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Mehrdimensionale Simulationen von Kernkollaps-Supernovae mit unterschiedlichen Zu-
standsgleichungen für heiße Proto-Neutronensterne

Kernkollaps-Supernovae gehören mit zu den energiereichsten Explosionen, die man in un-
serem Universum beobachten kann. Nur mittels numerischer Simulationen ist es möglich, die
komplexen Vorgänge, die zu diesen Explosionen führen, zu verstehen. Der genaue Mechanis-
mus für diese Explosionen ist bis heute noch nicht verstanden, was unter anderem daran liegt,
dass die Zustandsgleichung für die Beschreibung der Materie im Sterninneren nur unzureichend
bekannt ist. Die vorliegende Arbeit präsentiert die weltweit ersten Supernovasimulationen in
denen mittels mehrdimensionaler Rechnungen der Einfluss der Zustandsgleichung auf den Ex-
plosionsmechanismus untersucht werden konnnte. Es konntegezeigt werden, dass die Zus-
tandsgleichung einen erheblichen Einfluss auf die Vorgängeinnerhalb der Supernova hat, und
dass deshalb eine bessere Kenntnis der Zustandsgleichung zum Verständnis von Kernkollaps-
Supernovae unerlässlich ist.
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Most of what follows is true.

Butch Cassidy and the Sundance Kid, 1969

1
Introduction

Observations of rare, but very luminous events, when suddenly and temporarily an extremely
bright “new” star appears on the sky, led to the term “supernova”. As the term indicates, origi-
nally these events were believed to be the birth cries of new stars. However, today it is known
that quite the opposite is true — a supernova event tells us about the final stages of a star’s life,
when the star is disrupted in a powerful explosion. Furthermore, it is nowadays known that
two distinct classes of supernovae exist which are called “thermonuclear supernovae” or “core
collapse supernovae”. The former, which are thermonuclearexplosions of accreting or merging
white dwarfs, will not be discussed in this thesis. The latter mark the end stage of stars whose
mass exceeds eight times the mass of our Sun.

The term “core collapse supernova” describes the fact that these explosive events are triggered
by the collapse of the central core of a massive star. During their life all stars create energy
by the fusion of lighter elements to heavier ones. However, the stars that are to undergo a
supernova explosion reach the endpoint of this possible energy source and evolve a core which
consists of iron–group nuclei and which is stabilised against its own gravitational pull mainly
by the pressure of the degenerate electron gas inside this “iron core”1. Without the possibility
to create energy by the fusion of elements heavier than the iron group elements, and with the
acceleration of electron captures on protons that decreasethe stabilising pressure of degenerate
electrons, the iron core slowly contracts and heats up. Oncethe photons contained in the core
become energetic enough to photo–dissociate the nuclei, the contraction speeds up and the core
is driven to a runaway collapse. Neutrinos, which are continuously created by electron captures
in the collapsing core, leave the core unhindered until a density of about 1012 g/cm3 is reached.
Around this density, coherent scattering of neutrinos becomes so rapid that the neutrinos get
effectively trapped in the core, since the diffusion timescale begins to exceed the dynamical
timescale of the collapse. As a consequence of the electron captures on free and bound protons,

1Stars below≈ 10 M⊙ develop cores with dominant mass fractions of O, Ne, and Mg until these cores become
gravitationally unstable mainly by the onset of very rapid electron captures.
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Introduction

matter in the stellar core becomes more and more neutron rich. Now, within a few milliseconds
only, the density in the collapsing core reaches that of nuclear matter (≈ 2× 1014g/cm3), where
the nuclei dissolve into a homogenous phase of non–relativistic nucleons. At this time the
repulsive terms of the nucleon–nucleon potential become important and the pressure in the
central part of the core increases strongly due to the “stiffening” of the equation of state. The
increase of the pressure counteracts the gravitational force, the collapse is suddenly halted, and
the inner core rebounds. The outer parts of the core, however, falling towards the centre of the
star with supersonic velocities, collide with the rebounding inner core and a strong shock forms.
This so–called “prompt shock” rapidly travels outward through the iron core. Although, for a
long time it was believed that this shock triggers a supernova explosion immediately (i.e. the
formed shock would continue travelling through the whole star), it is nowadays clear that the
prompt shock loses too much energy and stalls (see, e.g. Bethe 1990). These energy losses
occur mainly by two processes: On the one hand, iron–like nuclei that are falling through the
shock front are dissociated into free nucleons, which consumes roughly 8.8 MeV per nucleon.
On the other hand, when the shock front reaches densities of around 1011 g/cm3, the matter
behind the shock is not any longer opaque to neutrinos, and the neutrinos diffusing behind the
shock front can suddenly stream off freely. As a consequence, huge amounts of energy and
lepton number are suddenly released in the so–called “neutrino burst”. Both processes deprive
the moving shock front of energy so strongly that it stagnates after a few milliseconds.

From the time of the neutrino burst on, the dense nascent neutron star at the centre (the so–
called “proto–neutron star”) continuously emits neutrinos that are created at high rates in its
interior and which slowly diffuse out. Almost all of the gravitational binding energy thatwas
set free during the collapse is stored in degeneracy energy of electrons and later on is slowly
released by neutrinos. On their way out of the iron core and through the rest of the collapsing
star, these neutrinos can be absorbed and can transfer energy to the matter. In the current
paradigm for the core–collapse supernova explosion mechanism, the neutrinos are the agent
that transfers energy from the dense forming neutron star tothe matter behind the shock front,
thereby reviving the shock and ultimately causing the explosion.

Although this basic picture of neutrino driven–explosionsis commonly accepted, theorists
have struggled already for more than 40 years to answer the following question: How is it pos-
sible, in order to power the explosion, to tap the pool of gravitational binding energy that is
released during the collapse of the stellar core ? In order tocomprehend why the supernova
explosion mechanism is so complicated to be understood, onehas to remind oneself of the
complexity of the problem to be solved: In a core collapse supernova all interactions (i.e grav-
ity, electro–weak interaction, and strong interactions) are important and govern collectively the
explosive event. Gravity causes the collapse and provides the (released gravitational binding)
energy necessary for the explosion. The strong interactionis responsible for the incompress-
ibility of nuclear matter that halts the collapse of the inner core, and determines the equation
of state of the proto–neutron star. Weak interactions create the neutrinos (depending on the
matter composition) that transfer energy from the dense core to the stalled shock front. The
details of the propagation of the neutrinos through the supernova core as well as their reactions
with matter (i.e energy deposition or emission) also dependstrongly on the equation of state
and the composition of supernova matter, which in turn depend on electromagnetic, weak, and
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strong interactions. Due to the complexity of the problem supernova research relies heavily on
numerical modelling and supernova theory is driven by the increase of computer power and the
availability of better numerical tools.

After Colgate & White (1966) proposed that neutrinos can power the explosion of core col-
lapse supernovae, simulations of Wilson (1982) showed thatthis might indeed be the case.
Wilson et. al followed the supernova calculations to unexplored evolution times of several hun-
dred milliseconds after the shock formation, and indeed observed an explosion, thus discovering
the “delayed neutrino–driven” supernova explosion mechanism. However, subsequent research
turned out that the details of the neutrino energy transfer to stellar matter and the revival of the
supernova shock front depend sensitively on the details of the neutrino propagation out of the
proto–neutron star and through the rest of the stellar core.

Epstein (1979) proposed that convective motions inside theproto–neutron star could drag
neutrinos with the matter flow from the optically thick region towards the region of free stream-
ing thereby enhancing — by effectively reducing the diffusion timescale — the neutrino emis-
sion of the dense core. Indeed, Mayle et al. (1993) obtained explosions in one–dimensional
simulations by assuming a special mode of convection insidethe proto–neutron star. With their
assumptions, so–called “neutron finger convection” established, where — similar to the salt–
finger convection in fluids with a unstable stratification of water with a large salt–content on top
of layer of water with less salt–content — an unstable matterstratification of specific heavier
neutrons on top of specific lighter material was found which causes the heavier part of the fluid
to sink and causes the convective motion. In these models this type of convection increased the
neutrino flux of the dense core such that more neutrinos were absorbed in the layer behind the
shock front, thus the neutrino heating was increased and explosions could be launched.

However, the assumptions of Mayle et al. (1993) on the nuclear equation of state, the onset
of proto–neutron star convection, and their treatment of neutrinos are controversially debated
among supernova physicists. Nevertheless, the results of Mayle et. al showed that proto–neutron
star convection, which is a purely multi–dimensional effect, may influence the supernova evo-
lution strongly and much work was put forward in studying this phenomenon (see, e.g. Keil
et al. 1996, Mezzacappa et al. 1998b, only to name a few).

In 1987, another major breakthrough in supernova theory came with the observations of
Supernova SN1987A that showed that the ejected mass distribution was highly anisotropic (see,
e.g. Hillebrandt et al. 1989, Arnett et al. 1989, McCray 1993, Nomoto et al. 1994, Wooden
1997, Müller 1998, and references therein). Subsequent simulations (see, e.g. Kifonidis et al.
2003, 2006, and references therein) showed that these observations can only be explained if
hydrodynamic instabilities set in at early times after the shock formation, since the observed
mixing of heavy elements from deep inside of the supernova core far out to the envelop of
the star can only be explained with the presence of “mixing instabilities” from early times on.
One type of instability is convection in the heating region behind the shock front, where strong
turbulent flows can develop which transport neutrino heatedmatter from the region of strongest
heating towards the shock front and, simultaneously, cooler matter flows from the shock front
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down to the heating region (Herant et al. 1992, Burrows et al.1995, Fryer 1999, Fryer & Heger
2000, Fryer & Warren 2002, 2004).

Another type of hydrodynamic instability is the only recently discovered so–called “standing
accretion shock instability”, where pressure fluctuationsin the matter behind the shock front
can lead to the development of large non–radial modes of shock deformation and anisotropic
explosions (see, e.g. Blondin et al. 2003, Scheck 2006).

Thus, nowadays it is commonly accepted that the supernova explosion mechanism is based
on multi–dimensional effects and that spherically–symmetric models (such as the ones of Mez-
zacappa & Bruenn 1993a, Burrows et al. 2000, Rampp & Janka 2002, Mezzacappa et al. 2001,
Liebendörfer et al. 2001, only to mention a few) are — even if explosions would be obtained
— not appropriate to explain the observed explosion characteristics. Although, the importance
of multi–dimensional effects has been recognised it is, however, not understood in satisfactory
detail what governs the growth of hydrodynamic instabilities in the supernova core.

However, at least for convection in the heating region belowthe shock front one may in-
tuitively assume that different heating of the matter may influence the strength of convection:
Like a soup boiling differently strong on an oven, dependent on the amount of heatingfrom the
plate, different neutrino fluxes from the dense core and different neutrino heating might lead to
a stronger or weaker development of convective flows. One possibly candidate for changing the
neutrino emission from the dense core is the nuclear equation of state of hot proto–neutron stars.
On the one hand, from theoretical as well as experimental point of view the equation of state for
hot and dense supernova cores is highly uncertain (see, e.g.Lattimer 2005, 2006, Lattimer &
Prakash 2006), which implies that the whole evolution of thedense core and its neutrino emis-
sion are also uncertain. It is thus unclear how the nuclear equation of state influences convective
instabilities inside the proto–neutron star and thus either boosts or damps the neutrino emission
of the dense core. On the other hand, investigations of different descriptions of the dense neu-
tron star matter showed in spherically symmetric simulations (i.e. proto–neutron star convection
or other multi–dimensional effects have not been taken into account in these studies) that the
neutrino fluxes and the neutrino energy deposition in the heating region depend on the equation
of state (see, e.g. Marek 2003, Sumiyoshi et al. 2005). Thus there are strong indications that
the nuclear equation of state can influence the development of convection inside the supernova
core. However, up to now the influence of the nuclear equationof state of proto–neutron stars
on the growth of hydrodynamic instabilities in the supernova core has not been investigated in
multi–dimensional simulations.

In this thesis I aim at clarifying in general the role of the nuclear equation of state during
the supernova evolution, but the focus is on the influence of the equation of state on the devel-
opment of instabilities inside the supernova core. For thispurpose, multi–dimensional as well
as spherically symmetric simulations are applied and compared. That this is possible is due
to the numerical tool used in this thesis which allows to calculate both one–dimensional and
two–dimensional simulations with the same treatment of physics and numerics. Thus a direct
comparison of multi–dimensional and spherically symmetric calculations, which is impossible
for other supernova modellers, are feasible. Due to the reduced complexity, the latter simula-
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tions are used to analyse different aspects of the interplay between the equation of stateand
the supernova evolution. Furthermore, since these simulations are much faster than the multi–
dimensional ones, several different calculations are used in parameter–like studies, in order to
understand the importance of the nuclear equation of state.The implications of these calcu-
lations are manifold. They show that the whole proto–neutron star evolution and its neutrino
emission depend sensitively on the description of the strong interaction between baryons, and
that the supra–nuclear phase can influence the supernova evolution strongly. Also the observed
neutrino signal from supernova explosions shows a dependence of the equation of state, which
might be used in the future to constrain the nuclear equationof state.

The main focus of this work is, however, on multi–dimensional effects during the supernova
evolution. For the first time the influence of the equation of state on convection and on other
multi–dimensional effects is investigated together with calculations of spectral Boltzmann neu-
trino transport. The step from spherically symmetric studies to multi–dimensional ones is a
major one: As I will show, the equation of state influences strongly the appearance of con-
vective instabilities and thus the neutrino emission of thedense core. This leads to interesting
implications for the evolution of core collapse supernovae.

Conceptually, this thesis is divided in two major parts. In Chapter 2 the code used throughout
this thesis is shortly introduced. The subsequent Part I is dedicated to the investigation of the
equation of state effects in one–dimensional calculations. As a specific example, with simula-
tions of a 15M⊙ progenitor star, I discuss in Section 3.2 the major influences of the equation
of state on the supernova evolution. Then, in the Sections 3.3 through 3.4, I try to disentangle
what properties of the equations of state influence the various phases of the supernova evolution,
before I conclude Part I with a study of the influence of the equations of state on the neutrino
emission of exploding models.

The second Part of this thesis is dedicated to the discussionof multi–dimensional simulations.
With simulations of 11.2M⊙ progenitor star, I discuss in Chapter 4 why multi–dimensional ef-
fects can lead to explosions which otherwise are not observed in spherically symmetric cal-
culations. The influence of the equation of state on these multi–dimensional effects is then
investigated in Chapter 5. I conclude this Part II in Chapter6 with a discussion of the effects of
rotation or the progenitor structure. Finally, in Chapter 7, I will present my conclusions from
the studies presented in this thesis.
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A tool is usually more simple than a machine; it is generally
used with the hand, whilst a machine is frequently moved by
animal or steam power

C. Babbage, “The Father of Computing”

2
The V/MDBTH tool: a radiation

hydrodynamics code for core collapse
supernovae

The numerical tool which is used in this thesis was specifically written to the application to
the simulations of core collapse supernovae. V1 , the spherically symmetric (i.e. 1D)
version of this code, was developed by Rampp & Janka (2002) and is described in detail in
their publication. The two–dimensional version of this code, called MDBTH2, is described
in great detail in Buras et al. (2006a,b).

Since both version of the code are already documented very precisely, this Chapter does
not intend to give such a detailed description, but it ratherexplains the numerical approach
to simulate core collapse supernovae. However, before the underlying physics of the V-
/MDBTH tool is described, it shall be stressed here that this tools are unique since it is
possible to calculate one–dimensional and two–dimensional simulations with exactly the same
micro–physics and the same numerical treatment. This allows to directly compare results of
one–dimensional and multi–dimensional simulations, which can not be done by other super-
nova modellers.

Considering the physical treatment of a core collapse supernova one has to realise that the
key assumption to do the simulations is that one can treat thestellar plasma and the interior of
the nascent neutron star as fluids with different chemical composition. One has thus to solve
the equations of hydrodynamics together with evolution equations of the composition. The
neutrinos on the other hand, which are created by nuclear reactions and propagate through the
stellar fluid and can interact with this fluid, can be treated as radiation whose properties can
be described by a distribution function. The time evolutionof this distribution function is then

1An abbreviation ofVariableEddington factorRadiativeTransfer for supernova Explosions.
2An abbreviation ofVariableMulti–DimensionalBoltzmann Transport andHdro.
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The V/ MDBTH tool: a radiation hydrodynamics code for core collapse supernovae

expressed by the Boltzmann equation. Thus, in addition to the hydrodynamics one has to solve
the neutrino transport problem by finding a solution to the Boltzmann equation (neutrinos are
created by nuclear reactions out of the stellar plasma, and they can transfer or absorb energy
from the stellar plasma). The V/MDBTH code uses the operator splitting method to
solve this coupled system of evolution equations: for each cycle of the code the hydrodynamics
part and the transport/interactions part are computed in two independent, subsequent steps. In
the following Sections these subsequent steps will be described sepeately.

2.1. Hydrodynamics part

The hydrodynamics part solves the Eulerian, non relativistic equations of hydrodynamics to-
gether with the evolution equations of the chemical composition. These equations can be writ-
ten in spherical symmetry, with the additional assumption of azimuthal symmetry as follows:

∂

∂t
ρ +

1

r2
(r2ρvr) +

1
r sinθ

∂

∂θ
(ρ sinθ vθ) = 0. (2.1)

∂

∂t
(ρ vr) +

1

r2

∂

∂r
(r2ρ vr vr ) +

1
r sinθ

∂

∂θ
(ρ sinθ vθ vr)

−ρ
vθ

2 + vφ
2

r
+
∂p
∂r

= −ρ∂Φ
∂r
+ QMr (2.2)

∂

∂t
(ρvθ) +

1

r2
(ρ vr vθ) +

1
r sinθ

∂

∂θ
(ρ sinθ vθ vθ)

+ρ
vr vθ − vφ2 cotθ

r
+

1
r
∂p
∂θ

= −ρ
r
∂Φ

∂θ
+ Qmθ (2.3)

∂

∂t
(ρvφ) +

1
r2

∂

∂r
(r2ρ vr vφ) +

1
r sinθ

∂

∂θ
(ρ sinθ vθ vφ)

+ρ
vr vφ + vθ vφ cotθ

r
= 0 (2.4)

∂

∂t
(ρǫ +

1

r2

∂

∂r

(
r2(ρǫ + p)vr

)

+
1

r sinθ
∂

∂θ
((ρǫ + p) sinθ vθ) =

−ρ
(
vr
∂Φ

∂r
+
vθ

r
∂Φ

∂θ

)
+ QE + vr QMr + vθ QMθ (2.5)

∂

∂t
(ρYe) +

1
r2

∂

∂r
(r2ρYe vr) +

1
r sinθ

∂

∂θ
(sinθ ρYe vθ) = QN (2.6)

∂

∂t
(ρYk) +

1

r2

∂

∂r
(r2ρYk vr ) +

1
r sinθ

∂

∂θ
(sinθ ρYk vθ) = Rk (2.7)

Hereρ denotes the mass density,vr , vθ, andvφ denote the radial, lateral, and azimuthal com-
ponents of the velocity, andǫ = e+ 1/2(vr 2 + vθ

2 + vφ
2) the specific energy, withe being the

specific internal energy. Furthermore,p denotes the gas pressure,Φ the gravitational potential
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2.2 Transport part

of the fluid, andQMr , QMθ , andQME denote the neutrino source terms of momentum and energy
transfer. Note that the equations of hydrodynamics (Eqs. (2.1)–(2.5)) are closed by the EoS3

that relates the gas pressurep to the densityρ, the internal energye, and the composition.
The time evolution of the composition, on the other hand is given by Eqs. (2.6)–(2.7): if

nuclear statistical equilibrium can be assumed the chemical evolution is determined by the evo-
lution of the electron fractionYe (Eqn. (2.6)), otherwise for each nucleusk an equation of form
(2.7) must be solved, whereYk = nk/nb with nk being the number density of the respective
nucleus andnb being the baryon number density.

Numerically in our code, the Eqs. (2.1)–(2.7) are integrated with the Newtonian finite–volume
code P (Fryxell et al. 1989, 2000), which was improved to be applicable to core col-
lapse supernova simulations by Keil (1997) and Kifonidis etal. (2003). P is a direct
Eulerian implementation of the Piecewise Parabolic Method(PPM) of Colella & Woodward
(1984), which is a time–explicit, third–order in space, second–order in time Godunov scheme
with a Riemann solver and is very well suited for following discontinuities in the fluid flow such
as shocks, contact discontinuities, or boundaries betweenlayers of different chemical composi-
tion. It is capable to solve multi–dimensional problems with both high computational efficiency
and numerical accuracy.

Though our hydrodynamic part is Newtonian, effects of general relativity are included in
an approximative way: the gravitational potentialΦ can be written asΦ2D = Φ2D

Newt +(
Φ1D

GR− Φ1D
Newt

)
, whereΦNewt

2D is calculated for the two–dimensional axis–symmetric mass
distribution by expanding the integral solution of the Poisson equation into a Legendre series,
see Müller & Steinmetz (1995). The spherically symmetric “correction term”

(
Φ1D

GR− Φ1D
Newt

)

includes general relativistic effects, such as contributions of the pressure and the energy tothe
gravitational potential. This “relativistic gravitational potential” is discussed in Appendix B.
The other source terms on the right hand sides of Eqs. (2.1)–(2.7) are computed from the solu-
tions of the neutrino transport equations.

2.2. Transport part

The solution of the neutrino–transport equations in the V/MDBTH code relies on the so
called “Variable Eddington factor” approach, which is shortly described in the following.

As already mentioned the source terms for the energy, momentum, and electron fraction of
the fluid owing to its interaction with neutrinos can be calculated from the neutrino distribution
function f (r, ϑ, φ, ǫ,Θ,Φ, t) in phase space. In the full problem, this is a seven–dimensional
function, as it describes at every point in space (r, ϑ, φ), the distribution of neutrinos propagating
with energyǫ into the direction (Θ,Φ) at timet, see Fig. 2.1. Instead off mostly the neutrino
intensity I = c/(2π~c)3ǫ̇3 f is used. However, since the source terms in the Eqs. (2.1)–(2.6) are
integrals overI over momentum space and thus only a fraction of the information contained in
I is required to compute the dynamics of the flow. Thus, in the V/MDBT code angular
moments ofI are considered, instead of using the Boltzmann equation directly, which reduces

3Note that in modern supernova simulations quite complicated EoS are used which can not be calculated during
the simulation. Thus, normally supernova modelers use EoS–tables and obtain the desired quantities by looking
them up in the tables.
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Figure 2.1.: A sketch of the coordinates used in the V/MDBTH code. Note that each
coordinate point (r, θ, φ) a neutrino with energyǫ can propagate in direction
(Θ,Φ).

the problem to a four dimensional one. The first three momentsof I are defined as

J,H,K , L , . . . (r, θ, φ, ǫ, t) =
1
4π

∫
I (r, θ, φ, ǫ,Θ,Φ, t) n0,1,2,3,... dΩ (2.8)

where dΩ = sinΘ dΘ dΦ, n = (cosΘ, sinΘ cosΦ, sinΘ sinΦ), and exponentiation represents
repeated application of the dyadic product. In order to reduce the size of the problem even
further, one needs to resort to assumptions on its symmetry.At this point, one usually employs
azimuthal symmetry for the stellar matter distribution, i.e. any dependence on the azimuth
angleφ is ignored, which implies that the hydrodynamics of the problem can be treated in
two dimensions. It also impliesI (r, θ, ǫ,Θ,Φ) = I (r, θ, ǫ,Θ,−Φ). If, in addition, it is assumed
that I is even independent ofΦ, then each of the angular moments ofI becomes ascalar,
which depends on two spatial dimensions, and one dimension in momentum space:J,H,K, L =
J,H,K, L(r, θ, ǫ, t). Thus the problem is reduced to three dimensions in total.

With the aforementioned assumptions it can be shown (see Buras et al. 2006b), that in order
to compute the source terms for the energy and electron fraction of the fluid, the following two
transport equations need to be solved:

(
1
c
∂

∂t
+ βr

∂

∂r
+
βϑ

r
∂

∂ϑ

)
J + J

(
1

r2

∂(r2βr )
∂r

+
1

r sinϑ

∂(sinϑβϑ)

∂ϑ

)

+
1

r2

∂(r2H)
∂r

+
βr

c
∂H
∂t
− ∂
∂ǫ

{
ǫ

c
∂βr

∂t
H

}
− ∂
∂ǫ

{
ǫJ

(
βr

r
+

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)}

− ∂
∂ǫ

{
ǫK

(
∂βr

∂r
− βr

r
−

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)}
+ J

(
βr

r
+

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)

+ K

(
∂βr

∂r
− βr

r
−

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)
+

2
c
∂βr

∂t
H = C(0), (2.9)

10



2.2 Transport part

(
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(J + K) = C(1). (2.10)

These are evolution equations for the neutrino energy density, J, and the neutrino flux,H,
and follow from the zeroth and first moment equations of the comoving frame (Boltzmann)
transport equation in the Newtonian,O(v/c) approximation. The quantitiesC(0) andC(1) are
source terms that result from the collision term of the Boltzmann equation, whileβr = vr/c and
βϑ = vϑ/c, wherevr andvϑ are the components of the hydrodynamic velocity, andc is the speed
of light. The functional dependencesβr = βr (r, ϑ, t), J = J(r, ϑ, ǫ, t), etc. are suppressed in the
notation. This system includes four unknown moments (J,H,K, L) but only two equations, and
thus needs to be supplemented by two more relations. This is done by substitutingK = fK · J
andL = fL · J, where fK and fL are the variable Eddington factors, which for the moment may
be regarded as being known, but in our case is indeed determined from a separate simplified
(“model”) Boltzmann equation. A finite volume discretisation of Eqs. (2.9–2.10) is sufficient
to guarantee exact conservation of the total neutrino energy. However, and as described in
detail in Rampp & Janka (2002), this is not sufficient to guarantee also exact conservation of
the neutrino number. To achieve this, we discretise and solve a set of two additional equations.
With J = J/ǫ,H = H/ǫ, K = K/ǫ, andL = L/ǫ, this set of equations reads

(
1
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1
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∂t
H = C(0), (2.11)
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Reaction References
ν e± ⇋ ν e± Mezzacappa & Bruenn (1993b)

Cernohorsky & Bludman (1994)
νA ⇋ νA Horowitz (1997)

Bruenn & Mezzacappa (1997)
νN ⇋ νN Burrows & Sawyer (1998)
νe n ⇋ e− p Burrows & Sawyer (1999)
ν̄e p ⇋ e+ n Burrows & Sawyer (1999)
νe A′ ⇋ e− A Bruenn (1985), Langanke et al. (2003)

Mezzacappa & Bruenn (1993a)
ν ν̄ ⇋ e− e+ Bruenn (1985), Pons et al. (1998)

νν̄NN ⇋ NN Hannestad & Raffelt (1998)
νµ,τν̄µ,τ ⇋ νeν̄e Buras et al. (2003)

(−)
ν µ,τ

(−)
ν e ⇋

(−)
ν µ,τ

(−)
ν e Buras et al. (2003)

Table 2.1.:Overview of neutrino-matter and neutrino-neutrino interactions included in our
simulations. For each process we provide reference(s) where more information
can be found about physics and approximations employed in the rate calcula-
tions. The numerical implementation is described in detailin Rampp & Janka
(2002) and Buras et al. (2003). The symbolν represents any of the neutrinos
νe, ν̄e, νµ, ν̄µ, ντ, ν̄τ, the symbolse−, e+, n, p andA denote electrons, positrons, free
neutrons and protons, and heavy nuclei, respectively. The symbol N means neu-
trons or protons.
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1

2r sinϑ

∂(sinϑβϑ)

∂ϑ
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− L

(
∂βr
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− βr

r
−

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)

−H
(
βr

r
+

1

2r sinϑ

∂(sinϑβϑ)

∂ϑ

)
+

1
c
∂βr

∂t
J = C(1). (2.12)

The moment equations (2.9–2.12) are very similar to theO(v/c) equations in spherical sym-
metry which were solved in the 1D simulations of Rampp & Janka(2002) (see Eqs. 7, 8, 30,
and 31 of the latter work). This similarity has allowed us to reuse a good fraction of the one-
dimensional version of V, for coding the multi-dimensional algorithm. The additional
terms necessary for this purpose have been set in boldface above.

Finally, the changes of the energy,e, and electron fraction,Ye, required for the hydrodynamics
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Figure 2.2.: A sketch of the iterative pro-
cedure between the moments
equations (ME) and the
“model” Boltzmann equa-
tion (BE) in the algorithm
for obtaining the Variable
Eddington factors.

are given by the following two equations

de
dt
= −4π
ρ

∫ ∞

0
dǫ

∑

ν∈(νe,ν̄e,... )
C(0)
ν (ǫ), (2.13)

dYe

dt
= −4πmB

ρ

∫ ∞

0
dǫ

(
C(0)
νe (ǫ) − C(0)

ν̄e
(ǫ)

)
(2.14)

(for the momentum source terms due to neutrinos see Buras et al. (2006b)). HeremB is the
baryon mass, and the sum in Eqn. (2.13) runs over all neutrinotypes. The full system consisting
of Eqs. (2.9–2.14) is stiff, and thus requires an appropriate discretisation scheme for its stable
solution. In order to discretise Eqs. (2.9–2.14), the spatial domain [0, rmax] × [ϑmin, ϑmax] is
covered byNr radial, andNϑ angular zones, whereϑmin = 0 andϑmax = π correspond to the
north and south poles, respectively, of the spherical grid.(In general, we allow for grids with
different radial resolutions in the neutrino transport and hydrodynamic parts of the code. The
number of radial zones for the hydrodynamics will be denotedby Nhyd

r .) The number of bins
used in energy space isNǫ and the number of neutrino types taken into account isNν.

The equations are solved in two operator-split steps corresponding to a lateral and a radial
sweep.

In the first step, we treat the boldface terms in the respectively first lines of Eqs. (2.9–2.12),
which describe the lateral advection of the neutrinos with the stellar fluid, and thus couple the
angular moments of the neutrino distribution of neighbouring angular zones. For this purpose
we consider the equation

1
c
∂Ξ

∂t
+

1
r sinϑ

∂(sinϑβϑ Ξ)
∂ϑ

= 0 , (2.15)

whereΞ represents one of the momentsJ, H,J, orH . Although it has been suppressed in the
above notation, an equation of this form has to be solved for each radius, for each energy bin,
and for each type of neutrino. An explicit upwind scheme is used for this purpose.

In the second step, the radial sweep is performed. Several points need to be noted here:
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• terms in boldface not yet taken into account in the lateral sweep, need to be included into
the discretisation scheme of the radial sweep. This can be done in a straightforward way
since these remaining terms do not include derivatives of the transport variables (J,H) or
(J ,H). They only depend on the hydrodynamic velocityvϑ, which is aconstantscalar
field for the transport problem.

• the right hand sides (source terms) of the equations and the coupling in energy space
have to be accounted for. The coupling in energy is non-local, since the source terms
of Eqs. (2.9–2.12) stem from the Boltzmann equation, which is an integro-differential
equation and couples all the energy bins

• the discretisation scheme for the radial sweep isimplicit in time. Explicit schemes would
require very small time steps to cope with the stiffness of the source terms in the optically
thick regime, and the small CFL4 time step dictated by neutrino propagation with the
speed of light in the optically thin regime. Still, even withan implicit scheme& 105 time
steps are required per simulation. This makes the calculations expensive.

Once the equations for the radial sweep have been discretised in radius and energy, the resulting
solver is applied ray-by-ray for each angleϑ and for each type of neutrino, i.e. for constantϑ,
Nν two-dimensional problems need to be solved. The discretisation itself is done using a second
order accurate scheme with backward differencing in time according to Rampp & Janka (2002).
This leads to a non-linear system of algebraic equations, which is solved by Newton-Raphson
iteration with explicit construction and inversion of the corresponding Jacobian matrix.

To solve Eqs. (2.9–2.14), we need the variable Eddington factors fK = K/J and fL = L/J.
These closure relations are obtained from the solution of a simplified (“model”) Boltzmann
equation. The integro-differential character of this equation is tackled by expressing the angular
integrals in the interaction kernels of its right-hand side, with the momentsJ andH, for which
estimates are obtained from a solution of the system of moment equations (2.9–2.10), (2.13)
and (2.14). With the right-hand side known, the model Boltzmann equation is solved by means
of the so-called tangent ray method (see Mihalas & Mihalas (1984), and Rampp & Janka (2002)
for details), and the entire procedure is iterated until convergence of the Eddington factors is
achieved (cf. Fig. 2.2). Note that this apparently involvedprocedure is computationally efficient,
since the Eddington factors are geometrical quantities, which vary only slowly, and thus can be
computed relatively cheaply using only a “model” transportequation. Note also that only the
system of equations (2.9–2.10), (2.13) and (2.14), and not the full system Eqs. (2.9–2.14), is
used in the iteration. This allows us to save computer time. Once the Eddington factors are
known, the complete system Eqs. (2.9–2.14), enforcing conservation of energy and neutrino
number, is solved once, in order to update the energy and electron fraction (lepton number) of
the fluid.

An important part of the code are the various neutrino–matter and neutrino–neutrino interac-
tion rates that produce the opacities for the neutrino radiation field. Note here that in the code
the electron neutrinos and anti–electron neutrinos are treated separately, all other “heavy lep-
ton neutrinos”, however, are treated as as one species. The justification here for is that during

4TheCourant–Friedrichs–Lewy condition states that in oder to be numerically stable a timestep of the algorithm
has to be so small that information does not travel more than one zone within a single timestep.
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a core collapse supernova the medium does not initially contain any muons and temperatures
and densities are always too low to produce tauons, which implies small or vanishing chemical
potentials for theµ andτ (anti)–neutrinos. Furthermore, the opacities are nearly equal for all
”heavy lepton neutrinos.”

The neutrino interactions are summarised in Table 2.1. Notethat neutral–current scatterings
of neutrinos off nucleons and charged–currentβ–processes include the effects of nucleon recoil,
thermal motions, and phase space blocking, nucleon correlations in dense media (Burrows &
Sawyer 1998, 1999), corrections due to the weak magnetism ofnucleons (Horowitz 2002), the
possible quenching of the axial–vector coupling in nuclearmatter (Carter & Prakash 2002),
and the reduction of the effective nucleon mass at high densities (Reddy et al. 1999). Electron
captures on nuclei are implemented according to the improved treatment of Langanke et al.
(2003) in regions where NSE holds, taking into account the collective e–captures of a large
sample of nuclei in NSE with rates determined from shell model Monte Carlo calculations; the
prescription of Bruenn (1985) is used in regions which are out of NSE. With this input, the
production ofνe’s by nuclei dominates the one by protons during core collapse (Langanke et al.
2003). For details the reader is referred to Appendix A.3.1,where these electron capture rates
are discussed in detail.

If not stated otherwise, all simulations discussed in this work use this set of micro–physics
and gravity is treated as described in Appendix B. The used progenitor models and the EoSs
will be introduced later and for each model specifically.
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Part I: 1D–simulations
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Everything should be made as simple as possible, but not
simpler

A. Einstein

The ability to simplify means to eliminate the unnecessary
so that the necessary may speak

H. Hofmann, Introduction to the Bootstrap, 1993

3
The role of the nuclear EoS in spherically

symmetric simulations of core collapse
supernovae

The following first Part of this thesis is dedicated to spherically symmetric calculations of core
collapse supernovae with different nuclear equations of state (EoSs). These strongly simplified
simulations, which reduce the complexity by assuming radial symmetry, allows me to study
with a large number of models the role of the nuclear equationof state (EoS) during the col-
lapse of a star, the formation of the shock wave, the subsequent supernova evolution, and the
differences of the explosion characteristics arising from different equations of state. With sev-
eral spherically symmetric (i.e. 1D) models an attempt is made to understand the “action” of
different EoSs on these phases of a core collapse supernova. Furthermore, the influence of
different regimes of a EoS (i.e. the supra–nuclear phase, the sub–nuclear phase, and the “low”–
density phase) on the evolution of the final stages of a massive stars life will be investigated.

This Part I of this thesis is organised as follows: after a short preface in Section 3.1 I will
introduce in Section 3.2 the different EoSs which are used throughout this thesis. As a specific
example I will then discuss the supernova evolution of a 15 M⊙ progenitor star when three
different equations of state are employed in the simulations. Inthis section, along the line of
discussion, I will introduce technical terms and physical concepts that will be used throughout
this thesis. In Section 3.3 I will focus on the supra–nuclearphase of the EoS. Simulations
with progenitor models of different masses will be discussed, and I will find a dependence of
the sensitivity of my calculations on the supra–nuclear EoSthat varies with these progenitor
masses. In Section 3.4 I will discuss the influence of the “low”–density EoS (i.e. densities
below 1011 g/cm3 ) on the supernova evolution.

Since none of the models we discuss in this chapter does explode, I will then investigate the
EoS dependence on the supernova explosion “characteristics” with models that were artifically
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made to explode. Here, of course, I can not investigated the explosion mechanism but rather I
will investigate if different equations of state for hot proto neutron stars cause different neutrino
emission (i.e. luminosities, energies, and spectra) of thedense core.

Finally, this chapter will be concluded by a short summary ofmy findings.
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3.1 Preface

3.1. Preface

Core collapse supernova are known to be objects with extremephysical conditions. From the
intermediate conditions of the pre-collapse core at nuclear statistical equilibrium with a central
density of roughly 1010 g/cm3, a core temperature of about 1 MeV, and nearly symmetric mat-
ter (electron fraction close to 0.5) the properties of the stellar plasma change drastically after
the onset of gravitational instability: the density in the inner core rises to supra-nuclear values
(ρ > 2.7×1014 g/cm3) and the temperature can become as high as several 10 MeV. Furthermore,
since a neutron star forms, matter becomes neutron rich and the proton-to-neutron ratio changes
from close to unity to much smaller values than unity in neutron star matter at beta equilibrium.
In order to describe the stellar plasma thermodynamically an EoS is needed that relates the
pressure of the plasma to its density, temperature, and chemical composition. However, little
is known about an EoS that describes this kind of stellar plasma. On the one hand, experi-
mental information for matter at these extreme conditions is limited, and on the other hand the
uncertainties in theoretical models are considerable. In particular in the sub-nuclear regime,
where nucleons co-exist in equilibrium with large, neutron-rich nuclei, and in the supra-nuclear
regime, where new hadronic degrees of freedom (kaons, hyperons, pion condensates, . . . ) or a
quark phase might occur the knowledge is incomplete. These problems make calculations of
nuclear equations of state difficult and thus there exist only a few finite-temperature equations
of state which span the whole parameter range required for a supernova simulation. Since our
knowledge of matter in the supernova core is incomplete it has been suggested that the EoS of
hot, dense matter may be crucial for the simulations of core collapse supernovae.

Indeed, the EoS influences considerably the stellar core collapse, the shock formation and the
propagation of the prompt shock (see, e.g. Baron et al. 1985,1987a, Myra & Bludman 1989,
Hillebrandt & Wolff 1985, Swesty et al. 1994), however, for reasonable assumptions about the
EoS prompt explosions cannot be obtained for massive stars.

The influence of the EoS on the long-time supernova evolutionhas hardly been investigated.
Only few equations of state were applied for this purpose so far. Wilson and collaborators (see
Wilson & Mayle 1988, Totani et al. 1998) routinely get supernova explosions with their EoS in
spherically symmetric calculations. This equation of state, however, is based on controversial
physical assumptions, e.g. it involves the formation of pion condensates at moderate densities
due to a special dispersion relation for the pions, see Mayleet al. (1993). Similar to Wilson’s
results Hillebrandt & Wolff (1985) obtained an explosion with the their EoS (from hereonWolff-
EoS) for a star in the lower mass range for core collapse supernovae. However as a newer study
of Kitaura et al. (2006) showed, due to special properties ofthis particular low-mass star, this
explosion does not depend on the nuclear EoS.

Also the use of the equation of state of Lattimer & Swesty (1991) (from hereon L&S-EoS)
does not lead to explosions (see e.g. Thompson et al. 2003).

Subsequently, Sumiyoshi et al. (2005) compared the L&S-EoSand the EoS of Shen et al.
(1998a,b) (from hereon Shen-EoS) and found quantitative but not qualitative differences in the
long-time supernova evolution.

In the following Section I will discuss the role the nuclear EoS plays in spherically symmetric
core collapse supernova simulations. In particular, it is the aim of this Part I to discuss to what
the extend supernova simulations are sensitive to the applied EoS by addressing the following
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questions:

• How does the EoS influence the collapse dynamics?

• Do different realistic equations of state lead to significantly changed results concerning
the shock formation and the propagation of the prompt shock?

• Does the poorly known supra-nuclear density phase of an EoS play an important role?
How does the produced dense core influence the shock propagation ?

• How do different EoSs influence the neutrino emission and neutrino heating of stellar
matter? How important are differences in the matter composition?

• Do some EoSs favour the growth of convective flows?

Of course, many of these questions are connected and disentangling them is not an easy task, but
they can be regarded as “guideline” for understanding the importance of the EoS in supernova
calculations, before in the subsequent sections an attemptis made to disentangle the various
influences of the nuclear equation of state.

3.2. EoS comparison with a 15 M⊙ star

Throughout the discussion of this thesis we employ different nuclear equations of state for our
simulations. Before we start our discussion of the role of the nuclear equation of state during
the evolution of core collapse supernovae we will in the following introduce the EoSs used for
these simulations.

3.2.1. Equations of state

Since the nuclear equations of state which are available forcore collapse supernova simulations
do not cover the whole density range necessary for the calculations (i.e. from supra-nuclear
densities in the dense core down to a few 100 g/cm3 in the outer regions of the stellar envelope)
different EoSs have to be used simultaneously in the simulations. It this thus naturally to divide
the whole density range into a “high-density” part and a “lowdensity” part. In the following
the EoSs used in these parts are shortly introduced.

High density equation of state

In this study we use three different nuclear equations of state for the description of nuclear
matter at high densities. All three equations of state assume nuclear statistical equilibrium and
describe the baryonic part of inhomogeneous matter as a mixture of free protons and neutrons,
alpha particles, and one representative species of a heavy nucleus with atomic numberA and
chargeZ. The homogeneous part consists of free protons and neutrons, i.e. no heavy nuclei are
present there. It shall be stressed that all three equationsof state describe matter above nuclear
density to be homogeneous, without the existence of possible hadronic degrees of freedom
(like kaons, hyperons, pion condensates, . . . ). Both in the inhomogeneous phase and in the
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homogeneous phase the baryons are immersed in an electron and positron gas that equilibrates
with a photon gas by the pair creation process. We use the EoS for hot and dense nuclear
matter by Lattimer & Swesty (1991), which is based on the compressible liquid drop model by
Lattimer et al. (1985). In this EoS the transition from inhomogeneous to homogenous matter
is established by a Maxwell construction. The nucleon-nucleon interactions are expressed by a
Skyrme-force. In our version of this EoS the incompressibility modulus of bulk nuclear matter
is taken to be 180 MeV and the symmetry energy parameter has a value of 29.3 MeV. Studies
with different values for these parameters have been conducted and showed little differences
(see Thompson et al. 2003, Swesty et al. 1994). This equationof state is most widely used
by supernova modellers (see, e.g. Thompson et al. 2003, Swesty et al. 1994, Rampp 2000,
Liebendörfer et al. 2005, Buras et al. 2006b,a) and can thus be regarded as the “standard”
EoS for supernova simulations. The second equation of statewe use in our studies has been
developed by Shen, Toki, Oyamatsu, and Sumiyoshi and is described in detail in Shen et al.
(1998b,a). It is based on a relativistic mean field model and is extended with the Thomas-Fermi
approximation to describe the homogeneous phase of matter as well as the inhomogeneous
matter composition. The parameter for the incompressibility of nuclear matter is 281 MeV
and the symmetry energy has a value of 36.9 MeV. Except for ourstudies, this equation of
state was to used in simulations of r-processes in neutrino driven winds (see Sumiyoshi et al.
2000), proto-neutron star cooling (see Sumiyoshi et al. 1995), and in supernova simulations (see
Terasawa et al. 2001, Sumiyoshi et al. 2005, Burrows et al. 2006a,c,b). As a third alternative
description for dense and hot nuclear matter we make use of the EoS by Wolff and Hillebrandt.
It is based on a full Hartree-Fock calculation, assuming a Skyrme force for nucleon-nucleon
interactions with parameters given by Köhler (1975). The incompressibility has a value of 263
MeV and the parameter of the symmetry energy was chosen to be 32.9 MeV. Details of the
calculation can be found in Hillebrandt et al. (1984) and Hillebrandt & Wolff (1985). In the
past this equation of state was used in several supernova simulations (see Hillebrandt et al.
1984, Hillebrandt & Wolff 1985, Kitaura et al. 2006). For comparison of the three equations of
state, we show the composition of the three EoS in the density-temperature-plane, see Fig. 3.1a
– 3.1c. Note that the region where alpha particles contribute more than 50% is different in
all three equations of state. In Fig. 3.1d we depict the adiabatic index,Γ = (∂ln P/∂ln ρ)s, as a
function of density for an adiabatic collapse, i.e. the entropy s is kept constant for a value of 1 kB

per baryon. Figure 3.1e shows the pressure corresponding tothe adiabatic index of Fig. 3.1d.
Below densities of 1013 g/cm3 the pressure of the different equations of state becomes identical
whereas at a density above 1014 g/cm3, where nuclear forces become important, the stiffer
equations of state of Shen and Wolff show a steeper pressure gradient.

Low density equation of state

For low densities we extend the above described equations ofstate with our low-density equa-
tion of state. This EoS considers electrons and positrons, photons, free protons and neutrons,
alpha particles, and up to 14 species of nuclei in thermodynamic equilibrium. Electrons and
positrons are treated as Fermi gases of arbitrary degeneracy and arbitrary degree of relativity.
The baryonic components are treated as classical non-relativistic Boltzmann gases. Coulomb
lattice corrections for the pressure, energy density, entropy and adiabatic index are taken into ac-
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Figure 3.2.: The setup for the EoSs in the density-temperature plane. Below a valueρlow we
make use of our low density EoS. This EoS is divided into two parts: above a
temperature of 0.5 MeV we assume NSE, and below this temperature we take
into account nuclear burning.

count. For temperatures aboveTNSE=0.5 MeV we assume nuclear statistical equilibrium in this
EoS (see Fig. 3.2). For temperatures below 0.5 MeV we take nuclear burning into account (see
Rampp & Janka 2002). The transition between the high-density EoS and the low-density EoS
takes place at a specific value for the densityρlow, which was chosen to guarantee a sufficiently
smooth transition as far as e.g. the pressure, internal energy density, and chemical potentials as
function of density are concerned. During the collapse phase these specific values for the transi-
tion densityρlow were chosen to be 6×107 g/cm3, 3×108 g/cm3, and 1.5×109 g/cm3 in case of
the L&S, Shen, and Wolff-EoS, respectively. In the postbounce phase this value was changed to
1011 g/cm3 for the L&S-EoS in order to bypass an error in this EoS for low densities and tem-
peratures typically for the postbounce phase (see Buras et al. 2006b„ see also Section 3.4). The
three different equations of state were used in spherically symmetriccore collapse simulations
of a 15 M⊙ stellar model (model s15a28) provided by Heger et al. (2001). In the following
we will denote the different models by L&S(io)slms, Shen(io)slms, and Wolff(io)slms. These
names indicate the used equation of state, the full set of improved (io) neutrino opacities, and
the use of the electron capture rates on nuclei calculated byLanganke et. al (see Hix et al. 2003,
Langanke et al. 2003), including electron screening effects, see Appendix A.3.1.

3.2.2. Numerical results

Initial models

From the progenitor model “s15a28” we take the density, temperature, electron fraction, and
in the regime of the low-density EoS the composition as initial data for our simulations, see
Figs. 3.3 and 3.4a. All other quantities (like pressure, seeFig. 3.4b) were obtained by evaluating
the respective EoS of the simulation. Starting from the sameprogenitor model we nevertheless
find the following differences in the initial models that are due to the equations ofstate:

• The pressure profile and value of the adiabatic index that areobtained from the EoS with
the stellar progenitor conditions are EoS dependent (see Fig. 3.4b). This influences the
collapse dynamics.
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109 g/cm3 for the Wolff-EoS.

• The composition in the NSE-regime strongly depends on the EoS. This may influence the
neutrino-matter-interaction rates. Note for example thatthe mass and charge number of
the representative heavy nucleus given by the Shen-EoS is higher than the ones given by
the other two equations of state, see Fig. 3.3.

• Up to 1M⊙ the initial value of the entropy is lower for the Shen-EoS, see bottom panel
of Fig. 3.4a. This implies that the entropy in model Shen(io)slms would have to rise
more strongly during the collapse in order to reach the same values of the – also rising –
entropies of the models L&S(io)slms and Wolff(io)slms.
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These differences at the beginning of the simulations have some minor effect on the collapse
phase which we will discuss in the following section.

Collapse and prompt shock phase

The simulations show that the collapse times for the models L&S(io)slms and Shen(io)slms are
quite similar, while the onset of collapse in the model Wolff(io)slms delayed compared to the
other two.

At central densities above 1011 g/cm3 the collapses develop very similar in all models1, see
Figs. 3.6fig:bounce, and 3.5.

However, there still exist some differences in the collapse phase: as the profiles of the elec-
tron fraction reveal (see Fig. 3.5) the model Shen(io)slms experiences the lowest deleptonisation

1This behaviour was also found by Buras et al. (2006a) with simulations of several different progenitor models and
the L&S-EoS
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cates the situation at the moment of shock formation.

and thus fewest electron captures of all models. This can be also seen in Fig. 3.7a where the
central electron and central lepton fractions are shown as function of central density for all
models. As can be deduced from Fig. 3.5 these differences originate from the early stage of
collapse when the central density reaches values between 1011 and 1012 g/cm3 and neutrinos
are not completely trapped. The reason why model Shen(io)slms experiences the lowest delep-
tonisation, is found in the collapse timescale. Since modelShen(io)slms collapses fastest (see
Fig. 3.7b), there is simply less time for electron capture. Another important difference in model
Shen(io)slms is that the initial value of the entropy is lower than in the other two models, see
again Fig. 3.4a. Since this model does not show an extraordinary strong rise of the central
entropy with time a lower entropy can also be seen in Fig. 3.7b.

However, this lower core entropy doesnot imply that the abundance of free protons is also
lower in the model with the Shen-EoS compared to the other models. In Figs. 3.6d we depict
for all models the evolutionary tracks of the composition.

The development of the four NSE-species is different in all three models. Whereas the general
trend is qualitatively the same, the abundance of a species from one EoS to the other can easily
differ by a factor of two. More importantly, we find even more extreme variations in the proper-
ties (charge and mass number) of the representative heavy nucleus, see Fig. 3.6c: shortly before
nuclear density is reached model Shen(io)slms shows the heaviest nuclei whose mass number
is up to a factor of six to ten larger compared to the models L&S(io)slms and Wolff(io)slms.

Whereas this clearly stresses the uncertainties in the description of matter at these high den-
sities, the consequences on core collapse supernova simulations are negligible, since neutrinos
are trapped in the core and modifications on absorption or scattering rates by these heavy nuclei
are almost unimportant.

When the inner cores of the models finally reach nuclear density the in falling material is
stopped by nuclear repulsive forces, see Fig. 3.6b. The density overshoots, and the core starts
expanding into the still in falling supersonic material, thereby creating a shock. Following
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Figure 3.9.: a: The composition versus enclosed mass below the shock frontat a time of 10
ms after the shock formation. Note that model L&S(io)slms does not show any
representative heavy nucleus anymore, see also Fig. 3.8, whereas in the other
models the heavy nucleus still contributes more than 50% of the mass fractions.
The barely visible mass fraction of alpha-particles is nearly identical in all three
models. b: The properties of the representative heavy nucleus in the models
Shen(io)slms, and Wolff(io)slms where heavy nuclei can be found below the
shock front at a time of 10 ms after shock formation.c: The composition versus
enclosed mass below the shock front at a time of 50 ms after theshock formation.
At this time solely model Wolff(io)slms shows a representative heavy nucleus.d:
The mass and charge number of the representative heavy nucleus at a time of 50
ms after shock formation.

the definition of Bruenn & Mezzacappa (1997) we define the moment of shock formation as
the moment when the core entropy first reaches a value of 3kB per nucleon. In Fig. 3.6a
we see that the models Shen(io)slms and Wolff(io)slms create their shocks at similar masses,
0.49 M⊙ and 0.47 M⊙ , respectively, and roughly at nuclear density (2.7 × 1014 g/cm3). In
model L&S(io)slms, on the other hand, the shock is created at0.44 M⊙ and at a density of
3.5 × 1014 g/cm3. The higher central density of this model is caused by the softer L&S-EoS,
remember Fig. 3.1d, and the lower enclosed mass at shock formation is consistent with the
analysis of Yahil (1983) that the size of the homologous coreis proportional to the square of
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Figure 3.10.: aThe positions of the shock (solid), of the electron neutrinosphere (dashed),
and of the gain radius (dotted) as a function of time.b: The mass accretion rate
through the shock as a function of time. The regions labeled “A”, “B”, and “C”
mark different evolutionary phases of the supernova, see the explanation in the
main text.

the mean trapped lepton fraction〈Y lep〉. We define the mean trapped lepton fraction within the
enclosed mass at the shock formation point as

〈Y lep〉 =
nlep(r < rsf)

nB(r < rsf)
=

∑
i Y lep,i nB,i∑

i nB,i
, (3.1)

wherenB, nlep are the baryon number density and lepton number density, respectively,rsf is
the shock formation radius, and the sum overi extends over all zones below the shock formation
point. We then find values of the mean lepton fraction of 0.29,0.31, and 0.30 in the models
L&S(io)slms, Shen(io)slms, and Wolff(io)slms, respectively.

Prompt shock

After the shock formation the newly created shock travels outward and loses energy by photo-
disintegrating the bound iron group nuclei in its path. Withall three equations of state the
prompt shock turns into an accretion shock during roughly the first millisecond and at this
time the shock is well inside of the electron neutrino-sphere, see Fig. 3.7c,d. This implies
that the shock dampening due to energy losses is caused in ourmodels solely by the photo-
disintegration of the nuclei and not by the neutrino burst atthe shock-breakout. Therefore
we can approximately calculate the prompt-shock energy by the assumption that the binding
energy per nucleon is 8.8 MeV which means that the energy for dissociating 0.1 M⊙ (roughly
1056 nucleons) amounts to roughly 1.6 × 1051 erg. In our calculations the shocks pass through
0.240 M⊙ , 0.257 M⊙ , and 0.254 M⊙ of material and stall at radii of 29.6 km, 37.2 km, and
36.4 km in the models L&S(io)slms, Shen(io)slms, and Wolff(io)slms, respectively. Thus the
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energies of the prompt shocks are roughly 3.84× 1051 erg, 4.11×1051 erg, and 4.06× 1051 erg
for the models L&S(io)slms, Shen(io)slms, and Wolff(io)slms, respectively. In agreement with
Bruenn & Mezzacappa (1997) we find that a higher enclosed massat the moment of shock
formation leads to a more energetic prompt shock. Although the EoS influences the energetics
of the prompt shock these variations are only minor comparedto the total amount of energy
which is needed to disrupt the star in an explosion.

Cooperstein & Baron (1990) found that the softer the nuclearequation of state is, the more
energetic the resulting prompt shock will be (see van Riper 1978, Baron et al. 1985, 1987b,a).
However for this study a parameterised EoS was used and theseresults where contradicted by
Swesty et al. (1994) in a study withe the “realistic” L&S-EoS. Using different compressibility
modulus of bulk nuclear matter (180 MeV, 220 MeV, 375 MeV) in the L&S-EoS the later
authors did not find any strong dependence of the prompt shockenergetics on the stiffness of
the EoS. Our results completely agree with this study, and show that this is also true for EoSs
that are based on different nucleon-nucleon interaction potentials.

Accretion phase and Neutrino emission

After the prompt shock stalls due to energy losses, the accretion phase sets in and the shock
gets pushed out by the accreted matter that piles up on the surface of the nascent neutron star.
Since the gas falling into the stalled shock is strongly decelerated and the post shock velocities
are much smaller than the local sound speed, the structure ofthe accretion layer between the
surface of the proto neutron star and the supernova shock is nearly hydrostatic (see Janka 2001,
Janka et al. 2002). Then the change of the shock position is mainly influenced by the conditions
at the boundaries of the accretion layer. On the one hand the mass accretion rate through the
shock front determines the rate of mass inflow to the accretion layer and the ram pressure at
the shock front (ρv2). On the other hand the mass and radius of the nascent neutronstar define
the gravitational potential and provide the support of the nearly hydrostatic layer of matter that
piles up onto the central core. The compactness of the nascent neutron star is determined by
the stiffness of the EoSandby the amount of neutrino cooling that allows the cooled matter to
settle on the inner core (remember that in simulations without neutrino cooling the shock gets
pushed out farther and farther because matter does not cool and settle on the proto-neutron star).

Since our models do not explode, neutrino heating is obviously not strong enough which can
be seen in Fig. 3.15, where we show the heating and advection timescales of the stellar plasma.
These timescales are calculated by the expression (see Janka et al. 2001)

τadv ≃
RS− RG

υ
and τheat≃

|Eint −GM/r |
Q̇

, (3.2)

whereEint is the internal energy per nucleon,GM/r is the gravitational energy per nucleon,
Q̇ is the heating rate per nucleon and all quantities are integrated over the volume enclosed
between the shock radiusRS, and the gain radiusRG, υ is the postshock velocity.

Alternatively, we adapted the expressions for the advection timescale across a pressure scale
height and the timescale for net neutrino heating given by Thompson et al. (2004). The timescales
then read
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Figure 3.11.: a: The density profile of the models at three different times after the shock
formation. b: The same density profiles as a function of radius. Note that the
models Shen(io)slms and Wolff(io)slms show nearly identical structure in the
inner part (M< 0.3 M⊙ , r < 8 km). c: The adiabatic index and the enclosed
mass as function of radius for two different times after the shock formation. The
vertical lines represent the position of the electron neutrino sphere.
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Figure 3.12.:Overview over some quantities during the postbounce phase at times of 50ms,
100ms, and 150ms after the shock formation. For reasons of clarity some curves
are shifted upwards by the stated amount.a: The temperature for the three
models. Whereas the temperature in the proto-neutron star is for all times low-
est in model L&S(io)slms, and highest in model Wolff(io)slms, the situation is
reversed at the position of the shock (temperature peak). The entropy profiles
(b) also show that the entropy in the shock is highest for model L&S(io)slms,
and lowest in model Wolff(io)slms. c: The Ye-profile shows that the electron-
fraction below the shock is for all times slightly lower in model L&S(io)slms,
which implies a stronger deleptonisation and cooling (see paneld). Note that
negative values in (d) mean a net neutrino cooling, whereas positive values give
a net neutrino heating.
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τadv =
H
v

and τheat=
P

ρ Q̇
with

dP
P
= −dr

H
, (3.3)

whereH is the pressure scale height,P the pressure,ρ the mass density, anḋQ is the heating
rate. The timescale for neutrino heating was averaged over all radial zones between the gain ra-
dius and the shock position. Since neutrino heating is strongest near the gain radius the pressure
scale height was determined at the gain radius. Although theabsolute values are different, both
definitions of the advection and heating timescales (Eqs. 3.2 and 3.3) show that the respective
heating timescale is longer than the respective advection timescale.

For the discussion of the shock expansion we have to introduce some quantities and definitions
that will be used. Note that we define the radius of the nascentneutron star at the position of
the neutrinosphere for electron neutrinos and we define the neutrinosphere as the radial position
where the spectrally averaged transport optical depth

〈τtr(r)〉 =
∫ ∞

r

dr′

〈λtr(r′)〉 =
∫ ∞

r
dr′

∫ ∞
0 dǫ H(r′, ǫ)χtr(r′, ǫ)

∫ ∞
0 dǫ H(r′, ǫ)

(3.4)

equals unity. Hereχtr is the inverse of the mean free path of neutrinos between two interactions
andH(r, ǫ) is the first angular moment of the specific intensity of radiation. The inverse mean
free path 1/λtr or the transport opacityχtr,

1
λtr = χ

tr = κ∗a + κ
(0)
s −

κ
(1)
s

3
(3.5)

which is relevant for momentum transfer from neutrinos to targets is written as an absorption
partκ∗a (compare with Eqn. 6 of Cernohorsky et al. 1989) which includes phase space blocking
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(see, e.g. Eqn. C29 in Bruenn 1985) and an isotropic and an anisotropic scattering partκ(0)
s and

κ
(1)
s , respectively. Note that the scattering contribution is calculated from the cross section of

momentum transfer (cf. Eqn. 12 in Straumann 1989).
Furthermore we define the compactness of the nascent neutronstar as ratio of enclosed mass

below the neutrinosphere and the position of the electron neutrinosphere. Then we write:

CNS :=
Mν/[M⊙ ]

rν/rS
with rS = 2GMνc

−2 , (3.6)

whererS is the Schwarzschild radius of the dense core,
G is the gravitational constant,Mν is the enclosed mass below the neutrinosphere which has

radiusrν, andc is the speed of light.
In the following we will discuss how the nuclear equation of state influences the shock propa-

gation after the prompt shock stall and how the EoS affects the neutrino emission. We therefore
introduce the following sub-phases as indicated by the vertical lines in Fig. (3.10):

• Phase A: from the stall of the prompt shock to the time when theneutrinosphere of elec-
tron neutrinos reaches its maximum position. In this phase,which lasts roughly 30 ms,
the mass accretion rates through the shock front decreases steadily and quickly; as a con-
sequence the ram pressure on the shock drops and allows a shock expansion. This phase
is almost identical for all three EoSs, see Fig. 3.10a, however the model Wolff(io)slms
shows the fastest shock expansion because of the fastest drop in the mass accretion rate,
see Fig. 3.10b.

• Phase B: from the end of phase A to the time of maximal shock expansion. In this phase,
because of neutrino cooling, matter starts to settle, and the nascent neutron star starts
to shrink. However, the mass accretion rate still decreasessignificantly. This results
in a still expanding shock despite the fact that the shock is losing its support. Finally,
after reaching its maximum position of 149 km, 145 km, and 140km for the models
Wolff(io)slms, Shen(io)slms, and L&S(io)slms respectively, the shock retreats.

• Phase C: From the beginning of the shock decline to the end of our simulation. In this
phase the mass accretion rate nearly becomes constant but the compactness of the inner
core increases, and the shock recedes further.

Since in this stage neutrino cooling is efficient, the system is nearly hydrostatic (see Fryer et al.
1996, Janka 2001) and one can derive the approximate expression

Rs ∝
(
(RNS)4(kBTNS)4

|Ṁ|
√

MNS

)2/3

, (3.7)

from the Eqns. (39)-(63) in Janka (2001). HereRNS is the radius of the neutron star,T its tem-
perature,M its mass, andṀ the mass accretion rate through the shock front. This equation
describes the qualitative behaviour of the system as long asheating is not important, the adia-
batic indexΓ roughly 4/3 and the shock velocity is much smaller than the pre-shock velocity of
matter. Thus a slightly more extended neutron star leads to asignificant larger shock radius and
the shock in the model Wolff(io)slms stays farthest outside.
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The link between the compactness of the proto neutron star and the EoS is shown in Figs. 3.11a-
c. Our models develop different compact cores in a radial region below the neutrinosphere and
above the hardly compressible matter (γ > 2, r ≈ 10 km). Below 10 km the density profiles and
enclosed masses, and thus compactnesses, of the models Shen(io)slms and Wolff(io)slms are
nearly identical, but above 10 km the compactnesses developdifferently in time. In this region
the Wolff-EoS is the stiffest EoS which results in the most extended core and thus according to
Eqn. 3.7 to the largest shock position.

In Fig. 3.12 we show snapshots of profiles of temperature, entropy, electron fraction and
heating rates. Interestingly, we find that model L&S(io)slms with the compactest core shows
stronger heating and cooling than the other models. Consistency we find that model L&S(io)slms
emits more and “hotter” neutrinos than the other models (seeFig. 3.13) and model Wolff(io)slms
shows the lowest cooling and emits less energetic neutrinos.

The neutrino processes are influenced by the structure and atmospheric conditions (e.g. den-
sity and temperature profiles) of the nascent neutron star and of the accretion layer, which both
are influenced by the equation of state. On the other hand, as already discussed, the cooling is
responsible for the settling of the accreted matter onto thecore and thus the cooling feeds-back
at the evolution of the proto–neutron star.

One of the most prominent features that occurs during a core collapse supernova is the so-
called shock breakout. It is defined as the moment when the shock front that is born in a
neutrino opaque region breaks through the neutrinosphere of the electron neutrinos and thereby
produces an luminous burst of electron neutrinos. This happens in our models roughly 4 ms
after the shock formation, which is after the prompt shock has stalled. Thompson et al. (2003)
already discussed the properties of the neutrino signal fordifferent values of the compressibility
modulus of bulk nuclear matter in the Lattimer & Swesty EoS and found only a weak depen-
dence. In our simulations with equations of state that do notonly differ in the compressibility
but also in the composition we find a larger difference in the neutrino luminosity and energy
during the shock breakout as well as in the late time evolution. The electron neutrino luminos-
ity of the breakout peak as seen by a static observer at infinity varies roughly between 15% and
22% 2, see Fig. 3.13, and between 5% and 20% during the later evolution. The energy losses
due to neutrino emission during the first 163 ms after the shock formation are 44.6 foe3 , 39.2
foe, and 38.3 foe in the models L&S(io)slms, Shen(io)slms, and Wolff (io)slms, respectively.
The differences in the burst luminosity in our models are a result of the stronger deleptonisation
in a more extended spatial region in the models Wolff(io)slms and Shen(io)slms. Furthermore
the models behave in such a way that the optical depth in this deleptonisation region is slightly
smaller and thus these models are less opaque and allow the electron neutrinos to escape more
easily. The average neutrino energies for neutrinos of all flavours also vary between 8% and
20% in our models, see Fig. 3.13. Note that we present here a rms average energy defined by

〈ǫν〉RMS :=



∫ ∞
0

dǫ ǫ2Jν(ǫ)∫ ∞
0 dǫ Jν(ǫ)



1
2

, ν ∈ {νe,ν̄e,νµ,τ,ν̄µ,τ} (3.8)

2However, this variation is not big enough to distinguish different EoSs by the measurement of the burst signal in
a neutrino detector (see Kachelrieß et al. 2005).

3A “foe” or a “bethe” stand for an energy of 1051 erg.
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where Jν(ǫ) is the zeroth moment of the specific intensity. The spectralinformation of the
various neutrino flavours is shown in Figs. 3.14a – 3.14c at a time of 5ms, 50 ms, and 150 ms
after the shock formation, respectively. We find only littlevariation of the spectra with the EoS.
However, at early times the model with the L&S-EoS shows a slightly softer spectrum than the
models with the stiffer EoSs.

During the accretion phase another interesting difference in the models becomes visible:
Whereas model L&S(io)slms shows no mass fraction of a representative heavy nucleus be-
low the shock front (Xh < 0.1%), we find sometimes significant amounts of heavy nuclei in
the other two models, see Fig. 3.9a – Fig. 3.9d , where a snapshot of the composition 10 ms
and 50 ms after shock formation is shown. The corresponding density profile can be found
in Fig. 3.9e. Again the representative nucleus in model Shen(io)slms is heavier than the one in
model Wolff(io)slms. At later times after shock formation the representative nucleus contributes
less and less of the mass fractions but in case of model Wolff(io)slms nuclei can be found up
to 120 ms after the shock formation, see Fig. 3.8. This mass shell of heavy nuclei between
fluid layers of free protons and neutrons in the nascent neutron star may be very interesting in
multi-dimensional simulations of these models, since thismatter stratification may influence
instabilities in the nascent neutron star.

Analysis of hydrodynamic instabilities

Convection is known to be of great importance for the shock evolution, since it influences the
heating of matter behind the shock front and can influence theneutrino luminosity at the neu-
trino spheres (see e.g. Herant et al. 1994, Guillot et al. 1995, Keil et al. 1996, Mezzacappa et al.
1998a, Fryer 1999, Fryer & Warren 2002, Buras et al. 2003, 2006b,a). However, spherically
symmetric models do of course not show any convective flowsbut they do show the gradients
of entropy and total lepton number which are mainly responsible for convective instabilities.

In our spherical symmetric simulations, we discovered conditions that should lead to convec-
tivly unstable regions in multi-dimensional simulations.However, one has to be careful with
this analysis since in a multi-dimensional simulation the back reaction of convection onto the
structure of the atmosphere can change the conditions that lead to convection in the first place.

We identified the regions of potential convection with the Ledoux-criterion, which can be
written in the form Buras et al. (2006b)

Cled =

(
∂ρ

∂s

)

Y,P

ds
dr
+

(
∂ρ

∂Y

)

s,P

dY
dr
≥ 0, (3.9)

wheres = s+ sν is the entropy per baryonincluding the neutrino entropy,ρ the density,Y =
Ye + Yν is the total lepton number per baryon. In a multi-dimensional simulation we expect
that convection would develop in regions where Eqn. 3.9 gives positive values. Regions with
Cled < 0 are otherwise stable against convective instability. From Eqn. 3.9 one can calculate the
Brunt-Väisälä frequency

ωBV := sign(Cled)
√
−g
ρ
|Cled|, with (3.10)

g = −dΦ/dr being the gravitational acceleration.
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3.2.3 Summary

The Brunt-Väisälä frequency denotes the growth rate of fluctuations if it is positive (instabil-
ity), and the negative of the oscillation frequency of stable modes, if it is negative. In Fig. 3.17
we show for the proto-neutron star contours of the evaluatedLedoux-criterion as a function of
time and radius. Whereas we expect the development of convective growths at all times in the
models Shen(io)slms and Wolff(io)slms, the model L&S(io)slms does not show a continuous
positive Ledoux-criterion. This might imply that proto-neutron star convection would develop
faster in 2D-models which would apply the Shen and Wolff EoSs. However, for all models
our analysis reveals that the unstable region is expected tobe deep inside the PNS, which may
prevent a modification of the neutrino emission by convective flows. This question can only be
answered in 2D-models where the strength of convective growths and the over- and undershoot-
ing of fluid flows is taken into account.

3.2.3. Summary

We have simulated the collapse of a 15 M⊙ star and the subsequent shock propagation with
three different nuclear equations of state with a Boltzmann neutrino transport code in spherical
symmetry. We have considered the three equations of state available to us, namely the L&S-EoS
which is based on a finite temperature liquid drop model, the Wolff-Eos which is calculated with
a Hartree-Fock method, and the Shen-EoS which adopts a relativistic mean field treatment for
dense baryonic matter. All three nuclear equations of stateuse different values for the nuclear
parameters and show e.g. different softness.

We find that the properties of the representative nucleus, i.e. charge number and mass num-
ber, are different in the three equations of state as well as the density when the transition to
homogeneous matter proceeds.

These differences in the EoSs effect the deleptonisation during the collapse phase and thus
the collapse timescale and the shock formation point. The launched shock is more energetic for
stiffer EoSs, but this energy gain is by far lower than the energy needed for a prompt explosion.
In our models we find a much stronger variation of the burst signal with different EoSs than
it was found by Thompson et al. (2003). However, we point out that these variations are nev-
ertheless to small to allow for the differentiation of different EoSs by the measurement of the
neutrino burst signal (see Kachelrieß et al. 2005).

The EoS is more relevant for the subsequent accretion phase.Here, we find that a stiffer EoS
shows lower and “cooler” neutrino emission. Thus matter does not cool very efficiently and a
less compact core forms that pushes the shock farther outwards compared to simulations with
softer EoSs. On the other hand, a softer EoS shows stronger cooling and heating and it is thus
not clear from first principle which kind of EoS is more favourable for creating a supernova ex-
plosion. This answer can probably only be given in multi-dimensional simulations that are more
sensitive to the changes in neutrino heating and cooling since the growth of convection strongly
depends on these two values. However, a stability analysis of conditions that may lead to con-
vection in the proto-neutron star reveals that details of the EoS may be important for convective
instabilities. Especially the Shen-EoS and Wolff-EoS show a matter stratification in the nascent
neutron star that seems promising for the development of Rayleigh-Taylor instabilities. We thus
conclude that the detailed knowledge of the EoS for hot and dense matter is indispensable for a
correct treatment of the supernova problem.
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3.3. EoS changes: Mimicking a high density phase transition

In the previous section it was shown — by using three different EoSs — that the supernova
evolution depends in a complex manner on the EoS. This is a somewhat unsatisfactory situation,
since the nuclear equation of state is still poorly known — ifnot to say unknown — at high
baryon densities (see, e.g. Lattimer & Prakash 2004, Lattimer 2005, Horowitz et al. 2004b,a,
Tartamella et al. 2005, Lattimer 2006, Lattimer & Prakash 2006). On the one hand, the nucleon–
nucleon interaction potential is not known at high densities and on the other hand, it is also
unclear what matter looks like if it is compressed to supra–nuclear densities. Does a high–
density fluid of unbound protons and neutrons form? Or, does at some phase space points a
phase transition occur, and other hadronic particles such as pions or kaons appear? Of course,
there exist plenty different theoretical models, and they predict different states of matter such as
quark or strange matter, pion and kaon condensates, only to mention a few.

Thus the question arrises whether such possibly states of matter are relevant for supernova
explosions ? From the point of view of a supernova modeller itis interesting to know to what
extend present simulations are sensitive to changes of the EoS at high densities.

C. J. Horowitz provided a clever idea to test these questionsin our simulations. The trick is
to artificially — but in a physical parameter range— modify the supra–nuclear phase of an EoS
in order to mimic a high density phase transition from a nucleon gas to e.g. a pion condensate.
In this approach it is assumed that the EoS below nuclear densities is not affected by the above
mentioned possible phase transitions and thus the EoS is modified only above a threshold baryon
densityρt. Furthermore the amount of softening in the EoS from a possible exotic phase is
limited because the EoS must still support cold neutron stars up to some maximum massMmax.
Adopting relatively aggressive choices (i.e. low values) for ρt and Mmax in order to maximise
the effects of this EoS softening, we chose the threshold density of

ρt = 1.25× ρnuc = 1.25× 2.7 1014 g

cm3
, (3.11)

whereρnuc is normal nuclear density. This implies that the changes in the EoS do not impact
normal nuclei or the value of the incompressibility at densities belowρnuc and the changes will
only become active as soon as the density in our simulation exceedsρt.

Above the threshold densityρt we then apply the following changes to the EoS: We add an
additional component to the EoS that is assumed to reduce or increase the energy densityǫ.
We then calculate consistently the change in pressure, adiabatic index, and baryon chemical
potentials which are caused by the change in the energy density4:

• By adding a term∆ǫ to the energy densityǫ for a system at baryon densityρB > ρt we
obtain the new energy densityǫ′

ǫ′ = ǫ + ∆ǫ = ǫ − a(ρB − ρt)
2Θ(ρB − ρt) . (3.12)

4With this ansatz we are not able to take into account that the state of matter changes, and e.g. neutrino interactions
for pion condensates may change the opacities. However, since the “model” phase transition takes place deep
inside of the dense core the supernova does not realize possible different opacities on the timescale we do
consider here.
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3.3 EoS changes: Mimicking a high density phase transition

Here a is a constant that can be chosen to vary the maximum mass that the EoS will
support (a larger value ofa implies a smaller maximum mass). Note that this modification
of the EoS in assumed to be independent of the temperatureT and the electron fraction
Ye.

• The change in pressure associated with∆ǫ can than be calculated from the derivative of
∆ǫ with respect to the densityρB and we obtain

∆P = −a(ρ2
B − ρ2

t )Θ(ρB − ρt) . (3.13)

• The changes of the proton chemical potentialµP or neutron chemical potentialµN can
than be expressed as

∆µP = ∆µN = −2a(ρB − ρt)Θ(ρB − ρt) . (3.14)

Note thatµN - µP is unchanged because our correction is independent ofYe.

• The adiabatic indexΓ is then calculated according to

Γ =

(
∂ ln P
∂ ln ρ

)

s
=
ρ

P



(
∂P
∂ρ

)

T,Ye

+
T
ρ

[(
∂P
∂T

)
ρ,Ye

]2

(
∂E
∂T

)
ρ,Ye


, (3.15)

wheres is the entropy per baryon.

Note that by construction, these changes to the high densityphase of the EoS are thermody-
namically consistent and obey the Maxwell relations of thermodynamics.

These modifications allow us to soften or stiffen the EoS above the threshold densityρt and
to investigate in parameter studies to what extend this highdensity regime (and some pos-
sible phase transitions in this regime) influence the time evolution of supernova simulations.
Furthermore, these parameter studies are complementary toour overall goal to understand the
importance of the EoS during a core collapse supernova explosion.

In Figs. 3.18 and 3.19 we show for some representative valuesof a the changes of the energy
density and the pressure for the L&S and Wolff EoS.

Parameter study with a 15 M⊙ progenitor model

With this ansatz for a parameter study we have calculated a series of collapse and postbounce
models with the same 15 M⊙ progenitor star of Heger et al. (2001) which was already usedin
Section 3.2. In these calculations different values ofa and the L&S–EoS or the Wolff–EoS were
used. The models and the values ofa are summarised in Table 3.1.

Surprisingly, we find that in our calculations the changes ofthe EoS in the high density phase
aboveρ > 1014g/cm3 have no influence on the simulations neither with the intrinsically soft
L&S–EoS nor with the stiffer Wolff–EoS. The reason for this is simply found in the evolution
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Figure 3.18.:The modifications of the L&S–EoS: (a) The energy density as function of den-
sity and (b) The pressure as function of density.
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Figure 3.19.:The modifications of the Wolff–EoS: (a) The energy density as function of den-
sity and (b) The pressure as function of density.

of the density in our simulations. During the collapse the density never exceeds the threshold
densityρt and hence the modifications of the EoS never come into being.

During the postbounce evolution only at very late times the density exceeds the threshold
densityρt and the EoS modifications start to play a role. However, this only happens in a
spatially very narrow region in the centre of the proto neutron star which does not effect the
supernova evolution until we have stopped these simulations. In this narrow region, depending
on the choice of the parametera, the EoS becomes softer or stiffer. This can be seen in Fig. 3.20
where we show the shock trajectories, the radius of the electron neutrinosphere (which we define
as the radius of the neutron star), and the value of the adiabatic index in the nascent neutron star
at a time of 250 ms after the shock evolution.

However, it is possible that the changes in the EoS become important at very late times when
the ongoing mass accretion increases the density of the neutron star such that the density of
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3.3 EoS changes: Mimicking a high density phase transition

Model name progenitor a [MeV−2] Mmax [M⊙ ] r [km] EoS
W0 s15a28 0 2.21 13.5 Wolff
W−2e−5 s15a28 −2× 10−5 2.45 13.8 Wolff
W+2e−5 s15a28 +2× 10−5 1.91 13.0 Wolff
W+4.5e−5 s15a28 +4.5× 10−5 1.41 12.1 Wolff
W0−20 s20 7 2.21 13.5 Wolff
W+2e−5 s20 +2× 10−5 1.91 13.0 Wolff
LS0 s15a28 0 1.84 10.0 L&S
LS−1e−6 s15a28 −1× 10−6 2.57 12.8 L&S
LS+2e−5 s15s28 +2× 10−5 1.51 8.65 L&S
LS0−20 s20 0 1.84 10.0 L&S
LS+2e−5−20 s20 +2× 10−5 1.51 8.65 L&S
LS−1e−6−20 s20 −1× 10−6 2.57 12.8 L&S
LS0−25 s20 0 1.84 10.0 L&S
LS+2e−5−25 s20 +2× 10−5 1.51 8.65 L&S
LS−1e−6−25 s20 −1× 10−6 2.57 12.8 L&S

Table 3.1.:Overview over the models calculated with different progenitor stars and the Wolff–
EoS or L&S–EoS, respectively. Stated are the progenitor models the values ofa,
the maximum supported mass of this (modified) EoS and the radius of a neutron
star with maximum mass.
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Figure 3.20.: a: The shock position as function of time in the (modified) models with the
Wolff–EoS for the 15 M⊙ progenitor star.b: The adiabatic index as function of
stellar radius at a time of 250 ms after the shock formation. It is clearly visible
that the modifications of the EoS only affect the inner 10 km of the dense core.

a larger spatially extended region exceeds the threshold density ρt.
5 Instead of running this

model to very late times, the same effect can be obtained faster by simulating the evolution of

5We will discuss this point in the following section.
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more massive progenitor models. We have thus additionally simulated the supernova evolution
of progenitor models whose masses exceed 15 M⊙ , which we will discuss in the following
section.

More massive progenitors
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Figure 3.21.: a: The shock position (upper solid lines) as function of time for the models
W0–20 and W+2e−5−20. Also shown are the electron neutrino spheres (dashed
lines). b: The luminosity for both models as seen by an static observerat rest
at infinity. The evaluation was done at a radius of 500 km. Shown are the
luminosities of electron neutrinos (solid), anti–electron neutrinos (dotted), and
heavy lepton (anti) neutrinos (dashed).
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Figure 3.22.: a: The shock position (solid lines) of models L&S0− 20, L&S+2e−5− 20, and
L&S−1e−6 − 20. The position of the electron neutrino spheres are indicated
by the dashed lines.b: The shock position (solid lines) of models L&S0− 25,
L&S+2e−5− 25, and L&S−1e−6 − 25. The position of the electron neutrino
spheres are indicated by the dashed lines.
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Figure 3.23.:The neutrino luminosities (upper panels) and rms neutrino energies (lower pan-
els) for the same models as in Fig. 3.22:a,c for the 20M⊙ progenitor model,
andb,d for the 25M⊙ progenitor model. Both the luminosity and the rms en-
ergy were evaluated at a radius of 500 km and they were transformed to the
values as seen by an static observer resting at infinity.

During a supernova evolution the central density reaches higher values for more massive
stellar progenitors. Thus the above mentioned modifications of the supra–nuclear phase of
the EoS should become more important when the mass of the stellar progenitor is larger. Al-
though this statement is true in general, it strongly depends on the stiffness of the EoS for
which masses of progenitor models and at which time (i.e. howmuch mass was accreted on
the nascent neutron star) the supra–nuclear modifications of the EoS become important. As
already discussed above, a supra–nuclear phase can only become important if a large fraction
of the neutron star exists in this supra–nuclear density range. This should be demonstrated with
a softer version (a = +2 × 10−5 MeV−2) of the Wolff–EoS and a 20 M⊙ progenitor model of
Woosley et al. (2002). As Fig. 3.21 shows, this combination of the progenitor mass and the
rather stiffWolff–EoS at densities below saturation density does not change the supernova evo-
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lution during the first 300 ms after the shock formation, as was already seen in the calculations
with the 15 M⊙ progenitor model. Quite contrary, in case of the L&S–EoS thecorrespond-
ing model L&S+2e−5−20 clearly shows a changed supernova evolution and a faster shrinking
dense core, see Fig. 3.22a. Vice versa a stiffer version of the L&S–EoS (model L&S−1e−6−20)
clearly shows a more extended neutron star and a trend towards the results with the Wolff–EoS.
Inspired by this result we have also calculated a supernova model with a 25 M⊙ progenitor
star, where the effects should even be stronger. Indeed, in these models (L&S+2e−5−25 and
L&S−1e−6−25) we find a (strong) sensitivity to the EoS physics of the supra–nuclear phase.

This can be seen in Fig. 3.22b where we depict the shock positions and the radii of the nascent
neutron stars for the simulation with the unmodified and the softened/stiffened EoS for the
25 M⊙ progenitor model. As one can clearly deduce from Figs. 3.22a–b, the choice of the pro-
genitor model has such an tremendous effect on the importance of the supra–nuclear density
phase of neutron star matter that in the softened run with the25 M⊙ progenitor the whole inner
core collapses to densities above 1015 g/cm3. Physically this probably means that at this stage
a black hole forms, however, V is numerically not suitable to follow the evolution of the
dense core to such high densities and the run was stopped at this moment. Stiffening of the EoS
leads — as expected — to a more extended neutron star for this progenitor model. In Fig. 3.23
we depict the neutrino luminosities and rms energies for themodels with the 20 M⊙ and the
25 M⊙ progenitor star, respectively. A faster shrinking neutronstar implies, by conversion of
potential energy, higher neutrino luminosities and energies, which then also increases the neu-
trino heating. Vice versa a model with a more extended neutron star shows lower luminosities,
neutrino energies, and thus less neutrino heating. Figure 3.23 shows exactly this effect.

As we showed in Table 3.1 a different supra–nuclear phase has influence of the maximum
mass of the neutron star that can be supported by the EoS. However in our models, we do not
see different masses for thesameprogenitor model with modified EoSs. The reason for this
is the following: first, the mass accumulated in the nascent neutron star is determined by the
accretion history of the model. However, this accretion history is the same since the (high–
density) EoS modifications do not influence the mass accretion rate which is determined by low
density matter falling towards the neutron star. For the reason of mass conservation all of our
models have the same mass6 at the same time, which e.g. is 1.46 M⊙ for the 20 M⊙ model 150
ms after the shock launch. Second, all of our models do not explode and thus no explosion
relatedmass–cutoff can be found. The question if the supra–density phase has influence on the
mass of an isolated neutron star (i.e. after the explosion happened) can thus not be answered
with these models.

3.3.1. Summary

From the simulations presented in this Section we conclude that the — unknown — supra–
nuclear density phase (strongly) influences the supernova evolution in spherically symmetric
models. A supra–nuclear phase that softens the EoS will leadto a denser and smaller proto neu-
tron star and higher neutrino luminosities, energies, and thus more neutrino heating of matter.

6Here, to be precise, the term “mass” means baryonic mass. Differences in the neutrino luminosities can lead to
different gravitational masses.
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However, the supra–nuclear phase will be only important if the a sizeable fraction of the dense
core enters this regime. This depends both on the mass of the progenitor and on the stiffness
of the EoS below saturation density. For example in case of stiff Wolff–EoS almost no matter
was compressed to supra–nuclear densities but instead almost all of the neutron star matter was
not able to overcome the “incompressible wall” at densitiesbelow saturation density. In case of
the softer L&S–EoS this was not the case; the simulations showed a strong dependence on the
supra–nuclear phase of matterand the mass of the progenitor model. Our results imply that in
an extreme case for a certain progenitor mass range the supra–nuclear phase either triggers or
prevents the collapse to black hole which might be of strong influence for the collapsar model of
gamma ray bursts (see, e.g. MacFadyen & Woosley 1998). A moredetailed study, which could
not be conducted in this thesis, with a larger sequence of progenitor models and different val-
ues ofa would thus be very helpful in order to understand the importance of the supra–nuclear
phase of the EoS in more detail.

Although our less extreme models did not form a black hole andthe changes of the supra–
nuclear phase did not cause qualitative different results in 1D–models, these changes might be
of great importance in multi–dimensional simulations. Depending on the progenitors mass the
supra–nuclear EoS produces either faster or slower contracting cores if the EoS becomes softer
or stiffer. This might be of large importance for multi–dimensionalsupernova calculations: as
Scheck (2006) found the development of al = 1 shock instability and the thereby caused explo-
sion is favoured by a faster shrinking neutron star. The reason for this is that a faster contracting
neutron star produces, by conversion of potential energy, higher neutrino luminosities and en-
ergies , which then also increases the neutrino heating. In the models by Scheck (2006) this
contraction of the dense core was given by a chosen boundary condition but it could as well
be explained by a softening of the EoS at high densities. It isthus important to also examine
the consequences of a phase transition in the EoS in multi–dimensional simulations that allow
convection and low modes shock instabilities to occur. However, due to lack of computer time,
this ansatz could not be followed in this thesis.

3.4. Expansion of the Wolff-EoS to low densities: the
importance of the density regime below 1010g/cm3

A considerable shortcoming of the runs with the Wolff–EoS which were discussed in the previ-
ous sections is that the Wolff–EoS is not tabulated for densities below 109 g/cm3. Therefore, we
switched to our low–density EoS at already this high densitycompared to the switch at a density
of 6 × 107 g/cm3 in case of the L&S–EoS. On the other hand, it is reported (Lattimer, Fryer,
personal communication) that the L&S–EoS does produce a wrong number of alpha particles
for some thermodynamical combinations of the temperatureT and the electron fractionYe for
densities lower than 1011 g/cm3, and that this may cause a qualitative difference of the simula-
tions7. Therefore, in this Section we will discuss whether the above mentioned shortcomings
of the Wolff and the L&S–EoS do influence the results of our simulations. For this purpose

7Therefore, as already mentioned in Section 3.2, we normallydo not apply the L&S–EoS for densities below
1011 g/cm3.
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we apply an extension of the Wolff–EoS table (from hereon called Wolff–lowden–EoS) which
is tabulated for densities between 1010 g/cm3 and 107 g/cm3. In case of calculations with the
Wolff–EoS, we apply this low–density EoS for the density range below 109 g/cm3 and are thus
able to determine whether relative high density value of thelower boundary in the Wolff–EoS
causes any problems in our simulations.

For the runs with the L&S–EoS, we apply this Wolff–lowden–EoS for densities below
1011 g/cm3and are thus able to exclude a large fraction of the L&S–EoS where the number
fractions of alpha particles are wrong. Additionally, to model L&S(io)slms, which was intro-
duced in Section 3.2, where we switched in the postbounce evolution from the L&S–EoS to our
17–species “low–density” EoS for densities lower than 1011 g/cm3 (see Section 3.2). We have
calculated the postbounce evolution of two more models: On the one hand model L&S(io)slms–
pur, where the collapse phase was computed purely with the L&S–EoS for densities larger than
6×107 g/cm3. On the other hand we also computed a model L&S(io)slms–4, where we replaced
our 17 species “low–density” EoS with a four species “low–density” EoS.

Altogether, these runs allow us to judge the importance of the wrong alpha–particle mass
fractions in the L&S–EoS for our numerical results.
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Figure 3.24.:A representative extension of the
Wolff–EoS to lower densities.
The vertical lines indicate the
borders of the Wolff–EoS and of
the Wolff–lowden–EoS, respec-
tively. All trajectories were eval-
uated for a temperature ofT =
0.5 MeV and an electron fraction
of Ye = 0.4. Shown are the en-
tropy density (a), the energy den-
sity (b), and the pressure (c).

c

In Fig. 3.24 we show representative examples for the extension of the Wolff–EoS to lower
densities for the energy density, pressure, and entropy fora constant value of the electron frac-
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tion and temperature.

3.4.1. The density regime below 109 g/cm3 in the Wolff–EoS runs

We have simulated the collapse and postbounce phase of a model (model Wolff(io)slms–low)
that uses the Wolff–lowden–EoS for densities between 109 g/cm3 and 107 g/cm3 but has oth-
erwise the same micro–physics and numerical treatment as the model Wolff(io)slms, which is
discussed in Section 3.2.

During the collapse phase only minor quantitative differences occur: since model Wolff(io)-
slms–low collapses faster (≈ 250ms) than model Wolff(io)slms (≈ 350ms), see Fig. 3.25a,
but while the same implementation of electron capture ratesis used, less time for electron
capture is available and thus the central electron and lepton fraction stays slightly higher in
the model Wolff(io)slms–low, see Fig. 3.25b. Though this difference is small it is of the same
order than the observed differences between the different EoS–runs, which are discussed in
Section 3.2 (cf. Fig. 3.7). Consequently, the shocks form atslightly different mass-coordinates
(∆M ≈ 0.02 M⊙ ).

These difference obviously originate in the density regime between 109 g/cm3 and 107 g/cm3,
since nothing else is different in the models and the reason is a technically one: the new electron
capture rates of Langanke et al. (2003) are only tabulated for densities above 108g/cm3. Further-
more, for technical reasons (cf. Appendix A.3.1), these rates are only evaluated for the “high–
density” NSE–EoS. Thus in model Wolff(io)slms in a small density window (108g/cm3 < ρ <

109g/cm3) instead of the new rates of Langanke et al. (2003) the description of Bruenn (1985)
was used, whereas in model Wolff(io)slms–low the new rates were used also in this density win-
dow. This resulted in more electron captures in this densityrange and thus reduced the collapse
timescale.
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Figure 3.25.: a: The central density during the collapse as function of time. Note that the
time is normalised to the moment of shock formation.b: The central electron
fraction (solid) and lepton fraction (dashed) as function of central density.

The postbounce evolution is qualitative the same, except for small, transient differences are
visible, see Fig. 3.26. As was already discussed in Section 3.2, the shock radius in the ac-
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Figure 3.26.:A comparison between models Wolff(io)slms and Wolff(io)slms–low.a: the po-
sitions of the shock front (solid) and of the electron neutrinosphere (dashed) as
function of time. The vertical lines indicate the time when the mass shell corre-
sponding to 1.5 M⊙ reaches the shock front.b: The mass accretion rate through
the shock front as function of time.c: The luminosity of electron neutrinos
(solid), of anti–electron neutrinos (dashed) and heavy lepton (anti) neutrinos
(dotted).d: The rms neutrino energy. The linestyles are chosen identical to the
ones used in panel c.

cretion phase is a function of the proto–neutron star mass and radius, and of the mass ac-
cretion rate through the shock front (cf. Eqn. 3.7). As one can see in Fig. 3.26b for a time
interval of roughly 100 ms model Wolff(io)slms–low shows a smaller mass accretion rate than
model Wolff(io)slms. This leads immediately to a faster shock expansion, which is seen in
Fig. 3.26a. The mass accretion rate becomes lower, since model Wolff(io)slms–low collapses
faster (∆t ≈ 100 ms) and therefore mass shells with lower density reach the shock front earlier.
This is depicted by the vertical lines in Fig. 3.26a that indicated the time when the mass shell
corresponding to 1.5 M⊙ reaches the shock front. When the mass accretion rates become again
nearly equal the shock fronts adjust to the same positions. The transient nature of the drop in
the mass accretion rate is caused during the collapse phase,where the mass shells that resided
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at the start of the simulation in the regime of the Wolff–lowden–EoS (i.e. at densities between
109 g/cm3 and 107 g/cm3) collapsed faster. As one can see in Fig. 3.26c the different mass
accretion rates also cause slightly different neutrino luminosities, since as already explained in
Section 3.2, stronger mass accretion leads to more release of gravitational binding energy that
can be radiated away in neutrinos. Together with the other differences this transient disappears
when the mass accretion rates become identical.

We thus conclude this discussion by stating that the EoS in the density range between 109 g/cm3

and 107 g/cm3 can influence the collapse of a stellar model. Furthermore, the details of the col-
lapse history determine at which time which mass shell passes through the shock front, which
can have some effect on the shock expansion. However, these effects are small and therefore
do not make a qualitative differences in our simulations. Thus the central question if an early
transition at density of 109 g/cm3 between the Wolff–EoS and a low–density EoS did strongly
influence our numerical results has to be answered for two different regimes:

We find that the collapse phase (regime I) is indeed influencedby the choice of the EoS in the
density regime below 109 g/cm3, and the differences are comparable to the differences we found
in Section 3.2 where we used in collapse simulations three different EoSs for the densities larger
6×107 g/cm3 . It is highly probable that all results of the collapse phasewhich are linked to the
collapse timescale are indeed set by the EoS differences in the density regime below 1011 g/cm3

and it is thus not astonishing that the differences we find here are comparable to the differences
that were discussed in Section 3.2.

The postbounce phase (regime II), however, shows only small, transient differences for the
extension of the Wolff–EoS to low densities, which dissappear when the different “collapse his-
tories” are advected through the shock front. Thus, these transient features can be linked back to
the collapse phase of the simulations. Furthermore, these differences are small compared to the
ones we found in Sections 3.2 and 3.3 where we showed that the high density (ρ > 1011 g/cm3

or supra nuclear EoS (ρ > 1014 g/cm3 ) has a large effect on the postbounce evolution. Thus in
the postbounce phase the low–density EoS plays a minor role.

3.4.2. The L&S–EoS below 1010 g/cm3

In the previous subsection we showed that the choice of the EoS at densities below 109 g/cm3

has only minor influence on the supernova evolution for runs with the Wolff–EoS. In this para-
graph we will address the wrong number fractions of alpha particles in the L&S–EoS (see
also Section 3.2). In a first step we will discuss model L&S(io)slms–low–pb, which was
started at the moment of shock launch from thesamecollapse model as model L&S(io)slms,
which was already discussed in Section 3.2. The difference between the models L&S(io)slms
and L&S(io)slms–low–pb is that for densities between 1010 g/cm3 and 107 g/cm3 the Wolff–
lowden–EoS table was used. This approach allows us to investigate this density regime in
the postbounce phase without comparing models that have a different collapse history which
“contaminates” the postbounce phase, as was shown in the previous paragraph. Afterwards,
in a second step, we will re-investigate this issue with a “consistent” model where even in the
collapse phase the low–density version of the Wolff–EoS was used.

Figure 3.27a shows the shock trajectories and the radii of the nascent neutron stars for models
L&S(io)slms and L&S(io)slms–low–pb. The latter model shows a slightly larger shock radius,
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Figure 3.27.:A comparison between models L&S(io)slms and L&S(io)slms–low–pb. a: the
positions of the shock front (solid) and of the electron neutrinosphere (dashed)
as function of time.b: the density at which the neutrinosphere resides (solid) and
the mass accretion rate through the shock front (dashed). Note that the accretion
rate was multiplied by 1010 in order to be on the same scale.c: the luminosity of
electron neutrinos (solid), of anti–electron neutrinos (dashed) and heavy lepton
(anti) neutrinos (dotted).d: the rms neutrino energy. The linestyles are chosen
identical to the ones used in panel c.

which is due to a combination of two facts: Firstly, the mass accretion rate in this model is
slightly lower for a time between 50 ms and 70 ms after the shock launch8, see Fig. 3.27b. As
it was already discussed several times, this causes the rapid shock expansion in the same time
interval. Secondly, at later times the shock radius stays larger, since the neutron star radius is
slightly larger (see the discussion in Section 3.2, Eqn. 3.7). It is important to realise that the
larger neutron star radius is not a direct effect of the EoS below densities of 1010 g/cm3, since
the neutrinosphere resides for all times at density around 2− 3× 1010 g/cm3 . This can also be
seen in Fig. 3.27b. The larger neutrino sphere radius, however, is an hydrostatic adjustment to

8This change in the mass accretion rate is a result from the “inconsistent” treatment that we interchanged a part of
the L&S–EoS to the Wolff–lowden–EoS
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the changed conditions in the accretion atmosphere betweenthe shock front and the neutron star
which are influenced by the EoS. This adjustment takes place immediately after we switched to
the Wolff–lowden–EoS which gives a strong hint that this switch was too abrupt. However, this
even enhances the predictability of this test model, since even this sudden and extreme change
in the conditions did not lead to very different results compared to model L&S(io)slms.

Smaller changes are also visible in the neutrino luminosities and rms energies, see Fig. 3.27c–
d. These changes, however, are only shown for completeness since they are so small.

Finally, we want to discuss model L&S(io)slms–low which wascalculated with the use of
the Wolff–lowden–EoS even in the collapse phase. Except for this change in the collapse sim-
ulation, the same micro–physics was used as in model L&S(io)slms–low–pb. This model is
thought to complete the discussion of the importance of the density range below 1010 g/cm3 in
the L&S–EoS. Using the Wolff–lowden–EoS in a collapse simulation together with the L&S–
EoS leads to a slightly prolonged collapse (250 ms instead of208 ms). This delay happens,
as we have already discussed in Section 3.2, until a central density of 1011 g/cm3 is reached
(this takes 190 ms and 232 ms, respectively) and the core collapses very fast to nuclear satura-
tion density. In this early phase, model L&S(io)slms–low experiences stronger deleptonisation,
as is visible in Fig. 3.29a, which results in a stronger deleptonisation (by two percent) at the
end of the collapse. This change is again comparable with thevalues found in Section 3.2
for simulations with three different EoSs. Thus, again, we find that the collapse time and the
deleptonisation are sensitive functions of the EoS–physics for densities below 1011 g/cm3.

The postbounce evolution in models L&S(io)slms and L&S(io)slms–low is again very similar:
the maximum shock positions are the same and the rate of shockdecline is practical identical,
see Fig. 3.29b. Only for a short time interval the shock trajectories move asynchronously, which
is again caused by different mass accretion rates through the shock front at these times, see
Fig. 3.29c. This transient different mass accretion rate is again a result of the different collapse
history. However, a comparison between models L&S(io)slms–low and L&S(io)slms–low–
pb reveals an interesting fact: the “inconsistent” model L&S(io)slms–low–pb shows a larger
nascent neutron star than model L&S(io)slms–low (or model L&S(io)slms), see Figs. 3.29b
and 3.27a. As already mentioned this expanding neutron staris caused by the sudden switch to
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another EoS, and is obviously not visible if the EoS setup is not changed during the simulation.
Last, we show in Fig. 3.28, for models L&S(io)slms–pur, L&S(io)slms–4, and L&S(io)slms,

the shock trajectories as function of time and the mass accretion rate through the shock front.
Clearly, in our calculation of a 15 M⊙ star the “bug” in the L&S–EoS does not influence the
supernova evolution: The shock trajectories are qualitatively and quantitatively very similar,
except for some transient features where the mass accretionrates are different, which was al-
ready seen in the simulations discussed in the previous paragraph.

To summarise this discussion, we conclude that in our calculations the wrong number fraction
of alpha particles in the L&S–EoS does not influence the supernova evolution. We obtain sim-
ilar results, independent of the details of the EoS used for densities below 1011 g/cm3. Thus,
we have learned from the simulations with the L&S–EoSand the Wolff–EoS that the details
of the EoS for densities below 1011 g/cm3 only slightly influences the postbounce evolution by
changing the mass accretion flow through the shock front. However, the collapse phase is more
strongly dependent on the EoS in this regime. The collapse time and the final deleptonisation
are strongly determined by the early phase of the collapse until a central density of roughly
1011 g/cm3 is reached. Of course a different deleptonisation (i.e. different total values of elec-
tron captures) may have an influence on the neutrino emissionand the structure of the forming
neutron star on longer timescales than investigated in thisstudy. Nevertheless, we conclude that
— at least for the simulation times regarded here — these different collapse histories hardly
influence the postbounce evolution in our models.

3.5. Longtime runs: two parametrised explosion models

In the previous sections the influence of the EoS on the evolution of core collapse supernovae
was discussed. Especially the (small) dense core, whose properties are set by the “high–density”
EoS (ρ > 1011−12 g/cm3), shows a large feedback on the shock propagation at larger radii and
densities around 108 g/cm3. Nevertheless, simply because our spherically symmetric calcula-
tions do not yield an explosion, the discussions from the previous sections does not allow to
investigate the influence of the EoS on the supernova phase when actually the explosion starts.
Also it was yet not possible to investigate the influence after the onset of the explosion when a
neutrino–driven wind sets in. But, of course, it is interesting to know, how the EoS influences
this phase, and how the neutrino emission from the left–behind proto–neutron star looks like.

However, this goal is hampered by the fact that supernova calculations still do not routinely
show successful explosions.

On the one hand modernspherically symmetricsimulations of core collapse supernova agree
in two facts:

• the prompt shock mechanism for core collapse supernovae does not work, see Bethe
(1990).

• except for very low mass progenitors (M ≈ 9 M⊙ , Kitaura et al. 2006) the delayed neu-
trino heating mechanism does not work9

9Note that this statement is not (necessarily) true for multi-dimensional simulations, see e.g. the discussion in
Section 4.2 and Buras et al. (2006a).
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On the other hand, modernmulti–dimensionalsimulations of core collapse supernovae do
(sometimes) show explosions (see, e.g. Buras et al. 2006b).However, these simulations are
computationally so expensive that they cannot be calculated to such late times necessary to
investigate the neutrino emission from the “remnant” proto–neutron star.

Therefore, we artificially triggered the explosion in (computationally cheap) spherically sym-
metric simulations, in order to investigate these longtimeEoS effects during a supernova explo-
sion10.

As was already mentioned in Section 3.2 spherically symmetric simulations do not explode,
since matter is not heated strong enough to revive the shock front. This can be explained by the
ratio of the advection timescale and the heating timescale (cf. Eqn. 3.2): normally in spherically
symmetric simulations fluid elements are accreted too fast through the gain region in order to
be heated substantially to trigger a delayed explosion.11

The whole idea behind the current supernova explosion paradigm, is that the neutrino heating
efficiency must be high enough, in order to trigger a delayed explosion. This explains, why
supernova modellers undertake huge efforts to implement as accurate as possible neutrino–
matter–interaction rates (which are responsible for the heating, but also cooling) in core collapse
supernova codes. However, remembering Fig. 3.15, we find that roughly a 2 times shorter
heating timescale (i.e. a 2 times higher heating rate) wouldbe needed for a delayed explosion in
spherically symmetric simulations of a 15 M⊙ star. This by itself tells us, that either the current
supernova codes calculate the neutrino heating wrong byfactors of 2, or — which is more likely
— other physical processes such as convection, or rotation,or possibly magnetic fields have to
be taken into account in multi–dimensional simulations.

Nevertheless, by increasing the heating rate (i.e. reducing the heating timescale) a explo-
sion can be launched in 1D–simulations. We have simulated such artificially explosions for a
20 M⊙ progenitor model with the L&S and Wolff–EoS, respectively, by increasing the neutrino
heating rate by an artifically chosen multiplicative heating increaseδQ, see Table 3.2. Note, that
this approach of course is not conservative, but instead energy is artifically fed into the heating
region, however, with this approach we can investigate several issues:

Firstly, these artificially triggered explosions allow us to check by which amount the heating
efficiency must rise in order to produce delayed explosions in spherically symmetric simula-
tions. This value ofδQ can than be interpreted as upper bound for multi–dimensional simula-
tions, since turbulent flows allow matter to stay longer in the heating region and this by itself
increases the heating efficiency compared to 1D–models. Note, that this study isnotmeant (and
does not allow) to imply anything on the supernova explosionmechanism itself (i.e. how this
increased heating efficiency can be accomplished in a self–consistent manner by the inclusion
of different physical aspects).

Secondly, these explosions allow us to study the importanceof the EoS on the properties of
emitted neutrinos (i.e. luminosities, mean energies and spectra) from the “naked” proto–neutron
star. This means that during the explosion a mass cutoff is achieved and an isolated proto–

10The role of the EoS in multi–dimensional simulations will beinvestigated in Part II of this thesis.
11Multi–dimensional simulations can circumvent this problem by the additional degrees of freedom, which allow

the fluid (e.g. by convective motion) to stay longer in the heating region, but as we will see in Part II this is not
necessarily the case.
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neutron star forms which cools by neutrino emission. In non–exploding models this neutrino
emission is dwarfed by the accretion luminosities (i.e. redistribution of gravitational binding
energy into neutrino flux) of the accreted matter and the neutrino emission of the proto–neutron
is practically invisible, whereas in an explosion the emission from the neutron star is visible.
As was already shown in Section 3.2 the EoS determines the structure and temperature of the
nascent neutrons star and thus also influences the properties of the neutrinos radiated from the
dense core. As mentioned we have triggered these explosionsby artificially increasing the
neutrino heating in the heating region by a chosen factorδQ. However, there is also another
degree of freedom is the time when this increase becomes effective and the explosion sets in.
For two reasons we have chosen a rather late time of roughly 200 ms:

• Firstly, we want the supernova evolution to be well in the accretion phase but we do not
want to trigger the explosion at the moment when the Si−O interface passes the shock
front and the shock reaches its maximum position (see e.g. Fig. 3.30). This simply repre-
sents the careful point of view that though the necessary value ofδQ to trigger the explo-
sion might be smaller at the moment of maximum shock expansion, we did not want to
constrain the upper bounds ofδQ on a case that would require extreme fine tuning.12

• Secondly, since we want to look at the neutrino emission of the “naked” nascent neutron
star we want the neutron star to be in agreement with observedneutron stars. This implies
that after the mass cut the proto–neutron star should have a mass around 1.4 M⊙ , see
Lattimer & Prakash (2004) , which implies that the explosionmust set in late enough for
such a dense core to form.

In Table 3.2 we summarise for our models the value of the increased heatingδQ, the time
when this modification was applied, and the value of the final mass and radius of the neutron
star that we determined at the end of our calculations.

In Figure 3.30 we show the shock trajectories, the radii of the nascent neutron stars (as defined
by its neutrinosphere), the neutrino luminosities, and theratio of the advection and heating time
scales for our non–exploding calculations of the 20 M⊙ progenitor with the L&S and the Wolff–
EoS. The differences caused by the EoS are clearly visible and are qualitative very similar to
the ones that were already discussed in Section 3.2 for a 15 M⊙ progenitor model. It is also
apparent that increasing the heating efficiency at the moment of maximum shock expansion
would lead to the largest effects since the ratio of the advection and heating timescalesbecomes
largest at this moment. However, as we have discussed above this was not the approach we
wanted take in this numerical study.

Figure 3.31 depicts the same quantities for the models calculated with the Wolff–EoS and
artifically increased heating rate. It is interesting to note that an increase of the neutrino heating
by a factor ofδQ = 2 at a late time does not lead to qualitative changes of the supernova
evolution, since the ratio of the characteristic timescales is well below unity. However, a three
times stronger neutrino heating does trigger an explosion in these spherically symmetric models,
and an even stronger heating (δQ = 5) does not strongly change the morphology — except for

12However, note that this is not correct if the heating efficiency is increased by some (speculative) feedback mecha-
nism when the composition interface reaches the shock front.
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Model name Increase in heating rate EoS tstart [ms] MNS [M⊙ ] rNS[km] tstop [ms]
W20–0 no increase Wolff 205 1.51 37.8 330
W20–2 2 times Wolff 205 1.52 36.7 380
W20–3 3 times Wolff 205 1.56 26.4 890
W20–5 5 times Wolff 205 1.55 27.9 740
LS20–0 no increase L&S 214 1.51 28.1 340
LS20–3 3 times L&S 214 1.54 24.8 470
LS20–4 4 times L&S 214 1.53 21.2 750

Table 3.2.:Overview over the models calculated with a 20 M⊙ progenitor star that where ar-
tifically exploded by increasing the heating rate by a chosenfactor. Shown are the
values for this increase, the used EoS, the time when this increase was triggered,
and the mass and radius of the neutron star at the time the simulation was stopped.
Note that all times are normalised to the moment of shock formation.

Model name Increase in heating rate EoS tcom [ms] MNS [M⊙ ] rNS[km]
W20–3 3 times Wolff 740 1.56 27.9
W20–5 5 times Wolff 740 1.55 27.9
LS20–4 4 times L&S 740 1.53 21.2

Table 3.3.:For the exploding models form Table 3.2 a comparison at a timeof 740 ms after
the shock formation. Shown are the masses and radii of the neutron stars at this
time.
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a slightly faster onset of the explosion — of the explosion. It is also obvious from Fig. 3.31 that
we find some “oscillatory behaviour” in the exploding models: the shock expands and retreats
before the final expansion, the ratio of the heating and advection timescale also oscillates, as
does the neutrino luminosity. The same behaviour — but in a non–exploding model — was
reported by Buras et al. (2006b), where the authors found that a shock expansion reduces the
mass accretion and thus the conversion of energy into neutrino luminosity. Thus, in turn, the
heating drops, which leads to a shock retreat and, completing the cycle, the mass accretion and
neutrino heating rises again. Interestingly, both models W20–3 and W20–5 show this behaviour
after a period of constant shock expansion when roughly a radius of 400 km is reached. This
implies that at this time the heating is not strong enough to cause a further shock expansion,
but this oscillatory behaviour sets in, and after some time the heating becomes strong enough to
finally cause the explosion.

An overview over the models which were calculated with the L&S–EoS is given in Fig. 3.32.
Here an interesting difference to the models with the Wolff–EoS becomes visible: whereas
model W20–3 with an increase of the heating rate by a factor ofthree already showed a con-
vincing explosion, the corresponding model L&S20–3 did marginally not explode. This can be
deduced from the shock position (Fig. 3.32a) and from the value of the timescales which is near
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Figure 3.31.: a: The shock position as function of time for models that were calculated with
the Wolff–EoS and artifically increased neutrino heating.b: The radius of the
nascent neutron star (defined at the neutrinosphere for electron neutrinos) as
function of time. As expected, artificially stronger heating does not influence
the neutron star since the heating was increased in outside of the dense core.c:
The ratio of the advection and heating timescales.d: The luminosity for electron
neutrinos measured at a radius of 400 km. Note that the oscillations visible in
this plot, stem from a feedback cycle between the mass accretion rate and the
accretion luminosity (see text).

unity (Fig. 3.32d).13 This is consistent with the discussion of Section 3.2 where it was already
shown that both the heating and advection timescales are quantities that are sensitive to the
used EoS. One reasons for this is that the advection timescale naturally depends on the distance
between the shock position and the neutron star, which in turn are both strongly influenced by
the EoS. Furthermore, this model does not show any oscillatory features, quite in the contrary,
the shock is expanding constantly once the heating was increased. This implies that depend-

13It is possible that this model would explode at a later time, since a trend that the timescale ratio increases can be
extrapolated from Fig. 3.32d.
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Figure 3.32.: a: The shock position as function of time for the L&S–EoS.b: The radius of
the nascent neutron star (defined at the neutrinosphere for electron neutrinos) as
function of time.c: The ratio of the advection and heating timescales Note that
the jump of this ratio at a time of roughly 100ms is in coincidence with the very
fast shock expansion when a composition interface reaches the shock front (see
panel a). Note also that model L&S20–3 is marginally not exploding since the
ratio is almost above unity.d: The luminosity for electron neutrinos measured
at a radius of 400 km.

ing on the conditions (EoS, shock position, compactness of the nascent neutron star) and the
value of the heating efficiency a “direct” explosion (i.e. immediate shock expansion) or some
“lingering phase” (i.e. the effect of heating has to build up to cause a further shock expansion)
can be obtained. We thus deduce from these models that in a multi–dimensional simulation a
factor of three or four higher heating efficiency would be sufficient to explode this particular
20 M⊙ progenitor model with the Wolff or the L&S–EoS. Furthermore it is expected that the
necessary value strongly depends on both the progenitor model and the used EoS.

Finally, we will discuss the properties of the “naked” nascent neutron star, focusing on the
neutrino emission of this hot and dense object. But first a short remark on the properties of the
neutron star shall be made. In Table 3.3 the masses and radii of the neutron stars are given at
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a time of 740 ms after the shock formation. Here we find, as expected that though the masses
are roughly equal, the radius is smaller for the softer L&S–EoS, which leads to a compacter
neutron star. The reason why the masses inside the dense coreare not equal is that thetotal
simulation time is different when time is normalised to the shock formation. Thus the models
had different time to accrete matter with different (EoS dependent) mass accretion rates, which
leads to different masses of the neutron star.

Considering the (EoS dependent) neutrino emission of two isolated neutron stars we will take
models W20–3 and L&S20–4 as examples in the following discussion14.

As one can see in Figs. 3.31d and 3.32d in the exploding modelsthe luminosities drop com-
pared to the non exploding ones. The reason for this is that the mass accretion onto the core
continously decreases and finally completely vanishes whenthe mass cut is reached, conse-
quently the luminosity reaches a constant level.

Figure 3.33a shows the neutrino luminosity for all neutrinospecies measured at 50 km as
function of time for the models W20–3 and L&S20–4. Obviouslythe inner core of model
with the L&S–EoS always emits higher luminosities than the model with the Wolff–EoS; this
amounts to roughly 30% higher luminosities for heavy leptonneutrinos at a time of 700 ms.
It is also interesting to note that for some time, as long as the oscillations of the luminosity in
model W20–3 are visible, the luminosities for electron and anti–electron neutrinos are equal
in this model. The corresponding neutrino energies, are shown in Fig. 3.33b, where again the
model with the L&S–EoS emits more energetic neutrinos, however the difference amounts only
up to 14%. Consistent with the rms neutrino energies the neutrino spectra for model L&S–4
are broader and show their peak at slightly higher energies,see Fig. 3.34. The results of these
simulation clearly show that even after the explosion is happening the equation of state for the
dense core still influences the supernova evolution. It is extremely interesting that different EoSs
predict different neutrino luminosities and spectra, both in the burst signal (cf. Fig.3.13), and in
the neutron star emission during the explosion. Neutrinos are, except for gravitational waves,
the only observables that can reveal physical details aboutthe deep interior of the supernova.
Naturally, the question arrises whether neutrino signals measured in current or future neutrino
detectors allow predictions of the EoS of the dense core. Thedifference we found in the burst
signal in Section 3.2 are too small for such an attempt, see Kachelrieß et al. (2005). However, it
will be subject to a future study to answer the question whether or not current neutrino detectors
are able to discriminate between our “predictions” of thelate timeneutrino emission during the
supernova explosion.

Nevertheless, we conclude that different EoS result in different neutrino properties during the
ongoing explosion. Furthermore, different equations of state predict very different contraction
laws of the dense core. Though the EoS is poorly known and in this sense this contraction
behaviour should be interpreted cautiously, there might beimplications on investigations of the
neutrino–driven wind and nucleosynthesis, which depend sensitively on the compactness of the
neutron star (Arcones et al. 2006).

14Of course, for a better comparison it would be useful to recalculate the models with he same amount of artifical
heating (e.g.δQ = 4) and the same explosion time (e.g.tpb = 214 ms). However, this will be postponed to a later
study.
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Figure 3.33.: a: The neutrino luminosities measured at 50 km as an static observer would
measure them at infinity for the models with the L&S–EoS and Wolff–EoS.
Shown are the luminosities of electron neutrinos (solid), anti–electron neutrinos
(dashed), and heavy lepton (anti) neutrinos (dotted).b: The rms energy for the
same models as in panel a. The linestyles are also chosen as inpanel a.

3.6. Summary of Part I

In Part I of this thesis we used several spherically symmetric simulations of core collapse super-
novae with spectral Boltzmann neutrino transport in order to investigate the importance of the
nuclear EoS on the supernova evolution. As explained in the preface to Section 3.2 this study is
motivated by the fact that the nuclear EoS is poorly known forthe conditions that are encoun-
tered during a supernova simulation. Thus the uncertainties of thestructureof matter (i.e. its
constituents and the shape of nuclei) as well as the uncertainties of such fundamental quantities
like the pressure are quite large. By investigating how sensitive the evolution of core collapse
supernovae really is on different theoretical equations of state, one is able to investigate to what
extent the uncertainties of the used EoS change the results of our simulations. Our study of
Section 3.2 with three different nuclear equations of state clearly show that the supernova simu-
lations yield quite different results depending on the choice of the EoS; The compactness of the
nascent neutron star changes, which directly influences theposition of the shock front. Further-
more, also observables as the neutrino luminosities and neutrino energies were found to rely on
the applied EoS. These results clearly stress the importance of investigating the physics of core
collapse supernova with a focus on the EoS. Since the most difficult and most uncertain part
of an EoS is the supra–nuclear regime at densities beyond nuclear saturation (a regime hardly
accessible by laboratory measurements) we artifically modified (Section 3.3) existing EoSs in
this regime, in order to be able to judge its importance of thealready found EoS dependence.
The modification that were applied to the EoS were guided by the discussion that matter may
undergo a phase transition at these densities at the relation between density and pressure might
soften dramatically. We found that this supra–nuclear partof the EoS can become very im-
portant for the supernova simulation, if a sizeable fraction of the dense core resides in this high
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Figure 3.34.:The neutrino spectra measured at a po-
sition of 50 km at a time of 700 ms
after the shock formation. The spec-
tra are transformed with red–shift ef-
fects and represent the measurement
of a static observer at infinity. The
dots represent actual data points on the
energy grid, the curves are obtained by
a spline interpolation.a: The spec-
tra for electron neutrinos.b: The infor-
mation for anti–electron neutrinos.c:
The spectra of the heavy lepton (anti)
neutrinos.

c

density regime. We also found a strong progenitor dependence (which reflects the fact that more
massive progenitors produce denser cores), where in one case a fast collapse to a very dense
core, presumably a black hole, could be observed. Thus, we conclude that the supra–nuclear
phase of the EoS is of large importance for the supernova evolution. We furthermore conclude,
that observations of core collapse supernovaeand the masses of their progenitor stars could
allow to constrain, by ruling out very soft supra–nuclear phases, the supra–nuclear regime of
nuclear EoSs. As Section 3.4 shows, the importance of the “low–density” EoS, turned out to
be quite small. We thus conclude, that the differences that were discussed in Section 3.2 where
different nuclear EoSs were used are mainly set by the high–density regime of the EoSs.

Since all our implications of the EoS influence on observables like the neutrino luminosities
and neutrino energies go back tonon–explodingmodels, we artifically triggered the explosion
of some models which were calculated with different EoSs, see Section 3.5. Here we found
that indeed the dense core that exists in centre of an ongoingexplosion emits different neutrinos
luminosities, neutrino energies, and spectral distribution of the neutrino flux, if different EoSs
are used in the simulations. These results indicate that theobservation of the neutrino emission
of proto–neutron stars might be useful to infer details of the EoS.
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In the following Part II of this study 2D–simulations of corecollapse supernovae are ad-
dressed. The motivation for doing multi–dimensional (two or three dimensions) simulations of
core collapse supernovae is can be summarised : Firstly, there is no reason to believe that stars
are perfect spherically symmetric objects neither during the stellar evolution nor in the subse-
quent supernova phase. For reasons of simplicity sphericalsymmetry is often assumed, how-
ever, even in the pre–collapse phase during stellar evolution local and even global inhomogeni-
ties are believed to occur (see, e.g. Bruenn 2005, Young et al. 2005). These inhomegenities dur-
ing the stellar evolution are caused by convective energy transfer, rotation, magnetic fields, and
nucear burning, only to name a few.15. Secondly, observations of the non–spherical debris in su-
pernovae remnants as SN 1987a suggest a non–spherical explosion mechanism (see,e.g. Hille-
brandt et al. 1989, Arnett et al. 1989, McCray 1993, Nomoto etal. 1994, Wooden 1997, Müller
1998, and references therein). Furthermore, observed fastmoving neutron stars that were kicked
out of the supernova remnant can be only explained by an anisotropic explosion of the super-
nova, see e.g. Scheck et al. (2006). Thirdly, it is a long known fact (see,e.g. Herant et al. 1992,
1994, Burrows & Hayes 1995, Janka & Mueller 1994, 1996) that hydrodynamic instabilities
such as convective processes have an important influence of the evolution of core collapse su-
pernova simulations. The reason for this is that convectionincreases the energy transport and
supports the heating of matter behind the stalled shock front. Recently, Blondin et al. (2003),
Scheck (2006) showed that growing global low mode shock instabilities can trigger supernova
explosions.

Hence core collapse supernovae should be treated in multi–dimensional simulations. And
of course a 3D–treatment would be favourable. However, at the moment, state of the art sim-
ulations which couple hydrodynamics to spectral Boltzmannneutrino transport are restricted
to 2D–simulations due to computational costs.16 Therefore, 2D–simulations are at the moment
the only hope to study hydrodynamic instabilities in simulations with Boltzmann neutrino trans-
port. Luckily, there are indications that a 2D–simulation might be quite reliable as (simplified)
3D–simulations of Scheck (2006) show.

In this Part II of the thesis the next natural step is taken andthe EoS effects will be discussed
for two–dimensional models. It is of special interest whether different EoS trigger different
growth of hydrodynamic instabilities in the hot–bubble region and/or inside of the nascent
neutron star. As we have seen in Section 3.2 spherically symmetric models give indications
that the EoS might influence these instabilities. This Part II is organised as follows: After some
introductionary remarks concerning our 2D–simulations inChapter 4, we will discuss some
technical questions regarding these simulations. In Chapter 5 we will then discuss the influence
of the EoS on the convection inside the proto–neutron star aswell as on the convection in the
heating region behind the supernova shock front. Chapter 6 is then dedicated to the influence of
rotation on the supernova evolution and the dependence of the supernova explosion mechanism
on the mass of the progenitor star.

15It should be stressed here that the strength of the deviationfrom spherical symmetry is still unknown, which
introduces another uncertainty in the modelling of core collapse supernovae.

16a 3D–simulation of neutrino Boltzmann transport would require roughly 1PFlop of sustained performence on a
computer.
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Of the Nature of Flatland
I call our world Flatland, not because we call it so, but to make
its nature clearer to you, my happy readers, who are privileged
to live in Space.

Edwin A. Abbott, Flatland 1884

4
Preface to the 2D–simulations

4.1. Preliminaries

All the 2D–simulations discussed in this work were performed with the MDBTH–code, which
is explained in Chapter 2. If not stated otherwise, a 2D–simulation is started from a spherically
symmetric (1D) simulation which was mapped to a 2D–run roughly 10ms after the shock for-
mation. During the mapping a random perturbation of the density with an amplitude of one to
two percent was applied. As Buras et al. (2006b) showed it makes no difference whether this
procedure is applied or whether the model was computed in 2D from the onset of gravitational
instability and the perturbations were imposed at that time. We chose the former procedure
since a spherically symmetric calculation of the collapse and shock formation phase consumes
roughly a factor 100 less computer time than the corresponding 2D run.

By default all 2D–simulations were calculated as an 180◦ (north to south pole) setup with 192
angular bins which gives an angular resolution of 0.938◦. At the pole axis a reflecting boundary
condition was applied.

Since we use spherical coordinates in our simulations, angular rays converge towards the
centre of our grid and the lateral width of the zone becomes very small, which would reduce
the time–step according to the CFL–condition1. Thus, in order to save computer time (i.e. use
larger timesteps) we calculate the innermost 6 zones (whichcorresponds to 1.6 km of the whole
star) as a 1D spherically symmetric core2.

If not stated otherwise, the same micro–physical input and relativistic approximations as ex-
plained in Section 3.2 were used.

1TheCourant–Friedrichs–Lewy condition states that in order to be numerically stable atimestep of the algorithm
has to be so small that information does not travel more than one zone within a single timestep.

2As we will discuss in Section 5.1.1 this does not destroy any physical process.
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Figure 4.1.: Schematic overview of the setup for the different models.a: (model s11.2–180).
The blue arrows indicate a reflecting boundary condition at the polar axis.b:
(model s11.2–90) the upper half was simulated with reflecting boundary condi-
tions at the polar axis and the equator.c: (model s11.2-wedge–refl) a 90◦-wedge
around the equator was simulated. Here also reflecting boundary conditions were
applied. d: (model s11.2–wedge) a 90◦–wedge was calculated. The red arrows
indicate the use of periodic boundary conditions.

Our 2D–simulations with spectral Boltzmann neutrino transport are computationally very
challenging, and need more that 70000 CPU hours. Needless tosay, such a problem has to
be solved in parallel on modern supercomputers on a large number of CPUs.

4.2. An exploding model of a 11.2 M⊙ progenitor star: a test
case for geometry effects

Buras et al. (2006a) reported two simulations of a 11.2 M⊙ progenitor star of Woosley et al.
(2002) in two different geometrically setups: First, a 90◦ wedge centred around the equatorial
plane with periodic boundary conditions was calculated (from hereon model s11.2–wedge).
A second full 180◦ model (north pole to south pole) with reflecting boundary conditions was
calculated (from hereon model s11.2–180). In Fig. 4.1 an overview of the setup is given. Except
for the volume and the boundary conditions both models have the same angular and radial
resolution and the same input physics and the same physical processes were considered (for
details see Buras et al. 2006a).

Nevertheless, Buras et al. (2006a) reported a (low–energetic) explosion of model s11.2–180
whereas model s11.2-wedge failed to explode. It was speculated that this difference is caused
by a combination of the factor of two larger volume and the reflecting boundary conditions in
the 180◦ model compared to model s11.2–wedge with half the volume andperiodic boundary
conditions.
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To investigate this further we have simulated two additional two–dimensional models: The
first one, model s11.2–90, was set up as one quarter of the “2D–star”, or upper hemisphere3

, (90◦ from pole to equator) with reflecting boundary conditions. Additionally this model
was calculated with slightly changed input physics4 to investigate these influences in a two–
dimensional simulation.5 The second model, model s11.2–wedge–refl, was calculated ina 90◦

wedge around the equator but in difference to model s11.2–wedge reflecting boundary condi-
tions were applied, otherwise this model is identical to model s11.2–90.

In particular these new models allows us to investigate whether the smaller volume in model
s11.2–wedge, or the periodic boundary condition, or the existence of the singular polar axis was
responsible for the failed explosion of the model s11.2–wedge. This comparison is possible for
the following reasons:

• model s11.2–wedge–refl is comparable to model s11.2–wedge except for the boundary
conditions. This is a test for the boundary conditions.

• model s11.2–90 is identical to model s11.2–180 except for the smaller volume (factor
0.5). This tests the volume effect.

• model s11.2–90 is identical to model s11.2–wedge–refl, if one rotates the model by 45◦.
By “leaving” the polar axis, one is able to test the axis effect.

Furthermore this comparison also allows us to investigate whether the time evolution in the
model s11.2–90 is different compared to the model s11–2–180. This might tell us whether or
not it is important to calculate a “full” 2D–model (i.e. 180◦) or a smaller volume is sufficient.
Last but not least, from this calculations we can learn the influence of the newly implemented
electron capture rates on heavy nuclei, see Appendix A.3.1,which is expected to be very small,
and we can judge the influence of the existence of small amplitude entropy oscillations (see
Buras et al. 2006b) on a two–dimensional simulation.

First, we show in Fig. 4.5 the averaged neutrino luminosities and rms energies for the different
models. Here a two groups are visible: the models s11.2–180 and s11.2–wedge show almost
similar neutrino luminosities and energies in all neutrinoflavours, and the models s11.2–90 and
s11.2–wedge–refl do show almost identical behaviour. Both groups are separated from the early
beginning (i.e. from roughly 40 ms after the shock lunch) andthe differences become larger at
a time of about 70 ms after the shock formation. All the time the latter group (models s11.2–
90 and s11.2–wedge–refl), which were calculated with the description of electron capture on
heavy nuclei according to Langanke et al. (2003) (cf. Appendix A.3.1) shows lower neutrino
luminosities and rms energies. The reason for this can be found in the faster collapse of these
models which implies that the nuclear O–Si–interface reaches the shock front earlier. This
reduces the mass accretion rate through the shock front, andless gravitational binding energy

3We define a “hemisphere” of a “2D–star” as the computational domain from the north–pole to the equator...
4Instead of the standard Bruenn (1985) description for electron capture on heavy nuclei the newer rates of Langanke

et al. (2003), see Appendix A.3.1, were used. Note that in thepostbounce phase electron capture on heavy nuclei
below the shock front is unimportant, and thus the models do not behaviour differently.

5Note that in spherically symmetric models these new electron capture rates have almost no influence on the
postbounce phase (cf. A.3.1).
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Figure 4.2.: Snapshots of entropy contours for different models at a time of 50 ms after the
shock formation.a: model s11.2–180,b: model s11.2–wedge.c: s11.2–90.d:
s11.2–wedge–refl. Note that model s11.2–180 was calculatedin an 180◦ setup.
The snapshots are oriented such that the equator lies horizontally, except in the
wedge modes where the equator goes from the lower left to the upper right corner.
Different times are shown in Figs. 4.3 and 4.4.
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Figure 4.3.: Snapshots of entropy contours for different models at a time of 80 ms after the
shock formation.a: model s11.2–180.b: model s11.2–wedge.c: s11.2–90.d:
s11.2–wedge–refl. The orientation of the snapshots is the same as in Fig. 4.2.
Different times are shown in Figs. 4.2 and 4.4.
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Figure 4.4.: Snapshots of entropy contours for different models at a time of 150 ms after the
shock formation.a: model s11.2–180.b: model s11.2–wedge.c: s11.2–90.d:
s11.2–wedge–refl. The orientation of the snapshots is the same as in Fig. 4.2.
Different times are shown in Figs. 4.2 and 4.3.
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Figure 4.5.: a: The laterally averaged neutrino luminosities as functionof time for electron
neutrinos (upper group of lines), anti-electron neutrinos(group of lines in the
middle), and other neutrino flavours (bold, lower group of lines) as function of
postbounce time for all models.b the rms energy for the electron neutrinos (low-
est group), anti–electron neutrinos (group in the middle),and heavy lepton neu-
trinos (upper group).

is released in less and cooler neutrinos. Figure 4.5 also shows that the (laterally averaged)
neutrino luminosities and rms energies didnot cause the different behaviour of the exploding
model s11.2–180 and non–exploding model s11.2–wedge, since both show the same values for
the neutrino emission. Furthermore the generic lower values in the models s11.2–90 and s11.2–
wedge–refl are also not very important, since model s11.2–90explodes very similar as model
s11.2–180.
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Figure 4.6.: The laterally averaged shock
position as function of post-
bounce time for all models.

This can be seen in Fig. 4.6 where we show the laterally averaged shock position of the
models s11.2–180, s11.2–90, s11.2–wedge–refl, and s11.2–wedge. As it is clearly visible both
models that include the polar axis (s11.2–180 and s11.2–90)show an explosion, thus simulat-
ing only a hemisphere did not suppress physics that was important for the explosion of model
s11.2–180. Both exploding models show the beginning of the explosion when the O–Si com-
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position interface (see Fig. 4.6) falls through the shock front and the decreasing ram pressure
triggers a shock expansion. This happens earlier in the model s11.2–90 which is however not
a consequence of the geometry of the model but is instead a consequence of the used electron
capture rates of Langanke et al. (2003) that cause a faster collapse of the star. The fact that both
models explode also shows that the larger volume in model s11.2–180 wasnot responsible for
the explosion. From Fig. 4.6 it is also obvious that both models that were centred around the
equator do not explode, independent from the choice of reflecting boundary conditions (model
s11.2–wedge–refl) or periodic boundary conditions (model s11.2–wedge). This implies that the
periodic boundary conditions in model s11.2–wedge also didnot suppress the explosion. Quite
the opposite seems to be the case: The quite similar shock trajectories in the models s11.2–
wedge and s11.2–wedge–refl suggest that the choice of the boundary conditions in a wedge
model is not very important, but rather that a wedge–model itself is a bad choice.6

In Figures 4.2 – 4.4 we show snapshots of the entropy for all four models at a time of 50ms,
80ms, and 150ms after the shock formation. Clearly, in all models convective instabilities begin
to develop at the same time independent of the geometry of themodel. On can also clearly see
that the entropy fluctuations due to “entropy wiggles” (see Buras et al. 2006b) in models s11.2–
wedge and s11.2–180 (visible as circular stripes in these models) cause a faster growth of small
scale convective instabilities (see e.g. the snapshots at 50ms), which are visible at later times
on top of the larger convective eddies. However, at a time of 150 ms this large scale convective
flows show nearly the same pattern (i.e. one big and one smaller bubble) in all models7. In
this sense the geometry of the calculations shows at early times only little influence on the time
evolution of the convective flows. That convection developsin an indeed very similar way can
be seen in Fig. 4.7a, where we show the lateral kinetic energybetween the shock front and the
gain radius:

Eθ
kin(t) =

∫

rg

rs
∫

1
2

m(r, θ, t)vθ
2(r, θ, t) dr dθ, (4.1)

whererh andrs are the gain radius and the shock radius, andvθ is the lateral velocity. Ob-
viously, the energy contained in convective flows develops very similar in all models and the
exploding models s11.2–180 and s11.2–90 do not contain moreenergy in convective motion
than the other models. Rather we find again two separated groups: model s11.2–180 and model
s11.2–wedge contain at the early times more “convective energy” than models s11.2–90 and
s11.2–wedge–refl. However, this demonstrates clearly thatconvective energy contained in the
gain layer does not trigger the explosion. This, on the otherhand, is also expected from the anal-
ysis of Foglizzo et al. (2005) which suggests that convection favours the growth of larger modes
than the observed lowl = 1, 2 modes. The different energies contained in convective motion
are probably caused by the perturbations that break the spherical symmetry of our models at the
beginning of our simulations: As already explained, modelss11.2–180 and s11.2–wedge show
larger entropy perturbations (due to the entropy wiggles inthese models) which allow a faster
grow of convection on smaller scales. Although, as we discussed above, this does not lead to
large changes in the development of the convective flows, it seem to produce initially stronger

6However, one may of course argue which boundary condition makes physically “more” sense...
7Look also at the related discussion in Appendix E.
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Figure 4.7.: a: The integrated lateral kinetic energy (cf. Eqn. 4.2) in thehot bubble region
between the neutron star and the shock.b: The “heating” energy deposited by
neutrinos in the gain layer between the gain radius and the shock front as function
of time.

convection. The fact that two models explode, one with this stronger early convection and one
without, clearly shows that this does not influence our explosion mechanism.

Thus, if convection energy is not responsible for the onset of the explosion in models s11.2–
180 and s11.2–90 what else may be responsible? Is it possiblethat neutrino heating deposits
more energy in the gain layer in the exploding models ?

The energy deposited by neutrino heating in the gain layer can be calculated by integrating
the net neutrino heating term over the volume in the gain layer

δEgl(t) =
∫ rs

rg

∫
QH(r, θ, t) nB(r, θ, t) dr dθ , (4.2)

with QH(r, θ, t) being the local net heating rate per baryon andnB(r, θ, t) being the baryon num-
ber density. Again we find two distinct groups for the neutrino heating, see Fig. 4.7b. In the
exploding models the energy deposition becomes larger thanthe one in the non–exploding mod-
els at a time of 150 ms after the shock formation. However, this is due to the fact that at this
time the exploding models already show a significantly increased shock radius and the contri-
bution to the heating region in the integral of Eqn. 4.2 increases. Obviously, the heating alone
is not responsible for the start of the explosion, since at a time of 110 ms model s11.2–90 al-
ready shows the shock expansion although the integrated heating rate is equal to the one of the
non–exploding model s11.2–wedge–refl. Furthermore, models11.2–wedge shows almost all
the time a similar neutrino heating as model s11.2–180 (and even larger heating than model
s11.2–90) but does neverthelessnot explode.

The angular dependence of the neutrino heating rate, see Fig. 4.9, reveals that at a time of
130 ms after the shock formation it is also not obvious that the exploding models gain more
energy by neutrino heating. We find a strong angular dependence in all models and one always
finds anglesθ where the heating is stronger in the models that do not explode. However, both
exploding models have in common that neutrino heating increases in the vicinity of the north–
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Figure 4.8.: The net heating rate as function of angleθ at a time of 130 ms (where the bifurca-
tion into exploding and non–exploding models already happened) for all models.
a: at a radius of 80 kmb: at a radius of 100 kmc: at a radius of 150 kmd: at a
radius of 180 km

pole (θ = 0) and energy transfer from neutrinos to the stellar plasma is enhanced at this region.
Since both models explode with a large oscillatory mode along the polar axis, this implies that
neutrino heating certainly helps the shock expansion alongthe polar axis. But as Fig. 4.9 shows,
in the exploding models one does not find a significantly increased neutrino energy or number
flux in the region around the polar axis and thus the neutrino emission does not cause the “polar”
explosions.

However, obviously, two of our simulations — the ones with reflecting boundary conditions
— show an explosion. As Buras et al. (2006a) discuss a sufficient condition for an explosion
is that the ratio of the advection timescale and heating timescale is larger than unity for some
advection timescales. Note that in 2D–simulations the definition of the advections timescale
according to Eqn. 3.2 is not appropriate since this definition does not take into account the con-
vective flows that inevitably prolong the advection. Thus, in 2D–models we adapt the definition
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Figure 4.9.: The neutrino energy fluxFE (solid) and the neutrino number fluxFN (dashed) as
function of angleθ at a time of 130 ms after the shock formation. Note that both
quantities contain the contribution of all neutrino flavours, and that the number
flux was multiplied by eight in order to be of the same order of magnitude as the
energy flux. Again different radial cuts are shown:a: at a radius of 80 kmb: at a
radius of 100 kmc: at a radius of 150 kmd: at a radius of 180 km

of an effective advection timescale (see Buras et al. 2006a) which reads:

τadv(Mi) := τadv(t1) = t2(Mi) − t1(Mi), where (4.3)

t2 is defined by the conditionM(r = rgain, t = t2) = Mi andt1 by the conditionM(r = rshock, t =
t1) = Mi. This represents the time difference when the same massMi is enclosed by the shock
and later by the gain radius. Indeed evaluating this advection timescale reveals a ratio of advec-
tion timescale to heating timescale larger unity for the explosion of model s11.2–180, see Fig. 17
in Buras et al. (2006a). We show in Fig. 4.10 the heating timescale and advection timescale for
all models with the 11.2 M⊙ progenitor model. For all models the heating timescales arevery
similar. However, the advection timescale increases for both exploding models at the time the
shock starts expanding. From this one can conclude two things:
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Figure 4.10.: a: The heating timescale as defined in Eqn. 3.2 for all models.b: The advection
timescales as defined in Eqn. 4.3 for the same models.

• Firstly, since the heating timescales develop in the same way in all models it is finally
ruled out that neutrino heating causes the onset of the explosion.

• Secondly, same heating timescales but different timescale ratios imply that in the explod-
ing models theadvection timescalehas to grow (as observed in the exploding models)
in order the ratio to exceed unity. The advection timescale grows is the shock expands
and matter has to be advected over a larger distance to the neutron star surface. Since,
neutrino heating does not cause this initial shock expansion another mechanism has to
trigger the shock expansion and the increase in the advection timescale.

In recent years it became more and more obvious that additional to neutrino heating the ex-
istence of fluid instabilities can be helpful for a successful supernova explosion, since they
can lead to a shock expansion. This instability, which is commonly called “a standing accre-
tion shock instability” (or SASI) does lead to a non–radial,low–mode shock instability (see,
e.g. Blondin et al. 2003). A promising candidate that causesthis for instability is the so called
“advective–acoustic cycle” (Foglizzo & Tagger 2000, Foglizzo 2001, 2002), where an acoustic
feedback is produced by advection of entropy and vorticity perturbations from the shock front
down to the neutron star. These acoustic waves travel back tothe shock front and disturb it
which again causes entropy and vorticity perturbations. Indeed, as Scheck (2006) convincingly
showed the growth of low–mode (l = 1, 2 ...) shock instabilities can be linked to the existence
of the advective–acoustic cycle.

Following the analysis of Blondin et al. (2003), Scheck (2006) we analyse our models for
the presence of the standing accretion shock instability byexpanding the pressureP(r, θ, t) into
spherical harmonics

P(r, θ, t) =
∞∑

l=0

l∑

m=−l

al,m(r, t)Yl,m(θ) =
∞∑

l=0

al,0(r, t)Yl,0(θ) , (4.4)
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Figure 4.11.:The lowest possible coefficient al,0/a0,0 for the expansion of the pressure into
spherical harmonics, as function of time and radius. The maximum shock posi-
tion is indicated by the dashed line. The “zebra” strip pattern below the shock
front (setting in at roughly 70 ms) is a clearly indication for the presence of
oscillatory pressure fluctuations, which are possible created by the advective–
acoustic cycle.a: model s11.2–90. Note that in this model the lowest possible
mode which is not zero is thel = 2 mode.b: model s11.2–180. Here thel = 1
mode is shown.

where the last step expresses the rotational symmetry of ourmodels around the polar axis.
Pressure fluctuations caused by the presence of the cycle arethan visible as regular pattern

with a characteristic frequency, see e.g. Fig. 7 in Blondin et al. (2003).
Indeed our models show the presence of oscillatory pressurefluctuations, which a clear sign

for the presence of a standing accretion shock instability,see Fig. 4.11, but only the models
containing the polar axis do show an explosion. The reason for this is depicted in Fig. 4.12,
where the coefficient of the expansion of the shock radius into spherical harmonics

rsh(θ, t) =
∞∑

l=0

al,0(t)Yl,0(θ) , (4.5)

(analogous to Eqn. 4.4) are shown.
The important point to note is, that on the one hand, in modelss11.2–wedge and s11.2–

wedge–refl the low modes do not grow, whereas on the other handthe lowest possible modes
do grow in the models s11.2–90 and s11.2–180.

In model s11.2–wedge the modes do not grow because of the applied periodic boundary con-
ditions: the necessary condition that the shock positions are equal at the borders of the wedge
forbids the growth of uneven modes, and the constraint that the velocity at the borders of the
wedge are equal does not permit the growth of even modes. In model s11.2–wedge–refl the
reflecting boundary conditions do not forbid the growth of modes but nevertheless no growing
modes are observed.
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Figure 4.12.:Some time–dependent coefficients obtained by expanding the shock position
into spherical harmonics. Note that the coefficients are normalised to thel = 0
mode. a: The coefficient corresponding to thel = 1 mode. Note that al = 1
mode does not exist for the model s11.2–90.b: The coefficients for thel = 2
mode.

It remains thus to be answered why the standing accretion shock instability leads to a shock
expansion — and thus an increase of the advection time scale which is sufficient to cause the
explosion — in the models s11.2–90 and s11.2–180, whereas inmodel s11.2–wedge–refl this
is not observed. In the exploding models the cycle leads to a shock expansion along the polar
axis which in turn leads to an explosion along the polar axis.This, however, seems logical
since along the polar axis an expanding shock has to move lessmatter than at every other angle
θ and thus less pressure has to be applied below the shock frontat the polar axis. In model
s11.2–wedge–refl the pressure perturbations induced by thecycle can not create a sufficiently
shock expansion since in a wedge model of±45◦ around the equator matter located in a shell
has to be moved in order to allow a shock expansion. Thus, though the standing accretion shock
instability is allowed in the wedge calculation with reflecting boundary conditions it cannot lead
to a shock expansion and can thus not trigger the onset of the explosion.

Of course, one has now to ask oneself whether the explosions in the models s11.2–90 and
s11.2–180 are caused by the numerical features of the polar axis in a 2D simulation and these
explosions would dissappear in a 3D simulation. While asking that one should bear in mind that
in a 3D simulation, however, mass can be easily moved in columns (very similar to the situation
at the pole in a 2D simulation) and the shock expansion is not hampered at any angleθ.

Summary

From the analysis of the models presented in this Section we conclude that in two–dimensional
models the choice of the simulation setup can artifically suppress an explosion although the
physical conditions favour an explosion. In particular, models where the computational domain
is centred in a wedge around the equator and the polar axis is excluded can suppress explosions,
since rotational symmetry requires that matter has to be moved in shells. Furthermore, we con-
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clude that in the particular case of the 11.2 M⊙ progenitor model discussed in this Section the
explosion is powered by neutrino heating in favourable conditions that are created by an initial
shock expansion which is caused by the presence of the standing accretion shock instability.
Only small differences are observed in models where the computational domain covers 180◦

or 90◦ (from north pole to the equator), though the lowest possiblemodes of fluid motion are
l = 1 or l = 2, respectively. From this we conclude that though a calculation with a grid that
covers the area between both poles makes physically more sense than a simulation with a grid
that covers “only” the area between pole and equator, numerically both setups seem to be al-
most equivalent. As a remark it should be mentioned that we doalso not find an evolutionary
difference of a pole–equator or pole–pole setup in models including rotation, see Section 6.1
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5
Effects of the nuclear EoS in

multi–dimensional simulations

5.1. The growth of neutron star convection and g–mode
oscillations

As we have already discussed in Part I of this thesis, the nuclear EoS influences the supernova
evolution in various ways. With spherically symmetric models one is able to investigate and
understand many aspects of the interplay between the EoS andthe supernova evolution. Exem-
plary we mention here the stiffness of the EoS, which controls the compactness of the neutron
star, which in turn directly influences the shock trajectory. However, as we have have already
discussed, spherically symmetric models suppress the existence of multi–dimensional phenom-
ena, such as convection, which seem to be crucial ingredients in the supernova explosion mech-
anism, see e.g. Section 4.2. Furthermore, an analysis for potential convectivly unstable regions
in 1D–simulations (cf. Section 3.2) already indicated a (strong) EoS dependence. It is known
for a long time that convection inside the proto–neutron star plays a special role and has thus
been investigated in numerical studies (see, e.g. Buras et al. 2006b,a, Swesty & Myra 2005,
Dessart et al. 2006, only to mention a few). The large interest in proto–neutron star convection
can be summarised as follows:

• Proto–neutron star convection happens in the dense core that is optically thick for neu-
trinos. Thus, by convective flows in the direction of the neutrinospheres, neutrinos are
dragged upwards together with the matter flow. This can change the neutrino luminosi-
ties and energies compared to non–convective spherically symmetric simulations. These
changes in the neutrino flux may be important for the re–pressuring of the stalled super-
nova shock.
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• Convective flows inside the proto–neutron star change the structure of the core. Thus the
shrinking of the core can be influenced by the presence of convective instabilities. Since
the shock expansion also depends on the compactness of the dense accretor, this effect
has to be taken into account.

However, what is still missing is a study which investigateshow the EoS of the dense core
influences the convectioninside the dense core. Inevitably, it is expected that the EoS does
influence the growth of convective instabilities, see e.g. the discussion in Buras et al. (2006b),
but it is totally unclear to what extent this will influence the supernova calculations.

Therefore, the investigation of EoS differences and their coupling to multi–dimensional ef-
fects is crucial to understand more deeply the role of the EoSin core collapse supernovae,
especially for convection inside the core and its feedback on the whole supernova evolution.
For this purpose we have performed two 2D–simulations of a 15M⊙ star (Woosley & Weaver
1995) with the Wolff and L&S–EoS. In both simulations the same input physics as the one
discussed for models Wolff(io)slms and L&S(io)slms from Section 3.2 was used, and the usual
mapping procedure (see Section 4.1) onto a 2D–domain was applied. However, the timewhen
the mapping was done was different. Since we expect a rapid start of neutron star convection for
the model with the Wolff–EoS (remember Fig. 3.17 in Section 3.2), this model was mapped to
2D directly after the shock formation. The first tens ms afterthe shock formation, however, are
computationally very expensive. In order to make this calculation feasible model Wolff–2D was
mapped in a first step onto an angular domain that covers the first quadrant1 (from north pole
to the equator) with 96 angular bins which corresponds to a resolution of 0.91◦. Subsequently
after an evolution time of around 100 ms after the shock formation this model was than mapped
onto a full 180◦ domain.

On the other hand (see Section 3.2) we expect neutron star convection to start more slowly in
model L&S–2D. Thus this model was mapped to a 180◦ domain with a resolution of 0.91◦ at a
time of 10 ms after the shock formation.

We start our discussion by studying (Fig. 5.1) the Brunt–Väisälä frequency (cf. Eqn. 3.10). As
described in Section 3.2 the Brunt–Väisälä frequence predicts a growing convective instability
for positive values of the Ledoux criterion (cf. Eqn. 3.9) otherwise stable modes are predicted.

It is clearly visible, that at early times a convective instability is found deep inside the dense
core of model Wolff–2D , whereas model L&S–2D is stable against convection. A time evolu-
tion of the neutron star convection is depicted in Fig. 5.2 where we show the the lateral velocity
for the conditionvθ > 7 × 107cm/s. Though the behaviour is very similar in the models with
both EoSs, one again clearly sees that model Wolff–2D shows convection immediately after
the bounce, extending outwards to the neutrinosphere. Then, after a few 10 ms this instability
disappears and a convective region similar to model L&S–2D develops, however with the re-
markable difference, that in model Wolff–2D a gap of convective stability separates the region
of convection around the neutrinosphere from the “deep core” convection. Interestingly, the
onset of the early convection in this model can not be directly linked to the presence of heavy

1As was shown in Section 4.2, calculating only a 90◦ domain does not suppress essential physics, since we found
explosions for a model that was both calculated with a 180◦ and a 90◦ grid. The growth of al = 1 mode, however,
is prohibited in such a model — and replaced by the growth of the next lowestl = 2 mode — which made the
second mapping at later times onto a 180◦ grid necessary. See also the discussion in Appendix D.
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Figure 5.1.: The Brunt–Väisälä frequency as function of the mass coordinate for the laterally
averaged 2D–models (thick) and the corresponding 1D–models (thin) at different
times and different EoS:a: The Wolff–EoSb: The L&S–EoS

nuclei in the dense core. Although one would assume that a matter stratification, where heavy
nuclei are stacked on a fluid of free nucleons, and free nucleons are again stacked onto the layer
of heavy nuclei is convectivly unstable (since the specific weight of nucleons bound in nuclei
is smaller than that of free nucleons), however, it is not obvious that convection starts in the
vicinity around the region of heavy nuclei (i.e. for mass shells between 0.3 M⊙ and 0.5 M⊙ ),
but rather the early convection extends outwards to the neutrinosphere. This implies that the
start of early proto–neutron star convection in model Wolff–2D is not only due to the presence
of heavy nuclei in the dense core, but also that during the time before shock formation the struc-
ture of the dense core develops such that it is unstable against convective flows. It would thus
be interesting to calculate also the collapse phase of this model in 2D, in order to investigate
whether convection would start even earlier than we observein model Wolff–2D.

A more detailed impression of the neutron star can be obtained from Figs. 5.3 – 5.5. Clearly,
Rayleigh–Taylor instabilities, which cause “Ye–fingers”, develop much earlier in model Wolff–
2D, then dissappear around 50 ms, and then reappear at similar times when model L&S–2D
shows the first signs of neutron star convection. Overall these “Ye–fingers” are very similar to
the ones found by Swesty & Myra (2005), cf. Figs. 2 and 3 in their paper, but they observe them
very early (at roughly 5 ms) after the shock formation even with the L&S–EoS, and they claim
that this is due to the fact that they calculated the collapsein 2D. However, as was discussed in
Buras et al. (2006a), calculating the collapse in 2D does notlead to this early convection with
the L&S–EoS in our simulations2.

As a measure for the “strength” of the neutron star convection we calculate the lateral kinetic
energy inside the electron neutrinosphere

Eθ
kin(t) =

1
2

∫ rνe

0

∫

θ

m(r, θ, t)vθ(r, θ, t)
2 dr dθ , (5.1)

2Swesty & Myra (2005) use totally different numerical schemes and physical approximations than we do and these
differences may be responsible for the difference in the onset of convection.
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Figure 5.2.: Regions of convective instability inside of the proto–neutron star as function of
time fora: the Wolff–EoS andb: the L&S–EoS. The dashed lines from bottom to
top represent density contours of 1014, 1013, 1012, and 1011g/cm3, respectively.
The solid lines indicate the radii of 5 km, 10 km, 15 km, 20 km, 25 km, 30 km,
and 50 km (bottom to top). The thick solid line represents theposition of the elec-
tron neutrinosphere and marks the “border” of the neutron star. The almost black
shaded region indicates regions where the evaluation of theLedoux criterion with
the laterally averaged 2D–data indicates instability. Thedark grey region indi-
cates where the conditionvθ > 7 × 107 cm/s is fulfilled in a 2D–simulation. Fi-
nally, the light grey region indicates where heavy nuclei (〈A〉 ≥ 57∧ XH ≥ 0.1)
are present (compare also to Fig. 3.8). Note that the evaluation of the Ledoux
criterion with laterally averaged data predicts convective instability where indeed
convective flows are found (compare e.g. to Fig. 3.17), except for the band for
M < 0.2 M⊙ . a: the Wolff–EoS andb: the L&S–EoS.

depicted in Fig. 5.6. At early times, model Wolff–2D shows stronger convection, which is
expected from the Figs. 5.3, where model Wolff–2D shows vigorous fluid motion, whereas
model L&S–2D seems to be in a quiet phase. However, accordingto Fig. 5.6 at later times
model L&S–2D shows about roughly 5 to 6 times stronger convection than model Wolff–2D,
which is due to the fact that more mass is in convective motion, remember Fig. 5.2.

This stronger and “continuous” convection (i.e. without the separating stability band) in model
L&S–2D leads to a stronger adjustment of the neutron star structure on the convective flows, see
Fig. 5.7: As expected, convection tends to “blow up” the neutron star in both models, however
the changes are larger in model L&S–2D than in model Wolff–2D. Whereas the average neutron
star radius changes only by roughly 5 km in model Wolff–2D, model L&S–2D shows an neutron
star which is extended up to 10 km more than the corresponding1D–model. The results from
our 1D studies in Section 3.2 suggest that these different reactions of the proto–neutron stars in
2D–simulations will also influence the evolution of the shock positions, which will be discussed
in Section 5.2.
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Figure 5.3.: Snapshots of the electron fractionYe (left) and the entropys (right) for the models
with the Wolff–EoS (panels a and c) and the L&S–EoS (panels b and d). Shown
are the inner 50 km — to give an impression of the neutron star convection and
the compactness of the neutron star. The upper row depicts the situation at a time
of 10 ms after the shock formation, the lower row at a time of 20ms after the
shock formation. Different times are shown in Figs. 5.4 and 5.5.
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Figure 5.4.: Snapshots of the electron fractionYe (left) and the entropys (right) for the models
with the Wolff–EoS (panels a and c) and the L&S–EoS (panels b and d). Shown
are the inner 50 km — to give an impression of the neutron star convection and
the compactness of the neutron star. The upper row depicts the situation at a time
for 50 ms after the shock formation, the lower row at a time of 100 ms after the
shock formation. Different times are shown in Figs. 5.3 and 5.5.
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Figure 5.5.: Snapshots of the electron fractionYe (left) and the entropys (right) for the models
with the Wolff–EoS (panel a and c) and the L&S–EoS (panel b and d). Shown
are the inner 50 km — to give an impression of the neutron star convection and
the compactness of the neutron star. The upper row depicts the situation at a time
for 150 ms after the shock formation, the lower row at a time of200 ms after the
shock formation. Different times are shown in Figs. 5.3 and 5.4.
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5.1.1 Excitation of g–mode oscillations

As already mentioned, it is expected that convection also increases the neutrino emission of
the dense core. However, as one can see in Fig. 5.8 this is not necessarily true. Whereas model
Wolff–2D shows an enhancement of the neutrino number and energy fluxes for all times in
the 2D model compared to the 1D model, model L&S–2D shows for some time areduction
of the neutrino luminosity. Since at the same time the neutrino number flux isincreasedthis
implies that model L&S–2D emits at this phase more neutrinoswith lower mean energy than
the corresponding spherically symmetric model3. Moreover the vigorous convection in the
early phase of model Wolff–2D leads to very strong enhancement of the neutrino (number)
emission. As Buras et al. (2006a) showed, an increased loss of lepton number (relatively to an
1D model) leads to a more extended proto–neutron star, whileincreasing the energy loss leads
to a more compact core. This is absolutely consistent with our models, whereboth the neutrino
number and energy losses in model L&S–2D tend to produce a more extended core, whereas
in model Wolff–2D the effects work against each other, resulting in a smaller expansion of the
proto–neutron star.

5.1.1. Excitation of g–mode oscillations

Recently, in a series of papers Burrows et al. (2006a,c,b) claimed to have found a new possible
explosion mechanism of core collapse supernovae which is strongly coupled to the dense core.
In their scenariosound waves, created by low–mode (l = 1, 2...) g–mode oscillations4 of the
proto–neutron star (with a typical period of 3 ms), travel outwards and power the explosion.
The g–modes are excited by the mass accretion flows onto the dense core, which acts like an
excited oscillator and emits the sound waves. Burrows et al.claim that this might be a robust
explosion mechanism, since as long as a supernova does not explode, accretion on the neutron
star goes on and acoustic flux can be generated. Furthermore the authors claim that supernova
modellers will observe this mechanism if they a) calculate the models from north to south–pole,
b) calculate the model in 2D without treating any whatsoeversmall part of the core in 1D (as
we do in our 2D–models)5, and c) calculate to long enough times (i.e.tpb > 1 s).

As striking and interesting this new idea is, however, some points need to be mentioned here:

• Firstly, it is very likely that proto–neutron stars can be excited to oscillations. However,
whether the energetics allow to power a supernova explosionis debatable.

• Secondly, though in principle mass accretion on the core proceeds as long as a supernova
does not explode, the mass accretion rate drops dramatically during the first few hundred
ms (from several M⊙ /s to a few hundredth M⊙ /s, see e.g. Fig. 2 in Burrows et al. 2006c),
whereas the proto–neutron star becomes more massive (typically 1 – 2M⊙ ). This makes it

3The same behaviour was already found in Buras et al. (2006a).
4In gravity–modes or g–modes the gravity acts as restoring force (for details, see e.g. Finn 1986, 1987).
5We will discuss this in more detail in the next Section.
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difficult to continously re–excite the core to oscillations and converse this energy (minus
the losses) in acoustic power at times larger than a few hundred ms6.

• Thirdly, the fact that in Burrows et al. (2006a,c,b) the explosion sets in suddenly without
any indication of why at this particular time shows that thismechanism has to be studied
in great detail in order to understand and judge it properly.

Nevertheless, given the fact that this energy transfer proposes an interesting alternative to the
standard supernova explosion mechanism paradigm, we have searched for the possibility of
such a new mechanism to occur in our 2D–simulations. However, simply the long simulation
times needed by Burrows et al. in order to see this new phenomena makes it impossible for
us to do a comparison calculation. What wecan do is to analyse our models looking for the
excitation of the core oscillations that should be visible after a few hundred ms after the shock
formation (see, e.g. Fig. 7 in Burrows et al. 2006a).

In a core collapse supernova an oscillating neutron star embedded in the accretion atmosphere
below the shock front inevitably causes pressure fluctuations in the fluid. In order to be con-
sistent with Burrows et al. (2006a) we analyse our models forsuch pressure fluctuations and
expand these into spherical harmonics, in order to see the mode spectrum. Thus one can write

Pfluc(r, θ, t) :=
P(r, θ, t) − 〈P(r, t)〉θ

〈P(r, t)〉θ
and then (5.2)

Pfluc(r, θ, t) =
∞∑

l=0

al,0(r, t)Yl,0(θ) , (5.3)

where again rotational symmetry around the polar axis (cf. Eqn. 4.5) was used. Indeed, as
Figs. 5.9 – 5.10 confirms, the proto–neutron star shows low g–mode oscillations in our simula-
tions. We observe that all modes are excited with roughly equal strength and no mode seems to
be suppressed. Independent of the used EoS, or the radius where the modes are measured, we
find that thel = 1 mode starts to grow at 150 to 200 ms after the shock formation. However, the
amplitudes reached are larger for the L&S–EoS forr > 25 km. Nevertheless we find amplitudes
roughly two orders of magnitude smaller than the ones reported by Burrows et al. (2006a), see
Fig. 7 in their paper. This discrepancy is already present ata timetpb < 300ms where we can
compare our results to the ones of Burrows et al. (2006a). Since we were not able to calculate
our models to longer times, we can not say if the oscillationsin our models will grow to their
predicted strength at later times. Furthermore the models of Burrows et al. are calculated in
Newtonian gravity, whereas we apply general relativistic corrections. Thus it might be possible
that this also causes a different growth of modes7. Looking more carefully at model Wolff–2D,
one finds that thel = 1 mode shows a higher frequency (period of 3–4 ms) forr < 25 km and

6A way around this problem would be that the excitation of the oscillations stem from the early phase when the
mass accretion rate is still high. However, then the dampingand conversion of kinetic energy in sound waves
must be small so that the oscillation is still present at later times. Which of course leads to the following question:
Why will then —suddenly— the conversion of energy become more efficient and trigger the explosion?

7If, however, the growth of the modes and thus this new explosion mechanism depends on the formulation of
gravity then fully general relativistic models are necessary to give a final answer.
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a smaller one (period of 9–10 ms atr = 35km) for r > 30 km, see Figs. 5.11 – 5.13. Since
in this region convection appears and than disappears, remember Fig. 5.2, this shows that the
modes are influenced by the convective regions. A frequency change ofl = 1 mode across the
convective region is also observed in model L&S–2D.

5.1.2. Testing the code ability to follow neutron star g–mod es: artifically
triggered neutron star oscillations

As we have seen in the previous Section we find the existence oflow frequency g–modes in the
dense supernova core in our 2D–simulations. However, from the point of view of Burrows et al.
(2006b) our numerical treatment in MDBTH to calculate the innermost 1.6 km of the star
in spherical symmetry does not allow to excite core oscillations. Indeed, one may believe that
a spherically symmetric centre of the core does only allow the excitation ofeven(l = 2, 4,...)
modes which do not imply fluid flow through the centre, whereasunevenmodes may be sup-
pressed since they require mass flow through the (1D) centre.However, this is in contradiction
to the fact that we find modes — even and uneven ones — with roughly equal strength, which
implies that the growth of uneven modes is not suppressed, and the growth of even ones is not
favoured. This for itself is already a strong argument for the ability of our numerical scheme to
follow such neutron star excitations.

Nevertheless, we came up with a numerical test which proves the ability of our code to follow
the lowest possible mode (i.e.l = 1): On a existing 2D–simulation we artifically imposed a
velocity field in the proto–neutron star which triggers the excitation of al = 1 mode. We then
followed the subsequent evolution and checked whether our code does rigorously damp this
mode.

For this purpose we have chosen two radiir2 andr3 inside the proto–neutron star, but outside
of the spherically core withr1 = 1.6 km. Inside the spherical shell withr1 < r < r2 we added
a constant velocityvz1 in z–direction (i.e. along the polar axes) to the already existing velocity
field. In the spherical shell withr2 < r < r3 the same procedure was applied, however, here the
velocity vz2 was chosen such that the total momentum of the system is conserved. A sketch of
this procedure can be seen in Fig. 5.14.

As we explained in Chapter 2, in a 2D–simulation the gravitational potentialincludinggeneral
relativistic effects is calculated from a 2D Newtonian potential with 1D corrections for relativis-
tic effects. Thus the general relativistic potential always includes a spherical monopole contri-
bution, which does not follow the neutron star oscillationsin our test calculations. One may
argue that this leads to unpredictable behaviour of mode excitation. However, normally neu-
tron star oscillations are investigated in the so–called Cowling approximation (Cowling 1941),
where the gravitational forces are consideredconstant, which is a stronger restriction than the
monopole contribution in our code. But to investigate the influence of this monopole term on
the oscillations we have also perturbed a Newtonian model, where the gravitational potential is
calculated in its “2D–beauty” without the need of a monopoleterm8.

This perturbed Newtonian model is based on model L&S–2D–New, which was calculated
with Newtonian gravity, the L&S–EoS, on a full 180◦ computational domain. As progenitor

8Then, of course, the radiusr1 = 0, since no spherically symmetric 1D–core is present.
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Figure 5.9.: The amplitudes of the expansion into spherical harmonics ofthe pressure fluctu-
ations (P− 〈P〉θ)/〈P〉θ on spheres with radiusr of 10 km and 25 km, respectively
a, b: model Wolff–2Dc, d: model L&S–2D. Note that different radiir are shown
in Fig. 5.10.
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Figure 5.10.:The amplitudes of the expansion into spherical harmonics ofthe pressure fluctu-
ations (P−〈P〉θ)/〈P〉θ on spheres with radiusr of 30 km and 35 km, respectively
a, b: model Wolff–2Dc, d: model L&S–2D. Note that different radiir are shown
in Fig. 5.9.
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Figure 5.11.:The Fourier decomposition of the different g–mode oscillations at two radii of
25 km and 35 km, respectively. The upper row depicts model Wolff–2D, the
lower row model L&S–2D.a: l = 1 b: l = 2 c: l = 1 d: l = 3 Note that different
modes are shown in Figs. 5.12 and 5.13.
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Figure 5.12.:The Fourier decomposition of the different g–mode oscillations at two radii of
25 km and 35 km, respectively. The upper row depicts model Wolff–2D, the
lower row model L&S–2D.a: l = 3 b: l = 4 c: l = 3 d: l = 4 Note that different
modes are shown in Figs. 5.11 and 5.13.
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Figure 5.13.:The Fourier decomposition of the different g–mode oscillations at two radii of
25 km and 35 km, respectively.a: l = 5 in model Wolff–2D.b: l = 5 L&S–2D.
Note that different modes are shown in Figs. 5.11 and 5.12.
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Figure 5.14.:A sketch of the velocity field that
is superimposed on the existing
velocity field in our test calcula-
tions. Note the values ofr2, r3,
vz

1 (red arrows), andvz2 (blue ar-
rows) are chosen such that the
perturbation resides well inside
the electron neutrinosphere, mo-
mentum is conserved, and that
the masses inside the shells are
roughly equal, The green region
denotes the innermost 1.6 km of
our models were we use a 1D
calculation.
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Model r1 [km] r2 [km] r3 [km] vz
1 [cm/s] vz

2 [cm/s] Ekin [erg] Φ

GR–5e7 1.6 15 50 5× 107 −5× 107 3.66× 1048 GR
GR–2e8 1.6 15 50 2× 108 −2× 108 5.86× 1049 GR

NEW–5e7 0. 14 49 5× 107 −5× 107 3.66× 1048 Newt.

Table 5.1.:Overview over all test models. Stated are the radii of the shells were the veloc-
ities vz1 or vz2 were superimposed. Also stated are whether a general relativistic
correction to the gravitational potential was applied.

model the same 15 M⊙ progenitor model of Woosley & Weaver (1995) was used which also the
models Wolff–2D and L&S–2D are based on.

An overview over all test models that were perturbed artificially is given in Table 5.1, where
we state the size of the perturbations and the radial shells within which we applied the pertur-
bations. Furthermore we give the value for the kinetic energy that we artifically fed into the
neutron star movement when we added the velocity field.

Figures 5.15 and 5.16 show convincingly that the MDBT code is numerically able to
follow an l = 1 mode inside the neutron star once it is excited. More importantly, our method
only excites thel = 1 mode and no rapid damping of this mode or a growth of higher order
modes is observed. Again we observe a frequency change in theregion where neutron star
convection begins, see Fig. 5.17. Thus, the code is able to follow an l = 1 mode very accurately
as well in amplitude as in frequency, although we replace theinner 1.6 km of the 2D–core by a
spherically symmetric core. Thus the fact that we do not observe as large g–mode amplitudes
as Burrows et al. in our models Wolff–2D and L&S–2Dcannotbe justified by the argument that
our code is not able tofollow these modes9. Furthermore a comparison of models GR–5e7 and
GR–4e8, where in the later model the artifically input of kinetic energy is 16 times larger than
in model GR–5e7, shows that the amplitudes grow almost exactly by a factor of four, which
corresponds to the factor of four higher values of the perturbation velocity. Thus, though the
energy input in model GR–4e8 was about 0.6× 1050 erg, the growth of the g–mode oscillations
is still in the linear regimeand the amplitudes stay at one to two orders of magnitudes below
the ones observed by Burrows and collaborators. Though it isimpossible to judge — without
really doing the simulations — how much energy must be fed into the nascent neutron star in
order to achieve a transition from the linear regime into a non–linear growth of the g–mode
amplitudes, we conclude that in our model this energy input is larger than 0.6× 1050 erg. Since
it seems logical that in an unperturbed model which should show the same g–mode amplitudes
as reported by Burrows et al. a similar kinetic energy transfer to the dense core is required,
an efficient mechanism to excite the neutron star oscillations must be proved to exist. This
mechanism must transfer enough energy that the amplitudes can grow in a reasonable time to
the required values. Yet, the existence of such a mechanism is not proved and in our models the
amplitudes do not reach the values which are reported by Burrows and collaborators.

Finally, in Figs. 5.18a and 5.19a we show the conservation ofthe z–component of the momen-

9It may, however, still possible that the MDBTH–code is not able to compute the naturalexcitationof these
modes correctly.
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Figure 5.15.:The amplitudes of the expansion into spherical harmonics ofthe pressure fluctu-
ations (P−〈P〉θ)/〈P〉θ on spheres with radiusr for model GR–5e7. In this model
an artificiall = 1 mode was excited inside the dense core by adding a velocity
field with an amplitude of 5× 107 cm/s. a: at 10 kmb: at 15 kmc: at 25 kmd:
at 30 km.
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Figure 5.16.:The amplitudes of the expansion into spherical harmonics ofthe pressure fluctu-
ations (P−〈P〉θ)/〈P〉θ on spheres with radiusr for model GR–2e8. In this model
an artificiall = 1 mode was excited inside the dense core by adding a velocity
field with an amplitude of 2× 108 cm/s. a: at 10 kmb: at 15 kmc: at 25 kmd:
at 30 km.

tum for models Wolff–2D, GR–5e7, and GR–2e8. Clearly, momentum is conserved nicely in
model Wolff–2D. The artificially perturbed models GR–5e7 and GR–2e8 show a oscillation of
the momentum due to the motion of the core. In Figs. 5.18b and 5.19b we depict the amount of
displacement of the core from the grid centre one obtains from the evolution of the momentum.
Clearly, on average the core does not move. We also show the movement a mass shell located
at r = 10 km, which is caused by the artificially excitation of thel = 1 g–mode.

Figure 5.20 shows the amplitudes of the expansion of the pressure fluctuations for model
NEW–5e7. Although the amplitudes are of the same order of magnitude as the ones in the
calculations including general relativistic effects, no nice oscillations can be observed in model
NEW–5e7. In contrast to the test calculations GR–5e7 and GR–2e8 we also find that in model
NEW–5e7 not only thel = 1 mode is excited but rather we find non–zero (but roughly con-
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Figure 5.18.: a: The z–component of the momentum evaluated on the computational domain.
b: The radial displacement that would result from the momentum evolution in
panel a. Also shown is the movement of a mass shell located atr = 10 km
due to the perturbation that was imposed in the dense core. This movement is
calculated from a time integration of the velocity at a radius r = 10 km.

stant) contributions of higher order modes, which implies that the dense core in our Newtonian
calculation shows some deformation. The reason for this is found studying Fig. 5.21 where the
momentum conservation is shown for the Newtonian models. Even in the unperturbed model
we find a small violation of momentum conservation (buildingup around 20 ms after the shock
formation). Despite the fact that the net value of this momentum conservation violation is very
small it leads to a drift of our core of about 80 m in 40 ms, whichcorresponds to a velocity
of 2 km/s. This leads to the deformed dense core, which explains the contribution of spherical
harmonics withl > 1 in Fig. 5.20. It also explains why we do not find an oscillation around the
centre in our artificially perturbed model. The momentum violation we observe in the Newto-
nian model is very small and causes only a small drift compared to the oscillation we excited
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Figure 5.19.: a: The z–component of the momentum evaluated on the computational domain.
b: The radial displacement that would result from the momentum evolution in
panel a. Also shown is the movement of a mass shell located atr = 10 km shows
due to the perturbation that was imposed in the dense core. This movement is
calculated from a time integration of the velocity at a radius r = 10 km.

in Model NEW–5e7, see Fig. 5.21b. Also in the unperturbed model the drift is so small that it
needs 150 ms in order that the centre of the nascent neutron star leaves the first grid zone (width
= 300 m). Nevertheless, it is quite unsatisfactory that in a Newtonian model a small momentum
violation is found, although physically momentum conservation must be ensured. In Appendix
C we will thus discuss this problem in more detail.

Though model NEW–5e7 revealed that in a calculation with Newtonian gravity the MDBTH
code produces a small momentum conservation violation, ourconclusion from the various test
model still holds: treating the inner most 1.6 km of the computational domain as a spherically
symmetric core does not hamper the excitation of al = 1 g–mode oscillation. Furthermore,
once such a mode is (artificially) excited our numerical scheme is well suited to follow this
mode.

Summary

We have found that different nuclear EoS may lead to totally different growth of convective
instabilities inside the forming neutron star. On the one hand the time when convection starts
can be different but then, of course, also the kinetic energy containedin the convective flow
— which is a measure for the strength of convection — can develop differently. The strength
of convection is in our results strongly connected to the size of the convectivly unstable re-
gions. Whereas model L&S–2D develops at late times a “fully”convective layer between the
neutrinosphere and a mass coordinate of roughly 0.5M⊙ model Wolff–2D shows except for the
first few 10 ms, a stability stripe that separates the neutrinosphere from the convective core.
The structural changes of the neutron star, due to different convection patterns, lead then to

109



Effects of the nuclear EoS in multi–dimensional simulations

30 35 40 45 50 55 60
-60

-40

-20

0

20

40

60

tpb [ms]

A
m

pl
itu

de
of

(P
−
〈P
〉 θ)
/〈

P
〉 θ
×

10
−3

l = 1
l = 2
l = 3
l = 4
l = 5

r = 10 km

30 35 40 45 50 55 60
-20

-10

0

10

20

tpb [ms]

A
m

pl
itu

de
of

(P
−
〈P
〉 θ)
/〈

P
〉 θ
×

10
−3

l = 1
l = 2
l = 3
l = 4
l = 5

r = 15 km

a b

30 35 40 45 50 55 60
-10

0

10

20

tpb [ms]

A
m

pl
itu

de
of

(P
−
〈P
〉 θ)
/〈

P
〉 θ
×

10
−3

l = 1
l = 2
l = 3
l = 4
l = 5

r = 25 km

30 35 40 45 50 55 60
-10

0

10

20

tpb [ms]

A
m

pl
itu

de
of

(P
−
〈P
〉 θ)
/〈

P
〉 θ
×

10
−3

l = 1
l = 2
l = 3
l = 4
l = 5

r = 30 km

c d

Figure 5.20.:The amplitudes of the expansion into spherical harmonics ofthe pressure fluc-
tuations (P− 〈P〉θ)/〈P〉θ on spheres with radiusr for model NEW–5e7. In this
model an artificiall = 1 mode was excited inside the dense core by adding a
velocity field with an amplitude of 5× 107 cm/s. a: at 10 kmb: at 15 kmc: at
25 kmd: at 30 km.

differently extended cores and neutrino emissions compared to the non–convective spherically
symmetric models. These changes definitely feedback on the accretion layer, the neutrino heat-
ing, the development of “hot–bubble” convection between the gain radius and the shock front,
and thus also on the shock evolution, which will be discussedin Section 5.2.

Concerning the neutron star g–mode oscillations we have found — with several test calcula-
tions — that our numerical treatment is well suited to followthese oscillations. Furthermore,
we have found that the amplitude of these excitations of the dense core is EoS dependent; in
a simulation with a softer EoS and thus compacter dense core we find stronger oscillations
(at least a factor of two in amplitude) compared to a simulation with a stiff EoS. This result
is clearly interesting with regard of the new explosion mechanism proposed by Burrows et al.
(2006a). However, even with the soft EoS, where the amplitudes are largest, we find at least 10
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Figure 5.21.: a: The z–component of the momentum evaluated on the computational domain
for the Newtonian calculations.b: The radial displacement that would result
from the momentum evolution in panel a. Also shown is the movement a mass
shell located atr = 10 km shows due to the perturbation that was imposed in the
dense core.

times smaller amplitudes then the ones observed by Burrows et al. in their calculations. Thus
we conclude that although the excitations of the dense core appear we cannot see any indication
of an acoustic–driven explosion.

5.2. The growth of “hot bubble” convection and shock
instabilities

In the previous Section 5.1 it was shown that different EoSs influence strongly the growth of
convection inside the proto–neutron star, the proto–neutron stars structure, and its neutrino
emission. Naturally, it is important to investigate how this couples to the overall supernova
evolution. We have already discussed that inspherically symmetricmodels a larger extended
neutron star “pushes” the shock position farther outwards.In multi–dimensional models the
problem is a more complicated one: Firstly, the assumption of an hydrostatic accretion atmo-
sphere, which was used to link the shock position to the radius of the inner core (cf. 3.7 in
Section 3.2), breaks down, as soon as hydrodynamic instabilities (i.e. convection) develops in
the accretion layer10. Secondly, convection below the shock front itself deformsthe shock and
leads to an angularly dependent shock expansion or retreat.Thirdly, other shock instabilities
such as the advective-acoustic cycle Foglizzo & Tagger (2000), Foglizzo (2001, 2002), Blondin
et al. (2003) do develop in multi–dimensional simulations even if hot bubble convection is weak

10To separate these convective flows from the convectioninsidethe proto–neutron star, this convection is commonly
called “hot bubble” convection, due to the fact that one observes the rising and falling of bubbles of hot and cool
material.
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or not present at all, see Scheck (2006). However, these processes are supposedly all subject to
the influences of the equation of state for the following reasons:

• It is natural to assume that the strength and structure ofhot bubble convectiondepends on
the neutrino heating and on the positions of the neutron starradius, the gain radius, and
the shock position, which define the “volume” where hut bubble convection can develop.
As we have already discussed the EoS influences all of these conditions.

• Theadvective acoustic cycledepends strongly on the position of the so called “coupling
radius” where the advection flow towards the dense core is strongly de-accelerated, see
Scheck (2006). First, order this coupling radius is set by the position of the electron
neutrinosphere, which again is influenced by the EoS.

We start our discussion of the EoS effects on the overall supernova evolution by showing in
Fig. 5.25 some differences between the two–dimensional and corresponding one–dimensional
simulations for the neutrino luminosities, rms energies, and heating rates. First, one can see
from Figs. 5.25a,b that the time evolution of the neutrino luminosities is very similar in spher-
ically symmetric and 2D–simulations. However, the luminosities decrease slightly in multi–
dimensional simulations as was already discussed in Buras et al. (2006a). The reason for this is
found in a different structure of the dense core and accretion layer, that leads to lower neutrino
temperaturesTν, and thus less neutrino emission. For the same reason also the rms neutrino en-
ergies drop, see Figs. 5.25c,d. Nevertheless, the comparison between the runs with the different
nuclear EoS reveals that in 2D–simulations the same effect is observed as in 1D–simulations
(see also Section 3.2) : a softer EoS produces higher luminosities and (rms) neutrino ener-
gies, because a more compact core — which as we have shown in Part I of this thesis is the
consequence of a softer EoS — allows that more gravitationalbinding energy is converted
into neutrino emission. Although the neutrino heating and cooling of matter is reduced in a
2D–simulation compared to a 1D–simulation (since the luminosities and neutrino energies are
reduced), this nevertheless results in the fact that even ina 2D–simulation a softer EoS leads to
stronger neutrino cooling but also neutrino heating than a stiffer EoS, see Figs. 5.25e,f.

The neutrino energy deposition is almost angle independent, as one can deduce from Fig. 5.22,
where we show snapshots of the heating at different times. Of course, the energy deposition
shows an angle dependence if the shock does so. However, inside the heating and cooling
region the values of the energy deposition do not vary largely as a function of the polar angle,
except for the fact that convection distorts the surface of the cooling region. Obviously, model
Wolff–2D develops at later times a more extended cooling region, but the absolute values of the
cooling stay an order of magnitude below the ones of model L&S–2D. This, however is already
observed in spherically symmetric calculations, rememberFig. 5.25e. Nevertheless, this clearly
shows how strongly the EoS influences the structure of the accretion layer between the dense
core and the shock front. Since Foglizzo has found (private communication) that the details of
the advective–acoustic cycle depend strongly on the accretion atmosphere, the cooling region,
and the position of strongest de-acceleration of fluid flow (see also Scheck 2006) this is another
argument for the influence of the EoS on the standing accretion shock instability.

It is very interesting, that the EoS influence on the neutrinoemission as well as the influence
on the neutrino energy exchange with the stellar fluid is quite similar (e.g. the stiffness of the
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Figure 5.22.:Snapshots of the net neutrino
heating source term at differ-
ent times after the shock forma-
tion (a: 200 ms, b: 250 ms,
c: 300 ms). The left hand
sides of the snapshots depict
the situation in model Wolff–2D,
whereas the right hand sides de-
pict the situation in model L&S–
2D. Note, since the net neutrino
heating term is positive in case
of neutrino heating and nega-
tive if neutrino cooling is dom-
inant, the following procedure
was taken: log (QH) := log(QH)
if QH > 1 MeV/baryon/s,
log (QH) := −log(−QH) if
QH < −1 MeV/baryon/s, and
log (QH) := 0 if −1 < QH < 1
MeV/baryon/s.

c

EoS controls the heating and cooling in a comparable way) in simulations applying radial or
rotational symmetry.

Figure 5.23a depicts the total neutrino energy deposition in the gain layer. Due to the facts that
model L&S–2D shows stronger neutrino heating and that the gain layer is more extended in this
model, the neutrino energy deposition is at least 50% higherthan in model Wolff–2D. As we
will discuss in the following the EoS dependent neutrino heating and cooling — which behave
very similar in spherically symmetric simulations, and in simulations applying rotational sym-
metry — leads in multi–dimensional simulationstogetherwith multi–dimensional effects (such
as convection) to a noticeably changed supernova evolution. This can be seen in a compari-
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Figure 5.23.: a: The total neutrino energy deposition (cf. Eqn. 4.2) as function of time for
models Wolff–2D and L&S–2D.b: The laterally averaged shock positions
(upper solid lines) and the laterally averaged positions ofthe electron neutri-
nospheres of models Wolff–2D and L&S–2D. Also shown are the same quanti-
ties for the corresponding spherically symmetric models (dashed).

son of the laterally averaged shock position, see Fig. 5.23b, of models Wolff–2D and L&S–2D.
Clearly, the model calculated with the L&S–EoS shows stronger 2D–effects than the model with
the Wolff–EoS, since the switch from a spherically symmetric model toa 2D–model results in
a much stronger expansion of the average shock position thanin model Wolff–2D. This Fig-
ure impressively demonstrates that in multi–dimensional models an easy correlation between
the radii of the neutron star and the shock can not be obtained. Though we only plot the lat-
erally averaged shock positions one can see the already mentioned complex (oscillatory) time
dependence of the shock position, which can be caused by (a combination) of convection and/or
the advective–acoustic cycle. By expanding the shock radius rs(θ, t) into spherical harmonics
(cf. Eqn. 4.5) one gets a clearer impression of the shock instabilities in our two–dimensional
models, see Fig. 5.26. Due to the early start of convection inmodel Wolff–2D shock deforma-
tions are immediately observed, which, however, are dampedwhen this convection subsides. As
convection grows again later, also the shock instabilitiesgrow, but the amplitudes stay roughly
a factor of two smaller than in model L&S–2D. A more comprehensive overview of this low–
mode shock instability is given in Figs. 5.27 – 5.29, where wedepict at different times contours
of entropy and of the electron–fraction from the centre to a radius of 300 km. Obviously model
Wolff–2D is much more stable against shock formations — and the shock stays more spheri-
cally — than model L&S–2D though both models develop volume filling convection in the hot
bubble region between the dense core and the shock front. Especially at time between 200 ms
and 350 ms after the shock formation anl = 1 deformation of the shock front is visible in model
L&S–2D.

In Fig. 5.30a we show the lateral kinetic energy contained inconvective motion in the gain
region between the gain radius and the shock, cf. Eqn. 4.2, for both models. Again in model
Wolff–2D we find at early times more energy contained in convectivemotion than in L&S–2D,
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due to the fact that convection develops immediately in the model with the Wolff–EoS. As this
convection subsides the lateral kinetic energy develops a local minimum, before it rises steadily
during the later evolution. At this time the convective energy grows faster in model L&S–2D
and at later times in this models a factor two to three more energy is contained in hot bubble
convection. Though it is not possible to find a final reasoningwhy the model with the L&S–
EoS develops a more energetic hot–bubble convection than model Wolff–2D, we suspect that
this due to the fact that neutrino heating (the driving forcebehind the hot–bubble convection) is
stronger in this model, since stronger temperature gradients in general supports the development
of convection11. As we mentioned already in Section 4.2, an analysis of Foglizzo et al. (2005)
suggests that the convection in model L&S–2D is probably notthe dominant source for the
development of the observed low–model = 1, 2 shock instabilities. Similar as in the explosion
models of a 11.2 M⊙ progenitor star, see Section 4.2, we suspect, that the advective-acoustic
cycle and not convection is the driving force for the time andangular evolution of the standing
accretion shock instability. In deed, an expansion of the local pressure into spherical harmonics,
remember Eqn. 4.4 in Section 4.2, of both models reveals the existence of an advective–acoustic
cycle, see Fig. 5.31. Thus, why does model Wolff–2D show only a moderate development of
a shock asphericity, whereas model L&S–2D shows a strong evolution of a bi–pol mode ?
Following in large parts the lead of Blondin & Mezzacappa (2006) we determine the power of
the advective–acoustic cycle by

Power(t)=
∫

rNS

rs

a1,0(r, t)2 r2 dr , where (5.4)

rNS and rs are the radii of the neutron star and the shock front, respectively, anda1,0 is the
amplitude of thel = 1 contribution to the local pressure deviations from the mean pressure,
cf. Eqn. 4.4. This analysis shows that the conditions in the calculation with the L&S–EoS are
such that the cycle grows stronger than the one in model Wolff–2D, see Fig. 5.30b, and thus
model L&S–2D shows a more dominantl = 1 shock deformation, and leads (at sometimes) to
stronger shock expansion.

In both models we find rather similar advection timescales, see Fig. 5.24a. At the early times
when the average shock radius is slightly larger in model Wolff–2D, see Fig. 5.23b, we also
find a larger advection timescale in this model. At later times, when the average shock radius
expands more strongly in model L&S–2D and at the same time theheating region becomes
smaller (due to the growing of the cooling region) in model Wolff–2D, the advection timescale
is slightly larger in model L&S–2D. However, these differences are small (due to the fact that
the shock positions are quite similar) compared to the differences we observe in the heating
timescales: as we have explained model L&S–2D shows stronger neutrino heating (at least
50%) which leads to a shorter heating timescale, see Fig. 5.24b. Though both models have not
reached a condition which favours an explosion at a time of 300 ms after the shock formation,
the situation is definitely more advantageous in model L&S–2D, see Fig. 5.24c, since the ratio
of the advection timescale and the heating timescale is larger in this model. Furthermore, this
ratio increases steadily at later times of the simulation. Continuing this simulation to larger

11As an analogy one may thing of a soup boiling on an oven that develops a stronger fluid flow if the heating is
stronger.
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same models. c: The ratio of
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sponding 1D–models.
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evolution times is thus necessary in order to see whether this trend increases until an explosion
sets in or whether the situation will change such that no explosion will be obtained at later
times. Figure 5.24 once more clearly shows that an extrapolation from spherically symmetric
simulations to 2D–simulations is not possible in a straightforward way.

Finally, an overview over the whole evolution of the models calculates so far is shown in
Fig. 5.32, where we show for the laterally averaged 2D modelsand the corresponding 1D mod-
els trajectories of select mass shells and information of the dominant composition. A strik-
ing difference between our spherically symmetric and multi–dimensional models occurs in the
region directly ahead of the shock front. Whereas in spherically symmetric models alpha–
particles contribute in this region 60% of the mass fraction, this is not found in 2D–simulations.
The explanation for this is that in the 2D simulations the shocks reach larger radii and “swal-
low” this region. More importantly, however, is the fact that we do not find alpha particles
behind the shock front in the 2D models. Thus, the shock has not yet expanded to radii where
the conditions are such that alpha–particles are formed by recombination of nucleons. This is
important, since the shock would gain additional energy by the process, which would support
the explosion.
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5.2 The growth of “hot bubble” convection and shock instabilities

Summary

The stronger convection and a stronger advective–acousticcycle in mode L&S–2D leads to a
conclusion that is not expected from spherically symmetricmodels: from the models of Section
3.2 one concludes that a stiffer EoS, like the Wolff–EoS, leads to more favourable conditions
for an explosion. Though the stiff EoS shows less heating (and cooling) than a soft EoS, the
more extended neutron star pushes the shock front to significantly larger radii. From this one
may conclude that a stiff EoS is also more favourable than a soft EoS in multi–dimensional
simulations. However, coming as a surprise, the conclusionfrom the 2D models discussed in
this Section, is exactly the opposite. As in 1D models, we findin multi–dimensional simulations
that a soft EoS produces a compacter core and leads to stronger heating and cooling.But this
leads now to stronger convection and shock instabilities which seem to be more promising for an
explosion. This is consistent with the analysis of Foglizzoet al. where it was found that a smaller
cooling region with stronger cooling, leads to a sharper de-acceleration region of the accretion
flow, which in turn leads to stronger advective–acoustic cycle. Thus, the EoS effects on the
cooling region but also the of the neutrino heating of matterturn out to be far more important,
than the different shock positions one obtains from spherically symmetric calculations.
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Figure 5.27.:Snapshots of the electron fractionYe and the entropys for the models with the
Wolff–EoS and L&S–EoS at 100 ms (upper row) and 150 ms (lower row) after
the shock formation. Different times are shown in Figs. 5.28 and 5.29.a: model
Wolff–2D.b: model L&S–2D.c: model Wolff–2D.d: model L&S–2D.
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Figure 5.28.:Snapshots of the electron fractionYe and the entropys for the models with the
Wolff–EoS and L&S–EoS at 200 ms (upper row) and 250 ms (lower row) after
the shock formation. Different times are shown in Figs. 5.27 and 5.29.a: model
Wolff–2D.b: model L&S–2D.c: model Wolff–2D.d: model L&S–2D.
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Figure 5.29.:Snapshots of the electron fractionYe and the entropys for the models with the
Wolff–EoS and L&S–EoS at 300 ms (upper row) and 350 ms (lower row) after
the shock formation. Different times are shown in Figs. 5.27 and 5.28.a: model
Wolff–2D.b: model L&S–2D.c: model Wolff–2D.d: model L&S–2D.
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Figure 5.31.:The normalised amplitudea1,0/a0,0 of the l = 1 contribution to the expansion of
the pressure into spherical harmonics.a: model Wolff–2D.b: model L&S–2D.
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Figure 5.32.:Trajectories of selected mass shells (black lines) for the 2D–models and the
corresponding 1D–models. The blue lines indicate (from topto bottom) the
positions of the electron, anti electron, and heavy (anti) lepton neutrinospheres.
The orange line indicates the time evolution of the O–Si–interface. Dark shaded
regions indicate the presence of heavy nuclei, slightly lighter regions indicate
the presence of Ni (iron group) nuclei. The light grey shadedregion indicates
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dimmer grey colour indicates where alpha–particles contribute more than 60%
of the mass. Note that the panels for the 2D–simulations where obtained by
laterally averaging the data.
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6
Exploring other physical parameters in

multi–dimensional simulations: rotation and
the progenitor star

In the following Chapter the focus of interest will be shifted from the influence of the EoS on the
supernova evolution towards other uncertainties, which may influence the supernova evolution.
In this sense this Chapter is somewhat special to the rest of this thesis, since the focus does not
lie on the nuclear physics part of the simulations but ratheron some selected other ingredients of
supernova simulations that are unknown and might cruciallyinfluence the supernova explosion
mechanism. Talking about the ingredients for a supernova simulation, immediately the progen-
itor star comes to ones mind. Related to the used progenitor model is of course the question to
what extend the supernova explosion mechanism might rely onthe details and uncertainties of
the progenitor stars. The details of the progenitor star models, which are used at the beginning
of a core collapse supernova simulation, are uncertain for afew reason: Firstly, though it is a
(too?) large simplification, stellar evolution models are spherically symmetric. Thus, the de-
viations from spherical symmetry are completely unknown and supernova modellers normally
imposerandomperturbations of a certain amplitude, see the discussion inSection 4.1. Sec-
ondly, spherically symmetric pre–supernova models show sharp composition interface, where
different regimes of nuclear burning appear, and which are correlated to sharp density gradients.
Fryer & Young (2006) claim that these sharp interfaces woulddissappear in multi–dimensional
stellar evolution models, which as we will discuss in Section 6.2 might influence the results
of supernova simulations noticeably. Thirdly, core collapse supernovae occur on a huge diver-
sity of progenitor stars, whose mass range might easily varyby 20 M⊙ . This implies that the
structure of pre–supernova progenitor cores also largely differs, which might also be influence
the supernova explosion. Even without the first two uncertainties, the large variety of different
progenitor models has to be studied systematically in simulations of core collapse supernovae.
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Exploring other physical parameters in multi–dimensional simulations: rotation and the
progenitor star

Since such a parameter study is computationally too demanding with the MDBTH–code, we
will discuss in Section 6.2 the supernova evolution for one other progenitor model.

Another physical aspect of multi–dimensional simulationswill be discussed in Section 6.1,
namely the influence of rotation on the supernova evolution.From observations (e.g. from
our Sun) it is clear that stars do rotate, furthermore neutron stars are also known to rotate.
Since neutron stars are born during the event of a core collapse supernova, rotation is obviously
present at the time of stellar core collapse and the subsequent supernova explosion. However,
much more uncertain is the rotation of the iron core shortly before the onset of gravitational
instability since the transport of angular momentum cannotbe predicted very accurately, see
e.g. Woosley et al. (2002) and Heger et al. (2005) for different predictions of stellar evolution
modellers.

Thus, though it is commonly accepted that stellar iron coresdo rotate, and that this might
influence the supernova evolution (see, e.g. Yamasaki & Yamada 2005), it is not clear what
kind of rotation rates should be assumed. Thus, rotation is often studied in parameter studies in
order to investigate the influence of rotation, however, these studies use mostly simplified cal-
culations of the neutrino–transport problem. As we will discuss in following Section, we have
thus calculated with the spectral Boltzmann neutrino transport code MDBTH the evolution of
a 15M⊙ progenitor star including rotation.

6.1. The influence of rotation on the supernova evolution

As already mentioned, the rotation rates of stellar iron cores at the onset of gravitational insta-
bility are highly uncertain. Thus an possible approach to investigate the influence of rotation
on the supernova evolution is that one calculates several models with different assumed rotation
profiles and rotation frequencies. However, due to the challenging computational demands of
a multi–dimensional simulation with the MDBTH–code, we refrain from this approach. In-
stead, it was chosen to calculate a rotating model whose rotation profile maximises the effects
of rotation. However, since the model must still be physicalplausible, the following constraints
were put on theassumedrotation profile:

• Since the initial progenitor model is spherically symmetric, the rotation physics is cho-
sen such that the model superimposed with rotation can stillbe considered spherically
symmetric.

• Superimposing a rotation profile must not imply significantly deviations from the hydro-
static equilibrium and from the gravitationally bound state of the (spherically symmetric)
progenitor model.

Thus, in order to guarantee both constraints the rotation rate was chosen such that the influence
of rotation is small at the onset of gravitational instability and the ratio of the centrifugal force to
the gravitational force is smaller 1% everywhere on the computational domain. Keeping these
requirements in mind the initial angular frequency at the beginning of the collapse of the stellar
core is assumed to beΩi = 0.5 rad/s (which corresponds to a rotation period of roughly 12 s).
This rotation rate is kept constant throughout the Fe and Si core and decreases beginning at a
radius of 1750 km (corresponding to 1.43M⊙ ) with r−3/2. This choice of the rotation profile was
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motivated by results for pre–collapse stellar cores of stars whose evolution is followed including
the angular momentum transport by magnetic fields (Heger et al. 2005). However, our choice of
the initial angular frequency is about then times lower thanpredicted by Woosley et al. (2002)
for non–magnetic stars, and roughly ten times larger than the rotation rate for magnetised stars
predicted by Heger et al. (2005). Nevertheless, for the reasons discussed above, the assumed
rotation in model L&S–rot is rather slow compared to the assumptions of other core collapse
supernova modellers, see e.g. Kotake et al. (2004) and Ott etal. (2004).

As progenitor model for our study we have chosen the same 15M⊙ star of Woosley et al.
which was already used in the discussion of EoS effects in Chapter 5. Contrary, to our normal
approach, this model (denoted L&S–rot) was already calculated from the onset of gravitational
instability and through the moment of shock formation in 2D,in order to follow the effects of
rotation consistently from the beginning of the collapse through the whole supernova evolution.
The model is calculated on a 180◦ computational domain with an angular resolution of 1.41◦.
As the model name indicates we used the L&S–EoS and the normalsetup of physical input
physics (cf. Table 2.1) was chosen. Note, however, that thismodel was not calculated with the
description of electron capture rates on heavy nuclei put forward by Langanke et al. (2003) but
instead the description of Bruenn (1985) was used. Furthermore, since we were not able to
compare our new approximation of general relativistic effects (see Appendix B) in a rotating
model to a rotating fully general relativistic calculation, we have decided to use the original
approximation of general relativistic effects of Rampp & Janka (2002). Model L&S–rot, which
we will discuss in the following, is identical to model s15_64_r (discussed in Buras et al. 2006a,;
which we will denote L&S–rot–90) except that the later was calculated in a 90◦ (pole–equator)
setup and the evolution was only followed to roughly 250 ms after the shock formation1. A
detailed overview over the models discussed in this Sectioncan be found in Table 6.1. Since the
collapse phase, which is identical in models L&S–rot and L&S–rot–902, is already discussed in
Buras et al. (2006a) the most important fact will only be stated here: Due to angular momentum
conservation the angular frequency of the iron Fe–core increases from 0.5 rad/s during collapse
to 600–700 rad/s shortly after bounce, see Fig. 25 in Buras et al. (2006a), which implies that the
centrifugal forces also grow.

Centrifugal forces directly influence the supernova evolution in two ways. First, the dense
core becomes, due to a different hydrostatic equilibrium, oblate and this changes theisotropy of
the neutrino emission. Second, centrifugal forces, work again the gravitational force and thus
prolongs the advection of matter. While the former effect is trivial to show, see Figs. 6.1, 6.2,
and 6.4,and 6.6, the latter one is more complicated to observe, since violent convection tends
also to prolong the advection timescale.

We start our discussion of the effects of rotation by comparing the laterally averaged shock po-
sitions of the rotating and non–rotating models, see Fig. 6.7. Obviously, all models behave very
similar for evolution time up to 300 ms after the shock formation. Note that slightly larger shock
radii in model L&S-rot compared to model L&S–2D during this epoch must not necessarily be

1A comparison of models L&S–rot–90 and L&S–rot is thus an additional test of the discussion in Section 4.2 that
calculating a model in 180◦ or 90◦ (pole–equator) does not change the results strongly.

2The collapse phase was calculated in 180◦ and only after the shock formation the a switch to 90◦ in model
s15_64_r was done.
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Model 2D rotation Setup GR–potential
L&S–rot Yes Yes 180◦ Rampp & Janka (2002)

L&S–rot–90 Yes Yes 90◦ Rampp & Janka (2002)
L&S–64 Yes No 90◦ Rampp & Janka (2002)
L&S–2D Yes No 180◦ Appendix B

L&S–rot–1D No No — Rampp & Janka (2002)
L&S–1D No No — Appendix B

Table 6.1.:Overview over all models discussed in this Section. Stated is the model name,
whether or not the calculation was done in 2D, and whether rotation was applied.
Also stated is the 2D–setup and which approximations of general relativistic ef-
fects were used. Note that the potential according to Rampp &Janka (2002) is
stronger than the one discussed in Appendix B. Note also thatmodel L&S–rot–
1D was calculated with the same micro–physics and gravitational potential as the
rotating models (but without rotation), whereas in the models L&S–2D and L&S–
1D slightly different micro–physics and a different gravitational potential was used
(see text).

due to rotation, but might be caused by the different treatment of GR-approximations. To illus-
trate this we also show the shock trajectories of models L&S–1D and L&S–rot–1D, which both
were calculated — as the models L&S–2D and L&S–rot — with different GR–approximations3.
Despite these small differences both the rotating and non-rotating calculations evolve very sim-
ilar at early times. More important, however, is the fact that model L&S-2D-rot shows the onset
of an explosion at a time between 500 ms and 600 ms after the shock formation. In the follow-
ing, we will try to understand whether this onset of the explosion is due to rotation effects or
whether it is due to changed conditions in the supernova corewhich are not necessarily influ-
enced by rotation. Sadly, since our non-rotating two-dimensional model (L&S-2D) is not yet
evolved to the time where model L&S-rot shows the explosion,a direct comparison and pinning
down the rotational effects is not easily possible.

An overview of the angular dependence and of the evolution ofconvection can be obtained
from Fig. 6.8, where we show snapshots of the entropy and of the electron fraction at different
times. Model L&S–rot develops volume filling convection andan l = 1 shock instability, which
however can be seen much better in Fig. 6.9a where the coefficients of the shock expansion
into spherical harmonics (cf. Eqn. 4.5) are shown. The standing accretion shock instability
can again be linked to the power of the advective–acoustic cycle, see Fig. 6.9b. Obviously the
shock instability shows in the rotating models different evolutionary phases of violent shock
deformation and rather quiescent stages (e.g. at a time of 350 ms), however, only after a time of
roughly 500 ms (i.e. when the explosive shock expansion already started, Fig. 6.7), the power
as well as the shock oscillations grow noticeably. At earlier times the power in the rotating

3Note that in spherically symmetric calculations a strongerpotential produces a smaller shock radius but also
higher neutrino luminosities, see the discussion in Appendix B. These higher luminosities might trigger in
multi–dimensional simulations stronger convection and a strong shock expansion, similar to the EoS effects
discussed in Section 5.2.
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Figure 6.1.: The radii of the electron neutri-
nosphere (solid), anti electron
neutrinosphere (dashed), and
heavy (anti) lepton neutri-
nospheres (dashed-dotted) as
function of the angleθ at different
times. a: At a time of 200 ms
after the shock formationb:
At a time of 300 ms after the
shock formation. Note that model
L&S-rot-90 is not plotted, since it
was not calculated this time.c: At
a time of 400 ms after the shock
formation. Only model L&S-rot
was calculated to such a long
evolution time.

c

and non–rotating model is comparable, which is consistent with the similar amplitudes of the
shock instability. The absence of a clear trend to larger values in both quantities at earlier
times makes it very difficult to judge, whether this sudden increase at the explosionstage is due
to the expanding shock (which of course influences both the calculation of the shock modes
and of the power of pressure fluctuations behind the shock front) or whether small changes in
both quantities triggered the explosion. The latter can notbe excluded due to the fact that the
situation is highly non–linear.

However, looking at the advection and heating timescales, one sees for quite some time a
trend towards a condition that favours an explosion, see Fig. 6.10. As is already discussed in
Buras et al. (2006a) rotation tends to prolong the heating timescale (since a rotational flattened
neutron star, i.e. extended neutron star in the equator region, emits less and cooler neutrinos
at the equator, see e.g. Figs. 6.2 and 6.3) but rotation also increases the advection timescale.
Both effects are clearly visible in the timescales of our models. Interestingly in the exploding
model L&S–rot from a time of roughly 200 ms after the shock formation on, the advection
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Figure 6.2.: The angular dependence of the neutrino energy fluxes for the rotating and non–
rotating models at times of (a) 200 ms, (b) 300 ms, (c) 400 ms, and (d) 500 ms
after the shock formation. Note since not all models were evolved to so late times
not all panels depict all models. The fluxes were measured at 400 km.

timescale increases more strongly then the neutrino heating is reduced. Thus, though the heat-
ing timescale is longer, matter stays sufficiently longer in the heating region that the conditions
become favourable for an explosion. However, again, we cannot say that rotation is necessary
for the obtained explosion. Looking carefully at the non–rotating model L&S–2D, one observes
the same trends, however, starting from “more unfavourable” conditions (i.e. a lower ratio of
the advection timescale to the heating timescale). But clearly the rotating and the non–rotating
model behave quite similar, which renders it impossible to judge from the timescales the in-
fluence of rotation on the onset of the explosion. However, looking at the “energy budget” of
the simulations, one can investigate the influence of rotation much better. Figure 6.11 shows
for the different models the time evolution of several energies in the heating region between
the gain radius and the shock front. Obviously, rotation increases the internal energy in this
region, due to the fact that more mass is contained in the gainlayer, see Fig. 6.11c. However,
the internal energy as well as the kinetic energy contained in rotationEφkin do not vary strongly
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Figure 6.3.: The angular dependence of the mean neutrino energy for the rotating and non–
rotating models at times of (a) 200 ms, (b) 300 ms, (c) 400 ms, and (d) 500 ms
after the shock formation. Note since not all models were evolved to so late times
not all panels depict all models. The energies were measuredat 400 km.

at late stages of the evolution. The lateral kinetic energyEθkin and the kinetic energy contained
in convective flowsEconv

kin = Eθkin + Er
kin, on the other hand show a longtime trend to grow,

and during the last 250 ms of the calculation this amounts to more than a factor of two.
This suggests that the increase of the turbulent energyEconv

kin in the gain layer, which on the
one hand increases the convection but on the other hand also strengthens the “sloshing” of the
shock front, becomes at a time of about 500 ms after the shock formation large enough in order
to trigger a strong shock expansion and an increase of the advection timescale. This increase
of the advection timescale seems to be sufficiently large in order to produce the conditions for
the explosion. As one can see from the rate of energy deposition of neutrinos into the gain
layer, see Fig. 6.11d, the increase of convective energy is easily explained by neutrino heating.
During the time from 350 ms after the shock formation to 570 msafter the shock formation the
energy contained in convection in the gain layer increases by roughly 2× 1050 erg, whereas the
neutrino energy deposition during the same time is roughly 9×1050 erg. Thus the increase of the
turbulent energy in the gain layer can be easily explained with the amount of neutrino heating
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Figure 6.4.: The angular dependence of the neutrino energy flux of anti–electron neutrinos
(bottom) and muon and tauon (anti) neutrinos (top) for the rotating model L&S–
rot at times of (a) 200 ms, (b) 300 ms, (c) 400 ms, and (d) 500 ms after the shock
formation. The positions of the electron neutrinosphere (solid), anti–electron neu-
trinosphere (dashed), and heavy (anti) lepton neutrinos (dashed–dotted) are also
shown. Note that the fluxes are shown in units of 1044 MeV/cm2/s. Also note that
the plots are oriented such that the rotation axis lies horizonthally.

and the observed explosion is indeed triggered by delayed neutrino heating. Furthermore, we
can exclude that the explosion is acoustically–driven as proposed by Burrows et al. (see the
discussion in Section 5.1), since the observed amplitudes of g–mode oscillations, see Fig. 6.12
are again roughly a factor 100 smaller than the ones observedby Burrows et al. (2006a)4

Although it is clear that the explosion in model L&S–rot is driven by neutrino heating, or more
precisely by neutrino heating together with turbulent flows, the influence of rotation is not very
obvious. For the evolution time we are able to compare the non–rotating model L&S–2D with
the rotating one L&S–rot both models behave very similar. Especially the shock oscillations and

4For a detailed discussion of the g–mode amplitudes see Section 5.1.
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the power of the turbulent flows (Fig. 6.9), the ratio of the advection timescale to the heating
timescale (Fig. 6.10), and the kinetic energy contained in convective motion (Fig. 6.11a) show
the same trends in both models, and effects of rotation are thus not obvious. But rotation clearly
increases the mass in the gain layer (Fig. 6.11c) and slightly enhances the neutrino energy
deposition rate (Fig. 6.11d). The latter effect, however, seems almost to vanish at a time of about
300 ms after the shock formation, which again makes it difficult to understand the importance of
rotation on the found explosion. This implies that only a evolution of the non–rotating model to
the time where in the rotating case the explosion starts willgive a final answer to this question.

Last but not least, we have to mention that it is possible thatmodel L&S–rot is contaminated
by hitherto unknown numerically problems. This might be possible for two reasons: Firstly,
model L&S–rot is the longest multi–dimensional simulationever performed with the MD-
BTH–code, which implies that no experience for such simulations exists so far. Secondly,
model L&S–rot is a rotating model, which implies that the neutron star becomes strongly de-
formed, see Fig. 6.1. Since the closure relation for the Boltzmann equation — the variable
Eddington factor — is calculated on a spherically averaged model, see Chapter 2, this also
might lead to yet un-encountered problems. However, all numerical tests done so far show
consistency of model L&S–rot, nevertheless we will furtherinvestigate the numerics of this
particular model.

6.2. A simulation of a 10.2 M⊙ progenitor star model

In the following Section we will discus the evolution of a supernova simulation of a 10.2 M⊙
progenitor star, without considering any effects of the nuclear equation of state. The focus of this
Section lies thus not on the nuclear physics part of the simulations but rather on “special” prop-
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Figure 6.6.: The colour coded density (top) and temperature (bottom) of the rotating model
L&S–rot at times of 200 ms (a), 300 ms (b), 400 ms (c), and 500 ms(d) after the
shock formation. The lines represent the electron neutrinosphere (solid), anti–
electron neutrinosphere (dotted) and heavy (anti) lepton neutrinosphere (dashed).
Also note that the plots are oriented such that the rotation axis lies horizonthally.
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erties of the used progenitor model. The motivation for thisstudy can be summarised by men-
tioning that sofar in multi–dimensional simulations of core collapse supernovae with spectral
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Figure 6.8.: Snapshots of the distribution of the electron fraction (left) and of the entropy
(right) distribution at different times after the shock formation for model L&S–
rot. Shown are the times of 100 ms (a), 200 ms (b), 300 ms (c), 400 ms (d), 500
ms (e), and 577 ms (f). Note that the scale of the colour bars changes from time
to time.

Boltzmann neutrino transport (or approximation to it) neutrino driven explosions were only re-
ported for a few models with peculiar progenitor models whose masses were below 12 M⊙ , see
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rotating models and the non–rotating model. Note that for reasons of clarity the
l = 2 modes where shifted down by 0.3. Note furthermore that model L&S–
rot–90 can not posses anl = 1 mode due to geometry effects. b: The power
(cf. Eqn. 5.4) contained in the pressure fluctuations.

Kitaura et al. (2006), Buras et al. (2006a). Except for the rotating model of a 15 M⊙ progenitor
star discussed in Section 6.1 of this thesis, neutrino–driven explosions of progenitors whose
masses exceed 12 M⊙ have not yet been reported5. Clearly, a smaller (i.e. less massive) pro-
genitor star favours for several reasons the chance for a supernova explosion:

• Firstly, a smaller progenitor also produces a smaller iron core. This implies that the shock
has to travel through less material which contributes to losses in the energy budget of the
shock. These energy losses are caused by the fact that at the shock front iron–group
nuclei are dissociated into free nucleons, an event which consumes roughly 8.8 MeV per
nucleon of binding energy.

• Secondly, smaller progenitor models show a characteristicdecline of the density–profile
at smaller radii (due to the smaller core) than more massive progenitors. This density
decline marks the region of a composition interface, where —due to the onion shell
structure of the stellar core — the composition changes frommainly iron–group nuclei to
a significant contribution of Si and O. Once this compositioninterface reaches the shock
front it reduces on the one hand the ram pressure (∝ ρ) of the matter on the shock front,
see the discussion in Section 3.2, and on the other hand can lead to a shock acceleration
if the density gradient is large enough. For example, in the model of an O-Mg-Ne–core
of a 8–10 M⊙ star (see Kitaura et al. 2006) the explosion sets in when the shock front

5Note that the explosions of massive progenitors (up to 20 M⊙ ) reported by Burrows et al. (2006a,c,b) are thought
to be acoustic–driven and are thus not “standard” neutrino–driven explosions.
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reaches such a density gradient and the shock continously adjusts hydrodynamically to
larger radii6.

Thus the question has to be answered whether the two successful explosions reported by
Kitaura et al. (2006) and Buras et al. (2006a) can be traced back to very special conditions
of the particular progenitor models (e.g. the density gradient), or whether the neutrino heating
mechanism works sufficiently well to produce supernova explosions for a certain (low) mass
range of progenitor models7. The answer of this question is a very important one, since the
following questions are immediately linked to it: Is the neutrino heating mechanism a robust
mechanism for a certain class of progenitors? If this is the case, what classifies these progenitor
models? Does one have to consider only the progenitor mass for the classification, or is it a
multi–parameter space which makes understanding of a successful neutrino heating mechanism
more complicated?

Of course it is not feasible to answer or even address all these questions in the following
Section. However, we can address the question whether the neutrino heating mechanism works

6Though note quite correct one might think of the analogy of a surfer moving down a wave on a step gradient.
7The reader may remember from the discussion in Section 4.2 that the explosion of the 11.2 M⊙ progenitor also

started when the composition interface reached the shock front...
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Figure 6.11.: a: The kinetic energy in the gain layer contained in lateral direction (Eθkin,
dashed–dotted) and in lateral plus radial direction (Econv

kin, solid) for all models.
b: The internal energy (solid) and kinetic energy contained in rotation (dashed)
for all models. Note that model L&S–2D does not rotate.c: The mass contained
in the gain layer as function of time.d: The energy deposited by neutrino in the
gain layer as function of time.

for stars with a mass lower than 12 M⊙ , by investigating the supernova evolution of a 10.2 M⊙
progenitor8.

The particular model of this progenitor was provided by Heger et al.9, and its initial density
profile at the moment of the onset of gravitational instability is compared in Fig. 6.13 to the
density profiles of the 8.9 M⊙ model of Nomoto (1984, 1987) (denoted model O–Ne–Mg) and
the 11.2 M⊙ model of Woosley et al. (2002), which show successful neutrino driven explosions.

Obviously, the progenitor model O–Ne–Mg shows the already mentioned fast drop of the
density at radii below 1000 km. Both the progenitors with masses of 10.2 M⊙ and 11.2 M⊙ do
not show such a steep density decline. However, both models show the mentioned composition

8Of course, a successful explosion of this model will only be another hint and no final answer. However, a failed
explosion will rule out an easy correlation between the progenitor mass and the explosion mechanism.

9from www.stellarevolution.org
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Figure 6.12.: Different coefficients of the expansion of the pressure fluctuations for model
L&S–rot into spherical harmonics, cf. Eqn. 5.1.1. Note thatthe rotational flat-
tening of the dense core leads to strong growth of thel = 2 andl = 4 contribu-
tion. Shown are the amplitudes measured at positions of constant radii of 10 km
(panel a), 25 km (panel b), 30 km (panel c), and 35 km (panel d).

interface and a drop of density at radii of roughly 3000 km and1500 km, respectively and the
overall density profiles are very similar. Since the explosion in model s11.2 starts when this
density drop reaches the shock front, see the discussion in Section 4.2, it seems promising that
the same will happen in model s10.2 when the corresponding mass shells will have collapsed
to the shock front. By simulating the supernova evolution with this progenitor model s10.2 we
wanted to investigate this hypothesis, and we will discuss in the following our results from this
calculation.

The gravitational collapse and the subsequent supernova evolution of this model (denoted
s10.2–1D and s10.2–2D, respectively) were calculated withthe standard physics used through-
out this thesis. Since in a first step we were not interested inequation of state effects for this
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model, and we wanted to be able to compare the new model to model s11.2 discussed in Buras
et al. (2006a) and in Section 4.2, we chose the L&S–EoS as description for the matter in the
dense core.

Figure 6.14a shows that model s10.2–2D does not show an explosion during the first 300
ms after the shock formation. However, the model shows a strong shock instability, which if
amplified could launch the explosion at later times. A projection of the shock position onto the
system of spherical harmonics, analogous to Eqn. 4.4, reveals that in this model thel = 1 mode
contributes strongest to the shock instability, see Fig. 6.14b. Figure 6.16 gives a more detailed
impression of the sloshing of the shock front from one hemisphere to the other, and shows the
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6.2 A simulation of a 10.2 M⊙ progenitor star model

growing axis ratio of the shock front, which at a time of 300 msafter the shock formation
reaches a value of 1.6 to 1.

Despite the strong shock oscillation and the volume filling convection, model s10.2–2D does
not show an explosion, since the shock front is still far a wayfrom roughly 300 km where the
shock will gain energy from alpha–particle recombination10. However, the question remains
to be answered how close this model comes to an explosion. Is it possible that the model
will show an explosion at later times ? Of course, a definitiveanswer can not be given, but
several conditions seem to be promising. On the one hand the infalling composition interface
which reduces the ram pressure onto the shock front, has not yet reached the shock front during
the first 300 ms after the shock formation. Thus, a strong shock expansion is expected when
this interface reaches the shock front. Sadly, this will nothappen before 600 ms after the
shock formation. On the other hand, the shock shows already astrong instability and strong
convection. This leads to an increasing ratio of the advection time scale to the heating timescale,
see Fig. 6.15. Though this value is far below unity at a time of300 ms, i.e. the model shows a
factor of two too low heating for a successful explosion, this ratio has steadily increased from a
time of 200 ms after the shock formation on. Only a continued calculation to longer evolution
times will show if this trend will hold on and an explosion will be triggered or if this model will
also fail to explode.

Nevertheless we can conclude from this model several things: Though, it is still an unan-
swered question whether the neutrino heating mechanism generically drives the explosion for
progenitors with small iron cores, we can conclude that for such progenitors the explosion must
not necessarily set in fast, i.e. for times lower than roughly 200 ms after the shock formation.

10A shock radius larger than 300 km is a quite a good first hint forthe onset of the explosion, since experience
shows that once the shock reaches this “point of no return” and gains extra energy it will not recede anymore,
see the discussion in Section 6.1.
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Figure 6.15.:T a: The ratio of the advection timescale and the heating timescale in model
s10.2–2D. A value above unity indicates a successful explosion, see Buras et al.
(2006a).b: The advection timescale (cf. Eqn. 4.3).

The successful early explosions reported by Kitaura et al. (2006) and Buras et al. (2006a) are
supported by peculiar properties (i.e. density gradients)of the used progenitor models that have
rapidly collapsed to the shock fronts. Although it is still possible that model s10.2–2D will show
an explosion at later times when its steep density gradient reaches the shock front, the conditions
are not favourable for an explosion during the first 300 ms after the shock formation, despite a
strong shock instability and convective fluid flows. This fact together with all existing models
of successful explosions shows that the neutrino heating needs the support of other processes
(such as a drop of the ram pressure onto the shock front or a strong standing accretion shock
instability) that cause a shock expansion and anincreaseof the advection time scale. Volume
filling convection alone, driven by neutrino heating , seemsto be insufficient in a at least some
models, such as model s10.2–2D. Thus we conclude that the neutrino heating mechanism for
shock revival in core collapse supernovae is not robust in the sense that the final explosion
depends — even for low mass stars — strongly on the details of the progenitor structure.
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respectively.





7
Summary and Conclusions

In the main part of this thesis I have investigated the influence of the nuclear equation of state
on the evolution of simulations of core collapse supernovae. The motivation for this study can
be summarised by mentioning that the equation of state of supernova matter is neither from
experiments nor from theory well constrained and the uncertainties are thus high. Different
theoretical models of the nuclear equation of state of supernova matter reflect these uncertainties
in their different predictions of such quantities as, e.g. , the nuclear composition or the stiffness
around nuclear matter density.

In a first step, in Part I of this thesis, one–dimensional simulations have been used in order
to clarify how the nuclear equation of state governs the supernova evolution and to clarify
to what extent uncertainties of the description of dense matter influence the results obtained
from supernova simulations. Although one–dimensional simulations neglect multi–dimensional
effects, which are important for the supernova explosion mechanism, these simplified models
are helpful for understanding these questions because the reduced complexity allows one to
concentrate on the equation of state effects without having to deal with complicated multi–
dimensional effects.

These studies, which are discussed in Part I of this thesis, are comparable to the earlier ones
of (e.g. Thompson et al. 2003, Marek 2003, Sumiyoshi et al. 2005,only to mention a few),
however, for the first time the influence of different regimes of the nuclear equation of state
(i.e. the supra–nuclear regime, the intermediate density regime, . . . ) has been investigated in
self–consistent simulations.

In my studies I have used mainly the description of hot and dense matter according to Lattimer
& Swesty (1991), which is based on the compressible liquid drop model by Lattimer et al.
(1985), or I have applied the equation of state of Hillebrandt and Wolff, which is based on a full
Hartree-Fock calculation and a Skyrme force for the nucleon–nucleon interaction is assumed,
see Hillebrandt et al. (1984). In some studies as a third alternative, the relativistic mean field
equation of state of Shen et al. (1998b,a) has been used.
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Summary and Conclusions

With these equations of state it has been found that the nuclear equation of state influences
sizeably the supernova evolution: Firstly, the collapse timescale and the deleptonisation of the
core are different for simulations with different equations of state. This results in different neu-
trino luminosities of the burst signal, when the neutrinos that were trapped in the dense core
are suddenly released in large numbers. Secondly, during the late-time evolution (i.e. start-
ing at several 10 ms after the shock formation) the equation of state controls the compactness
(i.e. the mass to radius ratio) of the dense core and the characteristics of the emitted neutrinos,
in particular the neutrino luminosities and the mean neutrino energies, change strongly when
different descriptions of dense matter are applied in the simulations. As the results from both
non–exploding models and (artificially) exploding ones have shown, this is true for the “accre-
tion neutrinos” (i.e. neutrinos that are produced from the release of gravitational binding energy
as accreted matter settles on the proto–neutron star) and itis also true for neutrinos diffusing
out of the dense core. It was found that in models with soft equations of state, i.e. equations of
state that produce compact cores, the neutrino luminosity and mean neutrino energy are higher
than in models that were calculated with stiff equations of state. The importance of this result
cannot be stressed enough: On the one hand these equation–of–state–induced differences have
to be taken into account when one calculates the detector response to a supernova neutrino sig-
nal of modern or future neutrino detectors, see e.g. Kachelrieß et al. (2005). On the other hand
measurements of neutrino signals might be used to constrainsome properties of the nuclear
equation of state of supernova cores, since they leave a fingerprint in the supernova neutrino
signal.

In particular, it has been shown in this thesis that the supra–nuclear regime of the equation
of state — which is also the most unknown regime —, influences the supernova evolution
strongly. By stiffening or softening of the nuclear equation of state in this regime one can
reproduce the differences found in the simulations with the L&S and the Wolff–EoS. This leads
to the conclusion that the differences in runs with alternative equations of state stem mainly
from the supra–nuclear phase. Furthermore it has been shownthat theoretically possible and
experimentally not excluded phase transitions from normalnuclear matter (i.e. a homogeneous
phase of protons and neutrons) to an exotic phase (such as pion or hyperon condensates), which
can soften the equation of state considerably, lead e.g. to significantly changes of the neutrino
signals. However, it has been found that this depends strongly on the amount of softening of
the supra–nuclear phase and the mass of the progenitor star.For either low–mass progenitors
or only minor softening of the equation of state the influenceon the supernova evolution is
small and in the range of the variations observed in simulations with the Wolff and the L&S–
EoS. More massive progenitors with a considerable amount ofsoftening of the equation of
state lead to significantly increased neutrino luminosities and to a collapse of the proto–neutron
star to a black hole. The implications of these results are twofold. On the one hand, they
clearly demonstrate the influence of the supra–nuclear phase of the equation of state on the
proto–neutron star evolution. Dependent on the combination of the supra–nuclear phase and
the mass of the progenitor star a collapse of the dense core toa black hole can occur and
simultaneously the neutrino emission rises strongly. Thismight be of large importance for
the so–called collapsar model of gamma ray bursts (MacFadyen & Woosley 1998), in which a
delayed collapse of the dense core to a black hole is necessary to power the central engine of
the gamma ray burst. If the supra–nuclear phases influences either for which progenitor masses
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or at which time such a black hole collapse can occur, then thesupra–nuclear phase also sets
constraints on the possible progenitors for gamma ray bursts. On the other hand, the (strong)
sensitivity of the supernova evolution (i.e. the neutrino emission as well as the possible collapse
to a black hole) on the supra–nuclear regime of the equation of state might be — together
with observations of core collapse supernovaeand with the knowledge about the mass of the
progenitor star — used to constrain the supra–nuclear equation of state.

Altogether, the one–dimensional simulations of Part I haveshown that the influence of the
equation of state is of significant importance for the supernova evolution. Consequently, in
Part II of this thesis I have investigated the influence of thenuclear equation of state in multi–
dimensional simulations, that take multi–dimensional effects such as convection into account,
which — as supernova modellers do agree — are necessary for the supernova explosion mech-
anism. It shall be stressed here that a clean comparison of the one–dimensional and two–
dimensional simulations, and thus a direct comparison of equation of state effects in simula-
tions where spherical or axial symmetry was applied, is onlypossible due to the advantage that
both types of simulations could be performed with the same code and thus the same numerical
treatment.

For the first time, it has thus been possible to study equationof state effects in two–dimensional
simulations with spectral Boltzmann neutrino transportand to compare these simulations with
the corresponding spherically symmetric calculations. The two–dimensional models discussed
in Part II of this thesis have shown that the conclusions fromspherically symmetric simula-
tions still hold, but convection inside the proto–neutron star significantly changes the structure
of the dense core. The region where convection develops as well as the strength of convec-
tion depends on the choice of the equation of state. This influences noticeably the neutrino
emission of the dense core, but the general trend of one–dimensional simulations that models
with softer equations of state emit more and more energetic neutrinos has been found to hold in
multi–dimensional simulations as well.

Furthermore, it has been observed that the proto–neutron star is excited to perform g–mode
oscillations. The amplitudes of these oscillations are — due to the different compactnesses and
structures of the dense cores — also influenced by the nuclearequation of state. With regard
on the possible explosion mechanism of core collapse supernovae, where the explosions are
powered by acoustically damping of these g–mode oscillations (see, e.g. Burrows et al. 2006a),
these results require further investigation.

It has also been found that different equations of state change the strength of the non–radial
shock instability, where the shock front oscillates in low–modes (l = 1, 2...), and the equations
of state influence the growth of convection in the region between the proto–neutron star and
the standing supernova shock front. These purely multi–dimensional effects are mainly influ-
enced by the equation of state through the structural changes of the dense core and the different
neutrino luminosities and neutrino energies emitted from the core, and show that the neutrino
heating of matter is strongly equation of state dependent. Thus, at a time of 250 ms after the
shock formation, the conditions for shock revival differ drastically for the models with different
equations of state. The conditions in the model, which was calculated with a soft equation of
state seem more favourable for an explosion than in the simulation with a stiff equation of state.
From this the conclusion arises that the neutrino heating explosion mechanism may crucially
dependent on the nuclear equation of state.

147



Summary and Conclusions

However, all multi–dimensional models which were presented in this thesis also show clearly
that modern supernova simulations are not far from successful explosions: all models, except
for the model calculated with a stiff equation of state, show a clear trend to favourable conditions
for an explosion. These conditions stem from continuous neutrino heating of matter on the one
hand, and on the other hand from the presence of the standing accretion shock instability, which
increases the advection timescale of matter through the heating region (i.e. the time that it takes
matter to be accreted from the shock front down to the lower border of the heating region). The
latter increases the time in which matter is heated, whereasthe former supplies the energy input.
In late-time calculations, in all models both quantities produce a trend towards conditions that
are necessary for an explosion. This is independent of the used progenitor model, or whether or
not the model includes rotation. However, as the models alsoshow, these favourable conditions
need a long evolution time to develop, and the model of a rotating 15 M⊙ progenitor star shows
an explosion at roughly 600 ms after the shock formation. This explosion is not directly caused
by the rotation but by a combination of the standing accretion shock instability and the neutrino
heating. A comparison of the rotating model with a non–rotating one has shown that until a time
of 350 ms after the shock formation the evolution in both models is very similar and no large
influence of rotation could be observed. It is thus necessaryto continue all models discussed in
this thesis to longer evolution times, in order to decide whether this promising trend will really
continue and will lead to an explosion.

Despite the long evolution times no indication of an acoustic–driven explosion as proposed
by Burrows et al. (2006a) has been found in the multi–dimensional models. Although the —
for this explosion mechanism necessary — g–mode oscillations of the proto–neutron have been
observed, the amplitudes are at least two orders of magnitude below the ones observed by
Burrows et al. (2006a). Although the models discussed in this thesis do not rule out the possi-
bility of acoustically–driven explosions as proposed by Burrows et al., they rather indicate that
the delayed neutrino-driven mechanism might actually power the explosion at late evolution
times, which had not been investigated in multi–dimensional simulations before. The explosion
obtained for a rotating 15 M⊙ progenitor star, together with the promising conditions insimu-
lations of non–rotating stars of different stellar progenitors do actually inspire the hope thatthe
neutrino heating supernova explosion mechanism might workat later evolution times.

Only evolving all these promising models to later evolutiontimes will show if this hope is
justified. Furthermore these long evolution times of the models will be necessary to investigate
in more detail the acoustic damping of proto–neutron star g–mode oscillations. Finally, if the
finding of this thesis we be confirmed that for a soft equation of state an explosion is obtained
and not for a stiff one, this will stress the importance of the nuclear equationof state for core
collapse supernovae even more. Thus I want to conclude with the (brave) statement that it is
still possible that the “correct” nuclear equation of stateis the missing ingredient to understand
the explosion mechanism of core collapse supernovae.
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A
Neutrino opacities

A.1. Ion-ion correlation effects in stellar core collapse

Heavy (iron-group or more massive) nuclei dominate the composition in stellar iron cores until
nuclear densities are reached in the inner core and the bounce shock raises the entropies in the
outer core to values where free nucleons are favoured in nuclear statistical equilibrium (NSE).
During the infall phase therefore coherent, isoenergetic scattering off nuclei is the main source
of opacity for the electron neutrinos produced by electron captures (cf., e.g., Bruenn 1985,
1989a,b). Neutrino-nucleus scattering thus hampers the free escape of neutrinos, is responsible
for neutrino trapping around a density of 1012 g cm−3, and regulates the deleptonization and
increase of entropy during core collapse.

In the medium of the supernova core nuclei are coupled strongly with each other by Coulomb
forces. They thus form a highly correlated plasma, in which the interactions of neutrinos with
wavelengths larger than the average ion-ion separationaion (corresponding to neutrino energies
ǫν
<∼ 2~c/aion ∼ 20 MeV) are reduced by phase interference effects (Itoh 1975). The corre-

sponding ion screening was more recently calculated by Horowitz (1997) and Itoh et al. (2004),
and investigated in its effects on stellar core collapse by Bruenn & Mezzacappa (1997).The
latter authors employed the correction factor for neutrino-nucleus scattering cross sections as
given by Horowitz (1997).

Itoh et al. (2004), however, pointed out that the Monte Carlocalculations, which Horowitz’s
fit was based on, did not allow him to accurately represent thecross section reduction for low
neutrino energies, i.e., for energiesǫν <∼ ~c/aion ∼ 10 MeV, thus underestimating the importance
of ion-ion correlation effects. Itoh et al. (2004) provided a more accurate analytic fitting formula
by using the correct behaviour of the liquid structure factor for small momentum transfer in
neutrino-nucleus scattering.

The investigations presented in this Section have two goals. On the one hand we aim at study-
ing the differences for stellar core collapse and the formation of the supernova shock which
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Figure A.1.: The ratio of the angle-
averaged ion-ion correlation
factor as calculated with the
fitting formula of Horowitz
(1997) (see Fig. 9 in Bruenn
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tive to the one obtained from
the prescription provided by
Itoh et al. (2004) (see their
Fig. 2) as a function of the
variableξ for different val-
ues of the dimensionless pa-
rameterΓ.

arise from the improved description of ion screening as suggested by Itoh et al. (2004), com-
pared to a treatment using the formulae of Horowitz (1997). On the other hand we intend to
explore the sensitivity of the evolution to ion screening effects associated with the ionic mixture
of nuclei and nucleons that are present during core collapse. In accordance with the treatment
of NSE in current equations of state (EoSs) for supernova simulations, we consider the nuclear
components to be free neutrons, free protons,α particles, and one kind of heavy nucleus which
is considered as representative of the NSE distribution of nuclei beyond4He. Two different nu-
clear EoSs with largely differentα mass fractions during core collapse are employed. The first
EoS (“L&S”), provided by Lattimer & Swesty (1991), is based on a compressible liquid drop
model and uses a Skyrme force for the nucleon interaction (Lattimer et al. 1985). Our choice
of the compressibility modulus of bulk nuclear matter is 180MeV, and the symmetry energy
parameter 29.3 MeV, but the differences in the supernova evolution caused by other values of
the compressibility were shown to be minor (Thompson et al. 2003, Swesty et al. 1994). The
second EoS used here (“Shen”) is the new relativistic mean field EoS of Shen et al. (1998a,b)
with a compressibility of nuclear matter of 281 MeV and a symmetry energy of 36.9 MeV.

A.1.1. Ion-ion correlation factor

In this study we make use of two different fitting formulae for the angle-averaged correla-
tion factor 〈Sion〉, which describes the reduction of the neutral-current scattering of neutri-
nos off nuclei by ion-ion correlation effects. It is used as a multiplicative correction to the
neutrino-nucleus isoenergetic scattering opacity (cf. Horowitz 1997, Bruenn & Mezzacappa
1997, Rampp & Janka 2002). The first formula is provided by Horowitz (1997) and is based
on Monte Carlo results. The second one is given by Itoh et al. (2004) and was obtained from
data calculated with the improved hypernetted-chain method (see Itoh et al. 1983, and refer-
ences therein) for a classical one-component plasma. In allsimulations with ion screening we
also take into account (the rather small) electron screening effects according to Horowitz (1997)
by applying the additional correction factor of his Eqn. (19) to the rates of coherent neutrino-
nucleus scattering.
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A.1.1 Ion-ion correlation factor

One-component plasma

If the stellar plasma consists of only one nuclear species ofions (Zion,Aion), the ion sphere
radius which gives the mean inter-ion distance is defined as

aion =

(
3

4πnion

)1/3

, (A.1)

wherenion = nbXion/Aion is the number density of the ions with mass numberAion, charge
Zione, and mass fractionXion (nb is the number density of baryons). The strength of the ion-ion
correlations is characterised by the dimensionless parameter

Γ =
Z2

ione2

aionkBT
= 0.2275

Z2
ion

T10

(
ρ12

Xion

Aion

)1/3

, (A.2)

which is the ratio of the unshielded electrostatic potential energy between the neighbouring
ions to the thermal energy. HereT10 denotes the temperature in units of 1010 K and ρ12 the
mass density in 1012 g cm−3. Note that the definition ofΓ in Horowitz (1997) differs from the
ones used here and in Bruenn & Mezzacappa (1997) and Itoh et al. (2004) by a factor (4π) in
the denominator of Eqn. (A.2). In Horowitz’s notation this factor is absorbed in the employed
value ofe2.

Horowitz (1997) provided the following fitting formula for the angle-averaged suppression
factor〈Sion(ξ, Γ)〉Hor:

〈Sion(ξ, Γ)〉Hor =
1

1+ exp

−
6∑

i=0

βi(Γ)ξ



, for ξ < 3+
4

Γ1/2
, (A.3)

and
〈Sion(ξ, Γ)〉Hor = 1 , otherwise , (A.4)

to be applied for 1≤ Γ ≤ 150; for values ofΓ < 1 orΓ > 150, Horowitz (1997) recommends to
simply setΓ to 1 or 150, respectively. Theβi are coefficient functions ofΓ determined from fits
to Monte Carlo data. In Eqn. (A.3) the variableξ is the ratio of the mean ion-ion separationaion

to the wavelength for neutrinos (during core collapse primarily electron neutrinos with energy
ǫν), i.e.,

ξ = aion
ǫν

~c
. (A.5)

Itoh et al. (2004) provide a different fitting formula, see Eqs. (23)–(26) in their paper, which is
restricted to the case of a strongly degenerate electron gas, a usually well fulfilled condition dur-
ing stellar core collapse. Their treatment gives different results for the ion-ion correlation factor,
〈Sion(ξ, Γ)〉, in the limit of low neutrino energies (ξ <∼ 1). This can be seen in Fig. A.1. Itoh et al.
(2004) argue that the reason for this difference compared to the description by Horowitz (1997)
is their correct calculation of the liquid structure factorS(k) for small momentum transferk.
This makes the suppression of neutrino-nucleus scatteringby ion-ion correlations more impor-
tant than estimated by Horowitz (1997) and Bruenn & Mezzacappa (1997).
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Figure A.2.: Composition as a function of density at the centre (top) and at an enclosed mass
of 0.5M⊙ (bottom) for the evolution during core collapse with the EoSs of Lat-
timer & Swesty (1991; left) and Shen et al. (1998a,b; right).The plots show
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text).
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A.1.1 Ion-ion correlation factor

The simulations presented here intend to study the dynamical consequences of these differ-
ences during supernova core collapse.

Up to now we have considered a stellar medium consisting of only one nuclear species and
referred to formulae derived for a classical one-componentplasma. However, in the collapsing
core of a massive star a mixture of nuclei besides free neutrons and protons is present, usually
approximated byα particles plus one representative, heavy nucleus. To deal with that we de-
cided, in the simplest approach, to calculate the suppression factor〈Sion(ξ, Γ)〉 for α particles
and for the heavy nucleus independently, using the values for the average distanceaion between
ions of the same kind, derived from the number densitiesnα or nA, respectively. This assumes
that different ionic components coexist without collectively affecting the screening of neutrino-
nucleus interactions. Alpha particles thus change the ion screening for heavy nuclei only by the
fact that their presence may reduce the number density of heavier nuclei.

Ionic mixtures

For a liquid mixture of different ions (Z j ,A j) including free protons, Itoh et al. (2004) suggest
a modified treatment, referring to earlier work by Itoh et al.(1979). Employing the so-called
linear mixing rule, one can extend the calculations of neutrino-nucleus scattering cross sections,
obtained for a one-component ion liquid, to the case of multi-component fluids.

The ion sphere radius for an ionj in the mix is now given by

a j = ae Z1/3
j (A.6)

with ae being the electron sphere radius,

ae =

(
3

4π
∑

i Zini

)1/3

, (A.7)

where the sum extends over free protons and all nuclei with number densitiesni . The dimen-
sionless variableξ j then becomes

ξ j = a j
ǫν

~c
. (A.8)

The ion-ion correlations of nuclear speciesj depend on the dimensionless parameterΓj defined
as

Γj =
Z j

5/3e2

aekBT
=

Z2
j e

2

kBT


4π
3

∑

i

Zi

Z j
ni


1/3

= 0.2275
Z5/3

j

T10

ρ12

∑

i

XiZi

Ai


1/3

. (A.9)

The angle-averaged ion-ion correlation factor〈Sion(ξ j , Γj)〉 is now evaluated forα particles and
heavy nuclei with the fitting formula provided by Itoh et al. (2004), usingξ j andΓj as given in
Eqs. (A.8) and (A.9), respectively.

Applying the naive procedure of Sect. A.1.1 for the conditions in a supernova core shows that
usuallyξ ≫ 1 for α particles becauseα’s are less abundant than heavy nuclei in the central part
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Figure A.3.: a: Central electron fractionYe and lepton fractionYlep as functions of
central density for core collapse calculations with the EoSof Shen et al.
(1998a,b). Model Shen_ion_off does not include the effects of ion-ion corre-
lations, Model Shen_ion_Hor uses the description of ion screening according to
Horowitz (1997), Model Shen_ion_Itoh employs Itoh et al.’s(2004) treatment
for a one-component plasma, and Model Shen_ion_mix their treatment of ionic
mixtures.b: Same as panel a but for the central (matter) entropys.

of the core and during most phases of the collapse. TheirΓ is then less than unity. Both factors
diminish ion screening forα’s to a negligible level. In contrast, following the description in this
section, the presence ofα’s can affect also the ion screening of heavy nuclei by reducing the
inter-ion separation (Eqn. A.6) and thusξ j (Eqn. A.8). Moreover,Γ j for heavy nuclei according
to Eqn. (A.9) might become larger than in Eqn. (A.2). Therefore the presence ofα’s has an
indirect influence on neutrino scattering off heavy nuclei and thus on ion-ion correlations during
stellar core collapse, despite the fact that the screening effects forα particles are still small
because theirΓ is usually below unity (following Horowitz (1997),Γ is then set to unity for
evaluating the angle-averaged cross section suppression factor).

While our procedure for treating the effects ofα particles in an ionic mixture with heavy nuclei
and free nucleons adopts the recipe of Itoh et al. (2004), Sawyer (2005) recently discussed an
alternative approach to the problem for multi-component fluids by applying the Debye-Hückel
approximation. He pointed out that in multi-component plasmas the ion-ion correlation effects
might be greatlyreduced, leading to much larger neutrino opacities than for a one-component
plasma, even if the constituent ions have only a small range of N/Z ratios. Electron density
fluctuations for an ionic mixture enhance this tendency. Sawyer’s calculations therefore yield
a result which isopposite toour application of the linear mixing rule for calculating multi-
component plasma parameters. They tend to bring one back closer to the case with ion-ion
correlations being ignored, simulations of which will be presented below, too. Thus we pro-
vide a set of models with the intention to encompass and bracket the “extreme” possibilities
discussed in the literature.
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Figure A.4.: Gas entropy vs. enclosed mass at the moment of shock formation in the models
of Fig. A.3. The shock formation is defined by the instant whenthe entropy in
the core first reaches a value of 3kB per nucleon.

A.1.2. Numerical simulations

For our study we apply the same micro-physical input as described in Section 3.2. The core
collapse simulations presented here were started from the 15 M⊙ progenitor s15a28 from Heger
et al. (2001).

For describing the thermodynamics and composition of the stellar plasma, the EoS of Lat-
timer & Swesty (1991) and the one of Shen et al. (1998a,b) are applied at high densities
(ρ > 6.7 × 107 g cm−3 or ρ > 2.7 × 108 g cm−3, respectively). At lower densities the EoS
contains a mixture of electrons, positrons, photons, nucleons and nuclei, with the nuclear com-
position being described by a simple approximation to a four-species NSE for temperatures
above about 0.5 MeV. Below that temperature the compositionis adopted from the progenitor
star and modified if nuclear burning plays a role during collapse (for details, see Appendix B in
Rampp & Janka 2002). The two EoSs show major differences in the abundances ofα particles,
which can be larger by up to a factor of∼ 10 in case of the Shen et al. (1998a,b) EoS. This is
visible in Fig. A.2 where the number fractions of free neutrons, protons,α’s and of the represen-
tative heavy nucleus (whose mass and charge numbers typically grow with density until nuclei
disappear at the phase transition to nuclear matter) are displayed as functions of increasing den-
sity during collapse both at the stellar centre and at an enclosed mass of 0.5M⊙. Although their
mass fraction is much lower,α particles in the Shen et al. (1998a,b) EoS can become equally
or even more abundant (by a factor up to about two) than heavy nuclei in the outer layers of the
collapsing core, in particular exterior toM(r) >∼ 0.5–0.6M⊙.

For each of the employed EoSs four core collapse simulationswere performed, all starting
from the onset of gravitational instability and carried on until the moment of shock formation.
Calculations with ion-ion correlation (and electron screening) effects in neutrino-nucleus scat-
tering being switched off, i.e. for 〈Sion〉 ≡ 1 (andRe ≡ 1 instead of Eqn. 19 of Horowitz 1997),
are denoted with “EoS_ion_off”, where EoS stands for “L&S” or “Shen”. They are compared
with simulations (models “EoS_ion_Hor”) where the ion-ioncorrelation factor of Horowitz
(1997; Eqs. A.3,A.4) is used, and with models in which ion-ion correlations are described ac-
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Figure A.5.: Spectra of neutrino energy density (solid line) and energy flux (dashed) for
Model Shen_ion_off (left) and Model Shen_ion_Hor (right) when a density of
1012 g cm−3 is reached at an enclosed mass of 0.3M⊙.
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Figure A.6.: Profiles of electron fractionYe, lepton fractionYlep (left), and (gas) entropys
(right) versus enclosed mass for Models Shen_ion_off (dotted), Shen_ion_Hor
(solid), Shen_ion_Itoh (dashed), and Shen_ion_mix (dash-dotted) at the time
when the central density has reached a value of 1014 g cm−3.

cording to Itoh et al. (2004) (models “EoS_ion_Itoh”). Finally, the sensitivity of stellar core col-
lapse to the treatment of ion screening for ionic mixtures isinvestigated by simulations (models
“EoS_ion_mix”) in which the correction factors〈Sion(ξ j , Γ j)〉 are calculated from Itoh et al.’s
(2004) formulae withξ j andΓ j as given in Sect. A.1.1.

A.1.3. Results

Figure A.3 shows electron fractionYe, lepton fractionYlep and (gas) entropys, respectively, at
the core centre during collapse simulations with the Shen etal. (1998a,b) EoS. For both EoSs
employed in this work, the same relative changes are found when models without ion screening
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Figure A.7.: The energy source term for neutrino-electron scattering for densities of (a)
1011 g cm−3 and (b) 1012 g cm−3 at the stellar center in the collapse models with
the Shen et al. (1998a,b) EoS. Negative values mean that neutrino energy is “ab-
sorbed” (net scattering out of the corresponding energy bin), positive values mean
“emission” of neutrino energy (i.e., net scattering of neutrinos into the energy
bin).

are compared with calculations with ion-ion correlations according to Horowitz (1997) (see
Models Shen_ion_Hor and Shen_ion_off in Fig. A.3). We shall mostly concentrate here on
the results obtained with the Shen et al. (1998a,b) EoS, becauseα particles are much more
abundant there (see Fig. A.2) and many aspects of ion screening in simulations with the EoS
of Lattimer & Swesty (1991) were already discussed by Bruenn& Mezzacappa (1997). Our
results agree qualitatively with those of the latter paper.Quantitative differences compared to
Bruenn & Mezzacappa (1997) are caused by the inclusion of improved electron capture rates on
nuclei in our work, which significantly increase electron captures above a few 1010 g cm−3 so
that lower values ofYlep ands result after trapping (cf. Langanke et al. 2003, Martínez–Pinedo
et al. 2005).

As explained in detail by Bruenn & Mezzacappa (1997), the screened cross section for neutrino-
nucleus scattering reduces the transport optical depth of low-energy neutrinos (cf. Fig. 3 in
Bruenn & Mezzacappa 1997) and allows them to escape from the core more easily. This is
obvious from a flux enhancement of neutrinos at energiesǫν

<∼ 10 MeV in Fig. A.5, where the
situation is displayed at a density ofρ = 1012 g cm−3. Ion-ion correlations thus cause a decrease
of Ye andYlep that is stronger by about 0.02 until neutrino trapping sets in (Fig. A.3a). The
homologously collapsing stellar core correspondingly shrinks and the shock forms at a some-
what smaller enclosed mass (Fig. A.4). The shock formation is defined by the moment when
the postshock entropy first reaches a value of 3kB per nucleon. A part of the effect visible in
Fig. A.4 might therefore be a consequence of the slightly higher core entropy after neutrino
trapping in models with ion screening (see Figs. A.3b and A.6).

Neutrino-electron scattering is very efficient in downscattering neutrinos from the high ener-
gies, where they are mostly created by electron captures, tolower energy states. Therefore
the phase space at low energies is quickly refilled. Figure A.7 shows the source term for
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Figure A.8.: The optical depth for energy exchange between neutrinos andstellar plasma as
a function of the neutrino energy at the centre of the iron core for densities of
(a) 1011 g cm−3, (b) 1012 g cm−3, (c) 1013 g cm−3, and (d) 1014 g cm−3. The results
are taken from collapse calculations with the Shen et al. (1998a,b) EoS. The left
panels show enlargements of the low-energy window where ion-ion correlations
have the largest effect.
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Figure A.9.: The cross section suppression factor〈Sion〉 for neutrino scattering off heavy nu-
clei (bold lines) as function of neutrino energy at the center of the iron core for
densities of (a) 1011 g cm−3, (b) 1012 g cm−3, (c) 1013 g cm−3, and (d) 1014 g cm−3.
The results are taken from collapse simulations with the Shen et al. (1998a,b)
EoS. Also plotted (thin solid lines with crosses) are the local spectra of the neu-
trino energy density (normalised to the spectral maximum),which are practically
identical for all simulations.

energy redistribution by neutrino scatterings off electrons for two density values below trap-
ping conditions. The downscattering of high-energy neutrinos explains why the local energy
spectra, dEν/dǫν with Eν being the neutrino energy density, are essentially the samein Mod-
els Shen_ion_off and Shen_ion_Hor, despite of clear differences between the energy flux spectra
of both runs (Fig. A.5).

On their way out escaping neutrinos transfer a part of their energy to electrons in collisions,
thus heating the stellar medium (Bruenn 1986). Since ion screening of neutrino-nucleus scatter-
ings reduces the transport opacity and therefore the effective optical depth for energy exchange
with the stellar background mainly for low-energy neutrinos, but hardly changes the downscat-
tering probability of high-energy neutrinos (Fig. A.8), the larger loss of lepton number leads
to an increase of the central entropy by about 0.12kB per nucleon (Fig. A.3b). In Fig. A.8 the
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optical depthτ at the centre is calculated as

τ(ǫ) =
∫ ∞

0
dr (λeff(ǫ, r))

−1 , (A.10)

whereλeff(ǫ, r) is the effective mean path for energy exchange, i.e., the average displacement
between two reactions with energy exchange between neutrinos and target particles (see Rybicki
& Lightman 1979). It can be expressed as

λeff(ǫ, r) =
√
λt(ǫ, r) λe(ǫ, r) , (A.11)

whenλe is the mean free path for reactions with energy exchange, i.e. neutrino absorption and
neutrino-electron scattering in the present context, andλt is the total mean free path for mo-
mentum transfer (“transport mean free path”), which includes all processes by which neutrinos
interact with the stellar fluid.

Figure A.9 displays the ion screening factors〈Sion〉 superimposed to the normalised neu-
trino energy spectra dEν/dǫν at the stellar centre for densities of 1011 g cm−3, 1012 g cm−3,
1013 g cm−3, and 1014 g cm−3. Figure A.9 once more demonstrates that the reduction of neutrino-
nucleus scattering mostly affects neutrinos at energies below the spectral maximum for all plot-
ted cases. In combination with Fig. A.8 it also shows that thetrapping conditions for the bulk
of the neutrino spectrum are not influenced strongly by ion screening. This was identified by
Bruenn & Mezzacappa (1997) as the reason why ion-ion correlations have no dramatic effect
on the core deleptonization.

From Fig. A.1 it is clear that differences between the treatments of ion-ion correlations by
Horowitz (1997) and Itoh et al. (2004) are largest forξ <∼ 0.5. The improvements by Itoh et al.
(2004) are therefore most important for the lowest neutrinoenergies in the energy window
affected by ion screening. Since the phase space available at such low energies is small, one
cannot expect large quantitative consequences for stellarcore collapse. This is confirmed by
Figs. A.3–A.4 and Fig. A.6. Itoh et al.’s (2004) description(in Model Shen_ion_Itoh) leads
to values ofYe, Ylep, and s after trapping which are essentially indistinguishable from those
obtained with Horowitz’s (1997) formulae, consistent withthe insignificant differences between
Models Shen_ion_Hor and Shen_ion_Itoh seen in the other plots. Note that the crossing of the
Ye-, Ylep- ands-profiles for simulations with and without ion screening at 0.45M⊙ (Fig. A.6) was
also present in the results of Bruenn & Mezzacappa (1997). Finally testing the sensitivity of the
core collapse evolution to the treatment of ion screening for the ionic mixture of free protons,
α particles and a representative heavy nucleus, we also couldnot discover any differences of
relevance.

A more detailed analysis reveals the reasons for this insensitivity, which are valid for both em-
ployed EoSs: Below the neutrino trapping regime (i.e., forρ <∼ 1012 g cm−3) even for low-energy
neutrinos (ǫν ≈ 5 MeV) the parameterξ is larger than or around unity (except for neutrinos in-
teracting withα particles in an ionic mix whenξα is computed from Eqs. A.6–A.8). Moreover,
Γ <∼ 50 holds at the same time, implying that the ion-ion correlation factors〈Sion(ξ, Γ)〉Hor and
〈Sion(ξ, Γ)〉Itoh for neutrino scattering off heavy nuclei are essentially the same (see Fig. A.1).
Only at densities above the trapping density the value ofξ drops significantly below unity and
Γ exceeds 50, causing visible (typically factors 2–3 forǫν <∼ 5 MeV; Fig. A.9) differences in the
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ion-ion suppression factors〈Sion〉. At these densities, however, the exact value of the neutrino-
nucleus scattering cross section has no noticeable influence on the evolution of the core proper-
ties and on the neutrino transport.

Alpha particles in the inner core do not become sufficiently abundant to cause mentionable
differences. Their indirect effect on ion-ion correlations of heavy nuclei in an ion mixtureby
reducinga j (and thusξ j) and increasingΓ j (Sect. A.1.1) for the heavier nuclei is essentially
negligible, because their contribution to the sum in Eqn. (A.7) is diminished by their number
density being multiplied with a factorZα/Z j ≪ 1. Moreover,α particles do not account for a
significant contribution to the total neutral-current scattering opacity, because the opacity for
coherent scattering of neutrinos by nuclei (Z,N,A) scales roughly withN2/A and therefore is
much smaller forα particles than for heavy nuclei. For this reason the direct influence ofα
particles and thus of the suppression of their coherent (elastic) scattering cross section for low
neutrino energies is miniscule, despite the fact thatξα drops below unity already at densities
ρ <∼ 1011 g cm−3 in a mixture with heavy nuclei. (On the other hand,Γα turns out to be always
less than unity and, following Horowitz (1997), is therefore set toΓα = 1 for evaluating the
angle-averaged ion screening correction factor.)

In this Section we presented results from simulations of stellar core collapse with the aim to
investigate the consequences of ion-ion correlations in neutrino-nucleus scattering, comparing
Itoh et al.’s (2004) improved description with an older one by Horowitz (1997). We employed
the EoS of Shen et al. (1998a,b) in addition to Lattimer and Swesty’s (1991) EoS and treated
electron captures on heavy nuclei according to Langanke et al. (2003), making nuclei dominant
over protons in producing neutrinos up to the density of the phase transition to nuclear matter.

Despite these differences in the input physics, our models essentially confirmed the previous
calculations by Bruenn & Mezzacappa (1997) who followed Horowitz (1997) in their descrip-
tion of ion screening. Because ion screening is effective only in a low-energy window where
the available phase space is rather small, the influence of ion-ion correlations during stellar
core collapse and on the formation of the supernova shock is moderate (Bruenn & Mezzacappa
1997).

We found that the improvement by Itoh et al. (2004) does not lead to any noticeable differences
because it affects only neutrinos of very low energies (<∼ 5 MeV) before trapping densities
(ρ ≈ 1012 g cm−3) are reached. Differences at larger neutrino energies occur only at higher
densities and thus do not affect the deleptonization and entropy evolution. Effects due to the
ionic mixture of free protons,α particles, and a representative heavy nucleus — using the linear
mixing rule as suggested by Itoh et al. (2004) — were found to be negligibly small, too, mainly
because the abundance ofα particles in the inner regions of the collapsing stellar core is too low
to affect the ion screening of heavy nuclei indirectly (see Sect. A.1.1). Alpha particles do not
contribute to the total opacity for elastic neutrino-nucleus scattering on a level where their ion
screening (which becomes sizable only when the mixture effects of Sect. A.1.1 are accounted
for) might be relevant.

Improving the description of ion-ion correlations for the complex mix of heavy nuclei with a
large variety of components, alpha particles, and free nucleons in the supernova core, however,
is desirable. Referring to multi-component calculations based on the Debye-Hückel approxima-
tion in the limit of small momentum transfer, Sawyer (2005) argues that a range ofN/Z ratios in
ionic mixtures can protect against the strong ion screeningsuppression of neutrino-nuclei scat-
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tering predicted by the effective averages of one-component plasma parameters applied in the
current literature and in this work. Moreover, the description of nearly free nucleons and nuclei
in NSE is expected to hold only up to a density of about 1013 g cm−3. Above this density and
below the normal nuclear matter saturation density, a pastaphase may develop with nucleons
clustered in subtle and complex shapes. Correlation effects for coherent neutrino scattering can
then not be treated within the single heavy nucleus approximation (e.g., Horowitz et al. 2004a,b,
Watanabe et al. 2004).

A.2. Effects of electron polarisation

In the previous Section A.1 we described the effects of ion-ion correlations during the stellar
core collapse phase. In the following Section we will discuss the related effect of electron
polarisation that also modifies the iso-energetic scattering cross section of neutrinos on nuclei.

Traditionally, the differential cross section for energy conserving scattering ofneutrinos off
nuclei is written as (see, e.g. Rampp & Janka 2002)

dσ
dΩ
=
σ0

128π2

(
ǫν

mec2

)2

A2nAW2e−4bǫ2/c2(1−ω)Sion(ω)(1+ ω) (A.12)

whereω is a abbreviation for the cosine of the scattering angleθ, e−4bǫ2/c2(1−ω) represents the
nuclear form factor,Sion(ω) is due to the ion–ion corelation (see Section A.1), and

W :=

[
(CA −CV) + (2− (CA −CV)

2Z − A
A

]
, where (A.13)

CA,CV are the coupling constants for axial and vector currents of the weak interaction.
Then the total cross section reads

σtot =

∫
dσ
dΩ

(1− ω)dΩ = 2π
∫ 1

−1
dω

dσ
dΩ

(1− ω) =

σ0

64π

(
ǫν

mec2

)2

A2nAW2
∫ 1

−1
dω(1+ ω)(1− ω)Sion(ω) =

σ0

64π

(
ǫν

mec2

)2

A2nAW2 · 4
3
〈S(ǫ)〉ion ,

(A.14)

where〈S(ǫ)〉ion now indicates the angularly averaged ion–ion corelation factor (see Section
A.1).

Expressing this in the first two Legendre coefficients, and by considering the low and high
neutrino energy limits one finally obtains (see Bruenn & Mezzacappa 1997) for the transport
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opacity due to scattering

κ(0)(ǫ) − 1
3
κ(1)(ǫ) = 2πǫ2 (Φ0(ǫ) − Φ1(ǫ)) =

σ0

32π

(
ǫν

mec2

)2

A2nAW22
y − 1+ (1+ y)e−2y

y3
〈Sion〉 ,

(A.15)

where〈Sion〉 takes account of the angularly averaged ion–ion correlations. The implemen-
tation of the transport opacity is straightforward. However, we make the assumption that the
ion correlation correction factor〈Sion〉 is proportional to bothΦ0 andΦ1 and not only to the
combinationΦ0 − Φ1 (see Rampp 2000)

Seizing a suggestion of Leinson et al. (1988), Burrows et al.(2004) describes an additional
Clos term to the cross section of Eqn. A.12 that includes the contributions of the electron polar-
isation in the iso–energetic scattering of neutrinos on nuclei at low neutrino energies (i.e.ǫν <
5 MeV).

Taking this additional term into account, the differential cross section for isoenergetic scatter-
ing reads

dσ
dΩ
=
σ0

64π

(
ǫν

mec2

)2

A2nA

(
We−2bǫ2/c2(1−ω) +Clos(ω)

)2
Sion(ω)(1+ ω) ,

(A.16)

where

Clos(ω) =
Z
A

(
1+ 4 sin2ΘW

1+ (krD)2

)
(A.17)

andrD is the Debye radius

rD =

√
π~2c

4αpFEF
, (A.18)

k2 = |p− p′|2 = 2(ǫν/c)2(1−ω), pF andEF are the electron Fermi momentum and energy, and
α is the fine–structure constant.

Note, thatClos(ω) is in principal angle dependent and thus the straightforward integration
from Eqn. A.16 is not possible.

We thus simply assume, that the angle dependence ofClos(ω) can be mimicked by introducing
an average angle〈ω〉 into Clos(ω).

Then by using
(
We−2bǫ2/c2(1−ω) +Clos(ω)

)2
=W2e−4bǫ2/c2(1−ω)+2We−2bǫ2/c2(1−ω)Clos+C2

los in
the integral from Eqn. A.16 we obtain:

165



Neutrino opacities

κ(0)(ǫ) − 1
3
κ(1)(ǫ) = 2πǫ2 (Φ0(ǫ) − Φ1(ǫ))

=
σ0

32π

(
ǫν

mec2

)2

A2nAW22
y − 1+ (1+ y)e−2y

y3
〈Sion〉 +

2
σ0

32π

(
ǫν

mec2

)2

A2nAW2
y/2− 1+ (1+ y/2)e−y

(y/2)3
〈Sion〉Clos +

σ0

32π

(
ǫν

mec2

)2

A2nA〈Sion〉C2
los

4
3

(A.19)

Note that the original implementation is retained aslimǫ→∞Clos = 0.
Again, we assume that the ion correlation correction factor〈Sion〉 is proportional to bothΦ0

andΦ1 and not only to the combinationΦ0 − Φ1 , see Rampp (2000).
As we have already statedClos = 0 is negligible for neutrino energiesǫ above roughly 5 MeV.

To guarantee numerically a smooth transition we have thus added an additional "Fermi–like "
suppression factorFsup

Fsup=
(
1+ exp (ǫν − a)/b

)−1 , (A.20)

whereǫν is the neutrino energy,a and b are parameters that can be chosen such that the
contributions ofClos is smoothly suppressed for higher neutrino energies.

Though the contribution of the additional termClos is not likely to produce significant changes
during a core collapse simulation we have simulated a few simulations from onset of gravita-
tional instability to core bounce of a 15 M⊙ progenitor star of Heger et al. (2001). We have
calculated a series of core collapse simulations where we did not regard the polarisation term
(Clos=0 for all neutrino energies, model “NoClos”), and where we considered the polarisation
term. For the latter simulations we used the extreme cases ofmean angles ofω=-1,0,1. Addi-
tionally, we simulated one collapse where the mean angle wasrandomly varied between –1 and
1 for each time step. Furthermore, we have varied the valuesa andb from Eqn. A.20 in order
to suppress the polarisation term for different neutrino energies (see Table A.2) between 5 MeV
and 20 MeV. The reason for the latter cases is that though the contribution of the polarisation
term should vanish for neutrino energies below 10 MeV, our choice of the neutrino energy grid
allows for only 2–3 energy bins in that neutrino energy range. Thus by suppressing the polari-
sation term in Eqn. A.16 at higher energies we can test if our results converge and whether the
number of neutrino energy bins is important for the effects of the polarisation term.

A.2.1. Results

As one can see in Fig. A.10 considering the additional polarisation term has — as expected —
only minor influences on the collapse phase. The difference in the deleptonisation of the core is
roughly 3% and the entropy rises by roughly 2%. As one can alsosee this effect is even weaker
in the models where the contribution of the polarisation term was suppressed above neutrino
energies of 5 MeV (and with two energy bins below 5 MeV) and theeffect saturates for a sup-
pression of the polarisation term for neutrino energies above 10 MeV (and 4 energy bins below
10 MeV) and 20 MeV, respectively. This implies that indeed the effect of the polarisation term
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Model ǫsup [MeV] ω

NoClos 0 —
Clos–5–0 5 0
Clos–5–1 5 +1
Clos–5–m1 5 –1
Clos–5–ran 5 random
Clos–10–1 10 +1
Clos–10–m1 10 –1
Clos–10–ran 10 random
Clos–20–ran 20 random

Table A.1.: Overview over all models cal-
culated with the polarisation
term Clos. ǫsup denotes the
cutoff value of the neutrino
energy above which polarisa-
tion termClos is suppressed.
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Figure A.10.: a: The central electron fraction as function of central density for all models.b:
The central entropy as function of central density for all models.
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is limited to neutrino energies below 10 MeV. As one can conclude from Fig. A.10 (small) dif-
ferences show up at a central density of 1012g/cm3, shortly before neutrino trapping sets in. The
reason for this can be deduced from Fig. A.11, where the spectra of electron neutrinos are shown
at the moment when a central density of 1012g/cm3is reached. Obviously, the polarisation term
tends to reduce the high energy flux (ǫν > 13 MeV) and increases the number of neutrinos with
an energy of 10 MeV. Those leave by down scattering to lower energies the core, as explained in
the previous Section A.1, and thereby increase the entropy.Freeing the phase–space for higher
energetic neutrinos also allows for more electron capture,which together leads to the results in
Fig. A.10. All in all, we conclude that the inclusion of the polarisation term in core collapse
supernova simulations, has a small effect on the deleptonisation and the neutrino spectra. How-
ever, this effect is smaller than the effect of correlated neutrino scattering on the ion–ion lattice,
which was discussed in the previous Section A.1, and therefore was not considered in previous
calculations. However, it is still an open question if this effect influences the neutrino spectra at
the time of shock breakout. If this is the cases, then it mightbe interesting to consider this effect
in the prediction of the measurements of the burst signal in neutrino detectors. However, to an-
swer this question it is necessary, to evaluate the models, which were presented here, to longer
times in the postbounce phase, which will be done in the near future. However, the effect of the
polarisation term during the collapse phase is also much smaller than the influence of different
nuclear equations of state, see Section 3.2. Since the EoS effect in the shock breakout, though
obvious in our simulations, is not measurable in current neutrino detectors, see Kachelrieß et al.
(2005), it is unlikely that the inclusion of the polarisation term in postbounce calculations will
lead to detectable differences in measurements of supernova neutrinos.

A.3. Electron capture during stellar core collapse

In this Section we will discuss the importance of electron captures (EC) on heavy nuclei dur-
ing the collapse phase and the evolution after the shock formation. Electron captures play an
important role during the supernova evolution: On the one hand electron captures reduce the
electron degeneracy pressure, thereby supporting the onset of gravitational instability and thus
influencing the collapse dynamics. On the other hand, EC produce the neutrinos that store the
released gravitational binding energy and which are crucial for the neutrino driven supernova
explosion. Thus, it is very important to use an accurate description for EC in core collapse
supernova simulations that describes not only the capture process as accurate as possible but
also the spectral information of the emitted neutrinos.

Electron capture can occur in two ways in the stellar core: Onthe one hand, electrons can
be captured by free (i.e. unbound protons), and on the other hand electrons can be captured
by protons which are bound in nuclei. Since in a stellar core heavy nuclei are some orders of
magnitude more abundant than free protons, EC on heavy nuclei are despite the smaller rates
more important than EC on free protons.

Traditionally, supernova modellers use the EC descriptionof Bruenn (1985) (which goes back
to Fuller et al. 1982) that gives analytic expression for thecapture on free protons and heavy
nuclei. However, the major shortcoming in this descriptionof EC on heavy nuclei is that –
according to the approximations used – it is suppressed in supernova calculations as soon as
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the N=40 shell of the nuclei is reached, which roughly happens whenthe central density in
the stellar core exceeds 1011 g/cm3. This implies that throughout most of the collapse phase
the EC in core collapse simulations, which make use of the description of Bruenn (1985), is
un-physically dominated by captures on free protons.

Because of the complicated (shell)-structure of a nucleus,it is a hard task to calculate in detail
the capture rate and Q-value of the reaction for a large set ofheavy nuclei. Only recently, Lan-
ganke & Martínez-Pinedo (2000, 2001) started to calculate detailed EC-rates on heavy nuclei.
Langanke and collaborators use the shell model Monte Carlo (SMMC) (see Koonin et al. 1997)
supplemented with calculations based on the random phase approximation for the transition
operators (see Langanke et al. 2003).

Only a few supernova modellers have sofar made use of these new EC-rates (see Langanke
et al. 2003, Hix et al. 2003) (from here on LMSH-rates) but a detailed analysis that results from
the change of the physical EC-rates has not yet been done.

It is well known that calculations with the standard description of EC on heavy nuclei of
Bruenn (1985) (from here on FFN-rates) and different initial stellar progenitors converge to a
“norm” collapse (see, e.g. Liebendörfer et al. 2002, Buras et al. 2006a). This leads to only
small differences in the evolution of different progenitors up to shock breakout (see Fig. 2 in
Liebendörfer et al. (2002) and Fig. 5 in Buras et al. (2006a),for a detailed progenitor compari-
son).

This astonishing feature is explained by the fact that in thestandard description for EC the
electrons are solely captured on free protons above densities of roughly 1011g/cm3 and the free
proton abundance is tightly coupled to the value of the electron fraction. Thus the stronger the
EC on unbound protons reduces the electron fraction the morethe EC quenches itself, thereby
establishing a feedback cycle that drives the electron fraction towards a “norm” trajectory (for
an elaborate discussion the reader is referred to Liebendörfer et al. 2002) .

In the following Sections it will be investigated how the evolution of a core collapse supernova
simulation is changed if the physical influence of EC on heavynuclei is regarded during the
whole collapse phase. It will also be addressed whether the convergence to “norm”trajectories
and thus the similarity of the neutrino burst signal still holds when this newly description of
electron captures is used. In Section A.3.1 we will first discuss an implementation of EC on
heavy nuclei where the spectra of emitted neutrinos in described by a fit–formula, before we will
discuss in Section A.3.2 a more accurate description of the spectral information of the emitted
neutrinos.

A.3.1. A spectral fit for electron captures

Before the results of the simulations with the newly available electron capture of Langanke &
Martínez-Pinedo (2000, 2001) will be discussed, a short description of the implementation of
these electron capture rates into the V/MDBTH code is given.

The rate of change (modulo a factor 1/c) of the neutrino distribution function due to absorption
and emission processes is given (see Bruenn 1985)

BAE(ǫ, µ) = j(ǫ)[1 − f (ǫ, µ)] − f (ǫ, µ)/λ(ǫ) , (A.21)
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where j denotes the emissivity andλ is the mean free path for neutrino absorption andǫ the
neutrino energy. The factor (1− f ) accounts for fermion phase space blocking effects of neutri-
nos. Using the Kirchhoff-Planck relation (“detailed balance”), and introducing the absorption
opacity corrected for stimulated absorption,

κ∗a :=
1

1− f eq

1
λ
= j +

1
λ

, (A.22)

Eqn. A.21 can be rewritten as

BAE(ǫ, µ) = κ∗a(ǫ)[ f eq(ǫ) − f (ǫ, µ)] . (A.23)

Here f eq := (1 + exp [β(ǫ − µeq
ν )])−1 is the equilibrium value of the distribution function,β :=

kBT, andµeq
ν is the equilibrium neutrino chemical potential.

Eqn. A.23 is the important equation for the implementation of the electron capture rates on
heavy nuclei: Using the form for the neutrino spectrum, see Langanke et al. (2001),

n(ǫ) = ǫ2(ǫ − q)2 N
1+ exp [β(ǫ − q− µe)]

, (A.24)

with q being the “Q-value’ of the reaction and a constantN that normalises the neutrino spec-
trum to unity,κ∗a can be written as (~ = c = 1 !):

κ∗a = (4π)−1 nB

f eq(ǫ)
Rtot

1+ expβ(ǫ − q− µe)
Fe
−1 , (A.25)

with

Fe :=
∫

dǫ
ǫ3(ǫ − q)2

1+ expβ(ǫ − q− µe)
(A.26)

and the baryon number density

nB = ρ/mBYH = ρ/mBXH/AH , (A.27)

whereρ is the matter density,mB the baryon mass, andAH, ZH the mass and charge number of
the representative heavy nucleus. Note that thusN in Eqn. A.24 was written as

N = (4π)−1nBRtotFe
−1 . (A.28)

Here a few facts are worth to mention: first, Langanke & Martínez-Pinedo (2001) provideRtot

andq in tabular form (see below). Second, in Eqn. A.25 a factornB appears that can beeither
calculated according to Eqn. A.27, with the representativeheavy nucleus provided in tabular
form by Langanke & Martínez-Pinedo (2001)or with the representative heavy nucleus of the
used EoS. Thus, one can “rescale” the EC-rates on heavy nuclei to the particular EoS employed.

Langanke & Martínez-Pinedo (2001) provide the quantitiesRtot, q, andYH tabulated as func-
tions of the densityρ, temperatureT, and electron fractionYe. Since the table is confined to
a strip in parameter space typical for core collapse conditions, (see Fig. A.12), we employ the
following procedure:
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Figure A.12.: a: Trajectories of core collapse simulations in the electronfraction-density
plane for different models. The grey shaded region indicates the rate table of
Langanke et al. .b: The same as panel a, only in the density-temperature plane.

• with the fluid density, temperature, and electron fraction we interpolate the values ofRtot,
q, andYH in the table.

• Calculateκ∗a according to Eqn. A.25: if we “rescale” the rate with representative heavy
nucleus of the EoS,YH is replaced with the EoS-values.

• If, by chance, the physical conditions of a fluid cell do not fitin the LMSH-table, the
description for electron captures on heavy nuclei of Bruenn(1985) is used. For a smooth
transition both rates are interpolated linearly.

Justification: As one can see in Fig. A.12 for a standard progenitors the LMSH-table is chosen
such that trajectories of fluid cells lie well inside this table. Therefore only in minor parts of
the simulations the description of Bruenn (1985) becomes effective as a source for EC on heavy
nuclei.

Figure A.14 shows that the properties of the representativeheavy nucleus as given by Lan-
ganke & Martínez-Pinedo (2001) and calculated by a sophisticated NSE-solver of Hix et al.
(2003) is very similar to the one given by the L&S–EoS. However, Fig. A.14 also reveals, that
different EoSs can predict different representative heavy nuclei. We have thus also performed
calculations where in the rate evaluation of Eqn. A.25 the representative heavy nucleus of the
EoS was used. With these calculations we have tested in how far the dynamics of the simula-
tions is effected by the factornB in Eqn. A.25.

Thus, in this Section we investigate the importance of electron capture rates on heavy nuclei
with different progenitor models and two equations of state: on the one hand we examine pro-
genitor variations and the difference of the new LMSH-rates and the conventional description
of FFN. On the other hand we investigate the importance of theproperties of the representative
heavy nucleus on the electron capture rates. To this end we therefore use two different EoS,
namely the L&S-EoS and the Wolff–EoS.
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Figure A.13.: a: The central electron fractionYe as function of the central density for the
models without screening effects (-lmsh) and with screening effects (-slmsh)
for a 15M⊙ (thin lines) and 25M⊙ (thick lines) progenitor star.b: The lepton
fraction Ylep for the same models.c: The central entropy as function of the
central density.

The simulations discussed in the following were calculatedin spherical symmetry and the
neutrino–matter interactions described in Chapter 2 were used. In order to take different stellar
progenitors into account, simulations were performed witha 11.2 M⊙ progenitor of Woosley
et al. (2002) (see also Section 4.2), a 15 M⊙ progenitor provided by Heger et al. (2001) (see
also Section 3.2), a 20 M⊙ progenitor (Woosley et al. 2002), and a 25 M⊙ progenitor star (Heger
et al. 2001) were used. Note that in the stellar evolution calculations of the progenitors of Heger
et al. (2001) already the electron capture rates of Langankeet al. were used.

In Table A.2 we summarise the models presented in this study together with the used EoS and
the used progenitor model .

We start the discussion of the importance of EC on heavy nuclei by mentioning that the new
LMSH rates used in this Section include electron screening effects, whereas in previous studies
of Langanke et al. (2003) and Hix et al. (2003) electron screening effects were not included.
Electron screening tends to shield the nucleus and thus generically reduces the Q–value of an
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Model Progenitor EC-rates Nuclei EoS
s11-FFN s11.2 FFN EoS L&S
s11-LMSH s11.2 LMSH LMSH L&S
s11-oLMSH s11.2 LMSH LMSH L&S
s11-sLMSH s11.2 sLMSH LMSH L&S
s11-osLMSH s11.2 sLMSH LMSH L&S
s15-FFN s15a28 FFN EoS L&S
s15-LMSH s15a28 LMSH LMSH L&S
s15-oLMSH s15a28 LMSH LMSH L&S
s15-sLMSH s15a28 sLMSH LMSH L&S
s15-osLMSH s15a28 sLMSH LMSH L&S
s15-LS(a) s15a28 sLMSH LMSH L&S
s15-LS(b) s15a28 sLMSH EoS L&S
s15-W(a) s15a28 sLMSH LMSH Wolff
s15-W(b) s15a28 sLMSH EoS Wolff
s20-FFN s20 FFN EoS L&S
s20-LMSH s20 LMSH LMSH L&S
s20-oLMSH s20 LMSH LMSH L&S
s20-sLMSH s20 sLMSH LMSH L&S
s20-osLMSH s20 sLMSH LMSH L&S
s25-FFN s25a28 FFN EoS L&S
s25-LMSH s25a28 LMSH LMSH L&S
s25-oLMSH s25a28 LMSH LMSH L&S
s25-sLMSH s25a28 sLMSH LMSH L&S
s25-osLMSH s25a28 sLMSH LMSH L&S

Table A.2.: Overview of all models presented in this paper. Together with the progenitor
model we state the employed description of electron capturerates (FFN: Bruenn
description, LMSH: LMSH-rates without screening corrections, and sLMSH:
LMSH-rates including screening effects), the used EoS, and information how the
representative heavy nucleus is determined (see the text for details). Note that in
the models with suffixes -oLMSH and -osLMSH only electron captures on heavy
nuclei were taken into account and electron capture on free nucleons was switched
off.

electron capture reaction. To study the influence of this effect, we shall compare a set of simula-
tions that include (models with suffix “sLMSH”) or neglect (models with suffix “LMSH”) these
screening effects and were calculated with a 15 M⊙ and 25 M⊙ progenitor model. In Fig. A.13
we show the evolution of the central electron and lepton fractions, and the central entropy during
stellar core collapse. Electron screening has obviously almost no influence on the development
of the central electron and lepton fraction. Only for a shortperiod of time minor differences are
visible at early stages of the collapse. In calculations including screening effects, the central
entropy is slightly higher (roughly 0.05kB/Baryon) compared with calculations that neglect
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Model Progenitor EC-rates Factor
s15a28-0.9 s15a28 sLMSH 0.9
s15a28-0.8 s15a28 sLMSH 0.8
s15a28-0.7 s15a28 sLMSH 0.7

s15-oLMSH-0.125 s15a28 LMSH 0.125
s15-oLMSH-0.25 s15a28 LMSH 0.25
s15-oLMSH-0.5 s15a28 LMSH 0.5

Table A.3.: Overview of the test models. Stated is the used progenitor, the applied electron
capture rate, and the factor by which the EC-rate was scaled down with. Note that
this scaling was only performed ifρ ≥ 1011 g/cm3.

electron screening effects. Note that all results presented in the following were obtained by
calculations including electron screening effects.

As already mentioned, the electron capture rates used in oursimulations were calculated such
that they have to be multiplied with the number fraction of the representative heavy nucleus
of the NSE-composition. Up to now for this number fraction the results of the NSE-solver of
Hix et al. (2003) were used, which gives very similar nuclei compared to the L&S–EoS, see
Fig. A.14a. However, as was shown in Section 3.2, different EoSs in core collapse simulations
do predict heavy nuclei that may differ significantly from each other. This can also be seen in
Fig. A.14a. Then, of course, the question arises whether ourfindings with the LMSH-rates are
influenced by the choice of the particular nuclear EoS which changes the representative heavy
nucleus and thus the target for EC on nuclei. We have thus calculated a few collapse models with
different nuclear EoS and used their predictions of the heavy nucleus to calculate the electron
capture on heavy nuclei, i.e. in the rates we replace the number fractions of nuclei as given by
Hix et al. (2003) with the number fraction of the used EoS, seeEqn. A.27. In particular we want
to stress here that the number fractionYH contains the information of the mass numberAH of the
representative heavy nucleus. In the Figs. A.15a-b we show the evolution of the central electron
and lepton fraction, and the central entropy during collapse and the electron luminosities and
rms-energies during the postbounce phase. As one can see it makes hardly a difference whether
the number fraction is taken from the EoS or from the NSE-solver of Hix et al. (2003). Figure
A.14b reveals the explanation for this: finding the number fraction of the representative heavy
nucleus that is predicted by the LMSH-table or the particular EoS do not differ by more than
10% and as one can infer from Fig. A.14a the difference in the properties of the representative
heavy nucleus only occur at densities above 1011 g/cm3.

We have performed some test calculations where we have artifically reduced the EC-rate on
heavy nuclei by 10%, 20%, and 30% if the density was larger than 1011 g/cm3, (see Table
A.3.1). These calculations showed nearly identical results when compared with calculations
performed with the Wolff-EOS, see Fig. A.16.

Thus the particular choice of an EoS does not change our findings, as long as the variations
of the number fraction of the predicted representative heavy nucleus are in the range of some
ten percent. All calculations presented in the following will thus make use of the representative
heavy nucleus as given by the NSE-solver of Hix et al. (2003).
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Figure A.14.: a: The mass number and charge number of the representative heavy nucleus
that of the L&S-EoS and of the Wolff-EoS, compared to the average mass and
charge number of the NSE nuclei considered for the LMSH rate calculations.
Note that these values are obtained for the conditions alonga typical collapse
trajectory of matter at the core centre.b: The ratio of the number fractions of
the representative heavy nucleus as given by the LMSH-tableand the respective
EoS as function of central density.

Next, we will discuss the results with regard to the variations of the stellar progenitor models
(see Table. A.2). In Fig. A.17 we show exemplary for the 15M⊙ progenitor the evolution of
the central electron and lepton fraction and of the central entropy, if the FFN–rates or the the
sLMSH–rates are used in the calculations. If electron captures on nuclei are taken into account,
and this process is not (artificially) suppressed at densities larger than 1011 g/cm3 — as it is
done in the FFN description — then the core delpetonises stronger. Furthermore, since the Q–
values for EC on free protons and heavy nuclei are different, electron capture on heavy nuclei
produces more neutrinos with lower energies than electron capture on free protons. Thus, in
the FFN description, where EC on free protons is dominant foralmost all the collapse phase,
high energetic neutrinos are produced that leave the core bydown–scattering to lower energies
(cf. the discussion in Section A.1), thereby increasing theentropy. Since this process happens
not so frequently in the models with EC on heavy nuclei, the entropy in these models stays
generically lower. A more detailed impression of the differences in the models using the FFN
or LMSH rates can be obtained from Fig. A.18, where the same quantities as in Fig. A.17 are
shown, however, for more progenitor models.

Obviously, Figs. A.18a–b show the already mentioned convergence of the trajectories of the
central electron and lepton fraction in models with the FFN description: Although, the initial
values of the electron fraction and lepton fraction show a progenitor dependent spread, the
final values show, as already explained, a much smaller deviation. Strikingly, the trajectories
of models calculated with the sLMSH rates converge even better. Thus, is it possibly that a
self–regulating mechanism, similar to the feedback cycle for electron captures of protons, does
act during the collapse phase? If this is the case, than Fig. A.18c immediately reveals that the
entropy can not be — unlike in the feedback mechanism with EC on free protons — integrated
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Figure A.15.: Comparison of collapse simulations for a 15 M⊙ star with the EoSs of Lattimer
& Swesty (L&S) and of Wolff (W) for the electron capture rates on nuclei cal-
culated (a) with the nuclei abundance as given by the employed EoS and (b)
with the abundance of heavy nuclei as provided by a NSE-solver. a: The en-
tropy, and electron and lepton fractionYe , Ylep as functions of central density.
b: The rms energy and luminosity of electron neutrinos as function of time for
an observer at rest located at 400 km. Note that the collapse of the stellar core
takes more time with the Wolff-EoS and therefore the shock breakout happens
at a later time than in the models with the L&S-EoS. Time is measured from the
beginning of the simulations.
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in this potential cycle, since the entropies donot converge. In order to test a hypothetical
feedback mechanism working on the electron capture rates onheavy nuclei, we have calculated
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Figure A.17.: a: The central lepton and electron fraction for the models s15-FFN and s15-
sLMSH. This model is taken as an example for all other models with different
progenitor stars where similar differences between the FFN and LMSH-rates
are found.b: The central entropy for the same model.

some — unphysical — test models, where only electron captureon heavy nuclei according
to the description of Langanke et al. was considered and electron capture on free protons was
completely switched off. In the following these models will be denoted “osLMSH”or “oLMSH”
depending on whether screening effects were taken into account or not. From the convergence
of the electron and lepton fraction of these models, see Figs. A.18a–b, one concludes that the
convergence sets in before a central density of roughly 1− 2 × 1011 g/cm3 is reached. Indeed
Fig. A.19 shows that the total (i.e. EC on free protons and nuclei) neutrino production rates
in models with LMSH rates are different below a density of 1− 2 × 1011 g/cm3 and at larger
densities the rates become very similar.

As Fig. A.19b shows the electron capture rates on heavy nuclei are very similar for all differ-
ent models, which suggests that the similar deleptonisation (despite different initial values) is
caused by some complex behaviour in our models. A possible way to establish a same delepton-
isation of the core, with similar capture rates but different initial values of the electron fraction,
is that the collapse timescale changes such that the same degree of deleptonisation is reached.
We have thus analysed for all our models, whether a consistent connection between the collapse
timescale and the electron capture rate exists. However, for several models a slower collapse
does not imply less electron captures, which renders a timescale controlled regulation model
impossible, see Table A.3.1. Electron captures on nucleialone(i.e. when electron captures on
free protons are switched off which is indicated by an “o” in the model name) do not produce
a convergence of the final values of the electron fraction. This can be clearly seen in Table
A.3.1 by a comparison of the models s15-oLMSH, s25-oLMSH to models s15-oSLMSH, and
s25-oSLMSH. Furthermore, the models s15-oLMSH-0.5, s15-oLMSH-0.25, and s15-oLMSH-
0.125 with artificially reduced rates compared to model s15-oLMSH do also not converge. This
clearly demonstrates that electron captures on heavy nuclei do not produce a convergence of the
collapse trajectories. Realistic calculations that include electron captures on free protons, on
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Figure A.18.: a: The central electron fraction for different progenitor models and different
implementations of EC rates. In the models suffixed with “FFN” EC on free
protons and on heavy nuclei was implemented according to Bruenn (1985). The
model names “sLMSH” indicate that the conventional EC on free protons was
used and for EC on heavy nuclei the (screened) description ofLanganke &
Martínez-Pinedo (2001) was used. The models “osLMSH” are test cases where
only EC capture on heavy nuclei according to Langanke & Martínez-Pinedo
(2001) was considered and EC on free protons was switched off. b: The central
lepton fraction for these models.c: The centralmatterentropy for these mod-
els. Note that in models “osLMSH” at a density of 1013 g/cm3 no neutrinos
are produced anymore (due to the “border” of the LMSH-table)and neutrinos
are only redistributed by scattering. This transfers matter entropy in neutrino
entropy.

the other hand, tend to converge, since the feedback mechanism ((Bruenn & Mezzacappa 1997)
for electron captures on free protons does work. However, ifthe difference in the values of the
electron and lepton fraction is too large, either because ofthe initial values (like in case of the
25M⊙ progenitor model) or if during the early stages of the collapse the electron fraction dif-
ferences first grow compared to the initial state (like in case of the FFN-models, see Fig. A.18)
then also the feedback mechanism for electron captures of free protons is not able to achieve a

178



A.3.1 A spectral fit for electron captures

109 1010 1011 1012 1013 1014
10-4

10-2

100

102

104

106

dE
ν
to

t /
dt

[M
eV
/b

y/
s]

ρ [g/cm3]

s11-sLMSH
s15-sLMSH
s20-sLMSH
s25-sLMSH

109 1010 1011 1012 1013 1014
10-4

10-2

100

102

104

106

dE
ν
n

u
c /

dt
[M

eV
/b

y/
s]

ρ [g/cm3]

s11-sLMSH
s15-sLMSH
s20-sLMSH
s25-sLMSH

a b

109 1010 1011 1012 1013 1014
10-4

10-2

100

102

104

106

dE
ν

p,
n /

dt
[M

eV
/b

y/
s]

ρ [g/cm3]

s11-sLMSH
s15-sLMSH
s20-sLMSH
s25-sLMSH

109 1010 1011 1012 1013 1014 1015
1

10

100

1000

E
[M

eV
]

ρ [g/cm3]

s11-sLMSH
s15-sLMSH
s20-sLMSH
s25-sLMSH

c d

Figure A.19.: The rates of produced neutrinos for the central zone for the models with the
description of EC on heavy nuclei according to Langanke et al. .a: The total
rate (i.e. for EC on free protons and heavy nuclei.b: The contribution of EC
on heavy nuclei to the rate from panel a.c: The free proton contribution.d:
The mean energy of produced electron neutrinos that are produced by the rates
of panel a.

full convergence.
Finally, the progenitor differences in supernova calculations with the new electron capture

rates of Langanke et al. are shown in Figs. A.20, A.21 and A.22. The moment of shock forma-
tion (as defined by Bruenn & Mezzacappa 1997) is shown in Fig. A.20. A lower value of the
lepton fractionYlep in the models with the sLMSH rates (see Fig. A.18b) implies also a smaller
core and a shock formation at smaller radii (or smaller mass coordinates), which is consistent
with Fig. A.20. Though, these changes are not dramatic they are comparable to the changes of
in the shock formation point resulting from different nuclear EoS, see Section 3.2. Note, that
in the models calculated with the electron capture rates of Langanke et al. the shocks form at
the same mass coordinate due to the fact that the trajectories of the electron and lepton fraction
converge during the collapse phase, see Fig. A.21. As explained, however, it seems likely that
this convergence is poorly coincidence due to rather similar progenitor properties, where the
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model ∆ t [ms] R̄net [1/by/s] R̄emi [1/by/s] ∆ Ylep Ye
initial Ylep

final

s15-oSLMSH 18.87 5.51 15.65 0.091 0.437 0.275
s15-oLMSH 17.11 5.38 24.58 0.079 0.437 0.283
s15-sLMSH 15.37 6.24 17.88 0.081 0.437 0.288
s15-LMSH 15.08 5.98 27.58 0.077 0.437 0.287
s25-oSLMSH 15.94 7.07 20.02 0.099 0.444 0.272
s25-oLMSH 14.13 6.36 29.71 0.077 0.444 0.281
s25-sLMSH 13.60 6.78 20.51 0.077 0.444 0.286
s25-LMSH 13.21 6.45 30.44 0.071 0.444 0.286
s15-oLMSH-0.125 19.89 5.84 8.80 0.095 0.437 0.301
s15-oLMSH-0.25 19.05 5.69 11.20 0.091 0.437 0.297
s15-oLMSH-0.5 17.77 5.57 16.31 0.084 0.437 0.287
s15-oLMSH 17.11 5.38 24.58 0.079 0.437 0.283
s11-osLMSH 22.76 4.56 12.59 0.091 0.426 0.278
s15-osLMSH 18.87 5.51 15.65 0.091 0.437 0.275
s20-osLMSH 19.64 5.28 14.78 0.091 0.435 0.277
s25-osLMSH 15.94 7.07 20.02 0.099 0.444 0.272
s11-sLMSH 19.63 5.02 14.04 0.084 0.426 0.289
s15-sLMSH 15.37 6.24 17.88 0.081 0.437 0.289
s20-sLMSH 16.18 6.03 16.98 0.081 0.435 0.289
s25-sLMSH 13.60 6.78 20.51 0.077 0.444 0.286
s11-FFN 19.65 4.60 6.60 0.068 0.426 0.321
s15-FFN 16.21 4.79 7.34 0.057 0.437 0.318
s20-FFN 17.38 4.63 6.87 0.059 0.435 0.320
s25-FFN 14.57 5.03 8.59 0.053 0.444 0.314

Table A.4.: Overview over all models. Tabulated is the time∆ t for the collapse between a cen-
tral density of 1011 g/cm3 to a central density of 1012 g/cm3. R̄net is the time av-
eraged net-rate (neutrino emission and absorption) for this density range, whereas
R̄emi is the time-averaged neutrino emission rate.. Also given are the change of
Ylep in this density range, the value ofYe at the beginning of the simulation, and
the value ofYlep after trapping.

initial values of the electron fraction are such that electron capture on free protons achieves a
convergence. Figure A.22 depicts the evolution of the luminosity of electron neutrinos and of
their rms energy. The variations in the neutrino luminosities and neutrino energies clearly be-
come larger, and progenitor differences become more important at later times of the supernova
evolution.

We conclude the discussion of this Section by summarising that though the production of
neutrinos by electron captures during the whole core collapse supernova evolution is of large
importance, the results of simulations which differ in the description of electron captures are
only small. Even changing the physical picture by switchingfrom collapse simulations that
are dominated by electron capture on free protons to collapse simulations where electron cap-
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Figure A.20.: The moment of shock
formation for all models
calculated with the FFN
or sLMSH description for
electron captures.
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Figure A.21.: a: The central electron fractionYe and lepton fractionYlep as function of central
density for four different progenitors models.b: The central entropy as function
of central density.

tures on heavy nuclei are dominant, changes the results of the simulations only little. Thus
further changes of the electron capture rates on nuclei, such as the inclusion of screening effects
or different nuclear compositions, have also only small effect on the result of the supernova
evolution. Furthermore, we do not find any feedback mechanism involving only electron cap-
tures on heavy nuclei that acts in producing a convergence ofthe central electron fractions and
lepton fractions. We rather find that the convergence we see is a result of the similar initial
states of the different progenitor models and of the well known convergence mechanism (see,
e.g. Bruenn & Mezzacappa 1997) for electron captures on freeprotons. Thus, it is extremely
likely that with different progenitor models (where the initial electron fraction profiles deviate
more strongly) the discussed convergence of the collapse trajectories and of the neutrino burst
signals (Liebendörfer et al. 2002, Buras et al. 2006a) will disappear.
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Figure A.22.: a: The luminosity of electron neutrinos as a function of time for all models that
were calculated with sLMSH-rates. Note that time is normalised to the moment
of shock formation.b: The rms-energy of electron neutrinos as a function of
time.

A.3.2. Considering real spectra

In the previous Section we have discussed the importance of newly improved electron captures
on heavy nuclei during stellar core collapse and the postbounce evolution. However, these
rates still used a simple form of the spectrum of emitted neutrinos (remember Eqn. A.24). As
Sampaio (2003) pointed out the spectral fit from Eqn. A.24 is noticeably narrower than the real
data obtained from shell calculation of the nuclei, since the spectral fit does only consider the
transition from a definite state in the parent nucleus to a definite state in the daughter nucleus.
However, a real spectrum is a superposition of several spectra of different nuclei with different
excitation energies. In order to take these effects into account Sampaio (2003) gives a new
Gaussian parametrisation for the spectra, which reads:

n(ǫ) =
∫ ∞

0
ǫ2(ǫ − q′ + EX)2e

−
(

EX−E0
X

∆

)2

∆
√
π

N

1+ e
ǫ−q′+EX

kBT

dEX , (A.29)

whereq′ is the new fitting parameter to the average neutrino energy,N is a normalisation
constant andE0

X = 2.5 MeV. Note, that in this notation it is suppressed that the width of the
distribution∆ is a function of temperatureT and that good agreement with the NSE-average
spectra is obtained with

∆ = 2/3+ (50/9)kBT . (A.30)

Note also that for∆ ≈ 0 the parametrisation reduces to the fit of Eqn. A.24. In Fig. A.23
a comparison of the spectral fit of Eqn. A.24 (denoted from hereon "old spectral fit") and of
Eqn. A.3.2 (denoted from hereon "new spectral fit) is shown.

Langanke and collaborators kindly provided us with a similar table of electron captures for
core collapse supernovae as described in Section A.3.1, butadditionally this new table also
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Model Progenitor EC-rates Nuclei EoS
s11-SLMSH s11.2 OLD LMS L&S
s11-SPEC s11.2 NEW LMS L&S
s15-SLMSH s15a28 OLD LMS L&S
s15-SPEC s15a28 NEW LMS L&S
s15-SPEC-EoS s15a28 NEW L&S L&S
s15-SPEC-EoS-W s15a28 NEW Wolff Wolff
s20-SLMSH s20 OLD LMS L&S
s20-SPEC s20 NEW LMS L&S
s25-SLMSH s25a28 OLD LMS L&S
s25-SPEC s25a28 NEW LMS L&S
s25-SPEC-EoS s25a28 NEW L&S L&S

Table A.5.: Overview of all models calculated for the following discussion. Together with the
progenitor model (cf. Section A.3.1) we state whether the “old spectral fit” or the
“new spectral fit” was used. Furthermore, the used EoS is stated, and information
how the representative heavy nucleus (cf. the discussion inSection A.3.1) was
evaluated.

contains the numerically integrated spectran(ǫ) from Eqn. A.3.2. In principle this table is iden-
tical to the one already described in Section A.3.1, and therefore the numerical implementation
is straight forward. This table allows us to treat electron capture on heavy nuclei in a very
accurate form and allows us to consider realistic spectra ofthe emitted neutrinos.

In order to test the influence of this new spectral information we have again calculated a series
of core collapse and postbounce evolution models with this new spectral treatment. In order to
make a comparison as easy as possible, we have orientated ourchoice of models on the previous
study of electron capture in core collapse supernova simulations which were discussed in the
previous Section. This means that we have used the same physical description (except for the
spectral treatment) as the models with the LMSH-rates discussed in Section A.3.1. The models
which were calculated for this discussion are summarised inTable A.5. Again, as indicated
in Table A.5, we either used the number fraction of the representative heavy nucleus as given
by the LMS-table or as given by the used EoS. As already explained in Section A.3.1, this
different treatment was done in order to test the influence of nuclear compositions differences
on the electron captures. However, since using different number fractions of heavy nuclei does
not lead to different results (cf. the discussion in Section A.3.1), we willin the following not
discuss these models.

In Fig. A.24 we show for the collapse phase the trajectories of the central electron fraction
and central lepton fraction for some models with the old and new spectral fit. As expected the
spectral treatment has no influence of the deleptonisation of the core and the trajectories for
one progenitor model practically lie on top of each other. Note that the small differences one
nevertheless observes are not a result from the new spectraltreatment: using the same new table
of rates, however, with the old spectral treatment leads to the same small changes. However,
comparing the new spectral treatment with the the old spectral fit on calculations which both use
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Figure A.23.: Solid lines: Spectra of emitted neutrinos produced by electron captures on
heavy nuclei. These results were obtained from shell calculations by Langanke
& Martínez-Pinedo (2000, 2001). The dashed lines representrepresentations
of the spectra obtained from Eqn. A.3.2. The dashed–dotted lines represent the
spectral fit used in the previous Section A.3.1. Note that this plot was kindly
provided by Sampaio (2003) and corresponds to Fig. 6.9 in histhesis.

the new rates table, one discovers that these small differences dissappear. Thus, the differences
we discuss here are related to the rates tables and esteem from slightly different grid points of
both tables, which lead by slightly different interpolation during the calculation to these small
changes. Trajectories of the central entropy for the modelsare shown in Fig. A.25. Here it
is clearly visible that during the first phase of the collapsethe new spectral treatment slightly
increases the entropy stronger than the old spectral fit does. This leads than also to the slightly
higher entropies of the models with the new spectral fit at theend of the stellar collapse.

This effect is caused by the slightly higher emission of neutrinos inthe energy range above 15
MeV in the early phase of the collapse, see Fig. A.26, for models that are calculated with the
new spectral treatment. These neutrinos are than down scattered to lower energies which causes
a rise of the entropy in the models with the new spectral treatment. This effect is identical
to the rising of entropy in some of the models discussed in Sections A.1 and A.3.1. At later
times, around the time when trapping sets in, this effect disappears, see Fig. A.27. However,
since shortly afterwards trapping conditions set in, the already reached entropy difference stay
behind.

We finish this discussion by stating, that the details of the spectral treatment have only little
influence on the results of our simulations of the collapse phase. However, it is still unclear to
what extend the new spectral treatment of the electron captures on heavy nuclei may influence
the neutrino emission at later stages after the shock formation, which will have to be addressed
by future studies.
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Figure A.24.: The electron fractionYe and the lepton fractionYlep as function of central den-
sity for models that were calculated with the old spectral fitand the new one.a:
for the models calculated from a 11.2M⊙ and 15M⊙ progenitor star.b: for the
models calculated from a 20M⊙ and 25M⊙ progenitor star.
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Figure A.25.: The entropy as function of central density for the same models as in Fig. A.24.
a: for the models calculated from a 11.2M⊙ and 15M⊙ progenitor star.b: for
the models calculated from a 20M⊙ and 25M⊙ progenitor star.
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Figure A.26.: a: The energy source term for neutrino–electronscattering at the stellar centre in
the collapse models using the old spectral fit. The plot showsthe moment when
the central density reaches a value of 3× 1010 g/cm3. Positive values indicate
that neutrinos are “absorbed” (net scattering out of the corresponding energy
bin), and negative values indicate that neutrinos are “emitted” (net scattering
into the corresponding energy bin).b: The difference of the energy source term
for different models. Calculated is for each progenitor the difference between
the models “SLMSH” and “SPEC”.
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Figure A.27.: a: The energy source term for neutrino–electron scattering at the stellar centre
in the collapse models using the old spectral fit. The plot shows, shortly before
neutrino trapping sets in, the moment when the central density reaches a value
of 1012 g/cm3. Positive values indicate that neutrinos are “absorbed” (net scat-
tering out of the corresponding energy bin), and negative values indicate that
neutrinos are “emitted” (net scattering into the corresponding energy bin).b:
The difference of the energy source term for different models. Calculated is for
each progenitor the difference between the models “SLMSH” and “SPEC”.
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Figure A.28.: The neutrino spectra for the central zone at the moment when the den-
sity reaches a value of 1011 g/cm3. a: For the models calculated from a
11.2M⊙ and 15M⊙ progenitor star. b: For the models calculated from a
20M⊙ and 25M⊙ progenitor star.
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Figure A.29.: The neutrino spectra for the central zone shortly before neutrino trapping sets
in when the density reaches a value of 1012 g/cm3. a: For the models calculated
from a 11.2M⊙ and 15M⊙ progenitor star.b: For the models calculated from a
20M⊙ and 25M⊙ progenitor star.
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B
A general relativistic potential

This Section is a discussion1 of the approximations that were included into the V/MDBTH
code in order to include general relativistic effects. The necessity to include general relativity or
appropriate approximations to general relativity in numerical codes that one uses to study core
collapse supernovae can be easily summarised:

It is a well known fact that gravity plays an important role during all stages of a core collapse
supernova. Gravity is the driving force that at the end of thelife of massive stars overcomes
the pressure forces and causes the collapse of the stellar core. Furthermore, the subsequent
supernova explosion results from the fact that various processes tap the enormous amount of
gravitational binding energy released during the formation of the proto-neutron star. General
relativistic effects are important for this process and cannot be neglected in quantitative models
because of the increasing compactness of the proto-neutronstar.

Recently Liebendörfer et al. (2005) performed a comparisonof the results obtained with the
supernova simulation codes V and A-BT which both solve the Boltzmann
transport equation for neutrinos. The V code (see Rampp & Janka 2002) is based on
the Newtonian hydrodynamics code P (Fryxell et al. 1989) and utilises a generalised
potential to approximate relativistic gravity. The A-BT code of the Oak Ridge-Basel
group (Liebendörfer et al. 2001, 2002, 2004, 2005) is a fullyrelativistic (1D) hydrodynamics
code. The comparison showed that both codes produce qualitatively very similar results ex-
cept for some small (but growing) quantitative differences occurring in the late post-bounce
evolution. Inspired by this comparison we explored improvements of the effective relativistic
potential used by Rampp & Janka (2002) in order to achieve an even better agreement than
that reported by Liebendörfer et al. (2005). To this end we tested different variants of ap-
proximations to relativistic gravity which we will discussin this Section. The results of these
calculations performed with different effective relativistic potentials are compared with those

1This work was done in collaboration with H. Dimmelmeier and was published in Marek et al. (2006).
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obtained with the general relativistic A-BT code of the Oak Ridge-Basel group (cf.
Liebendörfer et al. 2005). Since this thesis is focused on the investigation of core collapse
supernovae with the V/MDBTH code, the numerical results of Dimmelmeier, the col-
laborator to this study, will not be discussed. However, theinterested reader can find more
details in Marek et al. (2006).

Note that throughout this Section, we use geometrised unitswith c = G = 1.

B.1. Effective relativistic potential

Approximating the effects of general relativistic gravity in a Newtonian hydrodynamics code
may be attempted by using an effective relativistic gravitational potentialΦeff which mimics the
deeper gravitational well of the relativistic case. In the following Subsections B.1.1 and B.1.2,
several of these effective relativistic potentials will be discussed.

B.1.1. TOV potential for a self-gravitating fluid

For a self-gravitating fluid it is desirable that an effective relativistic potential reproduces the so-
lution of hydrostatic equilibrium according to the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion. With this requirement in mind and comparing the relativistic equation of motion (cf. van
Riper 1978, Baron et al. 1989) with its Newtonian analogon, Rampp & Janka (2002) rearranged
the relativistic terms into an effective relativistic potential (see Kippenhahn & Weigert 1990, for
the hydrostatic, neutrino-less case).

Thus for spherically symmetric simulations using a Newtonian hydrodynamics code the idea
is to replace the Newtonian gravitational potential

Φ(r) = −4π
∫ ∞

0
dr′ r′2

ρ

|r − r′| (B.1)

by the TOV potential

ΦTOV(r) = −4π
∫ ∞

r

dr′

r′2

(mTOV

4π
+ r′3(P+ pν)

)

× 1
Γ2

(
ρ + e+ P
ρ

)
, (B.2)

to obtain the effective relativistic potentialΦeff as

SΦeff = ΦTOV. (B.3)

Hereρ is the rest-mass density,e = ρǫ is the internal energy density withǫ being the specific
internal energy, andP is the gas pressure. The TOV mass is given by

mTOV(r) = 4π
∫ r

0
dr′ r′2

(
ρ + e+ E +

vF
Γ

)
, (B.4)

wherepν, E, andF are the neutrino pressure, the neutrino energy density, andthe neutrino flux,
respectively (Baron et al. 1989, Rampp & Janka 2002).
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The fluid velocityv is identified with the local radial velocity calculated by the Newtonian
code and the metric functionΓ is given by

Γ =

√
1+ v2 − 2mTOV

r
. (B.5)

The velocity-dependent terms were added for a closer match with the general relativistic form
of the equation of motion (van Riper 1978, Baron et al. 1989).In the treatment of neutrino trans-
port general relativistic redshift and time dilation effects are included, but for reasons of con-
sistency with the Newtonian hydrodynamics part of the code the distinction between coordinate
and proper radius is ignored in the relativistic transport equations (for details, see Sect. 3.7.2
of Rampp & Janka 2002). The quality of this approach was ascertained by a comparison with
fully relativistic calculations (Rampp & Janka 2002, Liebendörfer et al. 2005).

In order to calculate the effective relativistic potential for multi-dimensional flowswe substi-
tute the “spherical contribution”Φ(r) to the multi-dimensional Newtonian gravitational potential

Φ(r, θ, ϕ) = −
∫

V
dr′ dθ′ dϕ′ r′2 sinθ′

ρ

|r − r′| (B.6)

by the TOV potentialΦTOV:
Φeff = Φ −Φ +ΦTOV. (B.7)

HereΦ(r) andΦTOV are calculated according to Eqs. (B.1) and (B.2), respectively, however
with the hydrodynamic quantitiesρ, e, P, v and the neutrino quantitiesE, F, pν being replaced
by their corresponding angularly averaged values. Note that v here refers to the radial compo-
nent of the velocity, only.

B.1.2. Modifications of the TOV potential

In a recent comparison Liebendörfer et al. (2005) found thatgravity as described by the TOV
potential in Eqn. (B.3) overrates the relativistic effects, because in combination with Newtonian
kinematics it tends to overestimate the infall velocities and to underestimate the flow inertia in
the pre-shock region. Thus, supposedly via the nonlinear dependence ofΦeff on e andP the
compactness of the proto-neutron star is overestimated, with this tendency increasing at later
times after core bounce. Consequently, the neutrino luminosities and the mean energies of the
emitted neutrinos are larger than in the corresponding relativistic simulation.

In order to reduce these discrepancies – without sacrificingthe simplicity of Newtonian dy-
namics – we tested several modifications of the TOV potential, Eqs. (B.2), which all act to
weaken it. In particular, we studied the following variations2

Case A: In the integrand of Eqn. (B.4) a factorΓ, Eqn. (B.5) is added. SinceΓ < 1 this reduces
the gravitational TOV mass used in the potential.

2Note, all of the cases listed here were tested in Marek et al. (2006) with the CCNT code of Dimmelmeier et al.
(2002, 2005). Only, the most promising cases were also implemented in the numerically much more expensive
V code.
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Case B: In Eqn. (B.4) the internal gas energy density and the neutrino terms are set to zero,
e= E = F = 0, which again decreases the gravitational TOV mass.

Case C: In Eqn. (B.2) the internal gas energy is set to zero,e = 0, which directly weakens the
TOV potential.

Case D: In the equation for the TOV potential, Eqn. (B.2),mTOV is replaced by12(mTOV +mg).
Here a Newtonian gravitational mass is defined asmg = mr − mb with the rest mass
mr = 4π

∫ r

0
dr′ r′2ρ and the mass equivalent of the binding energymb = 2π|

∫ r

0
dr′ r′2ρΦ|.

As mg < mTOV, the strength of the potential is reduced.

Case E: Both in the equation for the TOV potential, Eqn. (B.2), and the equation for the TOV
mass, Eqn. (B.4), we sete= 0.

Case F: In the equation for the TOV potential, Eqn. (B.2), we setΓ = 1. AsΓ < 1 otherwise,
this weakens the potential.

Case G: In the expression forΓ, Eqn. (B.5), the velocity is set to zero,v = 0. Hence,Γ−2

increases in Eqn. (B.2). This modification is used to also test a potential which is even
stronger than the unmodified TOV potential.

In addition to these cases with a modified version of the TOV potential, we use the following
notations:

Case N: This denotes the purely Newtonian runs with “regular” Newtonian potential.

Case R:This is the “reference” case with the TOV potential as definedby Eqn. (B.2).

Case GR:This case refers to fully relativistic simulations with theA-BT neutrino
radiation-hydrodynamics code of the Oak Ridge-Basel collaboration.

Note that setting the internal energy densitye to zero in Case B is unambiguous when a simple
EoS is used and the particle rest masses are conserved. In general, however, particles can be
created and destroyed, or bound states can be formed (e.g., in pair annihilation processes or
nuclear reactions, respectively). Then only the sum of the rest mass energy and internal energy
per nucleon – both appear in Eqs. (B.2, B.4) only combined in form of the “relativistic energy”
per unit of mass, (ρ + e)/ρ – is well defined, but not the individual parts. Therefore there exists
ambiguity with respect to which contribution to the energy is set to zero. In order to assess a
possible sensitivity of the core collapse results to this ambiguity, we tried two different variants
of Case B in our V simulations with microphysical EoS. On the one hand we usedẽ= E =
F = 0 in Eqn. (B.4), with̃ebeing the internal energy density plus an energy normalisation given
by the EoS of Lattimer & Swesty (1991),ẽ= (ρ+e)−ρ (mn−∆)/mu (wheremu = 1.66×10−24 g is
the atomic mass unit,mn the neutron rest mass, and∆ = 8.8MeV). On the other hand we tested
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e∗ = E = F = 0 with e∗ beingẽ without this energy normalisation, i.e.e∗ = (ρ + e) − ρmn/mu.
Nucleons are then assumed to contribute to the TOV mass, Eqn.(B.4), with the vacuum rest
mass of the neutron, increasing the mass integral and reducingΓ, Eqn. (B.5), relative to the first
case, thus making the effective relativistic potential a bit stronger again. In order to compensate
for this we also setpν = 0 in the TOV potential, Eqn. (B.2). Both variants are found toyield
extremely similar results and we therefore will discuss only one of them (the first variant) as
Case B for the V simulations.

Ideally, a Newtonian simulation with an effective relativistic potential not only yields a solu-
tion of the TOV structure equations for an equilibrium state(as does Case R), but in addition
closely reproduces the results from a relativistic simulation (Case GR) during a dynamic evolu-
tion. Applying the modifications of the TOV potential listedabove, we find that Cases A to D
yield improved results as compared to Case R, while Cases E toG either weaken the potential
too much or are very close to Case R.

B.1.3. Theoretical motivation

There are (at least) two basic requirements which appear desirable for an effective relativistic
potential in a Newtonian simulation. Firstly, the far field limit of the fully relativistic treatment
should be approximated reasonably well in order to follow the long-term accretion of the neu-
tron star and the associated growth of its baryonic mass. Secondly, the hydrostatic structure of
the neutron star should well fit the solution of the TOV equations.

A closer consideration of the first point suggests the modified effective relativistic potential
of Case A as promising, and in fact it turns out to be the most preferable choice concerning
consistency and quality of the results. The other cases listed in Sect. B.1.2 are mostly ad hoc
modifications of the original effective relativistic potential of Eqs. (B.2)–(B.4) (Case R)with
the aim to reduce its strength, which was found to overestimate the effects of gravity compared
to fully relativistic simulations in previous work (Liebendörfer et al. 2005). These cases are
also discussed here for reasons of comparison and completeness.

In Eqn. (B.4) the hydrodynamic quantities (like rest-mass densityρ plus extra terms) are in-
tegrated over volume. In the Newtonian treatment there is nodistinction between coordinate
volume and local proper volume. Performing the integral of Eqn. (B.4) therefore leads to a
mass – used as the mass which produces the gravitational potential in Eqs. (B.2) and (B.3) –
which is larger than the baryonic mass,mb = 4π

∫
dr′ r′2ρ. In particular, it is also larger than

the gravitational mass in a consistent relativistic treatment, which is the volume integral of the
total energy density and includes the negative gravitational potential energy of the compact ob-
ject. The latter reduces the gravitational mass relative tothe baryonic mass by the gravitational
binding energy of the star (see, e.g., Shapiro & Teukolsky 1983, page 125 for a corresponding
discussion). Therefore, the effective relativistic potential introduced by Rampp & Janka (2002)
[our Case R, Eqs. (B.2–B.4)] cannot properly reproduce the far field limit of the relativistic case
and thus overestimates the effects of gravity. This particularly applies to the infall velocities of
the stellar gas ahead of the supernova shock, as shown in Liebendörfer et al. (2005).

Introducing an extra factorΓ in the integral of Eqn. (B.4) for the TOV mass is motivated by the
following considerations (where for reasons of simplicitycontributions from neutrinos, though
important, are neglected and spherical symmetry is assumed): In the relativistic treatment the
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total (gravitating) mass of the star is given as

mg = 4π
∫ ∞

0
dr′ r′2(ρ + e), (B.8)

where dV′ = 4πdr′ r′2 is the coordinate volume element, whereas the baryonic massis

mb = 4π
∫ ∞

0
dr′ r′2Γ−1ρ, (B.9)

with dV′ = 4πdr′r′2Γ−1 being the local proper volume element. The factorΓ−1 > 1 in the
integrand ofmb thus ensures thatmb > mg. The integral formg can also be written as

mg = 4π
∫ ∞

0
dr′ r′2

Γ

Γ
(ρ + e) =

∫ ∞

0
dV′ Γ (ρ + e). (B.10)

Since in Newtonian hydrodynamics no distinction is made between coordinate and proper vol-
umes, one may identify dV′ ≡ dV′, consistent with the rest of our Newtonian code. This leaves
the additional factorΓ in the integrand of Eqn. (B.10), leading to a redefined TOV mass used
for computing the effective relativistic potential in Case A,

m̃TOV(r) = 4π
∫ r

0
dr′ r′2Γ

(
ρ + e+ E +

vF
Γ

)
. (B.11)

The fact that a factorΓ−1 in the volume integral establishes the relation between gravitating
mass, Eqn. (B.8), and baryonic mass, Eqn. (B.9), in the relativistic case suggests that the factor
Γ < 1 in Eqn. (B.11) might lead to a suitable reduction of the overestimated effective potential
that results when the original TOV mass of Eqn. (B.4) is used in Eqs. (B.2) and (B.5). Indeed, a
comparison of the integral of Eqn. (B.11) for larger with the rest-mass energy of a neutron star
reduced by its binding energy at timet (computed from the emitted neutrino energy,

∫ t

0 dt′ Lν(t′)
with Lν being the neutrino luminosity) reveals very good agreement.

The arguments given above only provide a heuristic justification for the manipulation of the
TOV potential proposed in Case A. A deeper theoretical understanding and more rigorous ana-
lytical analysis of its consequences and implications is certainly desirable, but beyond the scope
of the present discussion in this thesis. We plan to return tothis question in future work.

In order to compare the results — obtained with the V code — presented here with those
of the calculations of Liebendörfer et al. (2005) we used thesame set of neutrino interaction
rates as picked for Model G15 in Liebendörfer et al. (2005), and exactly the same parameters
for the numerical setup (e.g., the grids for hydrodynamics and neutrino transport). Information
about this setup can be found in Liebendörfer et al. (2005). The initial model for our calculations
is the 15M⊙ progenitor model “s15s7b2” from Woosley & Weaver (1995).

Since — as already mentioned above — solving the neutrino transport problem is computa-
tionally quite expensive we performed calculations only for Cases A, B, and F (as defined in
Sect. B.1.2) with the V code3. The quality of these results is then compared to the fully
relativistic treatment of the A-BT code.

3All other cases are discussed in greater detail in Marek et al. (2006).
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B.1.4. Hydrodynamics and implementation of the effective r elativistic
potential

The implementation of an effective relativistic gravitational potential or of an effective rela-
tivistic gravitational force as its derivative into existing Newtonian hydrodynamics codes is
straightforward and does not differ from the use of the Newtonian potential or force.

The equations solved by the code used for our simulations aredescribed in much detail in
previous publications (see, e.g., Rampp & Janka 2002, Müller & Steinmetz 1995,and references
therein). The implementation of the source terms of the gravitational potential as discussed in
Müller & Steinmetz (1995) is also applied for the handling ofthe effective relativistic potentials
investigated in this work. The only specific feature here is the mutual dependence ofΓ and
mTOV, which is either accounted for by a rapidly converging iteration or by takingΓ from the
old time step in the update ofmTOV, when the changes during the time steps are sufficiently
small.

Since the actual form of the gravitational source term is unspecified in the conservation laws
of fluid dynamics, the Newtonian potential can be replaced bythe effective relativistic potentials
investigated in the current work in a technically straightforward way. Solving an equation for
the internal plus kinetic energy (as in our codes) requires atreatment of the gravity source term
in this equation that is consistent with its implementationin the equation of momentum.

Of course, the effective potential must be investigated concerning its consequences for the
conservation of momentum and energy. Since a potential constructed according to Eqs. (B.2,
B.4) does not satisfy the Poisson equation, the momentum equation cannot be cast into a conser-
vation form (cf. Shu 1992, Part I, Chapter 4). As a consequence, the total linear momentum is
strictly conserved only when certain assumptions about thesymmetry of the matter distribution
are made, for example in the case of spherical symmetry or axially symmetric configurations
with equatorial symmetry, or when only one octant is modelled in the three-dimensional case.
In axisymmetric simulations the conservation of specific angular momentum is fulfilled as well,
when using the effective relativistic potential. In general, however, a sufficient quality of mo-
mentum (and angular momentum) conservation has to be verified by inspecting the numerical
results.

The long-range nature of gravity prohibits to have an equation in pure conservation form
for the total energy, i.e., for the sum of internal, kinetic,and gravitational energy (Shu 1992,
Part I, Chapter 4). In contrast to the Newtonian case, however, our effective relativistic potential
does also not allow one to derive a conservation equation forthe total energy integrated over all
space. Monitoring global energy conservation in a simulation with effective relativistic potential
therefore requires integration of the gravitational source terms over all cells in time. If the local
effects of relativistic gravity are convincingly approximated – as measured by good agreement
with static solutions of the TOV equation and with fully relativistic, dynamical simulations –
there is confidence that the integrated action of the employed gravitational source term approx-
imates well also the global conversion between total kinetic, internal, and gravitational energies
found in a relativistic simulation.

The recipes for approximating general relativity should beapplicable equally well in hydro-
dynamic codes different from our (Eulerian) PPM schemes, provided the effects of gravity are
consistently treated in the momentum and energy equations.The proposed effective potentials
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are intended to yield a good representation of the effects of relativistic gravity in particular in
the context of stellar core collapse and neutron star formation. For our approximation to work
well, the fluid flow should be sub relativistic. The numericaltests described in the following
sections show that velocities up to about 20% of the speed of light are unproblematic.

B.2. Simulations in spherical symmetry with the V  code

We simulated the collapse and the post-bounce evolution of the progenitor model s15s7b2 with
the V code as detailed in Chapter 2. The calculations were performed using the TOV
potential given in Eqn. (B.2) (Model V-R, which is identicalwith the V calculation of
Model G15 in Liebendörfer et al. 2005), and we also tested themodifications A, B, and F
of the TOV potential (Models V-A, V-B, and V-F, respectively). For comparison, we refer in
the following discussion also to the calculation of Liebendörfer et al. (2005) with the fully
relativistic A-BT code (Case GR, Model AB-GR).

Fig. B.1a shows the central density as a function of time for the collapse (left panel) and for
the subsequent post-bounce phase (right panel). The “central” density is the density value at the
centre of the innermost grid zone of the AB-GR simulation. Because of a different numerical
resolution it was necessary to interpolate the V results to this radial position. During the
collapse only minor differences between the relativistic calculation (bold solid line) and the
calculations with the V code are visible. Note that the trajectories from the V code,
with the modifications A, B, and F of the TOV potential as well as with the TOV potential
(case R), lie on top of each other.

We can thus infer that the differences between the modifications A, B, and F of the TOV
potential are unimportant during the collapse phase. Furthermore, we can conclude from the
good agreement of the general relativistic calculation andthe V calculations that the TOV
potential works well during the collapse phase. However, after core bounce this potential over-
estimates the compactness of the forming neutron star and therefore the density trajectories of
Model AB-GR and Model V-R diverge (see Fig. B.1)a. At 250 ms after the shock formation the
central density in Model V-R is about 20% higher than the one in the relativistic calculation.
At this time the modifications A and B of the TOV potential givea central density only about
2% higher than Model AB-GR, and the absolute difference stays practically constant during the
entire post-bounce evolution. This implies that both modifications yield very good quantitative
agreement with the general relativistic treatment. In contrast, in Model V-F the central density
after bounce is lower than the relativistic result of Model AB-GR. This indicates a strong un-
derestimation of the depth of the gravitational potential in Case F, whereΓ = 1 in the integrand
of Eqn. (B.2).

Since the central densities suggest that differences between a fully relativistic calculation
and Newtonian simulations with effective relativistic potential become significant only after
shock formation (see also Liebendörfer et al. 2005), we discuss the implications of our potential
modifications in the following only during the post-bounce evolution.

Fig. B.1b shows the shock positions as functions of time. Both Case A (thin solid line) and
Case B (dashed-dotted line) reveal the desirable trend of a closer match with the general rela-
tivistic calculation (thick solid line) than seen for ModelV-R, which gives a shock radius that is
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Figure B.1.: a: Time evolution of the central densityρc for Model AB-GR (bold solid line), V-
A (solid line), V-B (dashed-dotted line), V-F (dashed line), and V-R (dotted line).
The left panel shows the collapse phase (note that here all models with the V-
 code lie on top of each other), while the right panel shows thepost-bounce
evolution. Note the different axis scales in both panels.b: Time evolution of
the shock positionrs for simulations with the V code using various modifi-
cations of the TOV potential compared to the general relativistic result from the
A-BT code (Model AB-GR, thick solid line).

too small, and Model V-F, where the shock is too far out at all times. In particular, Model V-A
reveals excellent agreement with Model AB-GR. The only major difference is visible between
170 ms and about 230 ms after shock formation when the shock transiently expands in the V-
 calculation. This behaviour is generic for the V results and independent of the choice
of the gravitational potential. In the A-BT run the transient shock expansion is much
less pronounced and also a bit delayed relative to the V feature (it is visible as a deceler-
ation of the shock retraction between about 200 ms and 250 ms). This difference, however, is
not caused by general relativistic effects but is a consequence of a different numerical tracking
of the time evolution of interfaces between composition layers in the collapsing stellar core
(for more details about the numerics and a discussion of the involved physics, see Liebendörfer
et al. 2005). It is therefore irrelevant for our present comparison of approximations to general
relativity. A good choice for the effective relativistic potential (like Case A) should just ensure
that the corresponding shock trajectory converges again with the relativistic result (Case GR)
after the transient period of shock expansion.

The time evolution of the central density or the shock position, however, is not the only rele-
vant criterion for assessing the quality of approximationsto general relativity. A good approx-
imation does not only require good agreement for particulartime-dependent quantities (like,
e.g., the central density), but also requires that the radial structure of the models reproduces the
relativistic case as well as possible at any time.

In the left panels of Fig. B.2 we show such profiles of the density and velocity (top panel)
and of the entropy and electron fractionYe, i.e., the electron-to-baryon ratio (bottom panel),
for Models AB-GR and V-A at a time of 250 ms after bounce, when the discrepancy between
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relativistic and approximative treatment was found to be largest in Liebendörfer et al. (2005).
Fig. B.2 can be directly compared with Fig. 12 in the latter reference. Obviously Model V-A
fits the density profile of the general relativistic calculation (Model AB-GR) extremely well at
all radii. Furthermore, both the velocity ahead of the shockfront and behind it are in extremely
good agreement between the two models (the differences at the shock jump have probably a
numerical reason associated with the different handling of shock discontinuities in both codes).
It is an important result that with this modification A of the TOV potential one is able to ap-
proximate the kinematics of the relativistic run with astonishingly good quality in a Newtonian
calculation (at least in supernova simulations when the velocities do not become highly rela-
tivistic). In contrast, in V runs with the original TOV potential (Case R) the pre-shock
velocities were found to be significantly too large (Liebendörfer et al. 2005), which is due to the
overestimated strength of gravity in the far field limit as compared to the relativistic calculations
(see the discussion in Sect. B.1.3).

Also the entropy andYe profiles (bottom left panel of Fig. B.2) reveal a similarly excellent
agreement between Models V-A and AB-GR. The minor entropy differences ahead of the shock
are associated with a slightly different description of the microphysics (nuclear burning and
equation of state) in the infall region (for details we referto Liebendörfer et al. 2005).

Not only the radial structure of the forming neutron star in all relevant quantities is well re-
produced, but also the neutrino transport results of the relativistic calculation and of the approx-
imative description of Case A are in nearly perfect agreement. Corresponding radial profiles
of the luminosities and root mean square energies – both as defined in Sect. 4 of Liebendörfer
et al. (2005) – for electron neutrinos,νe, electron antineutrinos, ¯νe, and heavy-lepton neutri-
nos4, νx, are displayed in the right panels of Fig. B.2. The results for Models V-A and AB-GR
for all neutrino flavours share their characteristic features, and in particular agree in the radial
positions where the different luminosities start to rise. While theνx luminosities are nearly in-
distinguishable below the shock, the jump at the shock is slightly higher for the V run and
reflects the larger effects due to observer motion, e.g., Doppler blueshift and angular aberration,
for an observer comoving with the rapidly infalling stellarfluid ahead of the shock. The offset
between results of Models V-A and AB-GR decreases at larger radii where the infall velocities
are lower. This discrepancy was not discovered by Liebendörfer et al. (2005), because there the
agreement of the radial structure for both investigated models was generally found to be poorer
than in the present work.

General relativistic effects are unlikely as an explanation, because they are very small around
the shock (see Fig. 13 in Liebendörfer et al. 2005). A detailed analysis reveals that both codes
produce internally consistent results, conserving to goodprecision the luminosity through the
shock for an observer at rest and showing the expected and physically correct behaviour in the
limit of large radii. Most of the observed difference (which has no mentionable significance
for supernova modelling) could be traced back to the fact that V achieves only order (v/c)
accuracy, whereas A-BT produces the full relativistic result including higher orders
in (v/c). Corresponding effects become noticeable whenv/c >∼ 0.1. The mean neutrino ener-
gies are hardly affected by this difference (Fig. B.2, bottom right panel). In case of theνe and

4Since the transport of muon and tau neutrinos and antineutrinos differs only in minor details we treat all heavy-
lepton neutrinos identically in the V simulations.
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Figure B.2.: Left: Radial profiles of the velocityv (dashed lines) and densityρ (solid lines) for
Model V-A (thin) and the relativistic Model AB-GR (bold) at atime of 250 ms af-
ter shock formation (top panel), as well as radial profiles ofthe entropys (dashed
lines) and of the electron fractionYe (solid lines) for the same models and the
same time (bottom panel). As in Liebendörfer et al. (2005),r is the circumfer-
ential radius in case of the relativistic results. Note the different vertical axes
on both sides of the two panels. Right: Radial profiles of the luminositiesL of
electron neutrinos (solid lines), electron anti-neutrinos (dotted lines), and heavy-
lepton neutrinos (dashed lines) for Models V-A (thin) and AB-GR (bold) at a
time of 250 ms after shock formation (top panel), as well as radial profiles of the
root mean square energies〈ǫν〉RMS for the number densities ofνe, ν̄e, and heavy-
lepton neutrinos for Models V-A and AB-GR (bottom panel). The labelling is the
same as in the panel above, and all neutrino quantities are given for a comoving
observer.

ν̄e luminosities the V run yields roughly 10% lower values outside of the corresponding
neutrino spheres (i.e., between about 50 km and 90 km), but values much closer to those from
the A-BT calculation ahead of the shock. Since the neutrinospheric emission ofνe
andν̄e is strongly affected by the mass accretion rate of the nascent neutron star and the corre-
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Figure B.3.: a: Luminosities as functions of post-bounce time for different cases computed
with the V code and for Model AB-GR. The top panel shows the results
for heavy-lepton neutrinos, the centre panel those for the electron antineutrinos,
and the bottom panel the results for electron neutrinos. Thepanels on the left
magnify the early post-bounce phase. All luminosities are given for an observer
comoving with the stellar fluid at a radius of 500 km. Note the different scales of
the vertical axes.b: Radial profiles of the velocityv (dashed lines) and density
ρ (solid lines) for Models V-A (bold lines), V-B (thin), and V-R (medium) at a
time of 250 ms after shock formation (top panel). Radial profiles of the entropy
s (dashed lines) and of the electron neutrino luminosityLνe(solid lines) for the
same models and the same time (bottom panel). The luminosityis given for an
observer comoving with the stellar fluid.

sponding accretion luminosity (which both seem to have the tendency of being slightly higher in
Model AB-GR), we refrain from ascribing the different magnitude of theνe andν̄e luminosities
only to the treatment of relativistic effects. Although such a connection cannot be excluded, the
luminosity differences might (partly) also be a consequence of the different accretion histories
in Models AB-GR and V-A, which manifest themselves in the shock trajectories (Fig. B.1b) and
are attributable to the different handling of the microphysics and computational grid in the infall
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layer (see above and Liebendörfer et al. 2005). This interpretation seems to be supported by the
time evolution of the neutrino luminosities plotted in Fig.B.3a. The accretion bump in theνe
andν̄e luminosities which follows after the promptνe burst is stretched in time in case of Model
AB-GR, indicating the delay of mass infall at higher rates relative to all V simulations.
Note that the neutrino emission reacts with a time lag of some10 ms (corresponding to the
cooling timescale of the accretion layer on the neutron star) to variations of the mass accretion
rate.

Moreover, Fig. B.3a shows that our variations of the effective relativistic potential in the V-
 models have little influence on the prompt burst ofνe at shock breakout. But subsequently
the overestimated compactness of the proto-neutron star inModel V-R, which causes the faster
contraction of the stalled shock after maximal expansion (Fig. B.1b), also leads to higher neu-
trino luminosities during the accretion phase. Consistentwith the shock trajectories, Model V-A
yields the closest match with the general relativistic run of Model AB-GR also for the neutrino
luminosities. It is very satisfactory that the results (shock radiusrs as well as the neutrino lumi-
nositiesL) from both simulations reveal convergence at later times when the period of massive
post-bounce accretion comes to an end.

In Fig. B.3b we present the radial structure at 250 ms after bounce for the V simulations
with the modifications A and B of the TOV potential, compared to the results with the TOV
potential (Case R) which was already discussed in Liebendörfer et al. (2005). Note that be-
cause of the excellent agreement seen in Fig. B.2, Model V-A (Case A) can also be considered
as a representation of the fully relativistic run of Model AB-GR. Models V-A and V-B show
results of similar quality. The little offset of the shock position (which is causally linked to the
differences in all profiles) might suggest that Model V-B is slightly inferior to Model V-A in
approximating relativity. This conclusion could also be drawn from the post-bounce luminosi-
ties in Fig. B.3a. However, caution seems to be advisable with such an interpretation, being
aware of the uncertainties in the accretion phase and infalllayer discussed above, and in view
of the fact that the central densities (Fig. B.1a) and radialdensity profiles (Fig. B.3b) agree
well. Moreover, the quality of the agreement at “very late” times cannot be judged, because no
information is available for the behaviour of Model AB-GR after 250 ms post bounce, a time
when the settling of the shock radius and luminosities to their post-accretion levels seems not
yet over in this model (Figs. B.1b, B.3a). The TOV potential of Case R clearly produces too
large infall velocities ahead of the shock (and therefore does not agree well with the kinematics
of the relativistic calculation), overestimates the compactness of the forming neutron star, and
thus produces too high neutrino luminosities during the simulated period of evolution (for a de-
tailed discussion, see Liebendörfer et al. 2005). Cases A and B clearly perform better and must
be considered as significant improvements for use in Newtonian simulations with an effective
relativistic potential as approximations to fully relativistic calculations.
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C
Test of momentum conservation

This Section is a discussion of some test calculations that were done in order to understand
the results of Section 5.1, where it was found that though momentum conservation is good in
calculations including general relativistic effects, a (small) momentum conservation violation is
found in Newtonian calculations. This is somewhat unsatisfactory, since physically momentum
conservation is only ensured in a Newtonian framework but not in the approximations we use to
include general relativistic effects, see also the discussion in Appendix B. Thus from a physical
point of view momentum conservation should be guaranteed inan Newtonian calculation. Nu-
merically, however, it is quite difficult to ensure momentum conservation in both approaches,
the reason being that P— the numerical scheme we use for solving the hydrodynam-
ics equations — uses a operator–splitting method to includethe source term of the (Newtonian
or general relativistic) potential. Nevertheless, the fact that despite these complications momen-
tum conservation is guaranteed in the less plausible — the general relativistic case — makes it
desirable to achieve at least similar results in Newtonian calculations.

A representative overview of the momentum conservation that is achieved in general relativis-
tic calculations is shown in Fig. C.1, where we show the z–component of the momentum and
the corresponding movement of the core for model L&S–2D.

The same quantities evaluated for model L&S–2D–Newt are shown in Fig. C.2. Clearly,
in contrast to model L&S–2D, model L&S–2D–Newt does not showan oscillation of the z–
component of the momentum but rather shows a continously drift towards one hemisphere.
However, it is also visible that this momentum conservationviolation is much smaller than the
amplitude observed in model L&S–2D, but nevertheless sinceit produces a force always in the
same direction an at least equivalent displacement of the core is observed. Since numerically
the only difference between the calculation of model L&S–2D and of model L&S–2D–Newt is
that in the former a monopole term to the gravitational potential is included which accounts for
general relativistic effects (see Section 2 and Appendix B), it seems plausible that the different
evolution of both models is caused by the different calculation of the source term for gravita-
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Figure C.1.: a: The z–component of the momentum as function of time for model L&S–
2D. Note that though, the momentum is not zero, it oscillatessuch that on time
average the momentum is conserved.b: The displacementr of the centre of
mass evaluated from the momentum evolution in panel a. Note that the predicted
movement is at all times much smaller than the width (300 m) ofthe inner most
grid zone at centre.

tional forces. In order to test this hypothesis we have calculated several test models, see Table
C.1, which were all mend to investigate the momentum conservation in Newtonian runs. Both
the “full” Newtonian 2D gravitational potential (i.e. without the general relativistic monopole
term) as a Newtonian spherically symmetric potential were used.

As the purely hydrodynamical models show, the momentum evolution in the Newtonian mod-
els is not caused by the calculation of the neutrino transport. Furthermore model Hydro–no–pert
shows that a model stays exactly spherical symmetric — even in 2D — as long as no random
perturbations are used and thus no momentum conservation violation is observed. This shows
that the reason for the momentum conservation violation observed in our models is not caused
by an error in the code which artificially breaks spherical symmetry. Furthermore, model L&S–
2D and Hydro–1Dpot behave similar in the sense that a strong oscillation of the z–component
of the total momentum is observed and thus an oscillatory movement of the core is seen. Since
in both models the monopole term dominates (either because it is the strongest contribution as
ii is the case in the GR–approximation of model L&S–2D, or because all other contributions
were switched of as it was done in model Hydro–1Dpot) the behaviour in the models with the
two–dimensional Newtonian potential have to be caused by the non–spherical part of the gravi-
tational potential. It is also interesting that the evolution of the momentum is not influenced by
the numerical treatment of the innermost core: independentof a spherical symmetric (1D) core
a 2D core the momentum evolution is very similar, compare models Hydro and Hydro–2Dcore.
Thus, the question remains what causes the momentum evolution in Newtonian (hydro) models?

As one can deduce from Figs. C.2a,b model Hydro for example shows the build up of a net
momentum at a time of around 10ms after the shock formation. At this time, however, the
density as well as the radial velocity are still perfectly spherically symmetric, see Fig. C.3a–
c. The z–component of the velocity field, however, shows suddenly at this time a breaking of
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Figure C.2.: a,b: The z–component of the momentum as function of time for model L&S–
2D (purple), L&S–2D–Newt (black) and the test calculations. Note the different
axis scales in both plots.c: The displacementr of the core evaluated from the
momentum evolution in panel a. Note that the predicted movement is at all times
much smaller than the width (300 m) of the inner most grid zoneat centre.

205



Test of momentum conservation

Model Potential 2D–Expansion Neutrino Transport 1D core in centre
L&S–2D GR Yes Yes Yes

L&S–2D–Newt NEWT Yes Yes Yes
Hydro NEWT Yes No Yes

Hydro–2Dcore NEWT Yes No No
Hydro–1Dpot NEWT No No No
Hydro–no–pert NEWT Yes No Yes

Table C.1.: Overview over all models used in this Section. Stated are themodel names,
the used gravitational potential (i.e. purley 2D Newtonianor 2D Newtonian with
monopole GR corrections), whether Neutrino transport is taken into account, and
if the innermost 6 zones (i.e. 1.6 km) are calculated in spherical symmetry. Note
that model Hydro–1Dpot was calculated with only the Newtonian monopole po-
tential, i.e. the 2D potential was switched of. Note that model Hydro–no–pert
was calculated without applying the usual random perturbations in density (i.e. no
breaking of radial symmetry was induced.

symmetry which leads to the momentum conservation violation. This can be seen in Fig. C.3c,
where we plot the difference of this velocity for corresponding rays:

|uz(0
◦ + θ)| − |uz(180◦ − θ)| ,∀angular raysθ (C.1)

Since the radial velocity (which contributes to the z–component of the velocity field) is still
spherically symmetric at this time, this finding implies that the lateral velocityuθ has to develop
differently on different angular rays. Indeed, the momentum conservation violation first appears
at a radius of around 20 km, see Fig. C.3c, where the convection in the dense core appears.
Thus, obviously the appearance of convection causes the build up of a net momentum along
the polar axis and not the asymmetric clumping of the densityfield due to gravitational forces1.
Thus, in the Newtonian calculations with non–spherical gravitational potential the momentum
conservation violation appears as soon as convection sets in and non–spherically symmetric
fluid flows appear. The implementation of the gravitational potential in the MDBTH–code
does thus obviously not completely conserve the total momentum. However, the momentum
conservation violation we observe is very small and seems tosaturate which means that the
centre of the core does not leave (or only at very late evolution times) the first grid zone. The
fact that in models with a dominant monopole term the momentum conservation is much better
is due to the fact that the spherical part of the gravitational potential acts as a restoring force
that acts against the direction of the momentum conservation violation.

1However, the matter flow in the region of proto–neutron star convection is of course influenced by the gravitational
field.
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Figure C.3.: a: The density as function of radius of model Hydro at a time of 12 ms after
the shock formation. This time was chosen since the momentumconservation
violation already appears at this time. Note that profiles for all angular rays are
plotted, which, however, due to a still spherically symmetric density structure lie
on top of each other.b: The radial velocity profiles at the same time as the density
profiles from panel a. Note that also here all angular bins as shown, which lie on
top of each other.c: The difference of the z–component of the velocity field for
angular rays being symmetric to the equator, see Eqn. C.1. Note that in the region
where proto–neutron star convection develops, the contributions of the different
angular rays do not exactly cancel each other which leads to the build up of the
observed net momentum.
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D
The growth of modes in the standing

accretion shock instability

As we have already discussed in Section 5.1, for reasons of computer time, model Wolff–2D
was initially calculated in a computational domain which covered the area between the north
pole and the equator. Then, at a time of 130 ms after the shock formation, a mapping to a 180◦

degree grid was done and the calculation was continued on this new grid. As we have already
mentioned, we have indications that a calculation of a modelwhich covers the area between a
pole and the equator, does not suppress essential physics and explosion can be obtained, see the
discussion in Section 4.2. The reason for this is that in the particular model discussed in Section
4.2 the lowest possible mode in the pole–equator setup, thel = 2–mode, grows comparable, as
the l = 1–mode in the corresponding 180◦–model. Also the comparison of two rotating models
one calculated from pole to pole and the other one calculatedfrom pole to equator, see Section
6.1, reveals only minor differences, which is another hint that a calculation on a grid domain
from pole to equator does not produce wrong results. However, things are different when one
switches from a 90◦ to a 180◦ model during a simulation, since one then changes the wave–
number of the lowest mode which can be excited. Thus the question has to be answered if by
doing this kind of change during a simulation, one artifically influences the evolution of model
Wolff–2D. Of course, this answer can only be obtained by simulating the model once again
in 180◦ from a earlier time on1. Thus we have redone a calculation of this particular model,
where the mapping to a full 2D computational domain was done at a time of 70 ms (i.e. 60 ms
earlier than in model Wolff–2D) and we followed this model, denoted Wolff–2D–ear, as long
as possible. In the following we will compare both models andcheck whether the supernova
evolution is different in both runs.

1Here, this can either mean that the simulation is started from the beginning in 180◦ or that the mapping to 180◦ is
done at a earlier time.
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Figure D.1.: The laterally averaged shock po-
sitions (upper solid lines) and the
electron neutrino spheres (lower
solid lines) as function of time
for both models. Note that the
position of the electron neutri-
nospheres is equal in both mod-
els, since the electron neutri-
nosphere is not subject to low
mode deformations for the evolu-
tion times regarded here.
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Figure D.2.: The expansion of the shock surface into spherical harmonics, see Section 4.2.
Shown are the normalised amplitudesal,0/a0,0 of the contribution of the wave–
number l for model Wolff–2D (thin solid) and model Wolff–2D–ear (thick
dashed).a: The lowest possible non spherical modesl = 1, 2. b: The next
higher modesl = 2, 3.

We again begin our discussion by showing in Fig. D.1 the laterally averaged shock positions
and the laterally averaged positions of the electron neutrinospheres of models Wolff–2D and
Wolff–2D–ear.

Though the switch to a full 2D–model was applied at 70 ms and 130 ms after the shock
formation in the models Wolff–2D–ear and Wolff–2D, respectively, we do not find a different
angularly averaged shock position. At the time when the Si–O–interface reaches the shock front
and triggers a shock expansion (at roughly 150 ms after the shock formation), however, both
models show a slightly different evolution of the averaged shock position. Nevertheless for all
the time we were able to recompute model Wolff–2D–ear we do not find a significantly changed
(laterally averaged) position of the standing accretion shock front.

Also the projection of the shock deformation into the space of spherical harmonics shows
that the contribution of the different modes to the shock position changes initially very slow,
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Figure D.3.: The expansion of the pressure fluctuations into spherical harmonics,
cf. Eqn. 5.1.1, as function of time. Shown are the lowest possible non–spherical
modes, namelyl = 1 and l = 2. Note that the position of the amplitudes of
the l = 2–modes were shifted.a: the fluctuations at a radius of 10 km.b: the
fluctuations at a radius of 25 km.c: the fluctuations at a radius of 30 km.d: the
fluctuations at a radius of 35 km.
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The growth of modes in the standing accretion shock instability

see Fig. D.2: Roughly for the first 50 ms, where both models were calculated on different 2D–
domains the coefficients of the spherical harmonics are essentially equal. Only at a time of a
130 ms after the shock formation when finally both models werecalculated as a 180◦–setup
the amplitudes start to change. As one would expect in model Wolff–2D–ear, where thel = 1
mode can grow earlier than in model Wolff–2D, the amplitude of thel = 2 mode shrinks and
the l = 1 mode grows faster. However, for the time we were able to compute both models,
the amplitudes of thel = 1 modes of the shock instabilities have roughly equal values(though
the time evolution is different), which indicates that the growth of thel = 1 mode was not
artificially suppressed in model Wolff–2D. Also the growth of g–mode neutron star oscillations,
see the discussion in Section 5.1, is very similar in both models. As Fig. D.3 shows, though
the time evolution of the g–modes is different in both models, the amplitudes are very similar.
Thus we conclude that our numerical treatment in model Wolff–2D did not artificially suppress
the growth of anl = 1 g–mode oscillation in the dense core. However, it must be noted here
that this result for both the mode growth of the shock instability and the neutron star g–modes
might not hold for two possible cases:

• Firstly, it can not be excluded that a later times the shock deformation modes may develop
totally different strength. This can only be checked when both models Wolff–2D and
Wolff–2D–ear are calculated to longer times.

• Secondly, it is also possible that if we had calculated a model on a 180◦–grid from the mo-
ment of shock formation on, that the modes would have developed in a different manner.
Testing this would require a time consuming simulation.

Thus our conclusion that the shock evolution and the neutronstar g–mode excitation of model
Wolff–2D was not seriously influenced by our numerical treatment may be proven wrong by
doing the above mentioned test calculations.
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E
A radial, energy-space, and angular

resolution test with the Wolff-EoS

In general, the common sense of numerical treatments requires that the code one uses is tested
against resolution artefacts. Such a test requiresseveralruns where the resolution increases by
a factor (typically chosen to be 2). One says the simulationsare converged when the results1

are independent of the resolution. This typically implies that the resolution has to be better than
a certain value and the resolution test has no other importance than to proof its existence and to
determine this value.

Since the V /MDBTH code uses several different grids (radial direction, energy space,
and in 2D additional an angular direction) several resolution studies had to be performed. In
spherically symmetric models we performed resolution testconcerning the radial grid, and in
another study we tested the dependence of our results on the energy–grid. The result of these
studies will be presented in the following subsection.

E.1. Resolution studies in spherically symmetric models

E.1.1. Energy grid

In the calculations the spectrum of neutrino energies is normally resolved by 17 geometrically
spaced energy bins between 0 MeV and 380 MeV. In order to test for resolution effects we have
also calculated models where the number of bins was reduced or increased by roughly a factor
of two. These models use, in the same energy range, 9 and 33 geometrically spaced energy
bins, respectively. Additionally, also a model was calculated where 13 energy bins were used.

1Here the term results implies physical quantities that should be independent of the grid resolution. Especially,
physical behaviour that is scale dependent (e.g the energy cascade in turbulent flows) isnot included in this
sense.
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A radial, energy-space, and angular resolution test with the Wolff-EoS

All models are based on model Wolff(io)slms which was discussed in Section 3.2 and exactly
the same microphysical setup was chosen.
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Figure E.1.: a: The shock position (solid) and the the position of the electron neutrinosphere
(dashed) for the models that used 9, 12, 17, and 33 energy bins. b: The neutrino
luminosities evaluated at 400 km. The values were transformed such as if the ob-
server is resting at infinity. The solid line represents the luminosities of electron
neutrinos, the dashed lines correspond to anti electron neutrinos, and the heavy
(anti) lepton neutrinos are represented by the dotted lines.

In Fig. E.1a we show the shock trajectories as function of time for the three models and in
Fig. E.1b we show the evolution of the neutrino luminositiesas measured by an static observer
resting at infinity. Whereas model 9–bins shows a larger electron neutrinosphere radius and a
larger shock position, the models with 17 and 33 energy bins show almost identical behaviour.
Model 12–bins lies in between these two groups. The luminosities of all neutrino flavours
are also identical for the models with 17 and 33 energy bins except for the peak luminosity
during shock breakout, where we find roughly 5% difference. However, the rise and fall time,
as well as the later evolution are almost identical for thesemodels. We find that model 9–bins
generically underestimates the luminosity of all neutrinoflavours, and again, model 12–bins
predicts luminosities which lie between the ones of model 9–bins and 12–bins.

This implies that 17 energy bins seem to be enough to follow the supernova dynamics cor-
rectly. Clearly the step from 17 to 33 energy bins results in only a fraction of the changes that
are observed when one uses 17 instead of 9 energy bins. Since the results for 17 and 33 energy
bins are almost identical that implies that the numerics converge at these choices of the energy
grid as far as the supernova dynamics are concerned.

However, it remains to be answered how well the different energy grid does sample the spectra
of neutrino energies. This is shown in Figs. E.2a–f where we show the spectra of all neutrino
flavours at a time of 50 ms after the shock formation as it wouldbe measured by an observer
resting at infinity.

Again, we find that 9 and 12 energy bins are too less in order to resolve the neutrino spectra.
More importantly, the spectra of the models with 17 and 33 energy bins are again very similar.
Except for the spectral maximum, in the low energy range (ǫ ≤ 30 MeV) the fits are very

214



E.1.2 Radial grid

similar. For larger neutrino energies the spectra begin to deviate stronger from each other.
However, again, the differences between the runs with 17 and 33 energy bins are smaller than
the differences between the ones with 9 and 17 energy bins. We can thusnot say that our 17
energy bin run is converged in this high energy tail, since wehave only a hint that increasing
the number of energy bins will actually lead to a convergencein the high energy tail. However,
runs with even larger number of energy bins were computationally not feasible in this study. In
the high energy tail our run with 17 energy bins is thus not fully converged, but the resolution is
good enough to overcome most of the resolution effects. Surely, in this sense a better resolved
energy space would be preferable, but for two reasons we refrain from this approach: on the
one hand the flux at these high energies is very low compared tothe low energy flux2. Thus
smaller errors do rarely contribute significantly to the total flux. Furthermore, our standard
energy grid seems to slightly overestimate the neutrino fluxin this energy range, which implies
that we loose slightly more energy in neutrinos than the better resolved simulation suggests.
This implies that we probably make an explosion harder to achieve (more energy is extracted
from the post shock region) and we do not artificially enhancethe explosion mechanism. More
importantly, on the other hand, one can simply not allow for ahigher resolution in energy space.
The computational costs scale likeNǫ3, which implies that a multi–dimensional simulation will
scale up from a run–time of several months to over a year if theenergy resolution is doubled.
This would render supernova simulations impossible!

However, as Figs. E.1 through E.2 demonstrate, our “standard” energy grid with 17 energy
bins is converged as far as the supernova dynamics is converged. Nevertheless, the details of
the high energy tail of the neutrino spectra is still influenced by resolution effects. Thus with
improved computers and numerical capabilities a better resolved energy space should be used
in the future.

E.1.2. Radial grid

In a simulation of the postbounce phase a Eulerian grid is used, which is chosen such that at
least 10 Zones per decade of density are available. Since thedensity gradient at the border of
the proto–neutron star becomes steeper with ongoing time, this implies that from time to time
a numerical refinement is applied that ensures a well resolved nascent neutron star. Typically,
400 Zones are used at the beginning of the postbounce phase and after 300 ms the radial grid
consists of 500 to 600 radial zones depending on the progenitor model and the used EoS. An-
other constraint on the radial grid is that in a multi–dimensional simulation the numerical zones
should be roughly quadratic in order to ensure that the PPM hydro-scheme works properly.
Thus an increased angular resolution requires also an increased radial resolution (see below).

We performed some runs in order to test the dependence of our results on the radial grid.
These runs were performed with the Wolff-EoS, the same micro-physics as described in Sec-
tion 3.2, and an initial number of 400, 600, and 780 zones, respectively. The radial resolution
dr/r is shown in Fig. E.3 for these three models. Note, that even inspherical symmetric cal-
culations the simulations would be too expensive if the bestresolution is used throughout the
whole computational domain. For this reason, inside of the proto neutron star a transition to the

2This is at least true, as long as one regards the early supernova evolution for times smaller than roughly 1s.
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A radial, energy-space, and angular resolution test with the Wolff-EoS

well resolved resolution takes place. This is justified, since inside of the dense core no strong
gradient in density develops and thus a lower resolution is sufficient. Also note that model
“600–zones” is identical to model Wolff–1D , which was introduced in Section 5.1. As one can
see in Fig. E.3 the grids were chosen such that in the relevantregion between≈20 km and≈700
km the resolution increases substantially for the different grids.

The results of this resolution study are shown in Fig. E.4, where the positions of the shock
fronts, of the neutrinospheres, and the neutrino luminosities as function of time are shown.
Clearly, model “400–zones”, which has the lowest resolution, shows a different shock trajec-
tory and neutrino luminosities than the finer resolved models. Interestingly, the different shock
trajectory establishes in the first 50 ms after the shock launch and the positions of the neutri-
nospheres are almost identical in all three models. From this one can conclude several things:
Firstly, the proton neutron star is sufficiently resolved in all models since the position of the
neutrinospheres is grid independent. Secondly, the shocksbehave differently when they pass
through the region between roughly 50 km and 130 km, a region where the resolution is differ-
ent in all three models. At later times, the shock trajectories are roughly parallel. Thus, in the
shock expansion phase the resolution should probably be better than the dr/r ≈ 3% in model
“400–zones”. However, it must be noted here that the observed difference in the shock trajec-
tory of roughly 10 km at a shock radius of 150 km and a dr/r of 3% corresponds to 2 or 3 grid
zones which is even smaller than the value of the typical “shock–width” of the PPM–scheme
which is normally 4 to 5 zones. Thus it is impossible to discriminate whether the larger shock
trajectory is due to a “shock detection uncertainty” or due to a low grid resolution3. Further-
more, it is extremely reassuring that the evolution of the shock trajectories is nearly parallel.
This implies that all simulations “capture” the same physics, which is a strong hint that our
lowest resolved model is not severely contaminated by the radial resolution. However, to be on
the save side, a radial grid resolution of model “600–zones”is clearly preferable to the grid of
model “400–zones”, whereas a further improvement of the radial resolution is not justified due
to the increase of computational costs.

E.2. A “minimal” 2D–resolution study

Most of the 2D–simulations discussed in this volume were performed with 192 angular bins
on a 180◦ (angular resolution of 0.94◦) setup and with initially4 600 radial zones. This setup
is now compared with previous simulations that used not morethan 128 angular bins (which
corresponds to an angular resolution of 1.41◦) and initially 400 radial zones (see, e.g. Buras
et al. 2006a). In this Section an attempt is made to investigate possible resolution differences
in the angular grid, by comparing two simulations with different angular resolution. However,
because of computational costs it was not possible to compute the same model with even better
angular resolution than 0.94◦ and thus a “minimal” resolution test was done: additionallyto the

3Note that here the case is different compared to the test runs with the energy grid. In the later, the small differences
in the shock trajectories are clearly caused by the changed energy grid. The reason why the shock detection can
not be responsible is that detecting the shock only dependence on the radial grid which wasnot changed in the
energy grid test runs.

4As explained, during the simulation at several times a rezoning procedure was applied.
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E.2 A “minimal” 2D–resolution study

fine resolved simulation, with an angular resolution of 0.94◦ the otherwise identically problem
was calculated with an angular resolution of 1.41◦. As mentioned before, this also implies that
the radial resolution had to be changed by a factor 2/3 (i.e. from 600 to 400 zones), because
the PPM hydro–scheme used in the MDBTH–code, requires roughly quadratic grid zones
(i.e. the axis ratio of the lengths in radial and angular direction must be near unity). In order to
save computer time both models were only calculated from north pole to equator, which does
not suppress any essential physics as we explained in Section 4.2 and Section 6.1.

These two simulations allow us to judge whether or not the resolution has influence on our
numerical results. However, without more models, we are notable to judge whether our results
are already numerically converged.

Firstly, a comparison of the laterally averaged shock positions and luminosities between both
2D–models, see Fig. E.6, reveals that the relative behaviour of these models is the same as the
relative behaviour of the corresponding 1D–models. Thus most of the differences we find in
the multi–dimensional models must be contributed to the different radial grids (see Subsection
E.1.2). For example, the roughly 10 km larger shock radius inmodel Wolff–1.41◦ than in the
better angularly resolved model, is also found in the corresponding 1D–model “Wolff-400” (see
also Subsection E.1.2 ). However, Fig. E.6 also reveals a difference between model Wolff–1.41◦

and model Wolff–0.91◦: in the early phase fort < 20 ms, model Wolff–1.41◦ shows a slightly
stronger shock expansion, which is a reaction on more extended electron neutrinosphere radius.
This feature can also be seen in Fig. E.7, which depicts the convection inside the proto neutron
star for both 2D–models. The convective regions are very similar in both models, however, deep
inside the core (between a mass coordinate of 0.4M⊙ and 0.5M⊙ ) model Wolff–1.41◦ shows
more convection in the first 30 ms after the shock formation. Since this convective region is
located deep in the nascent neutron star it is neither able toboost the neutrino luminosities nor
does it lead to an expansion of the core. Figure E.8 gives a more detailed impression of the
growth of convective instabilities, where the lateral velocities and the entropies are shown. At
least for the first 50 ms after the shock formation the patterns as well as the value of lateral
velocities are roughly comparable, but of course the details of the flows are different. The
reasons for this can be shortly summarised:

• After the shock formation when the mapping of a spherically symmetric calculation onto
a 2D–grid is done, a random perturbation of density from zoneto zone is applied (see
Section 4.1). Though we have used the same perturbation amplitude in both models, a
zone to zone perturbation with different radial grids implies that we cannot control the
wavelength of the perturbation. Thus the initial perturbation was not exactly the same in
both models. One would expect that a better resolved model shows convection (at least
for the beginning of the instability) on smaller scales and resolves finer structures, which
is indeed the case in Fig. E.8.

• Convective flows are a non–linear, chaotic process. Thus onecannot expect to get the
exactly same convective pattern5 for different simulations, especially if the seed pertur-
bations are not identical.

5Though the flow pattern is not exactly (i.e. the velocity field) the same, probably it is the same in the sense that
e.g. the number of down flows and up flows are the same.
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However, the fact that convective regions develop very similar for the whole simulated time,
remember Fig. E.7, despite the “chaotic” character of convective flows, and despite slightly
different convective flow patterns, is a strong hint that our low resolved model Wolff–1.41◦

does not suffer from resolution artefacts. It must be stressed here that this is statement can
only be made for a time up to 100 ms after the shock formation, since we were not able to
compute our low resolved model to a larger postbounce time. Moreover, this statement relies
on the assumption that both models donot suffer from the same resolution artefacts, which
might dissappear if a larger angular resolution would be used. As explained before, due to a for
lack of computer time we were not able to calculate such a wellresolved model6.

An expansion of the shock surface into spherical harmonics gives surprisingly well agreement
between both models with different resolution, see Fig. E.5. Both models show comparable
amplitudes of the oscillation and more surprisingly even the frequency is the same for the first
50 ms of the simulations and only at later times the oscillations clearly loose their correlation.
Since we have no theory to tell us the “exact” oscillation pattern, we can only conclude that the
time evolution of shock deformations are resolution dependent. This, however, is expected since
the angular dependence of the shock is triggered by the perturbations we impose on the velocity
field when we start our 2D simulation. As already explained, these perturbations, however,
change when we use different angular and radial resolutions.

We thus conclude from both models with different angular resolution that we do do not see any
indication for resolution artefacts on the angular grid. The laterally averaged shock positions
and neutrino luminosities behave very similar to the corresponding 1D–models, and the differ-
ences can be traced back to different radial grids, see Sect. E.1.2. Multi–dimensional effects
like the growth of convection or the angular shock deformation, which depend on the (resolu-
tion dependent) imposed perturbations, develop surprisingly quite similar. However, since the
quantities are somewhat chaotic to the initial conditions,it is not expected that a convergence
with different grid resolutions can be obtained. However, the dependence of the results on the
radial grid resolution, implies that the next generation of multi–dimensional supernova simula-
tions should apply a higher angular resolution together with a higher radial resolution in order
to maintain the constraint that numerical grid cells shouldbe roughly quadratic.

6It should be noted here that simulations of Scheck (2006) indicate that no better angular resolution than 1◦ may
be necessary. However these results are obtained with a different code and may thus not be applicable to our
numerical scheme.
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Figure E.2.: The neutrino spectra for the different models at a time of 50 ms after the shock
formation as the would be measured by an observer at rest at infinity. The eval-
uation was done at 400 km from the centre of the star. Shown arethe electron
neutrinos (a), the anti–electron neutrinos (b), and all other neutrino flavours (c).
Symbols represent the grid points, where as the spectral shape was obtained by a
spline fit though these data points. Panelsd–f show the same values, however, a
double logarithmic scale was chosen.
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Figure E.4.: a: The trajectories of the shock fronts (solid) and the different neutrinospheres
(dashed electron neutrinos, dashed–dotted anti electron neutrinos, and dotted
muon and tauon neutrinos) for all models.b: The neutrino luminosities for all
models measured at 400 km for an static observer resting at infinity. The solid
lines represent electron neutrinos, the dashed lines show the values for anti elec-
tron neutrinos, and the dotted lines represent the heavy (anti) lepton neutrinos.
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Figure E.6.: a: The angularly averaged positions of the shock front (solid) and the neutri-
nospheres (dashed electron neutrinos, dashed–dotted antielectron neutrinos, dot-
ted heavy (anti) lepton neutrinos) for the low resolved model Wolff–1.41◦ and
the better resolved model Wolff–0.91◦. b: The neutrino luminosities measured at
400 km for a static observer resting at infinity. The solid lines represent the elec-
tron neutrinos, the dashed lines represent anti electron neutrinos, and the heavy
(anti) lepton neutrinos are represented by the dotted lines.
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Figure E.7.: Regions of convective motions inside the nascent neutron star as function of time
for a: model Wolff–1.41◦. b: model Wolff–0.91◦. Also shown are density con-
tours (dashed) of 1014, 1013, 1012, 1011 g/cm3 (from bottom to top) and radii (thin
solid) of 5, 10, 15, 20, 25, 30, 50 km (from bottom to top). The thick solid line
represents the position of the electron neutrinosphere. The almost black shaded
region indicates regions where the evaluation of the Ledouxcriterion with the
laterally averaged 2D–data indicates instability. The dark grey region indicates
where the conditionvθ > 7×107 cm/s is fulfilled in a 2D–simulation. Finally, the
light grey region indicates where heavy nuclei (〈A〉 ≥ 57∧ XH ≥ 0.1) are present
(compare also to Fig. 3.8). Note that the evaluation of the Ledoux criterion with
laterally averaged data predicts convective instability where indeed convective
flows are found (compare e.g. to Fig. 3.17), except for the band for M < 0.2 M⊙ .
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Figure E.8.: Snapshots of the lateral velocity (left) and entropy (right) for model Wolff–1.41◦

(first column) and model Wolff–0.91◦ (second column) at different times. Panels
a andb depict the situation at 10 ms after the shock formation, panels c andd
at 20 ms, panelse andf at 50 ms, and panelsg andh at 100 ms after the shock
formation.
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