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“Yes There Are Two Paths You Can Go By,

But In The Long Run,
There’s Still Time To Change The Road You're On.”

Led Zeppelin, Stairway To Heaven






Signatures of CP-Violating Electroweak Penguins
in Flavor Physics

Abstract

We study several non-leptonic decays in a scenario of enhanced electroweak penguins.
Beginning with the decays B — 7w, we find them to be well described within the SM.
Some anomalous signatures can be explained in our scenario by hadronic interference
effects. We also determine the CKM angle v from B — 77, which we find as v = 74 £ 6°.
The small discrepancy with the values obtained from unitarity triangle fits can be at-
tributed to small new physics effects in B3— BY mixing. We then predict the CP violating
asymmetries for B — 7%7°. Taking the hadronic parameters and + from the B — 7w
system, we use the SU(3) flavor symmetry of strong interaction to fix the corresponding
hadronic parameters in the B — wK system. We find agreement in the predictions
for those observables that are only marginally affected by electroweak penguins, while
the description of those quantities where they play a significant role is only moderately
good. We then determine the electroweak penguin parameters required to describe the
data and find an enhanced electroweak penguin contribution with a large CP violat-
ing phase. Exploring next the implications of a simple scenario, where new physics
effects enter only in the electroweak penguins, we find that the possible enhancement
of these amplitudes is already strongly constrained by the measurement of the inclusive
decay b — slTl~. Therefore, we discuss the implications of future developments in the
B — wK data for several rare K and B decays, where the strongest modification can
be seen in the decays K+ — wFvi and especially K7, — 7vi, which can be enhanced
by an order of magnitude with respect to its standard model value. Other prominent
signals of these scenarios are an enhancement of K; — 7"~ and a strong departure
of sin 28| kr,» from its standard model value, as well as a rather strong sensitivity of the
CP asymmetries AYL(By — n°K°), ABX(B; — 7°K?), AL (BT — 7°K#) to the values
of the electroweak penguin parameters. We then comment also on the CP asymmetries
of B — ¢Kg. Next, we analyze in detail the rare decays K;, — 7’vi and K+ — ntvi,
where the theoretical uncertainties are very small, since the hadronic matrix elements
can be extracted from tree-level decays. Here, we focus in the standard model prediction
for both decays, which we analyze in the present and make projections for the predictions
in the future. This demonstrates not only the significance of CKM uncertainties, but
also the impact of the NNLO corrections to the charm component. We then investigate
the potential of both decays to constrain the unitarity triangle, where we again project
onto some future measurements. We find that clean and precise determinations of 7
and sin 23 become possible and that the complete unitarity triangle can be constructed
within the SM to a respectable precision.
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Chapter 1

Introduction

The goal of particle physics is to find an ultimate description of nature. This ultimate
description, that is hoped to lie at the heart of all processes, may be either a physical
theory, or simply a basic principle. On the way to this final aim, particle physicists
have by now arrived at the standard model (SM) of particle physics [1-3], which is, in
a sense, both: From the underlying principles of relativity, quantum theory and gauge
invariance one has constructed a theory that incorporates strong, electromagnetic and
weak interactions, thereby describing phenomena from the binding and decay of the
atomic nucleus to everyday electricity. However, the fourth known force, namely gravity,
has not been included, and is still a challenge for field theory. Furthermore, there are a
number of unknown parameters in the model, that should, at best, come out of the final
theory. Despite these shortcomings, the SM has so far passed every test successfully.

Nevertheless, there are some hints as to which kind of physics may lie at the next
step towards a more general theory, such as the observed unification of forces that is
achieved if a new symmetry, supersymmetry, is added, as well as the possibility that the
neutrino masses are generated by the see saw mechanism, which is also straightforwardly
implemented in grand unified theories (GUTs). A final problem of the SM is that the
scalar particle that appears, the Higgs boson, which has not yet been found, is sensitive to
the highest energy scale in the theory, and therefore should have an extremely large mass.
This large mass is excluded by electroweak precision tests as well as the requirement
that the Higgs should be light enough to unitarize the theory. The introduction of
supersymmetry, Large Extra Dimensions or Little Higgs models can ameliorate this
problem. Unfortunately, none of these appealing possibilities has been confirmed, but
the Large Hadron Collider (LHC) at CERN should reach energies high enough to uncover
the signals of most of the proposed extensions of the SM, which would, for example, be
manifest in the appearance of the superpartners or Kaluza Klein modes, in the case of
extra dimensional theories.

In addition to these direct searches, the effects of physics that lies beyond the SM can
be detected in indirect searches, where the heavy particles that are added to the SM are
present in loop corrections. In this manner, it was possible to estimate rather precisely
the mass of the top quark before it was actually detected. These indirect searches include
electroweak precision measurements such as the p parameter, which is, roughly speaking,
given by the ratio of the W and Z mass, and also flavor changing neutral current (FCNC)
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processes, that occur at loop level only in the SM [4]. Therefore, they offer an appealing
way to look for new physics, since they are measurable at rather low energies. The first
classic application of this idea was the estimate of the charm quark mass [5] by Gaillard
and Lee from Amp, the mass difference in the neutral kaon system.

However, flavor physics is also interesting for two other reasons: Firstly, it may give
some insight into the flavor structure of the SM, which is, so far, just put in by hand
and therefore contains a number of free parameters, and secondly, the flavor sector is
the dominant source of CP violation in the SM. It arises from a complex phase in the
unitary Cabibbo Kobayashi Maskawa (CKM) [6,7] matrix, which describes the mixing
of quark flavors in the SM, and was first discovered in the mixing of the neutral kaon
system. Here, the neutral K° and its antiparticle can be combined to form approximate
CP eigenstates, the long lived K, and the short lived Kg. The fact that both are only
approximate CP eigenstates, as observed by the decay of the (dominantly CP odd) K,
into the (CP even) final state 777~ reflected then the first sign of CP violation [8]. Later,
also direct CP violation in the kaon system was observed [9], as well as CP violation in
the B meson system, where it has been found in the mixing [10,11] and very recently
also in the decay [12,13]. In addition, there can be CP violation in the lepton sector if
Majorana neutrinos are added, but here the experimental verification is still missing.

Having now established CP violation, it has become the main goal of flavor physics to
determine and constrain the elements of the CKM matrix, which is conveniently done in
the context of a “unitarity triangle” which follows from the unitarity of the CKM matrix.
Here, one makes use of the increasingly precise data concerning, in particular, the B
meson system, from the B factories BaBar and Belle, for reviews on the status of quark
flavor physics see [14-18]. Unfortunately, the task is complicated by the fact the decaying
quarks are not directly accessible, since they are bound into hadrons. The resulting
strong interaction effects are described in terms of a weak effective Hamiltonian [19] in
which the non-perturbative hadron dynamics are encoded in matrix elements of local
operators. While there exist several strategies to tackle the problem of estimating them,
these hadronic uncertainties complicate severely the predictions of non-leptonic decays,
such as the B — 7 and B — wK decays, which will be the subject of large parts
of this thesis. Still, there are a number of increasingly precise constraints that allow
for a construction of the UT, which does not yet show any conclusive sign of unitarity
violation.

On the other hand, there are some potential hints for new physics in the flavor
sector, as well as a number of interesting decay channels that have not yet been tested
at all, such as the theoretically clean decays K — 7w and B,jq — ptp~. Among the
potential signals of new physics or, at least, inconsistencies with the SM description, the
most important ones are the following:

e The measured values of the BY — 7%7% branching ratios from BaBar and Belle
point to rather large values, which may be either a signal of new physics or a
failure of the theoretical tools used to describe the decays.

e In the B — wK decay system, the branching ratios of those decays that receive
significant contributions from electroweak penguin topologies tend to be described
rather poorly. The same is true for the CP symmetries, where also the CP asym-



metry of BY — 7t K~ is interesting, in which direct CP violation in the B meson
system was finally established. It is not affected by electroweak penguins, but
poses a challenge to some of the QCD methods used.

e The mixing induced CP asymmetry in B — ¢Kg is, in the SM expected to be
equal to sin2(3, where (3 is one of the UT angles. There has been an ongoing
discussion for quite some time now, since the data, especially from Belle, may
favor significantly different values. However, the data from BaBar and Belle have
some inconsistencies among themselves and are moving towards the SM prediction,
so that no conclusive statement is possible yet. Similar comments apply to other
s penguin transitions, such as B — 7°Kg, B — nKg and others.

Of course, further data are required in all of these cases, before the situation can be
clarified. Still, it is interesting already now to explore the potential implications, in
order to find, what kind of potential new physics these signals may point to, and to what
extent the methods used to control the non-perturbative effects are adequate. Concerning
these methods, there has been considerable progress in recent years. First, the notion
of factorization for hadronic matrix elements has been put on a QCD based footing
within the framework of QCD factorization [20,21], while, in parallel, perturbative QCD
(PQCD) [22,23] has been developed, where even further perturbative calculations are
performed. Subsequently, the idea of QCDF has been extended into an effective theory
language [24,25]. The resulting effective theory, soft collinear effective theory (SCET)
allows for all-order proofs of factorization. While the global description of non-leptonic
decays has therefore advanced, it remains to be seen whether all or any of these methods
have the predictive power to confront extremely precise data, since all rely on some
simplifying assumptions.

Therefore, in this thesis, we will study in detail the above mentioned discrepancies
within the B — 7w and B — 7K decays. Instead of the theoretical methods mentioned,
we will rely on the flavor symmetry of the strong interactions and use input from data
to determine the hadronic parameters and weak phases involved. Additional theoretical
tools will only be required for an estimate of the symmetry breaking factors. The analysis
will consist of several steps [26,27], introducing additional assumptions in each one, that
can always be tested. Explicitly, we proceed as follows:

e Beginning with the B — mm decays, we use isospin symmetry to parameterize the
decay amplitudes in terms of several hadronic parameters as well as weak phases.
Using then the data for the branching ratios as well as the CP asymmetries for
BY — 7w~ allows for a theoretically clean determination of all hadronic param-
eters if the CKM angle v is used an input. Under the the assumption of SU(3)
flavor symmetry of strong interactions (and including the factorizable breaking
effects) one can use data also from B} — 77K~ to additionally fix 7. We find
v = 73.972% [28,29], which is somewhat higher than the value obtained from UT
fits. This low value of 7 is driven largely by the new, low value of sin23 from

xX(By — J/¢Ks), which is in some friction with the other input used. There-
fore, we consider our value to be the “true” ~ and construct a unitarity triangle
from it, using also |V,;/Ve| as input. The discrepancy with sin 23|;/4xs can be
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attributed to small NP corrections to BY — BY mixing. Finally, we predict the CP
asymmetries in By — 7°7% where we find agreement with the data, albeit with
large uncertainties. The large experimental BY — %7 branching ratio is then a
purely hadronic effect induced through large non-factorizable terms.

e For the next step, we move to the B — 7K system. In contrast to B — 7, these
decays are loop dominated and therefore much more sensitive to NP. In addition,
there are sizeable contributions from electroweak penguin topologies, which are
a favored place for new physics to enter. In order to determine all the hadronic
parameters involved, we invoke again the SU(3) flavor symmetry and assume also
that penguin annihilation and exchange topologies are negligible. The electroweak
penguin contribution remains undetermined, but can be calculated from the Wilson
coefficients of the effective Hamiltonian, which are calculable in the SM and in any
of its extensions. We find satisfactory agreement within the SM for those quantities
that are not affected by electroweak penguins, while the description of those where
they contribute fails. We find the values of the corresponding parameters that are
required to fit the data and obtain an enhancement of the electroweak penguins,
which is accompanied by a large CP violating phase with a negative sign.

e In order to further test the scenario of enhanced electroweak penguins and to
distinguish it from potential hadronic effects in B — 7K, we finally study the
impact that the corresponding parameters have on several extremely clean (semi-
)leptonic rare decays, such as the inclusive b — si™1~ decay, as well as K1, — 7°vi,
K* — 7nfvp and B,y — p*p~, among others. In order to obtain a connec-
tion to these decays, we specify a simple and predictive scenario, where NP enters
only in the C function, that, within the SM, describes the electroweak penguin.
The connection required is then established by inverting the renormalization group
equations (RGEs) for the corresponding Wilson coefficients, which are given up to
next to leading order. With the resulting values for the C' function, we find that
we overshoot the bound coming from b — sl™l~. Therefore, we maintain that
the B — mK data point to NP, but consider several modifications of the present
data set, that would satisfy this bound. Calculating then the rare decays in these
scenarios shows, that they clearly distinguish and test the scenarios. In particular,
we find that the branching ratio of K;, — 7% can be enhanced by approximately
an order of magnitude with respect to the SM. In combination with a measure-
ment of KT — wtvi, it also allows to fix the NP scenario completely, subject
to several ambiguities that can be resolved by considering additional processes.
We then reconsider the B — wK observables in these scenarios and find that the
CP asymmetries A%X(B; — 7°Ks), AUL(By — 7°Kg) and AdL(BE — 7°K®) are
very sensitive to magnitude and sign of the electroweak penguin parameters, where
we find also that the current data are somewhat better described by a positive sign
of the phase. Finally, we comment also on A% (B; — ¢Kg), where we, however,
do not expect a large effect.

The assumption of SU(3) flavor symmetry can be tested with several predictions such
as the predictions of the B — wK observables without contributions from electroweak
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penguins. We further study the implications of larger SU(3) breaking effects and find
that they can not explain the present data. Furthermore, we will show how the size of
penguin annihilation and exchange topologies can be tested at LHCb.

Let us point out here that the optimal strategy would be a different one than the
one that we are pursuing. If all the data from the rare decays were available, they would
by very well suited to constrain and determine the new physics scenario, if any signal is
seen. Using the parameters thus obtained, one could then test the hadron dynamics in
the non-leptonic decays. Unfortunately, with the data at hand, it is necessary to follow
our route of the analysis, which still allows several stringent tests to be performed.

As we have seen, the decays K;, — 7% v and K+ — mTvi are a sensitive probe of our

new physics scenario. In addition, they are theoretically extremely clean, since the op-
erator matrix element required can be extracted from the tree level decay K+ — wleTv.
Additional subleading contributions have been calculated, and by now also the calcu-
lation of the NNLO part of the charm component has been completed [30]. Therefore,
in the second part of this thesis, we analyze both of these decays with respect to the
SM prediction and their potential to determine CKM factors, if they are measured. In
the course of this analysis, we begin with the present scenario, where we take the CKM
factors from a UT fit and make predictions for both decays. They are [31]

BR(K' — ntvp) =777+ 1231071 (1.1)

BR(K}, — %) = 3.05+0.56 - 107! (1.2)

Here, the largest uncertainties arise from the CKM factors. As a contrast, the present
experimental numbers read [32, 33]

BR(K' — ntwp) = 14773 1071 (1.3)

BR(Ky, — 7vp) <2.9-107"  (90% confidence) . (1.4)

The experimental number for K+ — 77 vi is then about twice as large as the SM predic-
tion, but still compatible within the uncertainties. On the other hand, the experimental
bound for K7, — 7°vi is several orders of magnitude above the corresponding prediction.
As a next step, since it will take several years to obtain precise values of the branching
ratios, we project into the future, by assuming better known CKM factors and other
inputs. This shows, which kind of precision is required to predict the branching ratios
at the level of 5 % or less.

Finally, assuming that the branching fractions are measured, we then investigate
their potential to determine CKM factors. In particular, a measurement of the purely
CP violating decay K; — 7lvi gives the theoretically cleanest determination of the
CP violating UT parameter 7. On the other hand, combining measurements of both
decays, one obtains a formula for sin 23 that is valid not only in the SM, but in any
extension where no new CP violating phases occur. Additionally, it is not afflicted with
uncertainties stemming from |V,;|. This measurement can therefore easily be used to test
the notion of minimal flavor violation (MFV), which means precisely that there are no

5



new CP violating phases and also that there are no new operators present, as compared
to the SM. Finally, we show how the complete unitarity triangle can be constructed from
the measurement of both decays.

The remainder of this thesis is organized as follows: In Chapter 2 we give a brief review
of the SM and the most important background on flavor physics. In this context, we
review also the effective theory description of weak decays and give the renormalization
group equations for the Wilson coefficients, that are required later. Chapter 3 then
contains our analysis of the B — 7 decays, where we also briefly compare our results
to those obtained from alternative approaches. Next, in Chapters 4 and 5 we turn to
our new physics analyses. In Chapter 4 we begin with the B — 7K system and study
its implications for rare decays in Chapter 5. Finally, we study the K — 7wvv decays
in Chapter 6 and conclude in Chapter 7. In the appendices, we collect the theoretical
expressions for all observables and an additional test of flavor symmetry that is provided
by the B, — K1TK~ system.



Chapter 2

Theoretical Background

2.1 CP Violation and the Unitarity Triangle

2.1.1 Brief Review of the Standard Model

The Standard Model (SM) of Particle Physics is todays accepted theory of electroweak
and strong interactions. It is a SU(2), x U(1) x SU(3)¢ gauge theory, in which the weak
force and electromagnetism are, in a sense, unified by a mixing of the corresponding
SU(2)r and U(1) gauge bosons'. Here, the U(1) of hypercharge is an abelian gauge
theory, while the SU(2); and SU(3)¢c are both non-abelian. The particle content of the
SM can then be classified as follows:

e Fermions: The SM fermions fall into two classes, leptons and quarks. The leptons
are subject only to electroweak interactions, while quarks also carry color and are
thus affected by strong interactions. In both classes, there are three left-handed
doublets under the SU(2), which read as follows:

(), (), (), 2.1)
(), G G), o2

There are also the corresponding right-handed fields, which transform as singlets.
The primes added to down-type quarks correspond to the fact that weak eigenstates
and mass eigenstates need not be (and are not) the same. This will be discussed
further below.

e Vector bosons: There are 12 vector bosons mediating the gauge interactions: 8
gluons for the strong interaction, 3 W bosons for the weak interaction and one B
for the U(1) of hypercharge. As mentioned above, the gauge bosons of the weak

!This should not be confused with a true unification of forces, since there are still two separate
parameters corresponding to the two coupling constants.
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and hypercharge gauge groups mix, specifically, the neutral W? and the B mix to
the physical Z° and A gauge bosons

Z%\ [ cosby —sin by w3 (2.3)
A ) \sinfw cosbOw B )’ '
where sin? 6y = 0.23120 is the sine of the weak mixing angle.

e Scalar Higgs Particle: A Lagrangian consisting only of fermion and gauge con-
tents does not allow for fermion masses or for massive W and Z bosons, if invariance
under the SM gauge group is required. This problem is circumvented by the intro-
duction of a scalar Higgs particle which gives the corresponding masses through
electroweak symmetry breaking. In effect, the Higgs acquires a vacuum expectation
value (VEV), which breaks the symmetry SU(2), x U(1)y — U(1)em, so that the
photon explicitly remains massless. Additionally, it unitarizes the WW scattering
amplitudes, which diverge in a theory without a scalar. This Higgs scalar is the one
missing ingredient of the experimental verification of the SM as it stands. So far,
there exists a lower bound from LEP of m;, > 114GeV, while the indirect searches
from electroweak precision tests seem to point to a potentially light Higgs. This
gives some confidence that it should be findable at the LHC. Another question
concerning the Higgs is the stability of its mass: Quantum corrections to scalar
particles are quadratically divergent and are therefore of order of the cutoff scale.
This leads to one important motivation for supersymmetry, since the superpart-
ners can cancel the resulting divergences. On the whole, electroweak symmetry
breaking, though a very interesting and hot topic, will not be of much relevance
for the rest of our work and we will not discuss it in any further detail.

Another interesting aspect, that will be extremely relevant for what follows, are the in-
teraction vertices of gauge bosons and fermions, concerning, in particular, the possibility
of flavor changes. Since the only transformations that keep the Lagrangian invariant are
unitary transformations between the flavors, the neutral current will always conserve fla-
vor at tree level, while the charged current vertex can have flavor changing contributions.
Concentrating on the quark sector, this vertex is given by

92 tr—
£CC: ﬁ(J:W—F“‘I'JHW 'u), (24)
where i
Jy = (ad)y_a+(es)y_a+ (t)y-a (2.5)

denotes the charged current and g is the SU(2), coupling constant. The subscript V — A
corresponds to a Dirac structure of v#(1 — +°), reminding us that the weak interactions
couple only left-handedly. Here, the primed quarks are weak eigenstates, which can
be obtained from the mass eigenstates by a unitary transformation with the Cabibbo
Kobayashi Maskawa (CKM) Matrix

d’ Vid Vs Vb d d
s =\ Vea Ves Vb s | =Vexkm | s |- (2.6)
v Via Vis Vi b b

The CKM Matrix will be the central object in much of the following work.



2.1.2 Wolfenstein Parameterization and the Unitarity Triangle

There are several possible parameterizations of the CKM matrix, such as the Standard
Parameterization of the Particle Data Group [34], but the parameterization we will use
in the following is the Wolfenstein Parameterization [35], which makes the hierarchy
of matrix elements very transparent. The basic observation is that the CKM element
Vs = 0.22 is very small and allows for an expansion of the matrix elements in A = V.
Then, the leading order form of the CKM matrix is

- A AN (g —in) )
Vexkm = -\ — )‘7 AN2 + O()\ ) (27)

AN3(1 — o —in) —AN? 1
The extension of this definition to higher orders in A is not unambiguous, but by the now
the proposal of [36] has been generally accepted. Here, in particular, the parameters p

and 7 are generalized to

@ZQ(I__)> 77:77(1__)’ (28)

while the explicit form of the CKM elements in this parameterization can also be found
in [37]. In any case, it is a unique feature that the hierarchy of the CKM matrix is such
that the largest elements are the diagonal ones and the off-diagonal elements become
increasingly smaller. This pattern is not shown in the sector of leptonic mixing. Another
extremely important aspect of the CKM matrix is the fact that it is, in general, imaginary,
as represented by the parameter 7. An imaginary part of the CKM is responsible for
CP violation, and is, in fact, the only source of CP violation in the SM, apart from the
analogous mixing terms in the leptonic mixing? sector and an additional QCD vacuum
term, which is found to be small (this is called the “strong CP problem” and will play
no further role in our discussion).

While at least some of the CKM elements can, in principle, be determined from the
decay vertices, it is very instructive to consider another quantity, namely the unitarity
triangle (UT). This is obtained by writing down the nine unitarity relations for the
CKM matrix. All six of the off diagonal relations represent different, but commensurate,
triangles. The most interesting of these is the one described by

ViaVay + VeaVy + ViaViy = 0, (2.9)

because all three terms in (2.9) come with the same power of A\. Usually, the triangle is
normalized by V_,V; and is then displayed in the p — 7 plane as in Fig. 2.1.

The angles # and v correspond directly to the phases of the CKM matrix elements
Viq and V,,, respectively, i.e.

Via = [Viale ™, Vip = [Viple™, (2.10)

while « is then given by the unitarity relation o+ 3+ v = 180°. On the other hand, the
sides of the UT are given by

‘ d *b‘ = — A1 ub
Ry= NVl _ e )1
’ ‘cd c#I()‘ ¢ ! ( 2))‘ iCb

, (2.11)

2These only exist in SM extended by right-handed neutrinos
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Y B
C=(0,0) B=(1,0)

Figure 2.1: Unitarity triangle and the p — 7 plane.

_ ViVl Via
| c| )\ ‘/cb

so that they are directly measurable in terms of CKM elements.

Let us conclude this section with some relati_ons that will be used later in this work.
First, for convenience, often quantities )\(J as A\, G) = iaV;; are used. Here, j corresponds
to a b or s quark, depending on whether B or K mesons are discussed and 7 is an
arbitrary up-type quark. The combinations A; G) usually appear when FCNC processes

(1—-202+7 , (2.12)

are calculated. Specifically, for K decays, the real and imaginary parts of )\Z- fori=c,t
are given by

ImAY = —ImA®) = A2\ =| V,, || Vi | sin§ (2.13)
>\2
ReA® = —\(1 — 5) (2.14)
)\2
Re), = —(1 — ?)A2)\5(1 —0). (2.15)

The corresponding term for ¢ = u can always be replaced using the unitarity relation
equivalent to (2.9) that applies to the CKM elements with the strange quark as the down
type member.

The parameters ¢ and 7 can be expressed in terms of the UT parameters as

0=1— R;cos[, = Rysinf, (2.16)
while the side R, is given in terms of the angles as

sin 7y

R=—F-—. 2.17
TR 240
The corresponding formulae for R, are
0 = Ry cos7, 7= Rpsinvy (2.18)
sin (3
Ry=———. 2.19
TR (219

10



These formulae allow for the complete construction of the UT, corresponding to the
(B,7), (Rp,7), (R, B) strategies introduced in [38]. In particular, the (3,) strategy is
even theoretically clean, since 3 and v can be measured without hadronic uncertainties,
but might be polluted by new physics contributions that enter into BY— B9 mixing. This
point will be discussed further in later sections of this chapter. Also, we will use these
formulae to obtain certain CKM factors from the K — wvr decays in Chapter 6.

2.1.3 Phenomenological Status of the Unitarity Triangle

In this section, we shall very briefly review the phenomenological constraints and pa-
rameters that are used to determine the values of the UT in the p — 7 plane, in order
to show how some of our later results fit in. We will be extremely brief, and refer the
reader to the excellent reviews and works [17,39,40] for more information. In general,
one can proceed as follows in order to construct the UT:

e Use the CKM matrix elements |V,s|, |Vis| and V| as determined from tree level
decays. Here, |V,4| can be found from tree level kaon decays, T decays and hyperon
decays, where the best present value is given by |V,,5| = 0.2254£0.001 [41]. Similarly,
|V and |V,p| are determined from tree level b — w(c)lv transitions. In both cases
there are two competing strategies namely inclusive and exclusive determinations
and there are very heated discussions on which of the two strategies to prefer. This
is particularly relevant in the case of |V,;|, where the two values differ significantly.
We use the values of [40], i.e. |Vip| = (4.2240.20)1073 and |V,| = 0.0415 £ 0.0008.
For the interesting quantity |Vy;/ V.|, this corresponds to |V,,/Ve| = 0.102£0.005.

e At this point, one can decide about which other constraints to use. A clean and
pure SM fit is obtained if only the tee level determinations of v from B — DK is
used. This corresponds to a true tree level determined UT without any pollution
from new physics. Additional constraints used are sin23 from B — J/VKg (we
will come back to this below), the CP violating parameter ex, R; from AM,; and
AMy/AM; as the “classical” constraints, as well as the newer constraints « from
B — p,m and B — pp, cos2( from B — J/UKY, sin(26 + v) from B — D and
B — Dp as well as 3 from B — D% Again we refer the reader to [39,40], where
in particular, the corresponding web page provides references and numerical input
for all these constraints.

e The constraints discussed above can be used in different combinations for a fit. We
show the situation for a fit with several constraints in Fig. 2.2. The main message
from this picture is that the unitarity triangle is rather well constrained and that
no significant departures from unitarity have been found yet. One should keep in
mind, however, that only very few of the constraints used are actually very precise
as of now. Therefore, there is still room for for new physics to appear.

11
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Figure 2.2: Complete fit [40] for the unitarity triangle in the p — 7 plane. The results are shown at
68% and 95% confidence level.

2.1.4 CP violation in the Standard Model

As noted above, the main source of CP violation in the Standard Model is the imaginary
part of the CKM matrix. Therefore, an obvious quantity to measure CP violation is the
CP asymmetry of flavor violating decays, for example, in the case of B decays

D(BY(t) — f) —T(B(t) — f)

—¢ , (2.20)
I(Bg(t) — f) + T(BY(t) — f)

acp (t) =

where we have assumed the particularly simple and interesting case of the final state
being a CP eigenstate. Taking into account the time evolution [15,42,43] of the B
meson states, the CP asymmetry can be decomposed into a mixing induced and a direct
component:

acp(t) = AdCiE(Bq — f) cos(AM,t) + ABX(B, — f) sin(AM,t), (2.21)

where the mixing induced and direct CP asymmetries can be calculated from the decay
amplitudes as

. 1-— |§(q) 2 . 2Im§(Q)
AB (B, — f) = ——L L and AR(B, — f) = ——L. (2.22)
CP '\~ 14 |€J(ﬂ)|2 CPp \*~a 14 |§](cq) 2

12



We are following the notation of [15], so that

e = 00, A0 D) o oy, A 2 ) (223
A(BY — f) f A(BY — f
where
95\?12 =7+ 2arg (ViVa) — ocp(By) (2.24)

and ¢p(B,) is the convention dependent CP phase of the B meson. The phase @S\Z[)u

appears naturally as the phase of Bg — Fg mixing. As Vj, is real to a very good approx-
imation, the phase of BY — BY mixing is simply ¢4 = 2.

Let us make this formalism a bit more explicit by showing two examples. The first
is the above mentioned measurement of sin2( [44] from B} — J/1¥Kgs: Due to CKM
factors, the amplitude for this decay is entirely dominated by the tree amplitude and is
given by

)\2

A(BY — JYKg) = (1 — 7)AZA (Acc + AS (2.25)

pen)

where we have decomposed the amplitude according to weak phases and therefore in-
cluded also the Afjm piece. Since only amplitudes with one single weak phase dominate,

the CP asymmetries are very simple and given by
ayrs = —ASS(Bg — J/1Kgs) = —sin[—(¢q — 0)] = sin 28, (2.26)

making the mixing induced CP asymmetry a very clean measurement of this UT angle,
spoiled only by two very small effects: First, there are additional contributions due to
the K% KO mixing phase, which are given by ¢ = 2arg(V,;V.4) and are negligibly
small in the Wolfenstein parameterization. The second correction stems from the contri-
butions of the penguin diagrams. It has been estimated recently [45,46], with the result
that these penguin contributions may actually be becoming as important as the current
uncertainties of the B factory data. The current experimental status is

0.722 £ 0.0444¢ £ 0.023,,; BaBar [47]

sin20 = { 0.652 = 0.039,0¢ = 0.02,,,; Belle. [48] (2.27)

resulting in an average of sin 23 = 0.685 £ 0.032 [49].

The next example are the CP asymmetries in the B} — 77~ system, which we will
discuss in more detail in Chapter 3. This example makes the explicit phase structure
and where to conjugate what very transparent. First, the decay amplitude of this decay

is
A(BY — 7tr7) = —|Ter [ — de™] (2.28)

where we have pulled out the leading tree amplitude and d is, roughly speaking, the ratio
of penguin to tree amplitudes. It will be defined more precisely, along with the strong
phase 6, in (3.9), when we come back to a systematic discussion. Then, ¢ is given by

] —iy _ d 10
S {76 ‘ ] , (2.29)

mta— et — deit?
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leading to expressions for both asymmetries

2d sin 0 sin 7y
S (Byg—7mtn)=— 2.30
Acp(Ba =77 1 — 2d cosf cosy + d? (2.30)
mix(B, o ) = sin(¢g + 27y) — 2d cos Osin(pg + 7y) + d? sin gbd (2.31)

1 — 2d cosfcosy + d?

We will come back to these expressions and analyze them numerically in the course of
our detailed discussion of the B — 77 system.

Finally, let us very briefly comment on the corresponding quantities for neutral kaons.
The CP asymmetries analogous to (2.20) are extremely small here and are therefore not
very suitable to study. Instead, one defines quantities x and €’/e, describing indirect
and direct CP violation, respectively. For more information on CP violation in the kaon
system, we refer the reader to [37,50]. Both quantities are, in principle very well suited
to constrain the UT and look for new physics, but are afflicted with large hadronic
uncertainties. This is, especially true for €’/e, see for example [51].

2.2 Description of Weak Decays in the SM

2.2.1 Effective Theory for Weak Decays

In this section we will describe the theoretical tools required to calculate weak decays
in the SM. In doing so, we will follow rather closely [37], in particular concerning the
notation. Using the same example of a charm decay ¢ — sud, one begins by realizing
that the amplitude for the decay at leading order in QCD is given by

G M3, )
A= \/i csVud k2 — M2 (SC)V—A(Ud)V—A
G k2
- SEvaVutsv w1+ 0 (5 ) 2:32)

corresponding to a tree level W exchange. In the second line we have expanded the
intermediate W propagator for small momenta k. This is justified, since weak decays take
place at momentum scales of the bound state mesons, which are much smaller than the W
mass. One can therefore safely neglect the O( W) terms and calculate the decay width

with only the leading term. Physically, this corresponds to integrating out the heavy W
for low energies and then studying an effective low energy theory for weak decays, as
is shown pictorially in Fig 2.3. The idea of such an effective interaction was originally
introduced by Fermi who, before the advent of gauge theories for weak interactions,
described nuclear ( decay by a four-particle vertex analogous to the one introduced for
quarks above. As is expected for an effective field theory, the corresponding Fermi theory
of ( decays is non-renormalizable, and it was therefore obvious that this model could
not be the full story. Also, the corresponding four fermion vertex violates unitarity of
the theory. The notion of renormalizability will be elaborated on in the next subsection.
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Figure 2.3: ¢ — sud at the tree level.

A similar procedure can also be used for flavor changing neutral current processes.
These can occur only at loop level in the SM and are mediated by the so called penguin
and box type diagrams. Examples for these are shown in Fig 2.4. When there are heavy
particles in the loops, they can be expanded (or integrated) out just like the W boson
above. This is, in particular, the case for a top quark running in the loops. Actually, the
same holds for for very energetic massless particles, such as a gluon, since in the formal
language of the effective theories one has to not only integrate out heavy particles, but
any mode that resonates above the characteristic scale of the problem. The result of
this exercise is that the penguin and box diagrams are also replaced by effective vertices,
only that these are more complicated than the simple one for tree level W exchange.

d w q
MNNANNNNNNA
uct
NNANNNNN A
b,s w q

Figure 2.4: One loop penguin and box diagrams in the full theory.

These vertices are found by calculating all possible diagrams that contribute to a
particular effective vertex. This statement is a gauge dependent one: For example,
to find the effective vertex for a (bd)y_a(gq)y—_a box in Feynman gauge requires the
calculation of the third diagram in Fig. 2.4 as well as three other diagrams that replace
various internal W bosons by Goldstone bosons. These Goldstone boson diagrams are
absent if the calculation is performed in unitary gauge. In any case, if one looks for
all possible effective vertices, on finds a (gq)v_a(qq)y—_a one, as well as (Gq)y_a(ll)v_a
(the leptonic box), sdZ (a Z penguin), sdG and sd~y, which correspond to the QCD and
photon penguin, respectively. In the latter two cases one must distinguish whether the

15



massless particle is on mass shell or not, while the Z boson of the Z penguin is integrated
out along with the W. These vertices are governed by characteristic functions, the Inami
Lim functions [52]. They read, in Feynman gauge:

Bo(xt) :i [1 ftxt + (Z%TH (2.33)

Co(s) = % EZ - f + (:thsz lnxt] (2.34)
SREN I L
Bo(z,) = —g Inz; + x?(156<_1 1_62; ) xt(1182<_11_12)_3 i) (2.36)
Dh(a) = — (8‘? ;( f’ft:)z ) ‘”2? ((12 __5’:’;3) Inz, (2.37)

El(z,) = —xt(ﬁl__‘r’iz); 2) 2(1 fit)4 Inz, (2.38)

So(ze) = 4%4?11_1%515; d - Q?Ef?_ln;;g (2.39)

So(ze) = . (2.40)

So(ze, ) = x |In Ty St 37y In 7, ) (2.41)

re A1 —z) 41 —xy)?

Here, z; = m?/m%, and the functions are associated with the effective vertices as fol-
lows: By belongs to the leptonic box diagram, Cy to the Z penguin, D, to the photon
penguin, Fy to the QCD penguin and Sj to the four-quark box diagrams. Above, we
have expanded to leading order in z. and generalized Sy(x.,z;) to include simultaneous
charm and top exchanges. Also, the primed function are those for the processes where
the photon or gluon are kept on shell. Finally, constant, i.e. mass independent, terms,
that may arise in the calculation, can be dropped due to the Glashow Iliopoulos Maiani
(GIM) cancellation explicitly shown in Eq. (2.9) and the analogous relations for the other
rows and columns of the CKM matrix.

As mentioned above, the effective vertices are, in general, gauge dependent. That
is, the expressions above look different in gauges other than the Feynman gauge (a
peculiarity of Feynman gauge is, for example, that the box diagrams are actually finite,
this is lost if the calculation is performed in other gauges). Obviously, if a physical
process is calculated, this gauge dependence has to cancel out. Therefore, the only
combinations that appear are the gauge invariant combinations [53]

Colr, €) — ABo (1, €,1/2) = Colar) — 4Bo(xs) = Xo(x2) (2.42)
C()([L’t, f) — Bo(l’t, f, —1/2) = C()([L’t) — Bo(l’t) = Yb(l’t) (243)
Coe € + Dol ) = Colwn) + {Dolr) = Zofy). (244)
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Xo(zy) and Yy(z;) are linear combinations of the V' — A components of Z°-penguin
and box—diagrams containing final quarks or leptons with weak isospin T3 equal to 1/2
and -1/2, respectively. Zy(x;) is a linear combination of the vector component of the
Z%-penguin and the v—penguin. Explicitly, these functions are given by

Tt T + 2 31’t —
X = — 1 24
ole) 8 Lt -1 i (z — 1) nxt} (2)
Tt Ty — 4 3[lft
Y. = — 1 2.46
o(z) = 3 Lt R PP nxt} (2.46)
1 18z} — 163} + 25927 — 108z,
Z — __1 t t t
o(w) = —glna + 144(z; — 1)
2w} — 35— 1522 + 1
32z, — 38x; oxy + 18w Inz, (2.47)

72(z, — 1)*

They will appear frequently later, when we analyze certain specific decay modes. An
interesting feature is that all these functions grow with increasing top mass. This effect,
referred to as non-decoupling, is counterintuitive, since a heavy particle that is integrated
out should “decouple”, i.e. appear only as a power suppression just like the mass of the
W boson in our first example. In the case of FCNCs, non-decoupling arises, because
the Goldstone bosons couple to fermions proportional to the mass of the fermion. As a
result, one naively expects that the top diagrams should dominate over the charm and
up ones, which would then only be needed for GIM cancellation. However, this hierarchy
can be spoiled by CKM factors, as we will see explictly.

In the examples so far, we have entirely neglected any QCD effects. As a first step to
include them, we should sandwich the amplitudes obtained between the physical initial
and final states, the hadrons. As a result, all the vertex factors can be pulled out, and
one is left with matrix elements of the type (i|qqqq|f), where i and f denote the initial
and final states. These non-perturbative matrix elements need to be calculated, but still
this step makes the advantage of the approach introduced in this section rather clear: It
would be entirely hopeless to calculate the matrix elements of the complete amplitude,
while the simpler, and universal, matrix elements of the four quark operators may be
more easily tractable. Unfortunately, it turns out that uncertainties due to these matrix
elements still constitute one of the main problems of flavor physics today. This is, in
particular, true since the four-quark-operator matrix element can not be calculated on
the lattice.

The entire procedure so far is a practical example of a concept widely used in QCD,
the operator product expansion (OPE). The general idea is that the matrix element of
a non-local operator product can be written as a sum over local operators, while the
non-locality resides in calculable Wilson coefficients, as long as the non-locality is small
or, equivalently, the energy scale, in our case the W mass, is high enough:

A(@)B(0) "~ Co(2)0,(0) (2.48)
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This relation holds, as long as the operators are sandwiched between initial and final
states. The advantage of this method is precisely the one mentioned earlier: While the
process dependent Wilson coefficients can be calculated, the universal matrix elements
of the operators are easier to determine than the matrix element of the entire operator
product. On a formal level, this corresponds to a separation of energy scales, where the
high energy contributions are left in the Wilson coefficients, while the matrix elements
describe low energy scales. The meaning of this will become more apparent when we
include higher order QCD effects in the next section.

2.2.2 Weak Decays at NLO: Renormalization and the OPE

In the last section, we gave an introduction to the effective theory of weak decays,
concentrating on the leading effects and neglecting QCD entirely. Also, we have only
spoken about finite contributions, we have not explicitely stated which operators appear
in the operator product expansion (2.48) and have neglected their scale dependence.
We will clarify all these extremely important aspects in this more technical section.
Since it will be quite a lot of ground to cover, let us state our main goal already at
this point: The main goal and final result of this subsection will be the renormalization
group equations and matching conditions for the Wilson coefficients of the effective
Hamiltonian of AF = 1 transitions, where F' = S, B, including electroweak effects.
These are, in particular, the Wilson coefficients of the electroweak penguin operators to
be introduced below and the O(a«) terms of the anomalous dimensions that govern
the running of the Wilson coefficients. The corresponding formulae have been given first
in [54], and will be of central importance in later stages of our analysis.

When, for example, QCD processes are calculated beyond the tree level approxima-
tion, the corresponding loop diagrams are not finite, but instead have some divergent
behavior for large loop momenta. To show this more clearly, consider the calculation
of the QCD correction to the quark propagator, as shown in Fig. 2.5. The calculation
can be performed with the standard field theory methods, if performed in d = 4 — 2¢
dimensions (the reason for this will become apparent in a moment). The results is given
by

E - 4 5 2 F(g) :U“2 : B
X0 =19 3 0ass [2(1 — €)] (am)— (_—]92) (2—¢,1—¢) (2.49)
Here, I'(a) and B(a,b) are the well known Euler-functions and we have set the quark
mass in the loop to zero but kept the incoming momentum arbitrary. The energy scale
4 is arbitrary and is introduced in order to keep the coupling constant dimensionless.
Note that the divergent behavior mentioned above now shows up in the pole of the I’
function at € = 0. Therefore, the entire expression is expanded for small € to obtain

4 a,l 2
iSas =i 3 5aﬁj—w[g +Indr — g + 1n_“—p2 +1] (2.50)

so that we have extracted the singularity into a well defined divergence.
On the level of the Lagrangian, this singularity is treated by introducing renormal-
ization constants and counter-terms. In particular, the fields and couplings of the QCD
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Figure 2.5: Quark-Self-Energy Diagram

Lagrangian are rescaled as

a 1/2 44 1/2
Aouzzs/ AM C_IOZZq/q

2.51
9o,s = Lggsht° my = Zmm, (2:51)

where the index 0 denotes a bare, i.e. unrenormalized quantity. The renormalization
constants Z; are divergent objects, which are chosen such, that the renormalized param-
eters are finite. A theory is called renormalizable, if a finite number of renormalization
constants only is required to render the prediction for all observable quantities finite
up to all orders. Of course, the precise manner in which the divergences are canceled
is arbitrary and is referred to as a “renormalization scheme dependence”. The most
obvious choice is to define the renormalization constants such, that they cancel precisely
the divergence of the quantity they renormalize, i.e.

as\t 1 4
Z7J

where the Z;; are just mass and ;o independent constants. This convention defines a class
of minimally subtracted renormalization schemes, which can be transformed within this
class by the replacement © — cu, with ¢ an arbitrary constant. Taking this constant
to be ¢ = €7#/2(47)~/2 defines the M S scheme, which is most often used in QCD loop
calculations. On the level of Greens function such as the quark propagator introduced
earlier, this corresponds to subtracting not only the divergence, but also the constant
terms In 471 — g, which often appear in this combination.

When the Lagrangian is written in terms of the renormalized fields, it can be split
up into a finite part, that looks just like the old QCD Lagrangian but is composed of the
renormalized fields, and the counter-terms which contain the divergences and are treated
just like new interactions that cancel the divergences arising from calculations with the
finite piece. Explicitly, for the QED Lagrangian, which is simpler than the QCD one but
shows all the features important for renormalization, this looks a follows:

1

Laep = _E(F/wy + (i §—m)p — eyt A, (2.53)
_i(Z?& - 1)<F;w)2 + QZ((Zw - 1)7' ﬁ - (ZdJZm - 1)m)¢ - e(Zg - 1)@7“1?14#-

For simplicity, we have set the gauge parameter ¢ = co. The first line contains the finite
pieces, while the second contains the counter-terms. For example, the counter-terms
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required to renormalize the massless self energy in (2.50) are then immediately seen to
be

(Zy—1)ip = Zy=1-—-—"22. (2.54)

For the final step, we just compared the finite pieces of the counter-term and the re-
sult from calculating the diagram to obtain the first coefficient of the renormalization
constant. The other renormalization constants can be found analogously by keeping the
masses in the quark self energy and calculating the one loop corrections to the gluon
propagator and the Agq vertex. They are

11 11 2 5 11 2 11
Z = —4 Zy = [Bf 3N} Z, = [ 6f+6N}, (2.55)
where N and f are the number of colors and flavors, respectively.

The next important point is the appearance of the scale . In general, renormal-
ized quantities depend on this scale, in particular this is true for coupling constants
and masses, where the dependence on this scale, or the “running”, is described by the
corresponding renormalization group equations. These can be found from (2.51) by dif-
ferentiating if one keeps in mind that the bare quantities should obviously not depend
on the scale. One finds:

) — Blalw).). (2.56)
T (gm0, (2.57)
where
5(g.) = ~<g + (g), (2.59)
Blg) = —gZigddligu, Ym(g) = Zimjiz (2.59)

B(g) and ~,,(g) are usually referred to as the anomalous dimensions of the coupling
and mass and can be obtained from the é pole of the renormalization constants:

B(g) = 2¢° Z d%zgg)’ (2.60)
Ym(9) = 29" dzjgig) , (2.61)

which can be proven using (2.58) and (2.59) as well as the parameterization (2.52). The
corresponding proof can be found in [37]. When we discuss the running of a; and the
quark masses in the numerical sections of this work, we will usually work to two loop
order, i.e. we will use the following expressions for the renormalization group equations:

3 5

-

_ 9
Bg) = —bo (1672)2’

1672

(2.62)
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g g\ 2
V() Z%S?)E+%S)( ) : (2.63)

A

where 11N — 2f a4 10
fo=—=5—, fi=5N'—Nf-20rf, (2.64)

3 3 3

97 10
7O = 6Cr, AW =Cp <3C’F + 5N - gf) , (2.65)
op =1 (2.66)
FTTON '

The leading coefficients of the § and v function can be easily read off from (2.55).

We are now ready to return to the operator product expansion. Within the OPE,
both the Wilson coefficients as well as the matrix elements also depend on u. The
renormalization of the operators proceeds just like for the quark masses:

cO=z0C QO =2Q, (2.67)

with Zg =7 ~1 as the scale dependence of Wilson coefficients and operators has to
cancel. Defining next the anomalous dimension matrix 4 by

A

o 4 dZ
=271 2.
the p-independence of co implies
dé(#) < T ~
= . 2.

This equation can easily be solved to leading order, in particular if the operators do not
mix, i.e. if the anomalous dimension is diagonal. First, one writes the evolution as

Ci(p) = Ui, pw ) Ci(pow ) - (2.70)

where the form of the evolution matrix U;(p, p) is just as in the well known case of the
running of quark masses

9(k) /
7i(g")
Ui(p, pw) = exp / dg' =5 (2.71)
o) B(I)
This immediately gives the leading order running for the Wilson coefficients
7
Oés(Mw):| 280
= (Miy) (272)

Since we have at his point included the possibility of there being several operators, we
should pause and consider which operators will be contributing to weak decays. We will
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refrain from actually giving them explicitly and refer the reader to [19] for a complete list.
However, it is important to have an overview of at least the different types of operators
here. In Subsection 2.2.1, we have only considered the single four quark operator that is
created by integrating out the W boson at tree level. One finds that a second current-
current operator with a different color structure is created if QCD effects are included.
Similarly, one has 4 QCD penguin operators and another 4 electroweak penguin operators
that arise. Therefore, whenever an anomalous dimension appears in this subsection, it
can be considered as a 10 x 10 matrix. Again, we do not give the matrices explicitely, but
refer to [55,56], where they were first calculated to NLO. Eq. (2.72) can now easily be
generalized to the case of operator mixing by going into a basis in which the anomalous
dimension is, in fact, diagonal. This generalization reads as

(&)
as(ma)
)p denotes a diagonal matrix whose diagonal elements are the components of

the vector ?1(0)

) ,7.(0)
V7t with d= 2160’ (2.73)

U(O) (ml, m2) = V

D

where (7"

, and V is the matrix that diagonalizes v©:

(v p = VI4OTY (2.74)

Going to two loop order the pure QCD evolution is written as [57]

U (mi, ms) = (i + %ZM)J) 0O (my, ms) <i . O‘Sf;:?)j> (2.75)
= U(O)(mlam2> + %iﬁ(o)(mhﬂh) + %Z'jl) A(O)(ml,m2)j,

where U© (mq, my) denotes the evolution matrix in the leading logarithmic approxima-
tion and J summarizes the next-to-leading correction to this evolution. In the second
line, we have dropped O(a?) terms for consistency.

The matrix J is given by

J=VSVv1, (2.76)
where the elements of S are

b1 Gij
Si; = 6;; 1Y — J ,
j = 0ij 252 25+ 40 — 7](_0)

whith G =V 1407y (2.77)

and %-(0) denoting the components of () and G;; the elements of G. Although Eq. (2.77)
can develop singularities for certain combinations of the ,YZ(O)’ the physically relevant
evolution matrix (2.76) is always finite after all terms have been combined.

So far, we have included only the QCD running effects. The generalization for elec-
troweak effects was performed in [54], which we follow closely in our notation. In this
case, the anomalous dimension is generalized as

~ ~ Qem
(g% aem) = 3s(9%) + —T(g%) (2.78)
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where

o Oé2
%(0") = W+ e (2.79)
and R o
Plg") =38 + Al (2.80)

Here, the ’ys(l) corresponds to the two loop QCD effects, while %0) and ’ys(;) include the
effects of O(aen,) and O(asen ), respectively. This implies a generalization of the Wilson
coefficient evolution as

U (ma,ma, Qo) = U(ma,ma) + S Rlmy,my) (2.81)

U (mq,ms), which describes pure QCD evolution, is given by (2.76), while fZ(ml,mg)
describes the additional evolution in the presence of electromagnetic interactions and is
parameterized by

o QT ~ A ~ ~ o
R(my,ms) = —6—” V K (my,mo)V"" = RO (my, my) + RO (my, my) . (2.82)
0

To next-to-leading order, K (mq,ms) can be written as
13
K(ml,m2) = K(O)(ml,mg) + E;Ki(l)(ml,mg) s (283)

where the matrix K@ (my,m,) is given by

(KO (my, ms))y; = Mi(]@ Kas(mg))“f a8(1 _(as(mz))% as(l ] (2.84)

a; —aj —1 [\ as(my) my) as(my) ms)

Again, we observe a potential singularity in this expression, but it turns out that, in the
case where this happens, the terms in the parenthesis also vanish and the singularity is
therefore not a problem in the numerical implementation of these terms.

The K'i(l) (mq, mg) encompass the different sources of next-to-leading order effects. To
introduce them, we first define

) — 501 _ Otsor (2.85)
Bo
and . . . AN .
MO — -1 (F(l) + [”AYEO)T, J}) V. (2.86)

The matrices Ki(l)(ml, ms) are then given as follows

M as(mg) \ Y as(ma) \ ] - .

(1) R [(%(ml)) ‘(as<m1>) }”AJ

Kl (ml,m2) = . y (287)
| ) ()t

wu as(ma) as(ms)
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KV (m1,me) = — as(me) KO (my,ms) S, (2.88)
KM (my,mo) = aglmy) S KO (my, ms) . (2.89)

We have now collected all the expressions that contribute to the running of the Wilson
coefficients between the high scale, where the W is integrated out and the low scale of the
B meson decay. Finally, we also need the initial conditions for the Wilson coefficients.
These are obtained at My, by integrating out all the heavy particles and matching the
corresponding operator expression onto the same one in the full theory with all particles
present, just as we have done in the case of the tree level W exchange. Including all
NLO QCD and electroweak effects, these coefficients are given by:

Cy(Muw) = O‘S(i\fW)%, (2.90)
Co(My) = 1 — O‘S(i\fW)l—(),l - O;‘jr”i’—z, (2.91)
Cy(Myy) = —O‘S%W)E(xt) + o = 2B(@) + Cla)] (2.92)
Cy(My) = %E(m, (2.93)
Cs(Myy) = -O‘S%W>E(zt), (2.04)
Co( M) = %E(m, (2.95)
Oy (Myy) = Oé: [40(:@) + D(z,)] | (2.96)
Cs(Mw) =0, (2.97)
Co(My) = Oé: [40(:&) + D(ay) + Smj G- (10B(z) —4C(@)| ,  (2.98)
Cho(My) = 0, (2.99)

With these initial conditions we have all the ingredients needed to calculate the
Wilson coefficients of the electroweak penguin operators as we will do later on.

2.2.3 Minimal Flavor Violation (MFV)

As a final step of the description of weak decays, it is important to consider, what the
precise influence of some new physics may be. In this context, the notion of minimal
flavor violation (MFV) [58-63] will be of quite some relevance for the rest of this thesis. In
brief, it just states that flavor changing and CP violating processes are governed entirely
by the CKM matrix, i.e. there are no additional sources of flavor changing and no new
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operators. The concept was originally motivated in the context of supersymmetry, where
large flavor violating effects could be present in a general scenario, but are not measured.
To see its implications more clearly, let us recall from the last section that the general
effective Hamiltonian would have a structure like

Heg = Z N FO;, (2.100)

where the \; are the CKM factors, the F; are the loop functions corresponding to the
Inami Lim functions in the SM and the O; are from the basis of relevant operators. In
a general NP model, all of these can be modified with respect to the SM. On the other
hand, in MFV, following the definition of [60,63] the only new contributions appear in
the loop functions, while there are no new operators and no new sources of flavor change
and, in particular, no further source of CP violation. Also, QCD evolution is not strongly
affected by the new physics, especially since there are no new operators. The goal of this
definition is that the observable effects in this kind of models are very clearly defined
and that one can therefore easily exclude an entire class of models with the appropriate
experimental data. There are, for example, rather stringent bounds [64] on several rare
K and B decays within the class of MFV. Additionally, the strong constraints on the
structure of the effective Hamiltonian can lead to strong correlations between several
observables. For example, decays that are governed by the same high energy functions
will behave in a correlated way in MF'V, but this correlation can be lost if the assumption
of MFV is dropped. Finally, a discrepancy in the measurement of any UT angle would
immediately signal new sources of flavor or CP violation. Models of MF'V type are, for
example, the two Higgs doublet models I and II, the MSSM at low tan 3, the SM with
one universal extra dimension as well as the Littlest Higgs model. On the other hand,
supersymmetry at large tan 3 introduces new scalar operators from Higgs diagrams and
is therefore not MFV in the definition of [60].

Concerning the construction of the unitarity triangle as described above, one must of
course remember that not all the constraints available can be used for a UT fit within the
class of MF'V. For instance, the constraint from AM,; need not necessarily remain valid
when there are new contributions to B — BY mixing, even if these are flavor universal.
Fortunately, there exists a universal unitarity triangle (UUT) [60] that remains true in
any extension of the SM with MFV. In the construction of this triangle one includes all
those constraints that do not depend on new physics apart from the flavor structure. In
practice this means that only the constraints where the Inami Lim function don’t appear
explicitely are taken into account. In the classic construction of [60] the UT is obtained
with the constraints from |V;/Vel, sin 2.
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Chapter 3

The B — 7w Decays

3.1 Basics

In this chapter we analyze in detail the decays of the type B — mw. These decays have
received quite a lot of attention over the last decade (see [15] for a review) in the context
of a determination of the CKM angle a. First, we would like to remind the reader that
there are three decay channels of this kind:

+..0 0.0

Bt —rfrx By — 7' By — 7"

T .

This leads to eight observable quantities: Three branching ratios and 5 CP asymmetries,
according to the discussion in Section 2.1.4, as 797 and 7#*7~ are CP eigenstates,
while 7770 is not. The current experimental numbers from Belle and BaBar for these
quantities are compiled in Table 3.1, where the averages are taken from the Heavy Flavor
Averaging Group (HFAG) [49]. Note, that the mixing induced asymmetry in 7%7° can
not be measured at present. We do not include in this table several experimental results
from CLEO and CDF, since the averages are, in fact, dominated by the results from
Belle and BaBar. The corresponding numbers can be found in [49].

An interesting situation arises in these decays, since their theoretical description
seems a bit unsatisfactory. For example, the predictions of QCD factorization [65] for
BY — 7979 are smaller than the experimental value, while the calculation of B — 77~
tends to be on the high side. It is then interesting to check whether this can be accom-
modated in the standard model or if we are already seeing hints of new physics.

If we look at the separate processes, we find that all of these decays are dominated
by tree diagrams. To illustrate this, we show in Fig. 3.1 the leading diagrams® for
B — 77~ . Counting up CKM factors shows that they do not lift the expected loop
suppression of the penguin diagrams. Similar reasoning applies for the other decays, so
that the discrepancies mentioned above come more likely from difficulties in describing
the hadronic effects, instead of from new physics.

ITo be precise, one should be discussing these contributions in terms of the effective Hamiltonian,
where these diagrams don’t exist as such. The intuitive picture remains the same, however. For further
discussion of the relation between the effective Hamiltonian and the Feynman diagrams, see [74].
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‘ Quantity H BaBar Belle ‘ Average ‘
BR(B* — 7579)/10°° 5.8 4 0.6 + 0.4 [66] 5.0+ 1.2+ 0.5 [67] 55+0.6
BR(B; — ntn)/10°F 5.5+ 0.4 £ 0.3 [68] 44+0.6+0.3[67] 5.0+0.4
BR(B; — n°x°)/10% || 1.1740.32 £ 0.10 [66] 2.37057073 [69] 1.45+0.29

AZ(B; — 7tn) [ —0.09 £0.15 4 0.04 [70] [ —0.56 + 0.12 & 0.06 [71] [ —0.37 + 0.10
mX(B, — ) 0.30 £0.17+0.03 [70] | 0.67+0.16 = 0.06 [71] | 0.50 & 0.12

Adlr (Bd — 71'0 0)

—0.12 £ 0.56 & 0.06 [72]

—(0.447035 £ 0.17) [69]

—(0.287559)

le(Bd—>7T0 0)

Adu (Bd — 7r+ 0)

0.01 & 0.10 % 0.02 [66]

~0.02 £ 0.08 £ 0.01 [73]

—0.01 £ 0.06

Table 3.1: The current status of the B — 7w experimental data. The uncertainties are statistical and

systematic.

In order to make this statement more quantitative, one can, using isospin symmetry
and eliminating )\( by GIM, write down the relevant decay amplitudes as:

V2A(BY — 770
A(BY — 7))
V2A(BY — 7°x°)

with

—[T + P]

P = N A(P,
T = NARye" [T —

—[T +C + Pgw] =

—[T + C + Pgw]

—[C — P+ Pgw],

—P.) = MAP,
(P = €)]

C = NARe" [C + (P — E)].

and Pgw being an electroweak penguin amplitude that is numerically extremely small
and was neglected in the corresponding equation of [27] (but has been restored in [75]
and is included in all numerical results below). Note, that the additional QCD penguin
and exchange contributions in T and C cancel when the amplitudes are added, and one
finds the isospin relation [76]:

— 7979).

V2A(BT — nt7%) = A(BY — ntn7) + V2A(BY (3.7)
Below, we will find it convenient to define ratios of CP averaged branching ratios,
since this allows to reduce the number of hadronic parameters by cancellation. As a first

step, we define amplitude ratios:

a_C |C| is.- C+ (Pu— &)
A = _|Z i(6a—07) — . 38
e T T T — (P — &) (3.8)
- P . P| . P
d 0 = _ = | 2(5P—5T) - |: te :| 3.9
CT ‘Te By | T—(Pu—0)) (8.9)
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Figure 3.1: Feynman diagrams contributing to By — 7w~
B EW sin Y

2 )\2
—13x1 1-2
T+C 0 ( ) sin 3

In the last line, we have estimated the electroweak penguin contributions from the
B — 7K ones using flavor symmetry following [27,77,78]. With these parameters, we
can write the decay amplitudes the in following form:

Via

~13x1072%x

~ 3 x 1072 (3.10)

q=

ub

V2A(BT — 77 = —|Te"7 [1 + ze™®] [e" + ge =] (3.11)
A(BY — ntr7) = —|T|e7 [ — de"] (3.12)

, 1 A o
V2A(BY — 7°7°%) = |P|e®F |14 = y eeia=0) 4 g (%) 6_296_26] . (3.13)

which allows to express several observables in a transparent way. Our next step will be
to determine the hadronic parameters appearing in these expressions.

3.2 Determination of the Hadronic Parameters

In order to determine the hadronic parameters, the first bit of input to use are the
branching ratios. To cancel the prefactors in the amplitudes, we define two observables:

BR(BT — nt7%) + BR(B~ — 7~ 7%)] 7go
R =2 4 =2.04+0.28 3.14
A {BR(Bg — mtr=) + BR(BY — 7tn) | 7p+ (3.14)
BR(BY — 7%7%) + BR(B — 797°)
Ry =2 =0.58 £0.13 3.15
00 [BR(Bg — ) + BR(Bg N ’ (3.15)

which can be expressed entirely in terms of the hadronic parameters introduced above
as well as the weak phase :

1+ 2z cos A + z?
1 — 2d cos 8 cosy + d?

R = (3.16)

d? + 2dx cos(A — 0) cosy +
1 — 2d cosf cos~y + d? '

RIT = (3.17)
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Here, we have, for transparency, neglected the electroweak penguin contributions. In
order to determine the parameters appearing, we also need to take into account the
CP asymmetries. First, we can use the mixing induced and direct CP asymmetries in
BY — mtw~, which are measured to be sizeable:

A (By — ntn7) = =037+ 0.10, ABX(Bg — n7n) = 4+0.50 + 0.12. (3.18)

On the other hand, their expressions in terms of the hadronic parameters introduced

above are
2d sin 0 sin 7y

|1 —2dcosfcosy + &

sin(¢q + 27v) — 2d cos @ sin(pg + ) + d* sin ¢g
1 —2dcosfcosy + d? '

A (By — ntn7) = (3.19)

(3.20)

op(By— minT) =

Here, ¢4 = 20 as in (2.26). In the limit of vanishing penguin contributions d = 0,
WxX(By — wr ™) simply measures the CKM angle « [76]. Unfortunately, the penguin
contributions seem to be sizeable, as indicated by the large direct CP asymmetry, leading
only to a measurement of aeys, where
O (Bg — ™) = sin 20 ¢ (3.21)
The corrections between o and a.sy have been analyzed by several authors over the
last years [79-85], where one can also use B — pp transitions to determine «, and the
corresponding values are actually being used in UT fits nowadays, as discussed in Section
2.1.3. In order to determine all parameters in the expressions (3.1)-(3.3), one more input
is required. The three remaining quantities of the B — 7m decay system are not very
suitable, since the CP asymmetry of B — 7770 is small, as it vanishes in limit of ¢ = 0
and the CP asymmetries in 7°7° are still affected by large experimental uncertainties.
This leaves us with two possibilities: Either we take the angle + as input, use the four
observables mentioned above and determine the four hadronic parameters appearing, or
we must include an additional observable if we would also like to determine 7. While
the former approach was pursued in [26,27], here we will follow [28] and attempt to find
also . This can be done by invoking the SU(3) flavor symmetry of strong interactions
and defining [86]:

Ja

e — 1 (fx\* [BR(Bs — 1) ] su) 1L [AS(Bs — 7T KY)
PR = BR(B; — m7K*) e | AdL(B; — wtm)

75407 6.7+ 2.0

= H 0., (3.22)

€

where the numbers given use € = A\?/(1 — A?) = 0.053 and fx/fr = 160/131 for the
ratio of the kaon and pion decay constants, which correspond to factorizable SU(3)
breaking effects. As denoted, the definition of Hgg and H Ay are only equal in the strict
SU(3) limit, using also additional assumptions that shall be specified in the next section.
There we shall also explain in more detail how to obtain the hadronic parameters for
the B — 7K quantities appearing in (3.22). On the other hand, as we will see, the
factorizable SU(3) breaking effects in the hadronic parameters in this relation drop out.
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For the moment, however, we will be content with the theoretical expression that arises
for HZ',
1 — 2d cosf cosy + d?

€2 + 2ed cos 6 cosy + d?’

HBR/Adlr = (323)

and explore its numerical consequences. The most interesting of these is the determina-
tion of v alluded to earlier. Using the experimental values of Hgr and H Adis respectively,
we obtain:

Vpr = (44.0537)° v (70.1255)°, (3.24)

Voage = (4215357 v (73.9553)°. (3.25)

The agreement between the values of v obtained (which reflects of course the agreement
between the experimental numbers of (3.22)) is an encouraging confirmation of the as-
sumptions we use. Nevertheless, we have to decide whether to use the experimental
numbers of Hgg or H 4a: in the following. The cleaner avenue is from H 4o, which also
leads to smaller uncertainties, and we will use it in what follows. The numerical values
of all other parameters can then easily be found, and are given by:

d=0.52700, 0= (146779)° | (3.26)

r=096"010 . A =—(53"%)°. (3.27)

In general, there are multiple solutions for all variables, as demonstrated on Figs. 3.2
and 3.3, where we show the situation in the parameter planes for fixed v = 73.9°. The
contours can be found by solving the theoretical expressions for the mixing and direct
asymmetries, as well as for R7" and R{j. From the direct CP asymmetry, we find

1

d=
AY(By — mt7m)

AUL(By — 7777 cos 0 cosy — sin §siny

:t\/ Adlr (Bg — w7~ cos B cosy — sin @ sin 7] .Adlr L(By — )2 ] , (3.28)

whereas the mixing induced one gives

d=Fk+VE2—1, (3.29)

with
k sin(¢pq '+ v) — ABX(By — mtmT) cosy cos 0 (3.30)
sin g — AR (By — wtn—)
[ = sin(gz‘ﬁd +2y) — ABX(By — 7 17) (3.31)
sin g — AZX(By — wt7n7)

Correspondingly, R7" and Rgy imply

= —cosA+ /R —sin®A (3.32)
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and

x = —dcosycos(A —0)+ \/Rgg — [1 — cos?ycos?(A — )] d?, (3.33)
where we have introduced, as in [27]
R™ = DRT™ (3.34)
55 = DRE. (3.:35)
with
D =1-2dcosfcosy+ d>. (3.36)

As can be seen, the requirement of 7 being within reasonable agreement with standard
UT fits (we will comment on this below) chooses both one solution for 7 and one for the
pair (d, ). Also, we see that the second solution for d is both in conflict with the naive
estimate that the penguin amplitudes should be smaller than the tree, as well as with the
predictions of QCD methods which typically predict d =~ 0.3 [80]. The second solution
for (z, A), on the other hand, is only excluded a posteriori by studying the implications
for CP asymmetries in the B — 7K system, and we will come back to this point later.

The uncertainties in the numerical values given above and in the rest of our analysis,
unless explicitely stated otherwise, were estimated as follows: All hadronic parameters
obtained in the analysis depend on some experimental input as well as on other hadronic
parameters used as input (this will be more relevant when we continue to use the pa-
rameters obtained above for further calculations in the B — 7K system), which in turn
depend also on the experimental input. To take into account all the possible cancellations
that can occur if several parameters depend on the same input, we find all parameters
in terms of the experimental observables and vary then individually the experimental
numbers in the 1o range for the error estimate, while keeping the other input fixed.
Then, these errors are added in quadrature. The errors taken into account, apart from
the obvious B — 77 (and later B — wK) data, are also the uncertainties in ¢4, the
CKM factors and some SU(3) breaking factors, that we will discuss in the context of the
B — 7K system.

3.3 CP Violation in B; — w%x?

Finally, using the hadronic parameters obtained above, we can now also make predictions
for the CP asymmetries in B — 7%7". The appropriate formulae are, setting again ¢ = 0
for transparency:

2dxsin(6 — A) siny

dir (p 0.0y _ _
Acp(Ba = m) d? + 2dx cos(6 — A) cosy + a2 (3:37)

d?sin ¢g + 2dx cos(0 — A) sin(pg + ) + 22 sin(pg + 27)

(B 079y = 3.38

cr(Ba— m) d? + 2dx cos(6 — A) cosy + 22 (3:38)
We then predict:

AL (By — n°7%) = —0.307538,  ABX(B; — 7°7°) = —0.8710%. (3.39)
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0 50 100 150 200 250

Figure 3.2: The contours in the 8—d plane for v = 73.9° and ¢4 = 43.4°. The solid lines correspond to
the central value and 1o upper and lower ranges of AYL(By — 777~) = —0.37 £ 0.10 and the dashed
lines represent AZX(B,; — ntm~) = 40.50 + 0.12.

0 50 100 150 200 250 300 350

Figure 3.3: The contours in the A—x plane. Using d = 0.52 and 6 = 146° following from the central
values of Fig. 3.2, we obtain the solid set of contours for R7" = 2.04 £ 0.28 and the dashed set of
contours for RjJ = 0.58 +0.13.As discussed in the text, there are two solutions, one of which is is later
excluded using B — 7K data.
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On the other hand, the current experimental value for the direct CP asymmetry is [49]:
A (By — 7n°7%) = —0.2875-30 (3.40)

while no experimental value for the mixing-induced asymmetry exists. Needless to say,
the uncertainties are rather large but the prediction is still encouragingly good. This
gives us some confidence in the assumptions leading to (3.22), as well as the fact that
the data will likely not shift significantly. Also, an agreement at this point would lend
support to the assumption that the B — 7m transitions are indeed described very well
within the standard model and that new physics contributions are are not required.
On the other hand, a precise measurement of one of the asymmetries would make a
determination of v from B — 7 alone possible.

3.4 Interpretation of the Results

3.4.1 Our Value of ~

After having obtained some quantitative information about the B — 77 parameters in
the last section, these should now be interpreted with respect to their physical meaning.

We begin with some comments on the angle v: In comparison to the standard UT
fits [39,40], our value for 7 is on the high side. This is, on the one hand, in agreement
with a recent SCET analysis [87], where an even higher value is favored. On the other
hand, one should remember that the CKM fits take into account the angle 3 as obtained
from B — J/¢Kg, which may be affected by new physics contributions to BY — BY
mixing [28,88]. In particular, there is some tension between the new values of sin 23 and
|Vin/ Ves|, since sin 23|exp, has decreased, while |V,,;,/ V| has increased. On the whole, the
UT fit values of sin 23 tend to be higher than the experimental number.

In view of this situation, we will consider our value of 7 to be the true UT angle and
construct our UT from this value and from the value of |V,;/V.| introduced in Section
2.1.3, ie. |Vip/Vip| = 0.102 &+ 0.005. The NP contributions to B} — BY mixing are
parameterized by incorporating a new phase as

ba = 2Birue + 04" - (3.41)

The corresponding results are given table 3.2, where we show for comparison also the
results of a complete UT fit, a fit to the Reference UT (RUT) with only the tree level v
and |Vyp/ V| = 0.102 = 0.005 used as input as well as a fit the universal unitarity triangle
(UUT) [60], which remains valid in any model with MFV.

3.4.2 Interpretation of the Hadronic Parameters

Let us next analyze the physical content of values for the hadronic parameters that
we obtained. The first obvious point is the very large value of x. Since, in the naive
limit of top dominated penguins and vanishing exchange topologies, this parameter mea-
sures the ratio of color-suppressed over color-allowed tree topologies, the expected value
would be closer to 0.3 than x &~ 1 which we find. However, as has been first pointed out
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Quantity Our Value UTfit RUT Full UT uuT
y (73.9725)° (65+18)° | (57.6£5.5)° | (51 £10)°
p 0.1274+0.046 | 0.18 £0.12 | 0.216 & 0.036 | 0.259 + 0.068
n 0.4224+0.025 | 0.41+0.05 | 0.34240.022 | 0.320 + 0.042
R, 044+0.02 | 0454+0.07 | 040+0.03 | 0.4240.05
R, 0.97+0.05 | 0.924+0.11 | 086+0.03 | 0.81+0.06
Brrue (25.8£1.3)° | (26.1£3.0)° | 238+15 23.4+1.3
o (80.3755)° (87+£15)° | (985+5.7)° | (105+£11)°
(sin 28)irue || 0.782 £ 0.029 | 0.782 4+ 0.065 | 0.735 £ 0.024 | 0.728 4+ 0.031
e —(8.24+3.5)° | —(8.9+6.0)° | —(4.1+3.9)° | —(3.3£3.6)°

Table 3.2: Parameters of the reference UT (RUT) determined through |Vi,/Ves| and the CP asym-
metries of the By — ntn~, By — nT K+ system, yielding the value of y in (3.25), compared with the
results of [40]. We show also the results of the full UT fit and of the universal unitarity triangle obtained
there.

in [89] and later also in [90,91], the charm- and up-type penguin diagrams may be en-
hanced if the light quarks in the loop form on-shell intermediate states. These enhanced
diagrams have been termed “charming penguins” and are generally thought to be non-
factorizable (there is some discussion in the SCET and QCDF community about this
point, see [92,93]). An enhancement of these topologies would explain the large value
of x, since it interferes constructively with the color suppressed, but destructively with
the color allowed tree diagrams. In terms of branching ratios this results in large values
of BY — 797% while BY — 77~ is suppressed. Both of these shifts are in accordance
with the data. Additionally, the parameter d receives also contributions from the charm
penguins and is also enhanced. In this context it is interesting that the values from
QCDF tend to be smaller than our values obtained here. It seems then that this kind
of large non-factorizable effects can explain the pattern of B — nw data, including the
large asymmetries, since internal on-shell states automatically generate large imaginary
parts for the diagrams and thereby strong phases. However, one should keep in mind
that we are pursuing an entirely phenomenological approach, which, while being able to
describe the data does not offer an explanation in the sense that the relevant parameters
could be calculated from first principles.

3.5 Alternative Approaches

The decays B — mm have been discussed using several theoretical frameworks, some of
which are based formally on QCD and others, which are more phenomenological. Here,
we would like to compare the results of the different approaches with ours.
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3.5.1 Dynamical QCD-Based Approaches:

These include QCD factorization [20,21], Soft Collinear Effective Theory (SCET) [24,94]
and PQCD [22,23]. In general, the idea that lies behind these attempts to calculate the
hadronic matrix elements is to reduce the non-perturbative quantities to perturbative
ones by adding some simplifying assumptions or looking at some dynamical limit. In
order to show where the differences and similarities lie, we will very briefly sketch the idea
behind these treatments, in particular the general idea of factorization. In the context
of hadronic matrix elements, factorization can be naively understood as a “separation”
of the decay end products. In particular, for the example of a B meson decaying into a
heavy meson and a light one, such as B — D, one can decouple the m meson and is left
with a form factor describing the B — D transition and a separate object for the pion,
which is then simply given by the decay constant. Thereby, the matrix element has been
simplified enormously. The reasoning behind the idea is that the problematic low energy
gluons should have a wave length too long to resolve the light final state meson, which
would then decouple. Unfortunately, this naive factorization suggested by Bjoerken is
obviously unsatisfying in a very important respect, namely its scale dependence, since the
scale dependent matrix element is now reduced to scale independent (since observable)
quantities. Therefore, they can no longer cancel the scale dependences of the Wilson
coefficients. Also, there are no possible contributions to generate strong phases, so that
all CP asymmetries vanish. Both these problems where finally fully overcome in QCD
factorization. Here, the matrix element is written as a convolution of non-perturbative
objects, the light cone distribution amplitudes, and a perturbative scattering kernel:

(MML|OB) = 3 FB= (i) / duTh () By, (u) + (My < M)

j 0

+ /1 d€dudv T (&, u,v) P(E) P (v) Pagy (1)
0

: (3.42)
where FjB ~Mi(m2) is the form factor, Té”(u) are the perturbative scattering kernels
and the ®;(u) are the light cone distribution amplitudes (LCDA) of the mesons. This
formula, as it is given, is valid for a decay of a B meson into two light mesons, such as
B — 7. In the case of the heavy meson in the final state, only the first term remains.
Additionally, the factorization formula is valid only up to leading order in Agep/my,
which is formally a small number, but may well be enhanced by large coefficients. In
this context, the term factorization acquires a somewhat different meaning, though the
intuitive picture of a light meson decoupling remains: Factorization is now considered
as a separation of energy scales, just as it is done in the OPE for weak decays. The
higher energetic contributions of the matrix element are separated into the scattering
kernel, while the true low energy scales are now residing in the LCDAs. On the whole,
QCDF provides a theoretical foundation to calculate weak decays, but it as has the
potential limitation of the unknown O(Agcp/me) terms. Finally, we point out that very
recently [95], the predictions for the tree level matrix elements have been completely
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calculated to NNLO, while the corresponding prediction for the penguin operators are
still missing.

Within QCDF, one can prove factorization for non-leptonic decays up to a certain or-
der. An improvement became possible with the advent of the effective theory appropriate
for these kind of decays, namely SCET. The general ideas and results are rather similar,
in particular one arrives at the analogous factorization formula, but this is achieved in
the language of an effective field theory. In this field theory, only soft and collinear glu-
ons are considered, since those are the ones relevant for factorization. In particular, the
SCET Lagrangian is constructed from QCD by taking the scaling behavior of the QCD
fields and expanding them accordingly. Since the Lagrangian now contains directly the
relevant fields, factorization can be proven to all orders.

Finally, the third competing dynamical approach to the non-perturbative dynamics of
non-leptonic decays is PQCD. Again, the main goal is to achieve a separation of scales in
the decay amplitude and the result is a factorization formula similar to the one obtained
in QCD factorization. However, the B — 7 and B — K form factors are assumed
to be perturbatively calculable. In order to justify this, one invokes Sudakov effects to
regulate the soft gluon exchange. Again, there are uncalculable non-factorizable terms,
since PQCD also makes use of the large my, limit. A main difference between QCDF and
PQCD is further that in the later case the naive factorization formula is not obtained in
the limit ay, — 0 and m;, — .

Concerning now the phenomenology, the prediction of QCD factorization, for example
[65] tend to produce branching ratios for B — 77 as well as CP asymmetries that
are too small. Predictions for all branching ratios can be found in table 4.3, where
we show also those for the B — wK branching ratios. Looking more explicitly at the
corresponding predictions, we find that our hadronic parameters are related to the (r, ¢)

introduced in [65] by
,
d=—, O0=0¢— 3.43
b 0=, (3.43)
where the default QCDF predictions are r = 0.107 £0.031 and ¢ = (8.6 4+ 14.3)°. These
lead, together with R, = 0.44 £ 0.02, to

dlgopr = 0.24£0.07,  Ogepp = — (1714 £14.3)°. (3.44)

On the other hand, CP asymmetries in the QCDF approach are generally small, since
strong phases are either suppressed by ag or 1/m,. For example, the best prediction
of [65], labeled S4 for the direct asymmetry of BY — n¥m~ is

AGp(Ba — ©t77)|gopr = —0.1, (3.45)

while the central values of the scenarios given in [65] range from ~ +0.1 to -0.1. The
large experimental value is quite hard to obtain. The additional NNLO correction to
QCDF that have recently been calculated [95,96] bring the predictions for the branching
ratios somewhat closer to the data [95], but still do not reach the experimental numbers.
No further information on the CP asymmetries is obtained, since they are affected also
by the NNLO contributions from the penguin topologies, which are not yet calculated.

The corresponding SCET analyses, such as ones in [87,97] are deliberately more
phenomenological, including for example the charming penguin contributions by hand
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and fitting them to the data. These SCET approaches also find that color suppression
is lifted and obtain x in the same ball park of our results. Of course, this leads to
satisfactory predictions but does not offer an explanation from first principles as why
the contributions should be enhanced in precisely the way they are.

Very recently [98,99], the B — 7m decays have been reanalyzed within PQCD ap-
proach. Here, it is tested whether the enhancement of color-suppressed tree over color-
allowed tree diagrams as constrained by the B — 7K and B9 — p°p° data can accom-
modate, in particular, the large values of the B} — 7%7%. Also, NLO vertex corrections,
quark loops and magnetic penguins are included in these analyses. It is found that the
theoretical prediction remains too low. The same is true again for the prediction of
AYL(By — 7F7~), which is now

AS(By — 77 7) [ poep = 0.18735. (3.46)

It is therefore closer to the data than the prediction from QCDF, but still on the low
side, and that the B — wm-puzzle still persists. Interestingly, large CP violation of about
60% is possible in the B — 77 sector.

3.5.2 Phenomenological Approaches and Light Cone Sum Rules

There have been several more phenomenological approaches, relying not so much on pure
theory, but also on data to fit some quantities. One of these is, for example pursued by the
Italian “charming penguin” collaboration, which also fits the corresponding contributions
[90, 100] and describes the branching ratios in question by enhancing them. In this
sense, they find the same results as we do. In addition, the angle o and, equivalently,
v = m— ( — « are fitted. Also, in accordance with our results, the GIM, i.e. up-
type penguins are, in fact, even more strongly enhanced than the “charming” charm
penguins. Note that the most recent of these analyses, namely [100], uses some input
from factorization and adds non-factorizable contributions and is therefore not entirely
model independent, but somewhat similar to the SCET analyses mentioned above.

Next, there are other purely phenomenological analyses as well [101-105], very similar
to our own, which have confirmed our results, while they do differ in details concerning
the assumption used. In particular, one sometimes uses SU(3) flavor symmetry for a more
global analysis [101,105], while [103] also uses some input from QCDF as does [105]. All
these analyses find, however that the color suppressed tree amplitude is enhanced with
respect to the factorization expectations. One can therefore conclude that there are
indeed large non-factorizable effects, unless the data change in a dramatic manner. An
attempt to study and quantify these effects can be found in [106].

Finally, there have been attempts to calculate the contributions from charming pen-
guin [107] as well as the annihilation diagrams [108] from light cone sum rules (LCSRs).
This approach is a variation of the standard QCD sum rules, only that one does not
expand in some large energy scale in the problem, but one performs a twist expan-
sion around a light like momentum vector. These sum rules can be used to calculate
some hadronic matrix elements [109]. Interestingly, these estimates show no sign of any
anomalous enhancement of either of the topologies. Therefore, there is either a missing
contribution not accounted for by the LCSRs or there is another explanation for the
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pattern in the B — 7w data. Another possibility in this respect that has been under
investigation is the effect of final state interaction (FIS) [110], which can be included,
but are not sufficiently large to account for the large BY — 7°7% branching ratio, if
the constraint from B — 7K is considered [99,110]. We can therefore conclude that an
entirely successful dynamical description of these decays is still missing.

Let us also mention that there have also been several recent studies [111-114] of
potential new physics in the B — 7m decays, particular also in supersymmetric models.
It is to be expected that new physics that appears at a competitive level in tree dominated
process will also show some signals in further decay modes.

3.6 Conclusions of B — ©rmw

Let us summarize the main results of our B — 7m analysis, before we move on to the
B — 7K decays.

e Using isospin symmetry, the decay amplitudes of the B — mm decays can be
parameterized in terms of a few hadronic parameters. These are most likely SM
amplitudes, since B — 7mm are tree dominated decays. This allows the extraction
of all hadronic parameters appearing in a theoretically clean manner, if the CKM
angle ~ is given as further input.

e Using the SU(3) flavor symmetry of strong interactions (and taking into account
factorizable SU(3) breaking effects) some input from B — 7K also makes a de-
termination of « possible. We find a value that is somewhat higher than the one
obtained from standard CKM fits. Assuming that this is indeed the true value of
7, this could be due to NP in BI-BY mixing so that ¢q # 285a. Potential new
physics in ¢4 has also been found from a pure UT analysis [88].

e The hadronic parameters obtained differ significantly from factorization predic-
tions. In particular, the large values of some CP asymmetries imply large strong
phases and the high value of the B — 7%7® branching ratio implies enhanced
color-suppressed tree and u-penguin topologies.

e With all the information obtained in the last steps it is possible to predict the CP
asymmetries of B — 7%7%, which may both be large. On the other hand, measur-
ing one of these quantities allows for a clean determination of «. Unfortunately,
the analytic behavior of the corresponding expression is such that a rather precise
experimental input is required [115].

e We have collected and briefly compared several alternative dynamical and phe-
nomenological studies of B — 7, where the success of the theoretical description
can often be seen to be correlated with the amount of phenomenological input
used. There is, as yet no real dynamical mechanism that reproduces the B — nr
data from first principles.
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Chapter 4

The B — wK Decays

4.1 Basics

After our discussion of the B — mm decays and some aspects of the B — mK system in
the last chapter, we will continue with a complete discussion of B — wK. The relevant
decays in this context are

Bt — ntK°, BT — n’K+,

BY — K™, BY — n°K°.

There are now more observable quantities than in the B — 7w system, for which the
experimental status is given in Table 4.1. Theoretically, these decays are interesting be-
cause they are expected to be more sensitive to new physics contributions than B — 7.
On the one hand this is due to the fact that the tree diagrams are CKM suppressed, so
that the leading diagram is a QCD penguin topology. We show these leading diagrams
in Fig. 4.1. Additionally, in this class of decays, the electroweak penguin diagrams not
shown there are quite significant, which may well be affected by NP [116-120]. On the
other hand, these decays have also received a lot of interest [77,121] in the context of a

determination of the UT angle .

Figure 4.1: Feynman diagrams contributing to By — 7t K~
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‘ Quantity H BaBar Belle ‘ Average ‘
BR(B* — 7K?) /1075 [ 26.0 & 1.3+ 1.0 [122] 22.0 +£1.94 1.1 [67] 241+1.3
BR(B* — 7’K¥)/107° 12.0 £0.7 £ 0.6 [66] 12.0 £ 1.3%55 [67] 12.1+0.8
BR(By — 7 K~)/107° 19.2 £ 0.6 £ 0.6 [68] 1854+ 1.0+ 0.7 [67] 18.9+0.7
BR(B; — ™ K")/10~° 11.4 4+ 0.9 £ 0.6 [123] 11.7 4+ 2.3713 [67] 1154+ 1.0

AZ(By — nTKT) 0.133 £ 0.030 £ 0.009 [12] | 0.113 & 0.022 £ 0.008 [13] | 0.115 4 0.018
A (By — m°KP) 0.06 +0.18 £0.03 [123] | —0.11 £0.18 £0.08 [48] | —0.02 +0.13
rgg(B — 7OKO) 0.3575:59 4 0.04 [123] 0.22 +0.47 + 0.08 [48] 0.31 +0.26
,ztdci;,(Bi — 1K) 0.09 +0.05 £ 0.01 [122] | —0.0540.05+0.01 [124] | 0.02 £ 0.04
AT (B — 70K F) —0.06 +0.06 + 0.01 [66] | —0.04 +0.04 £0.02 [73] | —0.04 4+ 0.04

Table 4.1: The current status of the B — 7K input data.

Due to the more complicated amplitude structure and because there are more topolo-

gies, there will also be more hadronic parameters in this decay system. It is therefore
very important to control hadronic uncertainties if a potential signal of new physics is
expected. These decays have been studied in QCDF [65] as well as in SCET [87] as well
as PQCD [98], while a third possible route is to use flavor symmetry and to determine
all appearing parameters from the B — w7 parameters. This is what we will do in the
following. Thereby, we will be using an approach which is in some ways rather close
o [125,126].

Let us begin by writing down again the amplitude decomposition of the B — 7K
decays. Using isospin symmetry, we find*

AB* - 1 K% = —P' [1 + p.een] (4.1)
V2A(BT — 7°KT) = P'[1 + pee®e — (e — ge'®e™) roe'] (4.2)
AB—n KT) =P [1—refe] (4.3)
V2A(BS — 7°K°%) = —P'[1 + pue'™e™ — ge'er.e] . (4.4)
Here the CP-conserving strong amplitude
\2
P = (1 — 3) AN (P —P.) (4.5)

is the B — 7K counterpart of (3.4), describing the difference of the QCD penguins with
internal top and charm quark exchanges,

o _ [ NR
P = 1=

"'We have added primes to the amplitudes to distinguish the B — 7w from the B — 7K topologies

(4.6)

Pl —P,— A
P —P |
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where 75; is the strong amplitude of QCD penguins with internal up quark exchanges
contributing to the charged B — wK decays and A’ denotes an annihilation amplitude,

. )\2R T’ + C’!
0c b
7€ = (1 )\2) [ f{ /:| R (47)

[

where 7" and C’ are the color-allowed and color-suppressed tree-diagram-like topologies
corresponding to their B — 7 counterparts 7 and C in (3.5) and (3.6), respectively,

| N2R, \ [T/ — (Pl —P))
0 — b t u
re’ = <1 — )\2) [ = } , (4.8)

C

where P/ is the strong amplitude of QCD penguins with internal up quark exchanges
contributing to the neutral B — 7K decays,

. XR, \ [C'+ (Pl P!
pnelen = b + ( t u) 7 (49)
[y PP
and the electroweak penguin parameter ge’®e™ is given by
b i Pow | il =00 o)
ge e = )m e\ EWTOTI+C1) (410)

The weak phase ¢ of the electroweak penguins vanishes in the SM, but we have included it
here, anticipating that we will want to discuss the implications of new physics. In (4.1)—
(4.4), the contributions from color-suppressed electroweak penguins have been neglected,
since they only have a minor impact on our analysis. A more detailed discussed has been
given in [27]. We will see that the description of those observables that have only color-
suppressed electroweak penguin is rather satisfactory, which gives us more confidence in
this assumption. Finally, let us point out the sum rule analogous to (3.7) [127]:

A(BY - 7t K°) +V2A(B* — n°K*) = A(BY —» n=K*) + V2A(B} — 7°K?)

= — [ — g™ ] T + C'|er+er . (4.11)

4.2 Determination of the Hadronic Parameters

Let us begin with 7., re? and p,e® appearing in (4.1)-(4.4). These are not all
independent and obey the relation:

ree’® = e 4 peifn (4.12)

pne'ln = rey’ e (4.13)
with , )
xleiA’ = C +Ptu
T — Pf{u ’
which can be derived just from the definition of the parameters. The parameter 2’e’
is very similar to the corresponding parameter ze*® up to the contributions of penguin

(4.14)

A/
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annihilation and exchange topologies. Neglecting these and using SU(3) flavor symmetry
of strong interactions (we will be concerned with flavor breaking effects later) we find

e = ge®, (4.15)

Additionally, in the limit of SU(3) symmetry, on can also find

rei® = ge“”—@ (4.16)
with € defined as.
>\2
€= v 0.053. (4.17)

Therefore, these six parameters can be determined using input from the B — n7w
system. Following these lines, the numerical values we find are:

r=0.11700 &= 4(4272)° (4.18)
Pn = 0131—88; en - _(291_3613)0 (419)
re = 0207557 6. = +(273%)°. (4.20)

The parameter . can also be determined alternatively from [128]

Vu S

c= V2
r fvud

+ +.-0
f—K\/ BRIBY = 7)1 106 + 0,016, (4.21)

f= \| BR(B* — 7t K0)

which relies on the SU(3) flavour symmetry and the neglect of the p. term in (4.1). The
agreement between the two numbers is a first reassuring test of our assumptions. We
will discuss further tests in Sect. 4.5. Concerning the numerical values of the parameters
obtained above, it is interesting to see that r. and ¢. are rather close to the values
predicted from QCD factorization [65], while (4.18) and (4.19) are significantly different
from the corresponding numbers. Note, finally, that r. can also be found more easily
from

€
re = 8\/[1 —2dcosfcosy + d?| RT™, (4.22)

which shows also that both solutions for (z, A) lead to the same results. This is not true
for the other hadronic parameters determined above.

The parameters p.c% can not be found from B — 77 data and must be estimated
[77,121,129]. In particular, the CP asymmetry of B¥ — 7= K can be parameterized as

2p.sin 6. sin vy
1+ 2pecosB.cosy +p2 |

AS(B* — 1K) = — { (4.23)
The small experimental number of this quantity suggests that either p. or 6. is small.
Also, the upcoming signals of B* — K*K point towards [130,131] a small but non-
vanishing value of p.. Therefore, we will begin by neglecting this parameter and explore
the implications of a non-vanishing p. at the appropriate place in the numerical discus-
sion.
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Finally, we would like to determine the electroweak penguin parameter ge*“*9) in the
SM, which can, again, not be found from the B — 7 decays. Fortunately, it has been
shown [132,133] that one can calculate it using Fierz identities and SU(3) symmetry:
iwre) _ o1 Co(m) + Cro(p)§

2 MV / Ve | ’

qe (4.24)

C1 () + Co( )€

where & corresponds to SU(3) breaking effects and the Cj(u) are the corresponding
Wilson coefficients. In the SM, we have therefore ¢ = 0.69 - 0.086/|V,s/Ves| = 0.58.
The precise value of m; and the strong coupling have only minor impact and do not
introduce significant uncertainties. An important feature of this expression is that the
strong phase difference w between electroweak penguin and tree topologies vanishes in
the SU(3) limit.

4.3 Predictions in the Standard Model and Beyond

Having all hadronic parameters at hand, we can make prediction for any observable
quantity of interest. In analogy to the B — 7m system, we introduce several ratios of
branching ratios

BR(B) — 7~ K*) + BR(BY — 7t K~)] 78+ e
R= _ = .86 % 0.06; 4.25
[BR(BJF — 1+ K% + BR(B~ — 7 K9) ’ (4.25)

TBg

R =9 {BR(BJr — m°KT)+BR(B™ — WOK_)} exp

— = 1.01 £0.09 4.26
BR(B* — ntK%) 4+ BR(B~ — 7~ K?°) (4.26)
1 [BR(BY = 7" K*)+BR(B} = 7" K7)] ew
- — — = 0.83 £ 0.08. 4.27
2 [ BR(Bj — 1K) + BR(B) — 7°K?) (4.27)

The numerical values correspond to the HFAG averages as given also in Table 4.1.

Ry

4.3.1 The Decays B; — nTK* and BT — n*K

We begin our analysis with those decays that are only affected by electroweak pen-
guins in a color-suppressed way. We have then, apart from the direct CP asymmetry
of BY — mtK¥, two observables, namely AL (B* — 7*K) and R. Assuming that p,
vanishes, AYL(B* — 7*K) = 0 and

R=1—2rcosdcosy+r? (4.28)

This expression has also received quite a lot of interest, since it allows for a bound on
the CKM angle ~, if the measured value of R is significantly smaller than 1 [134]. From
this,

Rlsm = 0.96310 039 (4.29)

can be found from the B — 7wm data, subject to the assumptions listed above. This
number is about 1.60 larger than the experimental value given above. However, it turns
out that this observable is rather sensitive to a non-vanishing parameter p..
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Figure 4.2: The situation in the R*A%%(Bi — 7*K) plane. We show contours for p. = 0.05 and
pe = 0.10, with 6. € [0°,360°]. The experimental ranges for R and ALL(B* — 7+ K) and our theoretical
prediction are indicated in grey. The second error bar beneath the theoretical prediction (almost identical
in size to the first one) indicates the variation of R if color-suppressed EW penguins are taken into
account.

To illustrate this situation, we show the predictions for R and AL (B* — 7% K) in the
corresponding observable plane for different values of p. in Fig 4.2. Here, we have also
added the effect of including color-suppressed electroweak penguins with a suppression
factor of a(cl ) as in [27,75]. We observe that values of p. ~ 0.05 and 6. ~ 0 would bring the
prediction very close to the experimental values, while the effect of the color-suppressed
electroweak penguins is not very significant. As we will see, also the inclusion of large
SU(3) breaking effects would not change this situation significantly, so that it would not
at all be surprising to see the experimental number increase with future data. In this
respect, one should note that radiative corrections to the BY — 7~ K™ branching ratio,
which are expected to increase its value, have not yet been included.

Also, we would like to summarize by stating that the decays without significant
electroweak penguin contribution seem to be described reasonably well within the SM.

4.3.2 The Decays B* — w°K* and B; — 7w°K

Now we turn to those decays that actually have a significant contribution from elec-
troweak penguin topologies. The most important observables in this context are the two
observables R, and R. introduced above. Their theoretical expression read

R.=1-— 27’Ccos5Ccosv—|—rf

+qre [2{cos(d. + w) cos ¢ — recosw cos(y — @)} + qre], (4.30)
whereas .
Ry =+ [1—2rcosdcosy+17%], (4.31)
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1.6

Figure 4.3: The current situation in the R,—R. plane: the shaded areas indicate the experimental and
SM 1o ranges, the lines show the theory predictions for the central values of the hadronic parameters
and various values of ¢ with ¢ € [0°,360°].

with
b= 1—2qr.cos(é. +w)cos ¢+ ¢*r?
+2py [cos 0, cos v — qre cos(0, — 0. — w) cos(y — ¢)] + p. (4.32)
The quantity b can also be defined through observables as

- R 5 BR(BY — m°K°) + BR(B) — 7°K°) ] 75+ (4.33)
~ Ry " |BR(B* —7tK% +BR(B~ — 7 K) | 7p '

With these expressions, the hadronic parameters obtained from B — 77 earlier and the
SM value of ¢, one can make SM predictions for both:

Re|lsm = 1.15 £0.05, Rylsy = 1.12 £ 0.05. (4.34)

While the prediction for R, is reasonable good, it is obvious that the prediction for R, is
much too high. This pattern of R*” being significantly smaller than 1 has been present
since the first CLEO data and has been pointed out as a potential signal of physics
since the first subsequent analysis [120]. This result follows also from the “Lipkin Sum
Rule” [135]:

Since then, the data have become more precise and we are now interested in a more
quantitative statement. To this end, we show the predictions for R, and R, in the
corresponding observable plane for different values of ¢ and its weak phase ¢. We notice
that the experimental region can be reached without an actual enhancement of ¢, but a
large negative weak phase is required. We find that the central values of the data are
obtained with

q=099T0% o= —(94119)°. (4.35)
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In addition to the observables provided by the branching ratios, there are several CP
asymmetries that are affected by electroweak penguins. In particular, the CP asymmetry
of BY — 7K™ is already rather precisely measured. The theoretical expression is

Adr(B* — 7OK*) = Tesin o siny — qre {sin(d. + w) sin ¢ + resinwsin(y — ¢)},
(4.36)
where the expression for R. is given in (4.30) and we have set p. = 0. The influence of

pe on this asymmetry is also significantly smaller than on AYL(B* — 7+ K). Calculating
this asymmetry from (4.36) in the SM and our new physics model, we find

2
i

AL (B® — 1K F)|sm = 0.047555,  AZH(B* — 7"K¥)|xp = 0.095075.  (4.37)

Due to rather large uncertainties, one can not make any statements concerning any
NP model, but it is interesting to note that both predictions are positive, while the
experimental number is negative. We will come back to this CP asymmetry and its
explicit sensitivity to electroweak penguins in Sect. 5.4.

Finally, the decay By — 7Kg provides a mixing induced and a direct CP asymmetry,
that are also affected by electroweak penguins. Their theoretical expressions are

2
Al (By — m°Kg) = = [qrc sin(de + w) sin ¢

b
—pn {sin O, siny — gresin(f, — 0 — w) sin(y — @) }H , (4.38)

1
oxX(By — 1 Kg) = ~3 S g — 2grc cos(de + w) sin(¢a + @) + ¢*rg sin(¢g + 2¢) (4.39)

42, {cos O, sin(dg + ) — qre cos(y — 0 — w) sin(gg + vy + @)} + p2 sin(pg +27)] .
The corresponding SM predictions are
AL (By— m°Ks)|sm = 0.0670:%9 BBy — 1 Kg)|sm = —(0.82730%) (4.40)
while in our NP scenario we find
AL (By — n°Kg) = 0.01 7018 ABX(By — 1°Kg) = —(0.96 70:08). (4.41)

Again no stringent test of our scenario is provided as of yet, due to the large uncertainties.
In the context of the mixing induced asymmetry, it is also interesting to consider

AS = (sin28) 0k, — (sin28)yxs = —0.3840.26, (4.42)
i.e. the difference of the effective phase .y measured in this decay and the mixing

phase 3 measured from BY — J/WKg. We will come back to both quantities and their
sensitivity to NP in Sect. 5.4 along with the corresponding predictions for B* — 7w0K*.
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4.4 Elimination of the Second Solution for (x, A)

From the B — 77 system we obtained two possible solutions for (z, A) and have con-
tinued our calculation with the pair (3.27). The second solution is

r=085T00 A= (37T2)°, (4.43)
which in turn lead to
¢=0.99106, ¢ =(-10613)°, (4.44)
if w is assumed to vanish. The resulting prediction for AYL(B* — 70K*),
Al (B — 7°K*) = 0.5575013 (4.45)

is basically ruled out by the experimental number. If a non-vanishing strong phase w is
included, the analysis favors rather high values of ¢ ~ 1.6. We will see in Chapter 5 that
these kind of large g—values are excluded by constraints from semileptonic rare decays.
In any case, we find it justified to not consider this second solution any further.

4.5 Consistency Checks and Analysis of SU(3) Break-
ing Effects

In the analysis presented above, several assumptions have been made, which will be the
subject of this section. Let us recapitulate that we have assumed:

e The neglect of penguin annihilation and exchange topologies. As we will discuss
below, this assumption can be tested at LHCb.

e The SU(3) limit of QCD. We will discuss the impact of SU(3) breaking below by
assuming large non-factorizable SU(3) breaking terms.

Concerning the size of penguin annihilation and exchange topologies, it is interesting
27] to study the decay BY — KK, which has only contributions from these topologies,
i.e. is parameterized as

A(Bg —- KTK™) = —\AR, € — (PA)w] [e” + QpAemW‘] , (4.46)
with . (PA)
Wpa — — te
opac =R [5 — (PA)W] ; (4.47)

where (PA)y, and (PA);. are the penguin annihilation amplitudes. The present experi-
mental number is given by [49]

BR(By — KTK™) = 0.057589, (4.48)
so that the size of the (P.A); can be quantified using flavor symmetry:

1[BR(Bg — K*K")] 18+ _|€ = (PA)w
2 | BR(B* — 7tn0) T7+C

\/1 + 20pacosVpacosy + 05,4 ~ 0.07,.

TBS

(4.49)

49



Since the decay BY — K™K~ can be measured at LHCb, this bound will be further
improved. Even at the moment, however, the experimental value does not show any signs
of unnaturally enhanced topologies of this type. Similarly, one can use the branching
ratios of B, — w7~ decay together with By — K™K, as well as the corresponding
CP asymmetries [27,86,136] to constrain these parameters with the experimental data
from LHC.

Let us next turn to the impact of SU(3) breaking effects. First, we note that flavor
symmetry was assumed only in Eqs. (4.15) and (4.16). In principle both relations
are afflicted with flavor breaking factors, but the factorizable contributions that can be
quantified appear only (4.15). The corresponding pieces drop out of (4.16) and are added
in (4.15) through a ratio of form factors

N feFpr(MZ07)] A
e [fKFBW(M?{;UJF) ze (4.50)

The corresponding form factors can be calculated using Light Cone Sum Rules [137] to
be

waBK(M7%§O+)
fKFBW(sz{;O+)
so that SU(3) breaking seems to be a rather small effect. These reliably calculable
flavor-breaking effects have been included in the numerical values given above, as also
done in [28,75,138]. Unfortunately, any further estimate of SU(3) will have to rely on
estimates, but to check the impact of potentially larger uncertainties, we follow [28] in
that we allow for a doubly inflated error of pgi(s), i.e. psy3) = 1.0540.36 as well as an
additional strong phase —15° < Ogp(3) < 15°.
The analogous contributions to (4.16) can also be taken into account as

pSU@)::[ ] = 1.05 4 0.18, (4.51)

d =¢d, 6 =0+, (4.52)

In the numerical analysis, we consider then £ = 1.0 £ 0.18, and allow the strong phase
A0 to vary freely between —15° and +15°.

The effect of including this inflated uncertainties into the numerical discussion is
summarized in Table 4.2. Quantitatively, the effect is very small and, in any case, it is
not significant enough to explain the B — 7K puzzle on the basis of SU(3) breaking
alone.

After this explicit numerical discussion, there are also several consistency checks
inherent in the B — 7w, B — wK systems. Apart from the agreement between (4.21)
and (4.20), these are

e The value of the angle v obtained from B — 7w and B — 7K, which is in
reasonable agreement with UT fit numbers.

e The strong phase w is supposed to be vanishing in the SU(3) limit. This can be
tested by taking an additional observable, for example AIL(B* — 7°K®), into
account and solving for ¢, ¢ and w. One finds:

¢=099+0.67 ¢=—(93T19)°, w=—(22731)°. (4.53)

50



Quantity Default values | Non-fact. SU(3) breaking
Y (73.9%¢5)° (73.9%4)°
R 0.96 + 0.02 0.96 700
R. 1.15£0.05 1.15 £ 0.07
R, 1.12£0.05 1.12 £0.06

AT (B — K)

0.04 7008

0.04 7517

.A(él}r)(Bd — WOKs)

0.06 T

0.06 7014

AS

0.13£0.05

0.13 7508

Table 4.2: The impact of large non-factorizable SU(3)-breaking effects on our SM analysis. The
“default” results of our analysis include factorizable SU(3)-breaking corrections, as described in the
text.

The uncertainties in the value of w are still very large, but its value is compatible
with 0. This a reassuring sign for small flavor breaking, but it would be highly
desirable to further reduce the errors.

e Flavor symmetry can also be tested in the decay rates and CP asymmetries of
B, — KTK~. First results for the branching fractions have become available from
CDF and they should be well-measurable at LHC. These tests are discussed more
extensively in App. A.2.

4.6 Alternative Analyses, or: Is it Just QCD in the
End?

Understandably there has been a tremendous amount of discussion of the potential new
physics in B — 7K, and we would like to compare the results of the most important ones
with ours. We will put special emphasis on how the B — 7K data are accommodated
in th respective treatments, i.e. whether the conclusion is that new physics is required
or whether QCD dynamics can, in fact, describe the data well enough.

Within QCD factorization, the B — 7K decays have been analyzed in [65], includ-
ing their CP asymmetries, and we have collected the corresponding results in Table 4.3.
Here, we give only the values for the scenario labeled S4 in [65], since several quantities
have been updated (see caption of the table) in scenarios very similar to this one. The
updates are given in this scenario only, since it offers the best agreement with the data.
We observe that the description indeed seems to have some difficulty in describing the
data, and that new physics in the electroweak penguin sector would resolve this puzzle.
Also, the authors of [65] find on closer examination that a large phase (strong or weak)
is required. This is in agreement with our findings, but the nature of the new phase is
not specified, and there is no further examination of the implications or a quantitative
statement about the enhancement required. Another interesting point is that the CP
asymmetry of BY — 7~ KT comes out rather small. In addition, if the default scenario
of [65] is considered, the prediction has a wrong sign. Since there is no electroweak pen-
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guin contribution to this asymmetry, this seems to imply not only potentially enhanced
electroweak penguins, but also significant non-factorizable corrections.

The results arising from SCET are surprisingly different. In [87] an analysis, using
flavor symmetry in addition to SCET, was performed, with the result that there are in-
deed some discrepancies in the B — 7w K system, in particular concerning our observables
R, and R,, but it seems that these appear in the channels without electroweak penguin
contributions. These results depend rather strongly on the angle ~, which this analysis
favors to be large, as mentioned in Sect 3.4. The present status of SCET and QCDF
analyses is compared in Table 4.3, where the SCET results are from [87] and the QCDF
results are the default values from [65]. As [87] perform a fit to several observables, we
have separated those used in the fit and those that are predicted. For example, the CP
asymmetry of B — 7~ KT agrees with the experimental value trivially in this case.
Also, we show the dependence on v as it is present in the analysis. As discussed in
Section 3.5, this charming penguin terms are added by hand and also obtained in the
fit, which results in rather good predictions for the B — 7m branching ratios.

More recently, an even more extensive analysis in SCET has appeared [139], which
also includes isosinglet states. The results differ in some places from those of [87] since
the required fit to SCET parameters there is performed to all decay channels. A main
discrepancy between the two analyses is that [139] do not determine the angle v, so that
no statement is made about whether a large value such as the one we obtain might be
favored. However, the conclusion that the observables R, and R, may signal new physics
is also reached.

For the most recent discussion on PQCD, see [98]. Here, additional NLO contribu-
tions from vertex corrections, quark loops and magnetic penguins that enhance C/T are
calculated and claimed as a “resolution of the B — wK puzzle”. In particular, the pat-
tern of the CP asymmetries is in much better agreement with the data. Concerning the
branching ratios, the main effect of these new contributions is to enhance the B — 7°K°
prediction and bring it closer to the data. Still, the observables R and R, are on the low
side of the data for realistic values of 7. The predictions for PQCD can also been seen
in Table 4.3.

In addition to these dynamical approaches, there has been a large number of more
phenomenological analyses, in particular [39,100,101,110,140,141], to name just a few.
These analyses use, in general, approaches rather similar to ours, while the conclusions
may differ somewhat. In all cases, the basis is an amplitude parameterization which is
then fitted to data (one should note that, in the end, even the QCD based SCET approach
fits some SCET parameters). The main difference is then how the fit is performed
and which contributions are added. For example, [141] does not use flavor symmetry
between B — 7 and B — wK, but still arrives at the result that, with present data,
the electroweak penguin contribution should be modified. On the other hand, [39,101]
use also this symmetry and do indeed arrive at the same conclusion that there may be
new physics, but that the effect is not statistically relevant yet. In [100,110] one begins
with the assumption that there are, in fact, problems in the B — wK system and it
is attempted to solve them by including final state interaction terms [110] or charming
penguin contributions [100]. In both cases the attempt is not entirely successful: [100]
finds a too low value of BR(B; — 7" K"), which would, if confirmed point towards large
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Expt. SCET SCET QCDF PQCD
(v = 83°) (v = 59°)

Data in Fit
Am(rtro) [ 0504012 | 050+0.10 | 0.51+0.10 i 0.427 5003
Adi(rtr™) | —0.37+£0.10 | —0.37£0.07 | —0.38+0.07 | -0.10 | —0.18¥0357008
Br(nt7r™) 50404 50420 4.6+ 1.8 5.057% 6.5
Br(r7°) 554 0.6 55422 7.3+£29 5.5% 004 4.0134+1T
Br(r%7") 145+0.29 | 145+058 | 1.32+0.53 | 0.73%50% | 0.2970:507062
Br(K°7~) 241+ 1.3 24.141.2 24.14+1.2 20.3 24, 513361129
AIL(K=7F) | 0.115 4+ 0.018 | 0.115 4 0.023 | 0.115 £ 0.023 0.04 0.09F50510-00
Predictions
AL (nta®) | —0.01£0.06 < 0.05 <0.05 0.02 | 0.0+0.0%0.0
A (n°7%) | —0.28£0.40 | 048+0.19 | 0.5240.27 019 | —0.63%0:3510 00
A (r07) : —0.84+0.23 | 0.14+0.22 i i
Br(7°K°) 115+ 1.0 104+1.1 10.9+1.2 8.0 9.1%3:5%5
Br(7tK~) 18.94+0.7 24.0£2.1 22.5 £2.1 18.4 20.9155,04110
Br(mK ™) 121+08 143+15 127+ 1.4 11.7 13955524 7°

2x(n'Kg) | 031+£0.26 | 0.77+£0.16 | 0.76+0.16 | 0.7557005 | 0.74700370:01
ASR(m°K ™) | —0.04+0.04 | 0.183+0.075 | 0.184+0.076 |  0.04 | 0.017503*0:53
AGE(K%) | =0.02+0.13 | 0.103 4+ 0.058 | 0.083 £ 0.047 | -0.008 | +0.07 50300
Adn(nK°) | 0.02+0.04 <0.1 <0.1 -0.003 0.0+ 0.0

Table 4.3: Comparison of theoretical predictions for B — 77w as well as B — wK branching ratios and
CP asymmetries in QCD factorization, PQCD and SCET with the experimental values. The SCET
numbers are taken from [87], the PQCD values from [98] the predictions for QCDF from [65] except
for the B — 7w branching ratios, where we give the more recent numbers of [95]. The corrections of
ABX(m0Kg) to sin2f3 are computed with QCDF in [142].

isospin breaking effects, while in [110] the FIS are fitted and therefore in better agreement
with the data. The most obvious discrepancy here remains for the AYL(B; — 70K ™),
which we largely omitted from the analysis of this chapter, and will be one of the subjects

of Section 5.4.

4.7 Conclusion of B — K

Before moving on to the implications of enhanced electroweak penguins for (semi)leptonic
rare decays, let us summarize the results we obtained from B — 7K

e The hadronic parameters relevant for this decay system can be obtained from
B — 7 using flavor symmetry. The remaining electroweak penguin parameter is
calculable and sensitive only to short distance physics.
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Predictions for quantities without significant electroweak penguin contributions
are in reasonable agreement with the experimental numbers, while those with elec-
troweak penguins contributing in a color-allowed manner partially show a signifi-
cant deviation from their experimental values.

The sensitivity to the electroweak penguin parameter can be traced nicely in the
observable plane R, — R.. Here, one can read off the value of the electroweak pen-
guin parameters required to reach the data. The result is an enhanced electroweak
penguin with a large negative CP violating phase

The CP asymmetries are also sensitive probes of new physics. We will come back
to this point in the next chapter.

There are several assumptions appearing in the calculation. One can perform sev-
eral consistency checks as well as estimates of the uncertainties of the assumptions.
We find that the uncertainties even when the assumptions are badly violated can
not be the sole origin of the B — mK puzzle. Therefore, there may really be new
physics in the electroweak penguin sector, if the present data are confirmed by
future experiments.
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Chapter 5

Implications for Rare K and B
Decays

As we have seen in the last chapter, the data of the B — wK system may imply a
modified electroweak penguin contribution, where the corresponding values for the elec-
troweak penguin parameters are given in (4.35). It is quite obvious, that, in particular,
(semi-)leptonic rare decays, i.e. rare decays that have leptons as final states and therefore
receive contributions from these topologies, should also be affected by this modification.
In addition, these decays are, in general, much more sensitive to the modification, since
they are actually dominantly governed by them, due to the absence of QCD penguins.
We will make this statement more quantitative in a later section. Due to the fact that
only one matrix element is contributing, and that final state leptons do not influence the
matrix elements, these decays also tend to be much cleaner than non-leptonic decays. In
the decays discussed below, the matrix elements can either be obtained from measuring
tree level dominated decays with the same hadronic states or they are reduced to a decay
constant that can be calculated on the lattice and/or with QCD sum rules. Unfortu-
nately, most of these decays have not yet been measured, but dedicated experiments are
often being planned or are already under way. In this chapter we will analyze these rare
decays in a specific scenario of modified electroweak penguins.

In order to do so, we shall first establish a connection between the hadronic low
energy parameters introduced in the B — 7K system and the high energy functions that
govern the behavior of the rare decays. This analysis is also interesting once the question
arises as to which concrete model of new physics can show the specific phenomenological
signals that the B — mK system might be pointing towards. Next, we collect all the
relevant formula for the rare decays in question and give some general background on
the specific features and problems of each of the decay channels. We analyze these
formulae numerically in the subsequent section, where we will find that the rare decays
also have some messages for the non-leptonic decays. Therefore, we end this chapter with
a renewed analysis of a somewhat wider set of non-leptonic decays, under consideration
of these implications. In particular, we take also the opportunity to comment on the
situation in B — ¢ K.
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5.1 Connection of B — wK to Short Distance Physics

As a first step in our our studies, it is necessary to establish a correlation between the
purely phenomenological parameters of our B — 7K analysis and the calculable short
distance quantities of the OPE. To attack this question, we remember that ¢, in the
SU(3) limit of the standard model, is given by:

/
PEW

S A S S | Co(tn) + Cro(pw)
_'_

T 2\|Vi/Via| [ Ci(e) + C ()

= 0.58. (5.1)

0=

In any model of new physics this relation is modified by replacing the SM Wilson coef-
ficients with the corresponding ones of the respective model, which can amount to simply
replacing the standard model loop functions or to adding entirely new contributions (see
the discussion of Sect. 2.2.3).

Therefore, to continue, we have to specify a certain scenario in which we work, and
for simplicity and predictive power, we make the following assumptions:

e New physics modifies the C' function that describes electroweak penguins, but does
not modify box and QCD penguin diagrams. This modification is allowed to be
complex, i.e. C' — Cype® | as opposed to our first analysis in [143], where no
complex phase was introduced.

e There is no new flavor dependence in the couplings. This means that we have a
straightforward connection between K and B physics, since we allow for only one
universal, complex C function.

This kind of scenario, which constitutes the minimal extension of MFV that has a pos-
sibility of describing the B — wK data, has been already discussed extensively with
respect to (semi-)leptonic K [144-146] and B decays [147] alone, but we will extend it
to non-leptonic decays in what follows. The advantage of this scenario is that it makes
several stringent predictions, and can thus be easily tested, ruled out or verified.

In contrast to the model independent approach we are following, there have also
been several investigations of the implications of supersymmetry on the B — 7K decays
[113, 148-151], sometimes combined also with B — 7m. Additionally, also the rare
decays to be discussed here have been under some investigation [145, 146, 152-154] in
SUSY models with similar signatures. However, in supersymmetry the modifications
usually show up not only in the electroweak penguins, but also in the chromomagnetic
penguin topologies. Another possible scenario, studied in [155-157], is a scenario with
a flavor non-universal Z boson that introduces FCNCs at tree level. These can appear
either if an additional vector-like quark is introduced, or if there is an additional U(1)
gauge symmetry with an associated Z’ boson.

Coming back to our scenario, the next step to study the implications for rare decays
must then be to find values for the C function that correspond to a given value of ¢,
which means that we need to turn around the numerical analysis of 5.1. The appropriate
renormalization group equations to calculate NLO Wilson coefficients with contributions
from electroweak penguins have been given in Sect 2.2.2 and the results need only be
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inverted to find the value of C' for an arbitrary value of ¢. Numerically, this leads
to [27,143]:

5.2
0.086 (52)
where we have explicitly factored out the dependence on |V,;,/Ve|. The numerical factors
correspond to as(Mz) = 0.119 and m(m;) = 167 GeV, the precise values of which
have only a small impact numerically. Therefore, the associated uncertainties can be

neglected in what follows. We can now immediately also find the values for the X,V
and Z functions introduced in (2.45)-(2.47):

. | Vo
C)le% =235 ~ 082, §=g {M] |

X =X, Y =|Y|, Z=|Z|", (5.3)
with 9,357 5in o
- - .35 sin
X|=+/5.523*—0.42 0.01, tanfyx = 5.4
[X] = v/5.524 qeos¢+ 0.0, tanbx = o 0,09 (54)
- - 2.35 @sin ¢
Y| =+/5.523% — 3.00 0.41, tanfy = 5.5
Yl= 5520 qeosg+ 04l tanby = o — 0.6 (5:5)
- - 2.35 @sin ¢
Z| =+/5.52q% —4.42 0.88, tanf, = . 5.6
2] = V5524 qeos¢+ 088, tanbz = oo o — 0.94 (56)
Also, we will find it useful to define the following weak phases
Bbx=0-0s—0x, Oy=0-0s—0by, [z=0-0s—0z, (5.7)
where 3, = —1° is the B? — B? mixing phase, or, equivalently, the phase of V;,:
V;fs = _|‘/ts‘6_i'8S . (58)

The weak phases [3; replace the phase ( whenever it appears in a SM formula for
a branching ratio in combination with the corresponding loop function. Using then
|Viw/Ves| = 0.102 and the values of ¢ and ¢ from (4.35) gives, for the absolute values of
these functions:

|C| = 3.07 £ 1.78, Y| =2.97 £ 1.82, (5.9)

|X|=276+1.89, |Z|=3.14+1.76, (5.10)

to be compared with C' = 0.79, X = 1.53, Y = 0.98 and Z = 0.68 in the SM. Taken
at face value, it is quite clear that these numbers would imply some spectacular effects
in many decays. Unfortunately, an analysis for ME'V [64] finds, that the present data,
mainly for the inclusive b — sl*1~ decay, strongly constrain the allowed values of X and
Y and give the following 95% probability upper bounds:

X <195 Y <143 (5.11)

While our scenario of NP, which has new complex phases, goes beyond MF'V, the inspec-
tion of the known formulae for b — si*1~ shows that the upper bound on Y in (5.11)
is difficult to avoid, if the only NP contribution resides in the EW penguins and the
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operator basis is the same as in the SM. For our analysis below, we will, therefore, use
an only slightly more generous bound and impose |Y'| < 1.5. Taking then those values
of (q,¢) from (4.35) that also satisfy |Y| = 1.5 leaves one with

¢=048+0.07, ¢=—(93+17)°. (5.12)

Note that this corresponds to a suppression of the magnitude of the EW penguin pa-
rameter. Since the B — mK data seem to signal modified electroweak penguins, but
require the data to shift slightly within our approach, we will investigate how various
modifications of (g, ¢), that allow to satisfy the bounds in (5.11), influence our results
for the observables of the B — wK system presented in Chapter 4 and the predictions
for rare decays that we will discuss in detail.

For this purpose, we have introduced three scenarios that represent possible future
measurements of R, and R,:

e Scenario A: ¢ = 0.48, ¢ = —93°, is compatible with the present B — wK data and
the rare decay bounds (see (5.12)).

e Scenario B: We assume that R, goes up, and take ¢ = 0.66, ¢ = —50°, which leads
to Ry, = 1.03, R. = 1.13 and some interesting effects in rare decays, as we shall
see. This would, for example, occur if radiative corrections to the By — 77K~
branching ratio enhance R, [158], though this alone would probably account for
only an enhancement of about 5%.

e Scenario C: Assume that both R, and R. move towards 1: Taking R, = R, =1
leads to ¢ = 0.54, ¢ = 61°. The positive sign of the phase in this scenario distin-
guishes it strongly from both others.

In the following section, we will collect all relevant information on the rare decays we
discuss, before we then study the implications of these scenarios.

5.2 Basic Formulae for Rare Decays

In this section, we give the necessary generalization of the SM formulas to our scenario
for the rare decays we discuss. We have first derived these in [27], but will slightly rewrite
some of them using a more convenient description of the CKM factors. The corresponding
SM formulae can always be obtained simply by setting all the 3; to 3 — fs.

We begin with the decays K™ — wfvy and K;, — 7°vi, which proceed in the
SM through Z° penguin and leptonic box diagrams. In both cases, one has to take into
account the diagrams with internal top and charm exchange, since the smallness of V2V,
compensates for the quark mass enhancement of the top contributions. This effect is
typical for K decays, while B decays, as well as BY — BY mixing, are entirely dominated
by the top exchange due to the large value, in particular, of |Vj|. Both K — 7wov
decays are remarkably clean, since the required hadronic matrix elements of the leading
contributions can be extracted from the well measured tree level decay K+ — mletv
and other long distance contributions are well under control. Therefore, these decays
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are well suited to test any kind of new physics scenario, and we will have much more to
say about them in the next chapter, which is devoted to an in-detail analysis of precisely
these decays. Here, we give only the formulae for the branching ratios, which in our
scenario are generalized as follows

2

_ A A _ _
BR(KT — ntup) = Kk, [ )\—;X +2 )\—;X‘ P,(X) cos Bx + P.(X)?|, (5.13)
BR(K, — nvi) = KL‘%XFSHF Bx (5.14)
where \2

PAX) = (1= % ) (PAX) +8PX)) (5.15

302BR(K* — 1%tv) I D b
Ry =T+ o2 sin4 Qw A = (504 + 006) - 10 {m] y (516)

i, T(KL) -10 Rk
= = (2.12+0. -1 — . 1

fL = R R 0.03) - 10 {0.2248 (5.17)

P.(X) = 0.38£0.04 comes from the NNLO calculation of the charm contribution [30,159]
and §P.(X) = 0.04 £ 0.02 results from the calculation of long distance effects in light
quark loops [160].

There is quite a lot of CKM phenomenology that can be done when these decays
are measured, but let us here concentrate on the well-known minimal flavor violation
relation [161]:

(sin208)zvp = (sin 23) ks, (5.18)

As is obvious from (5.13), this relation is generalized to determine Gy, which makes it
an extremely interesting test of our scenario. The corresponding equations are then:

2r,

where _
VB1 — By — P.(X
ry = f1vn 2 (X) = cot O . (5.20)
E92v/ Bg
The parameters ¢; are £1, and the reduced branching ratios are defined by:
BR(K™ 2% BR(K; Ovi
p, = BRAET —mvr) - BRUK, = mvr) (5.21)

Ry Rr,

Experimentally, it is obviously extremely difficult to obtain precise values for both
decays. Nevertheless, three events of K+ — w7 vi have been observed at Brookhaven,
resulting in a branching fraction of

BR(K" — 7t uD)|epp = (14.775%0) - 1071 (5.22)
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On the other hand, there is only an upper limit on BR(K, — 7v), which reads
BR(Ky, — TU0)|eap < 2.9- 1077 (5.23)

at 90% confidence level. More details on the present and future experimental situation
will be given in Chapter 6. Anticipating a more detailed numerical discussion, we note
that the SM values for the decays are ~ 8 - 107 and ~ 3- 107!}, so that K+ — 7tvw
agrees with the SM within the uncertainties, while the bound on K, — 7% is still a
rather large margin away from the corresponding value.

The next decays we will turn to are the decays B,jq — p*p~. They are governed by
the Y function, and the corresponding branching fractions are:

2
_ _ TB, Fp, .
BR(B, — ptp~) =242 x 1075 x L 1 ps} {238 MeV] ViVis 2 [Y (0))? (5.24)

r 2

BR(B; — ptp”) =1.82 x 1070 x {1.;—idps} l203 ]li/(ie\/] ViViallY ()2, (5.25)
where 75, and Fg,  are the lifetime and decay constants. The latter can be obtained in
both QCD sum rule and lattice determinations. Nevertheless, these decays are less clean
than the K — mvv discussed above due to the uncertainties inherent in these parameters.
On the other hand, the one B decay that is similarly clean is the inclusive B — X vv
decay, which is, however, experimentally extremely challenging. The branching fraction
is given by:

[X(),  (5.26)

BR(B — X,v7) = 158 x 107 [BR(B - Xce”)} l0-54] |Vigl?
. .

0.104 f(2) ] Va|?

All of these decays provide information only on the magnitude of the electroweak penguin
parameter, but are not sensitive to any CP violating phases, at least in our scenario. At
present, the best experimental limits on these decays come from CDF, which give

BR(B, — p"pu™) <08-1077  BR(By— p p)<23-1078 (5.27)

at 90% confidence level, while the SM predictions are both O(107?) and will be given
explictly in the next section along with the SM predictions for the other decays under
discussion. No dedicated experiments for these decays are planned, but they should be
well measurable at LHC.

Now, we turn to the decays K; — w°lTI~, where the leptons can be muons or
electrons. Here, due to the contributions of the photon penguins, long distance effects are
important (in contrast to the Kj, — 7w case) and theoretical predictions are therefore
much less clean. However, recent analyses [162, 163] have reduced these uncertainties
considerably for both decays. They receive CP conserving, as well as CP violating
contributions, where the former where estimated from new data for K; — 7%y and
found to be entirely negligible [162]. The latter consist of terms that arise through direct
and mixing induced CP violation as well as interference between both. For example, the
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branching ratio in the electron case is, in our scenario, given by

2
0+ — _1n-12 A [Adl g ]
BR(KL, — m'e"e” )epy = 107 X | Cixe + Cig (m) + Caie (W ’

(5.28)
where
Crnix = (15.7 £ 0.3)]as|?, las] = 1.240.2, (5.29)
Cint = 1.0297v V/Cuix,  Cair = 0.56 (72,4 + G2y).- (5.30)
Here, |a,| is an O(p*) chiral coupling, which is estimated from Kg — 7% e~ and
L : Y (v)| . _ .
v = [Py + PgE(v)]sin(8 — Gs) + Gz g, Sn By —4|Z(v)|sin Gy (5.31)
X Y(v)| .
Yra = — | g ) sin By, (5.32)
sin” 6

W

contain the high energy physics, where Py = 2.89 + 0.06 [164] and Py is O(1072). The
formula for the muonic case has a similar structure, but the following replacements have
to be performed [163]:

Cruie = (3.7 0.3)|aal’,  Cit = 1.02 97 v/Clni (5.33)
O — ) (063 (02, + 62) + 0.8542 5.34
dir — 27’(‘2( . (y7A + y7v) + 0. y?A) ( : )

The experimental limits from KTeV read [165,166]
BR(K, — n’ete™) <2.8-107" BR(K, — nutp™) <3.8-1071, (5.35)

which are both about an order of magnitude larger than the SM predictions.
Another interesting decay is the decay K; — u*p~. The short distance contribution
of these decays can be rather reliably calculated within the SM and reads:

BR(Ky, — ptp)sp = 1.95 x 1079 x [B(Y) + A2R,|Y (v)] cos By]” (5.36)
where fy is defined in (5.7), and

P.(Y) = (1 — %2) P.(Y), (5.37)

with P.(Y) = 0.121 £ 0.012 [167]. Unfortunately, the extraction of the short distance
contributions from the experimental values is plagued with rather large uncertainties due
to long distance contributions. There have been several attempts to extract the short
distance amplitudes [168-173], but let us here quote the most recent result of [173], which
reads

BR(K[, — p 117 )sp|eap < 2.5 - 1077, (5.38)

while the SM prediction is about 8 - 10710,
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Finally, one needs to take into account that the parameter £’ /¢ is also very strongly
affected by electroweak penguins. The calculation has been performed up to NLO [54],
and the resulting formula, generalized again to our scenario, is

/

% — FAZR x Fu(v), (5.39)
with

Fgr(v) = [P0+PE E(’U)] Siﬂ(ﬂ—ﬂs)—FPX ‘X(’U)‘ sin 6X—|—Py |Y(U)| sin 6Y+PZ ‘Z(U)| Siﬂﬂz.

(5.40)
Here the P; encode the information about the physics at scales u < O(my, My ), and are
given in terms of the hadronic parameters

121MeV 2 121MeV ?
Rs = B{/? © ., Ry=BS? © (5.41)
ms(me) + mg(m.) ms(me) + ma(me)
as follows:
P = 7’2(0) + TZ(G)RG + r§8>R8. (5.42)

The ri(j ) are the AS = 1 Wilson coefficients on which we refer the reader to [19]. Unfortu-
nately, any theoretical prediction for £’/e is afflicted with large theoretical uncertainties
from hadronic matrix elements, so that we will not go into an extensive numerical anal-
ysis of this quantity. We have, however, checked that, with central values of the matrix
elements given, e.g. in [51], one tends to find values of £'/¢ that are not in agreement
with experiment. Explicitely, we used Rg = 1.2, Rg = 1.0, which leads to

g'/e=22x107%  while  £'/g|esp = 16.6 x 107* [174,175] (5.43)

With the values for (¢, ¢) that were found in [27], even a negative value was obtained.
Taking a somewhat larger value of Bg and a smaller one of Bg, such as Rg = 2.6,
Rg = 0.81 brings the result back into agreement with the experimental number. We can
therefore conclude that the parameter €’/¢ will only become a problem for our scenario
if the hadronic uncertainties are substantially decreased.

5.3 Numerical Analysis

In this section we analyze the formulae presented in the previous section for our scenarios
A, B, C. Taking the values of the CKM parameter as discussed in Section 3.4, we can
predict all decays. The corresponding results are given in Table 5.1. We show also
the corresponding SM predictions for comparison as well as the present experimental
limits (or values). We observe that, in particular, the interplay of the to K — wov
modes is a very good and clean indication of which kind of NP scenario to look for.
Due to the interference of charm and top contributions in K — #«tov, it is also the
decay that can most naturally be suppressed (though this is in contrast to the present
experimental value). On the other hand, BR(K; — 7%0v) is always enhanced due to
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the large values of ¢ and the absence of the charm contribution. This can be easily seen,
as BR(K[, — 7°0v) behaves in our scenario as

BRNP(KL) . ‘XNP‘ SiHﬁX ’ 5 44
BRY(K,) ~ \[X|5n(3—5) ) 549
Decay SM | Scen A | Scen B | Scen C Exp. bound
(90% C.L.)
BR(K+ — ntiw) /1071 9.3 2.7 8.3 8.4 | (14.7183°) [32]
BR(K — 7lvv) /1071 4.4 11.6 27.9 7.2 < 2.9-10* [33]
BR(K — wleTe™) /1071 4.2 5.4 8.2 5.6 < 28 [166]
BR(Ky — 7%uTp™) /10711 1.6 2.2 3.7 2.6 < 38 [165]
BR(B — X,vv)/107° 3.6 2.8 4.8 3.3 < 64 [176]
BR(B, — putp~)/107° 3.9 9.2 9.1 7.0 80 [177]
BR(K; — pu" ™ )sp/107° 0.9 0.9 0.001 0.6 < 2.5 [173]

Table 5.1: Branching ratios for several rare decays in the three scenarios introduced in the text.

Let us therefore discuss in a bit more detail these two decays in our scenario of
modified electroweak penguins. As already mentioned in the previous section, the mea-
surement of both decays allows to determine the CKM angle 3 in the standard model
and in any model with MFV. On the other hand, in our model with additional CP vio-
lation, one finds in this way the phase [y introduced in (5.7). Simultaneously, one can
of course determine the magnitude of the X function, so that, in principle, these two
decays alone are enough to very cleanly pin down the corresponding scenario. This can
be seen in Fig. 5.1, where we show, as in [178], the X dependence of both branching
ratios for fixed values of Bx. A remarkable feature is that for phases around Gy ~ 111°,
as obtained specifically in scenarios A and B, the ratio BR(K)/BR(K™) is very close to
the model independent Grossman Nir bound BR(K)/BR(K™) < 4.4 [179] that follows
from isospin. In general, there are some ambiguities in the determination of Sx in this
manner, but these can be resolved by studying also additional quantities.

Alternatively, it interesting to study the ratio of the branching ratio of both decays
as function of the angle Bx, as shown in Fig. 5.2. For negative angles, the figure is just
mirrored around the y axis, and it is plain that it is precisely the large values of Sx ~ 90°
that produce the largest enhancement of K;, — 7viv over K+ — wTvi. This figure also
shows nicely how the modification of the phase can strongly modify the pattern of the
decays and can enhance and suppress both decays with respect to each other. In addition
to the K — wvv decays, one should note that nearly all of the decays considered here
show some prominent signals in the case of new physics in the electroweak penguin
sector. They offer therefore an extremely important test of the potential new physics
signals from B — wK. In particular, they are very well suited to establish these signals
more firmly and, in the optimistic case of this confirmation, to distinguish the different
models of new physics.
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Figure 5.1: Potential to determine the phase and magnitude of the X function from both K — wov
decays: A measurement of both decays allows both parameters of our scenario to be fixed.
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Figure 5.2: The ratio of both K — 7ov decays as a function of the phase Sx, where we show also the
SM value and the upper bound that follows from isospin.
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Figure 5.3: The situation in the AZX(By — 7°Kg)-A4L(B* — 70K*) plane: we show contours for
values of ¢ = 0.69 to ¢ = 1.75 with ¢ € [0°,360°]. The grey area represents the 1o experimental range ,
and the central value is indicated by the black dot.

5.4 Implications for the B — wK System and other
Non-Leptonic Decays

So far, in this chapter we have discussed the implications of the Scenarios A,B and C
for rare decays. Let us now check, whether the scenarios are compatible with the other
observable quantities that exist in the B — 7wK system. In particular, we will find that
the CP asymmetries in this system will be very interesting in this respect. To begin, let
us note that a very naive estimate that neglects the color-suppressed tree and electroweak
penguin topologies shows that one expects the two asymmetries AZX(B; — 77 K~) and

aix(By — %K) to be equal. The rather large discrepancy in the experimental values
is sometimes considered to be another potential sign of new physics in the B — 7K
system (see [180] for an early clarification of this matter). On the other hand, we have
seen that the color-suppressed tree topologies are of the same order of magnitude as the
color-allowed ones, so that the naive argument breaks down. One possibility to clarify
this situation is to introduce sum rules that should be satisfied within the standard
model [181]. On the other hand, we can use our hadronic parameters to predict both
asymmetries for various values of ¢ and ¢. Therefore, in Figure 5.4, we show both

mx(By — nm°Ks) and AIL (B — 79K®) for several values of ¢ as functions of ¢ in
analogy to the R, — R, plots introduced in Sect 4.3.2. On the other hand, A% (B; —
7T K ™) receives contributions from electroweak penguins only in color-suppressed form
and is not affected by NP in our scenario.

We find indeed, that, while hadronic parameters can reduce the difference of the two
asymmetries, it is very hard to find the negative value of AJL(B* — 70K%) in the
standard model, while a scenario with a larger value for ¢ and a positive phase would
bring the predictions closer to the data.
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Figure 5.4: The situation in the ARX(By — 7°Ks)- AL (By — 7°Ks) plane, in analogy to Fig. 5.4.

Another phenomenon that has received some interest lately, is the experimental value
of AZX(B;— °Ks). In general, one expects the following relations for the CP asymme-
tries in B; — ' Kg:

AZb(Ba—7°Ks) =0, AZp(Ba—1"Ks) ~ AS(Ba— 1 Ks) . (5.45)

-

= —(311:26)7@;(5 = —(511‘1,26)1&&

The corrections to these relations have been calculated within QCD factorization [142]
and estimated using SU(3) flavor symmetry [182]. While the first of these equations
is rather well satisfied, the absolute value of AR (B;— m"Ks) comes out somewhat
low. Therefore, in analogy to our discussion before, we study the sensitivity of both
asymmetries to the electroweak penguin parameters and show the corresponding analysis
in Fig 5.4. Again, we find that a scenario with a positive phase is favored.

Finally, to conclude our discussion of the B — 7K system, we show the explicit values
of all observables that depend on electroweak penguins in the three scenarios considered
earlier, in Table 5.2. In analogy to the statements made above, it seems that scenario C
is slightly favored by the CP asymmetries. On the other hand, the uncertainties in this
sector are still rather large so that conclusive statements can not yet be made. It will
be very interesting to observe, in which direction the data of both branching ratios and
CP asymmetries move.

Another non-leptonic decay that receives contributions from electroweak penguins,
and has been under some discussion is B — ¢Kg. In particular, the mixing induced
CP asymmetry should be approximately equal to sin 23, where corrections within the
SM are expected to be small [142,183]. On the other hand, in contrast to B — J/¥ Kg,
here the dominant contribution to the decay is a QCD penguin topology, so that the
sensitivity to new physics is increased. Additionally, for quite some time, the data from
BaBar and Belle (while showing some disagreement among themselves), seemed to favor
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Quantity Scen A | Scen B | Scen C | Experiment
R, 0.88 1.03 1 0.83 +0.08
R, 0.96 1.13 1 1.01 £0.09

AdE (B —7%K*) | 0.07 0.06 0.02 | —0.0440.04
AdL(B;—7°Kg) || 0.04 0.03 0.09 | —0.0240.13
mx(By—7°Kg) | —0.89 | —0.91 | —0.70 | —0.3140.26

Table 5.2: The B — wK observables for the three scenarios introduced in the text.

smaller values for this asymmetry. This has triggered quite some discussion of potential
new physics models that would be able to accommodate a discrepancy in this channel
(see [184-187] for early discussions). By now, the newest data [49] have moved both
together and towards the expected Standard model value:

o(By — ¢"Kg) = 0.47 £0.19. (5.46)

As one can see, some discrepancy still persists. Since electroweak penguins may be sizable
in this channel, it is now interesting to see what happens if we introduce our modified
electroweak penguin parameters. We would like to analyze some kind of observable
plane, and therefore we define [188]:

D,y = [Ad“ (By — ¢Ks) — AEL(B* — ¢K™)] (5.47)

Djx = [Ad“ (By — ¢Ks) + AlL(B* — oK*)]. (5.48)

Next, we will parameterize the decay amplitudes as:
A(B] — ¢K®) = Ag [1 + o' 9] = A(B~ — ¢K ") (5.49)
A(BY — ¢K°) = A [1 4 e’ ®+9] = A(B* — ¢K™). (5.50)

Here, Ay is the leading QCD penguin amplitude, while the vy describes the the strength
of the electroweak penguins compared to the QCD ones and A is the corresponding CP
conserving strong phase difference. We only include the I = 0 isospin component, since
a large I = 1 part should be accompanied by significantly non-vanishing values of the
direct asymmetries [188], in particular of Dy Then, the CP asymmetries are given by:

= Al (B* — ¢gK*¥) (5.51)

2up sin Ay si
ADE (B GFg) = { Vo sin Ag sin ¢

1 4 2vg cos Ag cos ¢ + v2

sin ¢4 + 2vg cos Ag sin(¢q + @) + v sin(¢q + 2¢)
1 + 2ug cos Ag cos ¢ + v3

The main difficulty is now obviously the determination of the hadronic parameters vy

and Ag. If we are only interested in an order of magnitude estimate, we can use naive fac-

torization and assume top quark dominance in the QCD penguins. Then, this amplitude

(5.52)

mlx(Bd N ¢KS> |:
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Figure 5.5: The implications of electroweak penguin contributions for B — ¢ K. The lines correspond
to values of vg = 0.1 — 0.4 in steps of 0.05.

is found to be [27]:

N P { 2(Co(1my) + Cro(mw)) }
fact 4(C5(myp) + Cy(my)) + 3C5(my) + Cg(my)
2 % (—1.280 + 0.328) 1
== = 02 ,
[4 % (0.014 — 0.030) + 3 x 0.009 — 0.038] X g = 020, (5:53)

where we have used only the LO Wilson coefficients [19] and find that Ay ~ 180°. On
the other hand, we can discuss the relevant quantities for several values of vy and Ay,
as shown in Fig. 5.4, to account for the large uncertainties in this naive estimate, where
we keep ¢ = —85° for definiteness. Taking the naive estimate at face value, we would
have to conclude that the effect of these topologies is not large and would favor values
of AL (B; — ¢Kg) that are larger than AL (B, — J/¢Ks). Flipping the sign of the
phase ¢ in this scenario would bring the prediction closer to the data, as one can easily
see by expanding the expressions (5.52) for small vy:

D}y = —2vgsin Agsin ¢ + O(v7) (5.54)

MX(By — ¢Kg) — ABS(Bg — J/YKs) = —2ug cos Agsin ¢ cos g+ O(v).  (5.55)

On the other hand, this effect can always be compensated by the appropriate choice of
the strong phase Ay. Therefore, the only safe conclusion we can draw from this analysis
is that we do not expect very large modifications of the SM pattern.
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Chapter 6
Phenomenology of K — nwwvw

O and K+ — 7tvi are very

As we have seen in the previous section, the decays K, — «
sensitive to new physics in the electroweak penguins. In addition, they have the virtues
mentioned before, namely their theoretical cleanness and the resulting high degree of
calculability. Therefore, we devote this chapter to an in-detail study of these two decays
with a main emphasize on the predictions in the SM and their power to determine CKM
parameters within the SM. Thereby, we follow rather closely our own work in [31]. For
further reviews of these decays the reader is referred to [18,189-192] In the following, we
first collect all relevant formulae for the predictions of both decays in the SM, as well as
for the determination of the CKM factors appearing, followed by a numerical analysis of
them.

Before we do so, let us briefly outline the experimental perspectives for the mea-
surements of both decays. The present experimental status has been given already in
(1.3),(1.4):

BR(K" — ntwp) = 14.713° . 1071 (6.1)

BR(Ky — 7vp) <2.9-107" (90% confidence) . (6.2)

The present value for BR(K™ — 7ntvr) includes the first signals of two events from
E787 [193,194], as well as the new signal from E949 [32], both experiments of which were
performed at Brookhaven. On the other hand, the present bound on BR(K} — 7'vi)
comes from KTeV [33].

Future improvements for K, — 7% and K™ — ntvw are planned at KEK/J-Parc
(see [195] for a review of the corresponding K physics program), while future data for
K* — 7vw are also expected from the P-326 at CERN SPS [196], which, if approved,
hopes to measure ~ 80 events of KT — 7w in 2 years. Unfortunately, both the
CKM/Kplus experiment at Fermilab as well as the KOPIO experiment at Brookhaven
have been canceled. A more detailed up-to-date discussion of the experimental prospects
for both decays can be found in [197,198].

6.1 Basics of K — vy and main Formulae

In the Standard Model, the decay K+ — 7tvi is described by the Z° penguin and box
diagrams shown in Fig. 6.1. The relevant contributions to the branching fraction arise
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from the charm and top contributions (since the t part is CKM suppressed), while the
up component is only necessary for the GIM cancellation. Calculating the corresponding
diagrams and their QCD corrections, the branching ratio is given by:

BR(K* — 77 00) — ks - [(Imktx(%))Q + (%PC(X) 4 Rj?tx(xt)ﬂ , (6.3)

30?BR(KT — nl%tv)

1
212 sin* 0,

Ky = Tg+

A 8
A= (5.044+0.06)- 107" | ——— | . 6.4
( ) {0.2248} (6-4)

The quantities appearing in the formula have been introduced after (5.13).

0

Figure 6.1: The penguin and box diagrams contributing to K™ — ntwi. For K1, — 70 only the

spectator quark is changed from u to d.

In particular, the leading long distance QCD effects are governed by the matrix
element of a single operator that can be extracted from the precise measurement of
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the tree level decay K+ — 7%*v, and further sub leading effects are very well under

control [160,199-206]. A brief summary of long distance contributions can also be found
in [31], and the potential improvements from lattice calculations are investigated in [207].
Additionally, higher order electroweak effects have been studied in the large m; limit and
are also found to be negligible [208].

12
0.8 8.0+0.8
4

0.6

/ / / [

0.2 t

—0.75 —0.9 —0.25 0 0.25 0.5 0.75

Figure 6.2: Unitarity triangle from K — wvv. We show the constraints arising from several hypo-
thetical measurements of K+ — ntvwv and K1, — 7% in units of 107'. A UT is constructed from a
measurement of BR(K™ — 77vv) = 8.0+ 0.8- 107! and BR(Ky, — 7%vi) =3.04+0.3- 1071

As stated above, there are top as well as charm contributions, denoted by X (x;) and
P.(X), respectively. The top contribution, described by the X function, is given simply
by
ag(my)

T

X(zy) = Xo(zy) + Xi(zy) = nx - Xol(zy), nx = 0.995, (6.5)

where
o 2+ Tt 35(715 —6

g _1—$t+(1—$t)2

Xo(z) = In z, (6.6)

as in (2.45) and the QCD correction is calculated to be [209-211]

29x, — a? —4a} oy + 92?7 — a) — )
Xy () = — _ 1
l(xt) 3(1 _xt)2 (1 —l't)g n Ty
8xy + 4a? + x} — af 2 4oy — a}
"z — ——5 La(1 —
2(1 — x,)? T=zyr2d =)
X,
+ 8$M Inz, (6.7)
8$t

71



where z, = p? /Mg, e = O(my) and

o Int
Lo(1 — ) :/ s (6.8)
i

The scale involved p ~ m, is rather high, so that an NNLO calculation is not necessary,
since the scale uncertainties are already small at the NLO level. Note, that the appearing
operator does not renormalize under QCD, which explains the absence of renormalization
group effects.

On the other hand, the calculation of the charm contribution is much more involved,
since the charm quark is not integrated out simultaneously with the W boson. As a
result, intermediate-scale diagrams are generated, in which also additional operators
appear. Therefore, an entire renormalization group analysis is required, which has been
performed to NLO [167,212] and to NNLO [30, 159] precision. Summing over leptons
(the electron and muon can be treated equivalently), one finds

112 1 0.2248\*
P.(X)=— [—XI%L + —XIQL] = (0.38 +0.04) (—) ,

A3 3 A (6.9)

where we quote the result from [159]. The NNLO calculation has reduced the scale
uncertainties in P.(X) severely and the main source of uncertainty now has its origin in
the value of the charm quark mass. Here, long distance effects can be added and amount
to 0 P. = 0.04 4+ 0.02 [160], and are thus, as one can see, very well under control.

This complication of the charm contribution is absent is the decay Kj, — 7°vi, since
it is purely CP violating in the SM and any MFV model [213]. The imaginary part of A,
is nearly vanishing, and one is left with the top contribution only. Then, the branching
ratio is:

ImA\ 2
BR(KL — WOVI;) = KR ( >\5 tX([L't)) (610)
Tr, T(KL) ~10 A ®
= = (2.1240.03) - 1 11
fL = R ) 0.03) - 107 55918 (6.11)

This decay is even cleaner than its charged counterpart, since perturbative uncertainties
are nearly absent, and, again, long distance contributions are estimated to be negligible
[206]. Therefore, this decay provides virtually the cleanest possible determination of the
CP violating UT parameter 7, or, alternatively, an extremely clean test of the SM.

Let us in this context focus on the determination of UT parameters in the SM in

the remainder of this section. For this, also the expression following from (6.3) and
(2.13)-(2.15) is useful [36]:

BR(K" — wtvw) = Ry |Vipl ' X2 () = [(00)* + (0 — 0)°] (6.12)

o= (i) . (6.13)

Sy

where



The measured value of BR(K ' — 7tvi) then describes an ellipse in the (g, 7) plane
centered at (o.,0) (see Fig. 6.2) with

4
oo=1+ 7@5)@) (6.14)
and the squared axes
g=rt  7=(") (6.15)
where
"2 = [a~]_3R(K+ —>7T+I/I7)] (6.16)
R Voo |1 X (1)

Using then the measured value of |V,;,/Ve| allows to determine g and 7 with

1
1—o02

1= (e 0= -m)) . = R-E

where 7 is assumed to be positive. Then,
R? =1+ R; —2p, Via = AN*(1 — o —in), [Via| = AN*Ry, (6.18)

can be used to obtain any desired CKM factor. This allows, in principle, a complete
determination of the UT in the SM from K+ — ntvv alone.
If one looks at K, — m’vi only, one can immediately find

_ _ _ RL _
BR(Ky, — 7°vp) = Rpn?|Va|* X% (2,), Fr=15 = (3.344+0.05)-107°  (6.19)

from which 7 can be determined, as mentioned above:

3.34-10-5 [ 1.53 ] [0.0415]° \/BR(KL — O
7= 0.351 . 6.20
1= 0BT, <o) ) Ve (620

Alternatively, one can also find Im\;:

(6.21)

I\, — 1.39 10_4{ A } 3.34-10-5 { 1.53 } \/BR(KL — )
t — L.0oJ-
R

0.2248 X (z1) 3.10-11

If one is willing to take the angle (§ from, for example, a UT fit, (2.16) can be used with
(2.17) in (6.20) to also obtain a “golden relation” [31] for the UT angle ~:

sin 3 sin 7y 3.34-105 [ 1.53 ] [0.0415]° \/BR(KL )
L —0.351 . 6.22
s N TR X [TV 3.10™ (622

This an extremely clean determination of this angle, which is, however, potentially pol-
luted by new physics through the X function. As a consequence of (6.22), one may also
invert this relation to determine |V| [214]:

V2 = 6.05 - 1074 22

(B+7) [3.34-105 [ 1.53 \/BR(KL — D)
sin 3 sin y KL [ } (02

X(z2) 31011
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The advantage of this relation is the very weak dependence on BR(Ky — 7°vi), since

it enters only to the power of 1/4. On the other hand, one has again potential pollution
effects from new physics that can enter through the X function.

So far, we have discussed the determination of CKM parameters from one of the de-
cays alone. Using, on the other hand, both decays allows for a complete determination of
the unitarity triangle, as we will see. First, from Fig. 6.2 it is clear, that the intersections
of the ellipse from K™ — 7Tv and the line from K}, — 7%v¥ fix the entire triangle (up
to ambiguities), without any input from |V,;|. The corresponding formulae are:

VB Rede p(X) + VB) — B

Im)\, = \° A=\ 24
MAg X(,’,Ut>’ R'e t X(xt) ) (6 )

where we have defined the “reduced” branching ratios as in (5.21)
B — BR(K+ — 7T+I/I7)’ By — BR(Ky, — 7TOI/I7) ‘ (6.25)

R4 KRr,

Using next the expressions for ImA;, Re\; and Re), given in (2.13)-(2.15) one finds

P(X)=Vo(Bi=B) . VB (6.26)
A2X (z;) ’ VIAX (1) ’

o=1+

with o defined in (6.13). Then, the contours in the (p,7) plane are fixed entirely from
(6.26), as soon as the value of X () is given, in any model with MFV. In models that go
beyond MFV | such as the one discussed in Section 5, it may be more sensible to determine
the weak phases appearing. In this context, the extremely clean determination [161] of
the angle 3.f¢, which consists of the SM angle 3 as well as a potential CP violating NP
phase of X (z;), is very interesting, as discussed already in (5.19). For completeness, we
give here again the corresponding equations:

. 2r
sin2f = T2 (6.27)
where B
VB; — By — P.(X
rs = SV 2 (X) = cot [3. (6.28)

g2v/ B2

The main feature of these equation is the absence of both X (x;), which makes it valid
not only in the SM but in any model with MFV. Also, there is no dependence on |V,
which makes it extremely clean, since the only theoretical or parametric uncertainty
arises from P.(X). We have analyzed these equations in the context of new physics
models in Fig. 5.1 and will be more concerned with the determination of the SM phase
in what follows.

Finally, we point out that one can, alternatively, determine the UT angle 7 from [31]

mm:¢%(&mm_wmfi§+amg. (6.29)
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However, this has the disadvantage of being potentially polluted by new physics appear-
ing in X (z;). Also, in contrast to (6.27), the input parameter |V, does not drop out of
(6.29).

Another possibility to obtain + is to first take R; from

R V/Bi — P2sin® Bg — P.cos feg
b fA2X(fL't) .

(6.30)

This (Ry, 5) strategy by means of K — 7w decays gives then (g,7) as given in (2.16)

and in particular

1— Rycos 3
Risinf3

Again, this avenue is affected by the uncertainties from |V,| as well as potential new
physics contributions in X ().

coty = (6.31)

6.2 Numerical results

6.2.1 BR(Kp — wv>) and BR(K™ — wtvi) in the Standard
Model

Let us now analyze numerically all of the formulae given in the previous section within
the SM. From this analysis, the power of both decays becomes very clear. At the same
time, it becomes obvious where the largest sources of uncertainties in the analyses lie.

Here, we will not only be concerned with the present situation, but also with potential
future scenarios for the CKM factors as well as for possible measurements of K+ — ntvi
and Kt — 77vp, which we introduce in Tables 6.1 and 6.2. In Table 6.1, we list the input
used to predict KT — ntvi and K7, — 7vv in the SM, where Scenario A corresponds
the UT fit performed in [31], while the Scenarios B and C are projections of 5 - 10 years
into the future. In particular, the uncertainties in P.(X) should be further reducible
with more precise values of the charm quark mass, while a precise determination of ~
from tree level strategies should be possible at LHCb. Also, the uncertainties in 3 should
be achievable at the B factories and the LHC. They correspond to an error in sin 23 of
+0.025 and £0.012 for scenarios B and C, respectively. At this level, it will become
necessary to quantify in more detail the theoretical uncertainties in AZS(By — J/¢ Ks),
as discussed in Section 2.1.3. Finally, we use for Scenario A the NLO value for P.(X), as
in [31], while Scenario B corresponds essentially to the NNLO calculation, and therefore
shows the corresponding reduction of the uncertainties.

Next, in Table 6.2, we introduce two scenarios I and II, for future measurements of
K* — rrvw and K7, — 7% at the 10% and 5% level, respectively. The realization of
both scenarios will require some experimental effort, but we will show in the following
that this effort should be well worth making. We also use projected values of |V|, P.(X),
my, as they will also be necessary to determine 3, v, R, and R;.

75



Table 6.1: Input for the determination of the branching ratios BR(K+ — nTvr) and BR(K

in three scenarios.

‘ ‘ Scenario A ‘ Scenario B ‘ Scenario C ‘
16} (23.7+£2.1) | (23.5+£1.0) | (23.5+£0.5)°
o (63.0£6.0) | (63.0+£5.0) | (63.0£2.0)°
|Vip| /1073 415+ 0.8 4154+ 0.6 415+ 04
Ry 0.40 = 0.06 0.40 + 0.03 0.40 +£0.01
mGeV] | 168 £ 4.1 168 £ 3 168 £ 1
P.(X) 0.39 +0.07 0.39 +0.03 0.39 + 0.02
7 0.354 +0.027 | 0.340 4+ 0.009 | 0.358 4 0.007
0 0.187 £0.059 | 0.209 4+ 0.017 | 0.182 £ 0.011

Table 6.2: Input for the determination of CKM parameters from K — mwvv in two scenarios.

‘ ‘ Scenario 1 ‘ Scenario 11 ‘

BR(KT — 77vi)/10-1 | 8.0+08 | 8.0+04
BR(Ky, — 7vp)/10°% | 3.0+03 | 3.0 £0.15
m.[GeV] 168 £ 3 168 £ 1
P.(X) 0.39 + 0.03 | 0.39 £ 0.02
Vo] /1073 A15+06 | 415£04

The first step of our analysis is a prediction of both decays within the SM. Beginning
with the Scenario A, we find that the CKM factors given in Table 6.1 correspond to

Im), = (140 £ 0.12) - 10™%,  Re), = —(3.06 £0.25) - 10™* (Scenario A). (6.32)

Using these as input, we find for the branching ratios within the SM:

BR(K' — ntud)gy = (7.77£0.82p, £0.91) - 107 = (7.8 £1.2) - 107, (6.33)

BR(K, — 7%vp)gy = (3.0 £0.6) - 107, (6.34)

Here, we have separated the parametric from the theoretical uncertainties, which arise
only from P.(X). Adding both in quadrature gives the final uncertainty. The theoretical
uncertainties are negligible in Kj, — 7%v#. Similarly, from the CKM factors given for
Scenario B and C, we find:
Im\, = (1.35 £0.05) - 107*,  Re), = —(2.97+0.11) - 10~*

(Scenario B) (6.35)

Im), = (1.42 + +0.04) - 107%,  Re), = —(3.08 £0.07) - 10* (Scenario C). (6.36)

We have collected the corresponding values for the branching fractions in Tables 6.3 and
6.4. In these Tables, in the rows labeled with Scenario A, B and C, we use the complete
unitarity triangle fit from Table 6.1. On the other hand, it is interesting to investigate
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Table 6.3: Values of BR(K+t — 77vi) and BR(Ky, — 7%%) in the SM in units of 107! obtained
through various strategies described in the text.

Strategy | BR(KT — 7tww) [1071] | BR(KL, — 7vi) [1071]

Scenario A 707 +1.23 3.05 £ 0.56
7.77£0.82p, £0.91

Scenario B 7.46 + 0.55 2.824+0.25
7.46 £ 0.35p, +0.43

Scenario C 7.85+0.35 3.12+0.17
7.85£0.23p, £0.27

(Rp, ) (B) 7.85 % 0.69 3.10 + 0.60
7.85 £ 0.35p, £ 0.60

(Ry, ) (C) 7.85 +0.38 3.10 +£0.23
7.85+£0.23p, £0.30

Table 6.4: The anatomy of parametric uncertainties in BR(K™ — wTvw) and BR(KL, — 7

corresponding to the results of Table 6.3.

V)

Strategy oBR(K* — ntvw) [1071] oBR(K1, — 7vr) [1071]
Scenario A | £0.72, & 0.11, £ 0.44,, £ 0.31,, 048, £ 024y, £ 0.17,,,
Scenario B | £0.20, % 0.03; % 0.31)y,, £ 0.21,, +0.15, £ 017}y, % 0.11,5,
Scenario C | £0.13, % 0.03; % 0.2y, + 0.08,,, 40,12, + 0.12,,) + 0.04,,
(Ry,7) (B) | £0.065, + 044, £ 033y, % 0.23,n, | £0.48p, £ 0.20, £ 0181, % 0.13,5,
(Ry.7) (C) | £0.025, £0.18, £ 0.22)y., £ 0.08,,, | £0.165, % 0.11, % 0.12)y,,| % 0.04,,,

what happens if only the constraints from R, and 7 are used in the determination of the
CKM parameters, since these are the two parameters that can be obtained from tree
level decays. The corresponding numbers are also given in the tables and are labeled by
(Rp,7y). Obviously, the uncertainties in this strategy are significantly larger than in the
situation where one uses the entire fit, but in Scenario C we have assumed a very precise
value of Ry, so that both strategies are competitive here. It will, however, take some
time until the values of R, and v discussed here become realistic.

We also show, in Table 6.4, the composition of the parametric uncertainties, by
splitting errors according to their source (The uncertainty due to P, is already separated
from the others in 6.3). These parametric uncertainties are indeed the dominant ones
since the completion of the NNLO calculation. We observe then that the single largest
source of uncertainties is the value of |V,|. Concerning the strategy using R, and -, it
is clear that, with our values of R;, the influence of v on the uncertainty is significantly
larger. In conclusion, we find that a more precise SM prediction of both decays will
especially require more precise information on the CKM factors. Finally, let us also note
that our predictions are in the same ball-park of other recent ones given in [30,190].
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6.2.2 Impact of K™ — wTvi and K1, — w°vi on the Unitarity

Triangle

In the previous subsection, we have found that the SM prediction for K+ — ntvp
and K;, — v depend rather sensitively in the CKM factors used. Now let us use
this information to turn the analysis around: In the following, we will investigate the
precision with which CKM factors can be determined from both decays. Here, we will
find that the value of |V,| used as input, as well as its precision, are very important.

We begin with the determination of R; and |Vi4| from K™ — 7w, As discussed
in the previous section, one further CKM input is needed, which can be either 3 or R,.
Using 3 as input and taking all the numbers at their present value, including the present
experimental number for K+ — 7tvp, we find

R, =135+064, |Vig=(125+5.9)-1072 (6.37)

where the dominant error arises due to the error in the branching ratio. On the other
hand, using R, and taking again all input at its present value gives

R, = 1.347582, |Via| = (12.5%58) - 1073, (6.38)

Note that the large values of R;, that are in principle allowed by (6.37), are eliminated
in (6.38), as they are inconsistent with the value of R, that is used. At the same
time, also large values of BR(K™ — ntvw) are cut off, and only values that satisfy
BR(K* — 7Twvi) < 1.69 - 10719 are allowed.

Considering then more future scenarios, we show the values of R, and |V,4| as found
in Scenarios I and I and taking 3 and R, from Scenario B in Table 6.5. The values thus
obtained are not very sensitive to the actual input of R, and 3, so that the uncertainties
in both strategies are very similar. Also, the values obtained in Scenario C are the same
within the digits shown. Finally, it is interesting to see what the individual sources of
the errors are. Therefore, we separate again the uncertainties, and add the contributions
of the dominant ones, which scale as

o ([Vial) o(F) o(BR(K™))  o(|Ves])

—— = +0.39——= £ 0.70 6.39
Vi ; BRUK) [Vl (639
We find then
v
Uﬂ/tTD = £3.0%p, £ 7.0%BR x+) £ 1-4%,,; (Scenario I) (6.40)
td
and v
“(||V“f|) = +2.0%p, £ 3.5%BRx+) £ 1.0%)v,-  (Scenario IT) (6.41)
td

Adding the errors in quadrature, we find that |V4| can be determined with an accuracy
of £7.7% and +4.1%, respectively. These numbers are increased to £8.2% and +4.2%
, once the uncertainties due to my, as and 3 (or |Vy,/Vi|) are taken into account. The
dominant source of uncertainties in these cases is the measured value of the branching
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Table 6.5: The values for R; and |Viq|/10~2 (in parentheses) from K+ — 7tvi for various cases
considered in the text.

‘ Scenario 1 ‘ Scenario 11 ‘

Scenario B () | 0.903 £ 0.078 (8.39 £ 0.69) | 0.903 & 0.041 (8.39 & 0.36)
Scenario B (Ry) | 0.905 4+ 0.078 (8.41 4+ 0.69) | 0.905 £ 0.041 (8.41 £ 0.36)

fraction. However, as a measurement of BR(Kt — 7ntvi) with a precision of 5% is
very challenging, the determination of |Vj4| with an accuracy better than +5% from
BR(K" — ©tv) seems very difficult from the present perspective.

On the other hand, the UT side R; can also be determined from AM,;/AM. Here, the
data are expected to be very precise already from the Tevatron, where the first signs of B,
mixing have been observed. On the other hand, the hadronic matrix elements entering
in the corresponding expression limit the precision achievable. Still, a determination of
R; at the 5% level in this manner should hopefully be possible within this decade.

Let us next tun to the possible impact of a precise measurement of BR(Ky, — 70vi).

As we have mentioned, this decay allows for the cleanest determination of the CP vi-
olating parameter 7 or, alternatively, Im);, as shown in (6.20) and (6.21), respectively.
Using the values for Scenarios I and II, we find

7=03514+0.022,  Im\ = (1.39+£0.08)-10"*  (Scenario I). (6.42)
7=035140011, TImA =(1.39+0.04)-10"%  (Scenario II) (6.43)

Due to the absence of any theoretical errors, the uncertainties arise solely from the exper-
imental values of the branching fraction, and the values of Im)\; are therefore impressively
precise.

Having now determined 7j, we can continue to construct the complete unitarity tri-
angle. In order to do so, we need one further input, which could be 3, v, R, or R;. As
discussed in [38], the angle is 7 is very useful in this respect, but we will also investigate
the impact of 3. Using the corresponding parameters from Scenarios I and II, we find
the values of g and |Vj4| given in Table 6.6. We compare here also the 3 and -~y strate-
gies. Notice that going from Scenario I to II has a significant impact on the precision
obtainable only when using (3, while both scenarios give similar results if 7 is used. Also,
a rather precise value of v is sufficient to obtain a rather precise value of p, even if the
branching fraction is measured to a precision of 10%.

As an alternative, from a measurement of BR(K7, — 7°v), one can use Eq. (6.23)
to obtain |V|. The additional input required in this case are (§ and 7, but in turn
one can also determine |Vi4|. The corresponding values from Scenarios I and II for the
branching fraction and scenarios A and B for the CKM factors are given in Table 6.7.
The uncertainties for |V,;| thus obtained are larger than the ones obtained from semi-
leptonic decays. However, since the determination from Kj, — 7% is theoretically
clean, it may provide a useful cross check to the standard determinations. The precision
of R; determined in this manner is rather high, a result of the accurate value of R; that
can be found from 3 and v [38].
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Table 6.6: The values for g and |V;4|/1073 (in parentheses) from Kj — nOv for various cases
considered in the text.

‘ Scenario I ‘ Scenario 11 ‘
Scenario B (/) | 0.193 +0.063 (8.18 4 0.57) | 0.193 & 0.048 (8.18 £ 0.41)
Scenario C () | 0.193 +0.053 (8.18 +0.49) | 0.193 £ 0.033 (8.18 £ 0.28)
Scenario B () | 0.179 £ 0.042 (8.30 £ 0.37) | 0.179 £ 0.041 (8.30 + 0.41)
Scenario C () | 0.179 £ 0.019 (8.30 £ 0.18) | 0.179 £ 0.017 (8.30 £ 0.16)

Table 6.7: The values for |V,| and |Vi4| (in parentheses) in units of 1073 from K, — n%vi, 8 and v
for various cases considered in the text.
Scenario 1 ‘

112+ 1.6 (3.24 + 0.32)
A12+1.2 (8.24 % 0.25)

Scenario 11 ‘

412+ 1.3 (3.24 + 0.26)
412407 (8.24 + 0.15)

Scenario B
Scenario C

Table 6.8: The determination of CKM parameters from K — 7wvv for two scenarios of Table 6.2.

‘ ‘ Scenario 1 ‘ Scenario 11 ‘

7 0.351 +£0.022 | 0.351 +0.011

0 0.167 £0.079 | 0.167 4 0.042

sin 23 0.716 £ 0.050 | 0.716 4+ 0.027

16 (22.8+£2.2)° | (22.8+1.1)°

~ (64.2+10.9)° | (64.2%5.0)

Ry 0.389 £ 0.040 | 0.389 4 0.020

R, 0.902 £0.072 | 0.902 4+ 0.039
|Via| /1073 8.38 +0.65 8.38 = 0.34
Im); /1074 | 1.39£0.08 1.39 £0.04
Re);/107% | —3.13+£0.29 | —3.134+0.15

Finally, as a last step, we will now combine the information from a measurement of
both decays to construct the complete unitarity triangle without additional input. The
resulting analysis is also in many ways an update of [215], where this kind of construction
of the UT was first discussed. The resulting values of for all CKM parameters are shown
in Table 6.8, where we find, in particular, that sin23 and Im\; can be found very
precisely. Also, all parameters can be obtained in a satisfactory manner already in
Scenario I. We show the unitarity triangle, as constructed from the measurements of
both decays as assumed in Scenario I, in Fig. 6.2. The values of the branching fractions
have been chosen here as such, that they represent the SM values if the CKM input from
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Table 6.1 are used. Hopefully however, the apex of the unitarity triangle constructed
in this way will not agree with the expectation and signal some contributions from new
physics. This would, for example, be the case in the scenario of enhanced electroweak
penguins with a CP violating phase discussed in Chapters 4 and 5. At this point we
should mention that also the value of the X function enters into the determination of
the UT and would also be modified in the presence of NP. Of course, the main result of
such a scenario would be, however, to modify the value of 3 according to our analysis in
Chapter 5.

Therefore, we analyze next the numerical implications of (6.27). The numerical
results for sin 2 are already given in Table 6.8, and we will now be interested in the
origin of the uncertainties. To clarify this, we investigate the impact of the separate
contributions and split the errors according to:

o(sin28) o(P,.) o(BR(K™)) o(BR(KYL))
W = +0.31 P + 0.55W + O.ng

(6.44)

For the two scenarios introduced above, this leads to
o(sin23) = 0.017p, + 0.039BR x+) + 0-028BR ) = 0-050 (Scenario I)  (6.45)
and
o(sin23) = 0.011p, + 0.020BR (g+) + 0-014BR ,) = 0-027, (Scenario IT)  (6.46)

where the errors have been added in quadrature. From these decompositions, we observe
that in Scenario I, corresponding to the NLO calculation, the uncertainties are actually
dominated by the errors in P.(X). On the other hand, in Scenario II, which corresponds
basically to the NNLO calculation, we find that the uncertainty is now dominated by
the accuracy of the measurements for the branching fractions. Therefore, precise mea-
surements of both branching ratios would be very desirable, in order to compare the
corresponding value of sin 23 with the measurement of AZX(B; — J/¥Ks).

The same decomposition can be performed in an analogous manner for the angle ~,
where the relation (6.22) is used. The result is

0 () = 3.7, +858R ) + O4BR 1,y T 38| + 265, = 10.4° (6.47)

and
o(7) = 2.5p, +4.2BR jouy T 0-2BR i,y + 25V, + 0.9, = 5.7 (6.48)

for Scenario I and II, respectively, where the errors have again been added in quadrature.
Our main observations here are that a measurement of BR(K7, — 7°v7) has a compara-
tively small impact, whereas the uncertainties of both P.(X) as well as BR(K* — ntvr)
are significant.

As a last point of this section, we remember that, in several quantities analyzed here,
we found the uncertainties to be dominated by those from P.(X) and |V,|. Therefore,
we conclude by showing the uncertainties induced by these two quantities on several
observables under investigation. We do so for different values of o(P.) and o(|Vy|),
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corresponding to the scenarios A,B and C, where the results are given in Tables 6.9 and
6.10.

In conclusion, we have investigated the precision with which certain CKM parameters
can be constrained from KT — ntvy and K;, — n%vv with future measurements. We
have shown that this can be done remarkably well, as summarized in Table 6.8.

Table 6.9: The uncertainties in various quantities due to the error in P,.

| o(P,) | £0.07 | £0.03 | +0.02
BR(K* — ntwvp)/1071 | £0.82 | +£0.34 | +0.23
7 - - -

0 £0.067 | £0.029 | +0.019

sin 23 +0.042 | £0.018 | +0.012

3 +1.8° | £0.8° | +0.5°

v +9.4° | £3.8° | +25°

R, £0.033 | £0.019 | +0.009

R, +0.061 | £0.026 | +£0.017

[Vial /1073 +0.57 | £0.24 | +0.16
Im),/10~* — — —
Re), /1077 +0.25 | £0.11 | +0.07

Table 6.10: The uncertainties in various quantities due to the error in |V|.

| o(|Vi|) /1073 | +0.8 | 0.6 | +04 |
BR(K* — 7ntup)/107 1| £0.44 | £0.31 | £0.22
7 +0.013 | £0.010 | £0.007
0 +0.033 | £0.025 | £0.016
sin 23 — — —
ﬁ _ _ _
v +5.3° | £3.9° | +£2.6°
R, +0.003 | £0.002 | £0.001
R, +0.036 | £0.027 | £0.018
Via| /1073 +0.17 | £0.12 | £0.08
Im)\, /10~ % — — —
Re); /1074 — — —
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Chapter 7

Conclusions and Outlook

In this work we have analyzed several non-leptonic B decays with respect to possi-
ble contributions from new physics effects. In this analysis, we have exploited several
correlations between different decay channels, which allowed us to overcome the main
difficulty inherent in any analysis of non-leptonic decay, namely the calculation of the
hadronic matrix elements. These correlations allow, in principle, to disentangle effects
of beyond-SM physics from hadronic uncertainties. Specifically, we have investigated the
non-leptonic decays B — nm and B — wK within a scenario of modified electroweak
penguin contributions with a possible CP violating phase. Finally, we have extended
the analysis to several rare K and B decays, where the modification of the electroweak
penguin parameters should show some prominent signals.

The analysis consisted of several subsequent steps and proceeded in detail as follows:

e We began by investigating the decays B — mm, which are tree level dominated
and therefore expected to be described to a very good approximation within the
SM. Using the SU(2) isospin symmetry of strong interactions, the amplitudes were
parameterized in terms of several hadronic parameters as well as the weak CKM
phase 7. We then used the additional assumption of SU(3) flavor symmetry to
determine both + and the hadronic parameters. In this process, we included nu-
merically the contributions of the electroweak penguins parameters, which have
only a very minor impact. From the values of the parameters obtained, the CP
violating asymmetries of the B — 7°7% decays were predicted, which can also be
used to determine v, once they are more precisely measured.

e Using in the next step the SU(3) flavor symmetry of strong interactions, we de-
termine the hadronic parameters of the B — wK decay system. The electroweak
penguin parameters in these decays can be calculated from pure short distance
physics using again the assumption of SU(3) flavor symmetry. We then determined
the electroweak penguin parameter necessary to describe the B — 7K decay data.
Additionally, we analyzed the CP asymmetries within this decay system.

e As a last step, we found the correlation between the phenomenological parameters
of the B — 7K system and the short distance functions that govern the rare
semi-leptonic decays in question. This was done in a scenario, where only the C'
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function, which describes the electroweak penguin topology, is modified and can
obtain a non-vanishing CP violating phase. In order to achieve this, we had to
use the renormalization group equations that govern the running of the Wilson
coefficients in the OPE, including those of the electroweak penguins, which we
solved to next-to-leading order. We found that the rare decays already give some
constraints on the electroweak penguin parameters, whereupon we reanalyzed the
B — 7K system and commented on the CP asymmetries in B — ¢Kg.

Having now recapitulated the steps of our analysis, let us summarize our main findings:

e The angle v obtained from our analysis is somewhat higher than the one usually
quoted by the standard UT fits. This is in accordance with a recent SCET analysis
of B — nm and B — 7K, that finds an even larger value. Since there is some
discrepancy in the UT fits between the angle 3 and the side R, determined from
|Vis/ V|, we attribute this discrepancy to some small NP contribution in BY — BY
mixing and take the angle v we find as the true UT angle, from which we construct
a unitarity triangle.

e The hadronic parameters of the B — 77 system point towards sizeable departures
from factorization. In particular, we find that, while the B — 7m decays are well
described within the SM, there seem to be some hadronic interference effects which
enhance the contribution from the color-suppressed tree diagram and reduce the
corresponding color-allowed one. This enhancement may come from GIM-penguin-
type diagrams and leads to an apparent lifting of color suppression. Finally, we used
these parameters to predict the CP asymmetries in B} — 7%7% and find a rather
encouraging agreement with the experimental numbers, though the uncertainties
are too large to draw any definite conclusions yet. These predictions will allow a
test not only of our assumption on the flavor symmetries, but also show whether
our value for 7 is realistic.

e Within the B — wK system, we find that the observable R, which is not affected
by electroweak penguins, is described rather well with the parameters we determine
from those of the B — mm system with the assumption of flavor symmetry and
negligible annihilation and exchange topologies. The remaining discrepancy can
be attributed to a sizeable value for the parameter p., which describes certain

rescattering effects. This sizeable value of p, is also favored by recent experimental
data for B* — K*K.

e Investigating, on the other hand, the observables that receive significant contri-
butions from color-allowed electroweak penguins, in particular the observable R,
which describes the branching ratios of neutral BY decays, we found that the theo-
retical description of the corresponding decays is rather bad. This situation could
be tracked in the plane of the observables R, and R., which allowed us to deter-
mine the value of the electroweak penguin parameters necessary to describe these
decays. We found that the electroweak penguin parameter should be enhanced and
carry a large negative CP violating phase.

84



e This modification of the electroweak penguins has severe implications for several
(semi-)leptonic rare decays that proceed dominantly through the electroweak pen-
guin topologies. Restricting ourselves to a very simple and predictive scenario, we
found striking effects in the K' — 7iv system, where the large CP violating phase
results in a spectacular enhancement of the CP violating decay K7, — w’vi. Using,
on the other hand, Kj, — 7% and KT — 77 v combined allows an easy test of
our scenario, since both the magnitude and phase of the electroweak penguins can
be determined. At the same time, we find that the electroweak penguin parameters
implied by the B — 7K decays violate existing experimental bounds that come,
in particular, from the inclusive decay b — si*i~.

e In view of this situation, we discussed several possible experimental scenarios of
future B — wK data and their implications for the rare decays. We found that
the pattern of enhancements and suppressions in the rare decays channels under
investigation allows to discriminate between the different scenarios rather easily. In
this context, we also studied the impact of possible precise measurements of the CP
asymmetries in BY — 7Kg and Bt — 7°K ™, which are both rather sensitive to, in
particular, the phase of the electroweak penguins, and both tend to favor a positive
sign instead of the negative one implied by the branching ratios. Unfortunately, the
uncertainties are too large to make any clear statements. We have also emphasized
that large effects in AZX(B; — ¢Kg) should not be expected, but a quantitative

analysis would require better knowledge of the hadronic parameters.

In the course of the analysis, we have used several assumptions, such as the assumption
of SU(3) flavor symmetry and that penguin annihilation and exchange topologies can
be neglected. We have discussed how well these assumptions are expected to hold and
have pointed out possible tests of them. To account for SU(3) flavor breaking, we have
included the quantifiable factorizable SU(3) breaking effects, and have estimated the
impact of possible larger contributions, where we found that the impact of these effects
is moderate and can not explain the B — 7K puzzle as the present data point to.
Also, we have emphasized that the impact of annihilation and exchange topologies can
be tested at the LHC. Finally, we have made very specific assumptions on the model
that should describe the B — wK data, which are tested in the rare decay sector, as
discussed above. Analogously, any other new physics scenario can be tested in a similar
way, though some of the predictive power of our scenario may be lost. One should also
keep in mind that the uncertainties are still too large to make any solid claim for new
physics and that future data, be it from B — 7wK or any of the rare decays discussed,
will be required before a definite verdict can be reached.

In the final part of this thesis, we have investigated in detail the decays Ki, — 7vi and

K* — wtuw. These are highly interesting, since they are very sensitive to new physics
contributions and are theoretically extremely clean. The last point is especially true
for Ki, — mvi, which has entirely negligible hadronic uncertainties, while K+ — 7tvi
suffers from additional uncertainties in the charm contribution, which have been reduced
by a very recent NNLO calculation. We began with an analysis within the SM, using
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the present situation as well as some future projections, where we found that, at present,
K* — 7wtvi can be predicted to an accuracy of approximately 10%, while the corre-
sponding uncertainty of Kj, — 7'v is about 20%. In both cases, the main uncertainties
have their origin in the CKM factors present in the decays. Therefore, we continued
with an in detail analysis of the determination of several CKM parameters from either
K;, — 7w, KT — 7tui or both decays combined. Our results can be summarized as
follows:

e The decay K; — 7w’vi alone provides the cleanest determination of the CP vio-

lating quantity 7, or, equivalently, Im);. Using input from [ and +, also a deter-
mination of |V,,| and |V;4| becomes possible. All of these statements are, however,
valid in the SM only.

e Alternatively, a measurement of K™ — 7t will allow for a determination of Ry
and |Vi4| within the SM.

e Combining information from both decays results in a determination of sin 2 that
is independent of |V,,| as well as of contributions from new physics as long one
is restricted to the class of minimal flavor violation. Comparing the value thus
obtained with the one from A®X(B; — J/¢¥Ks) can therefore give some hints
as to which kind of new physics one is looking at. Within the SM, both decays

combined can be used to construct the entire UT.

For all of these statements to have some impact, one needs rather precise measurements
of both decays, in the ball-park of 5 — 10%. These accuracies are rather challenging
experimentally and are not to expected in the very near future, even if experimental
efforts to measure these decays are actively being pursued nowadays. Still, these efforts
should be worthwhile, if not for the precise determination of CKM parameters, then for
the search for new physics, to which we have shown that these decays are very sensitive.
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Appendix A

Theoretical Expressions

A.1 The B — 7w System

B 1+ 2z cos A + x?
tT 7 1 —2dcosfcosy + d?
d* + 2dx cos(A — ) cosy + 22
1 — 2d cos 8 cosy + d?

Ry =
2d sin 0 sin
1 — 2d cos 6 cosy + d?

_sin(¢g + 2v) — 2d cos O sin(¢g + ) + d* sin dg
N 1 — 2d cosf cosy + d2

. 2dzsin(f — A) siny
dir B, — 0.0y _
ACp(Ba — m'm) d? + 2dx cos(6 — A) cosy + x?

AL (By — ntn7) =

G (Byg— wtn)

&b (By — ') =

d?sin ¢gq + 2dx cos(6 — A) sin(pg + ) + 22 sin(dg + 27)

d? + 2dx cos(6 — A) cosy + 22

A.2 The B — wK System

R=1—2rcosdcosy +r?

R.=1—2r,cosd.cosvy + rf
+qre [2{cos(d. +w) cosp — recosw cos(y — @)} + qre]

R, = % [1 —2rcos§cosv+r2}

R
b= 7= 1 —2gr.cos(d. + w) cos ¢ + ¢*r?
+2py [cos B, cosy — qre cos(fy, — 6. — w) cos(y — @)] + p2
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- 2r sin § sin vy
ASL(B FKF) = A1l
cp(Ba—m ) 1 —2rcosdcosy+r? ( )

. 2pcsin .. sin y
& (B* - 1K) = — A12
Ace( T K) {1+2pccos960087—|—p§ (#.12)
, 2
AL (B — 7'K*) = = [resin 0. siny — gre {sin(d + w) sin ¢ + resinwsin(y — ¢)}]

’ (A.13)

dir 0 2 . .

Acp(Bg — 1 Kg) = 3 [qrc sin(de + w) sin ¢

—pn {sin b, siny — qr.sin(f, — 6. —w)sin(y — @)} (A.14)

. 1
&p (Ba = 7 Ks) = =7 |sin ¢a = 2g7 cos(c + w) sin(da + ¢) + ¢*re sin(¢a + 26)(A.15)

+2py, {cos 0, sin(pg + ) — qre cos(fy — 6 — w)sin(gg + v + @)} + p? sin(¢g + 27)|.
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Appendix B
A further SU(3)-Test: By — KTK™

The decay By — K1TK~ is the U-spin partner of By — 77—, where U-spin is the
symmetry that exchanges d and s quarks , in analogy to Isospin. The power of this
symmetry has been realized and discussed in [136]. In this case, it allows us to determine
the hadronic parameters (d’,60") appearing in the the expressions for B, — K1TK™.
Therefore, the theoretical expressions for the CP asymmetries are given by

, 2ed sin 0 sin 7y
&h(Bs — KTK™) = B.1
Acp(Bs — ) €2 + 2ed cos 6 cos v + d? (B.1)
mx(B, ) KK = €2 sin(¢s + 27) + 2ed cos § sin(¢, + ) + d? sin ¢37 (B.2)

€2 + 2ed cos 6 cosy + d?

where ¢, = 23, is the B~B? mixing phase introduced in 5.7. Numerically, we find
that in the SU(3) flavor limit, we expect the direct CP asymmetry to be equal to
AL (BY — 7FK*) = 0.115 4+ 0.018, while for the mixing induced CP asymmetry, we
update [75] to find:

&p(Bs = KTE™) = (—0.1981) T, - (B.3)

Experimentally, the more interesting quantity on a short-term perspective is the branch-
ing ratio. There are two possible ways to obtain a for it, as discussed in [27].

First, we assume that penguin annihilation and exchange topologies are negligible.
Then, we can use the branching fraction of By — 7T K= to obtain

BR(B, — K*K")

BR(B; — 7TK*)

Mp, ®(My /Mp,, Mk /Mp,) Tao
Mp, ®(M;/Mp,, Mk [/Mp,) TBY

y Fp,ic(M%;0%) (M3 — M2\ (B.A)
Fpr(M20%) \ Mg, — M2 )|~ .

where

Fp,k(Mf;07) (Més — M3

= 145401 B5
Fp(M2;0%) \ M} — Mg) To14 (B.5)
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corresponds to the factorizable SU(3)-breaking effects and

O(z,y) = VI~ (e +y?[1— (2 —y) (B.6)

is the two-body phase-space function. The number in B.5 correspond to ones used in [27]
and are determined from Light Cone Sum Rules [216]. In this manner, we find for the
branching ratio

BR(B, — KtK~) = (37+4)-107° (B.7)

On the other hand, using U-spin, the quantity H introduced in 3.22 can also be written
as

¢

H
C

% (B.8)

{ BR(B; — mtr™)

BR(B, —» KtK-) |’

2 | Mg, ®(My /Mp,, Mk /Mp,) Tgy
MBS q)(Mﬂ/MBdaMw/MBd) TBg

where |C'/C| is a U-spin-breaking parameter similar to the form factor ratio above:

_ Jx Fpx(Mg;0%) (Més - M?{) _ 1 76015

C/
Clat : B.
et S Fpgn(MZ0T) M%d — M2 —0.17 (B.9)

C

In this manner, we obtain
BR(B, — KTK~) = (49713)- 107 (B.10)

which has a much larger uncertainty. In contrast, the current experimental value from
CDF is [217]:

BR(B, - KTK)=(33+£9)-10° BR(B;, » K"K™)=(424+15)-107° (B.11)

if the ranching ratio is extracted from B — 7T K* or B — wTr*, respectively. The
CDF collaboration gives only the branching fraction as normalized to either of the two
decays. It will be interesting to compare the prediction with future data, which should
give further information on the SU(3)-breaking factors. Further recent theoretical studies
of By — KTK~ can be found in [218,219].
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