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Abstract

This thesis contributes to the theory of a light-matter quantum interface
based on the Kerr-effect arising in the dispersive interaction of pulsed laser
light with a spin-polarized atomic ensemble. The scattering process can be
described on the basis of a simple, yet fully quantum mechanical model in-
volving only a small number of bosonic modes referring to transverse spin
components and quadratures of forward scattered light. Based on this model
we derive protocols for the creation of entangled states of light and atoms
and the teleportation of quantum states of light onto atoms employing this
entanglement. Furthermore we present a protocol, which allows one to ex-
change the state of light and atoms and thus provides a quantum memory
for states of the light field. For both, the storage and the teleportation of
coherent states we prove a benchmark on the average fidelity, which is achiev-
able by purely classical protocols. Both protocols allow one to significantly
surpass this threshold and to demonstrate thereby a gain in employing quan-
tum strategies. Under common experimental conditions the initial state of
light and atoms is Gaussian and the given interaction preserves this prop-
erty. Motivated by this observation, we examine in this context, how a given
interaction can be used to simulate others and how it can be employed to
create entanglement at optimal rates. The results are applied to construct
protocols based on several passes of light through an atomic ensemble.
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Chapter 1

Introduction

Quantum Information Theory (QIT) is based upon the fundamental observa-
tion that the ultimate rules at which information can be transmitted, stored
and processed are given by the laws of quantum mechanics [1]. This is not
a mere restriction. Central results in QIT show, that it is in fact possible
to take advantage of these laws in order to accomplish tasks, which are un-
tractable by classical means, that is, with devices operating on the basis
of classical physics. At the moment, there are two major concepts, which
demonstrate such a quantum gain in Information Theory: These are quan-
tum computation and quantum communication [2]. A quantum computer
would allow to solve problems – such as factoring of large numbers [3] or
simulation of quantum systems [4] – for which there exist no efficient clas-
sical algorithms. In quantum communication the most striking example is
quantum cryptography [5]. It allows two parties to establish a secret key,
whose secrecy is guaranteed by the laws of quantum mechanics and not just
by the computational complexity of certain mathematical problems, as it is
the case for classical key distribution protocols. Pilot applications of quan-
tum cryptographic systems are already commercially available. The same
techniques, which are developed in the context of quantum communication,
also hold the promise to achieve the first loophole-free violation of a Bell
inequality.

The implementation of quantum communication protocols requires the
reliable distribution of quantum states and, in particular, entangled states
over large distances. For this task the natural carrier of quantum states is
light, sent through optical fibers or free space. With present technology the
bridgeable distance will be on the order of hundred kilometers, the absorption
length of silica fibers. To overcome this limitation the concept of a quantum
repeater has been devised [6]. The basic idea is to split a larger distance into
parts, which can be bridged by direct communication, and to connect them in
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10 Introduction

relay stations exploiting entanglement swapping and quantum teleportation.
In these relay stations decoherence effects can be compensated by means of
purification and entanglement distillation protocols [7]. An essential prereq-
uisite for such a quantum repeater is the possibility to transfer a quantum
state from light, its traveling carrier, to a stationary medium, where it can
be stored, eventually processed and converted back to light on demand. Di-
rectly storing and processing quantum states carried by light is not an option
as it would require vast delay lines and enormous optical nonlinearities. The
natural choice for the storage medium are long lived atomic ground states.
In order to interface the electromagnetic quantum field with internal degrees
of freedom of atoms strong coupling is required, which can be achieved either
with single atoms in high quality cavities [8, 9] or with optically dense clouds
of atoms interacting with light in a ring cavity or in free space.

This thesis contributes to the theory of a quantum interface for light and
atomic ensembles. The questions investigated in the following six chapters
are to a large extent motivated by experiments [10, 11] performed with a
spin-polarized Cesium vapor dispersively interacting with pulsed light, giv-
ing rise to what is known in the literature as the Kerr- or Faraday-effect
[12]. It is possible to give a remarkably simple, yet rather precise description
of the resulting dynamics in this many particle system in terms of only a
few bosonic modes, referring to well defined forward scattering modes for
light and certain collective spin variables of atoms [13, 14]. Under certain
conditions it is even possible to restrict the description to Gaussian quan-
tum states of these modes. This motivated to investigate also more general
questions concerning Gaussian states and interactions, irrespective of their
physical carrier. Two chapters correspondingly contain general results in
QIT of systems of continuous variables and are thus of relevance not only
in the context of a quantum interface of light and atoms. They are however
of immediate significance in the other chapters, where concrete protocols are
presented, which directly apply to the system discussed above.

In the following we will give an overview of the content of this thesis. In
chapter 2 we derive the model for the ensemble of atoms interacting with
light, already mentioned above. The model itself is not new and can be
found in the literature [13, 14]. We chose to include its derivation here in
order of have a firm ground for what follows and introduce the notation
used throughout this thesis. The starting point of the derivation is the stan-
dard Hamiltonian in quantum optics for the interaction of light with atoms.
Pointing out the central approximations, we reduce the description to the
relevant quantum degrees of freedom. Their evolution is given by Maxwell-
Bloch equations, which are the central result of this chapter. The resulting
model still allows one to keep track of quantum correlations of light and



11

atoms, which is essential for the following chapters. In chapter 3 we present
a protocol for the teleportation of quantum states of light onto atoms. We
examine its performance for coherent states in terms of the fidelity between
input state and teleported state. We show, that it is possible to achieve
higher fidelities, than can be attained by classical means. Beating this quan-
tum benchmark demonstrates entanglement of light and atoms. We note,
that this protocol is under experimental investigation at the moment of writ-
ing this thesis. In chapter 4 we prove the quantum benchmark, which was
relevant in the preceding chapter. This classical bound on the fidelity was
conjectured some time ago and served as the central criterion for success in
several seminal experiments, but its prove remained an open question. Here
we give its solution. We emphasize, that this result is relevant for all exper-
iments on the transmission and storage of coherent states. In chapter 5 we
present two protocols. One is for a full quantum memory for light including
mapping of the state onto atoms and releasing it again into light. The other
one allows one to create a two mode squeezed state of light and atoms, ex-
hibiting significant amount of entanglement. Remarkably, both tasks can be
achieved with basically the same simple setup. It requires two passes of light
through an atomic ensemble, which is placed in an external magnetic field.
For the memory of coherent states, the quantum benchmark of the preceding
chapter is again relevant and we show that it can be beaten under realistic ex-
perimental conditions. We also show, that single photons can be successfully
stored. Chapter 6 analyzes the general questions of how repeated application
of a given interaction of two systems described by continuous variables can be
used to simulate another interaction and how entanglement and squeezing of
Gaussian states can be created at optimal rates. We answer these questions
for general quadratic interaction and discuss the results for the given inter-
action of light and an atomic ensemble. Finally, in chapter 7 we examine the
performance of the multipass protocols for the generation of entanglement
and squeezing, derived in the preceding chapter, under realistic conditions.
We include noise effects and determine optimal regimes for central experi-
mental parameters. The results presented in chapters 3 to 7 are published in
[15], [16], [17], [18] and [19] respectively.





Chapter 2

Interaction of light with an
atomic ensemble

2.1 Physical system

In this section we will introduce the physical system and some of its basic
properties, which will allow us to derive in the following sections a fully
quantum mechanical description in terms of only a few relevant degrees of
freedom. We are interested here in the off-resonant interaction of pulsed laser
light with an atomic ensemble, as schematically shown in figure 2.1. It will
be convenient to list here a couple of observations for each of the components
making up the system, the collection of atoms, the coherent pulse, forward
scattered light and light scattered into other directions. In the same course
we will also introduce some notation, which will be used throughout the
thesis.

Atoms: The atomic ensemble consists of Nat alkaline-earth atoms, having
a single electron outside a closed shell. The ensemble is contained in a glass
cell of size V = L3 where L is on the order of cm. The number density of
atoms n = Nat/V is assumed to be such, that there is not more than a single
atom per cubic wavelength,

nλ3
c . 1, (2.1)

where λc is the central wavelength of light irradiating the atoms. For the most
part of this thesis we will think of the ensemble being at room-temperature
and atoms undergoing thermal motion. Positions of atoms can then be
treated as classical random variables. Concerning the internal structure of
atoms, we assume a level scheme as shown in figure 2.2a, that is, each atom
carries a ground state spin J = 1/2 and has an optical, dipole allowed tran-
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14 Interaction of light with an atomic ensemble

Figure 2.1: The physical system under consideration consists of the atomic
ensemble, a coherent pulse E irradiating it, forward scattered light Efwd and
spontaneously emitted light Ese scattered into different directions.

sition of frequency ω0 to an excited states’ manifold of spin J ′ = 1/2. The
oscillator strength of this transition is determined by its reduced matrix ele-
ment

d = 〈J ||d||J ′〉, (2.2)

which we take to be real. This configuration is the simplest one, which leads
to a possible birefringence of the atomic medium, a property which builds
the very basis of the effect we are interested in. In this respect, our model
grasps the main properties of any real Hydrogen like atom such as Cesium
with a level scheme as shown in figure 2.2b, where hyperfine splitting has to
be taken into account. The validity of our simple model will be discussed in
section 2.3 in more detail.

Coherent field: The coherent pulse of light is described by a C-number
field E = E−

+ E+
with positive frequency component

E−
(r, t) = E(t)u(r)e−i(kcr−ωct)ε, (2.3)

where ε is the pulse’s polarization, u(r) its profile in the plane transverse to
the direction of propagation kc and E(t) is a slowly varying amplitude. We
assume that the transverse cross section is such that the pulse covers most
of the ensemble, that is the beam diameter l . L. For beams of this size the
form (2.3) is certainly a good approximation. The driving field will give rise
to a Rabbi frequency which will be on the order of,

Ω =
dE0

~
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Figure 2.2: (a) Internal structure of atoms with ground state spin J = 1/2
and excited state manifold of spin J ′ = 1/2. The transition frequency is ω0

and light is blue detuned with frequency ωc. (b) Level scheme for the D2

transition of Cesium at F = 4 → F ′ = 3, 4, 5. Due to hyperfine splitting
there are three optical transitions with respective frequencies ωF ′ .

times a Clebsch Gordan coefficient, where E0 is the maximum of the pulse
envelope. The central frequency ωc of the pulse is blue detuned from the
atomic transition with a detuning

∆ = ω0 − ωc.

The length T of the pulse is assumed to be such that the Fourier limited
bandwidth is much smaller than the detuning, ∆ À T−1. We further assume
that

∆ À Ω, (2.4)

in which case each atomic dipole will adiabatically follow the applied driving
force.

Forward scattered light: We will be particularly interested in the light,
which is scattered into the forward direction. As we will show, this compo-
nent of the field will be strongly correlated to a certain collective mode of
the atomic spin. In order to describe this effect, it is of course necessary to
retain a full quantum mechanical treatment for this field. The operator for
the (positive frequency part of the) forward scattered field is

E
−
fwd(r, t) =

∑

λ

∫

b

d3kρ a†kλe
−ikrεkλ, (2.5)

where the sum is over polarizations λ and the domain of integration over
wave vectors k is defined as b = {k : (1 − kkc/k

2
c ) < θ}, that is it includes
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only wave vectors which enclose at most an angle θ ¿ 1 with kc. We also
used ρ =

√
~ω/2ε0(2π)3. Finally, akλ is the destruction operator for photons

of wave vector k and polarization λ and obeys the bosonic commutation
relation

[akλ, a
†
k′λ′ ] = δλλ′δ

3(k− k′).

Spontaneously emitted light: Apart from forward scattering, there will
inevitably be light scattered also into different directions than that of kc.
We will take this component of the field into account in the standard way
spontaneous emission is treated, that is, we will eliminate in a Born-Markov
approximation all but the forward scattering modes of the electromagnetic
field and keep only the resulting decohering effect on the state of atoms. At
first we will include the spontaneous emission field as

E
−
se(r, t) =

∑

λ

∫

b̄

d3kρ a†kλe
−ikrεkλ, (2.6)

where the domain of integration b̄ denotes the complement of b.

2.2 Effective Hamiltonian

With the notation introduced in the previous section, the standard Hamil-
tonian for this system in the dipole, rotating wave and long wavelength ap-
proximation is given by

H = Hat + Hli + Hint, (2.7a)

Hat =
Nat∑
j=1

~ω0π
J ′
j , (2.7b)

Hli =
∑

λ

∫
d3k ~ωa†kλakλ, (2.7c)

Hint =
∑

j

[E−
(rj, t) + E

−
fwd(rj) + E

−
se(rj)

]·d−j + h.c. . (2.7d)

The full Hamiltonian (2.7a), consists of the internal energy of all atoms
(2.7b), the energy of the free electromagnetic field (2.7c) and the dipole
interaction of the field and atoms (2.7d). In Equ. (2.7b) πJ ′

j denotes the
projector onto the excited manifold of atom j, defined as

πJ ′
j =

J ′∑

m′=−J ′
|J ′m′〉j〈J ′m′|.
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The symbol πJ
j will be used for the projector onto the ground state manifold.

In Equ. (2.7d) we introduced the step down component of the dipole operator
for the jth atom

d
−
j = πJ

j dj πJ ′
j (2.8)

where dj is the dipole moment of atom j.
The aim in this section is to derive from the full Hamiltonian (2.7a) an

effective one taking into account the adiabatic evolution of atomic dipoles
under condition (2.4) and the fact that light is scattered in the forward
direction. The final Hamiltonian will thus include only ground state levels
and the forward scattered field but will, of course, be non-hermitian, as
it includes decoherence effects due to spontaneous emission. The resulting
equations of motion will therefore also include Langevin noise terms.

To start with it, will be useful to define the dimensionless operator

σ
−
j =

1

d
d
−
j

and its adjoint σ
+

j = (σ
−
j)
†, where d is the reduced matrix element for the

J → J ′ transition, c.f. (2.2). In appendix A we show that one can express
σ
−
j by means of the Wigner Eckart as

σ
−
j =

J∑
m=−J

J ′∑

m′=−J ′

1∑
q =−1

〈1q Jm|J ′m′〉|J ′m′〉〈Jm|ε ∗q , (2.9)

where 〈1q Jm|J ′m′〉 is a Clebsch-Gordan coefficient and ε ∗q is a unit vector
of the spherical basis. See the appendix for the definition of this basis. Note
that the definition of σ

−
j applies to any value of the spins J, J ′. The explicit

form of σ
−
j is given here just for completeness and we will not resort to it

in the following calculations. Instead, we will frequently make use of the
properties,

σ
−
j πJ

j = πJ ′
j σ

−
j = 0, σ

+

j πJ ′
j = πJ

j σ
+

j = 0, σ
+

j · σ−
j = πJ ′

j . (2.10)

The first two equations are trivial and the last one is derived in Appendix A.
With this definition the Heisenberg equation of motion of an arbitrary atomic
observable A is given by1

Ȧ = iω0

∑
j

[πJ ′
j , A] +

id

~
∑

j

( {E−
(rj) + E

−
fwd(rj) + E

−
se(rj)

}·[σ−
j, A]

+ [σ
+

j, A]·{E+
(rj) + E

+

fwd(rj) + E
+

se(rj)
})

, (2.11)

1In (2.11) and all following equations operators have to be understood to depend on
time, σ

+

j = σ
+

j(t) etc. The argument is t everywhere, unless in cases where it is written
explicitly.
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where the commutators in the last two terms have to be taken component-
wise.

In the next step we will eliminate the spontaneous emission modes from
this equation. In appendix A.2 we show, that in a standard Markov approxi-
mation and under the assumption that each atom couples to an independent
reservoir, which is equivalent to assumption (2.1), we can identify

E
−
se(rj, t) =

~√γ

d
f
−
j(t) +

i~γ
2d

σ̃
+

j(t), (2.12)

where we introduced the decay rate

γ =
d 2ω3

c

6π~ε0c3
(2.13)

and vectors f
−
j(t) of Langevin noise operators. The latter are - up to a

normalization - identical to the free evolving vacuum field at the positions
rj of atoms (see appendix A.2), have zero mean and are delta correlated
componentwise, such that

〈f+

j(t)〉 = 〈f−j(t)〉 = 0, (2.14a)

〈f−i,α(t)f
+

j,β(t′)〉 = 0, (2.14b)

〈f+

i,α(t)f
−
j,β(t′)〉 ' δαβδijδ(t− t′) (2.14c)

for α, β = x, y, z. If we insert now (2.12) into (2.11) we arrive at a quantum
Langevin equation for atomic observables

Ȧ = iω0

∑
j

[πJ ′
j , A]

+
id

~
∑

j

( {E−
(rj) + E

−
fwd(rj)

}·[σ−
j, A] + [σ

+

j, A]·{E+
(rj) + E

+

fwd(rj)
} )

,

+
∑

j

({
i
√

γ f
−
j − γ

2
σ̃

+

j

}
·[σ−

j, A] + [σ
+

j, A]·
{

i
√

γ f
+

j +
γ

2
σ̃
−
j

})
. (2.15)

In order to eliminate the excited levels, it is convenient to move to a frame
rotating at the central frequency ωc, in which all operators and the coherent
field are slowly varying2,

σ̃
+

j = σ
+

je
−iωct, Ẽ

−
(r) = E

−
(r)e−iωct, Ẽ−

(r) = E−
(r)e−iωct.

2In principle we should also introduce slowly varying Langevin noise operators f̃
−
j etc.

However, given that these operators have zero mean and are delta correlated in time,
operators f̃

−
j will behave just the same way as f

−
j . We will therefore not distinguish

between them and omit the tilde.
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The evolution of slowly varying coherences between ground and excited states
is given by (2.15) with σ̃

+

j substituted for A, which yields

˙̃σ
+

j =
(
i∆− γ

2

)
σ̃

+

j +
id

~

{
Ẽ−

(rj) + Ẽ
−
fwd(rj)

}
· σ̃

−
j σ̃

+

j + i
√

γ f
−
j · σ̃

−
j σ̃

+

j,

(2.16)

where we made use of (2.10) and skipped terms, which are proportional to
σ̃

+

j,ασ̃
−
j,β. The latter describe populations of and coherences between excited

states’ levels and therefore are in the dispersive limit (2.4) smaller than the
last two terms in (2.16) by a factor s = Ω2/∆2 ¿ 1, the saturation parameter.
The adiabatic solution to the last equation is

σ̃
+

j = − d

~(∆ + iγ/2)

{
Ẽ−

(rj) + Ẽ
−
fwd(rj)

}
· σ̃−

j σ̃
+

j −
√

γ

(∆ + iγ/2)
f
−
j · σ̃−

j σ̃
+

j

' − d

~∆

{
Ẽ−

(rj) + Ẽ
−
fwd(rj)

}
· σ̃−

j σ̃
+

j +
idγ

2~∆2
Ẽ−

(rj)· σ̃−
j σ̃

+

j −
√

γ

∆
f
−
j · σ̃−

j σ̃
+

j.

(2.17)

where in the last step we assumed ∆ À γ and neglected the contribution
of the quantum field in forward direction Ẽ

−
fwd in the damping term pro-

portional to γ. This is justified given that these modes will contain only a
small population as compared to the driving field Ẽ−

. In the adiabatic limit
the evolution of σ̃

+

j is thus entirely determined by the one of ground state
operators of the form σ

−
j,α σ

+

j,β and the fields propagating along kc.

This can be used to derive the desired effective evolution of ground state
observables, such as the collective ground state spin. Let A =

∑
j Aj now

be any such observable, where Aj acts only on ground state levels of atom j.
According to (2.15) it evolves as

Ȧ =
id

~
∑

j

(
−Aj

{
Ẽ−

(rj) + Ẽ
−
fwd(rj)

}
· σ̃−

j + σ̃
+

j ·
{

Ẽ+
(rj) + Ẽ

+

fwd(rj)
}

Aj

)

+
∑

j

∑
α

{
γ σ̃

+

j,α Ajσ̃
−
j,α − i

√
γ f

−
j,α Ajσ̃

−
j,α + i

√
γ σ̃

+

j,αAjf
+

j,α

}
,

where α labels any convenient basis in R3. We now substitute the adiabatic
solution (2.17) as well as its adjoint into the last equation and skip all terms
of order γ3/2 and γ2. It can be easily checked that these terms can in deed
be neglected under the assumptions used so far. The effective evolution is
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then given by

Ȧ =
i

~

[
−

∑
j

d 2

~∆

(
Ẽ−

(rj) + Ẽ
−
fwd(rj)

)
· σ̃−

j σ̃
+

j ·
(
Ẽ+

(rj) + Ẽ
+

fwd(rj)
)

, A

]

+
∑

j

Lj(Aj) (2.18)

where we defined a superoperator Lj describing losses due to spontaneous
emission of atom j

Lj(Aj) =
d 2γ

2~2∆2

{
2
∑

α

Ẽ−
(rj)· σ̃−

j σ̃
+

j,αAjσ̃
−
j,α σ̃

+

j · Ẽ+
(rj)

−
[
Ẽ−

(rj)· σ̃−
j σ̃

+

j · Ẽ+
(rj), Aj

]
+

}

− i
d
√

γ

~∆

{
f
−
j · [σ̃−

j σ̃
+

j · Ẽ+
(rj), Aj] + [Ẽ−

(rj)· σ̃−
j σ̃

+

j, Aj] · f+

j

}
. (2.19)

The symbol [., .]+ denotes an anticommutator. The evolution of O thus con-
tains a coherent dynamics, governed by an effective Hamiltonian, which can
be read off from the commutator in (2.18), and an incoherent one, described
by the action of the superoperators Lj. We would like to postpone the dis-
cussion of the latter terms to section 2.5 and focus instead on the effective
Hamiltonian in the next section.

Before going into detail, we will show, that the same effective Hamilto-
nian governs also the evolution of forward scattering modes. This is easily
seen by looking at the evolution equation of the slowly varying operator
ãkλ = akλ exp(iωct) of one of the forward scattering modes following from
the original Hamiltonian (2.7a),

˙̃akλ =iωcãkλ +
i

~
[Hli, ãkλ] +

i

~
∑

j

[Ẽ
−
fwd(rj) · σ̃−

, ãkλ]

=− i(ω − ωc)ãkλ

+
i

~

[∑
j

− d 2

~∆
Ẽ
−
fwd(rj)· σ̃−

j σ̃
+

j ·
(
Ẽ+

(rj) + Ẽ
+

fwd(rj)
)

, ãkλ

]
, (2.20)

where we again substituted the (adjoint of the) adiabatic solution (2.17)
and neglected spontaneous emission terms, which would give rise to light
scattering out of the forward direction. We neglect this effect, because light
losses are dominated by reflections at the walls of the glass cell, which we will
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take into account separately. Note however, that it is perfectly possible to
derive Langevin terms along the same way, as it was done above for atomic
observables and that the resulting terms would take on a form, which is
familiar from the description of lossy cavities coupled to the vacuum field.

What is here important to us, is that the coherent evolution of both,
ground state observables and forward scattering modes, is governed by the
same effective interaction Hamiltonian

Heff
int = −

∑
j

(
Ẽ−

(rj) + Ẽ
−
fwd(rj)

)
↔
α

(
Ẽ+

(rj) + Ẽ
+

fwd(rj)
)

, (2.21)

where
↔
αj =

d 2

~∆
σ
−
j⊗ σ

+

j, (2.22)

as can be seen by comparing equations (2.18) and (2.20). In the last line we
used the notation w ·xy ·z = wx⊗y z for the Cartesian tensor product of
vectors.

This Hamiltonian describes - loosely speaking - the Stark shift of atomic
levels caused by off resonant light. In the context of cooling and trapping
of atoms it was therefore termed level shift Hamiltonian. While there the
accent was on the internal and motional quantum dynamics of atoms in the
potential created by light, treated as a reservoir, we are here interested in
the quantum state of both, internal degrees of freedom of atoms and forward
scattered light.

2.3 Atomic polarizability

In this section we will focus on the atomic operator appearing in the level shift
Hamiltonian, (2.22), commonly termed atomic polarizability tensor operator.
It is well known that this operator can always be decomposed into a scalar,
vector and tensor component [12]. For the case of a J = 1/2 → J ′ =
1/2 transition one can show by means of the definition of σ

−
j in (2.9) and

elementary tensor calculus (see appendix A.3) that

↔
αj =

d 2

~∆
(a01lj + ia1Jj×) , (2.23)

where 1l is the 3 × 3 matrix of operator identities and J× has to be under-
stood to give the Cartesian vector product of the ground state spin vector,
J = (σx, σy, σz)/2, with the vector to the right. The coefficients are given by
a0 = 1/3, a1 = −2/3. Note that there appears no tensor component for the
case of a spin 1/2 ground state.
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Figure 2.3: Dependence of coefficients of scaler, vector and tensor polariz-
ability, a0, a1 and a2 respectively, on the (blue) detuning ∆ for the special
case of the cesium D2 line at F = 4 → F ′ = 3, 4, 5. The weight of the tensor
polarizability is always at least an order of magnitude smaller than the one
of the vector polarizability and tends to vanish for large detuning.

For more complex level structures, such as the one shown in figure 2.2b,
things will be slightly different [14]. With a little effort in notation a calcu-
lation analogous to the one in the preceding section, but taking into account
all possible transitions F → F ′, shows that the effective Hamiltonian will
be still of the form (2.21) while the atomic polarizability follows from a sum
over all contributions of the various transitions. That is,

↔
α =

F+1∑

F ′=F−1

d 2
F ′

~∆F ′
σ
−
j,FF ′⊗ σ

+

j,F ′F , (2.24)

where dF ′ , ∆F ′ , σ
−
j,FF ′ are the reduced matrix element, the detuning and the

step down operator for the F → F ′ transition respectively. The decompo-
sition of this operator is given in detail in appendix A.3, where we show
that

↔
αj =

d 2

~∆

(
a0(∆)1lj + ia1(∆)Fj ×+a2(∆)

↔
Tj

)
,

where d is again the reduced matrix element for the underlying J → J ′

transition and the detuning ∆ = ωF ′=F+1 − ωc is taken with respect to
the uppermost level (see figure 2.2b). Note that the coefficients ak now
depend on the detuning and there is a non-vanishing contribution of the
tensor polarizability

↔
T . The dependence of ak on the detuning is shown for

the example of Cesium in figure 2.3. The explicit formula is given in formula
(A.10) of the appendix. For a detuning larger than the typical hyperfine
splitting of excited states’ manifolds all coefficients tend to an asymptotic
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value. In particular the coefficient a2 for the tensor polarizability vanishes in
this limit. Note that this is a general feature of all hydrogen like atoms. We
conclude that it is precisely the condition that the detuning is larger than
the excited states’ hyperfine splitting, which justifies to use the simple model
atom shown in figure 2.2a.

In the following we will assume that this condition is fulfilled and work
with an atomic polarizability as given in (2.23). For a discussion of the
effects of the second order, tensor polarizability we refer to [14]. In the ap-
proximation used here, the resulting effective interaction will contain two
contributions. The one proportional to a0 does not depend on the internal
states of atoms but on their number density and describes the index of re-
fraction of the atomic medium. One can think of it as giving rise to a global
phase shift of the wave function of atomic internal states and forward scat-
tered photons. In this sense it is irrelevant and can be dropped. The second
one, proportional to a1, depends on populations and coherences of ground
state levels, and is the one we are interested here. By means of expression
(2.23) for the atomic polarizability it will be straight forward to evaluate the
evolution of atomic ground state spins.

2.4 One dimensional model

In the previous sections we eliminated all but a small number of forward
scattering modes of the electromagnetic field, based upon the observation
that only these will be populated considerably. In the present section we will
reduce the description further to a simple one dimensional model. For work
treating the three-dimensional aspects of light scattering in the regime we are
interested here we refer to [20, 21]. Adopting a one dimensional model can
be justified by noting, that in the end we will be interested in the homodyne
signal of the scattered field arising in a measurement, where the laser pulse
triggering also the interaction is taken as a local oscillator. Thus, the only
signal, which will be relevant is the one, which comes from light scattered
into the laser mode. Light, which is scattered into other forward scattering
modes, will not produce a signal.

The reduction to one dimension can be performed along the lines of [22].
We assume without loss of generality that light propagates along z and that
the coherent pulse is linearly polarized along x. For the quantum field in turn
we will keep only the polarization component along y. Remember that we are
interested here in the birefringence associated with the vector polarizability
of the atomic medium, which will lead to scattering of photons out of the x
polarized pulse into the y polarized modes. It is the quantum field in this
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component, which is relevant to us. In a one dimensional theory we thus
take for the coherent pulse Ẽ−

(z) = Ẽ−(z)εx, where

Ẽ−(z) = ρ

√
2πNph

T
e−ikcz. (2.25)

We use here ρ(ω) ' ρ(ωc) =
√
~ωc/4πε0Ac, which is an excellent approxima-

tion for optical frequencies, and A to denote the cross section of the pulse.
The square root factor in (2.25) is the amplitude of the pulse, whose enve-
lope we take to be box shaped, dropping to zero at time T . The amplitude is
chosen such that the power P of the pulse is P = 2cε0A|Ẽ−Ẽ+| = Nph~ωc/T ,
where Nph is the number of photons in the pulse (and T its duration). Sim-

ilarly, we have for the quantum field Ẽ
−
(z) = Ẽ

−
(z)εy, where

Ẽ
−
(z) = ρ

∫

b

dωa†ωe−i(kz−ωct) (2.26)

and [aω, a†ω′ ] = δ(ω− ω′). The Hamiltonian for the free electromagnetic field
in this one dimensional model is given by

Hli =

∫
dω~ωa†ωaω (2.27)

If we insert the expression for Ẽ−
(z) and Ẽ

−
(z) into (2.21) and evaluate

the vector products taking into account that we need to keep only the vector
part of the atomic polarizability (2.23), the interaction is given by

Heff
int =

id2a1

~∆
∑

j

J j
z

[
Ẽ−(zj)Ẽ

+
(zj)− Ẽ+

(zj)Ẽ
−
(zj)

]
. (2.28)

In principle each term in this sum contains a weighting factor u(rj
⊥), which

can even be zero, if the atom is outside the volume covered by the light beam.
However, if atoms move at a thermal velocity vth such that they enter leave
this volume several times during the pulse length T , each atom will see on
average the same, constant potential. This is what we assumed in the last
equation. The corresponding condition is

vthT

L
À 1.

We would like to remark, that the term in square brackets is proportional
to the z component of the Stokes vector. That is, it is proportional to the
difference of the number of photons of left and right circular polarization
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in the beam and thus measures its angular momentum projection along the
propagation direction. The interaction (2.28) therefore describes exchange of
angular momentum between atoms and light under conservation of the total z
component. For a formulation of the dynamics in this language emphasizing
this view, we refer to [14].

Here we would like to use instead a formulation in terms of light quadra-
tures. Using (2.25) and (2.26) we have

Ẽ−(z)Ẽ
+
(z)− Ẽ+

(z)Ẽ
−
(z) =

= ρ2

√
2πNph

T

∫

b

dω
(
aωei[(k−kc)z−ωct) − a†ωe−i[(k−kc)z−ωct)

)
. (2.29)

This can obviously be expressed as a quadrature of the y polarized quantum
field,

p(z) = − i√
4π

∫
dω

(
aωei([k−kc]z−ωct) − h.c.

)
, (2.30a)

whose conjugate variable is

x(z) =
1√
4π

∫
dω

(
aωei([k−kc]z−ωct) + h.c.

)
. (2.30b)

The integration runs over positive frequencies, corresponding to forward scat-
tered light, and over a certain bandwidth δω around ωc, for which assume
δω ¿ c/L, where L is the extension of the sample along z. The commutator
is then [x(z), p(z′)] = icδ(z − z′), where the delta function has to be under-
stood to have a width c/δω. The mode functions we are going to use here
thus have a spatial extension, which is larger than the linear extension of the
sample. In this case the effective Hamiltonian (2.28) can be written as

Heff
int = − ~χ√

T

∑
j

J j
zp(0), (2.31)

where we defined a dimensionless parameter

χ =
d2a1ωc

~∆ε0Ac

√
Nph

2
(2.32)

and neglected the spatial extension of the sample by replacing in (2.31) the
argument of the light quadrature by z = 0 for all atoms. Note that the
effective Hamiltonian basically depends only on the collective atomic spin
J =

∑
j Jj. Next, before studying the resulting equations of motion, we will

take a closer look at the loss terms in equation (2.18).



26 Interaction of light with an atomic ensemble

2.5 Atomic decay

In this section we will study in more detail the loss terms given in equation
(2.19). In the approximations we have adopted here, each atom will couple
to its own, independent bath, such that it is enough to study these terms on
the single atom level. For a ground state observable O of atom j, losses are
described by

L(A) =
d 2γ

2~2∆2

{
2 Ẽ−

(r)σ̃
−⊗ σ̃

+
A σ̃

−⊗ σ̃
+Ẽ+ −

[
Ẽ−

σ̃
−⊗ σ̃

+· Ẽ+
, A

]
+

}

− i
d
√

γ

~∆

{
f
−· [σ̃−⊗ σ̃

+Ẽ+
, A] + [Ẽ−

σ̃
−⊗ σ̃

+
, A] · f+

}
. (2.33)

In order to bring out the structure of this expression more clearly, we sup-
pressed all indices j as well as the arguments rj of the coherent field ampli-
tude.

It is instructive and a good test to cross check the validity of the present
approach, to derive from equation (2.33) a master equation for the atomic
density operator ρ̂. Neglecting coherent evolution for the moment, the aver-
age of any observable A will evolve as

tr
{

A ˙̂ρ
}

= tr
{

Ȧρ̂
}

= tr{L(A)ρ̂}

= tr

{
A

d 2γ

2~2∆2

(
2 Sp

{
σ̃
−⊗ σ̃

+Ẽ+
ρ̂Ẽ−

(r)σ̃
−⊗ σ̃

+
}

−
[
Ẽ−

σ̃
−⊗ σ̃

+· Ẽ+
, ρ̂

]
+

)}
,

where we used the cyclic property of the trace and the fact that Langevin
noise operators have zero mean. The symbol Sp{M} denotes the trace of the
3× 3 matrix M . This equation holds for arbitrary observables and therefore
as an operator identity for the density matrix itself, that is

˙̂ρ =
d 2γ

2~2∆2

(
2 Sp

{
σ̃
−⊗ σ̃

+Ẽ+
ρ̂Ẽ−

(r)σ̃
−⊗ σ̃

+
}
−

[
Ẽ−

σ̃
−⊗ σ̃

+· Ẽ+
, ρ̂

]
+

)
.

This master equation is identical to the one, which was derived in [23] in
the context of sisyphus cooling under the same approximations that we have
adopted here. We refer to [23] for an alternative derivation in the Schrödinger
picture and for further remarks.

Next we will use the results of the preceding sections to specialize equation
(2.33) to our one dimensional model. Taking into account the decomposition
of the ground state polarizability equations, (2.22) and (2.23), as well as
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the explicit form of the x-polarized coherent amplitude (2.25), we find for
equation (2.33)

Lj(A) =
η

T

{
J j

zAJ j
z + J j

yAJ j
y −

1

2
A

}
(2.34)

+

√
η

T

{
f
−
y [J j

z , A]− [J j
z , A]f

+

y − f
−
z [J j

y , A] + [J j
y , A]f

+

z

}
,

where we defined a dimensionless decay parameter

η =
d2γωNpha

2
1

2~∆2ε0Ac
. (2.35)

Remember that T is the pulse length, which naturally determines not only
the duration of the interaction but also of atomic decay3.

On the basis of the same reasoning as above we can read off the corre-
sponding master equation for the density operator ρ̂, which reads

L(ρ̂) =
η

T

{
Jzρ̂Jz + Jyρ̂Jy − 1

2
ρ̂

}
(2.36)

=
η

T

{
Jzρ̂Jz − 1

4
ρ̂

}
+

η

T

{
Jyρ̂Jy − 1

4
ρ̂

}
.

In the second line we wrote the decay of ρ in the form of a sum of two decay
terms, whose form is familiar from the description of collisional dephasing.
Spontaneous emission obviously leads to simultaneous dephasing in both, the
y and z basis. In the next section, where we finally evaluate the equations
of motion, we will see that this leads to decay of the y and z component of
the atomic spin at a rate η/2T , while the x component decays at twice this
rate, as is to be expected, since both decay processes contribute here. Note
also, that the fixed point of the map, defined by (2.36), is the identity. That
is, each atom will decay to the completely mixed, unpolarized state.

2.6 Linearization of equations of motion

In this section we will evaluate the Heisenberg equations of motion for the
relevant degrees of freedom, that is the collective spin,

J =
∑

j

Jj,

3We prefer to keep T explicitly in equation (2.34), because we are in the end interested
in input-output relations describing the scattering process, in which η and not the rate
η/T will be the relevant parameter.
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and quadratures of y polarized light propagating along z, x(z), p(z) intro-
duced in (2.30). Any of these observables will evolve as

Ȧ =
i

~
[Hli + Heff

int, A] +
∑

j

Lj(A),

where Hli is given in equation (2.27), Heff
int in equation (2.31) and the super-

operator Lj in (2.34). Evaluating this equation we arrive at Maxwell-Bloch
equations, which read for spin degrees of freedom

d

dt
Jx =− η

T
Jx +

χ√
T

Jyp(0, t) + i

√
η

T

∑
j

(
f
−
j,yJ

j
y − J j

yf
+

j,y + f
−
j,zJ

j
z − J j

zf
+

j,z

)
,

(2.37a)

d

dt
Jy =− η

2T
Jy − χ√

T
Jxp(0, t)− i

√
η

T

∑
j

(
f
−
j,yJ

j
x − J j

xf
+

j,y

)
, (2.37b)

d

dt
Jz =− η

2T
Jz − i

√
η

T

∑
j

(
f
−
j,zJ

j
x − J j

xf
+

j,z

)
, (2.37c)

and for light variables

(
∂

∂t
+ c

∂

∂z

)
x(z, t) =− χc√

T
Jz(t)δ(z), (2.38a)

(
∂

∂t
+ c

∂

∂z

)
p(z, t) = 0. (2.38b)

The physical meaning of these equations is quite clear: The second terms in
equations (2.37a) and (2.37b) describe rotation of the collective spin about
the z axis by an angle, which is determined by the p-quadrature of y polar-
ized light. The first and last terms in the Bloch equations (2.37) describe
decay and Langevin noise forces due to spontaneous emission. The Maxwell
equations in turn show, that the x quadrature, that is the component of y
polarized light which oscillates in phase with the coherent x polarized pulse,
acquires a signal proportional to the z component of the collective spin. The
p quadrature (out-of-phase component) is conserved.

Note that the noise terms in the Bloch equations do depend on system
operators. This is in fact essential to preserve the angular momentum com-
mutation relations [Jx, Jy] = iJz etc., as can be easily checked by solving the
equations to first order in η and taking commutators.

These equations have to be integrated up to a time T , when the pulse
leaves the sample. As initial conditions we assume, that the quantum field
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is in vacuum and that the atomic sample is in a coherent spin state with
maximal polarization along x, that is

〈Jx(0)〉 = Nat/2

∆J2
y (0) = ∆J2

y (0) = Nat/4. (2.39)

The variance of observable A is as usually defined by ∆A2 = 〈A2〉 − 〈A〉2.
We assume furthermore that losses are small, that is

η ¿ 1.

It is important to note here that this assumption in fact implies χ ¿ 1, as
follows from equations (2.32) and (2.35), from which one can conclude

χ2 = η
σres

A
, (2.40)

where σres = 3λ2
0/2π is the scattering cross section on resonance of the probed

transition (and, as before, A is the cross section of the beam).
For the given initial conditions and with the assumptions stated above,

it is possible to linearize the equations of motion for the collective atomic
spin. The central idea is, that the mean polarization along x can be treated
as a classical variable, while only transverse spin components are relevant
quantum degrees of freedom. This approximation can be formalized by means
of a method known as group contraction, introduced by Wigner [24, 25], or
by means of a technique known as Holstein-Primakoff transformation and
approximation [26]. Here we will use the latter method. We point out,
that this approximation does not rely on the exact initial conditions stated
above, but give good results also for situation, where the initial state is close
to the coherent spin state and the quantum field contains few photons. In
the following we will thus not use explicitly the fact that the transverse spin
components and light quadratures have zero mean.

Let us first examine the evolution of the mean polarization along x. Solv-
ing equation (2.37a) to first order in η and χ and taking into account that
p(z, t) = p(z − ct, 0) we find for the mean of Jx

〈Jx(T )〉 = (1− η)〈Jx(0)〉 − χ〈Jy(0)〉〈p(0)〉, (2.41)

where we introduced the normalized light quadrature for the entire pulse
p(0) = 1/

√
T

∫ T

0
dtp(−ct, 0). We see, that the mean polarization along x will

only be slightly rotated away from x and suffer small decay, such that after
the interaction we still have a large polarization along x.
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Keeping this in mind, let us now make use of the Holstein-Primakoff
transformation, which consists in expressing the collective step up/down op-
erators (along x), J± = Jy± iJz in terms of bosonic creation and annihilation
operators, [b, b†] = 1l, as

J+ =
√

Nat

√
1l− b†b/Nat b, J− =

√
Nat b†

√
1l− b†b/Nat.

It is easily checked that these operators satisfy the correct commutation
relations [J+, J−] = 2Jx if one identifies Jx = Nat/2−b†b. The fully polarized
initial state thus corresponds to the ground state of a fictitious harmonic
oscillator. Note that this mapping is exact. Now, under the condition that
〈b†b〉 ¿ Nat, which is here guaranteed by (2.41), one can approximate J+ '√

Nat b and J− '
√

Nat b† or, for the transverse spin components,

Jy =
√

Nat/2 X, Jz =
√

Nat/2 P,

where X = (b + b†)/
√

2 and P = −i(b− b†)/
√

2. In terms of these canonical
operators the initial conditions in (2.39) read

〈X(0)〉 = 〈P (0)〉 = 0, ∆X2(0) = ∆P 2(0) = 1/2.

The corresponding Maxwell-Bloch equations in terms of these operators fol-
low from (2.37b), (2.37c) and (2.38),

d

dt
X =− η

2T
X +

κ√
T

p(0, t) +

√
η

T
fX(t), (2.42a)

d

dt
P =− η

2T
P +

√
η

T
fP (t), (2.42b)

(
∂

∂t
+ c

∂

∂z

)
x(z, t) =

κc√
T

P (t)δ(z), (2.42c)

(
∂

∂t
+ c

∂

∂z

)
p(z, t) = 0. (2.42d)

where we defined the effective coupling strength

κ = −χ
√

Nat/2. (2.43)

We introduced here new Langevin noise operators

fX(t) = −i
√

2/Nat

∑
j

(
f
−
j,yJ

j
x − J j

xf
+

j,y

)
, (2.44a)

fP (t) = −i
√

2/Nat

∑
j

(
f
−
j,zJ

j
x − J j

xf
+

j,z

)
, (2.44b)
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which are still of zero mean and have variances,

〈fX(t)fX(t′)〉 = 〈fP (t)fP (t′)〉 = δ(t− t′)/2.

However, as mentioned before, they have the unpleasant property of not
commuting with the system operators X,P . Since this property assures the
preservation of commutation relations, it is not possible to merely replace
J j

x → 1/2 in (2.44), as would be suggested by the Holstein-Primakoff ap-
proximation. If this is done, then one has to compensate by imposing the
commutation relations

[fX(t), fP (t′)] = iδ(t− t′) (2.45)

for the Langevin operators, since this will again preserve the canonical com-
mutation relations [X, P ] = i. In the following, we will adopt this condition.

Equations (2.42) are the central result of this chapter. There are two
points, which should be remarked here:

Note first that the coupling of light and atoms is collectively enhanced by
a factor of

√
Nat/2, as is evident from (2.43), while the decay of the collective

atomic spin happens still at the rate η/T of the decay of a single spin. Thus,
it is possible to have η ¿ 1 and at the same time a large coupling κ & 1.

Second, the coherent part of the interaction is generated by the Hamilto-
nian

H = Hli +
κ√
T

Pp(0), (2.46)

where Hli is given in (2.27). Note in particular that this Hamiltonian is
quadratic in the canonical operators X,P and x(z), p(z). If the initial states
of light and atoms is a Gaussian state, as is the case if atoms are prepared in
a coherent spin state and light is in vacuum or in some coherent state, then
the Gaussian character is preserved in the interaction. This implies, that the
state is entirely determined by the first and second moments of the canonical
operators.

2.7 Solutions for various setups and applica-

tions

In this section we will solve the Maxwell-Bloch equations (2.42) for two setups
corresponding to recent experiments. The first scenario corresponds exactly
to the setup considered so far, and was used in [27] to perform a quantum
non demolition measurement of a collective atomic spin, as was originally
proposed by Kuzmich et.al. in [28]. The second setup consists of two samples
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placed in oppositely oriented magnetic fields, or equivalently, to two samples
in the same field but with oppositely oriented spins. This setup was used in
[10] to create entanglement between the two collective spins, as was originally
proposed by Duan et.al. in [13]. In order to bring out the basic ideas of these
experiments more clearly, we will focus here on the coherent interaction and
neglect losses for the moment taking η = 0.

Quantum non demolition measurement and spin squeez-
ing

This section concerns the most simple case of a single collective spin inter-
acting with light in the one way as was considered in the preceding sections.
In order to integrate the Maxwell-Bloch equations (2.42) it is convenient to
introduce a new position variable ξ = ct− z to eliminate the z dependence.
New light quadratures defined by x̄(ξ, t) = x(ct − ξ, t), p̄(ξ, t) = p(ct − ξ, t)
also have a simple interpretation: ξ labels the slices of the pulse moving
in and out of the ensemble one after the other, starting with ξ = 0 and
terminating at ξ = cT . The Maxwell equations now read

∂

∂t
p̄(ξ, t) = 0,

∂

∂t
x̄(ξ, t) =

κc√
T

P (t)δ(ct− ξ). (2.47)

These equations together with (2.42a) and (2.42b) have to be integrated form
t=0 at which the classical pulse is assumed to enter the sample up to time T
when the pulse terminates. Integrating the Maxwell-Bloch equation causes
no problems and the well known solutions are given by

X out = X in + κp in, P out = P in, (2.48a)

x out = x in + κP in, p out = p in. (2.48b)

where we defined input/output operators as

X in = X(0) X out = X(T )

x in =
1√
T

∫ T

0

dτ x̄(cτ, 0) x out =
1√
T

∫ T

0

dτ x̄(cτ, T )

and the same for P and p.
We see that x quadratures of both systems acquire signals of the p quadra-

tures of the other system, while preserving them. The interaction thus fulfills
the criteria for a quantum non demolition measurement [29]. The measure-
ment of x out can be performed in a standard polarimetric measurement of
Stokes vector components [14] and the result will given an estimate of P .
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Conditioned on the measurement outcome, the variance of a subsequent mea-
surement of P will then be altered. The classical formula for conditional
variances of a Gaussian random variable still applies and yields

(∆P )2|x out = (∆P out)2 − 〈P outx out〉
2〈(x out)2〉 =

1

2

1

1 + κ2
.

As compared to a coherent spin state, the variance will be reduced by a factor
1/(1 + κ2). The measurement thus leaves the atomic spin in a squeezed
state, conditioned on the measurement result. By means of a subsequent
feedback process, the squeezing can be prepared unconditional. The most
advanced experiment along this line, using continuous feedback, is [27] and
demonstrated squeezing of about one order of magnitude.

Entanglement of two collective spins

If two samples, described by two pairs of canonical conjugate operators
[Xk, Pk] = iδkl, k, l = 1, 2, are placed in two oppositely oriented magnetic
fields aligned along x, the direction of polarization, the full Hamiltonian of
the system is given by

H = Hat + Hli + Hint,

Hat =
~Ω
2

(X2
1 + P 2

1 )− ~Ω
2

(X2
2 + P 2

2 ), (2.49)

Hint =
~κ√
T

(P1 + P2)p(0)

The magnetic fields can be safely added like this under the condition that
the Larmor frequency Ω is much smaller than any other time scale in the
problem, which is well fulfilled for frequencies up to several 100 kHz.

In Hint we have neglected the distance between the two samples and
placed them formally both at z = 0. Note that this assumption can easily
be dropped and the results below still hold in exactly the same form.

It is convenient to change in the atomic subsystem to EPR modes de-
fined by X± = (X1 ±X2)/

√
2, P± = (P1 ± P2)/

√
2 in terms of which the free

atomic Hamiltonian becomes Hat = Ω(X+X− + P+P−). Changing to an in-
teraction picture with respect to Hat and evaluating the Heisenberg equations
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yields the Maxwell-Bloch equations

∂

∂t
X+(t) = κ

√
2

T
cos(Ωt)p(0, t),

∂

∂t
P+(t) = 0,

∂

∂t
P−(t) = −κ

√
2

T
sin(Ωt)p(0, t),

∂

∂t
X−(t) = 0,

∂

∂t
x̄(ξ, t) = κc

√
2

T
[cos(Ωt)P+(t) + sin(Ωt)X−(t)] δ(ct− ξ),

∂

∂t
p̄(ξ, t) = 0.

The integration is again straight forward and one arrives at the input/output
relations

X out
+ = X in

+ + κp in
c x out

c = x in
c + κP in

+ (2.50a)

P out
+ = P in

+ p out
c = p in

c (2.50b)

X out
− = X in

− x out
s = x in

s + κX in
− (2.50c)

P out
− = P in

− − κp in
s p out

s = p in
s (2.50d)

where we defined input output operators of a cosine modulation mode as

p in[out]
c =

√
2

T

∫ T

0

dτ cos(Ωτ)p̄(cτ, 0[T ]), (2.51a)

x in[out]
c =

√
2

T

∫ T

0

dτ cos(Ωτ)x̄(cτ, 0[T ]) (2.51b)

and the same for the pairs x
in[out]
s , p

in[out]
s with cos(Ωτ) replaced by sin(Ωτ).

In deriving the second equations in (2.50a) and (2.50c) we made use of∫ T

0
dτ cos(Ωτ) sin(Ωτ) = O(n−1

0 ) ' 0. In frequency space these modes consist
of spectral components at sidebands ωc±Ω and are in fact closely related to
the sideband modulation modes introduced in [30, 31] for the description of
two photon processes. It is easily checked that these modes are asymptot-
ically canonical, [x in

c , p in
c ] = [x in

s , p in
s ] = i[1 +O(n−1

0 )] ' i, and independent,
[x in

c , p in
s ] = O(n−1

0 ) ' 0, if we assume n0 À 1 for n0 = ΩT , the pulse length
measured in periods of Larmor precession.

Note that the solution (2.50) falls naturally into two groups (2.50a),(2.50b)
and (2.50c),(2.50d) which have each, up to a phase difference, the same struc-
ture as the solution (2.48) in the last section. Thus, by means of a measure-
ment of x out

s and x out
c the two commuting observables X− and P+ will be

squeezed by a factor 1/(1+κ2), just as in the preceding section. This implies
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in particular, that the state of the two atomic spins is entangled, as follows
from the criterion for entanglement of symmetric Gaussian states [32],

1 > ∆EPR =
(
∆X 2

− + P 2
+

)
=

1

1 + κ2
.

In experiment [10] entanglement of two macroscopic objects – each sample
contained about 1012 atoms - was demonstrated along these lines.





Chapter 3

Teleportation of quantum
states from light onto atoms

Quantum teleportation - the disembodied transport of quantum states - has
been demonstrated so far in several seminal experiments dealing with purely
photonic [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] or atomic [45, 46]
systems. Here we propose a protocol for the teleportation of a coherent state
carried initially by a pulse of light onto the collective spin state of atoms.
This protocol - just as the recently demonstrated direct transfer of a quantum
state of light onto atoms [11] - is particularly relevant for long distance en-
tanglement distribution, a key resource in quantum communication networks
[47].

Our scheme can be implemented with just coherent light and room-
temperature atoms in a single vapor cell placed in a homogeneous magnetic
field. Existing protocols in Quantum Information (QI) with continuous vari-
ables of atomic ensembles and light [47] are commonly designed for setups
where no external magnetic field is applied such that the interaction of light
with atoms meets the Quantum non-demolition (QND) criteria [48, 49], as
was discussed in section 2.7. In contrast, in all experiments dealing with va-
por cells at room-temperature [11, 10] it is, for technical reasons, absolutely
essential to employ magnetic fields. In experiments [11, 10] two cells with
counter-rotating atomic spins were used to comply with both, the need for
an external magnetic field and the one for an interaction of QND character,
as was also explained in section 2.7. So far it was believed to be impossible to
use a single cell in a magnetic field to implement QI protocols, since in this
case - due to the Larmor precession - scattered light simultaneously reads
out two non-commuting spin components such that the interaction is not of
QND type.

In this chapter we do not only show that it is well possible to make use

37
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of the quantum state of light and atoms created in this setup but we demon-
strate that - for the purpose of teleportation [50, 51] - it is in fact better
to do so. As compared to the state resulting from the common QND inter-
action the application of an external magnetic field enhances the creation
of correlations between atoms and light, generating more and qualitatively
new, multimode type of entanglement. The results of the chapter can be
summarized as follows:
(i) Larmor precession in an external magnetic field enhances the creation
of entanglement when a collective atomic spin is probed with off-resonant
light. The resulting entanglement involves multiple modes and is stronger as
compared to what can be achieved in a comparable QND interaction.
(ii) This type of entangled state can be used as a resource in a teleportation
protocol, which is a simple generalization of the standard protocol [50, 51]
based on Einstein-Podolsky-Rosen (EPR) type of entanglement. For the ex-
perimentally accessible parameter regime the teleportation fidelity is close
to optimal. The protocol is robust against imperfections and can be imple-
mented with state of the art technique.
(iii) Homodyne detection of appropriate scattering modes of light leaves the
atomic state in a spin squeezed state. The squeezing can be the same as
attained from a comparable QND measurement of the atomic spin [52, 27].
The same scheme can be used for atomic state read-out of the Larmor pre-
cessing spin, necessary to verify successful teleportation.

We would like to note that it was shown recently in [53] that the effect of
a magnetic field can enhance the capacity of a quantum memory in the setup
of two cells. Teleportation in the setup of a single cell without magnetic field
was addressed in [54].

3.1 Single sample in a magnetic field

As follows from chapter 2 the Hamiltonian is in this case given by

H = Hat + Hli + V,

Hat =
~Ω
2

(X2 + P 2), (3.1)

V =
~κ√
T

Pp(0).

Changing to a rotating frame with respect to Hat by defining XI(t) =
exp(−iHatt)X exp(iHatt) and evaluating the Heisenberg equations for these
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operators yields the following Maxwell-Bloch equations

∂

∂t
XI(t) =

κ√
T

cos(Ωt)p(0, t), (3.2a)

∂

∂t
PI(t) =

κ√
T

sin(Ωt)p(0, t), (3.2b)

(
∂

∂t
+c

∂

∂z

)
x(z, t) =

κc√
T

[cos(Ωt)PI(t)− sin(Ωt)XI(t)] δ(z),

(
∂

∂t
+c

∂

∂z

)
p(z, t) = 0.

These equations have a clear interpretation. Light noise coming from the field
in quadrature with the classical probe piles up in both, the X and P spin
quadrature, but it alternately affects only one or the other, changing with a
period of 1/Ω. Conversely atomic noise adds to the in phase field quadrature
only and the signal comes alternately from the X and P spin quadrature.
The out of phase field quadrature is conserved in the interaction.

It will again be convenient to introduce the position variable, ξ = ct−z, to
eliminate the z dependence and to define new light quadratures by x̄(ξ, t) =
x(ct− ξ, t), p̄(ξ, t) = p(ct− ξ, t). The Maxwell equations now read

∂

∂t
p̄(ξ, t) = 0, (3.2c)

∂

∂t
x̄(ξ, t) =

κc√
T

[cos(Ωt)PI(t)− sin(Ωt)XI(t)] δ(ct− ξ). (3.2d)

The solutions to equations (3.2a, 3.2b, 3.2c) are

XI(t) = XI(0) +
κ√
T

∫ t

0

dτ cos(Ωτ)p̄(cτ, 0), (3.3a)

PI(t) = PI(0) +
κ√
T

∫ t

0

dτ sin(Ωτ)p̄(cτ, 0), (3.3b)

p̄(ξ, t) = p̄(ξ, 0) (3.3c)

and the formal solution to (3.2d) is

x̄(ξ, t) = x̄(ξ, 0) + +
κ√
T

[cos(Ωξ/c)PI(ξ/c)− sin(Ωξ/c)XI(ξ/c)] . (3.3d)

As mentioned before, both atomic spin quadratures are affected by light but,
as is evident from the solutions for X(t), P (t), they receive contributions from
different and, in fact, orthogonal projections of the out-of-phase field. As we
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will show in the following, the corresponding projections of the in-phase field
carry in turn the signal of atomic quadratures after the interaction. In terms
of cosine and sine modulation modes introduced in Eq. (2.51) the atomic
state after the interaction X out = XI(T ), P out = PI(T ) is given by

X out = X in +
κ√
2
p in

c , P out = P in +
κ√
2
p in

s . (3.4a)

The final state of cosine (sine) modes is described by x out
c(s), p out

c(s), defined by

equations (2.51) with x̄(cτ, 0), p̄(cτ, 0) replaced by x̄(cτ, T ), p̄(cτ, T ) respec-
tively. Since the out-of-phase field is conserved we trivially have

p out
c = p in

c , p out
s = p in

s . (3.4b)

Deriving the corresponding expressions for the cosine and sine components
of the field in phase, x out

c , x out
s , raises some difficulties connected to the back

action of light onto itself. This effect can be understood by noting that a slice
ξ of the pulse receives a signal of atoms at a time ξ/c [see equation (3.3d)]
which, regarding equations (3.3a, 3.3b), in turn carry already the integrated
signal of all slices up to ξ. Thus, mediated by the atoms, light acts back on
itself. In order to evaluate the input/output relations for the cosine and sine
components of the in-phase field we take equation (3.3d) at ξ = cτ, t = T ,
multiply by

√
2/T cos(Ωτ) and integrate over τ from 0 to T . Using equations

(3.3a, 3.3b) and the approximate orthogonality of cos(Ωτ) and sin(Ωτ) one
finds

x out
c = x in

c +
κ√
2
P in+

+

√
2κ2

T 3/2

∫ T

0

dτ

∫ τ

0

dτ ′[cos(Ωτ)2 sin(Ωτ ′)p̄(cτ ′, 0)−
− cos(Ωτ) sin(Ωτ) cos(Ωτ ′)p̄(cτ ′, 0)].

After interchanging the order of integration,
∫ T

0
dτ

∫ τ

0
dτ ′ → ∫ T

0
dτ ′

∫ T

τ ′dτ one
can perform the integration over τ . Neglecting all terms of order n−1

0 or less
where n0 = ΩT À 1 one finds

x out
c =x in

c +
κ√
2
P in+

√
2κ2

T 3/2

∫ T

0

dτ
T − τ

2
sin(Ωτ)p̄(cτ, 0).

The last term represents back action of light onto itself. It can be expressed
as a sum of two terms, one proportional to p in

s and another one proportional
to

p in
s,1 =

√
3

(
2

T

)3/2∫ T

0

dτ

(
T

2
− τ

)
sin(Ωτ)p̄(cτ, 0). (3.4c)
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It is easily verified that the back action mode defined by this equation and the
corresponding expression for xback

s is canonical [x in
s,1, p

in
s,1] = i[1−O(n−2

0 )] ' i
and independent from all the other modes introduced so far, f.e. [x in

s , p in
s,1] =

O(n−2
0 ) ' 0. The variance is thus (∆p in

s,1)
2 = 1/2. Repeating the calculation

for x out
s with appropriate replacements and a definition of p in

c,1 analogous to
equation (3.4c) finally yields

x out
c = x in

c +
κ√
2
P in+

(κ

2

)2

p in
s +

1√
3

(κ

2

)2

p in
s,1, (3.4d)

x out
s = x in

s −
κ√
2
X in−

(κ

2

)2

p in
c −

1√
3

(κ

2

)2

p in
c,1. (3.4e)

The last two terms in both lines represent the effect of back action, part of
which involves the already defined cosine and sine components of the field
in quadrature. The remaining part is subsumed in the back action modes
which are again canonical and independent from all other modes.

Equations (3.4) describe the final state of atoms and the relevant part of
scattered light after the pulse has passed the atomic ensemble and are the
central result of this section. Treating the last terms in equations (3.4d,3.4e)
as noise terms, it is readily checked by means of the separability criteria in
[55] that this state is fully inseparable, i.e. it is inseparable with respect
to all splittings between the three modes. For the following teleportation
protocol the relevant entanglement is the one between atoms and the two
light modes. Figure 3.2b shows the von Neumann entropy EvN of the reduced
state of atoms in its dependence on the coupling strength κ.

3.2 Teleportation of light onto atoms

In this section we will show how the multimode entanglement between light
and atoms generated in the scattering process can be employed in a telepor-
tation protocol which is a simple generalization of the standard protocol for
continuous variable teleportation using EPR-type entangled states [50, 51].
We first present the protocol and evaluate its fidelity and then analyze its
performance under realistic experimental conditions.

Basic protocol

Figure 3.1 depicts the basic scheme which, as usually, consists of a Bell
measurement and a feedback operation.
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Figure 3.1: Scheme for teleportation of light onto atoms: As described in
section 3.1, a classical pulse (linearly polarized along x) propagating along
the positive z direction is scattered off an atomic ensemble contained in
a glass cell and placed in a constant magnetic field B along x. Classical
pulse and scattered light (linearly polarized along y) are overlapped with a
with a coherent pulse (linearly polarized along z) at beam splitter BS. By
means of standard polarization measurements Stokes vector components Sy

and Sz are measured at one and the other port respectively, realizing the
Bell measurement. The Fourier components at Larmor frequency Ω of the
corresponding photocurrents determine the amount of conditional displace-
ment of the atomic spin which can be achieved by applying a properly timed
transverse magnetic field b(t). See section 3.2 for details.

Input The coherent state to be teleported is encoded in a pulse which is
linearly polarized orthogonal to the classical driving pulse and whose carrier
frequency lies at the upper sideband, i.e. at ωc + Ω. The pulse envelope has
to match the one of the classical pulse. As we will show below, canonical op-
erators y, q with [y, q] = i describing this mode can conveniently be expressed
in terms of cosine and sine modulation modes, analogous to equations (2.51),
defined with respect to the carrier frequency, as

y =
1√
2

(y s + q c) , q = − 1√
2

(y c − q s) . (3.5)

A coherent input amounts to having initially ∆y2 = ∆q2 = 1/2 and an am-
plitude 〈y〉, 〈q〉 with mean photon number nph = (〈y〉2 + 〈q〉2)/2.

In order to see, that the mode defined in (3.5) in deed corresponds to the
upper sideband, we proceed as follows: The input field, propagating along
the positive y direction and polarized along z (see figure 3.1), is described
by operators [b(ω), b†(ω′)] = δ(ω − ω′) in frequency space and [ŷ(y), q̂(y′)] =
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icδ(y − y′) in real space. (ŷ is the quadrature operator for the field in-phase
and y on the other hand is the position along the y-direction.) In analogy to
equation (2.30) these bases are connected via

ŷ(y) =
1√
4π

∫

b

dω
(
b(ω)e−i(kc−k)y + h.c.

)
,

q̂(y) = − i√
4π

∫

b

dω
(
b(ω)e−i(kc−k)y − h.c.

)
.

Using the definitions of cosine and sine modes (2.51) as well as ˆ̄y(cτ, 0) =
ŷ(−cτ, 0) and the same for q̂(y) we have

y =
1√
T

∫ T

0

dτ
[
sin(Ωτ)ˆ̄y(cτ, o) + cos(Ωτ)ˆ̄q(cτ, 0)

]

=
−i√
4πT

∫ T

0

dτ

∫

b

dω
[
b(ω)ei(ωc+Ω−ω)τ − h.c.

]

q = − 1√
T

∫ T

0

dτ
[
cos(Ωτ)ˆ̄y(cτ, o)− sin(Ωτ)ˆ̄q(cτ, 0)

]

=
−1√
4πT

∫ T

0

dτ

∫

b

dω
[
b(ω)ei(ωc+Ω−ω)τ + h.c.

]
.

To explicitly see that this corresponds to a pulse centered at the upper
sideband it is convenient to change to a more precise model by replac-
ing the 1/

√
T factor, which is just the pulse’s slowly varying amplitude

function in a simple square well approximation, by a function A(τ) of di-

mension s−1/2 normalized such that
∫ T

0
dτ |A(τ)|2 = 1. Its Fourier trans-

form A(ω) = 1√
2π

∫ T

0
dτA(τ) exp(iωτ) is centered at zero and has a width

1/T = ∆ω ¿ Ω in accord with our condition 1 ¿ ΩT . Replacing now 1/
√

T
by A(τ) (of course inside the integral over τ) in the expressions for y and q
yields

y =
−i√
4π

∫ T

0

dτA(τ)

∫

b

dω
[
b(ω)ei(ωc+Ω−ω)τ − h.c.

]

=
−i√

2

∫

b

dω
[
A(ωc + Ω− ω)b(ω)− h.c.

]
,

q =
−1√

2

∫

b

dω
[
A(ωc + Ω− ω)b(ω) + h.c.

]
.

This is evidently a mode whose spectral mode function is the same as the
classical pulse but is centered at ωc + Ω.
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Bell measurement This input is combined at a beam splitter with the
classical pulse and the scattered light. At the ports of the beam splitter
Stokes vector components Sy and Sz are measured by means of standard
polarization measurements. Given the classical pulse in x polarization this
amounts to a homodyne detection of in- and out-of-phase fields of the or-
thogonal polarization component. The resulting photocurrents are numer-
ically demodulated to extract the relevant sine and cosine components at
the Larmor frequency [14]. Thus one effectively measures the commuting
observables

x̃c =
1√
2

(
x out

c + y c

)
, x̃s =

1√
2

(
x out

s + y s

)
, (3.6)

q̃c =
1√
2

(
p out

c − q c

)
, q̃s =

1√
2

(
p out

s − q s

)
.

Let the respective measurement results be given by X̃c, X̃s, Q̃c and Q̃s.

Feedback Conditioned on these results the atomic state is then displaced
by an amount X̃s − Q̃c in X and −X̃c − Q̃s in P . This can be achieved by
means of two fast radio-frequency magnetic pulses separated by a quarter of
a Larmor period. In the ensemble average the final state of atoms is simply
given by

X fin = X out + x̃s − q̃c, P fin = P out − x̃c − q̃s. (3.7)

This description of feedback is justified rigorously in section 3.4. Relating
these expressions to input operators, we find by means of equations (3.4),
(3.5) and (3.6)

X fin =
(
1− κ

2

)
X in − 1√

2

(
1− κ

2

)2

p in
c +

1√
2
x in

s −
1√
6

(κ

2

)2

p in
c,1 + y,

(3.8a)

P fin =
(
1− κ

2

)
P in − 1√

2

(
1− κ

2

)2

p in
s −

1√
2
x in

c −
1√
6

(κ

2

)2

p in
s,1 + q.

(3.8b)

This is the main result of this section.

Teleportation fidelity Taking the mean of equations (3.8) with respect
to the initial state all contributions due to input operators and back action
modes vanish such that 〈X fin〉 = 〈y〉 and 〈P fin〉 = 〈q〉. Thus, the ampli-
tude of the coherent input light pulse is mapped on atomic spin quadra-
tures as desired. In order to prove faithful teleportation also the variances
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have to be conserved. It is evident from (3.8) that the final atomic spin
variances will be increased as compared to the coherent input. These addi-
tional terms describe unwanted excess noise and have to be minimized by a
proper choice of the coupling κ. As a figure of merit for the teleportation
protocol we use the fidelity, i.e. squared overlap, of input and final state.
Given that the means are transmitted correctly the fidelity is found to be

F = 2
[
(1 + 2(∆X fin)2)(1 + 2(∆P fin)2)

]−1/2
. The variances of the final spin

quadratures are readily calculated taking into account that all modes involved
are independent and have initially a normalized variance of 1/2. In this way a
theoretical limit on the achievable fidelity can be derived depending solely on
the coupling strength κ. In figure 3.2 we take advantage of the fact that the
amount of entanglement between light and atoms is a monotonously increas-
ing function of κ such that we can plot the fidelity versus the entanglement.
This has the advantage that we can compare the performance of our tele-
portation protocol with the canonical one [50, 51] which uses a two-mode
squeezed state of the same entanglement as a resource and therefore max-
imizes the teleportation fidelity for the given amount of entanglement. No
physical state can achieve a higher fidelity with the same entanglement. This
follows from the results of [56] where it was shown that two-mode squeezed
states minimize the EPR variance (and therefore maximize the teleportation
fidelity) for given entanglement. The theoretical fidelity achievable in our
protocol is maximized for κ ' 1.64 corresponding to F ' .77. But also for
experimentally more feasible values of κ ' 1 can the fidelity well exceed the
value, which can be attained by classical means, that is, without entangle-
ment. In the next chapter we will show that this limit is of 1/2. Moreover,
comparison with the values achievable with a two-mode squeezed state shows
that our protocol is close to optimal.

Noise effects and Gaussian distributed input

Under realistic conditions the teleportation fidelity will be degraded by noise
effects like decoherence of the atomic spin state, light absorption and re-
flection losses and also because the coupling constant κ is experimentally
limited to values κ ' 1. On the other hand the classical fidelity bound to
be beaten will be somewhat higher than 1/2 since the coherent input states
will necessarily be drawn according to a distribution with a finite width in
the mean photon number n̄. In this section we analyze the efficiency of the
teleportation protocol under these conditions and show that it is still possible
to surpass any classical strategy for the transmission and storage of coherent
states of light [57, 16].

During the interaction atomic polarization decays due to spontaneous
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Figure 3.2: (a) Theoretical limit on the achievable fidelity F versus entan-
glement between atoms and light measured by the von Neumann entropy
EvN of the reduced state of atoms. The grey area is unphysical. For moder-
ate amounts of entanglement our protocol is close to optimal. (b) Coupling
strength κ versus entanglement. The dashed lines indicate the maximal
fidelity of F = .77 which is achieved for κ = 1.64.

emission and collisional relaxation. Including a transverse decay the final
state of atoms is given by

X out =
√

1− β(X in +
κ√
2
p in

c ) +
√

βfX , (3.9a)

P out =
√

1− β(P in +
κ√
2
p in

s ) +
√

βfP . (3.9b)

In these equations β is an overall atomic decay parameter including de-
phasing due to spontaneous decay and other mechanisms like collisions,
and fX , fP are Langevin noise operators with zero mean. Their variance
is 〈f 2

X〉 = 〈f 2
P 〉 = 1/2.

Light absorption and reflection losses can be taken into account in the
same way as finite detection efficiency. For example the statistics of mea-
surement outcome X̃s will not stem from the signal mode x̃s alone but rather
from the noisy mode

√
1− ε x̃s +

√
εfx,s where ε is the photon loss parameter

and fx,s is a Langevin noise operator of zero mean and variance 〈f 2
x,s〉 = 1/2.

Analogous expressions have to be used for the measurements of x̃c, q̃s and q̃c

which will be adulterated by Langevin terms fx,c, fq,s and fq,c respectively.
In principle each of the measurement outcomes can be fed back with an inde-
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pendently chosen gain but for symmetry reasons it is enough to distinguish
gain coefficients gx, gq for the measurement outcomes of sine and cosine com-
ponents of x and q respectively. Including photon loss, finite gain and atomic
decay, as given in (3.9), equations (3.7), describing the final state of atoms
after the feed back operation, generalize to

X fin =
√

1− βX out +
√

βfX + gx

(√
1− ε x̃s +

√
εfx,s

)

− gq

(√
1− ε q̃c +

√
εfq,c

)
, (3.10a)

P fin =
√

1− βP out +
√

βfP − gx

(√
1− ε x̃c +

√
εfx,c

)

− gq

(√
1− ε q̃s +

√
εfq,s

)
. (3.10b)

For non unit gains a given coherent amplitude (〈y〉, 〈q〉) will not be per-
fectly teleported onto atoms and the corresponding fidelity will be degraded
by this mismatch according to

F (〈y〉, 〈q〉) =
2√

[1 + 2(∆X fin)2][1 + 2(∆P fin)2]

· exp

[
−(〈y〉 − 〈X fin〉)2

1 + 2(∆X fin)2
− (〈q〉 − 〈P fin〉)2

1 + 2(∆P fin)2

]
.

If the input amplitudes are drawn according to a Gaussian distribution
p(〈y〉, 〈q〉) = exp[−(〈y〉2 + 〈q〉2)/2n̄]/2πn̄ with mean photon number n̄ the
average fidelity [with respect to (〈y〉, 〈q〉)] is readily calculated. The exact
expression in terms of initial operators can then be derived by means of
equations (3.4), (3.5), (3.6) and (3.10) but is not particularly enlightening.
In figure 3.3 we plot the average fidelity, optimized with respect to gains
gx, gq, in its dependence on the atomic decay β for various values of pho-
ton loss ε. We assume a realistic value κ = 0.96 for the coupling constant
and a mean number of photons n̄ = 4 for the distribution of the coherent
input. For feasible values of β, ε - 0.2 the average fidelity is still well above
the classical bound on the fidelity [57, 16]. This proves that the proposed
protocol is robust against the dominating noise effects in this system.

The experimental feasibility of the proposal is illustrated with the follow-
ing example. Consider a sample of Nat = 1011 Cesium atoms in a glass cell
placed in a constant magnetic field along the x-direction causing a Zeeman
splitting of Ω = 350 kHz in the F = 4 ground state multiplet. The atoms are
pumped into mF = 4 and probed on the D2 (F = 4 → F ′ = 3, 4, 5) transition.
The classical pulse contains an overall number of Nph = 2.5 1013 photons, is
detuned to the blue by ∆ = 1 GHz, has a duration T = 1 ms and can have an
effective cross section of A ' 6cm2 due to thermal motion of atoms. Under
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Figure 3.3: (a) Average fidelity achievable in the presence of atomic decay
β, reflection and light absorption losses ε = 8%, .12%, .16%, coupling κ =
.96 and Gaussian distributed input states with mean photon number n̄ = 4.
The fidelity benchmark is in this case 5/9 (dashed line). (b) Respective
optimal values for gains gx (solid lines) and gq (dashed lines).

these conditions the tensor polarizability can be neglected (∆/ωhfs ' 10−1).
Also n0 = ΩT = 350 justifies the use of independent scattering modes. The
coupling κ ' 1 and the depumping of ground state population η ' 10−2 as
desired.

3.3 Spin squeezing and state read-out

In this section we present a scheme for reading out either of the atomic spin
components X, P by means of a probe pulse interacting with the atoms in
the one way as described in section 3.1. The proposed scheme allows one, on
the one hand, to verify successful receipt of the coherent input subsequent
to the teleportation protocol of section 3.2 and, on the other hand, enables
to generate spin squeezing if it is performed on a coherent spin state.

As discussed in section 2.7, the pure interaction V , as given in equation
(3.1), can be used to perform a QND measurement of either of the trans-
verse spin components. At first sight this seems not to be an option in the
scenario under consideration since the local term Hat, accounting for Larmor
precession, commutes with neither of the spin quadratures such that the total
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Hamiltonian does not satisfy the QND criteria [48, 49]. As we have shown
in section 3.1 Larmor precession has two effects: Scattered light is correlated
with both transverse components and suffers from back action mediated by
the atoms. Thus, in order to read out a single spin component one has to
overcome both disturbing effects.

Our claim is that this can be achieved by a simultaneous measurement of
x out

c , p out
s , p out

s,1 or x out
s , p out

c , p out
c,1 if, respectively, X or P is to be measured.

In the following we consider in particular the former case but everything will
hold with appropriate replacements also for a measurement of P .

The set of observables x out
c , p out

s , p out
s,1 can be measured simultaneously

by a measurement of Stokes component Sy after a π/2 rotation is performed
selectively on the sine component of the scattered light. The cosine compo-
nent of the corresponding photocurrent will give an estimate of x out

c and the
sine component of p out

s . Multiplying the photocurrent’s sine component by
the linear function defining the back action mode, equation (3.4c), will give
in addition an estimate of p out

s,1 . Note that the field out of phase is conserved
in the interaction such that

p out
s,1 = p in

s,1, p out
c,1 = p in

c,1, (3.11)

i.e. the results will have shot noise limited variance. It is then evident from
equation (3.4d) that the respective photocurrents together with an a priori
knowledge of κ are sufficient to estimate the mean 〈X〉.

The conditional variances after the indicated measurements are

∆X2|{x out
c , p out

s , p out
s,1 } = (∆X in)2 2

2 + κ2
, (3.12a)

∆P 2|{x out
c , p out

s , p out
s,1 } = (∆P in)2 2 + κ2

2
, (3.12b)

corresponding to a pure state. Obviously the variance in X is squeezed by
a factor (1 + κ2/2)−1. Note that the squeezing achieved in a QND mea-
surement without magnetic field but otherwise identical parameters is given
by (1 + κ2)−1. From this we conclude that the quality of the estimate for
〈X〉, as measured f.e. by input-output coefficients known from the theory of
QND measurements [48, 49], can be the same as in the case without Larmor
precession albeit only for a higher coupling κ.

In order to derive equations (3.12) we need to know also the input-output
relations for x c,1 and x s,1. They can be calculated in a similar way input-
output relations for the back action modes itself were derived in section 3.1.



50 Teleportation of quantum states from light onto atoms

One finds

x out
c,1 = x in

c,1 − 1√
3

(κ

2

)2

p in
s +

1√
15

(κ

2

)2

p in
s,2, (3.13a)

x out
s,1 = x in

s,1 − 1√
3

(κ

2

)2

p in
c +

1√
15

(κ

2

)2

p in
c,2. (3.13b)

In both equations the third terms on the right hand side describe contribu-
tions of second order back action modes defined by

p in
s,2 = 6

(
10

T 5

)1/2∫ T

0

dτ

(
T 2

6
− Tτ + τ 2

)
sin(Ωτ)p̄(cτ, 0)

and similarly for x in
s,2 and the cosine component. These modes are again

canonical and independent. As a sidemark we note that, formally, it is pos-
sible to define scattering modes of arbitrary order whose mode functions are
given in general by products of Legendre polynomials and cos(Ωt) [sin(Ωt)]
resulting in a hierarchy of input-output relations similar to (3.13). Now, for

the operator valued vector ~R = (X, P, x c, p c, x s, p s, x c,1, p c,1, x s,1, p s,1) equa-

tions (3.4), (3.11) and (3.13) define via ~Rout = S(κ)~Rin a symplectic linear
transformation S(κ). The contributions of p in

c,2 and p in
s,2 to x out

s,1 and x out
c,1 as

given in (3.13) are treated as noise and do not contribute to the symplec-
tic transformation S but enter the input-output relation for the correlation
matrix as an additional noise term as follows. The correlation matrix is
as usually defined by γi,j = tr{ρ(RiRj + RjRi)}. The initial state is then
an 10 × 10 identity matrix and the final state is γout = S(κ)S(κ)T + γnoise

where the diagonal matrix γnoise = diag[0, 0, 0, 0, 0, 0, 1, 0, 1, 0](κ/2)4/15 ac-
counts for noise contributions due correlations to second order back action
modes c.f. equations (3.13). In order to evaluate the atomic variances after
a measurement of x out

c , p out
s , p out

s,1 the correlation matrix γout is split up into
blocks,

γout =

(
A C
CT B

)

where A is the 2 × 2 subblock describing atomic variances. Now, the state
A′ after the measurement can be found by evaluating [58]

A′ = A− lim
x,n→∞

C
1

Γ + B
CT

where Γ = diag[1/x, x, x, 1/x, n, n, x, 1/x] corresponds to the measured state.
Note that the limit n → ∞, i.e. the projection of the unobserved mode
x c,2, p c,2 onto the identity, does not need to be taken explicitly since, re-
markably, the atomic state after the measurement decouples form this mode.



3.4 Feedback in systems of continuous variables 51

The conditional variances in equation (3.12) are then just (half the) diagonal
entries of A′.

3.4 Feedback in systems of continuous vari-

ables

The feedback in continuous variable quantum teleportation is sometimes de-
scribed by equations equivalent to (3.7) but with a classical random variable
describing the measurement outcome in place of the operators correspond-
ing to the chosen displacement, which - though giving the right result - is
mathematically questionable. We point out that relations (3.7) hold stricto
sensu as operator identities. This is true for mixed and even for non-gaussian
states, as we will show below.

Consider a bipartite system of N + 1 modes and denote the first mode
as system A and the remaining N modes as system B. Let the state of the
compound system be given by ρAB. Our aim here is to describe protocols
which consist of the following steps:

Measurement On system B a set of commuting observables {r̂1, . . . , r̂N}
is measured where each of the operators r̂i is either xi or pi, one of the
quadratures of mode i in B. Let the corresponding measurement outcomes
ri be arranged in a vector ~RB = (r1, . . . , rN). With the eigenvalue equation
r̂i|ri〉B = ri|ri〉B, where |ri〉B is the generalized eigenstate of r̂i, the normal-
ized state of system A conditioned on the measurement outcomes is

ρ
(1)
A (~R) = B〈r1, . . . , rN |ρAB|r1, . . . , rN〉B/p(~R).

p(~R) is the probability to get the measurement outcomes ~R and is normalized

as
∫
dNrp(~R) = 1.

Feedback Depending on the measurement outcomes system A is then dis-
placed in xA and pA by an amount ~R~gT

x and ~R~gT
p respectively where ~gx(p) are

any real N dimensional (row) vectors determining the strength with which
each outcome is fed back into system A. In teleportation protocols these
coefficients are usually referred to as gains. The state of system A after the
feedback operation is then

ρ
(2)
A (~R) = D†

Aρ
(1)
A (~R)DA.
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DA = DA(~R~gT
x , ~R~gT

p )
.
= exp(i ~R~gT

x pA) exp(−i ~R~gT
p xA) is the unitary displace-

ment operator effecting the desired transformations DAxAD†
A = xA + ~R~gT

x

and DApAD†
A = pA + ~R~gT

p .

Ensemble average On average over all measurement outcomes, weighted
with their respective probabilities, the state of system A is

ρ̄A =

∫
dNrp(~R)ρ

(2)
A (~R).

Combining this with the expressions for ρ
(2)
A and ρ

(1)
A above one can express

ρ̄A =

∫
dNrD†

AB〈r1, . . . , rN |ρAB|r1, . . . , rN〉BDA

=

∫
dNrB〈r1, . . . , rN |D†

ABρABDAB|r1, . . . , rN〉B
= trB{D†

ABρABDAB} (3.14)

where the trace in the last line is now taken with respect to both system A
and B. In going from the first line to the second line we made use of the
identity

|r1, . . . , rN〉BDA = DAB|r1, . . . , rN〉B (3.15)

with the unitary operator DAB defined as

DAB = DAB( ~̂R~gT
x , ~̂R~gT

p )
.
= exp(i ~̂R~gT

x pA) exp(−i ~̂R~gT
p pA)

where ~̂R = (r̂1, . . . , r̂N) is now the vector of operators r̂B
i and DAB acts on

both systems A and B. Note that identity (3.15) is valid only for commut-
ing observables r̂B

i . The resulting equation (3.14) is the key point in this
consideration.

Observables in the ensemble average Consider finally the mean of, for
example, xA after the measurement and feedback procedure, i.e. with respect
to the ensemble averaged state ρ̄A. It is given by

〈xA〉 = trA{xAρ̄A} = trAB{DABxAD†
ABρAB}

= trAB{(xA + ~̂R~gT
x )ρAB}.

From this identity and the corresponding expression for 〈pA〉, which both are
true for all initial states ρAB, we can deduce the operator identities

xfin
A = xA + ~̂R~gT

x , pfin
A = pA + ~̂R~gT

p
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where xfin
A , pfin

A describe the final state of system A in the Heisenberg picture
and means have to be taken with respect to the unchanged initial state of
both systems A and B. If ρAB is a pure Gaussian state the last two equations
fully determine the final state ρ̄A. This was used in equation (3.7). Note
that these considerations are easily extended to situations in which system
A consists of more than one mode.

In conclusion we have presented a simple and realistic protocol for tele-
portation of a coherent state, carried by a propagating pulse of light, onto the
collective spin of an atomic ensemble, a suitable stationary carrier of quantum
information of continuous variables. The scheme can be implemented with
state of the art technique and allows one to surpass any classical strategy for
the transmission and storage of coherent states under realistic experimental
conditions. Straight forward extensions of it to other quantum information
primitives like entanglement swapping opens up the way to large distance en-
tanglement distribution. The basic resource in the protocol is a multimode
entangled state as it results form the interaction of light with atoms in the
presence of an external magnetic field. Though the interaction is not of QND
type it is still possible to perform a state readout on the atomic spin as well
as to create significant spin squeezing. We expect that a proper tailoring
of the Larmor rotation with time dependent magnetic fields would open up
interesting possibilities to further enhance the creation of entanglement and
to deliberately shape scattering modes.





Chapter 4

Quantum benchmark for
transmission and storage of
states

Coherent distribution, storage and manipulation of quantum states is a
technical challenge which received extensive theoretical and experimental
interest in the last years stimulated by the promises of quantum informa-
tion science [1]. A wide class of schemes can be very generally under-
stood as an attempt to establish a channel for the reliable transmission
of quantum states. This applies in particular to quantum teleportation
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 59], where
states are sent through an entanglement assisted classical channel, but just
as well to the concept of a quantum memory [11, 60, 61, 62, 63, 64, 65, 66, 8],
where the channel acts in time rather than in space and the accent is on the
state transfer between light and atoms. Concerning the reliable transmission
and storage of quantum states it is clear that in the ideal case a quantum
channel will always surpass a classical channel, i.e. any strategy where the
quantum state is measured, the corresponding classical data stored or trans-
mitted and then used to reconstruct the initial state as good as possible.
This is a direct consequence of the no-cloning theorem for quantum states
[67, 68, 69]. However, under realistic conditions a quantum channel suffers
inevitably from imperfections such that it might become possible to achieve
the same effect by means of a classical channel. Therefore there is need for a
criterion which allows one to distinguish an imperfect quantum channel from
a perfect classical channel and justifies proclamation of success in the exper-
imental demonstration of quantum teleportation and quantum memories.

Such a criterion has been derived some time ago for channels acting on
finite dimensional systems [70, 71, 72, 73] and found applications in seminal

55
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experiments on quantum teleportation with single photons [33, 34, 35, 36,
37, 38, 39] and ions [45, 46]. For channels acting on infinite dimensional
systems a corresponding criterion was conjectured some time ago in [40, 57].
Though a proof for this criterion was yet to be found the claim for successful
teleportation was based exclusively on this ground in several, likewise seminal
teleportation experiments using EPR-squeezed light [40, 41, 42, 43, 44]. The
same criterion was applied very recently to a quantum memory experiment
[11] where coherent states of light were stored in the collective spin of atoms.
It applies in particular also to the protocols presented in chapters 3 and 5.

In this chapter we solve this longstanding problem and provide a rigorous
proof for the criterion conjectured in [40, 57]. This puts the central claims
of experiments [40, 41, 42, 43, 44] - to have demonstrated a quantum gain
in the transmission or storage of coherent states - on logically firm grounds.
We emphasize that only now the success of these key experiments is rigor-
ously validated. Moreover, the present result gives a solution to the state
estimation problem for coherent states and leads to a closed expression for
the accessible fidelity introduced in [74].

The chapter is organized as follows: We first characterize a general classi-
cal channel mathematically and state the optimization problem to be solved
here. Then we present this solution and give an elementary and rigorous
proof. We close by relating the result to other work.

4.1 Quantum benchmark for transmission and

storage

The figure of merit in terms of which the quality of a channel is quantified
is usually taken to be the average fidelity achieved when the channel acts on
a predefined set of input states. Let {|ψx〉} be this set and let an input |ψx〉
occur with a probability p(x). If the channels’s output is E(|ψx〉) then the
average fidelity is defined as

F̄ =
∑

x

p(x)〈ψx|E(|ψx〉)|ψx〉.

This number is equal to one only for the ideal channel transmitting or storing
every state perfectly. Now the task is to find the maximal value of F̄ achiev-
able with a classical channel, i.e. to identify the optimal measure-and-prepare
strategy. Any channel yielding a higher average fidelity is then necessarily
quantum in the sense that it outperforms every strategy which is based on
the mere storage or transmission of classical information. Any classical chan-
nel can be described by a POVM [1] measurement {My}, My = M †

y , where
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y denotes the outcome occurring with a probability 〈ψx|My|ψx〉 and a recon-
struction rule y → ρy determining which state ρy is prepared when y was the
measurement outcome. The channel then acts as

E(|ψx〉) =
∑

y

〈ψx|My|ψx〉ρy.

The fidelity bound for classical channels relative to the set of input states
{|ψx〉} is then

Fmax = sup
{My}

sup
{ρy}

∑
x

∑
y

p(x)〈ψx|My|ψx〉〈ψx|ρy|ψx〉. (4.1)

This optimization problem is known under the title state estimation in the
theory of quantum detection and has in fact a long history [75, 76, 77, 78].
From the plethora of results known in this field the one concerning channels
acting on C2 and an input set consisting of all pure states with a uniform
distribution over the Bloch sphere received particular practical relevance in
the last years. In [71] it was shown that for this case Fmax = 2/3. This
value was the appropriate benchmark in several teleportation experiments
using single photons [33, 34, 35, 36, 37, 38, 39] and recently also trapped
ions [45, 46] and was beaten by measured fidelities ranging from .70 to .89 in
[33, 34, 35, 36, 37, 38, 39] and from .75 to .78 in [45, 46] proving the presence
and necessity of entanglement in these experiments.

Less is known for channels acting on an infinite dimensional Hilbert space.
Despite the increasing importance of coherent states {|α〉} for quantum com-
munication and in particular quantum cryptography by now no classical-
quantum bound has been proven for channels acting on these states. In [57]
it was shown that if the coherent states are distributed in phase space accord-
ing to a Gaussian distribution p(α) = λ/π exp(−λ|α|2) an average fidelity
F̄ = (1 + λ)/(2 + λ) can be achieved by means of a heterodyne measure-
ment, described by a POVM {|α〉〈α|/π}, and the preparation of appropriate
coherent states. It was conjectured there that this might be optimal but since
then this question remained open. In fact, in the state estimation problem
with minimum mean square error the heterodyne measurement turned out
to be optimal [77]. However, this problem is different from the present one
with respect to the figure of merit and due to the fact that in [77] the re-
construction of the state, which is crucial in our context, is not considered.
Nevertheless, the value of 1/2 attained for the flat distribution (λ → 0) was
used as a criterion to verify teleportation in experiments [40, 41, 42, 43, 44]
using EPR-squeezed light where measured average fidelities range from .58
to .64.
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In the following we will settle this question by proving that for any clas-
sical strategy

Fmax ≤ 1 + λ

2 + λ
(4.2)

holds necessarily. Moreover, this bound is tight since it can be achieved by
means of the strategy derived in [57], and thus equality holds in (4.2). This
is the main result of this section.

4.2 Proof of quantum benchmark for coher-

ent states

The proof we are going to present now is elementary and we start by sim-
plifying and conveniently reformulating the problem. The first simplification
relies on the fact that without loss of generality we can restrict the opti-
mization in equation (4.1) to POVMs consisting of projectors My = |φy〉〈φy|
(|φy〉 not necessarily normalized) and also to pure states ρy = |χy〉〈χy|. This
is easily seen by noting that we can always decompose the POVM elements
My =

∑
v |mv,y〉〈mv,y| and similarly the states ρy =

∑
w qw,y|rw,y〉〈rw,y| such

that we can write the average fidelity as

F̄ =
∑

x

∑
y,v,w

p(x)|〈ψx|√qw,y|mv,y〉|2|〈ψx|rw,y〉|2.

Absorbing the redundant parameters v, w into y and identifying
√

qw,y|mv,y〉
and |rw,y〉 with |φy〉 and |χy〉 respectively we see that for any POVM there
exists always another one which has the desired properties and yields the
same average fidelity.

We therefore have for coherent input states {|α〉} with a Gaussian distri-
bution p(α) = λ/π exp(−λ|α|2)

F̄ =
∑

y

∫
dαp(α)|〈α|φy〉|2|〈α|χy〉|2.

Note that the sum over y stands symbolically for sums or integrations over
a suitable measurable set. Using this expression for F̄ and defining

Aφy =

∫
dαp(α)|〈α|φy〉|2|α〉〈α|.

equation (4.1) can be reformulated more compactly as

Fmax = sup
{|φy〉}

sup
{|χy〉}

∑
y

〈χy|Aφy |χy〉 = sup
{|φy〉}

∑
y

||Aφy ||∞. (4.3)
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The optimization with respect to the reconstructed states |χy〉 is trivial and
implicitly performed in the last identity by noting that it is clearly best to
prepare the state corresponding to the largest eigenvalue of Aφy for a given
measurement outcome y 1.

We proceed by proving a statement which is even stronger than (4.2)
namely that

||Aφ||p ≤ 1 + λ

[(2 + λ)p − 1]1/p
||Aφ||1 (4.4)

holds for all states |φ〉 and all p-norms ||A||p = [tr {|A|p}]1/p. The main state-
ment, equation (4.2), is deduced from equations (4.3) and (4.4) by taking the
limiting case p →∞ of equation (4.4) in combination with the POVM prop-
erty

∑
y |φy〉〈φy| = 1, which in turn implies

∑
y ||Aφy ||1 = 1.

In order to prove inequalities (4.4) we exploit a trick which was already
utilized in the context of additivity of output purities of bosonic channels in
[79]. The properties of the trace allow us to write

||Aφ||pp = tr
{
Ap

φ

}
=

∫∫
dα1 · · ·dαpp(α1) · · · p(αp) |〈φ|α1〉|2 · · · |〈φ|αp〉|2

× tr {|α1〉〈α1|α2〉 · · · 〈αp−1|αp〉〈αp|}
=tr

{|φ〉〈φ|⊗pB
}

,

||Aφ||p1 = tr {Aφ}p =tr
{|φ〉〈φ|⊗pC

}

where we defined

B =

∫∫
dα1 · · ·dαpp(α1) · · · p(αp)〈α1|α2〉 · · · 〈αp|α1〉

× |α1〉〈α1| ⊗ · · · ⊗ |αp〉〈αp|,

C =

p⊗
i=1

∫
dαip(αi) |αi〉〈αi|.

These two operators can be diagonalized in the same basis. To do so it
is convenient to represent these operators in terms of their characteristic
function, which is defined by

χO(α, α∗) = tr
{

Oeα∗a−αa†
}

1The norm used in equations (4.3) and (4.4) is a special case of a p-norm defined by
||A||p = tr {|A|p}1/p. ||A||∞ is just the largest eigenvalue of A and ||A||1 = tr {A}. For all
p′ ≥ p it holds that ||A||p′ ≤ ||A||p.
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for an operator O for a single mode and generalizes straight forward for many
modes. By means of relations

χ|αi〉〈αi|(γi) = eγiα
∗
i−γ∗i αie−|γi|2/2,

〈αi|αi+1〉 = e−(|αi|2+|αi+1|2)/2+α∗i αi+1 ,

where αp+1 = α1, the corresponding characteristic functions are

χB(~γ) =

(
λ

π

)p ∫∫
dα1 · · ·dαpe

−(1+λ)~α~α†+~αG~α†e~γ~α†−~α~γ†e−~γ~γ†/2,

χC(~γ) =

(
λ

π

)p ∫∫
dα1 · · ·dαpe

−λ~α~α†e~γ~α†−~α~γ†e−~γ~γ†/2,

where we defined

~α = (α1, . . . , αp),

~γ = (γ1, . . . , γp),

G =




0 0 0 · · · 0 1
1 0 0 0 0
0 1 0 0 0
...

. . .
...

0 0 0 0 0
0 0 0 · · · 1 0




.

G is a circulant shift matrix [80] and can be diagonalized by a Fourier trans-
form, i.e. a unitary matrix Y such that G = Y DY † and D = diag(d1, . . . , dp)

with |di| = 1. Defining ~β = ~αY, ~η = ~γY we have

χB(~η) =

(
λ

π

)p ∫∫
dβ1 · · ·dβpe

−~β[(1+λ)1−D]~β†e~η~β†−~β~η†e−~η~η†/2

=
λp

|(1 + λ)1−G|e
−~η{[(1+λ)1−D]−1+1/2}~η† ,

χC(~η) =

(
λ

π

)p ∫∫
dβ1 · · ·dβpe

−λ~β~β†e~η~β†−~β~η†e−~η~η†/2

= e−[λ−1+1/2]~η~η† .

For the second identity we used
∏p

i=1(1+λ−di) = |(1+λ)1−G|. Operators
B and C are diagonal in a Fock basis representation since for an operator
O = za†a the characteristic function is given by

χO(η) =
1

1− z
e−( z

1−z
+ 1

2
)|η|2 .
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Applying this to the expressions for the characteristic functions for B and C
above yields directly

B =
λp

(2 + λ)p − 1

p⊗
i=1

∞∑
ni=0

(
1

2 + λ− di

)ni

|ni〉〈ni|, (4.5a)

C =

(
λ

1 + λ

)p p⊗
i=1

∞∑
ni=0

(
1

1 + λ

)ni

|ni〉〈ni|. (4.5b)

Finally, let a product state |φ〉⊗p have an expansion in terms of Fock states
given by |φ〉⊗p =

∑
n1,...,np

cn1,...,np |n1, . . . , np〉. By construction we know that

0 ≤ tr {|φ〉〈φ|⊗pB} and therefore

tr
{|φ〉〈φ|⊗pB

}
=

λp

(2 + λ)p − 1

∣∣∣∣∣∣

∞∑
n1,...,np=0

p∏
i=1

(
1

2 + λ− di

)ni

|cn1,...,np|2
∣∣∣∣∣∣

≤ λp

(2 + λ)p − 1

∞∑
n1,...,np=0

p∏
i=1

∣∣∣∣
1

2 + λ− di

∣∣∣∣
ni

|cn1,...,np |2

≤ λp

(2 + λ)p − 1

∞∑
n1,...,np=0

p∏
i=1

(
1

1 + λ

)ni

|cn1,...,np|2

=
(1 + λ)p

(2 + λ)p − 1
tr

{|φ〉〈φ|⊗pC
}

.

Taking the pth root of this sequence yields directly relation (4.4) and com-
pletes the proof.

The result assures that (in the case of a flat distribution) the fidelity
limit of 1/2 is in fact appropriate in comparing quantum channels for co-
herent states of continuous variables with an optimal classical channel, jus-
tifying its application as a benchmark in continuous variable teleportation
[40, 41, 42, 43, 44] ex post and in future experiments testing the performance
of continuous variable quantum memories [60, 61, 11, 66]. In a recent exper-
imental demonstration of the quantum state transfer from light onto atoms
[11] the bound (4.2) has been used to demonstrate that the quantum memory
has indeed exceeded the classical limit of the measure-and-prepare strategy.
The present proof provides firm grounds for such a statement. In particular,
the teleportation protocol of chapter 3 and the quantum memory protocol of
chapter 5 allow to surpass the bound derived here.

We note that a measure-and-prepare scheme can be considered as a 1-
to-∞ cloning machine, when we just duplicate the preparation device. In
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fact, in this context for the special case of a flat distribution (λ → 0) an
independent proof based on the covariance of the problem is given in [81].

The criterion derived here allows one to test wether a given channel yields
a higher quality of storage or transmission (measured in terms of the average
fidelity) than what is possible by classical means. We would like to point
out that there exist other criteria in the literature [81, 82, 83, 84] allowing
to test different requirements. In particular if a channel has to be secure
(in the sense that its action excludes the existence of a clone of the input
state holding a higher fidelity than the channel’s output) it has to outperform
the best 1-to-2 cloning machine, which is more demanding than what was
considered here [83]. For channels acting on the set of coherent states with
a flat distribution this was analyzed in [81, 82, 83]. As shown in [82, 83]
the best Gaussian 1-to-2 cloning machine yields a fidelity benchmark of 2/3
while the optimal non-Gaussian strategy yields a value of ≈ 0.6826 as was
derived in [81].

Finally, we would like to point out that an experimental demonstration of
a fidelity larger than 1/2 does not disprove the existence of a classical model
in the sense of a local hidden variable theory able to describe the physical
process [84, 85]. When we claim that it does prove the non-classicality or
quantumness of the respective channel then this has to be understood in the
sense that no classical measure-and-prepare strategy can give the same result
within the framework of quantum mechanics.

In conclusion, we presented and proved a tight upper bound on the aver-
age fidelity achievable by a classical channel for coherent states of continuous
variables subject to a Gaussian distribution over the phase space. This limit
has to be surpassed by a quantum channel in order to outperform any com-
peting classical strategy and is thus of direct experimental relevance in quan-
tum teleportation of and quantum memories for continuous variables. The
presented result in particular validate the outstanding experimental achieve-
ments in storing and teleporting continuous variable quantum states. The
techniques, which led to the proof of the bound, in principle apply also to
other sets of states in both continuous variable and finite dimensional sys-
tems. Depending on the considered sets and distributions they might thus
yield similar quantum benchmarks in other contexts.



Chapter 5

Quantum memory and
entanglement of light with
atoms

Recent years have seen significant progress towards an efficient quantum
interface between light pulses carrying quantum information and atomic en-
sembles suitable for storing and processing this information. Two approaches
based on probabilistic photon detection [86, 87, 88] or on deterministic homo-
dyne measurements [11, 47] have been developed. Of particular importance
in the context of quantum information are means to swap the state of light
and atoms - enabling a quantum memory for light - and to create Einstein-
Podolsky-Rosen (EPR) type of entanglement of light and atoms - the basic
resource for quantum teleportation.

Concerning the quest for a quantum memory, an important experimen-
tal advance was the recent demonstration of the storage of weak coherent
light pulses in atoms [11], based on a Quantum Non Demolition (QND) in-
teraction, measurement of light and feedback on atoms. However, reliable
retrieval of the stored state by means of the same protocol would require the
use of short pulses of squeezed light which are difficult to couple to atomic
ensembles in an efficient way. The design of less demanding protocols for
storage and retrieval of states of light remained a challenge, also from a the-
oretical perspective. Several protocols have been put forward, all relying on
multiple passes of light through the atomic ensemble [89, 18, 19, 90, 91, 92].
The most efficient of these schemes, complying with the experimental re-
quirement to use Larmor precessing atomic spins, require eight passes of a
single pulse [91] or two pulses each crossing twice an atomic cell [92]. In this
chapter we present a protocol, which consists of only two passes of a single
pulse and achieves a state exchange of light and atoms scaling exponentially

63
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in the coupling strength κ, defined operationally as the signal to noise ratio
of the underlying QND interaction. This scheme allows one to perform the
complete transfer of a quantum state of light onto atoms and back under
modest experimental conditions, as we show for both, coherent states as well
as arbitrary superpositions of vacuum and a single photon Fock state.

Moreover, the same double pass setup serves with a slightly changed ge-
ometry as a deterministic source of EPR entanglement between light and
atoms. The entanglement scales thereby again exponentially in κ. Together,
these two protocols add to the growing toolbox for quantum information pro-
cessing with room temperature atomic vapors, which has already provided
the possibility to entangle two atomic ensembles via a Bell-measurement on
two Larmor precessing spins [10]. In combination these tools undoubtedly
pave the way towards numerous relevant applications, of which the demon-
stration of a complete quantum memory and quantum teleportation are just
the most immediate.

To be more specific, the setup of both protocols consists of an ensem-
ble placed in an external magnetic field with large spin polarization along
the axis of this field, such that the transverse spin components precess at
frequency Ω. A coherent pulse is directed through the atomic sample such,
that it crosses it twice under an angle of 90 degrees in the plane orthogonal
to the axis of the magnetic field. The length d of the loop in the optical path
is small, such that Larmor precession is frozen on a time scale d/c ¿ Ω−1,
but the pulse length is large as compared to the Larmor period, T À Ω−1.
Under these conditions and the assumption that ΩT À κ2, which is well ful-
filled in current experiments, we carefully solve the Maxwell-Bloch equations
describing the dynamics of this scattering process. We identify the relevant
light modes, which can be stored and retrieved or get entangled with atoms
and characterize their temporal profile. The central frequency of these modes
lies at the upper or lower sideband of the carrier frequency, which is to be
expected given the splitting of ground state levels of Ω, and their slowly
varying amplitude is exponential of the form exp(±κ2t/2T ). The modes can
thus be easily accessed. Note that this setup is, apart from the magnetic
field, similar to the one treated in [91]. It is precisely the presence of the
magnetic field what enables us to achieve our results with the simple setup
described above.

The chapter is organized as follows. In section 5.1 we introduce the basic
idea of our protocol and summarize the central results. In section 5.2 and 5.3
we provide the detailed derivation for the quantum memory and the EPR
source respectively. Finally, section 5.4 deals with sources of noise under
realistic conditions.
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Figure 5.1: Relevant internal levels with quantization along x̂. Thick
arrows represent the strong coherent field in x̂ polarization, thin arrows
indicate the quantum field in ŷ polarization.

5.1 Basic idea and central results

It will be helpful to have again a look at the configuration of the light-
matter interaction of chapter 2 with an external magnetic field applied, as in
chapter 3. The pulse of light is propagating along ẑ and the atomic sample is
assumed to be spin polarized along x̂, while the magnetic field is orientated
along the opposite direction. The pulse of light consists of a strong coherent
x̂-polarized component of central frequency ω0, which is detuned by ∆ from
the atomic transition, and a copropagating quantum field in ŷ polarization.
Atoms have a relevant internal structure as shown in figure 5.1. With x̂
being the quantization axis, the classical light field drives the m = ±1/2 →
m′ = ±1/2 transitions, while the copropagating quantum field couples to the
m = ∓1/2 → m′ = ±1/2. In the case of a dominant ground state population
of m = 1/2 levels, creation and annihilation operators of collective atomic
excitations can be defined by b† = Σi| − 1/2〉〈1/2|/√Nat and b, respectively,
where Nat is the total number of atoms in the ensemble. Creation of an
atomic excitation will then be accompanied by the absorption (emission)
of a photon at frequency ω0 + Ω, (ω0 − Ω), that is, at the upper (lower)
sideband, where Ω is the Larmor frequency. Note that only the polarization,
and not the energy of the sideband photons are relevant, so the notion of
upper/lower sideband is rather arbitrary. Although we will finally deal with
light interacting with atoms in free space, it is instructive to consider first the
case, where atoms are placed inside a cavity supporting both sideband modes.
Related setups employing cavities are considered in [93, 94]. We assume in
the following that the cavity life time is much smaller than the Larmor period
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Figure 5.2: Setups for having (a) a beam splitter or (b) a two mode
squeezing like dynamics. (c) and (d) show the effective transitions.

.

Ω−1 and let the creation operators for the upper and lower sideband be given
by a†us and a†ls respectively. In the dispersive limit, the effective Hamiltonian

describing the interaction is given by H ∝ (b a†us − b†a†ls + h.c.), where the
signs follow from Clebsch-Gordan coefficients. Note that if ground state
levels were degenerate, such that aus = als ≡ a, the Hamiltonian would be
H ∝ (b− b†)(a− a†), which is just the result obtained already in chapter 2.
Including Zeeman splitting, the interaction consists of a passive and an active
part, H = Hpas−Hact, where the passive part is a beam splitter Hamiltonian
Hpas ∝ b a†us +h.c. and acts only on the upper sideband, while the active part

Hact ∝ b†a†ls + h.c. can be identified with a two-mode-squeezing interaction,
which involves exclusively the lower sideband. Now, either of these two
interactions can be selected in one of the setups shown in figure 5.2a or 5.2b.
The interaction in every second pass will again be given by H but with phase
changes als(us) → ials(us), due to the λ/4 wave plate, and b → ±ib, due to
the change of the direction of light propagation, where the upper sign holds
for setup in figure 5.2a and the lower for 5.2b. The resulting Hamiltonian is
H ′
± ∝ ±(b a†us + b†a†ls + h.c.). Together, we get for setup 5.2a an interaction

H + H ′
+ = Hpas and for 5.2b H + H ′

− = −Hact. In either setup one of the
two Λ-type transitions in figure 5.1 is canceled by interference, and one is
left with the transitions shown in figures 5.2c and 5.2d. Note that these
configurations remind of the Raman scattering processes put forward in [6]
for the realization of a quantum repeater. Without a cavity, in setups as
shown in figure 5.3, the effects still persists, as we will show by solving the
corresponding Maxwell-Bloch equations. In contrast to the dynamics inside
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a cavity, where Larmor precession of the atomic spin is not crucial, it is well
so for propagation in free space. This can be understood by noting that
both setups shown in figure 5.3, possess a certain asymmetry in how the
two transverse spin components in ŷ and ẑ direction are affected by light.
This was calculated in great detail in [91], where amongst others the setup of
figure 5.3 was examined without magnetic field. We emphasize that Larmor
precession helps to remove this asymmetry.

In the rest of this section we collect the results for both, the quantum
memory and the two mode squeezing protocol. This will be done in the
language of canonical operators X = (b + b†)/

√
2 and P = −i(b − b†)/

√
2

and likewise for light, since solutions to Maxwell Bloch equations are more
conveniently derived in this formalism.

Quantum memory Within the memory scheme, figure 5.3a, the transfer
of a quantum state of light onto atoms or vice versa approaches perfect
mapping exponentially in the coupling strength. We have

(
Xout

P out

)
= e−

κ2

2

(
X in

P in

)
+

√
1− e−κ2

(
xin

+

pin
+

)
,

for the write-in procedure, where X in/out and P in/out are the atomic in-
put/output quadratures of the scheme and x

in/out
+ and p

in/out
+ refer to the

write-in light mode. It lies at the upper sideband (according to the configu-
ration considered above) and is modulated by a slowly varying envelope with
an exponential profile exp(+κ2t/T ), which is a propagation effect. For the
retrieval the inverse accented light mode, with an envelope exp(−κ2t/T ), is

used. We denote the corresponding operators by x
in/out
− and p

in/out
− and the

input-output relations are
(

xout
−

pout
−

)
= −

√
1− e−κ2

(
X in

P in

)
+ e−

κ2

2

(
xin

+

pin
+

)
.

Note that for large κ the state exchange is perfect. It is remarkable that
both pairs of input-output relations have a form which reminds of a deco-
herence process, with the important difference that we have modes in place
of Langevin noise operators, which can be controlled at will. The Fidelity
for the complete state transfer - write in and subsequent retrieval of a state
of light- is given in figure 5.4(a) and (b) for coherent input states and light
qubits respectively.

EPR source The active version of the protocol, figure 5.3b, generates cor-
relations between atoms and light, which grow exponentially in the coupling.
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The input-output relations for the relevant modes are

(
Xout

P out

)
= e

κ2

2

(
X in

P in

)
+

√
eκ2 − 1

(
pin
−

xin
−

)
.

(
pout

+

xout
+

)
=

√
eκ2 − 1

(
X in

P in

)
+ e

κ2

2

(
pin
−

xin
−

)
.

One can define interspecies EPR modes

x1 =
1√
2
(X − p+), p1 =

1√
2
(P + x+),

x2 =
1√
2
(X + p+), p2 =

1√
2
(P − x+).

The input-output relations imply that x1 and p2 are squeezed, while x2 and
p1 are antisqueezed,

(∆x1)
2 = (∆p2)

2 = e−2z,

(∆p1)
2 = (∆x2)

2 = e2z,

where z = cosh−1(e
κ2

2 ). The EPR variance of the generated state is depicted
in figure 5.5.
The results presented above will be derived in the following sections. We
remark that each protocol can be realized involving either the upper or the
lower sideband. The sideband mode involved can be changed by either invert-
ing the ground state polarization or changing the orientation of the magnetic
field. Losses will be considered in section 5.4 and it will be shown that the
proposed protocols are robust against the dominant sources of noise.

5.2 Quantum memory

Write-in

As follows from the results of chapter 2, the double-pass interaction in setup
5.3a can be described by

H = Hat + Hli + V1 + V2 .

Hat = ~Ω
2

(X2 + P 2) refers to Zeeman-splitting of the atomic ground state
causing Larmor precession of the transverse spin components represented
by X and P . The interaction terms V1 and V2 account for the off-resonant
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(a)

(b)

H~pP+ xX

H~pP - xX

Figure 5.3: Schemes for realization of a quantum memory (a) and a source
of EPR entanglement (b). (a) In the first pass a pP -interaction occurs.
Subsequently the pulse is sent through a λ

4 - plate, which interchanges x
and p. The pulse is reflected back onto the sample. This happens at a
timescale much shorter than the Larmor precession of the atoms. Therefore
the transverse components of the collective spin can be assumed to remain
in their place to a very good approximation. Finally the pulse passes the
atoms along ŷ. Due to the changed geometry the atomic quadratures are
also interchanged. P → X and X → −P , which means, that the light field
couples to X in it’s second passage, hence leading to a xX -interaction.
In (b) the changed geometry introduces a different sign in the exchange of
atomic quadratures, which leads to a −xX interaction in the second pass.

scattering interaction in the first and second passage of the pulse respectively.
They are given by

V1 =
~κ√
T

Pp(0) and V2 =
~κ√
T

Xx(d) ,

where T is the duration of the pulse. V1 was already introduced. V2 describes
basically the same kind of interaction, but due to the changed geometry in the
second pass atomic quadratures are interchanged P → X. Since the beam
is sent through a quarter wave plate between it’s passes through the atomic
sample, light quadratures are interchanged as well p → x. The arguments of
the light-operators in V1 and V2 indicate that the first scattering interaction



70 Quantum memory and entanglement of light with atoms

occurs at r = 0, while the second interaction happens after the light has
traveled some distance d in the small loop between the mirrors. The length
of the laser pulse is hereby supposed to be large compared with the distance
within the loop. In typical experiments pulses of a length of several hundred
km are used, therefore the pulse encounters itself in the sample. Hli represents
free propagation of light.

Evaluating the Heisenberg equations gives

∂

∂t
X(t) = ΩP (t) +

κ√
T

p(0, t) ,

∂

∂t
P (t) = −ΩX(t)− κ√

T
x(d, t) ,

(
∂

∂t
+ c

∂

∂r

)
x(r, t) =

κc√
T

P (t)δ(r) ,

(
∂

∂t
+ c

∂

∂r

)
p(r, t) = − κc√

T
X(t)δ(r − d) .

By performing the variable transformation ξ = ct−r we obtain the Maxwell-
Bloch equations

∂

∂t
X(t) = ΩP (t) +

κ√
T

p̄(ct, t), (5.1)

∂

∂t
P (t) = −ΩX(t)− κ√

T
x̄(ct− d, t), (5.2)

∂

∂t
x̄(ξ, t) =

κc√
T

P (t)δ(ct− ξ), (5.3)

∂

∂t
p̄(ξ, t) = − κc√

T
X(t)δ(ct− ξ − d). (5.4)

As before, light modes depending on the new variables are denoted by a bar
x̄(ξ, t) = x(ct− ξ, t). This set of coupled differential equations has now to be
solved. As a first step we treat the equations for light. In the first pass a pP
-interaction occurs and x picks up some P contribution. The delta function
in (5.3) reflects the fact that a certain piece ξ of the pulse gets a contribution
from the atomic state at t = ξ/c (which is the instant of time the piece in
consideration passes by). In the second pass a xX -interaction occurs, and
the atomic x -quadrature is written onto p. A piece ξ of the pulse, which
interacted with p at time ξ/c gets a contribution from x after it has traveled
a distance d in the loop. Therefore the atomic x quadrature is picked up at
t = ξ/c + d/c which is indicated by the delta-function in equation (5.4). By
integrating equations (5.3) and (5.4) formally, these delta functions turn into
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Heaviside functions,

x̄(ξ, t) = x̄(ξ, 0) +
κc√
T

∫ t

0

dτP (τ)δ(cτ − ξ)

= x̄(ξ, 0)+
κ√
T

P (ξ/c)Θ(t− ξ/c),

p̄(ξ, t) = p̄(ξ, 0)− κc√
T

∫ t

0

dτX(τ)δ(cτ − ξ − d)

= p̄(ξ, 0)− κ√
T

X(ξ/c + d/c)Θ(t− ξ/c− d/c).

Now p̄(ct, t) and x̄(ct−d, t) are calculated, since these expressions have to be
plugged into the atomic differential equations (5.1) and (5.2). The fact that
the arguments are different for x and p can be understood by considering
the processes going on in the course of the double pass scheme. During the
pP -interaction in the first passage X picks up some p contribution. If we
consider this process at a certain instant of time t, the relevant piece of the
pulse is the one, which is at r = 0, which means for which ξ = ct− r = ct. P
is acted upon by x in the second pass by the piece of the pulse which passes
r = d at time t. So it gets a contribution from p̄(ct− d, t). One finds

x̄(ct− d, t) = x̄(ct− d, 0) +
κ√
T

P (t− d/c)Θ(d/c)

= x̄(ct− d, 0) +
κ√
T

P (t− d/c),

p̄(ct, t) = p̄(ct, 0)− κ√
T

X(t + d/c)Θ(−d/c)

= p̄(ct, 0).

Note that p̄(ct, t) is conserved. This feature is due to the time-delay in the
loop and will turn out to be crucial for the characteristic exponential behavior
of the whole scheme. After inserting these results into (5.1) and (5.2) the
atomic differential equations read

∂

∂t
X(t) = ΩP (t)+

κ√
T

p̄(ct, 0),

∂

∂t
P (t) = −ΩX(t)− κ√

T
x̄(ct− d, 0)−κ2

T
P (t− d/c).

Now we assume d/c ¿ Ω−1, such that the elapsed time during the run in the
loop is definitely much shorter than any other relevant process. d/c can be
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assumed to be of the order of ns while atoms rotate slowly with a Larmor
period of the order of µs. With this approximation

∂

∂t

(
X(t)
P (t)

)
=

{
Ω

(
0 1
−1 0

)
− κ2

T

(
0 0
0 1

)}(
X(t)
P (t)

)
+

κ√
T

(
p̄(ct, 0)
−x̄(ct, 0)

)
.

(5.5)

This differential equation consists of a homogeneous part and a driving term.
The first term of the homogeneous part - being proportional to the Larmor
frequency - reflects the fact that atoms turn with Ω in the external magnet
field. The second term in the homogeneous part represents damping of P .
Although only one quadrature is damped, the effect is distributed among
both quadratures by Larmor precession. This leads to a symmetry between
x and p, which is a characteristic feature of our proposal. The solution to
the differential equation is

(
X(t)
P (t)

)
= A(t)

(
X(0)
P (0)

)
+ A(t)

κ√
T

∫ t

0

dτ A−1(τ)

(
p̄(cτ, 0)
−x̄(cτ, 0)

)
,

where A(t) = eGt , G = Ω

(
0 1
−1 0

)
− κ2

T

(
0 0
0 1

)
. We suppose ΩT À

κ2, which matches experimental conditions, since typically ΩT ≈ 300 while
κ2 is of order unity. With this assumption

A(t) = e−
κ2t
2T R−1(t) ,

where R−1(t) is an orthogonal matrix,

R−1(t) =

(
cos(Ωt) sin(Ωt)
− sin(Ωt) cos(Ωt)

)
.

The inverse is taken for later convenience. Therefore the atomic time evolu-
tion is given by
(

X(t)
P (t)

)
=e−

κ2t
2T R−1(t)

(
X in

P in

)
+ e−

κ2t
2T R−1(t)

κ√
T

∫ t

0

dτe
κ2τ
2T R(τ)

(
p̄(cτ, 0)
−x̄(cτ, 0)

)
.

(5.6)

Now the atomic output quadratures Xout = X(T ) and P out = P (T ) can be
directly written down. With the assumption ΩT = 2πn for some natural
number n,

(
Xout

P out

)
= e−

κ2

2

(
X in

P in

)
+ e−

κ2

2
κ√
T

∫ T

0

dt e
κ2t
2T R(t)

(
p̄(ct, 0)
−x̄(ct, 0)

)
.
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The atomic output-quadratures consist of some atomic input contribution
which is damped exponentially with κ2 and an additional light contribution
which they pick up during the scattering interaction. The definition of the
appropriate light-mode can be taken from this result right away,

(
xin

+

pin
+

)
=

κ√
T
√

eκ2 − 1

∫ T

0

dt e
κ2t
2T R(t)

(
p̄(ct, 0)
−x̄(ct, 0)

)
, (5.7)

where the prefactor assures normalization such that [xin
+, pin

+] = i. This new
defined light mode is essentially the upper sideband mode xus, pus, which is
given by

(
xin

us

pin
us

)
=

1√
T

∫ T

0

dt R(t)

(
p̄(ct, 0)
−x̄(ct, 0)

)
. (5.8)

The only difference is given by the fact that the stored mode xin
+, pin

+ is defined
with a slowly varying envelope of the form exp(+κ2t/2T ). The index ” + ”
refers to the sign of the argument in this exponential function (later on we
will also have to deal with corresponding ”−” modes). With use of (5.7) the
atomic input-output relations can be written in a compact form

(
Xout

P out

)
= e−

κ2

2

(
X in

P in

)
+

√
1− e−κ2

(
xin

+

pin
+

)
. (5.9)

These equations describe the write-in process for a signal, which is encoded
at the mode described above. Remarkably, mapping of such a quantum
state of light onto atoms approaches perfect read-in exponentially in the
coupling strength. This arises from the fact, that in the course of the double
pass scattering interaction x picks up some contribution from the atomic p
-quadrature, while p in contrast is conserved. Therefore we do not get a
rotating term in the basic differential equation (5.5), which would lead to
sines and cosines in the solution, as we would expect for a beam splitter like
interaction, but an exponential effect, which is characteristic for the setup.

Read-out

In order to perform the read-out, a pulse of light has to be sent through the
double-pass setup, just like for the write-in procedure, but since we are now
looking at the reverse process, the appropriate light mode for this task has
to be accented in an inverse fashion. While in the write-in process the rear
part of the pulse was emphasized, now the front part of the pulse has to be
weighted in order to pick up atomic information best. As the exponent in the
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mode definition is negative this read-out mode will be denoted by a minus
sign. Since we now deal with a new beam of light which is independent from
the write-in pulse, read-out beam variables carry an accent,

(
x́in
−

ṕin
−

)
=

κ√
T
√

1− e−κ2

∫ T

0

dt e−
κ2t
2T R(t)

(
´̄p(ct, 0)
−´̄x(ct, 0)

)
,

with a new normalization constant κ/(
√

T
√

1− e−κ2). The input-output
relations for this mode can be derived by changing the time argument of
light operators from 0 to T , reflecting the fact that we now look at the light
quadratures after the whole pulse run trough the atomic sample

(
x́out
−

ṕout
−

)
=

κ√
T
√

1− e−κ2

∫ T

0

dte−
κ2t
2T R(t)

(
´̄p(ct, T )
−´̄x(ct, T )

)
.

To evaluate this expression in terms of input-operators the integrated versions
of equations (5.3) and (5.4)

´̄x(ξ, t) = ´̄x(ξ, 0) +
κ√
T

P (ξ/c)Θ(t− ξ/c),

´̄p(ξ, t) = ´̄p(ξ, 0)− κ√
T

X(ξ/c)Θ(t− ξ/c).

are used. Therefore
(

x́out
−

ṕout
−

)
=

κ√
T
√

1− e−κ2

∫ T

0

dt e−
κ2t
2T R(t)

×
[(

´̄p(ct, 0)
−´̄x(ct, 0)

)
− κ√

T

(
X(t)
P (t)

)
Θ(T − t)

]
,

=

(
x́in
−

ṕin
−

)
− κ2

T
√

1− e−κ2

∫ T

0

dte−
κ2t
2T R(t)

(
X(t)
P (t)

)
.

Now the atomic time evolution (5.6) has to be inserted. The resulting ex-
pression can be simplified by interchanging the order of the double-integral∫ T

0
dt

∫ t

0
dτ → ∫ T

0
dτ

∫ T

τ
dt. With help of equation (5.7) the readout output

can then be written as a sum of an atomic contribution and some contribution
from the plus-mode.

(
x́out
−

ṕout
−

)
= −

√
1− e−κ2

(
X in

P in

)
+ e−

κ2

2

(
x́in

+

ṕin
+

)
(5.10)

Note that this expression resembles the formula for the write-in procedure
with the roles of light- and atomic modes interchanged.
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Fidelity for the complete state transfer

The fidelity for the complete state transfer is given by the overlap of the
initial input state and the final output state after storage and subsequent
retrieval. By inserting the output of the write-in procedure (5.9) into the
read-out equation (5.10) one obtains

xfin
− = −

(
1−e−κ2

)
xin

+ − e−
κ2

2

√
1−e−κ2X in + e−

κ2

2 x́in
−,

pfin
− = −

(
1−e−κ2

)
pin

+ − e−
κ2

2

√
1−e−κ2P in + e−

κ2

2 ṕin
−.

(5.11)

For infinite coupling κ2 the original input-signal is retrieved within the final
quadratures of the read-out pulse xfin

− = −xin
+ and pfin

− = −pin
+, while the noise

terms (atomic and read-out beam input contributions) vanish.
The quantum state to be stored is supposed to be unknown. It is assumed
to be taken from a certain set of possible input-states. In the following two
subsections we will consider coherent input states and light qubits respec-
tively. We will first calculate the fidelity for a single state transfer and take
the average over the complete set of possible input states in the next step in
each case. The results will be compared to the corresponding classical limits,
i.e. the maximum average fidelity, that can be achieved by classical means
c.f. chapter 4.

Fidelity for coherent input states

We first consider storage of a coherent state of light. The overlap between
an initial state with quadratures xin

+, pin
+ and the final state with x́fin

− , ṕfin
− is

given by

Fcoh =
2√

[1 + 2(∆x́fin− )2][1 + 2(∆ṕfin− )2]

× exp

{
−(〈xin

+〉+ 〈x́fin
− 〉)2

1 + 2(∆x́fin− )2
− (〈pin

+〉+ 〈ṕfin
− 〉)2

1 + 2(∆ṕfin− )2

}
. (5.12)

The expectation values and variances of the final light state follow directly
from (5.11). Since the atoms and the read-out plus mode are initially in a
vacuum state we have 〈xfin

− 〉 = −(1− e−κ2
)〈xin

+〉 and 〈pfin
− 〉 = −(1− e−κ2

)〈pin
+〉,

while the variances are given by (∆xfin
− )2 = (∆pfin

− )2 = 1
2
, as one expects for

a passive transformation. Therefore

Fcoh = e−
1
2
(〈xin

+ 〉2+〈pin
+ 〉2)e−2κ2

.
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Now the average fidelity is computed by averaging over the complete set of
all possible coherent input states. For this purpose the amplitudes xin

+ and
pin

+ are assumed to be taken according to a Gaussian distribution centered at
zero with a certain width n.

F̄coh(n, κ) =
1

2πn

∫ ∫
d〈xin

+〉d〈pin
+〉 e−

〈xin
+ 〉2+〈pin

+ 〉2
2n Fcoh(〈xin

+〉, 〈pin
+〉, κ)

=
1

(2− e−κ2 − 2
√

1− e−κ2 + 1
n
)n

.

Figure 5.4a shows the average fidelity for different widths corresponding to
mean photon numbers of the distribution. The corresponding classical limit
F̄ cl

coh = 2n+1
4n+1

.

Fidelity for light qubits

Now the fidelity for light-qubits is calculated. The light-qubit input state is
represented by

|Ψin〉 = (α + βain
+

†
)|vac〉,

where ain
+
†

= 1√
2
(xin

+ − ipin
+) is the creation operator for a photon in the

write-in mode. The write-in and read-out procedure is given by a passive
transformation U

|Ψfin〉 = U |Ψin〉 = (α + βUain
+

†
)|vac〉

= (α + βUain
+

†
U †)|vac〉

= (α + βafin
−
†
)|vac〉 , (5.13)

where U |vac〉 = |vac〉 was used. Here afin
−
†

= 1√
2
(xfin
− − ipfin

− ) is the creation
operator after mapping and subsequent retrieval. It can be directly calcu-
lated, since the complete input-output relations for the light-quadratures are
known. With use of equations (5.11)

afin
−
†
= −(1−e−κ2

)ain
+

† − e−
κ2

2

√
1−e−κ2ain

A

†
+ e−

κ2

2 áin
−
†
, (5.14)

where ain
+
†
, ain

A
†

and áin
−
†

refer to the light state to be stored, the atoms and
the read-out mode respectively. The Fidelity is given by the state overlap
between |Ψfin〉 and the optimal final state |Ψfin

opt〉 = (α − βain
+
†
)|vac〉. By

inserting (5.14) into expression (5.13) Fqubit can easily be determined. One
obtains

Fqubit = |〈Ψfin|Ψfin
opt〉|2 = |(|α|2 + {1− e−κ2}|β|2)|2.
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Figure 5.4: Average fidelity for write-in and subsequent read-out of a light
state versus coupling κ2. Crosses indicate the classical limit in each case.
(a) Average fidelity for coherent light states according to distributions with
different mean photon numbers (solid line: n=4, dashed line: n=8, dotted
line: n=20) (b) Average fidelity for light qubits.

The average fidelity is calculated by setting α = cos( θ
2
) and β = sin( θ

2
)eiφ

and integrating over the whole Bloch-sphere,

F̄qubit(κ) =
1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin(θ)Fqubit(θ, φ)

= 1− e−κ2

+
1

3
e−2κ2

.

Figure 5.4b shows this result. The maximal average fidelity that can be
achieved for qubit states by a classical strategy F̄ cl

qubit = 2
3

[70, 71, 72] is
indicated by a cross.

5.3 Two mode squeezing

The interaction which governs the squeezing scheme pictured in figure 5.3(b),
is given by

H̃ = Hat + Hli + V1 − V2 .

This Hamiltonian differs from the one used in the memory section just by a
sign in the interaction term referring to the second passage. The pulse runs
along −ŷ in the second pass of the squeezing scheme (instead of ŷ in the
previous case) and sees therefore −X. Hence we have the minus sign in front
of V2 for the new setup.
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Input-output relations

The atomic input-output relations can now be derived in complete analogy
to section 5.2. By evaluating the Heisenberg equations as above we get

∂

∂t

(
X(t)
P (t)

)
=

{
Ω

(
0 1
−1 0

)
+

κ2

T

(
0 0
0 1

)} (
X(t)
P (t)

)

+
κ√
T

(
p̄(ct, 0)
x̄(ct, 0)

)
.

With the usual approximation κ2 ¿ 2ΩT we obtain
(

X(t)
P (t)

)
= e

κ2t
2T R−1(t)

(
X in

P in

)

+e
κ2t
2T R−1(t)

κ√
T

∫ t

0

dτe−
κ2τ
2T R(τ)

(
p̄(cτ, 0)
x̄(cτ, 0)

)
.

These equations are in a significant way different from the atomic time evo-
lution (5.6) in the memory scheme. Note first the signs in the arguments
of the exponential functions. We now have exponential enhancement of the
atomic input instead of exponential damping. Furthermore light is involved
in form of a minus mode in the atomic input-output relations because of the
minus sign in the exponent within the integral. Note second, that the minus
sign, which was present in front of x̄(ct, 0) in the memory scheme, does not
appear in this case. Therefore the lower sideband

(
pin

ls

xin
ls

)
=

1√
T

∫ T

0

dt R(t)

(
p̄(ct, 0)
x̄(ct, 0)

)
(5.15)

is involved instead of the upper one (5.8). Hence the minus mode showing up
in the atomic time evolution is defined slightly differently from the memory
section

(
p̃in
−

x̃in
−

)
=

κ√
T
√

1− e−κ2

∫ T

0

dte−
κ2t
2T R(t)

(
p̄(ct, 0)
x̄(ct, 0)

)
.

With use of this definition and the assumption ΩT = 2πn for some natural
number n, the atomic input-output relations read

(
Xout

P out

)
= e

κ2

2

(
X in

P in

)
+

√
eκ2 − 1

(
p̃in
−

x̃in
−

)
. (5.16)

Light input-output relations for this process can be derived in analogy to
the procedure in section 5.2. The inverse accented counter-part of the light
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mode used in the atomic evolution is given by
(

p̃in
+

x̃in
+

)
=

κ√
T
√

eκ2 − 1

∫ T

0

dt e
κ2t
2T R(t)

(
p̄(ct, 0)
x̄(ct, 0)

)
.

We refer now to the same pulse as in (5.16), while in the derivation of the
input-output relations for atoms and light in section 5.2 two independent
beams were considered. We obtain

(
p̃out

+

x̃out
+

)
=

√
eκ2 − 1

(
X in

P in

)
+ e

κ2

2

(
p̃in
−

x̃in
−

)
. (5.17)

Please note that the input-output relations (5.16) and (5.17) are active ver-
sions of (5.9) and (5.10) respectively.

Creation of entanglement

As can be seen from the input-output relations for atoms and light given
in equations (5.16) and (5.17) respectively, correlations between atoms and
light are created which grow exponentially in the coupling strength. We
define new modes appropriate to the type of correlations produced in the
system by setting

x1 =
1√
2
(X − p̃+), p1 =

1√
2
(P + x̃+),

x2 =
1√
2
(X + p̃+), p2 =

1√
2
(P − x̃+).

The corresponding variances can be calculated easily from (5.16) and (5.17).
We get

(∆x1)
2 = (∆p2)

2 =
(√

eκ2 − 1− e
κ2

2

)2

= e−2z,

(∆p1)
2 = (∆x2)

2 =
(√

eκ2 − 1 + e
κ2

2

)2

= e2z,

with z = cosh−1(e
κ2

2 ). We get a two mode squeezed state where x1 and
p2 are squeezed, while p1 and x2 are antisqueezed. In the limit of infinite
coupling the state becomes an EPR state in which X, p̃+ and P , x̃+ are
perfectly correlated. For the state under consideration, the EPR-variance
∆EPR = 1

2
(∆x2

1+∆p2
2) = e−2z is an entanglement measure [56]. For separable

states ∆EPR = 1. For inseparable states ∆EPR decreases with increasing
entanglement. The amount of entanglement created in the scheme is shown
in figure 5.5.
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Figure 5.5: Entanglement produced in the two mode squeezing scheme ver-
sus coupling κ2. The entanglement is hereby measured by the EPR variance
∆EPR.
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Figure 5.6: Atomic squeezing (∆P )2 in db versus coupling κ2 for optimal
gainfactor gopt. The inset shows how the optimal gainfactor depends on the
coupling.

Spin squeezing

The correlations created in the proposed scheme can be used to produce
atomic squeezing. This can be achieved by performing a measurement on
the plus light mode and subsequent feedback onto the atomic spin based
on the measurement outcome. The squeezing protocol is symmetric with
respect to interchange of {X, p̃L} and {P, x̃L}. Here squeezing of (∆P )2 is
illustrated. In order to acquire information about P , x̃+ has to be measured.
The outcome of this measurement is governed by the operator equation

x̃out
+ =

√
eκ2 − 1 P in + e

κ2

2 x̃in
−.

If the measurement outcome q+ is obtained P out is displaced by an amount
g q+, where g ∈ R is some gain factor. For this feedback procedure the
operator identity

pfb
A = P out − g x̃out

+
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holds in the ensemble average, as is shown in section 3.4. With help of the
atomic input-output relations (5.16) and the expression for the measurement
outcome above

pfb
A =

(
e

κ2

2 − g
√

eκ2 − 1

)
P in +

(√
eκ2 − 1− ge

κ2

2

)
x̃in
− .

Thus the variance of this quadrature is given by

(∆pfb
A )2=

(
e

κ2

2 − g
√

eκ2 − 1

)2
1

2
+

(√
eκ2 − 1− ge

κ2

2

)2
1

2
.

(∆pfb
A )2 is now optimized with respect to the gainfactor g. We obtain

gopt =
e

κ2

2

√
eκ2 − 1 + eκ2

√
1− e−κ2

2eκ2 − 1
,

(∆pfb
A opt)

2 =
1

2

1

2eκ2 − 1
.

Note that the atoms are left in a minimum uncertainty state, since

(∆X)2 =
1

2
(2eκ2 − 1) =

1

4

1

(∆pfb
A )2

.

The amount of squeezing depending on the coupling κ2 is shown in figure
5.6.

5.4 Consideration of noise

We consider losses for both components of the protocol - atoms and light -
and treat them perturbatively within the Gaussian formalism. Concerning
the atomic sample we take transverse decoherence of the atomic spin state at
a rate of η

T
into account. As in experiments atomic vapor is usually contained

within a glass cell, the dominant source of noise concerning light are reflection
losses. These affect quantum variables and classical field as well and will be
characterized by the reflection coefficient r.

Quantum memory with noise

In this section we derive results for write-in and read-out in the presence
of losses. We will first give a brief account of the resulting imperfections
and then present a detailed description of the generalized quantum memory
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Figure 5.7: Average fidelity with losses versus coupling. The atomic decay
rate η and the reflection coefficient r both have a value of 7.5%. Crosses
mark the corresponding classical limits. (a) Fidelity for coherent input states
according to distributions with different mean photon numbers. (solid line:
n = 4, dashed line: n = 8, dotted line: n = 20) (b) Fidelity for light qubits.

scheme including noise. Consideration of losses leads to a modification of
the original write-in mode. The generalized write-in quadratures preferred
by the system are given by

(
xin

pin

)
∝

∫ T

0

dte
wt
2 R(t)

[
(1−r)

(
p̄(ct, 0)
−x̄(ct, 0)

)
+2r

(
p̄(ct, 0)
x̄(ct, 0)

)]
,

where w = η/T + κ2(1− 2r)/T . Both sources of noise - reflection losses and
spontaneous decay as well - give rise to a generalized exponent in the expo-
nential modulation function. In addition to the changed envelope the light
mode appearing in the atomic input-output relation is further disturbed: it
lies no longer exactly at the upper sideband, but contains a small contribu-
tion from the lower one, as can be seen by comparing the expression above to
(5.8) and (5.15). Since it is experimentally advantageous to encode the input
signal at sideband modes, we define a generalized write-in mode (denoted by
capital letters)

(
X in

us+

P in
us+

)
=

√
w

ewT − 1

∫ T

0

dt e
wt
2 R(t)

(
p̄(ct, 0)
−x̄(ct, 0)

)
,

which takes full account of noise concerning the exponential modulation, but
lies precisely at the upper sideband. (i.e. the small orthogonal contribu-
tion from the lower one is treated as noise.) To perform the read-out, the
inverse accented counter part of this mode is measured. Figure 5.7 shows
the average fidelity for write-in and subsequent retrieval versus coupling for
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Figure 5.8: Maximal attainable average fidelity for coherent input states
according to a distribution with mean photon number n = 8 (a) and light
qubits (b) versus reflection coefficient r for different atomic decay parameters
η. (solid lines: η = 5%, dashed lines: η = 10%, dotted lines: η = 25%) The
dash-dotted line and the cross indicate the classical limits.

r = η = 7.5%. Plots (a) and (b) refer to coherent input states and light qubits
respectively. The corresponding classical limits are marked by crosses. As
illustrated by these graphs losses decrease not only the quality of the state
transfer for a given coupling strength, but limit also the attainable fidelity.
The crucial limiting factor in this scheme are reflection losses. Figure 5.8
shows the maximum average fidelity versus r for different values of the atomic
decay parameter η. Plot (a) shows results for coherent inputs, while plot (b)
depicts the maximal attainable fidelity for qubits. The dash-dotted line and
the cross indicate the classical limits in each case. Within moderate cou-
plings fidelities well above the classical limit can be achieved, showing that
the protocol is robust against the dominant sources of noise. In the next
sections we will give a detailed derivation of these results.

Write-in and read-out including noise

Atomic noise can be incorporated into the framework of section 5.2 by in-
cluding decay terms in Bloch equations (5.1) and (5.2)

∂

∂t
X(t) = ΩP (t)+

κ√
T

p̄(ct, t)− η

2T
X(t)+

√
η

T
fX(t),

∂

∂t
P (t) = −ΩX(t)− κ√

T
x̄(ct− d, t)− η

2T
P (t) +

√
η

T
fP (t), (5.18)

as explained in section 2.6.
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Each time light crosses one of the cell walls, reflection losses occur. This
happens four times. We neglect losses due to the very first crossing, since
these can be compensated by using a more intense input signal. Losses due
to the second and third transit of a cell wall affect only the second scat-
tering interaction. We take this into account by modifying the undisturbed
equations for the light field quadratures to be inserted into (5.18)

x̄(ct− d, t) = x̄(ct− d, 0) +
κ√
T

P (t− d/c),

p̄(ct, t) = p̄(ct, 0),

by introducing light quadrature damping with a factor 2r (the factor 2 reflects
the fact that crossing of a cell wall happens twice) and corresponding light-
Langevin operators fx and fp, and obtain

x̄(ct− d, t) =
√

1− 2r
(
x̄(ct− d, 0) +

κ√
T

P (t− d/c)
)

+
√

2rfx(t),

p̄(ct, t) = p̄(ct, 0).

p̄(ct, t) remains unchanged, since this quadrature affects the atoms only in
the first passage (during the pP -interaction), which means that each part of
the pulse contributes before it is subjected to reflection losses. Therefore p
is conserved as in the undisturbed case. The classical light field is impaired
by reflection losses as well. Since the coupling strength of the scattering
interaction is proportional to the amplitude of the classical field we have a
reduced coupling κ̃ =

√
1− 2r κ for the second (xX -) interaction due to the

light crossing two cell walls before it’s second passage. By considering this
and inserting the expressions above into equations (5.18) we obtain

∂

∂t
X(t) = ΩP (t)+

κ√
T

p̄(ct, 0)− η

2T
X(t)+

√
η

T
fX(t),

∂

∂t
P (t) = −ΩX(t)− κ̃√

T

[√
1− 2r

(
x̄(ξ, 0)+

κ√
T

P (t)
)

+
√

2rfx(t)
]
− η

2T
P (t)+

√
η

T
fP (t).

We can ignore reflection losses arising in the very last transit through a cell
wall, since the light field of the write-in beam is of no relevance after the
second scattering interaction. By neglecting the time delay d/c as in section
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5.2, the atomic differential equations generalize to

∂

∂t

(
X(t)
P (t)

)
=

{
Ω

(
0 1
−1 0

)
− η

2T

(
1 0
0 1

)
− κ2(1− 2r)

T

(
0 0
0 1

)} (
X(t)
P (t)

)

+
κ√
T

(
p̄(ct, 0)

−(1− 2r)x̄(ct, 0)

)

+

√
η

T

(
fX(t)
fP (t)

)
+

κ
√

2r√
T

(
0

−√1− 2rfx(t)

)
.

We introduce the abbreviation w = η/T + κ2(1 − 2r)/T , which is the gen-
eralization of the exponent κ2/T of the previous sections and change the
previous assumption 2ΩT À κ2 into 2ΩT À wT = η + κ2(1 − 2r). There-
fore we get the homogeneous solution A(t) = e

wt
2 R−1(t), (where R(t) is the

rotation matrix from section 5.2) and thus
(

Xout

P out

)
= e

−wT
2

(
X in

P in

)
(5.19)

+e
−wT

2
κ√
T

∫ T

0

dte
wt
2 R(t)

(
p̄(ct, 0)

−(1− 2r)x̄(ct, 0)

)

+e
−wT

2

√
η

T

∫ T

0

dte
wt
2 R(t)

(
fX(t)
fP (t)

)

+e
−wT

2
κ
√

2r√
T

∫ T

0

dte
wt
2 R(t)

(
0

−√1− 2rfx(t)

)
,

where R(T ) = 1l was used. The first two lines represent atomic- and light
contributions, while the third and fourth term account for atomic noise and
light noise respectively. The light mode, which is naturally mapped onto the
atomic sample, is no longer a modulation of the upper sideband, as can be
seen from the factor (1−2r) attached to x̄(ct, 0) in the second line. Since it is
advantageous to encode the signal at sideband modes, the term involving the
new disturbed light mode is decomposed into a generalization of the familiar
plus mode connected to the upper sideband

(
X in

us+

P in
us+

)
=

√
w

ewT − 1

∫ T

0

dt e
wt
2 R(t)

(
p̄(ct, 0)
−x̄(ct, 0)

)

(5.20)

and a small contribution from an orthogonal plus mode lying at the lower
sideband

(
P in

ls+

X in
ls+

)
=

√
w

ewT − 1

∫ T

0

dt e
wt
2 R(t)

(
p̄(ct, 0)
x̄(ct, 0)

)
.
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Generalized light modes are denoted by capital letters. With this decompo-
sition the atomic input-output relations with noise read

(
Xout

P out

)
= e

−wT
2

(
X in

P in

)
(5.21)

+
√

1− e−wT
κ(1− r)√

wT

(
X in

us+

P in
us+

)

+
√

1− e−wT
κr√
wT

(
P in

ls+

X in
ls+

)

+e
−wT

2

√
η

T

∫ T

0

dte
wt
2 R(t)

(
fX(t)
fP (t)

)

+e
−wT

2
κ
√

2r√
T

∫ T

0

dte
wt
2 R(t)

(
0

−√1− 2rfx(t)

)
.

In order to perform the read-out, a second pulse of light is sent through
the double pass scheme. Subsequently the light mode, which is the inverse
accented counter-part of the mode appearing in the atomic time evolution
(5.19) should be measured. Instead we choose the generalized minus mode
analogous to the write-in quadratures (5.20). The corresponding output
quadratures are given by

(
X́out

us−
Ṕ out

us−

)
=

√
w

1− e−wT

∫ T

0

dt e−
wt
2 R(t)

(
´̄p(ct, T )
−´̄x(ct, T )

)
.

This can be evaluated by inserting the generalized expressions for ´̄p(ct, T )
and ´̄x(ct, T ). For ´̄p(ct, T ) we have

´̄p(ct, T ) =
√

1− 2r ´̄p (ct, 0) +
√

2rf́p(t)− κ̃√
T

X(t).

´̄p is damped after the first (p-conserving) interaction and picks up some noise
in return. Subsequently it gets some X -contribution during the second (xX-
) interaction. The reduced coupling strength κ̃ =

√
1− 2r κ accounts for the

damped classical field in the second passage. ´̄x(ct, T ) on the other hand is
given by

´̄x(ct, T ) =
√

1−2r
(

´̄x(ct, 0)+
κ√
T

P (t)
)

+
√

2rf́x(t).

´̄x gets some P contribution during the first scattering interaction i.e. before
the relevant transits through cell walls occur. Subsequently this is damped
and appropriate noise is added. All together both quadratures are damped,
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since both carry the argument (ct, T ). This means each piece of the pulse
contributes after it ran trough the sample twice and has therefore already
experienced the two relevant transits trough cell walls. The rest of the cal-
culation is straight forward. In the end reflection losses due to the fourth
crossing of a cell wall have to be considered by damping the calculated re-
sult by a factor

√
1− r and adding appropriate noise terms. The resulting

input-output relations for the read-out mode are

(
X́out

us−
Ṕ out

us−

)
= c1

(
X in

P in

)
+ c2

(
X́ in

us+

Ṕ in
us+

)

+c3

(
Ṕ in

ls+

X́ in
ls+

)
+ c4

(
X́ in

us−
Ṕ in

us−

)
+ c5

(
Ṕ in

ls−
X́ in

ls−

)

+c6

(
FX

FP

)
+ c7

(
F̆x

F̆p

)
+ c8

(
F́x

F́p

)

+c9

∫ T

0

dtR(t)[e−wT e
wt
2−e−

wt
2 ]

(
0

−f́x(t)

)
.

(5.22)

The coefficients c1 to c9 can easily be calculated. Since we want to focus
on the structure of the equation, we don’t insert these prefactors in order
to avoid complicated expressions. The new read-out equations differ from
(5.10) by the appearance of noise terms (third and fourth line) and extra
light modes (second line). These contributions are small and can be treated
as perturbations. (FX , FP ) is an atomic noise mode, while (F̆x, F̆p), refers to
the light mode which is due to the very last reflection. It is independent from
the light mode (F́p, F́x) which accounts for the reflections happening between
the scattering interactions. These intermediate reflections give also rise to
terms in which only noise associated to x contributes. They are summarized
in the expression preceded by c8. The appearance of light modes other than
(X́us+ Ṕus+) is due to a asymmetry between the pP -interaction and the xX
present in a realistic setup in contrast to the ideal case. The light field has to
cross two glass walls between the first and the second pass (thus affecting only
the xX -interaction). Thus contributions from the lower sideband appear and
contributions from the minus mode do not cancel as in the ideal case.

Fidelity for coherent input states

In order to compute the fidelity for coherent input states, means and vari-
ances of the final quadratures have to be calculated. 〈X́fin

− 〉, 〈Ṕ fin
− 〉 and (∆Ṕ fin

− )2,

(∆X́fin
− )2 can be derived from the expression describing the complete state
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transfer by using the assumption 2ΩT À wT = η + κ2(1 − 2r) (which is a
direct generalization from the approximation 2ΩT À κ2 made in the ideal
case) and help of the noise operator properties 〈fx〉 = 〈fp〉 = 〈fxfp+fpfx〉 = 0
and 〈f(t)f(t′)〉 = δ(t − t′)1

2
. The obtained expressions have to be inserted

into equation (5.12), which gives the state overlap between the input-state
to be stored and the final state received. By considering a gaussian distribu-
tion of width n for coherent amplitudes the average fidelity can be directly
calculated as in section 5.2.

Fidelity for light qubit input states including noise

The initial qubit state |Ψin〉 = (α + βa†in)|vac〉 is subjected to the write-in
and read-out procedure which is represented by the unitary transformation
UN . We obtain

|Ψfin〉 = UN |Ψin〉 = (α + βUNa†inU
†
N)UN |vac〉

= (α + βa†fin)UN |vac〉.

In contrast to the ideal case, where U |vac〉 = |vac〉 could be used, UN is
a general Bogoliubov transformation. We remark that for r = 0 the state
transfer can still described by a passive transformation. The active contri-
bution is entirely due to reflection losses. This can be understood, by noting
that reflection losses occurring between the first and the second scattering
interaction impair only the scattering in the second pass. Therefore the ac-
tive part of the second interaction cannot compensate the active part in the
first pass as in the ideal case. This leads to a term in the generalized atomic
input-output relations (5.21) which contains only one light quadrature and
can therefore not be expressed as a mode-contribution. It plays an isolated
role in the commutator relations, but adds some extra noise to the variances.
Losses due to atomic decay on the other hand are included into the dynamics
of the scheme in a symmetric way.
The fidelity for the complete state transfer is given by the overlap between
the target state |Ψopt

fin 〉 = (α − βa†in)|vac〉 and the light state |Ψfin〉 which is
effectively retrieved

Fqubit = |〈Ψopt
fin |Ψfin〉|2 = 〈vac|(α∗ − β∗ain)(α + βa†fin)UN |vac〉|2.

(5.23)

a†fin is known, since the input-output relations for the complete state transfer
are known. They can be written in terms of creation and annihilation oper-
ators such that all occurring modes are independent. The transformation is
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of general Bogoliubov type

UNa†inU
†
N =

n∑
i=1

kia
†
i +

m∑
j=1

kjcj, (5.24)

where the coefficients ki, kj are complex numbers. a†1 = a†in refers to the

state to be stored, while a†2 to a†n represent all creation operators which ap-
pear in the equation, namely contributions from the atomic input, atomic
noise, light-input from the read-out beam and light noise. Since we also have
noise terms, which cannot be expressed as a noise mode (compare equation
(5.21) last term) and contributions from the lower sideband (compare equa-
tion (5.22)) in which the x- and p quadratures are interchanged, we also
have annihilation operators in this equation which are represented by c1 to
cj. Since theses contributions are small, they are treated as perturbations to
the system.
The transformation given in (5.24) can be understood as an orthogonal trans-
formation P = Pa ⊗ Pc, where Pa acts on the creation operators and Pc acts
on the annihilation operators, followed by an active transformation S. With

normalization constants Na =
√∑n

i=1 |ki|2 and Nc =
√∑m

j=1 |kj|2, where

N2
a −N2

c = 1 and Nc ¿ 1, (5.24) can be written as

a†fin = Na

( n∑
i=1

ki

Na

a†i
)

+ Nc

( m∑
j=1

kj

Nc

cj

)
(5.25)

= NaPaa
†
1P

†
a + NcPcc1P

†
c = Naa

†
P + NccP

=
√

1 + N2
c a†P + NccP = Sa†P S† (5.26)

and we have UN = S(Pa⊗Pc). In order to compute Fqubit from equation (5.23)
the expression UN |vac〉 has to be determined. UN |vac〉 = S(Pa ⊗ Pc)|vac〉 =
S|vac〉, since P is a passive transformation. S on the other hand refers to a
two mode squeezing operation. As mentioned above active contributions are

treated perturbatively. The corresponding time evolution S = eNc(aP c−a†P c†)

is expanded in a series to first order and we obtain

UN |vac〉 ' 1√
1 + |Nc|2

(1−Nca
†
P c†P )|vac〉

By inserting this expression in equation (5.23) and inserting the right hand
side of (5.24) for a†fin the fidelity can be directly calculated. We find

Fqubit =
1

1 + |Nc|2
(
|α|2 − |β|2k1

(
1− |Nc|2√

1 + |Nc|2

))2

.
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Figure 5.9: (a) EPR variance ∆EPR versus coupling κ2 in the presence
of losses. The reflection coefficient r and the atomic decay rate are both
chosen to have a value of 10%. (b) Optimized EPR variance versus coupling
for different atomic decay parameters. (solid line: η = 5%, dashed line:
η = 10%, dotted line: η = 25%) The inset shows how the optimal coupling
kopt varies with r.

In order to obtain the average fidelity we set α = cos( θ
2
) and β = sin( θ

2
)eiφ and

integrate over the whole Bloch sphere F̄qubit = 1
4π

∫ π

0

∫ 2π

0
Fqubit(θ, φ) sin(θ)dθdφ.

The results are shown in figures 5.7 and 5.8.

Two mode squeezing with noise

Consideration of noise within the two mode squeezing protocol is done along
the same lines outlined in the section above. The entanglement created by the
scheme in the presence of losses is depicted in figure 5.9(a) for r = η = 0.1.
The EPR variance increases for higher values of κ2. An optimal value κ2

opt

exists for which the proposed protocol works best and a maximal amount
of entanglement is generated. Figure 5.9(b) shows the κ-optimized EPR
variance versus r,while the dependence of κopt on the reflection coefficient is
given within the inset. As can be seen from these plots atomic decay plays a
minor role.
Spin squeezing can be performed with a lower and limited quality in the
presence of losses. In contrast to the ideal case the optimal gainfactor does
not approach unity with increasing coupling but converges towards an higher
value witch depends on the amount of losses impairing the system. Figure
5.10(a) shows the squeezed atomic variance in db and the dependence of gopt

on the coupling for r = η = 0.1. The maximal attainable squeezing versus r
is given in figure 5.10(b) for different atomic decay parameters.

In conclusion we presented two protocols based on a double-pass scheme
for a single atomic ensemble in a magnetic field. The first protocol provides
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Figure 5.10: (a) Spin squeezing in db versus coupling κ2 in the presence
of losses. The reflection coefficient r and the atomic decay rate both have
a value of 10%. The inset shows how the optimal gainfactor gopt depends
on the coupling. (b) Maximal spin squeezing versus reflection coefficient r
for different atomic decay parameters. (solid line: η = 5%, dashed line:
η = 10%, dotted line: η = 25%).

an exponential scaling interspecies beam-splitter interaction. Therefore it
is suitable for high fidelity storage and retrieval of an unknown quantum
state under modest experimental conditions, as was shown for coherent input
states and light qubits as well. The second protocol generates deterministi-
cally EPR entanglement between atoms and light. The proposed protocols
provide therefore the ingredients to realize a variety of interesting quantum
communication protocols. They are also shown to remain experimentally
feasible under realistic conditions.





Chapter 6

Simulation of interactions and
creation entanglement

After the first experiments [40] on quantum teleportation using two–mode
squeezed states of light [50, 51], as well as those [95, 10, 52] dealing with
entanglement in atomic ensembles [96, 13], a significant amount of work has
been devoted to develop a quantum information theory of continuous variable
systems [47]. So far, most of the theoretical work has focused on the entangle-
ment properties of the quantum states involved in all these experiments, the
so–called Gaussian states. Some examples of the achievements in this field
are the following. The problem of qualifying entanglement has been solved in
the general bipartite setting [97, 98, 99, 55] and in the three mode case [100].
The distillation problem has also been answered in the general case [32], as
well as in the case in which the class of allowed operations is restricted to
those that conserve the Gaussian form [58, 101, 102]. In contrast to all this
theoretical work on (the static) entanglement properties of Gaussian states,
very few general results have been obtained on the dynamics of entanglement
on these systems, i.e., on how to use the interactions provided by the physical
setups in order to entangle the systems in the most efficient way, see however
[103, 104, 105, 106]. In this chapter we provide a rather complete theory of
the dynamics of entanglement in these experimental settings.

The dynamics of entanglement has been recently analyzed in systems of
two or more qubits [107, 108, 109, 110, 111, 112]. In that case one distin-
guishes between two scenarios. In the first one [107, 109], the interaction
between the qubits is described by a Hamiltonian H. The goal is to deter-
mine the sequence of local gates for which the increase of entanglement after
some small (infinitesimal) time is maximal for a given initial state. In the
second one [108, 110, 112], the interaction is given in terms of a non–local
gate, which can be applied only once. Apart from its fundamental inter-
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est, these studies give some practical ways of creating entanglement in the
most efficient way and may become relevant in several experimental situa-
tions. Another interesting and related problem is the one of Hamiltonian and
gate simulation [113, 114, 115, 116, 117, 118]. Here, one assumes that the
two qubits interact via some given Hamiltonian H and the goal is to deter-
mine a sequence of local instantaneous gates in order to obtain in minimal
time either a complete time-evolution generated by some other Hamiltonian
[Hamiltonian simulation] or some desired unitary gate (gate engineering).

In this chapter we analyze all these problems for two–mode pure Gaussian
states and interaction Hamiltonians which preserve the Gaussian character.
We also study the generation of squeezing, since although it has no counter-
part in the qubit case, it is a valuable resource in present experiments [119].
Given the fact that we touch on several different topics and therefore de-
velop different mathematical tools, we have decided to write a section which
explains in detail the different problems we consider and the corresponding
results. In the following sections we give detailed derivations of these results.

We stress the fact that the problems studied here are all motivated by the
experimental situation in which light gets entangled with an atomic ensemble
via the Kerr–like interaction [28, 120, 121, 13] treated in chapter 2. In chapter
7 we address the question of implementations of the proposed protocols under
realistic conditions.

The chapter is organized as follows: The Sec. 6.1 should be considered as
a survey of the results presented in the chapter. In Sec. 6.2 we show which
Hamiltonians can be simulated using a given interaction and how to do so
optimally. We also show that, in fact, any general Gaussian operation can be
generated in the considered set–up. In Sec. 6.3 we determine the optimal rate
of entanglement generation as well as of squeezing generation for arbitrary
input states. Finally, in Sec. 6.3 we give an optimal entanglement generation
scheme for finite times, starting out from a product (unsqueezed) state.

6.1 Overview

This section gives an overview of the content of this chapter and it is com-
posed of three subsections. In the first one, we explain the physical set-up
that we are going to analyze. In the second one we collect the main def-
initions used thereafter. In the third section we give the main results of
the chapter without proving them. For the detailed derivations we refer the
reader to the following sections.
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Setup

We consider a continuous variable system composed of two one–mode systems
coupled via some interaction Hamiltonian. The goal is to analyze which kind
of evolutions we can achieve with such an interaction if certain instantaneous
local operations can be applied at will. In particular, we study optimal
methods of creating or increasing the entanglement shared by the two modes.

The interaction Hamiltonian has the general form

H = aX1X2 + bP1P2 + cP1X2 + dX1P2 (6.1)

where a, b, c and d are real parameters, and X1,2 and P1,2 are canonical oper-
ators for the first and second mode, respectively. We use dimensionless units
throughout the chapter. We assume that local operations, generated by the
Hamiltonians

Hloc,i = g(X2
i + P 2

i ), (6.2)

can be applied instantaneously, where g is a real number that can be tuned at
will. These operations can neither change the entanglement nor the squeezing
present in the state. Lastly, we assume that the initial state is pure and
Gaussian.

Our choice of the Hamiltonian interaction as well as the instantaneous
local operations is motivated by current experiments with atomic ensembles
[61, 10, 52, 95]. As explained in chapter 2, the Hamiltonian describing the
interaction between the atomic ensemble and the light can be written as

H0 = aX1X2, (6.3)

which is a particular case of Eq. (6.1); in the following we will put the cou-
pling constant a = 1 when referring to H0. In the same scenario, simple and
fast local operations can be performed on the atoms and the electromagnetic
field. For example, a magnetic field or a polarizer gives rise to the local
Hamiltonians Eq. (6.2). Since the interaction between atoms and light is
typically weak, with moderate magnetic fields the operations generated lo-
cally can be regarded as instantaneous. On the other hand, if the atoms and
the light are completely polarized, the corresponding state in terms of our
continuous variable description is the tensor product of two vacuum states,
in particular it is a pure Gaussian state. We emphasize that even though
we have motivated our choices with some particular physical set-up, our de-
scription is applicable to other physical situations and our results apply to
the general interaction Hamiltonian Eq. (6.1).

Now we consider the following general strategy for state or gate engineer-
ing which can be realized using the tools described above. Starting with a
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pure initial state, described by the density operator ρ(0), we perform fast
local operations V0 ⊗W0 on the state and we then let H act on it for a time
t1. Then we perform again local rotations, V1⊗W1 followed by the non–local
interaction generated by H for a time t2 and so on until

∑
k tk = t. This

yields to the total time-evolution operator

U(t) = [Vn ⊗Wn]U(tn) · · ·U(t2)[V1 ⊗W1]U(t1)[V0 ⊗W0], (6.4)

so that ρ(t) = U(t)ρ(0)U(t)†. Here U(t) = e−iHt.
First, we want to analyze which U are achievable with this strategy. Sec-

ond, for a given ρ(0) we look for the best choice of n, {t1, . . . , tn}, and the
local operations {V1 ⊗ W1, . . . , Vn ⊗ Wn} in order to maximize the created
entanglement/squeezing. We consider two different regimes. First, we choose∑

k tk = δt ¿ τ(H) (the characteristic time of the interaction) so that we
can expand all the U as well as U(t) in lowest order in tk. Second, we choose
tk finite. In the following we refer to those two regimes as infinitesimal and
finite respectively.

Some definitions

Since all the Hamiltonians we are considering are at most quadratic in X
and P , an initial Gaussian state will be Gaussian at all times. This means
that we can fully describe it by the first and second moments of Rk, with
~R = (X1, P1, X2, P2)

T , i.e. the expectation values dk = tr(ρRk), (also called
displacements) and tr[ρ(Rk − dk)(Rl − dl)]. The latter are collected in the
correlation matrix (CM) of the state ρ, the real, symmetric, positive matrix
γ defined by

γkl = 2<{tr[ρ(Rk − dk)(Rl − dl)]}. (6.5)

In our description, the displacements are of no importance: they have no
influence on the entanglement and squeezing properties of the states and
can be brought to zero by local displacement operations, which can be easily
implemented in our physical set-up. Therefore we take dk = 0 in this chapter.

We often write the correlation matrix in the block form

γ =

(
A C
CT B

)
. (6.6)

with 2×2 matrices A,B, C, where A refers to the first system and B to second
system. The matrix C describes the correlations between both systems and
vanishes for product states.

All the states and operations we consider here are pure. Therefore, and
since we look at two-mode states only, we can always write their CM in the
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form [122]

γ = (S1 ⊕ S2)

(
cosh(r)1l sinh(r)σz

sinh(r)σz cosh(r)1l

)
(ST

1 ⊕ ST
2 ), (6.7)

which we refer to as the pure state standard form of γ. Here, S1,2 are local
symplectic matrices, r ≥ 0, and σz is the Pauli matrix diag(1,−1). The
parameter r contains all information about the entanglement of the state,
whereas S1 and S2 contain information about local squeezing. Given a CM γ,
one can find its pure state standard form as follows: We have Sk = OkDkO

′
k,

where O,O′ are rotations and Dk = diag(erk , e−rk). The six matrices are
determined as follows: O1(2) diagonalize A(B). The rotations O′

k realize the
singular value decomposition of D−1

1 OT
1 CO2D

−1
2 . The two-mode squeezing

parameter r is given by cosh r =
√

det(A), while the squeezing parameters
r1, r2 of Sk can be calculated by the trace of A and B, resp.: cosh 2r1 =
(trA)/(2 cosh r), cosh 2r2 = (trB)/(2 cosh r).

Concerning the bilinear interaction Hamiltonians, it is convenient to rewrite
the Hamiltonian of Eq. (6.1) as follows

H = (X1, P1)K

(
X2

P2

)
where K =

(
a d
c b

)
. (6.8)

We denote by s1 = σ1, s2 = sign[det(K)]σ2. where the sign function is
defined as sign(x) = ±1 if x ≷ 0 and sign(x) = 0 if x = 0. with σ1 ≥ σ2 ≥ 0
the singular values of K. We refer to the sk as the restricted singular values
of K. Note that, local rotations can always bring any H to the diagonal form
s1X1X2 + s2P1P2.

Results

We state here the main results of this chapter. To give a clear picture of them
we do not use more mathematically tools and definitions than necessary.

First we characterize the interactions which we are able to generate within
the setting described by Eq. (6.4). In the infinitesimal regime the problem is
usually called Hamiltonian simulation, whereas for t finite it is usually called
gate simulation. Then we use these results to find the optimal strategy to
generate entanglement/squeezing both in the infinitesimal and finite regime.

Hamiltonian Simulation

Given two Hamiltonians H and H ′ of the form (6.1) we want to see the
conditions under which H can simulate H ′. That is, for a given sufficiently
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small t′ we want to find out if it is possible to have

e−iH′t′ = [Vn ⊗Wn]e−iHtn · · · e−iHt2 [V1 ⊗W1]e
−iHt1 [V0 ⊗W0]. (6.9)

with tk small as well. If it is possible to choose t ≡ ∑
k tk = t′ we say that

H can simulate H ′ efficiently.

Defining the matrices K and K ′ as in Eq. (6.8), as well as their respective
restricted singular values s1,2 and s′1,2, we find the following results: (i) The
Hamiltonian H can efficiently simulate H ′ if and only if

s1 + s2 ≥ s′1 + s′2 and s1 − s2 ≥ s′1 − s′2, (6.10)

(ii) If it is not possible to simulate H ′ efficiently with H, then the minimal
time needed to simulate the evolution corresponding to H ′ for the time t′ is
tmin := mint{t : (s1 + s2)t ≥ (s′1 + s′2)t

′, (s1 − s2)t ≥ (s′1 − s′2)t
′}.

Thus except for the cases s1 = ±s2 every Hamiltonian of the form (6.1) can
simulate all other Hamiltonians of that form (including the s′1 = ±s′2 case).
In particular, with the Hamiltonian H0 describing the atom-light interaction
one can simulate every bilinear Hamiltonian (6.1) and can do so efficiently
as long as |s′1|+ |s′2| ≤ 1. In this case, the interaction existing in the physical
setup can be considered universal.

Gate simulation and state generation

We show that starting from the Hamiltonians H and Hloc,i of Eqs. (6.1,6.2)

it is possible to generate any desired unitary evolution of the form U = e−iH̃ ,
where H̃ is an arbitrary self–adjoint operator quadratic in {X1, P1, X2, P2},
if and only if |s1| 6= |s2|. In particular, the Hamiltonian H0, together with
the local operations given in Eq. (6.2) and local displacements, allows one
to generate all unitary linear operations, and therefore to generate arbitrary
Gaussian states out of any pure Gaussian state. This shows that H,Hloc,i

generate a set of universal linear gates for continuous variables smaller than
the one given in Ref. [123].

Let us analyze some important applications of these results in the case
of atomic ensembles interacting with light. They imply that with current
experiments with atomic ensembles one can generate all unitary linear oper-
ations, as well as arbitrary Gaussian states. In particular, one can generate
local squeezing operators for which H̃ = X2

1 − P 2
1 [which are not included

among the Hamiltonians of the form (6.1) and therefore cannot be simulated
infinitesimally by any of them] and therefore one can generate squeezing in
the atomic system, light system or both independently (without performing



6.1 Overview 99

measurements). On the other hand, one can use H0 to generate the swap
operator, which (in the Heisenberg picture) transforms

X1 ↔ X2, P1 ↔ P2. (6.11)

This operation can be generated in a finite time. Thus, one can use the
interaction H0 to realize a perfect interface between light and atoms, which
allows one to use the atomic ensemble as a quantum memory for light, as
opposed to the case in Ref. [61] where this result is obtained in the limit of
very strong interaction.

Optimal entanglement generation: infinitesimal case

The problem that we consider now can be stated as follows. Let us assume
that we have some initial pure Gaussian state and we have some interaction
described by the general Hamiltonian (6.1) at our disposal for a short time
δt. The initial state at time t0 is described by some correlation matrix of the
form γ(t0) and possesses an entanglement E(t0), where E is some measure of
entanglement. We would like to increase the entanglement as much as pos-
sible. In order to simplify our notation we choose, without loss of generality,
t0 = 0. We omit the argument for all quantities referring to the initial state,
e.g γ = γ(0).

Since for the case of two modes in a pure state there is a single parameter
that describes the entanglement [cf. Eq. (6.38)], all entanglement measures
are monotonically dependent on each other. One particular measure is the
parameter r appearing in Eq. (6.7), E0(γ) = r. In fact, E0 is the log-
negativity [124] of the Gaussian state. Thus, every entanglement measure E
can be expressed in terms of r. We use the obvious notation E(t) ≡ E[γ(t)]
when considering the time-evolution of E. Mathematically, our goal is to
maximize the entanglement rate [107]

dE

dt

∣∣∣∣
t0

= limδt→0
E(t0 + δt)− E(t0)

δt
(6.12)

by using the fast local operations. We find the following result:

dE

dt

∣∣∣∣
t0,opt

=
dE

dr

∣∣∣∣
r(t0)

ΓE,opt(γ, H). (6.13)

The function ΓE, which genuinely contains the optimal entanglement in-
crease, is given by

ΓE,opt(γ,H) = s1e
l − s2e

−l, (6.14)
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where s1, s2 characterize the given interaction Hamiltonian, while l is a pa-
rameter that only depends on the local squeezing of our state and can be de-
termined through the following relation [using the notation of Eqs. (6.6,6.7)]

cosh(2l) =
det(A)

−2 det(C)
tr(A−2CCT ) (6.15)

=
1

2
tr[(ST

1 S1)
−1σzS

T
2 S2σz].

Note that there is no divergence as det C → 0 as is seen by the second
expression in Eq. (6.15) and the fact the Sk’s in Eq. (6.7) are uniquely defined
only if γ is not a product state (i.e., iff C 6= 0). Given a product state
with CM S̃1S̃

T
1 ⊕ S̃2S̃

T
2 , the Sk are defined only up to local rotations Sk =

S̃kOk. These Ok can be chosen such that O1(S
T
1 S1)O

T
1 = diag(σ1−, σ1+) and

O2(S
T
2 S2)O

T
2 = diag(σ2+, σ2−), where σk+ = erk ≥ σk− = e−rk , rk > 0 are

the singular values of ST
k Sk. This local operation achieves the maximum

cosh(r1 + r2) for the RHS in Eq. (6.15) as given by von Neumann’s trace
theorem [125].

Thus we see that the entanglement rate depends on the local symplec-
tic matrices S1, S2, i.e. on both the amount of (local) squeezing in the two
modes and the angle between the squeezed quadratures (which, e.g., is zero,
if both X1 and X2 are squeezed). However, it does not depend on the en-
tanglement of the state. Rewriting ΓE,opt as (s1 − s2) cosh l + (s1 + s2) sinh l
we see that some Hamiltonians can produce entanglement even if there is no
local squeezing present in the state (which implies that l = 0), while others
(notably the beam splitter with s1 = s2 = 1) cannot.

Note that the rate goes to infinity as local squeezing is increased, in
contrast to the case of qubits. Given a CM γ, there are typically local
rotations that enhance the entanglement rate.

From these results we conclude that if the goal is to create as much
entanglement as possible it is more efficient to squeeze the state locally first
(if possible) before using the interaction; in particular, the use of squeezed
light [96] is advantageous compared to coherent light [126].

Optimal squeezing generation: infinitesimal case

Now we consider the problem of optimal squeezing generation in the same
set-up as in the previous subsection. We take as a measure of squeezing of
a correlation matrix γ, S = S(Q), any monotonically increasing function of
Q, where Q is minus the logarithm of the smallest eigenvalue of γ. We find

dS
dt

∣∣∣∣
t0,opt

=
dS
dQ

∣∣∣∣
Q(t0)

gS[γ]CS(H). (6.16)



6.2 Simulation of interactions 101

CS(H) is the squeezing capability of the Hamiltonian and it is given by s1−s2,
where the si’s are the restricted singular values of K, given in (6.8) and

gS(γ) = 2‖~x1‖‖~x2‖ ≤ 1, (6.17)

quantifies how “squeezable” the state γ is by interactions of the type (6.1).
Here x̂T = (~x1, ~x2), with ~x1, ~x2 ∈ R2 is the normalized eigenvector corre-
sponding to the minimal eigenvalue of γ.

Optimal squeezing and entanglement: finite case

Finally we consider the situation in which we start with both modes in the
vacuum state and we have a Hamiltonian H for a finite time (as well as
instantaneous local operations). We show that the optimal way to create
entanglement is to apply local instantaneous operations flipping the X and P
variables of both systems periodically after small times ∆t. After a finite time
t (and for ∆t → 0) this produces (up to local rotations) a two-mode squeezed
state, which is both optimally squeezed and entangled. In particular, Q(t) =
(s1 − s2)t and E0(t) = (s1 − s2)t.

We also show that it is not possible to increase the entanglement using
Gaussian measurements during the evolution. We consider a system with
CM γ and ancilla systems in vacuum state. We allow for linear passive
interactions (described by a symplectic and orthogonal matrix O) between
one system and the ancillas and show that a Gaussian measurement does
neither increase the squeezing nor the entanglement. This result implies
that our method is optimal even if we allow for feedback, something which
has been recently considered in the context of spin squeezing generation
[103, 106].

For the case of atomic ensembles our result implies that there is a method
to improve the entanglement generation in present experiments [95].

6.2 Simulation of interactions

In this section we characterize all the unitary evolutions which we can gen-
erate within the given setup. That is we define the set of unitary operators
which can be written as (6.4). The first part of this section is devoted to
the infinitesimal regime, where we will in general derive the necessary and
sufficient conditions for Hamiltonian simulation. In the second part we are
concerned with the finite time regime. There we show that with (almost)
any Hamiltonian H as in Eq. (6.1) and the local operations corresponding to
the Hamiltonians given in (6.2) it is possible to generate any unitary gate.
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Method of Hamiltonian simulation

A central result in the theory of Hamiltonian simulation [116] states that an
alternating sequence of manipulations and interactions as given in (6.9) is
equivalent to a fictitious free evolution due to a certain effective Hamiltonian
Heff , i.e. produces a unitary transformation

U = e−iHeff t′

and

κHeff =
n∑

k=1

pk

(
Ṽ †

k ⊗ W̃ †
k

)
H

(
Ṽk ⊗ W̃k

)
(6.18)

where κ := t′/t, t :=
∑n

i=1 ti, the pk := tk/t form a probability distribution

and the Ṽi ⊗ W̃i follow uniquely from the interspersed control operations
Vj⊗Wj (and vice versa). Obviously one can in this way simulate an evolution
due to a Hamiltonian Heff by means of a given Hamiltonian H.

Eq. (6.18) has a clear interpretation: A protocol proceeding in infinitesi-
mal time steps yields a mean Hamiltonian which is a weighted sum of locally
transformed variants of the original Hamiltonian H. The so-called simula-
tion factor κ is the ratio of simulated time t′ and time of simulation t and,
therefore, is a measure for the efficiency of the simulation. The case κ ≥ 1
corresponds to the efficient simulation.

Necessary and sufficient condition

We associate to the general non–local interaction Hamiltonian (6.1) the real
2×2 matrix K as in (6.8). The action of a local rotation V (ϕ) = exp[−i(X2+
P 2)ϕ/2] on the canonical operators X and P can be expressed by

V

(
X
P

)
V † = R̄

(
X
P

)
where

R̄ = R(ϕ) =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
∈ SO(2,R). (6.19)

Thus we can associate to all local rotations Vi,Wi (6.2) real orthogonal 2× 2
matrices R̄, S̄ . . . with determinant +1. Consequently we have

(V ⊗W ) H
(
V † ⊗W †) = (X1, P1)R̄

T KS̄

(
X2

P2

)
. (6.20)

Furthermore we use that for any matrix K as given in (6.8) there exists
a singular value decomposition K = ODÕ where O, Õ ∈ O(2,R), D =
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diag(σ1, σ2) and the singular values σ1 ≥ σ2 ≥ 0 of K are unique. If we
restrict ourselves on special orthogonal matrices we can still find matrices
R,S ∈ SO(2,R) such that

K = R

(
s1 0
0 s2

)
S (6.21)

and s1 = σ1, s2 = sign[det(K)]σ2. Without loss of generality we may always
assume that

s1 ≥ |s2| . (6.22)

Then these two values are uniquely defined and shall be called restricted
singular values of K.

Assume now we want to simulate, in the above sense, some Hamiltonian
H ′ by means of some other Hamiltonian H, both of the form (6.8). Let s1, s2

and s′1, s
′
2 denote their respective restricted singular values. Then we have

the following result:

H can efficiently simulate H ′ iff

s1 + s2 ≥ s′1 + s′2
s1 − s2 ≥ s′1 − s′2.

(6.23)

First we prove necessity. If H can simulate H ′ efficiently (6.18) has to
hold for κ = 1 and Heff = H ′. Therefore and because of (6.8) and (6.20) there
must exist a probability distribution {pi}n

i=1 and special orthogonal matrices
{Ri, Si}n

i=1 such that

(
s′1 0
0 s′2

)
=

n∑
i=1

piRi

(
s1 0
0 s2

)
Si. (6.24)

Rotation matrices which should in principle appear on the left hand side can
be removed by left and right multiplication with corresponding transposed
matrices. In (6.24) we assume these ones to be already included in the Ri, Si

on the right hand side.

By using the fact that the vector of the diagonal elements of a product R
diag(s1, s2) S can be written as (R ◦ ST )(s1, s2)

T where R ◦ ST denotes the
component-wise (so-called Hadamard) product of matrices we can express
the last equation in compact form as

(
s′1
s′2

)
=

n∑
i=1

pi

(
Ri ◦ ST

i

) (
s1

s2

)
=: N

(
s1

s2

)
. (6.25)
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The definition of the matrix N in (6.25) is obvious. Using that all matrices
Ri, Si are elements of SO(2,R) it can be seen easily that

N11 = N22, N12 = N21 and

|N11 ±N21| ≤ 1.

Conditions (6.23) follow now directly from (6.25) and these properties of
N :

s′1 + s′2 = (N11 + N21)(s1 + s2) ≤ s1 + s2

The same holds identically for all plus signs replaced by minus signs proving
necessity.

To demonstrate sufficiency we show that conditions (6.23) guarantee the
existence of a matrix N as in (6.25) which in turn admits to connect the
primed and unprimed restricted singular values as in (6.24). This provides
an efficient simulation protocol of the form (6.9).

Given s1, s2 and s′1, s
′
2 fulfilling (6.23) we can for the time being assume

that s1 6= |s2| and define

N :=

(
e f
f e

)
, where

e =
s1s

′
1 − s2s

′
2

s2
1 − s2

2

, f =
s1s

′
2 − s2s

′
1

s2
1 − s2

2

.

With this definition we have (s′1, s
′
2)

T = N(s1, s2)
T . Next we have to show

that N can be written as a convex sum of Hadamard products of rotation
matrices which is in fact exactly what inequalities (6.23) ensure.

It is again easy to check that if |e| + |f | ≤ 1 we can find probabilities{
pi : pi ≥ 0,

∑4
i=1 pi

}4

i=1
such that e = p1− p2 and f = p3− p4 and therefore

N = p1

(
1 0
0 1

)
◦

(
1 0
0 1

)
+ p2

(
1 0
0 1

)
◦

( −1 0
0 −1

)

+p3

(
0 1
−1 0

)
◦

(
0 1
−1 0

)
+ p4

(
0 1
−1 0

)
◦

(
0 −1
1 0

)
.

(6.26)

This decomposition of N allows one to pass from (6.25) to (6.24) conserving
the diagonal structure as can be checked easily. Thus it suffices to show how
(6.23) implies |e| + |f | ≤ 1. Multiplying the first [second] line of (6.23) by
(s1 − s2) [(s1 + s2)] yields respectively

s2
1 − s2

2 ≥ (s1s
′
1 − s2s

′
2) + (s1s

′
2 − s2s

′
1),

s2
1 − s2

2 ≥ (s1s
′
1 − s2s

′
2)− (s1s

′
2 − s2s

′
1).
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H

s ’1

s ’2

c1

c2

p2
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Q

s1

s2

p1

O

Figure 6.1: Illustration of the accessible region in the (s′1, s
′
2)-plane for the

case s2 > 0. Coordinates of relevant points: H = (s1, s2), P = s1+s2
2 (1, 1),

Q = s1−s2
2 (1,−1). See text for explanation.

The first term on the right hand sides is nonnegative due to premise (6.22)
such that these inequalities are equivalent to

s2
1 − s2

2 ≥ |s1s
′
1 − s2s

′
2|+ |s1s

′
2 − s2s

′
1|

which is, regarding the definition of e and f , exactly what we had to show
and proves sufficiency for the case s1 6= |s2|.

The complementary cases s1 = |s2| turn out to be trivial, since con-
ditions (6.23) then require s′1 = s′2 = s1 or s′1 = −s′2 = s1 respectively
and this means that we can exclusively simulate Hamiltonians where H ′ =
(U ⊗ V ) H

(
U † ⊗ V †) for some local rotations U ⊗ V , i.e. H ′ has to be - in

this sense - locally equivalent to H. Hence, nothing has to be shown in this
case. ¤

We point out that this proof provides the possibility to construct simu-
lation protocols explicitly. Given H and H ′ one has to calculate the decom-
position in 6.26. Then the probabilities and rotations appearing there will
fix the time steps ti and control operations Ui ⊗ Vi in (6.9). As can be seen
such a protocol will contain at most three intervals of interaction and control
operations being rotations about ±π/2 and π.

Discussion

Since the number of relevant parameters characterizing an interaction Hamil-
tonian is two, one can nicely illustrate the above result: The Fig. 6.1 illus-
trates the following geometrical relations: Point H = (s1, s2) denotes the
original general Hamiltonian. Lines p1 and p2 indicate the boundaries where
s′1 = ±s′2 respectively and are due to premise s′1 ≥ |s′2|. Lines c1 and c2 stem
respectively from the first and second inequality constituting the necessary
and sufficient condition. The region of accessible Hamiltonians, i.e. points
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H ′ = (s′1, s
′
2) is thus contained in the rectangle OPHQ. One can even visual-

ize how this set deepens with increasing time of simulation by parameterizing
H(t) = (s1t, s2t). Thus, H moves outward on the dashed line while P and Q
move on p1 and p2 respectively. It is therefore just a matter of time to reach
any point in the quadrant enclosed by p1 and p2.

It is also quite instructive to consider certain special cases: (i) For s2 = s1

(s2 = −s1) the dashed line coincides with p1 (p2), respectively. This is a triv-
ial case where we are confined to simulate locally equivalent variants of the
original Hamiltonian. Therefore, Hamiltonians whose restricted singular val-
ues are of equal modulus are nearly useless for the purpose of Hamiltonian
simulation. (ii) For s2 = 0 or, equivalently, det(K) = 0 the picture gets sym-
metric with respect to the s′1-axis. This symmetrization can be interpreted
in terms of time efficiencies, as we shall explain in the following.

Based on the criterion above one can ask for time efficiencies and espe-
cially for time optimal protocols. Time optimal simulation is achieved if the
simulation factor κ = t′/t [see Eq. (6.18)] gets maximal. Without loss of
generality we set t′ = 1 such that κ = 1/t. Given now H and H ′ with re-
stricted singular values s1, s2 and s′1, s

′
2 we can determine the minimal time

of simulation as tmin := min
t
{t : (s1 + s2)t ≥ (s′1 + s′2), (s1− s2)t ≥ (s′1− s′2)}.

We find

tmin =

{
s′1+s′2
s1+s2
s′1−s′2
s1−s2

if

s′2
s′1
≥ s2

s1

s′2
s′1

< s2

s1

. (6.27)

Thus the efficiency of simulation depends strongly on whether sign(s′2) =
sign(s2) or not, the last case being more time consuming. Only when s2 =
0 [case (ii) above] it is equally expensive (in terms of costs of interaction
time) to simulate either kind of Hamiltonians H ′ [sign(s′2) ≶ 0], a fact which
is reflected in the above mentioned symmetrization. Correspondingly, the
optimal time of simulation or, so to say, the minimal interaction costs [117]
are in this case uniquely determined by

tmin = (s′1 + |s′2|)/s1. (6.28)

Application to X1X2-interaction

Let us outline some conclusions out of this result for the interaction H =
X1X2. The restricted singular values of H are obviously s1 = 1 and s2 = 0.
Therefore we can efficiently (κ = 1, i.e. t′ = t) implement all Hamiltonians
H ′ whose restricted singular values fulfill

s′1 + |s′2| ≤ 1. (6.29)
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As an example as well as to give a basis for further results we shall
consider here two kinds of well known unitary transformations: the beam-
splitter operator

Ubs(t) := e−iHbst where Hbs = X1P2 − P1X2 (6.30)

and the two-mode squeezer

Utms(t) := e−iHtmst where Htms = X1X2 − P1P2. (6.31)

As mentioned already, the action of Ubs(π/2) corresponds to swapping
the states of the first and the second mode, i.e. it transforms X1,P1 →
−X2,−P2 and X2,P2 → X1, P1. Note that the global phase thereby acquired
by subsystem 1 can be corrected locally.

Application of Utms(t) squeezes the EPR modes (X1 + X2) and (P1−P2)
by a factor e−2t and therefore also entangles the two systems, as we shall see.

In order to perform these operations by means of the X1X2-interaction
we have to determine the restricted singular values of Hbs and Htms. One
finds for Hbs s1 = 1, s2 = 1 and for Htms s1 = 1, s2 = −1. Since in both cases
condition (6.29) is not met we cannot efficiently simulate these Hamiltonians.
But nevertheless we can determine strategies for infinitesimal simulations
being time optimal. The minimal time of simulation can be calculated using
(6.28) and yields a maximal simulation factor κ = 1/tmin = 1/2 for both, the
beam-splitter and the squeezer. Thus, in order to implement Ubs(t

′) we need
at least a time t = 2t′ and to create squeezing by a factor e−2t′ it will take a
time 2t′, i.e. to implement Utms(t

′) we need a time t = 2t′.

Simulation of unitary operators and state engineering

Until now we have focused on the regime of infinitesimal times in order
to clarify which unitary evolutions we can simulate by means of the given
interaction. We found that we can do so – more or less efficiently – for all
evolutions governed by Hamiltonians of the form (6.8), but no more. This
leaves open the question which unitary operations can in general, i.e., for
finite times, be realized with a given interaction and local rotations.

As we show in the following, any interaction described by some Hamilto-
nian H where s1 6= |s2| together with local rotations is sufficient to realize
any unitary operation of the form exp(iG), where G is a quadratic expression
in the operators Xk, Pk. That is, any Gaussian unitary transformation of the
two modes can be obtained. This implies, that any desired pure Gaussian
state can be “engineered” starting from any given (pure Gaussian) input
state.
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As we show below, any U = exp(−iG) can be decomposed as

U = (V5 ⊗W5) Ubs(t5) (V4 ⊗W4)×
×Utms(t4) (V3 ⊗W3) Ubs(t3) (V2 ⊗W2) Utms(t2)×
× (V1 ⊗W1) Ubs(t1) (V0 ⊗W0) ,

(6.32)
where all (Vi ⊗Wi) are local rotations, Ubs(ti) is a beam-splitter and Utms(ti)
a two-mode squeezing operation as defined in Eqs. (6.30) and (6.31). Since
all Hamiltonians with s1 6= |s2| can be used to simulate beam-splitters and
two-mode squeezers one can reach any desired unitary U and therefore also
any desired Gaussian state.

To show that any unitary U = exp(−iG) where G is quadratic expression
in the operators Xk, Pk can be decomposed as given in (6.32) we will proceed
in three steps:

(i) As shown in [122, 127] any such U can be decomposed into a sequence
of one passive transformation, single mode squeezing and another passive
transformation. That is to say the symplectic matrix S corresponding to the
unitary transformation U can be decomposed as S = ODÕ where O, Õ are
orthogonal, symplectic and, therefore, passive transformations and the diago-
nal matrix D = diag(eα+β, e−(α+β), eα−β, e−(α−β)) amounts to local squeezing.
Note that this is basically a singular value decomposition of S.

(ii) Passive transformations contain essentially beam-splitter transforma-
tions and local rotations and it is well known from quantum optics that any
such transformation on two modes can be decomposed into a sequence of a
pair of local rotations, one beam-splitter operation and another pair of lo-
cal rotations. Thus, a unitary UO corresponding to a orthogonal symplectic
transformation O can be decomposed as UO = (V ⊗W )Ubs(t0)(Ṽ ⊗W̃ ) where
Ubs(t) is defined in (6.30).

(iii) What is left to be shown, is how to attain single mode squeezing.
For this we split the matrix D into two components,

D = diag(eα, e−α, eα, e−α)diag(eβ, e−β, e−β, eβ)

and show how each of them can be attained by means of beam-splitters and
two-mode squeezing. Let us denote by Ubs(t) and U tms(t) the variants of
beam splitter and two-mode squeezing operators which are attained from
(6.30) and (6.31) respectively by locally rotating X2 → P2, P2 → −X2. Then
it can be easily shown that the sequence Ubs(−π/4)Utms(α)Ubs(π/4) gener-
ates a symplectic transformation diag(eα, e−α, eα, e−α) and Ubs(−π/4)U tms(β)
×Ubs(π/4) correspondingly diag(eβ, e−β, e−β, eβ).
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Collecting things together and ordering all passive components as in (ii),
i.e. such that it contains only one application of a beam-splitter operation,
decomposition (6.32) follows immediately.

6.3 Entanglement and Squeezing

In the previous section we characterized the time-evolutions on the joint sys-
tem which can be realized using a given interaction Hamiltonian of the form
(6.1) and the control operations provided by Eq. (6.2). In this section we
determine the optimal way to use these tools for the generation of entangle-
ment and squeezing between the two subsystems in both, the infinitesimal
and the finite regime.

Our derivations make extensive use of the formalism of Gaussian states
and operations. The necessary concepts and notation are introduced in sec-
tion 6.3 and then put to work in the cases of infinitesimal (6.3) and finite
(6.3) times.

State Transformations and Measures of Entanglement
and Squeezing

We show here how Gaussian states evolve under a general quadratic Hamil-
tonian and then introduce some entanglement and squeezing measures for
Gaussian states.

State Transformation

A quadratic interaction Hamiltonian (6.1) characterized by a matrix K as in
Eq. (6.8) generates a linear time-evolution of the X and P operators. Solving

the Heisenberg equations for ~R = (X1, P1, X2, P2)
T we find

~R(t) = eMt ~R(0) = S(t)~R(0), (6.33)

where

M =

(
0 L

L̃ 0

)
, (6.34)

with

L =

(
c b
−a −d

)
= JT K, and L̃ = −JLT JT = JT KT , (6.35)

where

J =

(
0 −1
1 0

)
. (6.36)



110 Simulation of interactions and creation entanglement

Note that for 0 6= − det(L) =: α we have L̃ = αL−1. Using the fact that
M2 = α1l we can easily re-express Eq. (6.33) and find

S(t) = cosh(
√

αt)1l + sinh(
√

αt)/
√

αM. (6.37)

Thus, every evolution generated by a Hamiltonian (6.1) is uniquely char-
acterized by a symplectic transformation S(t) of the form (6.37). Note that
any such transformation can be written in its standard form

S(t) = cosh(
√

αt)(O1 ⊕O2)




1 0 h1 0
0 1 0 −h2

h2 0 1 0
0 −h1 0 1


 (O1 ⊕O2)

T , (6.38)

where O1, O2 ∈ SO(2,R) perform the restricted singular value decomposi-
tion of L, and hk = tanh(

√
αt)/

√
αsk, where sk are the restricted singular

values of L, which clearly coincide with those of K. In particular the Hamil-
tonian H0 = X1X2 of Eq. (6.3) generates an time-evolution described by the
symplectic matrix

S0(t) =




1 0 0 0
0 1 −t 0
0 0 1 0
−t 0 0 1


 , (6.39)

i.e. α = 0, (s1, s2) = (1, 0), and O1 = J [see (6.36)] and O2 = −1l.
In the Schrödinger picture a linear time-evolution as in (6.33) transforms

the CM γ as
γ(t) = S(t)γS(t)T . (6.40)

In the next subsection we address the case of very short interaction time,
i.e., we consider S(δt) for an infinitesimally short time step δt. In this case
we obtain

S(δt) = 1l + δtM, (6.41)

and the correlation matrix γ(t) transforms to first order as

γ(t + δt) = γ(t) + δt[Mγ(t) + γ(t)MT ]. (6.42)

Let us in the following write the 4×4 CM of the two-mode Gaussian state
as a block matrix as in Eq. (6.6) with 2× 2 matrices A,B, C. Then A refers
to the first system and is the CM belonging to the reduced density operators
of the system 1. Note that for all CMs det(γ) ≥ 1, and equality holds if and
only if (iff) the state is pure. Since our initial state is pure and we consider
unitary transformations (and, later, complete Gaussian measurements) this
implies that we are only concerned with pure states at all times.
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Entanglement and Squeezing of Gaussian States

As one can see in equation (6.7), the single parameter which characterizes
the non-local properties of a pure state is the two-mode squeezing param-
eter r. This automatically implies that any monotonic function of this pa-
rameter can be used to quantify the entanglement of pure Gaussian two-
mode states and we are free to choose the most convenient measure. Here
however we are interested in maximizing the rate at which entanglement
changes and it is not clear from the outset, that any choice will yield the
same result. To see that this is in deed the case, note that the canoni-
cal measure of entanglement for pure states is the entropy of entanglement
E, i.e., the von Neumann entropy of the reduced state. For pure Gaus-
sian states it is E(|ψ〉) = cosh(r)2 log[cosh(r)2]− sinh(r)2 log[sinh(r)2], where
r = [acosh(

√
det A)]/2, with A the CM of the reduced state [128]. Con-

sider now any function f(r) such that E(f) is a monotonic function of f .
The maximization of the rate of E with respect to the evolution is then
equivalent to the maximization of the rate of f . The reason for this is that

maxH

(
dE
dt

)∣∣
t0

= maxH [
(

dE
df

)∣∣∣
t0

(
df
dt

)∣∣
t0
] =

(
dE
df

)∣∣∣
t0

maxH

(
df
dt

)∣∣
t0
. Since E is

a monotonic function we have that
(

dE
df

)∣∣∣
t0

> 0, which implies that maximiz-

ing
(

dE
dt

)∣∣
t0

with respect to the evolution is equivalent to maximize
(

df
dt

)∣∣
t0
.

One such quantity is Ep(γ) = det A = cosh(r)2, the determinant of the
CM corresponding to the reduced density. It is related to the purity of the
reduced density matrix. In general the purity is not a measure of entangle-
ment, but for pure states, |ψ〉 the purity tr2(ρ

2
red), where ρred = tr1(|ψ〉 〈ψ|),

decreases the more entangled |ψ〉 is. Therefore we may use, e.g., the in-
verse square of purity, i.e., P(|ψ〉) = [tr(ρ2

red)]
−2 to quantify how entangled

a given pure state is. For a general two–mode Gaussian state with CM γ as
in Eq. (6.6) tracing over the second system yields a reduced density matrix
which is Gaussian with CM γred = A. The purity of the reduced state is
therefore given by det(A) as [129] P(γ) = {tr[ρred(γ)2]}−2 = det A. As men-
tioned before, the determinant of a CM is one, iff the state is pure, which
implies that Ep(γ) = 1 iff the state is not entangled, i.e., iff r = 0.

For the last part of this section another measure of entanglement, namely
the negativity N introduced in Ref. [124] is most convenient to use. For a
1 × 1 Gaussian state with CM γ the negativity is given by the inverse of
the smallest symplectic eigenvalue of the partially transposed CM γ̃ = ΛγΛ,
which can easily be calculated [124] as

N (γ) =
[
min{sing.val.

(
JT

2 γ̃J2γ̃
)}]−1/2

. (6.43)

Here Λ is the 4×4 diagonal matrix diag(1, 1, 1,−1) (which implements partial
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transposition, see [98]) and J2 = J⊕J is the symplectic matrix for two modes.
The other interesting quantity that characterizes Gaussian states besides

the entanglement is the squeezing inherent in the state, i.e., by how much the
variance of some (passive-linearly transformed) quadrature is reduced below
the standard quantum limit. The reduced variance is given by the smallest
eigenvalue λmin(γ) of γ and we define the squeezing of a state with CM γ as
the inverse of λmin(γ)

S(γ) = min{eig(γ)}−1 = [λmin(γ)]−1. (6.44)

In a situation like the one we consider here where only orthogonal operations
are freely available, the squeezing of a state represents a valuable resource
which can be used, e.g., for the creation of entanglement [119] and which
should be created as efficiently as possible.

Optimal Entanglement/Squeezing Rates

The goal of this section is to determine the optimal strategy for the gener-
ation of entanglement [squeezing] in an (infinitesimally) small time step δt.
That is, given a pure Gaussian state ρ with CM γ and an interaction Hamil-
tonian H as in Eq. (6.1) we look for the best choice of the local rotations
V ⊗W such that e−iHδt(V ⊗W )ρ(V ⊗W )†eiHδt is as entangled [squeezed] as
possible. Stating this problem mathematically: We maximize the entangle-
ment [squeezing] rate, that is the time-derivative of the chosen entanglement
[squeezing] measures E [S] under the time-evolutions obtainable in the given
setting.

Maximizing the Entanglement Rate

As measure of entanglement we use E0, where E0(γ) is the two-mode squeez-
ing parameter r defined in (6.7). The entanglement rate is then simply given
by

ΓE =
dE0

dt

∣∣∣∣
t=0

= lim
δt→0

r(δt)− r

δt
, (6.45)

where r ≡ r(0) is the entanglement of the initial CM γ.
In order to determine ΓE we use, following Eq. (6.13), the formula ΓEp =

sinh(2r)ΓE = 2
√
− det(A) det(C)ΓE, where ΓEp denotes the entanglement

rate corresponding to the purity-related measure Ep.
Let H as in Eq. (6.8) be the given Hamiltonian. It generates an evolution

given by the symplectic transformation S̄(δt), which we write in its standard
form (6.38) as S̄(δt) := (Ō1 ⊕ Ō2)S(δt)(Ō1 ⊕ Ō2)

T . Since local operations
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cannot increase the entanglement the only way in which the local control
operations may help is to rotate the state by Õ1 ⊕ Õ2 before applying H.
Thus the best strategy yields a γ(δt) that can be written as

γ(δt) = S(δt)(O1 ⊕O2)γ(O1 ⊕O2)
T S(δt)T , (6.46)

where we defined Oi := ŌT
i Õi and omitted the irrelevant final local rotations

coming from S̄(δt). Writing γ(δt) in the form (6.6) and using Eq. (6.42) it
is straight forward to determine the CM corresponding to the reduced state,

A(δt) = O1AOT
1 + δt(L0O2C

T OT
1 + H.c.), (6.47)

where L0 = diag(s2,−s1) is determined by the Hamiltonian H, cf. Eq. (6.38)
and Eq. (6.34). One quickly sees that

det[A(δt)] = det(A)[1 + 2δt tr(L0O2C
T A−1OT

1 )],

where we used the simple relation for 2 × 2 matrices: det(X + δtY ) =
det(X)[1 + δt tr(X−1Y )] + o(δt2) and the fact that A is symmetric and in-
vertible.

For the entanglement rate corresponding to Ep we obtain

ΓEp = 2 det(A)tr(L0O2C
T A−1OT

1 ).

As mentioned before we can from this easily determine the rate ΓE corre-
sponding to the two-mode squeezing parameter namely we have

ΓE =

√
det(A)

− det(C)
tr(L0O2C

T A−1OT
1 ) = tr(L0O2Y OT

1 ), (6.48)

where we have defined Y :=
√

det(A)/[− det(C)]CT A−1.
Our aim is to maximize this expression with respect to the special orthog-

onal matrices O1 and O2. Note that det Y = −1, which can be easily verified
using Eq. (6.7). Therefore Y has the restricted singular values el,−e−l, l ≥ 0.
Using that L0 is diagonal it is straight forward to verify that the maximum
of Eq. (6.48) is achieved when choosing O1, O2 such that they diagonalize Y
such that O2Y OT

1 = diag(el,−e−l). Then the optimal choice for Õi is

Õi,opt = ŌiOi, (6.49)

with Ōi given by S̄(δt). The best state to let H act on is thus γopt =
(Õ1,opt⊕ Õ2,opt)γ(Õ1,opt⊕ Õ2,opt)

T . Note that l which determines the singular
values of Y can be easily determined by Eq. (6.15).
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In summary, given an interaction Hamiltonian H corresponding to a ma-
trix K and an initial state with CM γ the optimal state preparation by local
rotations (before letting H act) can be understood as a two-step procedure.
First transform γ locally such that CT A−1 is diagonal [restricted singular
value decomposition, cf. Eq. (6.21)]. If K was already in its restricted sin-
gular value decomposition, we are done. Otherwise the second step of the
state preparation can be viewed (in the Heisenberg picture) as the restricted
singular value decomposition of K. Then the optimal entanglement rate (en-
tanglement is measured by E0) is given by Eq. (6.14) in terms of the singular
values sk of the Hamiltonian matrix K and the local squeezing parameter l
of the given state γ.

In the Fig. 6.2 we compare the entanglement rates and the entanglement
obtained for different strategies using the “natural Hamiltonian” H0. As
initial state we consider the product of the vacuum state in the first system
and the squeezed vacuum in the second system, i.e.,

γin = 1l2 ⊕
(

e−r 0
0 er

)
, (6.50)

with squeezing parameter r = 2.5. We compare the strategy in which the
rate of entanglement creation is optimized at each time to two simpler ones,
namely to just apply the natural Hamiltonian H0 or to simulate the two-
mode squeezing Hamiltonian Htms = X1X2−P1P2 using the optimal scheme
of Sec. 6.2. The rate-optimization strategy leads in fact to combination of the
other two: one applies first the natural Hamiltonian for a finite time and then
(when the “local squeezing” l has all been converted to two-mode squeezing)
one simulates Htms. Having initially local squeezing available clearly helps
with entanglement generation: for an initial unsqueezed state the optimal
rate is constant ΓE = 1 .

Fig. 6.2b shows that the optimization strategy can lead to noticeably more
entanglement in the resulting state after finite time: when the entanglement
rate is optimized at each point, more entanglement is produced than, e.g.,
with the interactions H0 or Htms. However, optimizing the rate is in general
not the best strategy for the creation of entanglement, see Fig. 6.3.

Maximizing the squeezing rate

As in the previous section we are given an interaction Hamiltonian of the
form (6.1), an initial Gaussian state with CM γ, and we consider the case
of infinitesimal interactions. Our goal is here to determine for each H and
γ the strategy which maximizes the squeezing rate. We measure squeezing
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Figure 6.2: (a) The entanglement rate obtained for the squeezed state γin

(6.50) as initial state and various strategies. The solid line represents the
optimal-rate strategy derived in this section; the dotted line represents the
rate obtained by simulating the two-mode squeezing Hamiltonian Htms; the
“dot–dot–dashed” line represents the rate obtained for the natural Hamil-
tonian H0 = X1X2. For the vacuum state as initial state we obtain the
constant rate 1 (dashed line) (b) The entanglement created by the different
strategies [same styles as in a) for the different scenarios]. The dashed line
represents the upper bound Eq. (6.59).

by Q(γ) = log[S(γ)], where S was defined in Eq. (6.44) as the inverse of the
smallest eigenvalue of γ. The rate we are interested in is

ΓS =
d

dt
logS[γ(t)]

∣∣∣∣
t=0

(6.51)

=
−1

λmin(γ)
lim
δt→0

λmin[γ(δt)]− λmin(γ)

δt
.

Note that we use the logarithm of S instead of S for convenience. It simplifies
the formulas but since log is a monotonic function maximizing the rate of
logS implies a maximal rate for S as well.

After applying the general strategy to the input state with CM γ we
obtain γ(δt) as in Eq. (6.42). Doing first order perturbation theory we find
that λmin[γ(δt)] = λmin(γ) + δtx̂T (MT γ + γM)x̂ = λmin[1 + δtx̂T (MT +
M)x̂], where x̂ is the normalized eigenvector corresponding to the smallest
eigenvalue λmin(γ) of γ. We obtain for the squeezing rate:

ΓS =
−1

λmin(γ)
[x̂T (MT + M)x̂], (6.52)

which is maximized when −x̂T (MT + M)x̂ is as large as possible. Note that

MT + M ≡
(

0 N
NT 0

)
, (6.53)
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where N = L̃+LT = JT KT +KT J , where J is the SO(2)–matrix of Eq. (6.36)
and we have used the definitions (6.35) and (6.8). One quickly sees that
N = NT . Writing K in its restricted singular value decomposition K =
SK0R, where S,R ∈ SO(2,R) and K0 = diag(s1, s2) as in Eq. (6.21), and
using that R, S commute with J we see that N = RT (JT K0 + K0J)ST =
CS(H)RT JT σzS

T , where
CS(H) = s1 − s2 (6.54)

is the squeezing capability of the Hamiltonian H. Note that the matrix Õ :=
RT JT σzS

T is orthogonal with det(Õ) = −1 and that we can obtain any
such Õ choosing R,S ∈ SO(2,R), i.e., by the local operations applied to the
initial state. Using the notation x̂T = (~xT

1 , ~xT
2 ), where ~x1, ~x2 ∈ R2, we find

ΓS = 2CS(H)~xT
1 Õ~x2 ≤ 2CS(H)maxÕ|~xT

1 Õ~x2| = 2CS(H)‖~x1‖‖~x2‖, which
gives an upper bound

ΓS ≤ 2CS(H)‖~x1‖‖~x2‖
for ΓS. This maximum can be reached for Õopt such that (−Õopt~x2)||~x1.
Given γ (i.e., ~x1, ~x2) we can calculate Õopt with det Õopt = −1 which satisfies
this condition. This then determines the optimal choice of R, S ∈ SO(2,R),
i.e. how to transform the initial state with CM γ before letting H act in
order to maximize the squeezing rate. One simple choice yielding Õ = Õopt

is S = 1l, i.e. nothing has to be done on the second system and Ropt =
JT σzÕ

T
opt ∈ SO(R, 2). Thus, the optimal input state is given by γopt =

(RT
opt ⊕ 1l)γ(Ropt ⊕ 1l).
In summary, we have shown that the maximal squeezing rate is given

by Eq. (6.16) as a product of the squeezing capability CS(H) of the given
Hamiltonian and the squeezability gS(γ) of the given state. The optimal CM
to let H act on is γopt = (RT

opt ⊕ 1l)γ(Ropt ⊕ 1l), where

Ropt = JT σzÕ
T (6.55)

and −Õopt parallelizes ~x1 and ~x2. Note that the fact that x̂ is normalized
implies that ΓS ≤ CS(H) for any input state. Since we look at the logarithm

of the squeezing this implies that dS(γ)
dt

≤ S(γ)CS(H).

Optimal entanglement generation from the vacuum state

In practice, we are interested in creating the largest amount of entanglement
when H acts for a finite total time t. Optimizing the rate of entanglement
creation at each time does lead to a local but not necessarily, as we saw, the
global maximum of the entanglement at time t [108].

We now show how to employ the interaction H to create the most en-
tanglement in a given time t. To this end, we make use of the squeezing of
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γ which was introduced in Eq. (6.44) as the smallest eigenvalue of γ. The
squeezing of γ is known [119] to give an upper bound for the amount of entan-
glement of γ, with N (γ) ≤ S(γ). We proceed as follows: First we calculate
the strongest squeezing that can be achieved after time t. This also gives
an upper bound for the entanglement that can be obtained during this time.
Then we point out a strategy that achieves the optimal squeezing and at the
same time the strongest entanglement compatible with the given squeezing,
thus being optimal on both counts.

The squeezing capability of a symplectic map S, i.e., the factor by which
the squeezing in a CM can be increased by the application of S, is given
by the inverse square of the smallest singular value of S, since S(SγST ) ≤
[σmin(S)]−2S(γ). Here and in the following we use that for the smallest
singular value of a product AB we have σmin(AB) ≥ σmin(A)σmin(B). Now
consider the symplectic map S(t) corresponding to the unitary evolution
generated by an interaction Hamiltonian H after time t, cf. Eq. (6.37). The
singular values of S(t) can easily be calculated analytically. We need them
only for small times to first order in t, in which case we find:

σ±[S(t)] =

√
1± 1

2
(s1 − s2)t + o(t)2, (6.56)

where s1, s2 are the restricted singular values of the matrix K [cf. Eq. (6.8)]
corresponding to H.

Since S(t) = S(t/2)S(t/2) = ΠN
k=1S(t/N) we see immediately that

(σmin[S(t)])2 ≥ e−(s1−s2)t,

which implies that the squeezing capability of S(t) is bounded by e(s1−s2)t.
Now consider a strategy as in Eq. (6.4), alternating the use of H for time tk
with local rotations Vk ⊗Wk. Note that the tk, k = 1, . . . , N , which sum to
t, are not assumed to be infinitesimal. The time-evolution effected by this
strategy is described by a symplectic map

S(t) = ΠkS̃k, (6.57)

where S̃k = OkS(tk)O
′
k and Ok, O

′
k are the local rotations corresponding

to Vk ⊗ Wk. Clearly, σmin[S(t)] ≥ Πke
−(s1−s2)tk/2 = e−(s1−s2)t/2. Hence

S[S(t)S(t)T ] ≤ e(s1−s2)t, i.e. we have an upper bound to the amount of
squeezing that can be produced from an initially unsqueezed pure state by
applying H for a total time t.

A strategy to achieve this optimum is the following: we choose the lo-
cal rotations Vk, Wk as π/2-rotation in system 1 and 3π/2 in system 2,
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the times tk all equal, and consider the limit tk → 0. This corresponds
to the situation considered in Sec. 6.2 and simulates the Hamiltonian re-
lated to K ′ = (K + JKJ)/2. Let K = O1 diag(s1, s2)O2, then we have
that K ′ = 1/2 O1[diag(s1, s2) + diag(−s2,−s1)]O2, since rotations commute
with J . That is, apart from local rotations the strategy, which simulates
the two-mode squeezing Hamiltonian with an efficiency (s1 − s2)/2, which
is the optimal factor according to Eq. (6.27). Letting Htms act for a time
t′ = t(s1 − s2)/2 (using up an interaction time t) transforms the vacuum
state into the two-mode squeezed state with CM

γtms(t
′) =

(
cosh 2t′1l sinh 2t′σz

sinh 2t′σz cosh 2t′1l

)
. (6.58)

which saturates the bounds derived above, since S[γtms(t
′)] = e(s1−s2)t.

Now we show that γtms in Eq. (6.58) is also the most entangled state that
can be obtained after letting H act for a total time t. Using Eq. (6.43) for
the negativity of a Gaussian state with CM γ = S(t)S(t)T (i.e. an arbitrary
strategy applied to the vacuum state) we get

N (γ) = [S(JT γ̃Jγ̃)]−1/2 ≤ S(γ̃) = S(γ) = e(s1−s2)t.

Since N [γtms(t
′)] = e(s1−s2)t the simulation of two-mode squeezing is the

optimal strategy for both squeezing and entanglement generation. Note that
even a rough approximation of the optimal strategy, i.e., a strategy consisting
of just two or three steps already yields a marked improvement in generated
squeezing and entanglement.

Up till now we have only considered the unitary evolution of the initial
state. There are, however, further tools available in current experiments.
There might be additional light modes (ancillas) in the vacuum state on which
passive linear optical operations (described by orthogonal and symplectic
transformations) as well as complete or partial homodyne measurements can
be performed. In principle these might help to increase the entanglement
in γ, but in the following we show that this is not the case. We consider
the following general set-up: consider system with CM γ, ancilla systems
in vacuum state i.e., γanc = 1l, linear passive interactions (described by a
symplectic and orthogonal matrix O) between the system light mode and
the ancillas (e.g. beam splitter between light and ancillary modes), such
that the whole system is described by the CM γ′ = OT (γ ⊕ γanc)O; clearly,
S(γ′) = S(γ) and now we show that a Gaussian measurement does not
increase S(γ): We write γ′ as

γ′ =
(

A′ C ′

C ′T B′

)
,
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where the block matrix B′ refers to the ancillary modes to be measured.
Then the resulting state is described by the CM γout = A′ −C ′B′−1C ′T [58].
Using the following characterization of the smallest eigenvalues [130] it is
straight forward to see that measurement has reduced the squeezing of the
state:

S(γout) = minx∈Cn

{
x†(A′ − C ′B′−1C ′T )x

x†x

}−1

≤ minx

{
x†(A′ − C ′B′−1C ′T )x

x†(1l + C ′B′−2C ′T )x

}−1

= minx

{
y†γ′y
y†y

: y =

(
x

−B′−1C ′T x

)}−1

≤ miny∈C2n

{
y†γ′y
y†y

}
= S(γ′)

Consequently, unsqueezed ancilla systems and Gaussian measurements are
of no help in increasing the squeezing or entanglement in a Gaussian state.

The preceding discussion does not completely solve the problem of opti-
mal entanglement generation with a Hamiltonian H, since only one particular
initial state (the vacuum) has been considered. If, e.g., the initial state of
the light field is squeezed, we have seen in Sec. 6.3 that better rates can be
achieved (see Fig. 6.2), which will translate into larger entanglement after
finite times. The methods used above easily yield an upper bound for the
entanglement that can be obtained from initially squeezed states: Consider
an initial product state with squeezing er1 and er2 in systems 1 and 2 and let
r1 ≥ r2. By the same arguments as above, after H has acted for a time t the
squeezing in the final state and the negativity are bounded by e(s1−s2)t+r1 .
We can find a better bound on the achievable entanglement drawing on re-
sults from Ref. [119], where it was shown that the negativity of a two-mode
CM γ is bounded by 1/

√
λ1λ2, where λ1, λ2 are the two smallest eigenvalues

of the γ. This implies that

N (γout) ≤ e(s1−s2)t+(r1+r2)/2, (6.59)

which yields the dashed curve in Fig. 6.2b. This bound is most probably not
tight for rk 6= 0, not even as t →∞.

One might think that in order to optimize the entanglement after some
finite time t it always suffices to optimize the rate at each time as for the
case of a vacuum input. For qubit systems this was indeed shown to be true
[107]. In contrast, it does not hold for cv systems as the counterexample
depicted in Fig. 6.3 shows: We start with a slightly entangled state with
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Figure 6.3: (a) The entanglement rate obtained for the initial state
γin,2 = Sr1,r2γtms(t0/2)ST

r1,r2
, where Sr1,r2 = diag(er1/2, e−r1/2, er2/2, e−r2/2)

and r1 = r2 = 2, t0 = 10−3. The solid line ΓE = 1 is obtained with
the strategy that optimizes the entanglement rate at each time; the dotted
line represents the rate obtained for optimal simulation of Htms; the “dot–
dot–dashed” line represents the rate obtained for the natural Hamiltonian
H0 = X1X2. The inset shows that one has to “pay” with initial entangle-
ment rates smaller than the optimal value of 1 to reach a state that allows
for the large rates later on. (b) The entanglement created by the different
strategies [same styles for different scenarios as in a)] and the upper bound
Eq. (6.59).

CM γin,2 which can be obtained from the two-mode squeezed state γtms(t0/2)
squeezing both X1 and X2 by r1 = r2. Then the “local squeezing parameter”
l is zero and the optimal rate therefore ΓE = 1. If t0 is small and r1, r2 large
it is possible to sacrifice some entanglement in order to “activate” the local
squeezing thus enhancing the rate later on and obtaining significantly more
entanglement at time t À t0. The difference to the qubit case is related to
the fact that in the cv context not all local transformations are available and
hence not all equally entangled states are locally equivalent.

We have investigated how a quadratic interaction between two continuous
variable systems (as it occurs naturally in certain quantum optical systems)
can be optimally used to perform several quantum information tasks when
certain simple local control operations (phase space rotations) can be imple-
mented as well. First we have given necessary and sufficient conditions for
the simulation of a Hamiltonian evolution given a fixed interaction and fast
local rotations. In particular, we have shown that the naturally occurring
Hamiltonian Eq. (6.3) allows one to simulate all bilinear Hamiltonians and
is in fact of the most versatile kind for this purpose. Moreover we have seen
that almost all the Hamiltonians of the form (6.1) (and in particular H0)
allow to generate all symplectic transformations on two modes, i.e., the com-
plete group SP (2,R) can be generated starting from no more than the three
Hamiltonians H0, Hloc,1, Hloc,2.

With these results we have addressed the questions of optimal creation of



6.3 Entanglement and Squeezing 121

entanglement and squeezing for a two–mode Gaussian state using a given in-
teraction of the form (6.1) and local rotations of the form Hloc,i = g(X2

i +P 2
i ),

both of which are available in current experiments. For the case of small (in-
finitesimal) interaction times, we have determined the optimal strategy to
increase entanglement or squeezing for any input state, i.e, we have derived
the maximal entanglement and squeezing rates and determined the strate-
gies which lead to these maxima. For the general case (finite interaction
time) we have derived the optimal strategy for the creation of entanglement
and squeezing starting with the vacuum state. We have also shown that
(in contrast to qubit systems) for continuous variables optimizing the entan-
glement rate is not necessarily the best way to generate a finite amount of
entanglement.

There are several interesting applications of our results for quantum in-
formation processing. In particular, we have seen that the beam splitter
Hamiltonian Hbs = X1P2 − P1X2 can be simulated with an efficiency factor
1/2 by H0. When acting for a time t = π the Hamiltonian Hbs generates the
swap operation between the systems 1 and 2, thus performing the “write-in”
and “read-out” operations needed when the atomic ensemble is to be used
as a quantum memory for the state of the light mode [60].

Another interesting application for atomic ensembles is enabled by the so-
called spin-squeezed states [131] which have been prepared experimentally in
settings similar to the one described in this chapter [95, 52]. It has been
shown that these states allow for a significant increase in the precision of
atomic clocks [132]. While the methods presented above show efficient ways
to create squeezed atomic states (e.g., by using the interaction to create
squeezing or entanglement optimally and then project the atoms into a pure
squeezed state by measuring the light), it would also be interesting to find
the optimal such procedure.

Note that the argument in Sec. 6.3 is easily adapted to similar circum-
stances. E.g., it was shown in [132] that the interaction between the atoms
of a suitably prepared Bose-Einstein–condensate (BEC) can be described by
the quadratic Hamiltonian J2

z ≈ P 2, which can be used to drive the BEC
into a spin squeezed state. By the same reasoning as in Sec. 6.3 we see
that after an interaction time t a squeezing of et is the maximum achievable.
This shows optimality of the procedure suggested in [132] (which employs
effectively the so-called “two-axes counter-twisting” Hamiltonian).

In summary, we have investigated the capabilities of cv interaction Hamil-
tonians H. We have shown which other Hamiltonians can be simulated with
such an H and the available control operations and how to do so efficiently.
Then we have derived the optimal entanglement generation rates achievable
with this Hamiltonian and given an optimal protocol for the generation of
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entanglement between the two modes for finite times.



Chapter 7

Protocols using multiple passes

Quantum networks require an efficient quantum interface between light, which
is a natural long distance carrier of quantum information, and atoms, that
make a better storage and processing medium. The power of such a device
will be intimately connected to its capability of creating high degrees of en-
tanglement in a controlled way, since entanglement represents an all-purpose
resource to create conditional dynamics.

Numerous theoretical and experimental works ([60] and references therein)
center around the effect of a Kerr interaction between light and atomic ensem-
bles to produce entanglement between continuous light-atom variables. This
interspecies entanglement can in turn be converted to atomic spin correlations
in form of spin squeezed or spin entangled states between two atomic samples
[10] by means of a projection measurement on light. If spontaneous emission
is neglected, the degree of squeezing is of the order of ∆ = 1/(1 + κ2) where
κ is the effective coupling strength between light and atoms, as discussed in
section 2.7. Thus, it seems that one can, in principle, produce in this way un-
limited atomic squeezing. There are however serious limitations on both, the
amount of light atom entanglement as well as the degree of squeezing, which
can be achieved from a Kerr interaction. In fact one can express κ2 = α0η
where α0 is the sample’s optical (column) density and η is the spontaneous
emission probability, c.f. equations (2.40) and (2.43). Thus, decoherence due
to spontaneous emission cannot be neglected and a crude estimate for η ¿ 1
leads to an additional contribution, so that ∆ = 1/(1 + α0η) + 2η (∆ = 1
corresponds to a coherent state). Apparently this expression has a minimum
∆min = 2

√
2/α0 corresponding to an optimal spontaneous decay probability

η0 = 1/
√

2α0. In realistic systems the optical density is often limited to val-
ues in the range between 1-100, which is true for atomic vapors [13], as well
as for cold and trapped atoms. For the optical density of, say, 25, the above
estimates lead to the limit on squeezing of the order of ∆min ≈ 0.5 (3 dB of
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noise reduction) with a single pass QND measurement. The same consider-
ation limits also the amount of light atom entanglement present before the
measurement (see Fig.7.1).

But there is still another peculiarity of the Kerr interaction, which limits
its performance in creating entanglement: Due to its QND character this
interaction conserves certain degrees of freedom, which is reflected in a strict
limit on the amount of achievable EPR-type squeezing to ∆EPR = 0.5.
Thus, even for an arbitrarily high optical density, the state which originates
from a Kerr interaction is never close to a maximally entangled EPR state
corresponding to ∆EPR → 0.

In this Letter we propose experimentally feasible techniques which allow
to overcome these limitations and in fact provide an exponential growth in the
amount of entanglement and squeezing. Two and three pass protocols have
already been proposed in [90, 60]. Taking spontaneous decay into account,
we show that passing one and the same pulse of light n times through an
atomic ensemble produces an effective optical density of nα0 while the effect
of accumulated spontaneous emission noise can be balanced by tuning η to
its optimal value for a given number of steps n. Hence, although the coupling
strength in a Kerr interaction is directly proportional to the probability of
spontaneous decay, this does not pose a fundamental limit on the generation
of entanglement or squeezing.

Based on this result we show furthermore that this system provides the
realistic possibility to implement the protocols for generating entanglement
and squeezing at optimal rates in pure Gaussian continuous variable states,
proposed in the preceding chapter. As shown there, in the system under con-
sideration the optimal local operations can be effected simply by λ/4 plates
and mirrors changing the polarization and direction of light propagation in
between the passes of the atomic sample. We determine for realistic exper-
imental parameters the optimal spontaneous decay probability for a given
number of steps and show thereby that even in the presence of losses the
growth of entanglement is still significantly enhanced. In particular, one can
in this way engineer a state which is close to an EPR state.

Finally we also suggest a way to convert the entanglement unconditionally
into squeezing of the atoms without the use of homodyne detection of light.
This method which relies on a certain choice of polarization rotations is
as powerful as the QND measurement and it yields in addition a squeezed
optical output.
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7.1 Single pass

We consider here the setup described in section 2.7, that is a single ensem-
ble interacting with light with no external magnetic field applied. As we
want to include atomic decay and absorption losses as they occur in sev-
eral passes of light through the atomic ensemble, we will have to deal with
mixed states of the compound system. It will therefore be convenient to
work in the Schrödinger picture. If light and atoms are initially prepared in
coherent states, the state will be Gaussian at any time. The state is there-
fore completely determined by its displacement vector ~d = tr{~Rρ} and a

covariance matrix γi,j = tr{ρ[(~Ri − ~di), (~Rj − ~dj)]+} (i, j = 1, . . . , 4) where
~R = (X, P, x, p) and [., .]+ denotes the anticommutator. For the given ini-

tial states and within the above approximation we have ~d = ~0 for all times.
Thus, all information about the compound system can be extracted from its
covariance matrix.

Taking decay and absorption into account perturbatively, the state after
a single pass of a pulse of light through the atomic ensemble is described in
terms of input-output relations as

γout = D̄(η, ε)S(κ)γinS(κ)T D̄(η, ε) + D(η, ε)γnoise (7.1)

where the scattering matrix

S(κ) =




1 0 0 κ
0 1 0 0
0 κ 1 0
0 0 0 1


 (7.2)

and D(η, ε) = diag(η, η, ε, ε), D̄(η, ε) =
√

1−D(η, ε), γnoise = diag(2, 2, 1, 1).
The output state is a weighted sum of a coherent contribution and a noise
component γnoise whose form is due to the fact that the field decay is accom-
panied by a vacuum noise contribution and the atomic decay both contributes
to noise due to the breaking of correlations among the atoms and due to the
atoms once decayed being still present in the sample, explaining the factor
of 2 in the atomic component of γnoise. Apart from this correction Eq. (7.1)
is equivalent to the result derived in [13]. In principle, the noise introduced
in atoms increases with the decay of the mean polarization, but this effect
is negligible for the example presented (see [133] for a refined model for this
interaction using the same formalism).

The coupling constant is given by κ = 2
√
〈Jx〉〈Sx〉σΓ/A∆, the atomic

depumping η = NphσΓ2/A∆2 and the photonic absorption rate ε = NatσΓ2/A∆2

where σ is the cross section on resonance for the probed transition, Γ is the
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corresponding spontaneous decay rate, ∆ the detuning from resonance and
A the cross section of the atomic ensemble illuminated by the pulse. Equa-
tion (7.1) is valid for small atomic dephasing and low photon absorption
corresponding to η, ε ¿ 1.

A central quantity in this system is the optical density on resonance
α0 = Natσ/A which gives the probability for a single photon to get elastically
scattered and can be related to the other parameters as ε = α0(Γ/∆)2 and
κ2 = ηα0 where we used that initially 〈Jx〉 = Nat/2 and 〈Sx〉 = Nph/2. There
is an apparent tradeoff between having a large coupling and at the same time
low atomic depumping. For a given optical density one can treat ε and η as
independent parameters tailoring the first by means of the detuning and the
last by means of Nph, and there are always optimal values for ε and η which
maximize the achievable squeezing or entanglement.

We are here especially interested in three quantities characterizing the
quantum properties of the state generated: (a) the Gaussian Entanglement
of Formation (GEoF) [134], the only available physical Entanglement mea-
sure for mixed Gaussian bipartite states, (b) the closely related [56] EPR
uncertainty of the combined atom+field system, which indicates how close
the state is to a maximally entangled EPR state, given for the present states
by ∆EPR = 1

2
[∆2(xat − pph) + ∆2(pat − xph)], and finally (c) the atomic

(and light) squeezing achievable either by a QND measurement (homodyne
detection of light) or by means of a particular disentangling operation at the
end of the multi pass protocol.

7.2 Multiple passes

The state created after several passes can be calculated by iterating the map
defined by equation (7.1). Note however that the coupling strength depends
on the polarizations along x and that these classical variables will decay from
pass to pass as 〈Jx〉out = (1− η)〈Jx〉in, 〈Sx〉out = (1− ε)〈Sx〉in. For the n-th
step the remaining coupling strength is hence reduced κn = [(1−η)(1−ε)]n/2κ.
Reflection losses can be taken into account by replacing ε by ζ = ε+ r where
r is the overall reflectivity of mirrors, cell etc. Equation (7.1) provides then
readily a recursion relation

γn = D̄(η, ζ)S(κn)γn−1S(κn)T D̄(η, ζ) + D(η, ζ)γnoise (7.3)

for the state after n passes which can be solved exactly.
The effect of n consecutive passes is comparable to that of a single pass

performed with an n times increased optical density. This is clear from the
meaning of α0 and becomes manifest in the group property S(κ)S(λ) =



7.2 Multiple passes 127

Figure 7.1: GEoF and EPR variance vs. number of passes: For given n
both quantities are maximized with respect to η and ζ. The optimal values
for η are shown in the inserts. It is always best to have ζ = r corresponding
to ε ¿ η. +′es refer to the case r = 0, ×′es to r = 2%. The optical density
is α0 = 25.

S(κ + λ) of the scattering matrix (7.2). This indicates that the strategy
of multiple passes is especially interesting for low optical densities. The
dependence of the GEoF and the EPR variance on the number of passes is
shown in figure 7.1. In general it can be shown under the assumption of
vanishing reflection losses (r = 0) that for given optical density and number
of steps n there exist optimal choices for η and ε such that, taking formally
n →∞, the GEoF tends to infinity. The EPR-variance is limited by 0.5, or
3 dB of squeezing, which is also evident in figure 7.1.

The multipass scheme is capable of improving these features significantly.
In particular, applying a unitary operation and its adjoint before and after
an interaction changes effectively the type of interaction due to the identity
U † exp(−iH)U = exp(−iU †HU). The transformations which are easy to
perform in this system are polarization rotations which change the quadra-
tures as x → cos φx + sin φ p, p → cos φ p − sin φx. In [18] it was shown in
a pure state analysis that entanglement and squeezing is created at a maxi-
mal rate if one switches from H ∝ patpph to an interaction H ∝ −xatxph in
every second step. The effect of the switching becomes clear if one approxi-
mates exp(ixatxphκ) exp(−ipatpphκ) ' exp[−i(patpph − xatxph)κ + o(κ2)]. To
first order this interaction creates a two-mode squeezed state. In particular
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Figure 7.2: GEoF and EPR variance vs. number of passes including
polarization rotations: +′es refer to the case r = 0, ×′es to r = 2%. Optical
density α0 = 25.

the growth is linear in n and thus provides an exponential improvement as
compared to the scheme without switching. The final state after n passes
follows from equation (7.3) by taking the scattering matrix to be S(κ)T -
corresponding to an interaction H ∝ −xatxph - in every second step. Figure
7.2 shows how the quantities of interest develop. In comparison with the
unswitched case, the GEoF is roughly doubled and the EPR squeezing is no
longer limited to 3 dB. In the limit of n → ∞ the resulting state approxi-
mates a maximally entangled EPR state which can be used as a resource for
continuous variable teleportation. This provides an attractive possibility to
establish a quantum memory for light since an unknown quantum state of
light can be teleported onto the atoms by performing a joint measurement
on the unknown input state and the optical component of the EPR state.

7.3 Disentangling pass and spin squeezing

After multiple passes (with or without switching of polarizations) neither
light nor atomic quadratures are squeezed separately. In order to obtain
such local squeezing an additional operation has to be carried out. One
possibility is to perform a destructive homodyne detection of light, which -
in the unswitched scheme - amounts to a QND measurement of the atomic
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Figure 7.3: Atomic squeezing after homodyne detection of light:
Unswitched scheme (QND measurement) ” + ” and switched scheme ”× ”.
ζ = r = 2%, α0 = 25.

p-quadrature and yields a squeezed state of atoms while the light is lost.
Performing the same measurement on one half of an EPR state - as it arises
in the switched scheme - also leaves the other system in a squeezed state.
Figure 7.3 displays the atomic squeezing after a homodyne detection of light
for both schemes. The switching provides a small advantage even though
the actual interaction has lost its QND character. The tradeoff between
squeezing and spontaneous emission noise has also been discussed in [135]
for a different type of interaction.

We now show that provided the coupling strength κ can be tuned to a
certain value, it is possible to disentangle the state created after several passes
by an appropriate last passage of the light pulse through the atomic cloud.
The basic mechanism is most clearly seen on the basis of pure states and for
the scheme without polarization switching, but it can be easily adapted also
for the other case. After n passes the atom and field operators have evolved

in the Heisenberg picture as given by ~R′ = S(nκ)~Rin where ~R is defined
as above. By switching to an interaction H ∝ xatxph a single additional

pass then yields a state ~Rout = S(−κ)T ~R′ and thus pout
at = p′at − κx′ph =

(1 − nκ2)pin
at − κxin

ph. For 0 < nκ2 ≤ 1 this last pass reduces the weight
factor of pat indicating the possibility of squeezing but at the same time it
feeds light noise into the atomic variance. With initial coherent states one
finds 〈(pout

at )2〉 = [(1− nκ2)2 + κ2]/2. This expression can be minimized with
respect to the value of κ, and the optimal value κ0 =

√
n− 1/2/n leads

to a squeezing of 〈(pout
at )2〉/〈(pin

at)
2〉 = 1/n − 1/4n2 in comparison with the

value 1/(n+1/2) achievable in a QND measurement with the same coupling
strength κ0. For large n the difference between these two expressions is
negligible. An important aspect of the decoupling scheme is that it is not
conditioned on a measurement result, and as a side benefit, light is actually
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Figure 7.4: Squeezing of light (” + ”) and atomic (”× ”) quadrature after
n entangling and a single disentangling step. Result from a comparable
QND measurement on the atomic system ” ◦ ”. ζ = r = 2%, α0 = 25.
Insert: Optimal value for coupling κopt = α0ηopt and theoretical magical
value κ0 =

√
n− 1/2/n (solid line). Atomic depumping η decreases with κ

while light suffers a constant loss of 2% per pass. Therefore the asymmetry
in squeezing of light an atomic variables.

simultaneously squeezed. Figure 7.4 shows the squeezing of both light and
atomic quadratures after such a disentangling step as well as the result of a
comparable QND measurement with identical coupling κ.

The experimental feasibility of the proposal is illustrated with the fol-
lowing example. Consider an ensemble of cold 87Rb atoms with two ground
magnetic states, F = 1, mF = ±1, forming the atomic two-level spin sys-
tem. The light is coupled to these states via D1 transition (HWHM natural
linewidth 2.5 MHz). Assuming a cylindrical atomic sample with the diam-
eter 100 microns and the length of 500 microns containing 2 × 106 atoms
corresponding to a typical dipole trap density of 5 × 1011cm−3, a resonant
optical density of 25 can be achieved with the atomic dipole crossection
σ = 10−9cm2. To meet the optimal condition of light absorption being much
less than the spontaneous emission probability, ε ¿ η, we choose the light
detuning greater than 100 MHz. Then ε is reduced to less than 1.5 × 10−3.
Since η/ε = Nph/Nat, we can now adjust the optimal value for η found from
theoretical graphs in Fig. 1-4 by choosing the optimal number of photons
per pulse. For η in the range of 0.01 − 0.1 the optimal photon number per
pulse is 107 − 108. This number of photons is close to optimal for shot noise
limited balanced detection. In order to fit the experiment on a table top
the physical length of light pulses should not exceed a few meters, since the
”tail” of the pulse should clear through the sample before its ”head” enters
the sample in the next pass. A 3m pulse length corresponds to about 30
MHz Fourier limited bandwidth which fits well with the detuning somewhat
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greater than 100 MHz. Switching of the interaction from X-type to P-type
for light can be achieved simply by passing the light through a λ/4 plate in
between the passes. For atoms this switching can be achieved by changing
the propagation direction of light by 90 degrees.

In summary, we have proposed a quantum interface between light and
atoms capable of performing valuable tasks in quantum information process-
ing. By means of several interaction steps and local operations it is possible
to efficiently create entangled and squeezed states. In particular one can
engineer an EPR state which can act as a resource for a quantum memory
for light. Furthermore we showed that without performing any measurement
our multipass scheme allows one to create at the same time spin squeezed
atoms and quadrature squeezed light.





Appendix A

Effective interaction

A.1 Step up and down components of the

dipole operator

We discuss here the decomposition of the dipole operator used in section 2.2.
The calculation is done for a F → F ′ transition with arbitrary spins F, F ′.
In the spherical basis, defined by

ε±1 = ∓(εx ± iεy)/
√

2, ε0 = εz,

the dipole operator can be expanded as

d =
+1∑

q=−1

dqε
∗
q .

The step up component of d for a F → F ′ transition can thus be expressed
as

d
+

F ′F = πF ′dπF

=
+1∑

q=−1

F ′∑

m′=−F ′

F∑
m=−F

〈F ′m′|dq|Fm〉|F ′m′〉〈Fm|.

In the convention of Brink and Satchler [136] the Wigner-Eckart theorem
states for the matrix elements

〈F ′m′|dq|Fm〉 = dF ′〈1q Fm|F ′m′〉
where 〈1q Fm|F ′m′〉 is a Clebsch-Gordan coefficient and

dF ′ = −e0〈IJ ′F ′||rel||IJF 〉

133



134 Effective interaction

is the reduced matrix element of the transition and the expression in round
brackets is a 3j-symbol. Altogether we find for

σ
+

F ′F = d
+

F ′F /dF ′

=
∑

q

∑

m′,m

〈1q Fm|F ′m′〉|F ′m′〉〈Fm|ε ∗q

=
√

2F ′ + 1
∑

q

∑

m′,m

(−)1−F+m′ ( 1 F F ′
q m −m′

) |F ′m′〉〈Fm|ε ∗q , (A.1)

where the expression in round brackets is a Wigner 3j-symbol. Occasionally
the second form for σ

+

F ′F is more convenient. The adjoint is denoted as
σ
−
FF ′ = (σ

+

F ′F )†. A useful property of these operators is

σ
+

F ′′F · σ−
FF ′ =

∑

m′′,m′

[∑
q,m

〈1q Fm|F ′′m′′〉〈1q Fm|F ′m′〉
]
|F ′′m′′〉〈F ′m′|

=
∑

m′′,m′
δF ′,F ′′δm′′,m′|F ′m′′〉〈F ′m′| = δF ′,F ′′πF ′ (A.2)

where we used the completeness relation of the Clebsch-Gordan coefficients.

A.2 Elimination of spontaneous emission modes

In order to eliminate the modes, which are only populated in spontaneous
emission events, we need to evaluate

Ẽ
−
se(r) =

∑

λ

∫

b̄

d3k ρ a†kλe
−i(kr+ωct)εkλ (A.3)

at the position of each atom. The Equation of motion for modes in b̄ is

ȧ†kλ = iωa†kλ +
iρd

~
∑

i

εkλ · σ̃+

ie
i(kri+ωct),

as follows from (2.7a), and the formal solution to this equation is

a†kλ(t) = a†kλ(0)eiωt +
iρd

~
∑

i

ei(kri+ωt)

∫ t

0

dt′εkλ · σ̃+

i(t
′)e−i(ω−ωc)t′ . (A.4)
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Inserting this solution into (A.3) and taking the field at position rj of the
jth atom, one finds

Ẽ
−
se(rj, t) =

∑

λ

∫

b̄

d3k ρ a†kλ(0)e−i[krj−(ω−ωc)t]εkλ

+
∑

i

∫ t

0

dt′
∑

λ

∫

b̄

d3k
iρ2d

~
e−ik(ri−rj)ei(ω−ωc)(t−t′)εkλεkλ · σ̃+

i(t
′)

The first line is the free evolving field, which we will denote by E
−
se,free. The

second line is the field created by atoms at position rj. According to assump-
tion (2.1) all terms for i 6= j will have a fast oscillating phase exp[−ik(ri−rj)],
such that they will make a negligible contribution. Physically, this amounts
to the assumption, that the sample is dilute enough, such that any sponta-
neously emitted excitation will leave the volume occupied by atoms, before it
can get absorbed by a neighboring atom. We thus keep only the term i = j,
corresponding to the radiation back action of the atom on itself. Moreover,
only field modes around ωc will be populated, and for these modes we assume
a flat coupling to atoms. The result is

Ẽ
−
se(rj, t) = E

−
se,free(rj, t)

+
iρ2dω2

c

~c3

∑

λ

∫
dΩεkλ ⊗ εkλ

∫ t

0

dt′
∫

dωei(ω−ωc)(t−t′)σ̃
+

j(t
′) (A.5)

In the last line we used the notation w ·xy ·z = wx⊗y z for the Cartesian
tensor product of vectors. Neglecting Lamb shifts, the integral over time and
frequencies yields

∫ t

0

dt′
∫

dωei(ω−ωc)(t−t′)σ̃
+

j(t
′) = πσ̃

+

j(t).

In the integral over angles in Equ. (A.5) one should bear in mind that it
does in principle not enclose a small cone of angle θ around kc. However, it
is easily checked that

∑

λ

∫

b̄

dΩεkλ ⊗ εkλ =
8π

3
1l−O(θ2) ' 8π

3
1l,

i.e. the anisotropy introduced by ”cutting out” the forward scattering modes
enters only in second order of θ, the opening angle for scattering modes, such
that we can neglect it. We find for the field at the position of atom j

E
−
se(rj) = E

−
se,free(rj) +

idω3
c

6πε0c3
σ̃

+

j, (A.6)
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where we used ρ =
√
~ω/2ε0(2π)3.

Finally, if we use that - under the very same assumptions used above -
the two point correlation function of the vacuum field is given by

〈E−
se,free(ri, t)⊗ E

+

se,free(rj, t
′)〉 ' ω3

c~
6πε0c3

δi,jδ(t− t′)1l

it is justified to introduce the Langevin operators

f
+

j(t) =
d

~√γ
E
−
se,free(rj, t),

where we used the spontaneous emission rate γ defined in (2.13). Combining
the last equations we end up with (2.12) and (2.14).

A.3 Decomposition of atomic polarizability

operator

In this section we derive the decomposition of the atomic polarizability tensor
operator into its scalar, vector and tensor part. Starting point is expression
2.22,

↔
α =

∑
F ′(d

2
F ′/~∆F ′) σ

−
j,FF ′⊗ σ

+

j,F ′F . First, by means of (A.1) and the
adjoint relation we have

σ
−
j,FF ′⊗ σ

+

j,F ′F=(2F ′ + 1)
∑
p,q

∑
n,m

∑

m′
(−)2(F−m′) (

1 F F ′
p n −m′

)

× (
1 F F ′
q m F ′

) |Fn〉〈Fm|εp ⊗ ε ∗q .

This expression can now be split into its operator and tensor part by inserting
the identity

2∑

k=0

k∑

l=−k

(2k + 1)
(

1 1 k
−q p l

) (
1 1 k
−q̄ p̄ l

)
= δp,p̄δq,q̄.

such that

σ
−
j,FF ′⊗ σ

+

j,F ′F = (2F ′ + 1)(−)F−F ′
∑

k,l

(2k + 1)

[∑
p̄,q̄

(−)q̄
(

1 1 k
−q̄ p̄ l

)
εp̄ ⊗ ε ∗q̄

]

×
[∑

n,m

(−)F−n
∑

q,p,m′
(−)F ′+2−p−m′−q

(
F ′ 1 F
−m′ q m

) (
1 1 k
−q p l

) (
1 F ′ F
−p m′ −n

) |Fn〉〈Fm|
]
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The expression for the operator part, second line, can be further simplified
by means of the identity
∑

µ1,µ2,µ3

(−)l1+l2+l3−µ1−µ2−µ3
(

l2 l3 j1
−µ2 µ3 m1

)(
l3 l1 j2
−µ3 µ1 m2

)(
l1 l2 j3
−µ1 µ2 m3

)
= ( j1 j2 j3

m1 m2 m3
)
{

j1 j2 j3
l1 l2 l3

}
.

Changing 3j-symbols into Clebsch-Gordan coefficients we get

σ
−
j,FF ′⊗ σ

+

j,F ′F = (2F ′ + 1)
(−)F ′−F−1

√
3(2F + 1)

2∑

k=0

(2k + 1)
{

F k F
1 F ′ 1

}

×
k∑

l=−k

[
F∑

n,m=−F

〈Fmkl|Fn〉|Fn〉〈Fm|
][

1∑
p,q=−1

〈1p̄ kl|1q〉εp ⊗ ε ∗q

]

(A.7)

The operators in the second line are irreducible tensor operators of rank 0, 1
and 2. As is well known, they can in turn be related to angular momentum
operators such that the whole expression can be written as

σ
−
j,FF ′⊗ σ

+

j,F ′F =
(−)F ′−F−1

√
3(2F + 1)

∑

k

(2k + 1)
{

F k F
1 F ′ 1

}
ck

↔
Tk (A.8)

where

c0 = 1, c1 =
1√

2F (F + 1)
, c2 = − 3√

10F (F + 1)(2F − 1)(2F + 3)

and, in Cartesian coordinates,

↔
T0 =




1l 0 0
0 1l 0
0 0 1l


 =

↔
1l,

↔
T1 = i




0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0


 = iF× . ,

↔
T2 = −




2F 2
x − 2F2/3 2FxFy − iFz 2FxFz + iFy

2FyFx + iFz 2F 2
y − 2F2/3 2FyFz − iFx

2FzFx − iFy 2FzFy + iFx 2F 2
z − 2F2/3.




= −2F⊗ F− iF× . + 2F (F + 1)/3
↔
1l.

Equality of expressions (A.7) and (A.8) can be easily verified by comparing
matrix elements. If, in addition, we use that

d2
F ′ = |〈J ′IF ′||d||JIF 〉|2 = (2F + 1) { J ′ F ′ I

F J 1 }2 |〈J ′||d||J〉|2 (A.9)
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and
1

∆F ′
=

1

∆F+1

ωF+1 − ωc

ωF+1 − ωc − (ωF+1 − ωF ′)
=

1

∆

∆

∆− δF ′
,

where we abbreviated ∆ = ∆F+1 and δF ′ = ωF+1 − ωF ′ , the overall polariz-
ability can be written as

↔
α =

|〈J ′||d||J〉|2
~∆

2∑

k=0

ak(∆)
↔
Tk,

which is Equ. 2.24. The coefficients are given by

ak(∆) = −(−)F ck(2k + 1)

√
2F + 1

3

[∑

F ′

∆(−)F ′

∆− δF ′
(2F ′ + 1) { J ′ F ′ I

F J 1 }2 {
F k F
1 F ′ 1

}
]

.

(A.10)

In the asymptotic limit of large (blue) detuning, −∆ À δF ′ , the sum in
square brackets can be simplified by means of

F+1∑

F ′=F−1

(−)F ′(2F ′+1) { J ′ F ′ I
F J 1 }2 {

F k F
1 F ′ 1

}
= (−)−(2J+2F+J ′+I+k) { J I F

F k J }
{

J J k
1 1 J ′

}

to get

ak = lim
∆→−∞

ak(∆)

= −(−)−(2J+F+J ′+I+k)ck(2k + 1)

√
2F + 1

3
{ J I F

F k J }
{

J J k
1 1 J ′

}
. (A.11)

From this expression it is evident that a2 has to vanish because the triple
{J, J, k} = {1/2, 1/2, 2} does not satisfy the triangle inequality. For the
particular case of the cesium (I = 7/2) D2-line at F = 4 → F ′ = 3, 4, 5 the
asymptotic values of the non-vanishing coefficients are

a0 = 1/6, a1 = 1/48.
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