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Chapter 1

Introduction

The motion of particles in a uniform force field is a standard subject of classical mechanics.
For given initial momentum and position, the equations of motion contain all information
about the further path of the particle. In quantum mechanics the simultaneous specifica-
tion of position and momentum is not possible. However, the question of how a particle
evolves, that starts at a given time, or, alternatively, with fixed energy from a well-defined
place is meaningful. A convenient way to deal with these initial conditions is the use of the
time-evolution operator in its coordinate representation (the propagator) and its Laplace
transform, the so-called energy-dependent Green function. The systematic study of propa-
gators is progressing well, as recent compilations of known solutions show (i.e. about 1000
references in [GS98]). Unfortunately, the situation for three-dimensional energy-dependent
Green functions is not keeping pace, and “simple” analytic solutions for only six(!) cases
are known: the free particle; a particle subject to uniform electric or magnetic fields;
the isotropic harmonic oscillator; the Coulomb potential; and the combination of parallel
electric and magnetic fields.

More analytic solutions are urgently needed, since perturbation theory for constant or
linear (and therefore extremely long range) potentials is not applicable. The availability of
the Green function offers the possibility to treat stationary scattering problems by obtaining
the total scattering current and the spatial density distribution. Combined with quantum-
source formalism, more complicated emission characteristics and distributions of particle
emitting sources can be incorporated in the calculations. Due to the known differentiation
properties of an analytically given Green function, most of the results for the currents can
again be evaluated as closed expressions. The density of states in electronic systems is
also directly related to the energy-dependent Green function and is highly relevant for the
calculation of electric, magnetic and thermal properties of materials.

The six already available Green functions have profound implications for many different
physical systems: the angular momentum dependence of continuum cross sections was
studied by Wigner; photodetachment experiments into external fields probe the binding
energy of electrons with unprecedented accuracy; and the interference of atomic matter
waves in the gravitational field has become a standard topic in quantum optics. Likewise
many effects in solid state physics depend on the density of states in the presence of external
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2 CHAPTER 1. INTRODUCTION

fields. In all these cases a formulation in terms of Green functions is possible and this, in
turn, leads to a coherent theoretical description.

How can we find new energy-dependent Green functions? A thoroughly mathematically
understanding of the propagator is needed, since it provides one possibility to construct
the corresponding Green functions by a Laplace transform. The theory of residues is one
main ingredient for the calculations. However, the singularities of the propagator often
show a complicated structure and render this method unusable. A numerical integration is
frequently difficult, since the strong oscillations of the propagator lead to the cancellation
of terms that affect the accuracy critically. The analytic construction of the Green function
is a main topic of this thesis. The second one is the application and demonstration of the
Green function in a variety of systems and processes in quantum physics.

In the next chapter we will show how in the quantum realm interference phenomena in
uniform fields emerge and establish a theoretical description that is suitable for scattering
from localized sources into external fields. The quantum-source approach provides an
excellent theoretical basis for the embedding of localized sources into external potentials.
As a first example we review two-slit experiments and show how a uniform field provides
a virtual double-slit for emitted waves from a quantum source.

In Chapter 3 we review different mathematical concepts and apply them to the calcu-
lation of Green functions. The presence of magnetic and electric fields leads to quadratic
Hamiltonians in the momentum and position operators. We analyze and construct Green
functions for this type of Hamiltonian in Chapter 4 and look for general properties that
simplify the calculations. A comparison with semiclassical results and approximations
helps to clarify the influence of classical physics on the quantum results.

In specific applications given in Chapters 5 and 6 we use the newly derived results to
obtain insight into the effects of constant fields on two-dimensional and three-dimensional
systems. The quantum Hall effect is a prime example, since it involves crossed electric and
magnetic fields in a two-dimensional system.

The recent advances in the cooling of trapped gases and the formation of coherent
atomic ensembles containing thousands of atoms in a spatially localized quantum state
allow the construction of a macroscopic source for matter waves. The theoretical descrip-
tion of waves from an extended source in Chapters 7 and 8 is necessary for understanding
the efficiency of such a source and studying the interference phenomena of these waves. A
completely analytical theory of extended quantum sources is not easily accomplished, but
we solve very useful reference cases that allow to establish the range of validity for some
commonly applied approximations. Finally, a summary of the obtained results is given in
Chapter 9.



Chapter 2

A source term in the Schrödinger
equation

In this chapter we aim to establish a scattering theory which is useful for the description of
spatially localized sources of particles. As the starting point for a more formal treatment
of the theory, we introduce the quantum propagator and apply it to two physical systems.
Feynman’s approach to space-time quantum-mechanics relies on these propagators [FH65]
(sometimes called Feynman path integrals) and one major advantage of the propagator
formalism is the consistent treatment of interference phenomena in terms of trajectories.
The idea of quantum sources was promoted by Schwinger [Sch73] and we will see how these
sources naturally arise in the context of scattering theory.

2.1 Interference of matter waves

Before we discuss interference phenomena we have to recall some basic concepts of time-
dependent quantum mechanics. The following analysis makes extensive use of propagator
methods to calculate the time evolution of an initial quantum state. At time t = t0 the
initial state is given by

ψ(r, t = t0) = 〈r|ψ(t = t0)〉, (2.1)

and the time evolution of this state is governed by the time-dependent Schrödinger equation

[i�∂t − H] |ψ(t)〉 = 0. (2.2)

The formal solution of equation (2.2) can be expressed with the time evolution operator
U(t, t0):

|ψ(t)〉 = U(t, t0)|ψ(t = t0)〉. (2.3)

The introduction of the time evolution operator allows us to convert the differential Schröd-
inger equation (2.2) to an integral equation:

〈r|ψ(t)〉 =

∫
d3r′ 〈r|U(t, t0)|r′〉〈r′|ψ(t = t0)〉. (2.4)

3
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Figure 2.1: Left panel: Configuration for a typical two slit experiment. Particles emitted
at A travel through the two holes H1 and H2 to the detector at position B. Right panel:
The particle source and the detector are now placed in a uniform force field F.

The coordinate space representation of the time evolution operator is often called propa-
gator or Feynman kernel and commonly denoted by

K(r, t|r′, t0) ≡ 〈r|U(t, t0)|r′〉. (2.5)

Directly related to the propagator is the notion of the time-dependent Green function.
Since we are mainly concerned with non-relativistic quantum mechanics, we will only
discuss the evolution of states evolving in positive direction of time (t > t0). Causality
enforces the use of the time-retarded Green function

G(r, t; r′, t0) ≡ − i

�
Θ(t − t0) K(r, t|r′, t0). (2.6)

The Green function itself is a solution to the differential equation

[i�∂t − H] G(r, t; r′, t0) = δ(3D)(r − r′) δ(t − t0), (2.7)

which has on the left hand side the same structure as the Schrödinger equation (2.2).
However, at r = r′ the kernel becomes singular in coordinate space since U(t0, t0) ≡ 1 and
the inhomogeneity on the right hand side of equation (2.7) arises. From the derivative
of the step function Θ(t − t0) we obtain another delta function in the time-parameter for
t = t0. A systematic treatment of the retarded Green function will be given in Chapter 3.

We continue our discussion with the comparison of two seemingly different physical
systems, which share a surprisingly similar behavior. The first system is a typical two-
slit interference experiment, shown on the left panel in Figure 2.1. A quantum-particle
source emits monochromatic particles at point A. From A the resulting matter waves
travel through a field free region to a wall with two holes, H1 and H2. On a distant
screen we place a particle detector at position B. On the right hand side of Figure 2.1
we sketch a different system with an electron emitting source located again at A. This
time, however, the emitted electrons travel in a uniform and constant force field F to the
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detector at point B. We want to calculate the probability amplitude that a particle which
is emitted from the source located at A arrives on the detector screen at B. To simplify our
considerations, we will assume a point source of particles. According to the definition of
the propagator in equation (2.7), the kernel describes the evolution of an initially sharply
localized “state” δ(r − r′) and therefore contains all necessary information to answer our
question about the probability amplitude. The remaining task is to write down and to
evaluate the propagators for the two different experimental setups. Since the double-slit
configuration contains two possible particle paths, one from A → H1 → B and the other
one from A → H2 → B, we have to form a superposition of the two probability amplitudes

Kslit(B, T |A, 0) =

∫ T

0

dt1 Kfree(B, T |H1, t1) Kfree(H1, t1|A, 0) (2.8)

+

∫ T

0

dt2 Kfree(B, T |H2, t2) Kfree(H2, t2|A, 0).

By integrating over t1 and t2 from 0 to T we consider a time evolution that starts at t = 0
at A and ends at t = T at B. In between a passage through the holes occurs at some
intermediate time ti. We also use the composition property of the time evolution operator
U(t3, t2)U(t2, t1) = U(t3, t1). The propagator in the field free region is denoted by Kfree.
Methods for calculating the kernel are discussed in Chapter 3. Here, we will just quote the
analytic result for the free propagator

Kfree(r, t|r′, t′) =

(
m

2πi�(t − t′)

)3/2

exp

(
im|r − r′|2
2�(t − t′)

)
. (2.9)

Knowing the form of the propagator, we have to carry out the intermediate time integra-
tion over ti. However, in an experimental setup we would like to eliminate the need to
measure exactly at time T . Instead one prefers to record a static pattern on the detector
screen. Mathematically, we can calculate the stationary probability amplitude by taking
the Laplace transform of the time retarded Green function

Gslit(r, t; r
′, 0) = − i

�
θ(t)Kslit(r, t|r′, 0) (2.10)

with respect to the energy E of the emitted particle:

Gslit(A,B; E) = − i

�

∫ ∞

0

dT e−iET/�Kslit(A, T |B, 0) (2.11)

= − i

�

∫ ∞

0

dT e−iET/�

2∑
i=1

∫ T

0

dti Kfree(B, T |Hi, ti) Kfree(Hi, ti|A, 0)

At this point it is convenient to introduce the Laplace transform of the free particle prop-
agator

Gfree(r, r
′; E) = − i

�

∫ ∞

0

dT e−iET/�Kfree(r, T |r′, 0) (2.12)

= − m

2π�2|r − r′| exp

(
i

�

√
2mE|r − r′|

)
.
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Figure 2.2: Probability density on a distant detector plane for electrons passing through
two slits. Parameters: Distance between the holes 0.2 mm, distance between slit and
detector plane 0.5 m, initial energy E = 100 µeV.

Using the convolution theorem for the Laplace transform (see [AS65], 29.2.8)

∫ ∞

0

dt e−st

∫ t

0

dτ F1(t − τ)F2(τ) =

(∫ ∞

0

dt e−stF1(t)

)(∫ ∞

0

dt e−stF2(t)

)
, (2.13)

we can rewrite the probability amplitude according to equation (2.11) as

Gslit(A,B; E) = − i

�

∫ ∞

0

dT e−iET/�Kslit(A, T |B, 0) (2.14)

= − i

�

∫ ∞

0

dT e−iET/�

2∑
i=1

∫ T

0

dti Kfree(B, T − ti|Hi, 0) Kfree(Hi, ti|A, 0)

= i�
2∑

i=1

Gfree(B,Hi; E) Gfree(Hi, A; E).

Figure 2.2 shows the probability density |Gslit(A,B; E)|2 of electrons at a screen 0.5 m
displaced from the slits. The familiar two-slit interference pattern is clearly visible. The
use of point-like slits simplified the calculation considerably. Including effects of a finite slit
width requires additional integrations and is more complicated [FH65] because the sharp
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edges of the slit produce Fresnel-type interference patterns [Mos52]. The somewhat arbi-
trary introduction of a Gaussian transparency function for each slit simplifies the situation
drastically and yields similar results as the use of point-like slits [FH65].

Instead of further investigating these details of the two-slit experiment we will now
discuss the second experimental configuration depicted on the right hand side of Figure 2.1.
In 1981 Demkov, Kondratovich, Ostrovskii, and Fabrikant pointed out that a linear force
field can act as a double slit without the need for an actual material slit [DKO82, Fab81].
In the language of quantum propagators this situation was accurately analyzed by Bracher
[Bra99]. The propagator for a particle in a uniform force field F = Fez is given by

Kfield(r, t|r′, t′) =
( m

2πi�T

)3/2

exp

(
im|r − r′|2

2�T
+

iFT

2�
(z + z′) − iF 2T 3

24m�

)
, (2.15)

where T = t − t′. As before, we want to calculate the probability amplitude for a particle
traveling from the source A to hit the detector at B (see Figure 2.1). Using again a
monochromatic particle source, the stationary probability amplitude is derived similarly
to equation (2.11) and reads

Gfield(r, r
′; E) = − i

�

∫ ∞

0

dT
( m

2πi�T

)3/2

exp (iET/�)×

× exp

(
im|r − r′|2

2�T
+

iFT

2�
(z + z′) − iF 2T 3

24m�

)
. (2.16)

Although Gfield(r, r
′; E) is available in closed analytic form (see Chapter 3), we will retain

the integral form for the following discussion. We can approximate the integral with the
method of stationary phases for a wide range of parameters. At a stationary point the
derivative with respect to T of the exponent in equation (2.16) vanishes and we get a
large contribution from the region close to this point to the otherwise oscillatory integral
(a general description of the method of stationary phases is presented in Chapter 3). For
Gfield the stationary points of the exponent are readily obtained from the condition

E − m|r − r′|2
2T 2

+
F

2
(z + z′) − F 2T 2

8m
!
= 0. (2.17)

This biquadratic expression in T has two roots, denoted by T1 and T2

T1,2(r,o; E) =

√
m

F

(√
2E + F (r + z) ±

√
2E − F (r − z)

)
. (2.18)

Here, we will assume E > 0 and 2E − F (r − z) > 0. Then we obtain two real-valued
solutions for the time of flight Ti. Replacing the integral in equation (2.16) by a sum
comprising these two stationary points yields

Gfield(r,o; E) ≈ − i

�

2∑
i=1

a(Ti)

√√√√ 2π�∣∣∣∂Scl(r,T,o,0)
∂T 2

∣∣∣e
iET

�
+ i

�
Scl(r,T,o,0)+ iπ

4
sgn
[

∂Scl(r,T,o,0)

∂T2

]
∣∣∣∣∣∣∣
T=Ti

, (2.19)



8 CHAPTER 2. SOURCES IN QUANTUM MECHANICS

−1 −0.8 −0.6 −0.4 −0.2  0  0.2  0.4  0.6  0.8  1

Pr
ob

ab
ili

ty
 D

en
si

ty
 [

ar
bi

tr
ar

y 
un

its
]

Position x [mm]

Figure 2.3: Probability density on a distant detector plane for electrons emitted in a
uniform electric field. Distance from the source to the detector plane 0.5 m, field strength
400 V/m, initial energy 100 µeV.

where

a(T ) =
( m

2πi�T

)3/2

, and Scl(r, T, r′, 0) =
m|r − r′|2

2T
+

FT

2
(z + z′) − F 2T 3

24m
. (2.20)

The sum representing the Green function resembles equation (2.14), which was derived
for the two-slit propagator. Indeed, the plot of the probability density |Gstat

field(A,B; E)|2 in
Figure 2.3 shows pronounced interference fringes. The spacing of the fringes depends on
the energy of the emitted particles E, the strength of the uniform force field F and the
distance between source and detector (r, z).

The number of contributing stationary points is related to the classical equations of
motion. The propagator of a Hamiltonian which is at most quadratic in x and p (i.e. the
uniform field) can always be written in the form

K(r, t|r′, t′) = a(t, t′) exp

(
i

�
Scl(r, t, r

′, t′)
)

, (2.21)

where Scl(r, t, r
′, t′) denotes the classical action defined by the integral of the Lagrangian

[Pau51]

Scl(r, t, r
′, t′) =

∫ q(t)=r

q(t′)=r′
dt L(q, q̇, t). (2.22)
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Figure 2.4: Trajectories in the uniform force field F. The dashed parabola denotes the
classical accessible region. In this region, two trajectories with the same energy connect
the source S with a point on the detector plane. For electrons emitted in an electric field
macroscopically visible interference fringes emerge.

The stationary points Tk of the exponent of the kernel

E +
∂Scl(r, T, r′, 0)

∂T

∣∣∣∣
T=Tk

= 0 (2.23)

are therefore identical to the extrema of the classical action. From the Lagrange formulation
of classical mechanics we know that Tk is the time of flight for the motion of a point-mass
from the starting-point A to the end-point B with initial kinetic energy E. In the case
of the uniform field we get two stationary points, corresponding to one slow and one fast
trajectory connecting A with B. The existence of two parabolic trajectories in a linear
potential with the same energy but different time of flights from one point to another was
first analyzed by Galilei [Gal38]. In Figure 2.4 we plot the two trajectories which constitute
the intrinsic double-slit of a uniform force field.

Experimental data for both types of slits are available. Using an electron source and
a material two-slit Jönsson obtained beautiful pictures of the interference structure in
1959 [MJ59]. Following the idea of Demkov et al. [DKO82, Fab81], Blondel constructed a
device to realize the field double-slit (also for electrons), the so-called photodetachment-
microscope [BDD96, BDDV99].
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Figure 2.5: Pulsed emission from a quantum source in a linear force field. From left to right
we reduce the pulse half-width from 10∆T , 3∆T to 2∆T , where ∆T denotes the difference
in the time of flight along the two trajectories. The interference fringes disappear, since
we effectively eliminate a second path.

Example 1 (Non-stationary source in a uniform field) One may ask what happens
to the interference pattern if we send out particles only during a short period of time which
may become shorter than the difference of the classical times of flight. This question is
interesting, because we can study how quantum mechanics reacts to this de-facto elimina-
tion of a second path. It seems that the influence of this so-called pulsed emission on the
probability density has not been studied before in the literature, only the total emission
rate of a pulsed point-source into a linear force field is considered in [WS93, ZDM99]. With
the help of the propagator we can determine the density distribution. Equation (2.18) gives
the time difference between the two stationary points

∆T = T2 − T1 = 2

√
m

F

√
2E − F (r − z). (2.24)

To model the pulsed emission we introduce a quantum source with a time-dependent
emission rate. For simplicity we assume a Gaussian time-dependence and thus amend
equation (2.16) with an additional real-valued term −T 2/(2λ2) in the exponent:

Gpulsed
field (r, r′; E) = − i

�

∫ ∞

0

dT
( m

2πi�T

)3/2

exp (iET/�)×

× exp

(
im|r − r′|2

2�T
+

iFT

2�
(z + z′) − iF 2T 3

24m�
− T 2

2λ2

)
. (2.25)

The parameter λ is related to the length of the emitted pulse. We can proceed in our
calculation as before. However, we get new values for the stationary points of the exponent.
Because λ is real valued whereas iScl(r, T,o, 0)/� is purely imaginary, the stationary points
are shifted into the complex t-plane. A positive imaginary part reduces the contribution of
the corresponding stationary point to the integral. Strongly pronounced interference fringes
are only possible if the contributions of both stationary points are approximately equal in
magnitude. Since this is no longer the case, the fringes slowly disappear for decreasing
pulse time, as Figure 2.5 shows. By changing the pulse length we can effectively control
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Figure 2.6: Potential scattering and long range forces. Left panel: In the conventional
potential scattering situation boundary conditions are imposed by incoming plane waves.
Outside an interaction region (shaded area) we observe a superposition of the incoming
and the scattering wave. Right panel: In the presence of constant force-fields we have to
incorporate the potentials in the Schrödinger equation. Also, the detector is located in the
potential. Boundary conditions are specified by describing the originating source S of the
particles.

the two-slit experiment and the appearance of interference phenomena.

Up to now we did not consider a specific initial wave function but only the propagator
and the Green function of the underlying Hamiltonian. We also frequently used the term
“source” for the emission of particles from a localized point in space. To put the presented
ideas in the context of a more rigorously defined theory, we will introduce and review a
coherent approach to quantum sources based on the formalism of Green functions.

2.2 Currents generated by quantum sources

Scattering theory is treated in a special way in quantum mechanics. Whereas normally the
particle number is a conserved quantity, in scattering processes we often assume a reservoir
or source which supplies a constant flux of particles. If the particle sources are located far
away from the scattering region, they give rise to boundary conditions on the incoming
particle flux in the form of incoming plane waves. However, if we deal with long range (or
even constant) potentials, a different approach is feasible with the introduction of quantum
sources. These sources are located inside the interaction region and emit particles with
a well defined energy. A sketch of this situation is shown in Figure 2.6. The concept
of sources is also familiar from electrodynamics. Schwinger introduced quantum sources
in quantum field theories [Sch73] in order to avoid the use of operator fields. He also
considered the non-relativistic limit of such a particle source.
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2.2.1 Elastic scattering and quantum sources

In potential scattering theory, the total wave function ψ(r) of the Hamiltonian H (including
the vector potential A)

H =
(p − eA(r)/c)2

2m
+ V (r) (2.26)

is normally written as a superposition of an incident wave function ψin(r) and a wave
function originating from the scattering region ψsc(r):

ψ(r) = ψin(r) + ψsc(r). (2.27)

The incident wave ψin(r) is an eigenfunction of the modified Hamiltonian H0 = T + U(r)
that describes a simpler physical system outside the scattering region:

H0ψin(r) = Eψin(r). (2.28)

Often, one sets U(r) = 0 and the incident waves are just plane waves. When long-range
forces are present, like in Coulomb scattering [Mes64], this choice is poor and U(r) should
account for the interaction potential. The scattering potential W (r) is given by the differ-
ence of the full Hamiltonian and the modified one: W (r) = H − H0 = V (r) − U(r). The
Schrödinger equation we wish to solve is given by [E − H]ψ(r) = 0. Hence,

[E − H0 − W (r)] [ψin(r) + ψsc(r)] = 0. (2.29)

Rearranging the terms in the last equation and using [E−H0]ψin(r) = 0 and H = H0+W (r)
we get

[E − H] ψsc(r) = W (r) ψin(r). (2.30)

The scattering wave function ψsc(r) is the solution to the inhomogeneous Schrödinger
equation of the full Hamiltonian H, where the inhomogeneity is given by W (r)ψin(r).
Defining this inhomogeneity as the source term

σ(r) := W (r) ψin(r) (2.31)

suggests the following physical interpretation: The incoming wave ψin(r), via the pertur-
bation W (r), feeds particles into the scattering wave ψsc(r) that is governed by the Hamil-
tonian H. Inhomogeneous partial differential equations are not uncommon in physics. The
heat equation and Maxwell’s equations are good examples for the introduction of sources.
For these systems an adequate mathematical frame-work in the form of Green functions is
available. In a similar spirit, we introduce the energy-dependent Green function G(r, r′; E)
for the Hamiltonian H defined via [Eco83]

[E − H0 − W (r)] G(r, r′; E) = δ(r − r′). (2.32)

Now the solution to equation (2.30) is given by a convolution integral comprising the source
wave-function and the Green function

ψsc(r) =

∫
d3r′ G(r, r′; E)σ(r′). (2.33)
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In general, the Green function is not uniquely defined. Depending on our choice of the
Green function we obtain different wave functions ψsc(r). However, any two solutions
ψsc(r) differ only by an eigenfunction ψhom(r) of H: Hψhom(r) = Eψhom(r). The am-
biguity in ψsc(r) is resolved by the demand that G(r, r′; E) presents a retarded solution
characterized by an outgoing-wave behavior. Here, we quote one possible definition of the
energy-dependent Green function in terms of the propagator:

G(r, r′; E) = − i

�
lim

η→0+

∫ ∞

0

dT e−iET/�−ηt/� K(r, T |r′, 0). (2.34)

We will further discuss the correct choice of the Green function and the related appearance
of the limiting procedure involving η in Chapter 3. The next step is the definition of
a current associated with the scattering wave. Using the Schrödinger equation for the
scattering wave [

(p − eA(r)/c)2

2m
+ V (r)

]
ψsc(r, t) = i�

∂

∂t
ψsc(r, t), (2.35)

we define the current density in the usual fashion by

j(r) =
�

m
�[ψsc(r)

∗∇ψsc(r)] − eA(r)

m
|ψsc(r)|2. (2.36)

As before, A(r) denotes the vector potential. The inhomogeneous Schrödinger equation
(2.30) gives rise to a modified equation of continuity and instead of ∇ · j(r) = 0, valid in
the absence of sources, we now have

∇ · j(r) = −2

�
� [σ(r)∗ψsc(r)] . (2.37)

Thus, the inhomogeneity σ(r) acts as a source for the particle current j(r) and the current
is conserved outside the source region. By integration over a surface enclosing the source
volume and inserting equation (2.33) for the scattering wave, we obtain a bilinear expression
for the total particle current J(E) (or total scattering rate):

J(E) = −2

�
�
[∫

d3r

∫
d3r′σ(r)∗G(r, r′; E)σ(r′)

]
. (2.38)

We may note that point sources σ(r) = Cδ(r − r′) considerably simplify the calculation
of the scattering currents. In this case C denotes the source strength, since the source
distribution is not normalizable. We obtain for the scattering wave

ψsc(r) = C G(r, r′; E), (2.39)

and the total current becomes

J(E) = −2|C|2
�

lim
r→0

�{G(r,o; E)} . (2.40)

In our discussion of double-slit experiments we used implicitly point sources, since we did
not specify a different initial source distribution.
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2.2.2 A sum rule for the total current

For non point-like sources we will construct an analogous expression to the optical theorem
in conventional scattering theory. Exploiting the time-reversal symmetry relation for the
propagator

K(r, t|r′, 0)† = K(r,−t|r′, 0), (2.41)

the total current J(E) in equation (2.38) can be rewritten using equation (2.34) as

J(E) =
1

�2

∫ ∞

−∞
dt eiEt/�

∫
d3r

∫
d3r′ σ(r)∗ K(r, t|r′, 0) σ(r′). (2.42)

Integration with respect to the energy E together with the initial condition K(r, 0|r′, 0) =
δ(r − r′) leads to the following sum rule for the total current:

∫ ∞

−∞
dE J(E) =

2π

�

∫
d3r

∫
d3r′ σ(r)∗K(r, 0|r′, 0) σ(r′) =

2π

�

∫
d3r |σ(r)|2. (2.43)

This sum-rule is very useful for a cross check of calculations involving extended sources. It
also determines the asymptotical behavior of J(E), since the finite value for the integral
over the total current with respect to the energy demands a vanishing total current for
E → ±∞.

2.3 Feynman’s path integral

An alternative description of the propagator rests on a lattice-definition of the Feynman
path integral. We sketch briefly the connection between the two formulations. Applying
Trotter’s formula for the self-adjoint operators A,B

eiT (A+B) = lim
N→∞

[
eiAT/NeiBT/N

]N
(2.44)

to the time evolution operator of the Hamiltonian H = H0 + V (r), where H0 denotes the
free part, we obtain

UH(T ) = exp

(
iT [H0 + V (r)]

�

)
= lim

N→∞

[
exp

(
iTH0

�N

)
exp

(
iTV (r)

�N

)]N

= lim
N→∞,ε→0

N−1∏
j=0

exp

(
iεH0

�

)
exp

(
iεV (r)

�

)
. (2.45)

Here, ε denotes T/N ≡ ε. As stated in equation (2.5) the propagator is merely the position
space representation of the time evolution operator: K(r, T |r′, 0) ≡ 〈r′|UH(T )|r〉. Using
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the composition law for the propagator N -times gives the following relation

K(r, T |r′, 0) =

∫
dr1 · · ·

∫
drN−1〈rN = r′|UH(ε)|rN−1〉〈rN−1|UH(ε)|rN−2〉 · · ·

· · · 〈r2|UH(ε)|r1〉〈r1|UH(ε)|r0 = r〉

=

∫
dr1 · · ·

∫
drN−1

N−1∏
j=0

〈rj+1|UH(ε)|rj〉. (2.46)

Together with equation (2.45) the propagator takes the form

K(r, T |r′, 0) = lim
N→∞

∫
dr1 · · ·

∫
drN−1

N−1∏
j=0

Kfree(rj+1, ε|rj, 0)e−iεV (rj)/� (2.47)

= lim
N→∞

∫
dr1 · · ·

∫
drN−1

( m

2πi�ε

)N/2

e
∑N−1

j=0
im
2�ε

(rj+1−rj)
2−iεV (rj)/� (2.48)

≡
∫ r(t′)=r′

r(t)=r

Dr(t) exp

[
i

�

∫ t′

t

dt̃
(m

2
ṙ2 − V (r)

)]
. (2.49)

In the last line we introduced an integral representation motivated by

∫ t+ε

t

dt̃
(m

2
ṙ2 − V (r)

)
≈ ε

(
m

2

(
r(t + ε) − r(t)

ε

)2

− V (r(t))

)
. (2.50)

The “measure” Dr(t) is only a symbolic expression for the process outlined above. The
“direct” evaluation of path integrals using this time-slicing technique is possible, see i.e.
[Kle90]. The inclusion of the vector potential A is also possible, but not completely trivial,
since only slicing at the midpoints 1

2
(rj+1 + rj) of the potential leads to correct results

[Kle90]. For our purposes, the lattice-formulation gives no direct benefits. Instead we
employ the basic definition of the propagator in terms of the time-evolution operator.
From a conceptual point of view, especially for the interpretation of interferences, the
path-integral approach is particularly well suited. The main ingredient of the path integral
is the classical action

Scl(r, t; r
′, t′) =

∫ t′

t

dt̃
[m

2
ṙ2 − V (r)

]
(2.51)

which played an important role for the interpretation of the field slit experiment. The
action principle provides a bridge for connecting (and contrasting) quantum and classical
dynamics [DR01]. In a very symbolic way we can interpret the propagator as a sum over
all trajectories connecting r with r′

K(r, t|r′, t′) ∼
∑

all trajectories

exp

[
i

�
Scl(r, t; r

′, t′)
]

. (2.52)
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Often a further simplification is achieved by only considering classically allowed trajectories
for a given energy

K(r, t|r′, t′) ∼
∑

stationary trajectories

exp

[
i

�
Scl(r, t; r

′, t′)
]

. (2.53)

A more rigorous form of these relations will be given in the next chapter by considering
the analytic properties of the propagator in the complex time plane.

Another way to obtain the Green function is the solution of the underlying partial
differential equation (2.7). We may note that the approximation of integrals (numerical
and analytically) is much more useful and practicable than a numerical evaluation of a
higher-dimensional partial differential equation.



Chapter 3

Properties of Green functions

The energy-dependent Green function is one of the cornerstones for the theory of stationary
quantum sources. We already noted that commonly the energy of a physical process is fixed
and not the observation time (which should be addressed with the propagator). A thorough
understanding of the mathematical properties of the energy-dependent Green function is of
great value for the interpretation of the behavior of physical systems. By giving a number
of examples we want to demonstrate and immediately apply useful mathematical theorems
and techniques.

3.1 The energy-dependent Green function

In equation (2.34) we defined the retarded energy-dependent Green function as the Laplace
transform of the time evolution operator:

G(r, r′; E) = − i

�
lim

η→0+

∫ ∞

0

dt 〈r|U(t, t0)|r′〉 eiEt/�−ηt/�. (3.1)

For time-independent Hamiltonians, the time evolution operator is given by U(t − t′) =
exp(iH(t − t′)/�). Using this form, we can integrate equation (3.1) and obtain

G(r, r′; E) = lim
η→0+

〈
r

∣∣∣∣ 1

E − H + iη

∣∣∣∣ r′
〉

. (3.2)

Instead of evaluating the kernel in position space, we can choose a representation for
the resolvent operator 1/(E − H + iη) that is more suitable for the Hamiltonian under
consideration.

Example 2 (Propagator in momentum space) We want to calculate the energy de-
pendent Green function for the one-dimensional motion in the presence of a linear force
field. The Hamiltonian is given by

Hfield =
p2

2m
− Fz. (3.3)

17
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In momentum space, the Schrödinger equation reads[
p2

2m
− i�F

d

dp
− E

]
φE(p) = 0. (3.4)

This first order differential equation has the solution

φE(p) =
1√

2π�F
exp

(
i

�F
(Ep − p3/(6m))

)
, (3.5)

which is normalized by the relation∫ ∞

−∞
dp φE(p)φE′(p) = δ(E ′ − E). (3.6)

The energy-dependent Green function is given by

Gfield(p, p
′; E) = Θ(p − p′)

∫ ∞

−∞
dE ′ φE′(p)φ∗

E′(p′)
E − E ′ + iη

(3.7)

= −2πiφE(p)φ∗
E(p′) Θ(p − p′)

= − i

F�
exp

{
i

�

(
(p′3 − p3)

6Fm
+

E

F
(p − p′)

)}
Θ(p − p′).

The step-function Θ(p′− p) enforces the outgoing-wave boundary condition. In the second
line we used the following theorem:

Theorem 1 (Cauchy’s integral) The integral around a closed path of integration of a
function f(z) holomorphic in the included domain is given by∮

dw
f(w)

w − z
= 2πif(z), (3.8)

where the path of integration encloses the singularity at w = z and is mathematically
positive oriented.

Of course we can use two Fourier transforms to go back to position space:

Gfield(z, z
′; E) =

1

2π�

∫ ∞

−∞
dp

∫ ∞

−∞
dp′ eipz/� Gfield(p, p

′; E) e−ip′z′/�. (3.9)

Substituting p = F (u + v)/2, and p′ = F (u − v)/2 we carry out one Gaussian integration
over u; the remaining v-integration becomes:

Gfield(z, z
′; E) = − i

�

∫ ∞

0

dv

√
m

2πi�v
exp

(
iEv

�
+

im(z − z′)2

2�v
+

iFv

2�
(z + z′) − iF 2v3

24m�

)
.

(3.10)
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By replacing v with t we precisely recover the form of the time-dependent kernel in position
space given in equation (2.15). The energy Green function can be evaluated with the
integrals tabulated in Appendix B and reads

Gfield(z, z
′; E) = −4πβ2F Ci(α+) Ai(α−), (3.11)

where β = (m/(4�
2F 2))1/3, α± = −β(2E + F (z − z′) ± F |z − z′|). Also Ci(z) denotes the

complex Airy function Ci(z) = Bi(z) + i Ai(z). We see that the energy-dependent Green
function in momentum space is considerably simpler than in position space.

A huge compilation of known time-dependent propagators in different dimensions is given
by Grosche [GS98]. The knowledge of time-dependent propagators in lower dimensions
can be useful to construct propagators in higher dimensions. If the Hamiltonian of a
multidimensional problem can be written as the sum of lower dimensional Hamiltonians, we
can form the product of the lower dimensional propagators and thus obtain the propagator
for the full problem.

Example 3 (Composition of time-dependent propagators) The three-dimensional
propagator for the free-particle with the Hamiltonian

H =
3∑

i=1

p2
i

2m
(3.12)

can be written as a product of the one-dimensional propagators

K
(3D)
free (r, t; r′; t′) =

3∏
i=1

K
(1D)
free (xi, t; x

′
i; t

′). (3.13)

A non-trivial example is the propagator for the uniform field in one direction and free
motion in the other two directions. We can decompose the propagator into

K
(3D)
field (r, t; r′; t′) = K

(1D)
free (x, t; x′; t′) K

(1D)
free (y, t; y′; t′) K

(1D)
field (z, t; z′; t′)

= K
(1D)
free (z, t; z′; t′) exp

(
iF (t − t′)

2�
(z + z′) − iF 2(t − t′)3

24m�

)
×

×
2∏

i=1

K
(1D)
free (xi, t; x

′
i; t

′).

(3.14)

Unfortunately the simple multiplication method for time-dependent kernels of separable
systems does not work for the corresponding energy-dependent Green functions. However,
at least formally we can connect the respective energy Green functions by a complex
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convolution theorem. In the preceding chapter we already used the convolution theorem
for the product of time-dependent propagators. Denoting the Laplace transform by L

L[f1(t); s] =

∫ ∞

0

dt e−stf1(t) = g1(s), L[f2(t); s] =

∫ ∞

0

dt e−stf2(t) = g2(s),

we have the following theorem.

Theorem 2 (Complex convolution) The Laplace transform of the product of two func-
tions is given by

L[f1(t)f2(t); s] =
1

2πi

∫ c+i∞

c−i∞
du g1(u)g2(s − u), (3.15)

or, if c = 0

L[f1(t)f2(t); s] =
1

2π

∫ ∞

−∞
dug1(iu)g2(s − iu). (3.16)

Example 4 (Complex Convolution) Before we can use this theorem we have to adapt
it to the case of energy-dependent Green functions. Writing the Laplace transform of the
kernel as

i� G(r, r′; E) =

∫ ∞

0

dt e−st K(r, t|r′, 0) (3.17)

with s = −iEt/�, we can apply the convolution theorem to the product of two time-
dependent kernels and obtain

G3(r, r
′; E) =

1

i�

∫ ∞

0

dt e−st K1(r, t|r′, 0) K2(r, t|r′, 0) (3.18)

=
�

2π

∫ i∞

−i∞
du G1(r, r

′; i�u) G2(r, r
′; i�(s − u))

=
1

2πi

∫ ∞

−∞
dE ′ G1(r, r

′; E ′) G2(r, r
′; E − E ′).

Due to the complicated structure of the energy-dependent Green-function it is often not
possible to exploit this relation. An actual application is given in Section 4.4.

We have already used an expansion in terms of the eigenfunctions of the Hamiltonian to
calculate the energy-Green function in a linear field in momentum space. In Example 2
we encountered a continuous energy spectrum of the Hamiltonian. If the spectrum of the
Hamiltonian H is discrete, we can insert a complete set of orthonormal energy eigenfunc-
tions |φn〉 in equation (3.2) and obtain

G = lim
η→0

1

E − H + iη
= lim

η→0

∑
n

|φn〉〈φn|
E − En + iη

. (3.19)

This expression can be used to calculate the energy-dependent Green function of the har-
monic oscillator.
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Example 5 (Discrete energy spectrum) For the harmonic oscillator it is very conve-
nient to use the Bargmann representation [Bar61, Bar67]. The creation and annihilation
operators in Bargmann space are given by

Zjf(z) = zjf(z),

Djf(z) =
∂

∂zj

f(z).

Bargmann introduces a suitable Hilbert space B of functions for these operators and shows
that it yields the correct adjoint properties of the operators Zj, Dj. The elements of this
Hilbert space B (often called Bargmann space) are complex valued analytic functions of
complex variables z. The Hamiltonian of the harmonic oscillator H = �ω(a†a+ 1

2
) becomes

in Bargmann space

H = �ω(z∂z +
1

2
), (3.20)

with eigenstates H (z|n) = �ω[n + 1/2](z|n), (z|n) = zn/(n!). Using this result we get

(z|G(E)|z′) =
∞∑

n=0

(z|n)(n|z′)
E − �ω(n + 1/2)

= − 1

�ω

∞∑
n=0

[zz̄′]n

n!

1

n + 1/2 − E/(�ω)
. (3.21)

The last equation can be expressed in terms of the incomplete gamma function γ∗ (see
[AS65], equation (6.5.29))

γ∗(a, ζ) =
1

Γ(a)

∞∑
n=0

(−ζ)n

(a + n)n!

and the closed form of the energy-dependent Green function reads

(z|G(E)|z′) = − 1

�ω
Γ(1/2 − E/(�ω)) γ∗(1/2 − E/�ω,−zz̄′).

Again, we can transform this propagator back to coordinate space [Kra00].

3.2 Connection to Fermi’s golden rule

In the definition of the energy-dependent Green function in equation (3.1) we introduced
a small positive parameter η that ensures the convergence of the integral for t → ∞. This
is necessary, because the integral kernel is not unique in the continuous spectrum of a
Hamiltonian. From a physical point of view, this ambiguity of the solution set is required
to accommodate different boundary conditions for the resulting Green function. For the
following discussion we are interested in outgoing matter waves that enforce the use of
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the retarded energy Green function [Eco83]. To establish an alternative expression for the
total current, we employ Cauchy’s principal value for the integration of the kernel [HS52]:

G(r, r′; E) = lim
η→0+

〈
r

∣∣∣∣ 1

E − H + iη

∣∣∣∣ r′
〉

=

〈
r

∣∣∣∣PP

(
1

E − H

)
− iπδ(E − H)

∣∣∣∣ r′
〉

. (3.22)

The principal value integral (denoted by PP) is real-valued due to the hermiticity of H
and we obtain the total current in the form

J(E) = −2

�
� [〈σ |G|σ〉] =

2π

�
〈σ |δ(E − H)|σ〉 . (3.23)

The previously stated sum rule (see equation (2.43)) is regained by integrating the last
expression for the total current with respect to the energy∫ ∞

−∞
dE J(E) =

2π

�
〈σ|σ〉 =

2π

�

∫
d3r|σ(r)|2. (3.24)

This relation holds provided that the source wave function σ(r) can be normalized. With
the help of equation (3.23) we can put forward another interpretation of the total current
J(E). By employing a complete orthonormal set of eigenfunctions |ψfi〉 of the Hamiltonian
H, we can rewrite δ(E − H)|ψfi〉 as δ(E − Efi)|ψfi〉. Using the interaction operator W
introduced in Section 2.2.1, we replace the particle source σ by the perturbed initial state:
|σ〉 = W |ψin〉. Inserting these relations into equation (3.23) we obtain the following formal
summation:

J(E) =
2π

�

∑
fi

δ(E − Efi) |〈ψfi|W |ψin〉|2 . (3.25)

This form is actually a variant of Fermi’s golden rule. However, some remarks of caution
are required. For a continuum of final states the sum is replaced by an integration. The
final states ψfi(r) are in general not readily available for deriving an analytic expression of
the matrix-element |〈ψfi|W |ψin〉|. Also ψfi(r) is not the scattering wave function, discussed
in Section 2.2.1. Therefore, even after an evaluation of the sum and the matrix elements no
expression is available for the emerging scattering wave function ψsc(r). But the scattering
wave is needed to obtain the spatial current distribution j(r). Thus, the use of Fermi’s
golden rule is limited to situations where we are only interested in the total scattering rate.

From a more fundamental point of view equation (3.25) motivates some connections to
other fields of physics. In Chapter 7 we demonstrate the close relation of the just presented
formulation to the theory of Franck-Condon factors as discussed by Heller [Hel78].

Another noteworthy consequence of equations (2.40) and (3.25) emerges in the limit of
point-like sources, σ(r) = Cδ(r − R). We then find [BRK97]:

J(E) = −2

�
|C|2�[G(R,R; E)] =

2π

�
|C|2n(R; E) , (3.26)

where
n(R; E) =

∑
fi

δ(E − Efi)|ψfi(R)|2 (3.27)
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is the local density of states of H at the source position R. Equation (3.26) forms the
theoretical basis of the Tersoff–Hamann description of scanning tunneling microscopy
[TH83, BRK97]. In the next chapter we will use equation (3.26) for the calculation of
the electronic density of states. The density of states is of considerable interest for solid
state physics, since it influences electrical, magnetical and thermal properties of many
materials. Chapter 5 contains a detailed analysis of the density of states in crossed elec-
tric and magnetic fields in a two-dimensional system and its implication for the electrical
conductivity.

3.3 The general quadratic Hamiltonian

The calculation of energy-dependent Green functions remains a difficult task, despite the
different available methods. Therefore it is not too surprising, that the number of known
energy-dependent Green functions is quite small. Analytic expressions in three-dimensions
exist for the free field environment, the harmonic oscillator [BV71], the Coulomb potential
[HP64], the static uniform electric field [DS76, LLF90, BBG+98], the static uniform mag-
netic field [BV71, Gou72, DMM75], and combined parallel static electric and magnetic fields
[Fab91, Loh92, KBK01]. Five of these potentials are quadratic in the momentum and po-
sition operators, but the general energy-dependent Green function for arbitrary quadratic
Hamiltonians is not known analytically. Fortunately at least the time-dependent prop-
agator is available for a general quadratic Hamiltonian (see [GS98], 6.2.1 and references
therein). A systematic classifiction of the time-dependent solutions of the Schrödinger
equation for quadratic Hamiltonians is given in [MW80].

The approach we pursue for the calculation of the kernel of an quadratic Hamiltonian
makes use of the connection between canonical transformations and their representation
in Bargmann space. We already discussed the harmonic oscillator in Bargmann space
in Example 5. How can we relate the propagator to a canonical transformation? The
time-dependent propagator in a given representation is just the matrix element of the
time-evolution operator as stated in equation (3.1). For quadratic Hamiltonians, we have
the useful property that the time evolution of the canonical operators x,p can be viewed
as the unitary representation of a linear canonical transformation [MQ71]. To see this, we
evaluate the time-evolution of an operator G(H) in the Heisenberg picture (we will denote
operators in the Heisenberg picture by (H) in this section)

G(H)(t) = U†(t) ◦ G(H)(0) ◦ U(t)

= G(H)(0) + (it/�)
[
H,G(H)(0)

]
+ (1/2!)(it/�)2

[
H,
[
H,G(H)(0)

]]
+ . . . , (3.28)

where we used the Baker-Hausdorff lemma (see i.e. [Mer69], 8.105). Since we are interested
in the time evolution of x(H)(t) and p(H)(t), we note that for a quadratic Hamiltonian
all commutators [H,x(H)(0)] and [H,p(H)(0)] will just evaluate to either a constant or a
multiple of the operator itself. Therefore we can relate the time evolution of the operators
x(H)(t) and p(H)(t) to a linear canonical transformation. This transformation reads in
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block matrix notation

x(H)(t) = �x(H)(0) + � (−p(H)(0)) + �a′,

−p(H)(t) = �x(H)(0) + Æ (−p(H)(0)) + �a′′,
(3.29)

with four matrices �, �, �, Æ of dimension D × D, depending on the number of dimensions
D in the system. Combining all D×D-dimensional block matrices and the D-dimensional
shifts into a single matrix, we construct a (2D + 1) × (2D + 1) matrix �̂:

 x(H)(t)
−p(H)(t)

1


 = U†(t) ◦


 x(H)(0)

−p(H)(0)
1


 ◦ U(t) = �̂(t)


 x(H)(0)

−p(H)(0)
1


 , (3.30)

where

�̂(t) =


 � � �α′

� Æ �α′′

0 0 1


 .

For propagators in three dimensions we have to determine the 7 × 7-matrix �̂. The evalu-
ation of �̂ for a given Hamiltonian is done by the exponentiation of an auxiliary matrix �̂

that contains the commutator of H with x and p:
H,


 x(H)(0)
−p(H)(0)

1




 = −i�̂


 x(H)(0)
−p(H)(0)

1


 . (3.31)

As a short calculation proves (see equation (A.3)), the matrix �̂ then becomes

�̂(t) = exp
(
�̂t
)

.

Since we used the Heisenberg picture for the time evolution of x(H)(0) and p(H)(0), we
also solved the classical equations of motion. The general form of the time-dependent
propagator is given by a transformation of the Bargmann kernel [Bar70] to Hilbert space,
which is derived in detail in [Kra00]:

〈r|U(�̂(t))|r′〉 = ν�(t) exp

{
−i�α′′((r − �α′) − 1

2
�α′) − i

1

2
(r − �α′)Æ�−1(r − �α′)

+ i(r − �α′)(�−1)T r′ − i
1

2
r′�−1Ær′

}
.

(3.32)

Here, ν�(t) is a factor independent of the coordinates r, r′ that can be easily found by
solving the first order differential equation(

[i�∂t − H] 〈r|U(�̂(t))|r′〉
)∣∣∣∣

r=r′=0

= 0. (3.33)

An alternative method to obtain time-dependent kernels of quadratic Hamiltonians is given
by Nieto in [Nie92]. Nieto uses the Moyal propagator for his phase-space approach.
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3.4 Multipole sources

With the choice of the retarded Green function we enforce the boundary condition of
outgoing matter waves. In many applications additional boundary conditions arise in the
form of angular-momentum selection rules for the emitted wave. Examples are electrons
emitted from a specific orbital state of an atom, or particle waves originating from a Bose-
Einstein condensate with quantized vortices. Clearly, a completely isotropic point source
σ(r) ∼ δ(r − r′) can only describe a locally isotropic emission pattern with zero angular
momentum. Motivated by the partial-wave expansion used in the case of conventional
(localized) scattering potentials, we proceed with the introduction of a multipole source
and a corresponding multipole Green function [Bra99, BKK02]. Let us start with a familiar
problem from electrostatics. The potential φ of a point-charge of unit strength located at
r′ is given by

φ(r) =
−1

|r − r′| , (3.34)

since this choice solves the Poisson equation for the charge distribution

∇′2 1

|r − r′| = 4πδ(r − r′). (3.35)

The Green function for the potential of the point-charge reads

G(r, r′) = − 1

4π|r − r′| . (3.36)

Similarly, multipole potentials are constructed with the well known spherical harmonics
Ylm, or the harmonic polynomials Klm(r) = rlYlm(r̂) [Hob31, MF53, Mül66]:

Φlm(r, r′) =
Ylm(êr−r′)

|r − r′|l+1
=

Klm(r − r′)
|r − r′|2l+1

, (3.37)

In electrostatics we would proceed with a multipole expansion of a general potential in
terms of the Φlm. Here, we note that the spherical polynomials can also be used as a
differential operator or spherical tensor gradient Klm(∇′) = Klm(∂x′ , ∂y′ , ∂z′) that connects
the Green function and the multipole potential [Bay78, Row78, WS83]:

Klm(∇′)G(r, r′) = −(2l − 1)!!

4π
Φlm(r, r′) . (3.38)

The spherical tensor gradient selects a potential with the desired multipole structure from
G(r, r′). Since ∆G(r, r′) = δ(r − r′) holds and ∇ commutes with Klm(∇′) we formally
obtain

∆Φlm(r, r′) = − 4π

(2l − 1)!!
Klm(∇′)δ(r − r′) . (3.39)

This relation serves as the basic definition of general multipole point-sources δlm(r − r′)
[Bay78, Row78]

δlm(r − r′) = Klm(∇′)δ(r − r′), (3.40)
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and we denote the corresponding Green function that solves the inhomogeneous Schrödinger
equation

[E − H]Glm(r, r′; E) = δlm(r − r′) (3.41)

by Glm(r, r′; E). If H and Klm(∇′) commute, Glm(r, r′; E) is available from G(r, r′; E) by
the same differentiation process as before

Glm(r, r′; E) = Klm(∇′)G(r, r′; E). (3.42)

This suggests the following interpretation: Glm is the Green function for a scattering
process originating from a source with an internal angular momentum eigenstate given by
(l,m). However, in our example we used a specific Green function of the form 1/|r−r′|. The
closest analogue to this form in quantum mechanics is the energy-dependent Green function
of the free particle G(free)(r, r′; E) without any external potential given in equation (2.12).

In fact the actual computation of G
(free)
lm (r, r′; E) = Klm(∇′)G(free)(r, r′; E) gives

G
(free)
lm (r, r′; E) = −Mkl+1

2π�2
h

(+)
l (kR)Ylm(R̂), (3.43)

where E = �
2k2/2M , R = r− r′ and h

(+)
l (u) denotes a spherical Hankel function [Mes64].

Of special interest is the behavior of the Green function in the vicinity of the source r → r′.
There, G

(free)
lm (r, r′; E) behaves asymptotically like:

Glm(r, r′; E) ∼ − M

2π�2
(2l − 1)!!

Ylm(êr−r′)

|r − r′|l+1
. (3.44)

Bracher [Bra99] proved that this asymptotic form is a universal property of multipole
Green functions, even in the presence of an external potential U(r), provided only that
the external potential U(r) is analytic at the source location r′. Therefore, the formal
definition of the multipole Green function in terms of spherical tensor gradient Klm acquires
a clear physical interpretation: Even in a symmetry-breaking environment, the desired
(l,m) orbital symmetry locally prevails and justifies the notion of a multipole source with
definite angular momentum.

3.4.1 Currents from multipole quantum sources

The generalization of the expressions for the current from isotropic sources to multipole
sources is straight forward. For spatially extended sources we define the normalized mul-
tipole source by

σlm(r) = Nl Klm(∇)σ(r), (3.45)

where Nl is determined by
∫

dr3|σlm(r)|2 = 1. The scattering wave is then expressed as

ψlm(r) = Nl

∫
dr′ G(r, r′; E)σlm(r′). (3.46)
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Next, we insert ψlm(r) and σlm(r) instead of ψ(r) and σ(r) in the expressions for J(E)
given in equation (2.38) to extract the multipole current

Jlm(E) = −2

�
� [〈σlm|G(r, r′; E)|σlm〉] . (3.47)

A slight complication arises when we treat a superposition of several multipole sources
with amplitudes λlm at a fixed location r′

σ(r) =
∑
lm

λlmδlm(r − r′). (3.48)

Now the resulting scattering wave reads

ψsc(r) =
∑
lm

λlmGlm(r, r′; E), (3.49)

and the current density j(r) due to this wave function may be expressed as a bilinear form
in the amplitudes λlm

j(r) =
∑
lm

∑
l′m′

λ∗
lm jlm,l′m′(r)λl′m′ . (3.50)

The elements of the hermitian current density matrix jlm,l′m′(r) are given by

jlm,l′m′(r) = − i�

2M
{G∗

lm(r, r′; E)∇Gl′m′(r, r′; E) − Gl′m′(r, r′; E)∇G∗
lm(r, r′; E)} . (3.51)

Of particular interest is the total current J(E) carried by the scattering wave in equa-
tion (3.49). Using equation (2.38) we integrate by parts to obtain an expression similar to
equation (3.51)

J(E) =
∑
lm

∑
l′m′

λ∗
lmJlm,l′m′(E)λl′m′ , (3.52)

where the components of the hermitian total multipole current matrix Jlm,l′m′(E) are ex-
tracted from the Green function G(r, r′; E) through differentiation operations and a sub-
sequent limiting procedure:

Jlm,l′m′(E) =
i

�
lim
r→r′

K∗
lm(∇) Kl′m′(∇′) {G(r, r′; E) − G(r′, r; E)∗} . (3.53)

For simplicity, we will denote the (real and positive) diagonal elements of this matrix as
the (l,m) multipole currents Jlm(E): Jlm(E) = Jlm,lm(E).

In the case of no external potentials, these currents are readily evaluated [Bra99] and
read

J free
lm (E) =

M

4π2�3

(
2ME

�2

)l+1/2

. (3.54)
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The characteristic power law dependence of the scattering rate near threshold is known
as Wigner’s threshold law [Wig48]. In the present case we have U(r) = 0. Thus all off-

diagonal elements J
(free)
lm,l′m′(E) are zero, and the total current in (3.52) becomes a simple

sum:
J (free)(E) =

∑
lm

|λlm|2J (free)
lm (E). (3.55)

This simplification is due to the angular symmetry of the Hamiltonian H: Assume that
the generator of a rotation L commutes with H; then, it will also commute with the
resolvent operator G = [E − H + iη]−1. Consequently, if the source states |σ〉 and |σ′〉
are eigenstates of L with different eigenvalues, the mixed matrix element 〈σ|G|σ′〉, and
hence its contribution to the total current J(E) vanishes. If the potential U(r) is invariant
merely with respect to rotations around the z–axis orthogonality with respect to different
values of m prevails: Jlm,l′m′(E) = 0 for m �= m′.

3.5 Green functions from complex integration

For practical calculations we will make extensive use of the Laplace integral representation
of the energy-dependent Green function given in equation (3.1). Using this form we can
take full advantage of the theory of complex functions for the actual evaluation of the
Laplace transform. By regarding t as a complex variable we can study the propagator
as a complex valued function over the entire t-plane. Once the analytic properties of a
specific propagator are known, we can deform the path of integration and choose a path
along which the integral converges fast. Of special importance are the singularities of the
propagator and the asymptotic behavior for large absolute values of t. In order to get some
graphical overview of the properties of a function in the complex plane we will sometimes
use contour plots. In these plots we depict lines of constant absolute value and regions of
constant phase.

Example 6 (Contour plot) In Figure 3.1 we plot the function h(τ) = exp(f(τ)) with

f(τ) = i

(
τ(ζ − ε) +

ξ2 + ν2 + ζ2

τ
− τ 3

12

)
. (3.56)

This function is closely related to the uniform field operator given in equation (2.16). We
choose ξ = −10, ν = 10, ζ = 10000, ε = −6 and cover the complex τ -plane in the interval
τ = [136.5, 146.4]× [−2.8i, +2.8i]. The two stationary points defined by ∂f(τ)/∂τ |τ=τi

= 0
are denoted by S1 and S2. The black lines are lines of constant absolute value of |h(τ)|. The
shading represents the phase of h(τ): a constant shading indicates a constant phase. Lines
of constant absolute value and lines of constant phase are orthogonal. If we decompose the
function f(τ) = u(x, y) + iv(x, y), we see that the lines of constant phase of exp(f(τ)) are
actually lines of constant imaginary values iv(x, y), and the lines of constant magnitude
are lines of constant real parts u(x, y).
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Figure 3.1: Saddle points in the complex plane. We show the function h(τ) = exp(f(τ)),
discussed in Example 6. Constant shading denotes a constant phase and solid lines indicate
a constant absolute value |h(τ)|. The two saddle points of h(τ) are denoted by S1 and S2.
The lower part of the figure is a flattened projection of the upper one.
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In general, the propagator has a complicated structure and may exhibit singularities or
poles in the complex plane. In this case the following theorem can be employed.

Theorem 3 (Residue theorem) If the deformed path of integration γ encloses n isolated
singularities at points zk of an otherwise holomorphic function f(z) we can express an
integral by the sum of the residues

∫
γ

dz f(z) = 2πi
n∑

k=1

Res(f, zk). (3.57)

In Example 2 we used Cauchy’s integral theorem, which is a variant of the residue theo-
rem. There, we had a simple singularity in the complex energy plane. Unfortunately the
situation can be much more complicated. Essential singularities arise in the propagator of
crossed electric and magnetic fields which we will discuss in the next chapter. However,
the residues of essential singularities are not easily evaluated and will severely limit the
practical use of the residue theorem.

Next, we want to discuss two approximation schemes that are applicable to oscillatory
integrals. In the saddle point approximation we deform the path of integration to follow
a path of constant phase through the stationary points. These regions give rise to large
contributions to the integral, since the oscillatory parts along the remaining regions tend
to cancel out. We already discussed a special case, the theory of stationary phase, in
the context of the uniform field double-slit in Chapter 2. Here, we give a more general
formulation that is based on [Arf70, JS72].

Example 7 (Saddle point approximation) We consider an integral from A to B in
the form

I =

∫ B

A

dτ g(τ) exp(sf(τ)). (3.58)

We decompose f(τ) = u(x, y) + iv(x, y) into the real and imaginary part. In the saddle
point approximation, we deform the path of integration in a region between A and B where
the real part u(x, y) takes on a positive maximum. Also we will follow a path of constant
phase v(x, y) = v0 = const. Therefore we have

I ≈ eisv0

∫ B

A

dτ g(τ) exp(su(x, y)). (3.59)

The maximum of u(x, y) is determined from the condition ∂u/∂x = ∂u/∂y = 0, or in
complex notation df(τ)/dτ = 0. The name saddle point approximation comes from the
fact that a maximum of the real part of f(τ) implies a minimum of the imaginary part. If we
assume that we can form the second derivatives of u(x, y) and v(x, y) the Cauchy-Riemann
conditions

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
(3.60)
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imply that ∂2u/∂x2 = −∂2u/∂y2. In Figure 3.1, we see the saddles of the holomorphic
function clearly. Next we expand f(τ) to second order around the stationary point τ0:

f(τ) = f(τ0) +
1

2
(τ − τ0)

2f ′′(τ0) + . . . . (3.61)

The path we choose is one of real and negative values of (τ − τ0)
2f ′′(τ0). Writing τ − τ0 =

reiα we define ζ2 = −f ′′(τ0)r
2e2iα ∈ R+. Therefore ζ = ±r|f ′′(τ0)|1/2. Now we substitute

the integration variable dζ/dτ = (dζ/dr)(dr/dτ) = ±e−iα|f ′′(τ0)|1/2

I ≈ g(τ0)e
sf(τ0)+iα

|sf ′′(τ0)|1/2

∫ ∞

−∞
dζ e−sζ2/2 =

√
2πg(τ0)e

sf(τ0)+iα

|sf ′′(τ0)|1/2
, (3.62)

and assume a constant g(τ) in the region τ ≈ τ0. Also we expanded the range of integration
to infinity, since we are only interested in an asymptotic evaluation.

An important special case is the occurrence of a purely imaginary exponent f(τ) ≡
iv(x, y) with stationary points on the real axis. In that case we have

f(τ − τ0) = iv(x0) + i
1

2
v′′(x0)(z − z0)

2 + . . . . (3.63)

Therefore ζ2 = −iv′′(x0)r
2e2iα and we set α = (π/4) sgn(v′′(x0)) in order to satisfy ζ2 ∈ R+.

The final result reads

I ≈
√

2πg(x0)e
siv(x0)+iπ/4 sgn(v′′(x0))

|sf ′′(x0)|1/2
. (3.64)

This form was already used in equation (2.19). Let us briefly comment on a few features of
the saddle-point approximation. For a fast convergence we want s � 1. In some physical
problems we have s = 1/�. Then the limit s → ∞ is identical to the so-called semiclassical
limit � → 0. We further assume, that the only contribution along the stationary contour
originates from the vicinity of one saddle-point. If for example two stationary points
coalesce, this assumption is no longer valid. Sometimes we can save the situation by
applying a uniform approximation, see also Example 8. If we have multiple stationary
points xi of an analytic function f(x) on the real axis, the second derivatives (curvatures)
of neighboring stationary points v′′(xi) differ by a sign. Therefore we pick up a relative
phase factor of iπ/2. Some authors omit this factor in their treatment of the saddle-
points and later re-introduce this “phase-jump” somewhat artificially as a consequence of
a turning surface or caustic (which separates the two points with different curvature).

The connection between the stationary points of the quantum propagator and the trajec-
tories in classical physics has to be examined carefully. As mentioned before in the context
of equation (2.21), at least for quadratic Hamiltonians, we can identify stationary points
ti on the real time axis with classical allowed motion:

E +
∂Scl(r, t; r

′, 0)

∂t

∣∣∣∣
t=ti

= 0. (3.65)
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Even for stationary points with an imaginary “time” a trajectory analysis can be useful
for the semiclassical description of tunneling phenomena [BKK02]. However, in this case
no classical trajectories exist. A common complication of the method of stationary points
arises if the distance between two stationary points becomes the order of the half width
of the Gaussian used in the second order approximation. In this case we have to adapt a
more sophisticated approximation scheme. One useful method is the uniform Airy approx-
imation, which uses third order terms. Following [Bri85] we briefly present this method.

Example 8 (Uniform Airy approximation: theory) This methods uses a cubic form
of the integrand in order to account for two-saddle points. As before in Example 7 we
consider an integral from A to B in the form

I =

∫ B

A

dτ g(τ) exp(sf(τ)). (3.66)

We will introduce a new coordinate y = y(τ), which maps the function in the exponent
f(τ) to a new form φ(y(τ)) = f(τ), or φ(y) = f(τ(y)). This new form must have the same
structure of stationary points as the original function. The integral reads now

I =

∫ y(B)

y(A)

dy τ ′(y)g(τ(y)) exp(sφ(y)). (3.67)

Now we make two simplifications. First we introduce a new function h(y) for the combi-
nation τ ′(y)g(τ(y)). At the stationary points τi we require

h(yi) = τ ′(yi)g(τi). (3.68)

The second derivative of the integrand in the new coordinates is given by

φ′′(y) =
dφ′(y)

dy
=

d

dy
[f ′(τ(y))τ ′(y)] = τ ′′(y)f ′(τ(y)) + (τ ′(y))

2
f ′′(τ(y)), (3.69)

where all derivatives of τ are taken with respect to y and derivatives of f are with respect
to τ . At the stationary points f ′(τi) is zero and consequently the first term vanishes. Also
at the stationary points the following relation holds:

h(yi) = g(τi)
√

φ′′(yi)/f ′′(τi). (3.70)

The main idea is to use a mapping function φ, that has some parameters. These parameters
are restricted due to the requirements of equation (3.70), which also connects the mapping
function in the exponent φ(y) with the function h(y).

Let us now specify a form of φ(y) that is suitable for two stationary points. The simplest
approach is to use a cubic polynomial that can accommodate the two stationary points at
y1,2 = ±√

b:
φ(y) = iη + iby − iy3/3. (3.71)
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For h(y) we use a linear function in y with two parameters g1,2

h(y) = g1 + g2y. (3.72)

Since we have to map f(τ1,2) at the two stationary points τ1,2 onto φ(y1,2), η and b are
given by

η =
f(τ1) + f(τ2)

2i
, b =

[
3

4
i (f(τ2) − f(τ1))

]2/3

. (3.73)

Also from equation (3.70) we get

g1 + g2

√
b = g(τ1)

√
+2

√
b

f ′′(τ1)/i
, (3.74)

g1 − g2

√
b = g(τ2)

√
−2

√
b

f ′′(τ2)/i
. (3.75)

The important case f(τ) = iv(τ) yields the following set of equations:

η =
v(τ1) − v(τ2)

2
(3.76)

b =

[
3

4
(v(τ1) − v(τ2))

]2/3

(3.77)

g1 + g2

√
b = g(τ1)

√
+2

√
b

v′′(τ1)
(3.78)

g1 − g2

√
b = g(τ2)

√
−2

√
b

v′′(τ2)
(3.79)

Now we have equations for all parameters η, b, g1, g2 and can evaluate the integral

I ≈
∫ ∞

−∞
dy (yg2 + g1)e

iη+iby−iy3/3 = 2π[g1 Ai(−b) + ig2 Ai′(−b)]eiη, (3.80)

where we used the integral formula for Qi−1/2(z) given in Appendix B.

Example 9 (Uniform Airy approximation: application) We apply the uniform Airy
approximation to the propagator in the linear force field. The stationary points are given
in equation (2.18). In Figure 3.2 we compare the saddle-point approximation with the
uniform Airy approximation. In general the agreement between the uniform approxi-
mation and the exact result is excellent. One reason for the astonishing agreement is
that the uniform field propagator is a very good candidate for this type of approxima-
tion. The prefactor T−3/2 in a Taylor expansion around the stationary points is accurately
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Figure 3.2: Probability density for an electron emitted in a uniform electric field to hit
a distant detector plane. The parameters are given in Figure 2.3. Left panel: Saddle
point approximation of the energy-dependent Green function. Right panel: Uniform Airy
approximation of the same Green function. The dotted line shows the analytical result
(see equation (4.21)) and the vertical dashed lines denote the classically accessible range.
Note that the uniform Airy approximation correctly describes the decay of the probability
density close to the classical range whereas the saddle point solution diverges much earlier.

given by a linear function T−3/2 ≈ A + BT . Exactly this form is assumed in the deriva-
tion of the uniform Airy approximation. There is a clear divergence of the saddle-point
approximation for lateral distances close to the maximum distance that is classically ac-
cessible. This is due to the fact, that the two saddle-points converge to a single point at
R2

max = (z + 2E/F )2−z2. Therefore the assumption of two independent saddle-points is no
longer valid and we have to use the uniform approximation. Outside the classically allowed
region, the density decays rapidly and none of the approximations can be readily applied.

A last resort is the numerical evaluation of the integral. However, it is easy to get lost
in the complex landscape of the quantum propagator. A good understanding of the an-
alytic properties of the function under consideration is crucial for choosing a practicable
integration path.



Chapter 4

Uniform magnetic and electric fields

Whereas the propagator for the linear field was derived as early as 1927 [Ken27], at the
beginning of quantum mechanics, the case of a static magnetic field and a crossed (possibly
time dependent) electric field is much more involved and it took much longer to find
the correct result. Nieto [Nie92] considers arbitrary time-dependent electric fields and
calculates the corresponding kernel. The case of static fields is somewhat simpler and
considered more frequently [Nie92, HCF86, dSdSD88], however sometimes with not quite
correct results (comments on this subject appear periodically in the literature, see [JP71,
Nie92]). Interestingly, Schwinger derived the relativistic propagator much earlier [Sch51],
but there is no simple transition to the non-relativistic case. Therefore, let us outline our
procedure to obtain the time-dependent propagator for static fields.

4.1 Gauge properties of the Green function

The Hamiltonian in the presence of magnetic and electric fields may be written as

H =

(
p − q

c
A(r, t)

)2
2m

+ qφ(r, t) =
π2

2m
+ qφ(r, t), (4.1)

where
π = p − q

c
A(r, t) (4.2)

defines the kinematic momentum. The magnetic field B is given by the curl of the vector
potential A:

B(r, t) = ∇× A(r, t). (4.3)

Likewise, the electric field is the gradient of the potential φ(r, t):

E(r, t) = −1

c

∂A(r, t)

∂t
−∇φ(r, t). (4.4)

No spin-dependent part of the Hamiltonian is included, since in general we will decouple
the spin from the Hamiltonian. The spin will effect the energy of the system, since it shifts

35
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the energy by ±1
2
gµBohrB. For actual applications of the Green function we will have to

keep this shift of energy in mind. Also, since we want to construct the Green function,
which in turn is closely related to the spectrum of H, we have to think about the gauge-
invariance of the result. It is well known that the Hamiltonian itself is not gauge-invariant.
Of course, then the following question arises: How can we assign a useful meaning to the
resolvent operator 1/(E−H)? Horing [Hor65] considers some of the consequences of gauge
invariance in the context of the Green function in a uniform magnetic field. We will follow
his considerations and extend them to the case of uniform electric and magnetic fields.
Since we consider only static fields, we can choose the vector potential and the electric
potential to be time-independent. However, the potentials A(r) and φ(r) are not uniquely
defined. Introducing an arbitrary scalar function χ(r, t) we get new potentials

φ′(r) = φ(r) − 1

c

∂χ(r, t)

∂t
, A′(r) = A(r) + ∇χ(r, t), (4.5)

connected by the gauge transformation χ. For static, uniform magnetic and electric fields,
one choice of the electromagnetic potentials is specified by setting

A(r) =
1

2
B × r, φ(r) = −r · E. (4.6)

Possible alternative potentials are given by

A′(r) =
1

2
B × (r − r′), φ′(r) = −(r − r′) · E. (4.7)

The gauge function related to these potentials is found by simply integrating ∇χ = A′−A
and ∂χ/∂t = c(φ − φ′):

χ(r, t) =
1

2
B(r × r′) − c r′ · E t. (4.8)

The principle of gauge invariance requires that r and π are independent of the chosen gauge
[GP91]. Therefore we introduce a unitary operator Tχ that has to satisfy the relations

r = TχrT
†
χ, π = TχπT†

χ. (4.9)

From these expressions we find that the unitary operator must be

Tχ = exp

(
iq

�c
χ(r, t)

)
. (4.10)

The Hamiltonian H is not gauge invariant, but acquires an additional term

TχHT†
χ = Tχ

(
π2

2m
+ qφ(r)

)
T†

χ =

(
π2

2m
+ qφ′(r)

)
+

q

c

∂χ(r, t)

∂t
. (4.11)

This is relevant for the gauge-transformation properties of the energy-dependent Green
function. Since we want to keep the form E −H invariant, we have to introduce a shifted
energy in order to compensate the additional term:

E − H(A, φ) → E − TχHT†
χ = E ′ − H′(A′, φ′), (4.12)
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The regauged energy reads: E ′ = E − q
c

∂χ
∂t

. Using these results we finally apply the gauge
transformation to the Green function. The Green function is defined as the solution of the
inhomogeneous Schrödinger equation

[E − H]G(r, r′; E) = δ(r − r′). (4.13)

The gauge-transformed Hamiltonian H′ appears in the same equation (which we require
to be gauge invariant), but all quantities are taken in the new gauge:

[E ′ − H′]G′(r, r′; E ′) = δ(r − r′). (4.14)

Looking at the potentials A′, φ′ for the Hamilton H′ we note, that they only depend on the
relative distance r − r′. Therefore G′(r, r′; E ′) also depends only on r − r′. G′ is obtained
from G with the specified gauge transformation

〈r|G′(E ′)|r′〉 = 〈r|TχG(E)T†
χ|r′〉

= exp

[
iq

�c
(χ(r, t) − χ(r′, t))

]
〈r|G(E)|r′〉

= exp

[
iq

2�c
B(r × r′)

]
〈r|G(E)|r′〉.

If we set r′ = 0, the gauge term vanishes. This offers another interpretation of the gauge-
transformation. Switching from the potentials (A, φ) to the new ones (A′, φ′) is actually a
coordinate transformation according to a shift r → r− r′. Thus, we have a second relation
between the Green functions in the different gauges

G′(r, r′; E ′) = G(r − r′,o; E ′). (4.15)

Together with the previous equation we obtain the final result

exp

[
iq

2�c
B(r′ × r)

]
G(r − r′,o; E + r′ · F) = G(r, r′; E). (4.16)

One important application of this expression is the extension of a Green function obtained
for r′ = 0 to the full coordinate set (r, r′). We will use this later for the derivation of the
energy-dependent Green function. We also note that the gauge terms are time-independent
and the same translation property applies to the time-dependent Green function.

4.2 Propagator in crossed magnetic and electric fields

Before we actually address the calculation of the energy-dependent Green function, we will
discuss the time-dependent kernel. For this task we use the linear canonical transformation
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method described in Section 3.3. In Appendix A.1 we give the details of the straight-
forward calculation. The final result is rather long and reads:

KEB(r, t|r′, 0) = e−3iπ/4 mωL

2π� sin(ωLt)

√
m

2π�t
×

× exp

{
i

�

(m

2t
(r‖ − r′‖)

2
+

mωL

4
(r⊥ − r′⊥)

2
cot (ωLt) +

e

2
[r⊥,B, r′⊥]

+

(
e

mω2
L

− et

2mωL

cot (ωLt)

)
[r⊥ − r′⊥,F⊥,B] +

t

2
(r + r′)F

−F 2
‖

t3

24m
+ F 2

⊥

[
− t

8mω2
L

+
t2

8mωL

cot (ωLt)

])}
. (4.17)

The Larmor frequency ωL is defined by

ωL =
eB

2m
. (4.18)

We introduced the subscript ‖ for vector components parallel to the magnetic field B and
⊥ for the perpendicular component. The triple product [a, b, c] is understood as

[a, b, c] = (a × b) · c. (4.19)

As a cross-check we can investigate the transformation properties under spatial transla-
tions. The two terms related to the gauge-transformation are readily identified and we see
that this kernel indeed satisfies equation (4.16):

eiEt/�KEB(r, t|r′, 0) = ei(E+r′F)t/�KEB(r − r′, t|o, 0) exp

{
ie

2�
[r⊥,B, r′⊥]

}
. (4.20)

Next we will discuss four important special cases of the general propagator.

4.3 Purely electric field

The case of a multipole source in a purely electric field is treated in great detail by Bracher
[Bra99]. A closed analytic expression for the underlying Green function was derived inde-
pendently by several authors [DS76, LLF90, GKK91]

G(r, r′; E) =
m

2�2

1

|r − r′| [Ci(α+) Ai′(α−) − Ci′(α+) Ai(α−)] , (4.21)

where the arguments α± of the Airy functions Ai(u), Ci(u) = Bi(u) + i Ai(u) [AS65] are
given by

α± = −β [2E + F (z + z′) ± F |r − r′|] . (4.22)
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Again, β denotes an inverse energy scale of the system that varies with the force strength
F

β =
(
m/4�

2F 2
)1/3

. (4.23)

The current density for a point-like source is readily evaluated and reads for s-wave scat-
tering l = 0

j00,z(r, E) = |C|2 mβF

8π2�3r3

{
z[Ai′(α−)]

2
+ β

[
z(2E + Fz) + Fr2

]
[Ai(α−)]2

}
. (4.24)

Similarly, the total current according to equation (2.38) becomes

J00(E) = −|C|2
2π�

lim
r→0

Im {Gfield(r,o; E)}

=
|C|2mβF

2π�3

{
[Ai′(−2βE)]

2
+ 2βE[Ai(−2βE)]2

}
. (4.25)

In a different context, these expressions are implicitly contained also in [LLF90, Fab91]. A
general method to express the higher multipole Green-functions is given in [Bra99, BKK02].

4.4 Parallel magnetic and electric fields

For the case of parallel fields (B �= 0, F⊥ = 0) the general propagator stated in equa-
tion (4.17) is written in the much simpler form (ρ2 = x2 + y2)

KB‖E(r, t|o, 0) = K
(2D)
B (ρ, t|o, 0) K

(1D)
field (z, t|o, 0), (4.26)

with
K

(2D)
B (ρ, t|o, 0) =

mωL

2πi� sin(ωLt)
exp
(
i
mωL

2�
ρ2 cot (ωLt)

)
, (4.27)

and K
(1D)
field (z, t|0, 0) given already in equation (3.14). We proceed to calculate the energy-

dependent Green function. Transforming both propagators separately we can use the
already given Laplace transform of K

(1D)
field (see equation (3.11)). For the magnetic part we

take advantage of the close connection of the propagator to the generating function of the
Laguerre polynomials.

Theorem 4 (Laguerre polynomials) The generating function of the Laguerre polyno-
mials is ([AS65], (22.9.15))

exp

(
− xt

1 − t

)
(1 − t)−1 =

∞∑
n=0

L(0)
n (x) tn. (4.28)

This form can be transformed to hyperbolic or trigonometric functions

1

sinh(z)
exp[−α coth(z)] = 2e−α

∞∑
n=0

L(0)
n (2α)e−2z(n+1/2), (4.29)

where we introduce t = e−z in the generating function.
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Setting z = iωLt and α = mωL

2�
ρ2 we carry out the time-integration in

G
(2D)
B (ρ,o; E) = − i

�

2mωL

2π�

∞∑
n=0

e−αL(0)
n (2α) lim

η→0

∫ ∞

0

dt e−iωL(2n+1)t+i(E+iη)t/� (4.30)

= −mωL

π�

∞∑
n=0

lim
η→0

e−αL
(0)
n (2α)

E − �ωL(2n + 1) + iη
.

In the last step we apply the complex convolution theorem (see Example 4, equation (3.18))
and use Cauchy’s integral theorem:

GB‖E(r,o; E) =
1

2πi
exp
(
−mωL

2�
ρ2
) ∞∑

n=0

L(0)
n

(mωL

�
ρ2
)∫ ∞

−∞
dE ′

mωL

π�
Gfield(z, 0; E ′)

E ′ − E + �ωL(2n + 1)

=
�ωL

Fβ

m2

�4
exp
(
−mωL

2�
ρ2
) ∞∑

n=0

L(0)
n

(mωL

�
ρ2
)
×

× Ci {2β [F (z + |z|)/2 − E + �ωL(2n + 1)]}×
× Ai {2β [F (z − |z|)/2 − E + �ωL(2n + 1)]} .

(4.31)

The parameter β = [m/(4�
2F 2)]

1/3
has the dimension of an inverse energy. A similar result

is obtained by Fabrikant ([Fab91], equation (11)) in the context of a calculation for l = 1
photodetachment. Using the gauge transformation (4.16) we relocate the origin from o to
r′:

GB‖E(r, r′; E) =
ωLm2

Fβ�3
e

mωL
�

[
i(xy′−yx′)− (x−x′)2+(y−y′)2

2

] ∞∑
n=0

L(0)
n

(mωL

�
((x − x′)2

+ (y − y′)2
)
)
×

× Ci {2β [(F (z − z′) + F |z − z′|)/2 − E + �ωL(2n + 1)]}×
× Ai {2β [(F (z − z′) − F |z − z′|)/2 − E + �ωL(2n + 1)]} .

(4.32)

Having an analytic expression for the energy-dependent Green function, we continue with
the derivation of the currents generated by a point source of electrons embedded into the
electromagnetic fields.

4.4.1 Total current in parallel fields

Following Section 3.4, a systematic approach to the total current of a multipole source in
parallel fields is feasible. In the literature exist some articles on the total current with
angular momentum l = 1 in parallel fields [DD89, Fab91, PJGD97]. These papers deal
with the specific problem of the calculation of the photodetachment cross-section from H−.
Since the energy-dependent Green function is available in analytic form, we can readily
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Figure 4.1: Total current for different multipole sources in parallel magnetic and electric
fields. Electric field: F = 100 eV/m, magnetic field: B = 0.1 T (left column) and B = 0.5 T
(right column). Upper row: l = m = 0, middle row: l = 1, m = 0, lower row: l = 1,
m = −1. The dashed line denotes Wigner’s threshold law given in equation (3.54).



42 CHAPTER 4. UNIFORM MAGNETIC AND ELECTRIC FIELDS

derive all higher multipole currents. Here, we merely list the expressions for l = 0, 1:

J00(E) =
∞∑

n=0

m2ωL

2πβF�4
[Ai (2β{−E + �ωL(2n + 1)})]2 (4.33)

J1−1(E) =
∞∑

n=0

3m3ω2
L(n + 1)

πβF�5
[Ai (2β{−E + �ωL(2n + 1)})]2 (4.34)

J10(E) =
∞∑

n=0

6βFm2ωL

π�4
[Ai′ (2β{−E + �ωL(2n + 1)})]2 (4.35)

J11(E) =
∞∑

n=0

3m3ω2
Ln

πβF�5
[Ai (2β{−E + �ωL(2n + 1)})]2 (4.36)

In Figure 4.1 we show plots of these currents and compare them to the ones generated by
a multipole source without external fields.

4.4.2 Current Density

Another quantity of interest is the spatial distribution of the current. No experimental
measurements on the current density have been performed yet. Surprisingly, even very
weak magnetical fields are of great importance for the range of electric field parameters
typically used in photodetachment experiments [BDD96].

From the Green function we can derive the current density, which becomes in the case
of s-wave detachment (see equation (2.36), for our choice of the vector potential Az = 0)

jB‖E,00,z(r) =
�|C|2
4πm

�
[
G∗

B‖E(r,o; E)
∂

∂z
GB‖E(r,o; E)

]
. (4.37)

A plot of the current density distribution for B = 0.001 T and F = 116 eV/m is given in
Figure 4.2. The differences to the electric case are striking. The propagation in the lateral
direction is confined due to the magnetic field. At some regions a very narrow constriction
region exists, but the current density survives the passage through this area and regains its
lateral spread. In Figure 4.3 we zoom into the constriction region and see that the current
distribution gives a rather long filament surrounded by a region with spot like structures.

Semiclassical Approximation The current profile can be approximated semiclassically
by applying the method of stationary phase to the Green function. Since we know that
the stationary points of the classical action are related to the classical trajectories, we also
write down the classical equation of motion. For fixed E, all classical trajectories start
with initial kinematic momentum p =

√
2mE. If we denote the angle between the z-axis

and the direction of emission by θ, the classical equation of motion becomes

ρ(t, θ) = p sin θ
| sin(ωLt)|

mωL

, z(t, θ) = p cos θ
t

m
− Ft2

2m
. (4.38)
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Figure 4.2: Plot of the current density distribution obtained from equation (4.37) for
parallel fields. The fourth resonance (arrow) is plotted in detail in Figure 4.3. Parameters:
Emission energy: E = 60.8 µeV, electric field: F = 116 eV/m, magnetic field: B = 0.001 T.
There is rotational symmetry about the z-axis.
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These relations can be used to determine the shape of the envelope of the current profile.
According to equation (4.38), the maximum lateral extension is given by the cyclotron
radius ρmax = p/(mωL) for θ = π/2, and ωLt = π/2. To obtain the minimum lateral
extension we observe that ρ(t) will periodically vanish at t = Tk. However, due to the
initial momentum, at these instances the trajectories will cover a range of z–coordinates
from z(Tk, 0) to z(Tk, π). Thus, we have to keep the z-coordinate fixed and then search
for the maximum value of ρ. This can be done by parameterizing all quantities by the
emission angle θ close to a the center of the resonance given by z(Tk, θ):

ρ(θ) ≈ p

m
sin(θ)δt(θ) (4.39)

z(θ) ≈ p cos(θ)
Tk

m
− FT 2

k

2m
− F

m
δt(θ) Tk (4.40)

Since we seek the maximum value, we have to fulfill the conditions

∂ρ(θ)

∂θ
= 0 = cos(θ)δt + sin(θ)

∂δt

∂θ
(4.41)

∂z(θ)

∂θ
= 0 = p sin(θ)

Tk

m
− F

m
Tk

∂δt

∂θ
(4.42)

Using these equations to eliminate δt and ∂δt/∂θ we obtain:

ρ(θ) ≈ 2E

F

∣∣∣∣sin3 θ

cos θ

∣∣∣∣ ,
z(θ) ≈ zk − p

m
Tk

cos(2θ)

cos θ
.

Thus, the constriction is narrowest at zk, where the width AC of the focal spot is in-
dependent of B: AC ≈ E/F . Interestingly, the elongation of the resonance region
BD = (2kπp)/(ωLm) does not involve the electric field F. A further analysis shows,
that in this region each point is connected by four classical trajectories with the source.
Outside the constriction region the twofold degeneracy familiar from the purely electric
case persists. For the semiclassical saddle-point approximation of the Green function

GF‖B(r,o; E) =
1

i�

∫ ∞

0

dt

√
m

2πi�t

mωL

2πi� sin(ωLt)
e

i
�

(
Et+

mωL
2

ρ2 cot(ωLt)+ m
2t

z2−Ft
2

z−F2t3

24m

)
,

(4.43)
we must therefore include up to four contributions from stationary points. In Figure 4.3, the
encircled numbers denote the count of classical trajectories in each sector. The semiclassical
result (left hand side), obtained by summing over all classical paths in equation (4.43),
faithfully reproduces the exact quantum solution available from equations (4.37) and (4.31)
(shown to the right).

Also, we should point out that the resonances will overlap (z(Tk, π) < z(Tk+1, 0)) for
F/(pB) < e/(πm). In this instance, the number of classical paths may exceed four.
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Figure 4.3: Anatomy of the fourth resonance in Figure 4.2. Circled numbers: number
of classically allowed trajectories. Left hand side: semiclassical approximation. Right
hand side: quantum solution. Scale: height 4 mm, width 2 µm. Same parameters as in
Figure 4.2.
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Figure 4.4: Uncertainty product ∆r⊥ ∆p⊥ and classical averages, equation (4.44), as a
function of emission energy in units of �, fourth resonance, F = 116 eV/m, B = 0.001 T.

4.4.3 Minimum Uncertainty

At the photodetachment threshold (E → 0), the classical width of the current filament,
AC ≈ E/F , approaches zero. However, the uncertainty principle will put some constraints
on the lateral current density distribution. Let us first elaborate on the classical picture:
Since the emission is isotropic, the average value of p2

⊥ is 〈p2
⊥〉av = 2

3
p2 = 4

3
mE. For

the mean square width 〈r2
⊥〉av of the distribution, we integrate over all trajectories ρ(θ)

(Equation 4.38) that arrive at zk. For non-overlapping resonances, this procedure yields
approximately: √

〈r2
⊥〉av〈p2

⊥〉av ≈ E

F

√
32

45
mE. (4.44)

In a quantal treatment the relevant operators are the canonical momentum operator and
the position operator:

p2
⊥ = p2

x + p2
y, r2

⊥ = x2 + y2.

For these operators the relation √
〈r2

⊥〉〈p2
⊥〉 ≥ � (4.45)

must hold. The evaluation of the expectation value of r2
⊥ = ρ2 and p⊥ with respect to

the scattered wave function (which is proportional to the Green function) is carried out by
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calculating the expectation values

〈r2
⊥〉 =

∫ ∞

0

dρ ρ GF‖B(r,o; E)∗ ρ2 GF‖B(r,o; E), (4.46)

〈p2
⊥〉 =

∫ ∞

0

dρ ρ GF‖B(r,o; E)∗
[
−1

ρ

∂

∂ρ
ρ

∂

∂ρ

]
GF‖B(r,o; E), (4.47)

separately and normalizing them by

Nlat =

∫ ∞

0

dρ ρ GF‖B(r,o; E)∗ GF‖B(r,o; E). (4.48)

In Figure 4.4 we compare the expectation value ∆r⊥ ∆p⊥ =
√〈r2

⊥〉〈p2
⊥〉 as calculated from

the last set of equations with the corresponding classical average
√〈r2

⊥〉av〈p2
⊥〉av as a func-

tion of energy. Once the classical average exceeds the quantum limit �, the semiclassical
theory provides a good estimate for the uncertainty product (and the current profile in
general). For sufficiently small energies E, however, a quantal regime prevails: The uncer-
tainty quickly approaches its lower boundary, and consequently, the current distribution
becomes Gaussian in shape. Typically, this behavior becomes prevalent at energies of order
E ≈ 1/β; the resulting minimum uncertainty wave function is considerably extended in
space, as an estimate of the focal spot radius ∆r⊥ ≈ 1/(βF ) shows: For the field strengths
used experimentally [BDD96, BDDV99], a resolution of order ∆r⊥ ≈ 100 nm is achieved.

4.5 Purely magnetic field

The limit of a strong magnetic field is of considerable importance in solid state physics. We
already mentioned that the density of states (DOS) is just a multiple of the total current
(see equation (3.26)). In solid state physics the DOS of a free (degenerate) electron gas
(DEG) in two and three dimensions (2-DEG, 3-DEG) is used to calculate properties of
materials like conductivity, heat capacity, magnetization, etc.

First, we derive the density of states in the presence of a magnetic field for a two
dimensional source. The energy-dependent Green function GB(ρ = o,ρ′ = o; E) is given
in equation (4.30). We get the total current by taking the imaginary part of this expression.
Employing the relation (see also equation (3.22))

lim
η→0

1

E − E ′ + iη
= PP

(
1

E − E ′

)
+ iπδ(E − E ′ + iη), (4.49)

we obtain the density of states

n
(2D)
B (E) = − 1

π
�{G(2D)

B (o,o, E)} =
mωL

π�

∞∑
n=0

δ(E − �ωL[2n + 1]). (4.50)

The spiked δ-array is the expected result for the DOS. This configuration is relevant for
the study of the quantum Hall effect, see i.e. [GP00]. We will further comment on the
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quantum Hall DOS in the next chapter. Some authors define the degeneracy NL(B) of an
individual Landau level by the relation

NL(B) = n
(2D)
free 2�ωL. (4.51)

The DOS in the absence of external fields follows immediately from the free energy-
dependent Green function in two dimensions and reads

n
(2D)
free = Θ(E)

m

2π�2
. (4.52)

Combining both results gives another expression for the degeneracy

NL(B) =
eB

2π�
. (4.53)

In three dimensions, we have a completely different behavior. For the imaginary part of
the Green function we must evaluate the convolution integral of the combined propagator
for a one-dimensional free motion

K
(1D)
free (z, t|z′, 0) =

√
m

2πi� t
eim(z−z′)2/(2�t), (4.54)

and the two-dimensional magnetic field contribution (stated in equations (4.27) and (4.30)).
This procedure yields the following expression

G
(3D)
B (o,o, E) = − i

�

mω

π�

∞∑
n=0

∫ ∞

0

dt

√
m

2πi� t
eiEt/�e−iωL(2n+1)t, (4.55)

that is again closely related to the energy-dependent Green function of a one-dimensional
free particle:

G
(1D)
free (z, z′; E) = − i

�

∫ ∞

0

dt eiEt/� K
(1D)
free (z, t|z′, 0) (4.56)

=
1

�

√
− m

2E
e−|z−z′|√−2mE/� (4.57)

The only effect of the magnetic field (besides a constant factor), is to cause a superposition
of shifted one-dimensional free Green functions. Thus, the density of states becomes

n3D
B (E) = − 1

π
�{G3D

B (o,o, E)} =
m3/2ωL

21/2π2�2

∞∑
n=0

Θ(E − �ωL[2n + 1])√
E − �ωL[2n + 1]

. (4.58)

In Figure 4.5 we plot the resulting curve and see that it has indeed the familiar form of
the DOS for a three-dimensional electron gas [GP00], p. 552.
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Figure 4.5: Electronic density of states in three dimensions and a strong magnetic field
(B = 1 T). The dashed line denotes Wigner’s threshold law given in equation (3.54).

4.6 Crossed magnetic and electric fields

The case of crossed fields is much more difficult to handle and no closed form or single
sum representation of the energy-dependent Green function is known. Therefore we have
to establish another practicable method to evaluate the Laplace transform of the time-
dependent kernel. What makes this problem so different from the case of parallel fields?

Even for r = r′ = 0, the exponent has terms involving t cot(ωLt) and t2 cot(ωLt) which
give rise to essential singularities of the propagator at times t = nπ/ωL, where n ∈ N+.
We will restrict our discussion mainly to the total current, which is given (up to a constant
factor) by the imaginary part of the Green function at r = r′ = o. For exactly orthogonal
fields, the t3F‖ term in the exponent vanishes and the asymptotic behavior changes. This is
of great importance for choosing a quickly converging path of integration. For orthogonal
fields the integrand of the Laplace transform reads

eiEt/� GE×B(r = o, t; r′ = o, 0) = − ie−i3π/4mωL

2π�2 sin(ωLt)

√
m

2π�t
×

× exp

{
i

�

(
Et − tF 2

⊥
8mω2

L

+
t2F 2

⊥
8mωL

cot (ωLt)

)}
. (4.59)

In Figure 4.6 we show a plot of this Green function in the complex t-plane for B = 0.5 T and
three different electric field strengths. The black lines mark a suitable path of integration.
Let us further analyze equation (4.59). The second term in the exponent is linear in it and
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Figure 4.6: Propagator landscape for crossed fields. The phase is encoded in the shading,
the height is a measure of the absolute value (highly compressed logarithmic scale). The
black line shows a suitable path of integration. Magnetic field: B = 0.5 T, electric fields:
Fz = 0, Fy = 1, 200, 400 eV/m.

therefore just causes a shift of the energy. The third term is not easily handled, since it
is responsible for the essential singularities of the propagator. A naive integration along
the real axis is bound to fail. The large-scale asymptotic behavior is determined by the
it2-term in the exponent. To see this, we replace t by t = u+iv and now have the following
structure of the exponent:

ei(u+iv)2 = ei(u2−v2)e−2uv. (4.60)

Along the real axis (u > 0) the kernel becomes suppressed, whereas for a negative imaginary
part (v < 0) the kernel becomes large. Since we have to start our integration at t = 0, the
limit t → 0 is of special importance. First let us note that the singularity in the exponent
is absent for t → 0, since limt→0 t2 cot(ωLt) = 0. For purely imaginary times (u = 0), the
exponent is real-valued (cot(iωLv) = −i coth(ωLv)) and the integrand becomes

eEv/� GE×B(r = o, t = iv; r′ = o, 0) =
imωL

2π�2 sinh(ωLv)

√
m

2π�(−v)
×

× exp

{
1

�

(
−Ev +

vF 2
⊥

8mω2
L

− v2F 2
⊥

8mωL

coth (ωLv)

)}
. (4.61)

Since the total current is given by the imaginary part of the Green function, we can
conclude that a path along the negative imaginary axis does not affect the final result,
since it yields only real-valued contributions. Therefore we can shift the starting point
of the integration from (u = 0, v = 0) to the negative imaginary axis to (0, vstart). To
determine a good value for vstart we notice that for v → 0 the integrand goes to +∞. On
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Figure 4.7: The transition from a weak electric field to a stronger electric field is shown.
Parameter: Magnetic field; B = 0.5 T, parallel electric field: Fz = 0, perpendicular electric
field: Fy = (1, 100, 400) eV/m (dotted, solid, and dashed line respectively).

the other hand for v → −∞ the function increases without bounds. No further poles are
present along the imaginary axis and therefore the function must become minimal for some
value of v ∈]0,−∞[. In Figure 4.6 we can see this behavior quite clearly. Therefore the
condition

∂GE×B(o, t = iv;o, 0)

∂v

∣∣∣∣
v=vstart

= 0 (4.62)

determines the starting point of the integration path. From this point the path goes parallel
to the real axis, until the absolute value of the kernel drops several orders of magnitude.
In Figure 4.7 we plot the resulting current distribution for different values of the electric
field. These plots illustrate the transition from a purely magnetic field dominated behavior
to a electric field regime. The magnetic-field regime was discussed before in Section 4.5.
For the electric field, the stair-case structure of the current is related to the interference
phenomena in the linear force field discussed in Chapter 2. In [BKK02] we discuss these
features in more detail and comment on their connection to closed orbit theory [PD93].
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Chapter 5

Currents in electric and magnetic
fields for two-dimensional systems

This chapter is devoted to a detailed analysis of the two-dimensional Green function in the
presence of static magnetic and electric fields. Exact analytic results are obtained for the
total current in perpendicular electric and magnetic fields. The two-dimensional current is
directly proportional to the electronic density of states (DOS). Considerable interest exists
in the DOS, since thermal, magnetic and electrical properties of two-dimensional electron
gases can be calculated with the help of the DOS. Based on our new results for the DOS, a
simple single-electron model for the conductivity in a two-dimensional degenerate electron
gas is established. We directly apply this model to the quantum Hall effect and point out
connections to experimental results, which can be explained within this model.

5.1 Two-dimensional Green function for crossed mag-

netic and electric fields

The electronic density of states in a purely magnetic field is given in the last chapter and
reads

n
(2D)
B (E) =

eB

2π�

∞∑
k=0

δ (E − �ωL[2k + 1]) . (5.1)

We already related the density of states to the imaginary part of the Green function at the
origin via equation (3.26),

n(E) = − 1

π
� [G(r = o, r′ = o; E)] . (5.2)

In the presence of an additional electric field, the divergence of the current at the Landau
levels with energy E = (2n + 1)�ωL, n ∈ N0 is lifted. The number of newly formed peaks
is related to the Landau level: One peak for the first level (k = 0), two peaks for the
second level (k = 1) and so on. Fabrikant sees a similar splitting in a three dimensional

53
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system (see [Fab91], Figure 5), but does not investigate this issue further. We will show
in this chapter that the elimination of the degeneracy and the broadening of the δ-array
given in equation (5.1) is already present in a two dimensional system (see Figure 5.1).
The next two sections cover different ways to obtain the DOS from the corresponding
two-dimensional Green function for crossed fields.

5.1.1 Total current (generating function method)

We start with the time-dependent Green function for orthogonal fields at the origin r = r′ =
o given by equation (4.17) after removing the one dimensional parallel-field propagator:

eiEt/� G
(2D)
E×B(o, t;o, 0) = − mωLΘ(t)

2π�2 sin(ωLt)
exp

{
i

�

([
E − F 2

⊥
8mω2

L

]
t +

t2F 2
⊥

8mωL

cot (ωLt)

)}
.

(5.3)
Again, we transform this expression into a sum over Laguerre polynomials using Theorem 4,
page 39, and obtain

eiEt/� G
(2D)
E×B(o, t;o, 0) = − imωL

π�2

∞∑
k=0

e−γ2t2/(2�
2) L

(0)
k (γ2t2/�

2)×

× exp

{
it

�

[
E − γ2/(2�ωL) − (2l + 1)�ωL

]}
Θ(t), (5.4)

with

γ2 =
F 2
⊥�

4mωL

=
F 2
⊥�

2eB
. (5.5)

Next we switch to the energy-dependent Green function by integrating over t. Since we
are only interested in the imaginary part of the energy-dependent Green function, we can
use the identity

�
[∫ ∞

0

dt f(t)

]
=

1

2i

∫ ∞

−∞
dt f(t), (5.6)

which holds provided that f(−t) = −f(t)∗. Two integral formulae involving Laguerre
and Hermite polynomials are useful in this context. The first formula is given in [Buc53],
page 149, equation (15b):

∫ ∞

−∞
dx e−x2/2+ixy L

(0)
k (x2) = [Hek(y)]2

√
2π

k!
e−y2/2. (5.7)

We will also use the orthogonality of the Hermite-polynomials Hek(x), [Buc53], page 149,
equation (15c) ∫ ∞

−∞
dx e−x2/2 Hem(x) Hel(x) =

√
2π n! δm,l. (5.8)
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(Remark: Hk(x) = 2k/2 Hek(x
√

2), see also [AS65], (22.5.58-59)). The imaginary part of
the Green function is therefore given by

�
[
G

(2D)
E×B(o,o; E)

]
= −mωL

2π�2

∞∑
k=0

∫ ∞

−∞
dt e−γ2t2/(2�

2)−itEk/� L
(0)
k (γ2t2/�

2) (5.9)

= − mωL√
2π�γ

∞∑
n=0

1

k!
e−E2

k/(2γ2)[Hek (Ek/γ)]2 (5.10)

=
∞∑

k=0

�
[
G

(2D)
E×B,k(o,o; E)

]
, (5.11)

where
Ek = [E − γ2/(2�ωL) − (2k + 1)�ωL]. (5.12)

The contribution of each Landau level integrated over energy-space is also readily available.
Noting that ∫ ∞

−∞
dx

∫ ∞

−∞
dy e−x2/2+ixy L(0)

n (x2) = 2π, (5.13)

we get for each Landau level∫ ∞

−∞
dE �

[
G

(2D)
E×B,k(o,o; E)

]
= −mωL

�
= −eB

2�
. (5.14)

The density of states becomes:

n
(2D)
E×B(E) =

∞∑
k=0

n
(2D)
E×B,k(E) =

mωL√
2ππ�γ

∞∑
k=0

e−E2
k/(2γ2)

k!
[Hek (Ek/γ)]2. (5.15)

Also, the energy-integrated DOS of the kth Landau level is given by∫ ∞

−∞
dE n

(2D)
E×B,k(E) =

eB

h
, (5.16)

where h = 2π� denotes Planck’s constant. The explicit expressions for the first two Landau
levels read

n
(2D)
E×B,k=0(E) =

mωL

π�γ
√

2π
exp

(
−
[
E − γ2

2�ωL

− �ωL

]2

/(2γ2)

)
(5.17)

n
(2D)
E×B,k=1(E) =

mωL

[
E − γ2

2�ωL
− 3�ωL

]2
π�γ3

√
2π

exp

(
−
[
E − γ2

2�ωL

− 3�ωL

]2

/(2γ2)

)
. (5.18)

The reader may have noticed a close similarity between the expressions for the electronic
DOS and the one-dimensional harmonic oscillator eigenfunctions. Indeed, the introduction
of harmonic oscillator eigenstates uk(ξ) and their absolute value squared |uk(ξ)|2 given by

uk(ξ) =
1

π1/4
√

k!
e−ξ2/2 Hek(

√
2ξ), and |uk(ξ)|2 =

1√
πk!

e−ξ2
[
Hek(

√
2ξ)
]2

, (5.19)



56 CHAPTER 5. CURRENTS IN 2D ELECTRIC AND MAGNETIC FIELDS

simplifies the expression of the DOS for the kthe Landau level to

nE×B,k(E) =
eB√
2hγ

|uk(ξ)|2, (5.20)

where

ξ =
Ek√
2γ

=
E − γ2/(2�ωL) − (2k + 1)�ωL√

2γ
. (5.21)

The oscillator eigenfunctions are “visible” as a function of energy and not in position
space. Next we discuss another method to evaluate the DOS (or total current). This
second method employs linear canonical transformations that shed light on the underlying
structure and the appearance of harmonic oscillator functions.

5.1.2 Total current (canonical transformation method)

For an elegant approach to the Green function we use the concept of linear canonical
transformations. A linear canonical transformation (LCT) maps the position and momen-
tum operators (x,p) into new operators (x̃, p̃) that also fulfill the canonical commutation
relation [xi,pj] = [x̃i, p̃j] = i�δi,j. We want to find a LCT U that splits the original
Hamiltonian H into several parts H → H′ = U† ◦ H ◦ U = H1 + H2 which commute:
[H1,H2] = 0. This procedure provides more insight into the structure and solution of the
problem. The spectrum of the Hamiltonian is not affected by the LCT, since the transfor-
mation is unitary. We then construct the propagators of the Hamiltonians H1,H2 and get
the propagator of the total Hamiltonian H′ by multiplying both propagators. Eventually
we transform the propagator back to the original representation.

Linear canonical transformation of the Hamiltonian

For the case of crossed fields the Hamiltonian in two dimensions reads (as always ωL = eB
2m

)

H =
p2

x + p2
y

2m
+

1

2
mω2

L

(
x2 + y2

)
+ xFx + yFy − pyxωL + pxyωL. (5.22)

The first LCT maps (ri,pi) to (r̃i =
√

mωLri, p̃i = 1√
mωL

pi). The transformed Hamiltonian

HLCT1 has the form

HLCT1 = (p̃2
x + p̃2

y + x̃2 + ỹ2)
ωL

2
− p̃yx̃ωL + p̃xỹωL +

x̃Fx + ỹFy√
mωL

. (5.23)

The second LCT is given in matrix notation by


˜̃x
˜̃y

−˜̃px

−˜̃py


 =

1√
2




1 0 0 −1
1 0 0 1
0 1 1 0
0 −1 1 0






x̃
ỹ

−p̃x

−p̃y


 , (5.24)
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and the transformed Hamiltonian becomes

HLCT2 = (˜̃p2
y + ˜̃y2)ωL +

(˜̃x + ˜̃y)Fx + (˜̃py − ˜̃px)Fy√
2mωL

. (5.25)

Setting Fy = 0 (this can be achieved by rotating the coordinate system, alternatively we
could use a third LCT) and introducing

c = −Fx/(2ωL

√
2mωL), (5.26)

we can further simplify the expression for HLCT2 to

HLCT2 = ωL(˜̃p2
y + (˜̃y − c)

2
) − 2cωL

˜̃x − ωLc2. (5.27)

We have reached our goal to have two commuting Hamiltonians, which are given by

HLCT2,1 = ωL(˜̃p2
y + (˜̃y − c)

2
) − ωLc2, and (5.28)

HLCT2,2 = −2cωL
˜̃x. (5.29)

The transformed propagator

It is obvious that the Hamiltonian HLCT2,1 is closely related to the harmonic oscillator.
The propagator of a harmonic oscillator

HSHO =
p2

2m
+

1

2
mω2x2 (5.30)

is conveniently expressed in terms of the energy eigenfunctions uk(ξ) (see equation (5.19)):

KSHO(x, t|x′, 0) =
∞∑

k=0

ψ∗
SHO,k(x) ψSHO,k(x

′) eiEkt/� (5.31)

=

√
mω

�

∞∑
k=0

uk

(
x

√
mω

�

)
u∗

k

(
x′
√

mω

�

)
ei(k+1/2)ωt. (5.32)

For the slightly modified harmonic oscillator HLCT2,1 we obtain for the unshifted case
(c = 0)

K1,c=0(y, t|y′, 0) =
1√
�

∞∑
k=0

uk

(
y√
�

)
u∗

k

(
y′
√

�

)
ei(2k+1)ωLt. (5.33)

For c �= 0, we have to shift the energy and the y-coordinate:

K1(y, t|y′, 0) =
1√
�

∞∑
k=0

uk

(
y − c√

�

)
u∗

k

(
y′ − c√

�

)
e−i(2k+1)ωLt+iωLc2t/�. (5.34)

The propagator assigned to HLCT2,2 is given by (see also equation (3.32) or [Kra00])

K2(x, t|x′, 0) = exp

{
2icωLxt

�

}
δ(x − x′). (5.35)

Thus the combined propagator assigned to HLCT2 in the (˜̃r, ˜̃p) system becomes

˜̃K(˜̃x, ˜̃y, t|˜̃x′, ˜̃y′, 0) = K1(˜̃y, t|˜̃y′, 0)K2(˜̃x, t|˜̃x′, 0). (5.36)
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Transform back to the original representation

Now we have to reverse the two LCTs in order to switch back from (˜̃r, ˜̃p)-coordinates to
the original (r,p)-representation. The integral kernel for the second LCT is derived in
([Kra00]) and reads

K̃ (x̃, ỹ, t|x̃′, ỹ′, 0) =
1

2π�

∫∫
dq2 dw2 exp

(
i
−ỹq2 + ỹ′w2

�

)
×

× ˜̃K

(
1√
2
(x̃ − q2),

1√
2
(x̃ + q2), t| 1√

2
(x̃′ − w2),

1√
2
(x̃′ + w2), 0

)
(5.37)

For the first LCT we get

K (x, y, t|x′, y′, 0) = mωLK̃ (
√

mωLx,
√

mωLy, t|√mωLx′,
√

mωLy′, 0) . (5.38)

Imaginary part of the Green function at the origin

We set (x, y) = (x′, y′) = (0, 0), since we are only interested in the total current. This also
implies (x̃, ỹ) = (x̃′, ỹ′) = (0, 0) and therefore we have

K (0, 0, t|0, 0, 0) =
√

2mωL

∫ ∞

−∞
dw2 K1

(−w2√
2

, t

∣∣∣∣ −w2√
2

, 0

)
K2

(
w2√

2
, t

∣∣∣∣ w2√
2
, 0

)
. (5.39)

We also took advantage of the delta function in K2 which enforces (w2 − q2)
√

2 = 0. The
imaginary part of the energy-dependent Green function is given by

�[G(0, 0; 0, 0; E)] =
1

2π�

1

2i

i

�

√
2√
�
mωL

∫ ∞

−∞
dw2

∫ ∞

−∞
dt ×

×
∞∑

k=0

∣∣∣∣∣uk

(
−w2 −

√
2c√

2�

)∣∣∣∣∣
2

eit[−(2k+1)�ωL+ωLc2+
√

2cωLw2+E]/� (5.40)

The integration over t gives another delta function, since

2π�δ(x) =

∫ ∞

−∞
dt eixt/�. (5.41)

Thus we get rid of the time integration

�[G(0, 0; 0, 0; E)] =
mωL2

√
2π�

4π�
√

��

∫ ∞

−∞
dw2 ×

×
∞∑

k=0

∣∣∣∣∣uk

(
−w2 −

√
2c√

2�

)∣∣∣∣∣
2

δ
[
−(2k + 1)�ωL + ωLc2 +

√
2cωLw2 + E

]
. (5.42)
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Now we can perform the remaining integration over w2

�[G(0, 0; 0, 0; E)] =
mωL

2
√

��

1

cωL

∞∑
k=0

∣∣∣∣uk

(
E − (2k + 1)�ωL + ωLc2 − 2ωLc2

2
√

�ωLc

)∣∣∣∣
2

. (5.43)

Eliminating c in favor of γ yields

�[G(0, 0; 0, 0; E)] = − mωL√
2γ�

∞∑
k=0

∣∣∣∣∣uk

(
E − (2k + 1)�ωL − γ2

2�ωL

−√
2γ

)∣∣∣∣∣
2

. (5.44)

We have obtained the same expression as before by using the generating function method
(equation (5.20)). However, the underlying harmonic oscillator and the transformation of
the conventional energy-eigenfunctions in coordinate-space to functions of the energy are
shown quite clearly. The same transformations may be applied to the operators x(t),p(t).
The Ehrenfest theorem states, that the classical equation of motion gives the same time
evolution as the expectation values of the quantum mechanical operators. However, we
have to be careful in interpreting results in different coordinate frames because they are
related to different Green functions.

5.2 Properties of the two-dimensional density of states

Since Hek(z) has k simple zeroes on the real z-axis (including z = 0 for n odd), each Landau
level is split into k +1 levels. From the normalization of the harmonic oscillator eigenfunc-
tions we immediately obtain the sum rule for each Landau level (see equation (5.20)). The
envelope of each Landau level is given by a Gaussian with half-width γ defined in equa-
tion (5.5). The parameter γ is independent of the electron mass. However, for the same
electric field strength (and therefore γ) higher Landau levels will have a larger effective
width since the exponential term e−E2/(2γ2) is multiplied with a polynomial of degree k.
The spacing of the Landau levels is given by 2�ωL and is independent of the electric field.
For weak electric fields and strong magnetic fields (γ � 2�ωL) almost no overlap between
adjacent Landau levels exists and the energy integrated contribution over a single Landau
level gives the same quantization as the purely magnetic field of equation (5.1). Between
two Landau levels the DOS drops off very fast due to the exponential decay. However,
there is a critical electric field, where the DOS of two Landau levels begin to overlap and
the DOS does not vanish any more between the levels. The decay constant γ depends
linearly on the electric field F⊥ = eE⊥ and is proportional to B−1/2 as a function of the
magnetic field. Sometimes it is useful to normalize the level width to the Landau level
spacing. In this case we get

level width γ

Landau level spacing 2�ωL

=
E⊥m√

2
√

� eB3/2
∝ E⊥B−3/2. (5.45)

Plots of the density of states are shown in Figure 5.1. We will comment on the experimental
evidence for such a dependence on the external fields in Section 5.4.3.
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Figure 5.1: Two-dimensional density of states (DOS) n(E) (in units of eB/(2π�
2ωL))

and integrated DOS N(E) (in units of eB/(2π�)) at four different electric fields E =
2000, 4000, 8000, 12000 V/m and for a magnetic field B = 5 T as a function of the scaled
energy E/(�ωL) according to eq. (5.15). Near the kth Landau level at E = (2k + 1)�ωL,
the DOS renders the probability distribution of a one-dimensional harmonic oscillator in
the kth eigenstate.
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5.2.1 The energy integrated DOS

Another useful quantity is the integrated density of states up to a certain energy E. We
will assign the symbol N(E) to the integrated DOS (or shorter IDOS):

N(E) =

∫ E

−∞
dE ′ n(E ′). (5.46)

We can express the integral analytically with the help of the auxiliary function

Nk(ε) =
1

k!

∫ ε

−∞
dξ e−ξ2/2[Hek(ξ)]

2 (5.47)

=

√
π

2

[
1 + erf

(
ε√
2

)]
−

k−1∑
n=0

1

(n + 1)!
Hen(ε) Hen+1(ε)e

−ε2/2. (5.48)

A proof of this relation is given in Appendix C. Using this function we obtain for the
integrated DOS

N(E) =

∫ E

−∞
dE ′ n(E ′) =

mωL√
2ππ�

∞∑
k=0

Nk[Ek/γ], (5.49)

where Ek = E−γ2/(2�ωL)−(2k+1)�ωL as before. A plot of the integrated DOS N(E) and
the DOS n(E) for fixed magnetic field B = 5 T and four different electric field strengths
is given in Figure 5.1. The broadening of the Landau levels due to the increasing electric
field is clearly displayed. The zeroes of the Hermite polynomials are also prominently
visible. The integrated DOS shows an extended plateau structure connected to the almost
completely vanishing DOS between the Landau levels. At higher electric fields the plateau
width shrinks considerably as expected from the discussion of the electric field dependence
of the DOS.

To investigate the step height due to the Landau level structure further we compute
the integrated DOS for each Landau level independently and split the integration into k
intervals given by the distance between adjacent zeroes ξj (j = 1, . . . , k) of the kth Hermite
polynomial. The first interval extends from ]−∞, ξ1] and the last one from [ξk, +∞[. This
prescription actually yields the probability to find a particle in the kth harmonic oscillator
eigenstate between two nodes of the wave function. For the first Landau level (k = 0) we
obtain, of course, a value of 1 (normalized by eB/h) for the integrated DOS in the interval
from −∞ to +∞: ∫ +∞

−∞
dξ |u0(ξ)|2 = 1. (5.50)

Therefore, no steps in the integrated DOS are present. For the k = 1 oscillator eigenstate
with one zero at ξ1 = 0, due to parity, both areas are equal to 1/2:

∫ 0

−∞
dξ |u1(ξ)|2 =

∫ +∞

0

dξ |u1(ξ)|2 =
1

2
. (5.51)
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The k = 2 level is more involved, since it has two nodes in the wave function at ξ1 = −1/
√

2,
ξ2 = +1/

√
2 and consequently we get three contributions. An analytic evaluation yields

(note: e denotes Euler’s number, not the electron charge e)∫ −1/
√

2

−∞
dξ |u2(ξ)|2 =

1√
2πe

+
1

2
erfc(1/

√
2) = 0.400626 . . . ≈ 2/5, (5.52)

∫ +1/
√

2

−1/
√

2

dξ |u2(ξ)|2 = − 2√
2πe

+ erf(1/
√

2) = 0.198748 . . . ≈ 1/5, (5.53)

∫ +∞

+1/
√

2

dξ |u2(ξ)|2 =

∫ −1/
√

2

−∞
dξ |u2(ξ)|2 = see above. (5.54)

Interestingly, the exact expressions which are represented in terms of error functions and
Euler’s number, are quite well approximated by very simple fractions. Similar consideration
give for k = 3 four contributions with weights 0.349992.., 0.150007.., 0.150007.., 0.349992..,
that can be approximated by the fractions 7/20, 3/20, 3/20, 7/20. The influence of these
fractions can be seen in all figures. We stop here (however, a further evaluation for higher
Landau levels presents no difficulties), since the main structure is already obvious.

5.3 Spin and effective mass

As an example for the application of the density of states we want to study the conductivity
in a two-dimensional electron gas in the presence of a magnetic and a perpendicular electric
field. In order to connect our results to experiments, we have to include the spin of the
electrons. Also we have to take into account that experiments in semiconductors may
require the use of an effective mass m∗ and even an effective magnetic g-factor, denoted
by g∗. We include the spin by considering the density of states for spin up n↑(E) and spin
down n↓(E) separately. The Hamiltonian acquires an additional term ±g∗/2µBB, which
includes the interaction of the spin with the magnetic field. The effective g∗-factor is by
some authors considered to be dependent on B [WTSS92]. However, in our calculations
we will assume a constant g∗. The complete effect of the spin is therefore absorbed in a
shift of the energy

n↑(E) = n(E + g∗/2µBB), (5.55)

n↓(E) = n(E − g∗/2µBB), (5.56)

and the DOS including both spin components reads

n↑↓(E) = n(E + g∗/2µBB) + n(E − g∗/2µBB). (5.57)

The Landau level spacing is also affected by the introduction of an effective mass m∗, since
the (effective) mass enters into the definition of ω∗

L = eB/(2m∗). The integrated DOS
including spin is given (as before) by integrating n↑↓(E) up to the energy E

N↑↓(E) =

∫ E

−∞
dE ′ n↑↓(E ′). (5.58)
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5.4 Conductivity in the quantum Hall regime

A very interesting system is given by a two-dimensional electron gas in the presence of a
strong magnetic field (directed along the z-axis) through which a constant current flows in
the x-direction. Under vacuum conditions the current would be deflected in the y-direction
by the magnetic field. However, in a solid sample an electric field (or voltage) builds up
that is directed perpendicular to the current and the magnetic field. This so-called Hall
field exactly counterbalances the deflection due to the magnetic field. The currents and
the electric fields are related by the conductivity tensor(

jx
jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
. (5.59)

Only two matrix elements are independent, since

σxx = σyy, and σxy = −σyx (5.60)

holds [GP00]. Next, we will set up a simple model for the conductivity, that relies on the
density of states. The density of states and the number of carriers given by the integrated
DOS are already ingredients of the standard Drude model for the conductivity in metals.
For the extension to a two-dimensional system we follow [GP00] page 566. We use an
isotropic one-band model for the conductivity tensor

σ̃(E) =
e2n↑↓(E)τ(E)

m∗
1

1 + (ω∗
cτ(E))2

(
1 −ω∗

cτ(E)
ω∗

cτ(E) 1

)
, (5.61)

with ω∗
c = 2ω∗

L = eB/(m∗). The parameter τ(E) denotes the relaxation time. However, we
still have to integrate this expression over the energy range ] −∞, EF ], where EF denotes
the Fermi energy:

σ(EF ) =

∫ EF

−∞
dE σ̃(E). (5.62)

The conductivity in the perpendicular field direction is given for ω∗
cτ(E) � 1 by

σxy(EF ) =
e

B

∫ EF

−∞
dE

n↑↓(E)

1 + 1/(ω∗
cτ(E))2 =

e

B
N↑↓(EF ), (5.63)

which involves the integrated DOS N↑↓(EF ). The material-dependent parameters m∗ and
τ(E) are not present in the last expression. This situation is completely different in the lon-
gitudinal x-direction. Here, we assume a significant contribution to the electronic conduc-
tivity only from scattering events near the Fermi energy (E ≈ [EF − kBT/2, EF + kBT/2])
and thus obtain

σxx(EF ) =
e

B

∫ EF

−∞
dE n↑↓(E)

ω∗
cτ(E)

1 + (ω∗
cτ(E))2 ≈ kBTn↑↓(EF )

ω∗
cτ(EF )

1 + (ω∗
cτ(EF ))2

e

B
. (5.64)
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The longitudinal conductivity is proportional to the (non-integrated) DOS n↑↓(EF ) and
contains all material-dependent parameters. The (commonly experimentally measured)
resistivity is obtained by inverting the conductivity matrix:

ρxy(EF ) =
σxy(EF )

σxx(EF )2 + σxy(EF )2
, ρxx(EF ) =

σxx(EF )

σxx(EF )2 + σxy(EF )2
. (5.65)

If the longitudinal component σxx vanishes, the simpler relation

ρxy(EF ) =
1

σxy(EF )
if σxx(EF ) = 0 (5.66)

holds. Since the density of states vanishes between Landau levels almost completely for
γ � 2�ωL, the integrated DOS becomes constant in this energy interval and develops
plateaus. From this consideration, it is clear that ρxy is quantized at these plateaus. The
unit of quantization is obtained by taking the case, where the Fermi energy EF lies between
the (k − 1)th and kth Landau level. Not considering the spin degeneracy for the moment,
we have N(EF ) = keB/h, n(EF ) ≈ 0 and therefore

ρxy =
B

eN(EF )
=

h

ke2
, where k ∈ N+ (5.67)

However, note that in all Landau levels besides the first one the DOS also vanishes at
the zeroes of the Hermite-polynomial. Therefore we get additional structures inside the
Landau levels at the values given in Section 5.2.1.

5.4.1 Electric field

In our theory the DOS has an explicit dependency on the electric field strength. Experi-
ments are usually carried out in a constant current mode, where the current jx along the
longitudinal x-direction is kept constant. By inverting the conductivity matrix and setting
jy = 0 (static Hall case), we get

Ex = ρxx(EF , B,Ey) jx (5.68)

Ey = ρyx(EF , B,Ey) jx, (5.69)

for given magnetic field B, current density jx and Fermi energy EF . Since the electric Hall
field is proportional to the Hall resistivity ρxy, we have a varying electric field strength
outside quantized plateaus. The actual value of the Hall field Ey may be extracted from
the implicit representation in the last equation

Ey = ρyx(EF , B,Ey) jx. (5.70)
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Figure 5.2: Quantum Hall effect at strong magnetic fields (B > 1 Tesla) for a non-
interacting two-dimensional electron gas. Hall resistance ρxy and longitudinal resistance
ρxx as a function of the magnetic field B for fixed Fermi energy (EF = 0.868 meV). Effec-
tive mass m∗ = 1, effective g-factor g∗ = 1

2
, current density jx = 0.2 A/m, τ(EF ) = 10−11 s,

T = 0.1 K. The dashed line represents the classical Hall resistance ρxy with a constant level
density. The agreement with experimental results [PTG82] is remarkable.

5.4.2 Prototype calculations of the resistivity

Actual measurements of the Hall resistivity are performed in different materials [PG87].
The original plateaus were seen in Si-MOSFETs [KDP80]. In these materials an applied
gate voltage is used to adjust the Fermi energy (and therefore the number of carriers given
by the integrated DOS). Klitzing obtained measurements of both resistivity components
ρxx, and ρxy, as a function of the gate voltage for fixed magnetic field.

Another commonly used type of device is a GaAs-AlGaAs heterostructure. For this
material measurements are performed at fixed Fermi energy EF but varying magnetic
field. This makes the interpretation of the curves somewhat more difficult, since a varying
magnetic field also implies varying spin shifts and Landau level broadening. A typical plot
is shown in Figure 5.2.

5.4.3 Electric field induced breakdown of the quantum Hall effect

For small γ � �ωL, the overlap between adjacent Landau levels is negligible, since the DOS
drops off exponentially between Landau levels. With increasing electric field, the Landau
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Figure 5.3: Hall resistance ρxy and longitudinal resistance ρxx as a function of the magnetic
field for a fixed Fermi energy. Curves for three different current densities are shown: jx =
(1.4, 14, 28) µA. Effective mass m∗ = 1, effective g = 1.5, τ(E) = 300 · 10−12 s, T = 1.2 K.
These values were chosen to match the experimental results reported in [KHN93].

levels become broader and finally coalesce. The classical turning point in the oscillator in
equation (5.19) ξtp

k =
√

2k + 1 provides a practical measure for the width of the DOS. The
classically allowed region in energy between two Landau levels k − 1, k is then given by
the ratio

half widths of two levels
√

2γ(ξtp
k−1 + ξtp

k )

level spacing 2�ω∗
L

=
m∗
√

e�

(√
2k − 1 +

√
2k + 1

) E⊥
B3/2

. (5.71)

The overall width of the modulated Landau levels increases with k1/2. Note, that the
Landau level spacing is also influenced by the effective g∗-factor that shifts the level centers.
The half width γ is independent of any mass parameter, whereas m∗ enters the definition
of the effective Larmor frequency ω∗

L = eB/(2m∗). Commonly a critical value for the Hall
field is experimentally determined by the condition that the longitudinal resistivity σxx

doesn’t drop any more below a threshold of about 0.1 Ohm [KHN93]. In [SOK98] Shimada
et al. measure a dependence of the critical electric field that is well represented by their
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equation (3)

E⊥,crit =
�ωc/2 − γ0

aelB
, (5.72)

where lB = (�/(eB))1/2 denotes the magnetic length and a is a fit parameter a ≈ 38. This
is exactly the result we expect from equation (5.45) for the condition that the DOS should
not drop below α times its peak value:

E⊥,α =
1√− ln(α/2)

�ω∗
L

elB
. (5.73)

In this derivation we only considered the Gaussian envelope of the DOS and did not
take into account the modification due to the Hermite polynomials, which will affect the
parameter α and also causes a shift due to different effective width of the two adjacent
levels. Calculations including all these effects are, of course, easily possible with the analytic
form of the DOS. In Figure 5.3 we show calculations for the resistivity at different current
densities jx corresponding to different electric field strengths. Note that even and odd
indexed plateaus are affected quite differently by the increasing field. This is due to the
choice of the effective mass m∗ and effective g∗ values. Here we show the breakdown of
the i = 2, 4, 6 levels. Another interesting effect visible in these curves is the emergence of
the sublevels in the Landau levels at higher currents due to the broadening of the regions
around the zeroes of the DOS.
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Chapter 6

Source model for photodetachment
in strong electric and magnetic fields

After having discussed the two-dimensional Green function in the previous chapter we re-
turn now to three dimensions. There, photodetachment experiments with electrons coming
from negative ions are good candidates for the use of the quantum source formalism. Nor-
mally, the source region is reasonably localized in position space (the de Broglie wave-length
of the emitted particle is considerably larger than the source region which is determined
by the size of the electron emitting ion). By shining a laser beam on negative ions, the
surplus electrons get detached with a rate determined by the external fields and the initial
energy given by the laser energy minus the binding energy of the electron. In principle,
a measurement of this rate is directly related to the total current given by the imaginary
part of the energy-dependent Green function. From Sections 4.4 and 4.6 we anticipate a
non-trivial structure in these currents due to the interplay between the magnetic field sin-
gularities of the Landau levels and the smoothing out caused by an electric field (see also
Figure 4.7). Unfortunately a direct experimental observation of these features is obscured
by several effects. In this chapter we show how to address some of these difficulties within
the quantum source approach and we obtain specific predictions for the detachment rate
of negatively charged ions.

The two-dimensional electron system treated in the last chapter is also connected to the
theoretical description underneath the photodetachment process. Features like substruc-
ture inside Landau levels and level broadening due to electric fields are actually observable
in three dimensional systems, too.

6.1 Connection to experiments

A description of photodetachment measurements in magnetic and electric fields is given
in [BJL78, BIL79]. These authors consider the case of applying a purely magnetic field to
a cloud of trapped ions. Sulfur ions are confined in a Penning-type trap, where they move
under the influence of the external magnetic field. A laser beam with known frequency
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and polarization illuminates the ions and leads to photodetachment of the extra electron.
The number of ions before and after the illumination is compared in order to deduce
the detachment rate. Two major complications arise in real-world experiments: First,
a magnetic field influences the energy levels of the ions and atoms due to the Zeeman
splitting. Therefore we have to deal with a superposition of many allowed transitions.
The second effect comes from the finite temperature of the ions. Since the ions move
in a strong magnetic field (B ≈ 1 T), they experience in their rest frame an additional
electric field perpendicular to the velocity vector and the magnetic field. A first theoretical
description combined with a comparison of the theory with experimental data for the case
of an external magnetic field is given in [BIL79]. Here, we present a different method to
obtain similar (theoretical) results for a purely external magnetic field. We also extend
the theory to include additional external electric fields. The influence of additional electric
field is under active study and a first preliminary comparison between experimental data
and the theory below is given in [YKB03].

6.1.1 Total current at zero temperature

Our starting point is the energy-dependent Green function given by the Laplace transform
of equation (4.17). The total current (also referred to as total cross section) of a isotropic
point source of unit strength σ00(r) = 1√

4π
δ(r − r′) at the origin o reads according to

equations (2.40) and (3.40)

J(E) = − 1

2π�
� [G(o,o; E)] . (6.1)

We introduce the following notation for the expression we want to calculate:

J(E) = − 1

2π�
�
[∫ ∞

0

dt f(t, E,F⊥, F‖,B)

]
, (6.2)

where

f(t, E,F⊥, F‖,B) = − mωLe−iπ/4

2π�2 sin(ωLt)

√
m

2π�t
×

× exp

{
i

�

(
Et − F 2

‖
t3

24m
+ F 2

⊥

[
− t

8mω2
L

+
t2

8mωL

cot (ωLt)

])}
. (6.3)

The electric field component parallel to the magnetic field B is labelled F‖ and the per-
pendicular component F⊥.

6.1.2 Thermal motion of the ions

Next, we consider the thermal motion of the ions. We will assume a Boltzmann distribution
of the ions. The normalized thermal distribution of the momentum of the ions P (p) is
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given by

P (p) =
1

(2πMkBT )3/2
exp
(−p2/(2MkBT )

)
, (6.4)

where kB denotes Boltzmann’s constant, and M is the mass of the ion. The detachment
rate is influenced by the electric and magnetic fields that are present in the rest-frame of
the ion. The transformation of the external (laboratory) fields to the rest-frame gives rise
to additional fields, i.e. a purely magnetic laboratory field produces an additional electric
field in the rest-frame[Jac75]. This field is perpendicular to the momentum of the ions and
the magnetic field,

F⊥(p) = F⊥ +
e

M
p × B. (6.5)

The change of the magnetic field is very small in magnitude and therefore neglected. Taking
the thermal average over the Boltzmann distributed ion momenta we get

Javerage(E) = − 1

2π�
�
[∫

d3p P (p)

∫ ∞

0

dt f(t, E,F⊥(p), F‖,B)

]
. (6.6)

6.1.3 Doppler shift of the laser frequency

Another effect of the motion of the ions is the Doppler shift of the laser energy. The
energy parameter in the Green function is the difference between the laser energy �Ω and
the binding energy or electron affinity EA of the extra electron. The Doppler corrected
energy difference �Ω − EA in the rest frame of the ion is given in leading order by

E(p) = �Ω

(
1 − 1

c
v · n̂

)
− EA = [�Ω − EA] − �Ω

Mc
n̂ · p, (6.7)

where n̂ denotes the normalized direction of the laser beam. Thus we obtain a further
dependency on the momentum of the ions f(t, E(p),F⊥(p), F‖,B).

6.1.4 Additional electric ac-field

Recent experiments are conducted in the presence of an additional external electric field
that is slowly time-varying and oriented parallel to the magnetic field [YKB03]. The
detachment-rate measurements extend over many periods of the electric field amplitude
and thus we have to average over all parallel electric strengths F‖(α). Using the explicit
expression F‖(α) = F‖,peak cos(α), we have to integrate over the phase-angle α:

fac(t, E(p),F⊥(p), F‖,peak,B) =
1

2π

∫ 2π

0

dα f(t, E(p),F⊥(p), F‖(α),B)

= J0

{
F 2
‖,peak

t3

48m�

}
exp

{
i

�

(
F 2
‖,peakt

3

48m

)}
f(t, E(p),F⊥(p), F‖,peak,B). (6.8)

Here, J0(x) denotes the Bessel function of the first kind and order 0 as defined by [AS65].
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6.1.5 Evaluation of the remaining integrals

After collecting all effects that are caused by the motion of the ions, we proceed to actually
evaluate the integration over the Boltzmann distributed ion momenta P (p) and obtain a
function independent of p:

g(t, E, F⊥, F‖, B) =

∫
d3p P (p)f(t, E(p),F⊥(p), F‖,B). (6.9)

Alternatively, the case of the time-varying external electric field yields

gac(t, E, F⊥, F‖, B) =

∫
d3pP (p)fac(t, E(p),F⊥(p), F‖,peak,B). (6.10)

The explicit form of g(t, E, F⊥, F‖, B) is given by

g(t, E, F⊥, F‖, B) = −exe−iπ/4 mωL

2π� sin(ωLt)

√
m

2π�t

i�M

i�M − kBTtm(1 − ωLt cot(ωLt))
,

(6.11)
and the exponent x reads

x = −kBn2
zt

2TΩ2

2c2M
+

i

�

(
Et − F 2

‖
t3

24m
− F 2

⊥
t

8mω2
L

(1 − ωLt cot(ωLt))

− kBTt2(4�
2n2

yω
2
LΩ2 + [2�nxωLΩ − cF⊥(1 − ωLt cot(ωLt))]2)

8c2ω2
L(i�M − kBTmt(1 − ωLt cot(ωLt)))

)
. (6.12)

At a temperature of T = 0 the expression for g reduces to the original propagator denoted
by f in equation (6.3). At this stage we have only one remaining integration over the time
variable t

Javerage(E) = − 1

2π�
�
[∫ ∞

0

dt g(t)

]
. (6.13)

The evaluation of this integral is possible by choosing a suitable path of integration. We
can deform the integration path into the complex plane (if we carefully avoid to cross any
singularities) and perform the integration numerically. In Figure 6.1 we show typical results
for different temperatures of the ions. For one curve we used the same parameter set as
in [BIL79], Figure 2. Both curves are in excellent agreement, although they are obtained
by quite different methods. Blumberg et al. uses a sum over Landau levels to represent
the averaged current, whereas we reduced the calculation to a single integration. The not
averaged plots in Figure 4.7 on page 51 show much more details in the substructure of the
Landau levels. In the last chapter we saw that these features are directly related to the
zeroes of the Hermite polynomials. Even after the averaging the division of the first level
due to the zero of the first Hermite polynomial prevails in Figure 6.1. For the second level,
the linear dependence of the location of the zeroes on the field strengths tends to wash out
the substructure originally visible in the not-averaged plot in Figure 4.7.
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Figure 6.1: Thermal averaged curve for the total current as a function of energy. Magnetic
field: B = 1.07 T, ion mass: M = 32 u. Solid line: T = 400 K, dashed line T = 950 K
(see also [BIL79], Figure 2). The substructure and broadening of the Landau levels due to
the perpendicular electric field is visible. However, the features are washed out (compared
to Figure 4.7 on page 51) due to the averaging over a wide range of electric field values.

6.1.6 Zeeman level shifts

Unfortunately it is not possible to measure the (averaged) total current depicted in Fig-
ure 6.1 directly. The remaining major obstacle is the presence of a strong Zeeman splitting
in the energy levels of the ion and atom. Let us examine a specific ionic system. Typical
experiments [BJL78, BIL79, YKB03] are carried out with sulfur ions. An initial state of
the ion commonly chosen in experiments is |J, L, S〉 = |3/2, 1, 1/2〉. The final state (of
the atom) is given by |j, l, s〉 = |2, 1, 1〉 together with the detached electron in the state
|S = 1/2,ms〉. First we give the corresponding Lande factors for the electron, the ion, and
the atom:

gs = 2.002319 . . . , (6.14)

G = 1 + (gs − 1)(J(J + 1) + S(S + 1) − L(L + 1))/(2J(J + 1)), (6.15)

g = 1 + (gs − 1)(j(j + 1) + s(s + 1) − l(l + 1))/(2j(j + 1)). (6.16)

These Lande factors describe the Zeeman shift in the energy levels, which will influence
the energy we have to plug in into the expression for the cross section (M = −J . . . J ,
mj = −j . . . j, ms = ±1/2)

Ezm(M,m,ms) = (MG − mg − msgs)�ωL. (6.17)
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Figure 6.2: Energy levels for the 2P3/2 →3 P2 photodetachment transition in sulfur S− →
S + e− in the presence of an magnetic field B. On the left hand side the ionic Zeeman
levels are sketched. After the detachment, the neutral atom and the electron remain (right
hand side).

In Figure 6.2 we show the level structure in the presence of a magnetic field. The allowed
transitions are restricted by selection rules, that can be expressed in terms of Wigner 6j
and Wigner 3j symbols. Following [BIL79], equation (35), we get the following expression
for the angular momentum weighting factors

α(J, j,M,m,ms) =
J+1∑

J ′=J−1

√
2(2j + 1)(2J + 1)(−1)j+J−1/2(2J ′ + 1)×

× λ(m + ms − M)〈f ||P ||i〉
(

J ′ 1 J
−m − ms m + ms − M M

)
×

×
(

j 1
2

J ′

m ms −m − ms

){
1 1 1
J 1

2
J ′

}{
1 1 j
1
2

J ′ 1
2

}
. (6.18)

The polarization of the laser is characterized by λ(m+ms−M). I.e. λ(0) is the component
of the polarization vector parallel to the magnetic field, λ(±1) are the corresponding left
and right circular polarized components. The total cross section now becomes

JM(E) =

j∑
m=−j

1/2∑
ms=−1/2

|α(J, j,M,m,ms)|2Javerage(E + Ezm(M,m,ms)), (6.19)

where JM denotes the dependence of the total current on the magnetic quantum number
M of the initial ionic state.

6.1.7 Rate calculation

In order to connect the total current or cross section to the number of ions N(tillu) after a
certain time of illumination tillu, we have to sum over all initially populated states:

N(E, tillu) =
J∑

M=−J

NM exp (−JM(E)tillu) , (6.20)
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Figure 6.3: Rate with (dashed line) and without (solid line) applied external electric field
parallel to the magnetic field. B = 1 T, ion mass M = 32 u, T = 900 K, F‖,peak =
1400 eV/m.

where the temperature dependent weighting factor NM is given by

NM =
e−MGkBT∑J

M=−J e−MGkBT
. (6.21)

In the last line we assumed a Boltzmann distribution for the population of the initial
occupied levels.

6.2 Predictions for the photodetachment rate

Figure 6.3 is a typical plot of the resulting current and rate. Depending on the presence
of an additional electric field, the structure of the curves changes slightly. However, due
to the large number of possible transitions the main features seen in Figure 6.1 are not
easily recognized. In newer experiments [YKB03] an additional electric field is applied
parallel to the magnetic field. In Figure 6.3 we show a comparison between the results
with external and without external field. The electric field perpendicular to the motion of
the ions and the external magnetic field is of course always present. Future experiments at
lower temperatures and with a suitable laser polarization in order to minimize the number
of allowed transitions should give a clearer picture of the underlying Green function.
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Chapter 7

Spatially extended quantum sources

Extended sources arise in physical systems in a number of different situations. First of all, a
point source can be viewed as the limit of a spatially extended source. Therefore, all results
given for point sources should be obtained by a suitable limiting process from the results
for extended sources. Considerably extended (up to some µm) quantum sources emerge in
coherent atomic ensembles. Sometimes it is possible to characterize these ensembles by a
macroscopic wave function. A prime example are condensates of dilute Bose gases, where
a single quantum mechanical state is populated by a large number of atoms. Contrary to
point-like sources, the scattering wave ψsc(r) from an extended source σ(r) is no longer
just a multiple of the Green function but is obtained by an additional integration over
coordinate space (see equation (2.33)):

ψsc(r) =

∫
dr′ G(r, r′; E) σ(r′). (7.1)

We already noted that the energy-dependent Green function is known only for very few sys-
tems. Since the treatment of extended sources involves additional integrations, we will have
to fall back to approximation schemes for the calculation of the scattering wave. However,
at least one important reference case can be solved completely analytically. In molecular
physics, considerable interest exists in radiation induced transitions between different elec-
tronic states. The initial state in these models is often described as a harmonic oscillator
eigenstate. The formalism of quantum source theory can be used to calculate transition
amplitudes and is closely related to the so-called Franck-Condon factor [Fra25, Con28]. The
availability of new analytic reference-cases is important in order to establish criteria for
the validity of numerical approximation schemes commonly employed in this field (see also
[Ler90]). Specifically, the so-called reflection approximation plays a dominant role and we
will derive and analyze this method within the energy-dependent Green function approach.
The theory of the photodissociation of molecules like H+

2 , D+
2 , or even H2O relies on the

computation of the corresponding Franck-Condon factors [Her50, Dun68, Hel78, HE99].
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7.1 Gaussian source distribution in a linear force field

We consider a source of isotropic Gaussian shape

σ(r) = γψin(r) = γN0 exp(−r2/(2a2)). (7.2)

The width of the source is specified by a and N0 = a−3/2π−3/4 denotes the proper normal-
ization from the condition ∫

d3r |ψin(r)|2 = 1. (7.3)

The parameter γ takes care of the scattering potential W , which was introduced in equa-
tion (2.31). Here, we assume a constant potential γ. The three dimensional Green function
for the linear force field is given in equation (4.21). The direct evaluation of equation (7.1)
in position space is not easily achieved. Instead we use the integral representation of the
energy-dependent Green function. For a more compact notation we introduce a set of
scaled variables (the scaling parameter β was already defined in equation (4.23))

ξ = βFx ρ = βFr

ν = βFy ε = −2βE

ζ = βFz τ = t/(2�β), (7.4)

together with the scaled width α = βFa. The Green function (see equation (2.16)) becomes

Gfield(ρ,ρ′; ε) = −2iβ(βF )3

∫ ∞

0

dτ

(iπτ)3/2
ei(ρ−ρ′)2/τ+iτ(ζ+ζ′−ε)−iτ3/12, (7.5)

and the scattered wave is given by equation (7.1):

ψsc(ρ) = −2iβγN0

∫ ∞

0

dτ

(iπτ)3/2
eiτ(ζ−ε)−iτ3/12

∫
d3ρ′ ei(ρ−ρ′)2/τ+iτζ′ e−ρ′2/(2α2). (7.6)

Now it is possible to carry out the Gaussian ρ integration. The remaining time integration
has the form

ψsc(r) = −2 iΛ(ε̃)β(βF )3

∫ ∞

−2iα2

du

(i πu)3/2
exp

(
i

u
ρ̃2 + iu(ζ̃ − ε̃) − iu3

12

)
, (7.7)

with the shifted parameters

ζ̃ = ζ + 2α4 ε̃ = ε + 4α4, ρ̃2 = ξ2 + ν2 + ζ̃2, (7.8)

and an energy dependent factor Λ(ε̃) = γ(2
√

πa)
3/2

e2α2(ε̃−4α4/3) . We moved the temporal
integration into the complex plane by substituting u = τ − 2iα2. The representation
chosen in equation (7.7) emphasizes the close relationship of ψsc(r) to the Green function
Gfield(ρ,o; ε) given in equation (7.5). To evaluate the remaining integral analytically, we
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F

Figure 7.1: A Gaussian source distribution in a linear force field emits matter waves, that
can be projected back to a virtual point-source which is vertically upwards shifted against
the direction of the force F.

split the path of integration into two sections, one along the real u-axis, the other one
along the imaginary u-axis: ψsc(r) = ψnear(r) + ψfar(r). The contribution due to

ψnear(r) = −2 iΛ(ε̃)β(βF )3

∫ 0

−2iα2

du

(i πu)3/2
eiρ̃2/u+iu(ζ̃−ε̃)−iu3/12

∼ Λ(ε̃)
2β(βF )3

π3/2

√
2α

ρ̃2
e−ρ̃2/(2α2) (7.9)

is a purely real term which drops off very quickly with increasing distance ρ̃ from the source
region. The more interesting far-field contribution ψfar(r) can be exactly evaluated using
the integral representation from equation (7.5):

ψfar(r) = −2 iΛ(ε̃)β(βF )3

∫ ∞

0

du

(i πu)3/2
eiρ̃2/u+iu(ζ̃−ε̃)−iu3/12

= Λ(ε̃) Gfield(ρ̃,o; ε̃). (7.10)

With the help of equation (4.16) we can cast the last equation into the form

ψfar(r) = γ(2
√

πa)
3/2

e−ma2E/�
2+m2F 2a6/(3�

4) Gfield(r,−mF

2�2
a4; E). (7.11)

This expression displays a remarkable feature of the wave function ψfar(r) originating from
a Gaussian source: The extended Gaussian source can be replaced by a virtual point source
of the same energy at a location shifted by mFa4/(2�

2) from the center of the Gaussian
distribution, carrying the energy dependent weight Λ(ε̃). A sketch of this situation is
shown in Figure 7.1. The virtual point source can be situated well outside the main Gaus-
sian density distribution, since the shift increases very fast (∝ a4) with the source width.
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From equation (7.11), the expression for the currents due to the Gaussian distribution in
equation (7.2) are conveniently found from the analogous expressions for a point source by
just performing the indicated shifts. Neglecting ψnear(r), the far-field current density reads
according to equation (4.24)

jz(ρ, ε̃) = 16
√

πγ2β3F 2/� e4α2(ε̃−4α4/3)×
× α3

ρ̃3

{
ζ̃[Ai′(ε̃ − ζ̃ + ρ̃)]

2
+ β

[
ζ̃(ζ̃ − ε̃) + ρ̃2

]
[Ai(ε̃ − ζ̃ + ρ̃)]

2
}

. (7.12)

The same procedure yields the total current. However, since both ψnear(r) and σ(r) are
purely real and only the imaginary part of ψ(r) is needed for the evaluation of the total
current, the following expression obtained by shifting the energy in equation (4.25) is even
an exact result:

J(ε̃) = 64π3/2γ2α3β/� e4α2(ε̃−4α4/3)
{

[Ai′(ε̃)]2 − ε̃[Ai(ε̃)]2
}

. (7.13)

We can check the result with the help of the sum rule given in equation (2.43). Indeed we
obtain ∫ ∞

−∞
dE J(E) =

2π

�
γ2. (7.14)

In Figure 7.2 we plot the resulting total current J as a function of energy E for different
source widths a. From the validity of the sum rule we know that the area under all
curves is equal. For small source sizes a plateau structure in the current is present and a
asymmetric dependency on the energy is visible. The plateau structure is a typical feature
of the electric field Green function where we linked the plateaus to two path interference
phenomena in the corresponding current density distribution (see also Section 4.3).

7.1.1 Limit of large sources

In the limit of extended Gaussian sources, a simple approximation to this formula is avail-
able that leads to a geometrical interpretation. We start out with a time dependent integral
formulation of the total current that follows from equations (2.38) and (2.6) after the spatial
integrations are performed:

J(ε̃) = 32γ2α3β/� e4α2(ε̃−4α4/3)Im

{∫ ∞

0

i du

(iu)3/2
e−iuε̃−iu3/12

}
. (7.15)

The integral is evaluated in saddle point approximation. Assuming α � ε (note ε =
ε̃ − 4α4), we keep only the leading order terms of a Taylor expansion in the exponent and
prefactor. The resulting current has Gaussian shape:

Jsp(ε) =
2
√

πγ2β

α�
e−ε2/(4α2). (7.16)
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Figure 7.2: Transition from a point-like to an extended source in a linear potential. The
source width is denoted by a. The solid line is the exact result from equation (7.13),
whereas the dashed line shows the reflection approximation (equation (7.17)). For small
source widths the reflection approximation fails to reproduce the quantum mechanical
result. Parameter: F = mRb g, with g = 9.81 m/s2, and mRb = 87 u.
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This expression is equivalent to the implicit representation

Jsp(E) =
2π

�

∫
d3r |σ(r)|2 δ(E + Fz). (7.17)

Evidently, the approximation (7.17) obeys the sum rule (2.43) for the total current J(E).
For extended sources, the energy dependence of Jsp(E) reflects the source structure: By the
resonance condition E + Fz = 0, the total current probes the density |ψin(r)|2 on different
slices across the source. In Figure 7.2 the dashed line denotes this slicing approximation.
Since a similar approximation is sometimes employed in the theory of Franck-Condon
factors, we will use the more common name reflection approximation. A necessary condition
for applying this approximation is

E <
mF 2a4

2�2
, (7.18)

since then the virtual point source depicted in Figure 7.1 acquires a negative virtual energy.
Only tunneling sources lack the interference fringes connected to classically allowed tra-
jectories. In Chapter 8 we will further investigate this behavior and also discuss Gaussian
sources with non-vanishing angular momentum.

7.2 Gaussian sources in parallel fields

Before we present a general derivation of the reflection approximation, we want to consider
one additional example involving a Gaussian source. This time we analyze the Hamiltonian
of a linear force field with an additional quadratic potential in the direction perpendicular
to the linear field:

HF‖B =
p2

2m
+

1

2
mω2

L(x2 + y2) − Fz. (7.19)

Since all spatial coordinates are separable, we can construct the time evolution operator by
multiplication of the one- and two-dimensional contributions (see Example 3 on page 19):

KF‖B(x, y, z; 0|x′, y′, z′; t) = e−3/4iπ mωL

2π� sin(ωLt)

√
m

2π�t
×

× exp

(
imω

2�

(x2 + x′2 + y2 + y′2) cos(ωt) − 2(xx′ + yy′)
sin(ωt)

)
×

× exp

(
im

2�t
(z − z′)2

+
iFt

2�
(z + z′) − iF 2t3

24m�

)
(7.20)

Switching to more convenient units given by equation (7.8) and by

ω̃ = 2�βωL, (7.21)
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we obtain the total current from equation (2.38)

J00(E) =
−4β

�π3α3
�
[∫

d3ρ e−ρ2/(2α2)

∫
d3ρ′ e−ρ′2/(2α2)

∫ ∞

0

dτ
ω̃√

iτ sin(ω̃τ)
×

× exp
(
iω̃[(ξ − ξ′)2

+ (ν − ν ′)2
] cot(ω̃τ) + 2iω̃[ξν ′ − ξ′ν]

)
×

× exp

(
+

i

τ
(ζ − ζ ′)2

+ iτ [ζ + ζ ′ − ε] − iτ 3

12

)]
, (7.22)

Since all coordinate space integrals are of Gaussian type, we can evaluate the integral and
only the time-dependent integration remains

J00(E) = �
[∫ ∞

0

dτ
32iα3βω̃e−iτε−α2τ2−iτ3/12

�
√

iτ + 4α2(4α2ω̃ cos(ω̃τ) + i(1 + 4α4ω̃2) sin(ω̃τ))

]
. (7.23)

For the special case a2 = �/(mωL) (or 2ω̃ = 1/α2 in scaled units) we get the simpler
expression

J00(E) = e2−16α6/3+4α2 ε̃ �
[∫ ∞

0

du
8iαβe−iu(ε̃+1/(2α2))−iu3/12

�
√

iu

]

=
16π3/2αβ

�
exp

(
2 − 16α6

3
+ 4α2ε̃

)(
Ai

[
ε̃ +

1

2α2

])2

.

(7.24)

Here, we used the shifted quantities from equation (7.8) and introduced u = τ − 4iα2. The
last equation contains essentially the one-dimensional propagator of the linear force field,
which is available analytically. This simplification is to be expected since a source of the
form

σ(r) =
(mωL

π�

)1/2

exp

(
−mωL(x2 + y2)

2�

)
(7.25)

is an eigenstate of the Hamiltonian under consideration. In Figure 7.3 we plot the total
current as a function of the energy for different widths a of the source. For larger sources
the energy-dependence of the total current shows a strong asymmetry, whereas for smaller
source sizes a oscillatory structure emerges. Also the Landau-level structure becomes
visible in the first two panels at energies 2�ωL ≈ 8. The corresponding point-source
current is depicted in Figure 4.1 on page 41. In Section 7.3.1 we will derive the reflection
approximation for the same problem and compare it with the exact results.

7.3 General source distribution

In the previous sections we considered the specific case of a Gaussian source function.
However, the reflection approximation is not limited to Gaussian distributions and we will
now derive a justification for the approximation involving a general source term. In the
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Figure 7.3: Transition from a point-like to an extended source in a quadratic potential.
The source width is denoted by a. The solid line is the exact result from equation (7.23),
whereas the dashed line shows the reflection approximation (equation (7.40)). For small
source widths the reflection approximation fails to reproduce the quantum mechanical
result. Parameter: ω̃ = 1, F = mRb g, with g = 9.81 m/s2, and mRb = 87 u.
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linear force field the total current due to a source σ(r) is determined by inserting the field
Green function in equation (2.42):

J(E) =
1

�2

∫
R7

d3r d3r′ dt
( m

2πi�t

)3/2

eiEt/�e
i
�
[m
2t
|r−r′|2+ Ft

2
(z+z′)−F2t3

24m
]σ(r)∗ σ(r′). (7.26)

After introducing relative coordinates by the coordinate transformation

(x, y, z) = (u + u′, v + v′, w + w′) (u, v, w) = s (7.27)

(x′, y′, z′) = (u − u′, v − v′, w − w′) (u′, v′, w′) = s′, (7.28)

this becomes

J(E) =
8

�2

∫
R7

ds ds′ dt
( m

2πi�t

)3/2

ei(E+iη+Fw)t/�+i 2m
�t

|s′|2− i
24m�

F 2t3σ(s+s′)∗ σ(s−s′). (7.29)

Up to now this is an exact result. Now we will make the first approximation. We use a
Taylor expansion for the product of the shifted source terms σ(s+s′)∗ σ(s−s′) and consider
here only the first order term. Integrating over s′ yields∫

d3s′ exp(−γs′2)f(s + s′)f ∗(s − s′) ≈ |f(s)|2
∫

d3s′ exp(−γs′2) = |f(s)|2π3/2γ−3/2,

(7.30)
where γ = −2im/(�t). We discuss higher order terms in Appendix D, but may already
comment that this so-called peak approximation only works for extended sources, where
the overlap between σ(s + s′)∗ and σ(s − s′) is significant in a large region determined
by the imaginary part of t. With these drastic omissions we get a considerably simplified
equation for the total current

J(E) =
1

�2

∫
R4

ds dt ei(E+Fw)t/�e−
i

24m�
F 2t3 |σ(s)|2. (7.31)

Next we introduce the scaled variable τ = t/(2�β), carry out the integration over τ using
equation (B.11)

J(E) =
2β

�

∫
R4

ds dτ e2iτβ(E+Fw)−iτ3/12|σ(s)|2 (7.32)

= −4βπ

�

∫
R3

ds Ai [−2β(E + Fw)] |σ(s)|2, (7.33)

and consider the semiclassical limit � → 0 (or β → ∞):

J(E) =
2π

�

∫
R3

ds |σ(s)|2 lim
β→∞

{−2β Ai [−2β(E + Fw)]} =
2π

�

∫
R3

ds |σ(s)|2δ(E + Fw).

(7.34)
In the last line we use a known representation of the δ-function in terms of the Airy
function:

δ(x) = lim
ε→0

1

ε
Ai
(x

ε

)
. (7.35)



86 CHAPTER 7. SPATIALLY EXTENDED QUANTUM SOURCES

Equation (7.34) is exactly the desired reflection approximation. The limited validity of
the expression is obvious, since the derivation required two significant simplifications. The
replacement of the Airy function by a δ function is also dubbed δ-function approximation
(see references in [Her50, Dun68]). Although higher order terms from the Taylor expansion
of the source terms are in principle available, the convergence of the expansion can not be
taken for granted. So-called quantum corrections to the (not even) semiclassical reflection
approximation are also considered by Gislason [Gis73], and by Heller in a Wigner phase-
space approach to the problem [Hel78].

7.3.1 Reflection approximation in parallel fields

We already used the reflection approximation for the case of a Gaussian source in a linear
force field. As a second example consider the additional quadratic potential given in
equation (7.19). The three-dimensional Gaussian source is, of course, just the product of
three one-dimensional Gaussian distributions

σ3D(r) =
3∏

i=1

σ1D(xi), (7.36)

where
|σ1D(xi)|2 = a−1π−1/2e−x2

i /a2

. (7.37)

Applying the reflection approximation we obtain

J(E) =
2π

�

∫∫
dx dy|σ1D(x)|2|σ1D(y)|2

∫
dz |σ1D(z)|2δ

(
1

2
mω2

L(x2 + y2) − Fz − E

)
.

(7.38)
Introducing cylindrical coordinates with x = ω̃2(ξ2 + ν2) yields

J(ε) =
2
√

πβ

�α3ω̃2
exp(−ε2/(4α2))

∫ ∞

0

dx exp

(
− x2

4α2
− x

2ε − 4/ω̃2

4α2

)
. (7.39)

Therefore, the total current becomes

J(ε) =
2πβ

�α2ω̃2
exp

(
1 + εω̃2

α2ω̃4

)
erfc

(
2 + εω̃2

2αω̃2

)
. (7.40)

In Figure 7.3 we compare this result with the exact solution given in equation (7.24).
Again, the source width is the important parameter that determines the applicability of the
reflection approximation. Interference phenomena that lead to the pronounced oscillation
in the current for small sources are absent in the simple reflection approximation.

7.4 The Franck-Condon principle

The total scattering current from an extended source is closely connected to the Franck-
Condon principle. Franck was considering transitions between different molecular states.
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Figure 7.4: One-dimensional model for the evaluation of the Franck-Condon factor. Left
panel: The strong harmonic potential sustains a narrow ground state wave-function that
probes the outgoing wave function. The total current shows strong oscillations. Right
panel: For a large source the oscillating structure of the outgoing wave is washed out. The
total current reflects the source-structure and attains a Gaussian shape. In both cases the
total current is obtained from equation (7.49).

To calculate the total cross section of absorption processes in molecular transitions Franck
postulated the following empirical rule [Fra25]: The electron jump in a molecule takes
place so rapidly in comparison to the vibrational motion that immediately afterwards the
nuclei still have very nearly the same relative positions and velocities as before the jump.
We will use the following wave-mechanical formulation of the Franck-Condon principle,
due to Condon [Con28]: The total absorption cross section is proportional to the square
of the matrix element of the interaction W (r) between the initial state and the final state
[Her50]:

σtot(E) ∝ |〈ψfi(E)|W |ψin〉|2. (7.41)

In the quantum source approach equation (3.25) gives the following symbolic form of the
total current

J(E) =
2π

�

∑
fi

δ(E − Efi)|〈ψfi(E)|W |ψin〉|2, (7.42)

which is also considered by Heller [Hel78].

7.4.1 Application to continuum transitions

The Franck-Condon formula (7.41) involves the overlap integral between initial and final
states. In the Green function approach we avoid the explicit calculation of the final state
wave function, since all information about this state is already encoded in the Green
function. To see how both methods are connected, we consider the example of a transition
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from a bound state in a harmonic potential to a continuum state in a linear force field.
The Hamiltonian of the initial state is given by the harmonic oscillator potential

Hin =
p2

2m
+

1

2
mω2x2. (7.43)

Thus, the ground state wave function

ψin =
(mω

π�

)1/4

exp(−x2/(2a2)) (7.44)

is a Gaussian distribution with half width

a =

√
�

mω
. (7.45)

In the lower part of Figure 7.4 we plot the ground state wave function and the quadratic
potential. For the final state we use the Hamiltonian

Hfi =
p2

2m
− Fx + Eoffset. (7.46)

The upper part of Figure 7.4 shows the potential and the imaginary part of the continuum
wave function given by

ψout(x) =

∫
dx′ Gfield(x, x′; E) σ(x′)

= 2i
√

2�π−1/4
√

Fαβ3e−8α6/3+2α2 ε̃

∫ ∞

0

du
1√
iu

eiu(ζ̃−ε̃)+iζ̃2/u−iu3/12

= 4
√

2�π5/4
√

Fαβ3e−8α6/3+2α2 ε̃ Q0(ζ̃ , ζ̃ , ε̃), (7.47)

where Q0 is stated in equation (B.1)

Q0(ρ, ζ, ε) = Ai(ε − ζ + ρ) Ci(ε − ζ − ρ), (7.48)

and the scaled parameters are defined in equation (7.8). According to equation (3.23) the
total current is the imaginary part of the overlap integral between ψin and ψout:

σtot(E) ∝ J(E) = −2

�
� [〈ψin|ψout〉] (7.49)

In Figure 7.4 the cross section is plotted in the upper left corner of each panel. We
depict the situation for two different harmonic oscillator frequencies. For a weak harmonic
potential (corresponding to a small frequency ω), the Gaussian source wave function ψin

becomes broad and the overlap integral is largely determined by the overlap of the first
oscillation period of the continuum wave function with the Gaussian ground-state. This
interpretation is consistent with the reflection approximation:

J(E) = −2

�

∫
dx δ(E + Fx)|ψin(x)|2. (7.50)
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However, for a stronger oscillator potential (corresponding to a higher frequency w) the
situation changes completely. Now, the more peaked Gaussian ground state probes the
continuum wave function at different energies. Therefore, we get an oscillatory structure
with zeroes for some energies.

In [HE98], Section III.A, the authors discuss this example in terms of the Franck-
Condon theory (equation (7.41)). One main difference is that the Franck-Condon expres-
sion involves the absolute value squared of the overlap between the initial wave function ψin

and the final state wave function ψfi. It is important to recall that the final wave function
is not identical to the scattering wave function ψout. However, both methods yield identical
results for the total cross section, as shown in Section 3.2. One major draw-back of the
final state formalism is that the current density (related to the scattering wave function)
is not available.

The evaluation of overlap integrals is a non-trivial task, since it involves in general
more than one integration (depending on the number of dimensions involved). In the
time-dependent propagator picture the crucial “spatial” integrations can sometimes be
performed analytically, thus only one integration (the Laplace transform over t to get the
energy-dependent result) remains. Lermé [Ler90] lists some analytic expressions for Franck-
Condon factors of bound-continuum transitions in one and two-dimensional systems. These
factors are obtained from overlap integrals and are compared to numerical calculations and
approximation schemes.
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Chapter 8

Matter waves in the gravitational
field: The “atom laser”

The last chapter is concerned with the emission of matter waves from an extended coherent
atom source. A Bose-Einstein condensate (BEC) is a possible realization of this type of
quantum source. The controlled and coherent release of atoms from such a condensate
is called atom-laser. We will set up and discuss a completely analytical model for the
description of the efficiency of such an atom laser and also for the density distribution
in the resulting atom beam. Especially for strongly confined Bose-Einstein condensates
(realized in so-called microtraps) the appearance of strong interference phenomena in the
atomic beam is predicted. In the second part of this chapter we consider rotating quantum
sources. A BEC under rotation develops an interesting phase and density structure due to
the formation of quantized flux vortices. In the quantum-source approach these vortices
are modeled as a superposition of multipole sources carrying high angular momenta. The
combination of spatially extended sources with multipole sources leads to interesting effects
upon the beam profile of the atom laser. One major advantage of the quantum source
theory is the complete inclusion of the gravitational field. Previous theories of the atom
laser either neglect gravity completely [BJT99, BS00] or use one-dimensional models that
are not easily extended to three dimensions [SS99, SS00]. A first numerical calculation of
the output rate of an atom laser in three dimension including gravity is given in [GBA01].

8.1 Bose-Einstein condensation

For a review on the physics and the historical development of Bose-Einstein condensation
in dilute gases we refer the reader to the available literature [DGPS99, PS02]. Here, we
are mainly interested in the form of the ground state of the BEC, since this determines
the analytic model for the source wave function σ(r). To be more specific, let us consider
a trapped gas of cold Rubidium atoms. With coils around the cloud of atoms a magnetic
field is generated that couples to the hyperfine levels of the nuclear spin of the Rubidium
atoms. By using a suitable configuration of coils a local potential minimum is produced at

91
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some point inside the trap. Around this local minimum, we can expand the potential due
to the magnetic and gravitational forces quadratically. Since the cooled atoms are bosons
(the sum of the nuclear spin and the orbital spin is an integer), the thermodynamical
occupation number of the ground state of the trapping potential becomes very large for
small temperatures, as already predicted (without using quantum mechanics) by Bose and
Einstein. In the case of non-interacting particles, we can rewrite the many-particle ground
state as a product wave function of single-particle states. The single-particle ground states
in a harmonic trapping potential are Gaussian wave functions with a width determined
solely by the strength of the trapping potential. The observed widths of condensates are
considerably larger than the width expected for a non-interacting gas. Due to van der Waals
forces, an effective repulsive interaction enlarges the condensate. One way to treat these
interactions analytically is the so-called Gross-Pitaevskii equation (see [FW71, DGPS99]
for a derivation and discussion)

[
−�

2∇2

2m
+ Vtrap(r) + gsc|ψ(r)|2

]
ψ(r) = µψ(r), (8.1)

where gsc comes from a simple ansatz for the two-body potential

Vinteraction(r − r′) = gsc δ(r − r′). (8.2)

The scattering length asc provides another way to express the coupling strength gsc =
4π�

2asc/m. For large condensates, a further simplification of the Gross-Pitaevskii equation
is frequently used, the so-called Thomas-Fermi approximation:

|ψ(r)|2 = g−1
sc (µ − Vtrap(r)) Θ (µ − Vtrap(r)) . (8.3)

This rather drastic simplification is obtained by neglecting the kinetic energy term in the
Gross-Pitaevskii equation. The numerical solution of the Gross-Pitaevskii equation is in
principle possible, but requires some computational effort. A feasible alternative is the use
of variational methods to get approximate values for the ground-state energy and density
distribution [EB95, EDC+96, PGMC+97]. The simplest choice of a trial wave function is
again a Gaussian function, however this time we consider the width to be a variational
parameter. By minimizing the energy functional of the Gross-Pitaevskii equation, we
obtain the best approximation to the real ground state in terms of a single Gaussian wave
function. In Figure 8.1 we compare three different approaches to obtain the ground state of
a harmonically trapped BEC. Note, that we choose a strongly confined BEC with trapping
frequency ω = 2π3000/

√
2 Hz and N = 100 atoms. Contrary to the Thomas-Fermi limit, a

Gaussian profile is a good approximation to the numerical solution of the Gross-Pitaevskii
equation. Therefore, we will use Gaussian wave functions for the description of strongly
confined BECs. For larger condensates the Thomas-Fermi wave function may be a more
appropriate choice.



8.2. RADIO OUTPUT COUPLING FROM A BEC 93

5·109

1·10
10

1.5·1010

2·10
10

2.5·1010

3·10
10

0.60.2 0.4 0.8

Gauss

Thomas−Fermi

Gross−Pitaevskii

������� �����	
� ���


��������� ��
����


Figure 8.1: Plot of the 87Rb BEC ground state with N = 100 atoms in a strong trapping
potential (ωx = ωy = ωz = 2π 3000√

2
Hz). The numerical solution of the Gross-Pitaevskii

equation is compared with the Thomas-Fermi approximation and the variational ground
state using a Gaussian trial function. The Gaussian wave function provides a good ap-
proximation of the Gross-Pitaevskii solution.

8.2 Radio output coupling from a BEC

After the discussion of the trapping potential and the ground state of a BEC, we consider
the controlled release of atoms from the trap. Many experiments with BECs study the
condensate by simply switching off the trapping potential. The BEC drops down and
expands due to the inter-atomic repulsion and the dispersion of the wave-packet. This ex-
pansion (typical by a factor of forty) makes the initial rather small (≈ 10 µm) condensates
easier visible and allows to detect the presence of the condensed state due to the different
expansion rate compared to that of a thermal cloud. Of course, the condensate is lost af-
terwards and a new one has to be created. On the long run a more stable condensate (for
example by refilling the BEC) is desirable to study effects on longer time scales. One way
to monitor the BEC without switching off the trap is the use of a very weak perturbation
in order to coherently out-couple a small fraction of condensate atoms. A first pulsed atom
laser (driven by a rather strong perturbation using a magnetic field amplitude of about
0.5 Gauss) was realized in the group of Ketterle [MAK+97]. Shortly afterwards the quasi-
continuous release of atoms was achieved by using a much weaker perturbation (about
1 mGauss magnetic field amplitude) [BHE99]. In both setups an oscillating magnetic field
is applied to the magnetically trapped atoms. This field induces Rabi-type oscillations
between the different magnetic hyperfine levels of the trapped atoms (i.e. m = +1, 0,−1).
Clearly, a state with a magnetic quantum number of m = 0 is not trapped any more and
can therefore leave the trap region. This non-trapped state enters the gravitational field
of the earth which determines the evolution of the out-coupled atom wave function. The
out-coupled atoms still form a coherent ensemble of atoms.
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8.3 Transition from a BEC state to the gravitational

field

We use a simple two state model to study the properties of the released atoms. One state
is a bound state of the Hamiltonian Htrap, the second state is a scattering state of the
Hamiltonian Hcont containing an external potential. Both states have an energy difference
of ∆E = Econt−Etrap and are weakly coupled by a homogeneous but oscillating interaction
potential of strength �Ω:

(i�∂t − Hcont)ψcont(r, t) = �Ωe−i∆Et/�ψtrap(r, t), (8.4)

(i�∂t − Htrap)ψtrap(r, t) = �Ωe+i∆Et/�ψcont(r, t). (8.5)

We split off the time dependence of the states

ψcont(r, t) = e−iEcontt/�ψcont(r), (8.6)

ψtrap(r, t) = e−iEtrapt/�ψtrap(r), (8.7)

to obtain the stationary equations

(Econt − Hcont)ψcont(r) = �Ωψtrap(r), (8.8)

(Etrap − Htrap)ψtrap(r) = �Ωψcont(r). (8.9)

Upon introducing the energy-dependent Green function Gcont(r, r
′; E) for Hcont

(E − Hcont)Gcont(r, r
′; E) = δ(r − r′), (8.10)

the formal solution of equation (8.8) is given by

ψcont(r) = �Ω

∫
d3r′ Gcont(r, r

′; Econt) ψtrap(r
′). (8.11)

A similar equation holds for ψtrap(r). However, if we assume only a weak interaction in
the sense that ψtrap(r) is not changed appreciably by the interaction, we may as a first
approximation replace ψtrap(r) in equation (8.11) by the bound eigenstate ψ0(r) of Htrap,
which is defined by

(E0 − Htrap)ψ0(r) = 0. (8.12)

In this way we have decoupled both equations and we obtain a new Schrödinger equation
with an inhomogeneous source term σ(r) = �Ωψ0(r)

(Econt − Hcont)ψcont(r) = σ(r). (8.13)

The state ψ0(r) is the BEC ground-state wave function, that is described above. Employing
a Gaussian wave function in the following form

σ(r) =
√

N �Ω a−3/2π−3/4 exp(−r2/(2a2)) , (8.14)

enables us to use the analytic results for the Green function of the linear force field with an
extended source from Chapter 7. Here, �Ω denotes the strength of the interaction potential
and N the number of condensate atoms.
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8.4 Energy range for the operation of an atom laser

First, we investigate the total current generated by the out-coupling process. From equa-
tion (7.13) we expect a strong energy dependence of the current. The energy parameter is
given by the difference of the applied radio frequency hν and the condensate energy E0:

E = hν − E0 ≡ h∆ν (8.15)

If E < mF 2a4/(2�
2) holds, the reflection approximation may be used to further simplify

the calculations. Experimental data concerning the number of remaining condensate atoms
N(T ) after T = 20 ms of atom laser operation is available [GBA01]. Obviously, this number
is related to the current via

N(T ) = N(0) exp[−J(E)T ], (8.16)

where N(0) denotes the initial number of atoms in the BEC and J(E) the total current.
Besides the gravitational force, the relevant parameters entering the theoretical prediction
for J(E) in equation (7.13) are the coupling strength �Ω and the Gaussian width a of the
condensate. In Figure 8.2, the calculated number of remaining atoms is compared to the
experimental measurement by Bloch et al. reported in [GBA01]. The coupling frequency
Ω used for the calculation is fixed by the sum rule (2.43) applied to the experimental data,
and the effective width a = 2.8 µm (that is actually largely governed by atomic repulsion
in the BEC) is obtained from a fit. Contrary to the case of photodetachment, the current
characteristics faithfully reproduces the Gaussian shape of the source, as stated by the
reflection approximation obtained by slicing the condensate at height z = E/F (7.17).
However, according to the exact expression for J(E) in equation (7.13), source theory
predicts a dramatic change in behavior of the total current for smaller condensate sizes as
illustrated before in Figure 7.2 on page 81. The corresponding beam profiles are shown in
Figure 8.3. We chose as initial energy E = h∆ν with ∆ν = 2.5 kHz. The distance from
the source is varied from zmin = 0.2 mm to zmax = 1.2 mm. In the figure, a distinct ring
pattern in the current density prevails for a ≤ 0.4 µm. The number of fringes diminishes
with increasing source width, until for a ≥ 0.8 µm the current profile attains an increasingly
narrow Gaussian shape. To interpret this behavior, we first note that for an extended source
region, the simple concept of two interfering paths originating from a single point in space
is not readily applicable. Recalling the particular property of a Gaussian source to act as
a virtual point source shifted in space (7.11), we may recover the concept of interfering
paths. However, the effective initial kinetic energy decreases with growing source size (7.8)
and becomes negative for E < mF 2a4/(2�

2), leading to a “virtual” tunneling source that
emits a beam of Gaussian profile.

The required condensate width is in principle obtainable with present-day microtraps
[OFS+01, RHH99]. However the operation of these traps remains challenging. Future
experiments in next generation microtraps should be able to collect data in the interesting
regime that is governed by quantum interferences. One possible application of an atom
laser is the formation of a tailored beam wave function by using a superposition of different
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Figure 8.2: Number of atoms remaining in a Bose-Einstein condensate N(T ) after contin-
uous release of atoms for T = 20 ms as a function of the detuning frequency ∆ν. Circles:
Measurement by Bloch et al. reported in [GBA01]. Solid line: Theoretical prediction ac-
cording to equations (7.13) and (8.16) with effective Gaussian condensate width a = 2.8 µm
and outcoupling strength Ω = 2π · 105.585 Hz.

radio frequencies. Also interference effects between condensates in two narrowly separated
traps can be studied, since the beams from the adjacent traps will overlap at some distance
from the condensate and form additional interference pattern.

8.5 Vortices and atom lasers

As mentioned in the introduction of this chapter, another indication of the quantum nature
of BECs is the occurrence of superfluidity and the formation of quantized flux vortices.
These states naturally arise in a rotating condensate or may be imprinted on a condensate
by optical techniques [DGL+99]. For simplicity, we assume that the rotating BEC quantum
fluid is in its thermodynamical ground state, where it exhibits a set of vortices (at least,
one) symmetrically arranged in an extended lattice structure [ASRVK01, ECHC02].

8.5.1 Ideal atom laser from a single vortex

Here, we examine the atom laser beam arising in the presence of a single vortex with
fixed direction in a non-interacting boson gas in an isotropic trap. The wave function
of the rotating condensate is then given by the first excited radial harmonic oscillator
state [FS01] and drops to zero along the vortex line. (In practice, the vortex line is not
stationary, but may precess slowly in time [HACC01].) For simplicity, we will first align
the vortex to the direction of the gravitational force along the z-axis. This enforces the
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Figure 8.3: Transition from a strongly confined condensate to a more extended source
distribution. There is rotational symmetry about the vertical axis. The source width is
denoted by a. Interference fringes are clearly seen for a ≤ 0.4 µm. Parameter: ∆ν =
E/(2π�) = 2.5 kHz, F = mRb g, with g = 9.81 m/s2, and mRb = 87 u.

oscillator eigenstate with angular momentum l = m = 1 as source wave function σ11(r).
In analogy to the multipole source formalism presented in Section 3.4, application of the
corresponding spherical tensor gradient K11(∇) given in equation (3.38) to the vortex-free
BEC ground state in equation (8.14) yields the corresponding vortex source-function

σ11(r) = N1 K11(∇)σ(r) =

√
N �Ω

a5/2π3/4
(x + iy)e−r2/2a2

, (8.17)

where N1 = a
√

8π/3. In general, we define Gaussian multipole sources σlm(r) analogous
to equation (3.40) via

σlm(r) = Nl Klm(∇) σ(r), (8.18)
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where the constant N2
l = 2π3/2a2l/Γ(l + 3/2) is obtained from the normalization condition∫

dr |σlm(r)|2 = N(�Ω)2. (8.19)

The multipole source functions obtained in this way are the lowest-lying oscillator eigen-
states of (l,m) spherical symmetry and with energy E = (l + 3/2)�2/Ma2. From equa-
tion (2.33) we evaluate the wave function ψlm(r) of the corresponding out-coupled state

ψlm(r) = (−1)lNl

∫
d3r′ σ(r′) Klm(∇′) G(r, r′; E). (8.20)

Here, we integrated by parts to shift the spherical tensor operator to the Green function.
Furthermore, the following substitution rule allows us to replace derivatives of Gfield(r, r

′; E)
with respect to the source location r′ by derivatives with respect to r and the energy E.
One easily verifies that indeed(

∂

∂ξ′
,

∂

∂υ′ ,
∂

∂ζ ′

)
Gfield(ρ,ρ′; ε) = −

(
∂

∂ξ
,

∂

∂υ
,

∂

∂ζ
+ 2

∂

∂ε

)
Gfield(ρ,ρ′; ε). (8.21)

Using this knowledge we obtain the multipole beam wave function in terms of deriva-
tives of the known atom laser wave function for zero angular momentum ψ(r) given in
equation (7.11)

ψlm(r) = Nl Klm [∂x, ∂y, ∂z − F∂E] ψ(r). (8.22)

For multipole sources a more compact notation employs the special functions Qk, defined
in Appendix B. The atomic beam function for l = 0,m = 0 in terms of the Qk function
reads

ψ(r) = −4β(βF )3Λ(ε̃) Q1(ρ̃, ζ̃; ε̃), (8.23)

where
Λ(ε̃) =

√
N�Ω(2

√
πa)

3/2
e2α2(ε̃−4α4/3). (8.24)

With the help of the differentiation rules given in equations (B.3) and (B.4), the derivatives
originating from the spherical tensor operator Klm can be expressed as a sum over Qk-terms
of higher order k. For a single vortex, it suffices to consider the sources σ1m(r) with l = 1,
and m = 0,±1:

ψ10(ρ) = 4
√

2 β(βF )3αΛ(ε̃)
[
2ζ̃ Q2(ρ̃, ζ̃; ε̃) − 4α2 Q1(ρ̃, ζ̃; ε̃) + Q0(ρ̃, ζ̃; ε̃)

]
, (8.25)

ψ1±1(ρ) = ∓8β(βF )3αΛ(ε̃)
(
ξ̃ ± iυ̃

)
Q2(ρ̃, ζ̃; ε̃). (8.26)

Note that ψ1±1 vanishes on the z–axis: For a parallel orientation of the vortex line and the
gravitational force, the empty vortex core is preserved in the atom laser profile. In analogy
to Section 8.4, we calculate the overall out-coupling rate as a function of the radiation
frequency detuning (E = h∆ν). According to equation (3.53), the total multipole current
is available from

Jlm(E) = −2

�
� [〈σlm|G|σlm〉] . (8.27)
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Like the point source currents (to which they reduce as α → 0), the Gaussian multipole
currents are expressed using the auxiliary functions Qik(ε̃) covered in Appendix B. Within
the l = 1 triplet, the expressions for the total currents explicitly read

J10(ε̃) =
32

�
β(βF )3α2Λ(ε̃)2[Qi2(ε̃)+ 8α4 Qi1(ε̃) − 4α2 Qi0(ε̃) +

1

2
Qi−1(ε̃)], (8.28)

J1±1(ε̃) =
32

�
β(βF )3α2Λ(ε̃)2 Qi2(ε̃). (8.29)

Thanks to the preserved rotational symmetry of the system, all total current matrix ele-
ments Jlm,l′m′(ε̃) with m �= m′ vanish, as indicated in Section 3.4.1. If ε̃ is large, i. e., for
extended condensates with α � 1, we may replace the functions Qik(ε̃) by their asymptotic
series. Further expanding the currents around their maximum near ε = 0, we obtain their
large-source approximations:

J10(ε̃) ∼ N
√

π β�Ω2 ε2

α3
e−ε2/4α2

, (8.30)

J1±1(ε̃) ∼ 2N
√

π �Ω2 β

α
e−ε2/4α2

. (8.31)

As expected from the earlier results for a simple Gaussian source, these currents can be
interpreted as the integrated condensate density along a slice through the BEC at a height
z fixed by the “resonance condition” E + Fz = 0:

Jlm(E) ∼ 2π

�

∫
d3r |σlm(r)|2 δ(E + Fz) . (8.32)

For illustration, we consider two orientations of the vortex with respect to the gravitational
force F. A vortex parallel to the field is simply represented by the Gaussian condensate
wave function σ11(r) given in equation (8.17). The beam wave function and the total cur-
rent are stated in equations (8.26) and (8.29), respectively. A different expression arises
for the case of a vortex along the x–axis, i. e., perpendicular to F. The correspond-
ing BEC source function σ1⊥(r) is connected to the parallel vortex model by a rotation
exp(−iπL̂y/2). Application of the l = 1 rotation matrix for angular momentum eigenstates
[Edm57] yields the following source term

σ1⊥(r) =
1

2

[
σ11(r) +

√
2 σ10(r) + σ1,−1(r)

]
, (8.33)

with a corresponding superposition of equations (8.25) and (8.26) as beam wave function
ψ1⊥(r). Also, the associated total current becomes

J1⊥(ε̃) =
1

2
[J11(ε̃) + J10(ε̃)] . (8.34)

Figure 8.4 depicts the total currents generated by an ideal 87Rb BEC of width a = 2 µm.
For this choice of parameters we have α ≈ 3.33, so that the effective energy ε̃ = 4α4 of the
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Figure 8.4: Total current generated per atom in a 87Rb BEC with one vortex as a function of
the detuning frequency ∆ν. Solid line: The source σ11(r) (8.17) with the vortex line parallel
to the gravitational field F. Dashed line: Vortex line perpendicular to F, represented by
σ1⊥(r) (8.33). Parameters: a = 2 µm, Ω = 2π × 100 Hz.

assigned virtual point source indicates tunneling emission. While in parallel orientation
the current distribution is simply Gaussian, it features a dip in the total current at ∆ν = 0
for a vortex line perpendicular to the gravitational field. This behavior is easily understood
from equation (8.32): Due to the presence of the vortex line in the slicing plane, at z = 0
the condensate density adopts a minimum. We note that the reflection approximation fails
for small condensates (with α ∼ 1) and it becomes necessary to use the exact results given
in equations (8.28) and (8.29). The corresponding density profiles at a distance z = 1 mm
for three different energies (∆ν = 0,±4 kHz) are shown in Figure 8.5. Interestingly,
the sign of the detuning influences the density profile. Even though the total current
is almost the same for ∆ν = ±4 kHz, the density shows a different pattern for both
frequencies. For tunneling sources, we expect density profiles of overall Gaussian shape,
with a mean width D(z) = 2z̃/κ̃, where z̃ = (ζ + 2α4)/βF and κ̃ = 4βFα2 denote the
distance from the virtual source and the virtual evanescent wave number, respectively
[BBG+98]. However, this Gaussian envelope is modulated by a factor f(ξ, υ) that depends
on the relative orientation of the vortex and the gravitational force. A fairly cumbersome
calculation yields for the asymptotic shape of the density profiles generated by the sources
given by equations (8.17) and (8.33) in the far-field sector and for α � 1:

ρ(ξ, υ) ∼ 16N(�Ω)2β5F 3α3 f(ξ, υ)√
2πζ(ζ + 2α4)2

exp

[
−
(

ε2

4α2
+

2α2(ξ2 + υ2)

ζ + 2α4

)]
, (8.35)

where the modulation factors f11(ξ, υ) and f1⊥(ξ, υ) for parallel and perpendicular orien-
tation read

f11(ξ, υ) = ξ2 + υ2 , f1⊥(ξ, υ) =
ε2

4
+

(
υ − ε

√
ζ

2
√

2 α2

)2

. (8.36)
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Figure 8.5: Atom laser density profiles for a rotating 87Rb BEC source sustaining one
vortex. Left column: Parallel orientation of vortex line and force F, with source σ11(r)
(8.17). Right column: Vortex perpendicular to F, as given by σ1⊥(r) (8.33). The detuning
frequencies ∆ν are −4 kHz (top row), 0 kHz (center row), and +4 kHz (bottom row),
respectively. The brightest spots of the distribution pertain to a density of 2.5 atoms/µm3.
Displayed area: 30 µm × 30 µm, distance from source: z = 1 mm; source parameters:
a = 2 µm, Ω = 2π × 100 Hz, N = 106 atoms.
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All quantities are expressed in the dimensionless coordinates introduced in equation (7.4).
In the parallel case the vortex core is preserved in the beam profile, since f11(ξ = 0, υ = 0) =
0. The dependence of f1⊥(ξ, υ) on the source distance ζ and the detuning ν = −ε/2hβ
renders the atom laser profiles generated in perpendicular orientation more intriguing.
The detuning-dependent, isotropic contribution ε2/4 competes with a shifted parabolic
term that grows linearly with the detector distance ζ. For ζ � 2α4, detuning blurs
the simple vortex image present at center resonance, while for ζ � 2α4 the latter term
in equation (8.36) dominates, causing the appearance of a node line in the profile whose
relative position shifts linearly with the detuning ν. The transition between these markedly
different regimes of the atom laser occurs at considerable distance from the BEC. In our
example, we find ζ = 2α4 for a separation z ≈ 150 µm, and the figure depicts the far-
field behavior. However, for larger sources, this characteristic distance quickly reaches
macroscopic dimensions: For an atom laser supplied by a BEC of width a = 10 µm, we
find z ≈ 10 cm!

8.5.2 Vortex lattices

Using the tools developed in the previous section, we proceed to give an example of a
multipole source where larger values of the angular momentum are present. Rotating
Bose-Einstein condensates show superfluid behavior and respond to an externally induced
rotation by formation of a vortex lattice [MAH+99, MCWD00, ASRVK01, ECHC02]. (For
a review on vortices in BECs, see [FS01].) No attempt at a description of the formation
and parameters of this lattice will be made. Rather, we present a theoretical model for
a stationary atom laser supplied by an already formed vortex lattice, with vortex lines
oriented parallel to the gravitational field F. The wave function of the lattice state (the
laser source) is most conveniently modeled in the rotating reference frame (rf), where it
becomes time-independent; we denote it by σlatt,rf(r). However, the laser is observed in the
laboratory frame and hence we first discuss the transformation between both frames.

In the laboratory frame (lf), the rotating-frame source function σlatt,rf(r) becomes ex-
plicitly time dependent. The transformation between both frames of reference involves a
uniform rotation around the z–axis with frequency Ωrot, which is generated by the unitary
operator exp (−iLzΩrott/�). The full time-dependent source term in the lab frame conse-
quently reads σlatt,lf(r, t) = e−iEt/�e−iLzΩrott/�σlatt,rf(r). Here, decomposition of the source
σlatt,rf(r) into a superposition of eigenstates σm,rf(r) of Lz makes sense:

σlatt,rf(r) =
∑
m

σm,rf(r) . (8.37)

Thus, in the laboratory frame, the rotating source function appears split into stationary
components σm,rf(r) shifted in energy. With Em = E + m�Ωrot, we obtain

σlatt,lf(r, t) =
∑
m

e−iEmt/�σm,rf(r). (8.38)
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Figure 8.6: BEC wave function σrf(r) with 37 vortices. Vortex spacing 10 µm. Size
parameter a = 5 µm. The black lines are lines of constant density and shading denotes
the phase.

The atomic beam wave function resulting from a time-dependent source in the presence of
the gravitational field is propagated by the linear field propagator

ψlatt,lf(r, t) = − i

�

∫
d3r′

∫ t

−∞
dt′ Kfield(r, t|r′, t′) σlatt,lf(r

′, t′). (8.39)

Employing the propagator representation of the field Green function from equation (2.15),
we finally obtain for the beam wave function the expression

ψlatt,lf(r, t) =
∑
m

e−iEmt/� ψm,rf(r), (8.40)

where

ψm,rf(r) =

∫
d3r′ Gfield(r, r

′; Em) σm,rf(r
′). (8.41)

We note that both ψm,rf(r) and its source σm,lf(r) are eigenfunctions of Lz. This shows
that like the BEC, the atomic beam profile rotates uniformly with frequency Ωrot. Next,
we further characterize the source function σlatt,rf(r) for the vortex lattice. This state of
the BEC is commonly described as a superposition of angular momentum eigenstates of
the harmonic oscillator [BR99, Ho01]. The number of vortices and their positions are
available from minimizing the energy functional of the Gross-Pitaevskii equation in the
rotating frame. For a parallel arrangement of the vortices and the gravitational field F, we
may model the vortex state as a product of a two-dimensional “lattice function” σ2D(x, y)
detailing the vortex positions (xk, yk) with a Gaussian envelope enforced by the harmonic
trap potential. Introducing complex coefficients vk = xk + iyk, the lattice function is
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obtained as a product involving all vortex positions that alternatively may be expressed
as a polynomial in (x + iy),

σ2D(x, y) =
n∏

k=1

[(x + iy) − vk] =
n∑

k=0

w
(n)
k (x + iy)k . (8.42)

The coefficients wk are linked to vk via the recursion relation

w
(n)
k = w

(n−1)
k−1 − vk+1w

(n−1)
k , with w

(0)
0 = 1. (8.43)

Usually, these lattices possess elements of symmetry which enforce selection rules on the
wk, leaving only few non vanishing coefficients. The complete three-dimensional source
function in the rotating frame then reads

σlatt,rf(r) = Nn exp

(
−x2 + y2

2a2
x

− z2

2a2
z

)
σ2D(x, y). (8.44)

The constant Nn is determined by the normalization condition
∫

d3r |σ(r)latt,rf |2 = N(�Ω)2:

Nn =

√
N �Ω

π3/4

√
az

∑n
k=0 k!|w(n)

k |2a2k+2
x

. (8.45)

From equation (8.42) the decomposition of σlatt,rf(r) into eigenstates σm,rf(r) of Lz is readily
obtained

σm,rf(r) = Nnw
(n)
m (x + iy)m exp

(
−x2 + y2

2a2
x

− z2

2a2
z

)
. (8.46)

Thus, all n + 1 source components are eigenstates of the harmonic trap potential, and the
highest quantum number m equals the number of vortices present in the BEC.

For the special case of an isotropic trap (ax = az = a), the theory outlined above
provides both out-coupling rate and beam profile in analytic form. Since the components
σm,rf(r) then simultaneously present eigenstates of Lz and the total angular momentum
L2 with quantum number l = m, the source is entirely made up from circular Gaussian
multipole states σmm(r) = Nm Kmm(∇)σ(r):

σm,rf(r) = Cn

√
m! w(n)

m amσmm(r), (8.47)

where C2
n = [

∑n
k=0 k!|w(n)

k |2a2k]−1 denotes the normalization constant. According to equa-
tion (8.40), the rotating beam is thus produced by a weighed superposition of stationary
sources σmm(r) with effective energy Em = E + m�Ωrot. As explained in Section 7.1,
outside the source region each Gaussian multipole source σlm(r) in expression (8.18) may
be mapped onto a corresponding displaced virtual point source of adjusted strength Λ(ε̃).
This allows to calculate the wave function ψmm(r) generated by σmm(r) along the lines



8.5. VORTICES AND ATOM LASERS 105

 5

 0

 10

 15

 20

−30 −20 −10  0  10  20  30

T
ot

al
C

u
rr

en
t

[s
−1

]

Detuning Frequency ∆ν = E/h [kHz]

Figure 8.7: Total current per atom in a 87Rb BEC with 37 vortices as a function of detuning
frequency ∆ν. The vortex structure of the BEC is not visible in the integrated current.
Vortex separation in the BEC: 10 µm, rotation frequency Ωrot = 2π×250 Hz, out-coupling
strength Ω = 2π × 100 Hz, size parameter a = 5 µm.

presented in Section 8.5.1, and the final result closely resembles the corresponding linear
field multipole Green function Gmm(r,o; E):

ψmm(r) = − 4β(βF )3

√
m!

Λ(ε̃m) [2α (ξ + iυ)]m Qm+1(ρ̃, ζ̃; ε̃m) , (8.48)

where ε̃m = −2βEm + 4α4 denotes the shifted and scaled energy parameter. Similarly, the
total current Jmm(Em) generated by σmm(r) is available and reads

Jmm(Em) =
8

�
β(βF )3(2α)2mΛ(ε̃m)2 Qim+1(ε̃m). (8.49)

Substituting equations (8.47) and (8.48) into expression (8.40), the wave function of the
rotating atom laser beam ultimately becomes

ψlatt,lf(r, t) = Cn

n∑
m=0

e−iEmt/�
√

m! w(n)
m am ψmm(r). (8.50)

Due to cylindrical symmetry, all elements of the total current matrix Jlm,l′m′(E) in equa-
tion (3.53) with m �= m′ vanish (see Section 3.4.1). Therefore, the (stationary) out-coupling
rate Jlatt(E) reduces to a properly weighed sum of the ballistic multipole currents Jmm(Em)
given in equation (8.49):

Jlatt(E) = C2
n

n∑
m=0

m!|w(n)
m |2a2m Jmm(Em). (8.51)
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Figure 8.8: Beam profile of an atom laser from a BEC with 37 vortices at different energies
and heights. We plot the density distribution on three different slices through the beam.
Also, at all distances the vortex cores are indicated by small tubes. From the left figure
to the right one we vary the detuning frequency (−10, 5, 20) kHz. These frequencies are
marked by dotted lines in Figure 8.7. The three distances chosen are (177, 239, 300) µm
from the center of the BEC. For other BEC parameters see Figure 8.7.

We illustrate these results by using a model condensate featuring a symmetrical triangular
lattice of 37 vortices, with a distance between the vortices of 10µm, embedded into a
Gaussian source of width a = 5 µm. A sketch of the resulting density distribution is shown
in Figure 8.6. While the frequency dependence of the out-coupling rate merely shows the
familiar Gaussian character (compare Figures 8.4 and 8.7), plots of the resulting atom
laser profile exhibit rich detail (Figure 8.8): Tracing the rotation of the source, the vortex
pattern, which is fully transferred from the BEC into the laser beam, forms an intertwined
braid-like structure along the z–axis. It modulates the lateral beam profile which now
strongly depends on the detuning frequency ∆ν. The out-coupling rate varies between
the different angular momentum components σm,rf(r) (8.47) that make up the source. A
negative shift in the frequency suppresses states with high |m|, leading to an approximate
Gaussian shape of the particle distribution, whereas positive detuning (∆ν > 0) emphasizes
these contributions. The centrifugal barrier effective for them then produces a ring-like
“crown” emission pattern.



Chapter 9

Summary

The careful analysis of the energy-dependent Green function in at most quadratic po-
tentials proved very rewarding for a variety of physical systems. Besides the availability
of the quantum mechanical solution, the consistent treatment of interference phenomena
connected to classical trajectories is a key element for an interpretation of the structures
arising in the generated currents. A good example is the controllable field-slit proposed in
Chapter 2. Choosing a suitable Hilbert space for the propagator simplifies the calculation
of Green functions considerably. We examined the energy-dependent Green function
in momentum, position and Bargmann space. By giving a number of tutorial examples
and applications, we immediately took advantage of the underlying mathematical theo-
rems. From a physical point of view, we should stress that the energy-dependent Green
function is much more than merely a Laplace transform of the quantum propagator. Only
the energy-dependent Green function can provide the bridge to experiments
and the real world, since most processes in quantum mechanics are observed at a given
energy, not time. Its analytic structure differs completely from the propagator and none of
the available methods for the calculation of Feynman kernels are applicable for the analytic
computation of the Green function.

A comprehensive analysis of photodetachment experiments in external electro-
magnetic fields was carried out. Specifically, the addition of a magnetic field to a uniform
electric field gives rise to a number of newly predicted effects and phenomena. Using the
theory of multipole sources, we presented for the first time a systematic study of the scat-
tering currents in parallel magnetic and electric fields. The closed analytic form enables
us to go beyond the known set of p-wave currents and to give quantitative predictions for
the total current of arbitrary multipole sources. Also, we have direct access to the cor-
responding current density distribution which shows intricate structures. We attributed
these structures to the interference of multiple classical trajectories. Besides this
classical regime, the derived quantum solution allows us to investigate the limit of small
energies. Here, the Heisenberg uncertainty principle governs the distribution and therefore
leads again to a intelligible interpretation of the current distribution. All given results
are highly relevant to present-day photodetachment experiments. The very sensitive pho-
todetachment microscope of Blondel is carefully shielded against the magnetic field of the
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earth, since even a tiny magnetic flux distorts and changes the images dramatically.
Knowing the analytic properties of the propagator, we could tackle the problem of

finding the Green function in crossed electric and magnetic fields. An analytic
solution is given in the two-dimensional case. There, the local density of states, linked
to the imaginary part of the energy-dependent Green function, is represented by shifted
harmonic oscillator eigenstates. However, these states are a function of the energy and
not the position operator. By employing two different approaches to obtain this result, we
gained more insight into the structure of the Green function and could identify the canonical
transformation and its unitary transformation that map the position variable to the energy.
The combination of electric and magnetic fields has profound impacts on the
density of states which have not been considered before. The singularities present
in a purely magnetic field disappear and are replaced by the smoother oscillator functions.
Prototype calculations of the Hall resistivity show a wealth of interesting features and the
existence of fractional plateaus in the quantum Hall effect. The derived electric and
magnetic field dependence of the breakdown of the integer quantum Hall effect is in
excellent agreement with experimental results. In principle, a three-dimensional extension
of the quantum Hall effect should be observable in photodetachment experiments, as our
calculations for the cross-sections show. Again, the Green function provides an excellent
tool to derive and analyze the expected currents in these experiments.

In the presence of a vector potential, the important question of gauge invariance of
the currents arises. We answered this question by relating the gauge-transformation to
a relocation of the coordinate system.

The combination of extended sources with the previously derived Green functions leads
to other applications of the theory of quantum sources. We applied the theory to mat-
ter waves originating from a Bose-Einstein condensate. Again, the given solutions
cover a wide range of emission characteristics of such an atom source. The progress in
trapping techniques (microtraps) and the possibility of sustaining a condensate by refill-
ing render the presented model highly relevant. The detailed expressions for the range
of operation of an atom laser and the resulting matter waves are needed for a theoretical
description of newly developed technologies like matter-wave guides and atom beam in-
terferometers. The interference of atomic matter waves from different sources could
probe the relative phase relation of neighboring condensates and detect changes due to
external potentials. Another application is the production of tailored wave functions
by employing a superposition of atomic matter waves with different emission energies.

The Green function and quantum source formalism is not limited to the ground state
of a condensate. Excited states of rotating condensates bear flux vortices and are included
in our theory. The presence of these excitations is reflected in the predicted beam profiles
and suggests the use of atom lasers as a monitoring device for the time-evolution of
a macroscopic quantum state.

Yet another field of physics is accessible by the energy-dependent Green function. The
transition from a bound state to a continuum state of a molecule is a standard topic of
the theory of Franck-Condon factors. By providing reference cases for Franck-Condon
factors in several dimensions and for different potentials, we compared commonly applied
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approximation schemes like the so-called reflection approximation with the newly obtained
exact results. The derivation of the reflection approximation in terms of the energy-
dependent Green function and the subsequent analysis of its validity show that quantum
interferences are persistent in these transitions and cannot be automatically included in
simple approximation schemes.

The given results surely represent only a glimpse of how many modern-day experiments
can be described in terms of energy-dependent Green functions.
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Appendix A

Linear canonical transformation of a
quadratic Hamiltonian

A.1 Evaluation of the matrix representation

Using the commutation rules, the matrix �̂ can be easily computed for at most quadratic
Hamiltonians. Upon inserting the commutator from equation (3.31) into equation (3.28)
we get (all operators are in the Heisenberg picture)


 x(t)
−p(t)

1


 = U†(t) ◦


 x(0)
−p(0)

1


 ◦ U(t)

=


 x(0)
−p(0)

1


+

it

�


H,


 x(0)
−p(0)

1




+

1

2!

(
it

�

)2

H,


H,


 x(0)
−p(0)

1






+ . . .

=


 x(0)
−p(0)

1


+

it

�
(−i�̂)


 x(0)
−p(0)

1


+

1

2!

(
it

�

)2

(−i�̂)
2


 x(0)
−p(0)

1


+ . . .

= exp
(
�̂t
) x(0)

−p(0)
1


 . (A.1)

Thus we obtain the desired result

�̂(t) = exp
(
�̂t
)

.
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A.2 Homogeneous electric and magnetic fields at ar-

bitrary angles

The Hamiltonian is given in equation (4.1) and reads

H =
p2

x + p2
y + p2

z

2m
+

1

2
mω2

L

(
x2 + y2

)
+ xFx + yFy + zFz − pyxωL + pxyωL. (A.2)

Using the results from the previous section we obtain



H,




x1

x2

x3

−p1

−p2

−p3

1







= −i�̂




x1

x2

x3

−p1

−p2

−p3

1




,

where

�̂ =




0 ωL 0 − 1
m

0 0 0
−ωL 0 0 0 − 1

m
0 0

0 0 0 0 0 − 1
m

0
mω2

L 0 0 0 ωL 0 −Fx

0 mω2
L 0 −ωL 0 0 −Fy

0 0 0 0 0 0 −Fz

0 0 0 0 0 0 0




.

Standard techniques are used to evaluate the exponential of the matrix �̂t (see also [Kra00]).
We obtain

�̂ = exp(�̂t)

=




cos2 ωLt sin(2ωLt)
2

0 − sin(2ωLt)
Be

−1+cos(2ωLt)
Be

0 Fx(1−cos(2ωLt))+Fy(2ωLt−sin(2ωLt))

4mω2
L

− sin(2ωLt)
2

cos2 ωLt 0 2 sin2 ωLt
Be

− sin(2ωLt)
Be

0 Fy(1−cos(2ωLt))+Fx(−2ωLt+sin(2ωLt))

4mω2
L

0 0 1 0 0 − t
M

Fzt2

2M
Be sin(2ωLt)

4
Be sin2 ωLt

2
0 cos2 ωLt sin(2ωLt)

2
0 −Fy(1−cos(2ωLt))−Fx(2ωLt+sin(2ωLt))

4ω2
L

−Be sin2 ωLt
2

Be sin(ωLt)
4

0 − sin(2ωLt)
2

cos2 ωLt 0 −Fx(−1+cos(2ωLt))−Fy(2ωLt+sin(2ωLt))

4ω2
L

0 0 0 0 0 1 −Fzt
0 0 0 0 0 0 1




.

(A.3)
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The classical equation of motion is readily extracted from this matrix. For x(0) = o, the
expressions are:

x1(t) =
sin (2ωLt)

Be
p1(0) − −1 + cos (2ωLt)

Be
p2(0) +

Fx(1 − cos(2ωLt)) + Fy(2ωLt − sin(2ωLt))

4mω2
L

,

x2(t) = +
2 sin2 ωLt

Be
p1(0) − sin (2ωLt)

Be
p2(0) +

Fy(1 − cos(2ωLt)) + Fx(−2ωLt + sin(2ωLt))

4mω2
L

,

x3(t) =
1

m
tp3(0) +

1

m

1

2
Fzt

2.

(A.4)

Next we determine the 3 × 3 block-matrices �, �, �, and Æ defined by splitting �̂(t) into

�̂(t) =


 � � �α′

� Æ �α′′

0 0 1


 ,

and indeed get the propagator given in equation (4.17) by inserting the matrices into
equation (3.32).
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Appendix B

Integrals involving Airy functions

In the course of our investigation into ballistic multipole matter waves, integral expressions
of the following type:

Qk(ρ, ζ; ε) =
i

2π
√

π

∫ ∞

0

dτ

(iτ)k+1/2
exp

{
i

[
ρ2

τ
+ τ(ζ − ε) − τ 3

12

]}
(B.1)

are frequently encountered. For integer indices k, this set of integrals permits explicit
evaluation in terms of products of Airy functions. Introducing the Airy Hankel function
Ci(u) = Bi(u) + i Ai(u) [AS65], the basic member of this class reads:

Q0(ρ, ζ; ε) = Ai(ε − ζ + ρ) Ci(ε − ζ − ρ). (B.2)

This result is easily verified by observing that (B.1) in this case reduces to the Laplace
transform of the ballistic propagator in one dimension (using dimensionless units) and
therefore must equal the well-known Green function of a freely falling particle in a single
spatial dimension [Rob96]. Indeed, apart from scaling the integrals (B.1) for positive integer
indices represent the stationary ballistic Green functions in the spaces of odd dimension
D = 2k + 1. In particular, uniformly accelerated waves in physical space (D = 3) are
represented by the function Q1(ρ, ζ; ε) [DS76, BBG+98, KBK02].

From the definition (B.1), two recurrence formulae for increasing and decreasing value
of the index k are immediately available:

Qk+1(ρ, ζ; ε) = − 1

2ρ

∂

∂ρ
Qk(ρ, ζ; ε) =

[
− 1

2ρ

∂

∂ρ

]k

Q0(ρ, ζ; ε), (B.3)

Q−(k+1)(ρ, ζ; ε) =
∂

∂ζ
Q−k(ρ, ζ; ε) =

∂k

∂ζk
Q0(ρ, ζ; ε). (B.4)

(The latter equalities require k ≥ 0.) From a practical point of view, the expressions
thus obtained become rather unwieldy with growing |k|. The following five-point recursion
relation, again easily verified using the integral representation (B.1), presents a favorable
alternative:

ρ2 Qk+2(ρ, ζ; ε) −
(

k +
1

2

)
Qk+1(ρ, ζ; ε) + (ζ − ε) Qk(ρ, ζ; ε) +

1

4
Qk−2(ρ, ζ; ε) = 0. (B.5)
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Finally, we inquire into the asymptotic behavior of (B.1) in the limit ρ → 0. Here, we are
interested in the case of integer index k ≥ 1. Then, small values of τ provide the bulk
contribution to the integral, which allows us to neglect the linear and cubic terms in the
exponent of (B.1). In this approximation, the integral evaluates to a Gamma function of
half-integer argument [AS65]:

Qk(ρ, ζ; ε) ∼ Γ(k − 1/2)

2π3/2ρ2k−1
=

(2k − 3)!!

2kπρ2k−1
. (B.6)

Therefore, the function Qk(ρ, ζ; ε) diverges as ρ → 0. This singularity, however, affects
only the real part of Qk(ρ, ζ; ε).

The functions Qik(ε)

Another important class of functions that regularly appears when calculating ballistic total
currents is contained in (B.1) as a limiting case:

Qik(ε) = lim
ρ→0

lim
ζ→0

�{Qk(ρ, ζ; ε)} . (B.7)

Unlike the functions Qk(ρ, ζ; ε) that are divergent in this limit for k > 0 (reflecting the
multipole source singularity), their imaginary parts Qik(ε) remain well-defined. Obviously,
Qi0(ε) = Ai(ε)2, and all other expressions are available from suitably modified recurrences
(B.3), (B.4):

Qik(ε) = lim
z→0

{[
− 1

2z

∂

∂z

]k

Ai(ε + z) Ai(ε − z)

}
, (B.8)

Qi−k(ε) = lim
z→0

{
∂k

∂zk
Ai(ε − z)2

}
. (B.9)

(k ≥ 0). Thus, the functions Qik(ε) can be extracted from the Taylor series of Ai(ε +
z) Ai(ε−z) and Ai(ε−z)2, respectively. For practical purposes, again the following recursion
relation adapted from (B.5) proves more suitable:(

k +
1

2

)
Qik+1(ε) + ε Qik(ε) −

1

4
Qik−2(ε) = 0. (B.10)

For the sake of completeness, we note that unlike the functions Qk(ρ, ζ; ε) (B.1), the limits
(B.7) can also be evaluated for half-integer index Qik+1/2(ε), which in turn allows to cal-
culate ballistic multipole currents in spaces of even dimension. Here, direct evaluation of
the integral (B.1) shows that:

Qi1/2(ε) =
1

2
√

π

{
1

3
− Ai1(2

2/3ε)

}
(B.11)
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holds, where Ai1(u) =
∫ u

0
dz Ai(z) denotes the integral of the Airy function [AS65]. (In

particular, Qi1/2(0) = 1/6
√

π.) The other functions of half-integer index Qik+1/2(ε) are
available from the differentiation formula:

Qik−1/2(ε) = − ∂

∂ε
Qik+1/2(ε), (B.12)

as well as the recursion relation (B.10).
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Appendix C

Useful relations involving Hermite
polynomials

Most of the following formulae are given in [Buc53], § 13. The definition of the Hermite
polynomials Hen(z) reads

Hen(z) = (−1)nez2/2 dn

dzn

(
e−z2/2

)
. (C.1)

Two recurrence relations are particularly useful:

Hen+1(z) = z Hen(z) − n Hen−1(z), (C.2)

d

dz
Hen(z) = n Hen−1(z). (C.3)

Using these relations we calculate

Nk(ε) =
1

k!

∫ ε

−∞
dz e−z2/2[Hek(z)]2. (C.4)

From equation (C.1) we get

Nk(ε) =
(−1)k

k!

∫ ε

−∞
dz Hek(z)

dk

dzk

(
e−z2/2

)
. (C.5)

Next we employ the second recurrence relation and integrate by parts:

Nk(ε) =
(−1)k

k!
Hek(ε)

(
d

dz

)k−1

e−z2/2

∣∣∣∣∣
z=ε

+

+
(−1)(k−1)

k!

∫ ε

−∞
dz

[
d

dz
Hek(z)

] [
dk−1

dzk−1

(
e−z2/2

)]

=
−1

k!
Hek(ε) Hek−1(ε) e−ε2/2 + Nk−1(ε).

(C.6)
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Since N0(ε) evaluates to an error function [AS65],

N0(ε) =

∫ ε

−∞
dz e−z2/2 =

√
π

2

[
1 + erf

(
ε√
2

)]
, (C.7)

repeated usage of equation (C.6) yields the final result

Nk(ε) =

√
π

2

[
1 + erf

(
ε√
2

)]
−

k−1∑
n=0

1

(n + 1)!
Hen(ε) Hen+1(ε) e−ε2/2. (C.8)



Appendix D

Series expansion for the reflection
approximation

We start from the expression for the total current in a homogeneous force field given in
equation (2.42). The time-dependent propagator in D dimensions reads

K(x, y, z, t|x′, y′, z′, 0) =
( m

2πi�t

)D/2

exp

{
i

�

[
m

2t
|r − r′|2 +

Ft

2
(z + z′) − F 2t3

24m

]}
. (D.1)

Thus the total current becomes

J(E) =
1

�2

∫
R2D+1

dDr dDr′ dt
( m

2πi�t

)D/2

eiEt/�e
i
�
[m
2t
|r−r′|2+ Ft

2
(z+z′)−F2t3

24m
]σ(r)∗ σ(r′). (D.2)

Introducing the usual set of scaled variables from equation (7.4) (however, not for the
spatial coordinates) we obtain

J(E) =
2β

�
(βF )D

∫
R2D+1

dDr dDr′ dτ

(
1

iπτ

)D/2

eiτβ[F (z+z′)+2E]+ i
τ
(βF )2|r−r′|2− iτ3

12 σ(r)∗ σ(r′).

(D.3)
In the next step we switch to relative coordinates defined by

(x, y, z) = (u + u′, v + v′, w + w′), (D.4)

(x′, y′, z′) = (u − u′, v − v′, w − w′), (D.5)

and

(u, v, w) = s, (D.6)

(u′, v′, w′) = s′. (D.7)

Using these variables, the new expression for the total current is given by

J(E) =
2β(2βF )D

�

∫
R2D+1

dDs dDs′ dτ

(
1

iπτ

)D/2

×

× e2iτβ(F·s+E)e
i
τ
4(βF )2|s′|2− iτ3

12 σ(s + s′)∗ σ(s − s′′). (D.8)
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Series expansion in one dimension

As a tutorial example we study the one-dimensional problem. Assuming that σ is a real-
valued source function, we first expand h(s, s′) = σ(s + s′)∗ σ(s − s′) around s′ = 0:

h(s, s′) ≈ h(s) +
1

2!
h′′(s)s′2 +

1

4!
h(4)(s)s′4 + . . .

= h0(s) + h1(s)s
′2 + h2(s)s

′4 + . . . + hn(s)s′2n + . . . . (D.9)

We can perform the integration over s′ and get

∫
ds′ e

i
τ
4(βF )2s′2h(s, s′) =

(iτ)1/2

2βF

∞∑
n=0

Γ(n + 1/2)
(iτ)n

(2βF )2n hn(s). (D.10)

The τ integration is also feasible and yields∫
dτ (iτ)ne2iτβ(Fs+E)− iτ3

12 = 2π(−1)n Ai(n)
[−25/3β(E + Fs)

]
(D.11)

Inserting these results into the original equation (D.8) we obtain

J(E) =
4β

�
π1/2

∞∑
n=0

Γ(n + 1/2)
(−1)n

(2βF )2n

∫
R

ds hn(s) Ai(n)
[−25/3β(E + Fs)

]
. (D.12)

A further simplification can be achieved by approximating the Airy functions with δ func-
tions. Formally, we exploit the relation

δ(n)(x) = lim
β→∞

βn+1Ai(n)(βx), (D.13)

to get a new expression:

J(E) = −2

�
π1/2

∞∑
n=0

Γ(n + 1/2)

(2βF )3nF

∫
R

ds hn(s) δ(n)(s + E/F ). (D.14)

Integration by parts
∫

ds f(s)δ(n)(s) = (−1)n ∫ ds f (n)(s)δ(s) yields

J(E) = −2

�
π1/2

∞∑
n=0

Γ(n + 1/2)

(2βF )3nF
(−1)n h(n)

n (−E/F ). (D.15)
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[BHE99] I. Bloch, T.W. Hänsch, and T. Esslinger. Atom laser with a cw output coupler.
Phys. Rev. Lett., 82:3008, 1999.

123



124 REFERENCES

[BIL79] W. A. M. Blumberg, W. M. Itano, and D. J. Larson. Theory of the photode-
tachment of negative ions in a magnetic field. Physical Review D, 19:139–148,
1979.

[BJL78] W. A. M. Blumberg, R. M. Jopson, and D. J. Larson. Precision laser photode-
tachment spectroscopy in magnetic fields. Physical Review Letters, 40:1320–
1323, 1978.

[BJT99] Y.B. Band, P.S. Julienne, and M. Trippenbach. Radio frequency output
coupling of the Bose-Einstein condensate for atom lasers. Phys. Rev. A,
59:3823, 1999.

[BKK02] C. Bracher, T. Kramer, and M. Kleber. Ballistic matter waves with angular
momentum: Exact solutions and applications. accepted for publication in
Phys. Rev. A, 2002. arXiv:quant-ph/0207105.

[BR99] D.A. Butts and D.S. Rokhsar. Predicted signatures of rotating Bose-Einstein
condensates. Nature, 397:327, 1999.

[Bra99] C. Bracher. Quantum Ballistic Motion and its Applications. PhD thesis,
Technische Universität München, 1999. Unpublished.

[Bri85] D.M. Brink. Semi-classical methods for nucleus-nucleus scattering. Cam-
bridge University Press, Cambridge, 1985.

[BRK97] C. Bracher, M. Riza, and M. Kleber. Propagator theory in scanning tunneling
microscopy. Phys. Rev. B, 56:7704, 1997.

[BS00] R.J. Ballagh and C.M. Savage. The theory of atom lasers. Modern Physics
Letters B, 14:153, 2000.

[Buc53] H. Buchholz. Die Konfluente Hypergeometrische Funktion, volume 2 of Ergeb-
nisse der angewandten Mathematik. Springer, 1953.

[BV71] V.L. Bakhrakh and S.I. Vetchinkin. Green’s functions of the Schrödinger
equation for the simplest systems. Theoret. Math. Phys., 6:283, 1971. [Teoret.
Mat. Fiz. 6, 392–402 (1971)].

[Con28] E.U. Condon. Nuclear motions associated with electron transitions in di-
atomic molecules. Phys. Rev., 32:858, 1928.

[DD89] M.L. Du and J.B. Delos. Effect of an electric field on the photodetachment
of H−. Phys. Lett. A, 134:476, 1989.

[DGL+99] L. Dobrek, M. Gajda, M. Lewenstein, K. Sengstock, G. Birkl, and W. Ertmer.
Optical generation of vortices in trapped Bose-Einstein condensates. Phys.
Lett. A, 51:133, 1999.



REFERENCES 125

[DGPS99] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari. Theory of Bose-
Einstein condensation in trapped gases. Rev. Mod. Phys., 71:463, 1999.

[DKO82] Yu.N. Demkov, V.D. Kondratovich, and V.N. Ostrovskii. Interference of
electrons resulting from the photoionization of an atom in an electric field.
JETP Lett., 34:403, 1982. [Pis’ma Zh. Eksp. Teor. Fiz. 34, 425–427 (1981)].

[DMM75] V.V. Dodonov, I.A. Malkin, and V. Man’ko. The Green function of the
stationary Schrödinger equation for a particle in a uniform magnetic field.
Phys. Lett. A, 51:133, 1975.

[DR01] W. Dittrich and M. Reuter. Classical and Quantum Dynamics. Springer,
Berlin, 3rd edition, 2001.

[DS76] F.I. Dalidchik and V.Z. Slonim. Strong exchange interaction effects in a
homogeneous electric field. Sov. Phys. JETP, 43:25, 1976. [Zh. Eksp. Teor.
Fiz. 70, 47–60 (1976)].

[dSdSD88] C.F. de Souza and A. de Souza Dutra. Galilean transformation and the path
integral propagator for a crossed electric and magnetic field. Am. J. Phys.,
57:330, 1988.

[Dun68] G.H. Dunn. Photodissociation of H+
2 and D+

2 : Theory. Phys. Rev., 172:1,
1968.

[EB95] M. Edwards and K. Burnett. Numerical solution of the nonlinear Schrödinger
equation for small samples of trapped atoms. Phys. Rev. A, 51:1382, 1995.

[ECHC02] P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell. Nonequilibrium
effects of anisotropic compression applied to vortex lattices in Bose-Einstein
condensates. Phys. Rev. Lett., 89:100403, 2002.

[Eco83] E.N. Economou. Green’s Functions in Quantum Physics (Solid–State Sciences
7). Springer, Berlin, 1983.

[EDC+96] M. Edwards, R.J. Dodd, C.W. Clark, P.A. Ruprecht, and K. Burnett. Prop-
erties of a Bose-Einstein condensate in an anisotropic harmonic potential.
Phys. Rev. A, 53:R1950, 1996.

[Edm57] A.R. Edmonds. Angular Momentum in Quantum Mechanics. Princeton Uni-
versity Press, Princeton, 1957.

[Fab81] I.I. Fabrikant. Interference effects in photodetachment and photoionization
of atoms in a homogeneous electric field. Sov. Phys. JETP, 52:1045, 1981.
[Zh. Eksp. Teor. Fiz. 79, 2070–2077 (1980)].



126 REFERENCES

[Fab91] I.I. Fabrikant. Near-threshold photodetachment of H− in parallel and crossed
electric and magnetic fields. Phys. Rev. A, 43:258, 1991.

[FH65] R.P. Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals.
McGraw-Hill, New York, 1965.

[Fra25] J. Franck. Elementary processes of photochemical reactions. Trans. Faraday
Soc., 21:536, 1925.

[FS01] A.L. Fetter and A.A. Svidzinsky. Rotating vortex lattice in a Bose-Einstein
condensate trapped in combined quadratic and quartic radial potentials. J.
Phys.: Condens. Matter, 13:R135, 2001.

[FW71] A.L. Fetter and J.D. Walecka. Quantum theory of many-particle systems.
McGraw-Hill, New York, 1971.

[Gal38] G. Galilei. Discorsi e dimostrazioni matematiche intorno a due nuove scienze
attenenti alla mecanica & i movimenti locali. Leiden, 1638.

[GBA01] F. Gerbier, P. Boyer, and A. Aspect. Quasicontinuous atom laser in the
presence of gravity. Phys. Rev. Lett., 86(21):4729, May 2001.

[Gis73] E.A. Gislason. Series expansion of Franck-Condon factors. I. Linear potential
and the reflection approximation. Journal of Chemical Physics, 58:3702, 1973.

[GKK91] B. Gottlieb, M. Kleber, and J. Krause. Tunneling from a 3–dimensional
quantum well in an electric field: an analytic solution. Z. Phys. A – Hadrons
and Nuclei, 339:201, 1991.

[Gou72] G. Gountaroulis. Green-function of the free electron in a uniform magnetic
field. Phys. Lett. A, 40:132, 1972.

[GP91] A. Galindo and P. Pascual. Quantum Mechanics II. Springer, Berlin, 1991.

[GP00] G. Grosso and G.P. Parravicini. Solid State Physics. Academic Press, New
York, 2000.

[GS98] C. Grosche and F. Steiner. Handbook of Feynman Path Integrals, volume 145
of Springer Tracts in Modern Physics. Springer, Berlin, 1998.

[HACC01] P.C. Haljan, B.P. Anderson, I. Coddington, and E.A. Cornell. Use of surface-
wave spectroscopy to characterize tilt modes of a vortex in a Bose-Einstein
condensate. Phys. Rev. Lett., 86(14):2922, April 2001.

[HCF86] N.J.M. Horing, H.L. Cui, and G. Fiorenza. Nonrelativistic Schrödinger
Green’s function for crossed time-dependent electric and magnetic fields.
Phys. Rev. A, 34:612, 1986.



REFERENCES 127
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Waldhäuser-Ost“ in Tübingen.
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