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Prüfer der Dissertation:
1. Univ.-Prof. Dr. Wolfram Weise

2. Univ.-Prof. Dr. Manfred Lindner

Die Dissertation wurde am 5.12.2005 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Physik am 11.1.2006 angenommen.





Summary

The main goal of this work is a comprehensive description of lattice QCD thermodynam-
ics at finite quark chemical potential. As a first step a phenomenologically successful
quasiparticle model that describes lattice results of the equation of state for the decon-
fined phase of QCD for Tc ≤ T . 4 Tc is extended to finite quark chemical potential
µ. The phase diagram and finite density corrections to the equation of state are calcu-
lated and compared to lattice QCD results. Subsequently, an improved model based on
two fundamental features of QCD, confinement and chiral symmetry and its spontaneous
breaking at low temperatures, is developed. In this generalized Nambu–Jona-Lasinio
model quarks couple simultaneously to the chiral condensate and to a background tem-
poral gauge field representing Polyakov loop dynamics. The chiral condensate and the
Polyakov loop as functions of temperature and quark chemical potential are calculated
by minimizing the thermodynamic potential of the system. The resulting equation of
state, (scaled) pressure difference and quark number density at finite quark chemical
potential are then confronted with corresponding lattice QCD data. Finally this model
is extended to the physically relevant three-flavor case.

Zusammenfassung

Das Hauptziel dieser Arbeit liegt in einer umfassenden Beschreibung der Gitter-QCD
Thermodynamik bei endlichem chemischen Potential. Zuerst wird ein phänomenologisch
erfolgreiches Quasiteilchenmodell, daß Gitter-QCD Ergebnisse für die Zustandsgleichung
des Quark-Gluon-Plasmas im Bereich Tc ≤ T . 4 Tc erfolgreich beschreibt, auf endliches
chemisches Potential der Quarks erweitert. Das Phasendiagramm und Korrekturen zur
Zustandsgleichung bei endlicher Quarkdichte werden berechnet. Als nächstes wird ein
neues Modell entwickelt, daß auf zwei der grundlegenden Eigenschaften der QCD, Con-

finement und chiraler Symmetriebrechung, basiert. In diesem verallgemeinerten Nambu–
Jona-Lasinio Modell koppeln Quarks gleichzeitig an das chirale Kondensat und ein zeit-
artiges Hintergrund-Eichfeld, daß die Dynamik des Polyakov Loop repräsentiert. Das
chirale Kondensat und der Polyakov Loop werden als Funktion der Temperatur und
des chemischen Potentials der Quarks durch Minimieren des thermodynamischen Po-
tentials berechnet. Die resultierende Zustandsgleichung, die (skalierte) Druckdifferenz
und die Quarkdichte bei endlichem chemischen Potential der Quarks werden dann mit
entsprechenden Gitter-QCD Daten verglichen. Schließlich wird das Modell noch auf den
physikalisch relevanten 3-Flavor-Fall erweitert.
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Introduction

It is an everyday experience that a solid piece of matter will first turn into a liquid
and then into a gas if it is heated. The most familiar example, of course, is water
which is frozen into ice below 273.15 K at normal pressure. If it is heated, ice will turn
into liquid water above 273.15 K and liquid water will turn into steam above 373.15
K. If the temperature is increased further to a few thousand degrees, the atoms that
make up matter start colliding so violently that they may lose one or more of their
electrons in these collisions. A new state of matter emerges, which is called a plasma.
It is a mixture of free electrons with negative charges and positively charged ions which
can move freely. But what happens if matter is heated even more? To answer this
question, physicists undertake major efforts to create extreme conditions in earth-bound
experiments. Temperatures up to 108 K can be achieved using plasma fusion reactors.
Above this temperature, conventional heating mechanisms become inefficient and more
importantly, there is no way to confine the plasma. However, even higher temperatures
can be achieved in heavy-ion collisions, i. e. high energy collisions between nuclei such
as sulfur, lead and gold [Won94,Hei01]. In such collisions, some of the kinetic energy of
the projectiles is converted into thermal energy. When a temperature of about 1010 K is
reached, nuclei dissolve and a liquid of protons and neutrons is formed with a boiling point
of about 1011 K, above which they evaporate and form a hadron gas. Hadrons are not
fundamental particles themselves and at even higher temperatures, their substructure,
quarks and gluons, becomes relevant.

The behavior of matter in this regime is described by quantum chromodynamics (QCD),
the fundamental theory of quarks, gluons and their interactions. QCD is a consistent
quantum field theory with a simple and elegant underlying Lagrangian, based entirely
on the invariance under non-Abelian local gauge transformations. What makes QCD
unusual are two remarkable properties: asymptotic freedom, which means that at very
high energies quarks and gluons interact only weakly and turn into quasifree particles
[Pol73,GW73] and confinement, which connotes that at low energies the force between
quarks increases as the distance between them is increased, so that quarks are always
bound into hadrons and cannot be removed individually. We can now understand what
happens to matter if a system is heated more and more: eventually all energy scales
become small compared to the temperature, which will in turn become the only relevant
scale. Thus, at very high temperatures, the interaction between quarks and gluons
becomes weak and a new state of matter is formed, where quarks and gluons are no longer
confined into individual hadrons, but can travel over larger distances. This (locally)
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deconfined phase is called Quark-Gluon Plasma (QGP). We can estimate the temperature
where this transition happens. The thermal number density of a gas of massless pions is
given by

nπ(T, µ) = 3

�
d3p

(2π)3

1

exp[(p− µ)/T ] − 1
≃ 0.3 T 3 for µ = 0. (0.1)

The factor of three in front of the integral counts the number of pionic states, π± and
π0. We now assume that the transition to the QGP happens if the hadrons fill up all
available space and thus nπ(Tc) ≃ V −1

π . Accepting that the volume occupied by a single
pion is Vπ = (4π/3)r3

π, we obtain Tc ≃ 1/rπ. With a typical hadronic scale, rπ ≃ 0.7
fm, we find that the transition to this new form of matter happens at a temperature of
about 1012 K, a temperature which is about 100.000 times hotter than the temperature
in the center of the sun.

The most fundamental theoretical approach to compute thermodynamic properties of
matter at finite temperatures is lattice QCD [Wil74,Cre83]. In these calculations, the
grand canonical partition function, which is the central quantity for matter in thermal
equilibrium, is evaluated on a discrete space-time lattice. Improvements of the original
algorithms and the availability of high-performance supercomputers permit fairly accu-
rate and reliable simulations. Lattice QCD calculations have numerically established
the existence of a transition from a hadronic phase to a quark-gluon plasma phase at a
temperature of about 170 MeV. A rapid rise in the pressure and the energy density is
observed close to this temperature due to the increase in number of degrees of freedom:
Below Tc the relevant degrees of freedom are heavy hadrons, there is not much thermal
motion and the pressure and the energy density are low. The number of available states
in the QGP is much larger because quarks and gluons carry color. In addition, these
states are (almost) massless. Lattice QCD also predicts a second transition from a state
where chiral symmetry is spontaneously broken to one where it is restored. A broken
chiral symmetry implies the existence of (almost) massless Goldstone bosons. This has
important consequences for the observed hadron spectrum: pions, which constitute the
Goldstone bosons of the broken chiral symmetry, are much lighter than the next heavier
states. This phase transition occurs at almost the same temperature as the confinement-
deconfinement transition.

QCD at finite quark chemical potential plays a role in two rather different regimes:
Small quark chemical potentials are relevant for heavy ion collisions, where the initial
state has a small non-zero baryon number. On the other hand, the core of neutron stars
is composed of cold and very dense nuclear matter. Lattice simulations at finite quark
chemical potential are exceedingly difficult because of the so-called “sign-problem” that
prevents standard Monte-Carlo methods from being applicable. However, recently new
methods have been proposed [FK02b, A+02, dFP02] that allow lattice simulations for
small quark chemical potentials and the phase boundary line has been determined in
this region. A sketch of the expected phase diagram of QCD is shown in figure 0.1. De-
pending on the temperature T and the baryon chemical potential µ, strongly interacting
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Figure 0.1: Sketch of the phase diagram of QCD in the T−µ plane [Han01]. At finite tem-
perature and vanishing quark chemical potential, where most of today’s lat-
tice QCD simulations are performed, the transition from the hadronic phase
to the QGP is presumably a crossover. This smooth crossover is expected
to turn into a first order transition at a critical point (Tc, µc). At very large
quark chemical potentials and small temperature, quark matter supposedly
becomes a color-superconductor. For further explanations, see text.

matter may occur in different phases: the hadronic phase, the QGP phase and (several)
color-superconducting phases. The (T, µ = 0) axis is reasonably well understood from
lattice QCD calculations. Below a critical temperature of order T ∼ 170 MeV strongly
interacting matter is in the hadronic phase and there is a smooth crossover to a de-
confined QGP phase if the temperature is increased. This smooth crossover persists at
small quark chemical potentials and turns into a first order transition at a critical point
(Tc, µc) = (160±4, 242±12) MeV [FK02a]. At the critical point the transition is second
order. At large quark chemical potentials and small temperature, quark matter pre-
sumably becomes a color-superconductor. There can be several color-superconducting
phases, depending on the symmetries of the order parameter for the condensation of
quark Cooper pairs.

The early universe evolved close to the temperature axis in the phase diagram of strongly
interacting matter. Matter in the core of compact stellar objects, like neutron stars, is
close to the quark chemical potential axis, at values of µ around 400 – 500 MeV. Nuclear
collisions at bombarding energies around ELab ∼ 1 AGeV explore a region of tempera-
tures and quark chemical potentials around (T, µ) ∼ (70, 250) MeV. Collisions at current
RHIC energies of

√
s = 200 AGeV are expected to excite matter in a region around and

above (T, µ) ∼ (170, 10) MeV. Collision energies in between these two extremes cover
the intermediate region and, in particular, may probe the critical endpoint.
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At very high temperatures, the strong coupling constant gs becomes small and one may
suspect that the equation of state of the QGP can be calculated perturbatively. Unfor-
tunately, however, this is not the case because of collective excitations in the plasma.
The energy of individual particles is of order T and the average distance between two
neighboring particles is r̄ ∼ 1/T . The energy scale gsT is associated with the collec-
tive motion of the particles, which takes place over distances d ∼ 1/(gsT ). The decay
rate of the quasiparticles is of order g2

sT . These different scales make a naive pertur-
bative treatment of the plasma impossible. In order to overcome this problem, resum-
mation schemes have been proposed, based for example on the Hard Thermal Loop
(HTL) approach [BP92,FT92,BI94,ABS99,ABPS02,BIR99a,BIR99b,BIR01] or on di-
mensionally reduced screened perturbation theory [KLRS03, BIR03, IRV04]. However,
these approaches still give reliable results only for temperatures T & 2.5 Tc, far above
the critical temperature Tc ∼ 0.2 GeV. At these high temperatures, the HTL approach
motivates and justifies a picture of weakly interacting quasiparticles, as determined by
the HTL propagators. In order to extend such descriptions to lower temperatures closer
to Tc, various models have been proposed. Early attempts were based on the MIT bag
model [EKS82]. More sophisticated approaches became necessary when more precise
lattice data appeared. Various aspects of QCD thermodynamics have been investigated
in terms of quasiparticle models based on perturbative calculations carried out in the
HTL scheme [PKPS96,LH98,PKS00,ST03,BKS05], in terms of a condensate of Z3 Wil-
son lines [Pis00], by refined quasiparticle models based on the HTL-resummed entropy
and extensions thereof [RR03], by an improved version with a temperature-dependent
number of active degrees of freedom [SW01], by an evaporation model of the gluon con-
densate [DGR04], and by quasiparticle models formulated in dynamical terms [IST05]
(for a recent review see [Ris04]).

In the first part of this work, we will extend the improved quasiparticle model with
a temperature-dependent number of active degrees of freedom to finite quark chemical
potential. Such an extension is important for a number of reasons: First, for current
heavy ion collision experiments at SPS and RHIC the chemical freeze-out occurs at
µf.o. ≃ 100 MeV, (baryon chemical potential µB ≃ 300 MeV) [BMHS99] and µf.o. ≃ 15
MeV, (µB ≃ 45 MeV) [BMMRS01], respectively. Thus, a finite quark chemical potential
should be introduced to describe deconfined quark matter created in these experiments.
Second, first lattice QCD simulations at finite quark chemical potential are now available
and it is of great theoretical interest to interpret these results. Third, the introduction of
an additional external control parameter helps to test the reliability of the quasiparticle
approach. In the second part of this thesis, we will turn to a more microscopic descrip-
tion of the QGP. The deconfinement phase transition is well defined in the heavy-quark
limit, where the Polyakov loop serves as an order parameter. This phase transition is
characterized by the spontaneous breaking of the Z(3) center symmetry of QCD. In prin-
ciple an effective theory for the Polyakov loop can be constructed by integrating out the
gluon fields. The thermodynamic potential can then be deduced from this effective the-
ory. The chiral phase transition, on the other hand, has a well-defined order parameter
in the chiral limit of massless quarks: the chiral (or quark) condensate 〈q̄q〉. This con-
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densate, and its dynamical generation, is described by the Nambu–Jona-Lasinio (NJL)
model. It is an effective Lagrangian of relativistic fermions interacting through local
fermion-fermion couplings. In principle, this Lagrangian can be obtained from QCD by
“integrating out” the gluonic degrees of freedom, replacing them by a local four-point
color-current interaction. Neither the heavy quark limit, nor the chiral limit are realized
in nature. However, both the Polyakov loop and the quark condensate can still serve as an
indicator for a rapid crossover towards deconfinement and chiral symmetry restoration.
Our investigations will be based on a synthesis of a two-flavor NJL model and the non-
linear dynamics involving the Polyakov loop. Various lattice data are used to set up the
model and test its predictions. Finally, this model will be extended to three quark flavors.

* * *

This work is organized as follows:

The basics of finite temperature QCD are introduced in the first chapter. We set in with
a summary of important aspects of vacuum QCD, where our main focus will be on chiral
symmetry and its spontaneous breaking. Then we briefly review thermal field theory,
the appropriate framework in which to calculate the thermodynamics of hot QCD. In
the final section of this chapter, an up-to-date overview of the thermodynamics of QCD,
referring mainly to latest lattice data, is presented. The critical temperatures for the
phase transition from the hadronic phase to the QGP phase from various lattice QCD
simulations with different numbers of flavors are listed and thermodynamical quantities
from recent finite-temperature simulations of full QCD including dynamical quarks are
discussed. Finally, some methods to obtain expectation values of observables at finite
quark chemical potential are reviewed and results for thermodynamic observables and
the phase boundary line are presented. These results will be extensively referred to in
subsequent chapters.

The aim of the second chapter is to explain what we have learned about QCD thermody-
namics from lattice QCD simulations using a very simple, concrete model. To this end,
we introduce the MIT bag model, a phenomenological model that implements two key
properties of QCD, asymptotic freedom and confinement. Because of its simple analytic
form the MIT bag model is the most widely used equation of state to study the properties
of deconfined matter at high temperatures and large densities. This model is then tested
with results from lattice QCD simulations, both at finite temperature and finite quark
chemical potential. The primary purpose of this chapter is to qualitatively explain some
of the key features of the lattice QCD phase diagram in terms of a clear and intuitive
physical model and to set the stage for the more refined models which will be discussed
in subsequent chapters.

The third chapter is devoted to the quasiparticle description of hot QCD. Lattice QCD

13
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thermodynamical quantities have been successfully described by a gas of non-interacting
quark-gluon quasiparticles with temperature dependent quasiparticle masses. At high
temperatures, such a description is motivated by HTL perturbation theory. For T . 3 Tc,
non-perturbative confinement physics not amenable in an expansion in gs starts to be-
come important. Since confinement simply reduces the number of thermally active de-
grees of freedom in a statistical sense, confinement can be schematically incorporated in a
quasiparticle model by a modification of the particle distribution functions [SW01]. This
model successfully describes and predicts a variety of lattice data including the Debye
screening mass, which is not correctly estimated by other quasiparticle models. In this
chapter we study the extension of this model to finite quark chemical potential µ. The
phase boundary line Tc(µ) and thermodynamical quantities at finite µ are calculated and
tested with recent lattice QCD results.

The ‘classic’ two-flavor NJL model, which incorporates the chiral symmetry of QCD and
its spontaneous breakdown at T < Tc, is discussed in chapter 4. It is an effective La-
grangian of relativistic fermions interacting through local fermion-fermion couplings. In
principle it can be obtained from QCD by “integrating out” the gluonic degrees of free-
dom, replacing them by a four-point color-current interaction. Starting from this QCD
motivated interaction, we investigate the vacuum properties of the theory and outline
how the NJL model can be employed to study quark and meson properties at finite tem-
perature and density. As an application we then calculate the constituent quark mass,
the pion mass, and the sigma mass as functions of temperature and quark chemical po-
tential/density. We then derive the thermodynamic potential. The chapter is concluded
with a brief comparison of the NJL model and the MIT bag model.

In chapter 5 we study the color-octet sector of the NJL model in detail. One of the key
properties of QCD is color confinement, which requires that quarks have to be part of
bound color-singlet states. One of the shortcomings of the NJL model is that it does not
confine quarks and thus allows for colored quark-antiquark excitations. We will calculate
the masses of the lowest-lying color-octet bound states and show that such excitations
are only possible at energies far above the cutoff of the theory and that they are thus
insignificant for the low-energy spectrum. Finally we show that this also holds at finite
temperature and finite quark chemical potential.

A generalized NJL model which includes features of both chiral symmetry restoration
and confinement is investigated in chapter 6. We first present a detailed review of the
Polyakov loop as an order parameter of deconfinement in the heavy quark limit. Subse-
quently, an effective theory for the Polyakov loop is constructed and its thermodynamic
properties are studied and compared to continuum extrapolated SU(3) lattice QCD re-
sults. We then introduce a generalized two-flavor NJL Lagrangian, in which quarks
couple to a (spatially constant) temporal background SU(3) gauge field representing
Polyakov loop dynamics. This Polyakov-loop-extended NJL model (the PNJL model)
incorporates the chiral symmetry of QCD and its spontaneous breakdown at T < Tc,
while at the same time it also includes features of confinement. We derive its thermody-
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namic potential and study the thermodynamic properties. The predictions of the model
are then tested with lattice data available for full QCD thermodynamics at zero and
finite quark chemical potential. The chapter is completed with a discussion of the quark
mass dependence of the PNJL model.

In chapter 7 the PNJL model is extended to three flavors. The main difference between
the two flavor case and the three flavor case is that the strange quark mass is different
from the masses of non-strange quarks. This means that we have to deal with an ex-
plicitly broken SU(3) flavor symmetry, and thus 〈s̄s〉 6= 〈ūu〉, even for equal chemical
potentials. We study how the quark condensate depends on the current quark masses and
how chiral restoration occurs at finite temperature and finite quark chemical potential if
an explicit symmetry breaking exists. We also explore how the subtle interplay between
the chiral condensate and the Polyakov loop dynamics is affected by the larger strange
quark mass. As an application, various thermodynamical quantities are calculated and
confronted with recent lattice QCD results.

To conclude, we summarize our results and present an outlook regarding future work.
Several short appendices serve to complete the material presented in the main body of
the text.

* * *

A short note on conventions: We use natural units ~ = c = kB = 1 throughout this work.
Indices which appear twice in a formula are summed over. Temperature is denoted by
T and sometimes by β = 1/T . Thermal averages are always 〈. . . 〉β, unless otherwise
stated. The word ’vacuum’ refers to the situation of zero temperature and no baryon
density. Finally, Lorentz 4-vectors are denoted by x, p and so on, whereas 3-vectors x,p
are printed in bold font.
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Chapter 1

Basics of QCD Thermodynamics

In this first chapter we briefly summarize Quantum Chromodynamics (QCD) as the
fundamental theory of strong interactions. We will discuss the chiral symmetry of QCD
and its spontaneous breaking, which will play an important role in later parts of this work,
in detail. Subsequently, thermal field theory, the appropriate tool to study QCD at finite
temperature and finite chemical potential, is introduced. Finally we gather what is known
about the QCD equation of state (EoS) and the QCD phase transition and its dependence
on the external parameters temperature and quark chemical potential, mainly referring
to current lattice QCD results. We discuss up-to-date results from lattice simulations of
full QCD including dynamical quarks at finite temperature and vanishing quark chemical
potential. We then outline some of the approaches that are used to circumvent the so-
called “sign problem” at finite densities, at least for small quark chemical potentials. This
problem prohibits the straight-forward application of the Monte-Carlo methods used at
vanishing quark chemical potential and makes calculations exceedingly more costly. The
results of this chapter will be extensively referred to in subsequent chapters.

1.1 Vacuum properties of QCD

QCD, the non-Abelian gauge field theory that describes the dynamics and interactions
of colored quarks, is one of the components of the SU(3) × SU(2) × U(1) Standard
Model. The fundamental degrees of freedom of this theory are spin-1 gauge bosons, the
gluons Aa

µ, and massive spin-1
2

fermions, the quarks ψ. Gluons are characterized by their
color index a (a = 1 . . . 8) and transform as the adjoint representation of the gauge group,
while quarks belong to its fundamental complex representation. A quark of specific flavor
(such as a strange quark) comes in three colors, whereas there are eight different gluons
and thus the gauge group of QCD is SU(3). QCD is defined as a field theory by its
Lagrangian density,

LQCD = −1

2
Tr(GµνG

µν) + ψ̄(iγµDµ − m̂)ψ, (1.1)

with the gluonic field strength tensor

Gµν ≡ (∂µA
a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν)t

a, (1.2)
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Chapter 1 Basics of QCD Thermodynamics

and the gauge covariant derivative

Dµ = ∂µ + igst
aAa

µ. (1.3)

gs is the QCD coupling constant and the matrices ta denote the eight Gell-Mann matrices,
which are the generators of SU(3). They satisfy the commutation relations [ta, tb] =
ifabctc where the fabc are the group structure constants of SU(3). Among the Nf = 6
quark flavors with mu, md, ms ≈ 4, 7, 150 MeV and mc, mb, mt ≈ 1.5, 4.5, 170 GeV, there
is a natural separation in sectors of ‘light’ and ‘heavy’ quarks. Only light quarks are
considered in this work: As we work within a temperature range T ≪ mc, the influence
of heavy quarks on thermodynamics is negligible. With Nf = 3 we have

ψ(x) =





uα(x)
dα(x)
sα(x)



 , (1.4)

where α = 1 . . . 3 is a color index. The current quark mass matrix in LQCD becomes

m̂ =





mu

md

ms



 . (1.5)

Since QCD is renormalizable, its bare parameters gs and mq depend on the energy scale
µ at which the theory is probed. The renormalization group equation for the running
coupling αs(µ) = g2

s(µ)/4π reads

µ
d

dµ
αs(µ) = β(αs) = −β0

6π
α2

s −
β1

24π2
α3

s −O(α4
s), (1.6)

where
β0 = 33 − 2Nf and β1 = 306 − 38Nf . (1.7)

In solving this differential equation for αs, a constant of integration is introduced. This
constant is the single fundamental parameter of QCD that must be determined from
experiment. The solution of (1.6) can be written as an expansion in inverse powers of
ln(µ2/Λ2

QCD):

αs(µ) =
12π

β0 log(µ2/Λ2
QCD)

−36πβ1 log(log(µ2/Λ2
QCD))

β3
0 log2(µ2/Λ2

QCD)
+O

(

log2(log(µ2/Λ2
QCD))

log3(µ2/Λ2
QCD)

)

, (1.8)

with ΛQCD ≃ 0.2−0.3 GeV denoting the constant of integration. This solution illustrates
the property of asymptotic freedom. Since Nf < 16, the coupling constant becomes small
at high energies (e.g. αs(mτ = 1.77 GeV) = 0.35 and αs(mZ = 91 GeV) = 0.117 [E+04]),
thus allowing a perturbative treatment of the interactions between quarks and gluons.
On the other hand, this equation has a Landau pole in the infrared. Consequently, the
coupling becomes large at low energies and a perturbative expansion in terms of quarks
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and gluons as degrees of freedom is no longer feasible. In nature, only bound states
of quarks and gluons which form color-singlets are observed at low energies. From the
point of view of group theory this means that in constructing the baryon state out of
three quarks, we have to pick out the singlet representation in the decomposition of the
product of three triplets into irreducible representations:

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10. (1.9)

Mesons, which are made of quark-antiquark pairs, correspond to the singlet of the irre-
ducible representations in 3 ⊗ 3∗:

3 ⊗ 3∗ = 1 ⊕ 8. (1.10)

The requirement that quarks at low energies have to be part of a bound color-singlet
state is called color confinement. This property has significant impact on the ground
state of the theory: the empty Fock space cannot be the ground state, otherwise it would
be possible to excite a single quark as asymptotic state. This hints to the presence of
condensates in the QCD vacuum.

1.2 Chiral symmetry and condensates

Besides the local SU(3) gauge symmetry, the QCD Lagrangian (1.1) also possesses a
global U(1) symmetry, i. e. the Lagrangian is invariant under global phase transformations
ψ → eiθψ. By applying Noether’s theorem, this symmetry yields the conservation of
baryon number,

B =
1

3

�
d3xψ†ψ. (1.11)

In the limit of vanishing quark masses, the QCD Lagrangian (1.1) has an extra symmetry
related to the conserved left- or right-handedness (chirality) of zero mass spin-1/2 parti-
cles. This limiting case is important as the masses of the light quarks are small compared
to typical hadronic mass scales such as the nucleon mass MN ∼ 1 GeV. Consider

LQCD ≡ L(0)
QCD + δL, (1.12)

where L(0)
QCD refers to the limit m̂ = 0 and δL = −ψ̄m̂ψ. L(0)

QCD is invariant under the
group

U(3)L ⊗ U(3)R ≡ SU(3)L ⊗ SU(3)R ⊗ U(1)V ⊗ U(1)A. (1.13)

The chiral flavor group SU(3)L ⊗ SU(3)R transforms the left- and right-handed quark
fields ψL,R ≡ 1

2
(1 ∓ γ5)ψ according to

ψL → ei λa

2
θa
LψL and ψR → ei λa

2
θa
RψR, (1.14)

where λa are the Gell-Mann matrices in flavor space and a = 1 . . . 8. Applying Noether’s
theorem yields the conserved currents,

Jµa
L = ψ̄Lγ

µλ
a

2
ψL and Jµa

R = ψ̄Rγ
µλ

a

2
ψR, (1.15)
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with ∂µJ
µa
L = ∂µJ

µa
R = 0. Instead of left- and right-handed currents, it is common to

introduce vector and axial-vector currents

Jµa
V ≡ Jµa

R + Jµa
L = ψ̄γµλ

a

2
ψ and Jµa

A ≡ Jµa
R − Jµa

L = ψ̄γµγ5
λa

2
ψ, (1.16)

with ∂µJ
µa
V = ∂µJ

µa
A = 0. Chiral SU(3)L ⊗ SU(3)R symmetry is therefore equivalent to

invariance under the group SU(3)V ⊗ SU(3)A with transformations

ψ → ei λa

2
θa
V ψ and ψ → eiγ5

λa

2
θa
Aψ. (1.17)

The axial U(1)A symmetry, i. e. invariance under

ψ → eiγ5θAψ (1.18)

is known to be broken in nature and probably broken in QCD by instanton effects
[tH76,Shu88]. This gives rise to the unnaturally large η′ mass.

There is strong empirical evidence that the SU(3)A symmetry is spontaneously bro-
ken in the physical vacuum: For massless fermions helicity eigenstates are also parity
eigenstates. If the SU(3)A symmetry remains unbroken, one would observe degener-
ate hadronic multiplets of opposite parity (so-called parity doublets) in the meson and
baryon spectrum. However, such doublets are not observed in nature. For example, the
ρ meson mass mρ = 770 MeV is much smaller than the mass of its axial partner, the a1

meson, which is ma1
= 1260 MeV. The spontaneously broken SU(3)A symmetry leads

to the appearance of eight Goldstone bosons, which are identified as the pions, kaons,
antikaons and the η meson. In nature, the Goldstone bosons are not exactly massless
because chiral symmetry is explicitly broken by the small but finite current quark masses.
However, their masses of 140− 500 MeV are small compared to typical hadronic masses
of 1 GeV.

Spontaneous chiral symmetry breaking goes in parallel with a qualitative re-arrangement
of the vacuum, an entirely non-perturbative phenomen. The ground state is now pop-
ulated by scalar quark-antiquark pairs. The corresponding ground state expectation
value

〈ψ̄ψ〉 ≡ 〈0|ψ̄ψ|0〉 = 〈0|ψ̄LψR + ψ̄RψL|0〉 = −Tr lim
y→x+

〈0|T ψ(x)ψ̄(y)|0〉 (1.19)

is called the chiral (or quark) condensate. Here, T is the time ordering operator. The
chiral condensate can be related to the pion decay constant fπ = 92.4 MeV via the
Gell-Mann, Oakes, Renner (GOR) relation [GMOR68]

m2
πf

2
π = −1

2
(mu +md)〈ūu+ d̄d〉 + O(m2

u,d). (1.20)

Taking mu = 5 MeV and md = 7 MeV yields a value for the chiral condensate,
〈ūu〉 = 〈d̄d〉 ≃ −(250 MeV)3.
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1.3 Thermal field theory

Chiral symmetry breaking is also observed in lattice QCD calculations. The chiral con-
densate 〈ψ̄ψ〉β at finite temperature is derived starting from the pressure by taking the
derivative with respect to the quark mass:

〈ψ̄ψ〉β ∼ ∂p(T, V )

∂mq
. (1.21)

Lattice QCD results for 〈ψ̄ψ〉β are shown in Fig. 1.1. Above a critical temperature Tc

the finite expectation value of the chiral condensate melts away, resulting in a system,
where chiral symmetry is not spontaneously broken anymore.
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<ψψ>

0

Figure 1.1: Temperature dependence of the chiral condensate from lattice QCD [B+95b].

1.3 Thermal field theory

Our aim in this work is to study QCD at finite temperature and finite quark chemical
potential. The appropriate tool to calculate the properties of a hot system of quarks and
gluons is thermal field theory (TFT). In the following, we introduce the main concepts
and techniques of TFT which will be of importance for the discussion of the physics of
the QGP in subsequent chapters. We mostly follow [Kap89] and [Bel96] here.

In a relativistic quantum system where particles can be created and destroyed, it is
most straightforward to compute observables in the grand canonical ensemble. In this
ensemble, the volume V , the temperature T , and the chemical potential µ are fixed
variables. The grand canonical partition function is

Z(V, T, µ) = Tr e−β(H−µN ). (1.22)
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Chapter 1 Basics of QCD Thermodynamics

Here, β = 1/T is the inverse temperature, H is the Hamiltonian of the system and N
is the particle number operator. For simplicity we will assume µ = 0 in the rest of this
section. The statistical average of an operator A is obtained using

〈A〉β =
1

ZTr
[

Ae−βH] . (1.23)

Consider the propagation of spinless neutral particles, represented by a scalar field φ(x),
in a heat bath. This involves the thermal average of the Green’s function

〈G(x, x′)〉β ≡ 〈T φ(x)φ(x′)〉β =
∑

n

〈n|G(x, x′)|n〉. (1.24)

Here, T denotes the time ordered product of the fields. Next we make use of the operator
identity

T φ(x)φ(x′) = 〈0|T φ(x)φ(x′)|0〉+ :φ(x)φ(x′) :, (1.25)

where : φ(x)φ(x′) : denotes the normal-ordered product of φ(x) and φ(x′). Contrary to
the vacuum case, the normal-ordered product of two fields does not vanish in the presence
of a heat bath because of the term

∑

n〈n| . . . |n〉 in (1.24). Decomposing the field φ in
creation and annihilation operators a†p and ap, the new term is given by

2

�
d3p

(2π)3

1

2Ep
ei(x−x′)〈a†pap〉β = 2

�
d3p

(2π)3

1

2Ep
ei(x−x′)fB(Ep), (1.26)

where fB(Ep) = (exp(βEp)−1)−1 is the Bose-Einstein distribution function. It describes
the propagation of “on-shell” particles from the heat bath with the statistical probability
of having the appropriate momentum. Adding the usual vacuum part, we find the thermal
propagator in momentum space:

DF (p) =
i

p2 −m2 + iǫ
+ 2πδ(p2 −m2)fB(|p0|). (1.27)

The calculation for the free fermion field is similar and results in the thermal propagator

SF (p) = (/p+m) ·
(

i

p2 −m2 + iǫ
− 2πδ(p2 −m2)fD(|p0|)

)

, (1.28)

where fD(p0) = (exp(βp0) + 1)−1 is the Fermi-Dirac distribution function.

1.3.1 Perturbative techniques

So far we have only discussed free particles. We will now consider the case of an in-
teracting field theory. If the interaction is a small correction to the free Hamiltonian,
then a perturbative expansion in powers of the coupling constant can be performed. Our
starting point is the observation that the statistical density operator ρ = exp(−βH) can
be regarded as a time evolution operator in imaginary time τ = it over the interval [0, β].
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1.3 Thermal field theory

Therefore, the partition function can be expressed in terms of an Euclidean path integral.
In the case of a scalar field, it reads

Z(T, V ) =

�
Dφ exp



−
β�

0

dτ

�
V

d3xLE[φ(x, τ)]



 , (1.29)

where the field φ has to obey periodic boundary conditions, φ(x, 0) = φ(x, τ). Due to
their spinor nature, fermionic fields obey anti-periodic boundary conditions. Field theory
at finite temperature is then equivalent to a Euclidean field theory in a four-dimensional
space-time with the time component compactified on a ring with circumference β = 1/T .
The thermal expectation value of an operator A[φ] in contact with a heat bath is then
given by

〈A〉β =
1

Z

�
Dφ A[φ] exp



−
β�

0

dτ

�
V

d3xLE [φ(x, τ)]



 . (1.30)

The formal similarity of (1.29) with the generating functional Z[J ] for vanishing external
sources J at zero temperature makes both perturbative (Feynman diagram) and lattice
techniques easily adaptable tools to evaluate 〈A〉β. The corresponding expression of
(1.29) for QCD follows as

Z(T, V, µ) =

�
DAµDψ̄Dψ exp



−
β�

0

dτ

�
V

d3x {LE
QCD − µqψ

†ψ}



 , (1.31)

where LE
QCD is the Euclidean versions of (1.1), and we have introduced an explicit de-

pendence on the quark chemical potential µq.

1.3.2 The imaginary time formalism

Various choices for the time path in Eqn. (1.31) are possible, which lead to different
calculational frameworks. The simple choice of the direct path results in the so-called
imaginary time formalism, which we will utilize in this work. Its major advantage is
that in the Fourier language the Feynman rules are very similar to those of the vacuum
theory, except that the energies in the propagators are discrete and imaginary. The loop
integrals are replaced by �

d4p

(2π)4
→ iT

+∞
∑

n=−∞

�
d3p

(2π)3
, (1.32)

where the sum is understood to be taken over the discrete set of Matsubara frequencies
ωn. Energy-momentum conserving delta functions become

(2π)4δ(4)(p) → (2π)3

iT
δn,0δ

(3)(p). (1.33)
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The Matsubara frequencies appear as

p0 → ωn =
2πi

β
(n + ζ), n ∈ Z and ζ =







0 for bosons,

1
2

for fermions.
(1.34)

In Appendix D we show in detail how one and two fermion line integrals, which are used
frequently in this work, can be calculated using the imaginary time formalism.

1.4 The QCD phase diagram

Thermodynamical information is often presented in the form of a phase diagram, in which
different manifestations or phases of a substance occupy different regions of a plot whose
axis are calibrated in terms of external conditions or control parameters. For QCD, the
relevant control parameters are the current quark masses mi, the temperature T and the
quark chemical potentials µi, i = u, d, s. If we only consider two flavors of quarks with
identical masses mu = md ≡ mq and a common quark chemical potential µu = µd ≡ µq,
the phase boundaries are two dimensional surfaces in the three-dimensional parameter
space {T, µq, mq}. If the quark mass mq is also fixed, the phase boundaries are lines in
the two-dimensional parameter space {T, µq}. This case is referred to in the following.

The QCD phase transition happens at a temperature where the coupling is not small
and QCD is strongly interacting. The only way to perform calculations in this regime
is to simulate QCD on a lattice, i. e. to evaluate Eqn. (1.31) numerically at discrete
space-time points using Monte-Carlo techniques. This is possible since one is dealing
with an Euclidean path integral where large fluctuations are exponentially damped, un-
like in Minkowski space, where the dominant contribution to the path integral emerges
from the interference pattern of oscillating amplitudes. Furthermore, the introduction
of a lattice spacing a introduces a cut-off 1/a in momentum space that regularizes the
continuum-inherent ultraviolet divergences.

1.4.1 The critical temperature

The QCD phase transition at finite temperature and vanishing quark chemical potential
has been successfully studied on the lattice in the case of pure SU(3) gauge theory and
also for QCD with dynamical quarks. In Table 1.1 the transition temperatures extrapo-
lated to the chiral limit, found in lattice simulations with various improved actions, are
summarized. For pure SU(3) gauge theory, the transition temperature is Tc ∼ ΛQCD. If
quarks are added, Tc is lowered because the critical energy density that triggers the phase
transition can be reached earlier if more thermally active degrees of freedom are present.
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1.4 The QCD phase diagram

action Nf Nt Tc[MeV] Ref.
plaquette 0 ∞ 268 [BKLP99,EHK98]
Symanzik 0 ∞ 269 [BKLP99]

RG 0 ∞ 276 [O+99]
RG+clover 2 4 171(4) [AK+01b]

Symanzik+p4 2 4 173(8) [KLP+01b]
Symanzik+p4 3 4 154(8) [KLP+01b]

Table 1.1: The transition temperature Tc in the chiral limit. The scale is fixed by
√
σ ≃

425 MeV for pure SU(3) gauge theory and mV = 770 MeV for Nf = 2 and
Nf = 3 QCD. Nt denotes the number of temporal lattice sites used for the
simulations. Nt = ∞ means that the lattice results have been continuum
extrapolated.

For two light and one heavy quark flavor, the transition temperature remains close to
the two-flavor value, indicating that the quark mass dependence of Tc is small [Sch02].
A fit to several lattice calculations of Tc at different quark mass values suggests a linear
behavior of the form [KLP01a]

Tc(mπ) = Tc(0) + 0.039(4)mπ, (1.35)

where mπ stands for the mass of the pseudo-scalar Goldstone particle. The weak mπ-
dependence indicates that the transition is not ’pion’-dominated, but rather ’resonance’-
driven.

1.4.2 The equation of state

The EoS is one of the most important quantities in a phenomenological study of hot
QCD and different lattice collaborations have investigated this issue recently. The CP-
PACS collaboration carried out a systematic calculation of the EoS of full QCD for two
flavors of Wilson-type quarks. The simulations were performed on 163 × 4 and 163 × 6
lattices with a RG-improved action for the gluon sector and a meanfield-improved clover
action for the quark sector [AK+01a]. The pressure was calculated using the integral
method [EFK+90]. This method is based on the equation p = −f (f = (−T/V ) lnZ
is the free energy density), which is valid for large homogeneous systems. Since the
derivatives of the partition function can be expressed by expectation values of operators,
which can be computed by a Monte-Carlo simulation, the pressure can be obtained by
integrating these expectation values in parameter space. The energy density ǫ is acquired
by combining the results for the pressure and the interaction measure ǫ− 3p, which can
be accurately computed in lattice QCD simulations. The scaled pressure p/T 4 and the
scaled energy density ǫ/T 4 are shown in Fig. 1.2.
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Figure 1.2: The scaled pressure p/T 4 (left panel) and the scaled energy density ǫ/T 4

(right panel) calculated with RG-improved gauge and meanfield-improved
clover quark actions on 163 × 4 (filled symbols) and 163 × 6 (open symbols)
lattices as a function of T/Tc [AK+01a].

Filled symbols denote results from simulations performed on lattices with Nt = 4 tem-
poral lattice sites, while open symbols denote results from calculations with Nt = 6.
Different shapes of the symbols correspond to different values of mPS/mV, i. e. to differ-
ent quark masses. The short lines on the right axis indicate the Stefan-Boltzmann ideal
gas values for Nt = 4, Nt = 6 and the continuum limit. The dependence of both, pressure
and energy density on the quark masses appears to be rather weak over a wide range of
values. On the other hand, the Nt-dependence is sizeable for large temperatures: there
is a big difference in both, pressure and energy density calculated on Nt = 4 and Nt = 6
lattices for T & 1.2 Tc. However, the cutoff effects due to the small values of Nt are
not important close to Tc and that the magnitude and the temperature dependence of
the EoS on Nt = 6 lattices are quite similar for improved Wilson and staggered quarks.
The lattice simulations do not indicate that the pressure and the energy density approach
their respective Stefan-Boltzmann ideal gas values in the high temperature limit. The de-
viations are too big to be reproduced in ordinary high temperature perturbation theory.
However, they are accounted for in quasiparticle models [PKS00,SW01] and resummed
perturbative approaches [BI02]. Similar observations have been made with staggered
quarks. The difference in both, pressure and energy density from simulations with quark
masses mq/T = 0.075 and mq/T = 0.15 is small within errors [B+97]. The pressure
and the energy density also do not approach their respective Stefan-Boltzmann ideal gas
values even at temperatures as large as T = 4Tc. A clear deviation of the pressure and
the energy density from their respective Stefan-Boltzmann limits at finite Nt has also
been observed in a quenched study of the EoS with the RG-improved action [O+99].

The Bielefeld group has calculated the EoS for Nf = 2, 3 and 2+1 on a 163 × 4 lat-
tice, using the p4-improved staggered quark action with the Symanzik improved gauge

26



1.4 The QCD phase diagram

action [KLP00]. For this action the Nt-dependence is known in the Stefan-Boltzmann
limit. The EoS has been computed at mq/T = 0.4 for Nf = 2 and Nf = 3, and at
mu,d/T = 0.4 and ms/T = 1.0 for Nf = 2 + 1. The results are shown in Fig. 1.3.
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Figure 1.3: The scaled pressure p/T 4 (left panel) and the scaled energy density ǫ/T 4

(right panel) from the p4-improved staggered action on a 163 × 4 lattice as a
function of T/Tc [KLP00].

A clear Nf -dependence is visible for both, pressure and energy density. They become
larger when the number of degrees of freedom increases. As in the case of Wilson-
type quarks, pressure and energy density deviate substantially from the ideal gas limit
indicated by the arrows on the right axis of the figures.

1.4.3 Finite density

Lattice QCD simulations at finite density are exceedingly difficult because of the so-
called “sign-problem”. The fermion determinant obtained by integrating out the fermion
fields in Eqn. (1.31) is real for vanishing quark chemical potential, but becomes complex
as soon as µq 6= 0. Therefore, the application of importance-sampling methods is no
longer feasible, increasing the numerical efforts by several orders of magnitude. In the
following we summarize some recent approaches to circumvent the sign problem at least
for small chemical potentials. For further details, the reader is referred to e. g. Refs.
[LP03,MNNT03].

Glasgow method

The key idea of this method is to expand the partition function Eqn. (1.31) in the fugacity
variable eµq/T . The partition function is then given by

Z =

�
DU detM(µq)

detM(0)
detM(0)e−β0Sg[U ] =

〈

detM(µq)

detM(0)

〉

µq=0

, (1.36)

where M(µq) is the fermion determinant, obtained by integrating out the fermion fields
in (1.31), β0 = 1/(2gs) is the gauge coupling, Sg is the gauge part of the action and U is
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the link variable on the lattice that is associated with the gauge field. The determinant
ratio is now treated like an observable, while the integration measure is defined at µq = 0.
Thus it is positive and the sign problem does not appear. However, two problems arise:
The reweighting factor corresponds to a ratio of two partition functions with different
actions. Thus it decays exponentially with the difference between their free energies
e−∆F/T ∝ e−cV , where c is a constant. In the thermodynamic limit where V → ∞, this
difference tends to zero and consequently the reweighting factor becomes zero. Hence,
extrapolations to this limit are extremely difficult. Furthermore, the overlap between
the reweighted ensemble and the full ensemble deteriorates with increasing µq, making
importance-sampling methods untrustworthy.

Multiparameter reweighting

The ensemble overlap can be significantly improved by a multidimensional generalization
[FK02b] of the Glasgow method. The essential idea is to reweight in the lattice gauge
coupling β in addition to µq,

Z =

�
DU detM(µq)

detM(0)
e−(β−β0)Sg[U ] detM(0)e−β0Sg[U ] =

〈

e−βSg detM(µq)

e−β0Sg detM(0)

〉

µq=0,β0

,

(1.37)
and choose β0 so that

∣

∣

∣

∣

detM(µq)

detM(0)

∣

∣

∣

∣

e−(β−β0)Sg[U ] (1.38)

becomes as large as possible. At imaginary chemical potential, the predictions of this
method are in agreement with direct simulations, while the Glasgow method fails to
reproduce them due to the overlap problem [FK02b]. A first estimate of the QCD phase
diagram for 2 + 1 flavors [FK02a] is shown in Fig. 1.4. This simulation was carried out
using staggered fermions on a 4 × 83 lattice with a pion mass at least twice as large as
the physical value. The calculation finds a critical point (Tc, µc) = (160 ± 4 MeV, 242 ±
12 MeV) where the first-order transition that separates the hadronic and the QGP phase
ends. For smaller T and µq, the transition becomes a crossover.

Taylor expansion

A different attempt to explore the phase diagram at least for small µq exploits the fact
that derivatives of an observable with respect to µq can be calculated with standard
methods at µq = 0. Hence, the phase transition line close to µq = 0 is obtained by Taylor
expanding [A+02]:

Tc(µq) = Tc(0) + µq
dTc

dµq

∣

∣

∣

µq=0
+
µ2

q

2

d2Tc

dµ2
q

∣

∣

∣

µq=0
+ . . . (1.39)

Derivatives with odd powers of µq vanish because of the realness of the partition function,
so it is sufficient to calculate only d2Tc/dµ

2
q(µq = 0) on the lattice. Truncation errors
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1.4 The QCD phase diagram

Figure 1.4: The T − µB diagram from the lattice calculation of [FK02a]. Note that
µB ≡ 3µq. The critical endpoint is located at Tc = 160 ± 4 MeV and µc =
242± 12 MeV. The solid line denotes a first order transition, the dashed line
a crossover. Tc(µB = 0) is determined within the same calculation as 172± 3
MeV.

accordingly enter at O(µ4
q). Assuming that the transition line remains parabolic, a sketch

of the phase diagram for Nf = 2 staggered fermions can be drawn, see figure 1.5. This
method can also be applied to study thermodynamic quantities at finite quark chemical
potential. In [A+03] derivatives of the thermodynamic potential with respect to the
quark chemical potential µq up to fourth order were calculated, enabling estimates of the
pressure and the quark number density as a function of µq. These simulations were carried
out on a 163×4 lattice with two continuum flavors of p4-improved staggered quarks with
masses m/T = 0.4. Results for the scaled pressure difference ∆p(T, µq)/T

4 = (p(T, µq)−
p(T, 0))/T 4 and the scaled total quark number density nq(T, µq)/T

3 = (∂p/∂µq)/T
3 are

shown in Fig. 1.6.

Imaginary chemical potential

Another line of attack is, to perform lattice QCD simulations at imaginary chemical
potential, where the fermion determinant is positive and thus standard methods as in
the case of µq = 0 can be used. For small µq/T an analytic continuation to real µq can
be performed. This technique was employed in [dFP02] to calculate the transition line
on a 83 × 4 lattice with two flavors of staggered quarks. It was found that the transition
line is well represented by the equation

Tc(µB)

Tc(0)
= 1 − 0.00563(38)

(µB

T

)2

, (1.40)
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Figure 1.5: Sketch of the phase diagram for Nf = 2 using the value for d2Tc/dµ
2
q(µq = 0)

[A+02], calculated on a 4 × 163 lattice with rotationally improved staggered
fermions. The diamond shows the end point of the first order phase transi-
tion from Fig. 1.4. The arrow marks the chemical freeze-out point at RHIC
Au+Au collisions at

√
s = 130 AGeV [BMMRS01].

while the next-order term O((µB/T )4) is statistically insignificant up to µB ∼ 500 MeV.
In a subsequent work [dFP03], the transition line was also determined for three degenerate
quark flavors. The results are presented in Fig. 1.7.
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Chapter 2

A Simple Model

In this chapter, the MIT bag model, a simple phenomenological model that implements
two key properties of QCD, asymptotic freedom and confinement, is introduced. Due to its
simple analytic form, the MIT bag model is widely used in astrophysics to determine the
properties of quark matter at high temperatures and large densities. We first summarize
some important thermodynamic relations which will be used frequently in the remainder
of this work. Subsequently we discuss the MIT bag model and employ it to calculate the
QCD phase diagram and the EoS . The primary purpose of this chapter is to explain
some of the key properties of the QCD phase diagram, as known from lattice QCD,
qualitatively in terms of a very simple physical model and to set the stage for more
refined models which are discussed in subsequent chapters.

2.1 Some important thermodynamic relations

All standard thermodynamical quantities can be derived from the partition function
(1.22). For example, the pressure p, the particle density n, the entropy density s and the
energy density ǫ for a spatial homogeneous system are

p = T
∂ lnZ
∂V

, n =
T

V

∂ lnZ
∂µ

, s =
1

V

∂(T lnZ)

∂T
, ǫ = −p + Ts+ µn. (2.1)

For an ideal gas, the trace in the partition function (1.22) can be explicitly calculated.
The resulting expression for bosons is

lnZb(T, µ) =
νbV

2π2

� ∞

0

dk k2 ln

[

1 − exp

(

−β
√

k2 +m2
b

)]

, (2.2)

while that for fermions is

lnZf (T, µ) =
νfV

2π2

� ∞

0

dk k2
{

ln
[

1 + exp
(

−β(
√

k2 +m2
f − µ)

)]

+ ln
[

1 + exp
(

−β(
√

k2 +m2
f + µ)

)]}

. (2.3)

νb and νf are the degeneracy factors for bosons and fermions, respectively, and mb and
mf denote the masses of the particles. In the limit mb,f → 0 the integrals in (2.2) and
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Chapter 2 A Simple Model

(2.3) can be calculated analytically. For bosons we obtain

T lnZb = νbV
π2

90
T 4, (2.4)

while for fermions the result is

T lnZf =
νfV

12

(

7

30
π2T 4 + T 2µ2 +

1

2π2
µ4

)

. (2.5)

If we neglect the small quark masses, the pressure and the energy density of a gas of
non-interacting quarks and gluons are thus given by

p =
37

90
π2T 4 + T 2µ2

q +
1

2π2
µ4

q,

ǫ =
37

30
π2T 4 + 3T 2µ2

q +
3

2π2
µ4

q. (2.6)

Gluons come in eight colors and two polarizations, thus νb = 8 · 2 ≡ νg. Quarks have
three color degrees of freedom, two flavors (if we only consider the two lightest quark
flavors u and d) and two spin states, and consequently νf = 3 · 2 · 2 ≡ νq. The chemical
potentials of u and d quarks have been taken to be equal, µu = µd ≡ µq. The entropy
density is given by

s =
1

V

∂(T lnZ)

∂T
=
∂p

∂T
=

74

45
π2T 3 + 2µ2

qT, (2.7)

and the quark number density is

nq =
T

V

∂ lnZ
∂µq

=
∂p

∂µq
= 2

(

µqT
2 +

µ3
q

π2

)

. (2.8)

Since the baryon number of a quark is 1/3, the baryon number density reads

nB =
2

3

(

µqT
2 +

µ3
q

π2

)

. (2.9)

2.2 The MIT bag model

The MIT bag model has been put forward in the mid-seventies as a microscopic model for
hadrons [CJJ+74,CJJT74,DJJK75]. At that time QCD, the fundamental gauge theory
of strong interactions, has already been formulated. The MIT bag model was one of
the first phenomenological quark models that implemented two of the key properties of
QCD, confinement and asymptotic freedom, in a constitutive way. In the MIT bag model,
hadrons are made up of a gas of free (or only weakly interacting) quarks and gluons which
are confined to a finite region of space: the “bag”. The confinement mechanism is not a
dynamical result of the underlying theory, but is put in by hand by choosing appropriate
boundary conditions. The bag is stabilized by a term of the form gµνB which is added to

34



2.2 The MIT bag model

the energy-momentum tensor inside the bag. The energy-momentum tensor of a perfect
fluid in the rest frame is given by

T µν
fluid = diag(ǫ, p, p, p), (2.10)

where ǫ is the energy density and p the pressure of the system. Consequently, the bag
constant B can be interpreted as a positive contribution to the energy density and a
negative contribution to the pressure inside the bag. Equivalently, one may attribute
a term −gµνB to the region outside the bag. This leads to the picture of a non-trivial
vacuum with a negative energy density ǫvac = −B and a positive pressure pvac = +B.
The stability of hadrons then results from balancing this positive vacuum pressure with
the pressure caused by the gas of quarks and gluons inside the bag. The MIT bag model
cannot say anything about the origin of the non-trivial vacuum, but treats B as a free
parameter.

If we interpret the bag constant as a positive contribution to the energy density inside
the bag, the energy EH of an hadron is made up of two parts:

EH = BV +
C

R
. (2.11)

Here, BV is the energy associated with the volume V of the bag and C/R is the kinetic
energy of the quarks and gluons inside the bag. It is proportional to the inverse of the
radius R of the bag as a consequence of the quantum mechanical uncertainty principle.
For our purpose, it is not necessary to specify the constant of proportionality. The
effective radius of the hadron is obtained by minimizing (2.11). In the case of a spherical
bag, we find

∂EH

∂R
=

∂

∂R

(

B
4πR3

3
+
C

R

)

= 0 =⇒ R4
0 =

(

C

4πB

)
1
4

. (2.12)

Substituting (2.12) back into (2.11), the equilibrium energy is given by

E0(R0) = 4BV0, (2.13)

where V0 = 4πR3
0 is the equilibrium volume. For a proton with E0 ≈ 1 GeV and R0 ≈ 0.7

fm, we find B ≈ 175 MeV/fm3, or B
1
4 ≈ 192 MeV.

The bag model is used to describe quark-gluon matter in any enclosed finite volume. The
partition function of an ideal gas of massless quarks and gluons inside the bag is then
given by

T lnZQGP =

(

37π2

90
T 4 + T 2µ2

q +
1

2π2
µ4

q

)

V − BV, (2.14)

and the expressions for the pressure and the energy density become

pQGP =

(

37π2

90
T 4 + T 2µ2

q +
1

2π2
µ4

q

)

− B, (2.15)

ǫQGP =

(

37π2

30
T 4 + 3T 2µ2

q +
3

2π2
µ4

q

)

+B. (2.16)
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Chapter 2 A Simple Model

The quark number density and the entropy density remain unchanged.

If we only consider the two lightest quarks (u and d) and if there is no net concentration of
baryons (i. e. µB = 0), then the dominant hadronic degrees of freedom at low temperature
are the pions, π± and π0, which carry zero net baryon number and can be relatively easily
pair-produced. Neglecting the rest mass, which is justified for T & 100 MeV, the pressure
and the energy density of an ideal gas of pions are given by

pπ =
π2

30
T 4 and ǫπ =

π2

10
T 4. (2.17)

2.3 Comparison with lattice results

2.3.1 The phase boundary

According to Gibbs criteria, the equilibrium condition for two phases is that the temper-
ature T , the chemical potential µ and the pressure p are equal in both phases. Consider
a system of pions, and quarks and gluons in equilibrium. For simplicity we start with
the case of a vanishing chemical potential. Then TQGP = Tπ = Tc, µQCD = µπ = 0 and

37π2

90
T 4

c −B =
π2

30
T 4

c =⇒ B =
34π2

90
T 4

c . (2.18)

For two light flavors a critical temperature Tc ≈ 170 MeV is found in lattice QCD
simulations (see Table 1.1). For this value of Tc the bag constant is B1/4 ≈ 236 MeV.
There is a latent heat which corresponds to a jump in the energy density ∆ǫ, or in the
entropy density ∆s, ∆ǫ = Tc∆s = 4B.

In order to extend these considerations to the case where µB 6= 0, we notice that the
transition is taking place when the pressure approximately vanishes, that is when the
kinetic pressure of the quarks and gluons approximately equilibrates the bag pressure.
Taking this as a criterion for the phase transition, we obtain the condition

pQGP =
37π2

90
T 4 +

1

9
T 2µ2

B +
1

162
µ4

B −B = 0. (2.19)

At zero temperature we find a critical chemical potential of µB = (162π2B)
1
4 = 1594

MeV. A plot of the phase diagram obtained from (2.19) is shown in Fig. 2.1. The bag
model result is in good qualitative agreement with the lattice data, but does not lie
within the error band given by the lattice calculation.

2.3.2 Thermodynamical quantities

The pressure and the energy density can be calculated using Eqns. (2.15), (2.16) and
(2.17). Results are shown in Fig. 2.2. The solid line denotes the pressure and the energy
density of an ideal gas of massless pions for T ≤ Tc and the pressure and the energy
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Figure 2.1: The phase boundary line Tc(µ) calculated with the bag model for Nf = 2.
The shaded band in the right panel shows the one-sigma error band obtained
in lattice calculations in [dFP02].

density obtained from the bag EoS for T ≥ Tc. While the pressure is in good qualitative
agreement with lattice results, the bag model energy density fails to reproduce the lat-
tice data and even overshoots the ideal gas value. This is easy to understand from Eqn.
(2.16): The first term is just the expression of an ideal gas, to which a constant energy
density B is added. Since in Fig. 2.2 the energy density is plotted over T 4, the effect of
the bag constant is biggest at Tc and becomes smaller for larger temperatures.

There are also lattice simulations of thermodynamical quantities at finite temperature
and finite quark chemical potential for Nf = 2 + 1 [FKS03] and Nf = 2 [A+03] flavors
of quarks. In particular, these groups have calculated the scaled pressure difference
∆p(T, µq) = (p(T, µq) − p(T, 0)) /T 4 and the scaled quark number density nq(T, µq)/T

3 =
(∂p/∂µq)/T

3. In the bag model the scaled pressure difference is given by

∆p(T, µq) = T 2µ2
q +

1

2π2
µ4

q. (2.20)

Since the bag constant B does not depend on the chemical potential, it drops out. The
scaled quark number density reads

nq =
T

V

∂ lnZ
∂µq

=
∂p

∂µq

= 2

(

µqT
2 +

µ3
q

π2

)

. (2.21)

These are merely the expressions for an ideal gas. It is obvious that these expressions
cannot reproduce the non-trivial behavior of the (scaled) pressure difference and the
(scaled) quark number density found in lattice simulations close to Tc.
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Figure 2.2: The pressure p/pSB (left panel) and the energy density ǫ/ǫSB (right panel),
divided by their respective Stefan-Boltzmann values from our model (solid
lines) compared to lattice data from 163 × 4 and 163 × 6 lattices (symbols)
[AK+01a]. Different values of mPS/mV used in the lattice calculations are
denoted by different shapes of the symbols (see Fig. 1.2 or [AK+01a]).

2.4 Summary

In this chapter we demonstrated that the basic features of the QCD phase diagram
and the EoS can be understood using a simple phenomenological model, the MIT bag
model, which is the most widely used EoS in astrophysics to study the properties of
deconfined quark matter due to its simple analytic form. This model implements two of
the key properties of QCD, asymptotic freedom and confinement. With only a single free
parameter, the bag constant B, it can reproduce the phase boundary line that separates
the hadronic phase and the QGP and the pressure obtained in lattice QCD simulations
at least qualitatively. On the other hand, the model fails to describe the lattice energy
density and the non-trivial behavior of lattice thermodynamic quantities at finite quark
chemical potential. Thus, while the bag model is quite attractive due to its simplicity, it is
clearly not adequate to perform precise numerical calculations of quark matter properties
at finite temperature and finite quark chemical potential.
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Chapter 3

Quasiparticle Model of the

Quark-Gluon Plasma

In the previous chapter we employed the MIT bag model to explain some of the ba-
sic features of lattice QCD thermodynamics. In this model, quarks and gluons are
confined in hadronic bags at low temperatures, while at high temperatures the indi-
vidual bags merge to a single large bag in which quarks and gluons can move freely.
This simple bag picture reproduces the lattice QCD phase diagram and the EoS qual-
itatively, but it fails to catch the essential behavior of the energy density, the quark
number density and finite density corrections to the pressure. Lattice QCD thermody-
namical quantities have been successfully described by a gas of non-interacting quark-
gluon quasiparticles [GY95,PKPS96, LH98, PKS00]. Their thermally generated masses
are based on perturbative calculations carried out in the Hard Thermal Loop (HTL)
scheme [Kap89, Bel96]. However, the non-perturbative confinement physics which be-
comes important close to Tc was not properly taken into account by these quasiparticle
models. Since confinement simply reduces the number of thermally active degrees of
freedom in a statistical sense, it can be schematically incorporated in a model of non-
interacting, massive quasiparticles by a modification of the particle distribution func-
tions [SW01]. This model successfully describes and predicts a variety of lattice data
including the Debye screening mass, which is not correctly estimated by other quasi-
particle models. In this chapter we generalize this model to non-zero quark chemical
potential in a thermodynamically self-consistent way and test it against a number of
available lattice data. The main body of this work has been published in [TSW04].

3.1 Perturbative results

The average absolute three-momentum of quarks and gluons in a weakly interacting
heatbath is given by 〈p〉 ≈ 3 T . Assuming that the average momentum transfer between
particles is of order p2, we may substitute µ2 ∼ 10T 2 in the running coupling αs(µ) of
Eqn. (1.8) to get the leading order

αs(T ) =
12π

β0 log(T 2/Λ2
T )

with ΛT ≃ ΛQCD/3 ≃ 100 MeV. (3.1)
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Chapter 3 Quasiparticle Model of the Quark-Gluon Plasma

Hence, at high temperatures αs should become small and one may suspect that a per-
turbative description of the QCD plasma in terms of elementary partons might become
reasonable. However, for temperatures of interest in the experimentally accessible region,
the QCD coupling constant is presumably large: at T = 3Tc, gs(T ) ≃ 2 from Eqn. (3.1).
The perturbative expansion in powers of gs shows bad convergence already for much
smaller values of the coupling, as apparent from the expression for the free energy F (T )
in pure SU(3) gauge theory [ZK95]:

F (T )

FSB

= 1 − 0.095g2
s + 0.121g3

s + [0.212 − 0.086 log(1/gs)]g
4
s − 0.082g5

s . (3.2)

Here, FSB = −16(π2/90)T 4 is the ideal gas value. With quarks, the resulting series
behaves similarly. The series does not converge unless the coupling is tiny. The g3

s term
is smaller than the g2

s term only if gs ∼ 0.8 ⇒ αs ∼ 1/20. This corresponds to a tem-
perature of 105 GeV, which is many orders of magnitude larger then the temperatures
expected in heavy-ion collisions (approximately 0.5 GeV at RHIC). Thus bare pertur-
bation theory is clearly inadequate to calculate QCD thermodynamical quantities in the
temperature region accessible by today’s heavy-ion collision experiments. However, the
series in (3.2) is not the power series in αs known from zero temperature perturbation
theory; collective medium effects lead to the appearance of non-analytic terms of the form
α

n/2
s and α2

s logαs. Consequently, the expansion point of perturbation theory should not
be a bare particle, but a dressed quasiparticle taking into account the medium from the
onset; of course, the resulting series in gs has then to be treated self-consistently.

Such a quasiparticle description of QCD thermodynamics has been derived using re-
summed, approximately self-consistent HTL perturbation theory [BIR99a,BIR99b,BIR01,
BI02]. The result can be seen in Fig. 3.1, where the pressure of an interacting gas of
gluons is shown. The resulting EoS is in good qualitative agreement with lattice results,
but fails to reproduce them quantitatively close to Tc. However, one should keep in mind
that in the temperature region covered in Fig. 3.1 the coupling constant gs is not small
and the perturbative approach is questionable from the beginning. Apart from a trivial
T 4 dependence, the temperature dependence of the pressure in this approach is entirely
governed by the running coupling constant αs(T ) because there is no other scale in the
problem than ΛQCD. The resummation procedure only affects the normalization.

Various interpretations of the lattice data have been attempted in terms of physical quan-
tities, most prominently as the EoS of a gas of massive quark and gluon quasiparticles.
Their thermally generated masses are based on perturbative calculations carried out in
the HTL scheme [GY95,PKPS96, LH98, PKS00]. This approach has been extended to
non-vanishing quark chemical potential and good agreement with finite µ lattice calcu-
lations for Nf = 2 + 1 flavors has been found [ST03]. More recently, the QGP has also
been described in terms of a condensate of Z3 Wilson lines [Pis00] and by more refined
quasiparticle models based on the HTL-resummed entropy and (next-to-leading order)
extensions thereof [RR03]. These models have found support from resummed perturba-
tion theory [BI02] for temperatures T & 3 Tc. However, they have difficulties explaining
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Figure 3.1: Approximately self-consistent HTL perturbation theory result for the pres-
sure of an interacting gas of gluons [BIR99a, BIR99b, BIR01, BI02] (shaded
band) vs. lattice results, calculated with different actions [B+95a,B+96,O+99,
BKLP99].

the dropping of the thermal gluon screening mass in the vicinity of the phase transition.
An improved quasiparticle model [SW01] shows the correct temperature dependence of
the Debye mass and reproduces lattice thermodynamical quantities such as the pres-
sure, the energy density and the entropy density very well. The main new ingredient of
this model is a phenomenological parametrization of (de)confinement. We will introduce
this model in the following and show how it can be extended to finite quark chemical
potential.

3.2 Thermodynamic self-consistency in a medium

In this section we show how the pressure p, the energy density ǫ, the particle number den-
sity n and the entropy density s for a general effective Hamiltonian Heff(α1, α2, . . . , αn)
can be constructed. Here α1, α2, . . . , αn are phenomenological parameters, which are as-
sumed to be functions of the temperature T and the chemical potential µ. For example,
αi may stand for a thermal quasiparticle mass. We follow the approach of [GY95] here.
These results will then be used in subsequent parts of this chapter to construct a quasi-
particle description of the QCD EoS .

To retain thermodynamical consistency, the pressure, the energy density, the particle
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Chapter 3 Quasiparticle Model of the Quark-Gluon Plasma

number density and the entropy density must satisfy the Gibbs-Duhem relation

ǫ+ p = Ts+ µn = T
∂p

∂T
+ µ

∂p

∂µ
. (3.3)

The pressure and the energy density of a general thermodynamical system described by
an effective Hamiltonian Heff are given by

p(T, µ) =
T

V
ln Tre−β(Heff−µQ), (3.4)

ǫ(T, µ) =
1

V

TrHeffe
−β(Heff−µQ)

Tre−β(Heff−µQ)
, (3.5)

where Q is a conserved charge or particle number and µ the associated chemical potential.
To satisfy (3.3), all derivatives of the pressure with respect to the phenomenological
parameters must vanish:

∂p

∂αi

∣

∣

∣

∣

T,µ,{αj 6=i}
= 0. (3.6)

We will now apply this to an ideal gas of bosonic quasiparticle excitations with a medium
dependent dispersion relation. The effective Hamiltonian for this system reads

Hid =
∑

k,s

ω∗(k)a†
k,iak,i + E∗

0 , (3.7)

where the index k labels the momentum eigenstates and s the internal degrees of freedom,
ω∗(k) ≡ ω(k, α1, . . . , αn) is the medium dependent dispersion relation, a†

k,i and ak,i are
Bose creation and annihilation operators, respectively, and E∗

0 = E0(α1, . . . , αn) is the
system energy in the absence of quasiparticle excitations. If the dispersion relation is
independent of the parameters α1, . . . , αn, the zero-point energy E∗

0 is constant and can
be subtracted from the Hamiltonian, since only energy differences can be measured. For a
medium dependent dispersion relation, however, the zero point energy depends on T and
µ and cannot be neglected. Next we will calculate the pressure and the energy density
for this system. For large V we may replace the sum over k in the effective Hamiltonian
(3.7) by an integration over momentum phase space:

∑

k,s

· · · −→ ν
V

(2π)3

�
d3k · · · . (3.8)

The degeneracy factor ν counts degrees of freedom like spin, isospin or color. Then the
following expressions for the pressure and the energy density are obtained:

p(T, µ, α1, . . . , αn) = −T ν

2π2

� ∞

0

dk k2
[

ln
(

1 − eβ(ω∗−µ)
)

+ ln
(

1 − eβ(ω∗+µ)
)]

−B, (3.9)

ǫ(T, µ, α1, . . . , αn) =
ν

2π2

� ∞

0

dk k2

[

ω∗

eβ(ω∗−µ) − 1
+

ω∗

eβ(ω∗+µ) − 1

]

+B. (3.10)
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3.3 Quasiparticle model with confinement

The first terms in (3.9) and (3.10) are the standard ideal gas expressions, while the second
ones are additional medium contributions with

B = B(α1, . . . , αn) ≡ lim
V →∞

E∗
0

V
. (3.11)

B is uniquely defined by (3.6). The statistical expressions for the particle number density
n(T, µ) and the entropy density s(T, µ) keep their ideal gas form:

n(T, µ, α1, . . . , αn) =
ν

2π2

� ∞

0

dk k2

[

1

eβ(ω∗−µ) − 1
− 1

eβ(ω∗+µ) − 1

]

, (3.12)

s(T, µ, α1, . . . , αn) =
ǫ+ p− µn

T
+
ǫ+ p+ µn

T
. (3.13)

3.3 Quasiparticle model with confinement

In this section the quasiparticle model with confinement is introduced. For further details
the reader is referred to Ref. [SW01].

At very high temperatures, spectral functions for gluons or quarks of the form δ(E2 −
k2 −m2(T )) with m(T ) ∼ gsT are found in HTL perturbative calculations. Here, E is
the particle energy, k the absolute value of its momentum, m(T ) its thermally generated
mass and gs the QCD coupling constant. As long as the spectral function at lower
temperatures resembles qualitatively this asymptotic form, a quasiparticle description is
expected to be applicable. QCD dynamics is then incorporated in the thermal masses
of the quark and gluon quasiparticles. These thermal masses are obtained from the
self-energies of the corresponding particles, evaluated at thermal momenta k ∼ T :

m2
q = m2

0q +
N2

c − 1

8Nc

(

T 2 +
µ2

π2

)

G2(T, µ), (3.14)

m2
g = m2

0g +
1

6

[

(

Nc +
Nf

2

)

T 2 +
3

2π2

∑

q

µ2
q

]

G2(T, µ). (3.15)

Nf is the number of flavors, Nc the number of colors. The effective coupling strength G
is specified as

G(T, µ = 0) =
g0

√

11Nc − 2Nf

(

[1 + δ] − Tc

T

)β

. (3.16)

Setting g0 = 9.4, β = 0.1, the effective masses as given in equations (3.14) and (3.15),
approach the HTL result at high temperatures. (A small shift δ = 10−6 helps fine-tuning
at T ≃ Tc). Because of the existence of a heat bath background, new partonic exci-
tations, plasmons (longitudinal gluons) and plasminos (quark-hole excitations) are also
present in the plasma. However, their spectral strengths are exponentially suppressed for
hard momenta and large temperatures and consequently these states are essentially un-
populated [Bel96]. The functional dependence of mg(T ) on T is based on the conjecture
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Chapter 3 Quasiparticle Model of the Quark-Gluon Plasma

that the phase transition is second order or weakly first order which suggests an almost
power-like behavior m ∼ (T − Tc)

β with some critical exponent β > 0. It is assumed
that the pseudocritical form of the effective coupling constant given in equation (3.16)
also provides the correct approximate expression for the effective quark mass. This is
supported by a non-perturbative dispersion relation analysis for a thermal quark inter-
acting with the gluon condensate [ST99].

Close to Tc the picture of a non-interacting gas is not appropriate because the driving
force of the transition, the confinement process, is not taken into account. Below Tc, the
relevant degrees of freedom are pions and other hadrons. Approaching Tc from below,
deconfinement sets in and the quarks and gluons are liberated, followed by a sudden
increase in entropy and energy density. Conversely, when approaching the phase transi-
tion from above, the decrease in the thermodynamic quantities is not primarily caused
by increasing masses of the quasiparticles, but by the reduction of the number of ther-
mally active degrees of freedom due to the onset of confinement. For example, gluons
begin to form heavy clusters (glueballs), so that the gluon density gets reduced as Tc is
approached from above. This feature can be incorporated in the quasiparticle picture
by modifying the number of effective degrees of freedom by a temperature dependent
confinement factor C(T ):

C(T, µ = 0) = C0

(

[1 + δc] −
Tc

T

)βc

. (3.17)

The confinement factor is taken to be universal. The parameters C0, δc and βc are fixed
by reproducing the entropy density that results from lattice QCD thermodynamics. Since
the results of lattice calculations with dynamical quarks are still dependent on the details
of the simulations, C0, δc and βc should be finetuned for different lattice calculations.

For homogeneous systems of large volume V , the Helmholtz free energy F is related to the
pressure p by F (T, V ) = −p(T )/V . In the present framework of a gas of quasiparticles,
its explicit expression reads

p(T ) =
νg

6π2

� ∞

0

dk C(T )fB(Eg
k)
k4

Eg
k

+
2Nc

3π2

Nf
∑

i=1

� ∞

0

dk C(T )fD(Ei
k)
k4

Ei
k

− B(T ). (3.18)

νg is the gluon degeneracy factor, Eg
k =

√

k2 +m2
g(T ) is the gluon energy, Eq

k =
√

k2 +m2
q(T ) the quark energy, fB(Eg

k) = (exp((Eg
k)/T )− 1)−1 the Bose-Einstein distri-

bution function of gluons and fD(Eq
k) = (exp((Eq

k)/T )+1)−1 the Fermi-Dirac distribution
function of quarks. The energy density ǫ and the entropy density s take the form

ǫ(T ) =
νg

2π2

� ∞

0

dk k2C(T )fB(Eg
k)E

g
k +

2Nc

π2

Nf
∑

i=1

� ∞

0

dk k2C(T )fD(Ei
k)E

i
k +B(T ). (3.19)
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3.4 Finite chemical potential

and

s(T ) =
νg

2π2T

� ∞

0

dk k2C(T )fB(Eg
k)

4
3
k2 +m2

g(T )

Eg
k

+
2Nc

π2T

Nf
∑

i=1

� ∞

0

dk k2C(T )fD(Ei
k)

4
3
k2 +m2

q(T )

Ei
k

. (3.20)

The function B(T ) is introduced to act as a background field. It is necessary in order
to maintain thermodynamic consistency: p, ǫ and s = ∂p/∂T have to satisfy the Gibbs-
Duhem relation ǫ + p = Ts = T∂p/∂T . B(T ) basically compensates the additional
T -derivatives from the temperature-dependent masses in p and thus is not an indepen-
dent quantity. Since B(T ) adds to the energy density of the quasiparticles, it can be
interpreted as the thermal vacuum energy density. The entropy density, as a measure of
phase space, is unaffected by B(T ).

3.4 Finite chemical potential

The quasiparticle model reviewed in the previous section accurately reproduces lattice
thermodynamical quantities such as the pressure, the energy density and the entropy
density in the temperature range Tc < T . 4 Tc at vanishing chemical potential [SW01].
However, many physical questions, e.g. the structure of quark cores in massive neutron
stars, the baryon contrast prior to cosmic confinement or the evolution of the baryon
number in the mid-rapidity region of central heavy-ion collisions, require a detailed un-
derstanding of the EoS at non-vanishing quark chemical potential. In this section, a
thermodynamically self-consistent extension of the quasiparticle model to finite quark
chemical potentials is presented. Results for various observables are then computed and
compared to finite µ lattice results in the next section.

At vanishing quark chemical potential, it is conjectured from asymptotic freedom that
QCD undergoes a phase transition from the hadronic phase to the QGP phase. At ex-
tremely high density, cold quark matter is necessarily in the Color-Flavor-Locked (CFL)
phase in which quarks of all three colors and all three flavors form cooper pairs. It is
expected that this phase is separated from the hadronic phase by the color supercon-
ducting 2SC phase. For a review of the QCD phase diagram, the reader is referred
to [Raj99,Han01]. Our extension of the quasiparticle model provides a straightforward
way to map the EoS at finite temperature and vanishing quark chemical potential into the
T −µ plane without further assumptions. However, since this continuous mapping relies
on quark and gluon quasiparticles, it cannot provide information about other possible
phases with a different (quasiparticle) structure. It is therefore applicable in a limited
range of not too large chemical potentials.

The pressure of an ideal gas of quark and gluon quasiparticles with effective masses
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Chapter 3 Quasiparticle Model of the Quark-Gluon Plasma

depending on temperature and quark chemical potential, is given by

p(T, µ) =
νg

6π2

� ∞

0

dk C(T, µ)fB(Eg
k)
k4

Eg
k

+
Nc

3π2

Nf
∑

q=1

� ∞

0

dk C(T, µ)[f+
D(Eq

k) + f−
D (Eq

k)]
k4

Eq
k

− B(T, µ), (3.21)

with f±
D(Eq

k) = (exp((Eq
k ∓ µ)/T ) + 1)−1. The effective coupling strength G(T, µ), the

confinement factor C(T, µ) and the mean field contribution B(T, µ) now also depend on
the quark chemical potential µ. B(T, µ) is calculated in Appendix A. The quark number
density (which is related to the baryon number density nB by nq = nB/3) retains the
ideal gas form

nq(T, µ) =
Nc

π2

Nf
∑

q=1

� ∞

0

dk C(T, µ)[f+
D(Eq

k) − f−
D(Eq

k)]k
2, (3.22)

but with the confinement factor C(T, µ) included.

In the previous section expressions for the coupling G(T, µ = 0) and the confinement
factor C(T, µ = 0) are given. These expressions can be generalized to finite chemical
potential in a thermodynamically self-consistent way using Maxwell relations. Impos-
ing the Maxwell relation between the derivatives of the quark number density and the
entropy,

∂s

∂µ

∣

∣

∣

∣

T

=
∂n

∂T

∣

∣

∣

∣

µ

=⇒
∑

i

(

∂n

∂m2
i

∂m2
i

∂T
− ∂s

∂m2
i

∂m2
i

∂µ

)

= 0

and

(

∂n

∂C

∂C

∂T
− ∂s

∂C

∂C

∂µ

)

= 0, (3.23)

yields a set of first order quasilinear partial differential equations for the effective coupling
constant G2(T, µ) and the confinement factor C(T, µ):

aT (T, µ;G2)
∂G2

∂T
+ aµ(T, µ;G2)

∂G2

∂µ
= b(T, µ;G2), (3.24)

cT (T, µ;G2)
∂C

∂T
+ cµ(T, µ;G2)

∂C

∂µ
= 0. (3.25)

The coefficients aT , aµ, b, cT , cµ depend on T , µ, G2 but not on C. It can be solved by
the method of characteristics (see Appendix B). The flow of the effective coupling and
the confinement factor is elliptic. In particular, one finds

aT (T, µ = 0) = 0, aµ(T = 0, µ) = 0, cT (T, µ = 0) = 0, cµ(T = 0, µ) = 0. (3.26)

Therefore, the characteristics are perpendicular to both the T and the µ axis. This
guarantees that specifying the coupling constant and the confinement factor on the T
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3.5 Comparison with lattice results

axis sets up a valid initial condition problem. Plots of the characteristic curves and the
confinement factor are shown in Fig. 3.2 and 3.3.

3.5 Comparison with lattice results

Simulations of QCD at finite chemical potential are extremely difficult because the
fermion determinant becomes complex. This prohibits Monte Carlo importance sam-
pling, which interprets the measure as a probability factor and thus requires it to be
positive. While this problem remains unsolved, there are some approaches which cir-
cumvent the sign problem and allow lattice simulations for small chemical potentials
µ . Tc. A brief review of some methods of these methods can be found in Chapter 1.
For more details, the reader is referred to [LP03,MNNT03].

3.5.1 The phase boundary line

In the case of vanishing quark chemical potential, universal arguments and lattice sim-
ulations suggest a phase transition from the hadronic phase to the QGP phase at a
critical temperature Tc. For QCD with three light flavors mu ∼ md ∼ ms ∼ 5 MeV
this transition is expected to be first order. For two light flavors mu ∼ md ∼ 5 MeV
and an infinitely large ms there is no phase transition, only a smooth crossover [FK02a].
This suggests there is a critical strange mass mc

s at which one finds a second order phase
transition. Lattice calculations indicate that mc

s is about half of the physical mass ms.
At finite quark chemical potential µ and vanishing T a first order phase transition is
predicted. For the physical ms this implies that there is a first order phase transition
for small T and large µ which ends at a critical point (T ∗, µ∗). At this point the phase
transition is of second order. For large T and small µ the two phases are separated by
a crossover. We refer to the line Tc(µ) that separates the hadronic phase from the QGP
phase as the “phase boundary line”. In the literature [DL03,dFP02,dFP03] this line is
also frequently called the “pseudocritical line”. Tc(µ) has been calculated on the lattice
for Nf = 4 [FK02b, DL03], Nf = 2 [dFP02] and Nf = 3 [dFP03] flavors of quarks up
to quark chemical potentials µ of order Tc. In the following we focus on the three-flavor
results where the critical line has been calculated with an accuracy up to terms of order
(µ/T )6. There, a Wilson gauge action and three degenerate flavors of staggered quarks
have been employed, with bare masses in the range 0.025 < am < 0.04, where a denotes
the lattice spacing. The finite volume scaling behavior was monitored by using three
lattice sizes, 83 × 4, 103 × 4 and 123 × 4.

In our quasiparticle model, the sudden decrease of the pressure, the energy density, the
quark number density and the entropy density caused by gluons and quarks getting
trapped in glueballs and hadrons when Tc is approached from above, is parametrized by
the confinement factor C(T, µ). Consequently, it is natural to relate the critical line to
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Figure 3.2: Characteristic curves of constant confinement factor C(T, µ) = const, ob-
tained when solving Eqn.(3.25).
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Figure 3.3: The confinement factor C(T, µ) as a function of the temperature T and the
quark chemical potential µ.
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3.5 Comparison with lattice results

the characteristic curve of the confinement factor through Tc(µ), as long as µ is small
and the nature of the quasiparticles does not change qualitatively.

In order to calculate the confinement factor at finite chemical potential, we need to spec-
ify a valid initial condition, e.g. C(T, µ = 0). The functional form of C(T, µ = 0) is set by
Eqn.(3.17). We have employed the following set of parameters, as found in ref. [SW01]:

C0 δc βc

3 flavors 1.03 0.02 0.2

We have checked that the form of the phase boundary line in the quasiparticle model
depends only weakly on the exact choice of parameters and a small difference only shows
up for values much larger than the range of µ covered by the lattice simulations. The
lattice phase boundary line and our result are shown in Fig. 3.4. The quasiparticle result

0 0.5 1 1.5 2 2.5 3
µ

B
/T

c

0.9

0.92

0.94

0.96

0.98

1

T
/T

c

Lattice
QPM

Figure 3.4: The phase boundary line Tc(µ) calculated with the quasiparticle model for
Nf = 3. The shaded band shows the one-sigma error band obtained in lattice
calculations in [dFP03].

is within the lattice estimate for µB . 2.5Tc and deviates only slightly from the lattice
result for larger chemical potentials.

3.5.2 Thermodynamical quantities

There have been lattice calculations of thermodynamical quantities at finite chemical
potential for Nf = 2 + 1 [FKS03] and Nf = 2 [A+03] flavors of quarks. In the following
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Chapter 3 Quasiparticle Model of the Quark-Gluon Plasma

we focus on results from [A+03] where a p4-improved staggered action on a 163 × 4 lat-
tice was used. There, the Nt dependence is known to be small, in contrast to standard
staggered fermion actions which show substantially larger cut-off effects. Estimates of
the pressure, the quark number density and associated susceptibilities as functions of the
quark chemical potential were made via a Taylor series expansion of the thermodynamic
grand canonical potential Ω up to fourth order.

To calculate thermodynamical quantities within the quasiparticle model, we need to fix
the parameters of the effective coupling constant and the confinement factor. Our calcu-
lations have shown that the results are not sensitive to the detailed choice of parameters
for the effective coupling G. We have therefore used the parameters from Ref. [SW01]
in our calculations. In principle, the parameters of the confinement factor can be fixed
by comparing our calculations to lattice results at vanishing chemical potential. How-
ever, in ref. [A+03] no µ = 0 lattice data is given. Since lattice calculations including
quarks give slightly different results depending on which action has been used, fitting
the parameters in C(T, µ = 0) by comparing quasiparticle results to lattice data from
a different simulation is not feasible and would lead to large differences. Consequently,
we directly used the finite µ lattice results for fitting. Good agreement with the lattice
thermodynamical observables was found for the following sets of parameters:

C0 δc βc

Set A 1.05 -0.016 0.15
Set B 1.12 0.02 0.2

While set A reproduces the lattice thermodynamical results slightly better, set B is in
better agreement with the parameters found in [SW01] for µ = 0 lattice simulations.

The temperature dependence of the scaled pressure difference ∆p(T, µ) = (p(T, µ) −
p(T, µ = 0))/T 4 is shown in Fig. 3.5 and that of the scaled quark number density
nq(T, µ)/T 3 in Fig. 3.6. Whereas the computation of the quark number density from
equation (3.22) is straightforward, a numerical evaluation of (3.21) is difficult because of
the derivatives of the effective masses and the confinement factor in B(T, µ) (see expres-
sions in Appendix A). It turns out that it is simpler to calculate the pressure difference
using the following relation:

∆p(T, µ) =
1

T 4

� µ

0

dµ′nq(T, µ
′). (3.27)

The lattice pressure difference is well reproduced even for the largest values of the chem-
ical potential. The quark number density is in very good agreement with the lattice
data for µ/Tc = 0.2 and 0.4. For larger values of µ our calculations underestimate the
magnitude of the lattice results close to Tc, but show the same qualitative features.
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Figure 3.5: The scaled pressure difference ∆p(T, µ)/T 4 as a function of temperature com-
pared to lattice results from [A+03] (symbols).
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Figure 3.6: The scaled quark number density nq(T, µ)/T 3 as a function of temperature
compared to lattice results from [A+03] (symbols).
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3.6 Momentum dependent confinement

The quasiparticle description of the QCD EoS which we have developed in the previ-
ous part of this chapter reproduces lattice QCD results at finite temperature and finite
quark chemical potential remarkably well. The main new ingredient of this model is a
phenomenological parametrization of (de)confinement by a confinement factor C(T ):

C(T, µ = 0) = C0

(

[1 + δc] −
Tc

T

)βc

. (3.28)

The confinement factor reduces the number of thermally active degrees of freedom close
to Tc. Below Tc the relevant degrees of freedom are pions and other hadrons. When Tc is
approached from below, deconfinement sets in and the quarks and gluons get liberated,
followed by a sudden increase in pressure, entropy density and energy density, which is
accounted for by the confinement factor. We have assumed that the confinement factor is
universal and that it only depends on temperature and not on the momentum spectrum
of the constituents. In the remainder of this chapter we will briefly discuss a model
with momentum dependent confinement [EFR+89]. The model has been tested with
pure SU(2) gauge theory and good agreement with thermodynamical quantities like the
pressure and the interaction measure has been found. Here we extend this model to pure
SU(3) gauge theory and full QCD and compare our results with lattice QCD simulations.

Lattice QCD simulations of pure SU(3) gauge theory show that the scaled energy density
ǫ/T 4 changes rapidly in a small interval around the critical temperature T = Tc. It grows
from the value expected for an ideal gas of glueballs to the much larger value expected
for an ideal gas of gluons:

ǫSB

T 4
=

8π2

45
. (3.29)

However, the weak temperature dependence of ǫ for T & 1.5Tc and its rapid convergence
to values near ǫSB do not imply the absence of interactions in the deconfined phase. The
scaled interaction measure

∆

T 4
≡ ǫ− 3p

T 4
, (3.30)

vanishes for an ideal gas. For lattice SU(3) gauge theory it differs from zero over a
considerable range of temperatures above Tc. ∆/T 4 grows rapidly for T > Tc and has
a maximum at T ≈ 1.2 Tc and decreases afterwards. This behavior can be explained
if the momentum spectrum of the constituents contains massive glueball states at low
momenta and massless gluons at high momenta. The absence of low momentum gluons,
together with the temperature-dependence of the spectrum, results in a large and rapidly
varying ∆/T 4 which can reproduce lattice QCD thermodynamical quantities.

To illustrate this, we will first consider an ideal Boltzmann gas of massless constituents,
with a constant low momentum cutoff K. Its partition function is given by

lnZ =
νV

2π2

� ∞

K

dk k2e−k/T , (3.31)
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3.6 Momentum dependent confinement

where ν is the degeneracy factor of the constituents and V is the volume of the system.
The integral in Eqn. (3.31) can be calculated analytically. The pressure and the energy
density are then given by

p =
ν

2π2

(

T 2K2 + 2T 3K + 2T 4
)

e−
K
T , (3.32)

ǫ =
ν

2π2

(

TK3 + 3T 2K2 + 6T 3K + 6T 4
)

e−
K
T , (3.33)

and the scaled interaction measure reads

∆

T 4
=

νK3

2π2T 3
e−

K
T . (3.34)

Its maximum is at T = K/3 and it vanishes as T−3 for large T and goes to zero expo-
nentially for T → 0. While (3.34) reproduces the interaction measure found in SU(3)
lattice QCD simulations qualitatively, it yields a value of ∆/T 4 which is too small at
the peak. Furthermore, it contains no information about the critical temperature Tc and
hence cannot reproduce the rapid variation in the critical region. To incorporate the Tc

dependence, we make the momentum cutoff K temperature dependent. Since we expect
no gluons below Tc, a natural form of the cutoff is

K

Tc
= r

(

T − Tc

Tc

)−s

, (3.35)

where r and s are free parameters. With this cutoff, the partition function (3.31) vanishes
at Tc, while at high T the full gluon spectrum is recovered.

We will now make use of the ideas we have discussed in this section to account for the
observed behavior of p/T 4, ǫ/T 4 and ∆/T 4 in SU(3) lattice QCD simulations. To obtain
a full model, we make the ansatz

lnZ = −νGBV

2π2

� K

0

dk k2 ln
(

1 − e−β
√

k2+M2
)

− νgV

2π2

� ∞

K

dk k2 ln
(

1 − e−βk
)

. (3.36)

The first term is the contribution from heavy glueball states for momenta k < K and
the second term is the contribution from massless gluons for momenta k > K, where K
is given by Eqn. (3.35). νGB is the degeneracy factor for the glueball states and M its
mass. The lightest glueball state found in lattice QCD simulations [MP99] has a mass of
about M ≈ 1 GeV and its degeneracy factor νGB = 1 because it is a scalar particle and
obviously a color singlet. Other glueball states are even heavier and are neglected here.
The degeneracy factor for an ideal gas of gluons is νg = 16. Thermodynamical quantities
like the pressure, the entropy density, the energy density, and the interaction measure
can now be easily calculated from Eqn. (3.36). The results for r = 3 and s = 0.25 are
presented in Fig. 3.7. This simple model reproduces the interaction measure quite well
in the whole temperature range where lattice data is available. It is in good agreement
with the pressure, the entropy density and the energy density from lattice simulations for
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Figure 3.7: Left panel: Scaled pressure, entropy density and energy density as functions

of temperature obtained from Eqn. (3.36) (solid lines), compared to contin-
uum extrapolated SU(3) lattice data (symbols) [B+96]. Right panel: The
interaction measure ∆ = (ǫ − 3p)/T 4 obtained from Eqn. (3.36) (solid line)
versus results (symbols) from a 323 × 8 lattice. The data symbols already
represent the continuum interpolated values [B+96].

temperatures Tc < T . 1.5 Tc, but it exceeds the lattice results for T & 1.5 Tc. This can
be corrected by introducing thermal quasiparticle masses which will bring the pressure,
the entropy density and the energy density down at larger temperatures.

The model can also be extended to full QCD. The partition function is then given by

lnZ = − νGBV

2π2

� K

0

dk k2 ln
(

1 − e−β
√

k2+M2
)

− νgV

2π2

� ∞

K

dk k2 ln
(

1 − e−βk
)

− νπV

2π2

� K

0

dk k2 ln
(

1 − e−β
√

k2+m2
π

)

− νqV

2π2

� ∞

K

dk k2 ln
(

1 + e−βk
)

. (3.37)

The first two terms are the contributions from heavy glueball states and massless gluons,
respectively and are identical to the terms in Eqn. (3.36). The third term is the con-
tribution from pions for momenta k < K and the fourth term is the contribution from
quarks for momenta k > K. νπ = 3 is the degeneracy factor of a pion gas and νq = 24
the degeneracy factor of a quark gas. For simplicity we neglected the quark masses here.
Results for the pressure, the energy density, and the interaction measure are shown in
Fig. 3.8 and Fig. 3.9, respectively. The parameters r and s are the same as in the case
of pure SU(3) gauge theory.
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divided by their respective Stefan-Boltzmann values from our model (solid
lines) compared to lattice data from 163 × 4 and 163 × 6 lattices (symbols)
[AK+01a]. Different values of mPS/mV used in the lattice calculations are
denoted by different shapes of the symbols (see Fig. 1.2 or [AK+01a]).
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3.7 Summary

In this chapter we have extended a novel quasiparticle description of the QCD EoS in
the temperature range Tc < T . 3 Tc, where current heavy-ion collision experiments
operate, to finite quark chemical potential. Such an extension is important for a num-
ber of reasons: First, for current heavy ion collision experiments at SPS and RHIC the
chemical freeze-out occurs at µf.o. ≃ 100 MeV, (baryon chemical potential µB ≃ 300
MeV) [BMHS99] and µf.o. ≃ 15 MeV, (µB ≃ 45 MeV) [BMMRS01], respectively. Thus,
a finite quark chemical potential should be introduced to describe the deconfined quark
matter created in these experiments. Second, first lattice QCD simulations at finite quark
chemical potential are now available and it is of great theoretical interest to interpret
these lattice results. Third, the introduction of an additional external control parameter
helps to test the reliability of the quasiparticle approach.

The use of a quasiparticle model in QCD is based on the observation that in a strongly
interacting system, the complex dynamics often rearranges itself in such a way that gross
features of the physics can be described in terms of appropriate effective degrees of free-
dom. In the confinement quasiparticle model, the strong interactions between the quarks
and gluons are incorporated in thermally generated masses. Since confinement simply
reduces the number of thermally active degrees of freedom in a statistical sense, confine-
ment can be included in the quasiparticle model by modifying the particle distribution
functions with a confinement factor C(T ). To extend this model to finite quark chemical
potentials we have used Maxwell relations to construct the effective coupling G(T, µ) and
the confinement factor C(T, µ). We then used this model to calculate the phase bound-
ary line Tc(µ) and the scaled pressure difference ∆p(T, µ) = (p(T, µ) − p(T, µ = 0))/T 4

and the scaled quark number density nq(T, µ)/T 3. We compared our results to recent
lattice calculations and found remarkably good agreement even for large quark chemical
potentials µ ∼ Tc.

Finally we have dropped the assumption that the confinement process only depends on
temperature and not on the momentum spectrum of the particles. We constructed a
model with momentum dependent confinement and applied this model to pure SU(3)
gauge theory and full QCD with dynamical quarks. Lattice QCD results for the pres-
sure, the energy density and the interaction measure are reproduced remarkably well in
the temperature range Tc ≤ T . 2 Tc. For larger temperatures, the model does not
reproduce the substantial deviations of the pressure and the energy from the Stefan-
Boltzmann limit found in lattice QCD simulations. However, this can be accounted for
by the introduction of thermal quasiparticle masses.
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Chapter 4

Thermodynamics of the

Nambu–Jona-Lasinio Model

The extension of the confinement quasiparticle model which we have developed in chapter
3 reproduces lattice QCD results at finite temperature and finite quark chemical potential
remarkably well. However, the model also has shortcomings which limit its applicability:
There is no obvious relation to a microscopic theory, i. e. there is no Lagrangian that
can be used to calculate other physical quantities, e. g. meson masses. It also does not
incorporate the symmetries and symmetry breaking patterns of QCD which are essential
to understand the lightest hadrons. A model that is particularly well suited to study
the symmetries and symmetry breaking patterns of QCD is the Nambu–Jona-Lasinio
(NJL) model. It is an effective Lagrangian of relativistic fermions interacting through
local fermion-fermion couplings. Historically, it goes back to two papers by Nambu and
Jona-Lasinio in 1961 [NJL61a,NJL61b], i. e. to a time when QCD and even quarks were
still unknown. In its original version the NJL model was therefore a model of interacting
nucleons. After QCD was established, the NJL model was reinterpreted as a theory of
quark degrees of freedom [Kle,Zic,Vol84,HK84]. In principle, the NJL Lagrangian can be
obtained from QCD by “integrating out” the gluonic degrees of freedom, replacing them
by a local four-point color-current interaction. This amounts to effectively replacing the
local color gauge symmetry by a global one, with the assumption that colored (gluonic)
excitations are far removed from the low-energy spectrum and hence “frozen”. This
picture is supported by the short gluon field strength correlation length λ . 0.2 fm
observed in lattice QCD calculations, which suggests a short correlation distance for the
“color transport” between quarks [DGP92,DGDSS02]. In this chapter we introduce the
two-flavor NJL model and demonstrate how it can be used to analyze the properties
of quark matter at finite temperature and finite quark chemical potential. Subsequent
chapters are based on this formalism. For more details the reader is referred to [VW91,
Kle92,HK94].

4.1 Vacuum properties

In QCD, the conserved current associated with a quark is a color-current

Ja
µ = ψ̄γµt

aψ. (4.1)
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Chapter 4 Thermodynamics of the Nambu–Jona-Lasinio Model

This current couples to the gluon field. Two quarks interact with each other by absorbing
and emitting gluons, thus by exchanging color charges. If color fields propagate only over
very short distances, then the interaction between the quarks can be approximated by a
local coupling between their color currents,

Lint = −Gc

8
∑

a=1

Ja
µJµ

a , (4.2)

where Gc ∼ ḡ2
sλ

2 is an effective coupling strength of dimension (length)2. It is given
by the QCD coupling strength, averaged over the relevant distance scales times the
squared correlation length, λ2. Matrix elements of the interaction (4.2) involve both
direct and exchange terms. To calculate exchange terms we construct a Fierz invariant
interaction by adding the Fierz transform of the color-current interaction (4.2) to the
original interaction. In mean-field approximation, calculating direct terms with the Fierz
invariant interaction is equivalent to calculating both direct and exchange terms with the
original color-current interaction (4.2). The Fierz transform gives both color-singlet and
color-octet terms (see Appendix C). The color-singlet part reads

Lcs
int =

G

2

3
∑

b=0

[

(ψ̄τbψ)2 + (ψ̄iγ5τbψ)2 − 1

2
(ψ̄γµτbψ)2 − 1

2
(ψ̄γµγ5τbψ)2

]

, (4.3)

where G = 16
9
Gc is the effective coupling strength between quarks and anti-quarks and

τj are the Pauli matrices in flavor (isospin) space. The local interaction between color-
currents transformed into scalar-pseudoscalar and vector-axialvector interactions which
operate in color-singlet channels with quantum numbers (flavor and spin) of the various
mesons. The remaining color-octet part which includes the original interaction (4.2) and
the color-octet terms of the Fierz transform, is

Lco
int = − 9

8

G

2

8
∑

a=1

(ψ̄γµtaτbψ)2

− 3

16

G

2

8
∑

a=1

3
∑

b=0

[

(ψ̄taτbψ)2 + (ψ̄iγ5taτbψ)2 − 1

2
(ψ̄γµtaτbψ)2 − 1

2
(ψ̄γµγ5taτbψ)2

]

.

(4.4)

In this chapter we will restrict ourselves to the discussion of the color-singlet part (4.3)
of the interaction because the color-octet part does not play any role for matrix elements
taken between color-singlet states. These are the only states we look at in this chapter.
For simplicity we will only consider the scalar and pseudoscalar channels:

Lsym = ψ̄(i/∂ − m̂0)ψ +
G

2

3
∑

b=0

[

(ψ̄τbψ)2 + (ψ̄iγ5τbψ)2
]

, (4.5)

where m̂0 = diag(mu, md) is the current quark matrix and we shall work in the isospin-
symmetric limit with mu = md ≡ m0. In the limit of vanishing quark masses this
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4.1 Vacuum properties

Lagrangian is invariant under SU(2)L ⊗ SU(2)R transformations, just like the QCD
Lagrangian (1.1). However, it also has an additional U(1)A symmetry which is not
realized in nature and which can be removed by adding an anomaly term:

Ldet = K
{

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]
}

(4.6)

=
K

2

[

(ψ̄ψ)2 + (ψ̄iγ5~τψ)2 − (ψ̄iγ5ψ)2 − (ψ̄~τψ)2
]

. (4.7)

The complete NJL Lagrangian then reads

LNJL = Lsym + Ldet = ψ̄(i/∂ − m̂0)ψ +
G

2

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2
]

, (4.8)

where we have assumed G = K. In principle, Lsym and Ldet are regarded to have different
origins, as discussed in Ref. [RA88]. Thus the choice of the coupling constants, G = K,
should be considered as an approximation. The color-octet part is discussed in detail in
the next chapter.

4.1.1 Constituent quarks and mesons

In this section we briefly review the vacuum properties of quarks and mesons described
within the NJL model. Quarks in the NJL model are dressed by their strong interac-
tions and acquire a dynamical mass M = m0 + Σ, where Σ is the quark self-energy.
Diagrammatically, in Hatree-Fock approximation the quark self-energy that arises from
interaction terms in (4.8) is illustrated in Fig. 4.1.

+ = = −iΣ

Figure 4.1: Hatree and Fock contributions to the self-energy for a particular interaction
vertex.

To distinguish the Hatree and the Fock terms, the pointlike interactions are drawn as
(non-local) interaction lines. Since in this approximation the self-energy is local, it only
gives rise to a constant shift in the quark mass:

M = m0 + 4iG

(

NcNf +
1

2

) �
d4p

(2π)4

M

p2 −M2
. (4.9)

In an 1/Nc expansion, the first term in the brackets is of zeroth order, while the second
term is of first order. Since there are more diagrams contributing to O(1/Nc) which we
are not taking into account, we also neglect this term in the following. The integral in
Eqn. (4.9) is quadratically divergent and has to be regularized. This prescription is then
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Chapter 4 Thermodynamics of the Nambu–Jona-Lasinio Model

part of the model. When the model is applied to thermodynamics, it is convenient to
regularizing the divergent integrals by a three-momentum cutoff. This has the advantage
that it preserves the analytic structure, necessary, e. g. , for the analytic continuation
of functions given on imaginary Matsubara frequencies. Therefore we will employ the
three-momentum cutoff-scheme in the following. Eqn. (4.9) then reads

M = m0 + 4GNcNfM

� Λ d3p

(2π)3

1

2Ep

= m0 +
GNcNfM

π2

� Λ

0

dp
p2

Ep

, (4.10)

where � Λ d3p

(2π)3
≡
�

d3p

(2π)3
θ(Λ − |p|), (4.11)

and Ep =
√

p2 +M2. For sufficiently strong interactions G, this allows for non-trivial
solutions M 6= m0, even in the chiral limit m0 = 0, producing a gap ∆E = 2M in the
quark spectrum. In analogy to the BCS theory of superconductivity, this equation is
often referred to as “gap equation”. M is often called “constituent quark mass” because
its numerical value is approximately the same as the values commonly used in naive
non-relativistic quark models.

We now employ the effective Lagrangian (4.8) to study mesonic modes using a consistent
combination of one- and two-body equations (the gap equation and the Bethe-Salpeter
equation). This scheme is analogous to the Hatree-Fock plus RPA approach familiar from
nuclear physics. The basic element in this calculation is the two-body interaction kernel
generated by the interaction terms in (4.8). Given the symmetries of the Lagrangian,
we can decompose the color-singlet two-body interaction kernel into flavor and Lorentz
tensor covariants in the quark-antiquark channel:

K = KS
ij(IDτi ⊗ IDτj) +KP

ij (iγ5τi ⊗ iγ5τj) +KV
ij (γµτi ⊗ γµτj)

+KA
ij (γµγ5τi ⊗ γµγ5τj). (4.12)

The Kα
ij are then given in terms of the coupling strength parameters of the Lagrangian

(4.8):
KS

ij = G, KP
ij = G, KV

ij = 0, KA
ij = 0. (4.13)

The interaction kernel (4.12) is defined such that it represents the Born term of the
quark-antiquark T -matrix (see Fig. 4.2). An explicit expression for the T -matrix is
given by

T (q) = K + iTr

�
d4p

(2π)4
[KS(p)T (q)S(p− q)], (4.14)

where S(p) = (/p −M + iǫ)−1 is the quark propagator with the dynamical quark mass
M . The integral in (4.14) is divergent and has to be regularized. To preserve the Ward-
Takahashi identity, the same regularization scheme as for the gap equation has to be
applied. Using the ansatz

T = T (Γ,Γ′)ij(Γτi ⊗ Γ′τj). (4.15)
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4.1 Vacuum properties

T (q) = K + K T (q)

Figure 4.2: Illustration of the Bethe-Salpeter equation which determines the quark-
antiquark T -matrix.

we can write the T -matrix as a matrix equation in Dirac-, color- and flavor-space:

T = K +KJT = K(1 + JT ). (4.16)

The formal solution of this equation is

T =
K

1 − JK
, (4.17)

where

J(Γ,Γ′)ij = iTr

�
d4p

(2π)4
[ΓτiS(p)Γ′τjS(p− q)] (4.18)

are the generators of the correlation functions characterized by the Dirac matrices Γ,Γ′

and the flavor matrices τi, τj. The trace is taken in Dirac-, color- and flavor-space. In
order to determine meson properties one interprets the T -matrix (4.16) as an effective
meson exchange and parametrizes the pole structure as

TM(q2) =
−g2

Mqq

q2 −m2
M
, (4.19)

where M denotes the quantum numbers of the respective meson channel. The meson
mass mM and the effective coupling gMqq are given by

1 −KJ(q2 = m2
M) = 0 and g−2

Mqq =
dJM
dq2

∣

∣

∣

∣

q2=m2
M

. (4.20)

where J = J(Γ,Γ′)ij is the generator of the correlation function with the quantum
numbers M.

4.1.2 Model parameters

The two-flavor NJL model has three parameters: the coupling constant G, the cutoff
parameter Λ and the current quark mass m0. There are three physical quantities which
can be used to fix these parameters: the pion decay constant fπ, the quark condensate
〈ψ̄ψ〉 = 〈ūu〉+ 〈d̄d〉 and the pion mass mπ. Whereas the pion mass, mπ = 139 MeV and
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the pion decay constant, fπ = 92.4 ± 0.2 MeV [Hol90], are known quite accurately, the
uncertainties for the quark condensate are rather large. Limits extracted from sum rules
are 190 MeV . −〈ūu〉1/3 . 260 MeV at a renormalization scale of 1 GeV [DN98], while
lattice calculations yield 〈ūu〉1/3 = (231 ± 4 ± 8 ± 6) MeV [GRTV99]. This allows for
small variations of the parameters of the NJL model.

Employing a three momentum cutoff, the quark condensate is given by

〈ūu〉 = 〈d̄d〉 = −2NcM

� Λ d3p

(2π)3

1

Ep

= −NcM

π2

� Λ

0

dp
p2

Ep

, (4.21)

whereas the pion decay constant is given by

f 2
π = NcM

2

� Λ d3p

(2π)3

1

E3
p

=
NcM

2

2π2

� Λ

0

dp
p2

E3
p

. (4.22)

The pion mass can be calculated using the first equation from (4.20) with

JPP = i2Nctr

�
d4p

(2π)4
[iγ5S(p)iγ5S(p− q)]

= i8Nc

�
d4p

(2π)2

1

p2 −M2
− i4Ncq

2

�
d4p

(2π)2

1

(p2 −M2)((p− q)2 −M2)
, (4.23)

where the trace in the first line is taken in Dirac-space only. Applying a three-momentum
cutoff one finds the condition

1 − 2GNc

π2

� Λ

0

dp
p2

Ep

(

1 − q2
0

q2
0 − 4E2

p

)∣

∣

∣

∣

q2
0=m2

π

= 0 (4.24)

for the pion mass. Several sets of parameters are used in the literature. We will employ
the parameters from [Kle92], which are listed in Table 4.1 with the resulting physical
quantities.

Λ [GeV] G[GeV−2] m0[MeV]

0.651 10.08 5.5

|〈ψ̄uψu〉|1/3[MeV] fπ[MeV] mπ[MeV]

251 92.3 139.3

Table 4.1: Parameter set used in this work for the two-flavor NJL model, and the resulting
physical quantities.
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4.2 Non-zero temperatures and densities

4.2 Non-zero temperatures and densities

The NJL model has been employed to study quark and meson properties in hot or dense
matter (see e. g. [VW91, Kle92, LKW92] and references therein). Calculations indicate
a significant temperature and density dependence of the chiral condensate. Its melting
is connected with the prediction of a partial restoration of chiral symmetry at high
temperatures and/or large densities. The properties of mesons at finite temperature and
finite density have also been studied in the framework of the NJL model. Due to its
Goldstone boson nature, the pion plays a special role. Its mass stays nearly constant
until the critical conditions for chiral symmetry restoration are reached. Then it turns
into a non-Goldstone particle and its mass quickly increases. In this section we will
discuss how the NJL model is employed to study quark matter at finite temperature and
finite quark chemical potential.

Applying standard techniques of thermal field theory it is straight forward to evaluate
the quark loop which enters the gap equation or the Bethe-Salpeter equation for the
T -matrix at non-vanishing temperature or chemical potential. Details are presented in
Appendix D. The results have basically the same structure as the vacuum expressions,
but are modified by thermal occupation numbers. For instance, the gap equation (4.10)
becomes

M = m0 + 4NcNfGM

� Λ d3p

(2π)3

1 − f+
D (Ep) − f−

D(Ep)

2Ep
, (4.25)

where f±
D (Ep) = (exp((Ep ∓ µ)/T ) + 1)−1 are the Fermi-Dirac distribution functions for

particles and antiparticles and Ep =
√

p2 +M2 is their on-shell energy. The constituent
quark mass as a function of temperature and chemical potential obtained from Eqn.
(4.25) is shown in Fig. 4.3.

The total quark number density is given by the standard expression for the particle
density of a gas of non-interacting massive particles:

nq =
NcNf

π2

� Λ

0

dp p2[f+
D (Ep) − f−

D (Ep)]. (4.26)

Both the constituent quark mass M(T, µ) and the density nq(T, µ) are discontinuous
functions of µ at small temperatures, but the constituent quark mass as a function of the
density is continuous. A plot of the constituent quark mass as a function of temperature
and baryon density nB = nq/3 is shown in Fig. 4.4.

To determine the pion mass, we have to evaluate the quark loops in (4.23) at finite
temperature and finite quark chemical potential. The pole of the T -matrix in this channel
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Figure 4.3: Constituent quark mass M as a function of temperature and quark chemical
potential obtained from the gap equation (4.25).

 0 0.05 0.1 0.15 0.2 0.25 0.3 T[GeV]

 0  0.1  0.2  0.3  0.4  0.5  0.6nB[fm-3]

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

M[GeV]

Figure 4.4: Constituent quark mass M as a function of temperature and the baryon
number density obtained from the gap equation (4.25) and Eqn. (4.26).
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4.3 Thermodynamic potential

is given by

1 − 2GNc

π2

� Λ

0

dp
p2

Ep

(

1 − q2
0

q2
0 − 4E2

p

)

[

1 − f+
D (Ep) − f−

D(Ep)
]

∣

∣

∣

∣

q2
0=m2

π

= 1 +
8GNc

π2

� ΛE

M

dE
E2

√
E2 −M2(1 − f+

D (E) − f−
D (E))

q2
0 − 4E2

∣

∣

∣

∣

q2
0=m2

π

= 0. (4.27)

In the last line we have changed the variable of integration from p to E and defined
ΛE ≡

√
Λ2 +M2. The sigma mass can be calculated using the first equation from (4.20)

with

JSS =i2Nctr

�
d4p

(2π)4
[1S(p)1S(p− q)]

=i8Nc

�
d4p

(2π)2

1

p2 −M2
+ i4Nc(4M

2 − q2)

�
d4p

(2π)2

1

(p2 −M2)((p− q)2 −M2)
,

(4.28)

where again the trace in the first line is taken in Dirac-space only. The pole of the
T -matrix in this channel is then given by

1 +
8GNc

π2

� ΛE

M

dE
(E2 −M2)

√
E2 −M2(1 − f+

D (E) − f−
D (E))

q2
0 − 4E2

∣

∣

∣

∣

q2
0=m2

σ

= 0. (4.29)

The pion mass as a function of temperature and chemical potential is shown in Fig. 4.5
and as a function of temperature and baryon number density in Fig. 4.6. The sigma
mass as a function of temperature and quark chemical potential is shown in Fig. 4.7 and
as a function of temperature and baryon number density in Fig. 4.8.

Our results are in good agreement with a very detailed study making use of a field-
theoretical approach for the calculation of the pseudoscalar and scalar correlation func-
tions at finite temperature [MRST01]. In that work, phenomenological forms for the
non-perturbative features of the gluon propagator were introduced and the Schwinger-
Dyson and Bethe-Salpeter equations were solved.

4.3 Thermodynamic potential

It is straightforward to evaluate the loop integrals that enter the gap equation and the
Bethe-Salpeter equation at finite temperature and finite quark chemical potential. Equiv-
alently, we can also calculate the thermodynamic potential Ω of the system and deduce
thermodynamic properties from it. This formalism is important because it is directly
applicable to the NJL model with confinement which we discuss in subsequent parts of
this work.
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Figure 4.5: Pion mass as a function of temperature and quark chemical potential obtained
from Eqn. (4.27).
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Figure 4.6: Pion mass as a function of temperature and baryon number density obtained
from Eqn. (4.27) and Eqn. (4.26).
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Figure 4.7: Sigma mass as a function of temperature and quark chemical potential ob-
tained from Eqn. (4.29).
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Figure 4.8: Sigma mass as a function of temperature and baryon number density obtained
from Eqn. (4.29) and Eqn. (4.26).
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To derive the thermodynamic potential, it is useful to work with the bosonized form of
the Lagrangian (4.8). We start from the NJL path integral

Z = N
�

DψDψ̄ exp

[

i

�
d4xLNJL

]

. (4.30)

N is an (infinite) constant which is not relevant here. Our final goal is to integrate
over the fermionic degrees of freedom, but this is not possible at this stage since the
interaction term is quadratic in the quark fields. We therefore multiply (4.30) by the
constant �

DσDπ exp

[

i

�
d4x

(

−σ
2 + ~π2

2G

)]

, (4.31)

and obtain the equivalent path integral

Z = N
�
DσD~πDψDψ̄ exp

[

i

�
d4x ψ̄(i/∂ − m̂0)ψ +

G

2

[

(ψ̄ψ)2 + (ψ̄iγ5~τψ)2
]

− σ2 + ~π2

2G

]

.

(4.32)
The bosonic fields can now be shifted according to

σ → σ +Gψ̄ψ and ~π → ~π +Gψ̄iγ5~τψ, (4.33)

so that the functional integral (4.30) becomes

Z = N
�

DσD~πDψDψ̄ exp

[

i

�
d4x

(

q̄
(

S−1
)

q − σ2 + ~π2

2G

)]

. (4.34)

The inverse quark propagator (in Nambu-Gorkov representation) reads

S−1 =

(

i/∂ − m̂0 + σ + iγ5~τ~π 0
0 i/∂ − m̂0 + σ + iγ5~τ~π

)

, (4.35)

and

q(x) =
1√
2

(

ψ(x)
ψ(x)

)

. (4.36)

We have formally doubled the fermion fields. The advantage of this notation will be
apparent when a quark chemical potential is introduced. We can now integrate over q(x)
and q̄(x) since (4.34) is bilinear in the quark fields and obtain the bosonized Lagrangian

L̃NJL = −σ
2 + ~π2

2G
− i

2
Tr lnS−1. (4.37)

The trace in (4.37) is taken over color, flavor and Dirac indices and the factor 1/2 accounts
for the double counting of the fermion fields.

The quantity to be minimized at finite temperature is the thermodynamic potential per
unit volume, which can be written as:

Ω (T, µ) = −T
2

∑

n

� Λ d3p

(2π)3Tr ln

(

1

T
S̃−1 (iωn,p )

)

+
σ2

2G
. (4.38)
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Here ωn = (2n + 1)πT are the Matsubara frequencies for fermions. The inverse quark
propagator becomes

S̃−1
(

p0,p
)

=

(

/p− m̂0 + σ − µγ0 0
0 /p− m̂0 + σ + µγ0

)

, (4.39)

where a quark chemical potential µ has been introduced. The expectation value 〈~π〉 of
the pseudoscalar isotriplet field is equal to zero for isospin-symmetric systems. In (4.39)
we have suppressed color and flavor indices. In fact, each of the elements of the matrix is
a matrix in color-, flavor- and Dirac-space and thus (4.39) is a tensor product of matrices.
To carry out the trace we use the identity Tr ln(X) = ln det(X). The determinant can
be calculated using the identity det(A ⊗ B) = (detA)m(detB)n, where A and B are two
square matrices of dimension n and m [Eve80]. The result reads

Tr ln

(

1

T
S̃−1

)

= 2NcNf

[

ln

(

(ωn + iµ)2 + E2
p

T 2

)

+ ln

(

(ωn − iµ)2 + E2
p

T 2

)]

, (4.40)

where we have introduced the quark quasiparticle energy Ep =
√

p2 +M2 with M =
m0 − σ. We can reorder the terms to obtain

ln

(

(ωn + iµ)2 + E2
p

T 2

)

+ ln

(

(ωn − iµ)2 + E2
p

T 2

)

= ln

(

[(ωn + iµ)2 + E2
p ][(ωn − iµ)2 + E2

p ]

T 4

)

= ln

(

[ω2
n + (Ep − µ)2][ω2

n + (Ep + µ)2]

T 4

)

= ln

(

ω2
n + (Ep − µ)2

T 2

)

+ ln

(

ω2
n + (Ep + µ)2

T 2

)

. (4.41)

Using the relation

T

∞
∑

n=−∞
ln

(

ω2
n + λ2

T 2

)

= λ + 2T ln
(

1 + e−λ/T
)

, (4.42)

we finally obtain

Ω(T, µ;M) = − 2NcNf

{� Λ d3p

(2π)3
Ep + T

� Λ d3p

(2π)3
ln

[

1 + exp

(

−Ep − µ

T

)]

+ T

� Λ d3p

(2π)3
ln

[

1 + exp

(

−Ep + µ

T

)]}

+
σ2

2G
. (4.43)

The second and the third integral in (4.43) are not divergent, so in principle there is no
need to regularize them. Removing the cutoff from these integrals has the advantage that
thermodynamical quantities like the pressure and the energy density approach the Stefan-
Boltzmann limit at high temperatures. On the other hand, this heuristic procedure
breaks chiral symmetry explicitly. It is nevertheless justified as long as temperature and
quark chemical potential are well below the cutoff Λ [Rip97]. Our studies show that the
effect of the additional symmetry breaking on quantities like the quark condensate and
the constituent quark mass is small in the temperature region 0 ≤ T . (2 − 3)Tc that
we consider in this work. From now on we will therefore not regularize integrals that are
not divergent, unless stated otherwise.
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4.4 Comparison with the bag model

In chapter 2 we have discussed the MIT bag model, a simple model that implements
two of the key properties of QCD, asymptotic freedom and confinement. The MIT bag
model treats quarks and gluons as a gas of non-interacting particles confined to a finite
region of space, the bag. In the following, we will briefly compare the MIT bag model
and the NJL model.

In the NJL model, the pressure is given by

p = − Ω = − σ2

2G
+ 2NcNf

� Λ d3p

(2π)3
Ep

+ 2NcNf

�
d3p

(2π)3

{

T ln

[

1 + exp

(

−Ep − µ

T

)]

+ T ln

[

1 + exp

(

−Ep + µ

T

)]}

,

(4.44)

and the energy density reads

ǫ = − p+ Ts+ µn

=
σ2

2G
− 2NcNf

� Λ d3p

(2π)3
Ep + 2NcNf

�
d3p

(2π)3
Ep

[

f+
D (Ep) + f−

D (Ep)
]

, (4.45)

where s = ∂p/∂T is the entropy and n = ∂p/∂µ is the particle number density. The
Gibbs-Duhem relation

ǫ+ p = Ts+ µn (4.46)

is automatically fulfilled in the NJL model. The last term in (4.44) and (4.45) can be in-
terpreted as the pressure and the energy density of a gas of non-interacting quasiparticles
with mass M . The part

σ2

2G
− 2NcNf

� Λ d3p

(2π)3
Ep +B0 ≡ B(T, µ), (4.47)

can be seen as a temperature and chemical potential dependent bag constant B(T, µ).
Here we have introduced a constant B0 to adjust B(T, µ) at zero temperature and chem-
ical potential. Since B(T, µ) adds to the energy density of the quasiparticles, it can be
interpreted as a thermal vacuum energy density.

In the limit M = m0 = 0 the pressure and the energy density are given by

p =
NcNf

π2

� ∞

0

dq q2

{

T ln

[

1 + exp

(

−q − µ

T

)]

+ T ln

[

1 + exp

(

−q + µ

T

)]}

− B

=
2NcNf

12

(

7

30
π2T 4 + T 2µ2 +

1

2π2
µ4

)

− B, (4.48)
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and

ǫ =
NcNf

π2

� ∞

0

dp p2Ep

[

f+
D(Ep) + f−

D (Ep)
]

+B

=
2NcNf

4

(

7

30
π2T 4 + T 2µ2 +

1

2π2
µ4

)

+B. (4.49)

From Eqn. (4.48) or Eqn. (4.49) we could now calculate the deconfinement phase bound-
ary line in the same manner as in the MIT bag model. This is surprising because the NJL
model does not confine quarks, whereas the bag model is confining by construction. The
solution is, that Eqns. (4.48) and (4.49) are only valid in the limit M = m0 = 0. Then
massless quarks, just like the bag model quarks, are restricted to the chirally restored
phase and are not permitted to enter the non-trivial vacuum and hence they are confined.
In the NJL model, however, quarks develop a dynamical mass and chiral symmetry is
spontaneously broken and thus the NJL-model quarks are permitted to enter the non-
trivial vacuum. Thus, while chiral symmetry breaking gives a microscopic explanation
of the bag pressure, it also prevents the quarks from being confined.

4.5 Summary

In this chapter we have discussed the ‘classic’ NJL model, which was introduced in 1961
by Nambu and Jona-Lasinio as a model of interacting nucleons. After the development
of QCD, the NJL model was reinterpreted as a schematic quark model. While schemat-
ically simple and analytically tractable, the model has many of the properties of QCD,
in particular the chiral symmetry and its spontaneous breaking. Chiral symmetry break-
ing implies a non-vanishing chiral condensate. Quarks develop quasiparticle masses by
propagating in this chiral condensate. Above a critical temperature T ≥ Tc the chi-
ral symmetry is restored and the constituent quark masses approach the current quark
masses.

We have applied the NJL model to study the properties of strongly interacting quark
matter at finite temperature and quark chemical potential. The chiral condensate shows
a significant dependence on temperature and quark chemical potential. By solving Bethe-
Salpeter equations in the color-singlet quark-antiquark channels, we employed the NJL
model to generate the lightest mesons as quark-antiquark excitations of the correlated
QCD ground state with its condensate structure. The pion plays a special role due to
its Goldstone boson nature. Its mass stays nearly constant until the critical condition
for chiral symmetry restoration is reached. Then its mass rapidly increases because the
pion no longer is a Goldstone boson. Finally we briefly compared the NJL model and the
bag model, which is the most commonly used model to describe the EoS of deconfined
quark matter. While in the bag model the bag constant B is a free model parameter, in
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the NJL model the bag constant arises dynamically as a consequence of the spontaneous
chiral symmetry breaking.
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Chapter 5

Color-Octet Modes

In the previous chapter we have studied the color-singlet sector of the NJL model. We
have neglected the color-octet part which is introduced by the Fierz-transformation of the
original color-current interaction. Color-octet quark-antiquark modes are the remnants
of gluon degrees of freedom in this model. The color octet-sector of the NJL model
will be studied in detail in this chapter. Colored quark-antiquark pairs have never been
observed in nature. The requirement that quarks at low energies have to be part of
a bound color-singlet state is called color confinement and is an important feature of
QCD. However, the NJL model does not confine quarks and thus allows for colored
quark-antiquark excitations. The aim of this chapter is to show that such excitations
are only possible at energies far above the cutoff of the theory and that they are thus
insignificant for the low-energy spectrum.

5.1 Vacuum properties

By solving the Bethe-Salpeter equation in the color-octet channel, the NJL model gener-
ates color-octet quark-antiquark states. Possible bound states below the quark-antiquark
threshold are determined by the poles of the scattering matrix. Above the quark-
antiquark threshold color-octet bound states show up as a resonance structure in the
real and imaginary parts of the scattering matrix. The color-octet part of the two-body
interaction kernel reads:

K = KS
abij(IDtaτi ⊗ IDtbτj) +KP

abij(iγ5taτi ⊗ iγ5tbτj) +KV
abij(γµtaτi ⊗ γµtbτj)

+KA
abij(γµγ5taτi ⊗ γµγ5tbτj). (5.1)

The coefficients Kabij can be read from the color-octet interaction (4.4) and are given by:

KS
abij = − 3

16
G, KP

abij = − 3

16
G,

KV
abij =

3

32
G, i, j 6= 0, KV

ab00 = −229

288
G, KA

abij =
3

32
G. (5.2)

An explicit expression for the T -matrix is given by

T (q) = K + iTr

�
d4p

(2π)4
[KS(p)T (q)S(p− q)]. (5.3)
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The integral in Eqn. (5.3) is divergent and has to be regularized. We can make the
following ansatz for the T -matrix:

T = T (Γ,Γ′)abij(Γtaτi ⊗ Γ′tbτj). (5.4)

The formal solution reads

T =
K

1 − JK
, (5.5)

where

J(Γ,Γ′)abij = iTr

�
d4p

(2π)4
[ΓtaτiS(p+ q/2)Γ′tbτjS(p− q/2)] , (5.6)

are the color-octet generators of the correlation functions characterized by the Dirac
matrices Γ,Γ′, the color matrices ta, tb and the flavor matrices τi, τj. The trace is taken
in Dirac-, color- and flavor-space.

We can use the longitudinal projection operator Lµν = qµqν/q
2 and the transversal

projection operator Tµν = gµν − qµqν/q
2 to project out the spin 0 and spin 1 parts of the

interaction kernel K:

Ks = KS
ij(IDτi ⊗ IDτj) +KA

ij (−iγµq̂
µτi ⊗ iγν q̂

ντb), (5.7)

Kp = KP
ij (iγ5τi ⊗ iγ5τj) +KA

ij (−iγµγ5q̂
µτi ⊗ iγνγ5q̂

ντj), (5.8)

Kv = T µ
ν K

V
ij (γµτi ⊗ γντj), (5.9)

Ka = T µ
ν K

A
ij (γµγ5τi ⊗ γνγ5τj), (5.10)

with q̂µ = qµ/
√

q2. Note, that we inserted −i · i = 1 in the first two equations. Ks, Kp,
Kv and Ka are the scalar, pseudoscalar, vector and axial vector parts of the kernel K,
respectively. The scattering matrix separates into four independent Dirac channels:

T (q) = Ts(q) + Tp(q) + Tv(q) + Ta(q). (5.11)

Consequently the Bethe-Salpeter equation can be separated into four independent equa-
tions in color- and flavor space. The correlation matrix is given for each of the four
channels by (5.6). Γ,Γ′ are the corresponding Dirac matrices.

The zeroes of 1 − JK represent the singularities of the quark-antiquark T -matrix in
the various color-octet channels. These singularities define the masses of the color-octet
modes. For each scalar, pseudoscalar, vector or axial vector channel, these masses are
determined by the set of conditions

D(q) ≡ det[1 − JK] = 0 at q2 = m2. (5.12)

where each D(q) is specified by a given color-octet channel. Non-diagonal elements of
1−JK appear as a consequence of flavor singlet-triplet mixing and/or mixing of different
channels in Dirac space.
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5.1.1 Pseudoscalar-isovector channel

First we discuss the pseudoscalar-isovector channel, which is the color-octet ‘pionic’ chan-
nel. The correlation matrix elements are given by

J(Γ,Γ′) = iTr

�
d4p

(2π)2
ΓtaτiS(p+ q/2)Γ′tbτjS(p− q/2)

= i4tr

�
d4p

(2π)2
ΓS(p+ q/2)Γ′S(p− q/2), (5.13)

where Tr denotes the trace in flavor-, color- and Dirac-space, while tr denotes the trace in
Dirac-Space only. The trace in color space is tr[tatb] = 2δab and the trace in flavor space
is tr[τiτj ] = 2δij . We can express Eqn. (5.13) using the elementary integrals [KLVW90]

I1(m) ≡ i16

� Λ d4p

(2π)4

1

p2 −m2 + iǫ
, (5.14)

I2(q
2, m1, m2) ≡ i8

� Λ d4p

(2π)4

1

(p+ q/2)2 −m2
1 + iǫ

1

(p− q/2)2 −m2
2 + iǫ

, (5.15)

where we have introduced a covariant Euclidean cutoff� Λ d4p

(2π)4
≡
�

d4p

(2π)4
θ(Λ2 − p2

0 − p2). (5.16)

As an exception we work here with a covariant Euclidean cutoff since this cutoff scheme
allows to give explicit analytic expressions for the elementary integrals. We will employ
the following set of parameters for these calculations: Λ = 1.015 GeV, G = 7.626 GeV−2

and m0 = 5.5 MeV [Kle92]. To preserve the Ward-Takahashi identity, the same regular-
ization scheme has to be applied to the gap equation.

The integral I1 can be calculated easily and gives the following analytic expression:

I1(m) =
1

π2

[

Λ2 −m2 log

(

1 +
Λ2

m2

)]

. (5.17)

By performing a Wick-rotation and using Feynman parameters, the integral I2 can be
written as

I2(q
2, m1, m2) =

1

2π2

� 1

0

dz

(

Λ2

Λ2 + y
+ log

y

Λ2 + y

)

, (5.18)

with y = q2(z2 − z) +m2
1 − z(m2

1 −m2
2). We can perform an integration in the complex

z-plane to obtain (for m1 < m2):

• q2 < (m1 +m2)
2:

I2(q
2, m1, m2) =

1

2π2

[

ω log
m2

1

m2
1 + Λ2

+ 2

√

4m2
1 − q2ω2

q2
arctan

√

q2ω2

4m2
1 − q2ω2

+
q2ω2 − 2Λ2 − 4m2

1
√

q2(m2
1 + Λ2) − q4ω2

4

arctan

√

q2ω2

4(m2
1 + Λ2) − q2ω2

]

. (5.19)
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• (m1 +m2)
2 < q2 < 4(Λ2 +m2

1):

Re I2(q
2, m1, m2) =

1

2π2

[

ω log
m2

1

m2
1 + Λ2

+ 2

√

q2ω2 − 4m2
1

q2
log

qω +
√

q2ω2 − 4m2
1

qω −
√

q2ω2 − 4m2
1

+
q2ω2 − 2Λ2 − 4m2

1
√

q2(m2
1 + Λ2) − q4ω2

4

arctan

√

q2ω2

4(m2
1 + Λ2) − q2ω2

]

,

(5.20)

Im I2(q
2, m1, m2) = − 1

2π

√

q2ω2 − 4m2
1

q2
, (5.21)

with ω ≡ 1 +
m2

1−m2
2

q2 .

The correlation integrals for the pseudoscalar-isovector channel are then given by

J(iγ5, iγ5) ≡ JPP = I1(m) − q2I2(q
2, m,m), (5.22)

J(iγ5,−iγµγ5q̂
µ) ≡ JPA = 2qmI2(q

2, m,m), (5.23)

J(iγµγ5q̂
µ,−iγ5) ≡ JAP = 2qmI2(q

2, m,m), (5.24)

J(iγνγ5q̂
ν ,−iγµγ5q̂

µ) ≡ JAA = −4m2I2(q
2, m,m), (5.25)

and the matrix equation in this channel reads
(

TPP TPA

TAP TAA

)

=

(

KP 0
0 KA

)[(

1 0
0 1

)

+

(

JPP JPA

JAP JAA

)(

TPP TPA

TAP TAA

)]

. (5.26)

The solutions for the T -matrix elements are given by

TPP =
KP

DPP (q2)
(1 −KAJAA), (5.27)

TPA = TAP =
KAKPJPA

DPP (q2)
, (5.28)

TAA =
KA

DPP (q2)
(1 −KPJPP ), (5.29)

with
DPP (q2) = (1 −KPJPP )(1 −KAJAA) −KAKP (JPA)2. (5.30)

The T -matrix is real below q2 < 4m2 and becomes complex above this threshold. The
masses of possible bound states below the quark-antiquark threshold q2 < 4m2 are
determined by the zeros of the function DPP . In the following we present results for
DPP , for the real part of the scattering matrix ReTPP and the imaginary part ImTPP as
a function of the four-momentum squared q2. DPP (q2) is shown in Fig. 5.1. Obviously
there are no bound states below the quark-antiquark threshold because the interaction
in this channel is repulsive. The real and the imaginary part of the scattering matrix is
shown in Fig. 5.2. Apparently there is a resonance structure, however the corresponding
mass of the pseudoscalar-isovector color-octet mode is far above the cutoff of the theory.
A lower bound for the mass is given by m ∼ 2 GeV.
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5.1.2 Scalar-isovector channel

In this section the scalar-isovector channel is studied, which is the color-octet ‘sigma’
channel. The correlation matrix is given by Eqn. (5.6). Its only non-vanishing element
is

J(ID, ID) = I1(m) + (m2 − q2)I2(q
2, m,m). (5.31)

The solution for the T -matrix in this channel reads

TSS =
KS

DSS(q2)
, (5.32)

with

DSS(q2) = 1 −KSJSS. (5.33)

Again, DSS(q2) determines the masses of bound quark-antiquark pairs below the thresh-
old q2 < 4m2. The results for DSS(q2), ReTSS(q2) and ImTSS(q2) are shown in Figs. 5.3
and 5.4. The form of these functions is similar to pseudoscalar-isovector case. There are
no bound states below the quark-antiquark threshold. A scalar resonance with a mass
far above the cutoff of the theory is observed. A lower bound for the mass of the scalar
resonance is again given by m ∼ 2 GeV.

5.1.3 Vector-isovector channel

Next we study the correlation matrix for the vector-isovector channel. It also has only
one non-vanishing element which is given by

J
(T )
V V T

µ
ν ≡ J(Tνβγ

β, T µαγα),

JV V =
2

3
[(2m2 + q2)I2 − 2m2I0

2 ], (5.34)

where I0
2 ≡ I2(q

2 = 0). The solution of the T -matrix in this channel reads

TV V = − KV

DV V (q2)
, (5.35)

with

DV V (q2) = 1 −KV JV V . (5.36)

The results for DV V (q2), ReTV V (q2) and ImTV V (q2) are presented in Figs. 5.5 and 5.6.
Again there are no bound states below the quark-antiquark threshold and the mass of
the vector resonance is even higher then the corresponding masses of the pseudoscalar
and scalar resonances. However, its width is notably smaller.
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5.1.4 Axial vector-isovector channel

The axial vector-isovector channel behaves like the vector-isovector channel. The only
non-vanishing element of the correlation matrix is

J
(T )
AA =

2

3
[(−4m2 + q2)I2 − 2m2I0

2 ]. (5.37)

The solution for the T -matrix is given by

TSS = − KA

DAA(q2)
, (5.38)

with
DAA(q2) = 1 −KAJAA. (5.39)

The results for DAA(q2), ReTAA(q2) and ImTAA(q2) are presented in Figs. 5.7 and 5.8.
Again there is no bound state below the quark-antiquark threshold. A axial vector
resonance with a mass similar to the mass of the vector resonance is observed far above
the cutoff of the theory.

5.2 Non-zero temperatures and densities

In this section we study the change of the masses of the color-octet modes at finite
temperature and finite quark chemical potential. In this section we will regularize all di-
vergent integrals with a three-momentum cutoff and we will use the Matsubara formalism
to evaluate the correlation matrix elements

J(Γ,Γ′) = iTr

�
d4p

(2π)2
ΓtaτiS(p)Γ′tbτjS(p− q) (5.40)

at finite temperature. The correlation matrix elements for the various combinations of
Dirac-, color- and flavor matrices can again be expressed in terms of the elementary
integrals

I1(m) ≡ i16

�
d4p

(2π)4

1

p2 −m2 + iǫ
, (5.41)

I2(q
2, m1, m2) ≡ i8

�
d4p

(2π)4

1

(p+ q/2)2 −m2
1 + iǫ

1

(p− q/2)2 −m2
2 + iǫ

. (5.42)

At finite temperature and non-zero quark chemical potential, the following expressions
are obtained for Eqn. (5.41) and (5.42):

I1(m) =
4

π2

� ΛE

m

dE
√

p2 −m2[1 − f+
D (E) − f−

D (E)],

I2(q
2, m) = P 4

π2

� ΛE

m

dE

√
E2 −m2(1 − f+

D (E) − f+
D (E))

q2
0 − 4E2

− i

2πq0

√

q2
0 − 4m2

[

1 − f+
D

(q0
2

)

− f−
D

(q0
2

)]

θ[(2ΛE − q0) (q0 − 2m)] . (5.43)
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At zero temperature and vanishing quark chemical potential the results are similar to
those we have discussed in the previous section, using a four-momentum cutoff. There
are no bound states below the quark-antiquark threshold and a resonance structure can
be clearly seen in the plots of the real and imaginary parts of the associated scattering
matrices.

At finite temperature and quark chemical potential, the mass of the pseudoscalar reso-
nance is to good approximation given by

m ≈ 2ΛE = 2
√

Λ2 +M2. (5.44)

Consequently, a decrease of the mass of the pseudoscalar resonance related to the drop
of the constituent quark mass when chiral symmetry is restored, is observed. For large
temperatures or chemical potentials, the mass of the pseudoscalar resonances is given
by m ≈ 2Λ. The mass of the pseudoscalar resonance as a function of temperature and
quark chemical potential is shown in Fig. 5.9. The masses of the scalar, vector and axial
vector resonances behave similarly.

5.3 Summary

In this chapter we have studied the color-octet sector of the NJL model. One of the
shortcomings of this model is that it does not confine quarks because the gluon dynamics
is integrated out and replaced by pointlike couplings between the quarks. However, one
of the key properties of QCD is color confinement, which means that quarks at low
energies have to be part of bound color-singlet states. In this chapter we have shown
that, although the NJL model does not explicitly confine quarks, the mass of color-octet
modes are of order O(2 GeV), much larger than the cutoff of the theory which is of order
O(650 MeV). Thus, all color-octet modes are far removed from the low-energy spectrum
of the theory and the NJL model is consistent with the observed particle spectrum.
This does not change qualitatively at finite temperature and non-zero quark chemical
potential.
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Figure 5.1: DPP (q2) for the pseudoscalar-isovector channel below the quark-antiquark
threshold.
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Figure 5.2: Re TPP (q2) and Im TPP (q2) for the pseudoscalar-isovector channel above the
quark-antiquark threshold.
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Figure 5.3: DSS(q2) for the scalar-isovector channel below the quark-antiquark threshold.
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Figure 5.4: Re TSS(q2) and Im TSS(q2) for the scalar-isovector channel above the quark-
antiquark threshold.
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Figure 5.5: DV V (q2) for the vector-isovector channel below the quark-antiquark thresh-
old.
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Figure 5.6: Re TV V (q2) and Im TV V (q2) for the vector-isovector channel above the quark-
antiquark threshold.
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Figure 5.7: DAA(q2) for the axial vector-isovector channel below the quark-antiquark
threshold.
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Figure 5.8: Re TAA(q2) and Im TAA(q2) for the axial vector-isovector channel above the
quark-antiquark threshold.
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Figure 5.9: The mass mPS of the pseudoscalar color-octet resonance as function of tem-
perature and quark chemical potential.
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Chapter 6

Nambu–Jona-Lasinio Model with

Confinement

Bulk thermodynamical quantities at vanishing and finite quark chemical potential are
remarkably well reproduced by the generalized confinement quasiparticle model which
we have developed in chapter 3. In chapter 4 and 5 we then turned to a more microscopic
description of the QGP. The basis for this was the NJL model, an effective Lagrangian of
relativistic quarks interacting through local fermion-fermion couplings. This Lagrangian
can in principle be obtained from QCD by “integrating out” the gluonic degrees of
freedom, replacing them by local four-point color-current interactions. The NJL model
incorporates many of the symmetries and symmetry breaking patterns of QCD, in par-
ticular the chiral symmetry and its spontaneous breaking at low temperatures. However,
it does not confine quarks and thus allows for colored quark-antiquark excitations which
have never been observed in nature. In chapter 5 we have shown that such colored modes
are far removed from the low-energy spectrum of the theory and that the NJL model is
consistent with the observed particle spectrum. On the other hand, for the physics close
to the phase transition confinement is the driving force. Thus, the NJL model cannot
reproduce lattice QCD thermodynamical quantities in this temperature regime.

Since confinement simply reduces the number of thermally active degrees of freedom in
a statistical sense, it can be incorporated in a model of free massive quasiparticles by
a modification of the particle distribution functions with a confinement factor C(T, µ).
This function parametrizes our ignorance about details of the confinement mechanism.
However, it would be desirable to construct a more microscopic description of the con-
finement process that then can be used to calculate thermodynamical quantities. This
is the aim of the current chapter. Our starting point is the heavy-quark limit, in which
the confinement-deconfinement phase transition is well defined and an order parameter,
the so-called Polyakov loop, can be established. Subsequently we construct an effec-
tive theory for the Polyakov loop and study its thermodynamic properties. If quarks
are added no order parameter can be established, but the Polyakov loop still changes
rapidly close to Tc and serves as an indicator of a rapid crossover towards deconfinement.
For a complete discussion of QCD at finite temperature, we must also incorporate the
chiral symmetry breaking and its restoration at high temperatures. To this end, we
introduce a generalized two-flavor NJL Lagrangian with quarks coupled to a (spatially
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constant) temporal background SU(3) gauge field representing Polyakov loop dynamics.
This Polyakov loop extended (PNJL) model incorporates both chiral symmetry restora-
tion and confinement. We test the effectiveness of the PNJL approach by confronting
it with lattice QCD thermodynamics. The main body of this work has been published
in [RTW05].

6.1 Center symmetry

The confinement-deconfinement phase transition of QCD is only well-defined in the
heavy-quark limit mq → ∞. In this case, the confined and deconfined phases are charac-
terized by distinct symmetry properties: the Z(3) center symmetry of the SU(3) gauge
group is spontaneously broken in the deconfined phase, while it is restored in the confined
phase [tH78]. The associated order parameter is the Polyakov loop, a Wilson line closed
around the periodic Euclidean time direction [Pol78, Sus79]. In this section we discuss
the symmetry properties of the QCD Lagrangian in the heavy-quark limit. We introduce
topological non-trivial gauge transformations and show how they give rise to the Z(3)
center symmetry of QCD [HW00]. Finally we introduce the Polyakov loop as the order
parameter associated with the center symmetry.

In the limit mq → ∞ the QCD Lagrangian (1.1) reduces to

LGauge = −1

2
Tr(GµνG

µν). (6.1)

The partition function can be expressed in terms of the Euclidean path integral

Z =

�
DA exp

(

−
� β

0

dτ

�
V

d3xLE
Gauge

)

, (6.2)

where LE
Gauge is the Euclidean version of (6.1). Since we will always work in Euclidean

space in the following, we will omit the superscript from now on. The measure DA in the
path integral (6.2) contains fields that obey periodic boundary conditions [Kap89,Bel96],

Aµ(x, τ + β) = Aµ(x, τ). (6.3)

Under a local gauge transformation g(x) = eiωa(x)ta with arbitrary real functions ωa(x),
the gluon field transforms as

gAµ = g(Aµ + ∂µ)g†. (6.4)

Consequently, the field strength tensor transforms as

gGµν = gGµνg
†, (6.5)

and the Lagrangian (6.1) is invariant because

Tr gGµν
gGµν = Tr gGµνg

†gGµνg
† = TrGµνGµν . (6.6)
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Here we used gg† = 1 and the fact that the trace is cyclic. In order to maintain the
boundary condition (6.3) for the vector potential, we first consider gauge transformations
that are strictly periodic in Euclidean time:

g(x, τ + β) = g(x, τ). (6.7)

Thus, a strictly periodic vector potential transforms as

gAµ(x, τ + β) = g(x, τ + β)(Aµ(x, τ + β) + ∂µ)g†(x, τ + β)

= g(x, τ)(Aµ(x, τ) + ∂µ)g†(x, τ)

= gAµ(x, τ). (6.8)

However, in addition there are topologically non-trivial gauge transformations [tH78] that
also preserve the boundary condition (6.3). These gauge transformations are periodic up
to a constant twist matrix z in the center Z(3) of SU(3):

g(x, τ + β) = zg(x, τ). (6.9)

The elements of the center of a group commute with all elements of the group. For SU(3)
they are given by

z = e
2πin

3 1, n ∈ {1, 2, 3}. (6.10)

Under such a twisted transformation, a strictly periodic vector potential transforms as

gAµ(x, τ + β) = g(x, τ + β)(Aµ(x, τ + β) + ∂µ)g†(x, τ + β)

= zg(x, τ)(Aµ(x, τ) + ∂µ)g†(x, τ)z†

= z gAµ(x, τ)z†

= gAµ(x, τ). (6.11)

In the last line we used the fact that z is an element of the center of SU(3).

The Z(3) symmetry gets explicitly broken in the presence of quark fields, which are
anti-periodic in Euclidean time [Kap89,Bel96],

ψ(x, τ + β) = −ψ(x, τ), (6.12)

and transform as
gψ = gψ. (6.13)

Consequently, under a twisted transformation, the quark fields transform as

gψ(x, τ + β) = g(x, τ + β)ψ(x, τ + β)

= −zg(x, τ)ψ(x, τ)

= −z gψ(x, τ). (6.14)

To maintain the boundary condition (6.12) only z = 1 is possible and the center symmetry
disappears.
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The twisted transformations (6.9) represent a global Z(3) symmetry of the Euclidean
gauge action. Unlike the SU(3) gauge symmetry, it can break spontaneously and should
not be considered as a subgroup of the local gauge group. The center symmetry is a
symmetry of the Euclidean action, not the Hamiltonian. While the Hamiltonian acts
at a given instant, the center symmetry transformations are characterized by non-trivial
boundary conditions in Euclidean time and thus affect the entire time evolution. Hence
it is meaningless to ask how states in the physical Hilbert space transform under such
transformations. Instead, the center symmetry is a symmetry of the spatial transfer
matrix, which acts on a different Hilbert space. At finite temperature the spatial transfer
matrix is at least as useful as the Hamiltonian, because its spectrum is sensitive to
temperature, while the spectrum of the Hamiltonian is not.

6.2 The Polyakov loop as an order parameter for

deconfinement

A system of gluons may be probed using an infinitely heavy test quark which does not
break the Z(3) center symmetry. The operator that describes such a static quark is a
Wilson loop winding around the periodic imaginary time direction, the so-called Polyakov
loop [Pol78,Sus79]:

Φ(x) =
1

3
Tr

[

P exp

(

i

� β

0

dτA4(x, τ)

)]

. (6.15)

Here P denotes path ordering of the exponential and A4 = iA0 is the temporal component
of the Euclidean gauge field (A, A4). The Polyakov loop is a complex scalar field that
depends on the spatial position x of the static color source. It transforms non-trivially
under twisted Z(3) transformations:

gΦ(x) =
1

3
Tr

[

P exp

(

i

� β

0

dτ gA4(x, τ)

)]

=
1

3
Tr

[

g(x, τ + β)P exp

(

i

� β

0

dτA4(x, τ)

)

g†(x, τ)

]

=
1

3
Tr

[

zg(x, τ)P exp

(

i

� β

0

dτA4(x, τ)

)

g†(x, τ)

]

= zΦ(x). (6.16)

On the other hand, it is invariant under strictly periodic gauge transformations (with
z = 1) as it should as a gauge invariant physical quantity.

The partition function of a system of gluons in the presence of a static infinitely heavy
test quark is given by

ZQ =

�
DAΦ(x)e−SGauge[A], (6.17)
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where

SGauge =

� β

0

dτ

�
V

d3xLE
Gauge (6.18)

is the Euclidean gauge action. The thermal expectation value of the Polyakov loop,

〈Φ〉 =
1

Z

�
DAΦ(x)e−SGauge[A] =

ZQ

Z = e−βF , (6.19)

is the ratio of the partition functions of the gluonic systems with and without the external
color source and hence measures the free energy F of an external static quark. Therefore,
〈Φ〉 is zero in the confined phase in which the free energy of a single quark is infinite.
This can be understood as follows: At low temperatures T the extent β = 1/T of the
Euclidean time direction is large and the Polyakov loop extends through many space-time
regions that are essentially uncorrelated in color space. As a consequence, the Polyakov
loop behaves essentially as a random variable and its thermal expectation value averages
to zero. On the other hand, asymptotic freedom suggests that quarks and gluons become
deconfined in the high-temperature phase. Then F is finite and 〈Φ〉 6= 0. In that case
the Euclidean time direction is short and the Polyakov loop extends only through a small
space-time region which is highly correlated in color space. Thus the Polyakov loop picks
up a non-zero expectation value.

6.3 The Polyakov loop model

In this section we will construct an effective theory for the Polyakov loop. We will mainly
follow [Sve86] here. In principle, one can imagine to integrate out the gluon fields and
derive an effective action for the Polyakov loop directly from the underlying SU(3) gauge
theory:

e−Seff[Φ] =

�
DAδ

[

Φ(x) − 1

3
TrPei

� β

0
dτA4(x,τ)

]

e−SGauge[A]. (6.20)

The δ-functional ensures that Φ(x) obeys Eqn. (6.15). Unfortunately, the resulting
effective action is non-local and impossible to compute in practice. However, to calculate
the change of bulk thermodynamical quantities close to the confinement-deconfinement
transition, it is sufficient to construct a simple effective theory that incorporates the
relevant symmetries and symmetry breaking patterns of the original theory and study
its properties. The details of this effective theory can then be arranged by comparing its
properties with lattice QCD results. Seff in general has the form:

Seff[Φ] =

�
d3xV(Φ(x),Φ∗(x)) +

�
d3x

�
d3yΦ∗(x)S2(x − y)Φ(y)

+

�
d3x

�
d3y

�
d3z

�
d3wΦ∗(x)Φ∗(y)S4(x,y, z,w)Φ(z)Φ(w) + · · · .

(6.21)

Here, Φ∗ is the charge conjugated Polyakov loop. The kernels S2, S4, . . . depend on the
temperature of the system and must have a range λ given roughly by the correlation
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length ξ of the fields integrated out in (6.20), i. e. , the space-like components Ai. The
essential argument for the construction of an effective theory from (6.20) is, that ξ stays
finite at the phase transition because the transition is first order and thus all kernels
should be short ranged. One can then envisage to integrate out all degrees of freedom
at length scales less then λ, hence the effective action becomes

Seff[Φ] =

�
d3x [(∂iΦ)(∂iΦ

∗) + V(Φ,Φ∗)] . (6.22)

The effective potential V(Φ,Φ∗) can be calculated for asymptotically high temperatures
[Wei81,Wei82] and in the strong coupling limit on a lattice [Sve86].

We will not use the asymptotic forms of the effective potential V(Φ,Φ∗) for large T or
gs, but rather construct a simple effective potential that incorporates the Z(3) symmetry
and its spontaneous breaking at high temperatures. For illustration, we will first deduce
an effective potential for a U(1) gauge theory which also confines on the lattice for strong
bare coupling.

The center of U(1) is of course also U(1) and consequently V(Φ,Φ∗) must be symmetric
under Φ → eiθΦ. Therefore, the simplest form for the effective potential is a type of mass
term,

V(Φ,Φ∗) = m2Φ∗Φ. (6.23)

In general, the effective U(1) potential takes the form V(Φ,Φ∗) = f(Φ∗Φ) = f(|Φ|2).
In mean-field approximation fluctuations are neglected and the equilibrium state of the
system is represented by the absolute minimum of V. In the low temperature, confined
phase the center symmetry is unbroken and the absolute minimum of the effective po-
tential should be Φ = 0. At the critical temperature Tc the absolute minimum moves
away from zero, either smoothly or discontinuously, giving rise to a second- or a first-
order phase transition, respectively. We cannot distinguish between the two possibilities
without further information about f(|Φ|2). The simplest possible choice is

f(z2) = az2 + bz4 + cz6, (6.24)

with z2 = |Φ|2. Suppose a varies rapidly with T while b and c (with c > 0) stay roughly
constant. If b < 0, then the absolute minimum jumps discontinuously as a is varied.
This is illustrated in Fig. 6.1. On the other hand, if b > 0, then the minimum moves
continuously away from z = 0 as a passes through zero. a = 0 is the critical point in the
later case. This is illustrated in Fig. 6.2.

Next we will deduce a simple effective Polyakov loop potential V(Φ,Φ∗) for SU(3) gauge
theory. The center of SU(3) is Z(3), so this must be a symmetry of the effective potential.
As we have seen, the potential V(Φ,Φ∗) = f(Φ∗Φ) = f(|Φ|2) is invariant under U(1), of
which Z(3) is a subgroup. The simplest terms which are invariant under Z(3), but not
U(1) are

Φ3 + (Φ∗)3 and i
[

Φ3 − (Φ∗)3] . (6.25)
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(a) (b) (c) (d)

Figure 6.1: The effective U(1) Polyakov loop potential V(Φ,Φ∗) for real Φ and b < 0. (a)
a ≫ atr, where atr is the value of the coefficient a at the transition: there
is a unique minimum at Φ = 0. (b) a > atr: a relative minimum at Φ 6= 0
appears. (c) a = atr: the minima are degenerate. (d) a < atr: the absolute
minima are at Φ 6= 0.

(a) (b) (c)

Figure 6.2: The effective U(1) Polyakov loop potential V(Φ,Φ∗) for real Φ and b > 0. (a)
a > 0: there is a unique minimum at Φ = 0. (b) a = 0: the critical point,
the minima are degenerate. (c) a < 0: the absolute minima are at Φ 6= 0.

The factor of i in the second term is added to ensure that in all, the term is real. The
charge conjugation symmetry of QCD further restricts the form of the effective potential:
gluons are invariant under charge conjugation, under which Aµ → −Aµ and Φ → Φ∗.
The first term in (6.25) is invariant under charge conjugation, while the second term is
not. Thus, in general the effective potential will take the form

V(Φ,Φ∗) = f(|Φ|2) + g(|Φ|2,Re Φ3). (6.26)

Expanding (6.26) about the origin, with Φ chosen real, we obtain

V(Φ) = aΦ2 + bΦ3 + cΦ4 + · · · . (6.27)

If a is sufficiently large, we find a unique minimum at Φ = 0. If a is decreased, a relative
minimum appears at Φ 6= 0, and it becomes the absolute minimum for a = atr > 0. A
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first order transition is thus forced by the cubic term, as expected for a Z(3) mean-field
theory.

(a) (b) (c)

Figure 6.3: The effective SU(3) Polyakov loop potential V(Φ,Φ∗) for real Φ when a cubic
term is allowed. (a) a > atr, where atr is the value of the coefficient a at the
transition: there is a unique minimum at Φ = 0 and a relative minimum at
Φ 6= 0. (b) a = atr: the minima are degenerate. (c) a < atr: the absolute
minima is at Φ 6= 0.

The spontaneous breaking of the center symmetry at high temperatures is also observed
in lattice QCD simulations [Sch00]. This is illustrated in Fig. 6.4, where the distribution
of the Polyakov loop Φ (in the figure the Polyakov loop is denoted by L) in the complex
plane is given for a large sample of configurations. In the black center of the picture
the system is in the symmetric phase (at a temperature T < Tc) and the Polyakov loop
is clustered around the origin of the coordinate system. In the non-symmetric phase
(T > Tc) the Polyakov loop favors the sector Re Φ > 0 and Im Φ = 0.

6.4 Thermodynamics of the Polyakov loop model

In this section we will construct an effective thermodynamic potential from (6.26), from
which thermodynamical quantities like the pressure, the entropy density, the energy
density or the Polyakov loop expectation value can be derived. For Nc = 3 the Polyakov
loop is a complex valued field and we make the ansatz

U(Φ,Φ∗;T ) =

[

−b2(T )

2
Φ∗Φ − b3

6

(

(Φ∗)3 + Φ3
)

+
b4
4

(Φ∗Φ)2

]

T 4, (6.28)

where b2(T ), b3 and b4 are dimensionless coefficients. b2(T ) is a function of the tempera-
ture, while b3 and b4 are taken to be constants. The Polyakov loop is the trace of a phase
factor and hence a dimensionless field. The only scale to make up the correct powers of
dimension is the temperature. This accounts for the overall T 4. Lattice simulations for
pure gauge QCD show that the Polyakov loop favors the sector ReΦ > 0 and ImΦ = 0
for T > Tc as demonstrated in Fig. 6.4. Consequently, in the following we assume that
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Figure 6.4: The distribution of the Polyakov loop Φ in the complex plane in the symmetric
phase (black) and the non-symmetric phase (light gray). In the figure the
Polyakov loop is denoted by L. Figure taken from [Sch00].

Φ is real. Eqn. (6.28) then simplifies to

U(Φ;T ) =

[

−b2(T )

2
Φ2 − b3

3
Φ3 +

b4
4

Φ4

]

T 4, (6.29)

which we will employ in the following. For b2(T ) we make the ansatz

b2(T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

, (6.30)

where a0, a1, a2 and a3 are dimensionless constants and T0 is the critical temperature
for deconfinement. We can fix three of the coefficients ai and bi by imposing that the
Polyakov loop approaches unity for large temperatures, that the relative minimum Φmin >
0 becomes the absolute minimum at T = Tc and that the pressure reaches the ideal gas
limit for large temperatures. Imposing limT→∞ Φmin(T ) = 1, where

∂U(Φ, T )

∂Φ
= 0 =⇒ Φmin(T ) =

b3 +
√

b23 + 4b2b4
2b4

, (6.31)

is the value of Φ(T ) at the minimum, we find b3 = b4 − a0. The constraint that the
relative minimum Φmin > 0 becomes the absolute one at T = Tc fixes a3:

a3 = −2a2
0 + 5a0b4 + 9a1b4 + 9a2b4 + 2b24

9b4
. (6.32)

Finally, the pressure of a gas of gluons should approach the Stefan-Boltzmann limit for
high temperatures T → ∞. This fixes b4:

b4 =
2

15
(16π2 − 15a0). (6.33)
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The remaining coefficients a0, a1, a2 are fitted to reproduce the lattice data [B+96]
for QCD thermodynamics in the pure gauge sector. The deconfining temperature T0

appearing in Eqn. (6.30) is fixed at the lattice value T0 = 270 MeV (see Table 1.1). The
resulting effective potential below Tc at T = 200 MeV and above Tc at T = 320 MeV is
shown in Fig. 6.5.
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Figure 6.5: Scaled effective Polyakov loop potential U(Φ;T )/T 4 as a function of Φ below
Tc at T = 200 MeV and above Tc at T = 320 MeV.

The pressure is obtained by minimizing the thermodynamic potential with respect to Φ:

p(T ) = −U(Φmin(T );T ), (6.34)

where Φmin(T ) is given by (6.31). The entropy density and the energy density are ob-
tained by means of standard thermodynamic relations. In Fig. 6.6 we show the (scaled)
pressure, energy density and entropy density in the pure gauge sector, as functions of
temperature. The lattice data are reproduced extremely well using the ansatz (6.29,
6.30), with parameters summarized in Table 6.1.

With the same parametrization, we are also able to reproduce the lattice data [KKPZ02]
for the temperature dependence of the Polyakov loop itself. A comparison between these
data and our results is also shown in Fig. 6.6. The Polyakov loop vanishes below the crit-
ical temperature T0, at which point it jumps discontinuously to a finite value, indicating
a first order phase transition. It tends to one at large temperatures, as expected.

6.5 Polyakov loop model with quarks

The Polyakov loop model reproduces lattice QCD thermodynamical quantities remark-
ably well, however with the caveat that quarks are not yet included. In this section we
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6.5 Polyakov loop model with quarks

a0 a1 a2 a3 b3 b4

6.75 -1.95 2.625 -7.44 0.75 7.5

Table 6.1: Parameter set used in this work for the Polyakov loop potential (6.29) and
(6.30).
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Figure 6.6: Left panel: Scaled pressure, entropy density and energy density as functions
of temperature in the pure gauge sector, compared to corresponding lattice
data taken from Ref. [B+96]. Right panel: Polyakov loop as a function of
temperature in the pure gauge sector, compared to corresponding lattice data
taken from Ref. [KKPZ02].

briefly discuss a simple extension of the Polyakov loop model to systems with dynamical
quarks. We will mainly follow [DPZ05] here.

Quark fields break the Z(3) center symmetry explicitly because they are anti-periodic in
Euclidean time. The simplest symmetry-breaking term that can be added to the effective
Polyakov loop potential (6.26) is

V ′(Φ,Φ∗) = −h
2

(

eµ/T Φ + e−µ/T Φ∗) . (6.35)

This term acts like a background magnetic field. Its strength is characterized by the
parameter h. For massive quarks with m ≫ µ, eµ/T Φ represents the propagation of
a particle forward in imaginary time, while e−µ/T Φ∗ represents an anti-particle moving
backward in imaginary time. Under charge conjugation, the chemical potential changes
its sign, µ→ −µ, thus (6.35) is invariant under charge conjugation, as it should. However,
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Chapter 6 Nambu–Jona-Lasinio Model with Confinement

for a given value of µ 6= 0, charge conjugation symmetry is of course violated: the number
of quarks in the system is not equal to the number of anti-quarks. In the absence of
quarks, the deconfinement transition is first order. The presence of quarks tends to
weaken the transition. Eventually the transition becomes second order at h = hcrit and
turns into a smooth crossover for h > hcrit.

If we decompose Φ and Φ∗ into real and imaginary parts, (6.35) can be written as

V ′ = − h

2

(

eµ/T Φ + e−µ/T Φ∗) = −h
2

[

eµ/T (ReΦ + i Im Φ) + e−µ/T (Re Φ − i Im Φ)
]

= − h

[

eµ/T + e−µ/T

2
ReΦ + i

eµ/T − e−µ/T

2
Im Φ

]

= − h
[

cosh
(µ

T

)

Re Φ + i sinh
(µ

T

)

Im Φ
]

. (6.36)

At zero quark chemical potential, quarks generate a real background Z(Nc) field for the
real component of the Polyakov loop, Re Φ. At finite quark chemical potential, however,
the Z(Nc) background field contains a part proportional to the imaginary part of the
Polyakov loop, Im Φ, with a coefficient that is itself imaginary. For two colors, the
Polyakov loop is always real and thus Im Φ = 0. For three or more colors, the Polyakov
loop is a complex field and consequently (6.36) is manifestly complex. However, if a given
Polyakov loop Φ(x) contributes to the partition function, its charge conjugate Φ∗(x) also
does. Adding the contributions of Φ(x) and Φ∗(x) together, we can rewrite the partition
function in a form that is manifestly real,

Z =
1

2

�
DΦ eV(Φ,Φ∗)

{

e−h[cosh(µ/T )ReΦ+i sinh(µ/T )ImΦ] + e−h[cosh(µ/T )ReΦ−i sinh(µ/T )ImΦ]
}

=

�
DΦ eV(Φ,Φ∗)−h cosh(µ/T )ReΦ e

−ih sinh(µ/T )ImΦ + eih sinh(µ/T )ImΦ

2

=

�
DΦ eV(Φ,Φ∗)−h cosh(µ/T )ReΦ cos (h sinh(µ/T )ImΦ) =

�
DΦ e−Ṽ(Φ,Φ∗) cos(h̃ ImΦ),

(6.37)

where we have defined

Ṽ(Φ,Φ∗) =V(Φ,Φ∗) − h cosh
(µ

T

)

Re Φ, (6.38)

h̃ =h sinh
(µ

T

)

. (6.39)

The potential Ṽ(Φ,Φ∗) is even under charge conjugation of the gluons, while h̃ ImΦ is
odd. We can use this to write the expectation values of the Polyakov loop as

〈Φ〉 =
1

Z

�
DΦ e−Ṽ(Φ,Φ∗)

(

cos(h̃ Im Φ)ReΦ − sin(h̃ ImΦ)ImΦ
)

, (6.40)

while that of the charge conjugated Polyakov loop is

〈Φ∗〉 =
1

Z

�
DΦe−Ṽ(Φ,Φ∗)

(

cos(h̃ Im Φ)ReΦ + sin(h̃ ImΦ)ImΦ
)

. (6.41)
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6.5 Polyakov loop model with quarks

Because quarks at finite quark chemical potential induce an imaginary background field
for the imaginary part of Φ, the expectation values of Φ and Φ∗ are both real, but
unequal. Physically, this is natural: the Polyakov loop is proportional to the trace of the
wave function of a quark, the charge conjugated loop to that of an anti-quark. At finite
quark chemical potential the number of quarks and antiquarks is not equal and thus they
propagate differently.

For the thermodynamic potential, we make the ansatz

U ′(Φ,Φ∗;T, µ) =

[

− b2(T )

2
Φ∗Φ − b3

6

(

(Φ∗)3 + Φ3
)

+
b4
4

(Φ∗Φ)2

− h

2

(

eµ/T Φ + e−µ/T Φ∗)
]

T 4, (6.42)

and we assume that the expectation values Φmin(T, µ) and Φ∗
min(T, µ) are given by mini-

mizing the thermodynamic potential with respect to Φ and Φ∗ at fixed temperature T and
quark chemical potential µ. The pressure is p(T, µ) = −U ′(Φmin(T, µ),Φ∗

min(T, µ);T, µ)
and all other thermodynamical quantities can be obtained from the pressure by using
standard thermodynamic relations. Fig. 6.7 shows the Polyakov loop at vanishing quark
chemical potential for several values of h. The parameters have been taken to be the
same as in the pure SU(3) gauge case. Fig. 6.7 also shows the Polyakov loop and its
charge conjugate as a function of temperature at finite quark chemical potential µ. Φ
and Φ∗ are both real, but unequal. For T → ∞ we find that Φ = Φ∗ because the quark
chemical potential is divided by temperature and thus T → ∞ corresponds to µ→ 0.
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Figure 6.7: Left panel: Polyakov loop obtained from (6.42) for h = 0, 1, 2 at zero quark
chemical potential as a function of temperature. Right panel: Φ and Φ∗ for
h = 1 and µ = 100 MeV as a function of temperature.
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6.6 The PNJL model

In the previous section we have discussed how the Polyakov loop model can be extended
to systems with dynamical quarks. We have found that quarks tend to weaken the
confinement-deconfinement transition. For sufficiently large values of the parameter h
they will turn the first-order transition that occurs in the absence of quarks into a smooth
crossover. At finite quark chemical potential, the Polyakov loop and its charge conjugate
are both real, but unequal.

However, a complete discussion of full QCD at finite temperature must also incorporate
chiral symmetry breaking and its restoration at high temperatures. As we have seen,
the ‘classic’ NJL model accounts for the chiral symmetry restoration at high tempera-
tures. Following [MO96,Fuk04] we introduce a generalized Nf = 2 Nambu–Jona-Lasinio
Lagrangian with quarks coupled to a (spatially constant) temporal background SU(3)
gauge field representing Polyakov loop dynamics (the PNJL model):

LPNJL = ψ̄
(

i /D − m̂0

)

ψ +
G

2

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2
]

− U (Φ[A],Φ∗[A];T ) , (6.43)

where
Dµ = ∂µ + iAµ and Aµ = δµ0A0. (6.44)

The gauge coupling gs is conveniently absorbed in the definition of Aµ ≡ gsA
a
µ

λa

2
. A

local, chirally symmetric scalar-pseudoscalar four-point interaction of the quark fields is
introduced with an effective coupling strength G. U(Φ,Φ∗;T ) is given by (6.28). The
coupling between Polyakov loop and quarks is uniquely determined by the covariant
derivative Dµ in the PNJL Lagrangian (6.43). Note that in the chiral limit (m̂0 → 0),
this Lagrangian is invariant under the chiral flavor group, SU(2)L ×SU(2)R just like the
original QCD Lagrangian.

In a convenient gauge (the so-called Polyakov gauge), the SU(3) Polyakov loop can be
parametrized as follows [Fuk04]:

Φ =
1

3
Trc L with L =





eiφ 0 0
0 eiφ ′

0
0 0 e−i(φ+φ′)



 . (6.45)

The perturbative vacuum corresponds to φ = φ ′ = 0. Using this ansatz the traced
Polyakov loop has the form:

Φ =
1

3
TrcL =

1

3

(

eiφ + eiφ′

+ e−iφ−iφ′
)

. (6.46)

Φ∗ is the charge conjugate of this. Φ and Φ∗ are constrained by the fact that L is a
SU(3) matrix with detL = 1. Using the bosonization technique described in chapter 4,
the Lagrangian (6.43) can be rewritten in terms of the auxiliary field variables σ and ~π:

Leff = −σ
2 + ~π2

2G
− U (Φ,Φ∗;T ) − iTr lnS−1, (6.47)
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where an irrelevant constant has been dropped and

S−1 = iγµ∂
µ − γ0A

0 − M̂ (6.48)

is the inverse quark propagator with

M̂ = m̂0 − σ − iγ5~τ · ~π . (6.49)

The trace in (6.47) is taken over color, flavor and Dirac indices. The field equations
for σ, ~π, Φ and Φ∗ are solved in mean field approximation1. The expectation value 〈~π〉
of the pseudoscalar isotriplet field is equal to zero for isospin-symmetric systems. The
σ field has a non-vanishing vacuum expectation value as a consequence of spontaneous
chiral symmetry breaking. Solving the field equations for σ, the effective quark mass M
is determined by the self-consistent gap equation

M = m0 − 〈σ〉 = m0 −G〈ψ̄ψ〉. (6.50)

Note that 〈σ〉 = G〈ψ̄ψ〉 is negative in our representation, and the chiral (quark) conden-
sate is 〈ψ̄ψ〉 = 〈ψ̄uψu + ψ̄dψd〉. The Polyakov loop Φ and its charge conjugate Φ∗ vanish
in the confining vacuum and tend to one at high temperatures. The parameters ai and
bi are taken to be the same as in the pure gauge case and are listed in Table 6.1. The
parameters of the NJL part also remain unchanged and are given in Table 4.1.

Before passing to the actual calculations, we summarize basic assumptions behind Eqn.
(6.43) and comment on limitations to be kept in mind. In fact the PNJL model (6.43)
is quite schematic in several respects. It reduces gluon dynamics to a) chiral point cou-
plings between quarks, and b) a simple static background field representing the Polyakov
loop. This picture cannot be expected to work beyond a limited range of temperatures.
At large T , transverse gluons are known to be thermodynamically active degrees of free-
dom, but they are ignored in the PNJL model. To what extent this model can reproduce
lattice QCD thermodynamics is nonetheless a relevant question. We can assume that
its range of applicability is, roughly, T ≤ (2 − 3)Tc, based on the conclusion drawn in
Ref. [MOM04] that transverse gluons start to contribute significantly for T > 2.5 Tc.

6.6.1 Finite temperature and chemical potential

Using the formalism from section 4.3, we can extend the model to finite temperature and
quark chemical potential. We consider the isospin symmetric case, with an equal number
of u and d quarks (and therefore a single quark chemical potential µ) . The quantity to
be minimized at finite temperature is the thermodynamic potential per unit volume:

Ω (T, µ) = U (Φ,Φ∗;T ) − T

2

∑

n

�
d3p

(2π)3
Tr ln

(

1

T
S̃−1 (iωn, ~p )

)

+
σ2

2G
. (6.51)

1In the mean field approximation the fields are replaced by their expectation values for which, in later

sections, we will continue using the notation σ, Φ and Φ∗ for simplicity and convenience.
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Here ωn = (2n + 1)πT are the Matsubara frequencies for fermions. The inverse quark
propagator (in Nambu-Gorkov representation) becomes

S̃−1
(

p0, ~p
)

=

(

γ0p
0 − ~γ · ~p−M − γ0(µ+ iA4) 0

0 γ0p
0 − ~γ · ~p−M + γ0(µ+ iA4)

)

.

(6.52)
Here we have suppressed color and flavor indices. In fact, each of the elements of the
matrix (6.52) is a matrix in color-, flavor- and Dirac-space and consequently (6.52) is
a tensor product of matrices. To carry out the trace we use the identity Tr ln(X) =
ln det(X). The determinant can then be calculated using the identity det(A ⊗ B) =
(detA)m(detB)n, for square matrices A and B of dimensions m and n, respectively. The
result reads

Tr ln

(

1

T
S̃−1

)

= 2NfTrc

[

ln

(

(ωn − iµ+ A4)
2 + E2

p

T 2

)

+ ln

(

(ωn + iµ− A4)
2 + E2

p

T 2

)]

,

(6.53)
where we have introduced the quark quasiparticle energy Ep =

√

p2 +M2. The terms
can be reordered to obtain

Tr ln

(

1

T
S̃−1

)

= 2NfTrc

[

ln

(

ω2
n + (Ep − µ− iA4)

2

T 2

)

+ ln

(

ω2
n + (Ep + µ+ iA4)

2

T 2

)]

.

(6.54)
Using the relation

T

∞
∑

n=−∞
ln

(

ω2
n + λ2

T 2

)

= λ+ 2T ln
(

1 + e−λ/T
)

, (6.55)

we finally obtain

Ω = U (Φ,Φ∗;T ) +
σ2

2G
(6.56)

− 2Nf T

�
d3p

(2π)3
{

Trc ln
[

1 + Le−(Ep−µ)/T
]

+ Trc ln
[

1 + L† e−(Ep+µ)/T
]}

− 6Nf

�
d3p

(2π)3
Epθ(Λ

2 − p2), (6.57)

where an irrelevant constant has again been dropped. The last term involves the NJL
three-momentum cutoff Λ. The remaining color trace is performed using the explicit
representation (6.45) of L:

ln det
[

1 + Le−(Ep−µ)/T
]

+ ln det
[

1 + L† e−(Ep−µ)/T
]

= ln
[

1 + 3
(

Φ + Φ∗e−(Ep−µ)/T
)

e−(Ep−µ)/T + e−3(Ep−µ)/T
]

+ ln
[

1 + 3
(

Φ∗+ Φe−(Ep+µ)/T
)

e−(Ep+µ)/T + e−3(Ep+µ)/T
]

, (6.58)
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where we have used Φ =
(

eiφ + eiφ′

+ e−iφ−iφ′)

/3 and Φ∗ =
(

e−iφ + e−iφ′

+ eiφ+iφ′)

/3 in
intermediate steps. From the thermodynamic potential (6.57) the equations of motion
for the mean fields σ, Φ and Φ∗ are derived through

∂Ω

∂σ
= 0 ,

∂Ω

∂Φ
= 0 ,

∂Ω

∂Φ∗ = 0 . (6.59)

This set of coupled equations is then solved for the fields as functions of temperature
T and quark chemical potential µ. Throughout this procedure we treat Φ and Φ∗ as
independent, classical fields.
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Figure 6.8: Left panel: Scaled chiral condensate and Polyakov loop Φ(T ) as functions
of temperature at zero quark chemical potential. Right panel: Plots of
∂〈ψ̄ψ〉/∂T and ∂Φ/∂T . Note that ∂〈ψ̄ψ〉/∂T has dimension [GeV2], while
∂Φ/∂T has dimension [GeV−1].

Fig. 6.8 shows the chiral condensate together with the Polyakov loop Φ as functions of
temperature at µ = 0 where we find that Φ = Φ∗. One observes that the introduction of
quarks coupled to the σ, Φ and Φ∗ fields turns the first-order transition seen in pure-gauge
lattice QCD into a continuous crossover. The original first order transition in the pure-
gauge system appears at a critical temperature T0 = 270 MeV. With the introduction
of quarks, the crossover transitions for the chiral condensate 〈ψ̄ψ〉 and for the Polyakov
loop perfectly coincide at a lower critical temperature Tc ≃ 220 MeV. We point out
that this feature is obtained without changing a single parameter with respect to the
pure gauge case. The value of the critical temperature that we obtain is a little high if
compared to the available data for two-flavor lattice QCD (see Table 1.1) which gives
Tc = (173 ± 8) MeV. On the other hand, it is presently being discussed that detailed
continuum extrapolation of these data can increase this temperature up to 210 MeV
[Fod]. For quantitative comparison with existing lattice results we choose to reduce Tc

by rescaling the parameter T0 from 270 to 190 MeV. In this case we loose the perfect
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coincidence of the chiral and deconfinement transitions, but they are shifted relative to
each other by less than 20 MeV. When defining Tc in this case as the average of the
two transition temperatures we find Tc = 180 MeV. This is also consistent with the
observations reported in [DLS01]. As we turn to non-zero chemical potential, we find
that Φ and Φ∗ are different from each other, even though they are both real. They will
finally coincide again at high temperatures, as can be seen in Fig. 6.9. This feature
was already observed in [DPZ05]. With increasing chemical potential, the crossover
pattern evolves to lower transition temperatures (see Fig. 6.10) until it turns to a first
order transition around µ ∼ 0.3 GeV. At this point Cooper pairing of quarks presumably
sets in. A more detailed discussion of the critical point and its neighborhood therefore
requires the additional incorporation of explicit diquark degrees of freedom in the PNJL
model.

6.6.2 Detailed comparison with lattice QCD

In this section we test the predictions of our PNJL model with lattice data available
for full QCD thermodynamics at zero and finite µ. Consider first the pressure of a
quark-gluon system at zero quark chemical potential:

p (T, µ = 0) = −Ω (T, µ = 0; σ(T, 0),Φ(T, 0),Φ∗(T, 0)) , (6.60)

where σ (T, 0) , Φ (T, 0) and Φ∗ (T, 0) are the solutions of the field equations at finite
temperature and zero quark chemical potential. Our results are presented in Fig. 6.11
and Fig. 6.12 in comparison with corresponding lattice data. We point out that the in-
put parameters of the PNJL model have been fixed independently in the pure gauge and
hadronic sectors, so that our calculated pressure is a prediction of the model, without
any further tuning of parameters. With this in mind, the agreement with lattice results
is quite satisfactory. One must note that the lattice data are grouped in different sets
obtained on lattices with temporal extent Nt = 4 and Nt = 6, both of which are not con-
tinuum extrapolated. In contrast, our calculation should, strictly speaking, be compared
to the continuum limit. In order to perform meaningful comparisons, the pressure and
the energy density are divided by its asymptotic high-temperature (Stefan-Boltzmann)
limit for each given case. At high temperatures our predicted curves should be located
closer to the Nt = 6 sets than to the ones with Nt = 4. This is indeed the case. Fig. 6.12
also shows the interaction measure, (ε−3p)/T 4 and the pressure as a function of the en-
ergy density. One should of course note that the lattice results have been produced using
relatively large quark masses, with pseudoscalar-to-vector mass ratios mPS/mV around
0.7, whereas our calculation is performed with light quark masses corresponding to the
physical pion mass. This will be investigated further in the next section.

At non-zero chemical potential, quantities of interest that have become accessible in
lattice QCD are the ”pressure difference” and the quark number density. The (scaled)
pressure difference is defined as:

∆p (T, µ)

T 4
=
p (T, µ) − p (T, µ = 0)

T 4
. (6.61)
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Figure 6.9: Averaged sum and difference of Φ and Φ∗ as functions of temperature at a
finite quark chemical potential µ = 0.6 Tc.

0 0.05 0.1 0.15 0.2 0.25 0.3
T [GeV]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
 [

G
eV

]

µ = 0
µ = 200 MeV
µ = 270 MeV
µ = 340 MeV

0 0.05 0.1 0.15 0.2 0.25 0.3
T [GeV]

0

0.2

0.4

0.6

0.8

1

Φ

µ = 0
µ = 200 MeV
µ = 270 MeV
µ = 340 MeV

Figure 6.10: Constituent quark mass M and Polyakov loop Φ as functions of temperature
for various values of the quark chemical potential µ.
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Figure 6.11: The pressure p/pSB (left panel) and the energy density ǫ/ǫSB (right panel),
divided by their respective Stefan-Boltzmann values from our model (solid
lines) compared to lattice data from 163 × 4 and 163 × 6 lattices (symbols)
[AK+01a]. Different values of mPS/mV used in the lattice calculations are
denoted by different shapes of the symbols (see Fig. 1.2 or [AK+01a]).
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Figure 6.12: The scaled interaction measure (ǫ − 3p)/T 4 (left panel) and the pressure
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[AK+01a]. Different values of mPS/mV used in the lattice calculations are
denoted by different shapes of the symbols (see Fig. 1.2 or [AK+01a]).
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A comparison of ∆p, calculated in the PNJL model, with lattice results is presented in
Fig. 6.13. This figure shows the scaled pressure difference as a function of the temperature
for a series of chemical potentials, with values ranging between µ = 0.2 Tc and µ ≃ Tc.
The agreement between our results and the lattice data is quite satisfactory.
A related quantity for which lattice results at finite µ exist, is the scaled quark number
density, defined as:

nq (T, µ)

T 3
= − 1

T 3

∂Ω (T, µ)

∂µ
. (6.62)

Our results for nq as a function of temperature, for different values of the quark chemical
potential, are shown in Fig. 6.14 in comparison with corresponding lattice data [A+03].
Also in this case, the agreement between our PNJL model and the corresponding lattice
data is surprisingly good.

It is instructive to study the effect of the Polyakov loop dynamics on the behavior of
the quark density nq. The coupling of the quark quasiparticles to the fields Φ and Φ∗

reduces their weight as thermodynamically active degrees of freedom when the critical
temperature Tc is approached from above. At Tc the values of Φ and Φ∗ tend to zero
and the quasiparticle exponentials exp[−(Ep ±µ)/T ] are progressively suppressed in the
thermodynamic potential as T → Tc. This is what can be interpreted as the impact of
confinement in the context of the PNJL model. In contrast, the standard NJL model
without coupling to the Polyakov loop does not have this important feature, so that
the quark density leaks strongly into the “forbidden” domain T < Tc ≃ 170 MeV, as
demonstrated in Fig. 6.15.

It is a remarkable feature that the quark densities and the pressure difference at finite µ
are so well reproduced even though the lattice “data” have been obtained by a Taylor
expansion up to fourth order in µ, whereas our thermodynamical potential is used with
its full functional dependence on µ. We have examined the convergence in powers of µ
by expanding Eqn. (6.57). It turns out that the Taylor expansion to order µ2 deviates
from the full result by less than 10 % even when the chemical potential reaches values
as large as µ ∼ Tc, as seen in Figs. 6.13 and 6.14. When expanded to O(µ4), there is no
visible difference left between the approximate and full calculations for all cases shown
in Figs. 6.13 and 6.14.

6.6.3 Quark mass dependence

In the following we briefly investigate the dependence of the pressure and the energy
density on the current quark mass in our model. To this end we have calculated the
pressure and the energy density for various current quark masses m0. The results are
shown in Fig. 6.16. Results for m0 = 5.5 MeV, which corresponds to the physical
pion mass, are denoted by solid lines. Dashed lines are the pressure and the energy
density for a quark mass of 50 MeV (mπ ≃ 430 MeV), while the dashed-dotted lines
correspond to 100 MeV (mπ ≃ 600 MeV). The critical temperature scales approximately
as Tc ≃ Tc(mπ = 0) + 0.04mπ, in agreement with the behavior found in [KLP01a].
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Figure 6.13: Scaled pressure difference as a function of temperature at different values of
the quark chemical potential, compared to corresponding lattice data taken
from Ref. [A+03]. Dashed lines denote the results from a Taylor expansion
to order µ2 (see text).
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Figure 6.14: Scaled quark number density as a function of temperature at different values
of the quark chemical potential, compared to corresponding lattice data
taken from Ref. [A+03]. Dashed lines denote the results from a Taylor
expansion to order µ2 (see text).
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6.7 Summary

The aim of this chapter was to develop a general model that is suitable to study con-
finement and chiral symmetry breaking in a unified framework. Our starting point was
the heavy-quark limit, where the confined and the deconfined phases are characterized
by distinct symmetry properties: the Z(3) center symmetry of the SU(3) gauge group
is spontaneously broken in the confined phase, while it is restored in the deconfined
phase. The associated order parameter is the Polyakov loop, a Wilson line closed around
the Euclidean time direction. Subsequently, we have constructed an effective theory for
the Polyakov loop and tested it at finite temperature against results from SU(3) lattice
gauge theory. The lattice data are reproduced extremely well by our ansatz. If quarks are
added, the center symmetry gets explicitly broken and no order parameter can be estab-
lished, but the Polyakov loop still changes rapidly close to Tc and serves as an indicator of
a rapid crossover towards deconfinement. To include chiral symmetry breaking, we have
introduced a generalized NJL Lagrangian with quarks coupled to a (spatially constant)
temporal background SU(3) gauge field A0, representing Polyakov loop dynamics. This
Polyakov loop extended (PNJL) model represents a minimal synthesis of the two basic
principles that govern QCD at low temperatures: spontaneous chiral symmetry breaking
and confinement. The respective order parameters (the chiral quark condensate and the
Polyakov loop) are given the meaning of collective degrees of freedom. Quarks couple to
these collective fields according to the symmetry rules dictated by QCD itself.

Once a limited set of input parameters is fitted to lattice QCD in the pure gauge sector
and to pion properties in the hadron sector, the quark-gluon thermodynamics above Tc

up to about 2-3 times the critical temperature is well reproduced, including quark densi-
ties up to chemical potentials of about 0.2 GeV. In particular, the PNJL model correctly
describes the step from the first-order deconfinement transition observed in pure-gauge
lattice QCD (with Tc ≃ 270 MeV) to the crossover transition (with Tc less than 200
MeV) when Nf = 2 light quark flavors are added. The non-trivial result is that the
crossovers for chiral symmetry restoration and deconfinement almost coincide, as found
in lattice simulations. The model also reproduces the quark number densities at various
chemical potentials remarkably well when confronted with corresponding lattice data.
The conclusion that can be drawn at this point is promising: it appears that a relatively
straightforward quasiparticle approach, with its dynamics rooted in spontaneous chiral
symmetry breaking and confinement and with parameters controlled by a few known
properties of the gluonic and hadronic sectors of the QCD phase diagram, can account
for essential observations from two-flavor Nc = 3 lattice QCD thermodynamics.
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Figure 6.15: Comparison between the results in the PNJL model (solid line) and in the
standard NJL model (dashed line) for the quark number density at µ = 102
MeV. The effect of the missing of confinement is evident in the standard
NJL model.
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Chapter 7

Three-Flavor Systems

In the previous chapter we have discussed a generalized Nambu–Jona-Lasinio model
in which quarks couple simultaneously to the chiral condensate and to a background
temporal gauge field representing Polyakov loop dynamics. This so-called PNJL model
includes features of both deconfinement and chiral symmetry restoration. In this chapter
we extend our analysis to three quark flavors. The main difference between the two-flavor
case and the three-flavor case comes about the fact that the mass of the strange quark
is different from the masses of the non-strange quarks. This means that we have to deal
with an explicitly broken SU(3) symmetry, and thus 〈s̄s〉 6= 〈ūu〉, even for equal quark
chemical potentials. We extend the PNJL model to three flavors and study how the quark
condensate depends on the current quark masses and how the subtle interplay between
the chiral condensate and the Polyakov loop dynamics is affected by the larger strange
quark mass. As an application, various thermodynamical quantities are calculated and
confronted with recent lattice QCD results.

7.1 Vacuum properties

The generalization of the NJL model to three quark flavors is not straight-forward. If
the number of flavors is greater than two, any four-fermion interaction which preserves
SU(Nf )L ⊗ SU(Nf )R flavor symmetry also has a U(1)A symmetry which is not present
in nature. The simplest multi-fermion interaction that breaks this unwanted symmetry
is the ’t Hooft determinant [tH76]. This term is phenomenologically important to get the
correct mass splitting of the η and η′ mesons. In the chiral limit (mu = md = ms = 0), the
η′ mass is lifted to a finite value by the ’t Hooft determinant, while the other pseudoscalar
mesons, including the η, remain massless.

Our starting point is again the color-current interaction (4.2). The color currents Ja
µ =

ψ̄γµt
aψ now involve the quark fields ψ̄ = (ψ̄u, ψ̄d, ψ̄s). The three-flavor current quark

mass matrix is m̂0 = diag(mu, md, ms) and we shall work in the isospin symmetric limit
with mu = md ≡ m0, whereas ms will in general be different, thus explicitly breaking the
SU(3) flavor symmetry. Again, matrix elements for the interaction Gc

∑8
a=1 J

a
µJ

µ
a involve

both direct and exchange terms. To deal with the exchange terms, it is convenient to
introduce the Fierz transform of Gc

∑8
a=1(ψ̄γµt

aψ)2 and add it to the original interaction.
The Fierz transform gives both color-singlet and color-octet terms (see Appendix C). The
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color-singlet part reads

Lcs
int =

G

2

8
∑

b=0

[

(ψ̄λbψ)2 + (ψ̄iγ5λbψ)2 − 1

2
(ψ̄γµλbψ)2 − 1

2
(ψ̄γµγ5λbψ)2

]

, (7.1)

where G = 16
9
Gc is the effective coupling strength between quarks and anti-quarks and

λj, j = 1 . . . 8 are the Gell-Mann matrices in flavor space and λ0 =
√

2/31f . The
local interaction between color-currents is again transformed into scalar-pseudoscalar
and vector-axialvector interactions which operate in color-singlet channels with quantum
numbers (flavor and spin) of the various mesons. The remaining color-octet part which
includes the original color-current interaction and the color-octet terms of the Fierz
transform, is

Lco
int = − 3

16

G

2

8
∑

a=1

8
∑

b=0

[

(ψ̄taλbψ)2 + (ψ̄iγ5taλbψ)2 − 1

2
(ψ̄γµtaλbψ)2 − 1

2
(ψ̄γµγ5taλbψ)2

]

− 9

8

G

2

8
∑

a=1

(ψ̄γµtaτbψ)2. (7.2)

In this chapter we will restrict ourselves to the discussion of the color-singlet part (7.1)
of the interaction and for simplicity we will only consider the scalar and pseudoscalar
channels:

Lsym = ψ̄(i/∂ − m̂0)ψ +
G

2

8
∑

b=0

[

(ψ̄λbψ)2 + (ψ̄iγ5λbψ)2
]

. (7.3)

The U(1)A breaking ’t Hooft determinant is given by

Ldet = −K
{

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]
}

. (7.4)

It is a determinant in flavor space, which means that it is a maximally flavor-mixing
2Nf -point interaction, involving an incoming and an outgoing quark of each flavor. The
flavor structure is illustrated in Fig. 7.1.

Figure 7.1: Flavor structure of the U(1)A-breaking effective interaction.

The complete three-flavor NJL Lagrangian then reads

L = Lsym + Ldet. (7.5)
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7.1.1 Constituent quarks and mesons

Compared to the two-flavor case there is an additional term in the gap equation involving
two quark loops, which arises from the ’t Hooft interaction. In Hartree approximation
the self-energy is local and thus, only gives rise to a constant shift in the quark masses:

Mu = mu − 2G〈ūu〉 +K〈d̄d〉〈s̄s〉, (7.6)

Md = md − 2G〈d̄d〉 +K〈ūu〉〈s̄s〉, (7.7)

Ms = ms − 2G〈s̄s〉 +K〈ūu〉〈d̄d〉. (7.8)

Terms of the form 2G〈ūu〉 are already familiar from the two-flavor case. Terms of the form
K〈d̄d〉〈s̄s〉 only appear in the three flavor case. They represent the t’ Hooft interaction
illustrated in Fig. 7.1. Linearizing this interaction is equivalent to closing two quark
loops. The flavor mixture of the determinant (7.4) then implies that the u quark mass
receives contributions from the product 〈d̄d〉〈s̄s〉 of the condensates of the other two
flavors and so forth. For each flavor q = u, d, s the quark condensate is given by

〈q̄q〉 = −4iNc

� Λ d4p

(2π)4

Mq

p2 −M2
q

. (7.9)

If we apply a three-momentum cutoff, Eqn. (7.9) becomes

〈q̄q〉 = 4NcM

� Λ d3p

(2π)3

1

2Ep
= Nc

Mq

π2

� Λ

0

dp
p2

Ep
, (7.10)

where Ep =
√

p2 +M2
q . The three-flavor NJL Lagrangian (7.5) can also be employed to

study the properties of mesonic states. One first needs to reduce the six-point interaction
Ldet to an effective four point interaction by closing one quark loop, as illustrated in Fig.
7.2. The general procedure to study meson properties is then the same as in the two-
flavor NJL model, although it is technically more involved because of the unequal strange
and non-strange quark masses. It will not be presented here, for further details see e. g.
Refs. [KLVW90,RKH96].

K = +

Figure 7.2: The two-body Bethe-Salpeter kernel generated by the three-flavor NJL inter-
action.
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7.1.2 Model parameters

The three-flavor NJL model has five model parameters: the coupling constants G and K,
the cutoff parameter Λ and the bare quark masses mu = md and ms. Thus, compared
to the two-flavor NJL model defined by (4.8) we have two additional parameters: ms

and the six-point coupling strength K. However, now there are three additional physical
quantities to fix these parameters, namely the masses of the pseudoscalar mesons K, η
and η′. Therefore, in the three-flavor NJL model we do not have to rely on the poorly
known quark condensate for fixing the parameters. Instead we can use the five well-known
observables fπ, mπ, mK , mη and m′

η. We will employ the parameters from [RKH96] in
the following. They are listed in Table 7.1, together with the corresponding physical
quantities in the quark and meson sector.

Λ [MeV] G [GeV−2] K [GeV−5] mu,d [MeV] ms [MeV]

602.3 10.1167 311.878 5.5 140.7

fπ [MeV] mπ [MeV] mK [MeV] mη [MeV] mη′ [MeV]

92.4 135 479.7 514.8 957.8

Mu,d [MeV] Ms [MeV] |〈ψ̄uψu〉|1/3 [MeV] |〈ψ̄sψs〉|1/3 [MeV]

367.7 549.5 241.9 257.7

Table 7.1: Parameter set used in this work for the three-flavor NJL model, and the re-
sulting physical quantities.

7.2 The three-flavor PNJL model

It is straight-forward to generalize the formalism of Sec. 6.6 to the three-flavor case.
First we introduce a generalized Nf = 3 Nambu–Jona-Lasinio Lagrangian with quarks
coupled to a (spatially constant) temporal background SU(3) gauge field A0, representing
Polyakov loop dynamics:

LPNJL = ψ̄
(

i /D − m̂0

)

ψ +
G

2

[

(

ψ̄ψ
)2

+
(

ψ̄iγ5λbψ
)2
]

−K
{

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]
}

− U (Φ[A],Φ∗[A];T ) , (7.11)

where
Dµ = ∂µ + iAµ and Aµ = δµ0A0, (7.12)

and we take the sum over b (b = 1 . . . 8). Note that in the chiral limit (m̂0 → 0), this
Lagrangian is invariant under the chiral flavor group, SU(3)L×SU(3)R×U(1)V , whereas
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the UA(1) symmetry is broken by the ’t Hooft interaction.

The bosonization technique from chapter 4 cannot directly be used to rewrite the La-
grangian (7.11) in terms of the auxiliary field variables σ and ~π because of the t’ Hooft
interaction. Again one first needs to reduce the six-point interaction to an effective four
point interaction by closing one quark loop. After this the formalism of sections 4.3 and
6.6 is straightforwardly generalized to the three-flavor case. In the isopsin symmetric case
mu = md 6= ms with two independent chemical potentials µu = µd 6= µs, the mean-field
thermodynamic potential reads

Ω =U (Φ,Φ∗;T ) +
σ2

u

2G
+
σ2

s

4G
− K

4G3
σ2

uσs (7.13)

−4 T

�
d3p

(2π)3

{

Trc ln
[

1 + L e−(Ep,u−µu)/T
]

+ Trc ln
[

1 + L† e−(Ep,u+µu)/T
]}

−2 T

�
d3p

(2π)3

{

Trc ln
[

1 + L e−(Ep,s−µs)/T
]

+ Trc ln
[

1 + L† e−(Ep,s+µs)/T
]}

−12

�
d3p

(2π)3
Ep,u θ(Λ

2 − p2) − 6

�
d3p

(2π)3
Ep,s θ(Λ

2 − p2). (7.14)

The quasiparticle energies are given by

Ep,u =

√

p2 +

(

mu0 − σu +
K

4G2
σuσs

)2

, (7.15)

and

Ep,s =

√

p2 +

(

ms0 − σs +
K

4G2
σuσu

)2

. (7.16)

The remaining color trace is performed using the explicit representation (6.45) of L.
From the thermodynamic potential (7.14) the equations of motion for the mean fields
σu, σs, Φ and Φ∗ are derived through

∂Ω

∂σu

= 0 ,
∂Ω

∂σs

= 0 ,
∂Ω

∂Φ
= 0 ,

∂Ω

∂Φ∗ = 0 . (7.17)

This set of coupled equations is then solved for the fields as functions of temperature
T and quark chemical potentials µu and µs. The parameters ai and bi are taken to be
the same as in the pure gauge case and are listed in Table 6.1. The critical temperature
for deconfinement T0 = 176 MeV appearing in Eqn.(6.30) is close to the value Tc ∼ 170
MeV found in 2+1 flavor lattice QCD simulations [FKS03]. The parameters of the NJL
part remain unchanged and are given in Table 7.1.

Fig. 7.3 shows the constituent quark masses

Mu = mu0 − 〈σu〉 +
K

4G2
〈σu〉〈σs〉 and Ms = ms0 − 〈σs〉 +

K

4G2
〈σu〉2, (7.18)
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Figure 7.3: Left panel: Constituent quark masses Mu and Ms as functions of the temper-
ature at µB = 0 and µB = 530. Right panel: Polyakov loop Φ and its charge
conjugate Φ∗ as functions of temperature at µB = 0 and µB = 530 MeV.

and the Polyakov loop Φ and its charge conjugate Φ∗ as functions of temperature at
µB = 0 and µB = 530 MeV. Note that the constituent quark masses approach zero
at high temperature because we did not employ a momentum cutoff on the integrals
involving Fermi-Dirac distribution functions in (7.14). This is necessary to preserve the
correct behavior of thermodynamical quantities in the high temperature limit.

7.3 Comparison with lattice QCD

In this section we test the predictions of our three-flavor PNJL model with lattice
data available for full QCD thermodynamics at finite µ. The scaled pressure difference
∆p(T, µ)/T 4 = (p(T, µ)−p(T, 0))/T 4 and the scaled baryon number density nB(T, µ)/T 3

were calculated for 2 + 1 flavors of dynamical staggered quarks on Nt = 4 lattices using
an overlap improved reweighting technique [FKS03]. Only µ-values for the light quarks
have been considered in these simulations. A comparison of ∆p, calculated in the PNJL
model, with corresponding lattice results is presented in Fig. 7.4. This figure shows the
scaled pressure difference as a function of temperature for a series of chemical potentials,
with values ranging between µB = 100 MeV and µB = 530 MeV.

A related quantity for which lattice results at finite µ exist is the scaled baryon num-
ber density nB. Our results for nB compared to corresponding lattice data [FKS03] are
shown in Fig. 7.5. Also in this case, the agreement between our PNJL model and the
corresponding lattice data is excellent.
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Figure 7.4: Scaled pressure difference as a function of temperature at different values of
the baryon chemical potential, compared to corresponding lattice data taken
from Ref. [FKS03].
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7.4 Summary

In this chapter we have studied a three-flavor Polyakov-loop-extended Nambu–Jona-
Lasinio (PNJL) model. The non-trivial result is that the crossovers for chiral symmetry
restoration and deconfinement still almost coincide if the strange quark is added. The
subtle interplay between the chiral condensate and the Polyakov loop is not altered qual-
itatively by the additional heavier quark. The model reproduces the pressure difference
and the baryon number density at various chemical potentials extremely well when con-
fronted with corresponding lattice data.
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In this work we have studied the thermodynamics of QCD at high temperatures and fi-
nite quark chemical potential using QCD inspired phenomenological and field theoretical
models. There are several motivations to study QCD under extreme conditions, such as
high temperatures. First, QCD is expected to undergo a phase transition from a con-
fined hadronic phase to a deconfined partonic phase, the so-called Quark-Gluon Plasma

(QGP), at a temperature roughly equal to the QCD scale ΛQCD ∼ 200 MeV. In this
deconfined phase, quarks and gluons are no longer bound into hadrons, but can move
over larger distances. At the same time, the chiral symmetry which is spontaneously bro-
ken in the hadronic phase, is restored. Studying these transitions is interesting in itself,
but it may also help us to understand the structure of hadrons and their interactions.
Second, QCD simplifies under extreme conditions: At scales relevant to hadrons, the
QCD coupling constant is large and perturbative calculations are bound to fail. We have
to rely on numerical simulations in order to test predictions of QCD. However, at very
high temperatures the coupling constant becomes small and perturbative calculations
should become feasible. Third, the QGP may be created in earth-bound experiments,
the ultra-relativistic heavy-ion collisions. It is expected that the colliding nuclei deposit
so much energy in the collision region that a thermalized system of particles forms which
subsequently expands and cools off. If the initial energy density is above the critical en-
ergy density ǫc ∼ 1 GeV/fm3, a QGP should form. First dedicated experiments started
at CERN at SPS, followed by AGS and RHIC at BNL. Such extreme conditions also
existed in the early universe: About 10−5 seconds after the big bang the temperature in
the universe was of order O(200 MeV) and the universe was filled with a QGP.

However, there are several obstacles that considerably complicate studies of the phase
transition and the QGP. To begin with, the QGP might very well have been produced in
ultra-relativistic heavy-ion collisions, but for us to study its properties, we require it to
leave distinct traces in the detectors. Any signature of the QGP is folded with the time
evolution (and consequently the evolution of volume, temperature, and baryon density)
of the fireball created in the collision. Furthermore, this evolution continues after the
system runs through the phase transition and thus, any information is mixed with sig-
nals from the conventional hadronic phase. On the theoretical side, even at temperatures
several orders of magnitude higher than the critical temperature, where the formation
of the QGP is expected, perturbative calculations are not feasible due to the bad con-
vergence of the perturbative expansion. One has to rely on numerical simulations or
phenomenological models for all but astronomically high temperatures that are clearly
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beyond any practical importance. As a consequence, previous work has mainly focused
on interpreting one piece of data within a specific approach and with a certain number
of fit parameters. The main goal of this thesis was to develop a novel field-theoretical
model based on two key properties of QCD, confinement and chiral symmetry breaking,
with parameters controlled by a few properties of the gluonic and hadronic sectors of the
QCD phase diagram. Since the dynamics of this model is rooted in symmetries dictated
by QCD itself, it does not merely parametrize QCD thermodynamical quantities, but
rather predicts them, which is a significant improvement over previous approaches.

To set the stage we have given an up-to-date review of QCD thermodynamics in chapter 1,
referring mainly to the latest data from lattice QCD simulations. In chapter 2 we demon-
strated that basic features of lattice QCD thermodynamics can be understood using the
MIT bag model, a simple phenomenological model that implements two of the key prop-
erties of QCD, asymptotic freedom and confinement. This model is the most widely
used equation of state (EoS) in astrophysics to study the properties of deconfined quark
matter. The aim of this chapter was twofold: First we wanted to explain some of the
key features of the lattice QCD phase diagram and the EoS exemplarily in terms of a
clear and simple physical model and set the stage for the more refined models which were
discussed in subsequent chapters of this work. The second purpose was to demonstrate
that the MIT bag model is clearly not apt to describe quark matter at finite densities:
it fails to reproduce the non-trivial behavior of lattice thermodynamical quantities at
finite quark chemical potential. Thus, while the bag model is quite attractive due to its
simplicity, it is clearly not adequate to perform precise numerical calculations of quark
matter properties at finite temperature and finite quark chemical potential.

The aim of chapter 3 was to construct a more realistic EoS that could be used to in-
terpret lattice results at high temperatures and finite quark chemical potential. To this
end we have generalized a novel quasiparticle description of the QCD EoS to finite quark
chemical potential. This model schematically includes confinement by a modification of
the particle distribution functions and achieves a simple, thermodynamically consistent
and economic parametrization of lattice data for the QCD EoS. To extend this model
to finite quark chemical potential, we derived partial differential flow equations for the
confinement function C(T, µ) and the effective coupling G(T, µ) of the model and solved
them numerically. These flow equations follow directly from the Maxwell relations of
thermodynamics which assure thermodynamic self-consistency. Such an extension is im-
portant for a number of reasons: First, for current heavy ion collision experiments at
SPS and RHIC the chemical freeze-out occurs at µf.o. ≃ 100 MeV, (baryon chemical
potential µB ≃ 300 MeV) [BMHS99] and µf.o. ≃ 15 MeV, (µB ≃ 45 MeV) [BMMRS01],
respectively. Thus, a finite quark chemical potential should be introduced to describe
the deconfined quark matter created in these experiments. Second, first lattice QCD
simulations at finite quark chemical potential are now available and it is of great theo-
retical interest to interpret these lattice results. Third, the introduction of an additional
external control parameter helps to test the reliability of the quasiparticle approach. We
used this model to calculate the phase boundary line Tc(µ), the scaled pressure difference
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∆p(T, µ) = (p(T, µ)−p(T, µ = 0))/T 4 and the scaled quark number density nq(T, µ)/T 3.
We compared our results to recent lattice calculations and found remarkably good agree-
ment even for large quark chemical potentials µ ∼ Tc. Finally, we have dropped the
assumption that the confinement factor only depends on temperature and constructed
a model with momentum dependent confinement, following Ref. [EFR+89]. We applied
this model to pure SU(3) gauge theory and full QCD and found good agreement with
lattice results for the pressure, the energy density, and the interaction measure. All in
all, the confinement quasiparticle model successfully describes and predicts a variety of
lattice data at vanishing and finite quark chemical potential and seems to be a reasonable
and useful representation of the QGP equation of state.

Strong interactions also lead to another important phenomenon, the spontaneous break-
ing of chiral symmetry, which is essential to understand the lightest hadrons and the
generation of mass in QCD. Thus, we devoted chapter 4 to the Nambu–Jona-Lasinio
(NJL) model, which is particularly well suited to study and exemplify the mechanisms
of chiral symmetry breaking and restoration. The NJL model is an effective Lagrangian
of relativistic quarks interacting through local fermion-fermion couplings. In principle it
can be obtained from QCD by “integrating out” the gluonic degrees of freedom, replacing
them by a four-point color-current interaction. Starting from this QCD motivated inter-
action we investigated the vacuum properties of the theory and outlined how the NJL
model can be employed to study quark and meson properties at finite temperature and
finite quark chemical potential. As an application we calculated the constituent quark
mass, the pion mass and the sigma mass as functions of temperature and quark chemical
potential. The NJL model emphasizes symmetries and ignores confinement. However,
one of the key properties of QCD is color confinement, which requires that quarks at
low energies have to be part of bound color-singlet states. Colored quark-antiquark pairs
have never been observed in nature. In chapter 5 we have studied the color-octet sector
of the NJL model and calculated the masses of various color-octet bound states. Poles
of the respective Bethe-Salpeter amplitudes appear at mass scales several times the NJL
cutoff scale and are far removed from the low-energy spectrum. Finally we showed that
this also holds at finite temperature and finite quark chemical potential.

We have studied confinement and chiral symmetry breaking in two very successful, but
rather different theoretical frameworks: the confinement quasiparticle model and the
NJL model. The aim of chapter 6 was to develop a more general model that is suitable
to study confinement and chiral symmetry breaking in a unified framework. Our starting
point was the heavy quark limit, where the confined and deconfined phases are charac-
terized by distinct symmetry properties: the Z(3) center symmetry of the SU(3) gauge
group is spontaneously broken in the confined phase, while it is restored in the deconfined
phase. The associated order parameter is the Polyakov loop, a Wilson line closed around
the Euclidean time direction. Subsequently, we have constructed an effective theory for
the Polyakov loop and tested it at finite temperature against results from SU(3) lattice
gauge theory. The lattice data are reproduced extremely well by our ansatz. If quarks are
added, the center symmetry gets explicitly broken and no order parameter can be estab-
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lished, but the Polyakov loop still changes rapidly close to Tc and serves as an indicator
of a rapid crossover towards deconfinement. To include chiral symmetry breaking and
its restoration at high temperatures, we have introduced a generalized NJL Lagrangian
with quarks coupled to a (spatially constant) temporal background SU(3) gauge field
A0, representing Polyakov loop dynamics. This Polyakov-loop extended (PNJL) model
represents a minimal synthesis of the two basic principles that govern QCD at low tem-
peratures: spontaneous chiral symmetry breaking and confinement. The respective order
parameters (the chiral quark condensate and the Polyakov loop) are given the meaning
of collective degrees of freedom. Quarks couple to these collective fields according to the
symmetry rules dictated by QCD itself. Once a limited set of input parameters is fitted
to lattice QCD in the pure gauge sector and to pion properties in the hadron sector, the
quark-gluon thermodynamics above Tc up to about twice the critical temperature is well
reproduced, including quark densities up to chemical potentials of about 0.2 GeV. In par-
ticular, the PNJL model correctly describes the step from the first-order deconfinement
transition observed in pure-gauge lattice QCD (with Tc ≃ 270 MeV) to the crossover
transition (with Tc less than 200 MeV) when Nf = 2 light quark flavors are added. The
non-trivial result is that the crossovers for chiral symmetry restoration and deconfine-
ment almost coincide, as found in lattice simulations. The model also reproduces the
scaled pressure differences and the quark number densities at various chemical potentials
remarkably well when confronted with corresponding lattice data. In chapter 7 we have
extended the PNJL model to the physical relevant three-flavor case. The crossovers for
chiral symmetry restoration and deconfinement still almost coincide if the strange quark
is added. The subtle interplay between the chiral condensate and the Polyakov loop is
not altered qualitatively by the additional heavier quark. Lattice QCD results for the
pressure difference and the baryon number density for baryon chemical potentials up to
µB = 530 MeV are reproduced extremely well by this model.

Further developments should be directed towards improvements to overcome some ob-
vious limitations. First, the NJL model operates with constant four-point coupling
strengths which presumably average the relevant running couplings over a limited low-
energy kinematic domain, corresponding to temperatures T . 2 Tc and quark chemical
potentials µq . 0.3 GeV. Contacts with the high-temperature limit of QCD and the HTL
approaches need to be established. Second, in order to proceed into the range of larger
chemical potentials, diquark degrees of freedom need to be explicitly involved. Also, the
effective potential for the Polyakov loop field, determined so far entirely as a function of
temperature by investigating the pure gauge sector, must be examined with respect to
its dependence on the chemical potential.

Nevertheless, the conclusion that can be drawn at this point is promising: it appears
that a relatively straightforward quasiparticle approach, with its dynamics rooted in
spontaneous chiral symmetry breaking and confinement and with parameters controlled
by a few known properties of the gluonic and hadronic sectors of the QCD phase dia-
gram, can account for essential observations from two-flavor and three-flavor lattice QCD
thermodynamics.
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Appendix A

Calculation of B(T, µ)

The “background field” quantity B(T, µ) appearing in Eqn. (3.21) can be obtained from
the Gibbs-Duhem relation

ǫ+ p = Ts+ µn = T
∂p

∂T
+ µ

∂p

∂µ
. (A.1)

The left hand side reads:

ǫ+ p =
NcNf

3π2

� ∞

0

dk [f+
D + f−

D ]C(T, µ)k2

(

4k2 + 3m2
q

Ek

)

. (A.2)

To evaluate the right-hand side, derivatives of f±
D (Eq

k) with respect to T and µ are
rewritten as derivatives with respect to k. After an integration by parts, the first term
on the right-hand side reads

T
∂p

∂T
=T
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3π2

� ∞
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∂T
+ C(T, µ)(Ek + µ) + C(T, µ)

k4

TEk

)
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∂m2
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∂T
+ C(T, µ)(Ek − µ) + C(T, µ)
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TEk
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−T
∂B(T, µ)

∂T
, (A.3)

and the second term is given by

µ
∂p

∂µ
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∂µ

k4

Ek
− C(T, µ)

∂m2
q
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(A.4)

Substituting (A.2), (A.3) and (A.4) in the Gibbs-Duhem relation yields a partial differ-
ential equation of the type

x
∂f(x, y)

∂x
+ y

∂f(x, y)

∂y
= I(x, y). (A.5)
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It has the general solution

f(x, y) =

� x

dt I(t,
y

x
t) + H

(y

x

)

. (A.6)

Here, H(y/x) is a solution of the homogeneous equation. Returning to our case, H(µ/T )
becomes an arbitrary function of the ratio µ/T to be fixed by boundary conditions. For
µ → 0, H(µ/T ) does not depend on T anymore and therefore has to be identified with
an integration constant B0. Provided that H(µ/T ) is a continuous function it must be
close to B0 for small µ/T . The first term in a Taylor expansion of H(µ/T ) vanishes and
the series starts only at order (µ/T )2. Therefore we identify H(µ/T ) with the constant
B0 for all µ under consideration. Assembling all pieces, the final result reads

B(T, µ) =B1(T, µ) +B2(T, µ) +B0,
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� ∞
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, (A.7)

where the explicit τ -dependence in C(τ, µ/T τ), mq(τ, µ/T τ) and Eq
k(τ, µ/T τ) has been

suppressed for the sake of lucidity.
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Appendix B

Method of Characteristics

Equations (3.24) and (3.25) are a set of coupled quasilinear first order partial differential
equations for the effective coupling constant G2(T, µ) and the confinement factor C(T, µ).
Equation (3.24) does not depend on C(T, µ). Thus we can first solve this equation for
G2(T, µ) and insert the result in equation (3.25).

The usual method found in textbooks is to reduce a quasilinear partial differential equa-
tion of the form

aT (T, µ;X)
∂X

∂T
+ aµ(T, µ;X)

∂X

∂µ
= c(T, µ;X) (B.1)

to a system of coupled ordinary differential equations,

dT (s)

ds
= aT ,

dµ(s)

ds
= aµ,

dX(s)

ds
= c. (B.2)

This determines the characteristic curves T (s), µ(s), and the evolution of X along such
a curve, given an initial value. However, this method is not well suited for numerical use
which is necessary for non-trivial aT , aµ and c. Rewriting equation (B.1) as

aT

(

dX

dT
− ∂X

∂µ

dµ

dT

)

+ aµ
∂X

∂µ
= c =⇒ ∂X

∂µ

(

aµ

aT
dT − dµ

)

=
c

aT
dT − dX, (B.3)

we find the equation aµ dT − aT dµ = 0 for the characteristics and c dT − aT dX = 0 for
the evolution of X. These equations can easily be solved numerically.
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Appendix C

Fierz Transformations

In this appendix we derive the color-singlet interaction (4.3) and the color-octet interac-
tion (4.4) from the simple color-current interaction (4.2).

C.1 General aim

Consider a local four-point interaction of the form

Lint = gK

(

ψ̄Γ(K)ψ
)2

= gKΓ
(K)
ab Γ

(K)
cd ψ̄aψbψ̄cψd, (C.1)

where Γ
(K)
ab is a matrix in Dirac-, color- and flavor space, with a = (α, c, f) combining

indices in these three spaces. The superscript K spans the space of matrices in the three
spaces given. Permuting two of the fields and taking into account the anti-commutation
relation for fermions, we obtain the identity

Lint = −gK

(

ψ̄Γ(K)ψ
)2

= gKΓ
(K)
ab Γ

(K)
cd ψ̄aψdψ̄cψb ≡ Lex. (C.2)

If we restrict ourselves to Hartree-type approximations where the first field is contracted
with the second, and the third one with the forth, Lex yields the exchange diagrams
(Fock terms) of Lint. For this purpose it is useful to rewrite the operators as

∑

K

Γ
(K)
ab Γ

(K)
cd =

∑

M

cKMΓ
(M)
ad Γ

(M)
cb , (C.3)

to get

Lex = −gK

∑

M

cKM

(

ψ̄Γ(M)ψ
)2
. (C.4)

Combining (C.3) with the original interaction (C.1) we obtain

Lq̄q = Lint + Lex =
∑

M

GM

(

ψ̄Γ(M)ψ
)2
, (C.5)

with GM = cKMgM for M 6= K and GK = (1 − cKK)gK . By construction, Lq̄q is to be
used in Hartree approximation only, to avoid double counting.
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C.2 Fierz identities for local four-point operators

In the following we will list the crossing matrices in Dirac-, color- and flavor-space. In
Dirac space, we find the following relations in the quark-antiquark channel,












(I)ij(I)kl

(iγ5)ij(iγ5)kl

(γµ)ij(γµ)kl

(γµγ5)ij(γµγ5)kl

(σµν)ij(σµν)kl













=













1
4

−1
4

1
4

−1
4

1
8

−1
4

1
4

1
4

−1
4

−1
8

1 1 −1
2

−1
2

0
−1 −1 −1

2
−1

2
0

3 −3 0 0 −1
2

























(I)il(I)kj

(iγ5)il(iγ5)kj

(γµ)il(γµ)kj

(γµγ5)il(γµγ5)kj

(σµν)il(σµν)kj













, (C.6)

while for the generators of U(N) we find
(

(I)ij(I)kl

(λa)ij(λa)kl

)

=

(

1
N

1
2

2N2−1
N2 − 1

N

)(

(I)il(I)kj

(λa)il(λa)kj

)

, (C.7)

where λa, a = 1, . . . , N2 − 1 are the generators of SU(N), normalized as tr[λa, λb] = 2δab

and I is the N ×N unit matrix.

C.3 Color-current interaction

Next we demonstrate in detail how the color-singlet interaction (4.3) and the color-
octet interaction (4.4) are obtained from the color-current interaction (4.2) by Fierz-
transformations in Dirac-, color- and flavor-space. Explicitly writing out color, flavor
and Dirac indices Eqn. (4.2) reads:

Lc
int = −Gc

3
∑

a=1

[

ψ̄i,p,µψj,q,νψ̄k,r,ρψl,s,σ(γα)µν(γ
α)ρσ(ta)ij(ta)kl(I)pq(I)rs

]

. (C.8)

The indices are:

i, j, k, l → color indices,

p, q, r, s → flavor indices,

µ, ν, ρ, σ → Dirac indices. (C.9)

In order to Fierz-transform the flavor indices we use the identity

(I)pq(I)rs =
1

2

4
∑

b=0

(τb)ps(τb)rq, (C.10)

which is given by the first line of (C.7) for two flavors. τ1, τ2 and τ3 are the usual Pauli
matrices and τ0 is the 2 × 2 identity matrix. Eqn. (C.8) then becomes

Lc
int = −1

2
Gc

8
∑

a=1

3
∑

b=0

[

ψ̄i,p,µψj,q,νψ̄k,r,ρψl,s,σ(γα)µν(γ
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]

. (C.11)
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To Fierz-transform the color indices we employ the identity
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which is the second line of (C.7) for three colors. The result reads
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Finally, we use the relation

(γα)µν(γα)ρσ =
1

4
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which is given by the third line of (C.6). We obtain
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Permuting the fermion field operators and omitting the Dirac, color and flavor indices
this can be written as
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from which we can easily read
G

2
=

8

9
Gc. (C.17)

A similar calculation for three quark flavors leads to
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(C.18)
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where λb are now the Gell-Mann matrices in flavor space. The coefficients of (C.16) and
(C.18) are the same.

128



Appendix D

Loop Integrals

In this appendix we derive the expressions for the finite temperature loop integrals that
are used in this work. We start from the vacuum expressions and use the Matsubara
formalism to obtain the loop integrals at finite temperature and non-zero quark chemical
potential. We perform the frequency sums and obtain explicit expressions involving only
an integration in momentum space.

D.1 One fermion line

Loop integrals with a single fermion line are used e.g. to evaluate the gap equation at
finite temperature and non-zero quark chemical potential. The vacuum expression for
the one fermion line integral reads

A(m) =

�
d4p

(2π)4

1

p2 −m2 + iǫ
, (D.1)

where m denotes the mass of the particle. In the imaginary time formalism, which
we have introduced in chapter 1, the only modifications of the usual Feynman rules at
T = 0 arise from the (anti)periodic boundary conditions of the fields. As a consequence,
integrals have to be replaced by�

d4p

(2π)4
→ iT

+∞
∑

n=−∞

�
d3p

(2π)3
, (D.2)

where the sum is understood to be taken over the discrete set of Matsubara frequencies
ωn. Energy-momentum conserving delta functions become

(2π)4δ(4)(p) → (2π)3

iT
δn,0δ

(3)(p). (D.3)

The Matsubara frequencies appear as

p0 → iωn + µ =
2πi

β
(n+ ζ) + µ, n ∈ Z and ζ =







0 for bosons,

1
2

for fermions.
(D.4)
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Thus, at finite temperature and non-zero quark chemical potential Eqn. (D.1) is given
by

A(m)
T>0
= −iT

∑

n

�
d3p

(2π)3

1

(ωn − iµ)2 + E2
p

, (D.5)

where Ep =
√

p2 +m2. To evaluate the Matsubara frequencies in (D.5) it is useful to
decompose it into partial fractions. Employing the identity

1

u2 + v2
=
∑

s=±1

s

2v

1

iu+ sv
, (D.6)

we obtain

A(m) = −iT
∑

n

∑

s=±1

�
d3p

(2π)3

s

2Ep

1

i(ωn − iµ) + sEp
. (D.7)

Next we can make use of the identity

T
∑

n∈Z

1

2πiTn+ x
= b(x) +

1

2
, with b(x) ≡ 1

ex/T − 1
, (D.8)

to calculate the sum in (D.7):

A(m) = −i
∑

s=±1

�
d3p

(2π)3

s

2Ep

[

b(iπT + µ+ sEp) +
1

2

]

. (D.9)

To further simplify (D.9) we use the identity

b(x+ iπT ) = −f(x), with b(x) ≡ 1

ex/T + 1
, (D.10)

and perform the sum over s. Dropping the vacuum part (the factor 1/2), we find

A(m) = −i
�

d3p

(2π)3

−f(µ+ Ep) + f(µ− Ep)

2Ep
. (D.11)

Next, we use the relation
f(−x) = 1 − f(x), (D.12)

to bring (D.11) to the usual form:

A(m) = −i 1

4π2

� Λ

0

dp
p2[1 − f(Ep + µ) − f(Ep − µ)]

Ep
. (D.13)

We can simplify this expressions further by transforming the variable of integration from
p to E and finally obtain

A(m) = −i 1

4π2

� ΛE

m

dE
√
E2 −m2[1 − f(E + µ) − f(E − µ)], (D.14)

where ΛE =
√

Λ2 +m2.
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D.2 Two fermion lines

Loop integrals with two fermion lines were used e.g. to evaluate meson masses at finite
temperature and non-zero quark chemical potential. The vacuum expression for the two
fermion line integral reads

B(m1, m2) =

�
d4p

(2π)4

1

p2 −m2
1 + iǫ

1

(p− q)2 −m2
2 + iǫ

, (D.15)

where m1 and m2 denote the particle masses and q the external momentum. We can
again employ the Matsubara formalism defined by (D.2), (D.3) and (D.4) to obtain the
finite temperature expression

B(m1, m2)
T>0
= iT

∑

n

�
d3p

(2π)3

1

(ωn − iµ)2 + E2
1

1

(ωn − iµ − νm)2 + E2
2

, (D.16)

where E1 =
√

p2 +m2
1, E2 =

√

(p − p)2 +m2
2 and νm = 2πTm are the bosonic Matsub-

ara frequencies. In order to evaluate the sum over the Matsubara frequencies, it is again
useful to decompose (D.16) into partial fractions.

B(m1, m2)
(D.6)
= iT

∑

n

∑

s1,s2=±1

�
d3p

(2π)3

s1s2

4E1E2

1

iωn + µ+ s1E1

1

iωn + µ− iνm + s2E2

= iT
∑

n
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�
d3p

(2π)3

s1s2

4E1E2
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−iνm − s1E1 + s2E2

×
(

1

iωn + µ+ s1E1
+

1

iωn + µ− iνm + s2E2

)

(D.8)
= i

∑

s1,s2=±1

�
d3p

(2π)3

s1s2

4E1E2

b(iπT + µ+ s1E1) − b(iπT + µ− iνm + s2E2)

−iνm − s1E1 + s2E2
.

(D.17)

In the second line we used the identity

1

ab
=

1

b− a

(

1

a
− 1

b

)

. (D.18)

Using b(i2πTm + x) = b(x) and b(x + iπT ) = −f(x) and replacing iνm → q0 we can
write (D.17) as

B(m1, m2) = −i
∑

s1,s2=±1

�
d3p

(2π)3

s1s2

4E1E2

−f(µ+ s1E1) + f(µ+ s2E2)

q0 + s1E1 − s2E2
. (D.19)

Performing the sum over s1 and s2, rearranging the terms and using the relation f(−x) =
1 − f(x) we obtain

B(m1, m2) = −i
�

d3p

(2π)3

[ −f(E1 + µ)

2E1[(q0 + E1)2 −E2
2 ]

+
1 − f(E1 − µ)

2E1[(q0 − E1)2 − E2
2 ]
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−f(E2 + µ)

2E2[(q0 −E2)2 −E2
1 ]

+
1 − f(E2 − µ)

2E2[(q0 + E2)2 − E2
1 ]

]

. (D.20)
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In the frame q = (q0, 0) Eqn. (D.20) does not depend on θ and φ and consequently
the θ− and φ−integrals can be evaluated trivially. Using E2

2 = E2
1 − m2

1 + m2
2 and

E2
1 = E2

2 +m2
1 −m2

2 we find
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(D.21)

Next we change the variable of integration to E1 =
√

p2 +m2
1 and E2 =

√

p2 +m2
2:
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The integrand of the first term in the first line of (D.22) has a pole at

E1,0 = −q
2
0 +m2

1 −m2
2

2q0
, (D.23)

if m1 ≤ E1,0 ≤
√

Λ2 +m2
1. To calculate the integral in this case, we recall that the

particle masses are complex, m2
1 → m2

1 − iǫ, m2
2 → m2

2 − iǫ, and apply the formula

lim
ǫ→0

1

x− iǫ
= P + iπδ(x), (D.24)

where P denotes the Cauchy principal value. From this, we find
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The integrand of the second term in the first line has a pole at

E1,0 =
q2
0 +m2

1 −m2
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2q0
, (D.26)

if m1 ≤ E1,0 ≤
√

Λ2 +m2
1. We obtain
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The integrand of the first term in the second line has a pole at
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1 +m2
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2q0
, (D.28)

if m2 ≤ E2,0 ≤
√

Λ2 +m2
2. We find

lim
ǫ→0

−i
2π2

� √
Λ2+m2

2

m2

dE2

√

E2
2 −m2

2(−f(E2 + µ))

2(q2
0 − 2q0E1 −m2

1 +m2
2 − iǫ sgn(q0))

=P −i
2π2

� √
Λ2+m2

2

m2

dE2

√

E2
2 −m2

2(−f(E2 + µ))

2(q2
0 − 2q0E2 −m2

1 +m2
2)

− 1

4πq0

√

(

q2
0 −m2

1 +m2
2

2q0

)2

−m2
2

(

−f
(

q2
0 −m2

1 +m2
2

2q0
+ µ

))

×θ
((

√

Λ2 +m2
2 −

q2
0 −m2

1 +m2
2

2q0

)(

q2
0 −m2

1 +m2
2

2q0
−m2

))

. (D.29)

The integrand of the second term in the second line has a pole at

E2,0 = −q
2
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1 +m2
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2q0
, (D.30)
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if m2 ≤ E2,0 ≤
√
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In the limit m1 = m2 ≡ m we obtain
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