of 
the semi inverse method is that simulation of separated flows is possible. The disadvantage of 
the semi inverse method are:  

• The boundary layer is not computed straightforward. Therefore one must transform 
the boundary layer equations into inverse form.  

• Additionally relaxation procedure is needed, therefore it takes a longer time to obtain 
the solution of the boundary layer. 
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2.3.4. Quasi-Simultaneous Method  
As the semi inverse method, the quasi-simultaneous method is a synergy of the direct 

and the inverse method. The inviscid region is solved with the direct method, but the viscous  
region is approximated with the simultaneous solution of the boundary layer equations and an 
‘Interaction Law’. The Interaction Law was deduced from the asymptotic theory and connects 
the outer and inner regions like the function of the outer deck of the boundary layer in the 
triple deck boundary layer theory. 
With initial values of displacement thickness (δ*

0), the velocity distribution ( ) is 
computed by the outer region (inviscid model). Simultaneously the displacement thickness 
(δ

1
eOFU

*
1) and the velocity distribution  are calculated from the inner region and the interaction 

law with input velocity distribution ( ). With the displacement thickness (δ
eIFU

1
eOFU *

1), the outer 
region  is computed again. If the iteration is convergent this computation is terminated. The 
iteration scheme can be seen in Figure 2.8 
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      Figure 2.8. Iteration Scheme of the Quasi-Simultaneous Method 
 

The interaction of the two models and the boundary conditions can be represented into 
the following functional relationship: 
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Here IL is the functional relationship of the Interaction Law. The advantage of the quasi-
simultaneous method is that simulation of separated flows is possible.  
The disadvantage of the quasi-simultaneous method are:  

• Additionally one must develop an Interaction Law between the outer and the inner 
region 

• Simultaneous method to solve the viscous model and the Interaction Law needs more 
time than the direct method 

 
2.3.5. Simultaneous Method  

In this procedure all equations are solved simultaneously, which means that the 
boundary layer equations and the potential or Euler equations are treated as an expanded 
system of differential equations. The iteration runs with initial values of displacement 
thickness (δ*

0) and velocity distribution (Ue0). Then one computes the displacement thickness 
and the velocity distribution at the same time by solving the expanded system of differential 
equations. The iteration scheme can be seen in Figure 2.9.   
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Figure 2.9. Iteration Scheme of the Simultaneous Method 
 

The interaction of the two models and the boundary conditions can be represented by 
the following functional relationship: 
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The advantage of the simultaneous method is that separated flows can be simulated. The 
disadvantages of the simultaneous method are:  

• It is not simple to develop and solve the expanded system of differential equations 
• Simultaneous method for solution the viscous model and the inviscid model needs 

more time than the direct method 
 

In the present work a combination of the direct and semi inverse method is developed, 
because - regarding the programming aspects - only few changes are necessary in the inviscid 
model and one can develop the boundary layer calculation method separately from the 
inviscid model. Another reason is that one can couple the viscous model easily into many 
different inviscid models.  
The computation of the boundary layer (the viscous aerodynamic models) in the present work 
is performed using the following methods:  

• Integral boundary layer equation based on the procedure introduced by von 
Karman - Thwaites [5] for incompressible laminar flows 

• Integral boundary layer equations based on the kinetics energy equation 
proposed by Drela and Giles [3] for compressible laminar and turbulent flows 

• Integral boundary layer equations based on the Lag Entrainment method 
introduced by Green et. al. [11] for compressible turbulent flows 

• Differential boundary layer equations based on the procedure of Hamilton et. 
al. [26] for compressible laminar and turbulent flows 

• The incompressible flat plate boundary layer calculated using the Blasius 
solution [5] or the Power 1/7 Law [5] is used as the initial value for running the 
calculation for laminar or turbulent flows, respectively.  

• The transition from laminar to turbulent flow is predicted using en method [3] 
 
The viscous aerodynamic models used in the present work will be explained in the next 
chapter. 
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3. Viscous Aerodynamic Models 

3. Viscous Aerodynamic Models 
 

This chapter describes some calculation methods used to determine the boundary layer 
parameters. Three different calculation methods are presented, i.e. the flat plate boundary 
layer, the integral and the differential boundary layer equations. All of the calculation 
methods are limited for two dimensional problems. The application of these methods for 
solving of three dimensional problems is carried out via strip theory approach, which means 
that the local boundary layer along spanwise direction is assumed to be two dimensional. 

The values of the boundary layer parameters on a flat plate (such as: boundary layer 
thickness δ, momentum thickness θ, displacement thickness δ*, shape factor H and skin 
friction coefficient Cf ) are used in the present work as the initial value for the boundary layer 
calculation, since the calculation process is carried out in space-marching fashion. The 
boundary layer on a flat plate is determined using the Blasius solution and the Power 1/7 Law 
for incompressible laminar and turbulent flows respectively.  
Among the integral boundary layer equations, three calculation methods proposed by von 
Karman-Thwaites, Drela-Giles and Green et. al. are discussed. For solving the differential 
boundary layer equation the procedure proposed by Hamilton et. al. is used. To complete the 
description of the boundary layer, a laminar – turbulent transition prediction based on the en 
method is also described at the end of this chapter.  

Before further description of those calculation methods, it is better to first recognize 
the meaning of some boundary layer parameters. Figure 3.1. shows the sketch of boundary 
layer on a flat plate to illustrate the physical meaning of the boundary layer thickness δ, 
displacement thickness δ* and momentum thickness θ. 
     z          
                        
          U∞             δ*  
           Ue
 
h        U       δ 
 
          x 
       A          B 
        

Figure 3.1. Sketch of Boundary Layer on a Flat Plate 
 
The boundary layer thickness δ is defined as the thickness over the surface, measured in the 
normal direction from the surface, where the velocity is zero, up to the position of the external 
frictionless velocity Ue. The external streamline of the flow is displaced upward because of 
the presence of the boundary layer. The displacement thickness δ* is defined as the thickness 
measured between the displaced and the undisturbed streamline.  
The momentum thickness θ  is defined from the momentum loss between stations A and B as 
follows (see Fig 3.1). 

The momentum (per unit depth of the plate) at the station A can be described as: 
Mom. A = ρ∞U∞

2h 
The same description for the momentum at the station B is: 

Mom. B = 0 ∫ h ρU2dz + ρeδ*Ue
2 

The momentum loss between stations A and B is: 
Mom. B – Mom. A = ρeUe

2θ 
From this momentum loss, the momentum thickness θ  is defined as: 

  θ  = (Mom. B – Mom. A)/ρeUe
2 = (0 ∫ h ρU2dz + ρeδ*Ue

2 - ρ∞U∞
2h)/ρeUe

2
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3. Viscous Aerodynamic Models 

where h, ρ and U are the height of the fluid column, the density and the velocity of fluid, 
respectively. The subscript e denotes the condition at the edge of the boundary layer. 

The relation between the momentum and the displacement thickness is given by the 
shape factor H defined as: H = δ*/θ 
 
3.1. Boundary Layer on a Flat Plate 
3.1.1. The Blasius Solution: Incompressible Laminar Flow 

In order to determine the boundary layer parameters on a flat plate in incompressible 
laminar flow, the exact solutions from Blasius are used, as follows [5]: 
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and the skin friction coefficient: 2

2

ee

w
f U

C
ρ
τ

=       (3.8) 

where Rex is the local Reynolds number and τ  is the shear stress. The subscript w denotes the 
value at the wall. 
 
3.1.2. The Power 1/7 Law: Incompressible Turbulent Flow 

In order to calculate the boundary layer parameters on a flat plate in incompressible 
turbulent flow, the solutions of the Power 1/7 Law are used [5, 8]: 
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where Re∞ is the Reynolds number of the undisturbed flow and CE is the entrainment 
coefficient defined as [11]: 
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3.2. Integral Boundary Layer Equations 
3.2.1. The von Karman - Thwaites Method: Incompressible Laminar Flow 

In order to compute the boundary layer parameters of an airfoil in an incompressible 
laminar flow, the von Karman - Thwaites method is used.  
The integral of the momentum equation in the boundary layer (known as von Karman integral 
momentum equation) reads [5, 29]: 

2)2(
ee

we

e Udx
dU

U
H

dx
d

ρ
τθθ

=++     (3.16) 

In order to solve equation (3.16), the three unknown θ, H and τw must be linked to each other. 
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By introducing a new symbol K as: 

ν
θ

ν
θ 22
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dx
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Z

dx
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K ee    (3.17) 

the von Karman integral momentum equation (3.16) can then be written as: 
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If one introduces further a new function F(K) such as: 
( ) )(24)(2 12 KKfKKfKF −−=      (3.20) 

then the integral momentum equation (3.18) becomes: 
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KF

dx
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Waltz [5] has proposed a linear function of K to approximate the function F(K) as: 
6,45.0,)( ==−= babKaKF     (3.22) 

Substitution of the equation (3.22) into (3.21) gives: 
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which can be solved for Z by a recursive formula: 
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The initial values used to solve equation (3.24) are the values of K and Z at the stagnation 
point [5]: 
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Thwaites suggested several simple equations to approximate the shape factor and skin 
friction coefficient as a function of K [29], as follows: 
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The skin friction coefficient will be computed with: 
θRe/)(2 2 KfC f =       (3.26) 

where the Reynolds number Reθ is defined as: 
µθρθ /Re U=        (3.27) 

As the criteria of separation flow, the following values are used: 
0)(,5444.3,0898.0 2 ==−< KfHK    (3.28)  
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3. Viscous Aerodynamic Models 

In order to extend the validity of this method for a wider range of Mach number, the values of 
K, H and f2(K) are corrected under consideration of the compressibility effect as follows [8]: 
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where γ is the ratio of the specific heat, r is the heat recovery factor, Pr is the Prandtl number 
and Me is the Mach number at the edge of the boundary layer. 
 
3.2.2. The Drela - Giles Method: Compressible Laminar and Turbulent Flow 

In order to compute the boundary layer parameters of an airfoil in compressible 
laminar or turbulent flow, the Drela - Giles method is used. Drela and Giles formulated a 
coupled pair of differential equations of momentum thickness and shape factor, as follows [3, 
4]: 
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The shape factors in equation (3.31) are defined as follows: 
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and the Kinetic Energy Thickness:           dz
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The dissipation coefficient in equation (3.31) is defined as:  
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The derivation of the integral boundary layer equation (3.30) and (3.31) can be found in  
Appendix 2. 
 
3.2.2.1. Closure Equations for Laminar Flow  

In order to be able to solve the system of differential equations - Eqs. (3.30) and (3.31) 
-, one needs some closure equations to close the problem because the number of the equations 
is less than the number of the unknown variables. Some variables must be linked to each other 
or written as a function of the other variables.  
For this purpose one introduces the kinematic shape factor Hk, as [3, 4]: 

e

e
k M
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H

113.01
29.0

+
−

=                   (3.36) 

This kinematic shape factor Hk plays an important role as the closure variable, where the other 
variables are related to. The variables which must be written as functions of Hk are H*, Cf, Cd 
and H** and will be described as follows. 
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The relation between H* and Hk reads [3, 4]: 
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 The skin friction coefficient Cf is computed as a function of Hk and the Reynolds 
number Reθ [3, 4]: 
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The dissipation coefficient Cd is computed as a function of Hk, H*  and Reθ: 
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The value of H** is related to Hk as follows [3, 4]: 
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The steps for the computation of the boundary layer parameters of an airfoil in compressible 
laminar flow using the Drela-Giles method are as follows:  
a. The boundary layer parameters resulted from the solution of the von Karman – Thwaites 

method is used as initial values applied to the leading edge region of the airfoil.  
b. After 3% or 5% of the chord length from the leading edge, the system of differential 

equations (3.30 and 3.31) associated with the closure equations for laminar flow is solved 
using a 4th order Runge Kutta method (see Appendix 1.) to obtain the value of the 
boundary layer parameters at the next point in the downstream direction.  

c. This procedure is carried out up to the transition point from laminar to turbulent flow. 
Beyond this transition point the computation is switched to the procedure for turbulent 
flow. The transition point is computed using the eN method (see Chapter 3.2.4).  

 
3.2.2.2. Closure Equations for Turbulent Flow  
 For turbulent flow, the closure equation for H** remains the same as for laminar flow. 
The other closure equations for H*, Cf, Cd are changed and will be described in the following. 
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The skin friction coefficient, Cf, is computed with the following relation [3,4]: 
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The dissipation coefficient Cd will be computed from: 
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f
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where the slip velocity US is a function of the shape factor: 
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The shear stress coefficient Cτ in equation (3.47) is computed using the Lag-Entrainment 
method of Green et. al., which will be discussed later. 
 
The steps for the computation of the boundary layer parameters in turbulent flow using the 
Drela-Giles method are described as follows: 
a. The solution of the flat plate boundary layer in the incompressible turbulent flow 

computed from the Power 1/7 Law is used as the initial values applied to the leading edge 
region of an airfoil (for fully turbulent flow case) or applied to the turbulent region after 
the transition point (for partially turbulent flow case). 
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b. After 3% - 5% of the chord length from the leading edge (for fully turbulent flow case) or 
from transition point (for partially turbulent flow case), the system of the differential 
equations (3.30 and 3.31) associated with the closure equations for turbulent flow is 
solved using a 4th Order Runge Kutta method (see Appendix 1) to obtain the boundary 
layer parameters for the next point.  

c. The integration of the differential equations is carried out up to the separation point, where 
the value of the derivative of the shape factor (dHk/dH*) becomes singular and Cf is less or 
equal to zero. In this case the Inverse Boundary Layer Method (IBLM, to be described 
later) is used starting from the separation point. 

 
3.2.3. The Lag Entrainment Method from Green et. al.: Compressible Turbulent Flow 

Another method to calculate the boundary layer parameters in compressible turbulent 
flow is the Lag Entrainment method proposed by Green et. al. [11]. They introduced an 
entrainment coefficient in order to take into account the ‘history’ of the flow condition. The 
mixture process between a turbulent region of flow and its surrounding non-turbulent 
irrotational flow is referred to as the entrainment of the non turbulent by the turbulent flow. 
This entrainment affects the growth of the boundary layer and considered to be a controlling 
factor in the development of the turbulent boundary layer. Green et. al. have proposed an 
additional equation involving the entrainment coefficient instead of momentum thickness and 
shape factor equations.  
The system of differential equation is now as follows [11]:  

( )
dx

dU
U

MH
C

dx
d e

e
e

f θθ 22
2

−+−=        (3.49) 

dx
dU

UdH
HdHH

dH
HdCHC

dx
Hd e

e
fE

1)1(
2
11

1
1

1
1 ++⎟

⎠
⎞

⎜
⎝
⎛ −=

θ
     (3.50) 

( )[ ]
dx

dU
UM

rM
MF

dx
dU

U
CC

HH
F

dx
dC e

ee

e

EQ

e

e
EQ

E 1
1.01

2
11

075.018.2
2

2

22/12/1
0

1 ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

−
+

+−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+
=

γ
θλ

θ ττ      (3.51) 

The derivation of the shape factor equation (3.50) can be found in Appendix 2. 
 
3.2.3.1. Closure Equations for Turbulent Flow  

In order to solve the above equations, one needs some closure equations since the 
number of the equations is less than the number of the unknown variables. Some variables 
must be written as functions of other variables. These variables are the shape factors (H, H , 
H1), the derivative 1/ dHHd , Cf, (θ/Ue dUe/dx)EQ, Cτ  and F.  
Between the shape factors H, H  and H1 exists the following relations [11]: 
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H is the incompressible shape factor defined as [11]: 
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H1 is the mass flow shape factor defined as [11]:    
θ
δδ *

1
−

=H               (3.56) 

The equations (3.53 and 3.54) will be singular if the value of H is equal to 1. Therefore the 
application of this procedure is limited up to this value of H . 
The skin friction coefficient Cf on the profile is written as a function of shape factors, Mach 
number and Reynolds number as [11]: 
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H0 is the shape factor at constant pressure and Cf0 is the skin friction coefficient if the pressure 
gradient is equal to zero.  
The relation of ( H /H0 ) and Cf0 in the equation (3.57) is defined as [11]: 
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with the scaling factors FC , FR and the Reynolds number Reθ  given by [11]: 
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 The variables at the edge of the boundary layer in the above equations (denote by the 
subscript e) will be given by the following relations [8]: 

( ) )67.3(11),66.3(
1

),65.3(
2

111),64.3(1),63.3(1

2

0

0
2/3

22

x
e

e

ee

x
e

x
e

x
e

M
T
T

T
S

T
T

T
S

T
T

M
M
M

U
U

M

φγ
µ
µ

φγφφ
ρ
ρ

∞
∞

∞∞

∞

∞∞

∞
∞∞

∞
∞

−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎠
⎞

⎜
⎝
⎛ −
++=+=−=

φx is the derivative of the disturbance velocity potential in the downstream direction and S0 is 
the Sutherland number, where its value is equal to 110 Kelvin for air and T represents the 
temperature of the fluid. 
 The variable (θ/Ue dUe/dx)EQ in the equation (3.51), i.e. the displacement thickness 
multiplied by the gradient of the velocity in equilibrium condition with constant H, is defined 
as a function of shape factors, skin friction and entrainment coefficient, as follows [11]: 
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where the subscript EQ represents the equilibrium condition. 
The entrainment coefficient in equilibrium condition in the equation (3.68), i.e. (CE)EQ, is 
defined as [11]: 
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with the function C is: 
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where λ is the scaling factor of  the dissipation length, its value is 1 on the airfoil and 1/2 in 
the wake. 

The shear stress coefficient in the fluid, Cτ, is defined as a function of Mach number, 
entrainment coefficient and skin friction coefficient, as follows [11]: 
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The subscript EQ0 indicates the equilibrium condition without influence of the second 
structure of the turbulence. 
The entrainment coefficient in EQ0 is defined as [11]: 
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The variable F in the equation (3.51) is defined as [11]: 
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With the above closure equations, one can solve the set of differential equations (3.49 - 3.51) 
for given initial values. 
 
The steps for the computation of the boundary layer parameters in turbulent flow using the 
Lag Entrainment method are described as follows: 
d. The solution of the flat plate boundary layer in the incompressible turbulent flow 

computed from the power 1/7 law is used as the initial values applied to the leading edge 
region of an airfoil. 

e. After 3% - 5% of the chord length from the leading edge, the system of the differential 
equations (3.49 - 3.51) associated with the closure equations for turbulent flow is solved 
using a 4th Order Runge Kutta method (see Appendix 1) to obtain the boundary layer 
parameters for the next point.  

f. The integration of the differential equations is carried out up to the separation point, where 
the value of the derivative of the shape factor ( 1/ dHHd ) becomes singular and Cf is less 
or equals to zero. In this case the Inverse Boundary Layer Method (IBLM, to be described 
later) is used starting from the separation point. 

 
3.2.4. Semi Inverse Method 
 The semi inverse boundary layer calculation method was proposed by Melnik and 
Brook [15] and Howlett [20] among others. It was proposed to avoid the singularity of the 
value of the derivative of the shape factor ( 1/ dHHd ) in the Lag Entrainment method as the 
flow condition tends to separate. The extension of the Green’s Lag Entrainment method to 
handle separated flow is carried out by choosing an appropriate velocity model applied to the 
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separated flow region. The derivative of the shape factor ( 1/ dHHd ) will then be formulated 
based on this velocity model. 

Mathematically, this method is derived from Green’s Lag Entrainment method by 
modifying the differential equations (3.49 - 3.51), so that the momentum thickness θ is not 
directly computed from the momentum equation, but from the velocity at the edge of the 
boundary layer Uv. Then the displacement thickness δ* will be computed iteratively based on 
the edge velocities calculated from the boundary layer equation Uv and from the inviscid 
equation Ue.  

For modification purposes a new parameter is needed, i.e. the mass flow rate in the 
boundary layer defined as [20]:  

*δρ eeUm =       (3.76) 
With this new variable the three differential equations from Green’s Lag Entrainment (3.49-
3.51) can be written as [20]: 
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New terms appeared in the equations (3.77 – 3.79) are: 
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The variables C2 and η* are related to the chosen velocity model in separated flow region, 
which will be described later in the description of the closure equations. The details of the 
modification procedure can be found in Appendix 3. 

The semi inverse calculation method can also be written associated with the shape 
factor equation from Drela & Giles method as follows: 
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3.2.4.1. Closure Equations for Semi Inverse Method  
 Some of the closure equations of the lag entrainment method must be modified in 
order to be able to calculate the separated boundary layer. The modification of the closure 
equations involves the variables 1/ dHHd , (CE)EQ0, and Cf. Other closure equations remain 
the same. 

The velocity profile in the separated region is assumed to be [20]: 
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η* is the height of the reversed flow region of the boundary layer in the separation region (see 
Fig. 3.2.). The variable Fc in equation (3.85) is known as Coles wake function defined as 
follows: 
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The velocity of  the reversed flow is:  21 C
U
U

e

m −=                    (3.87) 
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Figure 3.2. Sketch of the Reversed Flow Region in Boundary Layer 

 
The criteria of the reversed flow region are described as follows [20]: 
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The value of b depends on how the extrapolation of the function H  vs. H1 from the original 
function (equation 3.53) has been carried out [15, 20]. 
The shape factor H is now described as a function of α& :   
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with:         3/58/3 21 == bandb
The shape factor H1 is now also a function of α& : 
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The derivative ( 1/ dHHd ) will be computed as: 
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Further changes in the closure equations of  the Lag Entrainment method are [20]: 

The entrainment coefficient in equilibrium EQ0 (equation 3.73) then becomes: 
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where K1 is the mixing length constant  and its value equals to 0.08, and: 
( )
2

2

)(
η
η

η
d
Fd

F p
p =′′               (3.98) 

The skin friction coefficient (equation 3.57) becomes: 
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The scaling factor of the dissipation length λ becomes: 

On the profile:  *1
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Finally, the displacement thickness is computed using the following iterative method [14, 20]: 
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where : 

 25 



3. Viscous Aerodynamic Models 

Uv = viscous velocity (solution of the Inverse Boundary Layer Method) 
Ue = inviscid velocity (solution of the TSD or the Euler equations) 
ω   = relaxation factor (in the present work the value of ω is chosen from 0.001 to 0.2) 
 
The procedure to solve the semi inverse method are as follows:  
a. The procedure starts if the value of H  is close to 2.4. Solution of the flat plate boundary 

layer in incompressible turbulent flow is used as the initial value for the next point.  
b. Calculate the mass flow rate with the initial value of δ*

c. Calculate α&  by means of the relation H - α& . For this purpose a Newton iteration is used 
(see Appendix 1).  

d. Afterwards H1 and ( 1/ dHHd ) are computed.  
e. UV, H  and CE are calculated using a 4th Order Runge Kutta method. 
f. The new displacement thickness (δ*

new) is computed. If the value of δ*
new is convergent the 

procedure can be proceeded for the next point otherwise the procedure must be repeated. In 
the present work, the convergence is reached if the relative error [(δ*

new - δ*
old)/δ*

old] ≤ 
1.0E-04 . 

 
3.3. Differential Boundary Layer Equations: The Procedure of Hamilton et. al.  

A differential method solves the differential boundary layer equations directly without 
modifying the equations, as carried out in the integral method. In contrast to the integral 
method, which produces directly the momentum thickness and shape factor, the numerical 
solution of the differential equation supplies the distribution of velocity within the boundary 
layer, which must be integrated, in order to obtain the momentum and displacement thickness. 
The numerical procedure used here is the finite difference method as implemented by 
Hamilton et. al. [26]. The boundary layer parameters in both laminar and turbulent flow can 
be calculated using this method. In order to solve the boundary layer equations for laminar 
flow, an auxiliary equation is not necessary, but a turbulence model must be added for solving 
the turbulent boundary layer, in order to calculate the value of the turbulent viscosity. 
 
3.3.1. Equation Form  

As the starting point is the boundary layer equations, which consist of conservative 
equations of mass, momentum and energy, which can be written for compressible turbulent 
flow in two-dimensional Cartesian coordinates, as follows [26]: 
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The variables u and W are the velocity component in x and z direction. The symbols p and ρ 
stand for pressure and density. Pr and Prt are the laminar and turbulent Prandtl number 
respectively, where their values are 0.72 and 0.90. µ and µE are the laminar and turbulent 
eddy viscosity. h0 is the total enthalpy.  
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In order to simulate the turbulent condition, the velocity W in the above equations is defined 

as:  ( )
ρ
ρ
′
′′

+=

______
wwW                 (3.106) 

The symbols⎯  and ′ in equation (3.106) denote the mean value and time-dependent 
fluctuating value.  
The boundary conditions for the solution of equations (3.102) to (3.105) are as follows: 
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The subscript w and e denote the value at the wall or at the edge of the boundary layer. The 
number of unknown variables involved in the equations (3.102) to (3.105) is seven, i.e. u, W, 
p, h0, ρ, µ and Eµ , larger than the number of the equations, which is only four. Therefore 
these variables must be linked to each other or some closure equations must be added, in order 
to close the problem. The laminar viscosity µ is computed with the Sutherland law, as follows 
[26]: 
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Tr, µr and S0 are the reference temperature, the reference viscosity and the Sutherland number 
(equals to 110 Kelvin), respectively. The turbulent eddy viscosity Eµ  is computed using two 
layer turbulence model proposed by Van Driest - Clauser, which will be explained later. The 
total Enthalpy h0 is assumed to be constant. The variables u, W, p and ρ are coupled to each 
other by using the Levy Lee transformation of the coordinates, which will be described as 
follows. 
 
3.3.2. Transformation of the Coordinate  

The Cartesian coordinates (x, z) is transformed into the computational coordinates (ξ, 
ζ) by the Levy Lee transformation as follows [26]: 
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The derivatives in the direction x and z become: 
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With these new coordinates one can defined a stream function ψ(ξ,ζ) : 
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The new variable f in equation (3.113) has the property: 
eU
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           (3.115) 

With new variable f, the momentum in the flow direction x (3.103) becomes:  
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The pressure term in equation (3.103) is eliminated by the inviscid theory (with isentropic 
assumption) to: 
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The same procedure can be performed for the energy equation (3.105) resulting the following 
equation: 
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The equations (3.116) and (3.119) can be solved for f and g under the following boundary 
conditions: 
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3.3.3. Solution Procedure  

The equations (3.116) and (3.119) can be written in general as a 2nd order differential 
equation: 
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where Q is a general variable.  
 
The following are the term and coefficients of the equation (3.122) to be applied for solving 
the momentum equation (3.116): 
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For solving the energy equation (3.119), the term coefficients of the equation (3.122) are:  
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The general equation (3.122) will be solved by finite difference method on the discretized 
boundary layer region. The typical grids for the solution of Q can be seen in figure. 3.4. The 
index m and n refers to the index of the points in directions ξ  and ζ, respectively 
The derivatives of Q in the direction ξ  and ζ  at point Pm+1,n are approximated with: 

[ 1
2

1
2

1
1,1

)1(1
+−+

+

+−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

mnnn
nm

QKQKQ
D

Q
ζ

]    (3.125) 

[ 111
2,1

2

2

)1(2
+−+

+

+−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

mnnn
nm

QKKQQ
D

Q
ζ

]      (3.126) 

[ nmm
nm

QQQ
−

∆
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
+

1
,1

1
ξξ

]      (3.127) 
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Figure 3.3. Typical Grid for the Solution of the Differential Boundary Layer Equations 

 
Substituting equations (3.125) – (3.127) into equation (3.122), one obtains a 

simultaneous algebraic equation as follows: 
nnmnnmnnmn RQCQBQA =++ −++++ 1,1,11,1     (3.129) 

where: 
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The system of the algebraic equation (3.129) forms a tri diagonal matrix in the direction ζ 
(index n) at a certain position in the direction ξ (index m+1), which can be solved efficiently 
using the method from Richtmyer and Morton, as follows [26]: 
The solution of Q can be calculated by recursive procedure as follows: 
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The boundary conditions are applied at the index n = 1 (body surface) and n = N (edge of the 
boundary layer), which implies that the values of Qm+1,1 and Qm+1,N are already available. With 
recursive procedure from n = 2 to n = N-1 one can obtain the solution of Q by means of the 
equation (3.131). In this procedure the solution of Q is computed iteratively until the 
convergence criterion 1.0E-03 is reached, in order to prevent redundancy of the solution, 
because the solution of Q at the station m in the direction ξ is assumed. As the initial value for 
this station, the solution of flat plate boundary layer is used. After the solution of Q (i.e. f` or g 
in the equation 3.123 or 3.124) is obtained, one can compute the physical values of the other 
variable.  
The velocity distribution in the boundary layer can be computed as: 
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The physical z Coordinate will be computed from: 
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The momentum thickness can be computed from: 
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The displacement thickness will be given by: 
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The shear stress at the body surface is computed from: 
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The local convective heat flux is computed from: 
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3.3.4. Turbulence Model 
  The turbulent eddy viscosity µE in the equations (3.103 and 3.105) is computed using 
the so-called ‘two layer’ turbulence model. In this model, the boundary layer thickness is 
divided into inner and outer regions. The inner region is modelled based on Van Driest 
analysis [26, 30] and the outer region is simulated using Clauser model [26].  
The turbulent eddy viscosity in the inner region of the boundary layer is computed with the 
following equation: 
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where k* and A* are the von Karmans constants, which its values  are 0.4 and 26, respectively. 
Within the outer region of boundary layer the following equation serves for the calculation of 
the turbulent eddy viscosity: 

*
ink

e

o

E U
δγ

µ
ρλ

µ
µ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛              (3.139) 

where λ is constant equal to 0.0168.  
γ  is the Klebanovs intermittency factor [26] given by: 
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The boundary between the inner and the outer region is determined, if the value of the 
turbulent eddy viscosity in the inner region is equal to those in the outer region. 
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Therefore the computation of the inner turbulent eddy viscosity is carried out starting from the 
surface to the edge of the boundary layer. Contrary, the computation of the outer turbulent 
eddy viscosity is carried out starting from the edge of the boundary layer to the surface. 
 
3.4. Laminar-Turbulent Transition: The en Method  

The transition from laminar to turbulent flow is predicted using the en method. This 
method assumes that transition takes place, if the disturbance wave (the unstable Tollmien-
Schlichting wave) growths up to e9 ~ 8100 [3]. That means: if the value of n at a certain 
position x is equal to 9, then the transition takes place at this position.  
For a similar flow, i.e. flow with constant shape factor H, the value of n is [3]: 
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where the slope of n with respect to Reθ and the critical Reynolds number Reθ0 are given by 
[3]: 
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In the case of the constant shape factor H, the critical Reynolds number Reθ0 is reached at a 
certain place x0. If the shape factor H is not constant along the body, one must compute the 
change of n along the body, as follows [3]: 
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x0 is the critical point, where the value of Reθ is equal to Reθ0. In this case the critical 
Reynolds number Reθ0 depends on the value of the shape factor H along the body. 
It should be noted that the integration in the equation (3.145) takes place from x0 to the 
regarded point x. 
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4. Inviscid Aerodynamic Models 
 
 In this chapter, three different inviscid aerodynamic models, which will be coupled 
with the viscous aerodynamic models (i.e. the boundary layer methods described in the 
previous chapter), are presented. These inviscid aerodynamic models are based on the TSD 
equation, the Euler and the Small Disturbance Euler equations.  
 
4.1. The Transonic Small Disturbance (TSD) Equation 
4.1.1. Historical Background 

The TSD equation represents a derivation of the Full Potential equation under small 
disturbances assumption applied for the transonic flow. It was examined in detail for the first 
time by Murman & Cole in 1971 applied to a thin, zero-lift airfoil [31]. A first order finite 
difference method is assigned to solve the equation numerically. Garabedian & Korn [32] 
improved the Murman’s solution by using a second order scheme. Airfoil with camber and 
angles of attack was treated afterwards by Steger & Lomax [33] in 1972 incorporated with the 
Successive Over Relaxation (SOR) method applied to solve the Full Potential equation.  

First publications for a wing in transonic flow go back to the works from Ballhaus & 
Bailey [34] as well as Bailey & Steger [35] in 1972 by solving the TSD equation. In 1974, a 
more efficient procedure by use of central and upwind difference schemes was introduced by 
Murman [36]. It can be used favourably for local subsonic and supersonic flow respectively. 
Furthermore it used the shock point operator to control the points, where the flow enters and 
leaves the supersonic zone. Murman pointed out also that the conservative formulation of the 
equation is suggested to be used, in order to have the correct jump conditions through the 
shock. With the help of shock point difference operator Murman solved also the non 
conservative form of the equation and shows the equivalence solution to that of the 
conservative one. 

In 1977 Ballhaus & Goorjian [37] solved the unsteady form of the TSD equation for 
low frequency with the Alternatives Direct Implicit (ADI) algorithm. The code is well-known 
as LTRAN2 and it was used to compute an oscillating airfoil in transonic flow. The extension 
of this method in three-dimensional calculations has been carried out by Borland et. al. [38] in 
1982 with their XTRAN3S code. They computed the unsteady solution of a swept wing in 
transonic flow. Between 1975 and 1981 the Approximate Factorisation (AF) algorithm has 
been employed by Ballhaus & Steger [39], Ballhaus et. al. [40] and Baker [41] to solve the 
TSD equation. The AF algorithm is the basis of the ADI algorithm and it makes possible an 
implicit procedure in three Cartesian coordinate directions independently in three steps of 
calculation process. It is substantial that the AF algorithm is faster than ADI and SOR 
algorithms.  

Steinhoff & Jameson [42] found that several solutions ('non uniqueness' solution) can 
exist by solving the full potential equation as they computed a symmetrical airfoil with zero 
angle of attack. They received three solutions for this case. Two solutions are with lift and a 
solution is without lift, as it was expected. This is probably because of the isentropic 
assumption in the potential equation, which makes the increasing entropy through a shock can 
not be well simulated. Salas et. al. [43] also reported the similar situation. Therefore, 
researchers are interested to develop an entropy correction to be applied in the potential 
equation, in order to extend or to correct the isentropic assumption in the potential equation.  

Between 1981 and 1985, Hafez & Lovell [44, 45] and Fuglsang & Williams [46] 
suggested the following form of entropy correction. The pressure distribution from the 
solution of the TSD or potential equation is corrected with the entropy influence, so that the 
pressure distribution formula consists of the isentropic and the corrected component. The 
formula of the correction was deduced using the Rankine - Hugoniot relationship of the local 
velocity before and after the shock. The irrotational assumption of the potential equation was 
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corrected by a circulation correction, which are affected by the increasing entropy through the 
shock. The local velocity is formulated as sum of isentropic and non isentropic part.  

In 1988 Batina [47] suggested an efficient algorithm for the solution of the unsteady 
TSD equation. He used the AF algorithm coupled with an internal Newton iteration. The 
Newton iteration was used to accelerate the time-accurate computation of the unsteady 
pressure distribution. He coupled also his TSD solver with an aeroelastic module. His code is 
well-known as CAP-TSD (Computational Aeroelastic Program - TSD) and has been applied 
to calculate the unsteady aerodynamics of an aircraft configuration consists of wing, tail, and 
fuselage and also nacelle body [48]. The CAP TSD code was continued to be developed by 
Batina in 1992 [49] and particularly by Mitterer et. al. [50] in 1996 with an improvement of 
the solution around the leading edge region. They modified the gradient of the airfoil, in order 
to avoid the non physical pressure within the leading edge region (the peak suction region). 

Nowadays the TSD equation is still worked on by some authors. Hung et. al. [51] in 
2000 worked on the finite volumes with flux upwinding for the solution of the TSD equation. 
Ly & Nakamichi [52] developed in 2002 a time-linearized TSD procedure. Their solution 
comprises of sum of the steady and unsteady parts, which are solved separately. The unsteady 
part is assumed to be small compared to the steady part. Recently, Greco Jr. and Sheng [53] 
have also presented their works on TSD equation with viscous correction to be solved in the 
frequency domain.  

In this present work a TSD code is developed with the following characteristics:  
- Three-dimensional flows 
- Finite difference method 
- Central and upwind difference space discretization 
- Implicit Approximate Factorization (AF) algorithm 
- Entropy and Vorticity correction 
- Modification of the tangential boundary condition 

The development of this TSD code will be explained in the following section. 
 
4.1.2. Equation Form 

As the starting point is the Full Potential equation, which can be written in velocity 
potential in Cartesian coordinates, as follows [54]: 
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zzzyyyxxxztzytyxtxtt aaa
  (4.1) 

Here the symbol a  is the speed of sound. 
The gradient of velocity potential is the velocity vector:  

V
r

=Φ∇        (4.2) 
The velocity potential Φ satisfies the isentropic and irrotational assumptions: 

∇s = 0 and 0=Φ∇×∇           (4.3) 
The assumption of small disturbance is formulated as follows: 

φφ +=+Φ=Φ ∞∞ xU        (4.4) 
where the velocity vector can be described as: 

∞∞ <<=Φ==Φ=+=Φ= UwvUu zyxzzyyxx φφφφφφ ,,,,,   (4.5) 

After inserting equation (4.4) and (4.5) in the equation (4.1), the TSD equation is obtained, 
which can be written in the conservative form in the Cartesian coordinates, as follows [47]: 
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where the flux terms are given by: 
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         ( )xt BAf φφ +−=0 ,   22
1 yxx GFEf φφφ ++= ,  

  yxy Hf φφφ +=2 ,  zf φ=3       (4.7) 
where the disturbance velocity φx, φy and φz are normalised with the uniform undisturbed 
velocity U∞ . In the equation (4.6) the nonlinear terms are retained in the forms of φxφxx, φyφxy 
and φxφyy in order still to be able to simulate a discontinuity in the flow field.  

The coefficients of the flux terms in eq. (4.7) can be written, as follows [48]: 
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For two dimensional cases, the term f2 in the equation (4.6), G and H in the equation (4.7) 
become to zero. 
 
4.1.3. Solution Procedure  

To solve the TSD equation numerically, the following steps must be applied [47]: 
• The domains of the problem (space and time domain) are distributed in discrete points 

under finite difference theory. The space and time derivatives in the TSD equation are 
approximated by finite difference. After these discretization and approximation, the finite 
difference equation of TSD equation (4.6) can be obtained. 

• This finite difference equation is solved under certain boundary conditions. Two solution 
procedures must be applied to obtain the real time (unsteady) solutions of this finite 
difference equation, i.e. Time Linearized Step (TLS) and Time Accurate Step (TAS). The 
TLS is applied to generate an intermediate solution in the next time level, as base for the 
final solution under the use of the TAS. For steady cases only the TLS is used because 
there is no change of the boundary condition. In both procedures the Approximate 
Factorization (AF) algorithm is used to accelerate the computation process. The AF 
algorithm makes the implementation of the solution procedure in three independent 
Cartesian directions possible. 

These steps are explained in detail in the following section.  
 
4.1.3.1. Time Accurate Step (TAS) 

In order to describe the solution procedures, the TSD equation (4.6) is symbolically 
written as: 

R(φ) = 0               (4.9) 
The velocity potential at the time level (n+1), 1+nφ , is defined as sum of the assumed velocity 
potential, ∗φ , and the deviation between them, as follows: 

φφφ ∆+= ∗+1n       (4.10) 

With this definition, the TSD equation (4.9) can be written after applying 1st order Taylor 
series as: 
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This equation is solved subject to a specified boundary condition to obtain the va lue of 
deviation of velocity potential ∆φ. This value of ∆φ will update the value of 1+nφ  through 
equation (4.10). An internal iteration is applied to obtain the convergence solution, which 
means that 1+nφ ∼ ∗φ  and ∆φ ∼ 0. 
In the TAS, the boundary conditions change from the previous time step due to the movement 
of the body, but there is no change of boundary condition in the internal iteration process. 
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4.1.3.2 Time Linearized Step (TLS) 

The velocity potential at the time level (*), φ* ,  in equation (4.10) is defined as sum of 
velocity potential at the time level (n), φn ,  and the deviation between them, as follows: 

φφφ ∆+= n*       (4.12) 
With this definition, the TSD equation (4.9) can be written after applying 1st order Taylor 
series as: 
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As before, this equation is solved subject to a specified boundary condition to obtain the value 
of deviation of velocity potential ∆φ. This value of ∆φ will update the value of  through 
equation (4.12). In the TLS there is no change of the boundary conditions. 

*φ

The solution procedure is sketched in figure 4.1. 
 
                                                           BCn+2, φ n+2                              φ*

 
                                                                                      
                                    BCn+1, φ n+1                                    φ*

 
                                                         TAS 
                       BCn, φ n                                φ*

                                          TLS 
 
 BCn, φn = the boundary condition and velocity potential at time level n 
 TLS = Time Linearized Step (horizontal) 
 TAS = Time Accurate Step (vertical) 
 

Figure 4.1. Solution Procedure of the TSD Equation 
 
4.1.4. Discretization of the TSD Equation 

Discretization of the time and space derivation, which are involved in the TSD 
equation, are carried out using Finite Difference Method. 

 
4.1.4.1. Discretization of the Time Derivative 
 In order to include the history of the flow development, a 2nd order backwards 
difference is used to discretize the time derivative at the time level (*). 
The 1st derivative of time has the following form: 

t

nn

t ∆
+−

=
−

2
43 1* φφφφ      (4.14) 

The 2nd derivative of time has the following form: 
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where the time step is taken uniform. 
 
4.1.4.2. Discretization of the Space Derivative 

The discretization of the space derivative is based on the direction of the propagation 
of the disturbance.  For a disturbance in subsonic flows the discretization with central 
differences is selected, because the disturbance spreads in all directions (up- and 
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downstream). In supersonic flows, the disturbance spreads only in one direction 
(downstream); therefore the discretization with backward difference is suitable. 
The 1st derivative in subsonic or supersonic flows will be approximated using the 1st order 
backward differences, as follows: 

x
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x ∆

−
= − ,,1,, φφ

φ      (4.16) 

For the 2nd derivative in supersonic flows the 1st or 2nd order backward differences is used, as 
follows: 
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For the second derivative in subsonic flows the 2nd order central difference is used, as follows: 
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Here as example only the derivative in the x flow direction is presented. The index i, j and k 
denote the x, y and z direction. 
With the above discretization and by defining the velocity potential as: 

φ = φ* + ∆φ       (4.19) 
then the fluxes in equation (4.7) can be written as: 
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Here, the square of the deviation of the velocity potentials (∆--)2 in the fluxes have been 
neglected.  
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Using of the above equations (4.21 – 4.23), the TSD equation (4.6) can be written as a finite 
difference equation, as follows: 
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where R(φ*, φn, φn-1, φn-2) is: 
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4.1.4.3. Coordinates Transformation 
 To solve the TSD equation one needs only a Cartesian grid with H type, which is 
symmetrical with the surface z = 0.  The upper and lower surface of the wing lay directly as 
the first plane without thickness above and below the symmetry plane z = 0.  This is because 
the tangential boundary condition, which must be imposed, contains the slope of the surface 
(not the surface coordinate). This boundary condition will be discussed later in section 4.1.6.               
In order to obtain a non dimensional form of the TSD equation, the Cartesian coordinates (x, 
y, z) are transformed into computational coordinates (ξ, η, ζ), which are defined as simple 
normalised coordinates, as follows: 
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The subscript le and te denote leading and trailing edge respectively. The notations b and c 
denote the span and chord respectively. 

Figure 4.2 shows an example of the physical and computational coordinates which are 
needed to solve the two-dimensional TSD equation. 

      a. Physical Coordinates          b. Computational Coordinates 
Figure 4.2. Transformation of Coordinates 

 
The derivatives in the Cartesian coordinates are transformed to normalised coordinates using 
chain rule, as follows:  
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The TSD equation (4.24) can then be written in the computational coordinate (ξ, η, ζ) as 
follows: 

{ ( ) ( )

( )( ) ( )

} ( )21*
2

*
2

***
2

*2
2

***2
2

,,,
2

1
2

22
2

22
24

31

−−=∆
∂
∂

∂
∂∆

−+
∂
∂

∂
∂∆

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++

∂
∂

∂
∂∆

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++++

∂
∂

∂
∂∆

−
∂
∂

∆+

nnn

xy
x

y
yx

y
x

y
yyxxxx

R
A
t

H
A
tHHG

A
t

HHGFE
A
tt

A
B

φφφφφ
ζζ

ξφ
ηη

ξφ
ξ
ξ

φφξ
ηξ

ξ

φξ
ξ
ξ

φφξξφξξ
ξξ

ξ
ξ

ξ

ξξηξ

ξηξξ

(4.28) 

where now the term R(φ*,φn,φn-1,φn-2) changes to: 
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The equations (4.28) and (4.29) are actually the finite difference form of the TSD equation for 
the TAS solution procedure.  However, those equations remain valid for the TLS procedure 
by changing the velocity potential φ* with φn. 
 
4.1.5. The Approximate Factorization (AF) Algorithm 

In order to obtain Time TLS and TAS solutions of the TSD equation, the Approximate 
Factorization (AF) algorithm is used. The idea of the AF algorithm is to distribute the solution 
procedure in three independent computational coordinates successively, by which the 
calculation time can be reduced.  

The left hand side (LHS) of the TSD equation (4.28) is approximated as multiplication 
(or factorization) of three independent differential operators, as follows: 

LHS ≅ LξLηLζ  ∆φ     (4.30) 
where Lξ , Lη , and Lζ: are as follows: 
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It is shown in Ref. [55] that the error of approximation is proportional with (∆t)2(∆ξ)-1 

(∆η)-1∆φ, which implies that it will be zero if the residue ∆φ is equal to zero. 
 
The TSD equation (4.28) can then be approximated as: 
 

LξLηLζ  ∆φ = R(φ*,φn,φn-1,φn-2)    (4.32) 
 
With this factorizing, the TSD equation can be solved to obtain ∆φ through sweeping 
procedures in three directions successively.   
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The 1st sweeping is carried out in the flow direction ξ, by modifying equation (4.32) as 
follows: 

( )21* ,,, −−=∆ nnnRL φφφφφξ
ξ      (4.33) 

where: 
∆φξ = LηLζ  ∆φ            (4.34) 

and R(φ*,φn,φn-1,φn-2) contains the given boundary conditions. This equation is solved for ∆φξ
 
The 2nd sweeping is carried out in the spanwise direction η,  by modifying equation (4.34) as 
follows:  

Lη ∆φη = ∆φξ         (4.35) 
where: 

∆φη = Lζ  ∆φ                 (4.36) 
and ∆φξ is the result from the previous ξ sweeping. 
 
The last sweeping is carried out in the vertical direction ζ  to solve eq. (4.36): 

 Lζ  ∆φ =∆φη        (4.36) 
where ∆φη is the result from the previous η sweeping. This equation is solved for ∆φ 
 
The detail of the sweeping procedures can be read in Ref. [55].  
 
 
4.1.6. Boundary Conditions 

The following boundary conditions must be imposed, in order to solve the TSD 
equation: 

 
a. Far field boundary conditions 

Far fore the body   : φ = 0             (4.37a) 
 Far aft the body    : φx + φt = 0            (4.37b) 
 Far above/below the body  : φz  = 0            (4.37c) 
 Far away from span tip  : φy  = 0            (4.37d) 
      The subscript means the associated derivative. 
 
b. The tangential boundary condition on the body surface: 
 

±±± ++= *
xtxz ff δφ       (4.38) 

 
where f is die function of the body surface and δ* is the displacement thickness along the body 
surface. The superscript +/- denotes the upper/lower surface. The subscript means the 
associated derivative. 
In this procedure the tangential boundary condition (4.38) is modified by incorporating the 
velocity in flow direction (1+φx), in order to give a correction in the φz particularly on the 
leading edge region where the slope of the surface fx is large, as follows: 
 

( )( ) txxxz ff +++= ±±± φδφ 1*       (4.39) 
 
This is because the gradient of the surface fx is proportional with tan α (local angle of attack), 
which is equal to φz/(1+φx) (see Fig. 4.3.) 
Only if the airfoil is thin and the disturbance velocity φx is small, it is sufficient to use the 
equation (4.38). 
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    V 
                    φz
      
                    α    

                                                1+φx    
 
  Figure 4.3. Tangential Boundary Condition  
 
 Mitterer et. al. [50] has also modified the slope of the surface using the Riegel’s rule, 
in order to reduce the peak suction in the leading edge, as follows: 

 ( )
( )21 ±

±
±

+
=

x

x
newx

f

f
f       (4.40) 

This modification makes the large slope of the surface at the leading edge near one and 
remains the small slope near its original value. 
 
c. Symmetry boundary condition 

In the symmetry plane governs the following boundary condition: 
φy  = 0        (4.41) 

 
d. In the wake the following boundary condition must be imposed : 

[ ] −+
−= **

xxz δδφ       (4.42a) 

[φx + φt] = 0        (4.42b) 
The symbol [] denotes the difference (jump) of the quantity in the bracket across the wake.  
 
4.1.7. Entropy Correction 

If a strong shock presents at the body, then the entropy across the shock is not constant 
anymore due to the discontinuity of the increasing pressure across the shock. In order that the 
TSD equation still to be able to be used to analyse the flow with shock wave, a correction 
must be introduced into the TSD equation due to the increasing entropy across the shock. This 
is because the TSD equation (and also the Full Potential equation) is derived by assuming the 
isentropic condition overall in the flow domain.  
Following Fuglsang et. al. [46], the increasing entropy across a shock can be calculated as:  
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where: 

sx uu
u
R

u
ur −+===

−
+

= φ
γ
γυ 1

1
1

2
1

2

1

2  ( ) 2

2

1
)1(2

1
∞

∞

+
−

+=
M

M
R

γ
  (4.44) 

          
us = the speed of the shock motion  
cv = heat capacity at constant volume  
u = effective flow speed 

 
The subscripts 1 and 2 denote the conditions before and after the shock.  In this procedure the 
exponent of r in equation (4.43) (i.e. υ) is modified with γ, in order to reduce the value of  ∆s. 
By using the original value (υ) the stability of the calculation is disturbed and the 
convergence of the calculation can not be achieved. 
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This entropy correction will be taken into account in the formulation of the pressure 
coefficient, which now comprises as sum of isentropic and non isentropic parts, as follows 
[46]: 

sppip CCC +=        (4.45) 
where the isentropic part is: 
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and the non isentropic part is: 
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The streamwise disturbance speed after shock must be modified due to the entropy jump, 
which can be written as [56]: 
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4.2. The Euler Equations 
       The Euler equations describe the inviscid, non isentropic, compressible and rotational 
flow. The equations are derived from the Navier-Stokes equations by neglecting its viscous 
terms. The Euler equations are a set of the differential equations, which consist of one 
continuity equation, three momentum equations in the Cartesian coordinate directions and one 
energy equation.  

 
4.2.1. Equation Form 

The Euler equations can be written in dimensionless conservative form in three 
dimensional Cartesian coordinates (x, y, z), as follows [30, 57]: 
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     (4.49) 

where the vector {q} and the fluxes {f}, {g} and {h} are: 
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  (4.50) 

 
where the dimensionless variables are as follows: ρ is the density, u, v and w are the 
component of velocity in the Cartesian coordinates x, y and z direction. The notations t, e and 
p represent the time, the specific total energy and the pressure. 
The set of the equations (4.49) consists of 5 (five) equation (i.e. eq. 4.50) with 6 (six) 
variables, i.e. ρ, u, v, w, e and p. Therefore one closure equation must be added in order be 
able to solve this set of equations. The pressure relation derived from the state and energy 
equations is chosen as the closure equation as follows [30, 57]: 
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2
1 wvuep ργ )      (4.51) 

where γ  = cp/cv   is the isentropic constant. 
 
Physically the Euler equations describe that the temporal change of the vector {q} is balanced 
by the local change of the fluxes {f}, {g} and {h}. 

The dimensionless variables are derived by normalising the dimension variables (with 
symbol  ) with respect to a reference values, as follows: −
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where the reference values are the reference length , velocity , pressure  and 
density , which are related to the undisturbed condition (∞) and the characteristic length of 
the body (c), as follows: 

∗L ∗u ∗p
∗ρ
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cLpuppu ===== ∗
∞
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ρ

   (4.53) 

 
4.2.1.1. Coordinates Transformation  

In order to compute the flow around an arbitrary body, it is an advantage to transform the 
Euler equations from the Cartesian coordinates (x, y, z) into the body-fitted coordinates 
(ξ,η,ζ). This transformation avoids interpolation or extrapolation of the values of the state 
vector {Q} especially on the body surface. 
The transformation of the coordinates is as follows [30, 57]: 

ttzyxtzyxtzyx ==== τζζηηξξ ),,,,(),,,,(),,,,(    (4.54) 
 
The derivatives in the equation (4.49) are written by the chain rule as follows: 
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where the transformation metrics are given by: 
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with the Determinant of Jacobi matrix: 
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Figure 4.4 represents an example of the physical and computational coordinates applied to 
solve the two-dimensional Euler equations. 
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          Surface of the body 
 
      a. Physical coordinate          b. Computational coordinate 

 
Figure 4.4. Coordinates Transformation 

 
With the above relations the Euler equations (4.49) become to: 
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with the new conservative state vector {Q} and the fluxes {F}, {G} and {H} as: 
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or in the extended formulation: 
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(4.60) 
where U, V and W are the contravariant velocities in the normal direction of the surface with 
constant ξ, η and ζ  , respectively: 
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      (4.61) 

 
4.2.2. Numerical Solution of the Euler Equations 

The Euler equations are solved numerically using finite volume method. The physical 
space is distributed in small hexahedral control volume with the state vector {Q} is assumed 
to be constant and assigned in the cell centre. The cell centre is marked by the indices (k, l, 
m), which correspond with the curvilinear coordinates (ξ, η, ζ) in the numerical space. The 
fluxes F, G and H are evaluated on each face of the cell, which are marked by the indices 
(k+1/2, l+1/2, m+1/2). This situation is represented in figure 4.5. 
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          Q          Cell face 
 
       . 
               k+1   
      Cell centre 
   k 
          k-1     
            
 
 
 
    k-1/2       k+1/2  ξ 
          
Fig. 4.5. Schematic Representation of the State Vector Q 

 
The space discretization of the Euler equations (4.58) is as follows: 
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                       (4.62) 
Because the length of the side of control volume in numerical space (i.e. ∆ξ or ∆η or ∆ζ) 
equals to one, then the Euler equations can be written in semi discrete form as: 
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with: 
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(4.64) 
 
4.2.2.1. Evaluation of the Fluxes 
  The Flux Difference Splitting (FDS) method proposed by Roe [58] is used to compute 
the fluxes at the cell face. The semi discrete form of the Euler equations is decoupled in three 
directional quasi linear forms which are independent of each other. This step is called as 
‘Dimension Splitting’. 
The decoupled quasi linear form of the Euler equations can be written as: 
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Each differential equation describes a Riemann problem on a cell surface with ξ , η or ζ 
constant, which do not affect each other. The final solution of the state vector Q is the sum of 
the solution of the individual quasi linear form: 
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Here only the evaluation of the flux F is presented as example. The evaluation of the fluxes G 
and H is carried out similarly.  
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Consider the cell (k, l, m). For this cell, the equation (4.65) in the ξ direction with constant η 
and ζ can be written as: 
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where the indices l and m are neglected, in order to write it briefly. The flux Fk+1/2 in eq.(4.67) 
is represented as averaged fluxes of left and right cells plus the flux differences. 
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where:  12/12/1 , +++ == k
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R
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1
+++ − ) can be regarded as Dissipation term in the Central 

Difference Scheme.  
The Jacobi Matrix A will be calculated via Roe’s mean values as [58]: 

LRA Λ=      (4.69) 

with R and L  are matrix of the right and left eigenvectors respectively, which are satisfying 
the relation L = 1−R  
Finally the flux Fk+1/2 can be written as: 
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with the wave’s strength: 
( )L

k
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In order to obtain a solution with higher order, the MUSCL (Monotonic Upstream Scheme 
for Conservation Laws) extrapolation is used [57]. 
The extrapolation can be applied to the conservative, primitive or the characteristic variables. 
The state vector Q will be regarded not constant anymore, but it will be extrapolated from the 
state vector of the two-neighbouring cells as shown in fig. 4.6. 
 
 

 
                            Q 
 
                                            QR       k+1          k+2 
     
         QL

    
         k 
              k-1 
 
   
            k-1/2        k+1/2             

ξ 
Fig. 4.6. Extrapolation of the State Vector Q 

At the cell face k+1/2 the state vector Q will be calculated as: 
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where the extrapolation function ψ  is defined as: 
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For the preservation of the TVD (Total Variation Diminishing) characteristic, the order of 
calculation at its extreme value must be reduced to one. This means, the value of ψ must be 
limited to one. This was ensured by such a Limiter. Examples of the Limiter are the Minmod 
and Van Albada Limiter as follows: 

• Minmod Limiter  : ψ = minmod(1,r)     (4.74a) 

• Van Albada Limiter 1 :  
1

2
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rψ       (4.74b) 

• Van Albada Limiter 2 :  
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4.2.2.2. Time Integration  
 After the spatial discretisation has been analyzed, now the time integration of the Euler 
equations is presented. Both explicit and also implicit time integrations are presented. The 
semi discrete Euler equations (4.63) are the starting point for this analysis: 
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(4.64) 
 

4.2.2.2.1. Explicit Time Integration 
 The Predictor Corrector Scheme applied for the integration of the state vector in time. 
The equation (4.63) can be discretized as follows: 

τ∆−=− ++ 11 nnn RQQ       (4.75) 
where the spatial indices (k, l, m) are neglected. The index n designates the time level. 
The Predictor step to be applied to solve eq.(4.75) is: 

 τ∆−=+ nnn RQQ 1        (4.76) 
where the state vector Q and R term are already exist in time level n (Qn and Rn). Then the 
estimated R term in time level n+1 ( 1+nR ) is computed from eq. (4.75) with the estimated 
value 1+nQ .  
The Corrector step is carried out as follows: 

 ( τ∆−+= +++ 111

2
1 nnnn RQQQ )     (4.77) 

In order to ensure the stability of the computation, the maximum time step (∆τ) is limited by 
the CFL (Courant Friedrich Levy) number, which describes the relationship between the cell 
length and the disturbance length. In order to maintain the stability of the computation, the 
CFL number is limited on maximal one [57]. To accelerate the computation of steady cases, 
one can use the ‘local time stepping’ technique, where the time step for each cell is chosen as 
maximal as possible. But the local time stepping technique makes the computation process 
runs not in time accurate fashion, which must be performed for calculation of unsteady cases. 
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Therefore, for calculation of unsteady cases the global minimum time step must be used on all 
cells. This is called as ‘global time stepping’ technique. 
 
4.2.2.2.2. Implicit Time Integration 

Equation (4.63) can be written in discrete form as: 
τ∆−=− ++ 11 nnn RQQ       (4.75) 

The term Rn+1 will be linearised using 1st order Taylor series: 
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with: ∆Q = Qn+1 - Qn

Substitution eq. (4.78) in eq. (4.75) gives:      
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The RHS (rights hand side) of eq. (4.79) determines the accuracy of the solution and the LHS 
(left hand side) of eq. (4.79) determines the convergence characteristic and the damping of the 
computation. Numerical solution of the eq. (4.79) is carried out using the LU-SSOR 
technique (Lower Upper - Symmetric Successive Over Relaxation) proposed by Yoo and 
Jameson [59, 60].  
The LHS is written as follows [57]: 
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with the Jacobi matrix  [57]:  
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with:   max,max,max, ,, CDCBDBADA rrr Λ=Λ=Λ= ωωω  

ΛA,max, ΛB,max and ΛC,max are the largest eigenvalues of the Jacobi matrix A, B and C in the eq. 
(4.65), respectively. ωD is the Dissipation factor; its value affects the damping of the 
computation. Here the value of ωD is chosen between 1 and 1.3, where higher value means 
stronger damping.  
The set of equations (4.80) can be written symbolically, as follows [57]: 

[ ] n
mlkRQLUD ,,−=∆++       (4.82) 

with: 

             
( )

( )IrrrI

CCBBAAID

CBA

mlk

+++
∆

=

−+−+−+
∆

= −+−+−+

τ

τ ,,
                                (4.83a) 

= Entries on the diagonal matrix 
)( 1,,,1,,,1

−
+

−
+

−
+ ++= mlkmlkmlk CBAU         (4.83b) 

   = Entries on the upper triangular matrix  
         (4.83c) )( 1,,,1,,,1

+
−

+
−

+
− ++−= mlkmlkmlk CBAL
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    = Entries on the lower triangular matrix 
 
Factorization of the LHS of eq. (4.82) leads to:  

 [ ] [ ] n
mlkRQUDDLD ,,

1 )( −=∆++ −      (4.84) 
This equation will be solved with two sweeping steps, as follows: 
The 1st sweeping solved ∆Q* from:   

                                   (4.85a) [ ] n
mlkRQLD ,,

* −=∆+
with given data  D, L and R  
The 2nd sweeping solved ∆Q from:  

      
[ ]

[ ] *

*1 )(

QDQUD

QQUDD

∆=∆+

∆=∆+−

           (4.85b) 

with given data D, U and ∆Q*

Finally the state vector Q in time level n+1 can be computed from:  
QQQ nn ∆+=+1              (4.86) 

 In order to compute unsteady cases, the ‘dual time stepping’ technique is used [59]. 
The temporal change of the state vector is replaced by a finite approximation with arbitrary 
order and the RHS is assigned, which must be relaxed to zero. That means, one needs an 
internal relaxation by the pseudo time τ*. The formulation of the solution of the unsteady 
Euler equations with the dual time step technique is as follows: 

*
* RRQQ

−=⎥⎦
⎤

⎢⎣
⎡ +
∂
∂

−=
∂
∂

ττ
      (4.87) 

where τ* the pseudo time is. 
Discretisation of the LHS of eq. (4.87) leads to: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆

∂
∂

+∆−=∆ v
v

vv Q
Q
RRQ

*
**τ              (4.88) 

             
vv

v

RQ
Q
RI **

*
* ττ ∆−=∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∆+                (4.89) 

where the symbol v represents the index of the internal iteration. 
Because eq. (4.89) has a similar form as eq. (4.79), then the LU-SSOR procedure can also be 
used to solve this equation, as follows: 

[ ] [ ] v
mlk

v RQUDDLD *
,,

*1** )( −=∆++
−

    (4.90) 
The Diagonal Matrix D* will be given by: 

Irrr
rID CBA

t ⎟
⎠
⎞

⎜
⎝
⎛ +++
∆

+
∆

=
ττ *

*      (4.91) 

where the symbol rt associated with the order of the finite approximation of
τ∂

∂Q . 

The finite approximation of 
τ∂

∂Q  in eq. (4.87) will be determined as follows: 

 for 1st order of approximation: 
ττ ∆
−

=
∂
∂ nv QQQ            (4.92a) 

 for 2nd order of approximation: 
ττ ∆
+−

=
∂
∂ −

2
43 1nnv QQQQ           (4.92b) 
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The value of rt in eq. (4.91) is [57]: rt = 1 for 1st order and rt = 1.5 for 2nd order of 
approximation. 
It can be seen that the eq. (4.90) has a similar form with the eq. (4.84); therefore the solution 
of eq. (4.90) can be obtained using the previous two sweeping steps, i.e. eq. (4.85a) and 
(4.85b). If the solution ∆Qv is convergent, then the time accurate solution Qn+1 is obtained. 
 
4.2.3. Boundary Conditions 
 The boundary conditions to be applied for solving the Euler equations can be derived 
from the eigenvalues, eigenvector and characteristic variable of the Euler equations. Here 
only two dimensional boundary conditions are presented as example. 
 
4.2.3.1. Far-Field Boundary Conditions 

 From the analysis of the characteristic variable W , the far-field boundary conditions 
can be classified into four types, as in the following. 

 
a. Subsonic Inflow 

If the inflow velocity at far-field boundary is subsonic, three characteristic 
variables W (associate with three positive eigenvalues) must be given and one characteristic 
variable W (associates with one negative eigenvalue) must be extrapolated.  
The density ρ at far-field boundary can be computed as follows [30, 55, 57]: 

  ( )
2c

pp ab
ab

−
+= ρρ        (4.93) 

where c is the speed of sound. 
The pressure p at far-field boundary can be computed from [30, 55, 57]: 

( ) ( ) ([{ iayiaxiab vvkuukcppp −+−±+=
~~

2
1 ρ )]}    (4.94) 

where:           
2222

~,~

yx

y
y

yx

x
x kk

ξξ

ξ

ξξ

ξ

+
=

+
=  

and the + and – signs denote the positive and negative k direction, respectively (see fig. 4.7). 
The velocity components u and v at far-field boundary can be computed using [30, 55, 57]: 

( )
c

pp
kuu ba

xab ρ
−

±=
~   ( )

c
pp

kvv ba
yab ρ

−
±=

~     

where the + and – signs denote the positive and negative k direction, respectively. 
The subscript b is the value at the boundary, a is the value outside the boundary (mirror cell) 
and i is the value in the interior of the computational space (see fig. 4.7) 
 
        computational space 
  a   i   i a 
        

Vin     b         b  Vin
    

    positive k direction 
  
        Fig. 4.7. Schematic of Far-Field Boundary Condition (Inflow) 
 

b. Subsonic Outflow 
      If the outflow velocity at  far-field boundary subsonic is, three characteristic 

variables W (associate with three positive eigenvalues) must be extrapolated and one 
characteristic variable W (associates with negative eigenvalue) must be given.  
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The density ρ at far-field boundary can be determined as [30, 55, 57]: 

( )
2c

pp ib
ib

−
+= ρρ         (4.95) 

The pressure p at far-field boundary will be as [30, 55, 57]: 
( ) ( ) ([{ aiyaixiab vvkuukcppp −+−±+=

~~
2
1 ρ )]}     (4.96) 

The velocity component u and v will be [30, 55, 57]: 
( )

c
pp

kuu bi
xib ρ

−
±=

~   ( )
c

pp
kvv bi

yib ρ
−

±=
~      

where the + and – signs denote the positive and negative k direction, respectively (see fig. 4.8) 
        Computational space 
  a   i   i a 
 

Vout     b         b       Vout
    

    positive k direction 
  
    Fig. 4.8. Schematic of Far-Field Boundary Condition (Outflow) 
 

c. Supersonic Inflow 
      If the inflow velocity at far-field boundary supersonic is, all characteristic 

variables W (associate with four positive eigenvalues) must be given.  
For this condition these eigenvalues are:  0,,, 4321 >kkkk aaaa
The characteristic variables are: W1b = W1a, W2b = W2a, W3b = W3a, W4b = W4a  
The subscript b is the value at the boundary and a is the value outside the boundary (mirror 
cell). 
 

d. Supersonic Outflow 
      If the outflow velocity at far-field boundary supersonic is, all characteristic 

variables W (four positive eigenvalues) must be extrapolated. 
For this condition these eigenvalues are:   0,,, 4321 >kkkk aaaa
The characteristic variables are: W1b = W1i, W2b = W2i, W3b = W3i, W4b = W4i 
The subscript b is the value at the boundary and i is the value in the interior of the 
computational space 
 
4.2.3.2. Solid Body Boundary Conditions 
 The boundary conditions at solid body surface must satisfy the kinematics boundary 
condition, where the flow must be attached (tangential) at the solid body boundary. In order to 
satisfy the kinematics boundary condition, the velocity components in normal direction of 
solid body surface must be zero.  
The characteristic variables are as follows [57]: 
 For positive k direction: W1b = W1i, W2b = W2i, θb = 0, W4b = W4i

 For negative k direction: W1b = W1i, W2b = W2i, θb = 0, W3b = W3i

where θb is the contravariant velocity at solid body boundary: 
 ( ) 0~~~

=++=
btbybxb kvkukθ       (4.97) 

with 
btk~  is the velocity of the body motion.  
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The primitive variables can be derived analogous with far-field boundary condition, as 
follows: 

 ( )
2c

pp ib
ib

−
+= ρρ         (4.98) 

 ( )
btiyixxib kvkukkuu ~~~~

++−=        (4.99) 

 ( )
btiyixyib kvkukkvv ~~~~

++−=        (4.100) 

 ( )
btiyix

i

i

b

b kvkuk
c

p
c

p ~~~
++= m

ρρ
       (4.101) 

where the sign – and + show the positive k and negative k direction, respectively.  
If the existence of the boundary layer will be considered, then the normal velocity 

component due to boundary layer must also be computed, as follows:  

)( *δen U
dx
dv =        (4.102) 

where subscript n is normal direction, e is edge of the boundary layer and δ* is the 
displacement thickness. In this formulation the derivative of the displacement thickness is 
assumed to be taken in the x (streamwise) direction only.  
Then the tangential velocity components must be actualized with the normal velocity 
component  eq. (4.102), as follows: 

   nbbnbb v
dy
dnvvv

dx
dnuu −=′−=′ ,                         (4.103) 

where the subscript b stands for boundary and symbol n is the unit normal vector. 
The solid body boundary condition can also be derived through the ‚Zero Flux’ 

concepts. This concept states, that the flux normal to body is equal to the pressure term.  This 
is because the value of the contravariant velocity at the solid body boundary is equal to zero. 
Formulation of the solid body boundary condition through the zero flux concepts for two 
dimensional flows with and without influence of boundary layer will be presented as follows:  
Consider two dimensional Euler equations: 

0}{}{}{
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∂
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+
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+
∂
∂

ηξτ
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      (4.104) 

with: 
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a. Without Boundary Layer 
    At the solid body boundary the contravariant velocity V must be zero: V = 0 
then the state vector and fluxes at solid body boundary are: 
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  (4.106) 

Note that the flux Gb consists only the pressure terms without convective terms. 
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b. With Boundary Layer 
     The normal velocity component due to boundary layer displacement thickness is 
represented by eq. (4.102). 
The tangential velocity components will be corrected as written in eq. (4.103): 

   nn v
dy
dnvvv

dx
dnuu −=′−=′    (4.103) 

The contravariant velocity will be corrected with eq. (4.103), as follows: 

dy
dv

dx
duV

dy
dv

dx
duU ηηξξ ′+′=′+′=    (4.107) 

Finally the state vector and the fluxes can be written as: 
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          (4.108) 
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4.3. The Time-Linearized Euler Equations  

The starting point is the Euler equations in computational coordinates (ξ,η,ζ) : 

0}{}{}{}{
=

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
ςηξτ
HGFQ

      (4.58) 

with the conservative state vector Q and the fluxes F, G and H are given by: 

}{}{}{}{}{

}{}{}{}{}{

}{}{}{}{}{
}{}{

hJgJfJqJH

hJgJfJqJG

hJgJfJqJF
qJQ

zyxt

zyxt

zyxt

ςςςς

ηηηη

ξξξξ

+++=

+++=

+++=
=

     (4.59) 

The Euler equations above will be linearized under the assumption of small perturbation, i.e. 
the unsteady perturbation is assumed to be small compared to the steady part. 

A variable Z can be decomposed into a steady and an unsteady part, as follows: 
 Z = Z0 + Z1        (4.109) 

where Z0 and Z1 are the steady and unsteady component of the variable Z, respectively. It is 
assumed that:  Z1 << Z0

Under this assumption and by neglecting the 2nd order terms, the state vector Q and the fluxes 
F, G and H  become [57, 61]: 
 Q = Jq 
     = (J0+J1)(q0+q1) 
                ≅ J0q0 + J0q1 + J1q0                              (4.110a) 
 
 F = Jξtq + Jξxf + Jξyg + Jξzh 
     = [(Jξt)0 + (Jξt)1] (q0+q1) + [(Jξx)0 + (Jξx)1] (f0+f1) + [(Jξy)0 + (Jξy)1] (g0+g1) + 
        [(Jξz)0 + (Jξz)1] (h0+h1)  
     ≅ [(Jξt)0 q0 + (Jξx)0 f0 + (Jξy)0 g0 + (Jξz)0 h0] + 
        [(Jξt)0 q1 + (Jξx)0 f1 + (Jξy)0 g1 + (Jξz)0 h1] + 

        [(Jξt)1 q0 + (Jξx)1 f0 + (Jξy)1 g0 + (Jξz)1 h0]            (4.110b) 
 
 G = Jηtq + Jηxf + Jηyg + Jηzh 
     = [(Jηt)0 + (Jηt)1] (q0+q1) + [(Jηx)0 + (Jηx)1] (f0+f1) + [(Jηy)0 + (Jηy)1] (g0+g1) + 
        [(Jηz)0 + (Jηz)1] (h0+h1)  
     ≅ [(Jηt)0 q0 + (Jηx)0 f0 + (Jηy)0 g0 + (Jηz)0 h0] + 
        [(Jηt)0 q1 + (Jηx)0 f1 + (Jηy)0 g1 + (Jηz)0 h1] + 
        [(Jηt)1 q0 + (Jηx)1 f0 + (Jηy)1 g0 + (Jηz)1 h0]            (4.110c) 
         
 
 H = Jζtq + Jζxf + Jζyg + Jζzh 
     = [(Jζt)0 + (Jζt)1] (q0+q1) + [(Jζx)0 + (Jζx)1] (f0+f1) + [(Jζy)0 + (Jζy)1] (g0+g1) + 
        [(Jζz)0 + (Jζz)1] (h0+h1)  
     ≅ [(Jζt)0 q0 + (Jζx)0 f0 + (Jζy)0 g0 + (Jζz)0 h0] + 
        [(Jζt)0 q1 + (Jζx)0 f1 + (Jζy)0 g1 + (Jζz)0 h1] + 

        [(Jζt)1 q0 + (Jζx)1 f0 + (Jζy)1 g0 + (Jζz)1 h0]            (4.110d) 
 
by splitting the steady  part from  the unsteady one, as follows: 
  Q = Q0 + Q1

  F = F0 + F1

  G = G0 + G1

 H = H0 + H1         (4.111) 
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Two sets of differential equation system can be obtained [57, 61]: 
   steady :  

 0
}{}{}{}{ 0000 =

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
ςηξτ

HGFQ
     (4.112) 

   unsteady (time-linearized): 

 0
}{}{}{}{ 1111 =

∂
∂

+
∂

∂
+

∂
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+
∂

∂
ςηξτ
HGFQ

      (4.113) 

   where: 
  Q0 = J0q0

  F0 = (Jξx)0 f0 + (Jξy)0 g0 + (Jξz)0 h0

  G0 = (Jηx)0 f0 + (Jηy)0 g0 + (Jηz)0 h0

 H0 = (Jζx)0 f0 + (Jζy)0 g0 + (Jζz)0 h0               (4.114) 
 
 Q1 = Q11 + Q12  

        = J0q1 + J1q0

 F1 = F11 + F12 

         = [(Jξx)0 f1 + (Jξy)0 g1 + (Jξz)0 h1] + [(Jξx)1 f0 + (Jξy)1 g0 + (Jξz)1 h0] 
 G1 = G11 +G12 

       = [(Jηx)0 f1 + (Jηy)0 g1 + (Jηz)0 h1] + [(Jηx)1 f0 + (Jηy)1 g0 + (Jηz)1 h0] 
 H1 = H11 +H12 

       = [(Jζx)0 f1 + (Jζy)0 g1 + (Jζz)0 h1] + [(Jζx)1 f0 + (Jζy)1 g0 + (Jζz)1 h0]                      (4.115) 
 
The subscripts 1 and 2 describe the component associated with the disturbed state vector (and 
fluxes) and with the disturbed metrics, respectively.  

The unsteady metrics (Jξt)0, (Jηt)0, (Jζt)0 are negligible, because the metrics of 
reference-state is steady; as follows: 
 (Jkt)0 = - xτ0 (Jkx)0 – yτ0 (Jky)0 – zτ0 (Jkz)0  with: k = ξ, η, ζ        (4.116a) 
 
Reference state:      xτ0 = yτ0 = zτ0 = 0 
Unsteady metrics become:      (Jkt)0 = 0            (4.116b) 
 
The resulted steady equation (the first set of the differential equations 4.112) is actually the 
steady form of the Euler equation. It represents the Euler equations under a steady condition.  
The second set of the differential equations (4.113) is the time-linearized Euler equation, 
which can be described in the following form: 
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        (4.117) 

 
4.3.1. Linearization with Harmonic Term 
 If the unsteady part  Z1 in the eq. (4.109) is assumed to be harmonic: 

τikeZZ ~
1 =        (4.118) 

then the state Q1 and Fluxes F, G und H are transformed to [57, 61]: 

        (4.119a) 
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   (4.119b) 
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Inserting the above relations in the time-linearized Euler equation (4.117): 
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     (4.120) 

produces the following result: 

 21
1111 ~~}~{}~{}~{}~{

SS
HGFQ

+=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

ςηξτ
     (4.121) 

with:  ⎥
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The term 2
~S  is related with the deformation of the nets (grids) and the steady condition (of 

the state vector and fluxes). Because the deformation of the nets and the steady state condition  
are known; the term 2

~S  can be viewed as a constant component of source term. The term 1
~S  

represents the variable component of source term. 
The time-linearized state vector and fluxes in Eq. (4.121) and (4.122) can be written as 

follows [57, 61]: 
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The time linearized Euler equations (4.121) can be written in semi-discrete form, as follows:  
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τ
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where: 
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{ } mlkmlkmlk qVQ ,,,,,,1
~}~{ =                              (4.125b) 
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The indices k, l and m are the indices of cells in  ξ, η and ζ direction. 
The solution of eq.(4.124) is solved by using the explicit integration, as already presented in 
section 4.2.2.  
 
4.3.2. Boundary Conditions 
4.3.2.1. Far-Field Boundary Conditions 
a. Subsonic Inflow 

The linearized density ρ at far-field-boundary can be determined, as follows [57]: 
  ( )

2

~~
~~

c
pp ab

ab
−

+= ρρ                   (4.126) 

The linearized pressure  p at the far-field-boundary can be determined, as follows [57]: 
( ) ( ) ([ ]{ iayiaxiab vvkuukcppp ~~~~~~~~

2
1~ −+−±+= ρ )}               (4.127) 

where the sign (+) is for positive k direction and sign (–) for negative k direction. 
The linearized velocity u and v at far-field-boundary can be determined, as [57]: 

( )
c

pp
kuu ba

xab ρ

~~~~~ −
±=                  (4.128) 

( )
c

pp
kvv ba

yab ρ

~~~~~ −
±=                  (4.129) 

where the sign (+) is for positive k direction and sign (–) is for negative k direction. 
 
b. Subsonic Outflow 

The linearized density ρ at far-field-boundary can be determined, as follows [57]: 
( )
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c
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The linearized pressure p at far-field-boundary becomes: 

           ( ) ( ) ([ ]{ }aiyaixiab vvkuukcppp ~~~~~~~~
2
1~ −+−±+= ρ )           (4.131) 

The linearized velocity u and v become: 
( )

c
pp

kuu bi
xib ρ

~~~~~ −
±=               (4.132) 

( )
c

pp
kvv bi

yib ρ

~~~~~ −
±=               (4.133) 

where the sign (+) is for positive k direction and sign (–) is for negative k direction. 
 
For supersonic inflow and outflow, the linearized boundary condition is still the same with the 
given or extrapolated value, as written in section 4.2.3.1 
 
4.3.2.2. Solid Body Boundary Condition 
 The linearized body boundary condition can be written, as follows [57]: 
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+= ρρ         (4.134) 
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                    (4.137) 

where the sign (+) is for negative k direction and sign (–) is for positive k direction. 
 
More information about the time-linearized Euler equations, its boundary conditions and its 
application for wing can be found in Refs. [62, 63]. 
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5. Flutter Analysis 
  

In this chapter the flutter analysis in the time domain is presented.  The aeroelastic 
equation is written in term of physical displacement and then will be transformed by means of 
the concept generalized displacement.  Finally the aeroelastic equation in generalized 
displacement is transformed into State Space equation, which can be integrated exactly and 
approximately, in order to compute the response of the structure in time domain.  The flutter 
speed is determined, if the response of the structure shows neutral response as function of the 
time. 
 
5.1. Aeroelastic Equation in the Physical Displacement 
 The aeroelastic equation is derived by energy analysis as in the following.  The 
structure is regarded as a dynamic system of mass (m), damping (c) and stiffness (k). As the 
starting point is the Lagranges equation, which can be written as [64]: 
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where Ek, Ep, Fd and F0 are kinetic energy, strain energy, damping force and external 
aerodynamic force, respectively. z is the physical displacement of the dynamic system as 

function of space (x,y) and time (t), z = f(x,y,t).  is the time derivative of the physical 
displacement. 

•

z

The kinetic energy is defined as:   
2

2
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⎜
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•

zmEk      (5.2) 

The strain/potential energy is given by:  2

2
1 kzE p =      (5.3) 

The damping force from the Rayleigh’s dissipation function is: 
2

2
1

⎟
⎠
⎞

⎜
⎝
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•

zcFd   (5.4) 

 
Inserting Ek, Ep and Fd into Lagrange’s equation, one can obtain the aeroelastic equation in 
physical displacement as follows: 

oFkzzczm =++
•••

       (5.5) 
The aeroelastic equation (5.5) for multi Degre of Freedom (DOF) can be written in matrix as: 

[ ] [ ] [ ]{ } { }oFzkzczm =+
⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧ •••

     (5.6) 

It could be happened that the matrices [m], [c] or [k] are coupled.  It depends on the 
characteristic of the structure.  A system with coupled mass or stiffness matrix is known as 
dynamically or statically coupled system. 
 
5.2. Aeroelastic Equation in the Generalized Displacement 

The physical displacement is assumed as sum of the undefinitely free mode of motion 
(mode shapes) multiplied by the generalized displacement. With the separation variable 
technique of time (t) and space function (x,y), the physical displacement can be described as:  
[65] 

∑∞

=
Φ=

1
)(),(),,(

i ii tqyxtyxz      (5.7) 

where : Φi = the mode of motion (mode shape) of the structure for the mode i 
   qi = the generalized displacement for the mode i  
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In matrix notation, equation (5.7) becomes to: 

{ } [ ]{ }qz Φ=         (5.8) 
The generalized displacement represents the contribution  of the individual free oscillation 
form in the physical displacement.  The mode of motion (vibration mode shape) can be 
obtained by performing the modal analysis of the dynamic structure. 
The aeroelastic equation (5.6) is transformed in term of the generalized displacement by 
substituting equation (5.8) into equation (5.6): 
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    (5.9) 

Multiplying equation (5.9) with the transpose of mode shape matrix [ ]TΦ , one obtains: 
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⎭
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     (5.10) 

where: 
[ ] [ ] [ ][ ]ΦΦ= mM T  = the generalised mass matrix 
[ ] [ ] [ ][ ]ΦΦ= cC T  = the generalised damping matrix 
[ ] [ ] [ ][ ]ΦΦ= kK T  = the generalised stiffness matrix 
{ } [ ] { }0FQ TΦ=   = the generalised aerodynamic forces 

The forms of the generalized matrices [M], [C] and [K] are diagonal because of the 
Orthogonality of the vibration mode shapes matrix.  The relationship between the generalized 
mass, damping and stiffness are [65, 66]: 

    [ ]              (5.11) [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] 2/12/1122 2 MKCKMMK nn ςωω === −

where : 
 ωn = natural frequency of the vibration mode 
 ζ   = damping coefficient of the vibration mode 
The generalized aerodynamic forces can be written as follows [65, 66]: 

 dSyxtyxCpUQ ii ),(),,(
2
1 2 ∫ Φ∆= ∞∞ρ      (5.12) 

Finally the equation (5.10) can be written as follows: 
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5.3.  Aeroelastic Equation in the State Space Form 
 The equation (5.13) is transformed into State Space form, as follows [66 ]: 
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The equation (5.13) lies in the second row of the equation (5.14). The first row of the equation 
(5.14) works as a dummy equation. 
The equation (5.14) can be written briefly as: 

[ ]{ } [ ]{ }uBXAX +=
⎭
⎬
⎫

⎩
⎨
⎧ •

      (5.15) 

with the State Vectors {X} and {u} and the State Transition matrices [A] and [B] as the 
following: 
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5.4. Solution of the Aeroelastic Equation 
 The aeroelastic equation in State Space form is solved in time domain.  The equation 
(5.15) is integrated in time domain, in order to compute the response of the system, as follows 
[66]: 

{ } [ ]{ } [ ][ ]{ } τττ duBtAXAttX
t

)()(expexp)(
00 ∫ −+=     (5.17) 

where: {X(t)} = response of the system at time t 
{X0}   = the initial values of {X} 

The first  and the second term of the equation (5.17) is the Homogeneous and the Non 
Homogeneous solution of the equation (5.15) respectively. 
In discrete form, the solution is carried out recursively from time step n to (n+1), as follows: 
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where ∆t the time step is. 
The Homogeneous solution is solved exactly, as follows [67]: 
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with ψ11, ψ12, ψ21 and ψ22 as follows [67]: 
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The Non Homogeneous solution is approximated, because the value of {u} are not known in 
the time interval from nt to (n+1)t.  It is assumed  that the value of {u} are linear in these time 
interval [66]. 
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with θ11, θ12, θ21 and θ22 are as follows [55]: 
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Since the value of {un+1} are not yet known, it will be approximated from the previous time 
step, as follows [66]: 

{ } { } { } { }[ ]11 −+ −+≅ nnnn uuuu       (5.24) 
With these approximation, the Non Homogeneous solution becomes to (by inserting eq. 5.24 
into eq. 5.21): 

[ ] { } { }( ) 2/3][ 1−−= nn
nh uuBL θ       (5.25) 

The complete solution can now be written as the following: 
{ } [ ]{ } [ ][ ] { } { }( ) 2/3 11 −+ −+= nnnn uuBXX θψ      (5.26) 

The above procedure is known as Transition Matrix Method for aeroelastic calculation.   
 
5.5. Boundary Condition for Aeroelastic Coupling 
 The tangential boundary condition of the aerodynamic calculation must be modified 
for aeroelastic analysis.  The boundary condition contains both steady and unsteady part 
involving the elastic or the flexible vibration mode shapes. 
For the TSD equation, the tangential boundary condition for aeroelastic analysis is formulated 
as follows [65]: 

[ ] [ ] UstFtxUstRtxStRxz fffff ||| ±±±±±± ++++=φ    (5.27) 
where: 

        =  down wash disturbance (component of speed in vertical z direction) ±
zφ

    or derivative of disturbance potential in z direction of 
    the upper (+) and lower (-) surface of the wing. 

             = Slope of the upper (+) and lower (-) surface (f) in steady (St) StRxf |±

        Rigid Body Motion (R). 
[ ] UstRtx ff |±± +  = Slope of the upper (+) and lower (-) surface (f) in unsteady (Ust) 

     Rigid Body Motion (R). 
[ ] UstFtx ff |±± +  = Slope of the upper (+) and lower (-) surface (f) in unsteady (Ust) 

     Flexible/Elastic Motion (F). 
 
The steady part associates with the rigid geometry of the wing and angle of attack.  The 
unsteady rigid body motion part associates with the pitching and heaving oscillation of the 
wing. 
The unsteady flexible motion part represents the vibration mode shapes of the wing, as 
follows [65]: 
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±± q
U

qff xUstFtx
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where: [  = slope of the vibration mode shapes ]xΦ
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{q}    = the generalized displacement 

⎭
⎬
⎫

⎩
⎨
⎧ •

q   = the time derivative of the generalized displacement 

It should be noted that the tangential boundary condition is always corrected with the 
presence of the boundary layer and slope modification as already discussed in the previous 
chapter.  
 
The steps for the flutter analysis can be written as follows: 

1. Determination of the structural data.   
In order to form the mass, damping and stiffness matrices ([m], [c] and [k]) of the 
structure. 

2. Modal analysis of the dynamic system. 
In order to obtain the vibration mode shapes [Φ] and the natural frequencies [ωn]. 

3. Computation of the generalized mass -, damping and stiffness matrices ([M], [C]   
and [K]) 

4. Building of the State Space matrices:  
The State Transition matrix [A], [B] and the initial values {Xn } 

5. Computation of the steady aerodynamic forces {Q}St for a certain Mach number 
and angle of attack and other steady parameter with steady boundary condition 

6.  Computation of the response of the system {Xn+1} by means of solution of the State 
Space equation for a certain given Mach number, speed (U∞) and dynamic 
pressure (0.5ρ∞U∞

2), with the following step: 
 - computation of the tangential boundary condition, i.e. equation (5.27) with input 

data:  {Xn}, [α] and other parameter. 
 - computation of the aerodynamic forces ({Q}Ust as time-dependent function) with 

input data:  speed, dynamic pressure and the tangential boundary condition.  
- solving the State Space equation by means of the equation (5.26) to obtain the 
   response at the next time step: {Xn+1} 
- repeating these steps until 3 or 4 cycles of the oscillation 
- analysis of the response system whether the process of the response is under  
  damped, neutral or divergent. 

The flutter speed is defined, if the behaviour of the response in the time domain is neutral.  If 
the response is under damped, the speed and the dynamic pressure must be increased and the 
response system must be calculated again.  Fig. 5.1. shows the flow chart of the flutter 
analysis in time domain by means of State Space equation 
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           Start 
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2

             divergent ? 
 

 
        neutral 
 
                Finish 
 
 Fig. 5.1. Flow Chart of Flutter Analysis in the Time Domain 
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6. Steady and Unsteady Aerodynamic Results 
 

 In this chapter some steady and unsteady aerodynamic results calculated with and 
without the developed viscous - inviscid interaction method are presented. In order to have a 
systematic representation, this chapter is divided into three sub chapter. 
The first part of this chapter serves for validating of the inviscid model, the viscous model and 
the transition model as individual model. The validation work is carried out by comparing the 
computational results either with other numerical results or experimental data.  In the second 
part of this chapter, the developed viscous - inviscid  interaction method is used to compute 
some steady cases. Results for attached as well as separated flow around airfoils and axis-
symmetric body are presented.  The last part of this chapter presents some results of unsteady 
cases of airfoils and wings, which oscillate harmonically in an uniform flow. 
 
6.1.  Validation 
6.1.1.  Validation of the Inviscid Aerodynamic Model 
 The problem concerned with the aerodynamic simulation in transonic flow is the 
appearance of the shock, which must be simulated both its position and its strength correctly.  
Therefore an aerodynamic Code must absolutely have the ability for the computation of the 
shock. Here the results of the developed inviscid aerodynamic model (TSD) are presented for 
AGARD two dimensional (2D) test case CT1 [68] with the following data: 

Airfoil    : NACA 0012 
       Mach number    : M = 0.8  
       Angle of attack : α = 1.25 Grad 
This case is one of eight AGARD 2D test cases for validating the inviscid model.  This case is 
selected because of the appearance of a strong shock on the upper surface and a weak one on 
the lower surface.  The objective of this test case is to test the sensitivity of an aerodynamic 
Code against the appearance of a strong as well as a weak shock.  

The computed pressure and Mach distribution for this case are shown in Figs. 6.1. and 
6.2. As reference data are the result of the Euler Code of Institute of Fluid Mechanics 
Technische Universität München (called FLMEu Code) and the result of the Euler Code from 
Jameson [68].  For the simulation of this case the computational space is discretised in 
(160x30) points for TSD Code and (180x30) cells for FLMEu Code.  The cells on the airfoil 
surface (upper and lower) consist of 120 cells.  The edge of far field is chosen to be 10 times 
of chord of airfoil.  The Off-Body distance is 10-4 times of chord of airfoil. 

The improvement of the TSD Code from the original one can be seen clearly in Fig. 
6.1.  The original TSD Code (TSD orig) can not compute the shock position and shock 
strength correctly.  On the upper surface the position of the shock is too far aft compared with 
the other results. On the lower surface the TSD original Code gives no shock.  The shock was 
absorbed too much.  At the leading edge appears also a peak suction, which has no physical 
meaning.  By the developed TSD (TSD present) the pressure distribution on both surfaces 
agrees well with the reference data. The shock on lower surface calculated using the 
developed TSD method is  a little bit weaker compared with the results from Jameson and 
FLMEu. The shock position and also the Mach contour can be seen in fig. 6.2.  The position 
of both shocks from the developed TSD is in good agreement with the FLMEu results.  
Differences between both Mach contour results are in the leading and trailing edge region.  

The lift, drag and moment coefficients for this case can be seen in Table 6.1.  The 
deviation of the lift, drag and moment coefficients between the TSD results (present and  
original) and the mean values of the Euler results can be seen in table 6.2. 
Other validation results can be found in Ref. [55].  

 66



 
 

6. Steady and Unsteady Aerodynamic Results 

-0,08
-0,04

0
0,04
0,08

0 0,2 0,4 0,6 0,8 1x/c

z/
c

 

-1,25

-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1
0 0,2 0,4 0 ,6 0,8 1

x/c

C
p

 

Jameson

FLMEu

TSD present

TSD orig

 (a) Geometry of NACA 0012 airfoil       (b) Pressure distribution 
Fig. 6.1. Geometry and Pressure Distribution of NACA 0012 at M = 0.8, α = 1.25 deg 

 

 
     (a) FLMEu       (b) TSD 
Fig. 6.2. Mach Contour of NACA 0012 at M = 0.8, α = 1.25 deg 

 
 

Table 6.1. Lift, Drag and Moment Coefficients of NACA 0012 at M = 0.8, α = 1.25 deg 
 Cl Cd  

(drag count) 
Cm Mesh Grid Type 

Jameson (Euler) 0.3632 230 -0.0397 320 x 64 O 
FLMEu (Euler) 0.3486 221 -0.0358 180 x 30 C 
TSD-Present 0.3593 229 -0.0389 160 x 30 H (Cartesian) 
TSD-orig 0.6586 476 -0.1334 160 x 30 H (Cartesian) 
Mean value of 
the Euler results 

0.3559 225.5 -0.03775   

     1 drag count = 0.0001 
 

Table 6.2. Deviation of Lift, Drag and Moment Coefficients from the Mean Values of Euler 
NACA 0012 at M = 0.8, α = 1.25 deg 

 ∆Cl/Clmean ∆Cd/Cdmean ∆Cm/Cmmean

TSD-Present 0.96% 1.55% 3.05% 
TSD-orig 85.05% 111.05% 253.38% 
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6.1.2. Validation of the Viscous Models   
 Validation of the boundary layer calculation methods developed here are presented in 
this sub chapter.  Incompressible laminar and turbulent flow on a flat plate are selected as test 
cases. 
 
6.1.2.1. Flat Plate in Incompressible Laminar Flow 

The flow parameters are as follows:  
Mach number   : M = 0. 
Angle of attack     : α = 0. deg  
Reynolds number : Re = 1.0 E+05 (based on the plate length) 

Three different boundary layer methods, i.e. Karman-Thwaites, Drela-Giles and Differential 
Methods, are validated with the exact solution of Blasius [5] as reference.  In order to 
implement the Drela-Giles Method, the Karman-Thwaites procedure must be used as initial 
values.  After 3%-5% of the plate length from the leading edge, the Drela-Giles method can 
then be implemented.  The distribution of the displacement thickness and skin friction are 
depicted in figure 6.3.  All the three methods show good agreement for this case. 
A small modification in the skin friction closure equation of Drela-Giles Method is carried out 
as follows: 
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The reason of this modification is to increase the growth of the shape factor and the 
momentum thickness (see equations 3.30 and 3.31).  With the original equation (3.38a.)  the 
value of the shape factor H became smaller than those of Blasius and Karman-Thwaites 
results.  A small value of shape factor causes a small value of displacement thickness.  
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     (a) Displacement thickness            (b) Skin friction 

Fig. 6.3. Displacement Thickness and Skin Friction of a Flat Plate 
at M = 0., α = 0., Re = 1.0E+05 

 
6.1.2.2. Flat Plate in Incompressible Turbulent Flow 

The flow parameters are as follows:  
Mach number   : M = 0. 
Angle of attack     : α = 0. deg 
Reynolds number : Re = 1.0 E+07 (based on the plate length) 



 
 

6. Steady and Unsteady Aerodynamic Results 
Three different boundary layer methods, i.e. Differential equation, Drela-Giles and Greens 
Lag Entrainment Methods, will be compared with the solution of Power 1/7 Law as reference.  
The solution of the Power 1/7 Law will be used as initial values to start calculation with the 
Drela-Giles and the Greens methods.  After 3%-5% of the plate length from the leading edge 
the Drela-Giles and Green methods can then be started.  
The displacement thickness and skin friction distribution can be seen in figure 6.4.  In general 
all methods are in good agreement.  The Drela-Giles method supplies a little bit larger skin 
friction and displacement thickness compared with the results from Green method and Power 
1/7 Law.  The differential method supplies larger skin friction than those from other methods 
at the leading and trailing edge region.  
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            (a) Displacement thickness    (b) Skin friction 
Fig. 6.4. Displacement Thickness and Skin friction of a Flat Plate 

at M = 0., α = 0., Re = 1.0E+07 
 
6.1.3. Validation of the Transition Prediction Method 

This sub chapter serves for validating of the en transition prediction method with 
experimental data and other numerical methods.  Two cases are selected, i.e. transition flow 
on a flat plate and around NACA 0012 airfoil. 

 
6.1.3.1. Flat Plate with Laminar-Turbulent Transition 

The flow parameters are as follows:  
Mach number   : M = 0. 
Angle of attack     : α = 0. deg 
Reynolds number : Re = 1.7E+06 /m  

 
As reference data is the experimental data from Schubauer and Klebanoff [5, 69].  The 
experiment from Schubauer and Klebanoff discovers a transition region approximately 
between 1.75 m to 2.5 m from leading edge of the plate.  This transition region corresponds 
with the Reynolds number between 3.0E+06 to 4.2Ë+06. Figure 6.5. represents the shape 
factor and skin friction.  In this simulation two different boundary layer methods are used, i.e. 
Drela-Giles and Thwaites-Green methods.  In the Thwaites-Green method the laminar and the 
turbulent region was simulated with the Karman-Thwaites and Greens Lag Entrainment 
method respectively, because the Karman-Thwaites method has no turbulent closure 
equations and the Greens method has no closure equations for laminar flow.  The Drela-Giles 
method has closure equations for both laminar and turbulent flows.             
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(a) Shape factor             (b) Skin Friction 

Fig. 6.5. Shape Factor and Skin Friction of a Flat Plate 
at M = 0., α = 0., Re = 1.7E+06/m 

 
In this simulation the length of the plate is 3.75 m, which correspond to the Reynolds number 
6.37Ë+06.  From fig. 6.7 it can be seen that the en method could compute the transition region 
very well.  The computation result shows sharper and narrower transition region compared 
with the experimental data.  In fig. 6.5a. the computed shape factor of the Drela-Giles method 
is smaller than experiment data.  The shape coefficient of the Thwaites-Green method agrees 
with the experiment data in the laminar region, but it is smaller than the experiment data in 
the turbulent region.  The value of the laminar and turbulent shape factor from the experiment 
is 2.6 and  1.4 respectively.  In fig. 6.5b. the numeric and experimental values of the skin 
friction show good agreement in the laminar region, but the computed skin friction are larger 
than the experiment data in the turbulent region. 
 
6.1.3.2. NACA 0012 Airfoil with Laminar-Turbulent Transition 

The flow parameters are as follows:  
Mach number  : M = 0.5 
Angle of attack : α = 0. deg  
Reynolds number : Re = 2.89E+06 (based on chord length) 

The experimental data of Thibert, Grandjacques and Bateman [70] will be used as reference 
for the pressure distribution.  The numerical data from Wolles [4] serves  as reference for the 
displacement thickness and skin friction distribution.  Wolles has performed his calculation 
using simultaneously viscous - inviscid  interaction.  The Full Potential equation is used as 
inviscid model and the Drela-Giles method with the en transition method as viscous model.  
The goal of this simulation is to examine the influence of one boundary layer method (here is 
the Drela-Giles method) into different inviscid models (here are the TSD and Euler equations) 
and also the influence of different boundary layer methods (here are the Thwaites-Green and 
Drela-Giles methods) into one inviscid model (here is the TSD equation). 

The results of the pressure, displacement thickness and skin friction distribution 
calculated using coupled TSD and FLMEu with the Drela-Giles boundary layer method are 
presented in fig. 6.6. 
From experiment it is found that the transition region is laid from 40% to 50% chord from the 
leading edge.  The experimental pressure distribution shows irregular values in this transition 
region as shown also by the numerical solutions.  Between the TSD+BL and the FLMEu+BL 
results there is a small deviation in the pressure distribution from leading edge up to 40% 
chord (see fig. 6.6a.).  The transition region can be recognised also from the skin friction 
distribution. The skin friction solutions of TSD+BL and FLMEu+BL show also the transition 
region from 40% to 50% chord (see fig.6.6c.). 
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                    (a) Pressure                (b) Displacement thickness        (c) Skin friction  

Fig. 6.6. Pressure, Displacement Thickness and Skin Friction of NACA 0012 
at M = 0.5, α = 0., Re = 2.89E+05 

(Comparison between TSD+Boundary Layer and Euler+Boundary Layer) 
 

The displacement thickness and skin friction distribution, which are computed using 
coupled TSD + Thwaites-Green and TSD + Drela-Giles methods, can be seen in fig. 6.7.  The 
TSD + Thwaites-Green method gives an earlier transition region compared with the result 
from TSD + Drela-Giles method. The transition region predicted by both of methods show 
good agreement with the experimental results (laid between 40%-50% chord from leading 
edge). Compared to the Wolles result, both of methods (TSD + Thwaites-Green and TSD + 
Drela-Giles) supply an earlier transition region.  The skin friction calculated with TSD + 
Drela-Giles is larger than those from TSD + Thwaites-Green in the turbulent region. 
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     (a) Displacement Thickness    (b) Skin Friction 

Fig. 6.7. Displacement Thickness and Skin Friction Distribution of NACA 0012 
at M = 0.5, α = 0., Re = 2.89E+05 

(Comparison between TSD+Thwaites-Green and TSD+Drela-Giles Methods) 
 
The above validating results have been partly published in ‘Indo-German Conference 2001’ 
and in ‘Jurnal Sains dan Teknologi Aeronotika‘ (the Journal of the Indonesian Association of 
the Aerodynamics Specialists) [71]. 
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6.2. Steady Aerodynamic Results 

After the validation of the individual model (i.e. viscous, inviscid and transition models) 
has been performed, the developed viscous - inviscid interaction method will be used to 
investigate some steady cases. The selected cases must represent some physical flow 
conditions such as attached flow, flow with separation bubble and shock-induced separated 
flow. The method is also used to investigate the flow around an axis-symmetrical body. 
 
6.2.1. Transonic Attached Flow  
          The flow around airfoil RAE 2822 with the following flow parameters is examined: 

Mach number   : M = 0.725 
  Reynolds number : Re = 6.5E+06 (based on chord) 
  Angle of attack : α = 2.42 deg 
This case is known as CT6 case in AGARD [72] and was selected as one of five test cases for 
codes validation in ‘Viscous Transonic Airfoil (VTA) Workshop 1987‘ [73]. The numerical 
results obtained from the present VII method are compared with the experimental data from 
Cook, McDonald, and Firmin [72]. The angle of attack in the experiment is 2.92 degrees 
(uncorrected) with lift coefficient Cl equals to 0.743. In order to obtain the same lift 
coefficient as those in experiment, the angle of attack in this simulation must be reduced to 
2.42 degrees. The TSD and FLMEu equations coupled with boundary layer calculation 
method from Drela-Giles are used to calculate this case. The simulation is carried out using 
(180x30) cells and (160x30) points for FLMEu and TSD Codes respectively. The flow 
condition is assumed to be fully turbulent. Figures 6.8 and 6.9. show the geometry, pressure, 
displacement thickness and skin friction distribution. 
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  (a) Geometry     (b) Pressure Distribution 
Fig. 6.8. Geometry and Pressure Distribution of RAE 2822 Airfoil 

at M = 0.725, Re = 6.5E+06, α = 2.42 deg 
 
One can see from fig. 6.8 that the pressure distribution calculated using VII method agrees 
well with the experimental data. Small deviation can be seen in the shock region on the upper 
surface and trailing edge on the lower surface. The displacement thickness increases sharply 
in the shock region as can be seen in fig. 6.9a. Conversely the skin friction decreases sharply 
in the shock region as depicted in fig. 6.9b. The displacement thickness calculated using 
FLMEu+Boundary layer (FLMEu+BL) is closer to the experimental results compared with 
those from TSD+Boundary layer. Conversely the skin friction calculated using 
TSD+Boundary layer (TSD+BL) seems to be closer to the experiment results. 
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        (a). Displacement thickness            (b) Skin friction 

Fig. 6.9. Displacement Thickness and Skin Friction on the Upper Surface 
of RAE 2822 at M = 0.725, Re = 6.5E+06, α = 2.42 deg 

 
The lift and drag coefficients  for this case are depicted in Table 6.3. together with the results 
obtained from the VTA Workshop 1987.  
 

Table 6.3. Lift and Drag Coefficients of RAE 2822 Airfoil 
 at M = 0.725, Re = 6.5E+06, α exp = 2.92 deg (uncorrected) 

Error (%)  Cl Cd  
(drag count) Cl Cd

α  
(deg) 

Remark  

Experiment 0.743 127 - - 2.92 Cook et.al 
TSD 0.821 150 10.49 18.11 2.42 Present 
FLMEu 0.820 148 10.36 16.53 2.42 Present 
TSD+BL 0.746 134 0.42 5.51 2.42 Present 
FLMEu+BL 0.742 131 -0.13 3.15 2.42 Present 
Full Potential+BL 0.740 131 -0.40 3.15 2.56 Dargel & 

Thiede 1)

Full Potential+BL 0.822 132 10.63 3.94 2.47 Haase & 
Echtle 1)

Euler+BL 0.723 113 -2.69 -11.02 2.44 Drela & 
Giles 1)

Euler+BL 0.756 180 1.75 41.73 2.60 Chen et.al. 1)

Navier Stokes 
(Baldwin-Lomax) 

0.747 123 0.54 -3.14 2.30 Maksymiuk 
& Pulliam 1)

Navier Stokes 
(Johnson-King) 

0.717 113 -3.49 -11.02 2.40 Coakley 1)

Range value in 
VTA Workshop 

0.717  
up to 
0.822 

113 
up to 
180 

-3.49  
up to  
10.63 

-3.14 
up to 
41.73 

2.30  
up to  
2.80 

 

1 drag count = 0.0001, 1) in VTA Workshop 1987 [73] 
 
Twenty three (23) scientists have been participated in the VTA Workshop 1987. They 
represented their results for some test cases, which were computed using the Navier Stokes, 
Euler equations plus Boundary layer and Full potential equation plus Boundary layer. 
Compared with the results of this Workshop, the aerodynamic coefficients calculated using 
the present TSD+BL and FLMEu+BL are in the range of the Workshop’s results. The 
developed methods show a better result than some Workshop’s results, and lay in the same 
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level with the results from Dargel & Thiede (using Full Potential+BL) and from Maksymiuk 
& Pulliam (using Navier Stokes + Baldwin Lomax turbulence model). Compared with the 
experimental results, the deviation of the lift and drag coefficients calculated with TSD+BL 
are 0.42% and 5.51% respectively and calculated with FLMEu+BL is –0.13% and 3.15% 
respectively. Compared with the results from  inviscid model (TSD and FLMEu), the present 
VII method improves the lift and drag coefficients around 10% and 13% respectively.  
 
6.2.2. Transonic Flow with Separation Bubble  

The flow around airfoil RAE 2822 with the following flow parameters is examined: 
Mach number   : M = 0.75 

  Reynolds number : Re = 6.2E+06 (based on chord) 
  Angle of attack : α = 2.93 deg 
This case is known as CT 10 case in AGARD [72] and was selected as one of  five test cases 
VTA Workshop 1987 [73]. The numerical results are compared with experimental data by 
Cook, McDonald, and Firmin [72]. The angle of attack in the experiment is 3.19 deg 
(uncorrected) associated with lift coefficient Cl = 0.743. In order to obtained same lift 
coefficient, the angle of attack by present simulation is reduced to 2.93 degrees. In this 
simulation, the TSD method is coupled with the boundary layer method from Drela-Giles and 
Greens Lag Entrainment, in order to examine the influence of different boundary layer 
methods. The simulation is conducted using Cartesian grid with (160x30) points around flow 
field. The flow condition is assumed to be fully turbulent flow. Figures 6.10 and 6.11. 
represent the pressure, displacement thickness and skin friction distribution. 
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Fig. 6.10. Pressure Distribution of RAE 2822 Airfoil 

at M = 0.75, Re = 6.2E+06, α = 2.93 deg 
 
Without addition of the displacement thickness, the lift coefficient Cl from the inviscid model 
(TSD) is 0.8370 and the pitching moment coefficient Cm is -0.1523. The pressure distribution 
on the upper surface agrees well with the experimental result until 52% chord from the 
leading edge. But the position of the shock lays at 68% chord from leading edge. This 
position is far behind the shock position from the experiment, which is located in 58% (see 
fig.  6.10). After the boundary layer was added on the airfoil, the lift coefficient  decreases to 
0.7465 and the pitching moment coefficient is –0.1228 calculated using  Greens Lag 
Entrainment boundary layer method. By using the boundary layer method of Drela-Giles the 
lift coefficient is 0.7287 and the pitching moment coefficient is -0.1168. The pressure 
distributions obtained from VII using both boundary layer methods are little bit larger than the 
experiment results from leading edge to 52% chord. The influence of the Drela-Giles 
boundary layer method seems to be a little bit larger than those of Greens Lag Entrainment 
boundary layer method. By using the Drela-Giles method, the shock position is found at 
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around 62% chord from leading edge, at the other hand by using the Greens Lag Entrainment 
method lays the shock position at around 63% chord from leading edge. A small separation 
bubble is found just after shock position as shown by zero skin friction region in fig. 6.11b. 
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 (a) Displacement thickness              (b) Skin friction  

Fig. 6.11. Displacement Thickness and Skin Friction on the Upper Surface 
of RAE 2822 at M = 0.75, Re = 6.2E+06, α = 2.93 deg 

 
The lift and drag coefficients  for this case are depicted in Table 6.4. together with the 

results obtained from the VTA Workshop 1987. 
 

Table 6.4. Lift and Drag Coefficients of RAE 2822 Airfoil 
at M = 0.75, Re = 6.2E+06, α exp = 3.19 deg (uncorrected) 

Error (%)  Cl Cd  
(drag count) Cl Cd

α  
(deg) 

Remark  

Experiment 0.743 242 - - 3.19 Cook et.al 
TSD 0.837 289 12.65 19.42 2.93 Present 
TSD+BL(Drela) 0.729 226 -1.88 -6.61 2.93 Present 
TSD+BL(Green) 0.747 256 0.54 5.78 2.93 Present 
Full Potential+BL 0.740 230 -0.40 -4.96 2.96 Dargel & 

Thiede 1)

Euler+BL 0.733 224 -1.34 -7.44 2.70 Drela & 
Giles 1)

Navier Stokes 
(Baldwin-Lomax) 

0.838 289 12.78 19.42 2.72 Maksymiuk 
& Pulliam 1)

Navier Stokes 
(Baldwin-Lomax) 

0.859 298 15.61 23.14 2.80 Coakley 1)

Navier Stokes 
(Johnson-King) 

0.745 243 0.27 0.41 2.80 Coakley 1)

Range value in 
VTA Workshop 

0.740  
up to 
 0.859 

224  
up to 
298 

-0.40  
up to  
15.61 

-7.44 
up to 
23.14 

2.50  
up to 
2.96 

 

1 drag count = 0.0001, 1) in VTA Workshop 1987 [73] 
 
Compared with the results from VTA Workshop, the developed TSD+BL (Green) supplies 
the aerodynamic coefficients in the range of the Workshop’s results but  the lift coefficient 
obtained using TSD+BL (Drela) lies a little bit lower. The developed VII method shows 
better results than some Workshop participants results. The present results lie in the same 
level with the results from Dargel & Thiede (Full Potential+BL) and from Drela & Giles 
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(Euler+BL). Compared with the experiment, the deviation of lift and drag coefficients is -
1.88% and -6.61% respectively (using TSD+BL Drela) and 0.54% and 5.78% respectively 
(using TSD+BL Green). In comparison with the results of the inviscid model (TSD), the 
developed VII method improves the lift and drag coefficient around 10% and 13% 
respectively. The best agreement with experiment for this case is the Coakley’s result, which 
is computed using Navier-Stokes Code with Johnson-King turbulence model. This method 
supplies result for Cl = 0.745 and for Cd = 243 drag counts with angle of attack 2.80 degrees. 
The Navier-Stokes Code with Baldwin-Lomax turbulence model (from Coakley and 
Maksymiuk & Pulliam) supplies over predicted values for the two aerodynamic coefficients.  
 
6.2.3. Transonic Flow with Shock-Induced Separation 

The flow around airfoil NACA 0012 with the following flow parameters is examined: 
  Mach number   : M = 0.799 
  Reynolds number : Re = 9.0E+06 (based on chord) 
  Angle of attack : α = 2.26 deg (corrected) 
This case is also selected as one of five test cases in VTA Workshop 1987 [73]. The present 
results will be compared with the experimental data from Harris [74] and numerical results 
from Cvrlje [75] and Prananta [76]. Cvrlje calculated this case using Navier-Stokes Code plus 
Baldwin-Lomax turbulence model (NS-BL). Prananta calculated this case using Navier-
Stokes Code with Spalart-Almaras turbulence model (NS-SA). The present TSD and FLMEu 
Codes are coupled with boundary layer method from Drela-Giles to simulate this case. The 
simulation is carried out with (180x30) cells and (160x30) points for FLMEu and TSD Code 
respectively. The flow condition is assumed to be fully turbulent flow. Fig. 6.12 and 6.13. 
show the pressure, displacement thickness and skin friction distribution. Only pressure 
distribution result computed using NS-BL is available. At the other hand from NS-SA 
calculations only pressure distribution and skin friction results are available. From the 
experiment there are no skin friction and displacement thickness data. 
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Fig. 6.12. Pressure Distribution of NACA 0012 Airfoil 
at M = 0.799, Re = 9.0E+06, α = 2.26 deg 

 
From fig. 6.12. it can be seen that the shock location computed by TSD+BL and FLMEu+BL 
agrees well with those of NS-BL (Navier-Stokes with Baldwin-Lomax turbulence model). 
The shock is located at 64% chord from the leading edge. The shock location lies still behind 
the experimental situation, which is located at 50% chord from leading edge. The shock 
location from NS-SA (Spalart Almaras turbulence model) is near to the experiment at about 
51% chord from leading edge. Without influence of the boundary layer, the TSD and FLMEu 
procedure supply the shock location at around 70% chord. It can be seen from the skin friction 
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6. Steady and Unsteady Aerodynamic Results 
distribution that a shock-induced separation is occurred, which is designated by the zero or 
negative values of skin friction (see fig. 6.13b). From the TSD+BL and FLMEu+BL results, 
the separation started from 65% chord. On the other hand, the separation calculated with the 
NS-SA occurred after 51% chord result followed by reattachment of the flow at around 97% 
chord. 
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Fig. 6.13. Displacement Thickness and Skin Friction on the Upper Surface 

of NACA 0012 at M = 0.799, Re = 9.0E+06, α = 2.26 deg 
 
The lift and drag coefficients  for this case are depicted in Table 6.5. together with the results 
obtained from the VTA Workshop 1987. 
 

Table 6.5. Lift and Drag Coefficients of NACA 0012 Airfoil 
at M = 0.799, Re = 9.0E+06, α = 2.26 deg 

Error (%)  Cl Cd  
(drag count) Cl Cd 

Remark  

Experiment 0.390 331 - - Haris 
TSD 0.558 497 43.08 50.15 Present 
FLMEu 0.541 486 38.72 46.83 Present 
TSD+BL 0.464 431 18.97 30.21 Present 
FLMEu+BL 0.454 416 16.41 25.68 Present 
Euler+BL 0.312 337 -20.0 1.81 Drela & Giles 1)

Navier Stokes – BL 
(Baldwin-Lomax) 

0.472 445 21.02 34.44 Maksymiuk & 
Pulliam 1)

Navier Stokes – BL 0.476 446 22.05 34.74 Coakley 1)

Navier Stokes – BL 0.433 409 11.03 23.56 Cvrlje [75]  
Navier Stokes – JK 
(Johnson-King) 

0.300 345 -23.08 4.23 Coakley 1)

Range value in 
VTA Workshop 

0.300   
up to  
0.476 

337  
up to 
446 

-23.08  
up to 
22.05 

1.81 
up to 
34.74 

 

1 drag count = 0.0001, 1) in VTA Workshop 1987 
 
The non viscous models (TSD and FLMEu) supply the aerodynamic coefficients outside of 
the range of the VTA Workshop. That means: for this case the use of the non viscous model is 
not appropriate. Compared with the Workshop‘s results, the developed TSD+BL and 
FLMEu+BL supply the aerodynamic coefficients inside of the range value in the Workshop. 
Compared with the experiment the deviation of lift and drag coefficient is 18.97% and 
30.21% (calculated using TSD+BL) and 16.41% and 25.68% (calculated using FLMEu+BL) 
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6. Steady and Unsteady Aerodynamic Results 
respectively.  Most methods used in the Workshop supply larger lift and drag coefficients 
compared to the experiment except those from Drela & Giles (Euler + Boundary Layer) and 
from Coakley (Navier Stokes + Johnson King turbulence model), which supply smaller lift 
coefficient.  The best agreement of the shock location with experiment is the Navier Stokes 
Code with Johnson King turbulence model from Coakley. For this test case, there are no 
results from potential equation was presented in VTA Workshop 1987. 
 
6.2.4. Investigation of the Flow around Axis-symmetrical Bodies  

In this sub chapter the application of the developed viscous – inviscid interaction 
method for the computation of flow around an axis-symmetrical body is presented. For this 
purpose the TSD equation is transformed into [55]: 
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where the fluxes are: 
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r is the component of the coordinates in radial direction of the body. 
The coefficients A, B, E, and F are remain unchanged. 
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with:               ( )
L
r

L
xx == ζξ         (6.5) 

where L is the length of the body. 
The solution of the equation (6.4) is carried out using the Approximate Factorization (AF) 
algorithm, which is already discussed in chapter 4.1.  
The AF form of the equation (6.4) is: 
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The 1st sweeping of the equation (6.6) will be carried out in the ξ direction for all constant 
value of ς :  ( )21,,, −−∗∗ −=∆ nnnRL φφφφφξ

                (6.11) 
The 2nd sweeping will be done in die ς direction for all constant value of ξ, after the 
temporary solution ∆φ*  has been found from the 1st sweeping : 

*φφζ ∆=∆L        (6.12) 
The solution φn+1 = φn + ∆φ will be convergence if ∆φ~ 0. The computation of the pressure 
distribution is carried out as discussed in chapter 4.1.  
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6. Steady and Unsteady Aerodynamic Results 
This TSD equation will be coupled with the boundary layer calculation method from Drela-
Giles to calculate the flow around an axis-symmetrical body. 

A set of Body of Revolution (BoR) of Messerschmidt Bolkow Blohm (MBB)  called 
as BoR 1, 3 and 5 are examined [77]. Its fore and aft body are represented with 3. order 
polynomial as follows:  
     Fore body :   

r(x) = a3 x3 + a2 x2 + a1 x                 (6.13) 
with : 
 a1 = 3 rmax/x1,    a2 = -3 rmax/x1

2 ,    a3 = rmax/x1
3,      x1 = 0.5 L 

 
    Aft body :  

r(x) = b3 x3 + b2 x2 + b1 x + b0      (6.14) 
with : 
 b0 = (L rmax/(x2-L)3)(3x2L-L2-3x2

2),  b1 = 3x2
2 rmax/(x2-L)3,     

b2 = -3x2 rmax/(x2-L)3,       b3 = rmax/(x2-L)3

 
The value of x2 is different for each BoR as follows: 

for BoR 1 : x2 = 0.5 L      
 for BoR 3 : x2 = 0.6875 L    
 for BoR 5 : x2 = 0.8125 L    
The value of L and rmax are 800 mm und 60 mm respectively.  
Fig. 6.14. shows the geometry of MBBs BoR 1, 3 and 5.  
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Fig. 6.14. Geometry of MBBs Body of Revolution 1, 3 and 5 
 
The flow parameter, which has to be simulated are as follows: 
 Mach number,  M = 0.8 
 Reynolds number, Re = 1.0E+07 (based on length L) 
 Angle of attack,  α = 0 deg 
The flow condition is assumed to be fully turbulent. The pressure, skin friction and 
displacement thickness distribution of the MBBs BoR 1, 3 and 5 are presented in fig. 6.15. It 
looks that the more steeply geometry the more steeply the pressure distribution and the more 
largely skin friction. This increasing skin friction will not automatically increase the entire 
drag, because the pressure drag within the region of the trailing edge becomes smaller because 
of the change of geometry within this region. For BoR 5 there is a small separated region 
around the trailing edge (Cf < 0), as can be seen in fig. 6.15b. 

Comparison of the present results with the experiment of Lorenz Meyer and Aulehla 
[77] and Navier Stokes calculation (with Baldwin Lomax turbulence model) using software 
RAMPANT [78] for BoR 3 is depicted in fig. 6.16. A large deviation in the pressure 
distribution between the present TSD+BL and the experiment and the Navier Stokes results 
occurs in the flat region of the body (approximately from 40% to 70% of the body length), 
where the flow became slower after a leading edge expansion.  
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Fig. 6.15. Pressure, Skin Friction and Displacement Thickness of  MBBs BoR 1, 3 and 5 
at M = 0.8, Re = 1.0E+07, α = 0 deg 
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Fig. 6.16. Pressure and Skin friction of MBBs BoR 3 at M = 0.8, Re = 1.0E+07, α = 0 deg 

 
Comparison of the pressure distribution between the present result and the experiment for 
MBBs BoR 1 and 5 can be seen in fig 6.17. Again the deviation of the pressure distribution 
between the TSD+BL and the experiment occurred in flat region of the bodies. The above 
results have been partially published in Ref. [79]. 
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Fig. 6.17. Pressure Distribution of MBBs BoR 1 and 5 at M = 0.8, Re = 1.0E+07, α = 0 deg 
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6. Steady and Unsteady Aerodynamic Results 
6.3. Unsteady Aerodynamic Results  

In this chapter the developed viscous - inviscid interaction method is used to compute 
some unsteady test cases. The unsteady condition is produced by a harmonically pitching 
motion of a body in a uniform flow. The oscillation of the body is sinusoidal, as follows: 

 
α(τ) = α0 + α1 sin (kτ)       (6.15) 

where : 
 α0 is mean angle of attack 
 α1 is amplitude of angle of attack 
 k is reduced frequency (k = ωc/U) 
 τ is the non dimensional time 
 
In order to test the ability of the developed method, the selected unsteady cases must cover or 
consider the following variation:  

- variation of Mach number and Reynolds number 
- variation of mean angle of attack 
- variation of amplitude of angle of attack 
- variation of reduced frequency of the oscillation 
- variation of geometry 
- two and three-dimensional flow 
- symmetrical and unsymmetrical flow 

 
With the above consideration the following unsteady cases are selected:  

1. AGARD CT5 test case for NACA 0012 airfoil [80]  
2. AGARD CT5 test case for LANN wing [81]  
3. NASA E24 test case for Delta wing [82]  

 
The simulation parameters of the above unsteady test cases are presented in table 6.6. 
 

Table 6.6.The Selected Unsteady Test Cases 
Flow  

No. 
 

Case 
 

M 
Re 

(x106) 
 

α0

 
α1

 
k 

 
xp

 
AR sym unsym

1. CT5 NACA 0012 0.755 5.5 0.016 2.51 0.1628 0.25 c ∞ x  
2. CT5 LANN Wing 0.82 7.3 0.6 0.25 0.204 0.621 cr 7.92  x 
3. E24 Delta Wing 0.88 9.0 0.0 0.5 0.340 0.652 cr 1.24 x  

 
Notes: 
M  = Mach number    AR  = Aspect Ratio 
Re  = Reynolds number    sym  = symmetrical flow  
α0  = mean angle of attack   unsym  = unsymmetrical flow 
α1  = amplitude of angle of attack  c = chord 
k   = reduced frequency (k = ωc/U)  cr = root chord  
xp  = pitching axis 
 

Another unsteady aerodynamic results calculated using the developed VII method can 
be found in Ref. [55]. A part of the results has been published in Ref. [83, 84]. 
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6. Steady and Unsteady Aerodynamic Results 
6.3.1. AGARD Test Case CT5 for NACA 0012 

 The simulation parameter for this case is tabulated in Table 6.7.  

 Table 6.7. Simulation Parameter of AGARD CT5 Test Case for NACA 0012 
Simulation Parameter Remark 

Mach number M  0.755  
Reynolds number Re  5.5E+06 based on chord 
Mean angle of attack α0   0.016 o  
Amplitude angle of attack α1  2.51 o  
Reduced Frequency k   0.1628 based on chord 
Pitching  axis xp/c   0.25 from leading edge 
Moment ref. axis xm/c  0.25 from leading edge 

 
The developed TSD plus boundary layer method from Drela-Giles will be used to simulate 
this case with following grid parameter: 
 

Table 6.8. Grid Parameter 
 Grid Parameter 

Points on surface 120 
Grid dimension (x-z plane) 160 x 30 
Grid type (Cartesian) H 
Total points 4800 
Off Body distance 10-3 c 
Far field distance 10 c 

 
Before the unsteady calculation can be carried out, the steady calculation with mean angle of 
attack data must be first accomplished. The steady pressure, displacement thickness and skin 
friction are depicted in figures 6.18. and 6.19. As comparison data is the pressure distribution 
result from Cvrlje [75]. The steady experimental data is unfortunately not available. 
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Fig. 6.18. Steady Pressure Distribution of NACA 0012  
CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016 o 
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Fig. 6.19. Steady Displacement Thickness and Skin Friction of NACA 0012  
CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016 o

 
The pressure distribution between the TSD+BL and the NS-BL agrees well for this case. 
From the pressure distribution, displacement thickness and skin friction one can see that the 
flow condition is almost symmetrical with respect to x-y plane.  

After the steady calculation was accomplished, the unsteady calculation can be 
performed using the initial condition from steady results. The simulation is carried out for 
three cycles of the oscillation, in order to obtain convergent results. For this simulation one 
cycle of the oscillation is divided into 720 time steps uniformly. The unsteady result of lift 
and moment coefficient for the last cycle the oscillation are presented in figure 6.20. together 
with experimental results from Landon [80] and numerical results from Cvrlje [75]. 
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Fig. 6.20. Unsteady Lift and Moment of NACA 0012  

CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016o, α1 = 2.51o, xp = 0.25c, k = 0.1628 
 

As expected, the lift coefficient (peak-to-peak value) calculated from TSD is the 
largest one compared with the other numerical results. The influence of the boundary layer 
into the TSD  tends to reduce the lift coefficient close to the Navier Stokes solution. The lift 
coefficient from TSD+BL and from Navier Stokes (NS-BL) solution agree well each other. 
Compared to the experimental results the developed method TSD+BL supplies a good 
agreement of the lift coefficient particularly in the range of the negative angle of attack. For 
the positive angle of attack the two numerical results (TSD+BL and NS-BL) supply smaller 
lift coefficient. The results of the TSD lie in the proximity of the experiment particularly as 
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6. Steady and Unsteady Aerodynamic Results 
the airfoil moved downward  from its highest position (see fig. 6.20a.). That does not meant 
that the TSD solution is the best solution (closer to the experiment), but probably the 
experiment was not so correctly performed. The symmetrical condition from the measured 
unsteady lift coefficient can not be seen clearly. It seems also, that the experiment was 
probably performed using smaller reduced frequency. If the Navier Stokes solution can be 
accepted as numerical reference solution (because the Navier Stokes equations describe the 
fluid flows most completely), then the quality of the solution of the TSD can be increased 
because of the addition of the boundary layer.  

The moment coefficient is turned counter clockwise because of the addition of the 
boundary layer  in to the TSD method. The magnitude of the moment coefficient of Navier 
Stokes is larger than the result of TSD plus boundary layer.  

The unsteady pressure distribution is presented in figure 6.22 for eight different angles 
of attack of the airfoil, where the pressure measurements were performed. The measured 
angle of attack of the airfoil is presented in fig. 6.21. (point a. to h.).  
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Fig. 6.21. The Measured Angle of Attack, AGARD CT5 NACA 0012 
 
The deviation of the pressure distribution from numerical and experimental data occurs 
mainly in the region of the shock (see fig. 6.22. b to d, f to h). The shock position from 
experiment mostly lies behind the shock positions from numerical results. In the comparison 
with the Navier Stokes solution (NS-BL), the developed TSD+BL method supplies the earlier 
shock position (in front of the shock position of the NS-BL). The shock position calculated by 
the TSD still lies behind the shock from NS-BL. The earlier shock position causes smaller 
magnitude of the moment coefficient as already presented in fig. 6.20. 

Referring fig. 6.22a. and e,  the TSD+BL method still shows a small shock, which is 
shown very soft by the Navier Stokes solution. For this case it seems that the influence of the 
boundary layer into the TSD equation is larger than the influence of the viscous terms in the 
Navier Stokes equations. From the experiment it is unclear whether an shock arises or not for 
this angle of attack. Unfortunately the experimental data on the lower surface of the airfoil are 
too few inadequate to show the shock position more precisely, if the shock arises on the lower 
surface (see fig. 6.22.a, 6.22.f h).  

It is interesting to analyze the figure 6.22.a and e. From numerical data the shock on 
the lower surface of the airfoil arises at the position a., although the instantaneous angle of 
attack is positive (α = 1.09 o). Contrary, the shock arises on the upper surface of the airfoil at 
the position e., although the angle of attack is already negative (α = -1.25 o). For steady case 
the situation is inversely, the shock occurs on the upper surface of the airfoil at positive value 
of angle of attack and on the lower surface at negative value of angle of attack.   
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Fig. 6.22. Unsteady Pressure Distribution of NACA 0012 
CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016o, α1 = 2.51o, xp = 0.25c, k = 0.1628 

 
If one compares fig. 6.22.b. with c, it can be seen that the shock at the position b. (α = 

2.34 o) is smaller than those at the position c (α = 2.01 o), although the angle of attack at 
position b. is larger than those at the position c. The same phenomenon happens also between 
position f. (α = -2.41 o)  and g. (α = -2.0 o). The oscillation of airfoil retards the reaction of the 
flow (responds lift and moment). This delay develops because the movement of the airfoil 
changes the effective angle of attack. The mechanism of the changed angle of attack is 
presented in fig 6.23. 

 In fig. 6.23., αa  and α are the flow angle of attack (effectively) and instantaneous 
measured angles of attack (geometric) respectively, Ui is the induced velocity due to the 
airfoil oscillation, Ua is the actually flow velocity, U∞ is the undisturbed flow velocity. The 
flow angle of attack becomes larger (or more positive), if the airfoil moves downward (fig. 
6.23.b. and d). Contrary, the flow angle of attack becomes smaller (or more negative), if the 
airfoil moves upward (fig. 6.23.a. and c). The induced velocity depends on the reduced 
frequency k and on the location of the pitch axis xp. (Ui/U∞ = k xp/c).  
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Fig. 6.22. Unsteady Pressure Distribution of NACA 0012 (continued) 
CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016o, α1 = 2.51o, xp = 0.25c, k = 0.1628 

 
 
 
 U∞             Ua       Ui 
        α           Ui       αa    U∞ 
                     Ua                   k            α         k 
 αa 
  |αa| < |α|, αa < α     |αa| > |α|, αa > α 

(a) upward motion, α > 0    (b) downward motion, α > 0 
 
               αa 
    αa   α         α       Ua 
      U∞                       Ui 
                     Ui                  U∞ 
                Ua                   k             k 
  
  |αa| > |α|, αa < α     |αa| < |α|, αa > α 

(c) upward motion, α < 0    (d) downward motion, α < 0 
 

Fig. 6.23. The Actual Angle of Attack due to Pitching Motion 
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6. Steady and Unsteady Aerodynamic Results 
By fig. 6.22. b.(α = 2.34o), the flow angle of attack is actually smaller than 2.34 

because of the upward movement of the airfoil and by fig. 6.22. c (α = 2.01 o) the actual angle 
of attack is larger than 2.01 because of the downward movement of the airfoil. Therefore the 
shock intensity at position b. is smaller than at position c.  

In figure 6.24 can be seen the unsteady displacement thickness for the eight measured 
angles of attack. On the upper surface the displacement thickness from position g. to h and 
from a. to b becomes larger as the airfoil moved upward. The displacement thickness 
decreases sharply from position c to f. as the airfoil moved downward. On the lower surface 
of the airfoil the situation is reciprocally. The displacement thickness becomes smaller from 
position g. to h. and from a. to b as the airfoil moved upward. From position c to f. the 
displacement thickness increases as the airfoil moved downward. The shock position can also 
be recognized from the displacement thickness value, that is the position where the 
displacement thickness increases sharply (e.g. for strong shock see fig. 6.24 b.-d.).  

Figure 6.25 shows the unsteady skin friction for the eight measured angles of attack. 
On the upper surface, the skin friction becomes smaller within the shock range  from position 
a. to b as the airfoil moved upward and increases sharply from the position c to f as the airfoil 
moved downward. By the position g. and h. it can be seen, that there is almost no change of 
skin friction. On the lower surface, the skin friction from the position g. to h. and a. to b. 
increases, when the airfoil moved upward. By the position c and d there is nearly no change of 
skin friction can be seen. From the position e. to f., the skin friction becomes smaller. 
Unfortunately there are no comparison data from experiment available.  
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Fig. 6.24. Unsteady Displacement Thickness of NACA 0012 
CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016o, α1 = 2.51o, xp = 0.25c, k = 0.1628 
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Fig. 6.25. Unsteady Skin Friction of NACA 0012  

CT5 Case, M = 0.755, Re = 5.5E+06, α0 = 0.016o, α1 = 2.51o, xp = 0.25c, k = 0.1628 
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6. Steady and Unsteady Aerodynamic Results 
6.3.2. AGARD Test Case CT5 for LANN Wing  

The LANN wing was designed together in the 1980s by Lockheed, AFSOR, NASA 
and NLR. The wing represents a typical wing of a transonic transport aircraft with large 
sweep angle, large aspect ratio and supercritical airfoil. The geometry of the wing is presented 
in Fig. 6.26. The parameters of geometry are presented in Table 6.9. The aerodynamic 
characteristics of the wing have been intensively measured in wind tunnel. 
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               Fig. 6.26. Geometry of the LANN Wing 
 

Table 6.9. Geometry Parameter of the LANN Wing 
Parameter 

Span s 2.77 
Root Chord cr  1.0 
Taper Ratio ct/cr 0.4 
Aspect Ratio AR 7.92 
Sweep Angle: Leading edge    ϕLE 27.49o

                       Trailing edge ϕTE 16.91o

Thickness t/c 12% 
Twist θ -4.8o

 
The AGARD CT5 test case is one of 10 selected test cases for code validation within  the 
ECARP 1996 (European Computational Aerodynamic Research Project) [23], where 30 
organizations (industry, university and research organizations) within European countries 
have been involved and participated.  

The simulation parameter of the CT5 case are shown in table 6.10. The simulation is 
carried out using the TSD, the non linear Euler (FLMEu) and the linearized Euler 
(FLMSDEu) codes both with and without boundary layer coupling. As boundary layer 
calculation method is the two-dimensional integral method of Drela and Giles, which is used 
in strip theory approach along the wingspan. The grid parameters for the FLMEu and the 
FLMSDEu codes are the same grid parameters used in ECARP 1996 and are presented in 
table 6.11. The used grid for FLMEu/FLMSDEu codes in near field of the wing is depicted in 
Fig. 6.27. 
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6. Steady and Unsteady Aerodynamic Results 
       Table 6.10. Simulation Parameter of AGARD CT5 Test Case for LANN Wing 

Simulation parameter Remark 
Mach number M 0.82  
Reynolds number Re  7.3E+06 based on the root chord 
Mean angle of attack α0   0.6 o  
Amplitude angle of attack α1  0.25 o  
Reduced Frequency k   0.204 based on the root chord 
Pitching axis xp/cr  0.621 from leading edge of the  root chord 
Moment Ref. axis xm/cr  0.25 from leading edge of the  root chord 

 
        Table 6.11. Grid Parameter for Simulation of AGARD CT5 Test Case for LANN Wing 

Grid parameter TSD FLMEu/FLMSDEu 
Grid type (xz – yz planes) H-H C-H 
Surface Cells  
(x and y directions) 

2400 
(120 x 20) 

3360  
(120 x 28)  

Total Cells  
(x, y and z directions) 

144000 
(160 x 30 x 30) 

204800  
(160 x 40 x 32) 

Offbody Distance 10-3 cr 5x10-3 cr 
Far field distance:    
     front, above, below   10 cr 10 cr 
     rear 10 cr 8 cr 
     span 2 s 2 s 

 

 
Fig. 6.27. The Grid for FLMEu/FLMSDEu Code in Near-Field of the Wing 

 
The simulation of the case was performed with the following steps: 

1. Simulation of the steady case (calculated with mean angle of attack without 
pitching motion) using the inviscid models (i.e. TSD and FLMEu codes).  

2. Simulation of the unsteady case (with steady results as initial values) using the 
inviscid models (i.e. TSD, FLMEu and FLMSDEu codes).  

3. Simulation of the steady case using the viscous – inviscid interaction (VII) models, 
i.e. TSD+BL and FLMEu+BL codes.  

4. Simulation of the unsteady case using the viscous – inviscid interaction (VII) 
models, i.e. TSD+BL, FLMEu+BL and FLMSDEu+BL  codes.  
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6. Steady and Unsteady Aerodynamic Results 
The resulted pressure distribution at 6 cuts (stations) along the wing span are presented and 
compared with the experimental results from Zwaan [81]. The positions of the spanwise 
stations are η = 0.2, 0.325, 0.475, 0.65, 0.825 and 0.95 (see Fig. 6.26). 
 
6.3.2.1. Results of the Inviscid Models  

Figure 6.28 shows the steady pressure distribution results from the inviscid models 
TSD, FLMEu and FLMSDEu (the 0th harmonic pressure distribution). It can be seen that the 
pressure distribution calculated using all codes are in good agreement. A small difference 
between the TSD and the FLMEu results lies in the leading edge region, whereby the pressure 
distribution on the upper surface from TSD is smaller (more negative/suction) than those from 
FLMEu (see fig. 6.28a. and b).  
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Fig. 6.28. Steady Pressure Distribution of the LANN Wing 
CT5, M=0.82, α0=0.6  

(Comparison between the TSD, FLMEu and FLMSDEu results) 
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6. Steady and Unsteady Aerodynamic Results 
The shock intensity from TSD results is small compared to those from FLMEu results. A 
small shift of the shock location can be observed between the FLMEu and the FLMSDEu 
results. The shock location from the FLMSDEu result is a little bit in front of that from the 
FLMEu result. Compared to the experiment, the ‘supersonic – supersonic’ shock (in the 
leading edge region) can be well simulated by all methods (see Fig.6.28a. and b.), but the 
‘supersonic – subsonic’ shock lies far behind the experiment values for all stations. 

The unsteady pressure distribution calculated by the inviscid models TSD, FLMEu 
and FLMSDEu are presented in Fig. 6.29 and Fig. 6.30 for real and imaginary part 
respectively. In order to obtain the convergent results, the simulation of the pitching 
oscillation was carried out using 3 cycles of the oscillation, where each oscillation is divided 
into 60 uniformly time steps. 
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Fig. 6.29. Real Part of the Unsteady Pressure Distribution of the LANN Wing, 

CT5, M=0.82, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 
(Comparison between the TSD, FLMEu and FLMSDEu results) 
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6. Steady and Unsteady Aerodynamic Results 
It can be seen that the numerical results from all inviscid methods have a good 

agreement in general. The shock intensity of TSD result is smaller than those from FLMEu 
and FLMSDEu results except at the station a (η=0.2) and b (η=0.325) for real part of the 
pressure distribution, where the shock intensity of TSD is larger (see fig. 6.29a and b.). The 
FLMSDEu supplies larger shock intensity for real part and smaller for imaginary part than 
from FLMEu.  
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Fig. 6.30. Imaginary Part of the Unsteady Pressure Distribution of the LANN Wing, 
CT5, M=0.82, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 

(Comparison between the TSD, FLMEu und FLMSDEu results) 
 
All of the numerical results are not comparable with the experimental result for both the shock 
intensity and the shock location. The shock intensity from numerical results is larger than 
those from the experiment and the shock location is far behind those from the experiment. 
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6. Steady and Unsteady Aerodynamic Results 
6.3.2.2. Results of the Viscous - Inviscid Interaction (VII) Models  

In fig. 6.31 the steady pressure distribution calculated by VII models (i.e. TSD+BL, 
FLMEu+BL and FLMSDEu+BL) are presented. The pressure distribution from all methods 
agree with the experimental result in general. From the leading edge to 25% of the chord all 
methods supply larger/more positive pressure coefficients than the experiment on the upper 
surface of the wing. The differences between the TSD+BL and the FLMEu+BL can be seen in 
the leading edge region (fig. 6.31a. and b) and in the shock region of the outboard stations 
(fig. 6.31c to f).  
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Fig. 6.31. Steady Pressure Distribution of the LANN Wing 
CT5, M=0.82, Re=7.3E+06, α0=0.6 

(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results) 
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6. Steady and Unsteady Aerodynamic Results 
Between the FLMEu+BL and FLMSDEu+BL a small difference can be observed in the shock 
region at the spanwise stations a. (η=0.2) and b. (η=0.325). The shock intensity and shock 
location of the FLMSDEu+BL are a little bit larger than and behind those from FLMEu+BL 
for these stations, respectively. For other stations a difference between the FLMEu+BL and 
FLMSDEu+BL results is hardly recognizable. Comparison with the experimental results 
shows that the FLMEu+BL code supplies the best agreement of the pressure distribution for 
all spanwise stations. 
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Fig. 6.32. Displacement Thickness of the LANN Wing 
CT5, M=0.82, Re=7.3E+06, α0=0.6 

(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results) 
 

Figure 6.32. shows the steady displacement thickness, which was calculated by TSD+BL, 
FLMEu+BL and FLMSDEu+BL codes. All results of the displacement thickness in general 
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6. Steady and Unsteady Aerodynamic Results 
agree each other. Differences between result from the TSD+BL and the FLMEu+BL can be 
seen in the shock region at the outboard station. In the shock region on the upper surface, the 
displacement thickness from TSD+BL is smaller than those from FLMEu+BL (see fig. 6.32c. 
to f.). At the outboard station the displacement thickness after the shock from TSD+BL is 
larger than those from FLMEu+BL (see fig. 6.32e. and f.). For all stations a difference 
between the FLMEu+BL and FLMSDEu+BL results is hardly recognizable. The value of the 
displacement thickness per chord tends to increase from inboard to outboard station (see 
Fig.6.32a. to f.). This corresponds with the increasing pressure from inboard to outboard 
station (see also fig. 6.31a. to f.). On the lower surface of the wing, there is no change of the 
displacement thickness can be seen.  

The steady skin friction calculated using the TSD+BL, FLMEu+BL and 
FLMSDEu+BL codes is presented in fig. 6.33. All results seems to show a good agreement to 
each other. Differences between the TSD+BL and the FLMEu+BL can be seen in the shock 
region. The skin friction on the upper surface calculated using TSD+BL is larger than those 
from FLMEu+BL (see fig. 6.33c. to f.). A difference between the FLMEu+BL and 
FLMSDEu+BL results almost can not be recognized. On the lower surface of the wing nearly 
there is no change of skin friction to be seen. Unfortunately the displacement thickness and 
skin friction from the experimental results are not available.  

The unsteady pressure distributions calculated using the viscous – inviscid interaction 
(VII) models, i.e. TSD+BL, FLMEu+BL and FLMSDEu+BL, are presented in fig.6.34 and 
fig. 6.35 for real and imaginary part, respectively. In order to obtain the convergent results, 
the simulation was carried out for 3 cycles of the oscillation, each of them is divided into 60 
uniformly time steps. It can be seen that all numerical results in general show a good 
agreement to each other. The shock intensity of TSD+BL result is smaller than that of 
FLMEu+BL result. At the outboard station the TSD+BL code supplies very soft shock (see 
fig. 6.34f. and 6.35f.), whereby the shock calculated using FLMEu+BL code is still strong. 
The shock location produced by TSD+BL code is behind those produced by FLMEu+BL 
code particularly at the inboard stations of the wing (see fig.6.34a-b and 6.35a-b).  

Differences between FLMEu+BL and FLMSDEu+BL results appear mostly in the 
shock region for the real part of the unsteady pressure distribution. The shock intensity of the 
FLMSDEu+BL result is larger than those from FLMEu+BL result. The shock location of 
FLMSDEu+BL result is behind those of FLMEu+BL result, but in front of those of TSD+BL 
result particularly at inboard station of the wing (see fig.6.34a-b and 6.35a-b). For the 
imaginary part the unsteady pressure distribution, the results from FLMEu+BL and 
FLMSDEu+BL are in good agreement. 

The shock intensity and location calculated from all numerical codes are in general 
showing good agreement with the experimental result. The best agreement with the 
experimental result is supplied by the FLMEu+BL code. The pressure distribution of 
FLMEu+BL and experiment agrees well and the shock location of the experiment can be well 
simulated with the FLMEu+BL code. Nevertheless the shock intensity showed by the 
experiment can not be completely simulated. 
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Fig. 6.33. Skin Friction of the LANN Wing 
CT5, M=0.82, Re=7.3E+06, α0=0.6, 

(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results) 
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Fig. 6.34. Real Part of the Unsteady Pressure Distribution of the LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 

(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results) 
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Fig. 6.35. Imaginary Part of the Unsteady Pressure Distribution of the LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 

(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results) 
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6. Steady and Unsteady Aerodynamic Results 
6.3.2.3. Comparison between Inviscid, VII and Navier Stokes results 

In this sub chapter the results of CT5 test case calculated using inviscid model 
(FLMEu), VII model (FLMEu+BL) and Navier Stokes codes are compared each other, in 
order to examine the influence of  boundary layer. The Navie Stokes results are obtained 
using the Navier Stokes codes from the Institute for Aerodynamics (formerly Institute for 
Fluid Mechanics -FLM- ) of the Technical University Munich (TUM) and from the Aerospace 
Department of Technical University Delft (TUD). The code from FLM TUM is developed by 
Dipl. -Ing. Alexander Pechloff with the Spalart Almaras turbulence model (abbreviation: NS-
SA) [85] and the code from TUD is developed by Dr. ir. Bima Prananta with the Baldwin 
Lomax turbulence model (abbreviation: NS-BL) [76]. The compared results are the Mach 
distribution, steady and unsteady pressure distribution and also lift-, drag-, and moment 
coefficients.  

Figure 6.36. shows the Mach number distribution on the upper surface of the wing, 
which are calculated using FLMEu, FLMEu+BL and Navier Stokes codes, in steady 
condition.  

 
         (a) Euler (FLMEu)          (b) Euler + boundary layer (FLMEu+BL) 

 
    (c) Navier Stokes Spalart Almaras (NS-SA) 
 

Fig 6.36. Mach Number Distribution on the Upper Surface of the LANN Wing 
CT5 test case, M=0.82, Re=7.3E+06, α0=0.6 

 
It can be seen that the supersonic region at the leading edge of the wing becomes smaller 
because of the influence of the boundary layer. The shock location is shifted forwards because 
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6. Steady and Unsteady Aerodynamic Results 
of the presence of the boundary layer (see the Mach 1 line in fig. 6.36a and b.). The results 
from the FLMEu+BL and Navier Stokes are in good agreement (see fig. 6.36b. and c).  

The steady pressure distributions calculated from FLMEu, FLMEu+BL and Navier 
Stokes (NS-SA and NS-BL) codes are presented in fig. 6.37. The pressure distribution on the 
upper surface of the wing is strongly different with the presence of the boundary layer (see 
FLMEu and the FLMEu+BL results). The shock from FLMEu+BL lies in front of that from 
FLMEu with weaker intensity. The shock location resulted from FLMEu+BL is mostly in 
front of the shock of NS-SA and NS-BL results (see fig. 6.37a, c, d and e). Between the NS-
SA and the NS-BL results there is almost no differences to be seen. The shock of NS-SA 
seems to be sharper than that from NS-BL. On the lower surface of the wing the deviation 
between inviscid and VII results is in the trailing edge region, where the FLMEu+BL gives 
more negative pressure compared to the FLMEu results and shows good agreement with 
Navier Stokes results. 

Table 6.12. shows the aerodynamic coefficients (lift, drag and moments) for steady 
condition of CT5 case, which was computed using TSD, FLMEu, FLMSDEu (with and 
without boundary layer) and Navier Stokes codes. The influence of the boundary layer can be 
seen from the changing of the aerodynamic coefficients. The lift and drag coefficient become 
smaller and the moment coefficient becomes larger (more positive) because of the presence of 
the boundary layer.  
It can be seen from this table that the lift coefficient from all numerical results are larger than 
that from the experimental result. The best agreement with the experimental result was given 
by the FLMEu+BL code, which has 5.31% error compared to the experimental value. On the 
other side the Navier Stokes code NS-SA produced approximately 12 % error and the 
TSD+BL code gives approximately 10% error from the experiment for lift coefficient. It 
seems that the influence of the boundary layer on the Euler equations is larger than its 
influence on the TSD the equation and the Euler + boundary layer code gives underestimated 
value compared to the Navier Stokes. 
A different sign between experimental and numerical results can be seen for the moment 
coefficient. The moment coefficient from the experiment is positive (leading edge upwards) 
but all calculations results show negative moment coefficient (leading edge downwards).
  

Table 6.12. Steady Aerodynamic Coefficients of CT5 Case of LANN Wing  
 CL Error CL (%) CD CM

EXP 0.320  - 0.037 
NS-SA 0.359 12.34 0.0203 -0.0597 
FLMEu 0.447 39.69 0.0225 -0.0794 
FLMEu+BL 0.337 5.31 0.0186 -0.0557 
FLMSDEu 0.442 38.12 0.0222 -0.0787 
FLMSDEu+BL 0.349 9.06 0.0189 -0.0586 
TSD 0.453 41.56 0.0234 -0.0810 
TSD+BL 0.353 10.31 0.0205 -0.0606 

 
In figures 6.38 and 6.39, the real and imaginary parts of the unsteady pressure 

distribution calculated using FLMEu, FLMEu+BL and Navier Stokes codes are presented. 
The Navier Stokes results was computed using the Navier Stokes code from the Technical 
University Delft with Baldwin Lomax turbulence model (NS-BL). The unsteady results from 
Navier Stokes with turbulence model Spalart Almaras (NS-SA) are unfortunately unavailable. 
The unsteady pressure distribution on the upper surface of the wing is strongly changed 
because of the presence of the boundary layer. From the comparison between the FLMEu and 
the FLMEu+BL the following can be written: the shock location shifts forward and the shock 
intensity becomes smaller because of the boundary layer.  
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6. Steady and Unsteady Aerodynamic Results 
Comparison with NS-BL result shows that the shocks of FLMEu+BL lie in front of those of 
NS-BL result with stronger intensity (see fig. 6.38 and 6.39). 
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Fig. 6.37. Steady Pressure Distribution of LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 
(Comparison between Euler, Euler+BL and Navier-Stokes Results) 
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Fig. 6.38. Real Part of Unsteady Pressure Distribution of LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 
(Comparison between Euler, Euler+BL and Navier-Stokes Results) 
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Fig. 6.39. Imaginary Part of Unsteady Pressure Distribution of LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 
(Comparison between Euler, Euler+BL and Navier-Stokes Results) 
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6. Steady and Unsteady Aerodynamic Results 
Table 6.13 and fig. 6.40. represent the aerodynamic coefficients (lift and moment) for 
unsteady CT5 case, which was computed using TSD, FLMEu and FLMSDEu (with and 
without boundary layer) codes. The CL

* and CM
* mean: CL and CM divided with πα1 (CL

* = 
CL/πα1, CM

* = CM/πα1). The influence of the boundary layer can be measured by the 
changing of the aerodynamic coefficient. The amplitude of the unsteady lift and moments 
become smaller and the phase angles of the lift and moments become larger (more positive) 
because of the presence of the boundary layer. The unsteady lift and moment coefficient as 
function of angle of attack are presented in fig. 6.41. It can be seen clearly that the unsteady 
lift and moment are strongly changed due to boundary layer. 
 

Table 6.13. Unsteady Aerodynamic Coefficients of CT5 Case of LANN Wing 
 Re{CL

*} Im{CL
*} |CL

*| Phase  
CL

*(deg)
Re{CM

*} Im{CM
*} |CM

*| Phase 
CM

*(deg)
EXP 1.889 -0.296 1.912 -8.91 0.453 0.156 0.479 19 
FLMEu 2.108 -0.658 2.208 -17.30 -1.350 0.312 1.385 166.99 
FLMEu+BL 1.919 -0.349 1.950 -10.31 -1.159 0.149 1.168 172.67 
FLMSDEu 2.261 -0.659 2.355 -16.25 -1.482 0.296 1.511 168.70 
FLMSDEu+BL 2.191 -0.369 2.221 -9.56 -1.342 0.141 1.349 174 
TSD 2.212 -0.591 2.289 -14.96 -1.490 0.271 1.514 169.69 
TSD+BL 2.126 -0.292 2.146 -7.82 -1.361 0.113 1.366 175.25 
CL

* = CL/πα1 , CM
* = CM/πα1
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Fig. 6.40. Unsteady Aerodynamic Coefficients of  CT5 Case of LANN Wing 

 
          (a) Lift         (b) Moment 

Fig. 6.41. Unsteady Lift and Moment Coefficients of LANN Wing, 
CT5, M=0.82, Re=7.3E+06, α0=0.6, α1=0.25, k=0.204, xp=0.621cr 

(Comparison between Euler and Euler+BL Results) 
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6. Steady and Unsteady Aerodynamic Results 
6.3.3. Test Case E24 for Delta Wing of NASA 

This sub chapter presents the results of the developed VII method used to simulate the 
test case E24 of the delta wing of NASA Langley. The geometry of the wing is presented in 
Fig. 6.42 and Table 6.14. The wing has a parabolic airfoil with 6% thickness along the wing 
span. 
 
 
 
  

  (a) η=0.332 
 
       (b) η=0.541 
   (c) η=0.694 
  
         (d) η=0.851 
 
 
 

 
(a) Planform      (b) Airfoil  
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Fig. 6.42. Geometry of Delta Wing of NASA Langley 
 

Table 6.14. Geometric Parameter of Delta Wing of NASA Langley 
Parameter 
Span s 0.7094 
Root Chord cr  1.0 
Taper Ratio ct/cr 0.1423 
Aspect Ratio AR 1.242 
Sweep : Leading Edge      ϕLE 50.4o

              Trailing Edge ϕTE 0.0o

Thickness t/c 6% 
Twist θ 0.0o

 
For the simulation of this case the TSD and the non linear FLMEu codes are used both with 
and without boundary layer coupling. As the boundary layer calculation method is again the 
method of Drela and Giles. The simulation parameters of the test case E24 is shown in Table 
6.15. The grid parameters for this simulation is presented in Table 6.16. The grid used for 
FLMEu code is depicted in Fig. 6.43.  
 

   Table 6.15. Parameter of Simulation of  Test Case E24 for Delta Wing of NASA 

Parameter of simulation Remark 
Mach number M 0.885  
Reynolds number Re  1.0E+07 based on the root chord 
Mean angle of attack α0   0.0 o  
Amplitude angle of attack α1  0.5 o  
Reduced Frequency k   0.346 based on the root chord 
Pitching axis xp/cr  0.652 from LE of  the root chord 
Moment ref. axis xm/cr  0.25 from LE of  the root chord 
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6. Steady and Unsteady Aerodynamic Results 
 

Table 6.16. Grid parameter for Simulation of Test Case E24 for Delta Wing of NASA 
Grid parameter TSD FLMEu 
Grid type (xz – yz plane) H-H C-H 
Surface cells  
(x and y direction) 

2400 
(120 x 20) 

2640 
(120 x 22)  

Total cells  
(x, y and z direction) 

144000 
(160 x 30 x 30) 

153600  
(160 x 32 x 30) 

Offbody distance 10-3 cr 10-3 cr 
Far field distance:    
     above, below   10 cr 10 cr 
     fore, aft 10 cr 10 cr 
     spanwise 2 s 2 s 

 
 

 
Fig. 6.43. Grid in the Near-Field for FLMEu Code 

 
The simulation was accomplished with the following order: 

1. Simulation of steady condition of test case E24 (calculated with mean angle of 
attack without pitching motion) using TSD and FLMEu codes.  
2. Simulation of unsteady of test case E24 (with the steady initial values from step 1) 
using TSD and FLMEu codes.  
3. Simulation of steady condition of the case by TSD plus boundary layer and FLMEu 
plus boundary layer codes.  
4. Simulation of unsteady of test case E24 by TSD plus boundary layer and FLMEu 
plus boundary layer codes. 

 
The pressure distribution from numerical result at four spanwise stations are presented and 
compared with the experimental result from Bennet and Walker [82]. The positions of the 
spanwise stations are η = 0.332, 0.541, 0.694, and 0.851 (see Fig. 6.42). 
 
In fig. 6.44 the steady pressure distribution resulted from inviscid models (TSD and FLMEu) 
and from viscous - inviscid models (TSD+BL and FLMEu+BL) are presented. It can be seen 
that the pressure distribution between the TSD and the FLMEu agrees well each other. A 
small difference between the TSD and the FLMEu codes lies in the leading edge region, 
whereby the pressure distribution on the upper surface from TSD result is smaller (more 
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6. Steady and Unsteady Aerodynamic Results 
negative) than those from FLMEu (see Fig. 6.44). The shock position and the shock intensity 
between the TSD and FLMEu are a little bit different. The shock location from TSD result 
lies behind that from FLMEu with larger shock intensity. The inclusion of boundary layer in 
the calculations makes the shock intensity smaller and shifts the shock location a little bit 
forward (see Fig.6.44). The influence of the boundary layer in this case is small or not so 
meaningful. Comparing with the experimental result, all numerical results are in good 
agreement at inboard stations, but at outboard stations are more positive than the experimental 
result. 
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Fig. 6.44. Steady Pressure Distribution of Delta Wing from NASA 
Test Case E24, M = 0.885, α0 = 0, Re=1.0E+07 

 
 The displacement thickness and skin friction for this test case are presented in Fig. 
6.45. Between the TSD+BL and the FLMEu+BL result can be seen a small difference within 
the trailing edge region. The skin friction from FLMEu+BL in this region is lower than those 
from TSD+BL. Inversely, the displacement thickness from FLMEu+BL is larger than those 
from TSD+BL within this region. The displacement thickness of the two results (TSD+BL 
and FLMEu+BL) at the outboard stations look larger than those at the inboard stations.  
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            (c). η = 0.694             (d). η = 0.851 

Fig. 6.45. Displacement Thickness and Skin Friction of the Upper Surface of Delta 
Wing from NASA, Test Case E24, M = 0.885, α0 = 0, Re=1.0E+07 

 
 Figures 6.46 and 6.47 represent the real part and the imaginary part of the unsteady 
pressure distribution of the test case E24. It can be seen that the influence of the boundary 
layer must be considered. The shock location and shock intensity were affected strongly by 
the boundary layer. The best agreement with the experimental result is supplied by the 
FLMEu+BL code rather than by the TSD+BL code. For all stations the real part of the 
unsteady pressure distribution of the test case E24 can be well simulated (see Fig.6.46), but 
unfortunately the imaginary part of the unsteady pressure distribution of the experiment 
cannot be well simulated by these calculations. The numerical results are more positive than 
those of the experiment (see Fig. 6.47) 
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Fig. 6.46. Real Part of Unsteady Pressure Distribution of Delta Wing from NASA 
Test Case E24, M = 0.885, Re=1.0E+07, α0 = 0, α1 = 0.5, k = 0.346, xp = 0.652cr 

 110



 
 

6. Steady and Unsteady Aerodynamic Results 
-10

-5

0

5

10
0 0,2 0,4 0,6 0,8 1

x/c

R
e{

C
p/

�
1}

 

-10

-5

0

5

10
0 0,2 0,4 0,6 0,8 1

x/c

R
e{

C
p/

�
1}

 

EXP
TSD
TSD+BL
FLMEu
FLMEu+BL

  (c). η = 0.694                 (d). η = 0.851 
 

Fig. 6.46. Real Part of Unsteady Pressure Distribution of Delta Wing from NASA 
Test Case E24, M = 0.885, Re=1.0E+07, α0 = 0, α1 = 0.5, k = 0.346, xp = 0.652cr 
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Fig. 6.47. Imaginary Part of Unsteady Pressure Distribution of Delta Wing from NASA 
Test Case E24, M = 0.885, Re=1.0E+07, α0 = 0, α1 = 0.5, k = 0.346, xp = 0.652cr 
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7. Flutter Results 

7. Flutter Results 
 

 In this chapter the flutter results for two airfoils and a wing are presented. The selected 
airfoils are NACA 64A010 and NLR 7301 with the structural data proposed by Isogai [86] 
and DLR [87], respectively. The selected wing is the AGARD wing  445.6 with structural 
data from NASA [88]. The computation of the unsteady aerodynamic forces, which is 
necessary for the flutter analysis, is carried out using the TSD and TSD plus boundary layer 
(TSD+BL) codes, in order to examine the influence of the boundary layer on the flutter 
results. The boundary layer calculation method of Drela-Giles is used to compute the 
boundary layer parameters. The modal and flutter analysis are performed with the State 
Transition Matrix method, as already discussed in Chapter 5. The flutter results are compared 
with experimental data and other numerical calculations. 
 
7.1. Transonic Dip of the Isogais Model 
 The flutter characteristic of the Isogais model is computed for various Mach numbers, 
in order to examine the ‘Transonic Dip’, that is the lowest flutter speed in transonic regime. 
 
7.1.1. The Isogais Model 
 The aeroelastic equation for a 2 Degree of Freedom (DoF) system can be derived from 
force analysis, i.e. equilibrium of the forces, as follows (see Fig. 7.1): 
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where: 
 h, α = physical displacement (i.e. heaving and pitching DoF) 
 m1 = mass of system 
 kh = stiffness of system in heaving motion = m1 ωh

2

 kα = stiffness of system in pitching motion = Iα  ωα
2 

 Iα  = moment of inertia of system = m1 rα
2b2

 rα = radius of gyration = (Iα/ m1b2)1/2

xα = static unbalance (normalised with semi chord b) 
 b = semi chord 
 ωh = uncoupled natural frequency in heaving motion 
 ωα = uncoupled natural frequency in pitching motion 
 L = aerodynamic force  (positive up ) 
 Mea = aerodynamic moment w.r.t. elastic axis (positive ‘nose up’) 
Equation (7.1) will be normalised with mass (m1) and semi chord (b) as follows: 
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which can be written in matrix notation as: 
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7. Flutter Results 
Here the physical displacements (h/b) and α are still a function of time t , as: 
   (h/b) = f(t), α = f(t) 
The time variable t will be transformed into non dimensional time τ as follows: 

αω
τ

=t          (7.4) 

With this non dimensional time variable, the derivative of the physical displacement will be 
transformed to: 

( ) ( )

2

2
2

2

2

2

2
2

2

2 //

τ
αωα

τ
ω

α

α

d
d

dt
d

d
bhd

dt
bhd

=

=
      (7.5) 

Equation (7.3) will be transformed into non dimensional form as follows: 
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which can be written in general form as:  
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Compared to the equation (5.6), this system does not have damping term ([C] = 0). The mass 
matrix of the system is coupled (i.e. the system can be said as dynamically coupled). Equation 
(7.8) will be solved subject to a set of structural data, which was proposed by Isogais. The 
structural data of the Isogais model [86] is presented in Table 7.1. 
  In order to obtain the dynamic characteristic (the coupled natural frequencies and 
mode shapes) of the structure, an analysis of modal of the system must be carried out prior to 
the flutter calculation.  
 

Table 7.1. Structural Data of the Isogais Model 
Parameter  

Airfoil  NACA 64A010 
Steady angle of attack α0 0o

Radius of gyration rα 1.865 
Static unbalance (normalised with semi chord b) xα 1.8 
Position of elastic axis (normalised with semi chord b) a  - 2 (from semi chord)
Uncoupled natural frequency in heaving motion ωh 100 Hz 
Uncoupled natural frequency in pitching motion ωα 100 Hz 
Ratio of structural to fluid mass, m1/(πρ∞b2) µ 60 

 
 
 

 113 



 
 

7. Flutter Results 
7.1.2. Modal Analysis of the Isogais Model 

The modal equation can be derived from equation (7.7) by neglecting the external 
force vector {Fo} as follows: 
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The physical coordinate will be assumed as a harmonic function: 
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Substitution of eq. (7.11) into eq. (7.10) gives: 
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The coupled natural frequencies can be calculated by putting the determinant of the matrix 
equals to zero: 
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The determinant of matrix leads to characteristic equation: 
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Solutions of the characteristic equation (7.14) is: 
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By inserting the structural data (Table 7.1): 
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into equation (7.15), one obtains the coupled natural frequency : 

HzHz 77.533,34.71,3377.5,7134.0 21
21

===⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω

ω
ω

ω
ω

αα

 (7.16) 

 114 



 
 

7. Flutter Results 
The vibration mode shapes can be calculated from eq. (7.12) as follows: 
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By inserting the value of the frequencies and structural data in the equation (7.17), one 
obtains: 
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The mode shapes are: 
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where  α1 = α2 =1 has been assumed. 
With these value of the mode shape, one can calculate the generalised mass  and stiffness 
matrices as follows: 

[ ] [ ] [ ][ ] =ΦΦ= mM T  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

2443.00

06757.13

11

8655.18655.1

48.38.1

8.11

18655.1

18655.1
M     (7.20) 

 
[ ] [ ] [ ][ ] =ΦΦ= kK T  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

96.60

096.6

11

8655.18655.1

)48.3(0

01

18655.1

18655.1
K             (7.21) 

The location of the pivot point of the vibration mode can be calculate through the following  
geometrical relation (See Fig. 7.2) : 
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Inserting equation (7.18) and the elastic axis  into equation (7.22), one obtains the pivot 
point of the vibration modes from semi chord, as follows: 
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The pivot points of the first and the second vibration mode lay at 1.433 chord fore and 0.433 
chord aft of the leading edge. The vibration mode shapes of this system is shown in fig. 7.3. 
 
7.1.3. Flutter Analysis of the Isogais Model 
 Flutter analysis of the Isogais Model will be carried out using State Space equation 
(5.15):  
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with the State Vectors {X} and {u} and the State Transition Matrices [A] and [B] as follows: 
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Inserting [M] from eq. (7.20) and [ωn] from eq. (7.16), the State Transition Matrices [A] and 
[B] will be: 
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The initial value of  the state vector {X} are: 
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which means the system is disturbed with an initial velocity of the generalised displacement.  
In order to check the value of the coupled natural frequencies, the characteristic of the 

system is computed with zero dynamic pressure for some cycles of oscillation. The response 
of the system is shown in Fig. 7.4. In this computation the value of the time step ∆τ = 0.09786 
is used, which corresponds to the time step ∆t = 0.0009786 sec. The natural frequencies can 
be computed from the response of the system, as follows: 
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where : N = number of time step in one periods of  the response oscillation. 
 ∆τ = dimensionless time step increment 
The number of the time step N for the first and the second mode is approximately 90 and 12 
time steps, respectively. From equation (7.29) the natural frequencies can be computed as: 
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The deviation of the natural frequencies of the second mode from exact calculation (eq. 7.16) 
is 0.24%.  Fig. 7.4a and 7.4b show the response of both mode shapes in term of generalized 
displacement (with corresponding frequency ω1/ωα and ω2/ωα ) and fig. 7.4c shows the 
physical response (h/b and α). From fig. 7.4c can be seen that the value of the uncoupled 
frequency (ωh and ωα) are the same.  

Before the flutter calculation is performed, it is important to analyze or to validate  the 
quality of the aerodynamic forces. For this purpose, the steady and unsteady pressure 
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7. Flutter Results 
distribution of the test case AGARD CT8 for the NACA 64A010 airfoil with the following 
data:  

Mach number    M = 0.796  
Reynolds number   Re =1.2E+07 (based on chord) 
Mean angle of attack   α0 = 0 
Amplitude angle of attack  α1 =1.02 
Pitching axis    xp  = 0.25c  
Reduced frequency   k  = 0.202 (based on chord) 

are evaluated and presented in Fig. 7.5. Comparison between the experimental of Davis [89] 
and numerical results shows a good agreement. The influence of the boundary layer for this 
case is small because the Reynolds number is high. 

In order to simulate the Transonic Dip phenomenon, the response of the system will be 
computed in the range Mach number from M = 0.7 to M = 0.9. Therefore the steady 
aerodynamic forces for those Mach number must be first computed prior to the flutter 
analysis. The steady pressure distribution of this airfoil for these different Mach numbers is 
shown in Fig. 7.6. Since the airfoil is symmetric and the angle of attack is zero, the airfoil 
produces no lift.  

Flutter analysis is then carried out for each Mach number. The response of the system 
is computed until a neutral response is found for each Mach number. This is carried out by 
starting the given speed (U∞) and dynamic pressure (0.5ρ∞U∞

2) with low values and then 
increasing it step by step. Fig. 7.7 shows the diagram of flutter speed index (V*), flutter 
frequency (ωf/ωα), ratio of the amplitude of the Responses (h/b)/α and phase lag between (h/b) 
and α versus Mach number.  
The flutter speed index (V *) is defined as: 

µωαb
V

V f=∗        (7.29) 

where: 
 Vf  = flutter speed 
 b   = semi chord 
 ωα = uncoupled frequency in pitching motion 
 µ   = ratio of structural to fluid mass  
 
The value of flutter speed index will be compared with the results from Alonso and Jameson 
(using Euler equation) [90], Isogai (using TSD equation) [86] and the linear method (Doublet 
Lattice Method -DLM) [2, 86]. It can be seen in fig. 7.7a that the flutter speed index (V*) of 
the TSD Present method has the same form with the result from Alonso & Jameson. The 
Transonic Dip for this system calculated with the TSD Present is occurred at M = 0.85 with 
V* = 0.53 equivalent with the Alonso and Jamesons result. The Isogais result supplies the 
Transonic Dip at M = to 0.8375 with V* = 0.48. The linear method (DLM) can not show the 
Transonic Dip phenomenon. From Mach number 0.7 up to the Dip location the flutter speed 
index becomes smaller. By the TSD Present method the decreasing process is slowly similar 
with the Alonso & Jamesons results. At the other side this decreasing process by Isogais result 
is steeper than those of the present method, although the two results are based on the TSD 
equation.  
The deviation is supposed because of the following:  

- the TSD equation of Isogai does not have entropy and vorticity correction, which is 
used in the Present method.  

- the flutter analysis used by Isogai is the U-g method, where the aeroelastic equation 
is solved in frequency domain. In the Present method the aeroelastic equation is solved in 
time domain, which was also used by Alonso & Jameson. The flutter analysis in time domain 
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7. Flutter Results 
ensures that the coupling between fluid and structure is carried out in time-accurate 
procedures. The generalized aerodynamics forces calculation remain pure in time domain 
without any extrapolation or interpolation as is usually found by the frequency-domain flutter 
analysis. 

After the Dip location, the flutter speed index calculated with non linear aerodynamic 
methods increases discontinue. This happens due to the changing of the flutter mode. Flutter 
is occurred in the first mode before the Dip location and then changed into the second mode 
after the Dip. This changing can be seen clearly in the flutter frequency diagram fig. 7.7b. 
Flutter occurs with the frequency near by the first mode (ω1/ωα  = 0.7134) before the Dip and 
then the flutter frequency increases near by the second mode (ω2/ωα = 5.3377) after the Dip. 
The changing of the flutter mode can not be seen by the result of the linear aerodynamic 
method (DLM). By the Present method lies the changing of the flutter mode at M = 0.86875 
prior to the Alonso & Jamesons result (at M = 0.875) and Isogais result (at M = 0.9). By the 
Isogais results, flutter of the system can not be found at the range of Mach number between 
0.85 and 0.9.  

The neutral response of the system at the Mach number 0.7 can be seen in Fig. 7.8 
with the V* = 1.26. One can see that the ratio of  (h/b) to α is approximately one (see also Fig. 
7.7c) with the phase lag is approximately 30 degrees at this condition. 
 The response of the system at the Dip (M = 0.85) for various V* can be seen in Fig. 
7.9. An under damped response of the system is shown in the fig. 7.9a with V* = 0.26. The 
neutral response (flutter) at this Mach number is shown in fig. 7.9b with V* = 0.53. A 
divergent response of the system is shown in fig. 7.9c with V* = 0.77.  

From the neutral response (Fig 7.9b) one can see that the Ratio of (h/b) to α is 
approximately 1.86 (see also Fig.7.7c). This value is same with the Ratio of (h/b) to α in the 
first mode shape (see equation 7.18). That means: the dominant flutter mode is the first mode. 
There is almost no phase lag between (h/b) and α at this neutral response (see fig. 7.7d).  
Compared with Fig. 7.8 (the neutral response at Mach 0.7), the Ratio of (h/b) to α becomes 
larger and on the other hand the phase lag between (h/b) and α becomes smaller with the 
increasing Mach number (see fig. 7.7c. and d).  

The neutral Response at M = 0.86875 can be seen in Fig. 7.10 with V* = 2.4. One can 
see that now the α displacement is larger than (h/b) (see also Fig. 7.7c). That means: the 
dominant flutter mode is the second mode.  
The above flutter results have been partially published in Ref. [91]. 
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Fig. 7.2. Geometric Relation to Determine the Pivot Point of Vibration Mode 
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Fig. 7.3. The Vibration Mode Shapes of Isogais Model 
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 (a). Generalised Displacement of 1st Mode        (b). Generalised Displacement of 2nd Mode 
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(c). Response in Physical Displacement 

Fig. 7.4. Response of Isogais Model at Zero Dynamic Pressure 
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Fig. 7.5.(a). Steady Pressure Distribution of NACA 64A010 Airfoil  

at M=0.796, Re=1.2E+07, α0=0 
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    (d). Unsteady Lift Coefficient   (e). Unsteady Moment Coefficient 
 

Fig. 7.5. Steady and Unsteady Pressure Distribution and  
Unsteady Lift and Moment Coefficients of NACA 64A010 Airfoil 

M=0.796, Re=1.2E+07, α0=0, α1=1.02, k=0.202, xp=0.25 
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Fig. 7.6. Steady Pressure Distribution of NACA 64A010 Airfoil 
for Various Mach Number and α0 = 0 
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    7.7.(a). Flutter Speed Index        7.7.(b). Flutter Frequency 
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Fig. 7.7. Diagram of Flutter Speed Index, Flutter Frequency,  
Ratio of Amplitude and Phase Lag versus Mach number of the Isogais Model 
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Fig. 7.8. Neutral Response of System at M = 0.7, V* = 1.26 
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 (a). Damped Response at M = 0.85, V* = 0.26 
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 (b). Neutral Response at M = 0.85, V* = 0.53 
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 (c). Divergent Response at M = 0.85, V* = 0.77 

Fig. 7.9. Response at the Dip (M = 0.85) for various V*
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Fig. 7.10. Neutral Response at M = 0.86875, V* = 2.4 
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7. Flutter Results 
7.2. Transonic Dip of the DLR Model 
 This sub chapter presents the flutter characteristic of the DLR model (i.e. 2D 
aeroelastic model with airfoil NLR7301) for various Mach numbers, in order to examine the 
Transonic Dip phenomenon of this model. The influence of the boundary layer into flutter 
characteristic is also examined. 
 
7.2.1. The DLR Model 
 The aeroelastic equation of the DLR Model is formulated as follows: 
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    (7.30) 

Equation (7.30) is normalised with chord c instead of semi chord b as by equation (7.6). The 
damping matrix of the system is assumed to be zero. Table 7.2 shows the structural data of the 
DLR model (taken from the 2nd Campaign in Ref. [87]). 
 

Table 7.2. Structural Data of the DLR Model 
Parameter  

Airfoil  NLR 7301 
Steady angle of attack from experiment α0 1.25o

Radius of gyration rα 0.197 
Static unbalance (normalised with chord c) xα 0.0484 
Position of the elastic axis (normalised with chord c) a  0.25(from leading edge) 
Uncoupled natural frequency in heaving motion ωh 206.6 Hz 
Uncoupled natural frequency in pitching motion ωα 271.9Hz 
Ratio of structure to fluid density, ρm/ρ∞ µ 299.5 

 
In order to reduce the complexity of the flutter analysis, the Reynolds number and the ratio of 
structure to fluid density are assumed to be constant for all Mach number. The Reynolds 
number for this simulation is 1.7E+06 based on chord. 
 
7.2.2. Modal Analysis of the DLR Model 
 With the structural data from Table 7.2: 
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The vibration mode shapes calculated using eq. (7.17) are: 
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The mode shapes are : 
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where α1 = α2 =1 has been assumed. 
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7. Flutter Results 
 
The generalised mass and stiffness matrices can be found as: 
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The location of the pivot point of the vibration mode are: 
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The pivot of the first and second vibration mode lies in 0.4351 chord fore and 0.3481 chord 
aft of the leading edge respectively. The vibration mode shapes of the system is depicted in 
Fig. 7.11. 
 
7.2.3. Flutter Analysis of the DLR Model 
 Flutter Analysis of the DLR Model will be carried out by State Space equation (5.15): 
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where State Transition Matrices [A] and [B] are: 
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The initial value of  the state vector {X} is the same with the previous one used for Isogai 
model.   
In order to check the value of the coupled natural frequencies, the characteristic of the system 
is computed with zero dynamic pressure for some cycles of oscillation. The response of the 
system is shown in Fig. 7.12. In this computation the value of the time step ∆τ = 0.0327 is 
used, which corresponds to the time step ∆t = 0.0001203 sec.  
From equation (7.28) the natural frequencies can be found as: 
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7. Flutter Results 
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Fig. 7.12. represents the response of both mode shapes (i.e. the response of the generalized 
displacement with corresponding frequencies ω1/ωα and ω2/ωα). 
 Before the flutter calculation is performed, it is important to analyze or to validate  the 
quality of the aerodynamic forces. For this purpose, steady and unsteady pressure distribution 
of the test case AGARD CT5 for NLR 7301 with the following data: 

Mach number    M = 0.7  
Reynolds number   Re = 2.14E+06 (based on chord) 
Mean angle of attack   α0 = 2 deg 
Amplitude angle of attack  α1 = 0.5 deg 
Pitching axis    xp  = 0.4c  
Reduced frequency   k  = 0.384 (based on chord) 

has been chosen [92]. The steady and unsteady pressure distribution of the NLR 7301 airfoil 
for this test case are presented in Fig. 7.13. Comparison with the experimental results shows a 
good agreement of the numerical (the TSD+BL results) and the experimental results. The 
influence of the boundary layer for this test case can not be neglected and must be considered.  

It is  recommended by Schewe et. al. [87], that the MP 77 case in the experiment must 
be examined or simulated prior to flutter analysis step, in order to compare the lift between 
the experimental and the numerical result.  
The flow and geometric parameters for the MP 77 case in experiment are as follows:  

Mach number   M  = 0.759  
Reynolds number  Re = 1.7E+06 (based on chord) 
Angle of attack  α0 = 1.25 deg (uncorrected).  

The simulation was carried out with two different angle of attack (α0 = 0.74 and α0 = -0.5), 
in order to examine the influence of angle of attack in the pressure distribution. Fig. 7.14 
represents the steady pressure distribution for this MP 77 case. It can be seen that the pressure 
distribution from the experiment can not be good simulated. With the angle of attack α0 = 
0.74 the pressure distribution on the upper surface from the numerical result is more negative 
than from that from the experimental result. On the other hand the pressure distribution on the 
lower surface from the numerical result is more positive than that from the experimental 
result. The best agreement of the pressure distribution with the experimental result was 
obtained with the angle of attack α0 = -0.5 (particularly for the lower surface of the airfoil).  

The steady lift coefficient of the NLR 7301 airfoil for various Mach numbers is 
presented in Fig. 7.15. The used angle of attack in simulation is –0.5 degrees instead of 1.25 
as in the experiment, in order to obtain the closest lift coefficient with the experimental 
values. From Mach number 0.5 to 0.75 the steady lift coefficient of the experimental result is 
relatively flat. This result is questionable, because the lift coefficient becomes larger with the 
increasing Mach number within the subsonic range. Probably there is a change of angle of 
attack in the experiment because of the static aeroelastic effect. The rear-loading type of 
aerodynamic load causes the nose-down pitching moment, which makes the actual angle of 
attack smaller (due to the elasticity of the model). After the Mach number 0.75 the lift 
coefficient increases sharply, until a maximum value at the Mach number 0.8. Then the lift 
coefficient desccreases until Mach number 0.85. In the comparison to the experiment the 
steady lift coefficient from the TSD result increases monotonic from Mach number 0.5 to 
0.75. Afterwards the lift coefficient decreases slowly from M = 0.75 to 0.8. After the Mach 
number 0.8 it decreases sharply. The influence of the boundary layer makes the lift smaller as 
can be seen from TSD+BL result in Fig. 7.15. The computation of the aerodynamic load with 
the TSD plus boundary layer could not be carried out for the Mach number higher than 0.825. 
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7. Flutter Results 
The simulation can not produce a convergence result. This is probably because of the 
buffeting phenomenon at the higher Mach number.  

Fig. 7.16 shows the diagram of flutter speed index (V*), flutter frequency (ωf/ωα), ratio 
of (h/c) to α and phase lag between the two modes versus Mach number. The flutter speed 
index will be compared with the experimental result from DLR Goettingen (conducted by 
Schewe et. al. [87]).  

From Fig. 7.16a it can be seen that the flutter speed index V* from the experimental 
result is relatively flat up to Mach number 0.75. Afterwards the V* decreases sharply, until the 
Transonic Dip is reached at the Mach number 0.771 with V* = 0.202. After the Dip the flutter 
speed index V*    increases again.  
The flutter speed index from the calculation is relatively flat from Mach number 0.5 to 0.6. 
The calculated flutter speed indexes V* at Mach number 0.5 are 0.281 from TSD result and 
0.285 from TSD+BL result. As comparison the flutter speed index V*  from the experiment is 
0.273 at Mach number 0.55. Afterwards V*  decreases slowly up to Mach 0.725. From M = 
0.725 to 0.75 it increases slightly again and then it decreases again, until the Transonic Dip is 
reached. The Transonic Dip for this system with this method lies at M = 0.8125 with V* = 
0.152 (TSD result) and V* = 0.164 (TSD+BL result). The deviation of the aerodynamics 
forces between the experimental and the numerical result, as shown in Fig. 7.15, causes the 
difference of the Transonic Dip characteristic (the Mach number and the V*) between the 
experimental and numerical result. After the Dip the flutter speed index from the calculation 
increases  up to M = 0.8375 (TSD) and M = 0.825 (TSD+BL).  

The calculated neutral response of the system at Mach number 0.5 is shown in Fig. 
7.17. At this Mach number it can be seen from Fig. 7.16c and d that the ratio of (h/c) to α is 
0.32 with associated phase lag 36 degrees. The neutral response at M = 0.725 with V* = 0.205 
(TSD) and 0.210 (TSD+BL) is shown in Fig. 7.18. One can see from Fig. 7.16c and d that the 
ratio of (h/c) to α is 0.39 with phase lag 25 degrees (TSD) and 23 degrees (TSD+BL).  
Comparison with the Fig. 7.17 reveals that the displacement ratio becomes larger and on the 
other hand the phase lag becomes smaller with the increasing Mach number.  
The neutral response at M = 0.75 with V* = 0.208 (TSD) and 0.216 (TSD+BL) is shown in 
Fig. 7.19. One can see from Fig. 7.16c and d that the displacement ratio is 0.383 (TSD) and 
0.377 (TSD+BL) with phase lag 25.6 degrees (TSD) and 24.3 degrees (TSD+BL). Compared 
to Fig. 7.18 the ratio of (h/c) to α becomes little bit smaller and the phase lag becomes little 
bit larger.  

The neutral response at the Dip M = 0.8125 is shown in Fig. 7.20 with V* = 0.152 
(TSD) and 0.164 (TSD+BL). One can see from Fig. 7.16c and d that the displacement ratio of 
(h/c) to α is 0.515 (TSD) and 0.59 (TSD+BL) with phase lag 13.7 degrees (TSD) and 10.1 
degrees (TSD+BL). Comparison with the Fig. 7.17 reveals that the displacement ratio 
becomes larger and on the other hand the phase lag becomes smaller with the increasing Mach 
number. The neutral response at M = 0.825 (after the Dip) is presented in Fig. 7.21 with V* = 
0.177 (TSD) and 0.204 (TSD+BL). One can see from Fig. 7.16c. and d that the ratio of (h/c) 
to α is 0.51 (TSD) and 0.46 (TSD+BL) with phase lag 23 degrees (TSD) and 16 degrees 
(TSD+BL). The neutral response at M = 0.8375 is shown in Fig. 7.22 with V* = 0.196 (TSD). 
The ratio of (h/c) to α is 0.49 (TSD) with phase lag 33 degrees (TSD). Compared to Fig. 7.20 
the ratio of (h/c) to α becomes smaller and the phase lag becomes larger. From the response 
analysis one can conclude that the Transonic Dip occurs associated with the lowest phase lag 
and the largest displacement ratio between both of the modes.  

The above flutter results have been partially published in Ref. [91]. 
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7. Flutter Results 
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Fig. 7.11. Vibration Mode Shapes of the DLR Model 
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      (a). Generalised response         (b). Physical Response 

Fig. 7.12 Response of the DLR Model at Zero Dynamic Pressure 
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        (a) Steady pressure                         (b) Real Part                          (c) Imaginary Part 
 

 Fig. 7.13. Steady and Unsteady Pressure Distribution of the DLR Model  
at M=0.7, Re=2.14E+06, α0=2.0, α1=0.5, k=0.384, xp=0.4c 
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Fig. 7.16. Diagram of Flutter Speed Index, Flutter Frequency,  
Displacement Ratio and Phase Lag versus Mach number of DLR Model 
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              (a) TSD, M = 0.5, V* = 0.281                        (b) TSD+BL, M = 0.5, V* = 0.285 

Fig. 7.17. Neutral Response of DLR Model at Mach Number 0.5 
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           (a) TSD, M = 0.725, V* = 0.205  (b) TSD+BL, M = 0.725, V* = 0.210 

Fig. 7.18. Neutral Response of DLR Model at Mach Number 0.725 
 

 

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0 500 1000 1500 2000 2500 3000

Time Step

Ph
ys

ic
al

 D
is

pl
ac

em
en

t h/c
α

        

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0 500 1000 1500 2000 2500 3000

Time Step

Ph
ys

ic
al

 D
is

pl
ac

em
en

t

h/c
α

 
           (a) TSD, M = 0.75, V* = 0.208                  (b) TSD+BL, M = 0.75, V* = 0.216 

Fig. 7.19. Neutral Response of DLR Model at Mach Number 0.75 
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         (a) TSD, M = 0.8125, V* = 0.152                  (b) TSD+BL, M = 0.8125, V* = 0.164 

Fig. 7.20.  Neutral Response of DLR Model at the Dip (Mach = 0.8125) 
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           (a) TSD, M = 0.825, V* = 0.177                    (b) TSD+BL, M = 0.825, V* = 0.204 

Fig. 7.21.  Neutral Response of DLR Model at Mach Number 0.825 
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Fig. 7.22.  Neutral Response of DLR Model at Mach Number 0.8375 

(TSD, M = 0.8375, V* = 0.196) 
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7. Flutter Results 
7.3. Transonic Dip of the AGARD Wing 445.6  

In this sub chapter the flutter characteristic of the AGARD Wing 445.6 is computed 
for various Mach numbers, in order to examine the Transonic Dip phenomenon. The influence 
of the boundary layer in the flutter characteristic of the wing is also examined. The wing has 
been tested by Yates [88] in the wind tunnel TDT (Transonic Dynamic Tunnel) of NASA 
Langley. The wing is well-known as standard wing for aeroelastic simulation and dynamic 
response. The so-called ‘weak’ model 3 of this wing is selected as the basis model for the 
simulation of the Transonic Dip in this analysis. The number of the vibration mode shapes, 
which is involved in this simulation is only two modes (i.e. only the 1st bending and 1st  
torsion modes). The other mode shapes (with higher frequencies) is neglected, because only 
those two mode shapes are involved in flutter mechanism, as reported by Lee Rausch and 
Batina in Ref. [93]. Tables 7.3 and 7.4 and Fig. 7.23 represent the geometrical parameters and 
he structural data of the AGARD Wing 445.6. t 

Table 7.3. Geometrical Parameters of the AGARD Wing 445.6 
Parameter 
Half span s 2.5 ft 
Root Chord cr  1.833 ft 
Taper Ratio ct/cr 0.659 
Aspect Ratio AR 3.288 
Sweep at  ¼ Chord       ϕLE 45o

Relative thickness t/c 4% 
Twist θ 0.0o

 
 

Table 7.4. Structural Data of the AGARD Wing 445.6 
Parameter  
Profil  NACA 65A004 
Steady angle of attack from Experiment α0 0o

Position of the elastic  Axis (normalised with chord c) a  0.5(from leading edge) 
Frequency of the 1. Mode (Bending) ω1 9.6 Hz (60.3 rad/s) 
Frequency of the 2. Mode (Torsion) ω2 38.16Hz (239.8 rad/s) 
Ratio of Structure to Fluid density, ρm/ρ∞ µ 225.82 
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                  Fig. 7.23. Geometry of the AGARD Wing 445.6 
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7. Flutter Results 
In order to reduce the complexity of the flutter analysis, the Reynolds number and the ratio of 
structure to fluid density are assumed to be fixed for all Mach number. The Reynolds number 
for this simulation is 1.0E+06 (based on the root chord). 
 
7.3.1. Modal Analysis of the AGARD Wing 445.6 
 The modal analysis of the AGARD Wing 445.6 was accomplished by Yates [88]. The 
two vibration mode shapes is presented in Fig. 7.24. The mode shapes was normalized, so that 
the value of the generalized mass matrix is equal to one. 

 
  1st. Mode (Bending)     2nd Mode (Torsion) 
 (ω1 = 9.6 Hz, ω1/ωα = 0.252)    (ω2 = 38.16 Hz, ω2/ωα = 1.0) 
 

Fig. 7.24. Vibration Mode Shapes of the AGARD Wing 445.6 
 
In order to check the values of the coupled natural frequencies, response of the system is 
computed with zero dynamic pressure for some cycles of the oscillation. The Response 
system is shown in Fig. 7.25. In this computation the value of the time step ∆τ = 0.277036388 
has been used. This is coresponded with ∆t = 0.00726 sec. From equation (7.28) the natural 
frequencies can be found as: 
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Fig. 7.25 represents the response of both mode shapes with zero dynamic pressure (i.e. the 
response of the generalized displacement with corresponded ω1/ωα und ω2/ωα). 
 
7.3.2. Flutter Analysis of the AGARD Wing 445.6 
 The flutter analysis of the AGARD Wing 445.6 is accomplished by means of State 
Space equation (5.15):  
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7. Flutter Results 
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The initial value of  the state vector {X} is the same with the previous one used for Isogai 
model.   

Before flutter analysis is carried out, the aerodynamics of the wing must be first 
examined. The steady pressure distribution of the AGARD Wing 445.6 for two Mach 
numbers (M=0.96 and 1.141) with zero angle of attack are presented in Fig. 7.26 and 7.27 for 
four sections along the span. Since the wing has a symmetrical airfoil and the angle of attack 
is zero, the wing does not produce a steady lift. It can be seen that the influence of the 
boundary layer into the pressure distribution is small. This is because there is no shock arises 
on the profile, which can lead a strong mutual interaction with the boundary layer. 
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Fig. 7.25. Response of the AGARD Wing 445.6 at Zero Dynamic Pressure 
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    Fig. 7.26. Steady Pressure Distribution of the AGARD Wing 445.6 

          Mach = 0.96, α = 0.0, Re = 1.0E+06 
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       Fig. 7.26. Steady Pressure Distribution of the AGARD Wing 445.6 (continued) 
Mach = 0.96, α = 0.0, Re = 1.0E+06 
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Fig. 7.27. Steady Pressure Distribution of the AGARD Wing 445.6 

Mach = 1.141, α = 0.0, Re = 1.0E+06 
 
Flutter analysis is then carried out for each Mach number. The response of the system is 
computed until a neutral response is found for each Mach number. This is carried out by 
starting the given speed (U∞) and dynamic pressure (0.5ρ∞U∞

2) with low values and then 
increasing it step by step. Fig. 7.28 and Table 7.5  show the diagram of flutter speed index 
(V*) and flutter frequency (ωf/ωα) versus Mach number. 
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7. Flutter Results 
The flutter speed index (V*) is defined as: 

µωαb
V

V f=∗        (7.41) 

where: 
 Vf  = flutter speed 
 b   = semi root chord 
 ωα = uncoupled frequency of the torsion mode 
 µ   = ratio of structural to fluid mass 
 
The flutter speed index V* and flutter frequency (ωf/ωα) will be compared with the results of 
Lee Rausch and Batina [93, 94] (with Euler and Navier Stokes equations, CFL3D code of 
NASA) and experimental values of Yates [88]. 
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(a) Flutter Speed Index        (b) Flutter Frequency 

Fig. 7.28. Flutter Speed Index and Flutter Frequency v/s Mach Number  
of the AGARD Wing 445.6 

 
Table 7.5a. Flutter Speed Index, V*  v/s Mach Number 

Mach 
Number 

TSD 
present 

TSD+BL 
present 

Euler [94] Navier-
Stokes [93] 

EXP [88] 

0.338 0.469 0.463 - - 0.496 
0.499 0.446 0.438 0.439 - 0.446 
0.678 0.415 0.408 0.417 - 0.417 
0.834 0.384 0.377 - - 0.387 
0.85 - - - - 0.350 
0.87 - - - - 0.334 

0.901 0.348 0.344 0.352 - 0.370 
0.954 - - - - 0.306 
0.957 - - - - 0.310 
0.96 0.314 0.321 0.275 0.298 0.308 
0.99 - - 0.310 - - 
1.03 0.314 0.321 - - - 

1.072 0.336 0.328 0.466 - 0.320 
1.141 0.370 0.355 0.660 0.420 0.403 
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7. Flutter Results 
Table 7.5b. Flutter Frequency, (ωf/ωα) v/s Mach Number 

Mach 
Number 

TSD 
present 

TSD+BL 
present 

Euler [94] Navier-
Stokes [93] 

EXP [88] 

0.338 0.646 0.627 - - 0.578 
0.499 0.585 0.575 0.597 - 0.535 
0.678 0.515 0.506 0.539 - 0.472 
0.834 0.453 0.444 - - 0.507 
0.85 - - - - 0.430 
0.87 - - - - 0.441 

0.901 0.401 0.405 0.425 - 0.422 
0.954 - - - - 0.381 
0.957 - - - - 0.367 
0.96 0.355 0.363 0.343 0.350 0.363 
0.99 - - 0.373 - - 
1.03 0.363 0.372 - - - 

1.072 0.394 0.385 0.541 - 0.362 
1.141 0.445 0.427 0.764 0.480 0.459 

 
From Fig. 7.28 one can observe the followings:  

- all numerical results can represent the Transonic Dip (the lowest flutter speed index, 
V*  ) at Mach number 0.96.  

- all numerical results agree with the experiment within the subsonic region.  
- the deviation between Euler and the TSD is occurred after the Dip, whereby the 

flutter speed index of Euler result increases rapidly (more steeply than the TSD results) 
- the influence of the boundary layer into the flutter result is small (compare between 

the TSD and the TSD+BL results in Fig. 7.28).  
- the 1st mode shape seems to be dominant in the flutter mechanism (see Fig.7.28b). 

(notes: the frequency of 1st mode shape is (ω1/ωα) = 0.252 and the 2nd mode shape is (ω2/ωα) 
= 1.0) 

Lee Rausch and Batina [93] used the Thin Layer Navier Stokes equations for the 
flutter analysis of this wing only for Mach number 0.96 and 1.141. This calculation serves for 
the confirmation of the inviscid results. It seems that all numerical and experimental result 
agree well at the Mach number 0.96. But at the Mach number 1.141 there is deviation 
between the experimental and numerical results. The Navier Stokes result seems a little bit 
over estimate, on the other hand the results of TSD and TSD+BL are under estimate 
compared to the experimental value.  

The generalized response at the Mach number 0.96 and 1.141 (calculated with TSD 
and TSD+BL) is shown in Fig. 7.29 and 7.30 for various values of flutter speed index V*. It 
seems that the generalized response is not so sensitive with the change of the flutter speed 
index (see Fig. 7.29a and c and Fig. 7.30a and c). The generalized response of the TSD and of 
the TSD+BL looks similar (not so different). This means that the influence of the boundary 
layer is not so significant for this case. 

A part of these results has been presented in Ref. [95] 
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7. Flutter Results 
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   (a). TSD Result, V*= 0.314       (b). TSD+BL Result, V*= 0.321 
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(c). TSD Result, V*= 0.769 

 
Fig. 7.29. Response of the AGARD Wing 445.6 at M=0.96 
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   (a). TSD Result, V*= 0.370        (b). TSD+BL Result, V*= 0.355 
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(c). TSD Result, V*= 0.769 

 
Fig. 7.30. Response of the AGARD Wing 445.6 at M=1.141 
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8. Summary and Recommendation 

 
8. Summary and Recommendation 

 
  The goal of the present work is the development of a computer code, which is based 
on viscous – inviscid interaction method, which calculates steady and unsteady aerodynamic 
forces acting on airfoil and wing. The use of the code for the flutter calculation of airfoil and 
wing was also presented. The flow conditions were both laminar and turbulent, in the 
subsonic and particularly in the transonic regime.  
 
The developed code consists of the following subroutines: 

- Subroutine Inviscid:  
based on TSD, Euler and Small Disturbance Euler Equations 

- Subroutine Viscous:  
- Integral Boundary Layer Equations: 

   - Method proposed by Drela and Giles (laminar and turbulent) 
   - Lag Entrainment Method proposed by Green et. al. (turbulent) 
   - Method from Karman - Thwaites (laminar) 
  - Differential Boundary Layer Equations: 
   - Method proposed by Hamilton et. al. (laminar and turbulent) 
  - Blasius Solution (laminar flat plate boundary layer) 
  - Exponential 1/7 Law (turbulent flat plate boundary layer) 
  - Transition from Laminar to Turbulent using the en Method 
 
The coupling between the viscous and inviscid flow takes place in the boundary condition of 
the subroutine inviscid, where the influence of the boundary layer must be considered. The 
kinematics (tangential) boundary condition was updated with the displacement thickness (in 
form of the transpiration velocity or the gradient/slope of the surface). The coupling 
procedure is carried out with the direct and semi - inverse coupling for attached and separated 
flow respectively. The code was then used for flutter analysis of airfoils and wings. The flutter 
analysis is performed with State Transition Matrix technique in the time domain, which is 
efficient and can be solved accurately.  
 
The following steps were performed in order to validate the developed computer code: 
• Validating the developed computer code was performed first for checking the subroutines 

individually, i.e. the subroutine inviscid, subroutine viscous and transition prediction. 
From all simulations, that have been performed, it is shown that the individual subroutine 
supplies good results (see Chapter 6.1). 

• After validating of the individual subroutines, the developed computer code was used for 
assessment of airfoils and wings under various flow conditions. The flow conditions 
represents symmetrical and asymmetrical flows, steady and unsteady flows, attached and 
separated flow. From all simulations, that have been performed, it is shown that the 
developed computer code could achieve the same quality (for some cases even better) 
with the values from the literature (see Chapter 6.2 and 6.3). During the simulation of 
separated flow it is shown that the developed code could supply good results comparable 
with the Navier Stokes equations with Baldwin Lomax turbulence model (see chapter 
6.2.3.). Regarding the shock position, the shock position calculated by viscous - inviscid 
interaction method is mostly in front of the shock position calculated by Navier Stokes 
with Baldwin Lomax turbulence model (see Chapters 6.3.1 and 6.3.2) and for some cases 
is behind that of Navier Stokes results with Spalart Almaras turbulence model (see chapter 
6.2 and 6.3). 
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8. Summary and Recommendation 
 
Based on all performed aerodynamic simulations, the followings can be concluded: 
• The influence of the boundary layer must be considered. With the inclusion of the 

boundary layer into the aerodynamic computation, the quality of the lift, drag and moment 
coefficient can  be improved around approximately 10% (or even more for some cases) 
(see Chapter 6.2 and 6.3). But this improvement does not ensure automatically that the 
numerical results agree with the experiment data. The agreement between the numerical 
and the experimental result depends on some things, e.g.: the case to be examined, the 
quality of the experiment and the quality of the calculation method. For the cases with 
higher Reynolds numbers and without separation, a good agreement between the 
calculation and the experiment could be achieved. But the flow with separation is still a 
challenge for the aerodynamicists, in order to compute the characteristic of the flow (i.e. 
lift, drag and moments) accurately. The quality of experimental data depends on the 
measuring technique, the quality of the wind tunnel and the model. The quality of the 
calculation method is influenced by the assumption behind the governing equation, the 
numeric method and the solution technique.  

• The unsteady flow with larger mean angle of attack, resulting from oscillatory motion, is 
particularly difficult to simulate, although the amplitude of the oscillation is small. The 
complexity of the unsteady flow could be not completely simulated with the viscous-
inviscid interaction method. The influence of the boundary layer still represents a ‘linear’ 
relationship, i.e. due to the boundary layer the shock position shifts forward, the shock 
intensity becomes smaller and the global characteristic: lift, drag and moments become 
smaller. The pressure distribution of the viscous-inviscid interaction method does not 
show a reverse phase with the pressure distribution of the inviscid method.  

 
The following steps were performed in validation of the flutter calculation method and 
application of the viscous-inviscid interaction method for flutter analysis: 
• The developed flutter calculation method (with the inviscid aerodynamics model TSD) 

was validated with the classical test case of Isogais model, before the code was used for 
the computation of the flutter of another airfoil and wing. The flutter analysis result 
represents the ability of the developed flutter calculation method to capture the Transonic 
Dip, i.e. the lowest flutter speed in the transonic flow. The resulted flutter speed index v/s 
Mach number diagram showed that the developed flutter calculation method could supply 
the same quality with another method that has been published (see Chapter 7.1). 

• The developed flutter calculation method (with the inviscid aerodynamics model TSD and 
the viscous-inviscid aerodynamics model TSD+BL) was used for the flutter analysis of 
the DLR 2D model and the AGARD wing 445.6. The flutter speed index v/s Mach 
number diagram for the DLR model showed that the deviation of the flutter speed 
between the calculation and the experiment lies in the determining of the aerodynamic 
forces. The deformation of the wind tunnel model because of the aerodynamic forces 
(static aeroelastic effect) causes this deviation (see Chapter 7.2). The flutter diagram of the 
AGARD wing 445.6 represents the agreement between the calculation and the 
experiment. Comparison with other numerical methods shows the same quality (see 
Chapter 7.3). The influence of the boundary layer on the flutter characteristic for the two 
cases is small (approximately 5% of the result by using the inviscid aerodynamics model). 

 
In order to improve the viscous-inviscid interaction method, the followings are suggested: 
• An improvement or an extension of the closure equations of the turbulent boundary layer 

in the integral boundary layer method, in order to be able to compute a massively 
separation.  
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8. Summary and Recommendation 
• The simultaneous coupling between the viscous and the inviscid aerodynamic model 

should be examined. The closure equations should be kept the same, as they are applied in 
the direct and the semi inverse coupling, in order to know the difference between the both 
couplings technique. 

• Because of the time restriction, the differential boundary layer method was not examined 
or elaborated intensively in this present work. As a further work this method should be 
examined, in order to recognize its deviation with the integral boundary layer method. 

• A possibility for the improvement of the implementation of the 2D integral boundary layer 
method along the span is that the distribution of velocity is connected with the stream 
lines, in order to consider the three-dimensional effects. At the present work it was 
implemented in strip theory manner along the span without considering the stream lines of 
the flows.  

 
The followings are suggested for the improvement of the flutter analysis: 
• The flutter analysis with Euler and Euler plus boundary layer aerodynamics model should 

be performed. The boundary condition for aeroelastic coupling should be implemented by 
means of transpiration velocity concept (like the boundary layer coupling which is already 
implemented), in order to avoid the moving grid generation (because of the movement of 
the structure). This means: the movement of the structure is formulated as additional 
induced velocity; with this velocity the boundary condition of the aerodynamic model is 
updated. 

• For validating the developed flutter analysis, which is developed in the time domain, an 
‘apple to apple’ comparison with flutter analysis in the frequency domain should be 
carried out. Because of the time restriction this comparison could not be made in the 
present work. 

• Deformation of the structure (due to aeroelastic effect) should be treated, in order to 
compute the aerodynamic forces of a flexible structure accurately. 

• Extension of the developed flutter analysis for the investigation of flutter suppression or 
gust load alleviation should be continued by adding the state space formulation with 
control systems matrix. 
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A1. Numerical Methods 

Appendix 1.  Numerical Methods 
 
A1.1. The Runge-Kutta Method 

     The Runge-Kutta method is used to solve a 1st order linear differential equation 
numerically.  In the Runge-Kutta method, an initial value (or a boundary value) of the 
function which must be solved  at the starting point is needed in order to determine its value at 
the next point.  
The procedure of Runge-Kutta method for solving of a 1st order linear differential equation 
can be written as follows: 
The differential equation, which must be solved, has the following form: 
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where f(x,y) is a function of x and y.  
The given initial value of y at the first point xn is: 
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The solution of eq. (A1.1) at the next point xn+1 is given by: 
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For a simultaneous system of many 1st order differential equations the procedure of Runge-
Kutta method becomes as follows: 
The system of differential equations reads: 
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where  f(x,y,z...) and g(x,y,z...)..., are functions of x, y,z... 
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The solutions of eq. (A1.5) for the next point xn+1 are: 
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A1.2.  The Newton Iteration Method 

The Newton iteration method is used if one would like to determine the roots of a 
function with iterative procedure. This method is quick and stable, if the derivative of the 
function is not singular. 
The roots of a function F:  

)9.1(0)( AxF =  

will be solved iteratively. 
From the 1st order Taylor series, the value of F at xn+1 can be computed as: 
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where xn is an initial guessed value of root x.  
Taking the eq. (A1.10) equals to zero: 
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then xn+1 is found as: 
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This procedure is repeated iteratively until a convergence value of x is obtained. 
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A2. Integral Boundary Layer Equations 

Appendix 2.  Integral Boundary Layer Equations 
 
A2.1.  The Integral Momentum Equation 

The integral boundary layer equations are derived from the Prandtl differential 
boundary layer equations. 
The Prandtl differential boundary layer equations in 2D flow are as follows: 
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with  u and w are the components of the speed in the x and z directions. 
The integration of the momentum equation (A2.1) within the boundary layer supplies: 
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By introducing new variables displacement thickness δ* and momentum thickness θ  as: 
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one obtains the following equation: 
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Ue and We are the components of the speed at the edge of the boundary layer in the x and z 
direction. 
The term (We/Ue) is eliminated with the integration of the continuity equation (A2.3): 
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 Substituting eq. (A2.7) in eq. (A2.5) yields: 
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With the momentum equation at the edge of the boundary layer as: 
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one obtains the integral momentum equation as follows: 
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With the chain rule for the term (∂ρe/∂x) in eq. (A2.10) as: 
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and the Bernoulli equation:  )13.2(1 A
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and the defined shape factor H = δ*/θ , one obtains the integral momentum equation from 
(A2.10) as: 
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A2.2.  The Shape Factor Equation of Drela and Giles Method 
 In order to obtain the shape factor equation, one begins from the momentum equation 
(A2.1).  With the use of the continuity equation (A2.3), the momentum equation becomes: 
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Multiplying equation (A2.15) with u gives: 
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The equation (A2.16) can be written with the use of the continuity equation as: 
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Integration of the equation (A2.17) in the boundary layer gives: 
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With the definition of energy thickness θ*, density thickness δ**, dissipation coefficient Cd as: 
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and the use of the Bernoulli equation (A2.13), equation (A2.18) becomes to: 
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We in the equation (A2.19) is eliminated using the equation (A2.7). 
After division by ρeUe

3 equation (A2.19) becomes to: 
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The derivative of ρe in the equation (A2.20) will be eliminated with the Bernoulli equation 
(A2.13) and the isentropic relation (A2.12). 
With the defined shape factors H* and H** as: 
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then equation (A2.20) becomes to: 
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A2. Integral Boundary Layer Equations 
The term (∂θ/∂x) in equation (A2.21) is eliminated using the momentum equation (A2.14) in 
order to obtain the shape factor equation as follows: 
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A2.3.  The Shape Factor Equation of the Greens Method 
 In order to obtain the shape factor equation, Green defined a variable which called 
Entrainment coefficient as: 
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The shape factor equation can be derived as follows:  
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and the mass flow shape factor H1 as:   
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1
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Multiplying the derivative of the shape factor H  with respect to x with the momentum 
thickness as: 
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Subtitution of eq. (A2.23) into eq. (A2.24) gives: 
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With the help of the incompressible integral momentum equation, i.e. eq. (A2.14) with Me 
equals zero, one obtains from equation (A2.25) the following shape factor equation: 
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A3. Modification of the Integral Boundary Layer Equations 
 
Appendix 3.  Modification of the Integral Boundary Layer 

       Equations 
 
 A modification of the integral momentum equation to be applied in inverse boundary 
layer calculation method will be presented. The modification is carried out for the integral 
boundary layer equations based on the Greens Lag Entrainment mehod. 
A variable mass flow in the boundary layer is defined: 
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The derivative of the mass flow in x direction is: 
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With the assumption of small disturbances: 
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and the relationship between H and H : 
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the derivative of ρe, Ue and H with respect to x become: 
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where the derivative of Me with respect to x is given by: 
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With the help of the integral momentum equation (A2.14), the equation (A3.3) becomes to: 
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A3. Modification of the Integral Boundary Layer Equations 
In the direct method the value of the outer velocity [φxx/(1+φx)] in the equation (A3.10) is 
given by the inviscid model and the value of the mass flow is calculated from equation 
(A3.10). In the inverse method the situation is oppositely. The values of the outer velocity 
will be calculated with the estimated value of the mass flow. Therefore the procedure of the 
inverse method must be carried out by an iteration process. 
From the equation (A3.10) one obtains the outer velocity (see also eq. (A3.7)) as follows: 
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The index v in outer velocity U shows that the velocity is calculated from viscous 
aerodynamic model. 
The shape factor equation for inverse method can be found via elimination of the outer 
velocity in the equation (3.50) (see Chapter 3.2.3.)  with the equation (A3.11): 
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The entrainment coefficient equation for inverse method can be found also via elimination of 
the outer velocity in the equation (3.51) with the equation (A3.11): 
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where R3 is given by (see also Chapter 3.2.4.): 
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A4. Goldsteins Singularity 

Appendix 4. Goldstein’s Singularity 
 
 By solving the integral boundary layer equations with direct method a singular value 
of the boundary layer parameters exists if the flow exhibits separation.  This singular value is 
called as Goldstein’s Singularity.  This phenomenon can be described clearly with the 
following mathematical analysis. 
 
A4.1. Goldstein’s Singularity in the Drela and Giles Method 
 As basis equations are the integral momentum boundary layer equation (A2.14) and 
the shape factor equation (A2.22): 
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Because of θ  = δ* /H  then equation (A2.14) can be formulated as: 
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Applying chain rule for the derivative of H as function of Me and Hk , then equation (A4.1) 
becomes to: 
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Equation (A2.22) can be written in another form as: 

)4.4(12
2

21 *

*

***

*
A

x
U

U
HH

H
HCHC

H
Hx

H e

e

fd

k

k ⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

=
∂
∂

θθ
 

Substituting eq. (A4.4) into the eq. (A4.3), one can obtain the following equation: 
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Equation (A4.5) shows that the value of the displacement thickness becomes singular, if the 
derivative ∂H*/∂Hk equals to zero. 
 
A4.2.  Goldstein’s Singularity in the Greens Lag Entrainment Method 
 As the starting point is the equation (A4.1): 
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The derivative from H to x direction in the equation (A4.1) is eliminated with the equation 
(A3.8) and resulted: 
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A4. Goldsteins Singularity 
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With the help of the equations (A2.26) and (A3.9) the derivatives of H and Me with respect to 
x direction in the equation (A4.6) are eliminated and from this results the derivative of the 
displacement thickness can be obtained as: 
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The equation (A4.7) becomes singular if 
1dH

Hd  is singular. 
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