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Summary

A surface-sensitive purely optical technique is demonstrated for the investigation of

ultrafast relaxation processes of excited electronic surface states. We employed a

synthesis of degenerate four-wave mixing (DFWM) and optical second-harmonic gen-

eration (SHG) to study the coherent and incoherent dynamics of dangling-bond states

at silicon surfaces with femtosecond time-resolution. The resulting five-wave mixing

process is characterized by a χ(4)-tensor; like the χ(2)-processes SHG or SFG it is

dipole-forbidden in the bulk of centrosymmetric materials, like crystalline silicon.

The surface-sensitive probe can be described by diffraction of photons at a transient

population grating with their upconversion to the second harmonic.

The experiments were performed with a cavity-dumped Ti:sapphire laser that

produced 14-fs pulses centered at a wavelength of 800 nm with pulse energies up to

50 nJ and repetition rates as high as 2 MHz. A comparison of the diffracted signal

from clean and oxygen covered surfaces shows that under the experimental conditions

electronic excitations in the metallic U1/S1-band of Si(111)7×7 and in the dangling

bonds of Si(001) are responsible for the nonlinear response.

Two different excitation schemes were used: in a self-diffraction setup we worked

with only two incident beams on the sample in ultrahigh vacuum by using one of

the pump pulses simultaneously as a probe. A three-beam geometry yielded more

information on the electronic relaxation behavior due to the two independently tun-

able time delays. With these two setups we were able to separate experimentally

population relaxation (T1) times on the order of 200 fs from dephasing (T2) times

around 10 fs. The T1-times obtained with the coherent diffraction experiment are in

excellent agreement with incoherent SHG pump–probe and time-resolved two-photon

photoemission schemes.

For a qualitative physical understanding of the dynamical processes and the quan-

titative extraction of relaxation rates we employed a theoretical model based on the

density-matrix formalism. An analytical treatment of the resulting differential equa-

tions for the induced polarizations and populations allowed the numerical simulation

of the experimentally acquired data. The simulation made use of different phenomeno-

logical models: homogeneous broadening, inhomogeneous broadening, and continuum

excitation.

Our experiments demonstrate that with the wide availability of high-intensity

ultra-short laser pulses, this technique could thus become a valuable tool for the

investigation of ultrafast dynamics at many surfaces and interfaces.
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Zusammenfassung

Eine oberflächen-sensitive, rein optische Methode zur Untersuchung ultraschneller Re-

laxationsprozesse von angeregten elektronischen Oberflächenzuständen wird demon-

striert. Wir verwendeten eine Synthese aus entarteter Vier-Wellen-Mischung (degener-

ate four-wave mixing, DFWM) und optischer Frequenzverdopplung (second-harmonic

generation, SHG), um die kohärente und inkohärente Dynamik von dangling bond-

Zuständen an Silizium-Oberflächen mit Femtosekunden-Zeitauflösung zu studieren.

Der resultierende Fünf-Wellen-Mischprozess wird durch einen χ(4)-Tensor charakteri-

siert; genauso wie die χ(2)-Prozesse SHG und SFG ist dieser Vorgang dipol-verboten

im Volumen zentrosymmetrischer Materialen, wie z. B. kristallinem Silizium. Der

deshalb oberflächen-sensitive Prozess kann durch Beugung von Photonen an einem

transienten Populationsgitter mit deren Hochkonversion zur Zweiten Harmonischen

beschrieben werden.

Die Experimente wurden durchgeführt mit einem cavity-dumped Ti:Saphir-Laser,

der 14-fs Pulse bei Wellenlängen um 800 nm mit Pulsenergien bis zu 50 nJ bei Re-

petitionsraten bis zu 2 MHz erzeugte. Ein Vergleich des gebeugten Signals von der

sauberen und Sauerstoff-bedeckten Oberfläche zeigt, dass unter den experimentellen

Bedingungen elektronische Anregungen im metallischen U1/S1-Band von Si(111)7×7

und in den dangling bonds von Si(001) für den nichtlinearen optischen Response ver-

antwortlich sind.

Es wurden zwei unterschiedliche Anregungs-Geometrien benutzt: In einem Selbst-

beugungs-Aufbau arbeiteten wir mit nur zwei auf die Probe im Ultrahochvakuum

(UHV) einfallenden Strahlen, indem wir einen der beiden Anrege-Pulse simultan als

Abfrage-Puls verwendeten. Eine Drei-Strahl-Geometrie lieferte noch mehr Informa-

tionen über das Relaxationsverhalten, auf Grund der zwei unabhängig voneinander

durchstimmbaren Zeit-Verzögerungen. Mit diesen zwei Experimenten waren wir in der

Lage, die Populations-Relaxationszeiten (T1) um 200 fs von Dephasierungszeiten (T2)

der Größenordnung 10 fs experimentell zu separieren. Die T1-Zeiten, die mit diesen

kohärenten Beugungs-Techniken gemessen wurden, sind in sehr guter Übereinstim-

mung mit inkohärenten SHG Anrege–Abfrage-Experimenten und mit zeitaufgelöster

Zwei-Photonen-Photoemission.

Um zu einem qualitativen physikalischem Verständnis der dynamischen Prozesse

und zur quantitativen Bestimmung der Relaxations-Raten zu gelangen, verwende-

ten wir ein theoretisches Modell basierend auf einem Dichte-Matrix-Formalismus.
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Eine analytische Behandlung der resultierenden Differenzial-Gleichungen für die in-

duzierten Polarisationen und Populationen erlaubte die numerische Simulation der ex-

perimentell erhaltenen Daten. Der Simulation legten wir verschiedene phänomenologi-

sche Modelle zu Grunde: homogenes System, inhomogene Verbreiterung und Kontinu-

ums-Anregung.

Unsere Experimente demonstrieren, dass mit der weiteren Verbreitung ultrakurzer

Laser-Pulse hoher Intensität, diese Fünf-Wellen-Mischtechnik eine wertvolle Methode

zur Untersuchung ultraschneller Dynamik an vielen Oberflächen und Grenzflächen

werden kann.
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Chapter 1

Introduction

One motivation for the study of carrier dynamics at surfaces is the desire for a physi-

cal understanding of the fundamental relaxation processes. In addition to the purely

scientific perspective, these investigations are highly relevant for surface photochem-

istry, since the relaxation rate of photoexcited carriers can be a dominant factor for

the yield of photochemical reactions at surfaces. A further field of application for the

examination of surface carrier dynamics lies in the sector of semiconductor technol-

ogy. For instance, accurate fundamental carrier scattering rates at surfaces are the

prerequisite for a correct simulation of semiconductor devices.

Due to their generation of ultrashort light pulses, lasers represent a natural tool for

time-resolved spectroscopy. In addition to their phenomenal time-resolution down to

the femtosecond regime, lasers also provide an intense coherent source of radiation. In

this case, the well-defined phase relationship between the wave functions of the states,

that are coupled by the interaction with the light, can be exploited to gain additional,

often complementary, information compared to methods that rely only on the mea-

surement of intensities. Prominent examples in atomic, molecular, and condensed

matter physics include coherent Raman scattering, quantum beat spectroscopy, as

well as echo and induced grating experiments [1–3].

However, purely optical experiments are often more difficult to interpret than

photoemission investigations. By analyzing the kinetic energy, the direction, and

spin of the photoemitted electron, photoemission schemes can provide an integral

characterization of the probed electronic states. Nevertheless, purely optical nonlinear

methods, like second-harmonic generation (SHG), have several advantages compared

to photoelectron techniques. Because of inversion symmetry breaking at surfaces of

centrosymmetric media, SHG can provide a genuine surface signal. In addition, these

methods are applicable at high excitation conditions, without being confronted with

space-charge effects that destroy energy and momentum resolution in photoelectron

experiments [4]. Due to their purely optical character, these methods can also be

applied to interfaces between solid or liquid media, whereas photoemission is restricted

to surfaces in UHV environments.

This thesis discusses a combination of SHG [5–7] with degenerate four-wave mixing

(DFWM) for the acquisition of surface specific information about electron dynamics.
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A transient population grating is generated at a surface by two ultrashort interfering

laser pulses, giving rise to a spatial modulation of the nonlinear susceptibility χ(2)
s . A

third synchronized pulse is diffracted from the transient grating, leading to second-

harmonic light, which is detected. Since this five-wave mixing scheme is characterized

by a χ(4) tensor, it is intrinsically surface sensitive for centrosymmetric materials.

Besides the precise determination of population relaxation times on the order of 200

fs, the technique also allowed to measure the timescale for the fundamental carrier

scattering processes that occur immediately after the optical excitation and result in

the loss of coherence between the electronic states coupled by the light pulse. This

ultrafast coherent regime has been approached at surfaces only recently [8–11].

Among the few examples where coherence phenomena have been utilized for sur-

face investigations is the pioneering study by Guyot-Sionnest, who employed infrared–

visible sum-frequency up-conversion to follow the free-induction decay and photon

echo of the H/Si(111) adsorbate–substrate stretching vibration in real time [12]. Re-

markably, he succeeded in separating its genuine homogeneous dephasing time from

inhomogeneous contributions [12]. Owrutsky et al. were able to observe the free-

induction decay of vibrational excitations of CO on copper [13]. In another experi-

ment, Chang, Xu, and Tom reported the coherent excitation and subsequent detection

of surface optical phonons by time-resolved SHG [8]. An interferometric two-photon

photoemission technique developed by Petek and coworkers allowed the investigation

of hot electron dephasing on Cu(111) on a femtosecond timescale [9, 14]. In our own

group, time-resolved two-photon photoemission in combination with the coherent ex-

citation of several quantum states was employed by Höfer et al. to study the ultrafast

electron dynamics of image-potential states on metal surfaces [10].

Following this introduction, the physical fundamentals of investigated systems

and investigating methods are presented in Chap. 2. The discussion of fundamental

structural and electronic properties of the silicon surfaces under examination – Si(111)

and Si(001) – is an important prerequisite for the interpretation of their incoherent as

well as coherent relaxation behavior. The understanding of the employed transient-

grating technique is facilitated by the prior discussion of the underlying methods SHG

and DFWM.

A description of the experimental setup used for the investigation is the topic of

Chap. 3. After the presentation of the ultra-high vacuum system and the surface

preparation procedures follows a characterization of the employed laser source with

respect to parameters relevant to the study of relaxation dynamics. Important details

of the optical setup are also described.

Following these experimental facts, the theoretical models for a qualitative descrip-

tion and quantitative simulation are presented and discussed in Chap. 4. Our five-wave

mixing transient-grating experiments are treated within a semiclassical density-matrix

formalism, which yields a system of differential equations for the induced polarizations

and populations up to fourth order in terms of the incident electric fields. This pre-
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sentation of the underlying theoretical framework is followed by a detailed discussion

of its implications on the SH diffracted intensity.

The results of the discussion in Chap. 4 represent valuable information for the

interpretation of the experimental data of the incoherent measurements, that are the

subject of Chap. 5. After an in-depth treatment of the relevant excitation mechanism

and a presentation of the population relaxation times obtained from SH pump–probe

and SH three-beam diffraction schemes follows a comparative discussion with both ex-

perimental and theoretical results. Chap. 5 closes with an analysis of the microscopic

relaxation mechanism.

Complementary information on the electronic relaxation behavior at the silicon

surfaces investigated can be acquired through the examination of our coherent ex-

periments in Chap. 6. By using the transient-grating approach in the two-beam

self-diffraction setup and in the enhanced three-beam diffraction geometry we were

able to obtain information on the dephasing time of the induced polarization. A

discussion of different phenomenological models explains the inherent difficulty of a

precise determination of dephasing rates.

Finally, two appendices cover the explicit and numerical integration of the system

of differential equations for the induced polarizations and populations, respectively.

The analytical treatment of the fourth-order polarization, which is responsible for the

SH diffracted signal, for several limiting cases completes the scope of this thesis.
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Chapter 2

Fundamentals

In order to gain surface-specific information on the ultrafast electron dynamics on

Si(111) and Si(001) we employed the purely optical technique second-harmonic diffrac-

tion from a transient population grating of excited dangling bonds. This coherent

method is a combination of second-harmonic generation (SHG) and degenerate four-

wave mixing (DFWM). After an introduction into the relevant structural and elec-

tronic properties of the silicon surfaces studied (Sect. 2.1), we therefore continue with

a brief description of SHG (Sect. 2.2) and DFWM (Sect. 2.3). Following the presen-

tation of diffraction from transient surface gratings in Sect. 2.4 this chapter ends with

a discussion of the nature of the relevant electronic excitations (Sect. 2.5).

2.1 Silicon surfaces

The elemental semiconductor silicon is the most intensely investigated and precisely

characterized material [15]. The ultrahigh purity of silicon crystals, with defect and

impurity concentrations in the ppb range and below, together with this thorough

characterization make the material a model system for the study of ultrafast carrier

dynamics [16–20]. Increasingly, the studies are extended from bulk electron dynamics

to investigations of carrier scattering and relaxation processes at surfaces and inter-

faces [21–32], exploiting the reproducible preparability of very well defined, clean sur-

faces of silicon, compared to, e.g., GaAs. These experiments are not only fascinating

from a fundamental scientific point of view, but also provide valuable technologically

relevant information – silicon being the core ingredient in most integrated circuits and

electronic devices. A deeper understanding of electron dynamics facilitates proper es-

timates of device performance and reliability [33]. Due to the continuing process of

miniaturization, the accurate quantitative determination of fundamental carrier scat-

tering rates at surfaces grows to become a more and more crucial prerequisite for the

correct simulation of semiconductor devices [34].

This section provides a short description of the geometric and electronic structure

of the two types of silicon surfaces investigated in this thesis: Si(111) and Si(001)

[35–37].
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Fig. 2.1: Geometric structure of the Si(111)7×7 surface (top view and side view) according
to the dimer–adatom–stacking fault (DAS) model after Takayanagi et al., in which the total
number of dangling bonds per unit cell is reduced from 49 to 19 [39]. Essential structural
features of the unit cell are 9 Si–Si dimers between the two triangular subunits, 12 adatoms
bonded to three otherwise broken bonds in the layer underneath, 6 restatoms, 1 corner-hole,
and a stacking fault in one of the two triangular halves. Top right: Schematic representation
of four 7×7 unit cells with the 3 mirror planes of the C3v (3m) symmetry group.

2.1.1 Si(111)

The easiest cleavage planes in silicon are the {111} planes leading to a metastable

2×1 reconstruction. After annealing at elevated temperatures Si(111) forms the stable

7×7 reconstruction whose characteristic LEED pattern was discovered by Schlier and

Farnsworth in 1959 [38]. Possessing the lowest surface energy of all silicon surfaces this

reconstruction is not only worth investigating due to its intricate geometric structure

but also because of the peculiar electronic behavior of the metallic dangling-bond

surface band on top of the semiconducting bulk substrate.

The geometric structure of the Si(111)7×7 surface was elucidated in real space by
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scanning tunneling miscroscopy (STM) [40], scanning tunneling spectroscopy (STS)

[41, 42], and atomic-force microscopy (AFM) [43–45], and in reciprocal space by

glancing-incidence X-ray diffraction [46], Rutherford backscattering spectroscopy (RBS)

[47–49], and low-energy electron diffraction (LEED) [50,51]. Eventually, the analysis

of transmission electron diffraction (TED) intensity distributions by Takayanagi et

al. in 1985 resulted in the now fully accepted dimer–adatom–stacking fault (DAS)

model of the Si(111)7×7 reconstruction [39, 52], that has since been confirmed by a

variety of total energy minimization calculations [53–69]. Each unit cell (Fig. 2.1)

is composed of 2 triangular subunits and contains 12 adatoms in T4 sites in a 2×2

local arrangement, 6 restatoms between the adatoms in the layer below them and

one corner-hole within a 12-member ring. One of the triangular halves contains a

stacking-fault, which gives rise to 9 dimers connected by 8-member rings along the

boundary of the triangles.

The origin of this complex atomic rearrangement lies in the interplay between

a minimization of electronic energy through a reduction in the number of dangling

bonds and the thereby resulting lattice strain. The predominant mechanism for the

correlated lowering of the total energy is the presence of adatoms, each of which

saturates three dangling bonds, while possessing only one. Nominally, the 12 adatoms

in the 7×7 unit cell thus remove 24 broken bonds from a total of 49. The change in

stacking from staggered to eclipsed in one of the two triangular subunits in conjunction

with the thereby introduced dimers removes an additional number of 6 broken bonds.

The remaining 19 dangling bonds imply a reduction in the areal density of broken

bonds by a factor of 2.6, which overcompensates the substantial strain that goes along

with the reconstruction.

Due to the presence of the stacking fault, the symmetry group of the 7×7 recon-

struction is C3v (3m), identical to the unreconstructed Si(111) surface. The second-

order nonlinear susceptibility tensor χ(2) is therefore composed of 4 nonvanishing

independent components [70], that can be addressed individually through selecting

the polarizations of the incident beam and the generated second-harmonic photons.

Along with the emergence of a structural understanding proceeded the inves-

tigation of the electronic properties of Si(111)7×7 in general, and of the different

types of dangling bonds in particular. Fig. 2.2 shows the electronic band structure of

Si(111)7×7 in an extended Brillouin zone scheme with the {111} projected bulk and

valence bands (shaded) and the most important occupied (S1, S2, S3) and unoccupied

(U1, U2) surface bands of the 7×7 reconstruction. The origin of the surface states

within the DAS model has been deduced from experiments that were able to connect

structural with spectroscopic information: photoemission spectroscopy [73, 75–83],

inverse photoemssion spectroscopy [84–87], scanning tunneling spectroscopy (STS)

[41,42,88–90], electron energy-loss spectroscopy (EELS) [78,91–94], and electron spin

resonance (ESR) [95]. The 12 adatoms per 7×7 unit cell possess partially occupied

dangling bonds that give rise to the surface band U1/S1 leading to the metallic char-
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Fig. 2.2: Schematic electronic band structure of Si(111)7×7 in an extended Brillouin zone.
The bulk valence and conduction bands projected onto Si(111) (after Refs. [71, 72]) are
hatched. S1, S2, S3 and U1, U2 denote occupied and unoccupied electronic surface states,
respectively (after Refs. [73–75]). Inset: Side view of part of the Si(111)7×7 unit cell.
The 12 adatoms (A) per unit cell that form the surface band U1/S1 have partially filled
dangling bonds leading to a metallic character of the surface. Due to charge transfer from
the adatoms to the 6 restatoms (R) that form the band S2, the latter have fully occupied
dangling bonds.

acter of the surface. Due to charge transfer from the adatoms to the 6 restatoms, the

latter have fully occupied dangling bonds that form the band S2. U2 and S3 denote

surface states that are localized at the adatom back bonds to the restatom layer.

The experimental evidence for the metallicity of the two-dimensional adatom

dangling-bond carrier gas on the semiconducting substrate stems from photoemis-

sion [73, 75–77, 80, 81] and STS [41, 88] data, that exhibit a finite electronic density

of states (DOS) all the way to the Fermi level. A substantial DOS near the Fermi

level is corroborated by the strong pinning of the surface Fermi level for both p- and

n-type Si(111)7×7 [96, 97]. In addition, the asymmetric energy-loss lines observed

in EELS experiments are characteristic of infinitesimal transitions across a metallic
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Fermi level [78, 92–94]. Recent temperature-dependent measurements of the nuclear-

spin relaxation rate of 8Li probe atoms on the 7×7 surface using nuclear magnetic

resonance (β-NMR) also indicated a metallic behavior [98]. A more direct proof for

the metallicity of Si(111)7×7 was obtained by Heike and coworkers with STS using

artificially produced insulating trenches in the surface [99]. By surrounding a part of

the surface by a closed trench, they observed the naturally formed Schottky barrier

between the surface states and the volume states with STM, which also allowed to

estimate the 2D conductivity [99]. The formation of a tape-shaped trench allowed to

measure the small but finite two-dimensional surface-state conductivity – mandatory

for metallic behavior – of 8.7 · 10−9 Ω−1 [99].

At a temperature of Tc ' 1100 K, Si(111) displays a reversible phase transition

from the ordered 7×7 reconstruction to the more disordered ”1×1” structure, that was

first reported by Lander in 1964 [100]. The ”1×1” phase corresponds to an adatom

gas in which the number of dangling bonds is increased by roughly 25% with respect

to the 7×7 structure. This increase is reflected in a sudden rise in the SH intensity

while heating through the phase transition [101]. The higher internal energy of the

adatom gas that is due to the higher density of dangling bonds is overcompensated

by the gain in entropy arising from the mobile adatoms.

2.1.2 Si(001)

Due to its technological importance for electronics applications, the Si(001) surface

has been studied intensively over the last 40 years. Despite similar features, like the

mechanism of free energy minimization by a reduction of dangling bond density, {001}
surfaces of silicon display a number of very different properties compared to Si(111),

both geometrically and electronically.

At room temperature Si(001) surfaces exhibit 2×1 reconstructions [38] composed

of two 2×1 domains rotated by 90◦ with respect to each other. This structure

arises from the pairing of neighboring silicon atoms to dimers via formation of a

σ-bond, which reduces the dangling bond density from two to one per surface atom

[38, 102–105]. The resulting rows of dimers along the [110] direction within the ge-

ometric structure of Si(001)2×1 are shown in Fig. 2.3. Since dimer rows on neigh-

boring terraces divided by monolayer steps are oriented perpendicular to each other,

the local C2v (2mm) symmetry group gives rise to a macroscopic C4v (4mm) sym-

metry. A Jahn-Teller-like distortion leads to a tilting of the dimers that has been

observed in diffraction studies, ion scattering, and STM [37]. Molecular dynamics

calculations revealed the tilted dimers to oscillate with a period in the subpicosecond

range [106–109]. The finite correlation between the buckled dimers within and across

dimer rows leads to a c(4×2) reconstruction at low temperatures, that corresponds

to alternatingly buckled dimers (see Fig. 2.3). The structural order–disorder c(4×2)

↔ 2×1 phase transition that takes place around 150 K was followed in situ by LEED
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Fig. 2.3: Geometric structure of the Si(001)2×1 surface (side view and top view). Essential
structural features of the reconstruction are rows of tilted silicon dimers along the [110]
direction, which reduces the number of dangling bonds per surface atom from 2 to 1. Since
dimer rows on neighboring terraces divided by monolayer steps are oriented perpendicular to
each other, the local C2v (2mm) symmetry group yields a macroscopic C4v (4mm) symmetry.
The correlation of the buckled dimers within and across dimer rows gives rise to a c(4×2)
reconstruction below the order–disorder transition temperature of 150 K.

and X-ray diffraction [37].

The electronic structure of Si(001) has been studied extensively with angle-resolved

photoelectron spectroscopy (ARPES) [82, 111, 112, 114], inverse photoemission (IPE)

[85, 113, 115], electron energy-loss spectroscopy (EELS) [91, 116], and scanning tun-

neling spectroscopy (STS) [117, 118]. The experimental results have been confirmed

by calculations [110, 119–124]. As a consequence of the Jahn-Teller rehybridization,

charge is transferred from the depressed to the raised dimer atoms so that the latter

ones exhibit completely filled dangling bonds, while the dangling bonds at the do-

nating lowered dimer atoms are empty. Fig. 2.4 shows the schematic electronic band

structure of Si(001)2×1 with the dangling bond surface bands arising from the raised

(Dup) and lowered (Ddown) dimer atoms. The two surface bands give rise to resonant

optical transitions in the energy range 0.9–2.1 eV between Dup and Ddown, with their

joint density of states peaked at 1.65 eV (see Fig. 2.7). The relatively small dispersion

of the dangling bond bands in the [11̄0] direction (Γ–J and K–J ′), i.e. perpendicular

to the dimer rows, as compared to the [110] direction (Γ–J ′ and J–K), parallel to the

dimer rows, reflects the smaller coupling of the dangling bonds across dimer rows in

contrast to within the dimer rows. The effective π-interaction between the dangling

bonds in one dimer on the ideal Si(001) surface prevents the two band centers to come
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Fig. 2.4: Schematic electronic band structure of Si(001)2×1. The bulk valence and con-
duction bands projected onto Si(001) (after Ref. [110]) are shaded. Dup (Ddown) denotes
the occupied (unoccupied) dangling-bond state of the raised (lowered) silicon dimer atom,
as shown in Fig. 2.3, calculated in the GW approximation [110]. The symbols refer to
angle-resolved photoemission data of Ref. [111] (diamonds) and Ref. [112] (circles), and to
k-resolved inverse photoemission data of Ref. [113] (open squares).

closer than 0.8 eV [110]. The electronic structure at steps, however, is different from

the surface band structure at the terraces, enabling the bands to approach each other

energetically [125], and thereby opening the way for a more efficient carrier relaxation

mechanism at the steps.

2.2 Optical second-harmonic generation (SHG)

Carrier relaxation on the silicon surfaces that were described in the preceding sec-

tion occurs on a femtosecond time scale. This suggests the application of an optical

technique using ultrashort laser pulses, which also allows to utilize the coherence

of the light field for the determination of dephasing times. Surface specifity of the

measurement can be obtained by using an even-order nonlinear optical method, as

the nonlinear optical susceptibilities χ(n) with even n vanish in the volume of cen-

trosymmetric materials, like crystalline silicon, but allow for finite χ(n) at the surface,

where inversion symmetry is broken. In order to gain surface specific information

on carrier dynamics, we used a combination of the simplest of these techniques –

second-harmonic generation (SHG) – with degenerate four-wave mixing (DFWM).
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This section outlines the former, the following section the latter of the two methods.

The first SHG experiment was conducted in 1961 by Franken and coworkers using

a quartz crystal [126]. After Bloembergen and Pershan theoretically treated SHG

from surfaces of centrosymmetric materials [127], and this effect was observed exper-

imentally by Brown et al. on silver [128], the technique was further developed and

applied to various surfaces in the following decades by the group of Shen [6,129–131].

Purely optical nonlinear methods, like SHG, have several advantages compared

to photoelectron methods: Because of inversion symmetry breaking at every surface,

SHG can provide a genuine surface signal. In addition, these methods are applicable

at high excitation conditions, without being confronted with space-charge problems,

as in the case of photoemission. Because of their purely optical character, they can

also be applied to interfaces between solid media. However, purely optical experiments

are often more difficult to interpret than photoemission investigations.

2.2.1 Macroscopic and microscopic description

Based on work by Bloembergen et al. [5, 127], Heinz developed a formalism for the

macroscopic description of SHG from surfaces and interfaces [7,70] that is outlined in

the following. Approximating the interface by an infinitesimally thin sheet located at

z = 0, the incident electric field E(t) = E(ω) cos(ωt) induces a nonlinear polarization

Pnls
s in the sheet

Pnls
s (r, t) = Psδ(z)eik‖(Ω)r−iΩt + c.c. (2.1)

with Ω = 2ω. Considering the leading order term in a multipole expansion of the non-

linear polarization within the electric-dipole approximation, the nonlinear response of

the polarization sheet is determined by the surface nonlinear susceptibility χ(2)
s

Ps(Ω) = χ(2)
s (Ω=2ω) :E(ω)E(ω). (2.2)

By solving Maxwell’s equations with the appropriate boundary conditions, using Pnls
s

as source term, one can obtain the radiation emitted from the polarization sheet and

thus the intensity I(Ω) of the reflected second-harmonic radiation generated from a

beam with intensity I(ω) [70]

I(Ω) =
8π3Ω2 sec2 θ2ω

c3ε1(ω)[ε1(Ω)]1/2
|e(Ω)·χ(2)

s :e(ω)e(ω)|2I2(ω). (2.3)

e(Ω) and e(ω) are transformed polarization vectors that are obtained from the unit

polarization vectors ê(ω) and ê(Ω) of the incident and output fields by a Fresnel

transformation F, e.g. e(ω) = F(ω)ê(ω).

In general, the nonlinear response of the bulk material also has to be taken into

account. Since both the electric field E and the polarization P are polar vectors,

i.e. change sign under a spatial inversion operation, Eq. (2.2) requires the nonlinear
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Fig. 2.5: Microscopic schemes of second-harmonic generation processes in nonresonantly
(a), as well as singly (b), and twofold (c) resonantly excited three-level systems.

susceptibility χ(2) to be a pseudotensor, i.e. also to change sign under the inversion.

In the volume of centrosymmetric materials inversion symmetry simultaneously de-

mands χ(2)(r) = χ(2)(−r). These two requirements imply χ(2) ≡ 0 in the bulk of

centrosymmetric materials but allow for a non-vanishing χ(2)
s at the surface where

inversion symmetry is broken [1, 70]. The leading terms in a multipole expansion of

the nonlinear polarization are therefore [70]

Ps(Ω) = χ(2)
s (Ω=ω+ω) :E(ω)E(ω) + χ(2)

q (Ω=ω+ω) :E(ω)∇E(ω), (2.4)

where the first term is the surface electric-dipole contribution to SHG and the sec-

ond term, that contains spatial derivatives of E, describes volume-derived electric-

quadrupole and magnetic-dipole contributions.

The second-order nonlinear optical susceptibility is a third-rank tensor composed

of generally 18 elements χ
(2)
s,ijk for the triclinic C1 (1) symmetry group. For surfaces

of higher symmetry, the symmetry operations within the respective group reduce

the number of independent, non-vanishing elements. The C3v (3m) symmetry of

Si(111)7×7 and the macroscopic C4v (4mm) group of Si(001) give rise to 4 and 3

independent, nonvanishing χ(2)
s tensor components, respectively [70]. It is possible

to selectively probe individual tensor elements by an appropriate choice of input and

output polarizations.

In a microscopic description, SHG is the parametric conversion of two photons h̄ω

to one second-harmonic photon 2h̄ω in a three-wave mixing process (Fig. 2.5). Micro-

scopic expressions for the nonlinear polarization P(2) and the nonlinear susceptibility

χ(2) can be derived within a density-matrix formalism using a perturbation expansion

up to second order in the electric field. The result for χ(2) in explicit Cartesian tensor

notation is the sum of 8 terms of the form [1]

χ
(2)
s,ijk(Ω=2ω) = −N e3

h̄2

∑
g,n,n′

[
〈g|ri|n〉〈n|rj|n′〉〈n′|rk|g〉

(Ω− ωng + iΓng)(ω − ωn′g + iΓn′g)
+ · · ·

]
ρ(0)
g (2.5)
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with transition frequencies ω, line widths (relaxation rates) Γ and ground state pop-

ulation ρ(0)
g . As the product of dipole matrix elements in the numerators of Eq. (2.5)

suggests, this susceptibility describes a sequence of three transitions from an initially

occupied electronic ground state |g〉 to unoccupied intermediate states |n′〉 and |n〉 by

absorption of two photons h̄ω, followed by the emission of a second-harmonic photon

2h̄ω, which returns the system to |g〉. As a consequence of the energy denominators

in Eq. (2.5), |χ(2)| becomes maximal and thus the SH intensity resonantly enhanced,

whenever the fundamental and/or the SH frequency approximates a transition fre-

quency between two real energy levels.

2.2.2 SHG from silicon surfaces

The presence of surface states within the volume band gap of silicon enables resonant

optical transitions with photons in the visible and near infrared energy range (see

Figs. 2.2 and 2.4). The resulting resonant enhancement of the SH intensity and the

surface specifity of SHG due to the inversion symmetry of bulk silicon, together with

the fs time-resolution through the application of ultrashort laser pulses form the basis

for our investigation of the ultrafast relaxation dynamics of electronic excitations on

silicon surfaces. With the help of a incoherent SH pump–probe setup it is possible

to monitor the electronic population relaxation; the underlying coherent polarization

dynamics remains inaccessible in such type of experiment [132,133]. Our combination

of SHG with a coherent transient grating technique like degenerate four-wave mixing

(DFWM) allowed the study of single, phase-destroying electronic scattering events.

For a qualitative understanding of the electronic excitation mechanism that is

responsible for the second-harmonic five-wave mixing signal in our investigation, it is

useful to study the dependence of the reflected SHG intensity on photon energy. The

SH spectra of Si(111) in Fig. 2.6 obtained by Schmitt and Höfer reveal two resonant

structures [74,134]. Similar SH spectroscopic information for Si(111) was also obtained

experimentally by other groups [135–140] and was confirmed qualitatively by various

calculations [141–144].

The broad feature below 1.5 eV disappears when hydrogen or oxygen is adsorbed.

It originates from a resonant enhancement of SHG by the Si dangling-bond states,

which are quenched upon hydrogen or oxygen adsorption. Sum-frequency experiments

conducted by Schmitt showed that this broad feature is due to a one-photon resonance

[134].

The peak around 1.7 eV, a two-photon resonance, is a consequence of the E1

transition between the valence and conduction band of bulk silicon at 3.4 eV and

arises because of the distortion of the bulk electronic structure at the surface [145].

It corresponds to a S3–U2 transition between the bonding and antibonding states

of adatom backbonds [74]. Since the initial stage of oxygen adsorption on Si(111),

the molecular precursor, is very stable at 80 K, the 7×7 surface structure remains
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Fig. 2.6: Second-order nonlinear optical susceptibility χ(2)
s (anisotropic component χ(2)

s,xxx)
as a function of photon energy for clean Si(111)7×7 (top) and for Si(111) surfaces with all
dangling bonds saturated by hydrogen (center) and oxygen (bottom). The dangling-bond
derived broad feature below 1.5 eV (χdb) is quenched by hydrogen or oxygen adsorption,
whereas the peak at 1.65 eV (χbb) exhibits relatively little sensitivity on adsorbates. (From
Schmitt [134]).

intact for moderate exposures [146–150]. The E1-related SH resonance peak therefore

exhibits relatively little sensitivity on adsorbed oxygen.

Second-harmonic spectra of the clean Si(001) surface display qualitatively similar

features: a broad dangling bond-derived structure between 1.1 eV and 1.6 eV that is

quenched during oxygen adsorption, and a peak at 1.7 eV close to the E1 transition

[74,134,145,151–159]. The overall shape of these spectra was confirmed by calculations

[143,158–167].

Fig. 2.7 displays the joint density of states of the occupied/unoccupied Dup/Ddown
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Fig. 2.7: Joint density of states of the occupied/unoccupied Dup/Ddown dangling-bond
states on Si(001) derived from the GWA calculated bands by Pollmann et al. shown in
Fig. 2.4 [110]. This quantity respresents the influence of one-photon resonances in SHG
that arise from the surface dangling-bond states, neglecting any transition matrix element
effects. The χ(2) SH spectrum of Si(001) (dotted line) obtained by Schmitt [134] agrees very
well with the calculated bands, assuming an energetic offset of the calculation on the order
of 100 meV. A more detailed analysis of the electronic band structure in Fig. 2.4 reveals that
the excitation energy around 1.55 eV with a FWHM of 120 meV (dashed line) generates
an excited dangling-bond population both near the center (Γ) and at the surface Brillouin
zone boundary near J ′.

dangling-bond states on Si(001) that are shown in Fig. 2.4. This spectrum reveals

SHG processes to be resonantly enhanced in the broad range from 0.9 eV to 2.1 eV in

accordance with experimental SHG spectra of Si(001) (dotted line) [134], indicating

transitions between the Dup and Ddown dangling-bond states to be the primary source

of SH in that energy range. This interpretation is not unplausible due to the small

spatial overlap of the surface states with the bulk states. Calculations by Rohlfing

revealed that although the transition matrix elements between the Dup and Ddown

surface states are small compared to volume transitions, dipole selection rule consid-

erations imply non-vanishing transition probabilites in most areas of the Si(001)2×1

Brillouin zone for specific input polarizations [168]. Taking into account the contri-

butions of the two perpendicularly oriented surface domains, Rohlfing’s calculations

show non-zero transition amplitudes throughout the entire Brillouin zone [168]. The

substantial quenching of the SH signal in the range 1.2–1.8 eV upon hydrogen adsorp-

tion on Si(001) [134] also corroborates the profound involvement of the dangling-bond
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Fig. 2.8: Schematic representation of a four-wave mixing (FWM) experiment with three
synchronized incident pulses ka, kb, and kc. ka and kb generate a grating characterized by
kb−ka, from which kc is diffracted into direction kd = kc +kb−ka. The intensity of this
FWM signal as a function of the various time delays yields information about the relaxation
behavior of the system investigated.

surface states in the SHG process.

As a more detailed analysis of the electronic band structure in Fig. 2.4 shows, the

laser excitation energy centered around 1.55 eV with a FWHM of 120 meV produces

an excited dangling bond population both near the center (Γ) and at the surface

Brillouin zone boundary near J ′. The delocalization of the electronic excitation in

k-space complicates the interpretation of the measured relaxation times, since the

purely optical experimental method integrates over the entire Brillouin zone.

2.3 Degenerate four-wave mixing (DFWM)

The degenerate five-wave mixing technique of our study is derived from both second-

harmonic generation (SHG) and degenerate four-wave mixing (DFWM). Whereas

SHG is responsible for the surface specifity, DFWM enables time-resolved measure-

ments of population and polarization relaxation.

In DFWM the sample is excited by three beams with wave-vectors ka, kb, and kc,

which arrive at the sample at times ta, tb, and tc [3,169,170], as shown schematically

in Fig. 2.8. The diffracted radiation along the phasematched direction kd =kc+kb−ka

is measured as a function of the various time delays to obtain different information

about the system that is investigated. In its simplest form, DFWM can be realized

with only two incident beams, using kc = kb, which leads to a diffracted signal into

direction kd = 2kb−ka. Microscopic schemes of DFWM processes are depicted in

Fig. 2.9.

The intensity of the diffracted beam depends on the time delay between the vari-
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Fig. 2.9: Microscopic schemes of degenerate four-wave mixing processes in nonresonantly
(a) and threefold resonantly (b) excited two-level systems.

ous pulses and the relaxation behavior of the electronic system (Fig. 2.10). One can

distinguish two limiting cases: a homogeneous system and an inhomogeneously broad-

ened system. With homogeneous broadening, the diffracted third-order signal decays

exponentially with time after an exciting δ-pulse, whereas in the case of inhomoge-

neous broadening, there forms a so-called photon echo peaking at time 2τd. This is

because inhomogeneous broadening corresponds to a distribution of eigen-frequencies

of the system. Due to this distribution, after an exciting pulse, the system dephases

rapidly. A second pulse can partially rephase the system, which leads to the photon

echo.

The intensity of the time-integrated signal is shown in the two lower parts of

Fig. 2.10. In both cases the signal decays exponentially with time delay τd. In

the homogeneous case with decay constant T2/2, in the inhomogeneous case with

T2/4. From the simple exponential decays, the dephasing time T2 can be determined,

provided the nature of the line broadening is known.

The first experimental observation of a photon echo was reported by Kurnit and

coworkers in 1964 for the case of ruby [171]. They explained the phenomenon in terms

of a macroscopic oscillating electric dipole moment, which is momentarily reformed

at the time the photon echo is observed [172,173].

2.4 Diffraction from transient surface gratings

The combination of degenerate four-wave mixing, described in the preceding section,

with another photon at the sample surface results in the five-wave mixing transient

surface grating method, which is described in the following. Transient gratings have

been widely used for the coherent spectroscopy of semiconductors and of molecules

in liquid solutions [2, 3]. Two synchronized pump pulses of frequency ω and wave

vectors ka and kb produce the electronic excitation. The grating results from the

interference of the two beams, which gives rise to a spatial modulation of the linear
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Fig. 2.10: Nonlinear third-order polarizations in degenerate four-wave mixing in the two-
pulse self-diffraction geometry. Shown are the evolution of the time-resolved (TR) signal
after the second excitation pulse and the dependence of the time-integrated (TI) signal
as a function of time delay τd between the two excitation pulses. Top: Homogeneous
system. Bottom: Inhomogeneously broadened system. With homogeneous broadening, the
diffracted third-order signal decays exponentially with time-constant T2/2. In the case of
inhomogeneous broadening, there forms a photon echo peaking at time 2τd. In both cases
the time-integrated signal decays exponentially with time delay τd; in the homogeneous case
with constant T2/2, in the inhomogeneous case with T2/4. (After Ref. [3]).
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Fig. 2.11: Microscopic schemes of degenerate five-wave mixing processes in nonresonantly
(a), singly (b), threefold (c), and fourfold (d) resonantly excited three-level systems.

absorption. In case of a surface experiment, the beams incident in the x-z plane (x

denoting a direction parallel, z perpendicular to the surface) create a grating with k-

vector kG = kb,x−ka,x. A synchronized probe pulse of the same frequency ω and wave

vector kp is Bragg-diffracted from the transient grating into a direction determined

by kd,x = kp,x ± kG. The diffracted intensity is a function of the time delay between

the incident pulses and of the relaxation dynamics of the electronic system.

The situation becomes most transparent for a resonantly excited two-level system

with transition frequency ω01 = ω in the limit of weak excitation. In this case it is

sufficient to calculate the induced polarizations P and population changes N01 in the

lowest order of the field E from a density matrix description [3, 174].

∂

∂t
P

(1)
j =

iµ

h̄
Ej −

1

T2

P
(1)
j , j = a, b (2.6)

∂

∂t
N

(2)
01 =

iµ

h̄
(EaP

∗(1)
b − P (1)

a E∗b) + c.c.− 1

T1

N
(2)
01 (2.7)

∂

∂t
P

(3)
d = −2

iµ

h̄
EpN

(2)
01 −

1

T2

P
(3)
d (2.8)

The first two equations (Eqs. 2.6 and 2.7) show that the spatial modulation of the

population is not generated directly by an intensity grating of the interfering pump

pulses but by the interference of the polarization induced by one excitation pulse

with the field of the other. For the generation of the population grating N(x) =

N
(2)
01 cos(kGx), whose amplitude N

(2)
01 is assumed to decay exponentially with time

constant T1, it is thus not necessary that the two excitation pulses overlap in time.

Instead N
(2)
01 depends on the ratio of the time delay between the pulses |tb − ta| and

the dephasing time of the polarization T2. The polarization P
(3)
d induced by the

interaction of the probe pulse with the grating gives rise to the diffracted radiation of

frequency ω by dipole emission.
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Depending on the temporal order of the various pulses one can gain different

information from the diffracted signal. In one limiting case the two pump beams ka

and kb coincide on the sample, τb =0, and after a time delay the probe pulse arrives on

the surface, τprobe>0. Since in this case the probe pulse samples the temporal decay

of the transient grating, one measures T1 population relaxation times and diffusivity.

In another limiting case the second pump-pulse kb and the probe pulse hit the surface

at the same time, but after the first pump pulse ka, τb>0 and τprobe =τb. In this case

one measures dephasing times T2.

P
(3)
d (ω) is of third order in terms of the incident fields and thus not surface specific.

Instead of the fundamental frequency ω of the diffracted pulse we detect its second-

harmonic frequency 2ω. This radiation originates from an upconversion of P
(3)
d (ω)

with another probe photon at the surface. The polarization P
(4)
d (2ω) is of fourth order

in the incident fields and dipole-forbidden in the bulk of centrosymmetric materials.

In the coherent experiments discussed in Chap. 6 we are interested mainly in the

dephasing time T2 rather than in the relaxation time T1, which arises from a finite

lifetime of the excited carriers and their diffusion. In this case it is possible to work

with two incident beams and use one of the pump pulses, e.g. Eb, simultaneously as

a probe. As one beam is diffracted here from a grating it generated itself, this is a

case of self-diffraction.

The observed self-diffracted signal is determined by

P(4)
s (K

(+1)
d ; 2ω) = χ(4)

s : E∗a(ka)E3
b(kb) (2.9)

K
(+1)
d,x = 2kb,x + (kb,x−ka,x). (2.10)

Its intensity Id(2ω) ∝ |P(4)
s (2ω)|2 increases linearly with the intensity of pulse ka and

with the third power of the intensity of pulse kb. Its direction is given by Eq. (2.10)

and the relationship K2
d,x + K2

d,z = ε(2ω
c

)2. There is also a self-diffracted 2ω signal

in the same order radiating into the direction given by K
(−1)
d,x = 2kb,x − (kb,x−ka,x).

However, this signal is superimposed by the second-order sum-frequency response

P(2)
s (KSF; 2ω) = χ(2)

s : Ea(ka)Eb(kb) (2.11)

KSF,x = ka,x+kb,x, (2.12)

which will completely dominate the 2ω signal in this direction in case of a weak

grating.

A number of incoherent transient grating experiments on silicon have been per-

formed in recent years by the group of Dai [25,27,28,31,175]. By detecting diffracted

radiation from transient gratings at the fundamental photon frequency, they studied

the dynamics of photoexcited carriers in the bulk and in the near-surface region of sil-

icon on picosecond and femtosecond time scales. In contrast to our second-harmonic

diffraction scheme, their experiments were not sensitive to genuine surface states, and

they were not able to separate the coherent component of carrier relaxation.
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Fig. 2.12: Left: Transient electron population of usually unoccupied electronic states of
Si(111)7×7 at 80 K above the Fermi level (Ekin ' 0.5 eV) generated by 1.55 eV pump pulses
and detected by photoemission with 4.65 eV probe pulses for k‖ ≈ 0. Right: Schematic band
structure of Si(111)7×7 in an extended Brillouin zone with the excitation produced by the
pump pulse and its relaxation indicated by arrows. S1 to S3 and U1, U2 denote surface
states; projected bulk states are hatched. (From Berthold [177]).

Recently, Kikteva et al. used surface-specific five-wave mixing spectroscopy to

examine adsorbate dynamics at the fused silica/air interface [176]. Their transient

grating approach allowed them to infer the dynamics of low-frequency intermolecular

librational motion of different dye molecules at the sub-ps time scale [176].

2.5 Excitation of Si(111)7×7 dangling bonds

For the discussion of the actual diffraction experiment it is helpful to have some

understanding of the nature of the relevant electronic excitations and their influence

on the nonlinear optical response. For this purpose there were performed pump–

probe experiments in our group at Si(111)7×7, using both 2PPE [177] and SHG

[133]. The 2PPE investigations were conducted by Berthold and coworkers with the

fundamental and frequency-tripled laser pulses of an amplified commercial Ti:sapphire

laser (Quantronix RGA) operating at a wavelength of 800 nm and a repetition rate of

1 kHz. Pulse durations were 120 fs at the fundamental (IR) and 150 fs at the third-
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harmonic (UV) wavelength. The kinetic energy of the photoemitted electrons along

the surface normal was measured by time-of-flight detection [178].

Fig. 2.12 shows that the IR pump pulses produce an electron distribution above

the Fermi level in the bulk band gap that is probed by photoemission caused by the

UV pulses. The 2PPE intensity is seen to decay as a function of pump–probe delay

with rates that depend on the energy above the Fermi level. Since the only allowed

states in this energy region are due to the U1 surface band, which arises from partially

occupied adatoms of Si(111)7×7 [87], we attribute the observed feature to excitation

of this band near the Γ point and the fast decay to redistribution of the electrons

within the band due to electron–electron scattering [177].

The qualitative conclusions on the excitation mechanism at Si(111)7×7 from the

2PPE experiments, as well as the observed population relaxation times on a picosec-

ond and subpicosecond time scale were corroborated by time-resolved SH pump–probe

measurements in our group conducted with the same laser system [133]. These find-

ings will be discussed in more detail in Chap. 5.

The incoherent pump–probe experiments on Si(111)7×7 – two-photon photoemis-

sion and time-resolved second-harmonic generation – yield population relaxation times

on the order of hundreds of femtoseconds to picoseconds. The origin of this relaxation

is multiple scattering of excited electrons. In order to study single carrier scattering

events one needs to probe a quantity that changes its magnitude significantly in every

scattering process, such as the phase of the electronic wavefunction, that is addressed

in coherent methods. By employing the technique diffraction from transient gratings

in our study, we utilized one of these methods.
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Chapter 3

Experimental setup

This chapter provides an account of the experimental setup that was employed in the

investigation. Sect. 3.1 gives an overview of the ultra-high vacuum (UHV) system and

the preparation procedure of the silicon surfaces. The cavity-dumped 10-fs Ti:sapphire

laser system is the subject of Sect. 3.2. Closing this chapter is the description of the

optical setup in Sect. 3.3.

3.1 Ultra-high vacuum system

The creation and maintaining of UHV conditions is the prerequisite for every inves-

tigation of atomically clean surfaces. This section presents a description of the UHV

chamber and provides an account of the preparation procedures necessary to obtain

clean, well-defined silicon surfaces.

3.1.1 UHV chamber

In order to enable optical measurements in UHV, a vacuum chamber built and pre-

viously operated by Mauerer [133] was modified in such a way that it could maintain

a base pressure in the lower 10−11 mbar range. Reaching a low base pressure is the

prerequisite for keeping the sample surface atomically clean over an entire measuring

period. This issue is particularly crucial since the low optical signal of a few pho-

tons per second required extended periods of data acquisition around several 1000

seconds. The detailed characterization of the vacuum conditions and the inspection

of the sample required the presence of several measurement instruments within the

UHV chamber. The sample manipulator needed to provide a large number of trans-

lation and rotation degrees of freedom, while allowing for a large range of sample

temperatures.

Fig. 3.1 provides a scheme of the UHV chamber (Varian) and its periphery. The

system was baked at a temperature of 430 K, limited by the maximal allowable tem-

perature of the rotary manipulator feedthrough, over a period of typically two days.

Both sample and sample manipulator were degassed at 650 K during the entire bake-

out period. The procedure resulted in a base pressure of typically 2×10−11 mbar. For
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Fig. 3.1: Schematic representation of the UHV system consisting of the separately-
pumped gas dosing system (left side) and the UHV chamber (right side) (adapted from
Mauerer [133]). The abbreviations are explained in Tab. 3.1.

TP1, TP2, TP3 Turbomolecular pumps (Balzers), 500 l/s, 56 l/s, 190 l/s

TSP Titanium sublimation pump (Varian), 2000 l/s

IGP Ion getter pump (Varian), 200 l/s

RP1, RP2 Two-stage rotary vane pumps (Edwards), 30 m3/h, 30 m3/h

LNT Liquid nitrogen trap

CT Catalyzer trap

DPF Differentially pumped feedthrough

IG Ionization gauge

TG Thermocouple gauge

PV Plate valve CF 200

DV UHV dosing valve

EPV Electro-pneumatic protection valve

D Doser with tungsten filament

Tab. 3.1: Vacuum components of the UHV system shown in Fig. 3.1. The combination of
different pumps ensured the efficient and thorough pumping of the diverse molecules in the
rest gas, that vary in mass and reactivity.
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protection of the vacuum against power failure, loss of cooling water, or pump failure,

the system is equipped with electro-pneumatic valves that are addressed by coupled

circuits. A dosing system allows for the dosing of controlled amounts of research

grade oxygen (purity 4.8, 99.998 Vol.-%) via a gas shower and hydrogen (purity 5.0,

99.999 Vol.-%) via a needle doser into the vacuum chamber. By resistive heating of

a tungsten filament in front of the needle doser in the chamber, it is also possible to

produce atomic hydrogen.

A quadrupole mass spectrometer (Balzers) is used for temperature-programmed

desorption (TPD) measurements and for a precise determination of the various com-

ponents of the rest gas in the chamber. For the characterization of the sample surface

the chamber is equipped with a combined retarding-field 4-grid LEED/Auger instru-

ment (Omicron, Spectaleed).

The optical measurements require the accurate positioning of the sample in space.

This is especially important for the exact adjustment of both the plane of incidence

and the polarization plane of the incoming light with respect to the surface orientation.

The sample manipulator can be freely translated in x-, y-, and z-direction with an

accuracy in the µm range. Rotations around the vertical axis are possible over the

entire 360◦; rotations around both horizontal axes can be performed over a range of

6◦ with a precision of 0.1 mrad.

For temperature dependent measurements and for the preparation procedure the

temperature of the silicon sample could be varied from 80 K to 1600 K. The silicon

samples are clamped onto two copper bars with spring-loaded molybdenum brackets.

The sample is isolated from both copper and molybdenum with additional silicon

spacer platelets. The two copper blocks are attached to a liquid-nitrogen cooled

cryostat separated by an insulating sapphire disk. The high cooling efficiency of this

construction enabled the cooling down of the silicon sample from room temperature

to 80 K within 5 minutes; furthermore, it enabled the sample holder temperature to

stay below 100 K even at the peaks of the sample heating cycles (1300 K). A more

detailed description of the sample holder can be found in Ref. [179]. Direct resistive

heating is used to control the silicon surface temperature. The surface temperature is

measured with a NiCr/NiAl (type K) thermocouple that was cemented onto the rear

side of the sample with a zirconium-oxide based ceramic glue (T-E-Klebetechnik). It

is carefully ensured that there is no direct contact between thermocouple and silicon

sample; therefore the thermocouple contact is fully embedded in the glue. It has been

verified by Auger electron spectroscopy (AES) and low-energy electron diffraction

(LEED) that no contaminants, in particular nickel, diffuse onto the front surface

of the sample, even for the highest annealing temperatures. By checking with an

infrared pyrometer (Keller) it was verified that the thermocouple correctly reproduces

the actual surface temperature with an absolute accuracy of ±15 K and an estimated

relative uncertainty within one experiment of ±5 K.



28 Chapter 3. Experimental setup

3.1.2 Silicon surface preparation

Besides very clean UHV conditions, the sample preparation procedure is of crucial

importance for the production of atomically clean, well-ordered surfaces with few

chemical and structural defects.

The base material was single-crystal, Czochralski (Cz) grown, n-type phosphorus-

doped silicon (Virginia Semiconductor) with specified resistivities between 6 and 12

Ωcm corresponding to a P donor density ∼ 5 × 1014 cm−3 [180]. The nominally flat

wafers of 3” diameter and a thickness of 0.6 mm were single-side polished and oriented

to within ±0.25◦ along the principal [111] or [001] axis, respectively. The Si(111) and

Si(001) samples used for the experiments were cut with a diamond scribe from the

wafers into strips of 45 × 9 mm2 size. After rinsing in extra pure methanol and a

careful visual inspection for scratches and dust residues, the samples were mounted

directly onto the manipulator. No further treatment is required for the samples before

insertion into UHV. This is because high-quality thermal oxide layers are grown on

commercial silicon wafers under very clean process environments. These ’native’ oxide

layers protect the silicon from contamination. Therefore after outgassing the sample,

the thermal decomposition of the oxide in UHV will remove the oxide together with

contaminants on its outer surface.

Outgassing the sample and manipulator at 650 K during the entire bake-out period

of the UHV chamber removed volatile adsorbates without desorbing the protective

oxide layer. In the initial preparation after bake-out, the native oxide layer was

removed by a series of heating cycles with peak temperatures rising in steps of 50

K and cooling rates of 2 Ks−1. The maximal temperatures applied were 1300 K

and 1200 K for Si(111) and Si(001), respectively; the chamber pressure stayed below

1× 10−9 mbar at any time within the annealing cycles. Both duration and maximal

values of the high-temperature annealing and cooling rates are critical parameters

for the preparation of silicon surfaces with long-range ordered superstructure and

small defect concentrations, as known from LEED and scanning tunneling microscopy

(STM). Particularly in Si(001), extended annealing leads to surface roughening [181].

To protect the surface from adsorption of rest gas components, especially of non-

volatile carbohydrates, the sample was passivated with an exposure of 10 Langmuir

(1 L = 10−6 Torr·s) O2 between measurement periods. Before the beginning of each

measurement cycle the passivation layer of a few monolayers was desorbed by a single

heating cycle peaking at 1300 K and 1200 K for Si(111) and Si(001), respectively.

After the preparation procedure the quality of the surface was inspected in situ

by LEED and Auger electron spectroscopy (AES). The LEED pattern in Fig. 3.2

taken at a primary electron energy of 50 eV shows the sharp diffraction spots of the

Si(111)7×7 reconstruction. An analysis of Auger electron spectra (Fig. 3.3) showed

that the surface impurity density was below the detection limit of the retarding-field

Auger spectrometer. In particular, the absence of carbon and oxygen on the surface
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Fig. 3.2: LEED pattern of a clean Si(111)7×7 surface at 80 K taken at a primary electron
energy of 50 eV. In addition to the intense hexagonal 1×1 spots, the sharp diffraction spots
of the 7× 7 reconstruction are clearly visible. The 2× 2 pattern of the broken bonds inside
each of the two triangular halves of the unit cell gives rise to enhanced diffraction intensities
for diffraction spots close to 2× 2 positions.
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Fig. 3.3: Auger spectrum of a clean Si(111)7×7 surface at 80 K obtained with a primary
electron energy of 2.2 kV. The energy positions of Auger electrons emitted from silicon
(LMM), carbon (KLL), and oxygen (KLL) atoms are marked. Carbon and oxygen impurity
concentrations are below the detection limit of a few percent of a monolayer.
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was routinely checked by AES.

3.2 Cavity-dumped 10-fs laser

In order to deliver meaningful quantitative results from any optical experiment, it is

necessary to characterize the light source employed. This section therefore provides an

account of several methods used to gain information about temporal and spatial pulse

shape, spectrum, pulse energy, pulse quality, and long-term stability of the Ti:sapphire

laser with which the experiments were conducted. The investigation shows that the

home-built laser yields 12.7-fs pulses around 800 nm with energies of 36 to 50 nJ at

repetition rates from 100 kHz to 2 MHz.

In Kerr-lens mode-locked (KLM) Ti:sapphire oscillators a solitary wavepacket is

generated by the interplay of self-phase modulation (SPM) and negative group velocity

dispersion (GVD). The main limitations for shortening the pulse duration down to the

10 fs regime are the presence of GVD in the laser medium and third-order dispersion

(TOD) in the cavity optics [182]. By using a short Ti:sapphire crystal and fused silica

prisms, in order to reduce the gain medium GVD and cavity optics TOD, respectively,

pulses of 11 fs duration could be obtained [183]. The pulse energies around a few nJ

of typical Ti:sapphire laser oscillators are too small for the measurement of the highly

nonlinear optical processes in our diffration experiment. For our experiments we used

a cavity-dumped Ti:sapphire system that was home-built by Shumay and Berthold

after a model from the group of Wiersma [184]. The technique of cavity dumping

is capable to increase the pulse energy by about one order of magnitude through a

reduction of the repetition rate while preventing any significant pulse broadening.

Fig. 3.4 shows a schematic representation of the cavity-dumped Ti:sapphire laser

used for the SH self-diffraction experiments. The 4.5 mm short Brewster-cut Ti-

doped sapphire crystal rod (Döhrer Elektrooptik) is optically pumped by a frequency-

doubled (532 nm) Nd:YVO4 laser (Spectra Physics, Millennia). The mode-locked

pulses are compressed by two intra-cavity Brewster-cut fused silica prisms. For the

cavity-dumping a 3 mm fused silica Bragg cell (Camac Systems) is used as acousto-

optic modulator; the crystal was addressed by a radio-frequency driver (Camac Sys-

tems) that is fed with the output-coupled laser pulses taken by a photodiode.

Any quantitative discussion of optical time-domain experiments requires the ac-

curate characterization of the temporal properties of the employed laser pulses. For

the determination of the pulse duration and phase modulation we utilized two differ-

ent second-harmonic autocorrelation approaches. Fig. 3.5 shows the interferometric

autocorrelation of the cavity-dumped pulses obtained with a Michelson interferome-

ter in which the second harmonic is generated collinearly in a 30 µm thin β-BaBO3

(BBO) crystal (Optilab). A least-squares fit with a variable pulse duration τp us-

ing sech2-pulses yields τp = 12.7 fs. From the shape of the envelope and the the-
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Fig. 3.4: Cavity-dumped Ti:sapphire laser used for the second-harmonic diffraction in-
vestigation. Since the technique of cavity-dumping enhances pulse energy by one order of
magnitude compared to an ordinary laser oscillator, through a reduction of the repetition
rate by a factor of 100, the second-harmonic diffracted signal from the highly nonlinear
five-wave mixing process is intensified by two orders of magnitude.

oretically expected peak-to-background ratio of 8 to 1 the phase modulation of the

pulses is concluded to be close to zero; the pulses are hence unchirped [185]. The

inset of Fig. 3.5 shows the background-free intensity autocorrelation trace from the

Si(001)c(4×2) surface at 80 K in UHV detected in the sum-frequency direction of two

non-collinear beams. A sech2 fit yields a pulse duration of 14.9 fs over three and a

half orders of magnitude in intensity. The 4-mirror version, in which the ’Z’ with the

Bragg cell is left away, produces unchirped pulses as short as 10 fs with 5 nJ of energy

at a repetition rate of 82 MHz.

The gathering of spectral information of the laser pulses is important for the

interpretation of results obtained from inhomogeneously broadened systems such as

the U1/S1 surface band on Si(111)7×7. In combination with temporal data it is

also possible to deduce the amount of frequency modulation (chirp) within the pulse.

The spectrum of the cavity-dumped pulses taken by a photodiode array attached to

a grating spectrometer is shown in Fig. 3.6. It displays a single clean peak over 4

orders of magnitude in intensity with its maximum at 809.5 nm and a full-width at

half-maximum (FWHM) of 64.4 nm, which corresponds to a spectral bandwidth of

120 meV. Together with the pulse duration this result implies a duration–bandwidth

product of ∆ν∆t = 0.37. As the product lies between the Fourier transform limit of

0.315 and (2 ln 2)/π = 0.441 for sech2 and Gaussian pulses, respectively, the pulses
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Fig. 3.5: Interferometric second-harmonic autocorrelation trace of the cavity-dumped
pulses from the Ti:sapphire laser. A least-squares fit using sech2 pulses yields a pulse du-
ration of 12.7 fs. The shape of the pulse envelope together with the theoretically expected
peak-to-background ratio of 8 to 1 implies the absence of significant phase modulation
(chirp). Inset: Background-free intensity autocorrelation from the Si(001)c(4×2) surface
at 80 K in UHV. A sech2 pulse duration of 14.9 fs is shown over 3 and a half orders of
magnitude in intensity.

are bandwidth-limited and therefore unchirped.

Besides the temporal and spectral characterization of the laser pulses, a spatial

analysis of the beam is mandatory to ensure a smooth, time-independent distribution

of intensity in space and thereby enabling a qualitative description of spatial pulse

overlap in the focus on the silicon surface. The spatial beam profile of the cavity-

dumped pulses taken with a CCD camera as displayed in Fig. 3.7 remained constant

in time over periods of many hours. An analysis of the CCD images yielded a beam

circularity of 85% and an excellent fit-accuracy to a Gaussian pulse shape of 95%.

The quality of the cavity-dumping process is monitored with a ns-fast photodiode.

Fig. 3.8 shows the energy in the oscillator cavity and the cavity-dumped pulse as a

function of time, displaying the oscillator roundtrip frequency of 82 MHz and a side-

pulse suppression ratio of smaller than 1:30.

The low intensity of the highly nonlinear diffracted signal required measuring

periods of the order of several 1000 s. Therefore the long-term stabilty of the light
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Fig. 3.6: Spectrum of the cavity-dumped pulses from the Ti:sapphire laser showing its peak
intensity at 810 nm and a FWHM of 64 nm, which corresponds to a spectral bandwidth of
120 meV. Inset: Same spectrum on a logarithmic intensity scale displaying a clean single
maximum over 4 orders of magnitude.

source employed is of crucial importance. The intensity of the cavity-dumped pulses

from the Ti:sapphire laser is shown in Fig. 3.9 over a period of more than 2 hours.

The applications of such an intense, short-pulse, and coherent light source in sur-

face science are multifarious. Besides the monitoring of electronic dephasing by SH

diffraction, there is a variety of other scientific topics that can be advantageously

addressed by this laser system. The investigation of ultrafast electron dynamics with

time-resolved SHG and 2PPE and the generation and shaping of surface electron

wavepackets are just two examples. One might also think about the mapping of ex-

cited state potential energy surfaces and the real-time study of elementary photochem-

ical reactions. In combination with time-of-flight (TOF) photoelectron spectroscopy

the system is also very well suited for probing sensitive adsorbate layers.

3.3 Optical setup

The optical setup of the SH self-diffraction experiment is shown in Fig. 3.10. The

strategy for its design was driven by several stringent requirements that were a result

of the aim of the experiment. The investigation was aimed at detecting a coherent,
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Fig. 3.7: Spatial intensity beam profile of the cavity-dumped pulses from the Ti:sapphire
laser taken with a CCD camera. The intensity distribution in space was constant in time
and showed a beam circularity of 85% as well as vertical and horizontal fit-accuracies to a
Gaussian pulse shape of 95%.

ultrafast, highly nonlinear optical process that was resonant with optical transitions

between electronic surface states on silicon. Coherent, femtosecond, intense light

pulses should be delivered to a sample in UHV and the resulting optical signal of a

few photons per second should be monitored. These goals determined the selection

of the light source, the optical components in the beam path, and of the detection

system.

The 13-fs, 800-nm pulses from our Ti:sapphire laser that were intensified by cavity-

dumping to 50 nJ per pulse met all those requirements. The laser system was described

in more detail in Sect. 3.2.

The function of the optical components in the beam path was twofold.

First, they should deliver the light from the source to the sample in UHV, preserv-

ing the pulses’ extraordinary qualities. Light transmission through every material is

accompanied by dispersion that leads to temporal broadening especially of ultrashort

pulses. Therefore the number of transmissive elements in the beam path was kept to

a minimum. In addition, the unavoidable transmissive elements – pulse-compression

prisms, beam-splitters, half-wave plates, and UHV viewport – were carefully selected

and tested. The prisms in the pulse compressor (Bernhard Halle Nachfl.) were made

of fused silica (Suprasil 1). This material was chosen because it provides an extremely

low third-order dispersion coefficient. The prisms were cut at their Brewster angle

69.06◦ for 800 nm light in order to minimize reflection losses. They were polished to

a planarity of λ/10 to sustain the spatial coherence in the beam.

For the continuous rotation of the polarization, an isotropic material like fused
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Fig. 3.8: Pulse energy in the oscillator cavity (bottom) and cavity-dumped pulse (top)
from the Ti:sapphire laser as a function of time taken with a ns-fast photodiode. The
oscillator roundtrip frequency of the mode-locked pulses is 82 MHz. From the shape of the
cavity-dumped pulse a side-pulse suppression ratio of smaller than 1:30 can be deduced.

silica is unsuitable. Therefore the half-wave retardation plates for 800 nm (Bernhard

Halle Nachfl.) were made of optically polished crystalline quartz. To minimize dis-

persion effects, they were specified low order to keep their thickness small (0.2 mm).

In order to minimize reflection losses both sides of every plate were covered with an

antireflection coating. The 3.3 mm thick, fused silica (Suprasil 1) UHV viewport

(Caburn-MDC) was carefully checked for residual birefringence. Most parts in the

beam path were reflecting mirrors. As the spectral bandwidth of dielectric mirrors

was too small for the broadband ultrashort pulses, silver mirrors (Balzers) were em-

ployed. Their planarity was specified to better than λ/20 in order to preserve the

spatial coherence of the beam.

Second, the optical elements should open the possibility to alter several properties

of the photons in a controlled manner. The chirp of the pulses could be adjusted by

translating one of the two compressor prisms. The direction of the linear polarization

of all beams could be tuned continuously by changing the angle of the half-wave

plates around the optical axis. For a variation of the time delay between the various

pulses, tunable delay arms were inserted into the beam path. Besides the mechanical

stability, the resolution of the delay stages is their most critical parameter. A temporal
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Fig. 3.9: Intensity of the cavity-dumped pulses from the Ti:sapphire laser over a period of
2 hours. The long-term stability of the laser pulses was an essential prerequisite, since the
quantitative analysis of the low-level diffracted signal on the order of photons/sec depended
on extended signal integration periods.

resolution of 1 fs corresponds to a spatial resolution of 0.15 µm. For this purpose, two

microstepping motor driven positioning stages (Aerotech) with 0.1 µm resolution and

a piezoelectrically driven translation stage (Physik Instrumente) with 2 nm resolution

were employed.

The laser pulses were split with an intensity ratio of 3:7 in the two-beam pump–

probe and self-diffraction setup, and of 2:1:1 in the three-beam geometry, leading to

typical excitation fluences in the 100 µJ/cm2 regime. The beams were recombined on

the sample at angles of 22◦ and 24◦ (2 beams), and 19◦, 22◦, and 27◦ (3 beams) with

respect to the surface normal. The plane of incidence was normal to the [21̄1̄] direction

of Si(111) and normal to [110] for Si(001). Since after billions of shots onto the sample

spot, the SH signal remained at the same level, we exclude any laser induced damage

of the surface.

The detection system was optimized for the simultaneous monitoring of two beams

of radiation with a wavelength around 400 nm at a rate ranging from 0.1 to 106 pho-

tons per second. The installation of two detection channels allowed the simultane-

ous recording of the sum-frequency cross-correlation with either a second-harmonic

diffracted trace or a reflected SHG beam. This geometry allowed the independent

determination of time-delay zero and thus corrected for delay shifts with time. After

parallelization of all emerging beams from the surface with the help of a confocal fused

silica lens two beams were selected by circular apertures of 3 mm diameter. Suppres-
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Fig. 3.10: Schematic representation of the optical setup for the second-harmonic diffraction
experiment. After compression by two prisms, the pulses are split into two or three beams,
which are focused onto the silicon surface in UHV. From the bunch of reflected and diffracted
beams emerging from the surface, two second-harmonic rays are detected simultaneously and
processed by a two-channel photon counter.

sion of the dominant fundamental radiation at 800 nm was achieved by spatial filtering

with apertures as well as spectral selection with optical colored glass filters (Schott

BG 39, 3 mm), and dielectric mirrors on fused silica substrates (Laser Components).

The second-harmonic 400 nm photons were detected with two photon-counting type

photomultiplier tubes (Hamamatsu R1527P) with specified dark currents of 0.1 nA,

and counted in two separate channels by a pulse counter (Stanford Research Systems

SR 400) that was time-gated at the laser repetition rate triggered by a photodiode.

Dark count rates of 5 counts per minute with the laser pulses blocked and 0.2 to 4

counts per second unblocked that was due to unavoidable stray light from the surface

were achieved; this threshold corresponds to the detection of a 100 W lightbulb at the

distance Earth–Moon through the aperture of the PMT. Taking into account the 1017

photons per second emerging from the surface, the detectability threshold corresponds

to a ratio of 10−17.
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Chapter 4

Theory and simulation

This chapter provides the theoretical background for the description of the diffracted

radiation that originates from the surface. The density-matrix formalism that we

employ is a semi-classical approach, in which the electromagnetic light field is treated

classically, whereas the material system is described quantum-mechanically by its den-

sity operator [1]. The light–matter interaction Hamiltonian is inserted in the electric

dipole approximation. The approach is mathematically equivalent to a second quan-

tization method within the interaction picture that yields equations of motion derived

from the Heisenberg equation [186]. We treat the relaxation of the system within a

(Markovian) relaxation-time approximation. Sect. 4.1 starts with an introduction into

the density-matrix formalism, which is then applied to an excited three-level system

in the limit of weak excitation. An expansion in terms of the electric fields leads to

the equations of motion for the nonlinear optical polarizations and populations up to

the fourth order, in analogy to the optical Bloch equations [3]. In App. A we present

the explicit integration of these iterative differential equations. We derive solutions

for special pulse forms of the electric field and treat some special cases like vanishing

relaxation times. The numerical integration of the diffracted fourth order signal is the

topic of App. B. In Sect. 4.2 we discuss several aspects of the numerical simulation

with respect to variations of various input parameters, based on the results of App. B.

4.1 Density matrix expansion

4.1.1 General considerations

The density operator ρ is defined as the ensemble average over the product of the ket

and bra state vectors

ρ =
∑
j

pj|ψj〉〈ψj| = |ψ〉〈ψ|. (4.1)

The ensemble average of a physical quantity P is then given by

〈P〉 = 〈ψ|P|ψ〉 = Tr(ρP). (4.2)

The diagonal matrix elements ρnn represent the population of the system in state
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|n〉, while the off-diagonal matrix elements ρnn′ designate a coherent polarization, also

called coherence, between |n〉 and |n′〉.
From the definition of ρ (Eq. 4.1) and from the Schrödinger equation for |ψ〉 one

can readily obtain the equation of motion for ρ,

ρ̇ =
1

ih̄
[H, ρ], (4.3)

known as the Liouville-von Neumann equation. The Hamiltonian H is composed of

three parts [1]

H = H0 +Hint +Hrandom. (4.4)

H0 is the Hamiltonian of the unperturbed material system with eigenstates |n〉 and

eigenenergies En so that H0|n〉 = En|n〉. Considering a system with three levels |a〉,
|b〉, and |c〉,

H0 =


Ea . .

. Eb .

. . Ec

 . (4.5)

Hint is the interaction Hamiltonian describing the interaction of light with matter. In

the electric dipole approximation Hint = −µ · E,

Hint =


. δab .

δ∗ab . δbc
. δ∗bc .

 (4.6)

with components δnk = ernk · E(R, t).

Hrandom is a Hamiltonian describing the random perturbation on the system by the

thermal reservoir around the system

ρ̇relax =
1

ih̄
[Hrandom, ρ]. (4.7)

Within the Lindblad approach of the Markovian relaxation-time approximation this

dissipation term becomes

ρ̇relax = −Γρrelax (4.8)

with a constant relaxation rate matrix Γnk. A perturbation expansion of Eq. (4.3)

into a power series of E yields

ρ̇(n) =
1

ih̄

(
[H0, ρ

(n)] + [Hint, ρ
(n−1)]

)
− ρ(n)

Ti
(4.9)

with

[H0, ρ
(n)] =


Ea . .

. Eb .

. . Ec




λ l m

l∗ µ n

m∗ n∗ ν

−
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−


λ l m

l∗ µ n

m∗ n∗ ν



Ea . .

. Eb .

. . Ec

 (4.10)

= −


. (Eb − Ea)l (Ec − Ea)m

−(Eb − Ea)l∗ . (Ec − Eb)n
−(Ec − Ea)m∗ −(Ec − Eb)n∗ .

 .
Eq. (4.9) can now be solved explicitly for ρ(n) in successive orders. The following

sections derive differential equations for ρ(n) for n ≤ 4. These equations are integrated

explicitly in App. A and numerically in App. B.

4.1.2 Zeroth order

The usual initial condition reflects the unperturbed system in the ground state,

ρ(0) =


1 . .

. . .

. . .

 . (4.11)

4.1.3 First order

From Eqs. (4.6) and (4.11) follows

[Hint, ρ
(0)] =


. δab .

δ∗ab . δbc
. δ∗bc .




1 . .

. . .

. . .

−

−


1 . .

. . .

. . .




. δab .

δ∗ab . δbc
. δ∗bc .

 (4.12)

=


. −δab .

δ∗ab . .

. . .

 .
With

ρ(1) =


. p(1) .

p(1)∗ . .

. . .

 (4.13)

and with Eq. (4.9), the equation of motion for the first-order polarization p(1) thus is

ṗ(1) =

(
−Eb − Ea

ih̄
− 1

T2,p(1)

)
p(1) − δab

ih̄
(4.14)
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4.1.4 Second order

From Eqs. (4.6) and (4.13) follows

[Hint, ρ
(1)] =


. δab .

δ∗ab . δbc
. δ∗bc .




. p(1) .

p(1)∗ . .

. . .

−

−


. p(1) .

p(1)∗ . .

. . .




. δab .

δ∗ab . δbc
. δ∗bc .

 (4.15)

=


δabp

(1)∗ − δ∗abp(1) . −δbcp(1)

. δ∗abp
(1) − δabp(1)∗ .

δ∗bcp
(1)∗ . .

 .
With

ρ(2) =


n(2) . p(2)

. −n(2) .

p(2)∗ . .

 (4.16)

and with Eq. (4.9), the equations of motion for the second-order population n(2) and

polarization p(2) thus are

ṅ(2) = − n(2)

T1,n(2)

+
δabp

(1)∗ − δ∗abp(1)

ih̄

ṗ(2) =

(
−Ec − Ea

ih̄
− 1

T2,p(2)

)
p(2) − δbcp

(1)

ih̄

(4.17)

4.1.5 Third order

From Eqs. (4.6) and (4.16) follows

[Hint, ρ
(2)] =


. δab .

δ∗ab . δbc
. δ∗bc .




n(2) . p(2)

. −n(2) .

p(2)∗ . .

−

−


n(2) . p(2)

. −n(2) .

p(2)∗ . .




. δab .

δ∗ab . δbc
. δ∗bc .

 (4.18)

=


. −2δabn

(2) − δ∗bcp(2) .

2δ∗abn
(2) + δbcp

(2)∗ . δ∗abp
(2) + δbcn

(2)

. −δ∗bcn(2) − δabp(2)∗ .

 .
With

ρ(3) =


. p

(3)
ab .

p
(3)∗
ab . p

(3)
bc

. p
(3)∗
bc .

 (4.19)
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and with Eq. (4.9), the equations of motion for the third-order polarizations p
(3)
ab and

p
(3)
bc thus are

ṗ
(3)
ab =

(
−Eb − Ea

ih̄
− 1

T2,pab(3)

)
p

(3)
ab −

2δabn
(2) + δ∗bcp

(2)

ih̄

ṗ
(3)
bc =

(
−Ec − Eb

ih̄
− 1

T2,pbc(3)

)
p

(3)
bc +

δ∗abp
(2) + δbcn

(2)

ih̄

(4.20)

4.1.6 Fourth order

From Eqs. (4.6) and (4.19) follows

[Hint, ρ
(3)] =


. δab .

δ∗ab . δbc
. δ∗bc .




. p
(3)
ab .

p
(3)∗
ab . p

(3)
bc

. p
(3)∗
bc .

−

−


. p

(3)
ab .

p
(3)∗
ab . p

(3)
bc

. p
(3)∗
bc .




. δab .

δ∗ab . δbc
. δ∗bc .

 (4.21)

=


δabp

(3)∗
ab − δ∗abp

(3)
ab . δabp

(3)
bc − δbcp

(3)
ab

. (δ∗abp
(3)
ab − δabp

(3)∗
ab ) .

+(δbcp
(3)∗
bc − δ∗bcp

(3)
bc )

δ∗bcp
(3)∗
ab − δ∗abp

(3)∗
bc . δ∗bcp

(3)
bc − δbcp

(3)∗
bc

 .

With

ρ(4) =


n(4)
a . p(4)

. n
(4)
b .

p(4)∗ . −n(4)
a − n

(4)
b

 (4.22)

and with Eq. (4.9), the equations of motion for the fourth-order populations n(4)
a and

n
(4)
b and polarization p(4) thus are

ṅ(4)
a = − n(4)

a

T1,na(4)

+
δabp

(3)∗
ab − δ∗abp

(3)
ab

ih̄

ṅ
(4)
b = − n

(4)
b

T1,nb(4)

+
(δ∗abp

(3)
ab − δabp

(3)∗
ab ) + (δbcp

(3)∗
bc − δ∗bcp

(3)
bc )

ih̄

ṗ(4) =

(
−Ec − Ea

ih̄
− 1

T2,p(4)

)
p(4) +

δabp
(3)
bc − δbcp

(3)
ab

ih̄

(4.23)

4.1.7 Summary of differential equations

It is convenient to introduce

p̃(1) = p(1)e−iωt
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p̃(2) = p(2)e−i2ωt

p̃
(3)
ab = p

(3)
ab e−iωt (4.24)

p̃
(3)
bc = p

(3)
bc e−iωt

p̃(4) = p(4)e−i2ωt

and detunings ∆ between the incident field frequency and the different transition

frequencies

∆ab = ω − Eb − Ea
h̄

∆bc = ω − Ec − Eb
h̄

(4.25)

∆ac = 2ω − Ec − Ea
h̄

= ∆ab + ∆bc.

With electric fields in the slowly-varying-envelope approximation and couplings δ in

the rotating-frame approximation

δnk = −µnkE(t)eiωt, (4.26)

assuming matrix elements µ and amplitude E to be real, and relaxation rates Γ as

a function of the (longitudinal) population relaxation times T1,a, T1,b, T1,c and the

(transverse) pure dephasing times T ∗2,a, T
∗
2,b, T

∗
2,c

Γ1,b =
1

T1,b

Γ1,c =
1

T1,c

Γ2,ab =
1

T ∗2,a
+

1

T ∗2,b
+

1

2T1,b

(4.27)

Γ2,bc =
1

T ∗2,b
+

1

T ∗2,c
+

1

2T1,b

+
1

2T1,c

Γ2,ac =
1

T ∗2,a
+

1

T ∗2,c
+

1

2T1,c

,

Eqs. (4.14), (4.17), (4.20), and (4.23) can be summarized as
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˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE

h̄

ṅ(2) = −Γ1,bn
(2) − iµabE

h̄
(p̃(1) − p̃(1)∗)

˙̃p
(2)

= −(i∆ac + Γ2,ac)p̃
(2) − iµbcE

h̄
p̃(1)

˙̃p
(3)

ab = −(i∆ab + Γ2,ab)p̃
(3)
ab +

2iµabE
h̄

n(2) − iµbcE
h̄

p̃(2) (4.28)

˙̃p
(3)

bc = −(i∆bc + Γ2,bc)p̃
(3)
bc −

iµbcE
h̄

n(2) +
iµabE
h̄

p̃(2)

ṅ(4)
a = −iµabE

h̄
(p̃

(3)
ab − p̃

(3)∗
ab )

ṅ
(4)
b = −Γ1,bn

(4)
b +

iµabE
h̄

(p̃
(3)
ab − p̃

(3)∗
ab )− iµbcE

h̄
(p̃

(3)
bc − p̃

(3)∗
bc )

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) − iµbcE

h̄
p̃

(3)
ab +

iµabE
h̄

p̃
(3)
bc .

The iterative differential equations (4.28) are equivalent to the expansion of the

optical Bloch equations in terms of the electric field [3], named in analogy to the

equations first derived by Bloch for non-dissipative independent two-level spin systems

[187,188].

4.2 Discussion of numerical simulations

In order to obtain analytical results, the excitation pulses E in the optical Bloch equa-

tions (4.28) are frequently assumed to be δ-pulses in time [189]. This treatment bears

several inadequacies for the determination of the nonlinear optical populations and

polarizations. Within this approximation the third and fourth order nonlinear optical

polarizations are identically zero for negative time delays. In addition, there remain

only two (one) non-vanishing terms in p(4) (p(3)), out of six (two) terms altogether (see

Sect. A.6). In consequence, the δ-pulse approximation only yields relevant results for

time delays that are large compared to the pulse duration, since the different optical

pulses do no longer overlap temporally in this case.

In order to acquire meaningful results at time delays small compared to the pulse

width, it is thus mandatory to solve the optical Bloch equations (4.28) numerically.

This is especially crucial in our investigation that experimentally delivers diffracted

signal shifts on the order of the pulse duration (see Figs. 6.1 and 6.8). A detailed

description of the numerical integration is the topic of App. B.

The following sections present results of the numerical treatment for the SH self-
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Fig. 4.1: Normalized SH self-diffracted intensity as a function of pump–probe time delay
calculated for the six different photon processes A through F (Eqs. B.7–B.12) individually
as shown schematically in Fig. 6.11, as well as for all six processes A–F combined (Eq. B.13).
The calculation is performed for a homogeneous, resonantly excited three-level system for
a pulse duration of 14 fs and T1 and T ∗2 times of 100 fs. The traces C, D, and F are almost
identical to the traces A, B, and E, respectively. Both absolute magnitude and sign of the
shifts with respect to time delay zero are plausible from the photon diagrams in Fig. 6.11,
as explained in the text.

diffracted intensity as a function of time delay. Numerical results for the SH three-

beam experiment are discussed in Chap. 6. The influence of several parameters and

physical quantities on the diffracted signal is investigated, such as the behavior of

the distinct photon process, pulse duration, detuning of the pulse with respect to

the transition frequencies, and most importantly the relaxation times. This analysis

yields important information for the interpretation of the experimental data.

4.2.1 Behavior of the different photon processes

The explicit integration of the optical Bloch equations (4.28) up to the fourth order

polarization p(4) in App. A reveals the existence of six distinct terms contributing

to the SH diffracted signal in each of the self-diffracted directions, e.g. 3ka−kb (see

Eq. A.9). A schematic illustration of the emergence of the six different terms from the

differential equations through four consecutive optical transitions between the three

participating electronic levels is shown in Fig. 6.10. The six photon processes denoted

A–F themselves are depicted in Fig. 6.11.

Fig. 4.1 shows the SH self-diffracted correlation traces calculated for the six distinct
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photon processes A through F individually (from Eqs. B.7–B.12), as well as for all six

processes A–F combined (from Eq. B.13). Input parameters for the calculation that

assumed a homogeneous, resonantly excited three-level system are a pulse duration of

14 fs, and all population relaxation times T1 and pure dephasing times T ∗2 of 100 fs.

The correlation traces for the individual photon processes appear in three qualitatively

different shapes, since the signals of C, D, and F are too close to the signals A, B,

and E, respectively, to be distinguishable on the scale of Fig. 4.1.

Traces B and D, which differ only in the temporal sequence of the third and fourth

incident photon (see Fig. 6.11), display the biggest shift to positive time delays. This

is plausible due to the fact that all three photons of the second pulse temporally

follow the photon of the first pulse. Therefore it is not necessary for the two pulses to

temporally overlap for a finite SH self-diffracted signal to appear, as long as a finite

dephasing time allows the coherent polarization to remain long enough in the surface

to interact with the electric field of the second pulse. As a consequence, the shift of

traces B and D with respect to time delay zero varies sensitively with the dephasing

time T2 of the polarization.

This is different to the situation for traces A and C, which also differ only in

the sequence of photons three and four. Here, the three photons of pulse two both

succeed and precede the incident photon of pulse one (see Fig. 6.11). Thus the SH self-

diffracted signal is confined to the time interval of temporal overlap between pulses

one and two, i.e. close to time delay zero. The processes A and C are therefore rather

insensitive to the magnitude of the dephasing time.

Processes E and F differ only in the transition levels of photons three and four:

between ground and intermediate level for process E, between intermediate and upper

level for process F (see Fig. 6.11). Traces E and F are similar to traces A and C

regarding the fact that photons of the second pulse arrive before and after the photon

of the first incident pulse. In contrast to processes A and C, however, the majority

of photons of the second pulse (i.e. two photons) arrive before the photon of the first

pulse in processes E and F. These oberservations imply traces E and F also to be

limited to the time interval of temporal overlap between pulses one and two, but with

a negative shift with respect to time delay zero. Besides this inverted behavior, the

similarity between processes E/F and A/C gives rise to a similar absolute magnitude

of the temporal shift.

The overall trace A–F, as a coherent superposition of all six processes, displays an

intermediate behavior. For the homogeneous system under consideration, the trace

A–F thus shows a long-lived signal at positive time delays, due to the contribution

of processes B and D. In an inhomogeneously broadened system, however, the su-

perposition of the various eigenfrequencies leads to a more rapid decay of the SH

self-diffracted signal, and thus to a less clear dependence of the shift on the dephasing

time (see following subsections).

The following calculations were all performed taking into account the full set of
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Fig. 4.2: Normalized SH self-diffracted intensity as a function of pump–probe time delay
calculated for different durations of the sech2 pulses. The calculation is performed for a
homogeneous, resonantly excited three-level system for T1 times of 200 fs and T ∗2 times of
5 fs. Both shift and FWHM of the shown traces display a sensitive dependence on the
duration of the incident pulses.

differential equations, corresponding to a coherent superposition of all six processes

A–F.

4.2.2 Role of pulse duration

The analysis of the distinct traces in the preceding subsection revealed the signifi-

cant influence of processes that yield a finite SH diffracted signal only in the case of

temporal overlap between the two incident pulses. For a correct quantitative analysis

of the diffracted signal it is thus necessary to investigate the effect of variable pulse

duration on the temporal shape of the SH self-diffracted intensity.

In Fig. 4.2 the diffracted signal is displayed for different durations of the sech2

pulses, calculated for a homogeneous, resonantly excited three-level system for T1

times of 200 fs and pure dephasing times T ∗2 for all three levels of 5 fs. The various

pulse durations give rise to a pronounced variation in both temporal shift and width

of the diffracted correlation trace.

This analysis shows the crucial importance of the simultaneous measurement of

both SH self-diffracted intensity and SFG cross-correlation in the experiment (see

Chap. 6). The accurate determination of the pulse duration from the SFG cross-

correlation trace then allows to extract other quantities, such as the relaxation times,
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Fig. 4.3: Normalized SH self-diffracted intensity as a function of pump–probe time delay
calculated for different detunings of the incident photon energy with respect to the |0〉–|1〉
eigenenergy of the three-level system, and also for an inhomogeneously broadened system
with a 600 meV broad intermediate band |1〉 centered around the resonant photon energy.
The calculation is performed for a pulse duration of 14 fs, T1 times of 200 fs, and T ∗2 times
of 5 fs. The traces for the homogeneous system display an exponentially decreasing wing at
positive time delays, whose magnitude decreases monotonically with the detuning.

from the self-diffracted signal.

4.2.3 Effects of detuning

The calculations presented up to this point were all conducted for a homogeneous,

resonantly excited three-level system. A look at the physical systems under obser-

vation, namely the Si(111)7×7 and Si(001) surfaces, reveals both homogeneity and

resonant excitation to be simplifications. The electronic band structures of the sur-

faces (Figs. 2.2 and 2.4) show a finite dispersion over the Brillouin zone, which leads to

an inhomogeneous broadening in k-space. A further contribution to the finite distri-

bution of transition energies in Si(111)7×7 comes from the presence of four different

types of adatoms, corner and center adatoms on both triangular halves of the unit cell

(see Fig. 2.1), that lead to four energetically different adatom dangling-bond bands.

In Fig. 2.1 these bands are indicated schematically by just one band U1/S1.

In order to obtain meaningful quantitative results for the relaxation times it is thus

useful to study the influence of off- and near-resonant excitation as well as excitation

of an inhomogeneous distribution of uncoupled three-level systems. Excitation of a

continuum of states is discussed in Chap. 6.
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Fig. 4.3 shows the SH self-diffracted correlation trace for a homogeneous system

with various detunings of the incident photon energy with respect to the |0〉–|1〉
eigenenergy of the three-level system, as well as for an inhomogeneously broadened

system with a 600 meV broad intermediate band |1〉 centered around the resonant

photon energy. The traces were calculated for a pulse duration of 14 fs, T1 times of the

intermediate and upper levels of 200 fs, and pure dephasing times of all three levels

of 5 fs. The logarithmic scale on the y-axis reveals the exponentially decreasing tail

at positive time delays, that is a consequence of the relaxation time approximation

Eq. (4.8) employed in the Bloch equations (4.28), and thus is a signature of the

population relaxation and dephasing times. The magnitude of the tails decreases with

increasing detuning without affecting the slope that is determined by the relaxation

times. In the region of temporal overlap of the two incident pulses a finite detuning

leads to a modulation of the SH diffracted signal, whose amplitude decays to positive

time delays.

The correlation trace from the inhomogeneously broadened system displays a dif-

ferent behavior. Although also being shifted to positive time delays, the interference

within the distribution of eigenfrequency components eliminates the long-lived tail

in the correlation trace in such a way that the correlation trace follows the behavior

of the cross-correlation of the incident optical pulses. Similar results for degenerate

four-wave mixing have been obtained by Weiner et al. [169] and Meier [190].

4.2.4 Influence of relaxation rates

Since the goal of our investigation is to acquire quantitative information on the rel-

evant electronic relaxation processes, a sensitivity analysis of the calculated SH self-

diffracted correlation traces with respect to the population relaxation as well as de-

phasing input parameters is mandatory.

The influence of different population relaxation times of the intermediate and up-

per level of an inhomogeneously broadened three-level system on the SH self-diffracted

correlation trace is shown in Fig. 4.4. As in Fig. 4.3, the pulse duration was 14 fs, the

pure dephasing time of all three levels 5 fs, and the broadening of the intermediate level

600 meV. For vanishing population relaxation times (which implies vanishing dephas-

ing times as well, see Eq. 4.27), an explicit integration of the optical Bloch equations

yields a symmetric SH self-diffracted correlation trace with a FWHM of ∼77% of the

SFG cross-correlation width for ideal sech2 pulses (see Sect. A.7, Eqs. A.12 and A.19).

The fact that for population relaxation times small compared to the pulse duration

the numerical simulation approximates the analytical result is a further verification

of the validity of the numerical approach.

Finite T1 times give rise to a shift of the SH self-diffracted signal to positive time

delays. As Fig. 4.4 shows, the magnitude of the shift monotonically increases with

rising T1 from zero to a saturation value that is limited by the dephasing time. The
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Fig. 4.4: Normalized SH self-diffracted intensity as a function of pump–probe time delay
calculated for different population relaxation times T1 of the intermediate and upper level
of the inhomogeneously broadened three-level system. The pure dephasing times T ∗2 were
assumed to be 5 fs, with a pulse duration of 14 fs and a broadening of the intermediate level
of 600 meV. The SH self-diffracted correlation trace shows a positive shift with respect to
time delay zero, that is close to zero for very small T1 times and increases to a saturation
value at high T1 times that is limited by the dephasing time.

saturation complies with the behavior for inhomogeneous systems as discussed in

Fig. 4.3.

The small variation of the peak shift with respect to the pulse duration im-

plies that the SH self-diffracted correlation trace is very insensitive to variations in

T1. Since, however, the population relaxation time T1 can be obtained rather ac-

curately from both the SH pump–probe and SH three-beam diffraction traces (see

Figs. 5.9 and 5.10), the value for T1 obtained from those experiments can be inserted

into the simulation of the self-diffracted traces as fixed input parameter.

Fig. 4.5 shows the influence of different dephasing times on the behavior of the

SH self-diffracted correlation traces. Although the temporal peak shift of the traces

varies more significantly than for different T1 times, the sensitivity of the variation

on T2 is still rather small, which complicates a precise evaluation of the dephasing

time from the measured data. A similar result for degenerate four-wave mixing, that

is applicable to dephasing of bulk states, was obtained by Weiner et al. [169]. A

more quantitative analysis of the calculated diffraction traces in comparison with our

measured data is discussed in Chap. 6 (see Fig. 6.2).
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Fig. 4.5: Normalized SH self-diffracted intensity as a function of pump–probe time delay
calculated for different pure dephasing times T ∗2 of all three levels of the inhomogeneously
broadened system. The population relaxation times T1 were assumed to be 200 fs, with
a pulse duration of 14 fs and a broadening of the intermediate level of 600 meV. The SH
self-diffracted correlation trace is not very sensitive to changes in T2, which complicates
a precise determination of the dephasing time. Unlike the dependence on T1 as shown in
Fig. 4.4, the correlation trace displays a finite shift even for vanishing dephasing time, due
to the finite remanence of the population.



Chapter 5

Incoherent dynamics

This chapter presents, models, and discusses the incoherent relaxation behavior of

the excited dangling bond surface states on Si(111) and Si(001). The incoherent elec-

tron dynamics reflects the population relaxation of excited carriers that arises from

multiple scattering processes of the carriers out of the optically coupled region in

k-space. Two purely optical techniques are employed to monitor the population re-

laxation – which can be described in the Markovian relaxation-time approximation

by a longitudinal relaxation time T1 – with femtosecond time-resolution. The inco-

herent second-harmonic (SH) pump–probe experiment directly samples the decay of

a surface-state population that is induced by a resonant or near-resonant pump pulse.

The coherent SH diffraction method in the three-beam geometry also allows to follow

the relaxation through sampling the decay of the induced surface-state population

grating. Both methods yield identical temperature dependent T1 relaxation times on

the order of 100 fs for dangling-bond surface states on silicon.

Before the presentation of the time-dependent measurements, it is useful to have

some insight into the nature of the excitation mechanism and into the influence of

the electronic excitation on the nonlinear optical response. For this purpose, we have

investigated in Sect. 5.1 the static dependence of the second-harmonic intensity on the

density of unoccupied dangling bond states, which can be controlled by adsorption,

heating to a different surface reconstruction, and optical pumping. After these pre-

requisites, Sect. 5.2 presents the time-resolved measurements on the dangling bond

dynamics using both the incoherent SH pump–probe and the coherent SH diffraction

methods. Sect. 5.3 terminates this chapter with a discussion of the relevant relaxation

mechanism that is implied by the measured data.

5.1 Excitation mechanism

In order to elucidate the excitation mechanism relevant to the dynamic properties

of the surface state carriers, this section investigates the static behavior of the SH

intensity during oxygen adsorption, its laser pulse fluence dependence, and its reac-

tion while heating through the Si(111)7×7 ↔ ”1×1” phase transition. Polarization-

dependent measurements that yield information on the nature of the transient grating
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are also presented.

5.1.1 Coverage dependence of the SH intensities

As discussed in Sect. 2.2, second-harmonic spectroscopic measurements [134] and

hydrogen adsorption experiments [74, 191] reveal that the second-harmonic process

on silicon surfaces with incident photon energies around 1.55 eV (800 nm) is not

only resonantly enhanced by unoccupied dangling bond states; there exists a further

contribution to χ(2)
s by the E1 resonance that is due to perturbed Si–Si bonds in

the surface layer. Since the adsorption of hydrogen or oxygen quenches the dangling

bond states, while disturbing the Si–Si bonds only to a small extent, it is possible

to experimentally distinguish between the two terms by studying the behavior of the

second-harmonic intensity during adsorption.

Fig. 5.1 shows the SFG intensity and the SH self-diffracted intensity from Si(111)

and Si(001) as a function of molecular oxygen exposure. The solid lines denote the

SH signal into the sum-frequency direction. This signal first decreases as a function

of oxygen exposure; there is a minimum at 1.3 Langmuir (2.2 L), then the signal

increases again and saturates at 39% (11%) of its initial value, for Si(111) (Si(001)).

This behavior is well understood from Eq. (5.1). The SH response of the clean surface

is dominated by the dangling-bond derived term. As more and more dangling bonds

saturate as a result of oxygen exposure the signal decreases monotonically until the

dangling-bond contribution becomes comparable with the nonresonant term in χ(2)
s .

A phase shift between both contributions, which are complex quantities, leads almost

to a cancellation at an intermediate coverage. At high coverages, after a complete

passivation of the surface, all dangling bonds are quenched and the SH response is

thus given by the nonresonant background term.

The circles in Fig. 5.1 correspond to the SH self-diffracted signal from both p-

polarized beams. This signal is 3 orders of magnitude weaker than the SFG signal. It

decreases monotonically to zero as a function of oxygen exposure. The fact that this

signal does not exhibit a minimum for intermediate oxygen exposures is important

because it demonstrates that the main effect of the interfering incident beams is

indeed the generation of a population grating of the Si dangling bonds, since this

term is monotonically reduced during adsorption. Other possible excitations that

might cause a spatial modulation of the SH efficiency appear to be weak.

For a quantitative analysis of the population changes of the dangling-bond surface

states as well as of the relative influence of the nonresonant background term, we

express the dependence of the surface second-order nonlinear optical susceptibility

χ(2)
s on coverage θ as a sum of two contributions [74]

χ(2)
s (θ) = χ

(2)
s,db(1− θ) + χ

(2)
s,NR. (5.1)

The first term on the right side is the resonant contribution proportional to the
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Fig. 5.1: Dependence of the sum-frequency intensity (solid lines, left scales) and SH self-
diffracted intensity (circles, right scales) from Si(111)7×7 (top panel) and Si(001) (bottom
panel) at 80 K for zero time delay on molecular oxygen exposure. The dashed lines are fits
based on the Langmuir adsorption model discussed in the text. The minima in the SFG
intensities display the destructive interference between the resonant dangling-bond derived
term and the nonresonant background term in χ

(2)
s during oxygen exposure. The fact that

there is no minimum in the SH diffracted intensities implies that the only contribution to
this signal arises from the dangling-bond term.

number of dangling bonds, that is χ
(2)
s,db for the clean surface (θ=0) and zero for the

passivated surface (θ=1). The nonresonant background term χ
(2)
s,NR mainly arises from

the two-photon resonance at 2ω = 3.4 eV of the E1 transition [145], but also includes
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Fig. 5.2: Schematic visualization of the model for the dependence of the nonlinear optical
susceptibilites χ(2)

s (top) and χ
(4)
s (bottom) on coverage. The destructive interference be-

tween the dangling bond contribution and the nonresonant background leads to a minimum
in the absolute magnitude of χ(2)

s during adsorption, whereas the sole contribution of the
dangling-bond term gives rise to the monotonic decrease in χ

(4)
s (see Fig. 5.1).

bulk quadrupolar and higher order surface and bulk contributions to SHG [70]. Since

the coverage dependence of χ
(2)
s,NR is weak [134] and its contribution to the overall SH

response is relatively small, this term is assumed to be independent of coverage. A

schematic visualization of the behavior of χ(2)
s during adsorption according to Eq. (5.1)

is depicted in the upper part of Fig. 5.2.

The quadratic pulse fluence dependence of SHG on both clean and passivated sil-

icon surfaces at our maximal fluences of 400 µJ/cm2 (see Fig. 5.4 and Refs. [74,133])

with the absence of any discernible saturation phenomena, indicates that these exci-

tation conditions exert no significant influence on the population of dangling bonds.

Both χ
(2)
s,db and χ

(2)
s,NR can therefore be assumed to be independent of fluence for our

experimental conditions.

Considering the phase difference φ between the complex quantities χ
(2)
s,db and χ

(2)
s,NR,

Eq. (5.1) yields the nonlinear susceptibility (and thereby the relative SH intensities)

from the clean surface, in the minimum of the adsorption curve, and at saturation
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Si(111)7×7 Si(001)

surface dangling bond density 3.04 · 1014 6.78 · 1014

quantities (cm−2)

measured ISFG,min/ISFG(θ=0) 0.16 0.0069

quantities ISFG(θ=1)/ISFG(θ=0) 0.39 0.11

θSFG,min 1.3 L 2.2 L

θdiffr,decay 0.59 L 0.91 L

calculated |χ(2)
s,db|/|χ

(2)
s,NR| 2.2 3.9

quantities (literature data) 3.3 [133], 2.6 (H2) [192] –

(Langmuir φ 141◦ 166◦

adsorption 164◦ [133], 132◦ [138],

kinetics) (literature data) 160◦ [140], 160◦ (H2) [192] –

s0 0.7 1.0

0.88 [193], 0.92 [179],

(literature data) 0.6 [133], 0.3 [140] –

Tab. 5.1: Measured and calculated values, derived from Fig. 5.1, for the adsorption of
molecular oxygen on Si(111)7×7 and Si(001) at 80 K compared to literature data.

coverage [133]

|χ(2)
s (θ=0)|2 = |χ(2)

s,db|2 + 2|χ(2)
s,db||χ

(2)
s,NR| cosφ+ |χ(2)

s,NR|2

|χ(2)
s,min|2 = |χ(2)

s,NR|2 sin2 φ (5.2)

|χ(2)
s (θ=1)|2 = |χ(2)

s,NR|2.

The measured values extracted from Fig. 5.1 for the relative magnitudes

|χ(2)
s (θ=1)|/|χ(2)

s (θ=0)| and |χ(2)
s,min|/|χ(2)

s (θ=0)| for Si(111) and for Si(001) are shown

in Tab. 5.1. The insertion of these data into Eq. (5.2) yields for Si(111)

|χ(2)
s,db|/|χ

(2)
s,NR| = 2.2 (5.3)

φ = 141◦

and for Si(001)

|χ(2)
s,db|/|χ

(2)
s,NR| = 3.9 (5.4)

φ = 166◦.
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The obtained values for the magnitude ratio and relative phase of the two contribu-

tions are in reasonable agreement with previously determined values (Refs. [133,138,

140,192]).

The dependence of the oxygen coverage θ on the impinging O2 molecule flux

Φ can be modeled with Langmuir adsorption kinetics, which assumes the sticking

coefficient to be proportional to unoccupied adsorption sites, s(θ) = s0 · (1− θ), and

thus yields [194]

θ = 1− exp(−s0Φt), (5.5)

where the initial sticking coefficient s0 is treated as a fit parameter.

An exposure of 1 L = 10−6 Torr·s corresponds to 3.58 · 1014 cm−2 O2 molecules

striking the surface at a gas temperature of 300 K. In combination with the dangling

bond densities of 3.04 · 1014 cm−2 on Si(111)7×7 and of 6.78 · 1014 cm−2 on Si(001), a

fit to the SFG intensity yields s0,(111) = 0.7 for Si(111) and s0,(001) = 1.0 for Si(001).

These obtained initial sticking coefficients are also in reasonable agreement with other

investigations, using SHG [133,179], SFG [140], XPS [146], and LITD [193].

The dashed lines for the SFG intensities in Fig. 5.1 result from the adsorption

model based on Eq. (5.1) under the assumption of Langmuir kinetics. They are in

excellent agreement with the measured data (solid lines in Fig. 5.1) up to the mini-

mum in SFG intensity, corresponding to a coverage around 0.7 ML. The discrepancies

between calculated and measured SFG intensities at coverages above the minimum

may be due to the increasing non-validity of Langmuir kinetics at higher coverages

caused by adsorbate interactions.

Modeling the coverage dependence of the nonlinear optical susceptibility χ(4)
s re-

sponsible for the SH diffracted radiation by a linear relation

χ(4)
s (θ) = χ

(4)
s,db · (1− θ), (5.6)

where χ
(4)
s,db = χ(4)

s (θ = 0) is the fourth order response function of the clean surface

that arises from the dangling bonds, we obtain from

Idiffr ∝ |χ(4)
s |2 (5.7)

the SH diffracted intensity

Idiffr(θ) = Idiffr(θ=0) exp(−2s0Φt). (5.8)

The dashed lines for the SH self-diffracted intensities in Fig. 5.1 are derived from

Eq. (5.8), using the initial adsorption coefficients obtained from the fits to the SFG

intensities. The fact that they are in excellent agreement with the measured diffracted

signals (circles in Fig. 5.1) is a further indication for the validity of the SH coverage

dependence model of Eq. (5.1).
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Fig. 5.3: Dependence of the specular reflected SH intensity from Si(111)7×7 at 80 K on
oxygen exposure generated by 120-fs pulses at 800 nm with fluences of 1.0 mJ/cm2 and 14
mJ/cm2. Though both measurements display the characteristic minimum feature that was
discussed in the preceding section (see Fig. 5.1), for the higher pulse fluence the minimum
occurs for much smaller oxygen coverage and the response of the oxygen-saturated surface
exceeds that of the clean surface. This is a consequence of the strong electronic excitation
of the U1 band by the 14 mJ/cm2-pulse, which reduces the relative strength of χ(2)

s,db as

compared to χ(2)
s,NR. (From Mauerer [133]).

5.1.2 Fluence dependence of the SH intensities

Besides adsorption, a second independent means of reducing the dangling bond density

is by resonant or near-resonant optical pumping. A sufficiently intense pump pulse

can excite electrons from an occupied electronic surface band or from bulk valence

states to a normally unoccupied dangling-bond surface band, thereby diminishing

the SH nonlinear optical response. Fig. 5.3 shows the reflected SH intensity from

Si(111)7×7 as a function of the exposure with molecular oxygen for two different

laser pulse fluences, observed by Mauerer [133].

The SH signal generated by the 1.0 mJ/cm2 beam first decreases as a function of

oxygen exposure; there is a minimum for about 1 Langmuir, then the signal increases

again and saturates at 20% of its initial value, similar to the data shown in Fig. 5.1.

The quantitative differences to the measurements in Fig. 5.1 can be assigned to the

different excitation pulse properties (120 fs, spectrally narrow, one order of magnitude

higher pulse fluence) and different input and output polarizations.

For the reflected SH signal from the intense 14 mJ/cm2 pulse, the minimum occurs
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Fig. 5.4: SFG cross-correlation intensity (open squares, left scale) and SH self-diffracted
intensity (circles, right scale) from a clean Si(111)7×7 surface as a function of laser pulse
fluence F . The lines fitted to the data are proportional to F 2 and F 4, respectively.

for much smaller oxygen coverage and the response of the oxygen-saturated surface

exceeds that of the clean surface. Here, the strong electronic excitation of the U1 band

by the pump pulse, that was directly observed in the 2PPE experiments by Berthold

(Sect. 2.5, Fig. 2.12) [177], reduces the relative strength of χ
(2)
s,db as compared to χ

(2)
s,NR.

This is expected for a resonantly enhanced SHG process with the U1 band acting

as an intermediate state [1]. The same effect is exploited in SFG experiments of

vibrational energy relaxation [6, 195]. Experiments with delayed probe pulses show

that the SH-signal recovers on a timescale of 200 fs to 2 ps depending on the pump

fluence (see Figs. 5.14 and 5.15). The corresponding incoherent scattering processes

are characterized by a population decay time T1 [196].

In order to confirm that the second-harmonic diffracted signal is really created in a

χ(4)-process, we measured the dependence of the diffracted intensity on the laser pulse

fluence F (Fig. 5.4). As expected from Eq. (2.9), the diffracted signal is proportional

to F 4; similarly, Eq. (2.11) implies the observed F 2 dependence of the sum-frequency

intensity, as expected for a two-photon absorption process. The power dependence

plotted in Fig. 5.4 also demonstrates the importance of using a cavity-dumped system

for these studies. Due to the high nonlinearity of the χ(4)-process, the diffracted

signal delivers only few photons. As it scales with the fourth power of F , it would

be very hard to detect without the cavity-dumping technique of our laser system,

which enhances pulse energy more than one order of magnitude, while reducing the
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repetition rate. A usual Ti:sapphire oscillator with a factor of 100 higher repetition

rate but 10 times lower energy per pulse would give a 100 times smaller diffracted

signal.

The straight power law behavior of both SFG intensity and SH diffracted in-

tensity up to a laser pulse fluence of 400 µJ/cm2 implies the saturation regime for

dangling-bond excitation to start above this maximum excitation fluence. Since a

pump pulse fluence of 280 µJ/cm2 already diminishes the SH response by 10% (see

Fig. 5.9), however, the saturation threshold can be estimated to be around 1 mJ/cm2.

In fact, above 1.2 mJ/cm2 Mauerer observed substantial deviations of the SH reflected

intensity from the theoretically expected quadratic behavior [133], indicating the sat-

uration of electronic transitions involving dangling-bond states during the finite pulse

duration. This interpretation is confirmed by the observation of a square dependence

of the SH intensity for the whole investigated fluence range up to 21 mJ/cm2 from

the oxidized Si(111) surface, on which the dangling bonds are quenched [133]. As in

our investigations the sum of the pulse fluences of all incident beams on the silicon

surface remained well below 500 µJ/cm2, electronic saturation effects can legitimately

be neglected in the interpretation of our SH reflection and diffraction observations.

5.1.3 Dangling-bond density dependence of the SH

intensities

The model presented in the previous sections relates the nonlinear susceptibility χ(2)
s

to the density of unoccupied dangling bonds (Eq. 5.1). In order to test the validity of

the model, it is desirable to alter this density by a method different from adsorption.

Si(111) displays a reversible phase transition from the 7×7 reconstruction to a more

disordered ”1×1” phase at a transition temperature of Tc ' 1100 K that was first

reported by Lander in 1964 [100]. Since the ”1×1” phase corresponds to an adatom

gas in which the areal dangling bond density is increased by roughly 25% with respect

to the 7×7 structure [101], it is possible to corroborate the dangling-bond dependence

of χ(2)
s by monitoring the SH response while heating Si(111) across Tc.

Fig. 5.5 shows the SH intensity in the sum-frequency direction from Si(111) in the

surface temperature range from 1080 K to 1130 K with two p-polarized input beams

and unpolarized detection. Due to the increasing background of black-body radiation

from the silicon sample, it was not possible to discern the SH diffracted signal on the

order of 10 photons/sec from the background noise above surface temperatures of 900

K. The SFG intensity in Fig. 5.5 displays a sudden rise of 45% at 1106 K, correspond-

ing to the transition from the 7×7 reconstruction below, to the ”1×1” phase above

the transition temperature. The absolute accuracy of the temperature measurement

is estimated to be ±15 K at 1100 K. Neglecting the nonresonant background term

χ
(2)
s,NR in Eq. (5.1) is equivalent to the approximation that χ(2)

s is proportional to the

number of dangling bonds. The increase of the SH intensity by a factor of 1.45 at
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Fig. 5.5: SH intensity in the sum-frequency direction from Si(111) for heating through the
7×7 ↔ ”1×1” phase transition with a rate of 0.8 K/s. The rise of 45% at the transition
temperature of 1106 K (±15 K) reflects the increase in the dangling bond density from
19/49 = 0.39 per Si(111) surface atom in the 7×7 phase to 0.50 in the ”1×1” phase.

the transition temperature corresponds to a change of
√

1.45 = 1.20 in χ(2)
s . The

rise in areal dangling bond density from 19/49 = 0.39 per Si(111) surface atom in

the 7×7 phase to 0.50 in the ”1×1” phase would thus yield an increase of 0.50/0.39

= 1.28 in χ(2)
s . The slight difference of the experimental from the calculated factor

may be a consequence of neglecting the nonresonant background term in χ(2)
s at an

incident photon energy of 1.55 eV (800 nm). The agreement between the factors can

be enhanced by using incident photon energies that are farther apart from the E1

resonance (h̄ω = 1.7 eV) (see Ref. [101]).

5.1.4 Temperature dependence of the SH intensities

A comparison of the surface temperature dependence of the SH reflected with the

SH diffracted intensity provides a further means to examine the model developed in

the preceding sections for χ(2)
s and χ(4)

s . The nonlinear optical susceptibilities are

sensitive to surface temperature due to temperature-dependent shifts in the energies

of the surface electronic states. For the case of Si(111)7×7 a further contribution can

result from changes in the thermal occupation of the narrow metallic surface states

of the U1/S1 adatom dangling-bond band [78].
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Fig. 5.6: SFG intensity (open squares, left scale) and SH self-diffracted peak intensity (cir-
cles, right scale) from Si(111)7×7 (top panel) and from Si(001) (bottom panel) as a function
of surface temperature. In agreement with the interpretation of the coverage dependencies
of χ(2)

s and χ(4)
s (see Fig. 5.1), the minima in the SFG intensities indicate the destructive in-

terference of two contributions to χ(2)
s , whereas the monotonic behavior of the SH diffracted

signals is consistent with just one contribution to χ(4)
s .

The dependencies of SFG intensity and SH diffracted intensity on surface temper-

ature for both Si(111)7×7 and Si(001) show a markedly distinct behavior (Fig. 5.6).

In agreement with previous observations [133, 134], the second-order SFG signal de-

creases from its maximum value at low temperatures to its minimum an order of

magnitude smaller around 500 K and then increases again slightly with rising surface

temperature. The fourth-order SH diffracted intensity, however, shows only negligible

sensitivity to surface temperature in the entire accessible range from 80 K to 800 K for

the case of Si(111)7×7, and a monotonic decrease for Si(001). This observation is in

contrast to preliminary measurements by Mauerer with 120-fs pulses on Si(111)7×7,
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who obtained a behavior very similar to the SH reflected data [133].

The qualitative difference between second-order SFG and fourth-order SH diffracted

signals with respect to surface temperature in Fig. 5.6 supports the interpretation of

the adsorption measurements in Fig. 5.1. Analogously, both adsorption measurements

and temperature dependence exhibit marked minima in the SFG signals, as well as

the contrasting monotonic behavior of the SH diffracted signals. Thus the conclu-

sion obtained from the adsorption data – two contributions to χ(2)
s , whose destructive

interference leads to a minimum in SH reflected intensity, and only one dangling bond-

derived contribution to χ(4)
s that leads to a monotonic behavior of the SH diffracted

intensity – is corroborated by the temperature dependencies of the SH intensities.

Fig. 5.7 displays an Arrhenius plot of the surface temperature dependence of

the fourth-order nonlinear optical susceptibility χ(4)
s as obtained from the SH self-

diffracted peak intensity from Si(001). The diagram shows that χ(4)
s can be parametrized

by a doubly exponentially activated behavior

χ(4)
s = A exp(Eact,1/kBT ) +B exp(Eact,2/kBT ) (5.9)

with two activation energies Eact,1 = 1.3 meV and Eact,2 = 60 meV. The origin of the

lower activation energy of 1.3 meV, that manifests itself at temperatures lower than
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540 K in Fig. 5.7, may be due to the coupling between the silicon dimers across dimer

rows, which is in the meV range. The source of the activation energy of 60 meV is

probably a result of the interaction of the excited carriers with phonons. Not only

bulk longitudinal and transverse optical phonons display peak densities of states at

energies around 60 meV at the top of the continuum of volume states, there is also

a surface mode above the optical continuum calculated to be at 61 meV [197] or 67

meV [109]. This mode corresponds to a subsurface phonon mode localized between

the first and second layer of the Si(001) surface [109,197].

5.1.5 Polarization dependence of the SH intensities

It is possible to learn more about the physical nature of the transient excitation by

varying another accessible parameter of the incident photons: their polarization. Up

to this point we only considered parallely polarized beams, which leads to a periodic

spatial modulation of the electron population; such gratings are therfore called popu-

lation or concentration gratings. Transient effects generated by orthogonally polarized

beams were observed and discussed for the first time by Smirl and coworkers [198–200].

As the radiation intensity is not modulated for orthogonal polarizations, no concen-

tration grating is formed. The vector sum of two orthogonally polarized electric fields

varies periodically along the surface between linear and elliptical polarization. Since

the strength of the resonant excitation for each position in k-space depends on the

polarization of the electric field, the excited-state population will have a preferred ori-

entation (i.e. quasi-momentum) in k-space at each position in real space. This form

of excitation is labelled as anisotropic (in k-space) state-filling. Due to the spatial

variation of the polarization, the position of the anisotropic state-filling in k-space will

vary in real space, even though the total excited-state concentration (summed over all

orientations) remains spatially uniform in the ideal case of absence of a population

grating [199]. This is the origin of the orientation grating.

In contrast to the diffraction experiments at the fundamental photon frequency by

Smirl et al., we detected the second-harmonic signal, generated by an upconversion

process. This process is resonantly enhanced by selected states in k-space whose

occupation can be spatially modulated even in the case of an orientation grating,

which then gives rise to a SH diffracted signal.

In order to study the possible influence of an orientation grating in relation to

the anticipated population grating, we investigated the dependence of both sum-

frequency and SH self-diffracted intensity on the relative polarization angle between

the two linearly polarized excitation pulses (Fig. 5.8). As the incident polarizations

determine the contributions of the different χ(2)
s tensor components, the SFG intensity

with orthogonal incident polarizations exhibits only 60% of its maximum magnitude

at parallel polarizations. The SH self-diffracted intensity, however, drops to below the

detection threshold with orthogonally polarized incident beams.
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Fig. 5.8: Sum-frequency intensity (open squares, left scale) and SH self-diffracted inten-
sity (circles, right scale) from Si(111)7×7 at 80 K as a function of the polarization angle
of one of the two linearly polarized excitation pulses; the polarization plane of the other
pulse remained fixed (p-polarized). The SFG intensity exhibits a finite minimum at orthog-
onal polarization of 60% of its maximum value at parallel polarization due to the different
magnitudes of the contributing χ(2)

s tensor components. In contrast, the SH self-diffracted
intensity drops below the detection threshold with orthogonally polarized incident beams,
thereby indicating the negligible influence of an orientational grating.

Buhleier et al. investigated an orientation grating in monocrystalline bulk silicon

by degenerate four-wave mixing using 620-nm, 100-fs laser pulses [201]. Their study

exhibited carrier momentum relaxation on a time scale of 10 fs. A similar investigation

by Sjodin and coworkers with 800-nm pulses of 100 fs duration and 6.1 mJ/cm2 fluence

indicated that the momentum reorientation time and hence, dephasing time, is much

faster than their pulse width [175]. Bergner et al. performed three-pulse transient

grating experiments on crystalline silicon with excitation by 25-ps pulses at 532 nm

and fluences up to 5 mJ/cm2 [202]. They found the diffraction efficiency of the

orientational grating (crossed polarizations) to be only 3% of the efficiency of the

population grating (parallel polarizations). Since our experiment operates with two

by a factor of 1.5 differing electric field magnitudes, instead of the ideally equal fields

of Bergner et al., and our detection threshold was around 5% of the maximum value

at parallel polarizations, we can not exclude the existence of an orientational grating

with our setup. Its influence on the SH diffracted signal produced by the population

grating should, however, be negligible.
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5.1.6 Conclusion

In order to elucidate the electronic excitation mechanism, being a prerequisite for the

interpretation of dynamic relaxation data, this section presented a number of static

nonlinear optical measurements. Aiming for an analysis how surface electronic states

influence the SH response, we employed three physically different methods to control

the areal density of unoccupied dangling bond states: adsorption, optical pumping,

and heating through a structural phase transition.

The behavior of both second-order SFG and fourth-order SH diffracted intensities

from Si(111) and Si(001) during oxygen adsorption agrees excellently with the notion

that the dangling bond states are gradually quenched, following Langmuir kinetics.

These adsorption measurements also show that the excited population grating con-

tributing to second-harmonic diffracted radiation is located only in the U1/S1 surface

band and not in other states, like the back bonds. The variation of the adsorption

curves with increasing laser pulse fluence, as well as the drop in SH intensity follow-

ing an optical pulse (see Fig. 5.9) reveal the excitation process by optical absorption

that is responsible for the resonant enhancement of SHG. The straight power law

dependences of SH reflected and diffracted signals on fluence, however, demonstrate

the electronic system to be below the saturation regime. Heating Si(111) through

the 7×7 ↔ ”1×1” structural phase transition, thereby increasing the number of dan-

gling bonds per unit area by 25% substantiates the approximate proportionality of

both nonlinear optical susceptibilties χ(2)
s and χ(4)

s on surface dangling-bond density.

The distinct behavior of SH reflected and SH diffracted signals with respect to sur-

face temperature confirms the notion developed for the adsorption measurements of

two destructively interfering contributions to χ(2)
s as opposed to only one dangling

bond-derived contribution to χ(4)
s . An investigation of the SH intensities on incident

polarizations shows that the probe beam is diffracted from a transient population grat-

ing of dangling bonds, whereas the contribution of a hypothetical polarization grating

is negligible.

These findings about the electronic excitation mechanism enable the interpretation

of the time-resolved nonlinear optical experiments that are presented in the following

sections.

5.2 Time-resolved second-harmonic generation

Due to the possibility to investigate electron dynamics at surfaces and interfaces with

femtosecond time resolution, time-resolved SHG experiments gain increasing impor-

tance. A number of studies detected ultrafast, laser-induced order–disorder transitions

in semiconductors by this technique [203–212]. In order to time-resolve the desorp-

tion of CO from Cu(111) Prybyla et al. utilized second-harmonic as a probe [213].

Matthias et al. used SH pump–probe to study ultrafast electron and magnetiza-
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tion dynamics in various metals [132,214–219]. Magnetization dynamics in NiFe films

and single-crystal Ni were also investigated with time-resolved magnetization-induced

SHG after ultra-short magnetic field pulses [220] and after optical excitation [221].

Similarly, the time-resolved photo-induced SH nonlinear magneto-optical Kerr effect

was employed for the study of spin dynamics at a GaAs(001) surface [222]. Jong et al.

studied the electric field dynamics at a metal–semiconductor Schottky interface with

time-resolved SHG [223]. Analogously, Nahata and Heinz reported the application of

electric-field-induced SHG as a new technique for measuring the field of freely propa-

gating terahertz radiation [224,225]. Recently, time-resolved SHG was used by Tom et

al. for coherent phonon spectroscopy on GaAs surfaces and interfaces [8,226–228], and

by Rasing et al. for the detection of coherent plasmon–surface phonon oscillations in a

Au/GaAs Schottky barrier interface [223,229]. Another recent experiment by Guo et

al. investigated the ultrafast dynamics of electron thermalization in gold [230]. Their

use of time-resolved SHG implied an electron temperature dependent enhancement of

the SHG signal.

In order to study the population relaxation time T1 of excited silicon dangling-bond

surface states, we employed two different purely optical second-harmonic techniques.

In the incoherent SH pump–probe method, an intense 800-nm pump pulse resonantly,

or near-resonantly, excites the electronic surface states. A synchronized time-delayed,

relatively weak 800-nm probe pulse then samples the excitation within the surface

by generating specularly reflected SH radiation. The intensity of the SH light, moni-

tored as a function of pump–probe time delay, yields information about the temporal

decay of the excitation induced by the pump. The second technique is based on the

generation of a transient population grating of the surface dangling-bond states by

two coincident pump pulses. A synchronized probe pulse is diffracted from the grat-

ing leading to second-harmonic light. Again, the intensity of the SH radiation as a

function of time delay is a measure for the relaxation of the transient grating. The

two techniques are presented in more detail in the following.

A strong pump pulse that populates the U1 state on Si(111)7×7 can cause the

SHG signal from a weak probe pulse to decrease. This effect has been exploited to

study the fluence dependent relaxation times employing the same laser system as for

the 2PPE experiments discussed in Sect. 2.5 [196]. In Fig. 5.9 we show a similar

experiment with the considerably shorter pulses from the cavity-dumped Ti:sapphire

laser used for the diffraction experiments. After exciting the clean Si(111)7×7 surface

with a pump pulse, we observe a decrease of the SH signal of 10%. The recovery

of the SH signal with time constant 215 fs reflects the scattering time of the excited

electrons out of the optically coupled region in k-space.

Due to the proportionality of the second-harmonic reflected intensity to the square

of χ(2)
s , the 10% drop of the SH signal implies an excitation density of 5% of the U1

surface band and hence an excited adatom dangling bond population of 0.05×1.92·1014

cm−2 = 9.6 ·1012 cm−2. The incident photon flux of 1.13 ·1015 cm−2, corresponding to
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Fig. 5.9: Second-harmonic intensity from the Si(111)7×7 surface generated by a probe
pulse (800 nm, 120 µJ/cm2) as a function of time delay with respect to a pump pulse (800
nm, 280 µJ/cm2). The line through the data is an exponential fit, which yields a time
constant τ = 215 fs. Also shown is the pump–probe sum-frequency cross-correlation.

the fluence of 280 µJ/cm2 of the 1.55 eV photons, then gives a quantum yield for the

excitation process of 1 · 10−2. This is a very plausible value: under the assumption of

an effective dangling bond absorption depth of 1 Å, the derived quantum yield implies

an effective absorption coefficient of 106 cm−1, which is the universal direct interband

absorption constant for semiconductors [180].

The interpretation of SHG pump–probe experiments may be complicated by pump-

induced changes of the bulk dielectric constant that effects the SHG process via Fresnel

factors [132,204,210,211,231]. This effect is negligible in the present experiments be-

cause of the weak absorption of silicon, α−1
80 K =50 µm, α−1

300 K =40 µm, at a wavelength

of 800 nm [180]. If present, it would result in a spatial modulation not only of χ
(2)
s,db

but also of χ
(2)
s,NR. The diffracted SH signal would then be affected by the (destruc-

tive) interference of both contributions to the SH response which is not observed.

The absence of a significant difference in reflectivity before and after the pump pulse

(see Fig. 5.14) supports this conclusion [133]. In addition, by measuring the oxygen

coverage dependence of both the reflected SHG signal and the diffracted signal (see

Sect. 5.1.1), a measurable bulk contribution to the observed pump–probe behavior or

to the diffracted signal can be excluded [133,232].

A time-resolved SH signal from Si(111)7×7 obtained with the coherent transient
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Fig. 5.10: Second-harmonic intensity from the Si(111)7×7 surface generated by a probe
pulse (800 nm, 200 µJ/cm2) diffracted from a transient population grating as a function of
time delay with respect to a pair of coincident pump pulses (800 nm, 100 µJ/cm2 each),
that produce the grating. The line through the data is an exponential fit, which yields a
time constant τ = 186 fs. Also shown is the pump–probe sum-frequency cross-correlation.

grating technique is shown in Fig. 5.10. The SH signal observed into direction 2kc+

kb−ka is the result of the SH diffraction of the probe beam kc from the transient

population grating characterized by kb−ka that was generated by the two coincident

pump pulses ka and kb. An exponential fit through the data in Fig. 5.10 yields a

population relaxation time of the grating of 186 fs.

The following two subsections investigate the surface temperature dependence of

the population relaxation time T1 obtained by both SH techniques for Si(111) and for

Si(001).

5.2.1 Si(111)

The population relaxation time T1 for Si(111)7×7 as a function of surface tempera-

ture obtained by both the incoherent SH pump–probe method and by the coherent

transient-grating technique is shown in Fig. 5.11. For Si(111) there is a monotonic

decrease in T1 with rising temperature for both agreeing sets of data from second-

harmonic reflection and diffraction. As the Debye temperature for bulk silicon is 640

K, one probable interpretation of the decrease in relaxation time is the interaction
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Fig. 5.11: Population relaxation time T1 as a function of surface temperature for
Si(111)7×7 measured with both incoherent pump–probe SH reflection (open squares) and
coherent three-beam SH diffraction (circles). The monotonic decrease in T1 with rising tem-
perature for both agreeing sets of data indicates the increased interaction probability of the
dangling-bond electrons with phonons at elevated temperatures. The dotted line is a guide
to the eye.

of the dangling-bond electrons with optical phonons. A more detailed discussion of

the relevant population relaxation processes in the electronic surface states is given

in Sect. 5.3.

5.2.2 Si(001)

Due to the qualitative difference between the metallic Si(111)7×7 dangling-bond

bands and the semiconducting Si(001) surface states, it is interesting to compare the

T1 relaxation times of Si(111) presented in the preceding section with the respective

values for Si(001).

The population relaxation time T1 as a function of surface temperature for Si(001)

obtained with three-beam SH diffraction is shown in Fig. 5.12. For temperatures

between 200 K and 600 K, T1 is measured to be constant around 160 fs, which is only

slightly smaller than the T1 values for Si(111) around 180 fs, that behave similarly in

this temperature range (cf. Fig. 5.11). Because of the increasing disturbing influence
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Fig. 5.12: Population relaxation time T1 as a function of surface temperature for Si(001)
measured with three-beam SH diffraction. The jump in T1 at the transition temperature
of the order–disorder c(4×2) ↔ 2×1 phase transition at 150 K indicates a more efficient
transport mechanism to a fast recombination channel in the correlated dangling bond dimers
of the low temperature phase. The dotted line is a guide to the eye.

of blackbody radiation from the surface at higher temperatures, it was not possible

to obtain relaxation times above 700 K for Si(001).

The assignment of the relaxation to a specific surface band is more difficult on

Si(001) than on Si(111). Whereas on Si(111) the dominant role of the U1/S1 adatom

dangling-bond surface band for the SHG process with visible and near-infrared fre-

quencies is evident [74], the relative contributions of the raised Dup and the lowered

Ddown dangling-bond states on Si(001) to the relaxation data is less clear. Our mea-

sured T1 relaxation times on Si(001) in Fig. 5.12 are thus a mixture of hole dynamics

within the normally occupied Dup dangling-bond band (initial state in SHG) and

electron dynamics in the normally empty Ddown band (intermediate state in SHG).

In the case of Si(001) there exists a well-known order–disorder phase transition

around 150 K from a c(4×2) reconstruction to a primitive 2×1 structure [37]. Just

at that temperature we observe a change in the T1 relaxation time from 100 fs below

to 160 fs above the transition temperature.

At first sight, it seems surprising that the relaxation time is higher in the more

disordered 2×1 structure. One explanation, however, is the increased phase space for
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scattering due to the additional electronic surface bands shifted into the by a factor 2

smaller Brillouin zone of Si(001)c(4×2). Another interpretation assumes the existence

of a fast carrier recombination channel that could be provided at defects or steps.

This is a plausible assumption, since the energetic distance between the occupied

Dup and the unoccupied Ddown dangling-bond surface bands Egap, which is centered

around 1.7 eV at the Si(001) terraces (see Fig. 2.7) can be reduced considerably

at steps by low energy distortions [125]. Since the radiative recombination time is

proportional to E3
gap and nonradiative processes, like multiphonon emission (τ ∝

exp(Egap/h̄Ωphon)) and recombination via defect states also show decreasing relaxation

times with decreasing energetic distance between the bands, carrier recombination at

steps is strongly favored. As the ordered structure at lower temperatures arises from a

correlation of buckled dangling-bond dimers within and across dimer rows, the lower

relaxation time then would indicate a more efficient carrier transport mechanism to

the steps or to surface defects.

This interpretation is corroborated by the dependence of the SH self-diffracted

peak shift from Si(001) as a function of oxygen exposure, that is displayed in Fig. 6.7.

The fact that the magnitude of the peak shift increases with rising oxygen coverage

is a clear indication of an increase in T1. Since the oxygen atoms disrupt the ordered

structure of the clean silicon surface, and thus impair the transport of the carriers to

the recombination centers, the rise in T1 is a natural consequence. One possibility to

verify our interpretation would be the investigation of stepped Si(001) surfaces.

5.3 Discussion

This section includes a discussion of the obtained incoherent relaxation measurements

that were presented in the preceding sections. A comparison of our data with other

time-resolved investigations of the electronic structure of silicon surfaces facilitates

the interpretation of our experiments. The metallicity of the U1/S1 surface band

on Si(111)7×7 allows its theoretical description using a two-dimensional Fermi liquid

model, yielding relaxation times similar to our measured ones.

Previous studies on carrier relaxation behavior at silicon surfaces can be classified

into electronic experiments, employing two-photon photoemission (2PPE), and purely

optical experiments, that rely on second-harmonic generation.

5.3.1 Photoemission

A number of time-resolved 2PPE investigations were performed in the group of Bokor

on Si(111)2×1 [21–23] and on Si(001)2×1 [26, 32]. On cleavage in UHV to expose

the (111) face, silicon crystals exhibit a metastable 2×1 structure, that transforms

into the thermodynamically favored 7×7 reconstruction upon annealing. The elec-

tronic structure of the metastable phase displays an occupied surface state of bonding
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character π and an unoccupied state of antibonding character π∗ [37]. Bokor et al.

selectively photoexcited surface electrons into the normally empty antibonding sur-

face state on Si(111)2×1 and followed the time decay of the excited population by

time-resolved photoemission [21–23]. Due to their usage of laser pulse durations be-

tween 60 ps and 80 ps, they were only able to observe relaxation dynamics on a time

scale of 100 ps. Bokor and coworkers explained their data using a transient surface

recombination model between π and π∗ via surface defect states [21–23]. In a similar

study on the analogous Ge(111)2×1 surface Baeumler and Haight were able to follow

the relaxation of the transient population in the normally unoccupied π∗-antibonding

surface band with sub-picosecond time resolution [233].

In more recent time-resolved 2PPE experiments on Si(001)2×1, Bokor et al. ob-

tained carrier relaxation in electronic surface states on a time scale of a few hundred

femtoseconds to a few picoseconds, depending on the initial state energy [26, 32].

They concluded that the dominant contribution to the observed relaxation is associ-

ated with surface defect states [32]. New measurements conducted by Kutschera and

coworkers on Si(001)2×1 implied a population relaxation time of the normally empty

Ddown dangling-bond states near the band bottom at Γ on the considerably longer

time scale of 100 ps, which they attributed to phonon-assisted recombination [234].

Their results most relevant to our work, however, are their measured relaxation times

obtained with off-normal detection, yielding electron dynamics information for Ddown

states far from the band bottom. For this case Kutschera et al. measured T1 times in

the range 150–300 fs, which is compatible with our results at Si(001) [234].

A further 2PPE study using laser pulses of 1–3 ps duration on various silicon sur-

faces by Rowe and coworkers showed that electron energy relaxation within the surface

bands occurs on a time scale shorter than 3 ps [30]. Using the same technique, Gold-

man and Prybyla reported that the electron temperature inside the bulk conduction

band decreases from 1500 K to 800 K in less than 60 fs after excitation [16,17].

In order to study the population relaxation in the adatom dangling bond-derived

U1 surface band of Si(111)7×7, Berthold conducted a detailed investigation using

2PPE, that was already presented in Sect. 2.5 [177]. The transient electron population

within the bulk band gap generated by a pump pulse and detected by photoemission

is shown in Fig. 2.12.

Exponential fits to the 2PPE data from Fig. 2.12 yield population life times T1 as

a function of electron energy for the U1 band of Si(111)7×7 at 80 K (Fig. 5.13). The

data approximately comply with the 1/E2 behavior predicted by a crude model of

Fermi liquid theory (dashed line in Fig. 5.13) [235]. The highest lifetimes around 150

fs at energies very close to the Fermi level compare well with the population relaxation

times of 180 fs that were obtained with the very different, purely optical techniques

pump–probe SHG and SH diffraction for Si(111)7×7 at low temperatures (Fig. 5.11).
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Fig. 5.13: Population lifetimes T1 as a function of electron energy from the U1 band of
Si(111)7×7 at 80 K generated by 1.55 eV pump pulses and detected by photoemission with
4.65 eV probe pulses for k‖ ≈ 0. The lifetimes were extracted by exponential fits to the two-
photon photoemission data shown in Fig. 2.12. The Fermi level is located around E = 0.2
eV. The dashed line proportional to 1/E2 is an approximate result of Fermi liquid theory.
(From Berthold [177]).

5.3.2 SHG

Due to the detailed characterizability of the final state, photoemission measurements

are often easier to interpret compared to purely optical experiments. Optical tech-

niques, however, that can take advantage of the genuine surface specifity of second-

harmonic methods and that are also applicable at high excitation conditions, are more

directly comparable to our investigation. Therefore in this subsection we present the

findings of other relevant time-resolved purely optical studies on silicon and discuss

them with with respect to our results.

Mauerer studied the fluence-dependence of the population relaxation times of the

U1/S1 dangling-bond surface band on Si(111)7×7 using the SH pump–probe tech-

nique as presented in Sect. 5.2 (see Fig. 5.9) [133]. He employed the 800-nm, 120-fs

laser pulses from a 1 kHz system consisting of a Ti:sapphire laser oscillator and a re-

generative amplifier – the same laser system as for the 2PPE experiments by Berthold

presented in Sect. 2.5 [133]. The beam was split into an intense pump beam of 14

mJ/cm2 and a weak probe beam, that was limited to 1 mJ/cm2 in order to evade the

saturation threshold shown to be at 1.2 mJ/cm2.

Fig. 5.14 shows the SH intensity of the probe pulse from the clean Si(111)7×7 as a

function of time delay with respect to the pump pulse as obtained by Mauerer [133].
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of 14 mJ/cm2. The lines through the curves are exponential fits. (From Mauerer [133]).

After the exciting pump pulse the SH probe signal decreases substantially by up to

90% after delays of about 200 fs and does not recover to its initial level even after a

delay of 100 ps (see inset in Fig. 5.14), corresponding to a second relaxation channel

with a time constant in the nanosecond range. The relaxation times on the sub-ps and

ps time scale show an increase with pump fluence, that saturates above 21 mJ/cm2.

Since the linear reflectivity shown in Fig. 5.14 does not exhibit any variations in excess

of 1.5%, bulk excitations are disqualified as origin for the considerable changes of the

SH signal.

The comparatively large drop compared to our measured decrease on the order of

10% (see Fig. 5.9) is a natural consequence of the substantially higher pump pulse

fluence applied by Mauerer, which is able to excite a significant fraction of the adatom

dangling bonds responsible for the SH signal. Also the increased delay of minimum



5.3. Discussion 77

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
op

ul
at

io
n 

R
el

ax
at

io
n 

Ti
m

e 
T

1 
(p

s)

0 5 10 15 20 25 30 35 40

0 30 45 49

Pump Pulse Fluence (mJ/cm 2)

pU1 (%)

Si(111)7×7

80 K

EF

S3

S2

U1

τ

k

E
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SH intensity, which is due to the by an order of magnitude higher pulse duration

compared to our study, is compatible with our result.

Fig. 5.15 shows the relaxation times of the SH signal as shown in Fig. 5.14 as a

function of pump pulse fluence [133]. Mauerer observed a nearly linear increase of

the relaxation times of the hot electrons from 470 fs up to 2.1 ps when increasing the

pump fluences from 1.75 up to ∼ 21 mJ/cm2. An extrapolation of Mauerer’s data to

our much smaller fluences of a few 100 µJ/cm2 yields a relaxation time of 200 fs, in

agreement with our SH pump–probe and three-beam diffraction measurements (see

Fig. 5.11). The linear behavior is compatible to the direct proportionality between

the quasiparticle lifetime and the 2D electronic density, as predicted by Fermi liquid

theory (see Sect. 5.3.3). At pump fluences above 21 mJ/cm2 the relaxation times and

also the magnitudes of the pump-induced SH-dips saturate.

The gradual increase of the relaxation times with pump intensity is due to the

reduction of phase space available for scattering processes, which is a direct con-
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sequence of the enhanced dangling-bond population at higher pump fluences. In

addition, the exceedingly high excitation densities result in strong screening of the

electron–electron interactions, which also contributes to the observed increase of the

relaxation times [236].

5.3.3 Theory

For a complete discussion of the incoherent population relaxation times on silicon

surfaces, it is desirable to compare our measured data with results that are obtained

from a theoretical model. Following the experimental evidence for the metallicity of

the Si(111)7×7 surface by electron-energy loss spectroscopy (EELS) [78,92–94], scan-

ning tunneling spectroscopy (STS) [41, 88], and recently nuclear magnetic resonance

(β-NMR) [98], we modeled the adatom dangling-bond carriers in the U1/S1 surface

band by a free electron gas on a semiconducting substrate. The validity of such a

treatment is corroborated by STS experiments by Heike and coworkers, who observed

the naturally formed Schottky barrier between the surface states and the bulk states

by surrounding parts of the surface by a closed trench [99]. With their setup Heike et

al. were also able to measure the small but finite surface conductivity [99].

It is thus natural to describe the surface in terms of two-dimensional Fermi liquid

theory. The most simple approach within this framework is based on a perturbative

approach within the random-phase approximation (RPA), which was used by Giuliani

and Quinn to calculate the inelastic Coulomb lifetime of a quasiparticle near the

Fermi surface [235]. The qualitative dependencies of the inverse inelastic quasiparticle

lifetime 1/τee near the Fermi level at zero temperature for the different dimensionalities

are known to be

(3D) 1
τee
∝ (E − EF)2 [237,238] (5.10)

(2D) 1
τee
∝ (E − EF)2 ln |E − EF| [235,239] (5.11)

(1D) 1
τee
∝ |E − EF| [238]. (5.12)

The explicit two-dimensional electron-energy dependence of 1/τee at T = 0 K is

given by [235]

1

τee(E)
' − EF

4πh̄

(
E − EF

EF

)2
[
ln
(
E − EF

EF

)
− 1

2
− ln

(
2kTF,2D

kF

)]
, (5.13)

with the Fermi wave vector kF and the Thomas-Fermi screening wave vector in 2D

kTF,2D =
2me2

4πε0h̄
2 . (5.14)

At finite temperatures a result can be obtained only for quasiparticles very close to

the Fermi surface, |E − EF| � kBT , by [235]

1

τee(T )
' − EF

2πh̄

(
kBT

EF

)2 [
ln

(
kBT

EF

)
− ln

(
kTF,2D

kF

)
− ln 2− 1

]
, (5.15)
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Fig. 5.16: Inelastic Coulomb lifetime of a quasiparticle near the Fermi surface of a two-
dimensional electron gas with the carrier density of Si(111)7×7 adatom dangling-bond elec-
trons. The data were calculated using equations by Giuliani and Quinn who employed a
perturbative Fermi liquid approach based on the random-phase approximation (RPA) [235].
a) Quasiparticle energy dependence of the lifetime at 0 K. For electron energies about 40
meV above EF the calculation yields relaxation times around 200 fs, comparable to our mea-
sured values (see Fig. 5.11). b) Temperature dependence of the lifetime for quasiparticles
close to the Fermi surface (|E − EF| � kBT ).

which is valid for temperatures T � EF/kB. Both equations imply that the quasipar-

ticle lifetime τee is directly proportional to the electronic density.

The Fermi energy for the case of Si(111)7×7 can be obtained from the 2D electron

density in the adatom dangling-bond states that form the U1/S1 surface band. This

density n is given by the product of the ratio electrons per surface atom times the

3D number-density of atoms in crystalline silicon times the average distance between

{111} lattice planes

n =
5

49
× 8

a3
× a
√

3

6
= 7.99 · 1013 cm−2, (5.16)

with the fcc lattice constant for silicon a = 5.43 · 10−10 m. With the Fermi wave

vector that is given in two dimensions by kF =
√

2πn, the Fermi energy for the

adatom dangling-bond system of Si(111)7×7 can be calculated to be EF = 191 meV.

The dependencies of the inelastic quasiparticle Coulomb lifetime for Si(111)7×7 on

electron energy and on temperature, derived from Eqs. (5.14) and (5.15), respectively,

are displayed in Fig. 5.16. Panel (a) shows that for electrons excited to energies about

40 meV above EF, the calculation yields relaxation times around 200 fs, which is close

to our measured values (see Fig. 5.11). The 2PPE data for the electron lifetimes by

Berthold as shown in Fig. 5.13 [177], though generally half an order of magnitude

larger than the calculated values in Fig. 5.16a, display a qualitatively similar be-

havior. The quantitative discrepancy is not surprising, since the intense excitation
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conditions in the 2PPE experiment lead to a substantial phase space reduction for

carrier scattering processes, which eventually leads to the increased observed lifetimes.

The temperature-dependend lifetimes as shown in panel (b) of less than 100 fs for

temperatures above 400 K, although lower than our data for Si(111)7×7 in Fig. 5.11,

qualitatively agree with the decreasing behavior of T1 with increasing temperature.

Thus the enhanced phase space at elevated temperatures available for carrier scatter-

ing may provide a further contribution to the diminished population relaxation times

above 600 K, in addition to optical phonon absorption and emission processes.

The quantitative discrepancy indicates that the relatively crude approximation of

the free two-dimensional electron gas within the random-phase approach describes

the electron dynamics on this surface only very roughly. The main flaws in this

description are the neglect of both band-structure effects and finite coupling of the

surface carriers to bulk electrons in the substrate. In addition, the picture of one

single excited quasiparticle fails to describe the real situation with the excitation of

interacting electrons in a substantial fraction of the adatom dangling bonds.

Due to the spatial complexity of the 7×7 superstructure it is very difficult to obtain

quantitatively reliable results on the electronic properties of the surface dangling-bond

states. Local-density approximation (LDA) calculations by Ortega and coworkers of

the electronic surface band structure of Si(111)7×7 reveal the metallic character of the

adatom dangling-bond surface states [240–242]. Among the 12 adatom surface bands,

corresponding to the 12 adatom dangling bonds per unit cell, according to Ortega et

al. only 2 bands lie in the vicinity of 10 meV around the Fermi level [241]. The fact

that only part of the adatom dangling-bond electrons give rise to the metallicity of

the surface implies a reduced metallic electronic density n and thus a reduced Fermi

energy EF. Since in both equations (5.14) and (5.15) the quasiparticle lifetimes are

proportional to the electronic density, the calculations by Ortega et al. would imply

smaller lifetimes than displayed in Fig. 5.16.

Despite the rough approximation of modeling the complex Si(111)7×7 surface

by an idealized Fermi liquid approach, it has to be noted, however, that the RPA

calculations yield the correct order of magnitude for the incoherent relaxation times

and thus substantiate the experimentally observed indications for the metallicity of

the dangling-bond bands on Si(111)7×7.

5.3.4 Scattering mechanism

From various SHG investigations, including adsorption [74], spectroscopy [134], and

time-resolved experiments [133], and also from 2PPE studies performed under similar

conditions [177] (Sect. 2.5), it is evident that for incident 1.55-eV (800-nm) photons

the adatom dangling-bond states of Si(111)7×7 are the (near) resonant intermedi-

ate levels in the SH process. Their role is illustrated schematically in the inset of

Fig. 5.15. An intense 1.55-eV pump pulse populates the partially unoccupied adatom
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dangling-bond states, whereas the relatively weak delayed probe pulse, that does not

influence the dangling-bond population significantly, finds less unoccupied electronic

states available for the enhancement of the SH process. The recoveries of the SH

intensity with increasing probe delay time demonstrate the scattering times of the

excited electrons out of the optically coupled region of adatom dangling-bond states

in k-space.

In principle, the observed recovery of the SH signal in pump–probe experiments as

well as the measured T1 relaxation times obtained with the three-beam transient grat-

ing setup could be a result of carrier diffusion. However, since the adatom dangling-

bond states are located energetically within the bulk band gap, diffusion or drift of

the excited electrons normal to the surface into the volume is inhibited. In addition,

the dynamics of space charges and the resulting band-bending and surface electric

fields that lead to drift currents have been shown experimentally on Si(111) surfaces

to lie between nanoseconds and microseconds [24, 29], far beyond the ps and sub-ps

time scale of our experiments. Lateral carrier diffusion also occurs on time scales

much longer than 1 ps for our spot sizes and grating periods on the order of 100 µm.

Therefore the observed incoherent relaxation dynamics truly reflects population decay

in k-space as opposed to diffusion in real space.

Candidates for scattering processes include Auger processes and radiative recom-

bination. However, as these processes occur on much longer time scales than the

femtosecond to picosecond range investigated in our study, they are irrelevant in our

temporal regime. Radiative recombination times in volume semiconductors have been

observed between nanoseconds in direct band-gap materials up to milliseconds in in-

direct semiconductors, in which the interaction with phonons is necessary for the

recombination process [180]. The time scale of radiative recombination between sur-

face states can be concluded from a 2PPE experiment by Bokor et al. on Si(111)2×1,

that yielded the direct recombination between the antibonding π∗ and the bonding

π surface band in the sub-ns regime [21]. The relatively slow time dependence of di-

rect recombination favors this process as key candidate for the long-time component

on the nanosecond time-scale, that was observed by Mauerer (see inset of Fig. 5.14)

and also in this work with both SH pump–probe experiments and the three-beam SH

diffraction technique (barely visible in Figs. 5.9 and 5.10). Since lattice heating by

the pump pulse can be estimated to be less than 25 K [133], thermal effects cannot be

responsible for the long-time component in the SH signals. This slow component may

be a result of the isotropic filling of the excited electrons within the U1/S1 adatom

dangling-bond surface band after equilibration of the excited carriers. Once the band

is isotropically filled in k-space, recombination leads to the relaxation of the long-time

component on the nanosecond time scale.

Defects and impurities are both efficient centers for non-radiative recombination

and scatterers for electrons. Although defect and impurity scattering occur mostly

elastic, the significant wave vector change of the scattered electron can lead to its



82 Chapter 5. Incoherent dynamics

relocation out of the optically coupled region in k-space and thus to the observed

relaxation of the SH signals in pump–probe and three-beam diffraction experiments

(see Figs. 5.9 and 5.10). Experimentally, trapping and scattering times at defects and

impurities on the Si(111)2×1 surface have been determined by 2PPE to be around

200 ps [21, 23], far beyond the time scale of femtoseconds to sub-picoseconds of our

investigation. The irrelevance of defect and impurity scattering in our temporal regime

is further corroborated by the independence of the population relaxation time with

respect to oxygen coverage on Si(111)7×7 [133].

Another possibility for the relaxation mechanism of the excited electron population

is the interaction with phonons. Due to the non-polarity of bulk silicon and thus

the absence of any piezo-electric electron–phonon interaction, the interaction of the

carriers with both acoustic and optical phonons is limited to deformation potential

scattering. The weakly polar bonds at silicon surfaces, that are a result of charge

transfer, are barely able to initiate any substantial piezo-electric contribution to the

integral electron–phonon scattering rate. As a consequence of the typical scattering

times of acoustic phonons in the nanosecond range [3], they play no role for the

ultrashort relaxation component in our experiment.

The emission of optical phonons, on the other hand, has been shown to occur on

a time scale of 100 fs in bulk silicon [3, 31]. The interaction with optical phonons

is therefore a relevant candidate for our observed carrier relaxation time. The pro-

nounced decrease in the population relaxation time for Si(111)7×7 at temperatures

above 600 K (see Fig. 5.11) is an indication for the involvement of optical phonons at

elevated temperatures. The observed decrease can, however, also be explained using

a purely electronic phase space argument within Fermi liquid theory (see Fig. 5.16).

However, since the screening of the deformation potential by high electronic densities

is relatively weak [3], the electron–phonon interaction cannot account for the observed

substantial increase in scattering time with increasing pump pulse fluence, as shown

in Fig. 5.15 [133]. Nevertheless, it is very well possible that optical phonon scattering

is the dominant relaxation process in Si(001).

For this reason, it is sensible to assign the fast relaxation of the SH signals in

pump–probe and three-beam diffraction at the Si(111)7×7 surface to electron–electron

scattering within the U1/S1 surface bands formed by the adatom dangling bonds. The

quasi-elastic process of intraband electron–electron scattering (see inset of Fig. 5.15)

implies that energy dissipation is not necessary in the fast relaxation process.
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Coherent dynamics

Although the incoherent population relaxation times as discussed in the preceding

chapter yield valuable information about the carrier scattering machanism, one has to

be aware, however, that the measured T1 time is always a result of multiple scattering

processes. This is a consequence of the experimental procedure of the SH pump–probe

and SH three-beam diffraction schemes that both are sensitive to scattering of excited

carriers out of the optically coupled region in k-space and thus yield average relaxation

rates of a multi-step process. For the investigation of single carrier scattering instances

it is necessary to employ an experimental technique that probes an electronic quantity

which changes its value significantly in each interaction event. This one quantity is the

phase of the electronic wavefunction that is addressed in coherent experiments. By

measuring the dephasing times T2 of induced electronic polarizations such methods

gain important additional information on relaxation processes compared to incoherent

techniques.

Carrier dephasing rates are important for understanding phenomena such as co-

herent generation and control of photocurrents in semiconductors [243,244] as well as

coherent optical switching by ultrafast pulses [245]. In order to determine the inelas-

tic transport scattering time in semiconductor heterostructures independently of the

elastic one, coherent techniques based on the observation of a current echo can be em-

ployed, as proposed theoretically by Niggemeier et al. [246]. Recently, Weinelt, Reuss,

and coworkers studied the dephasing of image-potential states on Cu(001) by means of

time- and energy-resolved two-photon photoemission [11,247]. They obtained the in-

fluence of pure dephasing through the loss of coherence in quantum-beat spectroscopy

and also from the results of linewidth and decay-rate measurements [11,247].

Especially in solid-state investigations, photon echo experiments have been widely

employed for the determination of dephasing times (see Sect. 2.3) [3]. To my knowl-

edge, the only surface-sensitive experiment that makes use of the photon echo is the

sum-frequency up-conversion scheme by Guyot-Sionnest, in which he studied the de-

phasing of the transient polarization of the Si–H adsorbate–substrate stretch vibration

on Si(111) in real time [12]. With his setup, he succeeded in separating the dephasing

due to the homogeneous linewidth from inhomogeneous broadening.

Whereas the extraction of quantitative population relaxation times T1 from the
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time-resolved SH diffracted signal is relatively straight-forward (see Figs. 5.9 and 5.10),

the deduction of dephasing times T2 from the data is quite difficult. The reason for

this difficulty is twofold: In the two-beam self-diffraction geometry, the temporal shift

of the SH self-diffracted signal to positive time delays is mainly a function of the pulse

duration (see Sect. 4.2), and depends only very insensitively on the dephasing time (see

Fig. 6.2). Additionally, for both two-beam and three-beam setups, the determination

of T2 depends on the model used for the electronic system. Besides the qualitative

fundamentals of this model (homogeneous, inhomogenous, or continuum model), the

quantitative characteristics of the electronic band structure – which are not very well

known for surface states – also influence the calculated dephasing times.

As already mentioned, we employed two methods to study the dephasing times

T2 of electronic surface states on Si(111) and Si(001). Sect. 6.1 presents the results

of the two-beam SH self-diffraction experiment. In this set of measurements, the

temporal shift of the diffracted signal with respect to the SFG cross-correlation time

delay zero yields information about the order of magnitude of T2 under the assump-

tion of inhomogeneous broadening. The more advanced three-beam SH diffraction

experiments with two independent time delays are the subject of Sect. 6.2. The use of

three different incident directions together with the two independently tunable time

delays provides a powerful tool to examine temporal relaxation behavior by means of

spatial selection of the emerging beams. Finally, in Sect. 6.3 the different phenomeno-

logical models for the interpretation of the SH diffraction experiments are presented

and discussed. The question which of these models – inhomogeneous broadening or

continuum excitation – correctly describes the electronic systems under investigation,

could be elucidated experimentally through the resolution of the SH diffracted signal

in real time. This inherent uncertainty prevents the extraction of precise values for

the dephasing times from our experimental data.

6.1 Second-harmonic self-diffraction

The second-harmonic self-diffraction setup is based on two synchronized incident op-

tical pulses. The second pulse generates a transient population grating in the surface

through interaction with the polarization in the material that was induced by the

first pulse. In addition, photons from the second beam are diffracted from the tran-

sient grating, giving rise to second-harmonic light, which is detected as a function of

time delay between the two pulses. A more qualitative description of the process was

presented in Sect. 2.4.

With our experimental setup (Fig. 3.10) we were able to measure simultane-

ously the sum-frequency cross-correlation (Fig. 6.1a) and the correlation trace of the

diffracted signal (Fig. 6.1b). Under the assumption of ideal sech2 pulses, the width of

22 fs of the SFG cross correlation corresponds to a pulse duration of less than 14 fs
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Fig. 6.1: a) SFG cross-correlation and b) self-diffracted SH signal from two beams incident
on a clean Si(111)7×7 surface under 22◦ and 24◦. The solid line through the data of the
cross-correlation (a) and the dashed line in (b) indicate the calculated response of sech2

pulses with a full width at half maximum of 14 fs. The shift and asymmetric broadening of
the diffracted signal corresponds to a dephasing time around 10 fs under the assumption of
an inhomogeneously broadened distribution of three-level systems [248].

– on the sample in UHV. With this cross-correlation we determined time delay zero.

The most obvious characteristic of the diffracted signal is its shift to positive delay

times. In addition, it exhibits a sharper rise than the SFG cross-correlation, and it is

asymmetric. In the case of negligible relaxation times T1 and T2, one would expect

a symmetric distribution with half-width of 17 fs (dashed line in Fig. 6.1b) for the

sech2 pulses that produce the SFG signal of Fig. 6.1a. This hypothetical correlation

displays a narrower temporal width, because it corresponds to a four-photon absorp-

tion process, whereas in the SFG cross-correlation only two photons are absorbed.

The shift to positive delays thus reflects the finite temporal response of the system.

The best fit based on optical Bloch equations with variable finite decay time yields

τd ' 10 fs under the assumption of inhomogeneous broadening.

Mauerer earlier conducted SH self-diffraction measurements on Si(111)7×7, but

was not able to detect a finite temporal shift of the diffracted trace with respect to

the SFG cross-correlation trace [133]. He observed neither the sharper temporal rise,
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Fig. 6.2: Second-harmonic self-diffracted peak shift with respect to the SFG cross-
correlation time delay zero as a function of dephasing time T2, calculated within the density-
matrix formalism as presented in Chap. 4. The calculations are based on independent three-
level systems that model homogeneous behavior (open squares) as well as inhomogeneous
broadening (circles). The measured shifts that are typically between 6 fs and 9 fs (between
dashed horizontal lines) imply dephasing times on the order of 10 femtoseconds.

nor the asymmetry of the SH diffracted signal, which followed closely the shape of the

SFG cross-correlation. The reason for his observation is probably the relatively long

duration of his 120-fs pulses, that prevented the detection of relaxation phenomena

on the femtosecond time scale.

Since the aim of this experimental scheme is to extract quantitative information

about the dephasing processes, it is natural to take a look at the most prominent

characteristic feature of the diffraction trace – the peak shift with respect to time

delay zero – as a function of T2. Fig. 6.2 shows the dependence of the peak shift as

calculated within the density-matrix framework discussed in Chap. 4 on the dephasing

time T2 for both homogeneous and inhomogeneously broadened three-level systems.

In both cases the dependence of the shift on T2 is rather small, which complicates

a precise determination of T2 from the measured correlation traces. Qualitatively

similar results for degenerate four-wave mixing were obtained by Weiner et al. [169].

Since typical diffracted shifts measured in our experiment lie between 6 fs and 9 fs

(between dashed lines in Fig. 6.2), the dephasing time can, however, be extracted from

the data to be on the order of 10 fs for both homogeneous and inhomogeneous model.

Due to the insensitivity of the shift within the continuum model, that is discussed

in Sect. 6.3, no information on T2 can be extracted from the measured self-diffracted
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Fig. 6.3: SH self-diffracted peak shift from Si(111)7×7 with respect to the SFG time-delay
zero as a function of surface temperature.

correlation traces in that case.

In the present self-diffraction experiment, however, the simultaneous measurement

of the SFG cross-correlation (Fig. 6.1a) guarantees that shift and asymmetry of the

diffracted signal (Fig. 6.1b) are caused by a finite intrinsic time constant. The deduced

value of T2 ∼ 10 fs is smaller than the dephasing times observed for free-carrier

dephasing in bulk semiconductors or semiconductor quantum wells [3] but larger than

that of metallic systems [249]. Since the charge density in the dangling bonds of

Si(111)7×7 is intermediate to those cases, this is the expected behavior.

The dependence of the SH self-diffracted temporal peak shift with respect to the

SFG sum-frequency time delay zero is presented in Figs. 6.3–6.5 for Si(111)7×7 and in

Figs. 6.6–6.7 for Si(001). Since the dependence of the shift on the various parameters

is rather small or even absent, the insensitive shift-to-T2 relation (see Fig. 6.2) did

not allow to infer quantitative information on the variation of the dephasing time.

Fig. 6.3 shows the slight surface temperature dependence of the peak shift for

Si(111)7×7. Due to the enhanced disturbing influence of black-body radiation from

the surface at elevated temperature on the weak SH diffracted signal, it was not

possible to extend the accessible temperature range beyond 800 K. The peak shift

of 7 fs at 80 K is compatible with the low-temperature measurements with variable

coverage (Fig. 6.4) and pulse fluence (Fig. 6.5), that were obtained with different

silicon samples, and thus confirms the reproducibility of the measured data. The

observed increase of the peak shift from 7 fs at 80 K to 9 fs at 800 K is probably

a result of temperature-dependent variations in the energies of the surface electronic

states. The resulting variations in the detuning of the incident photon energy relative

to the distribution of transition energies lead to changes in the magnitude of the

observed self-diffracted peak shift (see Fig. 4.3).

In Fig. 6.4 the dependence of the self-diffrated peak shift from Si(111)7×7 on

oxygen exposure is displayed. A calibration of the coverage using the exposure-

dependence of the diffracted intensity (Fig. 5.1) yields an oxygen coverage of almost
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Fig. 6.4: SH self-diffracted peak shift from Si(111)7×7 at 80 K with respect to the SFG
time-delay zero as a function of O2 exposure. The data point of highest exposure (1.8 L)
corresponds to an oxygen coverage on the order of 1 monolayer (see Sect. 5.1.1 and Fig. 5.1).
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Fig. 6.5: SH self-diffracted peak shift from Si(111)7×7 at 80 K with respect to the SFG
time-delay zero as a function of total pump and probe pulse fluence.

one monolayer for the data point of highest exposure (1.8 L). The absence of any

significant variation of the shift in Fig. 6.4 does, however, not rule out a substantial

decrease of the dephasing time due to the existence of efficient scatterers (i.e. oxy-

gen atoms) on the surface. Since the magnitude of the peak shift stays at a finite

minimum value even for vanishing dephasing time resulting from the finite popula-

tion relaxation time (see Fig. 4.5), it is not possible to imply constant T2 times from

constant peak shift. In fact, Reuss, Weinelt, and coworkers studied the influence

of surface defects and disorder on the dephasing rates of image-potential states on

Cu(001) using two-photon photoemission [11,247]. By adsorbing CO onto the copper

surface, they observed a pronounced dependence of the dephasing rate on the degree

of disorder on the surface [11,247].

The pulse fluence dependence of the diffracted peak shift for Si(111)7×7 is shown in

Fig. 6.5. In analogy to the discussion of Fig. 6.4, the constancy of the shift with respect

to variations in pulse fluence does not allow to draw conclusions for the behavior of
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Fig. 6.6: SH self-diffracted peak shift from Si(001) with respect to the SFG time-delay
zero as a function of surface temperature.

the dephasing rate. The behavior of the population relaxation time T1 as a function

of pump pulse fluence has been investigated by Mauerer [133] and was discussed in

Sect. 5.3 (see Figs. 5.14 and 5.15).

In order to assess the experimental results for Si(111), it is useful to compare the

SH self-diffracted data with identical measurements on Si(001). Fig. 6.6 shows the

surface temperature dependence of SH self-diffracted peak shift for Si(001). Below

200 K Si(001) exhibits a peak shift around 5 fs, whereas at higher temperatures the

shift is observed around 8 fs. The behavior complies with the measured population

relaxation time T1 as a function of temperature (Fig. 5.12), which shows a T1 time of

100 fs in the low-temperature c(4×2) reconstruction, but an increased T1 time of 160

fs in the high-temperature 2×1 phase. Since for small dephasing times the value of the

T1 time is a dominant contribution to the magnitude of the peak shift, its qualitative

behavior as a function of temperature is not surprising. The reason for the relatively

high transition temperature above 200 K in Fig. 6.6, as opposed to 150 K in Fig. 5.12

may be a result of the coexistence of both structures on the surface, which has been

observed in earlier studies of the phase transition [37].

The oxygen exposure dependence of the peak shift for Si(001) is shown in Fig. 6.7.

As in the case of Si(111), the data for low temperatures of clean Si(001) are consistent

with each other (cf. Fig. 6.6). The fact that the peak shift of 5 fs at 80 K for Si(001)

is smaller than the value of 7 fs for Si(111) is readily explained by the smaller low-

temperature T1 of 100 fs compared to 180 fs, respectively (see Fig. 5.11 and 5.12).

The rising behavior of the peak shift with increasing coverage that is displayed in

Fig. 6.7 indicates an increase in T1, which complies with the carrier transport model

to efficient recombination centers as discussed in Sect. 5.2. Since the adsorption of

oxygen destroys the well-ordered surface structure of clean Si(001), the transport of

surface carriers to the recombination centers (e.g. steps) is hindered. Therefore, the

adsorption of oxygen on Si(001) increases the population relaxation time T1, which

appears as increasing magnitude of the peak shift in Fig. 6.7.
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Fig. 6.7: SH self-diffracted peak shift from Si(001) at 80 K with respect to the SFG
time-delay zero as a function of O2 exposure. The data point of highest exposure (1.6 L)
corresponds to an oxygen coverage around 0.5 monolayers (see Sect. 5.1.1 and Fig. 5.1).

The discussion in this section reveals, that our transient grating experiment in the

SH self-diffracted two-beam geometry delivers only limited quantitative information

about the dephasing time of the electronic surface states investigated. From the

analysis of Fig. 6.2 it is only possible to deduce T2 on the order of magnitude of 10

fs under the assumption of an inhomogeneously broadened distribution of three-level

systems, that is characterized by vanishing coupling between the three-level systems.

The introduction of finite coupling leads to a continuum model that is discussed in

Sect. 6.3.

6.2 Second-harmonic three-beam diffraction

One possibility to extend the capabilities of the second-harmonic diffraction exper-

iments in terms of extractability of physical relaxation parameters is the lifting of

the spatial and temporal degeneracy of the incident excitation beams. In the self-

diffraction setup, we used one of the two incident beams simultaneously as a pump

pulse that generated the transient population grating together with the other pulse,

and as a probe pulse that was diffracted from the grating it generated itself. In order

to enhance the experimentally accessible degrees of freedom, we therefore extended

the two-beam geometry with a spatially distinct synchronized third beam.

A special form of the SH three-beam diffraction scheme has already been presented

in Chap. 5. The data in Fig. 5.10 have been obtained with the three-beam geometry,

in which the two pump beams that produce the grating are temporally coincident,

and the time delay with respect to the diffracted probe beam is varied. By using

this setup it is possible to deduce population relaxation times directly from the SH

diffraction trace (see Fig. 5.10).

A set of three-beam second-harmonic diffraction measurements into direction 2kc+
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Fig. 6.8: Set of second-harmonic diffraction measurements from Si(111)7×7 at 80 K in the
three-beam geometry detected in the direction 2kc +kb−ka. One of the two independently
tunable time delays (τa) is displayed on the x-axis, while the other (τc) is chosen to be a
parameter of the different curves. τb is set to zero. The dashed line is the measured SFG
cross-correlation between the beams ka and kb, that determines time delay τa zero. The
solid lines through the data points are guides to the eye.
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kb − ka is shown in Fig. 6.8. Compared to two-beam self-diffraction, three-beam

diffraction has one additional temporal degree of freedom, that is the additional second

time delay. In Fig. 6.8 one delay is displayed on the x-axis, while the other is chosen

to be a parameter of the different curves. With increasing delay τc the correlation

traces shift from negative delays τa to zero, while rising in intensity. From τc values

of a few 100 fs, the traces stay centered at τa = 0 and decay on the time scale of the

population relaxation time.

This behavior can be understood qualitatively by a transient population grating

generated by ka and kb from which kc is diffracted (upper photon diagram in Fig. 6.8).

The lower photon diagram in Fig. 6.8 corresponds to the upconversion of a photon

echo, that is not visible in our data. If present, a photon echo should appear in form of

additional peaks near τa =2τc for negative time delays. However, this observation does

not rule out an inhomogeneously broadened system, because small dephasing times

T2 give rise to temporal shifts of the echo and also to very small echo intensities. As

already discussed in Sect. 5.2, the T1 values deduced directly from the three-beam

correlation traces are fully consistent with the ones that we observe with second-

harmonic pump–probe (see Fig. 5.11).

A summary of the different purely optical second-harmonic experiments that we

performed is displayed in Fig. 6.9. The incidence of three pulses onto the surface

leads to a bunch of reflected and diffracted beams at the second-harmonic frequency

(top panel in Fig. 6.9). The resulting second-harmonic beams emerge in four dif-

ferent categories: The open squares represent the reflected second-harmonic signal

originating from two photons of one single beam (2ka). It shows the characteristic

dip after a pump pulse and the subsequent reincrease that is a measure for the popu-

lation relaxation time T1 (see Fig. 5.9). The dashed line around time delay zero is the

sum-frequency cross-correlation trace that arises from the interaction of one photon of

two distinct beams each (ka+kb). Its temporal position denotes time delay zero and

its width allows to deduce the pulse duration. The solid line is the second-harmonic

self-diffracted correlation trace shown already earlier in Fig. 6.1. It originates from

three photons of one beam and one photon of another beam (3ka−kb). Its shift

to positive time delays allows to infer T2 dephasing times. The signal denoted by

the circles is impossible to obtain in a two-beam self-diffraction geometry. It corre-

sponds to a four-photon absorption process from three distinct beams, such as one

beam contributes two photons (2kc +kb−ka). Though the trace shown here allows

to extract T1 population relaxation times (also see Fig. 5.10), the freedom of two

independently adjustable time delays also allows to obtain further information about

dephasing processes characterized by T2.

Before we discuss the applicability of several phenomenological models to our data

in Sect. 6.3, the numerical simulation of the three-beam diffracted correlation traces

under the assumption of inhomogeneous broadening is presented. For the accurate

determination of the relaxation rates it is necessary to model the temporal evolution
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Fig. 6.9: SH signals into various directions. Top: The incidence of three pulses ka, kb,
and kc onto the surface leads to a bunch of reflected and first-order diffracted beams at
the second-harmonic frequency. Bottom: Example traces of the four different categories, in
which the SH beams emerge from Si(111)7×7 at 80 K. Reflected SH signal after a pump pulse
(2ka, open squares), sum-frequency cross-correlation (ka+kb, dashed line), SH self-diffracted
correlation trace (3ka− kb, solid line), and SH three-beam diffracted signal (2kc + kb− ka,
circles). The dotted lines through the data are fits.

of the diffracted SH signal by means of a density-matrix calculation, as discussed in

Chap. 4. Such a description yields several terms of the form (2.9) for the nonlinear
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Fig. 6.10: Schematic summary of the photon processes A–F contributing to SH diffraction.
Shown is the consecutive build-up of nonlinear polarization and population starting from
the unperturbed ground state ρ(0) up to the fourth order nonlinear polarization p(4) into
the self-diffracted direction 3q1 − q2. Each of the 6 different pathways from ρ(0) to p(4)

comprises three excitations by E1 and one excitation by E∗2 and corresponds to one photon
diagram in Fig. 6.11.

polarization P(4)
s (see App. A). These terms correspond to different possibilities for

the temporal order of the four incoming photons that contribute to the χ(4) process.

Fig. 6.10 schematically displays the set of differential equations (B.13) for the

polarizations and populations of first, second, third, and fourth order, that was derived

in App. B. The consecutive absorption of four photons transform the ground state

ρ(0) to the fourth order polarization p(4), giving rise to 6 different paths that lead from

ρ(0) to p(4). Each of these paths corresponds to one distinct χ(4) photon process shown

in Fig. 6.11.

From the arrangement in Fig. 6.11 it is apparent that the second-harmonic diffrac-

tion process is not equivalent to a mere upconversion of the four-wave mixing signal

like in two processes A and B. For a correct simulation of our experimental data we

therefore take into account all six terms.

A result of a numerical calculation for the three-beam geometry as presented in

Fig. 6.8 is shown in Fig. 6.12. Besides quantitative differences compared to the exper-

imental data in Fig. 6.8, that arise from unprecise input parameters, the calculation

shows all qualitative features of the measured correlation traces. Both, the behavior

of the peak shift from negative values up to a saturation at zero, and also the rise and

fall of the peak intensity with increasing τc are reproduced.

A more detailed comparison of experimental SH three-beam diffraction data, like

in Fig. 6.8, with density-matrix based calculations (Fig. 6.12) is presented in Fig. 6.13.

Shown are experimental results for Si(111)7×7 (circles) and Si(001) (open squares)

at 80 K together with a simulation (solid line) assuming an inhomogeneous, 600 meV

broad distribution of intermediate states, T1 times of intermediate and upper level

of 500 fs, and pure dephasing times T ∗2 of 5 fs for all three levels. The data were

derived from compilations like Fig. 6.8 by representing each correlation trace by its

three most intuitive parameters: peak intensity, peak shift with respect to time delay
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Fig. 6.11: Schematic representation of the 6 different χ(4) photon processes A–F that
constitute five-wave mixing in the second-harmonic self-diffraction geometry. Each process
directly corresponds to one excitation path from the ground state to the fourth order po-
larization as depicted schematically in Fig. 6.10. From the arrangement it is apparent that
the second-harmonic diffraction process is not equivalent to a mere upconversion of the
four-wave mixing signal, like in the two processes A and B.

τa zero, and FWHM. The three values are displayed as a function of τc (the parameter

of the different curves in Fig. 6.8) in the upper, center, and lower panel, respectively.

The peak intensity in the upper panel is similar to the diffraction trace at time

delay τa = 0 shown in Fig. 5.10. It increases on the time scale of the pulse duration

to its maximum value, before it decays on the time scale of the population relaxation

time T1. The experimental peak intensities match the simulated data fairly well.

The peak shift in the center panel of Fig. 6.13 shows an increase from negative

values to its saturation value zero, which is reached around time delay τa = 0. The

fit between the calculated curve and the experimental data is excellent, both in terms

of the slope of the increase and the saturation behavior. However, both Si(111)

and Si(001) display an overshoot to positive time delays, that is not reflected in the

simulation. The distinct time scales of the temporal decay of the overshoot – on the

order of several 100 fs for Si(111) but at least an order of magnitude more rapidly
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zero. The dashed line is the calculated SFG cross-correlation between the beams ka and kb,
that determines time delay τa zero. Input parameters of the numerical calculation were T1

times of the intermediate and upper level of 500 fs, pure dephasing times T ∗2 for all three
levels of 5 fs, a pulse duration of 14 fs, and a 600 meV broad inhomogeneous distribution
of the intermediate level.

for Si(001) – may include important quantitative information about the dephasing

rates. Since the overshoot is not existent in the simulation of the inhomogeneously

broadened model, a calculation using the continuum model would be highly desirable

(see Sect. 6.3).

The width of the correlation traces in the lower panel of Fig. 6.13 show little

variation as a function of delay τc. The calculated values match the measured data

better than 10%. Despite minor differences between the experimentally obtained SH

three-beam diffraction traces and the density-matrix based calculations, the agree-

ment between model and experiment affirms the validity of the theoretical approach.

6.3 Phenomenological models

For both, the physical understanding of the underlying fundamental relaxation pro-

cesses and the correct theoretical treatment of the diffracted correlation traces, a

microscopic description of the nonlinear optical and electronic processes at the inves-
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tigated surfaces would be highly advantageous. However, the lack of precise exper-

imental information and theoretical calculations of the electronic band structure of

Si(111) and Si(001) and also the inavailability of certain degrees of freedom in our

experiment – such as the impossibility to change the excitation wavelength – at the

moment prevent the treatment on a microscopic level. Therefore, we are forced to

rely on phenomenological models for the description of our experiment; three of these

models are presented in Fig. 6.14.
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Fig. 6.14: Models for the phenomenological description of quantum systems. 1) Homoge-
neous system, consisting of a single transition frequency. 2) Inhomogeneous system, corre-
sponding to a distribution of eigen-frequencies that are not coupled to each other. Only in
this case a photon echo is possible. 3) Coupling to a continuum of states, leading to a rapid
decay of the coherent polarization.
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A relevant model would have to explain why the finite response time of the system

that is clearly visible in the diffracted signal (Fig. 6.1b) does not appear in the SFG

signal (Fig. 6.1a). If the polarization P(1)
a created by the pulse ka is present when

the delayed pulse kb arrives at the surface, 2ω photons should be emitted. In fact,

this has been exploited in IR–visible SFG experiments to measure the free induction

decay of adsorbate vibrations [12,13].

In the introduction to the transient grating experiment (Sect. 2.4) we assumed

that the system is characterized by one resonantly excited transition frequency ω01

(homogeneous system in Fig. 6.14). In this case the polarization P(4)
s would decay with

a time constant T2 and the measured diffracted signal Id ∝ |P(4)
s |2 with T2/2. However,

this situation is not directly applicable to our experiment. The 7×7 structure of

Si(111) is characterized by four energetically inequivalent adatoms [87], the U1 band

has a width of several 100 meV (cf. Fig. 2.12), and the valence band provides a

wide energy range for the initial states of excitation. In addition, the electronic band

structures of surface states on both Si(111) and Si(001) (see Figs. 2.2 and 2.4) display a

finite dispersion within their respective Brillouin zones, that leads to a inhomogeneous

broadening in k-space. Despite the short excitation pulses it is reasonable to assume

that the inhomogeneous linewidth of the transition is larger than the spectral width

of the pulse (∼ 120 meV). Since the different excited eigenfrequency components

evolve at different rates eiω01t, the macroscopic polarization P(1)
a created by the first

pulse will decay to zero within the pulse width, even in the absence of dephasing

collisions (inhomogeneous system in Fig. 6.14). A delayed pulse kb cannot upconvert

this polarization and generate 2ω radiation in the direction KSF,x = ka,x+kb,x. In such

a situation, small changes of the cross-correlation due to true dephasing processes are

very difficult to detect even by means of interferometric measurements [250].

The diffracted signal, in contrast, is generated by a pulse sequence which causes

transitions between |0〉 and |1〉. In the case of negligible coupling between the three-

level systems (inhomogeneous broadening), the second pulse incident at t = tb is able

to reverse the phase evolution of the oscillating dipoles created by the first pulse at

t = ta = 0. This leads to a photon echo which is peaked at t = 2tb [171]. In the two-

beam SH self-diffraction experiment the echo signal is not time-resolved. However, as

its height is proportional to exp(−4tb/T2) the echo leads to a decay of the diffracted

signal with a time constant T2/4, provided the broadening is truly inhomogeneous,

which is equivalent to negligible coupling between the different three-level systems.

The identity of the initial state in the SH diffraction process is not well known.

Considering our excitation energy of 1.55 eV, candidates for the initial state are

both electronic surface states, such as S2 on Si(111)7×7 (Fig. 2.2) or Dup on Si(001)

(Fig. 2.4), and volume states within the valence band of silicon. In case of excitation

from bulk states, it is not clear that these transitions should be independent of each

other. If we introduce a finite coupling between the different three-level systems, we

end up with a continuum model, as shown at the bottom of Fig. 6.14. A continuum
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Fig. 6.15: Time-integrated SH self-diffracted intensity as a function of pump–probe time
delay for infinite population relaxation times T1 and different dephasing times T2 calculated
within the inhomogeneously broadened three-level model (left panel) and with the contin-
uum model (right panel). The dashed lines denote the pulse intensity as a function of time.
Whereas the peak of the diffracted signal shifts very sensitively with the dephasing time T2

of the electronic system in the inhomogeneous model, the peak in the continuum model is
relatively insensitive to changes in T2. The different dependencies for the two models imply
that the determination of T2 by means of the self-diffracted data very susceptibly depends
on the model employed. The time-resolved SH intensities for the two traces with infinite T2

are depicted in Fig. 6.16. (From Reichelt [254]).

of quantum states can be approximated by a distribution of equally spaced levels in

the limit of vanishing energetic separation between the states [251]. The coherent

superposition of transitions from a set of levels with finite energy spacing ∆E results

in the emergence of quantum beats in the coherent polarization with a temporal period

proportional to 1/∆E. The modulations can be observed experimentally by transient

four-wave mixing with time-resolved detection of the coherent nonlinear signal [252].

The case of true continuum transitions displays a qualitatively different behavior

compared to the finite number of levels. In 1980, Yeh and Eberly devised a model for

continuum transitions in which they showed induced off-diagonal coherence to decay

irreversibly [253]. Their model demonstrates that one cannot recover off-diagonal

coherence by the application of subsequent radiative pulses, ruling out the occurence

of long-time or repetitive transients, such as photon echoes [253]. Thus the continuum

excitation yields a rapid decay of the nonlinear polarization on the time scale of the

laser pulse due to the intrinsic destructive quantum interference between the coupled

continuum levels (see bottom of Fig. 6.14). This behavior is a general effect that

occurs whenever discrete transitions couple to a continuum of states [251].

The nature of the employed phenomenological model has a profound influence on

the numerical simulation of the SH diffraction experiment. Whereas in the inhomoge-
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Fig. 6.16: Time-resolved SH self-diffracted intensity of the traces shown in Fig. 6.15 as a
function of time for infinite population relaxation times T1 and dephasing times T2 calculated
for a set of pump–probe time delays within the inhomogeneously broadened three-level model
(left panel) and with the continuum model (right panel). Whereas the inhomogenous model
displays a temporal peak shift with varying time delay in analogy to a photon echo, the
peak position within the continuum model stays relatively constant. (From Reichelt [254]).

neous model the number of differential equations scales linearly with the number n of

the three-level systems, it is proportional to n2 for the continuum case, as a result of

the generated coherences within the continuum. This relation limited our own com-

putational efforts to the inhomogeneously broadened model, in which we calculated

with a number of three-level systems of typically 100. A numerical approach of the

continuum model was prevented by our limited computing capacities.

However, in order to compare predictions from the inhomogeneous model with

excitation from a continuum, we received theoretical help from Reichelt and Meier,

who performed calculations also for the continuum model [254]. Fig. 6.15 shows their

results for the time-integrated SH diffracted signal in the two-beam self-diffraction

geometry for infinite T1 and two different dephasing times T2. Whereas the diffracted

signal for infinite relaxation times shows no decay with time delay in the inhomo-

geneous model, the continuum excitation gives rise to a rapid decay of the signal

on the time of the laser pulse. The consequence of this behavior is a sensitive shift

of the diffracted signal with the dephasing time T2 (note: infinite T1), whereas the

peak in the continuum model is relatively insensitive to to changes in T2. The dis-

tinct behavior in the two models implies that a precise determination of T2 from the

self-diffracted data depends on the correct phenomenological model. The case of in-

homogeneous broadening yields a dephasing time T2 on the order of 10 fs, whereas in

the case of excitation from a continuum a quantification of T2 is not possible.

For a first preliminary evaluation of results from the three-beam geometry, Re-

ichelt and Meier also calculated the time-resolved SH diffracted intensity in the self-
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diffraction setup for infinite T1 and T2, as shown in Fig. 6.16 for several time de-

lays [254]. The respective time-integrated diffraction traces for T2 =∞ were displayed

in Fig. 6.15. For inhomogeneous broadening, the diffracted peak shifts with varying

time delay (left panel in Fig. 6.16). This behavior is analogous to the photon echo in

four-wave mixing. For the continuum model, however, a variation of time delay has

almost no influence on the temporal position of the peak (right panel in Fig. 6.16).

The principal effect of varying time delay is a change in the magnitude of the peak.

The qualitatively different behavior of the time-resolved calculations for the two

models indicates the usefulness of the three-beam approach to decide, which of the

phenomenological models correctly describes our experiments. Calculations of con-

tinuum excitation for the SH three-beam diffraction geometry are therefore a highly

desirable goal for the near future. The determination of the relevant phenomeno-

logical model could then open the door for a more microscopic understanding of the

relaxation processes on semiconductor surfaces.



Appendix A

Explicit integration of Bloch equations

This appendix presents the explicit integration of the iterative differential equa-

tions (4.28) for the nonlinear optical populations and polarizations that were derived

in Sect. 4.1. After some general considerations in Sect. A.1 follows the consecutive

integration from first to fourth order in terms of the incident fields (Sect. A.2–A.5).

Analytic results for the fourth-order second-harmonic diffracted polarization p(4) for

the complementary limiting cases of electric field pulse durations very short and very

long compared to the relaxation times T1 and T2 of the electronic system are presented

in Sects. A.6 and A.7.

A more general numerical solution of the differential equations for arbitrary pulse

shapes A(R, t) is the topic of App. B.

A.1 General considerations

The explicit integration of the differential equations (4.28) that were derived in Sect. 4.1

utilizes that

ṅ(t) = −gn(t) + f(t) (A.1)

has the solution

n(t) =
∫ t

−∞
dt1e−g(t−t1)f(t1). (A.2)

In the two-pulse geometry, the electric field is given by

E(t) = E1A(R, t)eiq1·R + E2A(R, t− τd)eiq2·R, (A.3)

where E1 (E2) is the amplitude of the first (second) electric field with wavevector q1

(q2) and A(R, t) is the electric field pulse shape at R. Analogously, the electric field

in the three-pulse geometry is a sum of three terms with two independent time delays.



104 Appendix A. Explicit integration of Bloch equations

A.2 First-order polarization

Using Eq. (A.2), the integration of Eq. (4.14) in Sect. 4.1 directly yields the first-order

polarization p(1)

p(1)(t) =
∫ t

−∞
dt1e

− t−t1
T2,p(1) eiωab(t−t1)

(
−δab(t1)

ih̄

)

⇑ = eiωt
ie

h̄
rab

∫ t

−∞
dt1e

− t−t1
T2,p(1) e−i∆ab(t−t1)

[
E1A(R, t1)eiq1·R+ (A.4)

↑ +E2A(R, t1 − τd)eiq2·R
]
.

p(1) is a sum of two terms that correspond to the polarizations induced by E1 and E2

radiated into directions q1 and q2, respectively. The factor preceding the integral in

Eq. (A.4) shows that this polarization is emitted with the fundamental frequency ω.

Since the first-order polarization corresponds to an excitation from the ground state

|a〉 to the intermediate state |b〉, p(1) is proportional to the dipole matrix element rab.

A.3 Second order

The second-order population n(2) and polarization p(2) result from a further integration

of p(1). In a physical picture this fact reflects the interaction of one excitation pulse

with the polarization in the material induced by the other pulse, which leads to a

population grating n(2) and a radiation emitted at the second-harmonic frequency

p(2) (see also Fig. 6.10 in Sect. 6.2).

A.3.1 Population n(2)

The integration of Eq. (4.17) in Sect. 4.1 yields the second-order population grating

n(2)

n(2)(t) =
∫ t

−∞
dt1e

− t−t1
T1,n(2)

(
δab(t1)p(1)∗(t1)− δ∗ab(t1)p(1)(t1)

ih̄

)

= −e
2|rab|2

h̄2

∫ t

−∞
dt1e

− t−t1
T1,n(2)

∫ t1

−∞
dt2e

− t1−t2
T2,p(1) ×

⇑⇓ ×
[(

ei∆ab(t1−t2) + e−i∆ab(t1−t2)
)

(E1E∗1A(R, t1)A(R, t2)+

↑↓ +E2E∗2A(R, t1 − τd)A(R, t2 − τd))
↓⇑ +E1E∗2

(
ei∆ab(t1−t2)A(R, t1)A(R, t2 − τd)+ (A.5)

⇑↓ +e−i∆ab(t1−t2)A(R, t1 − τd)A(R, t2)
)

ei(q1−q2)·R

⇓↑ +E∗1E2

(
ei∆ab(t1−t2)A(R, t1 − τd)A(R, t2)+

↑⇓ +e−i∆ab(t1−t2)A(R, t1)A(R, t2 − τd)
)

ei(q2−q1)·R
]
.
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n(2) is a sum of six terms that correspond to the difference-frequency signal known as

optical rectification [1], induced by one excitation and one deexcitation of E1 and E2

separately (first two summands in Eq. (A.5)), plus the population grating induced by

one excitation of E1 and E2 each, in the four possible combinations (summands 3 to

6 in Eq. (A.5)). Depending on the contribution of the two incident fields, the terms

in n(2) are proportional to E1E∗1 , E2E∗2 , E1E∗2 , and E∗1E2 with wavevectors 0, 0, q1−q2,

and q2−q1, respectively.

The absence of a prefactor of the form exp(iωt) indicates that this population

grating is stationary and therefore does not give rise to emitted radiation. Since n(2)

corresponds to an excitation and deexcitation of the transition between states |a〉 and

|b〉, Eq. (A.5) shows n(2) to be proportional to rab ·r∗ab= |rab|2.

A.3.2 Polarization p(2)

The integration of Eq. (4.17) also yields p(2)

p(2)(t) =
∫ t

−∞
dt1e

− t−t1
T2,p(2) eiωac(t−t1)

(
−δbc(t1)p(1)(t1)

ih̄

)

= e2iωt

(
−e

2rbcrab

h̄2

)∫ t

−∞
dt1e

− t−t1
T2,p(2) ei(ωac+2ω)(t−t1) ×

×
∫ t1

−∞
dt2e

− t1−t2
T2,p(1) e−i∆ab(t1−t2) × (A.6)

×
[
E2

1A(R, t1)A(R, t2)e2iq1·R

+E1E2 (A(R, t1)A(R, t2 − τd) + A(R, t1 − τd)A(R, t2)) ei(q1+q2)·R

+E2
2A(R, t1 − τd)A(R, t2 − τd)e2iq2·R

]
.

The prefactor e2iωt reveals p(2) to be induced radiation at the second-harmonic fre-

quency. The four summands in Eq. (A.6) give rise to second-harmonic beams into

reflected directions 2q1 and 2q2 (proportional to E2
1 and E2

2 , respectively), and into

the sum-frequency direction q1+q2 (two terms, proportional to E1E2).

Since p(2) corresponds to a sequence of two transitions from |a〉 to |b〉 to |c〉, its

amplitude is proportional to the product of transition dipole matrix elements rabrbc.

A.4 Third order

The two third-order polarizations p
(3)
ab and p

(3)
bc reflect the polarizations between levels

|a〉 and |b〉, and between |b〉 and |c〉, repectively. These quantities result from the

interaction of the induced second-order population grating n(2) and second-harmonic

polarization p(2) with a further excitation photon (see also Fig. 6.10 in Sect. 6.2).

Due to the interaction of three incident and one emerging optical wave, the radi-

ation resulting from p(3) is called four-wave mixing signal.
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An expression for p(3) into a specific direction was obtained by Yajima and Taira

[189]. Their result is a special case of the general result for p(3) presented in Eqs. (A.7)

and (A.8). The resulting time-ordered triple integral for p(3) can also be obtained by

a third-order perturbation formalism derived by Mukamel et al. [170].

A.4.1 Polarization p
(3)
ab

The polarization p
(3)
ab is obtained through the integration of Eq. (4.20) in Sect. 4.1

p
(3)
ab (t) =

∫ t

−∞
dt1e

− t−t1
T2,pab(3) eiωab(t−t1)

(
−2δab(t1)n(2)(t1) + δ∗bc(t1)p(2)(t1)

ih̄

)

= eiωt
(
−ie

3rab

h̄3

)∫ t

−∞
dt1e

− t−t1
T2,pab(3) e−i∆ab(t−t1) ×

×
(
|rab|2

∫ t1

−∞
dt2e

− t1−t2
T1,n(2)

∫ t2

−∞
dt3e

− t2−t3
T2,p(1) ×

×
{[

2E1A(R, t1)
(
ei∆ab(t2−t3) + e−i∆ab(t2−t3)

)
×

× (E1E∗1A(R, t2)A(R, t3) + E2E∗2A(R, t2 − τd)A(R, t3 − τd)) +

+2E1E2E∗2A(R, t1 − τd)
(
ei∆ab(t2−t3)A(R, t2)A(R, t3 − τd)+

+e−i∆ab(t2−t3)A(R, t2 − τd)A(R, t3)
)]

eiq1·R

+
[
2E1E∗1E2A(R, t1)

(
ei∆ab(t2−t3)A(R, t2 − τd)A(R, t3)+

+e−i∆ab(t2−t3)A(R, t2)A(R, t3 − τd)
)

+

+2E2A(R, t1 − τd)
(
ei∆ab(t2−t3) + e−i∆ab(t2−t3)

)
×

× (E1E∗1A(R, t2)A(R, t3)+ (A.7)

+E2E∗2A(R, t2 − τd)A(R, t3 − τd))] eiq2·R

+2E2
1E∗2A(R, t1)

(
ei∆ab(t2−t3)A(R, t2)A(R, t3 − τd)+

+e−i∆ab(t2−t3)A(R, t2 − τd)A(R, t3)
)

ei(2q1−q2)·R

+2E∗1E2
2A(R, t1 − τd)

(
ei∆ab(t2−t3)A(R, t2 − τd)A(R, t3)+

+e−i∆ab(t2−t3)A(R, t2)A(R, t3 − τd)
)

ei(2q2−q1)·R
}

+|rbc|2
∫ t1

−∞
dt2e

− t1−t2
T2,p(2) e−i∆ac(t1−t2)

∫ t2

−∞
dt3e

− t2−t3
T2,p(1) e−i∆ab(t2−t3) ×

×
{[
E2

1E∗1A(R, t1)A(R, t2)A(R, t3)+

+E1E2E∗2A(R, t1 − τd) (A(R, t2)A(R, t3 − τd)+
+A(R, t2 − τd)A(R, t3))] eiq1·R

+ [E1E∗1E2A(R, t1) (A(R, t2)A(R, t3 − τd) + A(R, t2 − τd)A(R, t3)) +

+E2
2E∗2A(R, t1 − τd)A(R, t2 − τd)A(R, t3 − τd)

]
eiq2·R
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+E2
1E∗2A(R, t1 − τd)A(R, t2)A(R, t3)ei(2q1−q2)·R

+E∗1E2
2A(R, t1)A(R, t2 − τd)A(R, t3 − τd)ei(2q2−q1)·R

} )
.

The third-order polarization p
(3)
ab is a sum of two contributions (see first line in

Eq. (A.7)), that are visualized in Fig. 6.10. The first summand 2δabn
(2) reflects an up-

conversion of the second-order population grating n(2) with an excitation photon δab
inducing a polarization between levels |a〉 and |b〉. This contribution is thus propor-

tional to rab|rab|2. The second summand δ∗bcp
(2) is a downconversion of the second-order

second-harmonic polarization p(2) with a deexcitation photon δ∗bc inducing a polariza-

tion between levels |c〉 and |b〉. This photon sequence is therefore proportional to

rab|rbc|2.

p
(3)
ab is radiated at the fundamental photon frequency (prefactor eiωt) into directions

q1, q2, 2q1−q2, and 2q2−q1. Due to the intense first-order p(1) beams at fundamental

frequency into q1 and q2, the relatively weak third-order signal from p(3) can be

observed with less difficulty in the self-diffracted directions 2q1−q2 and 2q2−q1.

Because of its third-order nature, all terms in p
(3)
ab are proportional to E3.

A.4.2 Polarization p
(3)
bc

Eq. (4.20) can also be integrated to yield an integral expression for p
(3)
bc

p
(3)
bc (t) =

∫ t

−∞
dt1e

− t−t1
T2,pbc(3) eiωbc(t−t1)

(
δ∗ab(t1)p(2)(t1) + δbc(t1)n(2)(t1)

ih̄

)

= eiωt
(
ie3rbc|rab|2

h̄3

)∫ t

−∞
dt1e

− t−t1
T2,pbc(3) e−i∆bc(t−t1) ×

×
(∫ t1

−∞
dt2e

− t1−t2
T2,p(2) e−i∆ac(t1−t2)

∫ t2

−∞
dt3e

− t2−t3
T2,p(1) e−i∆ab(t2−t3)×

×
{[
E2

1E∗1A(R, t1)A(R, t2)A(R, t3)+

+E1E2E∗2A(R, t1 − τd) (A(R, t2)A(R, t3 − τd)+
+A(R, t2 − τd)A(R, t3))] eiq1·R

+ [E1E∗1E2A(R, t1) (A(R, t2)A(R, t3 − τd) + A(R, t2 − τd)A(R, t3)) +

+E2
2E∗2A(R, t1 − τd)A(R, t2 − τd)A(R, t3 − τd)

]
eiq2·R

+E2
1E∗2A(R, t1 − τd)A(R, t2)A(R, t3)ei(2q1−q2)·R

+E∗1E2
2A(R, t1)A(R, t2 − τd)A(R, t3 − τd)ei(2q2−q1)·R

}
+
∫ t1

−∞
dt2e

− t1−t2
T1,n(2)

∫ t2

−∞
dt3e

− t2−t3
T2,p(1) × (A.8)

×
{[
E1A(R, t1)

(
ei∆ab(t2−t3) + e−i∆ab(t2−t3)

)
×

× (E1E∗1A(R, t2)A(R, t3) + E2E∗2A(R, t2 − τd)A(R, t3 − τd)) +
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+E1E2E∗2A(R, t1 − τd)
(
ei∆ab(t2−t3)A(R, t2)A(R, t3 − τd)+

+e−i∆ab(t2−t3)A(R, t2 − τd)A(R, t3)
)]

eiq1·R

+
[
E1E∗1E2A(R, t1)

(
ei∆ab(t2−t3)A(R, t2 − τd)A(R, t3)+

+e−i∆ab(t2−t3)A(R, t2)A(R, t3 − τd)
)

+

+E2A(R, t1 − τd)
(
ei∆ab(t2−t3) + e−i∆ab(t2−t3)

)
×

× (E1E∗1A(R, t2)A(R, t3)+

+E2E∗2A(R, t2 − τd)A(R, t3 − τd))] eiq2·R

+E2
1E∗2A(R, t1)

(
ei∆ab(t2−t3)A(R, t2)A(R, t3 − τd)+

+e−i∆ab(t2−t3)A(R, t2 − τd)A(R, t3)
)

ei(2q1−q2)·R

+E∗1E2
2A(R, t1 − τd)

(
ei∆ab(t2−t3)A(R, t2 − τd)A(R, t3)+

+e−i∆ab(t2−t3)A(R, t2)A(R, t3 − τd)
)

ei(2q2−q1)·R
} )

.

Similar to p
(3)
ab , the third-order polarization p

(3)
ab is a sum of two contributions

(see first line in Eq. (A.8)), as shown schematically in Fig. 6.10. The first summand

δ∗abp
(2) is a downconversion of the second-harmonic polarization p(2) with a deexcitation

photon δ∗ab inducing a polarization between levels |a〉 and |b〉. The second summand

δbcn
(2) reflects an upconversion of the second-order population n(2) with an excitation

photon δbc inducing a polarization between levels |c〉 and |b〉. Both photon sequences

are thus proportional to |rab|2rbc.
Like p

(3)
ab , p

(3)
bc is radiated at the fundamental photon frequency (prefactor eiωt) into

directions q1, q2, 2q1−q2, and 2q2−q1. Due to its third-order nature, all terms in

p
(3)
bc are also proportional to E3.

A.5 Fourth-order polarization

The aim of this appendix is the derivation of an integral expression for the second-

harmonic diffracted signal that arises from the fourth-order polarization p(4). In this

case four incident and one outgoing optical wave give rise to a five-wave mixing signal,

characterized by p(4). This polarization can be calculated by integrating Eq. (4.23),

that was derived in Sect. 4.1

p(4)(t) =
∫ t

−∞
dt1e

− t−t1
T2,p(4) eiωac(t−t1)

δab(t1)p
(3)
bc (t1)− δbc(t1)p

(3)
ab (t1)

ih̄


= e2iωt e

4rbcrab

h̄4

∫ t

−∞
dt1e

− t−t1
T2,p(4) e−i∆ac(t−t1) ×

×
[∫ t1

−∞
dt2

{
|rab|2e

− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + |rbc|2e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×
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×
∫ t2

−∞
dt3e

− t2−t3
T2,p(2) e−i∆ac(t2−t3)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) e−i∆ab(t3−t4) ×

×
{[
E3

1E∗1A(R, t1)A(R, t2)A(R, t3)A(R, t4)+

+E2
1E2E∗2A(R, t1)A(R, t2 − τd) (A(R, t3)A(R, t4 − τd)+

+A(R, t3 − τd)A(R, t4)) +

+E2
1E2E∗2A(R, t1 − τd)A(R, t2 − τd)A(R, t3)A(R, t4)

]
e2iq1·R

+
[
E1E∗1E2

2A(R, t1)A(R, t2)A(R, t3 − τd)A(R, t4 − τd)+
+E1E∗1E2

2A(R, t1 − τd)A(R, t2) (A(R, t3)A(R, t4 − τd)+
+A(R, t3 − τd)A(R, t4)) +

+E3
2E∗2A(R, t1 − τd)A(R, t2 − τd)A(R, t3 − τd)A(R, t4 − τd)

]
e2iq2·R

+
[
E2

1E∗1E2A(R, t1)A(R, t2) (A(R, t3)A(R, t4 − τd)+
+ A(R, t3 − τd)A(R, t4)) +

+E1E2
2E∗2A(R, t1)A(R, t2 − τd)A(R, t3 − τd)A(R, t4 − τd) +

+E2
1E∗1E2A(R, t1 − τd)A(R, t2)A(R, t3)A(R, t4) +

+E1E2
2E∗2A(R, t1 − τd)A(R, t2 − τd) (A(R, t3)A(R, t4 − τd)+

+A(R, t3 − τd)A(R, t4))] ei(q1+q2)·R

+E3
1E∗2A(R, t1)A(R, t2 − τd)A(R, t3)A(R, t4)ei(3q1−q2)·R

+E∗1E3
2A(R, t1 − τd)A(R, t2)A(R, t3 − τd)A(R, t4 − τd)ei(3q2−q1)·R

}
+|rab|2

∫ t1

−∞
dt2

{
e
− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×
∫ t2

−∞
dt3e

− t2−t3
T1,n(2)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) × (A.9)

×
{[

2E2
1A(R, t1)A(R, t2)

(
ei∆ab(t3−t4) + e−i∆ab(t3−t4)

)
×

× (E1E∗1A(R, t3)A(R, t4)+

+E2E∗2A(R, t3 − τd)A(R, t4 − τd)) +

+2E2
1E2E∗2A(R, t1)A(R, t2 − τd)

(
ei∆ab(t3−t4)A(R, t3)A(R, t4 − τd)+

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)

+

+2E2
1E2E∗2A(R, t1 − τd)A(R, t2)

(
ei∆ab(t3−t4)A(R, t3)A(R, t4 − τd)+

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)]

ei2q1·R

+
[
2E1E∗1E2

2A(R, t1)A(R, t2 − τd)
(
ei∆ab(t3−t4)A(R, t3 − τd)A(R, t4)+

+e−i∆ab(t3−t4)A(R, t3)A(R, t4 − τd)
)

+

+2E1E∗1E2
2A(R, t1 − τd)A(R, t2)

(
ei∆ab(t3−t4)A(R, t3 − τd)A(R, t4)+

+e−i∆ab(t3−t4)A(R, t3)A(R, t4 − τd)
)

+
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+2E2
2A(R, t1 − τd)A(R, t2 − τd)

(
ei∆ab(t3−t4) + e−i∆ab(t3−t4)

)
×

× (E1E∗1A(R, t3)A(R, t4)+

+E2E∗2A(R, t3 − τd)A(R, t4 − τd))] e2iq2·R

+
[
2E2

1E∗1E2A(R, t1)A(R, t2)
(
ei∆ab(t3−t4)A(R, t3 − τd)A(R, t4)+

+e−i∆ab(t3−t4)A(R, t3)A(R, t4 − τd)
)

+

+2E1E2A(R, t1)A(R, t2 − τd)
(
ei∆ab(t3−t4) + e−i∆ab(t3−t4)

)
×

× (E1E∗1A(R, t3)A(R, t4)+

+E2E∗2A(R, t3 − τd)A(R, t4 − τd)) +

+2E1E2A(R, t1 − τd)A(R, t2)
(
ei∆ab(t3−t4) + e−i∆ab(t3−t4)

)
×

× (E1E∗1A(R, t3)A(R, t4)+

+E2E∗2A(R, t3 − τd)A(R, t4 − τd)) +

+2E1E2
2E∗2A(R, t1 − τd)A(R, t2 − τd)

(
ei∆ab(t3−t4)×
×A(R, t3)A(R, t4 − τd) +

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)]

ei(q1+q2)·R

+2E3
1E∗2A(R, t1)A(R, t2)

(
ei∆ab(t3−t4)A(R, t3)A(R, t4 − τd)+

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)

ei(3q1−q2)·R

+2E∗1E3
2A(R, t1 − τd)A(R, t2 − τd)

(
ei∆ab(t3−t4)A(R, t3 − τd)A(R, t4)+

+e−i∆ab(t3−t4)A(R, t3)A(R, t4 − τd)
)

ei(3q2−q1)·R
} ]

.

The fourth-order polarization p(4) is a sum of two contributions (see first line in

Eq. (A.9)), shown schematically in Fig. 6.10). The first summand δabp
(3)
bc corresponds

to an interaction of third-order polarization p
(3)
bc with an excitation photon δab inducing

a polarization between levels |a〉 and |b〉. The second summand δbcp
(3)
ab reflects an

upconversion of the third-order polarization p
(3)
ab with an excitation photon δbc inducing

a polarization between levels |c〉 and |b〉.

As a consequence of the prefactor e2iωt on the right side of Eq. (A.9), p(4) radiates

at the second-harmonic frequency 2ω. The fourth-order polarization is emitted into

the five different directions 2q1, 2q2, q1+q2, 3q1−q2, and 3q2−q1. Since all terms in

p(4) are proportional to E4, the second-harmonic diffracted signal into the first three

directions is dominated by the second-order reflected and sum-frequency polarizations,

that are proportional to E2.

The analytic results of the following two sections and the numerical treatment

described in App. B extract all summands of Eq. (A.9) that are radiated into direction

3q1−q2. The six terms in Eq. (A.9) into this direction give rise to the six different

photon processes A–F that are depicted schematically in Fig. 6.11.
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A.6 Polarization p(4) with Dirac delta pulses

The iterative differential equations in Sect. 4.1, or equivalently, the integral equations

derived in this appendix for the nonlinear optical polarizations and populations cannot

be solved explicitly for any given pulse shape A(R, t). This is a consequence of the

multiple nested integrals, in which the integral boundary variables also appear as

integration variables of the respective surrounding integral. Therfore a numerical

integration is required, which is the topic of App. B. For a qualitative understanding

of the second-harmonic diffracted signal, however, we consider in this section a simpler,

analytically integrable case of pulses that can be described by Dirac δ-functions in

time,

A(R, t) = δ(t). (A.10)

This assumption models the case in which the excitation pulses characterized by

A(R, t) are very short compared to the relaxation times T1 and T2. The component

of the nonlinear optical polarization p(4) that is diffracted into the direction 3q1−q2

is then given by Eq. (A.9) as

p
(4)
3q1−q2

(t) = e2iωtei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

∫ t

−∞
dt1e

− t−t1
T2,p(4) e−i∆ac(t−t1) ×

×
[∫ t1

−∞
dt2

{
|rab|2e

− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + |rbc|2e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×
∫ t2

−∞
dt3e

− t2−t3
T2,p(2) e−i∆ac(t2−t3)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) e−i∆ab(t3−t4) ×

×A(R, t1)A(R, t2 − τd)A(R, t3)A(R, t4)

+|rab|2
∫ t1

−∞
dt2

{
e
− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×
∫ t2

−∞
dt3e

− t2−t3
T1,n(2)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) ×

×2A(R, t1)A(R, t2)
(
ei∆ab(t3−t4)A(R, t3)A(R, t4 − τd)+

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)]

= e2iωtei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

∫ t

−∞
dt1e

− t−t1
T2,p(4) e−i∆ac(t−t1) ×

×
[∫ t1

−∞
dt2

{
|rab|2e

− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + |rbc|2e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×e
− t2
T2,p(2) e−i∆act2Θ(t2)Θ(0)A(R, t1)A(R, t2 − τd)

+|rab|2
∫ t1

−∞
dt2

{
e
− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×2e−i∆abτde
− t2
T1,n(2)A(R, t1)A(R, t2)×
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×
(

Θ(t2)Θ(−τd)e
τd

T2,p(1) + Θ(t2 − τd)Θ(τd)e
τd

T1,n(2) e
− τd
T2,p(1)

)]

= e2iωtei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

∫ t

−∞
dt1e

− t−t1
T2,p(4) e−i∆ac(t−t1) ×

×
[{
|rab|2e

− t1−τd
T2,pbc(3) e−i∆bc(t1−τd) + |rbc|2e

− t1−τd
T2,pab(3) e−i∆ab(t1−τd)

}
×

×e
− τd
T2,p(2) e−i∆acτdΘ(t1 − τd)Θ(τd)Θ(0)A(R, t1)

+|rab|2
{

e
− t1
T2,pbc(3) e−i∆bct1 + e

− t1
T2,pab(3) e−i∆abt1

}
×

×2e−i∆abτdA(R, t1)Θ(t1)
(

Θ(0)Θ(−τd)e
τd

T2,p(1) + Θ(−τd)Θ(τd)e
τd

T1,n(2) e
− τd
T2,p(1)

)]
= e2iωtei(3q1−q2)·RE3

1E∗2
e4rbcrab

h̄4 e
− t
T2,p(4) e−i∆act ×

×
[{
|rab|2e

τd
T2,pbc(3) ei∆bcτd + |rbc|2e

τd
T2,pab(3) ei∆abτd

}
×

×e
− τd
T2,p(2) e−i∆acτdΘ(t)Θ(−τd)Θ(τd)Θ(0)

+4|rab|2 e−i∆abτdΘ(t)Θ(0)
(

Θ(0)Θ(−τd)e
τd

T2,p(1) + Θ(−τd)Θ(τd)e
τd

T1,n(2) e
− τd
T2,p(1)

)]
= eiωacte

− t
T2,p(4) ei(3q1−q2)·RE3

1E∗2
e4

h̄4 rbcrab|rab|
2Θ(t)Θ(−τd)e−i∆abτde

τd
T2,p(1) .

The result of this calculation for Dirac delta pulses is thus

With A(R, t) = δ(t) :

p
(4)
3q1−q2

(t) = eiωacte
− t
T2,p(4) Θ(t)Θ(−τd)e−i∆abτde

τd
T2,p(1) ×

×ei(3q1−q2)·RE3
1E∗2

e4

h̄4 rbcrab|rab|
2. (A.11)

The time dependence of p
(4)
3q1−q2

shows in the first three factors of Eq. (A.11). The

polarization radiates with frequency ωac between the lowest and highest energy level

of the three-level system, which can be assumed to be at or near the second-harmonic

frequency of the incident photons in case of finite pulse widths. p
(4)
3q1−q2

is zero for

negative t and decays exponentially for positive t with constant T2 between levels |a〉
and |c〉.

The next three factors display the dependence of the polarization on the time delay

between the two contributing pulses E1 and E2. As a consequence of the Heaviside step

function Θ(−τd) in Eq. (A.11), the polarization is only non-vanishing, if E2 precedes
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E1 (τd < 0). Since the only photon processes in Fig. 6.11 in which one sort of photons

(E1) succeeds the other sort of photons (E∗2 ) are processes B and D, these two sequences

are the only non-vanishing contributions to p
(4)
3q1−q2

. As in the processes A, C, E, and

F, photons of one type (E1) both precede and succeed one photon of the other type

(E2), these sequences yield zero for Dirac delta pulses.

From the processes B and D in Fig. 6.10 it is also obvious that p
(4)
3q1−q2

is propor-

tional to both E3
1E∗2 and rab|rab|2rbc.

A.7 Vanishing relaxation times

The complementary case to the preceding section assumes the electric field pulse

duration to be very long compared to the relaxation times T1 and T2. In this case of

vanishing relaxation times, i.e. all T1, T2 → 0, the diffracted fourth-order polarization

into direction 3q1−q2 is given by Eq. (A.9) as

p
(4)
3q1−q2

(t) = e2iωtei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

∫ t

−∞
dt1e

− t−t1
T2,p(4) e−i∆ac(t−t1) ×

×
[∫ t1

−∞
dt2

{
|rab|2e

− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + |rbc|2e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×
∫ t2

−∞
dt3e

− t2−t3
T2,p(2) e−i∆ac(t2−t3)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) e−i∆ab(t3−t4) ×

×A(R, t1)A(R, t2 − τd)A(R, t3)A(R, t4)

+|rab|2
∫ t1

−∞
dt2

{
e
− t1−t2
T2,pbc(3) e−i∆bc(t1−t2) + e

− t1−t2
T2,pab(3) e−i∆ab(t1−t2)

}
×

×
∫ t2

−∞
dt3e

− t2−t3
T1,n(2)

∫ t3

−∞
dt4e

− t3−t4
T2,p(1) ×

×2A(R, t1)A(R, t2)
(
ei∆ab(t3−t4)A(R, t3)A(R, t4 − τd)+

+e−i∆ab(t3−t4)A(R, t3 − τd)A(R, t4)
)]

∝ e2iωtei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

∫ t

−∞
dt1δ(t− t1)×

×
[∫ t1

−∞
dt2

{
|rab|2 + |rbc|2

}
δ(t1 − t2)

∫ t2

−∞
dt3δ(t2 − t3)

∫ t3

−∞
dt4δ(t3 − t4)×

×A(R, t1)A(R, t2 − τd)A(R, t3)A(R, t4)

+|rab|2
∫ t1

−∞
dt22δ(t1 − t2)

∫ t2

−∞
dt3δ(t2 − t3)

∫ t3

−∞
dt4δ(t3 − t4)×

×2A(R, t1)A(R, t2) (A(R, t3)A(R, t4 − τd) + A(R, t3 − τd)A(R, t4))]

∝ e2iωtA(R, t)3A(R, t− τd)ei(3q1−q2)·RE3
1E∗2

e4rbcrab

h̄4

(
9|rab|2 + |rbc|2

)
.

The result for vanishing relaxation times is thus
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With all T1, T2 → 0 :

p
(4)
3q1−q2

(t) ∝ e2iωtA(R, t)3A(R, t− τd)ei(3q1−q2)·R ×

×E3
1E∗2

e4rbcrab

h̄4

(
9|rab|2 + |rbc|2

)
. (A.12)

For relaxation times very small compared to the electric field pulse duration, the

fourth-order polarization into direction 3q1−q2 is thus proportional to the temporal

overlap of one pulse shape to the third power A(R, t)3 with the other pulse A(R, t−τd).
With this result it is thus possible to calculate the relative widths of the diffracted

correlation trace to the sum-frequency cross correlation by using the diffracted inten-

sity

I2ω
3q1−q2

∝
∫ ∞
−∞

dt|p(4)
3q1−q2

(t)|2 (A.13)

∝
∫ ∞
−∞

dtA(R, t)6A(R, t− τd)2.

Assuming a Gaussian pulse shape

A(R, t) = e−(t/t0)2

(A.14)

results in

I2ω
3q1−q2

∝
∫ ∞
−∞

dte−6t2/t20e−2(t−τd)2/t20

∝ e
− 8

t2
0

(t−τd/4)2

e

τ2
d

2t2
0 e
−

2τ2
d
t2
0 (A.15)

∝
√
π

2
√

2
t0e
−

3τ2
d

2t2
0 .

As the SFG cross correlation intensity for Gaussian pulses is

I2ω
q1+q2

∝
∫ ∞
−∞

dte−2t2/t20e−2(t−τd)2/t20

∝ e
− 4

t2
0

(t−τd/2)2

e

τ2
d
t2
0 e
−

2τ2
d
t2
0 (A.16)

∝
√
π

2
t0e
−
τ2
d
t2
0 ,

the ratio of the FWHM of the two correlation traces for Gaussian pulses in the case

of vanishing relaxation times is

τ1/2,diffr

τ1/2,SFG

=
√

2/3 ' 0.81650. (A.17)
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For sech pulses

A(R, t) = sech(t/t0), (A.18)

a numerical treatment yields

τ1/2,diffr

τ1/2,SFG

' 0.77425. (A.19)

The fact that the correlation trace of the diffracted signal displays a narrower temporal

width than the SFG cross correlation is a consequence of the highly nonlinear nature of

this signal. The a four-photon absorption process of the diffracted signal corresponds

to a convolution of four peaked pulses, whereas in the SFG cross correlation, being a

two-photon absorption process, only two pulses are convoluted.

It has to be emphasized, however, that this is only true in the limit of vanishing

relaxation times. Finite decay times lead to a broadening of both correlation traces.
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Appendix B

Numerical integration of Bloch equations

For a given pulse shape the iterative differential equations (4.28) for the nonlinear

optical populations and polarizations can be solved numerically. We start this ap-

pendix with a classification of the photon processes that contribute to the fourth

order polarization p(4) in direction 3q1−q2 (Sect. B.1). This allows the establishment

of one set of differential equations for each photon process, as well as a set of all 6

processes combined (Sect. B.2). The numerical solution of these sets then requires a

transformation of the complex variables n and p to real variables, shown in Sect. B.3.

Finally, Sect. B.4 describes the numerical procedure that was applied to obtain reliable

numerical results.

B.1 Classification of photon processes

From Sect. A.5 it can be seen that the fourth-order signal diffracted into direction

3q1−q2 is composed of 6 photon processes, named A, B, C, D, E, and F, which

differ in the temporal order of the 4 incoming photons. In the following figures ⇑ (↓)
corresponds to a photon with wavevector q1 (q2) and amplitude E1 (E∗2 ).

A) ⇑↓⇑
⇑

ρ(0) µabE1−→ p(1) µabE∗2−→ n(2) µabE1−→ p
(3)
ab

µbcE1−→ p(4) (B.1)

B) ↓⇑⇑
⇑

ρ(0) µabE∗2−→ p(1) µabE1−→ n(2) µabE1−→ p
(3)
ab

µbcE1−→ p(4) (B.2)

C) ⇑↓
⇑
⇑ ρ(0) µabE1−→ p(1) µabE∗2−→ n(2) µbcE1−→ p

(3)
bc

µabE1−→ p(4) (B.3)

D) ↓⇑
⇑
⇑ ρ(0) µabE∗2−→ p(1) µabE1−→ n(2) µbcE1−→ p

(3)
bc

µabE1−→ p(4) (B.4)

E) ⇑
⇑
↓⇑ ρ(0) µabE1−→ p(1) µbcE1−→ p(2) µabE∗2−→ p

(3)
bc

µabE1−→ p(4) (B.5)

F) ⇑
⇑↓⇑

ρ(0) µabE1−→ p(1) µbcE1−→ p(2) µbcE∗2−→ p
(3)
ab

µbcE1−→ p(4) (B.6)
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A schematic representation of the consecutive buildup of nonlinear polarization

and population from the unperturbed ground state up to the fourth-order polarization

into the self-diffracted direction 3q1−q2 is depicted in Fig. 6.10. The 6 different paths

from ρ(0) to p(4) correspond to the 6 photon processes A–F, which are also shown in

Fig. 6.11.

B.2 Differential equations

As each photon process corresponds to a set of differential equations for the nonlinear

optical polarizations and populations, Eq. (4.28) yields 6 sets (A, B, C, D, E, and

F), that are shown in the following, together with the joint set of equations for all

processes A–F combined.

A)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE1

h̄

ṅ(2) = −Γ1,bn
(2) − iµabE∗2

h̄
p̃(1) (B.7)

˙̃p
(3)

ab = −(i∆ab + Γ2,ab)p̃
(3)
ab −

2iµabE1

h̄
n(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) − iµbcE1

h̄
p̃

(3)
ab .

B)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE2

h̄

ṅ(2) = −Γ1,bn
(2) +

iµabE1

h̄
p̃(1)∗ (B.8)

˙̃p
(3)

ab = −(i∆ab + Γ2,ab)p̃
(3)
ab −

2iµabE1

h̄
n(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) − iµbcE1

h̄
p̃

(3)
ab .
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C)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE1

h̄

ṅ(2) = −Γ1,bn
(2) − iµabE∗2

h̄
p̃(1) (B.9)

˙̃p
(3)

bc = −(i∆bc + Γ2,bc)p̃
(3)
bc +

iµbcE1

h̄
n(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) +

iµabE1

h̄
p̃

(3)
bc .

D)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE2

h̄

ṅ(2) = −Γ1,bn
(2) +

iµabE1

h̄
p̃(1)∗ (B.10)

˙̃p
(3)

bc = −(i∆bc + Γ2,bc)p̃
(3)
bc +

iµbcE1

h̄
n(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) +

iµabE1

h̄
p̃

(3)
bc .

E)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE1

h̄

˙̃p
(2)

= −(i∆ac + Γ2,ac)p̃
(2) − iµbcE1

h̄
p̃(1) (B.11)

˙̃p
(3)

bc = −(i∆bc + Γ2,bc)p̃
(3)
bc +

iµabE∗2
h̄

p̃(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) +

iµabE1

h̄
p̃

(3)
bc .

F)

˙̃p
(1)

= −(i∆ab + Γ2,ab)p̃
(1) − iµabE1

h̄

˙̃p
(2)

= −(i∆ac + Γ2,ac)p̃
(2) − iµbcE1

h̄
p̃(1) (B.12)

˙̃p
(3)

ab = −(i∆ab + Γ2,ab)p̃
(3)
ab −

iµbcE∗2
h̄

p̃(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) − iµbcE1

h̄
p̃

(3)
ab .
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A combination of all 6 of these processes yields a system of differential equations

that describes the integral excitation of the three-level system

˙̃p
(1)

1 = −(i∆ab + Γ2,ab)p̃
(1) − iµabE1

h̄

˙̃p
(1)

2 = −(i∆ab + Γ2,ab)p̃
(1) − iµabE2

h̄

ṅ(2) = −Γ1,bn
(2) − iµabE∗2

h̄
p̃

(1)
1 +

iµabE1

h̄
p̃

(1)∗
2

˙̃p
(2)

= −(i∆ac + Γ2,ac)p̃
(2) − iµbcE1

h̄
p̃

(1)
1 (B.13)

˙̃p
(3)

ab = −(i∆ab + Γ2,ab)p̃
(3)
ab −

2iµabE1

h̄
n(2) − iµbcE∗2

h̄
p̃(2)

˙̃p
(3)

bc = −(i∆bc + Γ2,bc)p̃
(3)
bc +

iµbcE1

h̄
n(2) +

iµabE∗2
h̄

p̃(2)

˙̃p
(4)

= −(i∆ac + Γ2,ac)p̃
(4) − iµbcE1

h̄
p̃

(3)
ab +

iµabE1

h̄
p̃

(3)
bc .

B.3 Transformation to real variables

The numerical integration of the sets of differential equations for the 6 distinct photon

processes and for the complete description of all 6 processes combined requires the

transformation of the complex variables p and n to real variables Y , which is presented

in this section.

B.3.1 Set of equations A

p̃(1) = Y1 + iY2

ñ(2) = Y3 + iY4 (B.14)

p̃
(3)
ab = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE1

h̄

Ẏ3 = +
µabE2

h̄
Y2 − Γ1,bY3

Ẏ4 = −µabE2

h̄
Y1 − Γ1,bY4 (B.15)
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Ẏ5 = +2
µabE1

h̄
Y4 − Γ2,abY5 + ∆abY6

Ẏ6 = −2
µabE1

h̄
Y3 −∆abY5 − Γ2,abY6

Ẏ7 = +
µbcE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = −µbcE1

h̄
Y5 −∆acY7 − Γ2,acY8.

B.3.2 Set of equations B

p̃(1) = Y1 + iY2

ñ(2) = Y3 + iY4 (B.16)

p̃
(3)
ab = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE2

h̄

Ẏ3 = +
µabE1

h̄
Y2 − Γ1,bY3

Ẏ4 = +
µabE1

h̄
Y1 − Γ1,bY4 (B.17)

Ẏ5 = +2
µabE1

h̄
Y4 − Γ2,abY5 + ∆abY6

Ẏ6 = −2
µabE1

h̄
Y3 −∆abY5 − Γ2,abY6

Ẏ7 = +
µbcE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = −µbcE1

h̄
Y5 −∆acY7 − Γ2,acY8.

B.3.3 Set of equations C

p̃(1) = Y1 + iY2

ñ(2) = Y3 + iY4 (B.18)

p̃
(3)
bc = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2
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Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE1

h̄

Ẏ3 = +
µabE2

h̄
Y2 − Γ1,bY3

Ẏ4 = −µabE2

h̄
Y1 − Γ1,bY4 (B.19)

Ẏ5 = −µbcE1

h̄
Y4 − Γ2,bcY5 + ∆bcY6

Ẏ6 = +
µbcE1

h̄
Y3 −∆bcY5 − Γ2,bcY6

Ẏ7 = −µabE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = +
µabE1

h̄
Y5 −∆acY7 − Γ2,acY8.

B.3.4 Set of equations D

p̃(1) = Y1 + iY2

ñ(2) = Y3 + iY4 (B.20)

p̃
(3)
bc = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE2

h̄

Ẏ3 = +
µabE1

h̄
Y2 − Γ1,bY3

Ẏ4 = +
µabE1

h̄
Y1 − Γ1,bY4 (B.21)

Ẏ5 = −µbcE1

h̄
Y4 − Γ2,bcY5 + ∆bcY6

Ẏ6 = +
µbcE1

h̄
Y3 −∆bcY5 − Γ2,bcY6

Ẏ7 = −µabE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = +
µabE1

h̄
Y5 −∆acY7 − Γ2,acY8.

B.3.5 Set of equations E

p̃(1) = Y1 + iY2

p̃(2) = Y3 + iY4 (B.22)
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p̃
(3)
bc = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE1

h̄

Ẏ3 = +
µbcE1

h̄
Y2 − Γ2,acY3 + ∆acY4

Ẏ4 = −µbcE1

h̄
Y1 −∆acY3 − Γ2,acY4 (B.23)

Ẏ5 = −µabE2

h̄
Y4 − Γ2,bcY5 + ∆bcY6

Ẏ6 = +
µabE2

h̄
Y3 −∆bcY5 − Γ2,bcY6

Ẏ7 = −µabE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = +
µabE1

h̄
Y5 −∆acY7 − Γ2,acY8.

B.3.6 Set of equations F

p̃(1) = Y1 + iY2

p̃(2) = Y3 + iY4 (B.24)

p̃
(3)
ab = Y5 + iY6

p̃(4) = Y7 + iY8.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE1

h̄

Ẏ3 = +
µbcE1

h̄
Y2 − Γ2,acY3 + ∆acY4

Ẏ4 = −µbcE1

h̄
Y1 −∆acY3 − Γ2,acY4 (B.25)

Ẏ5 = +
µbcE2

h̄
Y4 − Γ2,abY5 + ∆abY6

Ẏ6 = −µbcE2

h̄
Y3 −∆abY5 − Γ2,abY6

Ẏ7 = +
µbcE1

h̄
Y6 − Γ2,acY7 + ∆acY8

Ẏ8 = −µbcE1

h̄
Y5 −∆acY7 − Γ2,acY8.
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B.3.7 Combined set of equations

p̃
(1)
1 = Y1 + iY2

p̃
(1)
2 = Y3 + iY4

ñ(2) = Y5 + iY6

p̃(2) = Y7 + iY8 (B.26)

p̃
(3)
ab = Y9 + iY10

p̃
(3)
bc = Y11 + iY12

p̃(4) = Y13 + iY14.

Ẏ1 = −Γ2,abY1 + ∆abY2

Ẏ2 = −∆abY1 − Γ2,abY2 −
µabE1

h̄
Ẏ3 = −Γ2,abY3 + ∆abY4

Ẏ4 = −∆abY3 − Γ2,abY4 −
µabE1

h̄

Ẏ5 = +
µabE2

h̄
Y2 +

µabE1

h̄
Y4 − Γ1,bY5

Ẏ6 = −µabE2

h̄
Y1 +

µabE1

h̄
Y3 − Γ1,bY6

Ẏ7 = +
µbcE1

h̄
Y2 − Γ2,acY7 + ∆acY8 (B.27)

Ẏ8 = −µbcE1

h̄
Y1 −∆acY7 − Γ2,acY8

Ẏ9 = +2
µabE1

h̄
Y6 +

µbcE2

h̄
Y8 − Γ2,abY9 + ∆abY10

Ẏ10 = −2
µabE1

h̄
Y5 −

µbcE2

h̄
Y7 −∆abY9 − Γ2,abY10

Ẏ11 = −µbcE1

h̄
Y6 −

µabE2

h̄
Y8 − Γ2,bcY11 + ∆bcY12

Ẏ12 = +
µbcE1

h̄
Y5 +

µabE2

h̄
Y7 −∆bcY11 − Γ2,bcY12

Ẏ13 = +
µbcE1

h̄
Y10 −

µabE1

h̄
Y12 − Γ2,acY13 + ∆acY14

Ẏ14 = −µbcE1

h̄
Y9 +

µabE1

h̄
Y11 −∆acY13 − Γ2,acY14.

B.3.8 Time-integrated diffracted intensity

As the measured quantity is the time-integrated diffracted intensity

I
(4)
diff(τ) =

∫ ∞
−∞
|p(4)(t, τ)|2dt, (B.28)
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we append each set of equations A–F by

Ẏ9 = Y 2
7 + Y 2

8 , (B.29)

and the combined set of equations by

Ẏ15 = Y 2
13 + Y 2

14. (B.30)

The measured time-integrated second-harmonic diffracted intensity is then given di-

rectly by I
(4)
diff = Y9 and I

(4)
diff = Y15, respectively.

B.4 Numerical procedure

The general structure of the linear differential equation systems of first-order in the

preceding section is given by the initial value problem

Ẏ(t) =M(t)Y(t) + a(t), (B.31)

with the vectors Y(t) (solution) and a(t) (inhomogeneity), the time-dependent matrix

M(t), and the initial condition

Y(t0) = Y0. (B.32)

Our calculations made use of the numerical integration package LSODE (Liv-

ermore solver for ordinary differential equations, double precision) by employing a

routine based on Adam’s method [255]. This technique works very efficiently due to

the utilization of variable integration step widths.

Our code allowed us to calculate the SH diffracted intensity for both the two-beam

self-diffraction setup and the three-beam geometry within the framework of inhomo-

geneous broadening. Due to the numerical complexity of the continuum model (see

Chap. 6), that requires a set of at least 1000 differential equations to describe the

coherent coupling between the interacting three-level systems, and thus demands sub-

stantial computing resources, this approach was not implemented by us. A simulation

of the two-beam setup within the continuum framework was, however, provided by

Reichelt and Meier (see Sect. 6.3) [254].

We could either choose one of the 6 different pulse sequences (see Sect. B.1) as

well as the integrated set by a coherent summation over all 6 sequences combined.

The optical pulse type could be chosen Gaussian or sech2 and the input parameters

included the durations of the various pulses, the respective time delays, as well as the

energy detuning of the optical pulses with respect to the system transition energies.

In order to simulate inhomogeneous broadening, we could also coherently sum over a

range of both detunings. The electronic system parameters in the equations included

the coupling constants µ between levels |a〉–|b〉 and |b〉–|c〉 (coupling |a〉–|c〉 chosen
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to be zero), the population relaxation times T1 of levels |b〉 and |c〉, and the pure

dephasing times T ∗2 of all three levels.

The quality and accuracy of the complete numerical code was verified by the

reproduction of various well-known results for the third-order polarization in four-

wave mixing. Some of the results of the numerical simulation for the fourth-order

polarization in five-wave mixing are presented in Sect. 4.2.
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Surface-state band structure of the Si(100)2×1 surface studied with polarization-

dependent angle-resolved photoemission on single-domain surfaces, Phys. Rev.

B 42, 1305 (1990).

[113] L. S. O. Johansson and B. Reihl, Unoccupied surface-state bands on the single-

domain Si(100)2×1 surface, Surf. Sci. 269–270, 810 (1992).

[114] Y. Enta, S. Suzuki, and S. Kono, Angle-resolved-photoemission study of the elec-

tronic structure of the Si(001)c4×2 surface, Phys. Rev. Lett. 65, 2704 (1990).

[115] J. E. Ortega and F. J. Himpsel, Inverse-photoemission study of Ge(100),

Si(100), and GaAs(100): Bulk bands and surface states, Phys. Rev. B 47, 2130

(1993).

[116] H. H. Farrell, F. Stucki, J. Anderson, D. J. Frankel, G. J. Lapeyre, and M.

Levinson, Electronic excitations on Si(100)2×1, Phys. Rev. B 30, 721 (1984).
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[119] J. Pollmann, P. Krüger, and A. Mazur, Self-consistent electronic structure of

semi-infinite Si(001)2×1 and Ge(001)2×1 with model calculations for scanning

tunneling microscopy, J. Vac. Sci. Technol. B 5, 945 (1987).

[120] Z. Zhu, N. Shima, and M. Tsukuda, Electronic states of Si(100) reconstructed

surfaces, Phys. Rev. B 40, 11868 (1989).
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regten Siliziumoberflächen und physisorbierten Edelgasschichten, Doctoral the-

sis, Technische Universität München, 1996.

[134] G. A. Schmitt, Untersuchungen der nichtlinearen optischen Eigenschaften von
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[146] U. Höfer, P. Morgen, W. Wurth, and E. Umbach, Initial stages of oxygen ad-

sorption on Si(111). II. The molecular precursor, Phys. Rev. B 40, 1130 (1989).

[147] T. Sakurai, Y. Hasegawa, T. Hashizume, I. Kamiya, T. Ide, I. Sumita, H. W.

Pickering, and S. Hyodo, Atomic hydrogen chemisorption on the Si(111)7×7

surface, J. Vac. Sci. Technol. A 8, 259 (1990).

[148] K. Mortensen, D. M. Chen, P. J. Bedrossian, J. A. Golovchenko, and F. Be-

senbacher, Two reaction channels directly observed for atomic hydrogen on the

Si(111)-7×7 surface, Phys. Rev. B 43, 1816 (1991).

[149] J. J. Boland, The driving force behind the chemistry of hydrogen on the Si(111)-

7×7 surface, J. Vac. Sci. Technol. B 9, 764 (1991).

[150] J. J. Boland, The importance of structure and bonding in semiconductor surface

chemistry: Hydrogen on the Si(111)-7×7 surface, Surf. Sci. 244, 1 (1991).

[151] J. F. McGilp, M. Cavanagh, J. R. Power, and J. D. O’Mahoney, Spectroscopic

optical second-harmonic generation from semiconductor interfaces, Appl. Phys.

A 59, 401 (1994).

[152] J. R. Power, J. D. O’Mahony, S. Chandola, and J. F. McGilp, Resonant optical

second harmonic generation at the steps of vicinal Si(001), Phys. Rev. Lett. 75,

1138 (1995).

[153] Z. Xu, X. F. Hu, D. Lim, J. G. Ekerdt, and M. C. Downer, Second-harmonic

spectroscopy of Si(001) surfaces: Sensitivity to surface hydrogen and doping, and

applications to kinetic measurements, J. Vac. Sci. Technol. B 15, 1059 (1997).

[154] J. I. Dadap, Z. Xu, X. F. Hu, M. C. Downer, N. M. Russell, J. G. Ekerdt, and

O. A. Aktsipetrov, Second-harmonic spectroscopy of a Si(001) surface during

calibrated variations in temperature and hydrogen coverage, Phys. Rev. B 56,

13367 (1997).
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Quantum beats versus polarization interference: An experimental distinction,

Phys. Rev. Lett. 69, 3631 (1992).

[253] J. J. Yeh and J. H. Eberly, Irreversibility of energy-conservative dipole dephasing

in a simple model, Phys. Rev. A 22, 1124 (1980).

[254] M. Reichelt, Mikroskopische und phänomenologische Beschreibung ausgewählter
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