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1. Introduction

Flutter analysis is one of the most important tasks in the design process of a new
aircraft. To a lesser extent flutter analysis is also important during the operation of an aircraft,
for example after structural modifications, changes of operational spectrum, introduction of
new external stores, etc. Flutter analysis concerns with oscillations of aircraft components (or
the whole aircraft) caused by interaction of the mass and stiffness of the aircraft structure with
the aerodynamic forces. Beyond a certain speed, the so-called flutter speed, the structural
oscillation induced by aerodynamic forces becomes unstable, i.e. with growing amplitude,
which can lead to a catastrophic failure of the aircraft structure. Therefore, the flutter speed of
an aircraft has to be determined accurately, in order to ensure that the aircraft is free from
flutter during its operation. According to the safety regulations, it is mandatory that the
determination of the flutter speed should be carried out using both numerical and
experimental means.

To predict the flutter speed various activities have to be carried out, amongst other the
normal mode analysis of the structure, prediction of unsteady aerodynamic force due to the
structural motions, coupling of the aerodynamic with structural parts, etc. For an aircraft,
which has operational envelope in subsonic or supersonic flow, a computer code based on the
linear potential flow theory has been proved to be a very useful and sufficient tool for
unsteady aerodynamic calculations. In this linear approach the unsteady part of the
aerodynamic forces is assumed to be independent from the steady part and its calculations are
carried out efficiently in the frequency domain. Examples of calculation methods of unsteady
aerodynamic forces based on the linear potential flow theory, are the Lifting Surface Method
[1] and the Doublet Lattice Method [2]. The first one gives the most accurate solution
achievable up-to-day. The Doublet Lattice Method has been the default method for the
computation of unsteady aerodynamic force during flutter analysis for years since it has been
introduced into the commercial NASTRAN program. It seems the situation would not change.

For flight speeds with significant compressible effects, such as in transonic and also
hypersonic flow, the linear potential flow theory is no longer useful. In particular significant
interactions between the shear layer near the body surface and compression shocks arise
which have to be carefully taken into account in the analysis model. At these flow conditions
the unsteady part of the aerodynamic forces is no longer independent from the steady part.
Therefore the steady and unsteady parts of the aerodynamic forces have to be computed
simultaneously and usually are performed in the time domain. The method to handle this type
of flow is the one that incorporates compressibility and viscous effects in its analysis model.
Formally such a method would be based on the solution of the Navier-Stokes equations.
However, computing time, turn around time and costs would penalize this type of method for
industrial applications. Instead, in the last decades simplification is sought to have a balance
between costs and performance. This includes methods based on the Euler equations, Full
Potential (FP) equation and Transonic Small Disturbance (TSD) equation.

The most important disadvantage of methods based on the flow equations other than the
Navier-Stokes equations is the inability to model the effect of viscosity. As it has been
mentioned before this effect is important for some types of flows.

A way, that was established in the steady aerodynamics, to include the viscous
influences succeeds through a so-called “Viscous - Inviscid Interaction (VII)’ method, i.e.
combination of the boundary layer theory with frictionless theories, which are used to
represent the inner viscous flow and the outer inviscid flow respectively [3, 4]. This VII
method is expanded in the present work to cope unsteady flows and is also applied for flutter
analysis, in order to answer the following questions:

- How far improves the VII Method inviscid calculations ?

- How far influences the VII Method aeroelastic calculations ?
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1.1. Objectives and General Approach

The major aim of this work is to study the coupling techniques between viscous and
inviscid flow and also the coupling between structural oscillation and aerodynamic forces.
The objective is to develop a code based on VII method for calculating aerodynamic forces
and its application for flutter analysis. The developed code should be fast, accurate and
particularly suitable for industrial applications. The high-Reynolds number flow about airfoils
and wings in transonic speed regime is the flow case of practical interest and have been the
primary target in the present investigation.

In order to be able to calculate shock-dominating flows, the boundary layer theory is
coupled with non-linear, frictionless theories for the outer flow, which can capture a shock
wave. For this purpose the TSD equation, the non-linear Euler equations and the Small
Disturbance Euler (SDEu) equations will be employed under the following considerations:

- By using the TSD and Euler equations one can observe the influence of the viscous

aerodynamic model for weak and strong shocks.

- In order to validate and to proof a VI concept, it is easier to apply the concept to
the inviscid TSD equation because of its relatively low computational time. The
TSD equation is the lowest equation in the hierarchy of the non-linear, inviscid
flow equations. TSD equation can be solved relatively faster than the Euler
equations. Moreover, grid generation for methods based on TSD equation is
relatively simpler than that based on the Euler equations.

- Since the Euler equations are the highest equations in the hierarchy of the non-
linear, inviscid flow equation, one can expect the best results from the VII method
when the Euler equations are used for the inviscid flow model.

- As continuation of the research at the Institute of Aerodynamics (formerly Institute
of Fluid Mechanics -FLM-) of the Technical University of Munich (TUM) under
the guidance of Prof. Dr. —Ing. Boris Laschka, the VII method is also developed by
using the SDEu equations, which was developed based on the non-linear Euler
equations particularly under small disturbance time-linearized assumption.

The calculation of the boundary layer in this present work is mainly based on the
integral boundary layer equation because of its simplicity in implementation and less
computational time, but a differential equation - based calculation method is also described. A
laminar-turbulent transition prediction is also presented.

The results obtained using the present method are compared and validated with those
obtained using the Navier-Stokes equations and also with some experimental data. It is shown
that the method proposed in this thesis produces very encouraging results. This is especially
true as far as its application for calculating the unsteady aerodynamic forces for flutter
analysis. This proposed approach is therefore a valuable alternative to methods based on the
Navier-Stokes equations particularly when a large number of computations have to be carried
out involving large number parameter variation.

1.2. Scope of the Work

The scope of the present work consists of the following sections:

- Description and discussion of some VII methods.

- Description and discussion of the selected viscous aerodynamic models (boundary
layer models).

- Description and discussion of the selected inviscid aerodynamic models (TSD,
Euler and SDEu equations).

- Validation of each aerodynamic models used in the present study.

- Application of the VII method for flutter analysis.
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The steps of the implementation works are described below:

- Development of a TSD-based computational code. For applications of the
proposed VII method with the Euler equations, the available Euler and the Small
Disturbance Euler Codes — so-called as FLMEu and FLMSDEu codes - in the
Institute of Aerodynamics of the Technische Universitdt Miinchen are used.

- Development of boundary layer computational codes based on the integral
equations and the differential equation that include a laminar-turbulent transition
prediction.

- Development of coupling schemes between the viscous and the inviscid
aerodynamic models.

- Development of a computational code for flutter analysis in time domain.

All computational codes are developed using FORTRAN programming language.

1.3. Outline of the Thesis

In order to organise the description of the present work, this thesis is divided into

theoretical and results part. The theoretical part describes the viscous aerodynamic models
(boundary layer) and the inviscid aerodynamic models (TSD, Euler and Small Disturbance
Euler) and the coupling between both. The results section describes the validation of the
developed calculation program for steady and unsteady aerodynamic test cases and its
application for flutter calculation of airfoils and wings.

The outline of this thesis may be summarised as follows:

Chapter 1 describes the background, objective, scope and outline of the present work.
Theory of viscous - inviscid interaction and an overview of researches in this field are
described in Chapter 2.

Chapter 3 concerns with the selected viscous aerodynamic models, i.e. the calculation
method of the boundary layer for incompressible and compressible flows, laminar and
turbulent flows including the laminar-turbulent transition.

Chapter 4 describes the selected inviscid aerodynamic models, i.e. the TSD equation,
the Euler equations and the Small Disturbance Euler equations. The form of the
equations and their numerical solutions are presented in this chapter, followed by the
description of the coupling between the viscous and the inviscid model.

Theory of the fluid - structure interaction (flutter analysis) is presented in Chapter 5.
Some selected results will be presented in Chapter 6. Validation of the developed
methods for steady and unsteady aerodynamic test cases for flat plate, airfoils and
wings are presented by different flow parameters, with and without consideration of
the boundary layer.

In Chapter 7 the application of VII method in flutter analysis is presented in form of
the prediction of the transonic dip of an airfoil as well as of a wing.

Chapter 8 closes the discussion with the summary of the work and recommendation
for further work.

In order to explain some details of the numerical solutions and equations, some appendices

follow.
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2. Theory of Viscous — Inviscid Interaction (VII)

In this chapter the theory of viscous - inviscid interaction (VII) with its historical
background and an overview of researches in this field are presented.
The presentation will be organised in the following details:

- Historical Background

- Overview of researches in VII

- Basic VII Methods

2.1. Historical Background

The existence of a small viscous flow region in flows with small viscosity was
recognized one hundred years ago at the beginning of the last century pioneered by Prandtl
with his publication on boundary layers in Mathematical Congress in Heidelberg 1904 (see
[5]). Prandtl showed how it was possible to analyze viscous flows precisely in cases which
had great practical importance. He proved that the flow about a solid body can be divided into
two regions, namely a thin layer around the body (boundary layer), where friction plays
important role and the inviscid region outside the boundary layer, where friction may be
neglected.

The boundary layer problem is solved by imposing the no-slip boundary condition at
the solid surface and imposing at a location far away from the solid surface a prescribed
pressure or velocity distribution, which follows from a known inviscid flow solution. At the
beginning, the boundary layer theory was developed mainly for laminar flow case in an
incompressible fluid. Important development of the boundary layer theory was reached by
Blasius, von Karman, Pohlhausen and Thwaites among others. The theory was extended to
include the turbulent, incompressible boundary layers which are more important for practical
applications. Some researchers contributed in this development are Dryden, Schubauer and
Klebanoff among others. The phenomenon of transition from laminar to turbulent flow was
investigated among others by Reynolds, Rotta, Tollmien and Schlichting. The extension of the
boundary layer theory in compressible flow was carried out among others by Ackeret, van
Driest and Young. As compared to incompressible flow there are at least four additional
quantities which must be taken into account in the calculation of compressible boundary
layers, i.e. Mach number, Prandtl number, viscosity function and boundary condition for
temperature distribution. The velocity boundary layer may interact with the thermal boundary
layer and shock wave in compressible flow, which increase the degree of complexity.

Later on it was attempted to solve the combination of the boundary layer equations
with an inviscid flow model numerically. This is performed by iterative calculation process,
which is generally organised as follows: an inviscid flow calculation around the body, using a
slip boundary condition, determines the pressure distribution over the body surface. This
pressure distribution will be used to solve the boundary layer equations. An essential
parameter following from the boundary layer solution is the so-called displacement thickness,
which represents the displacement of the inviscid flow from the body surface due to the
presence of the boundary layer. This displacement thickness value will be added to the body
surface to form a so-called displacement body. The inviscid flow calculation will be carried
out again subject to this displacement body. This form of iterative calculation process, which
combines the boundary layer and an inviscid flow equation is known as a kind of viscous —
inviscid interaction.

2.2. Overview of Researches in Viscous - Inviscid Interaction

The research within the area of VII can be generally divided into two different
approximations, i.e. the Zonal and the Thin Layer approximation [6, 7]. In the Zonal
approximation the inner viscous region is governed by the Navier Stokes (NS) equations and

4
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the outer inviscid region is represented either by the TSD, the Full Potential (FP) or the Euler
equations. The flow parameters must be adapted at the transition of the two regions (matching
of the solution from inner and outer region). The advantages of this approximation are less
computational time compared to that if all regions were simulated with NS equations and the
computation of the viscous layers in the proximity of the body is ensured by the NS equations.
Therefore one can expect accurate results by using this kind of approximation. Two things
must be considered in the Zonal approximation, i.e. the switching process between the NS
equations and the inviscid equations, and the matching process within the transition area,
particularly if the inviscid region is solved with TSD or FP equation. The state of variables at
the outer edge of the inner region, which is solved by NS equations, serves as input for the
inviscid region. Therefore the state of variables must be transformed into the potential terms.
This Zonal approximation is more simply performed if the inviscid region was governed by
Euler equations because one can switch the viscous terms in the NS equations off, if the
calculation process enters the outer region. Figure 2.1. illustrates the Zonal approximation. Su
[6] has used the Zonal approximation for the solution of an airfoil in a steady flow by using
the NS equations and the FP equation to represent the inner and outer flow region
respectively.
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Figure 2.1. Zonal Approximation

The Thin Layer approximation is the most popular approximation used by many
scientists. The inner region is simulated by the boundary layer equations (mostly by integral
boundary layer equations), i.e. the viscous region is assumed only in the boundary layer and
the computation of the inviscid outer region with the TSD, FP equation or Euler equations.
The coupling between the boundary layer and the inviscid solution takes place at the
boundary condition of the inviscid flow by means of the displacement thickness in form of
transpiration velocity or modification of the surface slope. As long as the boundary layer
thickness is thin, the thin layer approximation is sufficient and can supply the best results. It is
best to be applied for high Reynolds number flows, because the boundary layer thickness is
thin enough in order of O(Re™?). The acceptance of the thin layer approximation is broken
off, if the boundary layer thickness is large. The advantages of this approximation are less
computational time and it can be simply constructed. The accuracy of the results depends on
the quality of the boundary layer calculation method and the coupling scheme. Figure 2.2
illustrates the thin layer approximation. The interaction method or the coupling scheme in the
thin layer approximation can generally be classified in six types, i.e. direct, inverse, semi
inverse, quasi simultaneous, simultaneous and the combination of direct and semi inverse
interaction.



2. Theory of VII

In the direct interaction method the solution of the inviscid equation (velocity or
pressure) serves as input for boundary layer calculation. The displacement thickness as output
of the boundary layer calculation will update the boundary condition of the inviscid region.

Bt
’ 1 TSD/FP/Euler in all area +
/ Transpiration in boundary condition

Boundary L ayer
+ E—

e

Figure 2.2. Thin Layer Approximation

The works from Rizzetta [8], Houwink [9] and Rizzetta & Borland [10] are based on the
direct interaction method. They used the TSD equation coupled with the integral boundary
layer equations — the Lag Entrainment method from Green et. al. [11] - to simulate an airfoil
and a wing in unsteady turbulent flow without separation. The advantage of the direct
interaction method is the straightforward computation of the displacement thickness and
velocity or pressure. The disadvantage is that the separated flow cannot be simulated because
of the appearance of a singularity in the boundary layer parameters, the so-called Goldstein
Singularity [12], as the flow is separating.

In the inverse interaction method, both of the equations are solved in a reverse input
output relationship. The boundary layer equations are solved not subject to a given pressure
distribution, but subject to a given displacement thickness distribution. The output of the
boundary layer calculation is therefore the pressure distribution. The inverse method for the
solution of the boundary layer equations was probably introduced at the first time by Chaterall
& Mangler [13]. The inviscid equation is solved with the given pressure from the result of the
boundary layer equations. The output of the inviscid equation is the displacement thickness,
which serves as input for the boundary layer equations. With this method the singularity of
the boundary layer parameters can be eliminated. The inverse interaction method was not
developed further because of the difficulties in the inverse solution of the inviscid equation.
The inviscid equation is more simply solved with the geometry input (straightforward as in
the direct method) than with pressure distribution input (as in the inverse method).

For this reason one introduces alternative method, the so-called semi inverse method.
In the semi inverse method the inviscid equation is solved as in the direct method and the
boundary layer equations as in the inverse method. The input for the two equations is the
displacement thickness and the output from the two equations are two velocity distributions,
one from the inviscid equation (U;) and the other one from the boundary layer equations (U,).
A relaxation method is additionally needed, until the converged solution (U, ~ U;) is
achieved. Carter [14], Melnik & Brook [15] and Le Balleur & Lavigne [16] developed the
semi inverse method among others. They coupled the TSD equation with Lag Entrainment
integral boundary layer equations, in order to compute the two-dimensional flow with
separation. Zhilliang & Voss [17] developed a similar method with FP equation plus Lag
Entrainment integral boundary layer equations for solution of two- and three-dimensional
problems.
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The quasi simultaneous method was developed by Veldman [18] and Houwink &
Veldman [19], in which an Interaction Law, deduced from the asymptotic theory, was used to
compute the displacement thickness and the viscous velocity (Uy) simultaneously. The
procedure of the quasi simultaneous method is similar to the direct method.

The simultaneous method was developed among others by Drela & Giles [3] and
Wolles [4]. Both of the inviscid and the boundary layer equations are solved as a set of
simultaneous equations. Drela & Giles used the Euler equations plus integral boundary layer
equations, based on kinetic energy equation. Wolles used the FP equation coupled with the
same integral boundary layer equations for the solution of two-dimensional steady problem.

The combination method of the direct and semi inverse method was developed among
others by Howlett [20] and Edwards [21]. They calculated the boundary layer in attached flow
by the direct method and the boundary layer in separated flow by the semi inverse method.
The transition (switch) between the direct and the semi inverse method was controlled by a
certain value of the shape factor (displacement to momentum thickness ratio). They used the
TSD equation coupled with Lag Entrainment integral boundary layer equations. Edwards
called his code as CAP TSDV (Computational Aeroelastic Program using TSD with
interactive boundary layer method). He introduced a block control system, in order to
control/adjust the interaction between the boundary layer and the TSD equation.

The application of the VII in the aircraft industry was carried out among others by
Galpin from the British Aerospace [22] and Haase from the Daimler Benz Aerospace AG
[23]. Both of them coupled the Euler equations plus integral boundary layer equations for the
computation of the steady and unsteady aerodynamics of airfoil and wing.

Most of VII methods use the steady two-dimensional integral boundary layer
equations as the viscous model. For three-dimensional problems one uses the strip theory
approach, in which the boundary layer at a specified 3D section is assumed as purely two
dimensional. The search of the three-dimensional integral boundary layer equations was
published among others by Drela & Mughal [24]. They performed calculations of the
atmospheric boundary layer. But its application in VII method has not yet been further
developed. This is probably because the influence of the boundary layer in
circumferential/span direction is smaller than in normal direction, so it can be ignored (except
if the cross flow velocity is significant). Also, the computation time for solving three-
dimensional boundary layer equations is longer than for solving two-dimensional ones.

The VII method with differential boundary layer equations as viscous model has been
developed by Van Dalsem & Steger [25] among others. They coupled the differential
boundary layer equations with the FP equation and solved both of the aerodynamic models
using the finite differences method. Hamilton et. al. [26] solved the differential boundary
layer equations, in order to obtain the boundary layer parameters of the flow with different
fluids (ideal gas, CF4 and equilibrium air chemistry). But they did not make the interaction
between the boundary layer and the inviscid flow. These VII method is not so far developed,
because the effort and the cost to solve the differential boundary layer equations are more than
those of the integral boundary layer equations. In order to solve the differential equation, one
needs a grid system and a turbulence model, which are not needed by solving the integral
boundary layer equations.

Most of VII methods use the integral boundary layer equations either for pure laminar
or turbulent flow. The application of laminar-turbulent transition in VIl method has been
carried out by Drela & Giles [3] and Wolles [4] among others. The transition prediction was
carried out by the e" method, which has been developed by Smith, Gamberoni & van Ingen
[3]. It is assumed that the transition from laminar to turbulent flow takes place if the value of
spatial disturbance amplification n is equal to 9 at a certain location .

Application of VII method for calculating of aerodynamic forces and flutter analysis
was also developed by Henke [27] recently and has been used at the Airbus Company as an
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alternative calculation method, which is more favourable compared to the Navier-Stokes
equations - based calculation method.

2.3. Basic VII Methods

The following methods can be used to perform the interaction between the viscous and
the inviscid flow equation: direct, inverse, semi inverse, quasi simultaneous and simultaneous
method. Each method will be described in the following section.

2.3.1. Direct Method
In this interaction the outer flow region (inviscid model) is computed first subject to

the slip boundary conditions, e.g. body contour without displacement thickness (&, = 0). The
solution from this step is a velocity distribution along the body (U, ). This velocity
distribution is used as the input for the inner region (viscous model). Afterwards the inner
region is computed. The solution from this step is the displacement thickness (&, ) among
others, that change the effective body contour. With the new body contour as the input for the
outer region, the velocity distribution (U Z,. ) is computed again. This mechanism runs, until
the two solutions - displacement thickness (5,) and velocity distribution (UJ.) - are
convergent. The iteration scheme of the direct method can be seen in Figure 2.3.

—>| Inviscid Model -

n
U eOF

——  Viscous Model =—

Figure 2.3. Iteration Scheme of the Direct Method

The interaction of the two models and the boundary conditions can be represented by the
following functional relationship:

OF(In:5;(1,);0ut: 0™, U/t (0"))=0
IF(InU:(;é On+1);OUt: In+l'5:+l(|n+l)):0

OF and IF are the functional relations for the outer and inner regions. In and Out denote the
input and output. | and O are the unknowns of the viscous and the inviscid model. n is the
iteration number. The iterative mechanism of the direct method can also be analyzed
graphically. In order to accomplish this representation, the outer and inner region are
transformed into the relationship between the gradient of the velocity and the gradient of the
displacement thickness, as in the following [4, 28]:

du do”

OF ¢ (O"™)=E,+E,—(0",1
i (O™)=E, +E, i ©"1,)
do” du

IF : —(@©O"™,1,,)=F+F,—=(0O"
dX ( n+1) 1+ 2 dX ( )



2. Theory of VII
The graphical illustration of the Direct Method can be seen in Fig. 2.4. for several flow
conditions.

OF  dU/dx
dU./dx

d&*/dx dd*/dx d&*/dx
a) Attached Flow b) Separating c) Separated Flow

Figure 2.4. Graphical Illustration of the Direct Method

The line OF and IF in Figure 2.4. show the functional relationship of the outer and inner
regions respectively. The form of the line depends on the value of the function E4, E,, F; and
F,. The sequence of iteration runs according to the number. For attached flows the iteration is
convergent into the point of intersection between the OF and IF lines (Fig. 2.4.a). But this
mechanism fails, if there is a separation point on the surface (Fig. 2.2.b and c). Computation
of the displacement thickness becomes singular for separated flows (referred to as the
Goldstein Singularity, see Appendix 4).
The advantage of the direct method are:
e Simple to construct (in sense of programming)

e The solutions of the outer and inner regions, U, and &, , are supplied immediately,

because the equations are solved straightforward.
The disadvantage of the direct method is that it cannot simulate separated flows. The direct
method is also well-known as ‘weak interaction’, because the interaction is dominated by the
outer region.

2.3.2. Inverse Method
In this method the velocity distribution is computed from the inner region (by solving
the viscous flow model) and the displacement thickness is computed from the outer region (by

solving the inviscid flow model). With the velocity of the inner region U, as the initial

value, the computation of &, is accomplished from the outer region. With the value of &,
one computes the new velocity distribution UZ.. This mechanism runs, until the two

solutions - displacement thickness (5, ,,) and velocity distribution (U.) - are convergent.
The iteration scheme can be seen in Figure 2.5.

> Inviscid Model

un. 5

—  Viscous Model <—

Figure 2.5. Iteration Scheme of the Inverse Method

n+1
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The interaction of the two models and the boundary conditions can be represented into
the following functional relationship:

*

OF(In:U 2 (1,);0ut: 0™, 57, (0"))=0
|F(|n:5* (O™);0ut: IM,Ue”..‘?(IM)):O

n+l

The outer and inner regions will be represented in the relation between the gradient of
velocity and displacement thickness as follows:

do” du
OF : —(O",1 )=E, +E,—(I
dX ( n) l+ 2 dX ( n)
du, do” .,
IF W(In+l):Fl+F2W(O !In+l)

The graphical illustration of the Inverse Method can be seen in Fig. 2.6. for several flow
conditions.

OF  dU./dx OF  dUJ/dx
dUe/dx
2 IF
dd*/dx dd"/dx dd*/dx
a) Attached Flow b) Separating c) Separated Flow

Figure 2.6. Graphical Illustration of the Inverse Method

In the inner region, the boundary layer equations (e.g. the integral boundary layer equations)
can be transformed into the inverse form, in order to compute the output velocity. The inverse
procedure of the inviscid model runs as in design process with the velocity as input and
geometry as output. However it is not simple to transform the inviscid model into the inverse
form. For attached flow the iteration is not convergent (Fig. 2.6.a). But this mechanism runs,
if a separation point exists on the body (Fig. 2.6.b and c). The advantage of the inverse
method is that separated flows can be simulated.
The disadvantages of the inverse method are:

e Attached flows cannot be simulated

e The inverse equations (of the two regions) is not simple to construct

e The solution of variables of the outer and inner region, U/. ands.,, needs longer

time than with the direct method, because the equations are not solved straightforward.

It can be observed that both of the iteration procedures (direct and inverse) diverge for at least
one of the flow situations when using no relaxation. A direct or an inverse method, which
assumes the dominance of one flow model over the other, fails to be applied to general flow
situations. Neither a direct nor an inverse method without relaxation is able to deal with the
so-call ‘strong interaction’ from both of the flow regions. The direct interaction method can
only be used in the region upstream of the point of vanishing skin friction, at the other hand
the inverse interaction method is a valid approach for the region downstream of this point.

10
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2.3.3. Semi Inverse Method

The Semi inverse method is a synergy of the direct and inverse method. The inviscid
region is solved with the direct method, but the viscous region is solved with the inverse
method. In order to fit the solution between the inner region and the outer region, a relaxation
procedure is additionally used. Initial value of displacement thickness (5°g) is given first.
Afterwards one calculates the velocity distribution (U, ) from the outer region (inviscid

model), which is computed with the given displacement thickness (8'). At the same time one
computes the velocity distribution (U!.) with the inverse procedure from the given
displacement thickness (8¢). The new displacement thickness (81) is determined by a
relaxation procedure based on the two velocity distribution solutions (U ;. ) and (U ). If all
parameters (8 p, Uge und UJY) are convergent, these computations are terminated. The
iteration scheme can be seen in Figure 2.7.

—> | Inviscid Model  |——

n+1
U eOF

—> | Viscous Model |——

n+l
d n U elF

Relaxation

Figure 2.7. Iteration Scheme of the Semi Inverse Method

The interaction of the two models and the boundary conditions can be represented into
the following functional relationship:

IF(In:57(1,);0ut:1,,,,UM(,.,))=0
OF(In:5;(1,);0ut: 0™ UL (0"))=0
RL(IN:UE (O™, Ul (1, );0ut 5, (1, 1)) =0

Here RL designates the functional relationship of the relaxation procedure. The advantage of
the semi inverse method is that simulation of separated flows is possible. The disadvantage of
the semi inverse method are:
e The boundary layer is not computed straightforward. Therefore one must transform
the boundary layer equations into inverse form.
e Additionally relaxation procedure is needed, therefore it takes a longer time to obtain
the solution of the boundary layer.

11
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2.3.4. Quasi-Simultaneous Method

As the semi inverse method, the quasi-simultaneous method is a synergy of the direct
and the inverse method. The inviscid region is solved with the direct method, but the viscous
region is approximated with the simultaneous solution of the boundary layer equations and an
‘Interaction Law’. The Interaction Law was deduced from the asymptotic theory and connects
the outer and inner regions like the function of the outer deck of the boundary layer in the
triple deck boundary layer theory.

With initial values of displacement thickness (87), the velocity distribution (Uooe) is
computed by the outer region (inviscid model). Simultaneously the displacement thickness

(8"1) and the velocity distributionU - are calculated from the inner region and the interaction

law with input velocity distribution (UL, ). With the displacement thickness (5'1), the outer

region is computed again. If the iteration is convergent this computation is terminated. The
iteration scheme can be seen in Figure 2.8

> | Inviscid Model 1 —

Sn Ueor

Viscous Model +

Interaction Law <

Figure 2.8. Iteration Scheme of the Quasi-Simultaneous Method

The interaction of the two models and the boundary conditions can be represented into
the following functional relationship:

OF(In:8;(1, );0ut:0™ Ut (0™))=0

{”:(In Uengé (OnJrl);OUt . In+l’UeIF ’6;+1(| n+l)): 0}
LU O™, U 3670 (1,,))=0

Here IL is the functional relationship of the Interaction Law. The advantage of the quasi-
simultaneous method is that simulation of separated flows is possible.
The disadvantage of the quasi-simultaneous method are:
e Additionally one must develop an Interaction Law between the outer and the inner
region
e Simultaneous method to solve the viscous model and the Interaction Law needs more
time than the direct method

2.3.5. Simultaneous Method

In this procedure all equations are solved simultaneously, which means that the
boundary layer equations and the potential or Euler equations are treated as an expanded
system of differential equations. The iteration runs with initial values of displacement
thickness (8 o) and velocity distribution (Ueo). Then one computes the displacement thickness
and the velocity distribution at the same time by solving the expanded system of differential
equations. The iteration scheme can be seen in Figure 2.9.

12
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Inviscid Model
+

Viscous Model

8 1, Uen

Figure 2.9. Iteration Scheme of the Simultaneous Method

The interaction of the two models and the boundary conditions can be represented by
the following functional relationship:

IF(1,,5:(1,,0"),U,(0",1,))=0
oF(0",5:(1,,0"),U,(0",1,))=0

The advantage of the simultaneous method is that separated flows can be simulated. The
disadvantages of the simultaneous method are:
e Itis not simple to develop and solve the expanded system of differential equations
e Simultaneous method for solution the viscous model and the inviscid model needs
more time than the direct method

In the present work a combination of the direct and semi inverse method is developed,
because - regarding the programming aspects - only few changes are necessary in the inviscid
model and one can develop the boundary layer calculation method separately from the
inviscid model. Another reason is that one can couple the viscous model easily into many
different inviscid models.

The computation of the boundary layer (the viscous aerodynamic models) in the present work
is performed using the following methods:
e Integral boundary layer equation based on the procedure introduced by von
Karman - Thwaites [5] for incompressible laminar flows
e Integral boundary layer equations based on the Kkinetics energy equation
proposed by Drela and Giles [3] for compressible laminar and turbulent flows
e Integral boundary layer equations based on the Lag Entrainment method
introduced by Green et. al. [11] for compressible turbulent flows
o Differential boundary layer equations based on the procedure of Hamilton et.
al. [26] for compressible laminar and turbulent flows
e The incompressible flat plate boundary layer calculated using the Blasius
solution [5] or the Power 1/7 Law [5] is used as the initial value for running the
calculation for laminar or turbulent flows, respectively.
e The transition from laminar to turbulent flow is predicted using e" method [3]

The viscous aerodynamic models used in the present work will be explained in the next
chapter.

13
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3. Viscous Aerodynamic Models

This chapter describes some calculation methods used to determine the boundary layer
parameters. Three different calculation methods are presented, i.e. the flat plate boundary
layer, the integral and the differential boundary layer equations. All of the calculation
methods are limited for two dimensional problems. The application of these methods for
solving of three dimensional problems is carried out via strip theory approach, which means
that the local boundary layer along spanwise direction is assumed to be two dimensional.

The values of the boundary layer parameters on a flat plate (such as: boundary layer

thickness & momentum thickness 6, displacement thickness &', shape factor H and skin
friction coefficient C; ) are used in the present work as the initial value for the boundary layer
calculation, since the calculation process is carried out in space-marching fashion. The
boundary layer on a flat plate is determined using the Blasius solution and the Power 1/7 Law
for incompressible laminar and turbulent flows respectively.
Among the integral boundary layer equations, three calculation methods proposed by von
Karman-Thwaites, Drela-Giles and Green et. al. are discussed. For solving the differential
boundary layer equation the procedure proposed by Hamilton et. al. is used. To complete the
description of the boundary layer, a laminar — turbulent transition prediction based on the "
method is also described at the end of this chapter.

Before further description of those calculation methods, it is better to first recognize
the meaning of some boundary layer parameters. Figure 3.1. shows the sketch of boundary
layer on a flat plate to illustrate the physical meaning of the boundary layer thickness &,
displacement thickness & and momentum thickness 6.

z

U, 06

Figure 3.1. Sketch of Boundary Layer on a Flat Plate

The boundary layer thickness o is defined as the thickness over the surface, measured in the
normal direction from the surface, where the velocity is zero, up to the position of the external
frictionless velocity U.. The external streamline of the flow is displaced upward because of
the presence of the boundary layer. The displacement thickness & is defined as the thickness
measured between the displaced and the undisturbed streamline.
The momentum thickness & is defined from the momentum loss between stations A and B as
follows (see Fig 3.1).
The momentum (per unit depth of the plate) at the station A can be described as:
Mom. A = p.U.’h
The same description for the momentum at the station B is:
Mom. B = o /" pU%dz + pe8 Ug?
The momentum loss between stations A and B is:
Mom. B — Mom. A = p.U?6
From this momentum loss, the momentum thickness & is defined as:
0 = (Mom. B — Mom. A)/p:Ue = (o /" pU%dz + pe8'Ue? - p.U.2h) peUe?

14



3. Viscous Aerodynamic Models

where h, p and U are the height of the fluid column, the density and the velocity of fluid,
respectively. The subscript e denotes the condition at the edge of the boundary layer.

The relation between the momentum and the displacement thickness is given by the
shape factor H defined as: H = 576

3.1. Boundary Layer on a Flat Plate

3.1.1. The Blasius Solution: Incompressible Laminar Flow
In order to determine the boundary layer parameters on a flat plate in incompressible

laminar flow, the exact solutions from Blasius are used, as follows [5]:

oX « 1.73x 0.664x

o= 3.1, 1) 3.2), 6 = 3.3),
Re. 3.1 Re. (3.2) Re. (3.3)
C, _ 0664 (3.4), H _9 2.6054 (3.5)
JRe, 0
with the displacement thickness: 5 = j[l—ﬂu]dz (3.6)
0 PeVe
. _ K u ) pu
the momentum thickness: 0 :j 1-— |——dz (3.7)
oL U JpU,
and the skin friction coefficient: C, = 28”2 (3.8)
pe e

where Rey is the local Reynolds number and 7 is the shear stress. The subscript w denotes the
value at the wall.

3.1.2. The Power 1/7 Law: Incompressible Turbulent Flow
In order to calculate the boundary layer parameters on a flat plate in incompressible

turbulent flow, the solutions of the Power 1/7 Law are used [5, 8]:
x°® ) 7
0=037T——— 3.9), o =— 3.10), 0=—95 3.11),
o7 (39) (3.10) 50 @1

0

8
59 ds”

C. =0.0576x *?Re %% (3.12), H="== 313), C.=7— 3.14
. - (3.12) IRk, (3.13) E i (3.14)

where Re., is the Reynolds number of the undisturbed flow and Cg is the entrainment
coefficient defined as [11]:
1 d

= p—U&[peUe(é -57) (3.15)

3.2. Integral Boundary Layer Equations
3.2.1. The von Karman - Thwaites Method: Incompressible Laminar Flow

In order to compute the boundary layer parameters of an airfoil in an incompressible
laminar flow, the von Karman - Thwaites method is used.
The integral of the momentum equation in the boundary layer (known as von Karman integral
momentum equation) reads [5, 29]:

99 H12) 0 Ve _ T (3.16)
dx U, dx pU;

In order to solve equation (3.16), the three unknown 6, H and 7, must be linked to each other.
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By introducing a new symbol K as:

2 2
K:e_duezzdue1 Z=9—
v dx dx 1%
the von Karman integral momentum equation (3.16) can then be written as:
1. dz
—U,—+|[f(K)+ 2K =f,(K
UL L (<) + 20K = 1,(K)
where: LK) =H, £ (K) =7

If one introduces further a new function F(K) such as:
F(K)=2f,(K)—4K —2Kf, (K)
then the integral momentum equation (3.18) becomes:
dz _ F(K)
dx U

e

Waltz [5] has proposed a linear function of K to approximate the function F(K) as:

F(K)=a-bK, a=0.45, b=6
Substitution of the equation (3.22) into (3.21) gives:

U,°Z =045[U ‘dx
0
which can be solved for Z by a recursive formula:

U (%,)Z(x,) =ueﬁ(xn_1)2(xn_1)+o.45Xfu:’(x)dx

Xn-1

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

The initial values used to solve equation (3.24) are the values of K and Z at the stagnation

point [5]:
0.077

KO :0077, ZO :(dUTX)
e 0

Thwaites suggested several simple equations to approximate the shape factor and skin

friction coefficient as a function of K [29], as follows:
H =2.6052-3.75K +5.24K?

for 0<K <0.1:
f,(K)=0.22+1.57K —1.8K?
H= 20781 5 o0ss
for —0.0898<K <0:  Ol4+K 018K
f,(K)=0.22+1.402K + —————
0.107 + K
H =2.2874

for K >0.1:
f,(K)=0.3590

The skin friction coefficient will be computed with:
C, =2f,(K)/Re,
where the Reynolds number Reyis defined as:
Re, = pUé/ u
As the criteria of separation flow, the following values are used:
K < —-0.0898, H =3.5444, f,(K)=0

(3.25a)

(3.25h)

(3.25¢)

(3.26)

(3.27)

(3.28)
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In order to extend the validity of this method for a wider range of Mach number, the values of
K, H and f,(K) are corrected under consideration of the compressibility effect as follows [8]:

HC:{1+(7T_1erj}H (3.29a) sz(K){uVT_lerj}fz(K) (3.29b)

KC:[L{}/T_lerj}K (3.29¢) r=pPr®  (3.29d)

where yis the ratio of the specific heat, r is the heat recovery factor, Pr is the Prandtl number
and Mg is the Mach number at the edge of the boundary layer.

3.2.2. The Drela - Giles Method: Compressible Laminar and Turbulent Flow

In order to compute the boundary layer parameters of an airfoil in compressible
laminar or turbulent flow, the Drela - Giles method is used. Drela and Giles formulated a
coupled pair of differential equations of momentum thickness and shape factor, as follows [3,
4]:

C
40 _Zr _(H42-m2)0 Y (3.30)
dx 2 U, dx
di:i[zcd—lcfj— ZL*+1—H H au, (3.31)
dx @ 2 H U, dx
The shape factors in equation (3.31) are defined as follows:
A - O
. . . _ -7 p U
with the Density Thickness: o = J (1——ju—dz (3.33)
0 Pe )VYe
. . . « Ff., U} pU
and the Kinetic Energy Thickness: o =I 1—U—2 —Udz (3.34)
0 e e~e
The dissipation coefficient in equation (3.31) is defined as:
C, = Ls j Yy (3.35)
peUe 0 dZ

The derivation of the integral boundary layer equation (3.30) and (3.31) can be found in
Appendix 2.

3.2.2.1. Closure Equations for Laminar Flow
In order to be able to solve the system of differential equations - Egs. (3.30) and (3.31)
-, one needs some closure equations to close the problem because the number of the equations
is less than the number of the unknown variables. Some variables must be linked to each other
or written as a function of the other variables.
For this purpose one introduces the kinematic shape factor Hy, as [3, 4]:
~ H-0.29M,
“1+0.113M,

This kinematic shape factor Hy plays an important role as the closure variable, where the other
variables are related to. The variables which must be written as functions of Hy are H , Cs, Cq4
and H  and will be described as follows.

(3.36)
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Therelation between H™ and Hy reads [3, 4]:

. N H, - 4.35)7
if H 3435: H = O.OISM +1.528 (3.378)
H, +1
if H, <435:
- 2 - 3 (3.37b)
H = 0.0lll@- 0.0278@+1.528 - 0.0002(H/ - 4.35H,)?
k k

The skin friction coefficient C; is computed as a function of Hyx and the Reynolds
number Req [3, 4]:

. é (55 H,) u 1
if H <55: = - 0.067(—— a
k N S e e @
5 (3.38)
if H, 355: C, ¥ 15 — 1 Y. 075 1 (b)
i 6 (H.-45)q hRe,
The dissipation coefficient Cq is computed as a function of Hy, H and Rey:
if H, <4.0: [o 00205(4- H, )** +0.207 Rl Hz @)
e,
0.0016(H ) 1 (3.39)
fH, 340: C, =) +o207 L H (b)
" ifro02(H, hRe, 2
Thevaueof H isrelated to Hy asfollows [3 4]
. é 0064
H" =M e————+0.25 3.40
° &H, - 0.08) 1“ (340

The steps for the computation of the boundary layer parameters of an airfoil in compressible

laminar flow using the Drela-Giles method are as follows:

a. The boundary layer parameters resulted from the solution of the von Karman — Thwaites
method is used as initial values applied to the leading edge region of the airfail.

b. After 3% or 5% of the chord length from the leading edge, the system of differentia
equations (3.30 and 3.31) associated with the closure equations for laminar flow is solved
using a 4" order Runge Kutta method (see Appendix 1) to obtain the value of the
boundary layer parameters at the next point in the downstream direction.

c. This procedure is carried out up to the transition point from laminar to turbulent flow.
Beyond this transition point the computation is switched to the procedure for turbulent
flow. The transition point is computed using the € method (see Chapter 3.2.4).

3.2.2.2. Closure Equationsfor Turbulent Flow .
For turbulent flow, the closure equation for H ~ remains the same as for laminar flow.
The other closure equations for H, Cy, Cq are changed and will be described in the following.

H" will be computed using:
H, +0.028M 2

H = e 3.41
1+0.014M ? (341
where:
if H <H,: H, =§%.5- 4 %42 15 5+t (3.422)
Re, g H,+05 Re,
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it He 2 Hy: MY =(H, —H, | 2007I0Re, 0015, 5, 4 (3.420)
4 Hk Reg
|
logRe,
with:
Ho —H
H = HoHy (3.43)
H, -1
H, =3 :90 if Re, > 400 (@)
% (3.44)
H, =4 if Re, <400 (b)

The skin friction coefficient, Cs, is computed with the following relation [3,4]:
Re,

J1+40.2M?

(3.45q)

J1+0.2M2
(3.45b)

{0.36 -L33H, g-174-031H, o_oooll[tanh(H arg )— 1]}

if 3.
-1.74-031H,
Coot )03 jog, | S0 +0.00011]tanh(H ;) - 1]
f = ' 10 ' ari
J1+0.2M2 J1+0.2M2 ’
if 0 <g®:
(o S—

>e
1
Re,  _
1
J1+40.2M?

where:
Hoyy =4- H, if H,>-525 (a)
0'87: (3.46)
H,, =104 - K if H, <-525 (b)
0.875
The dissipation coefficient Cy4 will be computed from:
C
C, =7qu +C.(1-Uy) (3.47)
where the slip velocity Us is a function of the shape factor:
u A4 _ (3.48)
6 (H,

The shear stress coefficient C, in equation (3.47) is computed using the Lag-Entrainment
method of Green et. al., which will be discussed later.

The steps for the computation of the boundary layer parameters in turbulent flow using the

Drela-Giles method are described as follows:

a. The solution of the flat plate boundary layer in the incompressible turbulent flow
computed from the Power 1/7 Law is used as the initial values applied to the leading edge
region of an airfoil (for fully turbulent flow case) or applied to the turbulent region after
the transition point (for partially turbulent flow case).
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b. After 3% - 5% of the chord length from the leading edge (for fully turbulent flow case) or
from transition point (for partially turbulent flow case), the system of the differential
equations (3.30 and 3.31) associated with the closure equations for turbulent flow is
solved using a 4th Order Runge Kutta method (see Appendix 1) to obtain the boundary
layer parameters for the next point.

c. The integration of the differential equations is carried out up to the separation point, where
the value of the derivative of the shape factor (dH./dH") becomes singular and Cs is less or
equal to zero. In this case the Inverse Boundary Layer Method (IBLM, to be described
later) is used starting from the separation point.

3.2.3. The Lag Entrainment Method from Green et. al.: Compressible Turbulent Flow
Another method to calculate the boundary layer parameters in compressible turbulent
flow is the Lag Entrainment method proposed by Green et. al. [11]. They introduced an
entrainment coefficient in order to take into account the ‘history’ of the flow condition. The
mixture process between a turbulent region of flow and its surrounding non-turbulent
irrotational flow is referred to as the entrainment of the non turbulent by the turbulent flow.
This entrainment affects the growth of the boundary layer and considered to be a controlling
factor in the development of the turbulent boundary layer. Green et. al. have proposed an
additional equation involving the entrainment coefficient instead of momentum thickness and
shape factor equations.
The system of differential equation is now as follows [11]:

C
99 1 _(H42-m2) 2 99 (3.49)
dx 2 . dx
d_H_l(CE_lchfjdH dH 1 du, (3.50)
dx & 2 dH, dH, U, dx
y=1 .,
1+~ rM;
o _FJ 28 f¢o J2 —acz|] £ We | 1_H 140075m? 1Y 35
dx 6 |H+H, U, dx co 1+0.1M? |U, dx

The derivation of the shape factor equation (3.50) can be found in Appendix 2.

3.2.3.1. Closure Equations for Turbulent Flow
In order to solve the above equations, one needs some closure equations since the
number of the equations is less than the number of the unknown variables. Some variables

must be written as functions of other variables. These variables are the shape factors (H, H ,
Hy1), the derivative dH /dH,, Cy, (d/Ue dUe/dx)gq, C. and F.

Between the shape factors H, H and H; exists the following relations [11]:

H =(ﬁ+1{1+—72_1r|v|62]—1 (3.52)
H, =315+ |%721—0.0107—1)2 (3.53)
o o 2
i __ -(H-1) (3.54)

dH, 1.72+0.02(H 1)
H is the incompressible shape factor defined as [11]:

gt j [1__}12 (3.55)
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*

H; is the mass flow shape factor defined as [11]: H, = o 795 (3.56)
The equations (3.53 and 3.54) will be singular if the value of H is equal to 1. Therefore the
application of this procedure is limited up to this value of H .

The skin friction coefficient C; on the profile is written as a function of shape factors, Mach

number and Reynolds number as [11]:

c, =C, [0.9(HE—0.4J —0.5] (3.57)

0

Ho is the shape factor at constant pressure and Cy is the skin friction coefficient if the pressure
gradient is equal to zero.
The relation of (H /Ho ) and Cyo in the equation (3.57) is defined as [11]:

ﬁ C 1/2
H_ ﬁ{le.s{i(u o.omj)} } (3.58)
H, 2
R s SR Y\ (3.59)
° F.|log, (F; Re,)—1.02

with the scaling factors Fc , Fr and the Reynolds number Re, given by [11]:
1/2
F. = (1+7T_lrMezj (3.60), F,=1+0.056M’ (3.61),

8 o
AP A" ) Re (3.62)
=)
He

The variables at the edge of the boundary layer in the above equations (denote by the
subscript e) will be given by the following relations [8]:

Re, =

P _1_MZp  (363), -1+  (3.64) e :1+(1+7—_1Mij¢x (3.65),
o U, M. 2
T\ l+$0 T
% . 2
Mo | e | | = 3.66), “e o1 (y—1)M 2, 3.67
M (TJ Te |, So (569 (TJ r-tM-¢ (567
T.) T,

¢ is the derivative of the disturbance velocity potential in the downstream direction and Sy is
the Sutherland number, where its value is equal to 110 Kelvin for air and T represents the
temperature of the fluid.

The variable (d/Ue dUe/dx)eq in the equation (3.51), i.e. the displacement thickness
multiplied by the gradient of the velocity in equilibrium condition with constant H, is defined
as a function of shape factors, skin friction and entrainment coefficient, as follows [11]:

9 du,) 1 [HC,
[U_e dx JEQ ) Hl(H +1){ 2 (CE)EQ} (3.68)

where the subscript EQ represents the equilibrium condition.
The entrainment coefficient in equilibrium condition in the equation (3.68), i.e. (Cg)eq, IS
defined as [11]:
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C 1/2
(Ce)eo = ﬁ+o.0001 -0.01 (3.69)

with the function C is:
C =(C.)uoll+0.1M 2] 27 —032C, (3.70)

where A is the scaling factor of the dissipation length, its value is 1 on the airfoil and 1/2 in
the wake.

The shear stress coefficient in the fluid, C,, is defined as a function of Mach number,
entrainment coefficient and skin friction coefficient, as follows [11]:

C, =(1+0.1m,70.024C, +1.6C2 +032C, ) (3.71)
(C. )ego = [+ 0.1M,7 J0.024(C,. ) +1.6(Ce )20 +0.32C, | (3.72)

EQO EQO
The subscript EQO indicates the equilibrium condition without influence of the second
structure of the turbulence.

The entrainment coefficient in EQO is defined as [11]:

Cy ¢ du
Ce )ego = Hi| = —(H +1) ——¢ 3.73
(Cea 1[2 o dj] @79
where :
0 dU. ) 125G (H-1 2(1+004|v| ) (3.74)
U, dx ), H| 2 (6432H e

The variable F in the equation (3.51) is defined as [11]:
0.02C. +1.334C? +0.267C,
- 0.01+1.334C.

With the above closure equations, one can solve the set of differential equations (3.49 - 3.51)
for given initial values.

(3.75)

The steps for the computation of the boundary layer parameters in turbulent flow using the

Lag Entrainment method are described as follows:

d. The solution of the flat plate boundary layer in the incompressible turbulent flow
computed from the power 1/7 law is used as the initial values applied to the leading edge
region of an airfoil.

e. After 3% - 5% of the chord length from the leading edge, the system of the differential
equations (3.49 - 3.51) associated with the closure equations for turbulent flow is solved
using a 4th Order Runge Kutta method (see Appendix 1) to obtain the boundary layer
parameters for the next point.

f. The integration of the differential equations is carried out up to the separation point, where
the value of the derivative of the shape factor (dH /dH,) becomes singular and C; is less

or equals to zero. In this case the Inverse Boundary Layer Method (IBLM, to be described
later) is used starting from the separation point.

3.2.4. Semi Inverse Method
The semi inverse boundary layer calculation method was proposed by Melnik and
Brook [15] and Howlett [20] among others. It was proposed to avoid the singularity of the

value of the derivative of the shape factor (dH /dH,) in the Lag Entrainment method as the

flow condition tends to separate. The extension of the Green’s Lag Entrainment method to
handle separated flow is carried out by choosing an appropriate velocity model applied to the
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separated flow region. The derivative of the shape factor (dH /dH,) will then be formulated
based on this velocity model.

Mathematically, this method is derived from Green’s Lag Entrainment method by
modifying the differential equations (3.49 - 3.51), so that the momentum thickness @ is not
directly computed from the momentum equation, but from the velocity at the edge of the
boundary layer U,. Then the displacement thickness & will be computed iteratively based on
the edge velocities calculated from the boundary layer equation U, and from the inviscid
equation Uk.

For modification purposes a new parameter is needed, i.e. the mass flow rate in the
boundary layer defined as [20]:

m=pU. (3.76)
With this new variable the three differential equations from Green’s Lag Entrainment (3.49-
3.51) can be written as [20]:

—1dm 1 R dﬁ[ E_CfH1]+Cf

du, modx HO dH, 2 ) 20
x o R, ( 1)rM, M, R dH 1+ 4, )M? 510
(H +1 7/_ r 2e 0! V2 +H1 H _M92+( +¢X)2 0
H R; dH, 1-M2g,
[1 Rl(y—l)rMeMmRz} ’ (1 dm Cf]}
dH _ HR; m dx 260 (3.78)
& (y -1rM M _R, 2 H dH | M/ . 1+¢ )M’
H f dH, | (H+1) (1-M2g)(H +1)
R, 12 v2], [ @ dU 2 R,
= C ~AC! e ~F|1+0.075M °* ——— 3.79
dx 9{H+Hl[( Jeas ] U, dx 0 © 1+0aM,? P (379)
New terms appeared in the equations (3.77 — 3.79) are:
R =14 7Dy 2 (3.80) R =1+ 7Dy (3.81)
1~ 2 e . 2 2 © '
R, =28 if H<24 (a)
R, = 0.15 it H>24 (b) (3.82)

(1—22}0.08(1—77*)

The variables C, and 7 are related to the chosen velocity model in separated flow region,
which will be described later in the description of the closure equations. The details of the
modification procedure can be found in Appendix 3.

The semi inverse calculation method can also be written associated with the shape
factor equation from Drela & Giles method as follows:

—1dm 1 dq( Clej C
R E——— |+

_l_i [ -
m dx HO ‘dH 2 20
dd&=Uv : — 2 (3.77)
X _
(H +1 1_& (7/ 1)I’|\/|26MwR2 +H, dH —Mf+%
H R, dH, 1-M;4,
e _F) R [(C )1E’(§O—/1C“2] 0 du, ~F 1+o.o75|\/|92—Rl 6 (3.79)
dx 6 |H+H, U, dx o 1+0.1M,
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di:i(zcd -lcfj—(ZH* +1—H]H—dUV (3.31)
dx @ 2 H U, dx
3.2.4.1. Closure Equations for Semi Inverse Method

Some of the closure equations of the lag entrainment method must be modified in
order to be able to calculate the separated boundary layer. The modification of the closure
equations involves the variables dH /dH,, (Cg)ego, and Cy. Other closure equations remain
the same.

The velocity profile in the separated region is assumed to be [20]:

u
L =1-C,F, (1) (3.83)
where: C, :L*, a :5—, n :i, a, =0.5, a, =1 (3.84)
a,(l+a,7") 5 5
F.(n=1 0<p<y (a) (3.85)

F,(n=F@) n <np<i (b

7 is the height of the reversed flow region of the boundary layer in the separation region (see
Fig. 3.2.). The variable F; in equation (3.85) is known as Coles wake function defined as
follows:

F.(7)=05(+cosz), 7= ’17 /a (3.86)
-n
The velocity of the reversed flow is: LLJJ—'“ =1-C, (3.87)
: |
5 | Ue
— (13
—>
% *
Un < n o
X

Figure 3.2. Sketch of the Reversed Flow Region in Boundary Layer

The criteria of the reversed flow region are described as follows [20]:
n (@) =ba+(@1-b) if a,<a<l

n(@)=ald-a) if a <a<a, (3.88)
7 () =0 if ¢ <a,
with: b=37 _21 or 23
da
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a=— 2 4-a, o« =2( —ﬁj—g (3.89)
1 2) b
4[1—a1—bj

The value of b depends on how the extrapolation of the function H vs. H; from the original
function (equation 3.53) has been carried out [15, 20].

The shape factor H is now described as a function of a :

Hi@) = L[+ Bl e} (3.90)
with By )= 22l7) 4 (3.91)
Gy (7)
where: G,(7)=a0+a,7") (3.92)
G,(7")=b,+b,7") (3.93)
with: b,=3/8 and b,=5/3
The shape factor H; is now also a function of « :
H,(d)= W(d)(é—lj (3.94)
a
The derivative (dH /dH,) will be computed as:
aH _ 1 (3.95)

dH, (dH,
dH

dH, _oH, oH, da

with: — — = — (3.96)
dH oH oJ¢ oH
Further changes in the closure equations of the Lag Entrainment method are [20]:
The entrainment coefficient in equilibrium EQO (equation 3.73) then becomes:
(Ce )eqo = 2KJC,F(1)|,., =0.00647°C, (3.97)
where K; is the mixing length constant and its value equals to 0.08, and:
er(p = 3 Fal) 3.98
p (77) - d772 ( ' )
The skin friction coefficient (equation 3.57) becomes:
0 3e—1.33H H _
C, = ——roan +0.00011{tanh(4——j—1} if H<24 (@)
(log,, Re, )™ 0.875 (3.99)
C,=0 if H=x24 (b)
The scaling factor of the dissipation length A becomes:
On the profile: A= ! X (3.100a)
1-7n
_ 1 1
In the wake: A== " (3.100Db)
21-7

Finally, the displacement thickness is computed using the following iterative method [14, 20]:
. . « (U
é‘new = 50Id + a)é‘old (U_V - 1J (3101)

e

where :
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U, = viscous velocity (solution of the Inverse Boundary Layer Method)
U, = inviscid velocity (solution of the TSD or the Euler equations)
@ = relaxation factor (in the present work the value of @ is chosen from 0.001 to 0.2)

The procedure to solve the semi inverse method are as follows:

a. The procedure starts if the value of H is close to 2.4. Solution of the flat plate boundary
layer in incompressible turbulent flow is used as the initial value for the next point.

b. Calculate the mass flow rate with the initial value of &

c. Calculate ¢ by means of the relation H - ¢ . For this purpose a Newton iteration is used
(see Appendix 1).

d. Afterwards H; and (dH /dH, ) are computed.

e. Uy, H and Cg are calculated using a 4™ Order Runge Kutta method.

f. The new displacement thickness (& new) is computed. If the value of & new is convergent the
procedure can be proceeded for the next point otherwise the procedure must be repeated. In
the present work, the convergence is reached if the relative error [(8 new - & oid)/d oid] <
1.0E-04 .

3.3. Differential Boundary Layer Equations: The Procedure of Hamilton et. al.

A differential method solves the differential boundary layer equations directly without
modifying the equations, as carried out in the integral method. In contrast to the integral
method, which produces directly the momentum thickness and shape factor, the numerical
solution of the differential equation supplies the distribution of velocity within the boundary
layer, which must be integrated, in order to obtain the momentum and displacement thickness.
The numerical procedure used here is the finite difference method as implemented by
Hamilton et. al. [26]. The boundary layer parameters in both laminar and turbulent flow can
be calculated using this method. In order to solve the boundary layer equations for laminar
flow, an auxiliary equation is not necessary, but a turbulence model must be added for solving
the turbulent boundary layer, in order to calculate the value of the turbulent viscosity.

3.3.1. Equation Form

As the starting point is the boundary layer equations, which consist of conservative
equations of mass, momentum and energy, which can be written for compressible turbulent
flow in two-dimensional Cartesian coordinates, as follows [26]:

o(pu)  o(pW) _ (3.102)
OX 0z
ou ou op O ou
—+ oW —=——+—| (e + e )— 3.103
A OX r 0z oX 0z {(ﬂ He ) az} ( )
P _y (3.104)
0z

OX oz oz |Pr oz u Pr, oz |\ Pr u\ Pr,
The variables u and W are the velocity component in x and z direction. The symbols p and p
stand for pressure and density. Pr and Pr; are the laminar and turbulent Prandtl number

respectively, where their values are 0.72 and 0.90. x and g are the laminar and turbulent
eddy viscosity. hg is the total enthalpy.
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In order to simulate the turbulent condition, the velocity W in the above equations is defined

as: W =W+—(p"f’) (3.106)
Y2

The symbols and ’ in equation (3.106) denote the mean value and time-dependent

fluctuating value.

The boundary conditions for the solution of equations (3.102) to (3.105) are as follows:

if z=0 : u=0, W=0, h,=h, (X a

if z>ow : u->U,, hy—>h, (b)
The subscript w and e denote the value at the wall or at the edge of the boundary layer. The
number of unknown variables involved in the equations (3.102) to (3.105) is seven, i.e. u, W,
p, ho, p, ¢z and p, larger than the number of the equations, which is only four. Therefore
these variables must be linked to each other or some closure equations must be added, in order
to close the problem. The laminar viscosity x is computed with the Sutherland law, as follows

[26]:
YT 148,/7T
M ] e (3.108)

g, \T. ) |TIT +S,IT,

Ty, 1 and S are the reference temperature, the reference viscosity and the Sutherland number
(equals to 110 Kelvin), respectively. The turbulent eddy viscosity g is computed using two
layer turbulence model proposed by Van Driest - Clauser, which will be explained later. The
total Enthalpy hg is assumed to be constant. The variables u, W, p and p are coupled to each
other by using the Levy Lee transformation of the coordinates, which will be described as
follows.

3.3.2. Transformation of the Coordinate
The Cartesian coordinates (x, z) is transformed into the computational coordinates (&,
¢) by the Levy Lee transformation as follows [26]:

E(x) = [ pops U, dx (3.109)
0
£(x,2) :”e—Uejﬁdz (3.110)
NEERY
The derivatives in the direction x and z become:
0 0 ag
— U —+—=—— 3.111
™ peﬂeeaé X or (3.111)
9_PY 0 (3.112)
oz |28 8¢
With these new coordinates one can defined a stream function y(&,9) :
w(E)=221(&.0) (3.113)
which has properties: v = pu (a) v =—pW (b)
oz OX

f
PN =—p,ul [ £5% FJ % it (@ (3.114)
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The new variable f in equation (3.113) has the property: f'= afg L;J (3.115)
With new variable f, the momentum in the flow direction x (3.103) becomes:
I*f”’+{i+ fjf"+,6’{&—( 0 } Zf(f’ﬁf fﬁJ (3.116)
¢ P o6 0¢
where:
" [“ﬂ_Ej @ p=ET )
Pk, H U, d&
2 3
fr= 0 f2 (), f"= 0 2 (d) (3.117)
oc o¢

The pressure term in equation (3.103) is eliminated by the inviscid theory (with isentropic
assumption) to:

dp du
t=—pU,—= 3.118
e~ PYege (3.118)
The same procedure can be performed for the energy equation (3.105) resulting the following
equation:
I~ o (1" og ,of
— 19"+ +flg+0' =25 f'—= — 3.119
(Prjg Lﬁc( j }g ” ”{ oc 0 5§J S49)
where:
h0 . LM Pr
=-— a), | = S
) hO, @ peﬂe[ H Prj
w="LH ﬁ[l—ij+[l—i [ J J (c), (3.120)
pe:ue H Prt P
!/ ag n azg !
= — d y = e ) f
9'=7 ; d), ¢ o ), o a g (f)

The equations (3.116) and (3.119) can be solved for f and g under the following boundary
conditions:

for =0 : f=0, f'=0, g=9,(%) (@)
(3.121)

for { >0 @ f'">1 g-—1 (b)
3.3.3. Solution Procedure

The equations (3.116) and (3.119) can be written in general as a 2" order differential
equation:

82(3 x —+a,Q+o,+a,— Q =0 (3.122)
ogt Tt o5

where Q is a general variable.

The following are the term and coefficients of the equation (3.122) to be applied for solving
the momentum equation (3.116):
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, 1
Q=f (@, o= (64 +2¢ ag) (b),

B2 @) a2 @
o, I

(3.123)

For solving the energy equation (3.119), the term coefficients of the equation (3.122) are:

) 1 (a7 pr of

Q-9 @ al—lﬁlpr[ - +f+258§] ) e
B 3 o' :—Zé’f'

©=0 (© a=e @ a0 ©

The general equation (3.122) will be solved by finite difference method on the discretized
boundary layer region. The typical grids for the solution of Q can be seen in figure. 3.4. The
index m and n refers to the index of the points in directions & and ¢, respectively

The derivatives of Q in the direction ¢ and ¢ at point Pp.1, are approximated with:

@ _i _ 2 _ 2
[aé/ m-+1,n - Dl [Qn+l K anl (1+ K )Qn ]m+l (3125)
0%Q 2
(@ m+L,n ) D_z[Qn+l +KQp, —(1+ K)Q, ]m+1 (3.126)
Q) _1y _
[ o) . 2 1Qns-Qul, (3127)
where:
D, = (o —&0)+ K (G0 =) (3.128a)
D, = ({1 = &0 ) +K(Sh = ¢oa)’ (3.128b)
(a—=¢0)
K = o (3.128c)
& —¢, 1)
m m+1
Ay O edge of boundary layer
s O n+l O Unknown
Pmn
S A Q- n /A Known
¢ n-1
T < H surface
'\ [\ N\
AE

Figure 3.3. Typical Grid for the Solution of the Differential Boundary Layer Equations

Substituting equations (3.125) - (3.127) into equation (3.122), one obtains a
simultaneous algebraic equation as follows:

Aan+1,n+l + Ban+1,n + Can+l,n—l = Rn (3-129)
where:
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2 o
Y 3.130a
A, b, "D, ( )
_ 2
g, - —2U+K) a(-KY), % (3.130b)
D, D, AE
2
c 2K _Ka (3.130¢)
D2 Dl
R =g, + 243 (3.130d)
A

The system of the algebraic equation (3.129) forms a tri diagonal matrix in the direction ¢
(index n) at a certain position in the direction £ (index m+1), which can be solved efficiently
using the method from Richtmyer and Morton, as follows [26]:

The solution of Q can be calculated by recursive procedure as follows:

for 2 sns< N _1 : Qm+1,n = Ean+l,n+1 + en (3131)
with:
- R,-C
=l @ e = m

2 2

e (3.132)

for 3<n<N-1: En:¢ (c) en:_”_ n€ns (d)
B, +CnEn—1 B, +Cn E..

The boundary conditions are applied at the index n = 1 (body surface) and n = N (edge of the
boundary layer), which implies that the values of Qm+11 and Qm+1n are already available. With
recursive procedure from n = 2 to n = N-1 one can obtain the solution of Q by means of the
equation (3.131). In this procedure the solution of Q is computed iteratively until the
convergence criterion 1.0E-03 is reached, in order to prevent redundancy of the solution,
because the solution of Q at the station m in the direction & is assumed. As the initial value for
this station, the solution of flat plate boundary layer is used. After the solution of Q (i.e. f or g
in the equation 3.123 or 3.124) is obtained, one can compute the physical values of the other
variable.

The velocity distribution in the boundary layer can be computed as:

u
—=f' 3.115
0, (3.115)
The physical z Coordinate will be computed from:
V26 1 p
z:_j_edf; (3.133)
pPUeq P
The momentum thickness can be computed from:
2 o0
0=£jf’(1— £dg (3.134)
PV o
The displacement thickness will be given by:
* 2 <
5 zﬁj(&— £Yde (3.135)
pU.q p
The shear stress at the body surface is computed from:
ou I, o, uUZ
T, = My — :weeefvcr 3136
yZ ( P jw —\/f ( )
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The local convective heat flux is computed from:
— _lypep U0, (3.137)

Qw Wgw

3.3.4. Turbulence Model
The turbulent eddy viscosity s in the equations (3.103 and 3.105) is computed using
the so-called ‘two layer’ turbulence model. In this model, the boundary layer thickness is
divided into inner and outer regions. The inner region is modelled based on Van Driest
analysis [26, 30] and the outer region is simulated using Clauser model [26].
The turbulent eddy viscosity in the inner region of the boundary layer is computed with the
ou

following equation:
2
*2 2 5
(ﬁj _ K {1—exp( Z*TPJ] o
), Y7, Au oz

where k™ and A" are the von Karmans constants, which its values are 0.4 and 26, respectively.
Within the outer region of boundary layer the following equation serves for the calculation of
the turbulent eddy viscosity:

[”—EJ - P s (3.139)
“),  H
where A is constant equal to 0.0168.
7 is the Klebanovs intermittency factor [26] given by:
7 =0.5{—erf[5(z/5-0.78)]}

. 1 (3.140)

T 1+5.5(z/6)°
The boundary between the inner and the outer region is determined, if the value of the
turbulent eddy viscosity in the inner region is equal to those in the outer region.

[“—Ej =(“—EJ (3.141)
w) \w),

Therefore the computation of the inner turbulent eddy viscosity is carried out starting from the
surface to the edge of the boundary layer. Contrary, the computation of the outer turbulent
eddy viscosity is carried out starting from the edge of the boundary layer to the surface.

(3.138)

3.4. Laminar-Turbulent Transition: The e" Method

The transition from laminar to turbulent flow is predicted using the €" method. This
method assumes that transition takes place, if the disturbance wave (the unstable Tollmien-
Schlichting wave) growths up to e° ~ 8100 [3]. That means: if the value of n at a certain
position x is equal to 9, then the transition takes place at this position.
For a similar flow, i.e. flow with constant shape factor H, the value of n is [3]:

dn
= Re, —Re 3.142
TR, [R&r™ Rea] (3.142)

where the slope of n with respect to Rey and the critical Reynolds number Reg are given by

[3]:

n

. ‘;'; = 0.01{2.4H, —3.7+ 2.5tanh(1.5H, —4.65)]} +0.25"° (3.143)
4
log,, Re,, = 1415 —0.489 |tanh 20 -12.9 [+ 3.295 +0.44 (3.144)
10 "800 = T H ~
k k k
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In the case of the constant shape factor H, the critical Reynolds number Rey is reached at a
certain place xo. If the shape factor H is not constant along the body, one must compute the
change of n along the body, as follows [3]:

n(x) = J~dn(x)

dx (3.145)
dx

dn(x) _ dn (m+1) 1
dx dRe, 2 6

(3.146)

where:

(Hk_4)2 1

54H, -14.07
_654H, -140 (3.147) m = 0.058 -0.068 |7 (3.148)

H/ H, -1
Xo IS the critical point, where the value of Rey is equal to Reg. In this case the critical
Reynolds number Reg depends on the value of the shape factor H along the body.
It should be noted that the integration in the equation (3.145) takes place from X, to the
regarded point x.

32



4. Inviscid Aerodynamic Models

4. Inviscid Aerodynamic Models

In this chapter, three different inviscid aerodynamic models, which will be coupled
with the viscous aerodynamic models (i.e. the boundary layer methods described in the
previous chapter), are presented. These inviscid aerodynamic models are based on the TSD
equation, the Euler and the Small Disturbance Euler equations.

4.1. The Transonic Small Disturbance (TSD) Equation
4.1.1. Historical Background

The TSD equation represents a derivation of the Full Potential equation under small
disturbances assumption applied for the transonic flow. It was examined in detail for the first
time by Murman & Cole in 1971 applied to a thin, zero-lift airfoil [31]. A first order finite
difference method is assigned to solve the equation numerically. Garabedian & Korn [32]
improved the Murman’s solution by using a second order scheme. Airfoil with camber and
angles of attack was treated afterwards by Steger & Lomax [33] in 1972 incorporated with the
Successive Over Relaxation (SOR) method applied to solve the Full Potential equation.

First publications for a wing in transonic flow go back to the works from Ballhaus &
Bailey [34] as well as Bailey & Steger [35] in 1972 by solving the TSD equation. In 1974, a
more efficient procedure by use of central and upwind difference schemes was introduced by
Murman [36]. It can be used favourably for local subsonic and supersonic flow respectively.
Furthermore it used the shock point operator to control the points, where the flow enters and
leaves the supersonic zone. Murman pointed out also that the conservative formulation of the
equation is suggested to be used, in order to have the correct jump conditions through the
shock. With the help of shock point difference operator Murman solved also the non
conservative form of the equation and shows the equivalence solution to that of the
conservative one.

In 1977 Ballhaus & Goorjian [37] solved the unsteady form of the TSD equation for
low frequency with the Alternatives Direct Implicit (ADI) algorithm. The code is well-known
as LTRANZ2 and it was used to compute an oscillating airfoil in transonic flow. The extension
of this method in three-dimensional calculations has been carried out by Borland et. al. [38] in
1982 with their XTRAN3S code. They computed the unsteady solution of a swept wing in
transonic flow. Between 1975 and 1981 the Approximate Factorisation (AF) algorithm has
been employed by Ballhaus & Steger [39], Ballhaus et. al. [40] and Baker [41] to solve the
TSD equation. The AF algorithm is the basis of the ADI algorithm and it makes possible an
implicit procedure in three Cartesian coordinate directions independently in three steps of
calculation process. It is substantial that the AF algorithm is faster than ADI and SOR
algorithms.

Steinhoff & Jameson [42] found that several solutions (‘'non uniqueness' solution) can
exist by solving the full potential equation as they computed a symmetrical airfoil with zero
angle of attack. They received three solutions for this case. Two solutions are with lift and a
solution is without lift, as it was expected. This is probably because of the isentropic
assumption in the potential equation, which makes the increasing entropy through a shock can
not be well simulated. Salas et. al. [43] also reported the similar situation. Therefore,
researchers are interested to develop an entropy correction to be applied in the potential
equation, in order to extend or to correct the isentropic assumption in the potential equation.

Between 1981 and 1985, Hafez & Lovell [44, 45] and Fuglsang & Williams [46]
suggested the following form of entropy correction. The pressure distribution from the
solution of the TSD or potential equation is corrected with the entropy influence, so that the
pressure distribution formula consists of the isentropic and the corrected component. The
formula of the correction was deduced using the Rankine - Hugoniot relationship of the local
velocity before and after the shock. The irrotational assumption of the potential equation was
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corrected by a circulation correction, which are affected by the increasing entropy through the
shock. The local velocity is formulated as sum of isentropic and non isentropic part.
In 1988 Batina [47] suggested an efficient algorithm for the solution of the unsteady
TSD equation. He used the AF algorithm coupled with an internal Newton iteration. The
Newton iteration was used to accelerate the time-accurate computation of the unsteady
pressure distribution. He coupled also his TSD solver with an aeroelastic module. His code is
well-known as CAP-TSD (Computational Aeroelastic Program - TSD) and has been applied
to calculate the unsteady aerodynamics of an aircraft configuration consists of wing, tail, and
fuselage and also nacelle body [48]. The CAP TSD code was continued to be developed by
Batina in 1992 [49] and particularly by Mitterer et. al. [50] in 1996 with an improvement of
the solution around the leading edge region. They modified the gradient of the airfoil, in order
to avoid the non physical pressure within the leading edge region (the peak suction region).
Nowadays the TSD equation is still worked on by some authors. Hung et. al. [51] in
2000 worked on the finite volumes with flux upwinding for the solution of the TSD equation.
Ly & Nakamichi [52] developed in 2002 a time-linearized TSD procedure. Their solution
comprises of sum of the steady and unsteady parts, which are solved separately. The unsteady
part is assumed to be small compared to the steady part. Recently, Greco Jr. and Sheng [53]
have also presented their works on TSD equation with viscous correction to be solved in the
frequency domain.
In this present work a TSD code is developed with the following characteristics:
- Three-dimensional flows
- Finite difference method
- Central and upwind difference space discretization
- Implicit Approximate Factorization (AF) algorithm
- Entropy and Vorticity correction
- Modification of the tangential boundary condition
The development of this TSD code will be explained in the following section.

4.1.2. Equation Form
As the starting point is the Full Potential equation, which can be written in velocity
potential in Cartesian coordinates, as follows [54]:

(D“ + Z(q)X(DX‘ +(Dy(I)yt +(DZ(DZI)_(a2 _(Di)q)xx —(3.2 _(Di)q)yy —(8.2 _(Di)q)zz +

20,00, +O0,d,+D 0,d,)=0 (1)
X Ty Xy X Tz Xz y Tz yz

Here the symbol a is the speed of sound.
The gradient of velocity potential is the velocity vector:

VO =V (4.2)
The velocity potential ® satisfies the isentropic and irrotational assumptions:

Vs=0and VxV®d =0 4.3)

The assumption of small disturbance is formulated as follows:

O=D_+¢=U_x+¢ (4.4)

where the velocity vector can be described as:
u=o, =U_+4,, v=0, =4¢, w=d, =¢,, P, 9,9, <<U,, (4.5)

After inserting equation (4.4) and (4.5) in the equation (4.1), the TSD equation is obtained,
which can be written in the conservative form in the Cartesian coordinates, as follows [47]:

afo +a_f1+_af2 +%:0 (46)
o4 ox oy oz
where the flux terms are given by:
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f, =- (Af, +Bf,), f, =Ef, +Ff;+Gf]
f,=f, +Hf f , f, =f, 4.7
where the disturbance velocity f, fy and f, are normalised with the uniform undisturbed
velocity Uy . In the equation (4.6) the nonlinear terms are retained in the forms of f ,f x, ff
and f ,f vy in order still to be able to simulate a discontinuity in the flow field.
The coefficients of the flux termsin eg. (4.7) can be written, as follows [48]:

AII\/I¥2, B:2|\/|¥2, E=1- Mi,
. . (4.8)
F=-=(g+Im7, =>@-3m¢ H=-[g-1m],

For two dimensional cases, the term f; in the equation (4.6), G and H in the equation (4.7)
become to zero.

4.1.3. Solution Procedure
To solve the TSD equation numerically, the following steps must be applied [47]:
The domains of the problem (space and time domain) are distributed in discrete points
under finite difference theory. The space and time derivatives in the TSD equation are
approximated by finite difference. After these discretization and approximation, the finite
difference equation of TSD equation (4.6) can be obtained.
This finite difference equation is solved under certain boundary conditions. Two solution
procedures must be applied to obtain the rea time (unsteady) solutions of this finite
difference equation, i.e. Time Linearized Step (TLS) and Time Accurate Step (TAS). The
TLSis applied to generate an intermediate solution in the next time level, as base for the
final solution under the use of the TAS. For steady cases only the TLS is used because
there is no change of the boundary condition. In both procedures the Approximate
Factorization (AF) algorithm is used to accelerate the computation process. The AF
algorithm makes the implementation of the solution procedure in three independent
Cartesian directions possible.

These steps are explained in detail in the following section.

4.1.3.1. Time Accurate Step (TAYS)
In order to describe the solution procedures, the TSD equation (4.6) is symbolically
written as:

Rf)=0 4.9

The velocity potentia at the time level (n+1),f ™, is defined as sum of the assumed velocity
potential, f *, and the deviation between them, as follows:

fr=f" +Df (4.10)
With this definition, the TSD equation (4.9) can be written after applying I order Taylor
series as.

RO

gﬂf Bﬁ
This equation is solved subject to a specified boundary condition to obtain the value of
deviation of velocity potential Df . This value of Df will update the value of f ™ through
equation (4.10). An internal iteration is applied to obtain the convergence solution, which
meansthat f ™' ~f " and Df ~ 0.

Inthe TAS, the boundary conditions change from the previous time step due to the movement
of the body, but there is no change of boundary condition in the internal iteration process.

Df =-Rff ") (4.11)
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4.1.3.2 Time Linearized Step (TLS)
The velocity potential at the time level (), ¢, in equation (4.10) is defined as sum of
velocity potential at the time level (n), 4", and the deviation between them, as follows:

¢* =¢" +Ag (4.12)
With this definition, the TSD equation (4.9) can be written after applying 1% order Taylor
series as:
oR N
(—] Ag=—R(g") (4.13)
a¢ ¢:¢n

As before, this equation is solved subject to a specified boundary condition to obtain the value
of deviation of velocity potential Ag. This value of Ag will update the value of ¢  through

equation (4.12). In the TLS there is no change of the boundary conditions.
The solution procedure is sketched in figure 4.1.

Bcn+2’ ¢ ﬂ+; ¢

BCn+1’ ¢ n+1 ¢

TAS
BC", p"———>' ¢
TLS

BC", #" = the boundary condition and velocity potential at time level n
TLS = Time Linearized Step (horizontal)
TAS = Time Accurate Step (vertical)

Figure 4.1. Solution Procedure of the TSD Equation

4.1.4. Discretization of the TSD Equation
Discretization of the time and space derivation, which are involved in the TSD
equation, are carried out using Finite Difference Method.

4.1.4.1. Discretization of the Time Derivative

In order to include the history of the flow development, a 2" order backwards
difference is used to discretize the time derivative at the time level ().
The 1% derivative of time has the following form:

3 * _4 n + n-1
g=t =20 20 (4.14)
The 2" derivative of time has the following form:

4 = 20" —5¢" + 40" + 9"

(At)*
where the time step is taken uniform.

(4.15)

4.1.4.2. Discretization of the Space Derivative

The discretization of the space derivative is based on the direction of the propagation
of the disturbance. For a disturbance in subsonic flows the discretization with central
differences is selected, because the disturbance spreads in all directions (up- and
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downstream). In supersonic flows, the disturbance spreads only in one direction
(downstream); therefore the discretization with backward difference is suitable.

The 1% derivative in subsonic or supersonic flows will be approximated using the 1% order
backward differences, as follows:

¢ _ ¢i,j,k _¢i—1,j,k

" AX

For the 2™ derivative in supersonic flows the 1% or 2" order backward differences is used, as
follows:

(4.16)

4 = Giix 20 1k TPk
X (Ax)?

4 = 20, i —SPi1ix T30k —Piaix
X (Ax)?

For the second derivative in subsonic flows the 2" order central difference is used, as follows:

. =20 ..+ O ..

¢XX — ¢|—1,j,k (Zjlxj)z ¢I+l,],k (418)

Here as example only the derivative in the x flow direction is presented. The index i, j and k

denote the x, y and z direction.
With the above discretization and by defining the velocity potential as:

(4.17.a)

(4.17.b)

=9 +Ag (4.19)
then the fluxes in equation (4.7) can be written as:
f, =—Ad —Bg, =—Alg +Ad )-Blg, +Ag,) (4.20.3)
af0__ A * n n-1 _ n-2) 2A _ B * n n-1 _2
T (24" 59" + 49" —g"?) 07 om (36, —4g7 +¢7)  (4200)
f, =Eg, +Fop; +Gg;
—E(p; +Ag, )+ F((8)7 + 26,08, +(88,)%)+ G((6))? + 26,40, + (A4,)?) (4.21.2)
= E(g; +Ag, )+ F((#)? + 26,00, )+ G((4])? + 26,24, )
oy _ 0 (g4 “2). O (5052 ). 0 . 9 ey
—b=— (Eg; +F(4)?)+ - G )+ = (E+2Fg g, + - (2G4, )Ag, (4.21.b)
f2 = ¢y + H¢x ¢y
= (4; +Ag, )+ Hig; +ag, Jg; + Ag,)
) o ) (4.22.2)
— (4, +Ag, )+ H(g 4, + 6:A0, + 3,08, + ASAB,)
= (¢, + Ho g, )+ (A, + HE AS, + HeAS, )
o, (.- CL 0 ) )
P (47 +Hg 4] )+ 5 (Ag, + Hp Ap, + Hei AP, ) (4.22.b)
fo=¢, =0, +Ag, (4.23.3)
o, 9. 0
Z= ) (ag) (4.23.)

Here, the square of the deviation of the velocity potentials (A.)? in the fluxes have been
neglected.
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Using of the above equations (4.21 — 4.23), the TSD equation (4.6) can be written as a finite
difference equation, as follows:
2
Ag+ B atag, - BV 9 (Eng, +2F§.Ad, + 2G40, )
4A 2A 0ox (4.24)
(At)? 0

on 5 M —R(¢",¢", 9", 9" ?)

(At)? & . . ~
on oy 9+ HEAG, + HEAG,)

where R(¢', &', &, 49 is:
R 07,970,972 ) =~ 297 =50" +49™ =" ) ntlags - 400 + o))+

ﬂg * *\ 2 *\ 2 4.25
o aX(E¢X+F(¢x) +G(g)?)+ (4.25)

(At)? 0 /- .
2A 5(¢y+H¢X¢y)+

(A)? o .
2A oz

4.1.4.3. Coordinates Transformation

To solve the TSD equation one needs only a Cartesian grid with H type, which is
symmetrical with the surface z = 0. The upper and lower surface of the wing lay directly as
the first plane without thickness above and below the symmetry plane z = 0. This is because
the tangential boundary condition, which must be imposed, contains the slope of the surface
(not the surface coordinate). This boundary condition will be discussed later in section 4.1.6.
In order to obtain a non dimensional form of the TSD equation, the Cartesian coordinates (X,
y, z) are transformed into computational coordinates (&, 7, <), which are defined as simple
normalised coordinates, as follows:

X=X (y)
=&(X, ===
Fmebey) Xie (Y) = Xie (¥)
The subscript le and te denote leading and trailing edge respectively. The notations b and ¢
denote the span and chord respectively.
Figure 4.2 shows an example of the physical and computational coordinates which are
needed to solve the two-dimensional TSD equation.

n=ylb, S =1zlc (4.26)

W
a
S5

a. Physical Coordinates b. Computational Coordinates
Figure 4.2. Transformation of Coordinates

The derivatives in the Cartesian coordinates are transformed to normalised coordinates using
chain rule, as follows:
0o 0 0 _ 0 10 o 10

x e oy e bay @ coc @20
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The TSD equation (4.24) can then be written in the computational coordinate (&, 7, ¢) as
follows:

3B At? 2 4+ g
{l ﬂAtﬁ —g—ﬁé %%[Eg +2F¢, ¢§+(ZG+H)§y(§y¢é+¢ﬂ

A; 00 ) Sy g || A2 8 (4.28)
N {(26+H>(fy¢g+¢,,)+2{ §X+H¢¢:yﬂ oA oy 3y LR

S Heg |-

At a 6 * n n-1 n-2
TN Ag=R(p",¢", 4", 4"?)

where now the term R(¢,¢",¢"*,4"%) changes to:

R(¢*l¢”,¢”‘l,¢”‘2)=—%(2415* 5" g )

LA MBS —4g] 491+

ey ;(Ef b FEN B G b + 40 +9; (6,67 + 4 N4 HE, @)J (4.29)
(At)® (At)?
Sy CORT BLEYN By SE

The equations (4.28) and (4.29) are actually the finite difference form of the TSD equation for
the TAS solution procedure. However, those equations remain valid for the TLS procedure

by changing the velocity potential ¢ with ¢".

4.1.5. The Approximate Factorization (AF) Algorithm

In order to obtain Time TLS and TAS solutions of the TSD equation, the Approximate
Factorization (AF) algorithm is used. The idea of the AF algorithm is to distribute the solution
procedure in three independent computational coordinates successively, by which the
calculation time can be reduced.

The left hand side (LHS) of the TSD equation (4.28) is approximated as multiplication
(or factorization) of three independent differential operators, as follows:

LHS = LA ,L, Ag (4.30)
where L¢, L, , and L, are as follows:
3B o At? 0 0

TG ey

, (4.31.9)
. . e S .
EE, +2FE 28+ (2G+H ), (&,40 + ¢, )+?y + HER,
At 0 0 .
L =1-22 9 9 (14+H 4.31.b
2
L, =12 00 (4.31.0)
2A 8¢ 8¢
It is shown in Ref. [55] that the error of approximation is proportional with (At)(A&)™
(An)'Ag, which implies that it will be zero if the residue Ag is equal to zero.
The TSD equation (4.28) can then be approximated as:
Lol Ap=R($ .44 4") (4.32)

With this factorizing, the TSD equation can be solved to obtain A¢ through sweeping
procedures in three directions successively.
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The 1% sweeping is carried out in the flow direction & by modifying equation (4.32) as
follows:
L.AgE =R(g" g7 9" 4" (4.33)
where:
Ag =L,L; Ag (4.34)
and R(¢', 4", 4™, 4"?) contains the given boundary conditions. This equation is solved for A¢g*

The 2™ sweeping is carried out in the spanwise direction 7, by modifying equation (4.34) as
follows:
L, Ad" = Ag (4.35)
where:
Ag"=L; Ag (4.36)
and A¢° is the result from the previous & sweeping.

The last sweeping is carried out in the vertical direction £ to solve eq. (4.36):
L; Ag=Ag" (4.36)
where A¢" is the result from the previous 7 sweeping. This equation is solved for A¢
The detail of the sweeping procedures can be read in Ref. [55].
4.1.6. Boundary Conditions
The following boundary conditions must be imposed, in order to solve the TSD

equation:

a. Far field boundary conditions

Far fore the body =0 (4.373)

Far aft the body e+ =0 (4.37b)

Far above/below the body ¢, =0 (4.37c)

Far away from span tip =0 (4.37d)
The subscript means the associated derivative.

b. The tangential boundary condition on the body surface:
g =f +f +0" (4.38)

where f is die function of the body surface and & is the displacement thickness along the body
surface. The superscript +/- denotes the upper/lower surface. The subscript means the
associated derivative.

In this procedure the tangential boundary condition (4.38) is modified by incorporating the
velocity in flow direction (1+¢), in order to give a correction in the ¢, particularly on the
leading edge region where the slope of the surface fy is large, as follows:

S (40 g+ 1, (4.39)

This is because the gradient of the surface fx is proportional with tan o (local angle of attack),
which is equal to ¢,/(1+¢) (see Fig. 4.3.)

Only if the airfoil is thin and the disturbance velocity ¢ is small, it is sufficient to use the
equation (4.38).
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1+
Figure 4.3. Tangential Boundary Condition

Mitterer et. al. [50] has also modified the slope of the surface using the Riegel’s rule,
in order to reduce the peak suction in the leading edge, as follows:

f +
(f, ) =——— (4.40)
1+(ff)
This modification makes the large slope of the surface at the leading edge near one and
remains the small slope near its original value.

c. Symmetry boundary condition
In the symmetry plane governs the following boundary condition:

¢ =0 (4.41)

d. Inthe wake the following boundary condition must be imposed :
[6,1=0," -67 (4.422)
[d+ #]=0 (4.42b)

The symbol [] denotes the difference (jump) of the quantity in the bracket across the wake.

4.1.7. Entropy Correction

If a strong shock presents at the body, then the entropy across the shock is not constant
anymore due to the discontinuity of the increasing pressure across the shock. In order that the
TSD equation still to be able to be used to analyse the flow with shock wave, a correction
must be introduced into the TSD equation due to the increasing entropy across the shock. This
is because the TSD equation (and also the Full Potential equation) is derived by assuming the
isentropic condition overall in the flow domain.
Following Fuglsang et. al. [46], the increasing entropy across a shock can be calculated as:

§=In[r“(u_rﬂ (4.43)
C, or—1

_ 2
U=1+4 -u, R-= 1+3Q—BE%
(r+1M?2

where:

(4.44)

Us = the speed of the shock motion
cv = heat capacity at constant volume
u = effective flow speed

The subscripts 1 and 2 denote the conditions before and after the shock. In this procedure the
exponent of r in equation (4.43) (i.e. v) is modified with v, in order to reduce the value of As.
By using the original value (v) the stability of the calculation is disturbed and the
convergence of the calculation can not be achieved.
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This entropy correction will be taken into account in the formulation of the pressure
coefficient, which now comprises as sum of isentropic and non isentropic parts, as follows
[46]:

C,=Cu+Cy (4.45)
where the isentropic part is:
r
C, = 22 1+7_1M;(1—v¢ov¢+2%J L (4.46)
M 2 ot
and the non isentropic part is:
C, _Aszsle, (4.47)
Yy -m?

The streamwise disturbance speed after shock must be modified due to the entropy jump,
which can be written as [56]:

u=g - S=5)IG (4.48)
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4.2. The Euler Equations
The Euler equations describe the inviscid, non isentropic, compressible and rotational
flow. The equations are derived from the Navier-Stokes equations by neglecting its viscous
terms. The Euler equations are a set of the differential equations, which consist of one
continuity equation, three momentum equations in the Cartesian coordinate directions and one
energy equation.

4.2.1. Equation Form
The Euler equations can be written in dimensionless conservative form in three
dimensional Cartesian coordinates (x, y, z), as follows [30, 57]:
o{qy  H{fy &g}, ofhy_ (4.49)
ot OX oy 0z
where the vector {q} and the fluxes {f}, {g} and {h} are:

Y pu el el
pu puu+p ol o
{ay=ypv {f}=qpuv {9}=ypw+p, {h}=<pwv (4.50)
PN puw PVW PNW+ D
e (e+ pu (e+ p)v (e+ p)w

where the dimensionless variables are as follows: p is the density, u, v and w are the
component of velocity in the Cartesian coordinates x, y and z direction. The notations t, e and
p represent the time, the specific total energy and the pressure.

The set of the equations (4.49) consists of 5 (five) equation (i.e. eq. 4.50) with 6 (six)
variables, i.e. p, u, v, w, e and p. Therefore one closure equation must be added in order be
able to solve this set of equations. The pressure relation derived from the state and energy
equations is chosen as the closure equation as follows [30, 57]:

p:(y—l)[e—g(u2+v2+w2)} (4.51)
where y = cy/c, is the isentropic constant.

Physically the Euler equations describe that the temporal change of the vector {q} is balanced
by the local change of the fluxes {f}, {g} and {h}.
The dimensionless variables are derived by normalising the dimension variables (with

symbol ~ ) with respect to a reference values, as follows:

X y Z 2

X= = 7= =

u= u* V= V* W= W (4.52)
u u u

p = p 2 e = e 2 t = tu*

where the reference values are the reference length L°, velocity u®, pressure p* and

density p*, which are related to the undisturbed condition (<) and the characteristic length of
the body (c), as follows:
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u =_|— P =P, p=pu =p, L =c (4.53)

4.2.1.1. Coordinates Transformation

In order to compute the flow around an arbitrary body, it is an advantage to transform the
Euler equations from the Cartesian coordinates (X, y, z) into the body-fitted coordinates
(&n,9). This transformation avoids interpolation or extrapolation of the values of the state
vector {Q} especially on the body surface.
The transformation of the coordinates is as follows [30, 57]:

c=cxy,z,t), m=nlxyzt), J=4xy,zt), =t (4.54)
The derivatives in the equation (4.49) are written by the chain rule as follows:
0,0, 0, 0 08 _,0 0. 0
OX 8 0 Y 6 Ty on 7o
5 & d (4.55)
0 0 0 0 a 0 0
_:§Z_+772_ ~ ~ é:t _+gt_
oz o0& 0 0 ot 6r f ' on oc
where the transformation metrics are given by:
Sx :‘J_l(ynzg_zﬂyg)' éy :‘J_l(znxg_xnzg)
é:z = J _1(X77 yg - yqxg )’ gt = _Xré:x - yrgy - ngz
77x=371(2)’—y2), n =J’l(xz—zx)
sJg¢ ¢%¢ y ¢%s ¢% (4.56)
772 = J_l(xgy,f _ygxf)i 77t =_Xr77>( _yrny _21772
S, :J‘l(ygzq—zgyyq), _J‘l(zgyx,7 xgz”)
gZ = J _l(xi:f yr] - yafxq )1 gt = _Xrgx - yrgy - ngZ
with the Determinant of Jacobi matrix:
_o(x,y,z,1)
o(&.m.6,7)
=X J&, +Y.IE, +2.3¢, (4.57)

Xf(ynzg - Znyg)_ Ye (ang - ang)+ Z; (Xﬂyg - ynxg)

Figure 4.4 represents an example of the physical and computational coordinates applied to
solve the two-dimensional Euler equations.
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R
Surface of the body

a. Physical coordinate b. Computational coordinate
Figure 4.4. Coordinates Transformation

With the above relations the Euler equations (4.49) become to:
oQ}, AFY oG}, oAHY (458)
or o0& on og
with the new conservative state vector {Q} and the fluxes {F}, {G} and {H} as:
{Q}=J{a}
{F}=d&{ar+IE {13+ 3¢ {g}+ I&, {h}

{G} = Indeit+ In, 1+ In,{g}+ In.{} (4:59)
{H}=Jg{a}+ Jg,{f}+ I {o}+ Is,{h}
or in the extended formulation:
p pU PV W
pu pUu+S,p pVU+n,p PWU+¢,p
{QY=3pv {F}=JipUv+S,p {G}=JpVW+n,p {H}=J{pW+g,p
PN puw+ £, p PVW+77,p APNW+¢, p
€ (e+pU-&p (e+p)V -np (e+pW -g.p
(4.60)

where U, V and W are the contravariant velocities in the normal direction of the surface with
constant & nand ¢ , respectively:
U=4Uu+SV+EW+E

V=nU+n\V+n,w+n, (4.61)
W=gu+g,Vv+g,W+g,

4.2.2. Numerical Solution of the Euler Equations

The Euler equations are solved numerically using finite volume method. The physical
space is distributed in small hexahedral control volume with the state vector {Q} is assumed
to be constant and assigned in the cell centre. The cell centre is marked by the indices (k, I,
m), which correspond with the curvilinear coordinates (&, 7, ¢) in the numerical space. The
fluxes F, G and H are evaluated on each face of the cell, which are marked by the indices
(k+1/2, 1+1/2, m+1/2). This situation is represented in figure 4.5.
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Q < Cell face
L
k+1 :
3 \ Cell centre
k
k-1
k-172  Kk+1/2 &

Fig. 4.5. Schematic Representation of the State Vector Q

The space discretization of the Euler equations (4.58) is as follows:
a{Q}k,l,m +{F}k+1/2,l,m _{F}k—1/2,l,m +{G}k,|+ll2,m _{G}k,l—llz,m +{H}k,|,m+1/2 _{H}k,l,m—1/2 -0
or A& An Ag

(4.62)

Because the length of the side of control volume in numerical space (i.e. AS or An or AQ)
equals to one, then the Euler equations can be written in semi discrete form as:

8{Q}k,l,m — _Rk . (463)
ot "

with:
Rk,I,m = |{F}k+1/2,|,m _{F}k—1/2,l,m J+ l{G}k,Hl/Z,m _{G}k,l—1/2,m J+ |{H}k,l,m+1/2 _{H}k,l,m—IIZJ
(4.64)

4.2.2.1. Evaluation of the Fluxes

The Flux Difference Splitting (FDS) method proposed by Roe [58] is used to compute
the fluxes at the cell face. The semi discrete form of the Euler equations is decoupled in three
directional quasi linear forms which are independent of each other. This step is called as
‘Dimension Splitting’.
The decoupled quasi linear form of the Euler equations can be written as:

HQY |, AFY_oQY | , A _,
or |, 0& ot |, o0&

QY _AGH_AQy | gHQr_, (4.65)
or on or on

n n

HQY | AHY_HQY | A,
or o or |§ o

S
Each differential equation describes a Riemann problem on a cell surface with &, n or £

constant, which do not affect each other. The final solution of the state vector Q is the sum of
the solution of the individual quasi linear form:
Q) _ HQY |, A | A (4.66)
or or |§ or |,7 or |§
Here only the evaluation of the flux F is presented as example. The evaluation of the fluxes G
and H is carried out similarly.
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Consider the cell (k, I, m). For this cell, the equation (4.65) in the & direction with constant 7
and £ can be written as:

AQY |, AFY_,
or |, o0&

a{Q} + Fk+1/2 B Fk—1/2 =0

ot A&
£
where the indices | and m are neglected, in order to write it briefly. The flux Fy.1/2 in €q.(4.67)
is represented as averaged fluxes of left and right cells plus the flux differences.

Froe = 5 [F QL F(QRa)~[A 2@z - Qb )] (4.68)

. L R
Where Qk+l/2 = Qk ’ Qk+l/2 = Qk+l

1~ T .
The term E‘Akﬂ,z‘(QkRﬂ,z—Qkﬂl,z) can be regarded as Dissipation term in the Central

(4.67)

Difference Scheme.
The Jacobi Matrix A will be calculated via Roe’s mean values as [58]:

A=R [A| L (4.69)
with RandL are matrix of the right and left eigenvectors respectively, which are satisfying

the relation L= R
Finally the flux Fy.1/» can be written as:

Feie = %[F (QkL+1/2 )+ F (QIil/Z )_ §k+1/2‘
with the wave’s strength:

Ay ‘ak+1/2 ] (4.70)

A1y = E|<+1/2 (QkR+1/2 - Qll_+1/2) (4.71)

In order to obtain a solution with higher order, the MUSCL (Monotonic Upstream Scheme
for Conservation Laws) extrapolation is used [57].

The extrapolation can be applied to the conservative, primitive or the characteristic variables.
The state vector Q will be regarded not constant anymore, but it will be extrapolated from the
state vector of the two-neighbouring cells as shown in fig. 4.6.

QR [ k+1 k+2

/i}/QL
|k

k-1

v

k-1/2 k+1/2

g
Fig. 4.6. Extrapolation of the State Vector Q

At the cell face k+1/2 the state vector Q will be calculated as:
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QL =Q, +%l//ll-+l/2(Qk -Qc1)s QR =Qu +%‘//|<R+1/2(Qk+2 - Qi) (4.72)

where the extrapolation function  is defined as:

Qe —Q
‘//kL+1/2 = (//(rkL+1/2)’ Ika+1/2 = Qk . ) .
0 le (4.73)
R R R Nk TNk
Vi = (//(rk+1/2)’ N2 =
Qk+2 Qk+l

For the preservation of the TVD (Total Variation Diminishing) characteristic, the order of
calculation at its extreme value must be reduced to one. This means, the value of y must be
limited to one. This was ensured by such a Limiter. Examples of the Limiter are the Minmod
and Van Albada Limiter as follows:

e Minmod Limiter > w=minmod(1,r) (4.743)
2r (4.74b)
r’+1
24r

e Van Albada Limiter1: w =

e Van Albada Limiter 2 : y = r2
re+1

(4.74c)

4.2.2.2. Time Integration

After the spatial discretisation has been analyzed, now the time integration of the Euler
equations is presented. Both explicit and also implicit time integrations are presented. The
semi discrete Euler equations (4.63) are the starting point for this analysis:

a{Q}k,l,m

=-R 4.63
82’ k,I,m ( )

Wlth

klm |{F}k+l/2lm {F}k 1/2|mJ+l{G}kl+l/2m {G}kl 1/2mJ+l{H}klm+1/2 {H}klm1/2J
(4.64)

4.2.2.2.1. Explicit Time Integration
The Predictor Corrector Scheme applied for the integration of the state vector in time.
The equation (4.63) can be discretized as follows:

Q" -Q"=-R"™Ar (4.75)
where the spatial indices (k, I, m) are neglected. The index n designates the time level.
The Predictor step to be applied to solve eq.(4.75) is:

Q™ =Q"-R"Ar (4.76)
where the state vector Q and R term are already exist in time level n (Q" and R"). Then the
estimated R term in time level n+1 (R"™) is computed from eq. (4.75) with the estimated
valueQ ",

The Corrector step is carried out as follows:

Qn+l (Q + Q e LA n+lAT) (477)

In order to ensure the stabillty of the computation, the maximum time step (A7) is limited by
the CFL (Courant Friedrich Levy) number, which describes the relationship between the cell
length and the disturbance length. In order to maintain the stability of the computation, the
CFL number is limited on maximal one [57]. To accelerate the computation of steady cases,
one can use the ‘local time stepping’ technique, where the time step for each cell is chosen as
maximal as possible. But the local time stepping technique makes the computation process
runs not in time accurate fashion, which must be performed for calculation of unsteady cases.
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Therefore, for calculation of unsteady cases the global minimum time step must be used on all
cells. This is called as ‘global time stepping’ technique.

4.2.2.2.2. Implicit Time Integration
Equation (4.63) can be written in discrete form as:

QrH-l_Qn :—Rn+lAT (475)
The term R™* will be linearised using 1% order Taylor series:
Rn+l — Rn +a_R AQ (4.78)
Q|

with: AQ = Q" - Q"
Substitution eq. (4.78) in eq. (4.75) gives:

[I + Arﬁ
Q|
The RHS (rights hand side) of eq. (4.79) determines the accuracy of the solution and the LHS
(left hand side) of eq. (4.79) determines the convergence characteristic and the damping of the
computation. Numerical solution of the eq. (4.79) is carried out using the LU-SSOR
technique (Lower Upper - Symmetric Successive Over Relaxation) proposed by Yoo and
Jameson [59, 60].
The LHS is written as follows [57]:

L+(A*—A’+B*—B’+C*—C’}
AT

JAQ = —AR" (4.79)

k,I,m

+ (Ak_+l,l,m + Bk_,l+l,m + Ck_,l,m+1) AQ = _R:,I,m (480)

- (Aktl,l,m + Bk+,l—l,m + CI:r,l,mfl)

with the Jacobi matrix [57]:

Ai:%(AirAl), Bi=%(BirBl), Ci=%(CirCI) (4.81)
Wlth I’-A = a)D‘AA,max" r-B = a)D‘AB,max" r-C = a)D‘AC,max

Aamax, A max and Ac max are the largest eigenvalues of the Jacobi matrix A, B and C in the eq.
(4.65), respectively. ap is the Dissipation factor; its value affects the damping of the
computation. Here the value of ap is chosen between 1 and 1.3, where higher value means
stronger damping.
The set of equations (4.80) can be written symbolically, as follows [57]:

[D+U +L]AQ=-R{,, (4.82)
with:

D=L+(A+—A—+B+—B-+C+—c-]
A k,I,m

|T (4.83a)
=E+(rA +rg 1)l

= Entries on the diagonal matrix

U = (At;-l,l,m + BI<7,I+1,m + CI:,I,m+l) (483b)
= Entries on the upper triangular matrix
L= _(Al:r—l,l,m + Bl:r,l—l,m + Clzr,l,m—l) (483C)
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= Entries on the lower triangular matrix

Factorization of the LHS of eq. (4.82) leads to:
[D+L] [D (D +U)AQ=-R!,, (4.84)
This equation will be solved with two sweeping steps, as follows:
The 1% sweeping solved AQ” from:
[D+L]AQ" =R/, ,, (4.85a)
with given data D, L and R
The 2™ sweeping solved AQ from:

[D*(D+U)AQ =AQ"

4.85b
[D+U]AQ = DAQ” ( )

with given data D, U and AQ”
Finally the state vector Q in time level n+1 can be computed from:
Q"™ =Q"+AQ (4.86)
In order to compute unsteady cases, the ‘dual time stepping’ technique is used [59].

The temporal change of the state vector is replaced by a finite approximation with arbitrary
order and the RHS is assigned, which must be relaxed to zero. That means, one needs an
internal relaxation by the pseudo time 7. The formulation of the solution of the unsteady
Euler equations with the dual time step technique is as follows:

0 _ _[@+ R} _ R (4.87)

ot ot
where 7 the pseudo time is.
Discretisation of the LHS of eq. (4.87) leads to:

8R

AQ' = Ar*[R* '

{.M - }sz

where the symbol v represents the index of the internal iteration.
Because eq. (4.89) has a similar form as eq. (4.79), then the LU-SSOR procedure can also be
used to solve this equation, as follows:

AQ ] (4.88)

(4.89)

D" +L] [D (D" + U)JAQ R, (4.90)
The Diagonal Matrix D* will be given by:
x | r
D = 4 +r,+r,+r. |l 491
(e ass
where the symbol r; associated with the order of the finite approximation on—Q.
T
The finite approximation of g—Q in eq. (4.87) will be determined as follows:
T
for 1° order of approximation: Q Q A -Q (4.92a)
T
n-1
for 2" order of approximation: Q 3Q ~4Q"+Q (4.92b)
or 2AT
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The value of ri in eq. (4.91) is [57]: r; = 1 for 1% order and r, = 1.5 for 2" order of
approximation.
It can be seen that the eq. (4.90) has a similar form with the eq. (4.84); therefore the solution
of eq. (4.90) can be obtained using the previous two sweeping steps, i.e. eq. (4.85a) and
(4.85b). If the solution AQ" is convergent, then the time accurate solution Q"** is obtained.

4.2.3. Boundary Conditions

The boundary conditions to be applied for solving the Euler equations can be derived
from the eigenvalues, eigenvector and characteristic variable of the Euler equations. Here
only two dimensional boundary conditions are presented as example.

4.2.3.1. Far-Field Boundary Conditions
From the analysis of the characteristic variable W , the far-field boundary conditions
can be classified into four types, as in the following.

a. Subsonic Inflow
If the inflow velocity at far-field boundary is subsonic, three characteristic
variables W (associate with three positive eigenvalues) must be given and one characteristic
variable W (associates with one negative eigenvalue) must be extrapolated.
The density p at far-field boundary can be computed as follows [30, 55, 57]:

Py = pat (p, - P.) (4.93)

CZ

where c is the speed of sound.
The pressure p at far-field boundary can be computed from [30, 55, 57]:

Py :%{(pa + pi)ipc[lzx(ua _ui)+ Izy(va -V )]} (4.94)
g

E — éx E — y
X ! y
Ve ¢, Vér &,
and the + and — signs denote the positive and negative k direction, respectively (see fig. 4.7).
The velocity components u and v at far-field boundary can be computed using [30, 55, 57]:

o, —u, £k, (Pa=Pb) vy v, 47, (P = Ps)
Jos oy
where the + and — signs denote the positive and negative k direction, respectively.
The subscript b is the value at the boundary, a is the value outside the boundary (mirror cell)

and i is the value in the interior of the computational space (see fig. 4.7)

computational space
a# i i Ea

where:

(— </
Vin b b Vin
—
positive k direction

Fig. 4.7. Schematic of Far-Field Boundary Condition (Inflow)
b. Subsonic Outflow
If the outflow velocity at far-field boundary subsonic is, three characteristic

variables W (associate with three positive eigenvalues) must be extrapolated and one
characteristic variable W (associates with negative eigenvalue) must be given.
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4. Inviscid Aerodynamic Models
The density p at far-field boundary can be determined as [30, 55, 57]:

pu=p v o) (4.95)
The pressure p at far-field boundary will be as [30, 55, 57]:
Py = (b + P el -u,)+ K, (0 -v, ) (4.96)
The velocity component u and v will be [30, 55, 57]:
o, <u, £k, (PP vy =y, £, (P =P)
o o

where the + and — signs denote the positive and negative k direction, respectively (see fig. 4.8)

Computational space
a i i a
< ——>
Vout b b Vout
—

positive k direction
Fig. 4.8. Schematic of Far-Field Boundary Condition (Outflow)

c. Supersonic Inflow
If the inflow velocity at far-field boundary supersonic is, all characteristic
variables W (associate with four positive eigenvalues) must be given.
For this condition these eigenvalues are: a,,a’,a’,a; >0

The characteristic variables are: Wi, = W1a, Wop = Waa, Wap = Waq Wap = Waa
The subscript b is the value at the boundary and a is the value outside the boundary (mirror
cell).

d. Supersonic Outflow
If the outflow velocity at far-field boundary supersonic is, all characteristic
variables W (four positive eigenvalues) must be extrapolated.
For this condition these eigenvalues are:  a,,a/,a;,a, >0
The characteristic variables are: Wy, = Wi, Wap = Wi, Wap = W3 Wap = Wy
The subscript b is the value at the boundary and i is the value in the interior of the
computational space

4.2.3.2. Solid Body Boundary Conditions

The boundary conditions at solid body surface must satisfy the kinematics boundary
condition, where the flow must be attached (tangential) at the solid body boundary. In order to
satisfy the kinematics boundary condition, the velocity components in normal direction of
solid body surface must be zero.
The characteristic variables are as follows [57]:

For positive k direction: Wy, = Wi, Wap = Woi, &, =0, Wap = Wy

For negative k direction: Wip = Wyj, Wop = Wy, 6, =0, Wap = Wj3;
where ¢, is the contravariant velocity at solid body boundary:

0, =(szub + Izyvb +k, b):0 (4.97)

with k| is the velocity of the body motion.

b
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The primitive variables can be derived analogous with far-field boundary condition, as
follows:

pu=p s 2P (4.98)
U, =u; —K, (szui + I'<“yvi + k}\b) (4.99)

V, =V, — Ey (szui + I.<~yvi +k, b) (4.100)

P _ P ?(Exui +|Zyvi +k,
PC  piC
where the sign — and + show the positive k and negative k direction, respectively.
If the existence of the boundary layer will be considered, then the normal velocity

component due to boundary layer must also be computed, as follows:
v, = i(Ueé*) (4.102)
dx

b) (4.101)

where subscript n is normal direction, e is edge of the boundary layer and & is the
displacement thickness. In this formulation the derivative of the displacement thickness is
assumed to be taken in the x (streamwise) direction only.
Then the tangential velocity components must be actualized with the normal velocity
component eq. (4.102), as follows:

Uy =u, —&vn, Vp =V, —d—yvn (4.103)
where the subscript b stands for boundary and symbol n is the unit normal vector.

The solid body boundary condition can also be derived through the ,Zero Flux’
concepts. This concept states, that the flux normal to body is equal to the pressure term. This
is because the value of the contravariant velocity at the solid body boundary is equal to zero.
Formulation of the solid body boundary condition through the zero flux concepts for two
dimensional flows with and without influence of boundary layer will be presented as follows:
Consider two dimensional Euler equations:

HQ}, F} A} _, (4.100
or o0& on '

with:
p PU PV
pu pJu+&,p ou+n,p
Q}=1J F}=1J GY=1J (4.105)
1} ol 3 pPUV+E P G PW+n,p
e (e+plJ-<p (e+p)V -np

a. Without Boundary Layer
At the solid body boundary the contravariant velocity V must be zero: V=0
then the state vector and fluxes at solid body boundary are:

p pU 0
U x
] L S D G, =d{"" (4.106)
ol U +8,p nyP
e U(e+p)-&p P

Note that the flux Gy consists only the pressure terms without convective terms.
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b. With Boundary Layer

The normal velocity component due to boundary layer displacement thickness is

represented by eq. (4.102).

The tangential velocity components will be corrected as written in eq. (4.103):

' dn , dn
U =u-— —Vn V =V-— _Vn
dx dy
The contravariant velocity will be corrected with eq. (4.103), as follows:
U =u’d—é:+v'd—ég Vzu’d—ﬂ+v'd—77
dx dy dx dy
Finally the state vector and the fluxes can be written as:
p pU pV
' U+ "V +
Qb=qu, Fb=qu, b Gb=qu, P
e U +¢,p AN +17,p
e U(e+p)-&p V(e+p)—np

(4.103)

(4.107)

(4.108)

54



4. Inviscid Aerodynamic Models
4.3. The Time-Linearized Euler Equations

The starting point is the Euler equations in computational coordinates (&,7,¢) :

HQ}, F} G}, o{H} _,

(4.58)
ot o0& on o
with the conservative state vector Q and the fluxes F, G and H are given by:
{Q} = J{a}
{F}=35{a}+ 35 {f}+ 3¢ {g}+ 5 {h}
(4.59)

{G} = Inf{a}+In{f}+In{g}+In.{h}

{H}=Js{a}+ g, {f}+Jg {9} + Jg.{h}
The Euler equations above will be linearized under the assumption of small perturbation, i.e.
the unsteady perturbation is assumed to be small compared to the steady part.
A variable Z can be decomposed into a steady and an unsteady part, as follows:
Z2=2,+17, (4.109)
where Z, and Z, are the steady and unsteady component of the variable Z, respectively. It is
assumed that: Z, << Z,

Under this assumption and by neglecting the 2nd order terms, the state vector Q and the fluxes
F, Gand H become [57, 61]:

Q=Jq
= (Jo+J)(A+0y)
= JoQo + Jo0: + J10o (4.110a)

F=J&q+ J&F+ 340 +I&h
= [(3&)o + (3&)] (Aot + [(IS0 + (3&] (Fo+fr) + [(IG)o + ()] (Got0s) +
[(J&)o + (3E)] (hothy)
= [(I&)o Go + (3&0)o Fo + (I&))0 o+ (3&2)o ho] +
[(3&)0 G+ (3&)o Fr + (3&)0 Gr + (I&)o Mu] +
[(3&): Ao+ (I&)1 To + (&)1 Go + (&)1 ho] (4.110b)

G =Jnq+ Ind+Ing+Inh
= [Qm)o + (7011 (Qot+0s) + [(72d0 + (73)a] (fo+F) + [(I7)o + (I7)a] (Qo+0n) +
[(72)o0 + (I7)1] (hothy)
= [(I776)0 Ao + (I72)o Fo + (I73)0 Go + (I772)0 o] +
(@770 G + (I73)o Fr + (I73)0 Gu + (I72)0 Nu] +
[(3720)1 G0+ (37301 o+ (I7y)1 Qo + (I772)1 Do) (4.110c)

H=J4&q + J&F+Jgg + IGh
= [(3&)o + (3] (Qotar) + [(IS0 + (IG):] (Fot+f) + [(3G)o + (IG)] (Qot0a) +
[(362)o + (3&)a] (hothy)
= [(IS0)o Ao+ (IS0 fo + (3))o Do + (I2)o No] +
[(3&)o G + (IS0)o F1 + (3Gy)o Gr + (IG2)o Nu] +
[(3D1 Ao + (3G Fo + (I&5)1 Qo + (I&2)1 ho] (4.110d)

by splitting the steady part from the unsteady one, as follows:
Q=Q+Q
F=F,+F
G=G,+G;
H=H,+H, (4.111)
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Two sets of differential equation system can be obtained [57, 61]:

steady :
HQY, AR}, G} MY w11)
or o on dc '
unsteady (time-linearized):
HQ} AR}, G} AAHY @113
or o on oc '
where:
Qo = Jolo
Fo=(3&)o fo+ (I&)0 9o + (I&)o Mo
Go = (I7x)o fo + (I73)0 Do + (I 772)0 o
Ho = (&0 o + (365)0 9o + (32)o ho (4.114)
1= Qu+Qup
= Jo0: + 1o
Fi=Fu+Fy
= [(3&)o fi+ (3&)0 91 + (3&)o Nu] + [(I&)1 fo + (IG))1 Qo + (3&7)1 Dy
G =Gu+Gyp
’ = [H(J UX?_OI fi+ (I7y)o 91+ (377:)0 ho] + [(I7201 fo+ (I739)2 Do + (I772): o]
= [0 fi + (3o 91 + (3o hu] + [(I):1 fo + (I Go + (3&2)1 Do) (4.115)

The subscripts 1 and 2 describe the component associated with the disturbed state vector (and
fluxes) and with the disturbed metrics, respectively.

The unsteady metrics (J&)o, (I7n)o, (JS0)o are negligible, because the metrics of
reference-state is steady; as follows:

(IKe)o = - Xz0 (IKx)o — Yo (IKy)o — Z1o (IK2)o with:k=¢& n, ¢ (4.116a)
Reference state: X0 =Y =2Zxp=0
Unsteady metrics become: (Jk)o=0 (4.116b)

The resulted steady equation (the first set of the differential equations 4.112) is actually the
steady form of the Euler equation. It represents the Euler equations under a steady condition.
The second set of the differential equations (4.113) is the time-linearized Euler equation,
which can be described in the following form:

o{Qu} , AFu}, G}, AHHuY {5{(?12} LR} 3Gu} a{le}} (4.117)
or o0& on o or o0& on o

4.3.1. Linearization with Harmonic Term
If the unsteady part Z; in the eq. (4.109) is assumed to be harmonic:

z, =7e" (4.118)
then the state Q; and Fluxes F, G und H are transformed to [57, 61]:
Qll — Qlelk‘r — Joq‘elk‘r

- (4.119a)
le — Q2e| T — Jqoel T
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Fu = Fe™ =[0¢))o F+(3¢) )G+ (35, )oh]e™
Fp = Fe" =13 )y + (JE) fo + (3 )go + (3, o Je™

—[(JU )of +('J77 )og+(‘]77 )oh]elkT

G,
G, =G,e IkT:[(JUT)QO+(J77x)fo+(J77y)go+(J772)ho]eikT

HleikT = [(ng)o F + (‘ng)o g+ (ng)o I:;]eikr

= Hae™ =[5 )ay + (32 ) fo + (32 )0o + (IS, D Je™

Hll
H

Inserting the above relations in the time-linearized Euler equation (4.117):

a{Qn} _ a{Qleikr} _ gikr a{Ql} n ikéleikr
loks ot loks

a{le} _ a{Qzelkr} _ ik@ze”"
or or

produces the following result:
AQ} AR} HGY AHI 5 &
ot o0& on og
ofF,} , oG}, o{H,}
o¢ on Jg

with: S, =-ikQ,, S, =|ikQ,+

(4.119b)

(4.119c)

(4.119d)

(4.120)

(4.121)

(4.122)

The term § is related with the deformation of the nets (grids) and the steady condition (of
the state vector and quxes) Because the deformation of the nets and the steady state condition
are known; the term S can be viewed as a constant component of source term. The term S

represents the variable component of source term.

The time-linearized state vector and fluxes in Eq. (4.121) and (4.122) can be written as

follows [57, E_S}]:
Ql = ‘]oq
Fl :[(fo)o f +(J§y)o§+(‘]§z)oh]
Gy =[(97,)0 T +(3n,)o8 + (3, )oh]
=[05,)s  + (35 oG+ (35, )oh]
) P,
pu (pu)oU, +3&, Py
Q=1pv ¢ J (4.123¢) F, =1(o),U, + & p,
N (pw),U, +J¢,p,
¢ 0 (eo+po)U2_3§tpo

(4.123a)
(4.123b)

(4.123¢)

(4.123d)

(4.123f)
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PAVA PoW,
(pu),V, + 377, Py (pu),W, + 3, P,
G, =1 (V)oV, + 377, Py (4.123g) H, =1 (o)W, + 3¢, P, (4.123h)
(pw),V, + 377, P, (W)W, + 3¢, P,
(& + Po)V, — I77, Py (& + Po)W, — IZ, P,

The time linearized Euler equations (4.121) can be written in semi-discrete form, as follows:

a{Ql}k,l,m =_§k| . (4124)
or v
where: _ _ _ _ _
Reim :{Fl}k+1/2,l,m _{Fl}k—1/2,l,m +{Gl}k,l+1/2,m _{Gl}k,l—llz,m +

~ - - - (4.125a)

{Hl}k I,m+1/2 _{Hl}k,l,m—llz - {Sl}k,l,m - {Sz }k,l,m
Qb =V @ (4.125h)
{5 }m,m = —ik{Q.} (4.125¢)
{gz }Mm _ 'k{ 2}k,|,m +{F2}k+1/2,l,m —{Fhvzim F G wam ~{Gohiviom + (4.1250)

{H 2}k,l,m+l/2 _{H Z}k,l,m—llz

The indices k, I and m are the indices of cells in & 7 and ¢ direction.
The solution of eq.(4.124) is solved by using the explicit integration, as already presented in
section 4.2.2.

4.3.2. Boundary Conditions
4.3.2.1. Far-Field Boundary Conditions
a. Subsonic Inflow
The linearized density p at far-field-boundary can be determined, as follows [57]:

B =P + (pbc_zp) (4.126)
The linearized pressure p at the far-field-boundary can be determined, as follows [57]:
Py = {(pa+p )+ ek (ua—ﬁi)+|?y(\7a—\7i)]} (4.127)

where the S|gn (+) is for positive k direction and sign (=) for negative k direction.
The linearized velocity u and v at far-field-boundary can be determined, as [57]:

0, =0, +k M (4.128)
o _o op (Pa=By) (4.129)
where the sign (+) is for positive k direction and sign (=) is for negative k direction.

b. Subsonic Outflow
The linearized density p at far-field-boundary can be determined, as follows [57]:

po=p s 2P (4.130)
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The linearized pressure p at far-field-boundary becomes:

2 Ly VR
Py :E{(pa + pi)ipc[kx(ui _ua)+ I(y(vi —V, )]} (4131)
The linearized velocity u and v become:
0, =0 +k, (Y (4.132)
U, =V, k, (5~ 1) (4.133)
oC

where the sign (+) is for positive k direction and sign (=) is for negative k direction.

For supersonic inflow and outflow, the linearized boundary condition is still the same with the
given or extrapolated value, as written in section 4.2.3.1

4.3.2.2. Solid Body Boundary Condition
The linearized body boundary condition can be written, as follows [57]:

51: — /Bi + (ﬁb,_z ﬁl) (4.134)
C
0, =1, -k, [k,5, +K,7,+k| | (4..135)
T, =7, -k, [0, +k,7 +k| ) (4.136)
P Pojg kT ek ) (4.137)
PC  piC b

where the sign (+) is for negative k direction and sign (=) is for positive k direction.

More information about the time-linearized Euler equations, its boundary conditions and its
application for wing can be found in Refs. [62, 63].
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5. Flutter Analysis

In this chapter the flutter analysis in the time domain is presented. The aeroelastic
equation is written in term of physical displacement and then will be transformed by means of
the concept generalized displacement. Finally the aeroelastic equation in generalized
displacement is transformed into State Space equation, which can be integrated exactly and
approximately, in order to compute the response of the structure in time domain. The flutter
speed is determined, if the response of the structure shows neutral response as function of the
time.

5.1. Aeroelastic Equation in the Physical Displacement

The aeroelastic equation is derived by energy analysis as in the following. The
structure is regarded as a dynamic system of mass (m), damping (c) and stiffness (k). As the
starting point is the Lagranges equation, which can be written as [64]:

i[@E.kJ_(aEkj+[6Ep]+(aF?J . 5.1
dt o7 oz 0z o7

where Ey, Ep, Fg and Fo are kinetic energy, strain energy, damping force and external
aerodynamic force, respectively. z is the physical displacement of the dynamic system as

function of space (x,y) and time (t), z = f(x,y,t). z is the time derivative of the physical
displacement.

o\ 2
The kinetic energy is defined as: E, = %m(zj (5.2)
The strain/potential energy is given by: E,= %kz2 (5.3)
o\ 2
The damping force from the Rayleigh’s dissipation function is: F, = %c(z) (5.4)

Inserting Ex, E, and Fqy into Lagrange’s equation, one can obtain the aeroelastic equation in
physical displacement as follows:

mz+cz+kz=F, (5.5)
The aeroelastic equation (5.5) for multi Degre of Freedom (DOF) can be written in matrix as:

[m]{'z‘} . [c]{é} vk} = {F) (5.6)

It could be happened that the matrices [m], [c] or [K] are coupled. It depends on the
characteristic of the structure. A system with coupled mass or stiffness matrix is known as
dynamically or statically coupled system.

5.2. Aeroelastic Equation in the Generalized Displacement

The physical displacement is assumed as sum of the undefinitely free mode of motion
(mode shapes) multiplied by the generalized displacement. With the separation variable
technique of time (t) and space function (x,y), the physical displacement can be described as:
[65]

2(x,y,t) = > (%, y)q; (t) (5.7)
where : ®@; = the mode of motion (mode shape) of the structure for the mode i
qi = the generalized displacement for the mode i
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5. Flutter Analysis
In matrix notation, equation (5.7) becomes to:
{z}=[®}a) (5.8)
The generalized displacement represents the contribution of the individual free oscillation
form in the physical displacement. The mode of motion (vibration mode shape) can be
obtained by performing the modal analysis of the dynamic structure.
The aeroelastic equation (5.6) is transformed in term of the generalized displacement by
substituting equation (5.8) into equation (5.6):

m[o}al + lo}a)+ Iola)- (7. )
Multiplying equation (5.9) with the transpose of mode shape matrix[®]", one obtains:

Y&} clal + <l Q) (5.10)

where
[M]=[@] [n]®] = the generalised mass matrix
[c]=[@] [c]®] = the generalised damping matrix
[K]=[@] [k][®] = the generalised stiffness matrix
Q}=[@] {F,} = the generalised aerodynamic forces

The forms of the generalized matrices [M], [C] and [K] are diagonal because of the
Orthogonality of the vibration mode shapes matrix. The relationship between the generalized
mass, damping and stiffness are [65, 66]:

[K]=lozm]  [oz]=-MT'[]  [c]=[2s]K}"*[m]" (5.11)
where :
wn = natural frequency of the vibration mode
¢ = damping coefficient of the vibration mode
The generalized aerodynamic forces can be written as follows [65, 66]:

Q = .UZ [ACR(x, ¥, (x Y)dS (5.12)

Finally the equation (5.10) can be written as follows:

{Q} =M [K}a}-[m ]_l[C]{d} +MT* Q) (5.13)

5.3. Aeroelastic Equation in the State Space Form
The equation (5.13) is transformed into State Space form, as follows [66 ]:

gl |0 [1] 0 0 (0o
a_ iy { Q} (5.14)
oe -1 -1 ° -1
a) [-IMI[K] -[mM]'[c]|lq) [0  [M]

The equation (5.13) lies in the second row of the equation (5.14). The first row of the equation

(5.14) works as a dummy equation.

The equation (5.14) can be written briefly as:

{i =1l )+ e (515)

with the State Vectors {X} and {u} and the State Transition matrices [A] and [B] as the
following:
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5. Flutter Analysis

(5.16)

0 ] | o [1]

MPK] P |-lof] -[eco,]

[A]

5.4. Solution of the Aeroelastic Equation

The aeroelastic equation in State Space form is solved in time domain. The equation
(5.15) is integrated in time domain, in order to compute the response of the system, as follows
[66]:

t
X ()} = exp[AthX, }+ [ exp[At-7)[BJu(z)ld= (5.17)
where: {X(t)} = response of the system at time t
{Xo} =the initial values of {X}
The first and the second term of the equation (5.17) is the Homogeneous and the Non
Homogeneous solution of the equation (5.15) respectively.
In discrete form, the solution is carried out recursively from time step n to (n+1), as follows:

{X(n+1)At} = exp[AAt]{X (nAt)} + '[:::M exp[A((n +)At —7)[BJ{u(z)}dz (5.18)
where At the time step is.
The Homogeneous solution is solved exactly, as follows [67]:

L, = exp[AAt){X (nAt)}

] Yu Vo . (5.19)
=[x }= X"
Vo Vo
with w1, yia, wo1 and yy; as follows [67]:
Wy = g leenlat {Cos[a)n (1-c?)"? At]+ cl-¢cH)™ Sin[a)n (1-c?)"? At]}
Wy, = ef[g(un]Atwn—l(l_gZ)—UZ sin[a)n (1—g2)l/2A'[]
Vo = e 1-2) M2 sinfw, (1- %)M At]
Wy = g leenlat {Cos[a)n (1-c?)Y? At]— I Sin[a)n (1-c?)Y? At]}
The Non Homogeneous solution is approximated, because the value of {u} are not known in

the time interval from nt to (n+1)t. It is assumed that the value of {u} are linear in these time
interval [66].

(5.20)

(n+1) At

L, = j exp[A((n+1)At — ) [BJ{u(z)}dz
nAt (5.21)

= [0]8]({u “*1}+ {u " })/ 2
where:
(n+1)at
[0]=" Jexp[A(n+Dat-0)Jdr = [A] "explac];

5.22
~2clo, -0, (5.22)

_ n [l//]m _ 011
= 0 =

1 0 0, 06,

01 2
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5. Flutter Analysis
with 611, 612, 61 and 6, are as follows [55]:

_ _ 2
011 _ e—[g{uﬁ]A’[ {ﬁ COS[CC)n (1_ gZ)l/ZAt]+ [i}sw‘[&)n (l— g—z)ll2 At]} +2_g
P w

] wn(1—§2)1/2 ]
o, ¢ . / 1 / 1
0,, = —e Tl {msm[wn 1-¢%)" 2At]+a)—nzcos[wn 1-¢*)’ ZAt]}+w—n (5.23)

(1_g2)l/2
0, = "0 (1-67) M sinlw, (1— )7 At]=
Since the value of {u™'} are not yet known, it will be approximated from the previous time
step, as follows [66]:

TR eI TR S Vi (5.24)
With these approximation, the Non Homogeneous solution becomes to (by inserting eq. 5.24
into eq. 5.21):

0, = _plsmn ]t {;sin[a)n a- gz)”zAt]+ COS[COn (1—9‘2)1/2At]} -l=y,; -1

L, = [01B1(Bu" |- fu})r2 (5.25)
The complete solution can now be written as the following:
Xt =lplx j+[oTBYRu" |- um )2 (5.26)

The above procedure is known as Transition Matrix Method for aeroelastic calculation.

5.5. Boundary Condition for Aeroelastic Coupling

The tangential boundary condition of the aerodynamic calculation must be modified
for aeroelastic analysis. The boundary condition contains both steady and unsteady part
involving the elastic or the flexible vibration mode shapes.
For the TSD equation, the tangential boundary condition for aeroelastic analysis is formulated
as follows [65]:

¢zi = inR |St +[in + 1:ti ]R |Ust +[in + fti ]F |Ust (5.27)
where:
¢, = down wash disturbance (component of speed in vertical z direction)

or derivative of disturbance potential in z direction of
the upper (+) and lower (-) surface of the wing.

fo o | = Slope of the upper (+) and lower (-) surface (f) in steady (St)
Rigid Body Motion (R).
[fxi + f* ]R lue = Slope of the upper (+) and lower (-) surface (f) in unsteady (Ust)
Rigid Body Motion (R).
[fxi + fF ]F lus = Slope of the upper (+) and lower (-) surface (f) in unsteady (Ust)
Flexible/Elastic Motion (F).

The steady part associates with the rigid geometry of the wing and angle of attack. The
unsteady rigid body motion part associates with the pitching and heaving oscillation of the
wing.

The unsteady flexible motion part represents the vibration mode shapes of the wing, as
follows [65]:

(£ 4 £ ] lou= [®x]{q}+ui[®]{é} (5.28)

00

where: [®@ ] = slope of the vibration mode shapes
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= the generalized displacement

} = the time derivative of the generalized displacement

It should be noted that the tangential boundary condition is always corrected with the
presence of the boundary layer and slope modification as already discussed in the previous

chapter.

The steps for the flutter analysis can be written as follows:

1.

Determination of the structural data.

In order to form the mass, damping and stiffness matrices ([m], [c] and [k]) of the

structure.

Modal analysis of the dynamic system.

In order to obtain the vibration mode shapes [®] and the natural frequencies [ax].

Computation of the generalized mass -, damping and stiffness matrices ([M], [C]

and [K])

Building of the State Space matrices:

The State Transition matrix [A], [B] and the initial values {X" }

Computation of the steady aerodynamic forces {Q}s; for a certain Mach number

and angle of attack and other steady parameter with steady boundary condition

Computation of the response of the system {X"**} by means of solution of the State

Space equation for a certain given Mach number, speed (U.) and dynamic

pressure (0.50,,U..%), with the following step:

- computation of the tangential boundary condition, i.e. equation (5.27) with input
data: {X"}, [a] and other parameter.

- computation of the aerodynamic forces ({Q}us: as time-dependent function) with
input data: speed, dynamic pressure and the tangential boundary condition.

- solving the State Space equation by means of the equation (5.26) to obtain the
response at the next time step: {X"*'}

- repeating these steps until 3 or 4 cycles of the oscillation

- analysis of the response system whether the process of the response is under
damped, neutral or divergent.

The flutter speed is defined, if the behaviour of the response in the time domain is neutral. If
the response is under damped, the speed and the dynamic pressure must be increased and the
response system must be calculated again. Fig. 5.1. shows the flow chart of the flutter
analysis in time domain by means of State Space equation
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Fig. 5.1. Flow Chart of Flutter Analysis in the Time Domain
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6. Steady and Unsteady Aerodynamic Results

In this chapter some steady and unsteady aerodynamic results calculated with and

without the developed viscous - inviscid interaction method are presented. In order to have a
systematic representation, this chapter is divided into three sub chapter.
The first part of this chapter serves for validating of the inviscid model, the viscous model and
the transition model as individual model. The validation work is carried out by comparing the
computational results either with other numerical results or experimental data. In the second
part of this chapter, the developed viscous - inviscid interaction method is used to compute
some steady cases. Results for attached as well as separated flow around airfoils and axis-
symmetric body are presented. The last part of this chapter presents some results of unsteady
cases of airfoils and wings, which oscillate harmonically in an uniform flow.

6.1. Validation
6.1.1. Validation of the Inviscid Aerodynamic Model

The problem concerned with the aerodynamic simulation in transonic flow is the
appearance of the shock, which must be simulated both its position and its strength correctly.
Therefore an aerodynamic Code must absolutely have the ability for the computation of the
shock. Here the results of the developed inviscid aerodynamic model (TSD) are presented for
AGARD two dimensional (2D) test case CT1 [68] with the following data:

Airfoil : NACA 0012
Mach number :M=0..8
Angle of attack » o =1.25 Grad

This case is one of eight AGARD 2D test cases for validating the inviscid model. This case is
selected because of the appearance of a strong shock on the upper surface and a weak one on
the lower surface. The objective of this test case is to test the sensitivity of an aerodynamic
Code against the appearance of a strong as well as a weak shock.

The computed pressure and Mach distribution for this case are shown in Figs. 6.1. and
6.2. As reference data are the result of the Euler Code of Institute of Fluid Mechanics
Technische Universitat Minchen (called FLMEu Code) and the result of the Euler Code from
Jameson [68]. For the simulation of this case the computational space is discretised in
(160x30) points for TSD Code and (180x30) cells for FLMEu Code. The cells on the airfoil
surface (upper and lower) consist of 120 cells. The edge of far field is chosen to be 10 times
of chord of airfoil. The Off-Body distance is 10™ times of chord of airfoil.

The improvement of the TSD Code from the original one can be seen clearly in Fig.
6.1. The original TSD Code (TSD orig) can not compute the shock position and shock
strength correctly. On the upper surface the position of the shock is too far aft compared with
the other results. On the lower surface the TSD original Code gives no shock. The shock was
absorbed too much. At the leading edge appears also a peak suction, which has no physical
meaning. By the developed TSD (TSD present) the pressure distribution on both surfaces
agrees well with the reference data. The shock on lower surface calculated using the
developed TSD method is a little bit weaker compared with the results from Jameson and
FLMEu. The shock position and also the Mach contour can be seen in fig. 6.2. The position
of both shocks from the developed TSD is in good agreement with the FLMEu results.
Differences between both Mach contour results are in the leading and trailing edge region.

The lift, drag and moment coefficients for this case can be seen in Table 6.1. The
deviation of the lift, drag and moment coefficients between the TSD results (present and
original) and the mean values of the Euler results can be seen in table 6.2.
Other validation results can be found in Ref. [55].
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(a) Geometry of NACA 0012 airfoil (b) Pressure distribution
Fig. 6.1. Geometry and Pressure Distribution of NACA 0012 at M = 0.8, a = 1.25 deg
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Fig. 6.2. Mach Contour of NACA 0012 at M = 0.8, o = 1.25 deg

Table 6.1. Lift, Drag and Moment Coefficients of NACA 0012 at M = 0.8, o = 1.25 de

Cl Cd Cm Mesh Grid Type
(drag count)

Jameson (Euler) | 0.3632 230 -0.0397 | 320x 64 @)
FLMEu (Euler) | 0.3486 221 -0.0358 | 180 x 30 C
TSD-Present 0.3593 229 -0.0389 | 160x30 | H (Cartesian)
TSD-orig 0.6586 476 -0.1334 | 160 x 30 H (Cartesian)
Mean value of 0.3559 2255 -0.03775
the Euler results

1 drag count = 0.0001

Table 6.2. Deviation of Lift, Drag and Moment Coefficients from the Mean Values of Euler
NACA 0012 at M =0.8, a = 1.25 deg

ACI/Clmean ACd/Cdmean | ACM/CMpmean

TSD-Present 0.96% 1.55% 3.05%

TSD-orig 85.05% 111.05% 253.38%
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6.1.2. Validation of the Viscous M odels
Validation of the boundary layer calculation methods developed here are presented in
this sub chapter. Incompressible laminar and turbulent flow on aflat plate are selected as test
Cases.

6.1.2.1. Flat Platein Incompressible Laminar Flow
The flow parameters are as follows:

Mach number :M=0.

Angle of attack ra =0.deg

Reynolds number : Re = 1.0 E+05 (based on the plate length)
Three different boundary layer methods, i.e. Karman Thwaites, Drela-Giles and Differential
Methods, are validated with the exact solution of Blasius [5] as reference. In order to
implement the Drela-Giles Method, the Karman-Thwaites procedure must be used as initial
values. After 3%-5% of the plate length from the leading edge, the Drela-Giles method can
then be implemented. The distribution of the displacement thickness and skin friction are
depicted in figure 6.3. All the three methods show good agreement for this case.
A small modification in the skin friction closure equation of Drela-Giles Method is carried out
as follows:

3
from : forH, <55 C; = éO 0762( ( )) - 0. 067uR— (3.38a)
g
| (55 1.}
changeinto: for H, <55 C, = éO 0727——*L ( ) 7uR— (6.1)
9]

The reason of this modification is to increase the growth of the shape factor and the
momentum thickness (see equations 3.30 and 3.31). With the original equation (3.38a.) the
value of the shape factor H became smaller than those of Blasius and Karman-Thwaites
results. A small value of shape factor causes a small value of displacement thickness.

0,0056 0,020

— & — Thwaites
0,0048 4~ - 8-+~ Drela-Giles|
- - = - -DiffEq.

0,016 4 IA

0,0040 -
0,0032 4 00121%
0,0024 1

0,008 4

0,0016

0,004 4
0,0008 1 8

0,0000 + T T T T
0,0 0,2 0,4 0,6 0,8 1,0

x/L

0,000 T T T T
0,0 0,2 0,4 0,6 0,8 1,0

x/L

(a) Displacement thickness (b) Skin friction
Fig. 6.3. Displacement Thickness and Skin Friction of a Flat Plate
aM=0.,a =0,Re=10E+05

6.1.2.2. Flat Platein Incompressible Turbulent Flow
The flow parameters are as follows:
Mach number M =0.
Angle of attack ra =0.deg
Reynolds number : Re = 1.0 E+07 (based on the plate length)
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Three different boundary layer methods, i.e. Differential equation, Drela-Giles and Greens
Lag Entrainment Methods, will be compared with the solution of Power 1/7 Law as reference.
The solution of the Power 1/7 Law will be used as initial values to start calculation with the
Drela-Giles and the Greens methods. After 3%-5% of the plate length from the leading edge
the Drela-Giles and Green methods can then be started.
The displacement thickness and skin friction distribution can be seen in figure 6.4. In general
all methods are in good agreement. The Drela-Giles method supplies a little bit larger skin
friction and displacement thickness compared with the results from Green method and Power
1/7 Law. The differential method supplies larger skin friction than those from other methods
at the leading and trailing edge region.

0,002

—a—Exp. 117 0008 ¢

000184 ... Drela
0,0016 - Green 0.007
00014 ]| ——Diff. BL
’ 0,006
0,0012 - ‘
*,001 4 O 0,005 {a
0,0008 1 '
0,004
0,0006
000041 3 0,003
0,0002 { 2
o . i . . 0,002 4 . T T - 1
0 02 04 06 08 1
0 02 04 . 06 08 1 /L
(a) Displacement thickness (b) Skin friction

Fig. 6.4. Displacement Thickness and Skin friction of a Flat Plate
atM =0., 0 =0., Re = 1.0E+07

6.1.3. Validation of the Transition Prediction Method

This sub chapter serves for validating of the e" transition prediction method with
experimental data and other numerical methods. Two cases are selected, i.e. transition flow
on a flat plate and around NACA 0012 airfoil.

6.1.3.1. Flat Plate with Laminar-Turbulent Transition
The flow parameters are as follows:
Mach number :M=0.
Angle of attack co=0.deg
Reynolds number  : Re = 1.7E+06 /m

As reference data is the experimental data from Schubauer and Klebanoff [5, 69]. The
experiment from Schubauer and Klebanoff discovers a transition region approximately
between 1.75 m to 2.5 m from leading edge of the plate. This transition region corresponds
with the Reynolds number between 3.0E+06 to 4.2E+06. Figure 6.5. represents the shape
factor and skin friction. In this simulation two different boundary layer methods are used, i.e.
Drela-Giles and Thwaites-Green methods. In the Thwaites-Green method the laminar and the
turbulent region was simulated with the Karman-Thwaites and Greens Lag Entrainment
method respectively, because the Karman-Thwaites method has no turbulent closure
equations and the Greens method has no closure equations for laminar flow. The Drela-Giles
method has closure equations for both laminar and turbulent flows.
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(a) Shape factor (b) Skin Friction
Fig. 6.5. Shape Factor and Skin Friction of a Flat Plate
atM=0., a=0., Re =1.7E+06/m

In this simulation the length of the plate is 3.75 m, which correspond to the Reynolds number
6.37E+06. From fig. 6.7 it can be seen that the e” method could compute the transition region
very well. The computation result shows sharper and narrower transition region compared
with the experimental data. In fig. 6.5a. the computed shape factor of the Drela-Giles method
is smaller than experiment data. The shape coefficient of the Thwaites-Green method agrees
with the experiment data in the laminar region, but it is smaller than the experiment data in
the turbulent region. The value of the laminar and turbulent shape factor from the experiment
is 2.6 and 1.4 respectively. In fig. 6.5b. the numeric and experimental values of the skin
friction show good agreement in the laminar region, but the computed skin friction are larger
than the experiment data in the turbulent region.

6.1.3.2. NACA 0012 Airfoil with Laminar-Turbulent Transition
The flow parameters are as follows:

Mach number :M=05

Angle of attack co=0. deg

Reynolds number  : Re = 2.89E+06 (based on chord length)
The experimental data of Thibert, Grandjacques and Bateman [70] will be used as reference
for the pressure distribution. The numerical data from Wolles [4] serves as reference for the
displacement thickness and skin friction distribution. Wolles has performed his calculation
using simultaneously viscous - inviscid interaction. The Full Potential equation is used as
inviscid model and the Drela-Giles method with the e" transition method as viscous model.
The goal of this simulation is to examine the influence of one boundary layer method (here is
the Drela-Giles method) into different inviscid models (here are the TSD and Euler equations)
and also the influence of different boundary layer methods (here are the Thwaites-Green and
Drela-Giles methods) into one inviscid model (here is the TSD equation).

The results of the pressure, displacement thickness and skin friction distribution

calculated using coupled TSD and FLMEu with the Drela-Giles boundary layer method are
presented in fig. 6.6.
From experiment it is found that the transition region is laid from 40% to 50% chord from the
leading edge. The experimental pressure distribution shows irregular values in this transition
region as shown also by the numerical solutions. Between the TSD+BL and the FLMEu+BL
results there is a small deviation in the pressure distribution from leading edge up to 40%
chord (see fig. 6.6a.). The transition region can be recognised also from the skin friction
distribution. The skin friction solutions of TSD+BL and FLMEu+BL show also the transition
region from 40% to 50% chord (see fig.6.6c.).
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Fig. 6.6. Pressure, Displacement Thickness and Skin Friction of NACA 0012
atM =0.5, a =0., Re = 2.89E+05
(Comparison between TSD+Boundary Layer and Euler+Boundary Layer)

The displacement thickness and skin friction distribution, which are computed using
coupled TSD + Thwaites-Green and TSD + Drela-Giles methods, can be seen in fig. 6.7. The
TSD + Thwaites-Green method gives an earlier transition region compared with the result
from TSD + Drela-Giles method. The transition region predicted by both of methods show
good agreement with the experimental results (laid between 40%-50% chord from leading
edge). Compared to the Wolles result, both of methods (TSD + Thwaites-Green and TSD +
Drela-Giles) supply an earlier transition region. The skin friction calculated with TSD +
Drela-Giles is larger than those from TSD + Thwaites-Green in the turbulent region.
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Fig. 6.7. Displacement Thickness and Skin Friction Distribution of NACA 0012
at M =0.5 o = 0., Re = 2.89E+05
(Comparison between TSD+Thwaites-Green and TSD+Drela-Giles Methods)

The above validating results have been partly published in ‘Indo-German Conference 2001’

and in “‘Jurnal Sains dan Teknologi Aeronotika“ (the Journal of the Indonesian Association of
the Aerodynamics Specialists) [71].
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6. Steady and Unsteady Aerodynamic Results
6.2. Steady Aerodynamic Results
After the validation of the individual model (i.e. viscous, inviscid and transition models)
has been performed, the developed viscous - inviscid interaction method will be used to
investigate some steady cases. The selected cases must represent some physical flow
conditions such as attached flow, flow with separation bubble and shock-induced separated
flow. The method is also used to investigate the flow around an axis-symmetrical body.

6.2.1. Transonic Attached Flow
The flow around airfoil RAE 2822 with the following flow parameters is examined:

Mach number :M=0.725
Reynolds number  : Re = 6.5E+06 (based on chord)
Angle of attack to=2.42 deg

This case is known as CT6 case in AGARD [72] and was selected as one of five test cases for
codes validation in “Viscous Transonic Airfoil (VTA) Workshop 1987¢ [73]. The numerical
results obtained from the present VII method are compared with the experimental data from
Cook, McDonald, and Firmin [72]. The angle of attack in the experiment is 2.92 degrees
(uncorrected) with lift coefficient C, equals to 0.743. In order to obtain the same lift
coefficient as those in experiment, the angle of attack in this simulation must be reduced to
2.42 degrees. The TSD and FLMEu equations coupled with boundary layer calculation
method from Drela-Giles are used to calculate this case. The simulation is carried out using
(180x30) cells and (160x30) points for FLMEu and TSD Codes respectively. The flow
condition is assumed to be fully turbulent. Figures 6.8 and 6.9. show the geometry, pressure,
displacement thickness and skin friction distribution.
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(a) Geometry (b) Pressure Distribution
Fig. 6.8. Geometry and Pressure Distribution of RAE 2822 Airfoil

at M = 0.725, Re = 6.5E+06, o, = 2.42 deg

One can see from fig. 6.8 that the pressure distribution calculated using VII method agrees
well with the experimental data. Small deviation can be seen in the shock region on the upper
surface and trailing edge on the lower surface. The displacement thickness increases sharply
in the shock region as can be seen in fig. 6.9a. Conversely the skin friction decreases sharply
in the shock region as depicted in fig. 6.9b. The displacement thickness calculated using
FLMEu+Boundary layer (FLMEu+BL) is closer to the experimental results compared with
those from TSD+Boundary layer. Conversely the skin friction calculated using
TSD+Boundary layer (TSD+BL) seems to be closer to the experiment results.
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Fig. 6.9. Displacement Thickness and Skin Friction on the Upper Surface
of RAE 2822 at M = 0.725, Re = 6.5E+06, o = 2.42 deg

The lift and drag coefficients for this case are depicted in Table 6.3. together with the results
obtained from the VTA Workshop 1987.

Table 6.3. Lift and Drag Coefficients of RAE 2822 Airfoil
at M = 0.725, Re = 6.5E+06, a. exp = 2.92 deg (uncorrected)

Ci Cq Error (%) o Remark
(drag count) C Cq (deg)
Experiment 0.743 127 - - 2.92 Cook et.al
TSD 0.821 150 10.49 18.11 2.42 Present
FLMEu 0.820 148 10.36 16.53 2.42 Present
TSD+BL 0.746 134 0.42 5.51 2.42 Present
FLMEu+BL 0.742 131 -0.13 3.15 2.42 Present
Full Potential+BL | 0.740 131 -0.40 3.15 2.56 Dargel &
Thiede
Full Potential+BL | 0.822 132 10.63 3.94 2.47 Haase &
Echtle Y
Euler+BL 0.723 113 -2.69 -11.02 2.44 Drela &
Giles V
Euler+BL 0.756 180 1.75 | 41.73 2.60 [Chenetal. ”
Navier Stokes 0.747 123 0.54 -3.14 2.30 Maksymiuk
(Baldwin-Lomax) & Pulliam ¥
Navier Stokes 0.717 113 -3.49 | -11.02 2.40 Coakley V
(Johnson-King)
Range value in 0.717 113 -3.49 -3.14 2.30
VTA Workshop up to up to up to up to up to
0.822 180 10.63 41.73 2.80

1 drag count = 0.0001, ¥ in VTA Workshop 1987 [73]

Twenty three (23) scientists have been participated in the VTA Workshop 1987. They
represented their results for some test cases, which were computed using the Navier Stokes,
Euler equations plus Boundary layer and Full potential equation plus Boundary layer.
Compared with the results of this Workshop, the aerodynamic coefficients calculated using
the present TSD+BL and FLMEu+BL are in the range of the Workshop’s results. The
developed methods show a better result than some Workshop’s results, and lay in the same
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6. Steady and Unsteady Aerodynamic Results
level with the results from Dargel & Thiede (using Full Potential+BL) and from Maksymiuk
& Pulliam (using Navier Stokes + Baldwin Lomax turbulence model). Compared with the
experimental results, the deviation of the lift and drag coefficients calculated with TSD+BL
are 0.42% and 5.51% respectively and calculated with FLMEu+BL is —0.13% and 3.15%
respectively. Compared with the results from inviscid model (TSD and FLMEu), the present
VIl method improves the lift and drag coefficients around 10% and 13% respectively.

6.2.2. Transonic Flow with Separation Bubble
The flow around airfoil RAE 2822 with the following flow parameters is examined:

Mach number :M=0.75
Reynolds number  : Re = 6.2E+06 (based on chord)
Angle of attack to=2.93 deg

This case is known as CT 10 case in AGARD [72] and was selected as one of five test cases
VTA Workshop 1987 [73]. The numerical results are compared with experimental data by
Cook, McDonald, and Firmin [72]. The angle of attack in the experiment is 3.19 deg
(uncorrected) associated with lift coefficient C; = 0.743. In order to obtained same lift
coefficient, the angle of attack by present simulation is reduced to 2.93 degrees. In this
simulation, the TSD method is coupled with the boundary layer method from Drela-Giles and
Greens Lag Entrainment, in order to examine the influence of different boundary layer
methods. The simulation is conducted using Cartesian grid with (160x30) points around flow
field. The flow condition is assumed to be fully turbulent flow. Figures 6.10 and 6.11.
represent the pressure, displacement thickness and skin friction distribution.

--¢--BP

—e—TSD

1 ——TSD+BL(DrelaGles)

—+—TSD+BL(Greer)

00 02 04 06 08 10
xlc

Fig. 6.10. Pressure Distribution of RAE 2822 Airfoil
at M =0.75, Re = 6.2E+06, o = 2.93 deg

Without addition of the displacement thickness, the lift coefficient C, from the inviscid model
(TSD) is 0.8370 and the pitching moment coefficient C, is -0.1523. The pressure distribution
on the upper surface agrees well with the experimental result until 52% chord from the
leading edge. But the position of the shock lays at 68% chord from leading edge. This
position is far behind the shock position from the experiment, which is located in 58% (see
fig. 6.10). After the boundary layer was added on the airfoil, the lift coefficient decreases to
0.7465 and the pitching moment coefficient is —0.1228 calculated using Greens Lag
Entrainment boundary layer method. By using the boundary layer method of Drela-Giles the
lift coefficient is 0.7287 and the pitching moment coefficient is -0.1168. The pressure
distributions obtained from VII using both boundary layer methods are little bit larger than the
experiment results from leading edge to 52% chord. The influence of the Drela-Giles
boundary layer method seems to be a little bit larger than those of Greens Lag Entrainment
boundary layer method. By using the Drela-Giles method, the shock position is found at
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6. Steady and Unsteady Aerodynamic Results
around 62% chord from leading edge, at the other hand by using the Greens Lag Entrainment
method lays the shock position at around 63% chord from leading edge. A small separation
bubble is found just after shock position as shown by zero skin friction region in fig. 6.11b.
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Fig. 6.11. Displacement Thickness and Skin Friction on the Upper Surface
of RAE 2822 at M = 0.75, Re = 6.2E+06, o = 2.93 deg

The lift and drag coefficients for this case are depicted in Table 6.4. together with the
results obtained from the VTA Workshop 1987.

Table 6.4. Lift and Drag Coefficients of RAE 2822 Airfoil
at M =0.75, Re = 6.2E+06, o exp = 3.19 deg (uncorrected)

C Cq Error (%) o Remark
(drag count) Ci Cq (deg)
Experiment 0.743 242 - - 3.19 Cook et.al
TSD 0.837 289 12.65 19.42 2.93 Present
TSD+BL (Drela) 0.729 226 -1.88 -6.61 2.93 Present
TSD+BL(Green) | 0.747 256 0.54 5.78 2.93 Present
Full Potential+BL | 0.740 230 -0.40 -4.96 2.96 Dargel &
Thiede ¥
Euler+BL 0.733 224 -1.34 -7.44 2.70 Drela &
Giles
Navier Stokes 0.838 289 12.78 19.42 2.72 Maksymiuk
(Baldwin-Lomax) & Pulliam ¥
Navier Stokes 0.859 298 15.61 | 23.14 2.80 Coakley
(Baldwin-Lomax)
Navier Stokes 0.745 243 0.27 0.41 2.80 Coakley V)
(Johnson-King)
Range value in 0.740 224 -0.40 -7.44 2.50
VTA Workshop up to up to up to up to up to
0.859 298 15.61 23.14 2.96

1 drag count = 0.0001, ¥ in VTA Workshop 1987 [73]

Compared with the results from VTA Workshop, the developed TSD+BL (Green) supplies
the aerodynamic coefficients in the range of the Workshop’s results but the lift coefficient
obtained using TSD+BL (Drela) lies a little bit lower. The developed VII method shows
better results than some Workshop participants results. The present results lie in the same
level with the results from Dargel & Thiede (Full Potential+BL) and from Drela & Giles
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6. Steady and Unsteady Aerodynamic Results
(Euler+BL). Compared with the experiment, the deviation of lift and drag coefficients is -
1.88% and -6.61% respectively (using TSD+BL Drela) and 0.54% and 5.78% respectively
(using TSD+BL Green). In comparison with the results of the inviscid model (TSD), the
developed VII method improves the lift and drag coefficient around 10% and 13%
respectively. The best agreement with experiment for this case is the Coakley’s result, which
is computed using Navier-Stokes Code with Johnson-King turbulence model. This method
supplies result for C; = 0.745 and for Cy = 243 drag counts with angle of attack 2.80 degrees.
The Navier-Stokes Code with Baldwin-Lomax turbulence model (from Coakley and
Maksymiuk & Pulliam) supplies over predicted values for the two aerodynamic coefficients.

6.2.3. Transonic Flow with Shock-Induced Separation
The flow around airfoil NACA 0012 with the following flow parameters is examined:

Mach number :M=0.799
Reynolds number  : Re = 9.0E+06 (based on chord)
Angle of attack o= 2.26 deg (corrected)

This case is also selected as one of five test cases in VTA Workshop 1987 [73]. The present
results will be compared with the experimental data from Harris [74] and numerical results
from Cvrlje [75] and Prananta [76]. Cvrlje calculated this case using Navier-Stokes Code plus
Baldwin-Lomax turbulence model (NS-BL). Prananta calculated this case using Navier-
Stokes Code with Spalart-Almaras turbulence model (NS-SA). The present TSD and FLMEu
Codes are coupled with boundary layer method from Drela-Giles to simulate this case. The
simulation is carried out with (180x30) cells and (160x30) points for FLMEu and TSD Code
respectively. The flow condition is assumed to be fully turbulent flow. Fig. 6.12 and 6.13.
show the pressure, displacement thickness and skin friction distribution. Only pressure
distribution result computed using NS-BL is available. At the other hand from NS-SA
calculations only pressure distribution and skin friction results are available. From the
experiment there are no skin friction and displacement thickness data.
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0 0,2 0.4 0.6 0.8 1
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Fig. 6.12. Pressure Distribution of NACA 0012 Airfoil
at M =0.799, Re = 9.0E+06, o = 2.26 deg

From fig. 6.12. it can be seen that the shock location computed by TSD+BL and FLMEu+BL
agrees well with those of NS-BL (Navier-Stokes with Baldwin-Lomax turbulence model).
The shock is located at 64% chord from the leading edge. The shock location lies still behind
the experimental situation, which is located at 50% chord from leading edge. The shock
location from NS-SA (Spalart Almaras turbulence model) is near to the experiment at about
51% chord from leading edge. Without influence of the boundary layer, the TSD and FLMEu
procedure supply the shock location at around 70% chord. It can be seen from the skin friction
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6. Steady and Unsteady Aerodynamic Results
distribution that a shock-induced separation is occurred, which is designated by the zero or
negative values of skin friction (see fig. 6.13b). From the TSD+BL and FLMEu+BL results,
the separation started from 65% chord. On the other hand, the separation calculated with the
NS-SA occurred after 51% chord result followed by reattachment of the flow at around 97%
chord.
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Fig. 6.13. Displacement Thickness and Skin Friction on the Upper Surface
of NACA 0012 at M = 0.799, Re = 9.0E+06, o = 2.26 deg

The lift and drag coefficients for this case are depicted in Table 6.5. together with the results
obtained from the VTA Workshop 1987.

Table 6.5. Lift and Drag Coefficients of NACA 0012 Airfoil
at M =0.799, Re = 9.0E+06, o = 2.26 deg

Cl Cd Error (%) Remark
(drag count) Cl Cd

Experiment 0.390 331 - - Haris
TSD 0.558 497 43.08 50.15 Present
FLMEu 0.541 486 38.72 46.83 Present
TSD+BL 0.464 431 18.97 30.21 Present
FLMEu+BL 0.454 416 16.41 25.68 Present
Euler+BL 0.312 337 -20.0 1.81 | Drela & Giles V
Navier Stokes — BL 0.472 445 21.02 34.44 Maksymiuk &
(Baldwin-Lomax) Pulliam ¥
Navier Stokes—BL | 0.476 446 22.05 34.74 Coakley V
Navier Stokes — BL 0.433 409 11.03 23.56 Cuvrlje [75]
Navier Stokes —JK |  0.300 345 -23.08 4.23 Coakley V
(Johnson-King)
Range value in 0.300 337 -23.08 1.81
VTA Workshop up to up to up to up to

0.476 446 22.05 34.74

1 drag count = 0.0001, ¥ in VTA Workshop 1987

The non viscous models (TSD and FLMEu) supply the aerodynamic coefficients outside of
the range of the VTA Workshop. That means: for this case the use of the non viscous model is
not appropriate. Compared with the Workshop‘s results, the developed TSD+BL and
FLMEu+BL supply the aerodynamic coefficients inside of the range value in the Workshop.
Compared with the experiment the deviation of lift and drag coefficient is 18.97% and
30.21% (calculated using TSD+BL) and 16.41% and 25.68% (calculated using FLMEu+BL)
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6. Steady and Unsteady Aerodynamic Results
respectively. Most methods used in the Workshop supply larger lift and drag coefficients
compared to the experiment except those from Drela & Giles (Euler + Boundary Layer) and
from Coakley (Navier Stokes + Johnson King turbulence model), which supply smaller lift
coefficient. The best agreement of the shock location with experiment is the Navier Stokes
Code with Johnson King turbulence model from Coakley. For this test case, there are no
results from potential equation was presented in VTA Workshop 1987.

6.2.4. Investigation of the Flow around Axis-symmetrical Bodies
In this sub chapter the application of the developed viscous — inviscid interaction
method for the computation of flow around an axis-symmetrical body is presented. For this
purpose the TSD equation is transformed into [55]:
%+i+i+ fz—O (6.2)

ot ox  or r
where the fluxes are:

fo=—(Ad +Bg,) f, =Eg, +Fg; f,=¢ (6.3)

r is the component of the coordinates in radial direction of the body.
The coefficients A, B, E, and F are remain unchanged.

A=M2, B=2M2, E=1-M?, F:—%(;/+1)Mi
In the computational coordinate, the TSD equation (6.2) becomes to:
_9[ a8 9 o8, 14 (6.4)
a[Aé + B¢§j+ 5 [Esc. +Flpe ]+ ag(gx} ;[gj_o
with: _X _r 6.5
§x)=7 §=1 (6.5)

where L is the length of the body.

The solution of the equation (6.4) is carried out using the Approximate Factorization (AF)
algorithm, which is already discussed in chapter 4.1.

The AF form of the equation (6.4) is:

L.L Ag=—R(p" " ¢"" 4") (6.6)
with:
L, :1+(?)ngmja_(§xm2]a Fo (6.7)
aAS" Jog | 2A Jog toe
L :1_[WJ61«9_[MJ16 (6.8)
¢ 2A Joc & oc | 2A)cac
%2

Fy =&, +2F4LE] (6.9)

%Atgx(sqﬁ:w(p)’(‘ + ‘1j+

o 2fessoreii? B
The 1st sweeping of the equation (6.6) will be carried out in the & direction for all constant
value of g L.Ag" = —R(¢*,¢”,¢"’1,¢”’2) (6.11)
The 2nd sweeping will be done in die ¢ direction for all constant value of & after the
temporary solution A¢* has been found from the 1% sweeping :

L. Ag=Ag" (6.12)

The solution ¢™* = ¢ + A¢ will be convergence if A¢~ 0. The computation of the pressure
distribution is carried out as discussed in chapter 4.1.
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6. Steady and Unsteady Aerodynamic Results
This TSD equation will be coupled with the boundary layer calculation method from Drela-
Giles to calculate the flow around an axis-symmetrical body.

A set of Body of Revolution (BoR) of Messerschmidt Bolkow Blohm (MBB) called
as BoR 1, 3 and 5 are examined [77]. Its fore and aft body are represented with 3. order
polynomial as follows:

Fore body :
r(x) = as x> + az x> + ag X (6.13)
with :

a1= 3 MmadX1, 82= -3 Mmax/X2®, @3= MmadX1®, X1 =0.51L

Aft body :
r(x) = bs x> + by x* + by x + by (6.14)
with :
bo = (L Fmaxd(X2-L)®) (3%oL-L2-3x,), b1 = 3Xo? Fax! (Xa-L)°,
b2 = -3X2 Fmax/ (X2-L)°, ba = Fmaxd (X2-L)°

The value of x; is different for each BoR as follows:
forBoR1:x,=05L
for BoR 3 : x, =0.6875 L
for BoR5:x,=0.8125L
The value of L and rmax are 800 mm und 60 mm respectively.
Fig. 6.14. shows the geometry of MBBs BoR 1, 3 and 5.
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---A--.MBB5
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0,1 4 =
02 , , , , ,
0 0.2 04 06 08 1

x/L

Fig. 6.14. Geometry of MBBs Body of Revolution 1, 3 and 5

The flow parameter, which has to be simulated are as follows:

Mach number, M=0.8

Reynolds number,  Re = 1.0E+07 (based on length L)

Angle of attack, o =0 deg
The flow condition is assumed to be fully turbulent. The pressure, skin friction and
displacement thickness distribution of the MBBs BoR 1, 3 and 5 are presented in fig. 6.15. It
looks that the more steeply geometry the more steeply the pressure distribution and the more
largely skin friction. This increasing skin friction will not automatically increase the entire
drag, because the pressure drag within the region of the trailing edge becomes smaller because
of the change of geometry within this region. For BoR 5 there is a small separated region
around the trailing edge (Cf < 0), as can be seen in fig. 6.15b.

Comparison of the present results with the experiment of Lorenz Meyer and Aulehla
[77] and Navier Stokes calculation (with Baldwin Lomax turbulence model) using software
RAMPANT [78] for BoR 3 is depicted in fig. 6.16. A large deviation in the pressure
distribution between the present TSD+BL and the experiment and the Navier Stokes results
occurs in the flat region of the body (approximately from 40% to 70% of the body length),
where the flow became slower after a leading edge expansion.
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Fig. 6.16. Pressure and Skin friction of MBBs BoR 3 at M = 0.8, Re = 1.0E+07, o = 0 deg

Comparison of the pressure distribution between the present result and the experiment for
MBBs BoR 1 and 5 can be seen in fig 6.17. Again the deviation of the pressure distribution
between the TSD+BL and the experiment occurred in flat region of the bodies. The above

results have been partially published in Ref. [79].
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6.3. Unsteady Aerodynamic Results
In this chapter the developed viscous - inviscid interaction method is used to compute
some unsteady test cases. The unsteady condition is produced by a harmonically pitching
motion of a body in a uniform flow. The oscillation of the body is sinusoidal, as follows:

o(7) = ap+ a sin (ko) (6.15)
where :
ap 1S mean angle of attack
oy is amplitude of angle of attack
k is reduced frequency (k = awc/U)
7is the non dimensional time

In order to test the ability of the developed method, the selected unsteady cases must cover or
consider the following variation:

- variation of Mach number and Reynolds number

- variation of mean angle of attack

- variation of amplitude of angle of attack

- variation of reduced frequency of the oscillation

- variation of geometry

- two and three-dimensional flow

- symmetrical and unsymmetrical flow

With the above consideration the following unsteady cases are selected:
1. AGARD CTS5 test case for NACA 0012 airfoil [80]
2. AGARD CTH5 test case for LANN wing [81]
3. NASA E24 test case for Delta wing [82]
The simulation parameters of the above unsteady test cases are presented in table 6.6.

Table 6.6.The Selected Unsteady Test Cases

Re Flow

No. Case M | x10% | o | & k Xp AR |sym | unsym
1. | CTS NACA 0012 |0.755| 55 | 0.016 |2.51(0.1628 | 0.25¢c 0 X
2. | CTS5LANNWing | 0.82 | 7.3 0.6 |0.25| 0.204 | 0.621 cr| 7.92 X
3. | E24 DeltaWing | 0.88 | 9.0 0.0 |05 ] 0.340 |0.652cr| 1.24 | Xx

Notes:

M = Mach number AR = Aspect Ratio

Re = Reynolds number sym =symmetrical flow

12 = mean angle of attack unsym = unsymmetrical flow

o = amplitude of angle of attack ¢ = chord

k = reduced frequency (k = ac/U) cr = root chord

Xp = pitching axis

Another unsteady aerodynamic results calculated using the developed VIl method can
be found in Ref. [55]. A part of the results has been published in Ref. [83, 84].
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6.3.1. AGARD Test Case CT5 for NACA 0012
The simulation parameter for this case is tabulated in Table 6.7.

Table 6.7. Simulation Parameter of AGARD CT5 Test Case for NACA 0012

Simulation Parameter Remark
Mach number M 0.755
Reynolds number Re 5.5E+06 |based on chord
Mean angle of attack ao |0.016°
Amplitude angle of attack | oy 251°
Reduced Frequency Kk 0.1628 |based on chord
Pitching axis Xp/C |0.25 from leading edge
Moment ref. axis Xm/C |0.25 from leading edge

The developed TSD plus boundary layer method from Drela-Giles will be used to simulate

this case with following grid parameter:

Table 6.8. Grid Parameter

Grid Parameter
Points on surface 120
Grid dimension (x-z plane) 160 x 30
Grid type (Cartesian) H
Total points 4800
Off Body distance 10%¢c
Far field distance 10 ¢

Before the unsteady calculation can be carried out, the steady calculation with mean angle of
attack data must be first accomplished. The steady pressure, displacement thickness and skin
friction are depicted in figures 6.18. and 6.19. As comparison data is the pressure distribution

result from Cvrlje [75]. The steady experimental data is unfortunately not available.
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Fig. 6.18. Steady Pressure Distribution of NACA 0012
CT5 Case, M = 0.755, Re = 5.5E+06, oo = 0.016 °
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Fig. 6.19. Steady Displacement Thickness and Skin Friction of NACA 0012
CT5 Case, M = 0.755, Re = 5.5E+06, oo = 0.016 °

The pressure distribution between the TSD+BL and the NS-BL agrees well for this case.
From the pressure distribution, displacement thickness and skin friction one can see that the
flow condition is almost symmetrical with respect to x-y plane.

After the steady calculation was accomplished, the unsteady calculation can be
performed using the initial condition from steady results. The simulation is carried out for
three cycles of the oscillation, in order to obtain convergent results. For this simulation one
cycle of the oscillation is divided into 720 time steps uniformly. The unsteady result of lift
and moment coefficient for the last cycle the oscillation are presented in figure 6.20. together
with experimental results from Landon [80] and numerical results from Cvrlje [75].
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—aA—NS-BL
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02 0,015 4 /. "~
— ] £ J
O 0o o 0
D
0,2 1 -0,015 4 /
04 . ‘ T T T -0,03 v r T T T
-3,0 -2,0 -1,0 0,0 1,0 2,0 30 -3,0 -2,0 -1,0 0,0 1,0 2,0 3,0
a(deg) a(deg)
(a) Lift (b) Moment

Fig. 6.20. Unsteady Lift and Moment of NACA 0012
CT5 Case, M = 0.755, Re = 5.5E+06, g = 0.016°, a1 = 2.51° x, = 0.25¢, k = 0.1628

As expected, the lift coefficient (peak-to-peak value) calculated from TSD is the
largest one compared with the other numerical results. The influence of the boundary layer
into the TSD tends to reduce the lift coefficient close to the Navier Stokes solution. The lift
coefficient from TSD+BL and from Navier Stokes (NS-BL) solution agree well each other.
Compared to the experimental results the developed method TSD+BL supplies a good
agreement of the lift coefficient particularly in the range of the negative angle of attack. For
the positive angle of attack the two numerical results (TSD+BL and NS-BL) supply smaller
lift coefficient. The results of the TSD lie in the proximity of the experiment particularly as
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6. Steady and Unsteady Aerodynamic Results
the airfoil moved downward from its highest position (see fig. 6.20a.). That does not meant
that the TSD solution is the best solution (closer to the experiment), but probably the
experiment was not so correctly performed. The symmetrical condition from the measured
unsteady lift coefficient can not be seen clearly. It seems also, that the experiment was
probably performed using smaller reduced frequency. If the Navier Stokes solution can be
accepted as numerical reference solution (because the Navier Stokes equations describe the
fluid flows most completely), then the quality of the solution of the TSD can be increased
because of the addition of the boundary layer.

The moment coefficient is turned counter clockwise because of the addition of the
boundary layer in to the TSD method. The magnitude of the moment coefficient of Navier
Stokes is larger than the result of TSD plus boundary layer.

The unsteady pressure distribution is presented in figure 6.22 for eight different angles
of attack of the airfoil, where the pressure measurements were performed. The measured
angle of attack of the airfoil is presented in fig. 6.21. (point a. to h.).

35

LA\

180

a(deg)

3

Fig. 6.21. The Measured Angle of Attack, AGARD CT5 NACA 0012

The deviation of the pressure distribution from numerical and experimental data occurs
mainly in the region of the shock (see fig. 6.22. b to d, f to h). The shock position from
experiment mostly lies behind the shock positions from numerical results. In the comparison
with the Navier Stokes solution (NS-BL), the developed TSD+BL method supplies the earlier
shock position (in front of the shock position of the NS-BL). The shock position calculated by
the TSD still lies behind the shock from NS-BL. The earlier shock position causes smaller
magnitude of the moment coefficient as already presented in fig. 6.20.

Referring fig. 6.22a. and e, the TSD+BL method still shows a small shock, which is
shown very soft by the Navier Stokes solution. For this case it seems that the influence of the
boundary layer into the TSD equation is larger than the influence of the viscous terms in the
Navier Stokes equations. From the experiment it is unclear whether an shock arises or not for
this angle of attack. Unfortunately the experimental data on the lower surface of the airfoil are
too few inadequate to show the shock position more precisely, if the shock arises on the lower
surface (see fig. 6.22.a, 6.22.f h).

It is interesting to analyze the figure 6.22.a and e. From numerical data the shock on
the lower surface of the airfoil arises at the position a., although the instantaneous angle of
attack is positive (o = 1.09 °). Contrary, the shock arises on the upper surface of the airfoil at
the position e., although the angle of attack is already negative (o = -1.25 °). For steady case
the situation is inversely, the shock occurs on the upper surface of the airfoil at positive value
of angle of attack and on the lower surface at negative value of angle of attack.
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Fig. 6.22. Unsteady Pressure Distribution of NACA 0012
CT5 Case, M = 0.755, Re = 5.5E+06, op = 0.016°, a1 = 2.51° x, = 0.25¢, k = 0.1628

If one compares fig. 6.22.b. with c, it can be seen that the shock at the position b. (o =
2.34 °) is smaller than those at the position ¢ (o = 2.01 °), although the angle of attack at
position b. is larger than those at the position c. The same phenomenon happens also between
position f. (o =-2.41°) and g. (. = -2.0°). The oscillation of airfoil retards the reaction of the
flow (responds lift and moment). This delay develops because the movement of the airfoil
changes the effective angle of attack. The mechanism of the changed angle of attack is
presented in fig 6.23.

In fig. 6.23., aa and o are the flow angle of attack (effectively) and instantaneous
measured angles of attack (geometric) respectively, Ui is the induced velocity due to the
airfoil oscillation, Ua is the actually flow velocity, U is the undisturbed flow velocity. The
flow angle of attack becomes larger (or more positive), if the airfoil moves downward (fig.
6.23.b. and d). Contrary, the flow angle of attack becomes smaller (or more negative), if the
airfoil moves upward (fig. 6.23.a. and c). The induced velocity depends on the reduced
frequency k and on the location of the pitch axis xp. (Ui/Ue = k xp/c).
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Fig. 6.22. Unsteady Pressure Distribution of NACA 0012 (continued)
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Fig. 6.23. The Actual Angle of Attack due to Pitching Motion
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By fig. 6.22. b.(a. = 2.34°%), the flow angle of attack is actually smaller than 2.34
because of the upward movement of the airfoil and by fig. 6.22. ¢ (a. = 2.01°) the actual angle
of attack is larger than 2.01 because of the downward movement of the airfoil. Therefore the
shock intensity at position b. is smaller than at position c.

In figure 6.24 can be seen the unsteady displacement thickness for the eight measured
angles of attack. On the upper surface the displacement thickness from position g. to h and
from a. to b becomes larger as the airfoil moved upward. The displacement thickness
decreases sharply from position c to f. as the airfoil moved downward. On the lower surface
of the airfoil the situation is reciprocally. The displacement thickness becomes smaller from
position g. to h. and from a. to b as the airfoil moved upward. From position c to f. the
displacement thickness increases as the airfoil moved downward. The shock position can also
be recognized from the displacement thickness value, that is the position where the
displacement thickness increases sharply (e.g. for strong shock see fig. 6.24 b.-d.).

Figure 6.25 shows the unsteady skin friction for the eight measured angles of attack.
On the upper surface, the skin friction becomes smaller within the shock range from position
a. to b as the airfoil moved upward and increases sharply from the position c to f as the airfoil
moved downward. By the position g. and h. it can be seen, that there is almost no change of
skin friction. On the lower surface, the skin friction from the position g. to h. and a. to b.
increases, when the airfoil moved upward. By the position ¢ and d there is nearly no change of
skin friction can be seen. From the position e. to f., the skin friction becomes smaller.
Unfortunately there are no comparison data from experiment available.
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6.3.2. AGARD Test Case CT5 for LANN Wing
The LANN wing was designed together in the 1980s by Lockheed, AFSOR, NASA
and NLR. The wing represents a typical wing of a transonic transport aircraft with large
sweep angle, large aspect ratio and supercritical airfoil. The geometry of the wing is presented
in Fig. 6.26. The parameters of geometry are presented in Table 6.9. The aerodynamic
characteristics of the wing have been intensively measured in wind tunnel.
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Fig. 6.26. Geometry of the LANN Wing

Table 6.9. Geometry Parameter of the LANN Win

Parameter
Span S 2.77
Root Chord cr 1.0
Taper Ratio ct/cr 104
Aspect Ratio AR 7.92

Sweep Angle: Leading edge | op.e 27.49°
Trailing edge | e 16.91°

Thickness t/c 12%

Twist 0 -4.8°

The AGARD CT5 test case is one of 10 selected test cases for code validation within the
ECARP 1996 (European Computational Aerodynamic Research Project) [23], where 30
organizations (industry, university and research organizations) within European countries
have been involved and participated.

The simulation parameter of the CT5 case are shown in table 6.10. The simulation is
carried out using the TSD, the non linear Euler (FLMEu) and the linearized Euler
(FLMSDEu) codes both with and without boundary layer coupling. As boundary layer
calculation method is the two-dimensional integral method of Drela and Giles, which is used
in strip theory approach along the wingspan. The grid parameters for the FLMEu and the
FLMSDEu codes are the same grid parameters used in ECARP 1996 and are presented in
table 6.11. The used grid for FLMEU/FLMSDEu codes in near field of the wing is depicted in
Fig. 6.27.
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Table 6.10. Simulation Parameter of AGARD CT5 Test Case for LANN Wing

Simulation parameter Remark
Mach number M 0.82
Reynolds number Re 7.3E+06 | based on the root chord
Mean angle of attack ag |0.6°
Amplitude angle of attack |o; |0.25°
Reduced Frequency K 0.204 based on the root chord
Pitching axis xp/cr 10.621 from leading edge of the root chord
Moment Ref. axis Xm/Cr | 0.25 from leading edge of the root chord

Table 6.11. Grid Parameter for Simulation of AGARD CT5 Test Case for LANN Wing
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Fig. 6.27. The Grid for FLMEuU/FLMSDEu Cod

Grid parameter TSD FLMEU/FLMSDEu

Grid type (xz — yz planes) H-H C-H
Surface Cells 2400 3360
(x and y directions) (120 x 20) (120 x 28)
Total Cells 144000 204800
(x, y and z directions) (160 x 30 x 30) | (160 x 40 x 32)
Offbody Distance 10™ cr 5x107 cr
Far field distance:

front, above, below 10 cr 10 cr

rear 10 cr 8 cr

span 25 25

p

<IN

(¢o]

The simulation of the case was performed with the following steps:

Simulation of the steady case (calculated with mean angle of attack without
pitching motion) using the inviscid models (i.e. TSD and FLMEu codes).
Simulation of the unsteady case (with steady results as initial values) using the
inviscid models (i.e. TSD, FLMEu and FLMSDEu codes).

Simulation of the steady case using the viscous — inviscid interaction (VI1) models,
i.e. TSD+BL and FLMEu+BL codes.
Simulation of the unsteady case using the viscous — inviscid interaction (VII)
models, i.e. TSD+BL, FLMEu+BL and FLMSDEu+BL codes.

1.

2.

3.
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The resulted pressure distribution at 6 cuts (stations) along the wing span are presented and
compared with the experimental results from Zwaan [81]. The positions of the spanwise
stations are 1 = 0.2, 0.325, 0.475, 0.65, 0.825 and 0.95 (see Fig. 6.26).

6.3.2.1. Results of the Inviscid Models

Figure 6.28 shows the steady pressure distribution results from the inviscid models
TSD, FLMEu and FLMSDEu (the 0™ harmonic pressure distribution). It can be seen that the
pressure distribution calculated using all codes are in good agreement. A small difference
between the TSD and the FLMEu results lies in the leading edge region, whereby the pressure
distribution on the upper surface from TSD is smaller (more negative/suction) than those from
FLMEu (see fig. 6.28a. and b).
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Fig. 6.28. Steady Pressure Distribution of the LANN Wing
CT5, M=0.82, 0.0=0.6
(Comparison between the TSD, FLMEu and FLMSDEu results)

92



6. Steady and Unsteady Aerodynamic Results
The shock intensity from TSD results is small compared to those from FLMEu results. A
small shift of the shock location can be observed between the FLMEu and the FLMSDEu
results. The shock location from the FLMSDEu result is a little bit in front of that from the
FLMEu result. Compared to the experiment, the ‘supersonic — supersonic’ shock (in the
leading edge region) can be well simulated by all methods (see Fig.6.28a. and b.), but the
‘supersonic — subsonic’ shock lies far behind the experiment values for all stations.

The unsteady pressure distribution calculated by the inviscid models TSD, FLMEu
and FLMSDEu are presented in Fig. 6.29 and Fig. 6.30 for real and imaginary part
respectively. In order to obtain the convergent results, the simulation of the pitching
oscillation was carried out using 3 cycles of the oscillation, where each oscillation is divided
into 60 uniformly time steps.
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Fig. 6.29. Real Part of the Unsteady Pressure Distribution of the LANN Wing,
CT5, M=0.82, 0.0=0.6, 1=0.25, k=0.204, xp=0.621cr
(Comparison between the TSD, FLMEu and FLMSDEu results)
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It can be seen that the numerical results from all inviscid methods have a good
agreement in general. The shock intensity of TSD result is smaller than those from FLMEu
and FLMSDEu results except at the station a (n=0.2) and b (n=0.325) for real part of the
pressure distribution, where the shock intensity of TSD is larger (see fig. 6.29a and b.). The
FLMSDEu supplies larger shock intensity for real part and smaller for imaginary part than
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Fig. 6.30. Imaginary Part of the Unsteady Pressure Distribution of the LANN Wing,

CT5, M=0.82, 00=0.6, a1=0.25, k=0.204, xp=0.621cr
(Comparison between the TSD, FLMEu und FLMSDEu results)

All of the numerical results are not comparable with the experimental result for both the shock
intensity and the shock location. The shock intensity from numerical results is larger than

those from the experiment and the shock location is far behind those from the experiment.
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6.3.2.2. Results of the Viscous - Inviscid Interaction (VI1) Models
In fig. 6.31 the steady pressure distribution calculated by VII models (i.e. TSD+BL,
FLMEu+BL and FLMSDEu+BL) are presented. The pressure distribution from all methods
agree with the experimental result in general. From the leading edge to 25% of the chord all
methods supply larger/more positive pressure coefficients than the experiment on the upper
surface of the wing. The differences between the TSD+BL and the FLMEu+BL can be seen in
the leading edge region (fig. 6.31a. and b) and in the shock region of the outboard stations
(fig. 6.31c to f).
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Fig. 6.31. Steady Pressure Distribution of the LANN Wing
CT5, M=0.82, Re=7.3E+06, 0.0=0.6
(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results)
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6. Steady and Unsteady Aerodynamic Results
Between the FLMEu+BL and FLMSDEu+BL a small difference can be observed in the shock
region at the spanwise stations a. (n=0.2) and b. (n=0.325). The shock intensity and shock
location of the FLMSDEuU+BL are a little bit larger than and behind those from FLMEu+BL
for these stations, respectively. For other stations a difference between the FLMEu+BL and
FLMSDEu+BL results is hardly recognizable. Comparison with the experimental results
shows that the FLMEu+BL code supplies the best agreement of the pressure distribution for
all spanwise stations.
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Fig. 6.32. Displacement Thickness of the LANN Wing
CT5, M=0.82, Re=7.3E+06, 0.0=0.6
(Comparison between the TSD+BL, FLMEu+BL and FLMSDEu+BL results)

Figure 6.32. shows the steady displacement thickness, which was calculated by TSD+BL,
FLMEu+BL and FLMSDEu+BL codes. All results of the displacement thickness in general
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6. Steady and Unsteady Aerodynamic Results
agree each other. Differences between result from the TSD+BL and the FLMEu+BL can be
seen in the shock region at the outboard station. In the shock region on the upper surface, the
displacement thickness from TSD+BL is smaller than those from FLMEu+BL (see fig. 6.32c.
to f.). At the outboard station the displacement thickness after the shock from TSD+BL is
larger than those from FLMEu+BL (see fig. 6.32e. and f.). For all stations a difference
between the FLMEu+BL and FLMSDEu+BL results is hardly recognizable. The value of the
displacement thickness per chord tends to increase from inboard to outboard station (see
Fig.6.32a. to f.). This corresponds with the increasing pressure from inboard to outboard
station (see also fig. 6.31a. to f.). On the lower surface of the wing, there is no change of the
displacement thickness can be seen.

The steady skin friction calculated using the TSD+BL, FLMEu+BL and
FLMSDEu+BL codes is presented in fig. 6.33. All results seems to show a good agreement to
each other. Differences between the TSD+BL and the FLMEu+BL can be seen in the shock
region. The skin friction on the upper surface calculated using TSD+BL is larger than those
from FLMEu+BL (see fig. 6.33c. to f.). A difference between the FLMEu+BL and
FLMSDEu+BL results almost can not be recognized. On the lower surface of the wing nearly
there is no change of skin friction to be seen. Unfortunately the displacement thickness and
skin friction from the experimental results are not available.

The unsteady pressure distributions calculated using the viscous — inviscid interaction
(VII) models, i.e. TSD+BL, FLMEu+BL and FLMSDEu+BL, are presented in fig.6.34 and
fig. 6.35 for real and imaginary part, respectively. In order to obtain the convergent results,
the simulation was carried out for 3 cycles of the oscillation, each of them is divided into 60
uniformly time steps. It can be seen that all numerical results in general show a good
agreement to each other. The shock intensity of TSD+BL result is smaller than that of
FLMEu+BL result. At the outboard station the TSD+BL code supplies very soft shock (see
fig. 6.34f. and 6.35f.), whereby the shock calculated using FLMEu+BL code is still strong.
The shock location produced by TSD+BL code is behind those produced by FLMEu+BL
code particularly at the inboard stations of the wing (see fig.6.34a-b and 6.35a-b).

Differences between FLMEu+BL and FLMSDEu+BL results appear mostly in the
shock region for the real part of the unsteady pressure distribution. The shock intensity of the
FLMSDEu+BL result is larger than those from FLMEu+BL result. The shock location of
FLMSDEu+BL result is behind those of FLMEu+BL result, but in front of those of TSD+BL
result particularly at inboard station of the wing (see fig.6.34a-b and 6.35a-b). For the
imaginary part the unsteady pressure distribution, the results from FLMEu+BL and
FLMSDEu+BL are in good agreement.

The shock intensity and location calculated from all numerical codes are in general
showing good agreement with the experimental result. The best agreement with the
experimental result is supplied by the FLMEu+BL code. The pressure distribution of
FLMEu+BL and experiment agrees well and the shock location of the experiment can be well
simulated with the FLMEu+BL code. Nevertheless the shock intensity showed by the
experiment can not be completely simulated.
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Fig. 6.33. Skin Friction of the LANN Wing
CT5, M=0.82, Re=7.3E+06, 0.0=0.6,
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6.3.2.3. Comparison between Inviscid, VII and Navier Stokes results

In this sub chapter the results of CT5 test case calculated using inviscid model
(FLMEu), VII model (FLMEu+BL) and Navier Stokes codes are compared each other, in
order to examine the influence of boundary layer. The Navie Stokes results are obtained
using the Navier Stokes codes from the Institute for Aerodynamics (formerly Institute for
Fluid Mechanics -FLM- ) of the Technical University Munich (TUM) and from the Aerospace
Department of Technical University Delft (TUD). The code from FLM TUM is developed by
Dipl. -Ing. Alexander Pechloff with the Spalart Almaras turbulence model (abbreviation: NS-
SA) [85] and the code from TUD is developed by Dr. ir. Bima Prananta with the Baldwin
Lomax turbulence model (abbreviation: NS-BL) [76]. The compared results are the Mach
distribution, steady and unsteady pressure distribution and also lift-, drag-, and moment
coefficients.

Figure 6.36. shows the Mach number distribution on the upper surface of the wing,
which are calculated using FLMEu, FLMEu+BL and Navier Stokes codes, in steady
condition.
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Fig 6.36. Mach Number Distribution on the Upper Surface of the LANN Wing
CTS5 test case, M=0.82, Re=7.3E+06, 0.0=0.6

It can be seen that the supersonic region at the leading edge of the wing becomes smaller
because of the influence of the boundary layer. The shock location is shifted forwards because
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6. Steady and Unsteady Aerodynamic Results
of the presence of the boundary layer (see the Mach 1 line in fig. 6.36a and b.). The results
from the FLMEu+BL and Navier Stokes are in good agreement (see fig. 6.36b. and c).

The steady pressure distributions calculated from FLMEu, FLMEu+BL and Navier
Stokes (NS-SA and NS-BL) codes are presented in fig. 6.37. The pressure distribution on the
upper surface of the wing is strongly different with the presence of the boundary layer (see
FLMEu and the FLMEu+BL results). The shock from FLMEu+BL lies in front of that from
FLMEu with weaker intensity. The shock location resulted from FLMEu+BL is mostly in
front of the shock of NS-SA and NS-BL results (see fig. 6.37a, ¢, d and €). Between the NS-
SA and the NS-BL results there is almost no differences to be seen. The shock of NS-SA
seems to be sharper than that from NS-BL. On the lower surface of the wing the deviation
between inviscid and VII results is in the trailing edge region, where the FLMEu+BL gives
more negative pressure compared to the FLMEu results and shows good agreement with
Navier Stokes results.

Table 6.12. shows the aerodynamic coefficients (lift, drag and moments) for steady
condition of CT5 case, which was computed using TSD, FLMEu, FLMSDEu (with and
without boundary layer) and Navier Stokes codes. The influence of the boundary layer can be
seen from the changing of the aerodynamic coefficients. The lift and drag coefficient become
smaller and the moment coefficient becomes larger (more positive) because of the presence of
the boundary layer.

It can be seen from this table that the lift coefficient from all numerical results are larger than
that from the experimental result. The best agreement with the experimental result was given
by the FLMEu+BL code, which has 5.31% error compared to the experimental value. On the
other side the Navier Stokes code NS-SA produced approximately 12 % error and the
TSD+BL code gives approximately 10% error from the experiment for lift coefficient. It
seems that the influence of the boundary layer on the Euler equations is larger than its
influence on the TSD the equation and the Euler + boundary layer code gives underestimated
value compared to the Navier Stokes.

A different sign between experimental and numerical results can be seen for the moment
coefficient. The moment coefficient from the experiment is positive (leading edge upwards)
but all calculations results show negative moment coefficient (leading edge downwards).

Table 6.12. Steady Aerodynamic Coefficients of CT5 Case of LANN Win

CL Error Cp (%) Cp Cm

EXP 0.320 - 0.037

NS-SA 0.359 12.34 0.0203 -0.0597
FLMEu 0.447 39.69 0.0225 -0.0794
FLMEu+BL 0.337 5.31 0.0186 -0.0557
FLMSDEu 0.442 38.12 0.0222 -0.0787
FLMSDEu+BL 0.349 9.06 0.0189 -0.0586
TSD 0.453 41.56 0.0234 -0.0810
TSD+BL 0.353 10.31 0.0205 -0.0606

In figures 6.38 and 6.39, the real and imaginary parts of the unsteady pressure
distribution calculated using FLMEu, FLMEu+BL and Navier Stokes codes are presented.
The Navier Stokes results was computed using the Navier Stokes code from the Technical
University Delft with Baldwin Lomax turbulence model (NS-BL). The unsteady results from
Navier Stokes with turbulence model Spalart Almaras (NS-SA) are unfortunately unavailable.
The unsteady pressure distribution on the upper surface of the wing is strongly changed
because of the presence of the boundary layer. From the comparison between the FLMEu and
the FLMEu+BL the following can be written: the shock location shifts forward and the shock
intensity becomes smaller because of the boundary layer.
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Comparison with NS-BL result shows that the shocks of FLMEu+BL lie in front of those of
NS-BL result with stronger intensity (see fig. 6.38 and 6.39).
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Fig. 6.37. Steady Pressure Distribution of LANN Wing,
CT5, M=0.82, Re=7.3E+06, 0.0=0.6, a1=0.25, k=0.204, xp=0.621cr
(Comparison between Euler, Euler+BL and Navier-Stokes Results)

103



-20

Re{Cp/al}

Re{Cp/al}

Re{Cp/al}

6. Steady and Unsteady Aerodynamic Results

------ FLMEu -30
A | —e—FLMEW+BL L FLMEY
T . | L
A NS-BL
e EXP-Up -20 A o EXPUp
o Explow . o EXP-Low
.
.

Re{Cp/al}

10
0 0,2 O4x/c 0,6 0,8 1 0 0,2 O4x/c 0,6 0,8 1
(@n=02 (b) n =0.325
-50 -60 y
e | ----- FLMEu N EEEEE FLMEu
.40 | ——FLMEU+BL -50 1 . | —e—FLMEu+BL
NS-BL . -
40 : NS-BL
e EXP-Up . ® EXP-Up
o  EXP-Low "H;' -30 - : o EXP-Low
3 .
O -20
D
o
.]_0 4
0
10
10 20 L L
0 0,2 0,4 0,6 0,8 1
xlc 0 0,2 0,4 e 0,6 0,8 1
(d)n =0.65
-50 -40
------ FLMEu -« --- FLMEU
-40 —e—FLMEuU+BL 30 | —e—FLMEuU+BL
NS-BL NS-BL
e EXP-Up 20 | e EXP-Up
o EXP-Low :'; o EXP-Low
a
O -10
@
o4
0
10
20 20
0 0,2 0,4 0,6 0,8 1
e 0 0,2 0,4 /e 0,6 0,8 1

Fig. 6.38. Real Part of Unsteady Pressure Distribution of LANN Wing,
CT5, M=0.82, Re=7.3E+06, 0.0=0.6, a1=0.25, k=0.204, xp=0.621cr
(Comparison between Euler, Euler+BL and Navier-Stokes Results)

104



20

R IEEEEE FLMEu
'"'- —o—FLMEuU+BL
NS-BL
' ® EXP-Up
! o EXP-Low

10 T T T T
0 0,2 0,4 0,6 0,8 1
xlc
(@n=02
40
------ FLMEu
—eo—FLMEu+BL
30 NS-BL
. e EXP-Up
-~ I o EXP-Low
320 .
o
e
Eio ]
0
-10 ‘ A ¥ ‘
0 0,2 0,4 0,6 0,8 1
x/c
() =0.475
40 ;
N e FLMEu
| —e—FLMEu+BL
30 '
' NS-BL
;e ® EXP-Up
20 1 ' o EXP-Low

Im{Cp/a1}

0 0,2

0,4

(€) n = 0.825

Im{Cp/a 1}

Im{Cp/a1}

30

20 1

Im{Cp/a1}

6. Steady and Unsteady Aerodynamic Results

------ FLMEu
—e— FLMEu+BL
. NS-BL
" ® EXP-Up
. 1]
. o  EXP-Low

10 . . . T
0 0,2 0,4 x/c 0,6 0,8 1
(b) n =0.325
50 i
N FLMEu
40 - i1 | —e—FLMEU+BL
' NS-BL
30 - ® EXP-Up
. o EXP-Low
20
10 -
0 0 1
.lo i
-20 . . T T
0 0,2 0,4 0,6 0,8 1
xlc
(d) n = 0.65
20
----- FLMEu
I-\ —o—FLMEU+BL
P NS-BL
10 - e EXP-Up
v 0 EXP-Low
—~ \
K £X0 .
° ,.
-10 L
v
-20 . . T T
0 0,2 0,4 0,6 0,8 1
x/c
(Hm=0.95
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Table 6.13 and fig. 6.40. represent the aerodynamic coefficients (lift and moment) for
unsteady CT5 case, which was computed using TSD, FLMEu and FLMSDEu (with and
without boundary layer) codes. The C.” and Cy mean: C_ and Cy divided with o (C.” =
Cu/maa, Cv = Cwimas). The influence of the boundary layer can be measured by the
changing of the aerodynamic coefficient. The amplitude of the unsteady lift and moments
become smaller and the phase angles of the lift and moments become larger (more positive)
because of the presence of the boundary layer. The unsteady lift and moment coefficient as
function of angle of attack are presented in fig. 6.41. It can be seen clearly that the unsteady
lift and moment are strongly changed due to boundary layer.

Table 6.13. Unsteady Aerodynamic Coefficients of CT5 Case of LANN Wing

Re{C.}|Im{CL'}| ICL| | Phase [Re{Cm} [IM{Cwm} |[Cum]|| Phase
Cy (deg) Cw (deg)
EXP 1.889 | -0.29% | 1912 | -8.91 0.453 0.156 ]0.479 19
FLMEu 2.108 -0.658 | 2.208 | -17.30 -1.350 0312 11.385| 166.99
FLMEu+BL 1.919 -0.349 1.950 | -10.31 -1.159 0.149 1.168 | 172.67
FLMSDEu 2.261 -0.659 | 2.355 | -16.25 -1.482 0296 |1511| 168.70
FLMSDEu+BL | 2.191 -0.369 | 2.221 -9.56 -1.342 0.141 1.349 174
TSD 2.212 -0.591 | 2,289 | -14.96 -1.490 0271 |1514| 169.69
TSD+BL 2.126 -0.292 | 2,146 | -7.82 -1.361 0113 11.366| 175.25
CL* = C|_/7'COLl ) CM* = CM/TEOL1
K25 [—e—Exp 15
O - 4O- - FLMEU =
3 ——8—— FLMEU+BL L
- - 4A- - ‘FLMSDEu £ 14
1,25 4 | ——a&—— FLMSDEU+BL
- ©- - TSD
——o——TSD+BL 05
. Re{CL*} ‘Ep= e, Re{CM*}
25 1,25 N T 25 i,s 1 -6,5 . 015 1 15
-0,5 - | ——@——EXP
-1,25 1 e . IIE::MELBL
4] |- - 8- - FLMSDEu
——a&—— FLMSDEU+BL
- - - - TSD
2,5 - 4,5 4 [——¢——TSD+BL

Fig. 6.40. Unsteady Aerodynamic Coefficients of CT5 Case of LANN Wing
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Fig. 6.41. Unsteady Lift and Moment Coefficients of LANN Wing,
CT5, M=0.82, Re=7.3E+06, 0.0=0.6, a1=0.25, k=0.204, xp=0.621cr
(Comparison between Euler and Euler+BL Results)
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6. Steady and Unsteady Aerodynamic Results
6.3.3. Test Case E24 for Delta Wing of NASA
This sub chapter presents the results of the developed VII method used to simulate the
test case E24 of the delta wing of NASA Langley. The geometry of the wing is presented in
Fig. 6.42 and Table 6.14. The wing has a parabolic airfoil with 6% thickness along the wing
span.

0 02 04 Y o6 038 1

0 1 1 1 1
21 (a) n=0.332
04 \ (b) n=0.541
9 (c) n=0.694
0,6

(d) n=0.851
08 | 0,04
-0,04 + T T T r y
1 | 0 0,2 04 x/c 0,6 0,8 1
(a) Planform (b) Airfoil

1,2

Fig. 6.42. Geometry of Delta Wing of NASA Langley

Table 6.14. Geometric Parameter of Delta Wing of NASA Langley

Parameter

Span S 0.7094
Root Chord cr 1.0
Taper Ratio ct/cr  |0.1423
Aspect Ratio AR 1.242

Sweep : Leading Edge | ¢ 50.4°
Trailing Edge | ore 0.0°

Thickness t/c 6%

Twist 0 0.0°

For the simulation of this case the TSD and the non linear FLMEu codes are used both with
and without boundary layer coupling. As the boundary layer calculation method is again the
method of Drela and Giles. The simulation parameters of the test case E24 is shown in Table
6.15. The grid parameters for this simulation is presented in Table 6.16. The grid used for
FLMEu code is depicted in Fig. 6.43.

Table 6.15. Parameter of Simulation of Test Case E24 for Delta Wing of NASA

Parameter of simulation Remark

Mach number M 0.885

Reynolds number Re 1.0E+07 | based on the root chord
Mean angle of attack ol 0.0°

Amplitude angle of attack | oy 05°

Reduced Frequency k 0.346 based on the root chord
Pitching axis xp/cr |0.652 from LE of the root chord
Moment ref. axis Xm/Cr | 0.25 from LE of the root chord
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6. Steady and Unsteady Aerodynamic Results

Table 6.16. Grid parameter for Simulation of Test Case E24 for Delta Wing of NASA

Grid parameter TSD FLMEu
Grid type (xz — yz plane) H-H C-H
Surface cells 2400 2640
(x and y direction) (120 x 20) (120 x 22)
Total cells 144000 153600
(x, y and z direction) (160 x 30 x 30) | (160 x 32 x 30)
Offbody distance 10~ cr 10% cr
Far field distance:
above, below 10 cr 10 cr
fore, aft 10 cr 10 cr
spanwise 25 25

i
, II!',# , i

1

N

lﬂ.ﬂ

ig. 6.43.Grid int

The simulation was accomplished with the following order:
1. Simulation of steady condition of test case E24 (calculated with mean angle of
attack without pitching motion) using TSD and FLMEu codes.
2. Simulation of unsteady of test case E24 (with the steady initial values from step 1)
using TSD and FLMEu codes.
3. Simulation of steady condition of the case by TSD plus boundary layer and FLMEu
plus boundary layer codes.
4. Simulation of unsteady of test case E24 by TSD plus boundary layer and FLMEu
plus boundary layer codes.

The pressure distribution from numerical result at four spanwise stations are presented and
compared with the experimental result from Bennet and Walker [82]. The positions of the
spanwise stations are n = 0.332, 0.541, 0.694, and 0.851 (see Fig. 6.42).

In fig. 6.44 the steady pressure distribution resulted from inviscid models (TSD and FLMEu)
and from viscous - inviscid models (TSD+BL and FLMEu+BL) are presented. It can be seen
that the pressure distribution between the TSD and the FLMEu agrees well each other. A
small difference between the TSD and the FLMEu codes lies in the leading edge region,
whereby the pressure distribution on the upper surface from TSD result is smaller (more
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6. Steady and Unsteady Aerodynamic Results
negative) than those from FLMEu (see Fig. 6.44). The shock position and the shock intensity
between the TSD and FLMEu are a little bit different. The shock location from TSD result
lies behind that from FLMEu with larger shock intensity. The inclusion of boundary layer in
the calculations makes the shock intensity smaller and shifts the shock location a little bit
forward (see Fig.6.44). The influence of the boundary layer in this case is small or not so
meaningful. Comparing with the experimental result, all numerical results are in good
agreement at inboard stations, but at outboard stations are more positive than the experimental
result.

-0,6

-0,6

—a— FLMEu+BL
0,6 ‘ : 06
0 02 04 06 08 1 0 0.2 0,4 0,6 08 1

xlc xlc

(a). n = 0.332 (b). n = 0.541

-0,6 06

0,4 0,4

0,6 I I I I 06
0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1

x/c x/c
(c).n = 0.694 (d). n=0.851

Fig. 6.44. Steady Pressure Distribution of Delta Wing from NASA
Test Case E24, M = 0.885, 00 = 0, Re=1.0E+07

The displacement thickness and skin friction for this test case are presented in Fig.
6.45. Between the TSD+BL and the FLMEu+BL result can be seen a small difference within
the trailing edge region. The skin friction from FLMEu+BL in this region is lower than those
from TSD+BL. Inversely, the displacement thickness from FLMEu+BL is larger than those
from TSD+BL within this region. The displacement thickness of the two results (TSD+BL
and FLMEu+BL) at the outboard stations look larger than those at the inboard stations.

109



6. Steady and Unsteady Aerodynamic Results

0,01

0,01

- - a- - Cf-FLMEu+BL
—+a&— d*-FLMEu+BL
Cf-TSD+BL
d*-TSD+BL

0,008 0,008 -

\ 1
0,006 ‘\ 0,006 i

Cf, &*
Cf, 8*

0,004 0,004 |

0,002 0,002

0 T T T T 0
0 0,2 08 1 0

0,2 04 0,6 0,8 1
x/c

(a). n = 0.332 (b). n = 0.541

0,01

0,01

0,008 0,008 1

'
0,006 —‘\x

N

\
\
0,006

Cf, &*
Cf, &*

0,004 0,004 -

0,002 - 0,002 1 ..:\\‘

0 . . . . 0
0 0,2 0,4 0,6 038 1 0

0,2 0,4 0,6 08 1
xlc xlc

(c).n =0.694 (d). n =0.851
Fig. 6.45. Displacement Thickness and Skin Friction of the Upper Surface of Delta
Wing from NASA, Test Case E24, M = 0.885, a0 = 0, Re=1.0E+07

Figures 6.46 and 6.47 represent the real part and the imaginary part of the unsteady

pressure distribution of the test case E24. It can be seen that the influence of the boundary
layer must be considered. The shock location and shock intensity were affected strongly by
the boundary layer. The best agreement with the experimental result is supplied by the
FLMEu+BL code rather than by the TSD+BL code. For all stations the real part of the
unsteady pressure distribution of the test case E24 can be well simulated (see Fig.6.46), but
unfortunately the imaginary part of the unsteady pressure distribution of the experiment
cannot be well simulated by these calculations. The numerical results are more positive than
those of the experiment (see Fig. 6.47)
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Fig. 6.46. Real Part of Unsteady Pressure Distribution of Delta Wing from NASA

Test Case E24, M = 0.885, Re=1.0E+07, a0 = 0, a1 = 0.5, k = 0.346, xp = 0.652cr
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Fig. 6.46. Real Part of Unsteady Pressure Distribution of Delta Wing from NASA
Test Case E24, M = 0.885, Re=1.0E+07, a0 = 0, a1 = 0.5, k = 0.346, xp = 0.652cr
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Fig. 6.47. Imaginary Part of Unsteady Pressure Distribution of Delta Wing from NASA
Test Case E24, M = 0.885, Re=1.0E+07, a0 =0, a1 = 0.5, k = 0.346, xp = 0.652cr

111



7. Flutter Results

7. Flutter Results

In this chapter the flutter results for two airfoils and a wing are presented. The selected
airfoils are NACA 64A010 and NLR 7301 with the structural data proposed by Isogai [86]
and DLR [87], respectively. The selected wing is the AGARD wing 445.6 with structural
data from NASA [88]. The computation of the unsteady aerodynamic forces, which is
necessary for the flutter analysis, is carried out using the TSD and TSD plus boundary layer
(TSD+BL) codes, in order to examine the influence of the boundary layer on the flutter
results. The boundary layer calculation method of Drela-Giles is used to compute the
boundary layer parameters. The modal and flutter analysis are performed with the State
Transition Matrix method, as already discussed in Chapter 5. The flutter results are compared
with experimental data and other numerical calculations.

7.1. Transonic Dip of the Isogais Model
The flutter characteristic of the Isogais model is computed for various Mach numbers,
in order to examine the “Transonic Dip’, that is the lowest flutter speed in transonic regime.

7.1.1. The Isogais Model
The aeroelastic equation for a 2 Degree of Freedom (DoF) system can be derived from
force analysis, i.e. equilibrium of the forces, as follows (see Fig. 7.1):

ml(.r;+ xab(;jJr k.h+L=0

(7.1)
mx,bh+1,a+k,a-M, =0
where:
h, a = physical displacement (i.e. heaving and pitching DoF)
m; = mass of system
kn = stiffness of system in heaving motion = m;
k, = stiffness of system in pitching motion = 1, @’
I, = moment of inertia of system = m; r2b?
r, = radius of gyration = (1,/ m;b%)*?
X, = Static unbalance (normalised with semi chord b)
b = semi chord
an = uncoupled natural frequency in heaving motion
@, = uncoupled natural frequency in pitching motion
L = aerodynamic force (positive up )
Mea = aerodynamic moment w.r.t. elastic axis (positive ‘nose up’)
Equation (7.1) will be normalised with mass (m;) and semi chord (b) as follows:
h = ,h -L
—+ X, 0+ o), —=——+
X, oo = Mo
a b a aa mlbz
which can be written in matrix notation as:
. L
1 X, h o 0 h mb
bly bl_J (7.3)
X, 212 |0 rfe? M.
« Yo ||l @ || g mb’
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7. Flutter Results
Here the physical displacements (h/b) and « are still a function of time t, as:
(h/b) =1(t), a = f(t)
The time variable t will be transformed into non dimensional time zas follows:

t=— (7.4)
w

o

With this non dimensional time variable, the derivative of the physical displacement will be
transformed to:

d?(h/b)  ,d?(h/b)

®
dt? “ dr?

(7.5)
d?a , d%a
2 — Wy
dt dr
Equation (7.3) will be transformed into non dimensional form as follows:
(1] 2 _ L
h @ h
1 X, ||— — 0||— 2
“Ubly [wj b | _ | MPee (7.6)
X, raz ; 0 2 || g M ea
T m,b’w?

which can be written in general form as:

[m]{’z'}+[k]{z}= £ .7)

where :
2 -L
h
1 Xa [ﬂ] O N mbcoz
[m]= b k=] le. =40 (R = M (7.8)

Compared to the equation (5.6), this system does not have damping term ([C] = 0). The mass
matrix of the system is coupled (i.e. the system can be said as dynamically coupled). Equation
(7.8) will be solved subject to a set of structural data, which was proposed by Isogais. The
structural data of the Isogais model [86] is presented in Table 7.1.

In order to obtain the dynamic characteristic (the coupled natural frequencies and
mode shapes) of the structure, an analysis of modal of the system must be carried out prior to
the flutter calculation.

Table 7.1. Structural Data of the Isogais Model

Parameter
Airfoil NACA 64A010
Steady angle of attack a0 0°
Radius of gyration ry 1.865
Static unbalance (normalised with semi chord b) Xq 1.8
Position of elastic axis (normalised with semi chord b) a | -2 (fromsemi chord)
Uncoupled natural frequency in heaving motion n 100 Hz
Uncoupled natural frequency in pitching motion Wq 100 Hz
Ratio of structural to fluid mass, m/(zp..b°) U 60
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7.1.2. Modal Analysis of the Isogais Model

The modal equation can be derived from equation (7.7) by neglecting the external

force vector {F,} as follows:
[m]{'z’} [zl =0

or in extended form:

o0 2
1 Xa D & 0 D
b + a)a b = 0
2 oo
Xa I’a o O rz a

(A h h . (h
b . B it _ E I(a)/a)a)‘r b __ ﬁ b
e e ' . (wa
a a a a a
Substitution of eq. (7.11) into eq. (7.10) gives: i
SRR
L, _ — —_ — Xa h
a)a a)a a)a N
bt-0

S

]

(7.9)

(7.10)

(7.11)

(7.12)

The coupled natural frequencies can be calculated by putting the determinant of the matrix

equals to zero:

2 2 2
W, w w
—_ —_] — —_ — Xa
[a)fl J [a)fl J (a)(l j
2 2 '
{ﬂj . ll(gJ ]
a)a a)a
The determinant of matrix leads to characteristic equation:
4 2 2 2
@ (rz—xz)—ﬂ S BT B I P e I )
w,) " o, " o, “\a,
Solutions of the characteristic equation (7.14) is:
2 2 2 2
HwJ ] { [1(0’} H ()
0)0! a)a 0)0!
L
[wa Jl,z Z(raz - Xi)

By inserting the structural data (Table 7.1):

T

into equation (7.15), one obtains the coupled natural frequency :

Det

r’ =348, x,6=18

[24

0 a

a a

@ @
[—} =0.7134, (—j =5.3377, w,=7134 Hz, ®,=533.77 Hz
1 2

(7.13)

(7.14)

(7.15)

(7.16)
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The vibration mode shapes can be calculated from eq. (7.12) as follows:

(h/b)  (o/e,) x

a 7.17

a (a)ﬁ —a)z)/a)s (7.17)
By inserting the value of the frequencies and structural data in the equation (7.17), one
obtains:

(m] =1.8655, (Mj =-1.8655 (7.18)
1 2

o o
The mode shapes are:

h/b) (h/b 1.8655¢; —1.8655¢, 1.8655 —1.8655
[@]= { H } = = (7.19)
1 2

@ a, a, 1 1

o
where oy = ap =1 has been assumed.

With these value of the mode shape, one can calculate the generalised mass and stiffness
matrices as follows:

M]=[o] [n]o]=

18655 11 18 |1.8655 -18655| |13.6757 0

[M]= - (7.20)
18655 118 3481 1 0 0.2443

[K]=[@] [k]o]=
18655 11 0 18655 -1.8655| |6.96 0

[K]= - (7.21)
_18655 1|0 (348)]1 1 0 69

The location of the pivot point of the vibration mode can be calculate through the following
geometrical relation (See Fig. 7.2) :

X
tana;azm, i:a_[mJ (7.22)
va b [94
a_i
b

Inserting equation (7.18) and the elastic axis a into equation (7.22), one obtains the pivot
point of the vibration modes from semi chord, as follows:

X
L a—(mj =-2-1.8655 = —3.8655
1

b “ (7.23)

X
Koz o (Mj — _2+1.8655 = —0.1345
b a ),

The pivot points of the first and the second vibration mode lay at 1.433 chord fore and 0.433
chord aft of the leading edge. The vibration mode shapes of this system is shown in fig. 7.3.

7.1.3. Flutter Analysis of the Isogais Model
Flutter analysis of the Isogais Model will be carried out using State Space equation
(5.15):

$i = [Alx+ e (515)

with the State Vectors {X} and {u} and the State Transition Matrices [A] and [B] as follows:
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)= i )+ .| b=fof B, [Mjl’ " _[Zg] :](7_24)

Inserting [M] from eq. (7.20) and [wy] from eq. (7.16), the State Transition Matrices [A] and
[B] will be:

0 1 0 0l ]
2 0 1 0 0
(% J ~(0.7134% 0 0 0
A= l - (7.25)
0 0 0 1] |o 0 0 .
’ 2
0 0 —(“’_J ol 1° 0 -(53377)* 0
L «)y |
_0 0 0 0 1 _O 0 0 0 _
0 M7 0 0 0  (136757)* 0 0
1= B (7.26)
o 0 0 0 0 0 0 0
00 0 M7 |0 0 0 (0.2443)"
The initial value of the state vector {X} are:
* * T T
{X ’ }<n=0 - |:q1’ ql’ q2’ qz:l = [O, 001, O., 001:| (727)
n=0

which means the system is disturbed with an initial velocity of the generalised displacement.

In order to check the value of the coupled natural frequencies, the characteristic of the
system is computed with zero dynamic pressure for some cycles of oscillation. The response
of the system is shown in Fig. 7.4. In this computation the value of the time step At = 0.09786
is used, which corresponds to the time step At = 0.0009786 sec. The natural frequencies can
be computed from the response of the system, as follows:

) 2
R . (7.28)
®, NA7
where : N = number of time step in one periods of the response oscillation.

At = dimensionless time step increment

The number of the time step N for the first and the second mode is approximately 90 and 12
time steps, respectively. From equation (7.29) the natural frequencies can be computed as:

(ﬁ] 2 _onm [ﬂJ 2% 53505
o, ), (90)(0.09786) o, ), (12)(0.09786)

The deviation of the natural frequencies of the second mode from exact calculation (eq. 7.16)
is 0.24%. Fig. 7.4a and 7.4b show the response of both mode shapes in term of generalized
displacement (with corresponding frequency a/w, and a»/w, ) and fig. 7.4c shows the
physical response (h/b and a). From fig. 7.4c can be seen that the value of the uncoupled
frequency (ax and w,) are the same.

Before the flutter calculation is performed, it is important to analyze or to validate the
quality of the aerodynamic forces. For this purpose, the steady and unsteady pressure
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distribution of the test case AGARD CT8 for the NACA 64A010 airfoil with the following
data:

Mach number M =0.796

Reynolds number Re =1.2E+07 (based on chord)
Mean angle of attack a0=0

Amplitude angle of attack a1 =1.02

Pitching axis xp =0.25¢c

Reduced frequency k =0.202 (based on chord)

are evaluated and presented in Fig. 7.5. Comparison between the experimental of Davis [89]
and numerical results shows a good agreement. The influence of the boundary layer for this
case is small because the Reynolds number is high.

In order to simulate the Transonic Dip phenomenon, the response of the system will be
computed in the range Mach number from M = 0.7 to M = 0.9. Therefore the steady
aerodynamic forces for those Mach number must be first computed prior to the flutter
analysis. The steady pressure distribution of this airfoil for these different Mach numbers is
shown in Fig. 7.6. Since the airfoil is symmetric and the angle of attack is zero, the airfoil
produces no lift.

Flutter analysis is then carried out for each Mach number. The response of the system
is computed until a neutral response is found for each Mach number. This is carried out by
starting the given speed (U.,) and dynamic pressure (0.5p..U.’) with low values and then
increasing it step by step. Fig. 7.7 shows the diagram of flutter speed index (V"), flutter
frequency (e ®,), ratio of the amplitude of the Responses (h/b)/a and phase lag between (h/b)
and o versus Mach number.

The flutter speed index (V *) is defined as:
Vi

b,

V' =

(7.29)

where:
V; = flutter speed
b =semi chord
@, = uncoupled frequency in pitching motion
u = ratio of structural to fluid mass

The value of flutter speed index will be compared with the results from Alonso and Jameson
(using Euler equation) [90], Isogai (using TSD equation) [86] and the linear method (Doublet
Lattice Method -DLM) [2, 86]. It can be seen in fig. 7.7a that the flutter speed index (V*) of
the TSD Present method has the same form with the result from Alonso & Jameson. The
Transonic Dip for this system calculated with the TSD Present is occurred at M = 0.85 with
V" = 0.53 equivalent with the Alonso and Jamesons result. The Isogais result supplies the
Transonic Dip at M = to 0.8375 with V" = 0.48. The linear method (DLM) can not show the
Transonic Dip phenomenon. From Mach number 0.7 up to the Dip location the flutter speed
index becomes smaller. By the TSD Present method the decreasing process is slowly similar
with the Alonso & Jamesons results. At the other side this decreasing process by Isogais result
is steeper than those of the present method, although the two results are based on the TSD
equation.
The deviation is supposed because of the following:

- the TSD equation of Isogai does not have entropy and vorticity correction, which is
used in the Present method.

- the flutter analysis used by Isogai is the U-g method, where the aeroelastic equation
is solved in frequency domain. In the Present method the aeroelastic equation is solved in
time domain, which was also used by Alonso & Jameson. The flutter analysis in time domain
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ensures that the coupling between fluid and structure is carried out in time-accurate
procedures. The generalized aerodynamics forces calculation remain pure in time domain
without any extrapolation or interpolation as is usually found by the frequency-domain flutter
analysis.

After the Dip location, the flutter speed index calculated with non linear aerodynamic
methods increases discontinue. This happens due to the changing of the flutter mode. Flutter
is occurred in the first mode before the Dip location and then changed into the second mode
after the Dip. This changing can be seen clearly in the flutter frequency diagram fig. 7.7b.
Flutter occurs with the frequency near by the first mode (o1/w,, = 0.7134) before the Dip and
then the flutter frequency increases near by the second mode (@,/ @, = 5.3377) after the Dip.
The changing of the flutter mode can not be seen by the result of the linear aerodynamic
method (DLM). By the Present method lies the changing of the flutter mode at M = 0.86875
prior to the Alonso & Jamesons result (at M = 0.875) and Isogais result (at M = 0.9). By the
Isogais results, flutter of the system can not be found at the range of Mach number between
0.85and 0.9.

The neutral response of the system at the Mach number 0.7 can be seen in Fig. 7.8
with the V" = 1.26. One can see that the ratio of (h/b) to « is approximately one (see also Fig.
7.7¢) with the phase lag is approximately 30 degrees at this condition.

The response of the system at the Dip (M = 0.85) for various V" can be seen in Fig.
7.9. An under damped response of the system is shown in the fig. 7.9a with V' = 0.26. The
neutral response (flutter) at this Mach number is shown in fig. 7.9b with V" = 0.53. A
divergent response of the system is shown in fig. 7.9c with V" = 0.77.

From the neutral response (Fig 7.9b) one can see that the Ratio of (h/b) to « is
approximately 1.86 (see also Fig.7.7c). This value is same with the Ratio of (h/b) to « in the
first mode shape (see equation 7.18). That means: the dominant flutter mode is the first mode.
There is almost no phase lag between (h/b) and « at this neutral response (see fig. 7.7d).
Compared with Fig. 7.8 (the neutral response at Mach 0.7), the Ratio of (h/b) to a becomes
larger and on the other hand the phase lag between (h/b) and « becomes smaller with the
increasing Mach number (see fig. 7.7c. and d).

The neutral Response at M = 0.86875 can be seen in Fig. 7.10 with V' = 2.4. One can
see that now the « displacement is larger than (h/b) (see also Fig. 7.7c). That means: the
dominant flutter mode is the second mode.

The above flutter results have been partially published in Ref. [91].
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7. Flutter Results
7.2. Transonic Dip of the DLR Model
This sub chapter presents the flutter characteristic of the DLR model (i.e. 2D
aeroelastic model with airfoil NLR7301) for various Mach numbers, in order to examine the
Transonic Dip phenomenon of this model. The influence of the boundary layer into flutter
characteristic is also examined.

7.2.1. The DLR Model
The aeroelastic equation of the DLR Model is formulated as follows:

-L
h @ h
L x| (_h ] Ol=|  [mcw?
+ —

cly\o, Cr=1 (7.30)
2 o0
X T ea
@ ‘e |la] |0 r’ ||a m.C2m2
1 a

Equation (7.30) is normalised with chord c instead of semi chord b as by equation (7.6). The
damping matrix of the system is assumed to be zero. Table 7.2 shows the structural data of the
DLR model (taken from the 2nd Campaign in Ref. [87]).

Table 7.2. Structural Data of the DLR Model

Parameter
Airfoil NLR 7301
Steady angle of attack from experiment a0 1.25°
Radius of gyration My 0.197
Static unbalance (normalised with chord c) Xo 0.0484
Position of the elastic axis (normalised with chord c) a |0.25(from leading edge)
Uncoupled natural frequency in heaving motion n 206.6 Hz
Uncoupled natural frequency in pitching motion Wy 271.9Hz
Ratio of structure to fluid density, om/0x u 299.5

In order to reduce the complexity of the flutter analysis, the Reynolds number and the ratio of
structure to fluid density are assumed to be constant for all Mach number. The Reynolds
number for this simulation is 1.7E+06 based on chord.

7.2.2. Modal Analysis of the DLR Model
With the structural data from Table 7.2:

0

a

(&J =076, r’>=0.0388, x, =0.0484

the coupled natural frequencies (computed with eq.7.15) will be:

0 0

a a

w 0]
[—j =0.7343, [—] =1.06747, o, =199.67 Hz, ®,=290.247 Hz (7.31)
1 2

The vibration mode shapes calculated using eq. (7.17) are:
(M) =0.6851], (M) =-0.0981 (7.32)
a J; a ),
The mode shapes are :
h/c) (h/c 0.6851x, —0.0981«, 0.6851 —0.0981
[@]= { } { } = = (7.33)
1 2

@ a, a, 1 1

[04
where a1 = a» =1 has been assumed.
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The generalised mass and stiffness matrices can be found as:

. 05745 0
M]=[@] [n]o]= (7.34)
0 0.0389

. 0.3098 O

[K]=[o] k]o]= (7.35)

0 0.0443
The location of the pivot point of the vibration mode are:
XpplC=a- [mj =0.25-0.6851=-0.4351

o

(7.36)

Xpo I C= a—(%] =0.25+0.0981 =0.3481
a J,

The pivot of the first and second vibration mode lies in 0.4351 chord fore and 0.3481 chord

aft of the leading edge respectively. The vibration mode shapes of the system is depicted in
Fig. 7.11.

7.2.3. Flutter Analysis of the DLR Model
Flutter Analysis of the DLR Model will be carried out by State Space equation (5.15):

$i = [Alx )+ e (5.15)
where State 'I:ransition Matrices [A] and [B] are:
0 1 0 o] _ _
) 0 1 0 0
B B 0
(a, ] —-(0.7343)> 0 0 0
[A]= ‘o = (7.37)
0 0 0 1] |0 0 0 1
2 2
0 0 _(m_} ol L0 0 -(L0674)* 0]
i «)y
o o o o | o 0 0 o |
0 M, 0 0 0 05745 0 0
[B]= ' _ (0.5749) (7.38)
0 0 0 0 0 0 0 0
0 0 0 M o 0 0  (0.0389)

The initial value of the state vector {X} is the same with the previous one used for Isogai
model.

In order to check the value of the coupled natural frequencies, the characteristic of the system
is computed with zero dynamic pressure for some cycles of oscillation. The response of the
system is shown in Fig. 7.12. In this computation the value of the time step At = 0.0327 is
used, which corresponds to the time step At =0.0001203 sec.

From equation (7.28) the natural frequencies can be found as:
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7. Flutter Results

[ﬂJ = 0.7334, (ﬂ] ~1.0675
@, ), @, ),

Fig. 7.12. represents the response of both mode shapes (i.e. the response of the generalized
displacement with corresponding frequencies an/w, and w,/ @,).

Before the flutter calculation is performed, it is important to analyze or to validate the
quality of the aerodynamic forces. For this purpose, steady and unsteady pressure distribution
of the test case AGARD CT5 for NLR 7301 with the following data:

Mach number M=0.7

Reynolds number Re = 2.14E+06 (based on chord)
Mean angle of attack o0 =2 deg

Amplitude angle of attack o1 =0.5 deg

Pitching axis xp =0.4c

Reduced frequency k =0.384 (based on chord)

has been chosen [92]. The steady and unsteady pressure distribution of the NLR 7301 airfoil
for this test case are presented in Fig. 7.13. Comparison with the experimental results shows a
good agreement of the numerical (the TSD+BL results) and the experimental results. The
influence of the boundary layer for this test case can not be neglected and must be considered.

It is recommended by Schewe et. al. [87], that the MP 77 case in the experiment must
be examined or simulated prior to flutter analysis step, in order to compare the lift between
the experimental and the numerical result.
The flow and geometric parameters for the MP 77 case in experiment are as follows:

Mach number M =0.759

Reynolds number Re = 1.7E+06 (based on chord)

Angle of attack o0 = 1.25 deg (uncorrected).
The simulation was carried out with two different angle of attack (a0 = 0.74 and o0 = -0.5),
in order to examine the influence of angle of attack in the pressure distribution. Fig. 7.14
represents the steady pressure distribution for this MP 77 case. It can be seen that the pressure
distribution from the experiment can not be good simulated. With the angle of attack a0 =
0.74 the pressure distribution on the upper surface from the numerical result is more negative
than from that from the experimental result. On the other hand the pressure distribution on the
lower surface from the numerical result is more positive than that from the experimental
result. The best agreement of the pressure distribution with the experimental result was
obtained with the angle of attack a0 = -0.5 (particularly for the lower surface of the airfoil).

The steady lift coefficient of the NLR 7301 airfoil for various Mach numbers is
presented in Fig. 7.15. The used angle of attack in simulation is —0.5 degrees instead of 1.25
as in the experiment, in order to obtain the closest lift coefficient with the experimental
values. From Mach number 0.5 to 0.75 the steady lift coefficient of the experimental result is
relatively flat. This result is questionable, because the lift coefficient becomes larger with the
increasing Mach number within the subsonic range. Probably there is a change of angle of
attack in the experiment because of the static aeroelastic effect. The rear-loading type of
aerodynamic load causes the nose-down pitching moment, which makes the actual angle of
attack smaller (due to the elasticity of the model). After the Mach number 0.75 the lift
coefficient increases sharply, until a maximum value at the Mach number 0.8. Then the lift
coefficient desccreases until Mach number 0.85. In the comparison to the experiment the
steady lift coefficient from the TSD result increases monotonic from Mach number 0.5 to
0.75. Afterwards the lift coefficient decreases slowly from M = 0.75 to 0.8. After the Mach
number 0.8 it decreases sharply. The influence of the boundary layer makes the lift smaller as
can be seen from TSD+BL result in Fig. 7.15. The computation of the aerodynamic load with
the TSD plus boundary layer could not be carried out for the Mach number higher than 0.825.
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7. Flutter Results
The simulation can not produce a convergence result. This is probably because of the
buffeting phenomenon at the higher Mach number.

Fig. 7.16 shows the diagram of flutter speed index (V"), flutter frequency (or®.), ratio
of (h/c) to a and phase lag between the two modes versus Mach number. The flutter speed
index will be compared with the experimental result from DLR Goettingen (conducted by
Schewe et. al. [87]).

From Fig. 7.16a it can be seen that the flutter speed index V" from the experimental

result is relatively flat up to Mach number 0.75. Afterwards the V" decreases sharply, until the
Transonic Dip is reached at the Mach number 0.771 with V" = 0.202. After the Dip the flutter
speed index V" increases again.
The flutter speed index from the calculation is relatively flat from Mach number 0.5 to 0.6.
The calculated flutter speed indexes V" at Mach number 0.5 are 0.281 from TSD result and
0.285 from TSD+BL result. As comparison the flutter speed index V" from the experiment is
0.273 at Mach number 0.55. Afterwards V* decreases slowly up to Mach 0.725. From M =
0.725 to 0.75 it increases slightly again and then it decreases again, until the Transonic Dip is
reached. The Transonic Dip for this system with this method lies at M = 0.8125 with V" =
0.152 (TSD result) and V' = 0.164 (TSD+BL result). The deviation of the aerodynamics
forces between the experimental and the numerical result, as shown in Fig. 7.15, causes the
difference of the Transonic Dip characteristic (the Mach number and the V") between the
experimental and numerical result. After the Dip the flutter speed index from the calculation
increases up to M =0.8375 (TSD) and M = 0.825 (TSD+BL).

The calculated neutral response of the system at Mach number 0.5 is shown in Fig.

7.17. At this Mach number it can be seen from Fig. 7.16¢ and d that the ratio of (h/c) to a is
0.32 with associated phase lag 36 degrees. The neutral response at M = 0.725 with V" = 0.205
(TSD) and 0.210 (TSD+BL) is shown in Fig. 7.18. One can see from Fig. 7.16c and d that the
ratio of (h/c) to a is 0.39 with phase lag 25 degrees (TSD) and 23 degrees (TSD+BL).
Comparison with the Fig. 7.17 reveals that the displacement ratio becomes larger and on the
other hand the phase lag becomes smaller with the increasing Mach number.
The neutral response at M = 0.75 with V" = 0.208 (TSD) and 0.216 (TSD+BL) is shown in
Fig. 7.19. One can see from Fig. 7.16¢ and d that the displacement ratio is 0.383 (TSD) and
0.377 (TSD+BL) with phase lag 25.6 degrees (TSD) and 24.3 degrees (TSD+BL). Compared
to Fig. 7.18 the ratio of (h/c) to o becomes little bit smaller and the phase lag becomes little
bit larger.

The neutral response at the Dip M = 0.8125 is shown in Fig. 7.20 with V" = 0.152
(TSD) and 0.164 (TSD+BL). One can see from Fig. 7.16¢ and d that the displacement ratio of
(h/c) to a is 0.515 (TSD) and 0.59 (TSD+BL) with phase lag 13.7 degrees (TSD) and 10.1
degrees (TSD+BL). Comparison with the Fig. 7.17 reveals that the displacement ratio
becomes larger and on the other hand the phase lag becomes smaller with the increasing Mach
number. The neutral response at M = 0.825 (after the Dip) is presented in Fig. 7.21 with V" =
0.177 (TSD) and 0.204 (TSD+BL). One can see from Fig. 7.16c¢. and d that the ratio of (h/c)
to o is 0.51 (TSD) and 0.46 (TSD+BL) with phase lag 23 degrees (TSD) and 16 degrees
(TSD+BL). The neutral response at M = 0.8375 is shown in Fig. 7.22 with V" = 0.196 (TSD).
The ratio of (h/c) to o is 0.49 (TSD) with phase lag 33 degrees (TSD). Compared to Fig. 7.20
the ratio of (h/c) to o becomes smaller and the phase lag becomes larger. From the response
analysis one can conclude that the Transonic Dip occurs associated with the lowest phase lag
and the largest displacement ratio between both of the modes.

The above flutter results have been partially published in Ref. [91].
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7. Flutter Results
7.3. Transonic Dip of the AGARD Wing 445.6
In this sub chapter the flutter characteristic of the AGARD Wing 445.6 is computed
for various Mach numbers, in order to examine the Transonic Dip phenomenon. The influence
of the boundary layer in the flutter characteristic of the wing is also examined. The wing has
been tested by Yates [88] in the wind tunnel TDT (Transonic Dynamic Tunnel) of NASA
Langley. The wing is well-known as standard wing for aeroelastic simulation and dynamic
response. The so-called ‘weak’ model 3 of this wing is selected as the basis model for the
simulation of the Transonic Dip in this analysis. The number of the vibration mode shapes,
which is involved in this simulation is only two modes (i.e. only the 1% bending and 1%
torsion modes). The other mode shapes (with higher frequencies) is neglected, because only
those two mode shapes are involved in flutter mechanism, as reported by Lee Rausch and
Batina in Ref. [93]. Tables 7.3 and 7.4 and Fig. 7.23 represent the geometrical parameters and
the structural data of the AGARD Wing 445.6.

Table 7.3. Geometrical Parameters of the AGARD Wing 445.6

Parameter

Half span S 2.5 ft
Root Chord cr 1.833 ft
Taper Ratio ct/cr | 0.659
Aspect Ratio AR 3.288
Sweep at ¥4 Chord OLE 45°
Relative thickness t/c 4%
Twist 0 0.0°

Table 7.4. Structural Data of the AGARD Wing 445.6

Parameter
Profil NACA 65A004
Steady angle of attack from Experiment 0°

Position of the elastic Axis (normalised with chord c) 0.5(from leading edge)
Frequency of the 1. Mode (Bending) 9.6 Hz (60.3 rad/s)
Frequency of the 2. Mode (Torsion) 38.16Hz (239.8 rad/s)
Ratio of Structure to Fluid density, pm/p- 225.82
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y(ft)
1

x(ft)

0,04
0,02
-0,02

-0,04 J ‘
0 02 04 x/c 06 08 1

(a) Geometry (b) Airfoil
Fig. 7.23. Geometry of the AGARD Wing 445.6
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7. Flutter Results
In order to reduce the complexity of the flutter analysis, the Reynolds number and the ratio of
structure to fluid density are assumed to be fixed for all Mach number. The Reynolds number
for this simulation is 1.0E+06 (based on the root chord).

7.3.1. Modal Analysis of the AGARD Wing 445.6

The modal analysis of the AGARD Wing 445.6 was accomplished by Yates [88]. The
two vibration mode shapes is presented in Fig. 7.24. The mode shapes was normalized, so that
the value of the generalized mass matrix is equal to one.

1%, Mode (Bending) 2" Mode (Torsion)
(0= 9.6 Hz, anlw, = 0.252) (@, = 38.16 Hz, /= 1.0)

Fig. 7.24. Vibration Mode Shapes of the AGARD Wing 445.6

In order to check the values of the coupled natural frequencies, response of the system is
computed with zero dynamic pressure for some cycles of the oscillation. The Response
system is shown in Fig. 7.25. In this computation the value of the time step At = 0.277036388
has been used. This is coresponded with At = 0.00726 sec. From equation (7.28) the natural

frequencies can be found as:
LEJ = 0.252, (ﬁj ~1.008
o, ) o, ),

Fig. 7.25 represents the response of both mode shapes with zero dynamic pressure (i.e. the
response of the generalized displacement with corresponded @i/ @, und @,/ w,,).

7.3.2. Flutter Analysis of the AGARD Wing 445.6
The flutter analysis of the AGARD Wing 445.6 is accomplished by means of State
Space equation (5.15):

$i =[x+ el (515)

with the State Transition Matrices [A] and [B] are:

0 1 0 ol _ _
) 0 1 0 0
a) j
|—| o o0 0
~(0.25200> 0 0 0
[A]= Kw ' _|70#%) (7.39)
0 0 o0 1| |o 0 o 1
2 2
0 0 _(w_} ol L0 0 —(1.008) 0
L Dy 2 _
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[B]=

0

0 0
0 0
o | |o
M, | |0

(1.0)*"

o
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0

0

(1.0)'1_

(7.40)

The initial value of the state vector {X} is the same with the previous one used for Isogai

model.

Before flutter analysis is carried out, the aerodynamics of the wing must be first
examined. The steady pressure distribution of the AGARD Wing 445.6 for two Mach
numbers (M=0.96 and 1.141) with zero angle of attack are presented in Fig. 7.26 and 7.27 for
four sections along the span. Since the wing has a symmetrical airfoil and the angle of attack
is zero, the wing does not produce a steady lift. It can be seen that the influence of the
boundary layer into the pressure distribution is small. This is because there is no shock arises
on the profile, which can lead a strong mutual interaction with the boundary layer.
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Fig. 7.25. Response of the AGARD Wing 445.6 at Zero Dynamic Pressure
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Fig. 7.27. Steady Pressure Distribution of the AGARD Wing 445.6

Mach = 1.141, a. = 0.0, Re = 1.0E+06

Flutter analysis is then carried out for each Mach number. The response of the system is
computed until a neutral response is found for each Mach number. This is carried out by
starting the given speed (U.,) and dynamic pressure (0.5p..U.’) with low values and then
increasing it step by step. Fig. 7.28 and Table 7.5 show the diagram of flutter speed index
(V") and flutter frequency (a/@,) versus Mach number.
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7. Flutter Results
The flutter speed index (V') is defined as:
Vf

b,

A (7.41)
where:

V; = flutter speed

b =semi root chord

w, = uncoupled frequency of the torsion mode

= ratio of structural to fluid mass

The flutter speed index V" and flutter frequency (/) will be compared with the results of
Lee Rausch and Batina [93, 94] (with Euler and Navier Stokes equations, CFL3D code of
NASA) and experimental values of Yates [88].

0,8

—+—TSD+BL T —a—TSD+BL
® EXP ° »
0,65 - ¢ ® EXP
--@--.TSD ) --@-- TSD |
— -— -Euler-CFL3D . 0,7 4 — -o— -Euler-CFL3D '
o  NS-CFL3D ! o NS-CFL3D I

o
4]
a
-

0,6 -

0,45 +
0,5 -

Flutter Speed Index, V*
Flutter Frequency, ef/oo

o
w
a

0,4 -

0,25 T T T 0,3 T T T
0,25 0,5 0,75 1 1,25 0,25 0,5 0,75 1 1,25

Mach number Mach number
(@) Flutter Speed Index (b) Flutter Frequency
Fig. 7.28. Flutter Speed Index and Flutter Frequency v/s Mach Number
of the AGARD Wing 445.6
Table 7.5a. Flutter Speed Index, V" v/s Mach Number
Mach TSD TSD+BL | Euler [94] Navier- EXP [88]
Number | present present Stokes [93]

0.338 0.469 0.463 - - 0.496
0.499 0.446 0.438 0.439 - 0.446
0.678 0.415 0.408 0.417 - 0.417
0.834 0.384 0.377 - - 0.387
0.85 - - - - 0.350
0.87 - - - - 0.334
0.901 0.348 0.344 0.352 - 0.370
0.954 - - - - 0.306
0.957 - - - - 0.310
0.96 0.314 0.321 0.275 0.298 0.308
0.99 - - 0.310 - -
1.03 0.314 0.321 - - -
1.072 0.336 0.328 0.466 - 0.320
1.141 0.370 0.355 0.660 0.420 0.403
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7. Flutter Results
Table 7.5b. Flutter Frequency, (of®,) v/s Mach Number

Mach TSD TSD+BL | Euler [94] Navier- EXP [88]
Number | present present Stokes [93]

0.338 0.646 0.627 - - 0.578
0.499 0.585 0.575 0.597 - 0.535
0.678 0.515 0.506 0.539 - 0.472
0.834 0.453 0.444 - - 0.507
0.85 - - - - 0.430
0.87 - - - - 0.441
0.901 0.401 0.405 0.425 - 0.422
0.954 - - - - 0.381
0.957 - - - - 0.367
0.96 0.355 0.363 0.343 0.350 0.363
0.99 - - 0.373 - -
1.03 0.363 0.372 - - -
1.072 0.394 0.385 0.541 - 0.362
1.141 0.445 0.427 0.764 0.480 0.459

From Fig. 7.28 one can observe the followings:

- all numerical results can represent the Transonic Dip (the lowest flutter speed index,
V") at Mach number 0.96.

- all numerical results agree with the experiment within the subsonic region.

- the deviation between Euler and the TSD is occurred after the Dip, whereby the
flutter speed index of Euler result increases rapidly (more steeply than the TSD results)

- the influence of the boundary layer into the flutter result is small (compare between
the TSD and the TSD+BL results in Fig. 7.28).

- the 1st mode shape seems to be dominant in the flutter mechanism (see Fig.7.28b).
(notes: the frequency of 1st mode shape is (wi/®,) = 0.252 and the 2nd mode shape is (m2/®,,)
=1.0)

Lee Rausch and Batina [93] used the Thin Layer Navier Stokes equations for the
flutter analysis of this wing only for Mach number 0.96 and 1.141. This calculation serves for
the confirmation of the inviscid results. It seems that all numerical and experimental result
agree well at the Mach number 0.96. But at the Mach number 1.141 there is deviation
between the experimental and numerical results. The Navier Stokes result seems a little bit
over estimate, on the other hand the results of TSD and TSD+BL are under estimate
compared to the experimental value.

The generalized response at the Mach number 0.96 and 1.141 (calculated with TSD
and TSD+BL) is shown in Fig. 7.29 and 7.30 for various values of flutter speed index V. It
seems that the generalized response is not so sensitive with the change of the flutter speed
index (see Fig. 7.29a and ¢ and Fig. 7.30a and c). The generalized response of the TSD and of
the TSD+BL looks similar (not so different). This means that the influence of the boundary
layer is not so significant for this case.

A part of these results has been presented in Ref. [95]
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8. Summary and Recommendation

8. Summary and Recommendation

The goal of the present work is the development of a computer code, which is based
on viscous — inviscid interaction method, which calculates steady and unsteady aerodynamic
forces acting on airfoil and wing. The use of the code for the flutter calculation of airfoil and
wing was also presented. The flow conditions were both laminar and turbulent, in the
subsonic and particularly in the transonic regime.

The developed code consists of the following subroutines:
- Subroutine Inviscid:
based on TSD, Euler and Small Disturbance Euler Equations
- Subroutine Viscous:
- Integral Boundary Layer Equations:
- Method proposed by Drela and Giles (laminar and turbulent)
- Lag Entrainment Method proposed by Green et. al. (turbulent)
- Method from Karman - Thwaites (laminar)
- Differential Boundary Layer Equations:
- Method proposed by Hamilton et. al. (laminar and turbulent)
- Blasius Solution (laminar flat plate boundary layer)
- Exponential 1/7 Law (turbulent flat plate boundary layer)
- Transition from Laminar to Turbulent using the e" Method

The coupling between the viscous and inviscid flow takes place in the boundary condition of
the subroutine inviscid, where the influence of the boundary layer must be considered. The
kinematics (tangential) boundary condition was updated with the displacement thickness (in
form of the transpiration velocity or the gradient/slope of the surface). The coupling
procedure is carried out with the direct and semi - inverse coupling for attached and separated
flow respectively. The code was then used for flutter analysis of airfoils and wings. The flutter
analysis is performed with State Transition Matrix technique in the time domain, which is
efficient and can be solved accurately.

The following steps were performed in order to validate the developed computer code:

e Validating the developed computer code was performed first for checking the subroutines
individually, i.e. the subroutine inviscid, subroutine viscous and transition prediction.
From all simulations, that have been performed, it is shown that the individual subroutine
supplies good results (see Chapter 6.1).

e After validating of the individual subroutines, the developed computer code was used for
assessment of airfoils and wings under various flow conditions. The flow conditions
represents symmetrical and asymmetrical flows, steady and unsteady flows, attached and
separated flow. From all simulations, that have been performed, it is shown that the
developed computer code could achieve the same quality (for some cases even better)
with the values from the literature (see Chapter 6.2 and 6.3). During the simulation of
separated flow it is shown that the developed code could supply good results comparable
with the Navier Stokes equations with Baldwin Lomax turbulence model (see chapter
6.2.3.). Regarding the shock position, the shock position calculated by viscous - inviscid
interaction method is mostly in front of the shock position calculated by Navier Stokes
with Baldwin Lomax turbulence model (see Chapters 6.3.1 and 6.3.2) and for some cases
is behind that of Navier Stokes results with Spalart Almaras turbulence model (see chapter
6.2 and 6.3).
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8. Summary and Recommendation

Based on all performed aerodynamic simulations, the followings can be concluded:

The influence of the boundary layer must be considered. With the inclusion of the
boundary layer into the aerodynamic computation, the quality of the lift, drag and moment
coefficient can be improved around approximately 10% (or even more for some cases)
(see Chapter 6.2 and 6.3). But this improvement does not ensure automatically that the
numerical results agree with the experiment data. The agreement between the numerical
and the experimental result depends on some things, e.g.: the case to be examined, the
quality of the experiment and the quality of the calculation method. For the cases with
higher Reynolds numbers and without separation, a good agreement between the
calculation and the experiment could be achieved. But the flow with separation is still a
challenge for the aerodynamicists, in order to compute the characteristic of the flow (i.e.
lift, drag and moments) accurately. The quality of experimental data depends on the
measuring technique, the quality of the wind tunnel and the model. The quality of the
calculation method is influenced by the assumption behind the governing equation, the
numeric method and the solution technique.

The unsteady flow with larger mean angle of attack, resulting from oscillatory motion, is
particularly difficult to simulate, although the amplitude of the oscillation is small. The
complexity of the unsteady flow could be not completely simulated with the viscous-
inviscid interaction method. The influence of the boundary layer still represents a ‘linear’
relationship, i.e. due to the boundary layer the shock position shifts forward, the shock
intensity becomes smaller and the global characteristic: lift, drag and moments become
smaller. The pressure distribution of the viscous-inviscid interaction method does not
show a reverse phase with the pressure distribution of the inviscid method.

The following steps were performed in validation of the flutter calculation method and
application of the viscous-inviscid interaction method for flutter analysis:

The developed flutter calculation method (with the inviscid aerodynamics model TSD)
was validated with the classical test case of Isogais model, before the code was used for
the computation of the flutter of another airfoil and wing. The flutter analysis result
represents the ability of the developed flutter calculation method to capture the Transonic
Dip, i.e. the lowest flutter speed in the transonic flow. The resulted flutter speed index v/s
Mach number diagram showed that the developed flutter calculation method could supply
the same quality with another method that has been published (see Chapter 7.1).

The developed flutter calculation method (with the inviscid aerodynamics model TSD and
the viscous-inviscid aerodynamics model TSD+BL) was used for the flutter analysis of
the DLR 2D model and the AGARD wing 445.6. The flutter speed index v/s Mach
number diagram for the DLR model showed that the deviation of the flutter speed
between the calculation and the experiment lies in the determining of the aerodynamic
forces. The deformation of the wind tunnel model because of the aerodynamic forces
(static aeroelastic effect) causes this deviation (see Chapter 7.2). The flutter diagram of the
AGARD wing 445.6 represents the agreement between the calculation and the
experiment. Comparison with other numerical methods shows the same quality (see
Chapter 7.3). The influence of the boundary layer on the flutter characteristic for the two
cases is small (approximately 5% of the result by using the inviscid aerodynamics model).

In order to improve the viscous-inviscid interaction method, the followings are suggested:

An improvement or an extension of the closure equations of the turbulent boundary layer
in the integral boundary layer method, in order to be able to compute a massively
separation.
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8. Summary and Recommendation
The simultaneous coupling between the viscous and the inviscid aerodynamic model
should be examined. The closure equations should be kept the same, as they are applied in
the direct and the semi inverse coupling, in order to know the difference between the both
couplings technique.
Because of the time restriction, the differential boundary layer method was not examined
or elaborated intensively in this present work. As a further work this method should be
examined, in order to recognize its deviation with the integral boundary layer method.
A possibility for the improvement of the implementation of the 2D integral boundary layer
method along the span is that the distribution of velocity is connected with the stream
lines, in order to consider the three-dimensional effects. At the present work it was
implemented in strip theory manner along the span without considering the stream lines of
the flows.

The followings are suggested for the improvement of the flutter analysis:

The flutter analysis with Euler and Euler plus boundary layer aerodynamics model should
be performed. The boundary condition for aeroelastic coupling should be implemented by
means of transpiration velocity concept (like the boundary layer coupling which is already
implemented), in order to avoid the moving grid generation (because of the movement of
the structure). This means: the movement of the structure is formulated as additional
induced velocity; with this velocity the boundary condition of the aerodynamic model is
updated.

For validating the developed flutter analysis, which is developed in the time domain, an
‘apple to apple’ comparison with flutter analysis in the frequency domain should be
carried out. Because of the time restriction this comparison could not be made in the
present work.

Deformation of the structure (due to aeroelastic effect) should be treated, in order to
compute the aerodynamic forces of a flexible structure accurately.

Extension of the developed flutter analysis for the investigation of flutter suppression or
gust load alleviation should be continued by adding the state space formulation with
control systems matrix.
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Appendix 1. Numerical Methods

Al.1. The Runge-Kutta Method

The Runge-Kutta method is used to solve a 1% order linear differential equation
numerically. In the Runge-Kutta method, an initial value (or a boundary value) of the
function which must be solved at the starting point is needed in order to determine its value at
the next point.

The procedure of Runge-Kutta method for solving of a 1% order linear differential equation
can be written as follows:

The differential equation, which must be solved, has the following form:

W fixy) (AL1)
dx

where f(x,y) is a function of x and y.
The given initial value of y at the first point X is:

y(X.) =Y, (AL2)
The solution of eq. (Al1.1) at the next point X,.+1 is given by:
Yoa =Y +%(k1 +2k, +2k; + k4) (AL.3)

where:
kl = h f (Xn! yn)

h k
k,=h f(x, +—=,y, +—=
2 (n 2 yn 2)

h k
k,=h f(x, +—,y. +—=%
3 (X, > Vit
k,=h f(x,+h,y, +k;)

h=x, —X, (AL.4)

For a simultaneous system of many 1% order differential equations the procedure of Runge-
Kutta method becomes as follows:
The system of differential equations reads:

dy

—=f(x,y,z,..

i (x,y,2,...)

dz

PVl g(x,y,z,..) (A1.5)
X

where f(x,y,z...) and g(x,y,z...)..., are functions of x, y,z...
The initial values of y, z... at the starting point x, are:

y(X,) =Y,
2(x,) =1, (AL.6)
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Al. Numerical Methods

The solutions of eq. (A1.5) for the next point xn.; are:

Y1 = Yn +%(k1 +2K, + 2K, + k4)

Z.,=1, +%(ml +2m, +2m, +m,) (AL.7)

where:

m, =hg(x,,Y,,2,,.)
k,=h f(X,,¥,,Z,,-
1 ( y ) m2:h g(xn+h’yn+ﬁyzn+ﬂ’_")
h K, m, 2 2 2
k,=h f(x,+—=,y,+—, 2, +—,...)

"2t D h K, m,
m,=hg(x,+=,y, +—,2, +—,...)
K =h 0+ My, + 52 7 o M 2 2 2
3T n E’y” oIy m, =h g(x, +h,y, +k,;,z, +m,,...)

k4:h f(Xn+h,yn+k3,Zn+m3,...) h:XnJrl_Xn (A18)

Al.2. The Newton Iteration Method

The Newton iteration method is used if one would like to determine the roots of a
function with iterative procedure. This method is quick and stable, if the derivative of the
function is not singular.
The roots of a function F:

F(x)=0 (AL.9)

will be solved iteratively.
From the 1% order Taylor series, the value of F at .+, can be computed as:
F(Xn+1) = F(Xn)+((ii_|:j (Xn+1 _Xn) (AllO)
X X=X,
where X, is an initial guessed value of root x.
Taking the eq. (A1.10) equals to zero:

F(Xn)+(d_|:j (Xn+l_xn):O (Alll)
dx ),y
then X,+1 is found as:

X .4 =X __F) (AL.12)

n+1 n (dF)
dX oy

This procedure is repeated iteratively until a convergence value of x is obtained.
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Appendix 2. Integral Boundary Layer Equations

A2.1. The Integral Momentum Equation
The integral boundary layer equations are derived from the Prandtl differential
boundary layer equations.
The Prandtl differential boundary layer equations in 2D flow are as follows:
2
opu +8puwz_@+arxz
OX 0z OX

=P (A22)

(A2.1)

U0 o (A2.3)
ox oz
with u and w are the components of the speed in the x and z directions.
The integration of the momentum equation (A2.1) within the boundary layer supplies:

) 2 o 5
[ AA"+P) g, 4 [ oApuw) 4, [ Todq (A24)
5 OX o Oz v Oz

By introducing new variables displacement thickness &  and momentum thickness & as:

5 =T[ —Ajdz 0= j(l—u—jﬂdz

0 peUe peUe
one obtains the following equation:
ST 2
(6-5"-0)opl? 00 05" W, __ & op =, (A25)

pU?Z ox ox ox U, pUZox pU’
U, and W, are the components of the speed at the edge of the boundary layer in the x and z
direction.
The term (W/Ue) is eliminated with the integration of the continuity equation (A2.3):

fa”“dz +japwdz 0 (A26)

= e — E (A2.7)
IOSUE ax peUe ax
Substituting eq. (A2.7) in eq. (A2.5) yields:
(6-5"-0)ou, a6 6 3pu, O Pt (g
U, oXx ox pU, ox pUS ox pU;
With the momentum equation at the edge of the boundary layer as:
b, _0pV. , pUW,

W, 1 pUs 6 dpU
U,

£ = (A2.9)
OX OX oz
one obtains the integral momentum equation as follows:
- C
00 0 20)0. 00 S g

OX U, ox p, OX 2
With the chain rule for the term (0./0x) in eq. (A2.10) as:

ox  op, ox (op, ox
P.

and the isentropic relation: S—p =a’ (A2.12)
0
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AZ2. Integral Boundary Layer Equations
and the Bernoulli equation: _ 1 =U, U, (A2.13)
P, OX OX

and the defined shape factor H = 6/6 , one obtains the integral momentum equation from
(A2.10) as:

90 _Ct (H12-m2) 2 %Y
x 2 u

(A2.14)

e

A2.2. The Shape Factor Equation of Drela and Giles Method
In order to obtain the shape factor equation, one begins from the momentum equation
(A2.1). With the use of the continuity equation (A2.3), the momentum equation becomes:
ou ou_ op N ot,,

- == A2.15
- OX o 0z oX 0z ( )
Multiplying equation (A2.15) with u gives:
, OU ou op Or
—+ pUW— =—-U—+U—% A2.16
- OX A 0z OX 0z ( )

The equation (A2.16) can be written with the use of the continuity equation as:

3 2
1 opu +6pu W :—u@+uarXZ (A2.17)
2\ oXx oz OX 0z

Integration of the equation (A2.17) in the boundary layer gives:
o 3 o o 5 S5 5
IaﬂdZ—jufaﬂdZ—zije%dz + _[Ufaﬂdz—J-UE%dz +IU§—apeUedz+
OX OX 5y 0 OX OX

5 OX X 0
p _ e 8Iou az-XZ
[2Iu dz+2jpuU dz]+'|‘ ™ dz _2ju dz (A2.18)
With the definition of energy thickness &, density thickness &, dissipation coefficient Cq as:
A | C v P e
0 U peUe 0 pe peUe 0 dZ

and the use of the Bernoulli equation (A2.13), equation (A2.18) becomes to:

3% *
. apeUEH _Uez a,OeU95 +&Je2 apeue _Zpeuez5** aU +peU 2W = 2pe eC (A219)
ox X ox OX

W, in the equation (A2.19) is eliminated using the equation (A2.7).
After division by p:U¢> equation (A2.19) becomes to:
* * 3 EE
00 N 0 3a,ere +26_6Ue
ox pU; ox U, ox
The derivative of p. in the equation (A2.20) will be eliminated with the Bernoulli equation

(A2.13) and the isentropic relation (A2.12).
With the defined shape factors H and H™ as:

=2C,  (A2.20)

P
0

then equation (A2 20) becomes to:
aH ( M )H ou, +92 89+2H ouU, 2& (A2.21)
X U, ox 6°ox U, oX 0

e
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AZ2. Integral Boundary Layer Equations
The term (04/0x) in equation (A2.21) is eliminated using the momentum equation (A2.14) in
order to obtain the shape factor equation as follows:
. " o .
oH  _,Cq _H'C (2H +1_H]H au,

(A2.22)

OX 0 0 2

*

H

e

A2.3. The Shape Factor Equation of the Greens Method
In order to obtain the shape factor equation, Green defined a variable which called
Entrainment coefficient as:

1 d *
C.=——-NWU(@G-0 A2.23
=g ME-]  (n223)
The shape factor equation can be derived as follows:

Defining the incompressible shape factor H as: H = %jﬁ(l—uinz
0 Pe e

*

o0-0
0
Multiplying the derivative of the shape factor H with respect to x with the momentum

thickness as:
,4H _ dH dH, _ dH {eiﬁé—_é)} (A2.24)

dx  dH, dx dH,| dx @
Subtitution of eq. (A2.23) into eq. (A2.24) gives:
dH dH 0 du, de
0——= e—H———-H, —
U, dx dx

and the mass flow shape factor H; as: H, =

A2.25
dx dH,; } ( )

With the help of the incompressible integral momentum equation, i.e. eq. (A2.14) with M,
equals zero, one obtains from equation (A2.25) the following shape factor equation:

H H C
dH _LdH o 1S ()@ Y (A2.26)
dx & dH, 2 U, dx
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Appendix 3. Modification of the Integral Boundary Layer
Equations

A modification of the integral momentum equation to be applied in inverse boundary
layer calculation method will be presented. The modification is carried out for the integral
boundary layer equations based on the Greens Lag Entrainment mehod.

A variable mass flow in the boundary layer is defined:

m=pU.5 (A3.1)
The derivative of the mass flow in x direction is:
dm op, ou, 06 oH
—=UHO0—=+pHO—2+pUH—+pU.0— A3.2
i o TPHOZ o TPYO— (A3.2)

id_m:i%+iﬁue+160+ 1 oH
madx p, ox U, ox 6 0ox H ox
With the assumption of small disturbances:
Pe1-M2g, ©=1+g,  (A34)
P U,
and the relationship between H and H :

H=(H +1{1+Tlr|v| ] ~1  (A35)

(A3.3)

the derivative of p., Ue and H with respect to x become:
i P M2¢

= 2T A3.6
. X 1-MZg, (A3.6)
1 U, o (A3.7)
U OX T1+ +¢,
oH y-1 dH
1+ M, |—+ A3.8
ox [ 2 jdx 7= dx ( )

where the derivative of M, with respect to x is given by:

M, w1477 mz | 299 (a3
dx 2 U, dx

With the help of the integral momentum equation (A2.14), the equation (A3.3) becomes to:

1dm_1C, RdH|1(.  CiHi)|
mdx 6 2 HdH ol F 2

2
D | (H42-M2)+H,(H + s dH R 1)rMMR(H+1)1%
1+, dH, H H 1-M2g,
(A3.10)
where R; and R; are given by:
R, _1+(721)r|v| R2=1+(7/2_1)Mw2
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A3. Modification of the Integral Boundary Layer Equations
In the direct method the value of the outer velocity [@«/(1+¢)] in the equation (A3.10) is
given by the inviscid model and the value of the mass flow is calculated from equation
(A3.10). In the inverse method the situation is oppositely. The values of the outer velocity
will be calculated with the estimated value of the mass flow. Therefore the procedure of the
inverse method must be carried out by an iteration process.
From the equation (A3.10) one obtains the outer velocity (see also eq. (A3.7)) as follows:

lldﬂ 1 Rdﬁ( E_Clej_l_Cf

+7 - -
g, _ 1dU, m dx HE *dH, 2 20 (A3.1)
1+ U, dx — H 2 '
¢ U, (H+1 L R 1)rM29MwR2 TH, dH —M§+(1+¢x)2'v'°°
H R! dH, 1-M2g,

The index v in outer velocity U shows that the velocity is calculated from viscous

aerodynamic model.
The shape factor equation for inverse method can be found via elimination of the outer
velocity in the equation (3.50) (see Chapter 3.2.3.) with the equation (A3.11):

dH |1 CH), RO-DMMR,|  (1dm C/
dA dH, |el % 2 HR; \'mdx 20
dx {1 R{(y—l)rMeMwR2+H dﬁ}_ M2 (+gIM? }

“H R? YdH, | (H+D)  @-MIg)(H +D)

(A3.12)

The entrainment coefficient equation for inverse method can be found also via elimination of
the outer velocity in the equation (3.51) with the equation (A3.11):

©Ce _FI R ez —ace]o| £ Y| L Eliioomm R |y (A313)
dx 6 |H+H, U, dx ) 1+0.1M
where R3 is given by (see also Chapter 3.2.4.):

R,=2.8 if H<24 (a)

R, = 0.15 if H>24 (b)

(1— C22J0.08(1— n)

e
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Appendix 4. Goldstein’s Singularity

By solving the integral boundary layer equations with direct method a singular value
of the boundary layer parameters exists if the flow exhibits separation. This singular value is
called as Goldstein’s Singularity. This phenomenon can be described clearly with the
following mathematical analysis.

A4.1. Goldstein’s Singularity in the Drela and Giles Method
As Dbasis equations are the integral momentum boundary layer equation (A2.14) and

the shape factor equation (A2.22):
C,

9>t (Hr2-m2) 2 Y-

ox 2 U

. . -
oH _,Cq H'C (2H 1_H]H o,

(A2.14)

e

OX 0 0 2

Because of & = & /H then equation (A2.14) can be formulated as:

1008 M Gy 5 yr)f A

H ox H?ox 2 .

Applying chain rule for the derivative of H as function of M. and Hy , then equation (A4.1)
becomes to:

(A2.22)

e

(A4.1)

105" & | 0H oH,  oH oM, | _ (H ’ M )0 ou, (A4.2)

H ox H?*|oH, ox oMZ ox U, ox '
* C

00 i oH 8Hk+ 6‘H2 oM’ H——H(H 2 M )H ou, (A4.3)

OX oH, ox oM. ox 2 .

Equation (A2.22) can be written in another form as:
oH, 1 2&_H_*&_ 2H” B H_*aUe (A4.)
X (oH” 0 60 2 H” U, ox '
oH,

Substituting eq. (A4.4) into the eqg. (A4.3), one can obtain the following equation:
oH )
* C,
a5=(AHk 2C,-H —L—H" 2H™ 2H n |8,
OX OoH” 2 H U, ox
oH,

[H%—H(H +2-M2)—

2
0 U, , o 3H oM, (A45)
U, ox  oM?2 ox

Equation (A4.5) shows that the value of the displacement thickness becomes singular, if the
derivative 6H"/&Hy equals to zero.

A4.2. Goldstein’s Singularity in the Greens Lag Entrainment Method
As the starting point is the equation (A4.1):

: C,
i@_iza_H:__(H 2-M2)->- 0 U,
H ox H°ox 2 U
The derivative from H to x direction in the equation (A4.1) is eliminated with the equation

(A3.8) and resulted:

(A4

e
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e}:C—f—(H +2—|\/|§)£aue
2 U, ox

e

(A4.6)

dM
dx

106" o Klerz_lerjddH +(7=DrM, (H +1)
X

With the help of the equations (A2.26) and (A3.9) the derivatives of H and M. with respect to
x direction in the equation (A4.6) are eliminated and from this results the derivative of the

displacement thickness can be obtained as:

* HC _ q C
MY e PV LA | PO RTINS P
dx 2 2 dH, 2 U, dx
Uid:e {(ﬁ+1)(;/—l)rMeMw(l+7/T_lMij— H(H +2—Mf)} (A4.7)
e X

is singular.

The equation (A4.7) becomes singular if
1
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