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Abstract

This thesis focuses on the photoinduced ultrafast dynamics of aromatic mole-

cules through conical intersections. Pyrrole and phenol are selected as two typical

systems to explore the dissociation dynamics via repulsive 1πσ∗ states and the

nonadiabatic transitions at conical intersections. Electronic-structure calcula-

tions are employed to identify the relevant degrees of freedom of the chemical re-

actions. In a first approximation, reduced-dimensional models, including the NH

or OH stretching motion and the relevant coupling coordinates of the conical inter-

sections, are considered to capture the main features of the hydrogen-detachment

photochemistry of pyrrole and phenol. Diabatic potential-energy surfaces have

been obtained based on ab inito data and a suitable diabatization procedure.

Quantum wave-packet calculations have been performed to explore the photoin-

duced dissociation and internal-conversion dynamics of these molecules. The

electronic population transfer processes at the conical intersections, the branching

ratio for the different dissociation channels, the internal-conversion probability,

and their dependence on the initial preparation of the system have been investi-

gated for both pyrrole and phenol. It is shown that the excitation of the NH or

OH stretching motion strongly enhances the photodissociation rate, while the ex-

citation of the strongest coupling mode has a pronounced effect on the branching

ratio of the photodissociation process. Time-dependent wavepackets are displayed

to provide the insight into the photodissociation dynamics through conical inter-

sections. To exhibit the role of vibrational relaxation effects on the nonadiabatic

transition dynamics, we apply the reduced density-matrix formalism. With these

methods, we explore the main features of the quantum dissipative dynamics of

pyrrole through conical intersections. The internal conversion probability is en-

hanced when the coupling of the active degrees of freedom with the environment

is taken into account. The cooling of the system by the coupling with the environ-

ment is visualized by time-dependent nuclear density probabilities of the system

degrees of freedom.
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Chapter 1

Introduction

1.1 History of the concepts of conical intersec-

tions

The interaction between light and matter raises many important subjects and is

becoming one of the central research topics in today’s physical chemistry [1–4].

The electronic excitation of a molecular system after the absorption of a photon

induces a complex sequence of dynamical processes, which are conventionally

classified as photophysical and photochemical processes. The former refer to

the situations in which a molecule retains in its chemical identity, while the

latter imply that the photoexcited molecules have undergone chemical reactions.

These dynamical processes are of interest both from experimental and theoretical

points of view, because all life on earth depend on, directly and indirectly, the

sun’s visible and ultraviolet radiation. In fact, the conversion of solar energy by

photosynthesis not only permits the continued existence of life on the planet, but

also is important for the evolution of life.

The photophysical processes include radiative electronic transitions (e.g. flu-

orescence, phosphorescence) and nonradiative electronic transition (e.g. internal

conversions and intersystem crossing). The photochemical processes, on the other

hand, refer to photoinduced chemical reactions, such as photoionization, pho-

todissociation, photolysis, photosynthesis and photoinduced isomerization [1].

1
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Although photoinduced processes became an important research topic in the

early part of last century, the mechanisms behind them were not known. For ex-

ample, the existence of metastable states had already been known, but their im-

portance in photoinduced processes was not recognized. It was not clear whether

the well-established electronic-structure theories based on the Born-Oppenheimer

(BO) approximation [5] for the ground state were applicable to electronic excited

states. The early attempts of Kasha and Vavilov to treat the lowest excited

states of each multiplicity within the BO framework could not explain many

photoinduced processes. The reason is that many photoinduced processes, such

as internal conversion, intersystem-crossing, electron transfer, as well as most

photochemical reaction, are governed by transitions between different BO adia-

batic electronic states. These so-called nonadiabatic transitions induced by the

non-BO coupling between different electronic states cause the breakdown of the

BO approximation [4]. The efforts to understand these nonadiabatic phenomena

have been a central topic of research until today. The reason is that with the

development of the time-resolved laser spectroscopy, it has been realized that

nonadiabatic transitions exist in all kinds of molecular reaction processes [6, 7],

in particular for polyatomic molecular systems.

Many nonadiabatic transitions, in particular the ultrafast ones, are governed

by the strong non-BO couplings which arise when different electronic potential-

energy (PE) surfaces come close to each other or cross. These non-BO couplings

exist, in particular at conical intersections, which are defined as points (actually

hypersurfaces in the multidimensional nuclear coordinate space) where different

electronic PE surfaces touch. Today, it has been realized that this degeneracy

is a very common phenomenon in polyatomic systems, and the understanding of

conical intersections is undergoing a spectacular transformation.

In the first half of last century, the role of conical intersections was little

appreciated. The earliest discussion about surface crossings was given by Hund

in 1927 [8], the same year in which the BO approximation was formulated [5]. He

provided the following argument: If potential curves cross, two electronic states

must be degenerate at the crossing point. However, this degeneracy cannot be
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established if only one parameter is varied. Thus, the PE curves of diatomic

molecules will not cross by varying the nuclear distance unless these two states

differ in some essential way. Two years later (1929), von Neumann and Wigner

gave the mathematical formulation of this argument [9]. They formulated the

famous non-crossing rule, which became the foundation of all further discussions.

In 1937, Teller [10] reviewed the non-crossing rule again and found that crossings

can exist in polyatomic systems because “the whole atomic configuration, not only

a single interatomic distance, can be varied”. He also indicated that the energy

surfaces near the crossing point form a double cone. This was the first time that

the concept of the conical intersection was defined, as well as its topography. In

this remarkable paper, he emphasised that transitions between different electronic

surfaces take place by passing through the crossing point of the double cone, such

as the Jahn-Teller (JT) case [11], Renner-Teller (RT) case [12] and curve-crossings

in polyatomic systems.

The knowledge of conical intersections was quite limited after these early

studies, although this idea was still mentioned occasionally. In 1957, Kauzmann

assumed that, due to the existence of many degrees of freedom, as well as the

complexity of the PE surfaces, of polyatomic molecules, “these cross-overs are

not unusual in molecules” [13]. In 1963, Herzberg and Longuet-Higgins first no-

ticed the geometric phase effect of conical intersections [14]. They showed that

the phase change of the electronic wavefunctions provided direct evidence of the

existence of a conical intersection. They concluded that conical intersections not

only exist in symmetrical systems (JT effect), but also in asymmetrical systems

such as three dissimilar hydrogen-like-atoms. Later, efforts were made to deter-

mine the surface crossings with the help of newly-developed electronic-structure

theories. For example, Zimmerman developed molecular-orbital (MO) correlation

diagrams in 1966 to predict the existence of conical intersections based on the

symmetry of reactants and products for the photochemical cyclization of butadi-

ene to cyclobutene [15]. The PE surfaces of the ground and excited states for

this reaction were obtained by van der Lugt and Oosterhoff in 1969 [16]. This

is the first successful attempt to obtain the geometry of a surface crossing with
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ab inito calculations in a polyatomic molecule, while the knowledge about con-

ical intersections was still limited. In 1970, Förster introduced the concepts of

“adiabatic”and “diabatic”photoreactions [17]. In 1971, Dougherty suggested a

perturbation approach based on the MO theory to treat the breakdown of the

BO approximation in nonadiabatic transitions [18]. The symmetry properties of

the molecular orbitals were also employed by Evleth, Horowitz and Lee in 1973

to predict surface crossings between the 1πσ∗ and S0 states, taking place for the

stretching of NH or OH bonds in imidazolyl and related heteroradicals [19].

In 1974, Michl [20], in a review article on the understanding of organic pho-

tochemistry in terms of the MO theory, stated that true surface touchings are

“uncommon”and “strongly avoided”. He referred to conical intersections as the

“funnels”of photochemistry and suggested that a molecule can be transferred to

the electronic ground state when the nuclear wave packet (WP) accesses one of

these funnels. In the same year, as an extension to Zimmerman’s work, Salem

systematically investigated the PE surfaces for a few prototype photochemical

reactions and discussed their common features, in particular the decays through

surface crossings [21]. In 1975, Longuet-Higgins emphasized that conical intersec-

tions widely exist in polyatomic systems, even for systems with no symmetry [22].

In addition, he tried to classify the types of conical intersections according to their

symmetry properties. For highly symmetrical molecules (e.g. JT systems), coni-

cal intersections occur in highly symmetrical configurations. On the other hand,

less symmetrical molecules also can exhibit conical intersections at particular

nuclear geometries which cannot be determined by symmetry arguments alone.

At the end of the 1980s, the development of ab initio methods in quantum

chemistry, in particular the configuration interaction (CI) approach, provided

powerful tools to compute excited PE surfaces and localize conical intersections.

This opened the modern era in the theory of conical intersections. This new

era began with the characterization of conical intersections for several biradicals,

performed by Bonačić-Koutecký, Koutecký and Michl in 1987 [23]. More system-

atic investigations have been performed by the groups of Yarkony [4, 24–26] and

Ruedenberg [27] for small molecules, as well as by the team of Robb, Bernari and
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Olivucci [4,28–30] for larger organic molecules. Armed with new algorithms and

powerful computers, these groups showed that conical intersections are in fact

very common in many photochemical reactions, rather than “relatively uncom-

mon”, as previously believed. Several researchers have developed highly efficient

algorithms to localize the minima of the seams of intersection in multi-dimensional

spaces [4, 24, 26, 28–30]. Their contributions, which are implemented in standard

quantum chemistry packages, such as GAUSSIAN [31] and COLUMBUS [32],

permit us to search systematically for conical intersections. The discussion of the

role of conical intersections in photoinduced reactions is now an important topic

in standard textbooks of photochemistry [33].

Although the development of electronic-structure methods has improved our

knowledge of conical intersections, one needs to understand the dynamics at con-

ical intersections to acquire a complete picture of photoinduced reactions. Such

calculations are quite challenging, because the nonadiabatic dynamics involves

the strong mixing of several electronic states induced by nuclear displacements.

Early attempts to treat the dynamics at conical intersections were based on the

Landau-Zener-Stückelberg approach [10,34–36]. While these treatments provided

a transparent picture of nonadiabatic transitions in one-dimensional avoided-

crossing situations, their extension to multi-dimensional cases are nontrivial and

no quantitative results for electronic population probabilities and transition rates

have been obtained in these studies.

Since the early 1990’s, exact time-dependent quantum WP methods have been

employed to explore the dynamics through conical intersections. Kuppermann

et. al. performed systematic calculations for H3 to explore the geometric phase

effect [37–40]. Schinke’s group performed many calculations of the photodissoci-

ation dynamics of small molecules (e.g. H2S), which showed perfect agreement

with the experimental observations [3]. Cederbaum, Domcke and Köppel devel-

oped the linear vibronic coupling model and explored a series of photoinduced

reactions in polyatomic molecules [4, 41, 42].

Nowadays, WP calculations are standard methods which can be employed

to understand the nonadiabatic dynamics at conical intersections. In these ap-
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proaches, the propagation of a WP on coupled surfaces is obtained by solving

the time-dependent Schrödinger equation. Because the computational effort in-

creases dramatically with the number of degrees of freedom, these treatments

require the construction of reduced-dimensional models for polyatomic systems.

This is often a good approximation for ultrafast processes, because only a few

active modes dominate the dynamics at short timescales. The large number of

inactive modes are spectators and are weakly coupled with the active modes. The

WP method is one of the most important ways to explore the dynamics at con-

ical intersections, because a detailed analysis of exact WP dynamics in reduced

dimensionality can provide mechanistic insight into the dynamics at conical inter-

sections. In particular, the WP method fully accounts for quantum effects, such

as hydrogen-tunnelling and the geometric phase, which are difficult to describe

with classical trajectory methods.

An alternative approach to treat the multidimensional quantum dynamics

through conical intersections is to apply the multi-configuration time-dependent

Hartree (MCTDH) method, proposed by Meyer, Manthe and Cederbaum [43–45].

Developed by a few groups [4, 45–49], this method is the only one at present,

which can treat the multi-mode quantum dynamics of polyatomic systems with

controllable accuracy. Using MCTDH, the photoinduced dynamics of pyrazine

with all of its 24 degrees of freedom has been studied [46,47]. A powerful extension

of MCTDH is the so-called multi-layer MCTDH, recently developed by Wang and

Thoss [50,51]. It has been shown that this new method provides a promising way

to treat the quantum dynamics of systems with hundreds or more degrees of

freedom.

As an alternative to quantum dynamical methods, many attempts have been

made to treat the dynamics through conical intersections with classical, mixed

quantum-classical, or semiclassical approaches. Because these theories are beyond

the scope of this thesis, only the main ideas are summarized here. A typical ap-

proach is to treat the electronic motions with quantum mechanics and the nuclear

motions with classical mechanics. For the model of pyrazine, Stock and Thoss

used mean-field theory to treat the nuclear dynamics driven by the mean-field
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potential formed by averaging electronic motions [3, 52]. They also showed that

it is possible to calculate the classical trajectories of nuclear motions on a single

surface and treat nonadiabatic transitions using the surface hopping method [53].

For large systems, so-called “on-the-fly”methods have been developed by several

groups, e.g. Lischka [32,54–57], Bonačić-Koutecký [57,58], and Martinez [59–61].

Here, the nuclear motions are described by classical trajectories. The gradients of

the potential energies are computed at the different points along classical trajecto-

ries and these provide the driving forces for the nuclear motions. Most on-the-fly

calculations are performed in the adiabatic representation. It is thus necessary

to evaluate the nonadiabatic couplings between different surfaces. Nowadays, the

progress of analytical ways to evaluate these couplings has improved the speed of

the calculations. Since the gradients are evaluated along the trajectories, rather

than over the whole PE surfaces, the on-the-fly methods are much more effi-

cient than WP methods for large systems if the number of trajectories is small.

Therefore these methods are only ones which can include all nuclear degrees of

freedom in the exploration of the nonadiabatic dynamics at conical intersections

in polyatomic molecules. However, as these methods are based on classical me-

chanics, they can not account for more subtle effects, such as coherence and the

geometric phase. Martinez has developed the ab initio multiple spawning (AIMS)

method [59–61], which relies on classical mechanics, while allowing quantum me-

chanical effects to be included in the nuclear dynamics.

Although WPs can be transferred to the electronic ground state through coni-

cal intersections, the large excess energies of these WPs represent “hot”molecules,

inducing highly excited vibrational states are populated on the ground surface.

Internal conversion can take place only if the excess energy can be dissipated. For

polyatomic molecules or solute molecules surrounded by solvent molecules, the

active modes (tuning and coupling modes) of conical intersections will be coupled

with many other degrees of freedom. This coupling will induce energy transfer

from the active modes to a large number of other vibrational modes. This vi-

brational energy flow will result in the vibrational cooling of the active modes

and will thus enhance the probability of internal conversion. Thus, for a com-
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plete theoretical description of the internal-conversion dynamics, intramolecular

vibrational relaxation and solvent effect must be included.

In the last ten years, a few theoretical approaches have been developed to

take dissipative environments into account in the calculations of the internal-

conversion dynamics at conical intersections. Among them, the reduced-density-

matrix formalism based on the system-bath model has become the most popular

method [4,42,62–64]. In this approach, a system and a bath are defined to include

the active modes and the inactive modes, respectively. The system-bath coupling

describes the interactions between active and inactive modes. In the weak cou-

pling case, the equation of motion for the reduced density matrix of the system

part can be constructed explicitly using perturbation theory. This treatment has

revealed interesting behaviour of the WP motion through conical intersections

under the influence of a dissipative environment, such as decoherence, vibra-

tional damping and vibrational cooling. Alternative treatments of this problem

are based on path integral [65–67] or Monto-Carlo-wavefunction methods [68,69].

These theoretical efforts to understand conical intersections have not only

identified the most important conical intersections in different classes of photoin-

duced reactions, but also have revealed the details of the photoinduced dynamics

at conical intersections. Nowadays, it is widely recognized that conical intersec-

tions play a crucial role in many photoinduced chemical reactions. The research

on conical intersections has covered many important parts of photochemistry,

such as the understanding of many important elementary reactions, the explana-

tion of ultrafast phenomena, the control of chemical reactions, the exploration of

photosynthesis and the investigation of the effects of solar light on the evolution

of live.

1.2 Photochemistry of aromatic biomolecules

The aromatic amino acids and the nucleic acid bases represent some of the most

important building blocks of life. Therefore, their photoinduced reactions are

of great interest both from the experimental and theoretical points of view. A

characteristic feature of the photochemistry of these molecules in the condensed
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phase is the low quantum yield of fluorescence after Ultraviolet (UV) absorp-

tion [2, 70–72]. This indicates the existence of nonradiative processes which

quench the fluorescence with particular efficiency. As far as we know, these non-

radiative processes involve ultrafast internal conversion to the electronic ground

state. These processes dissipate the photon energy before more profound chem-

ical reactions can happen. This so-called “photostability” of the building blocks

protects living matter from dangerous photoreactions [70–73]. It is conceivable

that photostability has been a major criterion in the evolutionary selection of the

building blocks of life.

In recent years, the investigation of isolated biomolecules and their clus-

ters has provided a significant amount of new and precise information on the

photophysics and photochemistry of these these systems. Among them, three

molecules, pyrrole [74–95], phenol (the chromophore of tyrosine) [83,95–121] and

indole [71,83,99,122–128], as well as their derivatives and clusters, have emerged

as interesting prototype molecules for the exploration of ultrafast excited-state

dynamics. These molecules strongly absorb in UV via excitation to their 1ππ∗

states. Previous studies have tried to identify the different radiationless decay

channels, which may involve dark states (1πσ∗ or 1nπ∗). These dark states cou-

ple with the optically bright 1ππ states, as well as the ground state, to induce

the nonadiabatic transitions and deplete the population in the 1ππ states. In

addition, radiationless transitions also take place between the 1ππ and S0 states

directly via their vibronic couplings.

One of the dominant decay channels of these molecules has been pointed out

by Sobolewski et. al. [83], namely hydrogen-detachment in the isolated systems

and chromophore-to-solvent hydrogen transfer in their clusters. The mechanism

in these representative systems seems to be universal to all aromatic molecules

containing hydroxy (OH) or azine (NH) groups.

The UV photochemistry of isolated pyrrole, phenol and indole involves the

electronic states S0,
1ππ∗ and 1πσ∗, see Fig. 1 [83]. At a first glance, the PE

surfaces of these systems share similar features. The 1ππ∗ states, corresponding

to valence excitations from π to π∗ orbitals, are the UV absorbing states and
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Figure 1.1: PE profiles of the lowest 1ππ∗ states (squares and diamonds), the lowest

1πσ∗ state (triangles) and the electronic ground state (circle) as a function of the OH

stretch (phenol) or NH stretch (indole, pyrrole) reaction coordinate. Geometries have

been optimized in the πσ∗ excited electronic state at the CASSCF level; the PE profiles

have been obtained with the CASPT2 method [83].

are responsible for the intense bands in the absorption spectra. The 1πσ∗ states

correspond to excitations from the valence π orbitals of the ring to the Rydberg-

like 3s orbital. These states cannot be observed spectroscopically, because these

electronic transitions possess very small oscillator strengths [81]. The 3s Rydberg

orbital has a significant anti-bonding character with respect to the NH or OH

bond (σ∗ character), see Fig. 1.2 [83]. The change of character of the 1πσ∗

electronic wavefunction is reflected by large variations of the dipole moment (DM)

along the OH or NH stretching coordinates. The large DM indicates that these

1πσ∗ states exhibit considerable charge-transfer character. Upon stretching of

the NH or OH bond, the 1πσ∗ PE functions intersect the potential functions of

the 1ππ∗ states, resulting in conical intersections along the reaction path. Due

to the existence of conical intersections between the bright 1ππ∗ states and the

dark 1πσ∗ states, the population of the bright state can be transferred to the

dark state through internal conversion after excitation. The repulsive 1πσ∗ PE

function also crosses the PE function of the ground state, providing a mechanism
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Figure 1.2: The σ∗ natural orbital obtained by a CASSCF calculation for the πσ∗ state

of (a) phenol, (b) indole and (c) pyrrole at the ground-state equilibrium geometry [83].

for ultrafast internal conversion to the electronic ground state, as well as hydrogen

abstraction. This mechanism can explain many experimental observations and

the different photoinduced dynamics of these systems can be understood in terms

of the relative location of the 1ππ∗, 1πσ∗ and S0 states [83].

For pyrrole, there are two πσ∗ states (1A2 and 1B1) and two ππ∗ (1B1 and

1A1) in the energy region around 6 eV. Although the ordering of the vertical

excitation energies of these four states has been quite controversial [80–82], there

is agreement that the two 1ππ∗ states are responsible for the broad and intense

absorption band near 6 eV [74–76]. The lowest πσ∗ (1A2) surface is below the two

1ππ∗ surfaces, while the excitation energy of the other πσ∗ (1B1) state is similar

to those of the 1ππ∗ states. Because the 1ππ∗–1πσ∗ conical intersections are close

to the Frank-Condon (FC) region, the populations of the bright 1ππ∗ states are

expected to decay to the dark 1πσ∗ states very quickly. This has recently been

confirmed by Köppel et. al. [86] for pyrrole and related five-membered hetero-

cycles. This ultrafast transition explains the complete absence of fluorescence in

pyrrole. Afterwards, the dynamics is governed by the repulsive 1πσ∗ PE surface

and its conical intersection with the ground state surface. This 1πσ∗–S0 conical

intersection may cause the internal conversion to the ground state, or may lead to

H-atom detachment. The latter process has been confirmed by the experimental

detection of fast hydrogen atoms in the photodissociation of pyrrole [77,87,88,90].

When the 1ππ∗ surface is lower than the 1πσ∗ surface in the FC region, like

in phenol, a 1ππ∗–1πσ∗ curve crossing occurs at intermediate OH distances. The
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photoinduced dynamics is strongly dependent on the excess energy available in

the 1ππ∗ state. If the initial energy is below the 1ππ∗–1πσ∗ crossing seam, the

system will be trapped in the well of the 1ππ∗ surface, resulting in a sharp absorp-

tion spectra and a high quantum yield of fluorescence. This qualitatively explains

the fluorescence lifetimes of the lowest vibronic levels of the S1 states of phenol

and deuterated phenol, which are 2 ns and 12 ns [97,129,130], respectively. Pho-

toexcitation of system above the 1ππ∗–1πσ∗ crossing, on the other hand, leads

to a diffuse absorption spectrum and a complete quenching of the fluorescence.

Since a rather small energy difference is expected between the 1ππ∗–1πσ∗ cross-

ing seam and the minimum of the 1ππ∗ surface in phenol, the excitation of the

ν=1 level of the OH stretching motion in the 1ππ∗ state should induce an ul-

trafast population transfer between the 1ππ∗ and 1πσ∗ states. This can explain

the absence of the fundamental OH stretching vibration in excited-state infrared

(IR) spectra [108, 131]. After the 1ππ∗–1πσ∗ population transfer, the dynamics

is governed by the repulsive πσ∗ PE surface, resulting in the ultrafast hydrogen

detachment, which has experimentally been verified [104,120].

It is a typical phenomenon of the ultrafast radiationless decay dynamics via

conical intersections in these aromatic systems that their photoinduced prod-

ucts, the corresponding radicals, are formed in a remarkably limited subset of

their available state density. The state-selective product formation after pho-

toexcitation of medium-size organic molecules has been observed by Ashfold and

collaborators, using high-resolution photofragment translational spectroscopy at

several excitation wavelengths, for pyrrole, phenol and several other heteroaro-

matic molecules [91, 94, 95, 120,132]. Such vibrational mode-specific dynamics is

now recognized as a signature of this type of photoinduced reactions [95].

This πσ∗ mechanism can also explain the photochemistry of the phenol-

water and phenol-ammonia clusters. Fig. 1.3 shows the PE functions along the

minimum-energy reaction path for hydrogen transfer in phenol-H2O and phenol-

NH3 as two typical examples [83, 116]. The energies of the S0 states of these

clusters are lowered for large OH distances, compared with free phenol, due

to the stabilization of the ion-pair configuration Ph−(H3O)+ or Ph−(N4H)+.
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Figure 1.3: PE profiles of the lowest 1ππ∗ state (squares), the lowest πσ∗ state (tri-

angles) and the electronic ground state (circles) as a function of the hydrogen-transfer

coordinate for the phenol-water (a) and phenol-ammonia (b) cluster. Geometries have

been optimized in the πσ∗ excited electronic state at the CASSCF level; the PE profiles

have been obtained with the CASPT2 method [83].

On the other hand, the πσ∗ state shifts to higher energies for larger OH dis-

tances, resulting in a minimum of this surface. This minimum denotes the bi-

radical configurations Ph•(H3O)• or Ph•(N4H)•. Thus, a hydrogen atom, rather

than a bare proton, is transferred from phenol to solvent molecules in the πσ∗

state. This hydrogen transfer process has been observed in phenol-ammonia

clusters [83, 101–103, 116–118]. The excited-state hydrogen-transfer reaction is

a concerted electron- and proton-transfer process, which replaces the traditional

picture of an excited-state proton transfer in these systems. Similar to bare phe-

nol, the reaction rate of hydrogen transfer is highly enhanced by the excitation

of the OH stretching mode [108,109,131].

Although quite limited theoretical calculations have been performed for the
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excited states of DNA bases up to now [73,83,133–151], it has been shown that the

PE profiles for hydrogen detachment in 9H-adenine are quite similar to indole and

phenol [83, 143, 144,146,147], see Fig. 1.4. Thus, the same hydrogen-detachment

Figure 1.4: PE profiles of the lowest 1ππ∗ state (squares), the lowest 1nπ∗ state (di-

amonds), the lowest 1πσ∗ state (triangles) and the electronic ground state (circles) of

9H-adenine, as a function of the NH stretching coordinate (see Ref. [83] for details).

dynamics driven by the πσ∗ state should be expected. However, it is not the dom-

inant channel at low excitation energies due to the comparatively high energy of

the 1ππ∗–1πσ∗ conical intersection. The ab initio calculations have identified the

existence of other conical intersections, including 1ππ∗–1nπ∗, 1ππ∗–S0 and 1nπ∗–

S0. Considering the energies of these conical intersections, the widely accepted

decay mechanism of electronically excited adenine molecules involves the succes-

sive 1ππ∗ →1 nπ∗ → S0 radiationless transitions [72, 138, 152–162]. On the other

hand, the channel of hydrogen detachment through the 1πσ∗ state will open upon

shortening the wavelength of exciting laser [157,161]. In addition, the probability

of the dominant decay channel is reduced in the adenine dimer and vanishes in

adenine-water clusters due to the competition with the relaxation path through

the 1πσ∗ state [163].
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The PE surfaces of the adenine-thymine (AT) and guanine-cytosine (GC) base

pairs, as functions of the appropriate hydrogen-transfer coordinate, share similar

features, except that the lowest charge-transfer state is a dark 1ππ∗ state rather

than a πσ∗ state [72, 73, 164–168]. This dark state connects the optically bright

excited state, and the electronic ground state via two conical intersections along

the hydrogen-transfer coordinate, see Fig. 1.5. For the Watson-Crick conformer

Figure 1.5: PE profiles of the electronic ground state (circles), the lowest locally-

excited state [1ππ∗ (squares) and 1nπ∗(diamonds)], the lowest 1ππ∗ charge-transfer

state (triangles) of the GC (a) and AT (b) base pair, as a function of the hydrogen-

transfer coordinate (see Ref. [73] for details).

of the GC pair, the barrierless access to the reactive charge-transfer state af-

ter photoexcitation provides a pathway for fast return to the electronic ground

state. This mechanism can explain the weak and broad multi-photon ionization

spectrum of the Watson-Crick conformer of GC pair [72, 73] as well as the short

lifetime of the bright excited state [72,73], in contrast to the other conformers of

the GC pair [73, 167]. This indicates that the unique features of the PE profiles
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along the hydrogen-transfer coordinate play a key role in the photochemistry of

the biologically relevant Watson-Crick conformer, which efficiently enhances the

population decay of the electronic excited state and maximizes the photostabil-

ity. Thus, it is reasonable to assume that the Watson-Crick structure of the GC

pair has been selected on account of its unique photophysicl properties in the

biological evolution. Although the UV spectrum of the Watson-Crick conformer

of the AT pair has not yet been observed, the similar PE profiles, obtained from

ab initio calculations [73, 168], indicate that the same ultrafast decay of the ex-

cited state takes place and that the Watson-Crick conformer of the AT pair also

maximizes the photostability.

1.3 Our goal and outline of my thesis

In recent theoretical investigations of radiationless decay mechanism of aromatic

biomolecules, conical intersections of the PE surfaces along reaction paths have

been identified, but no calculations of the photoinduced dynamics through coni-

cal intersections has been reported. Time-dependent quantum WP calculations

for the nuclear dynamics at conical intersections are the topic of the present

work. We select pyrrole and phenol as two prototype systems, for the exploration

of the photoinduced hydrogen-elimination and internal-conversion dynamics via

1πσ∗ states. Multi-reference electronic-structure methods have been employed

to identify the photochemically relevant nuclear degrees of freedom at conical

intersections and characterize the PE surfaces of the electronic states. The es-

sential features of ultrafast internal-conversion and photodissociation dynamics

at conical intersections are systematically explored, using standard methods of

time-dependent quantum WP propagations and density-matrix formalisms.

Different topics are covered here, including well-established theories, the de-

velopment of new methods, as well as calculations for specific molecular systems

(pyrrole and phenol). The theoretical part includes electronic-structure theory,

WP dynamics, and quantum dissipative dynamics. This theoretical background

is discussed in Chapters 2 - 5. The efforts to understand the ultrafast internal-

conversion and photodissociation dynamics of pyrrole and phenol are discussed



CHAPTER 1. INTRODUCTION 17

Table 1.1: Notations used in this thesis.

Â Operator

A Matrix

A Scale

Amn Matrix element

in Chapters 6 - 8. Throughout the whole thesis, atomic units are used to simplify

the calculations. In the equations, I have adopted the conventions defined in

Table. 1.1.

Chapter 2 gives a systematic introduction of the theory of conical intersections.

The basic ideas of the BO approximation are discussed. The non-BO theory

is introduced to describe the coupled motions of electrons and nuclei. A few

important technical aspects, such as the adiabatic-to-diabatic transformation,

symmetry selection rules , topography of conical intersections and the geometric

phase are discussed. The effective mode formalism is introduced to simplify the

treatment of multi-mode dynamics at conical intersections.

Chapter 3 outlines the basic ideas of the ab initio methods used in the

present thesis, such as the Hartree-Fock (HF), multi-configuration self-consistent

field (MCSCF), complete-active-space self-consistent-field (CASSCF) and multi-

reference configuration interaction (MRCI) methods.

Chapter 4 introduces the time-dependent WP dynamics. The construction

of the kinetic-energy operator is the first topic of this chapter. Then, the ways

to solve the time-independent and time-dependent Schrödinger equations are de-

scribed. A few important methods, such as the Discrete Variable Representation

(DVR) and Fourier-transformation methods, are discussed. Some useful tech-

niques for the WP calculations of nonadiabatic systems are explained.

Chapter 5 deals with quantum dissipative dynamics. I have used the reduced

density-matrix approach based on the system-plus-bath model. The Born-Markov

approximation is applied to obtain the Redfield equation, which completely de-

scribes the system dynamics in the presence of coupling to a bath. A new method

for the solution of the Redfield equation is proposed and applied for the explo-
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ration of the quantum dissipative dynamics at conical intersections.

In Chapter 6, the photoinduced nonadiabatic dynamics of pyrrole via the

1B1(πσ
∗) and 1A2(πσ

∗) states is investigated [89, 93]. The two 1πσ∗–S0 conical

intersections are treated separately. Electronic-structure calculations have been

employed to characterize the coupling modes. In a first approximation, we con-

sider two dimensional (2D) models including the NH stretching mode as well as

the dominant coupling mode at the 1A2(πσ
∗)–S0 and 1B1(πσ

∗)–S0 conical inter-

sections, respectively. The diabtic PE surfaces have been constructed from ab

initio data. The electronic population transfer at the conical intersections, the

branching ratio between different dissociation channels, and their dependence

on the initial preparation of the system have been investigated. The influence

of the mode-specific vibration excitation on the nonadiabatic dynamics is dis-

cussed. The WP motion is shown to display the details of the dissociation and

internal-conversion dynamics. To understand the effect of all symmetry-allowed

coupling modes [41], the 2D models have been extended to explore the multi-

mode dynamics for both 1πσ∗–S0 conical intersections. The comparison between

the three-mode and two-mode model calculations displays the influence of the

inclusion of weak coupling modes on the photoinduced dynamics of pyrrole.

Chapter 7 explores the photoinduced dynamics of phenol. Here, a model in-

cluding three intersecting electronic potential-energy surfaces (S0,
1πσ∗, 1ππ∗)

has been constructed on the basis of accurate ab initio multi-reference electronic-

structure data. Similar to pyrrole, the nonadiabatic population transfer dynamics

and the branching ratio of the dissociation are calculated by photoexciting phe-

nol from different vibrational levels of its electronic ground state. The effect of

the geometric phase on the WP motion is analyzed to understand the interplay

between these two conical intersections.

Chapter 8 deals with the quantum dissipative dynamics of pyrrole via the

lowest 1πσ∗ state using density-matrix formalism. In the system-plus-bath model,

the system part involves the NH stretching and dominant coupling mode; the

harmonic-oscillator bath is assumed to mimic the photoinactive modes. The

dissipative dynamics is explored by the numerical propagation of the reduced
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density operator. The influence of the system-bath coupling on the internal-

conversion probability has been investigated. The nuclear probability densities

are displayed to understand the cooling of the vibrational motion of the NH

stretching mode by the environment.

Chapter 9 summaries the theoretical efforts, in my Ph.D work (Sept. 2003 -

Feb. 2007), towards the understanding of the photoinduced dynamics of aromatic

biomolecules and proposes interesting research topics for the future.
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Chapter 2

Theory of conical intersections

2.1 Noncrossing rule

To begin the discussion of conical intersections, we should first investigate the

possibility of the existence of a crossing between two electronic states. Following

the original idea of von Neumann and Wigner [9], let us consider Teller’s [10]

analysis to give the necessary condition for the case of a surface crossing.

If we neglect the spin terms in the electronic Hamiltonian, the electronic

wavefunctions can be taken to be real. Suppose a case that we already know

the electronic wavefunctions of all energy levels except for the last two states

that cross each other. Under this condition, we can select two arbitrary wave

functions, φ1 and φ2, which are orthogonal to each other and to the other known

electronic functions. Then it is possible to express each of two electronic wave

functions in the form:

ψ = c1φ1 + c2φ2, (2.1)

and the electronic Schrödinger equations becomes:





H11 − E H12

H21 H22 − E









c1

c2



 = 0, (2.2)

all quantities in this equation being real.

For degenerate solutions to exist for Eq. 2.2, it is necessary to satisfy two

21
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independent conditions, namely

H11 = H22, (2.3)

H12 = H21 = 0. (2.4)

This requires the existence of at least two independent variables. In a diatomic

molecule, there is only one variable coordinate, the interatomic distance. Thus

the degeneracy cannot occur in general. This is the so-called non-crossing rule.

In a molecular system with three or more atoms, on the other hand, there are

enough independent degrees of freedoms which can be varied to satisfy Eqs. 2.3

and 2.4. Therefore, we should expect that degeneracies, or surface crossings, are

quite typical for polyatomic systems.

Following Teller [10], Herzberg and Longuet-Higgins [14], we denote two inde-

pendent internal nuclear coordinates by x and y, and take the origin at the point

where Eqs. 2.3 and 2.4 are satisfied. Next, a first order Taylor expansion of the

matrix elements of the Hamiltonian leads to




W + h1x− E ly

ly W + h2x−E









c1

c2



 = 0. (2.5)

If we assume m = 1
2
(h1 + h2) and k = 1

2
(h1 − h2), the eigenvalues are

E = W +mx±
√

k2x2 + l2y2. (2.6)

This indicates that the PE surfaces form a double cone with the vertex at the

origin. Therefore, this type of surface crossing is called “conical intersection”.

2.2 BO approximation and beyond

Since molecules are quite complicated quantum objects, it is difficult to treat the

electronic and nuclear motions simultaneously, even for small molecular systems.

However, the large masses of the nuclei, compared to that of an electron, permit a

separation of the electronic and nuclear motions in the treatment of molecular sys-

tems. This leads to the well-known Born-Oppenheimer (BO) approximation [5].

The BO approximation is very accurate for the electronic ground states of most
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molecular systems, because the ground state is usually well separated from other

electronic states. For the electronic excited electronic states, the BO approxi-

mation fails in many situations, because the electronic excited states are often

quite close in energy. In particular, the BO approximation breaks down for de-

generate states, for example at conical intersections, also called “photochemical

funnels” [20], which play a central role in many photo-induced reactions and the

internal-conversion dynamics of molecules. Therefore, it is necessary to go beyond

the BO approximation when treating the dynamics at conical intersections.

The starting point of molecular quantum mechanics is the Schrödinger equa-

tion:

ĤΨ(re,Rn) = EΨ(re,Rn), (2.7)

where Ψ(re,Rn) is the total wavefunction for the molecular system and the vec-

tors re and Rn correspond to the coordinates for electrons and nuclei, respectively.

The Hamiltonian is written as follows:

Ĥ = T̂n + T̂e + V̂ (re,Rn), (2.8)

where T̂n and T̂e are the kinetic-energy operators of nuclei and electrons, respec-

tively. V̂ (re,Rn) is the total potential energy of the molecular system, including

the nuclei-nuclei, nuclei-electron and electron-electron Coulomb interactions.

For a particular geometry of the molecule, we can define the electronic Hamil-

tonian as:

Ĥe(Rn) = T̂e + V̂ (re,Rn). (2.9)

Here Ĥe is an operator in the electronic space which depends on the nuclear

geometry, which is characterized by the coordinate Rn.

2.2.1 BO approximation

The masses of nuclei are much greater (at least 1836 times heavier) than the mass

of the electron. This means that the electrons can adjust their motion almost

instantaneously to any change in the positions of the nuclei. It is therefore rea-

sonable to assume that the electronic wavefunction depends only on the positions
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of nuclei, and not on their momenta. Thus, the total wavefunction Ψ(re,Rn) for

a molecule can be written as:

Ψ(re,Rn) = Φ(re,Rn)χ(Rn), (2.10)

where Φ(re,Rn) and χ(Rn) are the electronic and nuclear wavefunctions, re-

spectively. Note that the electronic wavefunction Φ(re,Rn) are parametrically

dependent on the nuclear geometry Rn. Insertion of Eq. 2.10 into Eq. 2.7 leads

to the decoupled equations:

Ĥe(Rn)Φ(re,Rn) = V (Rn)Φ(re,Rn), (2.11)
[

T̂n + V (Rn)
]

χ(Rn) = Eχ(Rn), (2.12)

which represent the BO approximation. These expressions indicate that the elec-

tronic motion for fixed nuclear geometry determines an effective potential V (Rn),

which governs the motion of the nuclei. Since this effective potential is a function

of Rn, we call it a “potential energy (PE) surface”. In the BO approximation,

the nuclei move on an single PE surface.

In molecular excited-state dynamics, the nuclei many “jump” from one PE

surface to another. These so-called “nonadiabatic transitions” are induced by

the strong couplings between the motions of electrons and nuclei, especially at

conical intersections. We therefore have to go beyond the BO approximation to

set up the theoretical framework for photoinduced dynamics.

2.2.2 Born-Oppenheimer-Huang expansion

Since Ĥe is an operator in electronic space, its eigenfunctions Φa
i (re,Rn) form a

set of complete orthogonal basis functions for every Rn:

Ĥe(Rn)Φa
i (re,Rn) = V a

i (Rn)Φa
i (re,Rn), (2.13)

∫

dreΦ
a∗
i (re,Rn)Φa

j (re,Rn) ≡ 〈i(Rn)| j(Rn)〉 = δij . (2.14)

In this bra and ket notation, the scalar product involves the integral over the

electronic coordinates at a fixed nuclear geometry Rn.
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In this basis set, the total wavefunction can be expressed as:

Ψ(re,Rn) =
∑

i

Φa
i (re,Rn)χa

i (Rn). (2.15)

This expansion is also called the Born-Oppenheimer-Huang expansion [169]. It

leads to the following coupled equations for the nuclear motions:

∑

j

〈i(Rn)| T̂nχ
a
j (Rn) |j(Rn)〉 + V a

i (Rn)χa
i (Rn) = Eχa

i (Rn). (2.16)

The kinetic-energy operator T̂n is defined as:

T̂n = −1

2
∇2, (2.17)

where ∇ is the gradient operator in the space of mass-weighted nuclear coordi-

nates. The Born-Oppenheimer-Huang coupled equations take the form:

[−1

2
∇2 + Vi(Rn)]χa

i (Rn) − 1

2

∑

j

[2~F a
ij(Rn) · ∇ +Ga

ij(Rn)]χa
j (Rn)

= Eχa
i (Rn), (2.18)

where ~F a
ij(Rn) is the first-order nonadiabatic coupling vector

~F a
ij(Rn) = 〈i(Rn)| ∇ |j(Rn)〉 . (2.19)

The second-order nonadiabatic coupling Ga
ij(Rn) is a scalar:

Ga
ij(Rn) = 〈i(Rn)| ∇2 |j(Rn)〉 . (2.20)

Although the above theoretical framework is based on the time-independent

picture and the mass-weighted Cartesian kinetic-energy operator, the whole pro-

cedure is also valid in the time-dependent picture and for more general kinetic-

energy operators.

2.3 Adiabatic representation

It is known that any orthogonal complete set of basis functions can be used to ex-

pand the total wavefunction. In the preceding section, the basis functions are the

eigenfunctions of the electronic Hamiltonian. This defines the “adiabatic” repre-

sentation.
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2.3.1 Adiabatic electronic states

At a single nuclear geometry, the solutions of the Schrödinger equation for the

electronic motion define a complete set of adiabatic electronic states. The energies

of these electronic states are functions of the nuclear geometry. This implies that

electronic-structure calculations generate the adiabatic PE surfaces.

The motions of nuclear WP are driven by the adiabatic PE surfaces. But in

violation of the BO approximation, the nuclei can “jump” between different adi-

abatic electronic states, which is called a nonadiabatic transition. This transition

is induced by the derivative couplings ~F a
ij(Rn) and Ga

ij(Rn).

When the energies of two states cross each other, the adiabatic electronic

wavefunctions will interchange their characters at the crossing point. This means

that the adiabatic electronic wavefunctions are not smooth functions of the nu-

clear geometry at a conical intersection. This discontinuity is directly reflected

in the abrupt change of electronic properties, such as DMs.

2.3.2 Derivative couplings

The derivative couplings are composed of the vector part ~F a
ij and the scalar part

Ga
ij. It has been demonstrated that the vector part ~F a plays the dominant role

in nonadiabatic transitions [4].

According to the Hellmann-Feynman theorem [170], one can write:

~F a
ij =

〈i(Rn)| ∇Ĥe(re,Rn) |j(Rn)〉
V a

i (Rn) − V a
j (Rn)

. (2.21)

This expression implies three different situations for nonadiabatic transitions:

1. If two states are well separated in energy, ~F a
ij goes to zero and the BO

approximation should be valid.

2. In the case of small values of ~F a
ij , the nonadiabatic dynamics can be explored

by perturbation theory. The slow radiationless decay of excited electronic states

belongs to this case [35, 171, 172].

3. When the energy gap between two adiabatic electronic states is very small,

nonadiabatic coupling terms become large and induce pronounced nonadiabatic
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transitions. At the conical intersection, in particular, the degeneracy causes ~F a
ij

go to infinity.

2.4 Diabatic representation

To avoid the singularity in the adiabatic representation, a so-called diabatic rep-

resentation is often applied to explore the nonadiabatic dynamics at conical in-

tersections.

2.4.1 Diabatic basis

If a general electronic basis set Φd
i (re,Rn) is used to expand the total molecular

wavefunction:

Ψ(re,Rn) =
∑

i

Φd
i (re,Rn)χd

i (Rn), (2.22)

the coupled equations become:

−1

2
∇2χd

i (Rn) +
∑

j

Vij(Rn)χd
j (Rn) − 1

2

∑

j

[2~F d
ij(Rn) · ∇ +Gd

ij(Rn)]χd
j (Rn)

= Eχd
i (Rn) (2.23)

with

Vij(Rn) =
〈

id(Rn)
∣

∣ Ĥe

∣

∣jd(Rn)
〉

, (2.24)

~F d
ij(Rn) =

〈

id(Rn)
∣

∣∇
∣

∣jd(Rn)
〉

, (2.25)

Gd
ij(Rn) =

〈

id(Rn)
∣

∣∇2
∣

∣jd(Rn)
〉

. (2.26)

Since any complete orthogonal basis can be used to get the above expres-

sions, we may select the so-called “diabatic basis” Φd
i (re,Rn) by minimizing the

derivative coupling term ~F d
ij(Rn). In general, a strict diabatic basis, for which

~F d
ij(Rn) = 0, does not exist and only an approximate diabatic basis can be ob-

tained, see below.

In this representation, Φd
i (re,Rn) should be smooth functions of the nuclear

geometry and Ga
ij(Rn) should be negligible. The Eq. 2.23 thus becomes:

− 1

2
∇2χd

i (Rn) +
∑

j

Vij(Rn)χd
j (Rn) = Eχd

i (Rn). (2.27)
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This means that the singular derivative coupling ~F a
ij in the adiabatic represen-

tation is transformed to the non-singular potential coupling Vij in the diabatic

representation.

2.4.2 Adiabatic-to-diabatic transformation

The adiabatic-to-diabatic transformation is a unitary transformation between the

two basis set:

χa(Rn) = Uχd(Rn), (2.28)

Φa(re,Rn) = Φd(re,Rn)U+, (2.29)

where U is a unitary matrix and χa (χd) is the column vector of nuclear ampli-

tudes for the adiabatic (diabatic) basis.

Some algebra leads to the following relation

∇U + FaU = 0. (2.30)

The necessary condition to solve this equation is the so-called “curl condition” [170,

173,174]:

∇× Fa − Fa × Fa = 0. (2.31)

When this condition is satisfied, it is possible to construct a strictly diabatic

basis. However, the curl condition cannot be satisfied in general [170, 173, 174].

In this case, we can only define an approximate diabatic basis by performing a

“quasidiabatization”via the minimization of derivative couplings [170, 173].

It has been shown that diatomic systems always satisfy the curl condition [174].

For polyatomic systems, the situation is more complicated. If the adiabatic-to-

diabatic transformation includes all electronic states, the curl condition is satis-

fied. In other words, the strictly diabatic basis only exists for a complete electronic

Hilbert space [174]. In practice, it is impossible to include all electronic states.

Therefore, only approximate diabatic basis can be defined in suitable subspaces

including the relevant electronic states. The general way to deal with this prob-

lem is to separate the whole Hilbert space into two subspaces, P and Q [170].
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The primary P space includes a few electronic states which are involved in the re-

action dynamics. The complementary Q part contains all other electronic states.

The diabatization is performed in the P space. As expected, the nonadiabatic

couplings between different electronic states within the P space can be removed

by the adiabatic-to-diabatic transformation, which are called the “removable cou-

plings” or “longitudinal parts” [174]. In contrast, the couplings between the P

and Q parts can not be eliminated by this diabatization, which are called the

“nonremovable couplings”or “ transverse parts” [174].

2.4.3 Conical intersections of two electronic states

After the introduction of the general adiabatic-to-diabatic transformation, we

will demonstrate its application in a typical example, i.e. the two-state conical

intersection.

According to the discussion in the preceding subsection, the P space includes

two relevant electronic states which form a conical intersection. In the vicinity of

a conical intersection, the nonadiabatic coupling goes to infinity. This means that

the interaction within the P space is much larger than the coupling between the P

and Q subspaces. Therefore, the latter can be neglected to a good approximation.

The adiabatic-to-diabatic transformation matrix in this two-dimensional space

is determined by the mixing angle θ:

U(Rn) =





cos θ(Rn) sin θ(Rn)

− sin θ(Rn) cos θ(Rn),



 . (2.32)

The relation Eq. 2.30 becomes:

∇θ(Rn) = ~F a
12, (2.33)

and the curl condition becomes:

∇× ~F a
12 = 0. (2.34)

The electronic potential energies in the two different representations are re-

lated as

Vd(Rn) = U+(Rn)Va(Rn)U(Rn), (2.35)



30 Ph.D Thesis of Z. Lan

where

Vd =





V d
11 V d

12

V d
21 V d

22



 , (2.36)

Va =





V a
1 0

0 V a
2



 . (2.37)

Thus, the matrix U(Rn) is the eigenvector matrix of the diabatic potential matrix

Vd(Rn) and the mixing angle is given by

θ(Rn) =
1

2
tan−1

(

2V d
12

V d
22 − V d

11

)

. (2.38)

The adiabatic PE is expressed as:

V a
1,2 =

1

2

[

(V d
11 + V d

22) ±
√

(V d
11 − V d

22)
2 + (2V d

12)
2

]

. (2.39)

2.5 Construction of diabatic basis set

After this discussion of conical intersections, as well as the adiabatic and diabatic

representations, it is necessary to mention practical ways to perform the diaba-

tization (more accurate, quasidiabatization) for real systems. In this section, I

review three commonly employed diabatization methods.

2.5.1 Diabatization based on derivative couplings

This type of quasidiabatization method, originally proposed by Smith and by

Baer [170,173], takes the adiabatic-to-diabatic transformation matrix in Eq. 2.30

to eliminate the derivative coupling elements. The formal solution of this equation

can be written in the form of a contour integral [170, 175–178]:

U(R) = U(R0) −
∫

Γ

dR′ · Fa(R′)U(R′), (2.40)

where Γ is a contour from R0 to R. For the two-state case, the mixing angle is

determined by:

θ(R) = θ(R0) −
∫

Γ

dR′ · ~F a
12(R

′). (2.41)
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Since the longitudinal part can be entirely removed by this procedure, it is prob-

ably the most precise way to obtain optimum quasidiabatic states.

Although the method discussed so far is the most accurate one, it requires

the largest computational effort to determine the derivative coupling over a large

range of nuclear coordinates. In addition, in the vicinity of a conical intersection,

a large amount of calculations has to be performed because the nonadiabatic cou-

pling displays a sharp peak, which requires a very dense grid in nuclear coordinate

space. Despite recent progress in electronic-structure methods, this calculation is

still a serious bottleneck, especially for polyatomic molecules. Thus, this direct

method needs a lot of computational time.

2.5.2 Diabatization based on electronic wavefunctions

To avoid a large computational effort required for the evaluation of the deriva-

tive couplings, an alternative diabatization method has been proposed, which is

based on the properties of adiabatic wavefunctions. As discussed above, the large

nonadiabatic coupling at conical intersections is the result of an abrupt change of

the orbital character of the adiabatic electronic wavefunctions. The elimination

of such fast configuration changes of electronic wavefunctions provides a natural

way to determine the transformation between the adiabatic and diabatic repre-

sentation. The methods based on this idea can be divided into two types. The

first type tries to enforce the smoothness of a suitable physical property, such as

the DM [179, 180], the quadrupole moment [181] and the transition dipole mo-

ment (TDM) [182, 183]. Because the eigenstates of such operators remove the

singular couplings at the intersection, the diagonalization of such operators in

the subspace of the intersecting electronic states provides us the (quasi)diabatic

basis [184]. The second type of methods tries to directly obtain the electronic

wavefuntions as smooth functions of the nuclear geometry [185–192]. The start-

ing point of this approach is to choose reference states or configurations, which

are sufficiently diabatic, at a particular nuclear geometry. The diabatic wavefunc-

tions should weakly depend on the nuclear coordinates Rn and change as little as

possible with small displacements away from the reference geometry. The block-
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diagonalization of the electronic Hamiltonian has been derived from the least-

action principle [185,186]. This method has been further extended [188,189] and

implemented in the quantum chemistry package MOLPRO [191,193].

These wave-function based methods require less computational effort than

the evaluation of the derivative coupling. On the other hand, the quality of the

diabatic basis is not easily controlled and is dependent on the physical prop-

erties of the system. In this sense, these methods are still far from black-box

methods. The direct ab initio diabatization methods, as well as their numerical

implementations, are subjects of ongoing research.

2.5.3 Diabatization based on potential energies

Instead of the two rather sophisticated methods described above, an even simpler

approach has been chosen in this work, which is inherently more approximate and

relies only on PEs themselves [4, 41, 194, 195]. According to Eqs. 2.35 and 2.38,

the unitary transformation matrix U diagonalizes the diabatic potential matrix

Vd to generate its eigenvalues, corresponding to the diagonal elements of the

adiabatic potential matrix Va. Therefore, the diabatic electronic potentials can

be constructed from the adiabatic potential if we have some information on the

adiabatic-to-diabatic mixing angle.

2.5.3.1 Vibronic coupling Hamiltonian

Let us consider a suitable reference geometry, such as the equilibrium geometry

of the electronic ground state or the conical intersection itself. We consider small

nuclear displacements, such as the displacements along the internal coordinates

or normal coordinates, to calculate the adiabatic PE and construct the diabatic

Hamiltonian. A convenient way to describe the normal mode displacements from

the reference geometry is to choose dimensionless normal coordinates Qj, with

associated frequencies ωj. This set of coordinates is convenient to express the

kinetic and potential part of the vibrational Hamiltonian in the harmonic ap-
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proximation as

Ĥvib =
∑

j

T̂j + V̂j (2.42)

T̂j = −1

2
ωj

∂2

∂Q2
j

(2.43)

V̂j =
1

2
ωjQ

2
j . (2.44)

The details of the construction of dimensionless normal coordinates can be found

in Appendix A.

The PE functions and the diabatic interstate couplings can be expressed as

Taylor expansions up to second order with respect to the dimensionless normal

coordinates at the reference geometry:

V =





V11 V12

V21 V22



 (2.45)

with

V11(Q) = E1 + V0(Q) +
∑

t

κ
(1)
t Qt +

∑

m,m′

γ
(1)
m,m′=t,cQmQ

′
m, (2.46)

V22(Q) = E2 + V0(Q) +
∑

t

κ
(2)
t Qt +

∑

m,m′

γ
(2)
m,m′=t,cQmQ

′
m, (2.47)

V12(Q) = V21(Q) =
∑

c

λcQc, (2.48)

V0(Q) =
1

2

∑

t

ωtQ
2
t +

1

2

∑

t

ωcQ
2
c , (2.49)

where E1 and E2 are energies of the two electronic states at the reference ge-

ometry. The κ
(n)
t (n = 1, 2) are the gradients of the PE functions at the ref-

erence geometry and they represent the first-order intra-state couplings. Since

the modes Qt tune the energy gap of two electronic states and may lead to a

crossing between diabatic PE surfaces, they are termed “tuning modes” [4, 42].

The λc represents the first-order inter-state electronic-vibronic coupling constant

and the modes Qc are called “coupling modes” [4, 42]. The intra-state bilinear

coupling constants γ
(n)
m,m′ (n = 1, 2) are related to the so-called “Dushinsky ef-

fect”(rotations of the normal modes due to the coupling of the state n and the

vibrational motion) [4, 42].
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Eq. 2.45 defines a class of model Hamiltonians describing the coupling be-

tween electronic motion and nuclear vibration, which are called “vibronic cou-

pling Hamiltonians”. Retaining only the first-order coupling constants leads to

“the linear coupling model”, which has been used in many calculations of low-

resolution absorption spectra, photoelectron spectra, time-resolved spectra and

nonadiabatic dynamics of polyatomic molecules [4, 41].

2.5.3.2 Symmetry selection rules

The selection of the most important tuning and coupling modes play a central

role in the characterization of a conical intersection. Eq. 2.45 itself provides a

way to identify the tuning and coupling modes through symmetry selection rules.

Let us assume that the two electronic states belong to different irreducible rep-

resentations, Γ1 and Γ2, respectively. Since the electronic Hamiltonian is always

totally symmetric, the linear intra-state electron-vibrational coupling coefficients

κ
(n)
t = 〈Φn|

∂Ĥel

∂Qt
|Φn〉

∣

∣

∣

∣

∣

Q0

(2.50)

can be nonzero only for the totally symmetric coordinates. These nonzero gradi-

ents induce the nuclear motions in the electronic states. Thus, a linear combina-

tion of the tuning coordinates defines the minimum-energy reaction path.

For the coupling modes, the direct product of the irreducible representations

of two states and the vibrational motion must contain A1:

Γ1 × ΓQc
× Γ2 ⊃ A1 ⇒ ΓQc

= Γ1 × Γ2. (2.51)

In this case, the inter-state coupling constant

λnm
c =

∂

∂Qc
〈Φn| Ĥel |Φm〉

∣

∣

∣

∣

Q0

(2.52)

is nonzero.

For the special case Γ1 = Γ2, two states with the same symmetry can cross,

leading to so-called “accidental intersections”, which are relevant in many photo-

induced excited-state processes. For this type of conical intersection, both of the

tuning and coupling modes are of A1 symmetry.
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2.5.3.3 Coupling constants

When there is no displacement along coupling coordinates, Qc = 0, the diabatic

states are identical with the adiabatic states. Thus, the diagonal elements of the

PE matrix as functions of Qt can be determined by performing least-square fits

to the ab initio results.

For a coupling coordinate, we first rewrite the adiabatic-to-diabatic transfor-

mation (Eq. 2.39) for the two-state problem as

V a
1 + V a

2 = V d
11 + V d

22, (2.53)

(V a
1 − V a

2 )2 = (V d
11 − V d

22)
2 + (V d

12)
2. (2.54)

These two equations explain how one can obtain the diabatic PEs (V d
11, V

d
22), as

well as their coupling V d
12, from the adiabatic potential energies V a

1 and V a
2 . The

fitting procedure based on the first equation yields the sum of the two diabatic

potential functions as functions of Qc, while the fitting based on the second

equation predicts the energy difference of the two diabatic states, as well as their

coupling.

In the linear vibronic coupling model, the linear intra-state coupling constants

κ
(n)
t of Eq. 2.50 can also conveniently be determined as the energy gradient of the

electronic states at the reference geometry Q0 [4, 41]:

κ
(1,2)
t =

∂V d
1,2

∂Qt

∣

∣

∣

∣

∣

Q0

. (2.55)

The interstate coupling, λc, can be estimated according to [4, 41]:

λc =

[

1

8

∂2

∂Q2
c

(V a
1 − V a

2 )2

]∣

∣

∣

∣

Q0

. (2.56)

2.6 Topography of conical intersections

To illustrate the characteristic features of conical intersections, we consider an ex-

ample: the conical intersection of the S1(nπ
∗) and S2(ππ

∗) surfaces of pyrazine [194].

This conical intersection has been characterized by ab inito calculations. The

S1 and S2 states of pyrazine belong to 1B3u and 1B2u symmetry, respectively.
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Within the normal-mode approach, the ab initio calculations have revealed that

the coordinates Q6a and Q10a are the dominant tuning and coupling coordinates,

respectively. Fig. 2.1 shows the shape of the conical intersection in the space

spanned by these tuning and coupling coordinates. The global view of the surfaces

in Fig. 2.1 (a) shows that there is a point of contact of the two adiabatic surfaces.

Looking at the conical intersection more closely in Fig. 2.1 (b), we immediately

note the double-cone shape of the adiabatic PE surfaces in the vicinity of the

intersection. The diabatic PE surfaces and the diabatic PE coupling are shown

in Fig. 2.1 (c) and (d), respectively. In contrast to the adiabatic surfaces, the

diabatic surfaces and the diabatic coupling are smooth functions of the nuclear

geometry.

The characters of the electronic wavefunctions are directly reflected by their

physical properties, such as TDMs. Consistent with the previous discussion,

Fig. 2.2 shows that the x and y components of the S0-S1 TDM vary rapidly as

functions of the nuclear coordinate, reflecting the abrupt changes of the elec-

tronic wavefunctions in the vicinity of the conical intersection. The correspond-

ing elements in the diabatic representation, on the other hand, obtained by the

adiabatic-to-diabatic transformation, become smooth functions of Q6a and Q10a.

This reflects the fact that the diabatic wavefunctions are slowly varying functions

of the nuclear geometry.

The mixing angle defined in Eq. 2.38 is displayed in Fig. 2.3 (a). The dis-

continuity is related to the well-known topological phase or “Berry phase”(see

later discussions), which is enforced by the conical intersection. The derivatives

∂θ/∂Q6a and ∂θ/∂Q10a, which determine the first-order nonadiabatic couplings

in Eq. 2.33, are shown in Fig. 2.3 (b) and (c), respectively. As expected, they are

singular at the conical intersection.

For general molecular systems with N internal degrees of freedom, many tun-

ing and coupling modes can be involved in the characterization of the conical

intersection. In the multi-mode case, an alternative language may be chosen to

describe the topology of a conical intersection. This is the so-called g–h branch-

ing space introduced by Yarkony [24,26] and Robb [28,30,196]. The directions of



CHAPTER 2. THEORY OF CONICAL INTERSECTIONS 37

(a) (b)

(c) (d)

Figure 2.1: View of the conical intersection between the S1 and S2 excited states of

pyrazine in the two-dimensional space spanned by the tuning coordinate Q6a and the

coupling coordinate Q10a: (a) global view of the adiabatic PE surfaces; (b) close-up

view of the adiabatic PE surfaces; (c) close-up view of the diabatic PE surfaces; (d)

the diabatic coupling element. See Ref. [194] for details.

maximum energy-gradient difference and the nonadiabatic coupling vectors de-

fine the so-called g and h vectors, respectively. The topography of the conical

intersection (the double cone shape) can be displayed in this g–h branching space.

If all degrees of freedom are taken into account, the conical intersection actually

occurs along a intersection seam with the dimension N-2.
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(a) (b)

(c) (d)

Figure 2.2: The S0-S1 TDMs as functions of the tuning coordinate Q6a and the

coupling coordinate Q10a: the x component in adiabatic (a) and diabatic (b) represen-

tation; the y component in adiabatic (c) and diabatic (d) representation. See Ref. [194]

for details.

Figure 2.3: The mixing angle (a) and the nonadiabatic coupling elements, i.e. the

derivative of the mixing angle over the tuning coordinate Q6a (b) and the coupling

coordinate Q10a (c). See Ref. [194] for details.
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2.7 Geometric phase

When an adiabatic electronic wavefunction Φi is transported on the lower (or

upper) cone around a closed circle, we expect that Φi should return to itself

after a loop, that is, Φi should be a single-valued function. This expectation is

correct when the circle does not contain a conical intersection. The transport of

Φi around a closed loop surrounding a conical intersection leads to an sign change

of the adiabatic electronic wavefunction [14, 22]. This is the so-called geometric

phase or the Berry phase. Within the g–h space, the relation can be expressed

in the polar coordinates (ρ, ϑ) as:

Φi(ρ, ϑ+ 2π) = −Φi(ρ, ϑ). (2.57)

As a consequence, the nuclear wavefunction must change its sign to compensate

this effect.

There are two ways to include the Berry phase effect in the theoretical treat-

ments of conical intersections in the adiabatic representation. The first option is

to maintain real electronic wavefunctions and to add Eq. 2.57 as the boundary

condition. Then the adiabatic wavefunctions become double-valued functions.

An alternative approach is to employ complex electronic wavefunctions. This

complex function can be chosen to be single valued ones and to undergo smooth

changes along the closed path encircling the conical intersection [4, 37].

In fact, the Berry phase is a general phenomenon in adiabatic transport pro-

cesses, reflecting the geometrical properties of the Hamiltonian [197–200]. This

phase difference does not arise from the dynamical properties but from the geo-

metric properties of the Hamiltonian, reflecting the existence of a holonomy [197].

It appears, in particular in the theories of the Aharonov-Bohm effect and of con-

ical intersections. Therefore, the geometric phase effect at a conical intersection

is also called the “molecular Aharonov-Bohm effect” [201].
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2.8 Effective tuning and coupling modes

For a general conical intersection, it is quite common that a large number of tuning

or coupling modes are involved in the description of the nonadiabatic dynamics.

Despite the progress of quantum dynamics in the last 30 years, the computational

cost of the dynamics calculations increases dramatically with the inclusion of more

degrees of freedom. One possible way to explore the multi-mode nonadiabatic

dynamics at conical intersections is to use the “effective-mode” approach [41,

202–204].

Consider the linear vibronic-coupling Hamiltonian given by:

Ĥ =
∑

t

ωt

2
(− ∂2

∂Q2
t

2

+Q2
t )I +

∑

c

ωc

2
(− ∂2

∂Q2
c

+Q2
c)I

+





∑

t κ
(1)
t Qt

∑

c λcQc
∑

c λcQc

∑

t κ
(2)
t Qt



+





E1 0

0 E2



 , (2.58)

where I is a unit matrix and all variables are defined as before. Next we define a

unitary matrix S which transforms the original set of coordinates Q = (Qt, Qc)

to the new set of coordinates X [41, 202–204]

Q = SX (2.59)

The first two elements in X can be defined as the linear combinations of all

tuning coordinates [41, 202–204]

X1 =
1

K1

∑

t

1

2

(

κ
(1)
t

κ(1)
+
κ

(2)
t

κ(2)

)

Qt, (2.60)

X2 =
1

K2

∑

t

1

2

(

κ
(1)
t

κ(1)
− κ

(2)
t

κ(2)

)

Qt, (2.61)

κ(1) =

√

∑

t

(κ(1))2, (2.62)

κ(2) =

√

∑

t

(κ(2))2, (2.63)

where K1,2 are normalization factors. The third coordinate is defined as a linear
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combination of all coupling coordinates:

X3 =
∑

c

λc

λ
Qc, (2.64)

λ =

√

∑

c

λ2
c . (2.65)

These three modes are orthogonal to each other. The first three rows of the

transformation matrix S are

Si,1 =
1

2K1

(

κ
(1)
t

κ(1)
+
κ

(2)
t

κ(2)

)

, (2.66)

Si,2 =
1

2K2

(

κ
(1)
t

κ(1)
+
κ

(2)
t

κ(2)

)

, (2.67)

Si,3 =
λc

λ
. (2.68)

Note that S is an orthogonal matrix and that the first three rows have already

been obtained. The elements of other rows can be constructed because any two

rows (or two columns) of the matrix S should be orthogonal and normalized.

Using this new set of coordinates Xi, the Hamiltonian can be rearranged as [41,

202–204]:

Ĥ = Ĥeff + Ĥb + V̂b, (2.69)

Ĥeff =
1

2
Ω1(P

2
1 +X2

1 )I +
1

2
Ω2(P

2
2 +X2

2 )I +
1

2
Ω3(P

2
3 +X2

3 )I




κ(1)(K1X1 +K2X2) λX3

λX3 κ(2)(K1X1 −K2X2)



+





E1 0

0 E2





+d12

(

− ∂2

∂X1∂X2
+X1X2

)

I, (2.70)

Ĥb =
∑

i>3

1

2
Ωi(P

2
i +X2

i )I (2.71)

+
∑

j>3

∑

i>j

dij

(

− ∂2

∂Xi∂Xj

+XiXj

)

I, (2.72)

V̂b =

3
∑

j=1

∑

i>3

dij

(

− ∂2

∂Xi∂Xj
+XiXj

)

I (2.73)
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with

Ωi =
∑

j

ωjS
2
ji, (2.74)

dij =
∑

k

ωkSkiSkj. (2.75)

Here, the original Hamiltonian is divided into an effective part Ĥeff , which de-

scribes the coupling between two electronic states, an environment part Ĥb, which

does not reflect the vibronic coupling of different electronic states, and a system-

environment coupling term V̂b . The effective part Ĥeff includes three coordinates,

two effective tuning coordinates X1,2 and one effective coupling coordinate X3.

Ω1,2 and Ω3 are frequencies of the two effective tuning modes and the effective

coupling mode, respectively. κ(1), κ(2) and λ are effective coupling constants. The

environment part Ĥb contains two parts: the energy of the environment modes, as

well as their couplings. The interaction term V̂b describes the couplings between

the effective modes and the environment modes.

Since Ĥb and V̂b do not induce nonadiabatic transitions between different

electronic states at conical intersections, it is possible to drop them, thus reducing

the dimensionality of the model to three. This elimination will largely reduce

the computational cost. The effect of neglecting V̂b, the couplings between the

environment modes and the effective modes, should be examined. Here, S is an

unitary matrix, in which any two rows (or columns) should be orthogonal. Thus,

if the frequencies of the tuning or coupling modes are quite similar, Eq. 2.75

indicates dij ∼ 0 and the coupling term V̂b can be ignored.

For a system with a large number of tuning and coupling modes of different

frequencies, a few effective modes, instead of only three, can be constructed to de-

scribe the conical intersection approximately. Each effective mode can represent a

group of modes with similar frequencies. Previous calculations have already con-

firmed the efficiency of the effective-mode approximation in short-time dynamics

calculations [41, 202–204].



Chapter 3

Electronic-structure theory

The first step in the characterization of conical intersections is to obtain adia-

batic PE surfaces from ab initio calculations. Although descriptions of the most

common electronic-structure methods can be found in any standard textbook of

quantum chemistry [205,206], this chapter gives a brief discussion of the ab initio

methods which are used in our calculations, to make the thesis self-contained.

3.1 Hartree-Fock method

The time-independent Schrödinger equation of a many-electron system can be

written as:

Ĥe(Rn)Φi(re,Rn) = Vi(Rn)Φi(re,Rn), (3.1)

Ĥe(Rn) = −1

2

∑

i

∇2
i −

∑

A,i

ZA

rAi

+
∑

A>B

ZAZB

rAB

+
∑

i>j

1

rij

(3.2)

where the first term of Ĥe describes the kinetic energies of electrons, the second

term is the nuclei-electron interaction, and the third and forth terms describe the

nuclei-nuclei and electron-electron pair interactions, respectively.

For a N-electron molecule, the Slater determinant is used to express the total
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electronic wavefunction to satisfy the antisymmetry principle:

Φ(r1, ...rn) =















φ1(r1) φ2(r1) ... φn(r1)

φ1(r2) φ2(r2) ... φn(r2)

... ... ... ...

φ1(rn) φ2(rn) ... φn(rn)















, (3.3)

where {φi} is a set of orthogonal spin orbitals and ri is the position of the ith

electron.

For the ground electronic state, the variational theorem gives:

〈Φ| Ĥe |Φ〉
〈Φ| Φ〉 = EHF ≥ Eg. (3.4)

The energy EHF is an upper bound to the true ground-state energy Eg. The

purpose of the Hartree-Fock (HF) method is to determine a set of spin orbitals

which minimize the energy and thus generate the “best single determinant”.

The spin orbitals satisfy the HF equations:

F̂i(ri)φi(ri) = eiφi(ri), (3.5)

where F̂i(ri) is the Fock operator:

F̂i(ri) = ĥi(ri) +
∑

j

(Ĵj(ri) − K̂j(ri)), (3.6)

ĥi(ri) = −1

2
∇2

i +
ZA

rAi
, (3.7)

Ĵj(ri) =

∫

drj
|φj(rj)|2
rij

, (3.8)

K̂j(ri) =

∫

drj
φi(rj)

∗φj(rj)

rij
(3.9)

where ĥi(ri) is the one-lectronic Hamiltonian. The operator Ĵj represents the

Coulomb interaction between electron i and j, which corresponds to the average

potential acting on electron i at position ri due to the Coulomb interaction with

electron j in orbital φj(rj). The exchange term K̂j arises from the antisymme-

try requirement of the electronic wavefunction due to the Pauli principle. In

other words, the motion of electron i is not only dependent on the single-particle
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Hamiltonian ĥi but is also determined by the average potential field formed by

the other electrons.

The HF energy is given by:

EHF =
∑

i

∫

driφ
∗
i (ri)hi(ri)φi(ri)

+
1

2

∑

i,j

[

∫

dridrj

φ∗
i (ri)φ

∗
j (rj)φi(ri)φj(rj)

rij

−
∫

dridrj

φ∗
i (rj)φ

∗
j(ri)φi(ri)φj(rj)

rij

] (3.10)

For a molecular system with many electrons, the HF equations cannot be

solved directly. Thus the atomic orbitals {ϕk} of every atom can be used as a set

of basis functions to expand the molecular orbitals

φi =
∑

k

ckiϕk (3.11)

as the linear combinations of atomic orbitals (LCAO). The HF equations then

become the Hartree-Fock-Roothaan equations:
∑

k

Flkcki = ei

∑

Slkcki, (3.12)

Flk =

∫

driϕ
∗
l (ri)Fi(ri)ϕk(ri), (3.13)

Slk =

∫

driϕ
∗
l (ri)ϕk(ri), (3.14)

or in a matrix form:

FC = SCE, (3.15)

where E is the diagonal matrix of the orbital energies ei. Since F depends on C,

we have to solve these equations by an iterative procedure, the self-consistent-field

(SCF) procedure.

3.2 Multi-configuration self-consistent-field

method

As a “mean field”theory, the HF equations cannot describe electron correlations.

When two electrons come close to each other, an increased repulsion exists be-
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tween them. The difference between the HF energy in the basis-limit and the real

ground-state energy is called the correlation energy [207].

If two electronic states of the same symmetry are close to each other, their

wavefunctions can be highly mixed. This reflects the so-called non-dynamical

or near-degeneracy correlations [207]. In such cases, a single Slater determinant

cannot describe the electronic wavefunctions properly. The appropriate way to

include the near-degeneracy electronic correlation is the multi-configuration self-

consistent field (MCSCF) method.

The starting point of this approach is configuration-interaction (CI) ansatz,

which employ more than one Slater determinant to construct the so-called CI

wavefunction:

Φci =
∑

i

CiΦi. (3.16)

Here Φ0 is the single-determinant wavefunction obtained by a HF calculation

and contains the information of the reference orbitals. Φi (i > 0) denote different

determinants which are obtained by exciting electrons from the occupied spin or-

bitals to the virtual orbitals in Φ0. The coefficient vector {Ci} can be determined

by the variational theorem.

In the traditional single-reference CI approach, the CI expansion is con-

structed based on the single-reference HF orbitals. To take the near-degeneracy

correlation effects into account, both the orbitals and the CI vector are simulta-

neously optmized. This is the multi-configuration self-consistent field (MCSCF)

method [205,207].

3.3 Complete-active-space self-consistent-field

method

The inclusion of all possible excitations from Φ0 leads a computational method

called “full CI”. The molecular energy obtained in the full CI limit is a benchmark

because it is the most complete treatment for a given one-electronic basis set.

Full CI is not a practical method due to large computational costs, even for small
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molecules.

The CI expansion can be truncated by restricting the types of electronic ex-

citations to reduce the number of determinants. For example, the inclusion of

single excitations, double excitations, or both of them are approximations which

are known as “CIS”, “CID” and “CISD”.

a useful way to reduce the computational cost is to restrict the excitations

within a particular orbital space, the so called “active space”. This approximation

is quite reasonable, because usually only a few active orbitals are involved in chem-

ical reactions. For a given active space, the inclusion of all possible excitations

leads to the so-called complete-active-space (CAS) treatment. The combination

of CAS and MCSCF is the complete-active-space self-consistent field (CASSCF)

approach [205,207,208].

The advantage of the above methods is that they are variational. This means

that the calculated energies are always upper bounds to the true energy. However,

most of these calculations apply a truncated CI expansion. They are therefore not

size-consistent, because only the correlation energy in the active space is included

in calculations.

3.4 Multi-reference configuration-interaction

method

Although the MCSCF wavefunction accounts for the near-degeneracy correla-

tions, its energy usually is not sufficient accurate, since many of the valence

electrons have been treated as filled closed-shell orbitals with no recovery of corre-

lation energy. The remaining correlations which cannot be described by MCSCF

are the so-called dynamical correlations [207].

To recover the dynamical correlation energy, it is necessary to consider the

excitation of the active electrons or inert valence electrons to the external (or

virtual) orbitals of the MCSCF wavefunction. The most obvious approach to

improve the MCSCF approach is the multi-reference configuration-interaction

(MRCI) method [207]. This method takes the MCSCF results as the reference
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wavefunction and consider the excitation of electrons from the MCSCF config-

urations into the external orbital space. In general, only single and double ex-

citations are considered, which leads to first-order CI (FOCI) and second-order

CI (SOCI), respectively. Previous studies showed that FOCI is not a systematic

improvement over MCSCF, while SOCI generally provides accurate results [207].

Unfortunately, MRCI is expensive except in the case of small molecules.



Chapter 4

Quantum wave-packet dynamics

4.1 Kinetic-energy operator

The nuclear kinetic energy of a polyatomic molecule is composed of three parts:

translational energy, rotational energy and vibrational energy [209]. Among them,

only the vibrational part is of interest here because it describes the changes of the

internal nuclear degrees of freedom in photo-induced dynamics. The separation

of vibrations and rotation is performed in a curvilinear coordinate system and

leads to complex expressions for the vibrational kinetic-energy operator.

The derivation of the exact kinetic-energy operator for the vibrational motion

of a polyatomic system is straightforward in principle but cumbersome in practice.

There are two equivalent approaches to perform this task. We consider a nonlinear

polyatomic molecule with N atoms as a typical example to derive the kinetic-

energy operator through these two methods.

In the first approach, the total kinetic energy is expressed as a function of

classical velocities. There are a total of 3N degrees of freedom. The motion of

the center of mass of this molecule, as well as its rotational motion, should be

separated from the total kinetic-energy Hamiltonian. After the separation, 3N -6

degrees of freedom are left to describe the vibrational motion. In a curvilinear

internal coordinate system, the classical kinetic energy of the vibrational motion

49
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is obtained as:

T =
1

2
PTG(R)P, (4.1)

where P is a column vector and its element Pi is the momentum conjugate to the

curvilinear coordinate Ri. G(R) is the well-known G matrix [209]. The Podolsky

transformation [210] finally yields the corresponding quantum-mechanical kinetic-

energy operator:

T̂ =
1

2
g

1

4

3N−6
∑

i,j=1

P̂ig
− 1

2GijP̂jg
1

4 (4.2)

P̂i = i
∂

∂Ri
(4.3)

where Gij is the element of the matrix G and g = det(G).

The second approach starts from the quantum kinetic-energy operator in a

Cartesian-coordinate system. It is possible to define a new set of coordinates

{Xi}. The first three coordinates X1, X2, X3 describe the translational motion of

the center of mass and the second three coordinates X4, X5, X6 describe the rota-

tion. Then a set of proper curvilinear coordinates from X7 to X3N can be selected

to describe the vibrational motions. The transformation between the Cartesian

coordinates and the {Xi} can be constructed explicitly. By successive applica-

tion of the chain rule, the final kinetic-energy operator can be obtained [211–215].

This method was used to construct the kinetic-energy operator of tri-atomic and

tetra-atomic molecules and has been extended to larger systems with the help of

computer algebra [211–215].

For polyatomic systems, both methods demand cumbersome calculations.

Thus some approximations should be introduced to simplify the derivation of

the kinetic-energy operators, such as the reduction of the dimensionality and the

selection of the appropriate coordinates, which simply the kinetic-energy expres-

sion.

In general, the photoinduced chemical dynamics in excited states of molecules,

especially for the short-time (sub-picosecond) dynamics, involve only a few nu-

clear degrees of freedom. Thus, to simplify the treatment of the dynamics, it may
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be appropriate to build a reduced dimensional model, by including the most im-

portant degrees of freedom, while freezing the other (inactive) vibrational modes.

In this case, the approximate kinetic-energy operator can be derived based on

the first approach [216]. The classical kinetic energy can be obtained with con-

straints that are introduced in the form of the constant bond distances or constant

bond angles. The Podolsky transformation, in Eq. 4.2, gives the corresponding

quantum mechanical operator of the kinetic energy for such constrained systems.

The selection of proper coordinates plays a key role in simplifying the ex-

pression of the kinetic-energy operator [215]. In the present thesis, three sets

of coordinates are used: internal coordinates, Jacobi coordinates and normal co-

ordinates. The internal coordinates, such as bond distances and bond angles,

are optimal for the description of the PE surfaces, but often lead to complex

expressions for the kinetic-energy operator. The Jacobi coordinates are suitable

to derive a simple expression for the kinetic-energy operator for a reduced sys-

tem with two or three degrees of freedom, but the constraints (e.g. fixed bond

distances or bond angles) cannot be introduced easily. The normal coordinates

yield the simplest expression for the kinetic operator, but are unsuitable for the

description of large-amplitude motion. Since these three sets of the coordinates

each have advantages and limitations, the selection of the suitable coordinates

depends on the system under study.

4.2 Time-independent Schrödinger equation

4.2.1 General solution

The fundamental problem in chemical physics is the solution of the time-independent

Schrödinger equation:

Ĥ |Ψ(t)〉 = E |Ψ(t)〉 (4.4)

where Ĥ is the Hamiltonian. To solve this equation, a suitable orthogonal basis

set {|ψi〉} is selected to construct the matrix representation of the Hamiltonian:

Hij = 〈ψi| Ĥ |ψj〉 . (4.5)
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The diagonalization of this matrix by a unitary matrix S generates a series

of eigenvalues ({Ei}), as well as the corresponding eigenstates ({|αk〉}), of the

Hamiltonian:

SHS+ = E, (4.6)

Sik = 〈αi| ψk〉 , (4.7)

Eij = δijEi. (4.8)

The transformation between the eigenstates |αk〉 and the original basis states |ψi〉
is given by the elements of the matrix S.

4.2.2 Partitioning of the Hamiltonian

If the Hamiltonian cannot be diagonalized directly in a single basis set, it can be

divided into a sum of different terms, i.e.:

Ĥ = Ĥ1 + Ĥ2. (4.9)

Let us consider two basis sets {|αi〉} and {|βi〉}, which are eigenstates of Ĥ1 and

Ĥ2 respectively:

Ĥ1 |αi〉 = E
(1)
i |αi〉 , (4.10)

Ĥ2 |βi〉 = E
(2)
i |βi〉 , (4.11)

where E
(1)
i and E(2) are the corresponding eigenvalues. The Hamiltonian can be

represented in one basis set (e.g. {|αi〉}) as follows:

Hij = 〈αi| Ĥ1 |αj〉 +
∑

k,l

〈αi| βk〉 〈βk| Ĥ2 |βl〉 〈βl| αj〉

= E
(1)
i δij +

∑

k

〈αi| βk〉E(2)
k 〈βk| αj〉 , (4.12)

or in the more compact form:

H = E(1) + L+E(2)L, (4.13)

E
(1)
ij = δijE

(1)
i , (4.14)

E
(2)
ij = δijE

(2)
i , (4.15)

Lij = 〈βi| αj〉 , (4.16)
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where E(1) and E(2) are the diagonal matrices containing the eigenvalues of Ĥ1

and Ĥ2, respectively. L is the transformation matrix between these two basis

sets. The diagonalization of the matrix H generates the eigenenergies and the

eigenstates of Ĥ .

The choice of a suitable basis set can reduce the effort to evaluate the matrix

representation of Hamiltonian. Some widely-used basis sets include the eigen-

states of the harmonic oscillator, the eigenstates of the Morse oscillator, the

Legendre functions, etc. Instead of discrete basis sets, continuum basis sets can

also be used to represent the Hamiltonian. For example, |x〉 is a natural choice

when the Hamiltonian only contains a function of the position operator x̂. This

is equivalent to the projection of the state vector on position space to get the

wavefunction. If the Hamiltonian is a function of the momentum operator (e.g.,

the free particle), the natural basis set is |p〉, the eigenstates of the momentum

operator.

4.3 Time-dependent Schrödinger equation

4.3.1 General solution

The time evolution of a wave vector |Ψ(t)〉 is described by the time-dependent

Schrödinger equation:

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (4.17)

where Ĥ is the Hamiltonian. If Ĥ is independent of time, the formal solution is:

|Ψ(t)〉 = Û(t− t0) |Ψ(0)〉 , (4.18)

Û(t− t0) = exp[−iĤt], (4.19)

where Û(t− t0) is called ”propagator”.

Let us expand |Ψ(t)〉 in a complete set of time-independent basis state {|αn〉},
which are chosen as the eigenstates of Ĥ [Ĥ |αn〉 = En |αn〉]:

|Ψ(t)〉 = exp[−iĤt]
∑

n

|αn〉 〈αn| |Ψ(0)〉

=
∑

n

cn exp[−iEnt] |αn〉 , (4.20)
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where cn are the expansion coefficients of |Ψ(0)〉 in the chosen basis. This equation

shows that the time-dependent Schrödinger equation can be directly solved in the

eigenstate representation. The wave vector is a superposition of the eigenstates

of the Hamiltonian, which is called “wavepecket”(WP).

Similar to the time-independent cases, discrete or continuum basis sets can

be employed. The first type of basis set leads to Eq. 4.20. The second type gives

a similar expression, except that the sum is replaced by an integral.

4.3.2 Split-operator method

The direct use of Eq. 4.20 is not practical for many realistic systems, due to the

difficulty to obtain the eigenstates of the Hamiltonian. An alternative way to solve

the time-dependent Schrödinger equation is the split-operator technique [217],

which is based on the symmetric second-order disentangling of the time-evolution

operator for the short-time interval ∆t:

Ĥ = Ĥ1 + Ĥ2, (4.21)

exp[−iĤ∆t] = exp

[

−iĤ1
∆t

2

]

exp
[

−iĤ2∆t
]

exp

[

−iĤ1
∆t

2

]

. (4.22)

Two basis sets {|αi〉} and {|βi〉}, which are eigenstates of Ĥ1 and Ĥ2 respectively,

can be chosen to evaluate the corresponding short-time propagators.

There are also several other ways to construct the approximate short-time

propagators, such as the Chebysheff, Lanczos, Runge-Kutta methods, etc. The

details of these algorithms have been described elsewhere [218–224].

4.4 Discrete variable representation

4.4.1 Definition of the discrete variable representation

The partitioning of the Hamiltonian is a common way to solve the Schrödinger

equation, both in the time-dependent and time-independent pictures. One typical

way to perform this partition is:

Ĥ = Ĥ1 + Ĥ2(x), (4.23)
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where Ĥ2 only depends on the position operator x̂. As discussed before, we apply

two basis sets, {|ψi〉} [Ĥ1 |ψi〉 = E
(0)
i |ψi〉] and {|x〉} [x̂ |x〉 = x |x〉] to solve the

Schrödinger equation.

The matrix representation of the Hamiltonian in the basis set {|ψi〉} is given

by:

H = E(1) + HVBR, (4.24)

E
(1)
ij = E

(1)
i δij, (4.25)

HV BR
ij =

∫

dx 〈ψi| x〉 Ĥ2(x) 〈x| ψj〉 ,

=

∫

dxψ∗
i (x)Ĥ2(x)ψj(x). (4.26)

We have to keep in mind that it is impossible to include the complete basis set of

{|ψi〉}. The use of the truncated basis {|ψi〉 i = 1, ...N} to represent the Hamil-

tonian always yields energies which are upper bounds to the true eigenvalues.

Thus, HVBR is defined as the “variational basis representation” (VBR) of Ĥ2 in

the truncated basis set {|ψi〉 , i = 1, ...N}.
The numerical calculation of the integrals over x in the VBR requires the

use of a large number of grid points. At the same time, the truncated basis set

{|ψi〉 i = 1, ...N} does not satisfy the completeness relation and thus leads to

unavoidable errors. These limitations can be mitigated by the so-called “discrete

variable representation”(DVR) method [225–230].

The starting point of the DVR approach is the definition of a set of N grid

points {|xi〉 , i = 1, ..., N}, which are the eigenvalues of the position operator x̂

in the {|ψi〉 i = 1, ...N} representation, i.e.:

TXT+ = x, (4.27)

Xij = 〈ψi| x̂ |ψj〉 , (4.28)

xij = xiδij , (4.29)

Tij = 〈xi| ψj〉 . (4.30)

This treatment discretizes the x space, yielding a set of discrete basis functions

which are localized on a set of points xi, the so-called the DVR points. The
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transformation between {|ψi〉 i = 1, ...N} and {|xi〉 , i = 1, ..., N} is given by the

matrix T. Thus, the definition of the DVR requires both the N basis functions

{|ψi〉 i = 1, ...N} and the N DVR points {|xi〉 , i = 1, ..., N}. The elements of T,

although written as 〈xi| ψj〉, do not correspond to the value of the wavefunction

ψj(x) at the point xi. The meaning of these elements will be discussed in the

next subsection.

When the DVR points {|x〉i , i = 1, ...N}, rather than the continuum basis

{|x〉}, are used to represent the Hamiltonian, Ĥ2 becomes a diagonal matrix be-

cause it only contains the position operator x̂. Thus, the matrix form of Ĥ2 in the

{|ψi〉 i = 1, ...N} representation, the so-called “finite basis representation”(FBR),

is given by:

HFBR = T+HDVRT, (4.31)

HFBR
ij = 〈ψi| Ĥ2 |ψj〉 , (4.32)

HDV R
ij = H2(xi)δij. (4.33)

These relations imply that the DVR is isomorphic with its corresponding FBR

which is a good approximation of the VBR.

The DVR approach ensures that both the {|ψi〉 i = 1, ...N} and the {|xi〉 i =

1, ...N} are orthonormal and complete in the truncated space. Thus even a small

number of basis functions and the same number of grid points can yield an accu-

rate result.

The DVR technique can also be used to solve the time-dependent Schrödinger

equation. For example, if we divide the Hamiltonian according to Eq. 4.23, the

split-operator method can be applied to perform the WP propagation. This

procedure requires the evaluation of exp(−iĤ1∆t) in the grid representation:

〈xi| exp(−iĤ1∆t) |xj〉 =
∑

k

〈xi| ψk〉 exp(−iEk∆t) 〈ψk| xj〉 , (4.34)

and exp(−iĤ2∆t) in basis set representation:

〈ψm| exp(−iĤ2∆t) |ψn〉 =
∑

i

〈ψm| xi〉 exp(−iH2(xi)∆t) 〈xi| ψn〉 , (4.35)
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where the {xi} are selected as the DVR points for the basis functions {ψi}. The

numerical evaluations of Eqs. 4.34 and 4.35 can be performed using the DVR-FBR

transformation.

4.4.2 Construction of the discrete variational representa-

tion

There are two ways to obtain the DVR points.

For certain sets of basis functions, the matrix elements of the coordinate

operator x̂, i.e. X, can be constructed analytically. The diagonalization of the

matrix X can generate its eigenvalues and eigenvectors. The eigenvalues are a

set of points corresponding to the DVR points and the eigenvectors define the

DVR-FBR transformation matrix.

When particular functions are selected to form the basis, such as Gaussian,

Legendre, Hermite polynomials, etc., the DVR points are their corresponding

Gaussian-quadrature points [225–227, 230]. For these basis functions with the

degree N, the orthonormal relations are given exactly by the Gaussian quadrature:

δij =

∫

dxψ∗
i (x)ψj(x)

=
N
∑

k=1

ωkψ
∗
i (xk)ψj(xk), (4.36)

where the xk are the Gaussian-quadrature points and the ωk are the weights at

the points xk. The matrix element of the coordinate operator x̂ in the {|ψi〉}
representation is also given exactly by:

Xij =

∫

dxψ∗
i (x)x̂ψj(x)

=

N
∑

k=1

ωkψ
∗
i (xk)xkψj(xk). (4.37)

The comparison of this equation with the DVR definition confirms that the DVR

points are essential the Gaussian-quadrature points for these polynomials. The

transformation matrix between the DVR points and the basis functions is given

by:

Tij =
√
ωiψj(xi). (4.38)
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The elements of the transformation matrix T are thus defined as the products of

the values of the basis functions ψj(x) at the Gaussian quadrature points xi and

the square root of the corresponding weights ωi.

4.4.3 Grid representation

The Hamiltonian Ĥ consists of the kinetic-energy part T̂ and the PE part V̂ :

Ĥ = T̂ + V̂ . (4.39)

This fact implies that two basis sets, the eigenstates of the operator x̂ and p̂,

should be used to represent the Hamiltonian.

In the Colbert-Miller DVR method [231], the basis functions are “particle-in-

a-box” eigenfunctions:

ψn(x) =

√

2

b− a
sin

[

nπ(x− a)

b− a

]

, n = 1, ...N − 1, (4.40)

where the interval (a,b) is the area of the box. As expected, they are the eigen-

states of the momentum operator p̂. The DVR grid points {xi} for this basis set

are equally spaced at:

xi = a + (b− a)i/N, i = 1, ...N − 1. (4.41)

Note that ψn(x0 = a) = ψn(xN = b) = 0, thus there are N-1 functions and N-1

DVR points. The matrix representation of the kinetic-energy operator in the

DVR points is given by:

Tij =











1
2m

(−1)i−j

(b−a)2
π2

2

{

1
sin2[π(i−j)/(2N)]

− 1
sin2[π(i+j)/(2N)]

}

(i 6= j),

1
2m

1
(b−a)2

π2

2

{

2N2+1
3

− 1
sin2[πi/N ]

}

(i = j).
(4.42)

In the time-dependent picture, the Colbert-Miller DVR can be used to eval-

uate the transformation between |x〉 and |p〉. Alternatively, this transformation

can be performed by the Fourier-transformation method [221,223]. This approach

also takes the eigenstates of the momentum operator p as the basis functions and

applies a set of equally-spaced points in the coordinate space. However, instead

of real functions of x, complex plane-wave basis functions are chosen in this case.



CHAPTER 4. QUANTUM WAVE-PACKET DYNAMICS 59

The Fourier-transformation method discretizes the position and momentum

space simultaneously. This is equivalent to the division of phase space into many

small rectangular regions. The volume of the sampling region in phase space is

V = P ·X, (4.43)

X = Ng△x, (4.44)

P = Ng△p, (4.45)

where X and P are the sampling lengths in the coordinate and the momentum

spaces, respectively. △x and △p are sampling spacings in the corresponding

spaces. Note the number of the points (Ng) in both of two spaces should be

same. At the same time, the volume in phase space is also determined by:

V = Ng2π. (4.46)

Therefore, the discretization of the grid and momentum spaces should satisfy:

Ng△x△p = 2π. (4.47)

Thus, the spacing △x, as well as the range X, in coordinate space automatically

determine the resolution △p and the area P in momentum space.

The Colbert-Miller DVR and the Fourier method are essentially same, because

both of them apply a set of basis functions which are eigenstates of the momen-

tum operator. They differ in the choice of the boundary conditions of the basis

functions. The Fourier method is not convenient for the time-independent calcula-

tions, because the Hamiltonian matrix in the Fourier basis functions (eipx) is not a

real-valued matrix. It is very suitable, on the other hand, for time-dependent cal-

culations due to the highly efficient fast-Fourier-transformation (FFT) algorithm.

The scaling of the computational effort of this FFT algorithm is O(Ng logNg) for

Ng grid points.
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4.5 Photo-induced quantum dynamics via coni-

cal intersections

The description of the photoinduced dynamics involves (i) the initial preparation

of the system by photoexcitation and (ii) the time-evolution of the wavefunctions.

To define the initial preparation of the system, we first generate the vibrational

eigenstates of the electronic ground-state PE surfaces with time-dependent or

time-independent methods. The initial WP is then prepared by vertical excitation

of a vibrational level in the electronic ground state to the excited electronic state.

The nuclear WP is propagated on coupled surfaces by solving the time-

dependent Schröndinger equation. The diabatic representation is used to prop-

agate the WP. Finally, the WP is transformed to the adiabatic representation,

which is more suitable for the quantitative interpretation of the photochemical

dynamics.

4.5.1 Representation of wave vector

The state vector Ψ(t) is expanded in a complete orthogonal set of time-independent

basis functions. This basis set is constructed as the direct product of the diabatic

electronic basis {|Φn〉} and suitable discrete basis {|χνi〉} for each nuclear degree

of freedom:

|Ψ(t)〉 =
∑

n

∑

ν1,ν2...

Cn,ν1,ν2(t) |Φn〉 |χν1〉 |χν2〉 ...., (4.48)

where Cn,ν1,ν2(t) is the nuclear WP in the nth diabatic electronic state:

χn,ν1,ν2...(t) = Cn,ν1,ν2(t)

= 〈Φn| 〈χν1| 〈χν2| ... |Ψ(t)〉 . (4.49)

A similar relation is obtained in a set of continuum basis states, e.g.:

|Ψ(t)〉 =
∑

n

∫

dR1dR2...Cn(t, R1, R2...) |Φn〉 |R1〉 |R2〉 ...., (4.50)
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where Cn(t, R1, R2...) is the nuclear WP in the grid representation in the nth

diabatic electronic state:

χn(t, R1, R2...) = Cn(t, R1, R2...)

= 〈Φn| 〈R1| 〈R2| ... |Ψ(t)〉 . (4.51)

Alternatively, the state vector can also be expanded in a mixed basis of discrete

states and coordinate grids, called the ”mix-grid-basis-representation” (MGBR).

This means that the WP is evaluated in the grid representation for some degrees

of freedom and expanded in a discrete basis for the other degrees of freedom:

|Ψ(t)〉 =
∑

n

∫

dR1dR2...dRk

∑

ν(k+1),ν(k+2)...

Cn,ν(k+1),ν(k+2)...(t, R1, R2, ..., Rk)

|Φn〉 |R1〉 |R2〉 .... |Rk〉 |ν(k + 1)〉 |ν(k + 2)〉 ... (4.52)

The nuclear WP in the nth diabatic electronic state in this MGBR is:

χn,ν(k+1),ν(k+2)...(t, R1, R2, ...Rk)

= Cn,ν(k+1),ν(k+2)...(t, R1, R2, ..., Rk)

= 〈Φn| 〈R1| 〈R2| ... 〈Rk| 〈ν(k + 1)| 〈ν(k + 2)| ... |Ψ(t)〉 . (4.53)

Both expansions convert the time-dependent Schrödinger equation into a set

of coupled first-order differential equations:

iĊ(t) = HC(t), (4.54)

where H is the matrix representation of the Hamiltonian. This equation can be

solved by the methods discussed earlier in this chapter.

4.5.2 Construction of the adiabatic-to-diabatic transfor-

mation

As discussed in Chapter 2, the adiabatic-to-diabatic transformation matrix U is

a function of the nuclear geometry R (see Chapter 2):

∣

∣Φd
n

〉

=
∑

i

|Φa
i 〉Uin(R1, R2, R3...). (4.55)
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This equation defines the transformation of the nuclear WP between these two

representations. In the grid representation, the evaluation of this transformation

is straightforward. Otherwise, one needs to evaluate the matrix U in the direct-

product basis representation or MGBR, e.g.:

〈ν1| 〈ν2|U |ν2′〉 |ν1′〉

=

∫

dR1

∫

dR2 〈ν1| R1〉 〈ν2| R2〉U(R1, R2) 〈R2| ν2′〉 〈R1| ν1′〉 . (4.56)

The integrals can be evaluated by using the DVR-FBR technique.

4.5.3 Vibrational eigenfunctions of the electronic ground

state

The Hamiltonian for the nuclear motion in the electronic ground state is:

Ĥg = T̂ + V̂ a
1 , (4.57)

where V̂ a
1 is the adiabatic PE function of the ground electronic state.

In the time-independent approach, we use the standard method described in

Section 4.2 to obtain the eigenstates of the Hamiltonian. A orthogonal basis

set is constructed by the direct product of the suitable basis functions for differ-

ent degrees of freedom (see Subsection 4.5.1). The matrix representation of the

Hamiltonian in this basis set is obtained with the DVR technique. The diagonal-

ization of this matrix gives the vibrational eigenenergies and eigenstates of the

ground electronic state.

In the time-dependent picture, the vibrational levels of the ground-state sur-

face are determined by the so-called pseudo-spectral method described in Ref. [232].

A suitable Gaussian wavefunction is chosen as initial condition and is propagated

on the adiabatic PE surface of the electronic ground state. The propagation of

the WP is performed by the split-operator method discussed in Section 4.3. In

the grid representation, we apply Fourier transformation to evaluate the propaga-

tor associated with the kinetic operator. For the other basis functions, the DVR

technique is used to evaluate the transformation between the basis functions and

the DVR grid points.
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The propagation of the wavefunction gives us the time-dependent autocorre-

lation function

C(t) = 〈χ(t0)| χ(t)〉 . (4.58)

The pseudospectral intensity is given by:

I(E) =

∫ ∞

0

C(t)eiEt/h̄dt. (4.59)

The positions of the peak maxima in the spectrum are the eigenenergies of the

bound states. The corresponding eigenfunctions are calculated by filtering the

desired eigenstate with energy En,

χn(E) =

∫ ∞

0

χ(t)eiEnt/h̄dt. (4.60)

In order to improve the energy resolution, we use the relation [233]:

C(2t) = 〈χ∗(t)|χ(t)〉. (4.61)

This way, one gains a factor of 2 in the energy resolution of the spectrum.

4.5.4 Preparation of initial states

The initial WP for the excited-state propagation is obtained by vertical excitation

of the vibrational states χa
1,(k) of the electronic ground state to the adiabatic ex-

cited state. For a particular χa
1,(k), the ground-state wavefunction in the adiabatic

representation can be written as

|Ψ0〉 = χa
1,(k) |Φa

1〉 . (4.62)

Here, the vibrational eigenstates of the ground electronic state are generated in

the adiabatic representation, while the diabatic representation is much more suit-

able for the WP propagation. Therefore, we employ the unitary transformation

matrix U to obtain |Ψ0〉 in the diabatic representation:

|Ψ0〉 =
∑

i

χd
i

∣

∣Φd
i

〉

(4.63)

via the method described in Subsection 4.5.2. The vertical excitation of |Ψ0〉 to

to the excited state provides the initial wave packet |Ψ(t = 0)〉.
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4.5.5 Quantum dynamics for coupled electronic states

The coupled equations for the nuclear motion in the diabatic basis are:

i
∂

∂t
χd(t) = (T + Vd(R))χd(t), (4.64)

where χd(t) is a column vector and its elements correspond to the nuclear WP

in different electronic states. T is the kinetic-energy matrix. Vd is the diabatic

potential matrix. The diagonal elements of Vd denote the diabatic PE functions,

while the off-diagonal elements are potential couplings between diabatic states.

The short-time propagator is expressed as:

exp[−iH∆t] = exp

[

−iT∆t

2

]

exp
[

−iVd(R)∆t
]

exp

[

−iT∆t

2

]

. (4.65)

The propagator related to the kinetic part is evaluated by the Fourier-transformation

method. The propagator related to the potential part is given by,

exp
[

−iVd(R)∆t
]

= U+(R)Γ(R)U(R), (4.66)

Γ(R)jk = δjk exp(−iV a
j (R)), (4.67)

where U is the adiabatic-to-diabatic transformation matrix.

4.5.6 Absorbing potential

If the WP is propagated in the grid representation, it is necessary to eliminate

spurious events which are generated by the boundaries of the numerical grid.

These events arise because the numerical mesh only covers a finite region of space

and the Fourier-transformation method implies periodic boundary condition. In

the treatment of dissociating systems, we thus observe the reflection of the WP

from the boundaries of the finite grid. Since these boundary effects are not real

physical events, they have to be eliminated by suitable measures.

One possible way to get rid of these boundary effects is to apply a so-called

“absorbing potential” near the end of the grid mesh [234, 235]. If the grid mesh

extends from Rmin to Rmax in the coordinate R1 and the potential energy is

V0(R1), we add a negative imaginary potential V1 into V0:

V (R1) = V0(R1) + V1(R1), (4.68)
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where V1(R1) is chosen as a smooth function of R1 and is localized in the vicinity

of the boundary Rmax (or Rmin), e.g.

V1(R1) =











−iξ(R1 − Ra)
n (Ra ≤ x < Rmax),

0 (Rmin < x < Ra),
(4.69)

where n is an integer and Ra is the point that initializes the absorbing potential.

The choice of V1 is based on three criteria: it should be large enough to remove

the spurious reflections of the WP; it should be localized close to the boundary,

and it should be a slowly-varying function of R. However, for most simulations

of chemical dynamics, the selection of the absorbing potential is not unique and

its average magnitude can vary considerably [235].

An alternative way to remove the boundary problem is to multiply the WP

by a damping function [236],

f(R1) = sin

[

π

2

Rmax −R1

Rmax − Ra

]

, Rmax ≥ R1 ≥ Ra (4.70)

which is activated near the grid edge. Ra is the point where the damping function

is initiated and ∆Ra = Rm−Ra is the width over which the function decays from

1 to 0.

4.5.7 Physical observables

4.5.7.1 Flux operator

The quantum flux operator F̂ measures the probability of the current density

penetrating a dividing surface. This dividing surface Θ is placed at Rf to separate

the reactants and the products:

F̂ = i[Ĥ, Θ̂], (4.71)

Θ̂ = h(R −Rf ),

=











0 R < Rf

1 R > Rf

(4.72)
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where h is a Heaviside step function of the coordinate R. Since Θ̂ is a function of

R, the potential operator part commutes with it. If we assume that the kinetic-

energy operator is T̂ = − 1
2m

∂2

∂R2 , the flux operator can be expressed as [237]:

F̂ = i[T̂ , Θ̂]

=
−i
2m

[
∂

∂R
δ(R− Rf) + δ(R− Rf )

∂

∂R
]. (4.73)

If the reaction coordinate is R1 (one of the tuning coordinates), the reaction

probability in the ith electronic state is defined as the time-accumulated flux

through a divided surface at R1=Rf in the asymptotic region:

FD
i (t) =

∫

dt 〈χi(R1, R2, ..., t)| F̂ |χi(R1, R2, ..., t)〉
∣

∣

∣

R1=Rf

=

∫

dtIm

[

〈

χi(R1, R2, ..., t) |
∂χi(R1, R2, ..., t)

∂R1

〉∣

∣

∣

∣

R1=Rf

]

. (4.74)

Note the bra-ket product implies the integral over the other coordinates, while

R1=Rf .

For a dissociative system, the dissociation probability in a particular channel

can be measured by the quantum flux. The flux has to be determined in the

dissociation limit (Rf = Rd) to avoid the contamination by inter-state couplings

and finite-grid effects.

4.5.7.2 Electronic population probability

The quantity of primary interest in the dynamics at conical intersections is the

time-dependent electronic population probability.

The diabatic population is defined as the expectation value of the projector
∣

∣Φd
i

〉 〈

Φd
i

∣

∣ with the time-dependent wave function:

P d
i (t) = 〈Ψ(t)| Φd

i

〉 〈

Φd
i

∣

∣ Ψ(t)〉 . (4.75)

This expression is equivalent to integral of the probability density over all nuclear

degrees of freedom:

P d
i (t) =

∫

dR1

∫

dR2...|χd
i (t, R1, R2, ...)|2. (4.76)
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The diabatic population can also be calculated in the product-basis representa-

tion:

P d
i (t) =

∑

ν1

∑

ν2

...|χd
i,ν1,ν2,...(t)|2, (4.77)

or in the MGBR representation:

P d
i (t) =

∫

dR1

∫

dR2...

∫

dRk

∑

ν(k+1)

∑

ν(k+2)

...

|χd
i,ν(k+1),ν(k+2),...(t, R1, R2, ...Rk)|2. (4.78)

The adiabatic population is defined as the expectation value of the projector

|Φa
i 〉 〈Φa

i |:

P a
i (t) = 〈Ψ(t)| Φa

i 〉 〈Φa
i | Ψ(t)〉 . (4.79)

As discussed in Subsection 4.5.2, the diabatic-to-adiabatic transformation can be

performed in the grid representation, the basis set representation, or the MGBR.

The resulting adiabatic nuclear WP finally gives the adiabatic population, e.g.

in the grid representation:

P a
i (t) =

∫

dR1

∫

dR2...|χa
i (t, R1, R2, ...)|2. (4.80)

Let us consider a system with a single dissociative coordinate R1 and many

non-dissociative coordinates {Ri, i = 2, ...N}. To avoid the need of a large grid

mesh for R1, a trick is employed to calculate the adiabatic and diabatic electronic

population probabilities as follows: the time-accumulated dissociative flux is mea-

sured at Rd, in the asymptotic region of the potential surface; then the diabatic

electronic population probability is the sum of this flux and the probability of

the nuclear WP remaining in the region [0, Rd]:

P d
i (t) =

∫ RD

0

dR1

∫

dR2

∫

dR3 |ψd
i (t, R1, R2, R3...)|2 + FD

i (t). (4.81)

This expression if correct, because neither reflections nor nonadiabatic transitions

take place in the asymptotic region. To estimate the adiabatic population, we

use the corresponding expression:

P a
i (t) =

∫ RD

0

dR1

∫

dR2

∫

dR3 |ψa
i (t, R1, R2, R3...)|2 + FD

i (t). (4.82)
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4.5.7.3 Probability density

For one-dimensional or two-dimensional models, it is straightforward to show the

probability density of the nuclear WP in the ith diabatic (or adiabatic) electronic

state, ̺d
i (or ̺a

i ). The probability density is the absolute square of the nuclear

WP in the ith diabatic (or adiabatic) state, i.e.:

̺d
i (t, R1, R2) = |χd

i (t, R1, R2)|2, (4.83)

̺a
i (t, R1, R2) = |χa

i (t, R1, R2)|2. (4.84)

To view the WP motion for a multi-dimensional system, we define reduced (or

compact) probability densities for one or two modes by the integral of the absolute

square of the nuclear WP over the remaining vibrational degrees of freedom, i.e.:

̺d
i (t, R1, R2) =

∫

dR3

∫

dR4...|χd
i (t, R1, R2, R3, R4...)|2, (4.85)

̺a
i (t, R1, R2) =

∫

dR3

∫

dR4...|χa
i (t, R1, R2, R3, R4...)|2. (4.86)

It should be kept in mind that the reduced probability densities are not true

WPs.



Chapter 5

Quantum dissipative dynamics

5.1 Density operator

5.1.1 Definition of density operator

If a system can be described by a wave vector |ψ〉 in Hilbert space, it is in a

“pure”state. In this case, the density operator is given by:

ρ̂pure = |ψ〉 〈ψ| , (5.1)

with the normalization condition 〈ψ| ψ〉 = 1.

If a system cannot be described by a single state vector, but by an ensemble

of quantum states, it is in a “mixed state”. If the probability to observe the wave

vector |ψϕ〉 is wϕ, the density operator for the mixed state is defined as

ρ̂mixed =
∑

ϕ

wϕ |ψϕ〉 〈ψϕ| , (5.2)

∑

ϕ

wϕ = 1, wϕ ≤ 1. (5.3)

5.1.1.1 Density matrix

In a set of complete orthonormal basis states {|φi〉}, the density operator is

written as

ρ̂ =
∑

i,j

ρij |φi〉 〈φj | (5.4)

69
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where ρij = 〈φi| ρ̂ |φj〉 are the elements of the “density matrix”, which is the

matrix representation of the density operator. This density matrix is Hermitian,

i.e:

ρij = ρ∗ji. (5.5)

According to the definition of the density matrix,

tr {ρpure} =
∑

i

ρii = 1. (5.6)

The difference between a pure state and a mixed state is indicated by the trace

of ρ̂2:

tr
{

ρ̂2
pure

}

= 1, (5.7)

tr
{

ρ̂2
m

}

< 1. (5.8)

The density operator completely characterizes a system. The expectation

value of a physical observable is given by

〈Â〉 = tr
{

Âρ̂
}

. (5.9)

The physical meaning of the density operator is reflected by the following

equation:

ρij = tr {ρ̂ |φj〉 〈φi|} . (5.10)

The diagonal elements ρii are the probabilities of the system in the states |φi〉.
The off-diagonal elements ρij describe the coherence of |φi〉 and |φj〉.

In the grid representation, density matrix is defined as

ρ(x, x′) = 〈x| ρ̂ |x′〉 . (5.11)

The diagonal elements ρ(x, x) represent the probability density of the system as

a function of the coordinate x.
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5.1.2 Liouville Von Neumann equation

The equation of motion for the density operator (i.e., the quantum master equa-

tion) is given by the Liouville-von Neumann equation:

˙̂ρ(t) = −i[Ĥ, ρ̂(t)], (5.12)

where Ĥ is the Hamiltonian. This equation can be expressed in a more compact

form:

˙̂ρ(t) = −iL̂ρ̂(t), (5.13)

where the Liouville superoperator L̂ is the abbreviation of the commutator [Ĥ, •].
If Ĥ is independent of time t, the solution of quantum master equation is:

ρ̂(t) = exp[−iL̂(t− t0)]ρ̂(t0)

= Û(t− t0)ρ̂(t0)Û
+(t− t0). (5.14)

5.2 Reduced density operator

5.2.1 Open quantum systems

In the treatment of complex many-body systems, it is often impossible to take all

degrees of freedom into account. However, in most cases, we are only interested

in a rather small part of the total system. Thus, we can define this small relevant

part as an open system and treat the large residual part as an environment. The

dynamics of the open system is governed by the system Hamiltonian, as well as

the system-environment coupling. If the environment is large enough such that

the effect of the system on the environment can be neglected, it is reasonable to

treat the environment as a reservoir, which is in thermal equilibrium with a fixed

temperature. These assumptions result in the “system-plus-reservoir” model for

the exploration of the dissipative dynamics of the open system.

The whole Hamiltonian is divided into three parts, a system part Ĥs, a reser-

voir (or bath) part Ĥb and the system-reservoir interaction Ĥsb

Ĥ = Ĥs + Ĥb + Ĥsb. (5.15)
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Here we define the “reduced density operator” by tracing the total density

operator over the bath coordinates, i.e.:

ρ̂s = trb{ρ̂}. (5.16)

Since the measurement of a physical observable of the system is fully deter-

mined by

〈A〉 = trs{Âρ̂s}, (5.17)

the dissipative dynamics of the system is completely characterized by this reduced

density operator.

The equation of motion for the reduced density operator can be obtained by

different methods, such as perturbative approaches [238, 239, 239–241], path in-

tegral approaches [240], stochastic approaches [239–242], phenomenological semi-

group approaches [243–246] etc. In this thesis, we combine the projection opera-

tor technique and perturbation theory to obtain the equation of motion for the

reduced density operator.

5.2.2 Projection-operator method

As discussed in the preceding section, the Liouville-von Neumann equation de-

scribes the motion of the total density operator according to Eq. 5.12 with the

Liouville operator L̂ = L̂s + L̂b + L̂sb. All Liouville operators are assumed to be

time-independent in the Schrödinger picture.

The equation of motion for the reduced density operator ρ̂s can be formally

obtained by the projection technique proposed by Nakajima and Zwanzig [239–

241, 247, 248]. Let us consider an operator P̂ , which projects the total density

operator ρ̂(t) onto the direct product of ρ̂s(t) and ρ̂b:

P̂ ρ̂(t) = ρ̂bρ̂s(t), (5.18)

where ρ̂b, the density operator of the bath, is defined as:

ρ̂b =
exp(−Ĥb/(kT ))

tr
{

exp(−Ĥb)/(kT )
} , (5.19)
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describing the reservoir in equilibrium of temperature T . We furthermore define:

Q̂ = 1 − P̂ . (5.20)

Since both P̂ and Q̂ are time-independent linear operators, the Liouville-von

Neumann equation can be written as a pair of coupled equations:

∂

∂t
P̂ ρ̂(t) = −iP̂ L̂(P̂ ρ̂(t) + Q̂ρ̂(t)), (5.21)

∂

∂t
Q̂ρ̂(t) = −iQ̂L̂(P̂ ρ̂(t) + Q̂ρ̂(t)). (5.22)

The solution of Eq. 5.22 is:

Q̂ρ̂(t) = exp[−iQ̂L̂(t)]Q̂ρ̂(0)

−i
∫ t

0

dτ exp[−iQ̂L̂(t− τ)]Q̂L̂P̂ ρ̂(τ). (5.23)

By inserting Eq. 5.23 into Eq. 5.21, a closed equation for P̂ ρ̂(t) is obtained:

∂

∂t
P̂ ρ̂(t) = −iP̂ L̂P̂ ρ̂(t)

−iP̂ L̂ exp[−i(1 − P̂ )L̂t](1 − P̂ )ρ(0)

−
∫ t

0

dτP̂ L̂ exp[−i(1 − P̂ )L̂τ ](1 − P̂ )L̂P̂ ρ̂(t− τ). (5.24)

This generalized master equation is an inhomogeneous integro-differential equa-

tion in time, which completely describes the quantum dissipative dynamics of the

open system under the influence of the reservoir. It is formally exact. Note that

the inhomogeneous term depends on the initial value of (1− P̂ )ρ(0). with the fac-

torized initial condition, ρ̂(0) = ρ̂bρ̂s(0), the quantum master equation becomes

homogeneous:

∂

∂t
P̂ ρ̂(t) = −iP̂ (L̂s + L̂sb)ρ̂(t)

−
∫ t

0

dτP̂ L̂sb exp[−i(1 − P̂ )L̂τ ](1 − P̂ )L̂sbP̂ ρ̂(t− τ). (5.25)

Here, the first term describes the reversible motion while the second term gives

rise to irreversibility. However, this equation is still too complicated. The kernel

contains any power of L̂sb and the system dynamics depends on the whole history

of the density operator.
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In the weak coupling case, the kernel in Eq. 5.25 can be expanded to the

second order of L̂sb within the Born approximation. We introduce the additional

assumption that the relaxation of the bath takes place on much shorter timescales

than the system dynamics. Neglecting the memory effects of the bath by using

the Markov approximation

ρs(t− τ) = exp(iL̂sτ)ρ(t), (5.26)

one arrives at the Born-Markov approximation for the master equation:

∂

∂t
P̂ ρ̂(t) = −iP̂ (L̂s + L̂sb)ρ̂(t)

−
∫ t

0

dτP̂ L̂sb exp[−i(1 − P̂ )(L̂s + L̂b)τ ](1 − P̂ )L̂sbP̂ ρ̂(t).

(5.27)

Extending the integral to ∞, the final equation of motion for the reduced density

operator is written as:

∂

∂t
ρs(t) = −i [Ĥs, ρs(t)]

−i trb

{

[Ĥsb, ρs(t)ρb]
}

−
∫ ∞

0

dτ trb

{[

Ĥsb, (1 − P̂ )
[

Ĥ
(I)
sb (−τ), ρs(t)ρb

]]}

, (5.28)

with

Ĥ
(I)
sb (−τ) = exp

{

−i(Ĥs + Ĥb)τ
}

Ĥsb exp
{

i(Ĥs + Ĥb)τ
}

. (5.29)

Eq. 5.28 is also called “Redfield equation” [249].

5.2.3 System-bath interaction

We assume that the system-bath interaction Hamiltonian Ĥsb can be written as

a sum of products of system operators K̂i and reservoir operators F̂i

Ĥsb =
∑

i

K̂iF̂i. (5.30)
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Inserting Eq. 5.30 into the Redfield equation (Eq. 5.28), one arrives at the fol-

lowing equation

∂

∂t
ρs(t) = −i[Ĥs, ρs(t)] − i

∑

m

〈F̂m〉[K̂m, ρ̂s(t)]

−
∑

m,n

∫ ∞

0

dτ

( Cmn(τ)[K̂m, K̂
(I)
n (−τ)ρ̂s(t)]

−Cnm(−τ)[K̂m, ρ̂s(t)K̂
(I)
n (−τ)] ) , (5.31)

where 〈F̂m〉 is the thermal average of the bath operator F̂m

〈F̂m〉 = trb{F̂mρ̂b}, (5.32)

and Cmn(τ) is the so-called “bath correlation function”

Cmn(τ) = trb{F̂ (I)
m (τ)F̂ (I)

n (0)ρb} − 〈F̂m〉〈F̂n〉. (5.33)

The above equations contain the system and bath operators in the interaction

picture:

K̂(I)
m (τ) = exp(iĤsτ)K̂m exp(−iĤsτ), (5.34)

F̂ (I)
m (τ) = exp(iĤbτ)F̂m exp(−iĤbτ). (5.35)

The first term in Eq. 5.31 describes the reversible dynamics governed by the

system Hamiltonian. The expectation values of the bath operators appearing in

the second term describe the mean-field contributions of the bath to the system

dynamics. This term does not induce the dissipation of the system. In the third

term, the irreversible relaxation of the system is caused by the fluctuations of

the bath around the mean-field energies, which are characterized by the bath

correlation function Cmn(τ). The properties of the bath correlation functions are

discussed in Appendix B.

5.2.4 Harmonic-oscillator reservoir

The explicit calculation of the quantum correlation functions of the bath is not

feasible, because it is impossible to calculate all quantum states of a general
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macroscopic reservoir. To overcome this difficulty, several models have been pro-

posed to describe the bath and the system-bath interaction.

For many kinds of reservoirs, such as radiation field, crystal lattice, etc. we

introduce normal modes to describe the microscopic motion of the reservoir. The

environment is thus modelled by a collection of many independent harmonic

oscillators:

Ĥb =
∑

q

ωq

2
(p̂2

q + q̂2
q ), (5.36)

where q̂q and p̂q are dimensionless coordinate and momentum operators, respec-

tively, for the particular mode with the frequency ωq.

For weak coupling, we employ a Taylor expansion of the system-bath inter-

action Hamiltonian Ĥsb with respect to the reservoir coordinates and keep the

linear term only

Ĥsb = K̂
∑

q

gq q̂q. (5.37)

where gq is the coupling strength. In the following discussion, only one system

operator K̂ is considered for convenience.

The harmonic-oscillator bath is homogeneous, therefore the expectation values

of all q̂q vanish

〈q̂q〉 = 0. (5.38)

Thus, the mean-field term in Eq. 5.31 does not exist for the harmonic-oscillator

bath.

For the harmonic-oscillator bath, the correlation functions in the time domain

take the form:

C(τ) = trb

{

q̂(I)
q (τ)q̂(I)

q (0)ρ̂b

}

=
1

2

∑

q

g2
q [e

−iωqτ + 2n(ωq) cos(ωqτ)], (5.39)

C∗(τ) = C(−τ) = trb

{

q̂(I)
q (−τ)q̂(I)

q (0)ρ̂b

}

=
1

2

∑

q

g2
q [e

iωqτ + 2n(ωq) cos(ωqτ)], (5.40)
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where n(ωq) is the occupation number for the particular Harmonic oscillator mode

with frequency ωq. This occupation number is determined by the Bose-Einstein

distribution at the temperature T

n(ωq) =
1

exp(− h̄ωq

kBT
) − 1

(5.41)

with the Bolzmann constant kB.

5.2.5 Spectral density

To simplify the description of the bath, we introduce the spectral density

J(ω) =
π

2

∑

q

g2
qδ(ω − ωq). (5.42)

Any macroscopic system should have a continuous spectral density due to the

infinite number of harmonic oscillators. Therefore Eq. 5.39 is written as:

C(τ) =

∫ ∞

0

dω
1

π
J(ω)[e−iωτ + 2n(ω) cos(ωτ)]. (5.43)

There are different models to describe J(ω), which are suitable for different

system-environment couplings under study. One typical example is the Ohmic

form:

J(ω) = Θ(ω)ηωe−
ω
ωc , (5.44)

where η is a dimensionless parameter to characterize the system-bath coupling

strength, and ωc is the bath cut-off frequency. Θ(ω) is the Heaviside step function

that guarantees that J(ω) = 0 for ω < 0. An alternative model of the spectral

density is the Debye form:

J(ω) = Θ(ω)η
ω

ω2 + ω2
c

, (5.45)

which is generally used to characterize the coupling between solute molecules and

polar solvent molecules. Both Ohmic and Debye spectral densities increase lin-

early in small-frequency region and decrease after reaching the cut-off frequencies.

More generally, we can introduce N (ω), the density of states of the reservoir, to

express the spectral density:

J(ω) = g2
ωN (ω). (5.46)
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5.2.6 Redfield equation

According to Eq. 5.31, the quantum master equation for the reduced density

operator within the Born-Markov approximation reads

∂

∂t
ρ̂s(t) = −iL̂sρ̂s(t) + D̂ρ̂s(t), (5.47)

where the Liouville superoperator L̂s describes the reversible part of system dy-

namics, and the dissipative superoperator D̂ is:

D̂ρ̂s(t) = −
∫ ∞

0

dτ ( C(τ)[K̂, K̂(I)(−τ)ρ̂s(t)]

−C(−τ)[K̂, ρ̂s(t)K̂
(I)(−τ)] ) , (5.48)

where all terms have been defined for the harmonic-oscillator bath.

In the eigenstate representation of the system Hamiltonian (Ĥs |φi〉 = Ei |φi〉),
the quantum master equation for the reduced density matrix becomes

∂

∂t
ρij = −iωijρij(t) −

∑

kl

∫ ∞

0

dτ

{

KikKklρkjC(τ)e−iωklτ −KikρklKljC(τ)e−iωikτ

+ρikKklKljC(−τ)e−iωklτ −KikρklKljC(−τ)e−iωljτ
}

(5.49)

with

Kik = 〈φi| K̂ |φk〉 , (5.50)

ωik = Ei − Ek. (5.51)

This Redfield equation can be expressed in the tensor form [237,239,241,250,251]:

∂

∂t
ρij = −iωijρij(t) +

∑

k,l

Γijklρkl, (5.52)

where the Γijkl denote the Redfield tensors

Γijkl = Γ+
ljik + Γ−

ljik − δjl
∑

m

Γ+
immk − δik

∑

m

Γ−
lmmj , (5.53)
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with

Γ+
ljik =

∫ ∞

0

dτKljKike
−ωikτC(τ)

= KljKik

∫ ∞

0

dτ

∫ ω

0

dω
1

π
J(ω)[e−iωτ + 2n(ω) cos(ωτ)]e−iωik , (5.54)

Γ−
ljik =

∫ ∞

0

dτKljKike
−ωljτC(−τ)

= KljKik

∫ ∞

0

dτ

∫ ω

0

dω
1

π
J(ω)[eiωτ + 2n(ω) cos(ωτ)]e−iωlj . (5.55)

The integrals in Eqs. 5.54 and 5.55 are evaluated according to the following

relations:
∫ ∞

0

dτ cosωτe−iΩτ =
1

2

[
∫ ∞

0

dτe−i(ω+Ω)τ +

∫ ∞

0

dτei(ω−Ω)τ

]

, (5.56)

∫ ∞

0

dτe±i(ω∓Ω)τ = πδ(ω ∓ Ω) ± iP 1

ω ∓ Ω
, (5.57)

where P is the Cauchy principal part.

After some algebra, the real parts of the Redfield tensors are given by:

Re(Γ+
ljik) = KljKik















J(ωki)(1 + n(ωki)) if ωk > ωi

J(ωik)n(ωik) if ωi > ωk

limω→0 J(ω)(n(ω)) if ωk = ωi

(5.58)

Re(Γ−
ljik) = KljKik















J(ωlj)(1 + n(ωlj)) if ωl > ωj

J(ωjl)n(ωjl) if ωj > ωl

limω→0 J(ω)(n(ω)) if ωj = ωl

(5.59)

The real parts of the Redfield tensors describe an irreversible redistribution of the

different elements of the reduced density matrix. Γ+
iijj and Γ−

iijj induce population

transfer and relaxation. Γ+
ijij and Γ−

ijij determine the evolution of the off-diagonal

elements of reduced density matrix and describe dephasing processes.

The imaginary parts of the Redfield tensors are given by:

Im(Γ+
ljik) = KljKik

1

π

{

P
∫ ∞

0

dω
J(ω)n(ω)

ω − ωik
− P

∫ ∞

0

dω
J(ω)[1 + n(ω)]

ω − ωki

}

,

(5.60)

Im(Γ−
ljik) = KljKik

1

π

{

P
∫ ∞

0

dω
J(ω)[1 + n(ω)]

ω − ωlj

− P
∫ ∞

0

dω
J(ω)n(ω)

ω − ωjl

}

.

(5.61)
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These terms modify the transition frequencies of the system. These frequency

shifts are sometimes called “Lamb shifts”.

The Redfield equation was established in the field of nuclear magnetic res-

onance [249]. For a few-level system (nuclear spin) coupled to a thermal en-

vironment (crystal lattic or solvent), the secular approximation to the Redfield

equation leads to the Bloch equation, which is essentially the Pauli master equa-

tion. Please refer to standard textbooks for details [239, 241,249].

5.2.7 Solution of the Redfield equation

To solve the Redfield equation, we have to generate the eigenstates of the system

Hamiltonian. The methods to perform this task are described in Chapter 4 of

this thesis.

The computational cost to solve the Redfield equation is a crucial issue when

it is applied to a complex system with many eigenstates. For a N-dimensional

density matrix, the computational effort to evaluate the Redfield tensors seems to

scale as N4. However, the explicit construction of the Redfield tensors can be re-

placed by matrix multiplications, which reduces the scaling of the computational

cost to N3 [250, 251]. If we define two auxiliary matrices, Λ+ and Λ−

Λ+
ik = KikRe

{∫ ∞

0

dτ

∫ ω

0

dω
1

π
J(ω)[e−iωτ + 2n(ω) cos(ωτ)]e−iωik

}

,(5.62)

Λ−
lj = KljRe

{
∫ ∞

0

dτ

∫ ω

0

dω
1

π
J(ω)[eiωτ + 2n(ω) cos(ωτ)]e−iωlj

}

, (5.63)

the real parts of the Redfield tensors are rewritten as

Re(Γ+
ljik) = KljΛ

+
ik, (5.64)

Re(Γ−
ljik) = Λ−

ljKik. (5.65)

In this way, the dissipative part of the Redfield equation is expressed in terms of

the products of three matrices: K, Λ± and ρ in the proper ordering.

There are many efficient numerical methods to solve the Redfield equation of

motion. Among them, the fourth-order Runger-Kutta scheme is widely used [252].
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5.2.8 Advantages and limitations of Redfield theory

The Redfield theory starts from a microscopic model which describes the dis-

sipative quantum dynamics of a system under the influence of en environment.

Since both the system and the bath are defined explicitly, the Redfield equation

directly displays the physical picture of energy transfer from the system to the

environment. This theory is among a limited number of theoretical approaches

which can describe dissipative dynamics on the basis of a microscopic model with

physical meaning. The Redfield equation also guarantees that the trace of the

reduced density matrix is preserved. In addition, the Redfield equation is a time-

local quantum master equation. The elimination of memory effects dramatically

reduces the numerical cost of the solution of this equation.

Being based on the Born-Markov approximation, Redfield theory cannot de-

scribe the dissipative dynamics in the case of strong system-bath coupling. The

inclusion of the non-Markovian effects is not trivial and is an open question for

the future [242,253–261]. In addition, because the memory kernel is truncated to

the second order of L̂sb, the positivity of the reduced density operator (ρii ≥ 0)

is not strictly preserved. In other words, the Redfield theory generally does not

conserve the semi-group property of the density operator [243].

5.3 Quantum dissipative dynamics at conical in-

tersections

5.3.1 Basic model

To describe the quantum dissipative dynamics at conical intersections, we con-

struct a rather simple model. The treatment will be extended to more general

systems.

We consider a conical intersection, which is the photo-active center of a large

molecule possessing many photo-inactive vibrational degrees of freedom. All of

these photo-inactive modes are modelled by harmonic oscillators. The coupling

between photo-active modes (tuning and coupling) and photo-inactive modes
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leads to dissipation.

In the system-plus-reservoir model, the system is assumed to be a two-state

conical intersection with one tuning and one coupling coordinate (Rt, Rc). In the

diabatic electronic basis {
∣

∣φd
k

〉

}, the system Hamiltonian is given by:

Ĥs =

2
∑

k=1

∣

∣φd
k

〉

ĥk

〈

φd
k

∣

∣+ {
∣

∣φd
1

〉

ĥ12

〈

φd
2

∣

∣+ c.c.}, (5.66)

where the elements ĥk are functions of Rt and Rc

ĥk = T + Vk(Rt, Rc), (5.67)

and the diabatic coupling is assumed to be a linear function of Rc:

ĥ12 =
∑

c

λ(Rt)Rc. (5.68)

The other photo-inactive vibrational modes are described by a bath composed

of many independent harmonic oscillators:

Ĥb =
∑

b

ωb

2
(p̂2

b + q̂2
b ), (5.69)

with the dimensionless coordinates qb and momenta pb for a particular harmonic

oscillator with frequency ωb.

The system-bath interaction Hamiltonian is assumed to be:

Ĥsb = (Ĥ t
sb + Ĥc

sb), (5.70)

where Ĥ t
sb and Ĥc

sb denote the system-bath couplings for the tuning and coupling

coordinates, respectively.

The system-bath coupling for the tuning coordinate is

Ĥ t
sb = {

∣

∣φd
1

〉 〈

φd
1

∣

∣+
∣

∣φd
2

〉 〈

φd
2

∣

∣}K̂(Rt)
∑

b

gt,bq̂b. (5.71)

For the coupling coordinate, the system-bath interaction Hamiltonian contains

K̂(Rc), a system operator which is a function of Rc. In most cases, the vibrational

motion of the coupling mode is of small amplitude. Thus, it is reasonable to
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perform a Taylor expansion of K̂(Rc) with respect to Rc, and keep only the

linear term:

K̂(R̂c) = R̂c. (5.72)

When the same ansatz as Eq. 5.71 is used to model the system-bath couplings

for the coupling mode, we obtain

Ĥc
sb = {

∣

∣φd
1

〉 〈

φd
1

∣

∣+
∣

∣φd
2

〉 〈

φd
2

∣

∣}R̂c

∑

b

gc,bq̂b. (5.73)

This system-bath coupling is often used to describe the interactions between

solute and solvent molecules. However, it lowers the symmetry of the system

Hamiltonian. To describe intramolecular vibrational relaxation of polyatomic

molecules, the system-bath coupling for the coupling mode should take the sym-

metry properties into account. One possible way to model a symmetry-preserving

system-bath coupling is

Ĥc
sb = {

∣

∣φd
1

〉 〈

φd
2

∣

∣+
∣

∣φd
2

〉 〈

φd
1

∣

∣}R̂c

∑

b

gc,bq̂b. (5.74)

5.3.2 Representation of reduced density operator

As discussed in the last section, the eigenstates {|α〉} of the system Hamiltonian

Ĥs can be used to represent the quantum master equation of the reduced density

operator. This results in the well-known time-local expression of the Redfield

equation, see Eq. 5.49.

Alternatively, the density operator can be expressed in another basis, which

is the direct product of the electronic basis {Φn} (adiabatic or diabatic) and a

suitable basis state {χνi} for each vibrational degree of freedom. The reduced

density matrix in this representation has the form:

ρs(t,Φn,Φn′ , νt, ν
′
t, νc, ν

′
c) = 〈Φn|〈χνt

|〈χνc
| ρ̂(t) |Φn′〉|χν′

t
〉|χν′

c
〉. (5.75)

A similar expression can also be obtained for a set of grid points:

ρs(t,Φn,Φn′ , Rt, R
′
t, Rc, R

′
c) = 〈Φn|〈Rt|〈Rc| ρ̂(t) |Φn′〉|R′

t〉|R′
c〉 (5.76)

or in the MGBR:

ρs(t,Φn,Φn′, Rt, R
′
t, νc, ν

′
c) = 〈Φn|〈Rt|〈χνc

| ρ̂(t) |Φn′〉|R′
t〉|χν′

c
〉. (5.77)
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5.3.3 Solution of quantum master equation

Instead of the traditional way to solve the Redfield equation in the eigenstate

representation, we discuss a new approach in this subsection.

We use the split-operator method to write the short-time propagation of the

reduced density operator as [64, 257, 262]:

ρ̂s(t+ dt) = e−iL̂sdt/2eD̂dte−iL̂sdt/2ρ̂s(t), (5.78)

where, the operators, L̂s and D̂ describe the reversible dynamics and the dissi-

pative dynamics, respectively. Next, the propagator exp(−iL̂sdt/2) can be eval-

uated by the successive application of the split-operator method

e−iL̂sdt = e−iL̂1dt/2e−iL̂2dt/2...e−iL̂ndt...e−iL̂2dt/2e−iL̂1dt/2, (5.79)

L̂s = L̂1 + L̂2 + ...L̂n. (5.80)

The purpose of this splitting technique is that every single propagator can be

calculated conveniently in the product-basis-set representation or the MGBR.

For example, if L̂1 describes a normal-mode motion, the eigenstates of the har-

monic oscillator are selected to evaluate the corresponding propagator e−iL̂1dt. If

the grid representation is used for a coordinate (for instance Rt), the Fourier-

transformation method is used to evaluate the propagator containing the kinetic-

energy operator [262–264].

To evaluate the propagation governed by D̂, we need to represent the operators

K̂ and K̂(I)(−τ) in a suitable representation, see Eq. 5.48. For brevity, I only show

the procedure to calculate these two operators related to the tuning coordinate

in the MGBR here.

For the operator K̂, it is rather easy to obtain:

〈Φ1| 〈Rt| 〈νc| K̂(Rt) |Φ1′〉 |R′
t〉 |ν ′c〉 = K(Rt)δΦ1,Φ′

1
δRt,R′

t
δνc,ν′

c
. (5.81)

This shows that the matrix elements of the operator K̂ are easier to calculate in

the MGBR than in the eigenstate representation.

A central part of the calculation is the representation of the operator K̂ in

the interaction picture, i.e. the term K̂(I)(−τ). If the eigenstates {|µi〉} of the
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system Hamiltonian have been obtained, K̂(I)(−τ) in the MGBR is written as:

〈Φ1| 〈Rt| 〈νc| K̂(I)(−τ) |Φ1′〉 |R′
t〉 |ν ′c〉

=
∑

µ1,µ2

〈Φ1| 〈Rt| 〈νc| µ1〉 〈µ1| K̂(I)
1 (−τ) |µ2〉 〈µ2| Φ1′〉 |R′

t〉 |ν ′c〉

=
∑

µ1,µ2

∑

Φ′′

1
,Φ′′′

1

∑

R′′

t ,R′′′

t

∑

ν′′

c ,ν′′′

c

〈Φ1| 〈Rt| 〈νc| µ1〉 e−iE1t 〈µ1| Φ′′
1〉 |R′′

t 〉 |ν ′′c 〉
K(R′′

t ) δΦ′′

1
,Φ′′′

1
δR′′

t ,R′′′

t
δν′′

c ,ν′′′

c

〈Φ′′′
1 | 〈R′′′

t | 〈ν ′′′c | µ2〉 eiE2t 〈µ2| Φ′
1〉 |R′

t〉 |ν ′c〉 . (5.82)

Eqs. 5.81 and 5.82 imply that the operator D̂ in the MGBR is time-local.

Therefore, the short-time propagation governed by D̂ leads to a linear differential

equation for the reduced density matrix. The fourth-order Runge-Kutta method

is used to evaluate the propagator eD̂dt for every time step.

In summary, the propagation of the reduced density matrix is performed by

the splite-operator method. The use of the optimal representation largely de-

creases the efforts to calculate the short-time reversible propagation governed by

the system Hamiltonian. For the irreversible part of the dynamics governed by the

dissipative operator, we use the fourth-order Runge-Kutta method to calculate

the short-time propagation.

5.3.4 Preparation of initial state

With in the FC approximation, the initial state is obtained by the vertical exci-

tation of system from the electronic ground state |Φ1〉 to the excited state |Φ2〉:

ρs(0) =
∑

pv |Φ2〉 |χ1,v〉 〈χ1,v| 〈Φ2| , (5.83)

where the |χ1,v〉 denote vibrational eigenstates in the ground electronic state

|Φ1〉, which can be obtained by the standard methods discussed in Chapter 4.

pv is the Blotzmann distribution factor, reflecting the probability distribution of

the system in different vibrational states. For sufficiently low temperature, the

contribution of the higher vibrational states can be neglected, i.e.,

ρs(0) = |Φ2〉 |0〉 〈0| 〈Φ2| , (5.84)
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where |0〉 is the lowest vibrational level in the electronic ground state |Φ1〉.

5.3.5 Physical observables

5.3.5.1 Quantum flux

The quantum flux through a dividing surface at Rd is defined by the expectation

value of the flux operator F̂ :

F (t) = tr {F̂ ρ̂s(t)}
∣

∣

∣

Rd

, (5.85)

where Rd is selected to divide the reactants and products, see chapter 4.

5.3.5.2 Electronic population probability

The diabatic populations are defined as:

P d
i (t) = trs,Rn

{

P̂
(d)
i ρ̂s(t)

}

, (5.86)

where P̂
(d)
i =

∣

∣φd
i

〉 〈

φd
i

∣

∣ is the projection operator for the ith diabatic electronic

state. This expression is equivalent to:

P d
i (t) =

∫

dR1

∫

dR2...ρs,i,i(t, R1, R1, R2, R2...), (5.87)

where ρs,i,i is the nuclear probability density in the ith electronic state.

5.3.5.3 Probability density

For one-dimensional or two-dimensional models, it is rather straightforward to

display the probability density in the ith diabatic state ̺
(d)
i . This nuclear proba-

bility density corresponds the diagonal element of reduced density matrix:

̺d
i (t, R1, R2) = ρs,i,i(t, R1, R1, R2, R2). (5.88)

For multi-dimensional models, we define the reduced (or compact) probability

density for one or two modes by tracing the reduced density operator over the

remaining vibrational degrees of freedom:

̺d
i (t, R1, R2) =

∫

dR3...ρs,i,i(t, R1, R1, R2, R2, R3, R3...) (5.89)
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5.3.6 Quantum dissipative dynamics of dissociative sys-

tems

We consider here photodissociation processes which take place in excited elec-

tronic states of polyatomic molecules. For a polyatomic molecule with a large

number of atoms, it is common that conical intersections are located in the dis-

sociation pathway. We therefore consider the system-plus-environment model to

explore the quantum dissipative dynamics through a conical intersection for a

dissociative system.

In a first approximation, the dissociative system is described by a 2D model,

which includes two intersected electronic states and one conical intesection. This

model takes the dominant tuning and coupling modes of the conical intersection

into account. As discussed in Chapter 2, the tuning coordinate Rt is the reac-

tion coordinate. This means that, along Rt, the reaction pathway goes through

the conical intersection towards the dissociative limit. In most cases, the cou-

pling mode can be described in the normal-mode approximation. With these

assumptions, the system Hamiltonian has been constructed explicitly according

to Eq. 5.66. The photo-inactive modes are treated as harmonic-oscillator bath,

see Eq. 5.69.

Since the gradient of the PE surface along Rt provides a large driving force

inducing a large-amplitude nuclear motion, considerable excess energy is accumu-

lated in the tuning mode. In the absence of dissipation, the PE gradient pushes

the system towards the dissociation limit and a chemical bond is broken. The ex-

cess energy in the tuning mode is thus converted into translational energy of the

fragments. In competition with dissociation, the system-bath coupling induces

vibrational relaxation of the tuning mode. Here we use the standard ansatz in

Eq. 5.70 and 5.82 to describe the system-bath coupling for the tuning coordinate.

It is reasonable to assume K̂t(Rt) to be a decreasing function of Rt, for instance

K(Rt) = K0 exp[−a(Rt − R0)]. (5.90)

This leads to the fact that the system-bath coupling approaches zero in the dis-

sociation limit.
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Since the large excess energy exists in the tuning coordinate, rather than in

the coupling coordinate, for the dissociative system, the the coupling mode will

not be highly excited. This implies that the damping of the coupling mode has

relatively little impact on the overall reaction probability. Therefore, we neglect

the damping for the coupling coordinate.

The MGBR is used to represent the density operator. For the dissociative

coordinate Rt, the grid representation is used. For the coupling coordinate Rc

,the harmonic-oscillator basis representation is used to reduce the computational

efforts.

The procedure for the solution of the Redfield equation in the MGBR has

been discussed in Subsection 5.3.3. Since we only consider the damping of the

tuning coordinate, two operators, K̂ and K̂(I)(−τ) have to be represented in the

MGBR. The operator K̂ can be directly evaluated according to Eq. 5.81.

For the dissociative system, Eq. 5.82 can not be used directly because of the

difficulty to define the eigenstates of the system Hamiltonian. In the present

model, the system-bath coupling vanishes in the asymptotic region. Therefore,

we define a box enclosing the region in which system-bath coupling is significant.

Then a matrix representation of the Hamiltonian inside this box is constructed.

The diagonalization of the Hamiltonian matrix in an appropriate representation

generates the eigenstates (|µ〉) and their energies (Eµ). Since these states are not

true eigenstates of the system Hamiltonian, we call them pseudo-eigenstates. The

replacement of the true eigenstates in Eq. 5.82 by these pseudo-eigenstates gives

the matrix representation of the operator K̂(I)(−τ). The dynamics governed by

Redfield tensors is treated by the fourth-order Runge-Kutta method.

The dissociation probability of the ith electronic state is defined as the time-

accumulated flux through a dividing surface at RD in the asymptotic region, see

Eq. 5.85. To calculate electronic population probability, a similar technique as

proposed in Chapter 4 is used:

P d
i (t) =

∫ RD

0

dRt

∑

νc

ρs(t, Rt, Rt, νc, νc) + FD
i (t). (5.91)



Chapter 6

Quantum dynamics of pyrrole

In this chapter, we describe the photoinduced dynamics of pyrrole at the 1A2(πσ
∗)–

S0 and 1B1(πσ
∗)–S0 intersections. We treat these two conical intersections sepa-

rately. Multi-reference electronic-structure methods have been employed to char-

acterize the possible coupling modes. As a first step towards the unravelling of

the mechanistic details of the 1πσ∗ driven photochemistry of pyrrole, 2D models

are constructed which include the tuning coordinate (the NH stretching coordi-

nate), and the dominant coupling modes for the 1A2(πσ
∗)–S0 and 1B1(πσ

∗)–S0

conical intersections, respectively [93]. These calculations reveal the key features

of the photoinduced dynamics of pyrrole at the 1πσ∗–S0 conical intersections. To

explore the influence of weak coupling modes on the dynamics, we have extended

the 2D WP calculations [89, 93] by including all symmetry-allowed coupling for

both 1πσ∗–S0 conical intersections in pyrrole modes [41].

In the present rather simplified model calculations, all other internal coordi-

nates are kept frozen at their ground-state equilibrium values. This means that

we ignore the energy transfer between the active modes and the many other vi-

brational modes. The effects of the coupling of the active modes with the many

inactive modes will be explored in Chapter 8.

It should be mentioned that we also ignore here the possible coupling between

the 1B1(πσ
∗) and 1A2(πσ

∗) states via in-plane vibrational modes of B2 symme-

try [265, 266]. Moreover, we do not consider the vibronic interaction of the 1πσ∗

states with the optically allowed 1ππ∗ states via out-of-plane modes [86], as well

89
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as the ππ∗-S0 couplings [267].

6.1 Identification of coupling modes

6.2 Symmetry selection rules

The selection of the relevant modes of the conical intersections can be performed

with the help of symmetry selection rule. Pyrrole possesses C2v symmetry and

its 24 internal degrees of freedom correspond to nine A1, three A2, eight B1 and

four B2 vibrational modes:

Γ = 9ΓA1
+ 3ΓA2

+ 8ΓB1
+ 4ΓB2

. (6.1)

The NH stretching coordinate rNH of A1 symmetry is the reaction coordinate

for the hydrogen abstraction reaction. For the 1A2–S0 conical intersection, the

coupling coordinates are the three normal coordinates of A2 symmetry [41]. For

the 1B1–S0 conical intersection, the coupling coordinates are the four normal

coordinates of B1 symmetry [41]. According to the discussions in Chapter 2,

the vibronic coupling strengths of these coupling modes at the corresponding

conical intersections can be determined according to the PE data obtained from

the electronic-structure calculations.

6.2.1 Ab initio calculations

The 1πσ∗ states have 3s Rydberg character at the equilibrium geometry of the

electronic ground state, but rapidly acquire H1s character along the dissocia-

tion path [83]. To account for the diffuseness of the σ∗ orbitals, it is necessary

to use rather extended basis sets, in particular on the NH group. Throughout

our calculations, the augmented correlation-consistent polarised-valence-double-

zeta (aug-cc-pVDZ) basis set [268] has been employed. One additional diffuse s

function and one additional set of p functions were added at the nitrogen and two

additional diffuse s and two additional sets of diffuse p functions to the dissocia-

tive hydrogen atom. Their exponents were derived in an even-tempered manner
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from the most diffuse s and p functions already present in the aug-cc-pVDZ basis

by dividing the exponents successively by a factor of 3.0.

The ground-state equilibrium geometry, the normal modes and the harmonic

vibrational frequencies of pyrrole have been obtained with the second-order Møller-

Plesset (MP2) method using the GAUSSIAN 98 package [31].

To characterise the 1B1–S0 and 1A2–S0 conical intersections, we have per-

formed two independent ab initio CASSCF calculations by averaging the CASSCF

functional over the 1B1 and S0, and the 1A2 and S0 states, respectively. The

CASSCF method represents a good compromise between computational cost and

accuracy. These calculations were performed with with the MOLPRO pack-

age [193].

For the calculation of the 1A2–S0 conical intersection, the active space consists

of three π orbitals and two π∗ orbitals, as well as one occupied σ orbital (9a1)

and the corresponding σ∗ orbital (10a1) of Rydberg character. This active space

corresponds to a distribution of 8 electrons in 7 orbitals. For the calculation of

the 1B1–S0 conical intersection, besides the orbitals included in the 1A2–S0 cal-

culation, it was found to be necessary to include two additional occupied orbitals

of σ character (8a1, 6b2), and three additional virtual orbitals of σ∗ character

(11a1−12a1, 7b2) to obtain smooth PE surfaces in the region of the barrier of the

1B1(πσ
∗) surface, where the 1πσ∗ state changes character from 3s towards H1s.

As pointed out in a recent study by Celani and Werner [84], this active space

yields the correct ordering of the low-lying valence and Rydberg states under

interest.

The internally-contracted MRCI method has been used to calculate the one-

dimensional PE functions of the five lowest singlet electronic states along the OH

stretching coordinate. All the configuration state functions (CSF) obtained from

the CASSCF calculations have been included in the reference space of the MRCI

calculations.
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6.2.2 Ab initio results

The calculated equilibrium geometry of the ground state of pyrrole is in good

agreement with previous results [78–82,84, 85].

Figure 6.1: Potential energy of the five lowest singlet electronic states, S0, πσ∗(A2),

πσ∗(1B1), ππ∗(B2) and ππ∗(A1) of pyrrole as functions of rNH .
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Fig. 6.1 gives an overview of the energies of the five lowest electronic states of

pyrrole as a function of the NH stretching coordinate, obtained by CASSCF/MRCI

calculations. It is seen that the H atom is strongly bound (by several electron

volts) in the electronic ground state, as well as in the 1ππ∗ valence states, while

the PE functions of the two 1πσ∗ states are essentially repulsive. The low barriers

of the 1πσ∗ PE functions near rNH = 2.5 au are associated with the Rydberg-to-

valence transformation of the σ∗ orbital [83]. The 1πσ∗ vertical excitation energies

are lower than those of the 1ππ∗ valence states. Because of the vibronic couplings

between the 1ππ∗ and 1πσ∗ states, the 1πσ∗ states can thus be populated by inter-

nal conversion after optical excitation of the 1ππ∗ states. Both 1πσ∗ PE functions

intersect the ground-state PE function in the vicinity of rNH = 4.2 au, forming

two conical intersections. In the present work, we have characterized the PE

surfaces of these conical intersections, considering the NH stretching coordinate

and the symmetry-allowed coupling coordinates.
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The normal modes, their symmetry labels and the harmonic vibrational fre-

quencies are given in Table 6.1. The vibrational frequencies are in good agreement

with previous theoretical data, see Ref. [91] and references therein. The atomic

displacement vectors associated with the normal modes of A2 and B1 symmetry

are shown in Fig. 6.2.

For the 1A2–S0 conical intersection, the vibronic coupling constants λ of the

three A2 modes at the conical intersection are given in Table 6.2. The mode

ν11 is found to be the strongest coupling mode with a dimensionless coupling

parameter λ/ω = 1.34. The other two modes, ν10 and ν12, are rather weak

coupling modes, with dimensionless coupling parameters in the range 0.42–0.46,

three times smaller than that of mode ν11.

For the 1B1–S0 conical intersection, the coupling constants of the four B1

modes at the conical intersection are given in Table 6.3. Among them, the

strongest coupling mode is ν24 with the dimensionless coupling parameter 5.53.

This mode possesses the lowest frequency and mainly represents the out-of-plane

motion of the H atom of the azine group (see Fig. 6.2). The mode ν22 is also

a relevant coupling mode, with λ/ω ∼ 0.8. It corresponds to a combination of

the out-of-plane motion of the H atom of the azine group and similar motions

of the H atoms of the ring (see Fig. 6.2). The modes ν21 and ν23, representing

the out-of-plane motions of the N atom or H atoms of the ring, are essentially

inactive, see Table 6.3.

6.3 Two-dimensional quantum dynamics of pyr-

role

In this section, we construct 2D models to explore the photoinduced dynamics

of pyrrole via the two conical intersections (1A2–S0 and 1B1–S0). The models

includes the NH stretching as the tuning coordinate and the strongest coupling

mode of each conical intersection.
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Table 6.1: Harmonic vibrational frequencies of the ground state of pyrrole obtained

with the MP2 methods. The frequencies obtained with the DFT method and the

B3LYP functional (Ref [91]) are given for comparison.

Mode Symmetry ω [cm−1]

MP2 DFT

ν1 A1 3672.8 3674.7

ν2 A1 3304.8 3262.2

ν3 A1 3283.2 3240.0

ν4 A1 1494.7 1500.5

ν5 A1 1430.7 1417.1

ν6 A1 1167.5 1173.8

ν7 A1 1096.0 1092.2

ν8 A1 1035.9 1033.8

ν9 A1 882.0 901.9

ν10 A2 824.3 878.2

ν11 A2 664.9 686.9

ν12 A2 608.8 631.0

ν13 B2 3298.5 3256.3

ν14 B2 3271.9 3228.7

ν15 B2 1544.9 1576.5

ν16 B2 1480.7 1455.8

ν17 B2 1291.3 1309.0

ν18 B2 1156.7 1159.0

ν19 B2 1056.0 1066.6

ν20 B2 858.9 881.3

ν21 B1 792.6 830.9

ν22 B1 716.2 727.8

ν23 B1 637.1 641.0

ν24 B1 515.9 474.9
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Table 6.2: Harmonic vibrational frequencies ω, 1A2–S0 coupling parameter λ and

dimensionless coupling parameter λ/ω of three A2 modes at the 1A2–S0 conical inter-

section.

Mode ω [eV] λ [eV] λ/ω

ν10 0.102 0.043 0.422

ν11 0.083 0.111 1.337

ν12 0.075 0.035 0.467

Table 6.3: Harmonic vibrational frequencies ω, 1B1–S0 coupling parameter λ and

dimensionless coupling parameter λ/ω of the four B2 modes at the 1B1–S0 conical

intersection.

Mode ω [eV] λ [eV] λ/ω

ν21 0.098 0.0 0.0

ν22 0.089 0.072 0.809

ν23 0.079 0.0 0.0

ν24 0.064 0.354 5.531
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Figure 6.2: Nuclear displacement vectors of the A2 and B1 normal modes of pyrrole.
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6.3.1 Basic models

6.3.1.1 Molecular Hamiltonian

The Hamiltonian for nuclear motion is expressed in the two-state diabatic basis

as

Ĥ = T̂N





1 0

0 1



+





V11 V12

V21 V22



 . (6.2)

where T̂N is the nuclear kinetic-energy operator. V11 and V22 describe the PE

surfaces of the diabatic electronic states, correlating with the ground diabatic S0

state and the 1πσ∗ state, respectively. The off-diagonal elements describe the

electronic coupling between the respective diabatic states.

6.3.1.2 Diabatic potential surfaces

The diabatic potentials can be constructed by the adiabatic-to-diabatic transfor-

mation based on the ab initio adiabatic PE surfaces of the 1πσ∗ and S0 states. In

the present rather transparent case of a single conical intersection, we can achieve

the diabatization via the ansatz of a 2×2 diabatic PE matrix as an analytic func-

tion of the nuclear coordinates. The parameters of the ansatz are determined by

a least-squares fit of the eigenvalues of the PE matrix to the ab initio PE data.

The diabatic S0 PE surface is modelled by a Morse function for the rNH part

and a harmonic function along the coupling coordinate Qc:

V11(rNH , Qc) = v11(rNH) +
1

2
ω(1)

c (rNH)Q2
c , (6.3)

with

v11(rNH) = D1
e [1 − exp (−a1(rNH − r1))]

2 . (6.4)

r1 corresponds to the equilibrium NH distance of the diabatic S0 state and D1
e is

the dissociation energy.

The PE function of the 1πσ∗ state displays a barrier along the NH stretch

coordinate. This barrier is reproduced by considering an avoided crossing be-

tween a bound 3s Rydberg-state [modelled by a Morse potential v21(rNH)], and a
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repulsive valence state [modelled by a repulsive exponential potential v22(rNH)].

The potential function of the coupling mode is modelled, as in the ground state,

by a harmonic oscillator function:

V22(rNH , Qc) = v20(rNH) +
1

2
ω(2)

c (rNH)Q2
c , (6.5)

where

v20(rNH) =
1

2
(v21(rNH) + v22(rNH)) (6.6)

−1

2

√

[(v21(rNH) − v22(rNH)]2 + 4λ2
22

with

v21(rNH) = D21
e [1 − exp (−a21(rNH − r21))]

2 + E2
0 , (6.7)

v22(rNH) = A22 exp (−a22(rNH − r22)) +D22
e . (6.8)

with D22
e corresponding to the dissociation energy of the diabatic 1πσ∗ state.

The coupling element in the diabatic representation is approximately by a

linear function:

V12 = λ12(rNH)Qc. (6.9)

where λ12 is a function of rNH , but is independent of Qc. All parameters in the

definition of V11 and V22 are determined from one-dimensional cuts of the adia-

batic PE surfaces along the NH coordinate. We have calculated one-dimensional

cuts along Qc to determine the values of ω
(1)
c , ω

(2)
c and λ12 at different values of

rNH . We have then chosen appropriate analytic functions to fit the rNH depen-

dence of these parameters.

We choose the following expression for the dependence of the diabatic coupling

strength on rNH :

λ12(rNH) =
1

2
λmax

12

[

1 − tanh

(

rNH − d12

β12

)]

. (6.10)

It is constant for small rNH and approaches zero for rNH → ∞.
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6.3.1.3 Preparation of initial vibrational states and WP propagation

The vibrational eigenfunctions of the adiabatic ground surface of pyrrole have

been determined by the pseudospectral method detailed in Chapter 4. In this

calculation, the initial WP is chosen as the following product of Gaussian func-

tions:

Ψ(t = 0) = N exp

[

−(r − r0)
2

2σ2
r

]

× exp

[

−(Qc −Qc,0)
2

2σ2
c

]

(6.11)

which is centered at (r0, Qc,0). We propagate it on the adiabatic ground-state

surface to obtain the time-dependent autocorrelation function C(t) and the vi-

brational eigenstates of the ground electronic state.

The initial WPs for the time-dependent propagation are prepared by vertical

electronic excitation, that is, by placing a given vibrational state of electronic

ground state into one of the πσ∗ states (see Chapter 4).

The photoinduced dynamics of pyrrole is treated in the time-dependent pic-

ture by solving the time-dependent Schrödinger equation for the nuclear motion

on the coupled surfaces in diabatic representation. The time-dependent expec-

tation value of adiabatic and diabatic electronic population probabilities, as well

as the WP evolution, are calculated to understand the nonadiabatic dynamics at

the conical intersections (see Chapter 4).

6.3.2 1A2–S0 conical intersection

6.3.2.1 Coupling modes

According to the results in the last section, we know that the mode ν11 is the

dominant coupling mode for the 1A2–S0 conical intersection. This coupling mode

corresponds to a screwing deformation of hydrogen atoms of the five-membered

ring of pyrrole. The calculations show that the diabatic frequencies ω
(1)
c and ω

(2)
c

do not depend on rNH .

Tables 6.4- 6.5 give the values of the parameters of the diabatic model for the

S0 and 1A2 states. The average deviation between the fit and the ab initio data

is 0.01 eV, reaching a maximum of 0.05 eV in the region of the barrier in the

1πσ∗ state.



100 Ph.D Thesis of Z. Lan

Table 6.4: Values of the parameters for v11, v21 and v22 for the 1A2–S0 model.

V11 V22

v11 v21 v22

D1
e = 4.979 eV E2

0 = 4.805 eV A22 = 2.644 eV

r1 = 1.927 au D21
e = 4.979 eV D22

e = 3.956 eV

a1 = 1.137 au r21 = 1.882 au r22 = 2.216 au

a21 = 1.293 au a22 = 1.325 au

λ22 = 1.248 eV

Table 6.5: Values of the parameters for the strongest coupling mode ν11 for the 1A2–S0

model.

ω λ12

Q11 ωc = 0.0825 eV λmax
12 = 0.237 eV

ω
(1)
c = 0.1096 eV d12 = 3.679 au

ω
(2)
c = 0.1096 eV β12 = 1.369 au

λ0 = 0 au
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6.3.2.2 Kinetic-energy operator

For the 1A2–S0 conical intersection, the kinetic-energy operator in a two-dimensional

space, which is spanned by the stretching coordinate r (the distance between the

H atom and the center of the mass of the ring) and the dimensionless normal

coordinate of the coupling mode Q11, takes the following form:

TN = − h̄2

2µ

∂2

∂r2
− 1

2
ω11

∂2

∂Q2
11

, (6.12)

where µ is the reduced mass of the NH stretching coordinate of pyrrole and ω11

is the frequency of the coupling mode ν11 of A2 symmetry.

6.3.2.3 Adiabatic and diabatic PE surfaces

Our calculation yields a 1A2(πσ
∗) vertical excitation energy of 4.45 eV, which is

in reasonable agreement with the values reported in previous theoretical stud-

ies [74,79–82,84,85]. The 1A2 and S0 dissociation limits of the present CASSCF

calculation are 3.96 eV and 4.98 eV, respectively. The former is in excellent

agreement with the value of 3.84 eV deduced from the measurement of the ki-

netic energy release [88].

The two-dimensional diabatic model PE surfaces are displayed as functions of

the coordinates rNH and Q11 in Fig. 6.3(a). The diabatic coupling matrix element

is shown in Fig. 6.3(b). It is a linear function of Q11 and approaches zero with

increasing NH distance. It is seen that the three diabatic energy surfaces are

smooth functions of the nuclear coordinates. Fig. 6.3(c) shows the adiabatic PE

surfaces. The conical intersection as well as the shallow well of the 1πσ∗ surface

are clearly visible. The diabatic PE surfaces, as well as the coupling elements,

are non-separable functions of r and Q11. The adiabatic PE functions acquire

an additional pronounced non-separability of the two coordinates through the

conical intersection. The height of the barrier for hydrogen detachment in the

1πσ∗ state is 0.4 eV.
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Figure 6.3: V11 and V22 (a), V12 (b) and adiabatic (c) PE surfaces of the S0 and

1A2(πσ∗) states, as functions of the NH stretching coordinate rNH and the dimension-

less coupling coordinate Q11.

6.3.2.4 Vibrational eigenstates of the electronic ground-state surface

The center of the initial Gaussian function is located at r0 = 4.55 au and Qc,0 =

2.0. The width parameters of the Gaussian WP were set to 0.3 au and 1.0 au,

for σr and σc, respectively. This WP is propagated for 4.0 ps with a time-step

∆t = 0.05 fs on a grid which is composed of 128×128 points, ranging from 3.0 au

to 6.0 au along the tuning coordinate r, and -15 to 15 along Qc, respectively. This

grid is large enough to ensure that the WP does not reach the grid boundaries

during the propagation. No damping function was employed in this calculation.

The lowest vibrational levels of the two-dimensional electronic ground-state

surface of the 1A2–S0 conical intersection model are given in Table 6.6, together

with their assignment. nr and nc are the occupation numbers of the NH stretch-

ing mode and the coupling mode, respectively. The fundamental frequencies of

the NH stretching mode and the coupling mode are 3396 cm−1 and 689 cm−1,

respectively, in acceptable agreement with the experimental values (see [85, 92]

and references therein).

6.3.2.5 Electronic population dynamics

When the NH stretching mode is prepared in its ground state, i.e., for the (0,0),

(0,1) and (0,2) initial conditions, no fast dynamics takes place. If we put one

quantum of energy into the NH stretching mode [the (1,0), (1,1) and (1,2) initial

conditions], the adiabatic population probabilities exhibit extensive population
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Table 6.6: Eigenvalues (En) and assignments (nr, nc) of the pseudospectral peaks of

the adiabatic ground state of pyrrole for the 1A2-S0 conical intersection model.

Pyrrole-H

En [cm−1] (nr, nc) En [cm−1] (nr, nc) En [cm−1] (nr, nc)

2095 (0,0) 5492 (1,0) 8728 (2,0)

2785 (0,1) 6176 (1,1) 9412 (2,1)

3469 (0,2) 6865 (1,2) 10101 (2,2)
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Figure 6.4: Diabatic (dashed lines) and adiabatic (full line) population probabilities

of the 1A2(πσ∗) and S0 states, for the initial conditions nr = 1 (I) [ (1,0) (a), (1,1) (b),

and (1,2) (c) ] and nr = 2 (II) [(2,0) (a), (2,1) (b), and (2,2) (c)] .

transfer within 20 fs. Fig. 6.4 (I) shows that in all cases the diabatic population

probability of the 1A2 state (P d
1 , dashed line) decreases in the early stage of the

dynamics. After about 30 fs, it rises and finally reaches a plateau. We observe

a recovery of the diabatic population P d
1 after 50 fs. If we put two quanta into
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the NH stretching mode [the (2,0), (2,1) and (2,2) initial conditions], we also

observe very fast decays of the P a
1 populations, see Fig. 6.4 (II). However, the

enhancement of the decay time relative to nr = 1 is not significant. The recovery

of the diabatic population P d
1 disappears.

The branching ratio of the reaction channels is strongly dependent on the

initial vibrational level of the coupling mode ν11. The excitation of this mode

enhances the population transfer between the diabatic 1A2 and S0 states (see full

lines in Figs. 6.4), as well as increases the dissociation probability to the upper

dissociation channel (see branching ratio in Fig. 6.5). For both the (1, nc) and

(2, nc) situations, the dissociation probability towards the upper limit increases

from about 5% (nc = 0) to more than 20% (nc = 3).
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Figure 6.5: Dissociation probabilities of pyrrole to the lower 2π-2A2 (black) and upper

2σ (grey) adiabatic limits, for (1,nc) (a), and (2,nc) initial conditions (b).

6.3.2.6 Time-dependent wave packets

The lack of ultrafast dynamics for the nr = 0 cases can be understood in terms

of the existence of a barrier in the 1A2 state along the NH stretching coordinate

(0.40 eV). This barrier induces a well in the 1A2 state, which has a similar shape

as the ground state in the bound region, implying that there are no FC factors for

transitions to higher vibrational levels of the 1A2 state. The energies of the (0,0),

(0,1) and (0,2) initial states are significantly lower than this barrier. Therefore,

the WP is trapped in the well of the 1A2 state and it can escape only by quantum
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tunnelling. We also note that the barrier on the 1A2 (πσ∗) surface is lower than

the upper adiabatic dissociation limit (see Fig. 6.1). Thus, the WP escaping by

quantum tunnelling does not have enough energy to dissociate to the upper limit.

The upper channel is thus closed and the WP dissociates quantitatively towards

the lower limit (2π).

The energies of the initial WPs prepared from the (1,0), (1,1) and (1,2) vibra-

tional levels of the electronic ground state are higher in energy than the barrier on

the 1A2 state. Therefore, the WPs can overcome the barrier in the 1A2 state and

reach the conical intersection very quickly due to the strongly repulsive character

of the 1A2 surface. At the conical intersection, the WP splits and moves towards

two different dissociation channels, 2π and 2σ.

For sake of illustration, we consider the WPs which evolve after the prepa-

ration of the (1,1) initial condition. Figs. 6.6 and 6.7 show the absolute square

of the projection of the nuclear WP in the 1A2 and S0 states, respectively. The

time step for the presentation of the WPs is 12 fs.

After the initial WP has been prepared by the vertical excitation, we observe

the motion of the WP in the 1A2 state towards the conical intersection within the

first 12 fs, see Fig. 6.6(a). The two nodal lines are clearly visible. The central part

of the WP follows the diabatic path, while the lateral wings follow an adiabatic

path. This explains the pronounced drop of the adiabatic 1A2 population after

12 fs, see Fig. 6.4 (I). In the S0 state, the nodal line with respect to the coupling

coordinate has disappeared, see Fig. 6.7(b). The 1A2 component of the WP

rapidly extends to large NH distances owing to the strongly repulsive PE surface

of the 1A2 state, see Fig. 6.6(c).

We should keep in mind that the barrier in the 1A2 state is slightly lower than

the upper (2σ) dissociation limit. The high-energy part of the WP can dissociate

towards the upper dissociation limit directly, see Fig. 6.7 (d). The low-energy

part of the wave packet, on the other hand, with an energy between the barrier

of the 1A2 state and the upper dissociation limit, is reflected by the attractive

upper adiabatic potential and re-enters the conical intersection. This process

results in pronounced interference patterns in the NH stretching direction, see
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Figure 6.6: Snapshots of the probability density in the diabatic 1A2 state for the (1,1)

initial condition. The WP is displayed at every 12 fs.

Figs. 6.6 (d)–(j) and 6.7 (d)–(j). From 48 fs to 120 fs, a component of the WP

oscillates in the upper cone of the conical intersection, see Fig. 6.6 (d)–(j) and

6.7 (d)–(j). Each time it passes the region of the conical intersection, a fraction

switches to the lower adiabatic surface and dissociates to the ground state of the
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Figure 6.7: Snapshots of the probability density in the diabatic ground S0 state for

the (1,1) initial condition. The WP is displayed at every 12 fs.

pyrrolyl radical. This explains the recovery of P d
1 after 50 fs, see Fig. 6.4 (l).

In the above process, only a tiny part of the WP in the S0 state enters the

region of small NH distances. This part of the WP exhibits a multi-node struc-

ture, reflecting the large excess energy in the NH stretching motion. In other
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words, the molecule is in a highly vibrationally excited quasi-stationary state.

In the absence of energy transfer to other vibrational modes, this hot molecule

will eventually dissociate. This implies the absence of internal conversion to the

ground state in the two-mode model.

6.3.3 1B1–S0 conical intersection

6.3.3.1 Coupling modes

For the 1B1–S0 conical intersection, we have shown that the strongest coupling

mode is ν24. This mode is essentially the out-of-plane bending motion of the

hydrogen atom of the azine group. We treat the dynamics of pyrrole in a two-

dimensional space which is spanned by the NH stretching coordinate and the

hydrogen out-of-plane bending coordinate θ, see Fig. 6.8 (a).

NHr
H

M N
θ

H

M N

r
γ

MNr

(a) (b)

Figure 6.8: Definition of the tuning coordinate and the coupling coordinate in the

internal (a) and Jacobi (b) coordinate for the 1B1-S0 conical intersection in pyrrole.

For the 1B1–S0 conical intersection, the harmonic frequency corresponding to

the coupling mode θ for the diabatic S0 potential was fitted by a linear function

in the inner region, an exponentially decaying function in the outer region, and

a switching function connecting the two:

ω(1)
c (rNH) = (B11 +B12r)(1 − f1(rNH))

+B13 exp (−B14(rNH − d1)) f1(rNH), (6.13)

f1(rNH) =
1

2

[

1 + tanh

(

rNH − d2

α1

)]

. (6.14)

The harmonic frequency of the 1πσ∗ state is represented by an avoided-crossing



CHAPTER 6. QUANTUM DYNAMICS OF PYRROLE 109

Table 6.7: Values of the parameters for the tuning mode of the 1B1–S0 model.

V11 V22

v11 v21 v22

D1
e = 5.117 eV E2

0 = 5.584 eV A22 = 0.091 eV

r1 = 1.959 au D21
e = 8.070 eV D22

e = 4.092 eV

a1 = 1.196 au r21 = 1.922 au r22 = 5.203 au

a21 = 0.822 au a22 = 1.290 au

λ22 = 1.669 eV

Table 6.8: Numerical values of the parameters for the coupling mode of the 1B1–S0

diabatic model.

V11 V22 V12

ω
(1)
c ω

(2)
c λ12

B11 = 5.147 eV B21 = 3.819 eV λmax
12 = 2.4 eV

B12 = -1.344 eV B22 = -1.219 eV/au d12 = 3.454 au

B13 = 0.884 eV B23 = 2.335 eV1/2 β12 = 1.942 au

B14 = 1.2910 au B24 = 0.226 eV1/2

d1 = 3.100 au

d2 = 2.696 au

like function:

ω(2)
c (rNH) =

1

2
(B21 +B22rNH) − 1

2

√

(B23 +B22rNH)2 + 4B2
24. (6.15)

ω
(2)
c (rNH) was set to zero when rNH is larger than 2.55 au.

Tables 6.7 and 6.8 give the values of the parameters appearing in the diabatic

model for the 1B1–S0 conical intersection. The average deviation between the fit

and the ab initio data is 0.01 eV, reaching a maximum of 0.05 eV in the region

of the barrier in the 1πσ∗ state.
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6.3.3.2 Kinetic-energy operator

The system is considered to be an effective three-body system, composed of

hydrogen, nitrogen and M , the center of mass of the rest of the rigid pyrrole

ring. To construct the kinetic-energy operator, we employ Jacobi coordinates

(see Fig. 6.8 (b)). rMN is the distance between M and the nitrogen atom. This

distance is kept fixed in the dynamics calculation. r is the distance between the

active hydrogen and the centre of mass of the M-N unit, and γ is the angle be-

tween ~rMN and ~r. In this set of coordinates, the kinetic-energy operator takes

the following form

T̂N = − h̄2

2µ

∂2

∂r2
− h̄2

2I

∂2

∂γ2
, (6.16)

with

µ =
mH(mM +mN )

(mH +mM +mN )
, (6.17)

µMN =
mMmN

(mM +mN )
,

mM = 4(mC +mH),

1

I
=

1

µr2
+

1

µMNr2
MN

.

The quantities mH , mN andmM denote the masses of hydrogen, nitrogen, and the

four C-H pairs, respectively, and I is the moment of inertia of the total system.

6.3.3.3 Adiabatic and diabatic PE surfaces

The CASSCF calculations yield a 1B1(πσ
∗) vertical excitation energy of 5.3 eV.

This value is in good agreement with the values reported in previous theoretical

studies at different computational levels [79–82, 84, 85]. The dissociation limits,

corresponding to the 2π and 2σ states of the pyrrolyl radical, are 4.09 eV and

5.12 eV, respectively, at the CASSCF level.

The two-dimensional diabatic model PE surfaces (diagonal elements of Vd)

are displayed as functions of the coordinates rNH and θ in Fig. 6.9(a). It is

seen that the three diabatic energy surfaces are smooth functions of the nuclear

coordinates. The diabatic coupling matrix element is shown in Fig. 6.9(b). It

is a linear function of θ and approaches zero with increasing NH distance. The
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adiabatic PE functions acquire an additional pronounced non-separability of the

two coordinates through the conical intersection. Fig. 6.9(c) shows the adiabatic

PE surfaces in the two-dimensional space. The conical intersection as well as the

shallow well of the 1πσ∗ surface are clearly visible. The height of the barrier for

hydrogen detachment in the 1πσ∗ state is 0.26 eV.
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Figure 6.9: Diabatic (V11 and V22) (a), V12 (b) and adiabatic (c) PE surfaces of the

S0 and 1B1(πσ∗) states, as a function of the NH stretching coordinate rNH and the H

out-of-plane coupling coordinate θ.

6.3.3.4 Vibrational eigenstates of the electronic ground-state surface

In the pseudo-spectral calculation, the center of the Gaussian wavefunction has

been located at r0 = 4.55 au and γ0 = 0.25 rad. The width parameters of the

Gaussian WP were set to 0.3 au and 0.25 au, for σr and σc, respectively. This

WP is propagated for 4.0 ps with a time-step ∆t = 0.05 fs on a grid which is

composed of 128 × 128 points, ranging from 3.0 au to 6.0 au along the tuning

coordinate r, and -2.0 rad to 2.0 rad along γ, respectively.

The energy eigenvalues of the lowest vibrational states of the adiabatic ground-

state surface and their assignments in terms of quantum numbers are given in

Table 6.9. The quantities nr and nγ in this table denote the quantum numbers of

the tuning mode and the coupling mode, respectively. The fundamental frequen-

cies of the NH stretching mode and the coupling mode (out-of-plane NH bending)

are 3598 cm−1 and 523 cm−1, respectively. The corresponding experimental val-

ues (see [85,92] and references therein) are 3531 cm−1 and 475 cm−1, respectively.

Our two-dimensional model reproduces these values with reasonable accuracy.
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Table 6.9: Eigenvalues (En) and assignments (nr, nγ) of the pseudospectral peaks of

the adiabatic ground state for pyrrole-H and pyrrole-D for the 1B1–S0 conical intersec-

tion model.

Pyrrole-H

En [cm−1] (nr, nγ) En [cm−1] (nr, nγ) En [cm−1] (nr, nγ)

2131 (0,0) 5729 (1,0) 9150 (2,0)

2654 (0,1) 6225 (1,1) 9617 (2,1)

3168 (0,2) 6713 (1,2) 10072 (2,2)

6.3.3.5 Electronic population dynamics

When the NH stretching mode is prepared in its ground state, that is, for the

initial conditions (0,nγ), we observe two processes with distinctly different time-

scales. Both the diabatic and adiabatic pictures indicate a rapid population trans-

fer from the excited state to the ground state during the early stage of the dynam-

ics (about 10 fs), followed by a slow and monotonic decay (see Fig. 6.10 (I)). The

latter time scale has recently been confirmed by the femtosecond time-resolved

detection of the fast hydrogen atoms after photoexcitation of pyrrole [90]. When

the NH stretching mode is initially excited, that is for the (1,nγ) (Fig. 6.10 (II))

and (2,nγ) (not shown here) initial conditions, the WP reaches the conical in-

tersection within 10 fs and the population transfer is essentially completed after

20 fs. The dissociation probabilities, P d
0 (t→ ∞) and P d

1 (t→ ∞), on the S0 and

1B1 surfaces, respectively, are shown in Figure 6.11. It is noteworthy that the

branching ratio does not depend on the excitation of the NH stretching mode.

The branching ratio depends, however, strongly on the excitation level of the

coupling mode, as shown by Fig. 6.11. For the (0,0) initial state, most of the WP

(75 %) dissociates to the lower adiabatic limit, while 25 % of the wave packet

arrives at the upper adiabatic limit. When one quantum of the coupling mode is

excited, the flux splits approximately equally between the two channels. When

more energy is put into the coupling mode, the WP dissociates primarily to the

higher adiabatic limit. The branching ratio saturates at 25 %/75 % at nγ = 3.

Similar observations can be made for the series (1, nγ) and (2, nγ), nγ = 0 − 4.
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Figure 6.11: Dissociation probabilities of pyrrole to the lower 2π-2B1 (black) and

upper 2σ (grey) adiabatic limits, for (0,nγ) (a), (1,nγ) (b), and (2,nγ) initial conditions

(c).

In summary, the higher the excitation of the coupling mode, the larger is the

probability for dissociation to the upper adiabatic channel. This feature of the

1B1–S0 conical intersection can be used to tune the branching ratio of the two
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dissociation channels.

6.3.3.6 Time-dependent wave packets

The different timescales of the population transfer dynamics for the nr = 0 sit-

uation at two conical intersections, [1B1–S0 and 2A1–S0] reflect the influence of

the different barrier heights on the dynamics. Because the 1B1 state has a lower

barrier than the 2A2 state, the dynamics is different. While the high-energy com-

ponent of the WP can overcome the barrier of the 1B1 state and reaches the

conical intersection within 10 fs, the low-energy part is captured in the well of

the 1B1 state and can reach the conical intersection only by quantum tunnelling,

which happens on a rather long time-scale, about a few hundred femtoseconds.

When one quantum of the NH stretching mode is excited, most of the ini-

tial WP has enough energy to overcome the barrier in the 1B1 state and reach

the conical intersection directly. This explains the single ultrafast decay of the

population of the 1B1 state (Fig. 6.10 (II)).

For the sake of illustration, we analyze the evolution of wave packets which

have been prepared in the (1,0) and (1,1) vibrational states, respectively. The

probability densities (i.e., the absolute squares of the projection of the nuclear

WPs on the diabatic 1B1 and S0 states) at different times are shown in Fig. 6.12

[(1,0) initial condition] and 6.13 [(1,1) initial condition].

As displayed in Fig. 6.12, the shape of the initial (1,0) WP in the 1B1 state

does not change during the first 10 fs. The node in the NH-stretching direction is

clearly visible. After about 10 fs, the major part of WP has reached the conical

intersection and is partly transferred to the S0 state. In the S0 state, a nodal

line at γ = 0 has been generated by the 1B1–S0 conical intersection. This node

results from the fact that the diabatic coupling operator is an odd function of

the coupling coordinate γ. The two parts of the wave function move around the

conical intersection following two different adiabatic paths (clockwise and anti-

clockwise), and interfere destructively for γ = 0. After the transition through

the conical intersection, both components of the WPs dissociate directly, see

Fig. 6.12(c) and (f). We do not observe any probability density for small NH
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Figure 6.12: Snapshots of the probability density in the diabatic 1B1(πσ∗) [(a)-(c)]

and ground states [(d)-(f)] for the (1,0) initial condition.
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Figure 6.13: Snapshots of the probability density in the diabatic 1B1(πσ∗) [(a)-(c)]

and ground states [(d)-(f)] for the (1,1) initial condition.

distances in the S0 state (see Fig. 6.12 (f)). This reflects the absence of internal

conversion to the ground state in this two-mode model of the 1B1–S0 conical

intersection.
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Let us now discuss the motion of the WP after preparation of the (1,1) initial

condition (Fig. 6.13). The initial WP in the 1B1(πσ
∗) state has two nodal lines

after the preparation. While the node with respect to the out-of-plane angle is

rigorously preserved by symmetry in the 1πσ∗ state, the node with respect to

the NH stretching coordinate disappears during the barrier crossing in 1B1 state

(Fig. 6.13(b)). The node with respect to γ is cancelled by the transition to the

diabatic S0 state, i.e. the resulting WP is node-less, (see Fig. 6.13(f)). Figs. 6.13

(d) and (e) reveal the repulsion of the WP on the S0 surfaces from planarity

(γ=0) due to the pronounced cone on the S0 energy surfaces (see Fig. 6.9 (c))

The projected nuclear probability densities obtained for initial conditions with

higher excitation of the coupling mode, (1, nγ) with nγ ≥ 2, are qualitatively simi-

lar and therefore are not shown here. The increasing probability of dissociation to

the upper adiabatic channel with increasing excitation of the coupling mode can

be rationalized as follows. With increasing excitation of the coupling mode, the

density as a function of γ becomes more delocalized. As a consequence, the WP

tends to follow the adiabatic rather than the diabatic surfaces. Beyond a certain

quantum number nγ , the density of the wave function in the small γ range, which

follows the diabatic path, remains nearly constant. This explains the saturation

of the branching ratio which is clearly seen in Fig. 6.11.

In addition, we have analyzed the WP in order to understand why the excita-

tion in the tuning mode has no effect on the branching ratio. The analysis shows

that the shape of the wave packet along the coupling coordinate is only weakly

dependent on the quantum number in the tuning mode.

6.4 Multi-mode dynamics of pyrrole

To explore the influence of additional weak coupling modes on the dynamics, we

have extended the 2D models to include all symmetry-allowed coupling modes

for the corresponding conical intersections. This results in 4D and 5D models for

the 1A2–S0 and 1B1–S0 conical intersections, respectively. Similar to the 2D case,

we construct the multidimensional surfaces for both conical intersections using

accurate ab initio electronic structure calculations. To achieve a reasonable com-
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promise between the computational cost and the physical importance, the WP

calculations have been performed by taking the two dominant coupling modes of

each conical intersection into account. The dependence of the electronic popula-

tion dynamics on the mode-specific vibrational preparation has been investigated.

These calculations provide the insight into the effect of multiple coupling modes

on the process of the direct photodissociation through conical intersections.

6.4.1 Basic model

6.4.1.1 Diabatic model

The multi-mode molecular Hamiltonian of the πσ∗–S0 conical intersection is anal-

ogous to the two-mode case, see Section 6.3. Here, we describe all inter-state

couplings in terms of normal modes. The kinetic-energy operator therefore takes

the simple form:

T̂N = − h̄2

2µ

∂2

∂r2
−
∑

c

1

2
ωc

∂2

∂Q2
c

, (6.18)

where µ is the reduced mass corresponding to the motion of the H atom relative

to the ring part of pyrrole. r is defined as the distance between the H atom and

the center of mass of the ring. The Qc are dimensionless normal coordinates with

corresponding frequencies ωc. Here the summation is over all symmetry-allowed

coupling modes.

The potential part of the molecular Hamiltonian is constructed according to

the same ansaz as the 2D model case. The only difference is that we have to take

the contributions of all coupling modes in account. Thus, the extension of the

2D diabatic model results in the multi-mode model:

V11 = v11(rNH) +
∑

c

1

2
ω(1)

c (rNH)Q2
c , (6.19)

V22(rNH , Qc) = v20 +
∑

c

1

2
ω(2)

c (rNH)Q2
c , (6.20)

V12 =
∑

c

λc(rNH)Qc. (6.21)

where all parameters are defined in the same way as in the 2D model.
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6.4.1.2 Preparation of initial states and wave-packet propagation

The vibrational eigenstates of the adiabatic ground-state PE surface are con-

structed within the time-independent framework by the diagonalization of the

adiabatic ground-state Hamiltonian in a finite-basis representation. The initial

WPs are prepared by vertical electronic excitation, that is, by placing a given vi-

brational state of the electronic ground state into one of the 1πσ∗ excited states.

The multi-mode quantum dynamics of pyrrole is explored using time-dependent

methods.

For the large-amplitude coordinate r, we adopt the representation of the WP

on an equidistant grid. For the coupling modes, it is more economical to employ

an expansion of the WP in harmonic-oscillator basis functions. This MGBR is

the optimal choice for the representation of the Hamiltonian. The details can be

found in Chapter 4.

In the diagnalization of the ground-state Hamiltonian, we have employed 64

DVR points from 3.0 au to 6.2 au for r. We have used 10 harmonic-oscillator

basis functions to represent the Hamiltonian for the each of the coupling modes.

The WPs are propagated in the MGBR on the two coupled surfaces using

the split-operator method [217]. We employ the FFT method [218] to evaluate

the kinetic-energy operator of the NH stretching coordinate. We use the same

grid spacing here and extend our grid to 256 points, from 3.0 au to 15.8 au. 10

harmonic-oscillator basis functions are employed for each of the coupling modes.

The WPs are propagated for 200 fs with a time step of 0.1 fs. All calculations

have been checked to guarantee converged results with respect to grid size and

time step.

The time-dependent electronic populations and the motion of the WP are

calculated to get the insight into the mechanism of nonadiabatic dynamics gov-

erned by multiple coupling modes. In Chapter 4, we have explained the trick

to calculate the electronic population for dissociative systems. We determine the

dissociation probability by measuring the reactive flux passing through a dividing

surface located at r = 12 au. To avoid the reflection at the grid boundary in the

r direction, we apply a damping function from 13.5 au to 15.8 au.
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Table 6.10: Values of the parameters pertaining to the weak coupling modes for the

1A2–S0 model.

ω λc

Q10 ωc = 0.1022 eV λmax
12 = 0.066 eV

ω
(1)
c = 0.1077 eV d12 = 4.364 au

ω
(2)
c = 0.1155 eV β12 = 1.478 au

λ0 = 0 au

Q12 ωc = 0.0756 eV λmax
12 = 0.151 eV

ω
(1)
c = 0.0887 eV d12 = 2.643 au

ω
(2)
c = 0.0487 eV β12 = 0.980 au

λ0 = 0.021767 au

6.4.2 1A2–S0 conical intersection

The coupling strength of ν11 is much stronger than that of the other two modes of

A2 symmetry. In the previous discussion, we have taken only this coordinate into

account as the coupling coordinate to construct a two-dimensional (2D) model.

The coupling modes ν10 and ν12 have similar coupling strengths at the conical

intersection and their coupling strengths are much weaker than that of ν11, see

Table 6.10.

To investigate the effect of the weak coupling modes on the dynamics of the

1A2–S0 conical intersection, we add ν10 or ν12 to the 2D model to obtain a three-

dimensional (3D) model. The WP calculations show that influence of ν12 on the

dynamics is more prominent than that of ν10. Therefore, we discuss only the

results of the 3D model which includes the strong coupling mode ν11 and the

weak coupling mode ν12.

6.4.2.1 Vibrational eigenstates of the electronic ground-state surface

The lowest vibrational levels of the 3D electronic ground-state surface of the

1A2–S0 conical intersection model have been calculated by diagonalization of the

ground state Hamiltonian. We designate the occupation numbers of the NH
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stretching mode, the strong coupling mode (ν11) and the weak coupling mode

(ν12) as nr, nc,1 and nc,2, respectively. The fundamental frequencies of these

three vibrations are 3405 cm−1, 675 cm−1 and 613 cm−1, respectively, in the

3D model, in acceptable agreement with the experimental and full-dimensional

harmonic frequencies (see [85, 92] and references therein).

6.4.2.2 Electronic population and wave-packet dynamics

Similar to the 2D calculation results, the 3D calculations also show that photoin-

duced reaction rate is highly dependent on the the initial preparation of the NH

stretching motion. When the NH stretching mode is prepared in its ground state

[the (0, nc,1, nc,2) initial conditions], no fast dynamics takes place due to the exis-

tence of the barrier in the 1A1 state. If the NH stretching motion is excited, the

ultrafast adiabatic population transfer occurs within 20 fs, see Fig. 6.14. Many

details of the electronic population dynamics, e.g. the timescale of the population

decay, the weak oscillation of the diabatic population and the branching ratio of

the reaction, are consistent with the 2D calculations.

The branching ratio of the reaction is sensitive to the preparation of the

dominant coupling mode ν11. The diabatic population transfer at the conical

intersection is enhanced by the excitation of this mode ν11, see Fig. 6.14. On the

other hand, the excitation of the weak coupling mode ν12 has almost no effect on

the population dynamics, see Fig. 6.14. This result shows that the nonadiabatic

transition at the conical intersection is primarily driven by the mode ν11. The

inclusion of the additional coupling mode ν12 has a minor effect on the electronic

population dynamics. This result confirms the validity of the original 2D model

for the 2A2–S0 conical intersection [93].

6.4.2.3 Comparison of 2D and 3D WP dynamics

Although the 2D and 3D calculations predict a similar electronic population dy-

namics for the 1A2-S0 conical intersection, the comparison of details of the WP

dynamics provides additional insight into the multi-mode dynamics at this conical

intersection. For the sake of illustration, we analyze the evolution of the WP for
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Figure 6.14: Time-dependent diabatic (dashed lines) and adiabatic (full lines ) pop-

ulation probabilities of the 1A2 and S0 states for the initial states (100) (a), (101) (b),

(110) (c), (111) (d), (120) (e).

the initial preparation in the (1,0) vibrational state in the 2D model and compare

it with the WP dynamics for the (1,0,0) initial preparation in the 3D model. The

probability densities of the 2D WPs are displayed as the absolute squares of the
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projection of the nuclear WPs on the diabatic 1A2 and S0 states. For the 3D case,

we define reduced probability densities for two vibrational modes by integration

of the absolute square of the nuclear WPs over the third vibrational mode. The

snapshots are taken at 20 fs after the preparation of the excited state.

Figs. 6.15 (a) and (b) shows the probability densities as functions of r and

Q11 for the diabatic 1A2 and S0 states, respectively, for the 2D model. The WP,

which has been prepared in the 1A2 state at t=0 fs, has arrived at the conical

intersection at 20 fs. The central part of the WP remains in the 1A2 state, while

the wing parts have preferentially been transferred to the S0 state. Since the

excitation of the coupling mode increases the extension of the WP along Q11, the

WP for nc,1 > 0 tends to follow the adiabatic surfaces rather than the diabatic

surfaces. This explains the influence of the excitation of the coupling mode on

the electronic population dynamics, which is clearly seen in Fig. 6.14. When the

WP is transferred to the diabatic S0 state, a nodal line is created at Q11=0 by

the 1A2-S0 conical intersection [see Fig. 6.15 (b)]. This reflects the fact that the

diabatic coupling operator is an odd function of the coupling coordinate.

Figs. 6.15 (c) and (d) show the corresponding probability densities for the

3D model, as functions of r and Q11. For the WP in the excited state, there

is no obvious difference between the 2D and 3D results [Figs. 6.15 (a) and (c)],

except that the 3D calculation yields a somewhat broader distribution of the

probability density along the coupling coordinate. The snapshot of the WP in

the ground state [Fig. 6.15 (b) and (d)], on the other hand, reveals a remarkable

difference between the 2D and 3D calculations. In the 3D calculation, the reduced

probability density at Q11 = 0 is not zero. The inclusion of the weak coupling

mode thus modifies the symmetry properties of the WP as a function of the strong

coupling mode.

In the adiabatic representation, the nonadiabatic coupling vector, which in-

duces the nonadiabatic transition, is parallel to the direction of effective coupling

mode displacement Qeff [202] (see Chapter 2). In the diabatic representation,

Qeff , which is a linear combination of all Qc, determines the population transfer

between the two surfaces. This means that the projection of the WP on the
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Figure 6.15: Snapshots of the probability density as a function of the NH stretching

mode and one of the coupling modes at 20 fs: (a) Probability density as a function

of r and Q11 of the 1A2 state obtained for the 2D model; (b) Probability density as a

function of r and Q11 in the S0 state obtained for the 2D model; (c) Probability density

as a function of r and Q11 in the diabatic 1A2 state obtained for the 3D model; (d)

Probability density as a function of r and Q11 for the diabatic S0 state obtained for the

3D model; (e) Probability density as a function of r and Q12 in the diabatic S0 state

obtained for the 3D model; (f) Probability density as a function of Q11 and Q12 in the

diabatic S0 state obtained for the 3D model.
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effective coupling coordinate exhibits a node structure of the WP like in the 2D

case. In the present example, Q11 is the strong coupling coordinate, while the

coupling of Q12 is rather weak. Qeff therefore is quite close to Q11, but the small

contribution of Q12 leads to a deviation of the orientation of Qeff from Q11. This

explains the blurring of the nodal structure of the probability density in Fig. 6.15

(d). As a complementary result, we show in Fig. 6.15 (e) the probability den-

sity in the diabatic ground state as a function of r and Q12 (the weak coupling

mode). The density of Fig. 6.15 (e) is totally different from that of Fig. 6.15(d)

and exhibits no node at all. Finally, Fig. 6.15 (f) shows the probability density

in the diabatic ground state as a function of Q11 and Q12. This figure exhibits

the nodal line in the WP perpendicular to the effective coupling mode.

6.4.3 1B1–S0 conical intersection

Since the coupling strength of ν21 and ν23 is negligible, it suffices to consider the

strong coupling mode ν24 and the weak coupling mode ν22, resulting in a 3D model

for the 1B1–S0 conical intersection. Since the 2D calculations were based on a

slightly different definition of the coupling mode, it is not useful to compare the

present 3D results with these 2D results. We have repeated the 2D calculations,

including the NH stretching motion and the strong coupling mode ν24.

For the 1B1–S0 conical intersection, the diabatic frequencies ω
(1)
c and ω

(2)
c of

Q22 do not depend on rNH . The diabatic frequencies ω
(1)
c and ω

(2)
c of Q24, on

the other hand, decrease with increasing the NH coordinate. We have used the

following function to represent the diabatic frequencies of Q24 as functions of rNH :

ω(i)
c (rNH) =

1

2
ai

[

1 − tanh

(

rNH − b1
ci

)]

+ di. (6.22)

The previous calculations have already obtained the parameters for the tuning

coordinate rNH , see Table 6.7. Here, Table 6.11 give the values of all parameters

related to the coupling modes in the 1B1-S0 model. Due to the very small con-

tribution of ν21 and ν23 to the diabatic coupling element, they are not included

in the tables. The average deviation between the fit and the ab initio data is

0.015 eV.
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Table 6.11: Values of the parameters pertaining to the coupling modes for the 1B1–S0

model.

ω λ

Q22 ωc ωc = 0.0888 eV λmax
12 = 0.0738 eV

ω
(1)
c ω

(1)
c = 0.0650 eV d12 = 4.0728 au

ω
(2)
c ω

(2)
c = 0.1260 eV β12 =0.0910 au

λ0 =0.0 au

Q24 ωc ωc = 0.0640 eV λmax
12 = 0.4269 eV

ω
(1)
c a1 = 0.0718 eV d12 = 4.8319 au

b1 = 2.5805 au β12 =1.3225 au

c1 = 1.4619 au λ0 =0.0 au

d1 = 0.0753 au

ω
(2)
c a2 = 0.0718 eV

b2 = 2.5805 au

c2 = 1.4619 au

d2 = 0.0143 au
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6.4.3.1 Vibrational eigenstates of the electronic ground-state surface

The lowest vibrational levels of the 3D electronic ground-state surface of the

1B2–S0 conical intersection model have been calculated in the same way as for

the 1A2−S0 model. Again, nr, nc,1 and nc,2 denote the occupation numbers of the

NH stretching mode, the strongest coupling mode (ν24) and the weak coupling

mode (ν22), respectively. The fundamental frequencies of these three vibrational

motions are 3616 cm−1, 471 cm−1 and 623 cm−1, respectively, in the 3D model,

in acceptable agreement with the experimental and full-dimensional harmonic

values (see [85, 92] and references therein).

6.4.3.2 Electronic population and WP dynamics

The decay rate of the population of the 1πσ∗ state is again strongly dependent

on the initial excitation of the NH stretching mode. Other than in the 1A2-S0

case, we observe two processes with distinctly different time-scales when the NH

stretching mode is prepared in its ground state [(0,nc,1,nc,2) initial condition].

Both the diabatic and adiabatic pictures indicate a rapid population transfer

from the excited state to the ground state during the early stage of the dynamics

(about 15 fs), followed by a slow and monotonic decay (see Fig. 6.16). This two-

timescale dynamics is the result of the existence of the barrier on the B1 state.

The reaction mechanism has been discussed in the previous 2D models. When

the NH stretching mode is initially excited, that is for the (1, nc,1, nc,2) (Fig. 6.17)

and (2, nc,1, nc,2) (not shown here) initial conditions, the WP reaches the conical

intersection within 15 fs and the population transfer is essentially completed after

25 fs. In these cases, the initial WP has sufficient energy to overcome the barrier,

reach the conical intersection and move towards to the two dissociation limits

directly.

Figs. 6.16 and 6.17 show the electronic dynamics of the 3D 1B1–S0 conical-

intersection model for various initial conditions. The initial vibrational state of

the strong coupling mode (ν24) has a large effect on the branching ratio of the

reaction (see Figs. 6.16 and 6.17). Let us consider the (1, nc,1, 0) initial condition

as a typical example. The excitation of the strong coupling mode enhances the
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Figure 6.16: Diabatic (dashed lines) and adiabatic (full lines ) population probabilities

of the 1B1 and S0 states for the initial states (000), (001), (010), (011), (020).

probability of the adiabatic pathway from 30 % for nc,1 = 0 to almost 50 % for

nc,1 = 1. The branching ratio saturates at about 70 % for nc,1 = 2. The excitation

of the weak coupling mode, on the other hand, has a rather small effect on the

population dynamics. The probability of the adiabatic channel increases by about
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Figure 6.17: Diabatic (dashed lines) and adiabatic (full lines ) population probabilities

of the 1B1 and S0 states for the initial states (100), (101), (110), (111), (120).

5 % for the excitation of one quantum of ν22.

As a result of the weak effect of ν22 on the nonadiabatic transition at the con-

ical intersection, the calculations based on the 2D, 3D and effective-mode models

provide rather similar population dynamics dynamics. These results can can be
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analyzed in the same manner as discussed above by considering the orientation

of Qeff . Therefore, we do not repeat the detailed discussion of the probability

densities here.

6.5 Summary

In order to understand the mechanistic details of the 1πσ∗ driven photochemistry

of aromatic biomolecules, we have investigated the quantum WP dynamics of the

1B1–S0 and 1A2–S0 conical intersections of pyrrole. To characterize both of these

conical intersections, we have performed the electronic structure calculations and

determined the coupling strengths of all symmetry-allowed coupling modes. To

capture the main feature of the nonadiabatic dynamics, we have constructed

two-dimensional models which include the reaction coordinate (the NH stretching

motion) and the strongest coupling coordinates. In order to understand the effect

of additional vibrational modes on the 1πσ∗ driven photochemistry of pyrrole, we

have investigated the nonadiabatic dynamics by using multidimensional models

which include the reaction coordinate and two dominant coupling modes.

We have computed the adiabatic PE surfaces with the CASSCF method. A

diabatic two-state Hamiltonian has been constructed for each conical intersection,

employing an analytic ansatz for the diabatic PE matrix and a least-squares fit of

the eigenvalues to ab initio data. The ultrafast dynamics has been investigated

using standard time-dependent quantum WP propagation methods. We have

calculated the branching ratio of the two dissociation channels (corresponding to

the 2π and 2σ states of the pyrrolyl radical), for various initial vibrational levels

of the electronic ground state.

The timescale of the photochemistry of pyrrole is extremely sensitive to the

preparation of the initial state of the NH stretching mode. Photoexcited pyrrole

does not exhibit sub-picosecond nonadiabatic dynamics when the NH stretching

mode is in its ground vibrational level. However, the decay time of the population

in the excited state is reduced to less than 50 fs when the NH stretching mode

is excited. This acceleration of the nonradiative decay rate saturates at nr = 1.

These phenomena reflect the key role of the barrier of the NH stretching PE
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function in the 1πσ∗ state of pyrrole.

The WP splits into two components at the conical intersection. The part of

the WP which stays on the repulsive 1πσ∗ surface dissociates directly, while the

remaining component is transferred to the S0 diabatic state. The 2D calculations

reveal that the branching ratio of the 2π and 2σ channels depends strongly on

the initial excitation of the strongest coupling mode. With increasing quantum

number of the coupling mode, the WP tends to follow the adiabatic path and

dissociate towards the upper adiabatic limit.

The 3D calculations confirm that for both conical intersections the nona-

diabatic dynamics is governed by the strongest coupling mode. Although the

inclusion of the weak coupling mode leads to interesting changes of the nodal

pattern of the WP at the conical intersection, it has little effect on the electronic

population dynamics. This confirms that the two-mode models of the 1A2–S0 and

1B1–S0 conical intersections are quite useful for the qualitative understanding of

the mechanisms of the photoinduced dynamics of pyrrole.

Both of the 2D and 3D models predict that the excitation of the strong cou-

pling mode has a pronounced effect on the branching ratio of the photodissoci-

ation products. It should therefore be possible to control the photodissociation

dynamics of pyrrole via the combination of IR and UV excitations, as has been

demonstrated for ammonia recently [269–272].

We have visualized the details of the photodissociation dynamics via the con-

ical intersections by the presentation of snapshots of the time-dependent WP.

When the initial energy is high, the WP moves towards the two dissociation lim-

its directly after passing through the conical intersection. If the initial energy

is lower than the upper dissociation limit, on the other hand, part of the WP

is trapped and has the possibility to enter the bound region of the S0 surface.

A pronounced multi-node structure in the NH stretching mode results. While

the large excess energy in the NH stretching mode cannot be absorbed in the

present two-mode model, it is known that this highly excited quasi-stationary

state will be extremely susceptible to coupling with other vibrational degrees of

freedom [64]. Thus, the system can be stabilized by rapid intramolecular energy
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transfer from the active modes of the 1πσ∗–S0 conical intersections to the re-

maining normal modes, resulting in internal conversion to the electronic ground

state in competition with photodissociation. The quantum dissipative dynamics

of pyrrole at the 1πσ∗–S0 conical intersection is the topic of Chapter 8.
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Chapter 7

Quantum dynamics of phenol

In this chapter, the time-dependent WP description of the photoinduced hydro-

gen elimination reaction in phenol via the conical intersections of the dissociative

1πσ∗ state with the 1ππ∗ state and the electronic ground state is discussed. We

have constructed a model including three intersecting electronic potential-energy

surfaces (S0,
1πσ∗, 1ππ∗) and two nuclear degrees of freedom (OH stretching and

OH torsion) based on the accurate ab initio multi-reference electronic-structure

data. The nonadiabatic population-transfer dynamics at the conical intersections,

the branching ratio between the two dissociation channels and their dependence

on the initial preparation of the mode-specific vibrational levels have been inves-

tigated.

7.1 Theoretical framework

7.1.1 Reduced dimensional model

We wish to construct a simple model which describes the most essential aspects

of the hydrogen-detachment photochemistry driven by the 1πσ∗ state in phenol.

Previous studies have shown that the 1πσ∗ state is a dissociative state which

crosses the ground state and the 1ππ∗ state along the OH stretching coordinate,

resulting in two conical intersections, S0-
1πσ∗ and 1πσ∗-1ππ∗, respectively [83,

116–118]. Daigoku et al. [117] have shown that the dominant coupling coordinate

133
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of the 1ππ∗-1πσ∗ conical intersection is the CCOH dihedral angle θ. We have

found (see below) that θ also strongly couples the 1πσ∗ and S0 states. Therefore,

our model should include these two vibrational coordinates, the OH stretching

coordinate, which tunes the energy gap between the different states, and the

internal rotation of the OH group, which couples the three states in a pairwise

manner. All other internal coordinates are kept frozen at their ground-state

equilibrium values. The coupling of the two reaction coordinates with the many

other vibrational modes may play a role in the actual photodissociation dynamics

of phenol. It should be kept in mind that these effects are not included in the

present model.

The molecular Hamiltonian is expressed in the three-state diabatic basis as

Ĥ = T̂N









1 0 0

0 1 0

0 0 1









+









V11 V12 V13

V21 V22 V23

V31 V32 V33









. (7.1)

T̂N is the nuclear kinetic-energy operator. V11, V22 and V33 describe the PE

surfaces of the diabatic electronic states, correlating with the ground diabatic S0

state, the 1πσ∗ state and the 1ππ∗ state, respectively. The off-diagonal elements

describe the electronic couplings between the respective diabatic states. This PE

matrix can be constructed by a diabatization procedure on the basis of the ab

initio calculations, see below.

Following the method for the construction of the Hamiltonian of constrained

systems, we have derived a reduced kinetic-energy operator in the two-dimensional

space which is spanned by the OH distance r and the CCOH dihedral angle θ:

T̂N = − h̄2

2µOH

∂2

∂r2
− h̄2

2I

∂2

∂θ2
, (7.2)

where µOH is the reduced mass of O and H,

µOH =
mHmO

mH +mO
. (7.3)

The moment of inertia I takes the form:

1

I
=

1

I1
+

1

I2
,
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with

I1 = µOH(r sinα)2

I2 = 4mC [rCC sin(
π

3
)]2 + 4mH [(rCC + rCH) sin(

π

3
)]2. (7.4)

The quantities mH , mO and mC denote the masses of hydrogen, oxygen and

carbon respectively. The CH (rCH) and the CC (rCC) bond distances are fixed

at their ground-state equilibrium values. α is the angle between OH bond and

OC bond at the ground-state equilibrium geometry.

7.1.2 Ab initio calculations

Similar to pyrrole, the 1πσ∗ state of phenol has 3s Rydberg character at the equi-

librium geometry of the electronic ground state, but rapidly aquires H1s character

along the dissociation path [83, 116, 117]. To account for the diffuseness of the

σ∗ orbital, it is necessary to use rather extended basis sets, in particular on the

OH group. Throughout our calculations, the augmented correlation-consistent

polarized valence double zeta (aug-cc-pVDZ) basis set [268] has been employed.

One diffuse s function and one set of p functions were added to the oxygen and

two diffuse s and two sets of diffuse p functions to the dissociative hydrogen

atom. Their exponents were derived in an even-tempered manner from the most

diffuse s and p functions already present in the aug-cc-pVDZ basis by dividing

the exponents successively by a factor of 3.0.

As a reference for the definition of internal coordinate displacements, the

ground-state equilibrium geometry has been optimized at the second-order Møller-

Plesset (MP2) level using the GAUSSIAN 98 package [31]. The ab initio calcula-

tions of the PE surfaces of the S0,
1ππ∗ and 1πσ∗ states have been performed at

the CASSCF level using the MOLPRO package [193]. The active space consists

of one occupied σ orbital, the corresponding σ∗ orbital and another σ∗ orbital,

as well as four π orbitals and three π∗ orbitals. The inclusion of two σ∗ orbitals

turned out to be neccessary to obtain smooth PE curves of the 1πσ∗ surface in

the region where the 1πσ∗ state changes character from 3s towards H1s. This

active space corresponds to a distribution of 10 electrons in 10 orbitals.
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In addition to the crossing with the 1πσ∗ state, the 1ππ∗ state interacts with

other higher excited states at large OH distances. This leads to convergence prob-

lems in the CASSCF calculations. However, these interactions occur at rather

high energies and are not revelant for the reaction dynamics considered in this

work. Thus, it is not considered necessary to include more excited states in our

model. Since the 1ππ∗ state is bound along the H dissociation coordinate, we

can disregard it for large OH bond lengths. We thus have divided the compu-

tation of the PE surfaces into two parts. In the region of short OH distances

(0.80 Å < r < 1.30 Å, where r is the OH distance), which contains the 1ππ∗-1πσ∗

conical intersection, we average the CASSCF functional over three states. In the

second region, ranging from r = 1.60 Å to r = 5.0 Å, we average over the 1πσ∗

and S0 states only. In order to characterize both conical intersections in detail,

we have computed the adiabatic PE surfaces on a very dense grid, varying the

OH bond length with a step of 0.1 Å in the vicinity of the conical intersections.

The CCOH dihedral angle has been varied from 0◦ to 90◦ in steps of 5◦.

We also have calculated the DMs of the different adiabatic electronic states

and the TDMs between them. When discussing these vectors, we refer to the

Cartesian coordinate system shown in Fig. 7.1. The benzene ring is fixed in the

Figure 7.1: Definition of the Cartesian coordinate system.

x-y plane, and the center of this ring is chosen as the origin of the coordinate

system. The y axis is oriented along the CO bond.
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7.1.3 Diabatic potential surfaces

In this subsection, we construct the diabatic PE matrix based on the diabatization

methods descirbed in Chapter 2.

In the present rather transparent case of two conical intersections, arising

from the symmetry-allowed crossing of the 1πσ∗ state of A” symmetry with the

1ππ∗ and S0 states of A’ symmetry in the Cs point group, we have achieved the

diabatization via the ansatz of a 3 × 3 PE matrix as an analytic function of

the nuclear coordinates. The diagonal elements of this diabatic matrix denote

the energies of S0,
1πσ∗ and 1ππ∗ states. The offdiagonal elements reflect the

diabatic coupling between them. The parameters of the ansatz are determined

by a least-squares fit of the eigenvalues of the PE matrix to the ab initio PE

data. Since only PE data are used for the construction of the diabatic model, the

smoothness of DMs and TDMs in the diabatic representation is an independent

test of the performance of the diabatization procedure.

The choice of suitable analytic PE functions is inspired by the work on pyrrole

(Chapter 6). The diabatic S0 PE function is approximated by a Morse-type func-

tion in the OH stretch direction and a cosine function in the angular coordinate

θ:

V11(r, θ) = v10(r) + v11(r)[1 − cos(2θ)], (7.5)

where

v10(r) = D1
e [1 − exp (−a1(r − r1))]

2 , (7.6)

v11(r) =
1

2
A1

[

1 − tanh

(

r −A2

A3

)]

. (7.7)

The diabatic PE function of the 1πσ∗ state is approximated as follows:

V22(r, θ) = v20(r) + v21(r)[1 − cos(2θ)] + v22(r)[1 − cos(2θ)]2, (7.8)

where

v20(r) =
1

2
(v201(r) + v202(r)) −

1

2

√

(v201(r) − vv202(r))2 + χ20, (7.9)

v21(r) =
1

2
(v211(r) + v212(r)) +

1

2

√

(v211(r) − vv212(r))2 + χ21, (7.10)

v22(r) =
1

2
(v221(r) + vv222(r)) −

1

2

√

(v221(r) − v222(r))2 + χ22, (7.11)
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with

v201(r) = B201[1 − exp(−B202(r −B203))]
2 +B204, (7.12)

v202(r) = B205 exp(−B206(r −B207)) +B208, (7.13)

v211(r) =
1

2
B211[1 − tanh(

r −B212

B213
)], (7.14)

v212(r) =
1

2
B214[1 − tanh(

r −B215

B216
)] +B217, (7.15)

v221(r) =
1

2
B221[1 + tanh(

r − B222

B223
)], (7.16)

v222(r) =
1

2
B224[1 − tanh(

r −B225

B226
)]. (7.17)

Similar to the ground diabatic S0 state, the diabatic PE function of the 1ππ∗

state is described by

V33(r, θ) = v30(r) + v31(r)[1 − cos(2θ)], (7.18)

where

v30(r) = D3
e [1 − exp (−a3(r − r3))]

2 + a30, (7.19)

v31(r) =
1

2
C1

[

1 − tanh

(

r − C2

C3

)]

. (7.20)

The electronic coupling terms, which have to vanish at θ = 0, are written as

sine functions of the angular coordinate θ:

V12(r, θ) = λ12(r) sin θ, (7.21)

V23(r, θ) = λ23(r) sin θ, (7.22)

with

λ12(r) = λ21(r) =
1

2
λ12,max

[

1 − tanh

(

r − d12

β12

)]

, (7.23)

λ23(r) = λ32(r) =
1

2
λ23,max

[

1 − tanh

(

r − d23

β23

)]

. (7.24)

There is no coupling between the diabatic ground S0 state and the 1ππ∗ state,

therefore V13 = 0.

Next, the non-square fitting was performed to get all parameters in the dia-

batic model and this procedure is done in three steps.
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Table 7.1: Numerical values of the parameters of V11.

v10 v11

D1
e = 4.26302 eV A1 = 0.27037 eV

r1 = 0.96994 Å A2 = 1.96606 Å

a1 = 2.66021 Å−1 A3 = 0.685264 Å

(1) We have selected the one-dimensional cuts of the PE surfaces for θ = 0,

which directly provide the the r-dependent functions v10(r), v20(r) and v30(r), re-

spectively. The parameters related to v10(r), v20(r) and v30(r) have been obtained

by three separate fittings.

(2) We have focused our attention on the region r > 1.65 Å, where only two

electronic states, 1πσ∗ and S0, are relevant. The potential matrix V becomes a

2 × 2 matrix and the eigenvalues are given analytically. At the 1πσ∗-S0 conical

intersection, we fix the bond distance and select one-dimensional PE cuts along

θ to derive the values of v11(rCI,2), v21(rCI,2), v22(rCI,2) and λ12(rCI,2). A series

of one-dimensional PE functions for different OH bond distances (r) determine

v11(r), v21(r), v22(r) and λ12(r). We have found a suitable r-dependent function

to fit λ12(r) and to obtain the parameters λ12,max, d12 and β12 in Eq. 7.23. After-

wards, we extrapolate this function to the small r region, where three states are

involved.

(3) For r < 1.65 Å, we have performed a nonlinear fitting for three electronic

states. Starting from the 1ππ∗-1πσ∗ conical intersection, we have selected one-

dimensional three-state PE cuts along θ to determine the values of v11(rCI,1),

v21(rCI,1), v22(rCI,1), v31(rCI,1) and λ23(rCI,1). Several cuts of the PE surfaces for

different r have been employed to determine the r dependence of v11(r), v21(r),

v22(r), v31(r) and λ23(r). Finally, it is necessary to combine the results in the two

different regions to obtain the parameters appearing in the expressions of v11(r),

v21(r) and v22(r).

Tables 7.1–7.4 give the parameters of the diabatic model. The average and

maximum deviation between adiabatic model PE surfaces and the ab initio data

is 0.03 eV and 0.08 eV respectively.
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Table 7.2: Numerical values of the parameters of V22.

v20 v21 v22

B201 = 0.192205 eV B211 = −0.2902 eV B221 = 27.3756 eV

B202 = 5.67356 Å−1 B212 = 2.05715 Å B222 = 1.66881 Å

B203 = 1.03171 Å B213 = 1.01574 Å B223 = 0.20557 Å

B204 = 5.50696 eV B214 = −73.329 eV B224 = 0.35567 Å

B205 = 4.70601 eV B215 = 1.48285 Å B225 = 1.43492 eV

B206 = 2.49826 Å−1 B216 = −0.1111 Å B226 = 0.56968 Å

B207 = 0.988188 Å B217 = −0.00055 eV χ22 = 0.00 eV2

B208 = 3.3257 eV χ21 = 0.021105 eV2

χ20 = 0.326432 eV2

Table 7.3: Numerical values of the parameters of V33.

v30 v31

D3
e = 4.47382 eV C1 = 0.110336 eV

r3 = 0.96304 Å C2 = 1.21724 Å

a3 = 2.38671 Å−1 C3 = 0.06778 Å

a30 = 4.85842 eV

Table 7.4: Numerical values of the parameters of V12 and V23.

V12 V23

λ12,max = 1.47613 eV λ23,max = 0.327204 eV

d12 = 1.96984 Å d23 = 1.22594 Å

β12 = 0.494373 Å β23 = 0.0700604 Å
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7.1.4 Wave-packet propagation

The photoinduced dynamics of phenol is treated in the time-dependent picture by

solving the Schödinger equation on a two dimensional grid. The basic principles

are given in Chapter 3.

First of all, we generate the vibrational eigenstates of the adiabatic ground-

state PE surface by using the pseudo-spectral method. In this calculation, the

grid consists of 100 × 80 points, ranging from 1 au to 8 au along r and −π rad

to π rad along θ respectively. This grid is large enough to ensure that the wave

function does not reach the grid boundaries during the propagation. The total

propagation time is 2.0 ps with a time step ∆t = 0.1 fs. No damping function

was employed in this calculation. The starting Gaussian WP was defined as:

Ψ(t = 0) = N exp

[

−(r − r0)
2

2σ2
r

]

× exp

[

−(θ − θ0)
2

2σ2
θ

]

, (7.25)

where N is the normalization constant. The parameters are chosen such that this

WP is initially shifted (r0 = 2.3 au, θ0 = 0.6 rad) with respect to the ground-state

equilibrium geometry (r0 = 1.81 au, θ = 0) by σr = 0.3 au and σθ = 0.2 au along

r and θ, respectively.

Initial WPs are then prepared by vertical electronic excitation, starting from

different vibrational states in the electronic ground state.

The WPs are propagated on the three coupled surfaces using the split-operator

method. We employ the FFT method to evaluate the propagator of the nuclear

kinetic-energy operator. The grid for the excited-state WP propagation consists

of 400 points in the r coordinate from 1.0 au to 27.212 au and 80 points in θ from

−π rad to π rad. The WPs are propagated for 200 fs with a time step 0.1 fs. The

total propagation time is long enough to ensure that the population probabilities

of the different dissociation channels are converged. To avoid the reflection at

the grid boundary in the r direction, we activate the damping function from

rmask = 25 au.

The time dependence of the diabatic electronic population probabilities is

calculated to exhibit the population transfer between different electronic states.

The dissociation probability is defined as the time-accumulated flux through a
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dividing surface located at rflux = 20 au, which is placed beyond the conical

intersections.

7.2 Results and discussion

7.2.1 Potential-energy surfaces and dipole moments

The MP2 ground-state equilibrium structure compares well with that obtained in

previous studies at different levels [107,110–114,117]. Our CASSCF calculations

yield 1ππ∗ and 1πσ∗ vertical excitation energies of 4.85 eV and 5.44 eV, respec-

tively. These values are in the range of values reported in previous theoretical

studies at different levels [107, 111,113,116,117].
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Figure 7.2: PE profiles of the electronic ground state, the 1πσ∗ state and the lowest

1ππ∗ state as functions of OH stretching coordinate r for planar phenol.

The PE functions of phenol along the OH stretching coordinate r are displayed

in Fig. 7.2. The equilibrium bond length of the 1ππ∗ state (r = 0.96 Å) essentially

coincides with that of the ground state. The PE functions of the ground state

and the 1ππ∗ state rise in a nearly parallel way with increasing OH distance.
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The dissociative 1πσ∗ PE function crosses the 1ππ∗ PE function at 1.16 Å and

the ground-state function at 1.96 Å, thus creating two conical intersections. The

energy function of the 1πσ∗ state is rather flat between 1.0 Å and 1.3 Å, reflecting

the change of the character of the σ∗ orbital. In contrast to pyrrole [89, 93], the

1πσ∗ PE function of phenol exhibits no barrier.

The two-dimensional diabatic model PE surfaces (diagonal elements of Vd),

as well as inter-state couplings (offdiagonal elements of Vd) are displayed as

functions of the coordinates r and θ in Figs. 7.3 (a) and (b), respectively. It is
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Figure 7.3: Diabatic energy potential surfaces (a), diabatic coupling terms (b) and

adiabatic energy surfaces (c) as the functions of the OH stretching coordinate r and

the CCOH dihedral angle θ.

seen that the three diabatic energy surfaces are smooth functions of the nuclear

coordinates. The coupling elements, which are odd functions of θ, slowly decrease

with increasing OH bond distance. Fig. 7.3 (c) shows the adiabatic PE surfaces in

the two-dimensional space. The two conical intersections are clearly visible. The

diabatic PE surfaces, as well as the coupling elements, are non-separable functions

of r and θ. The adiabatic PE functions acquire an additional pronounced non-

separability of the two coordinates through the two conical intersections.

The behavior of the DMs and TDMs directly reflects the character of the

electronic wavefunctions. We discuss here, for the sake of illustration, the x -

components (see Fig. 7.1 for the description of the coordinate system) of the

DM and TDM vectors. Fig. 7.4 (a) displays the adiabatic TDMs, µx
12 (for the

S0-S1 transition) and µx
13 (for the S0-S2 transition), in the range of the three-

state-averaged CASSCF calculation (0.85 Å < r < 1.25 Å). It is seen that the

adiabatic TDM functions are rapidly varying functions of the nuclear geometry in
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Figure 7.4: Transition dipole moments µx
12 and µx

13 in the adiabatic representation (a)

and diabatic representation (b) as functions of the OH stretching coordinate r and the

CCOH dihedral angle θ.

the vicinity of the first conical intersection. This reflects the rapid changes of the

adiabatic electronic wavefuntions at this conical intersection. On the other hand,

as shown in Fig. 7.4 (b), the diabatic TDMs, µx
12 (for the S0-

1πσ∗ transition) and

µx
13 (for the S0-

1ππ∗ transition), are smoothly varying functions of the nuclear

coordinates. The rapid jumps at the conical intersection have disappeared in the

diabatic TDMs. Fig. 7.4 (b) also shows that µx
12 = 0 when the molecule is in the

planar configuration, but becomes nonzero for nonplanar geometries.

Fig. 7.5 (a) and Fig. 7.5 (b) show the DMs of the ground state and the 1πσ∗

state in the adiabatic and diabatic representations, respectively, in the nuclear-

coordinate range 1.60 Å < r < 5.0 Å. The rapid changes of the adiabatic DMs
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Figure 7.5: Dipole moments of two lowest adiabatic (a) and diabatic (b) states as

functions of the OH stretching coordinate r and the CCOH dihedral angle θ.
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Table 7.5: Eigenvalues (En) and assignments (nr, nθ) of the pseudospectral peaks of

the adiabatic ground state

En(cm−1) (nr, nθ) En(cm−1) (nr, nθ) En(cm−1) (nr, nθ)

2202 (0,0) 6113 (1,0) 9774 (2,0)

2468 (0,1) 6354 (1,1) 9982 (2,1)

2702 (0,2) 6579 (1,2) 10174 (2,2)

reflect the position of the 1πσ∗-S0 conical intersection. The diabatic DMs are

seen to be smoothly varying functions of the nuclear geometry. The adiabatic

and diabatic DMs in the x direction of the two-dimensional adiabatic ground-

state surface vanish by symmetry for r → ∞ and θ = π
2
.

Summarizing, the smooth behavior of the diabatic DMs and TDMs, obtained

by the adiabatic-to-diabatic transformation, indicates that the diabatization pro-

cedure is physically meaningful and that the diabatic model captures the main

features the two conical intersections.

7.2.2 Vibrational states of the electronic ground-state sur-

face

The energy eigenvalues of the nine lowest vibrational states of the two-dimensional

adiabatic electronic ground-state surface and their assignments in terms of quan-

tum numbers are given in Table 7.5. The eigenstates are assigned by examining

the nodal pattern in their eigenfunctions calculated by the spectral quantization

technique. The quantities nr and nθ in Table 7.5 refer to the number of nodes in

the corresponding eigenfunction along the OH stretching coordinate r and tor-

sional coordinate θ, respectively. We choose the wavefunctions of the torsional

mode to be localized in the well around θ = 0. The second well at θ = π plays

no role for the ultrafast photodissociation dynamics of phenol if the initial ex-

citation of the torsional mode is weak (nθ ≤ 3). The fundamental frequency of

the stretching mode is obtained as 3911 cm−1. The fundamental of the coupling

mode is 266 cm−1. The experimental values (see [104,110,111,273] and references
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therein) of the fundamentals of the OH-stretching and out-of-plane OH bending

modes are 3656 cm−1 and 309 cm−1, respectively. Our two-dimensional adiabatic

model surface reproduces these values with reasonable accuracy.

7.2.3 Electronic population dynamics

To explore the effect of specific initial vibrational excitations on the subsequent

photodissociation dynamics, we have propagated different initial wavefunctions,

which are generated by placing the 9 lowest vibrational eigenfunctions of the

electronic ground state vertically into the 1ππ∗ state.

We first discuss the electronic population dynamics to elucidate the popula-

tion transfer between different electronic state induced by the conical intersec-

tions. Here, we focus on the population dynamics of the diabatic electronic states,

although both diabatic and adiabatic electronic populations have been calculated.

Due to the two successive nonadiabatic transitions through conical intersections,

the diabatic electronic population probabilities provide a more transparent pic-

ture than the adiabatic populations.

When the OH stretching mode is prepared in its ground state, that is, for

the three initial conditions (0,0), (0,1) and (0,2), no visible electronic population

dynamics takes place within 200fs (figures not shown). The population of the di-

abatic 1πσ∗ state is not exactly zero but small (less than 5 %) and no population

transfer from the 1ππ∗ state to the 1πσ∗ state is observed. This small population

of the diabatic 1πσ∗ state results from the nonvanishing mixing of the 1ππ∗ and

1πσ∗ states in the Franck-Condon region. The absence of a fast decay of the

population of the 1ππ∗ state after the preparation of the vibrational ground state

of the OH stretching mode can be understood by the inspection of the 1ππ∗-1πσ∗

conical intersection (see Fig. 7.2 and 7.3 (c)). The lower cone of S1-S2 conical

intersection creates a barrier of 0.8 eV on the S1 surface in the OH direction. In

addition, the well of the 1ππ∗ state is very similar to that of the ground state,

implying that there are no Franck-Condon transitions to higher vibrational levels

of the 1ππ∗ state. The energies of the initial states prepared from the (0,0), (0,1)

and (0,2) ground-state levels are lower than the barrier on the S1 surface. There-
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fore, the WPs are trapped in the well of the 1ππ∗ state and electronic population

transfer at the first conical intersection can only be achieved by quantum tun-

nelling, which takes place on a rather long timescale. This is consistent with the

observation that the lifetime of the lowest vibronic level of the S1 state of phe-

nol (2 ns) is considerably shorter than the corresponding lifetime in deuterated

phenol (16 ns) [96, 129, 130].

If we put one quantum of energy into the OH stretching mode, the energies

of the initial WPs generated from the (1,0), (1,1) and (1,2) ground-state lev-

els exceed the energy of the S1-S2 conical intersection, and a fast population

transfer between the 1ππ∗ and 1πσ∗ states is observed. As can be seen from
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Figure 7.6: Population probabilities of the diabatic states; P1: the ground state (dotted

lines), P2: the 1πσ∗ state (dashed lines), and P3: the 1ππ∗ state (full lines), for the

initial conditions (1,0) (a), (1,1) (b) and (1,2) (c).

Figs. 7.6 (a), (b) and (c), corresponding to the (1,0), (1,1) and (1,2) initial con-

ditions, respectively, we obtain a rapid and essentially monotonic decay of the

population of the 1ππ∗ diabatic state (P3). It should be noted that the population
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of the diabatic ground state (P1) begins to rise in the early stage of the dynam-

ics, after ≈ 10 fs. This implies that parts of the WPs reach the second conical

intersection very quickly, as a consequence of the strongly repulsive character of

the 1πσ∗ state. The WPs split at the second intersection, and move towards two

different dissociation channels (S0 and 1πσ∗). After 100 fs, the population dy-

namics is essentially finished. The asymptotic (t→ ∞) dissociation probabilities

on the S0 and 1πσ∗ states are shown in Fig. 7.7. Fig. 7.6 and Fig. 7.7 reveal that

initial excitations of the coupling mode have a noticeable effect on the lifetime

of the 1ππ∗ state and the branching ratio of the two dissociation channels. We

observe an interesting odd-even effect with respect to the occupation number of

the coupling mode. When an odd number of quanta is put into the coupling

mode ((1,1)), the population of the 1ππ∗ state decays faster than with an even

number of quanta of the coupling mode ((1,0) and (1,2)). In addition, dissocia-

tion towards the lower (1πσ∗) dissociation channel is enhanced when the initial

state contains an odd number of quanta in the coupling mode, see Fig. 7.7. We
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Figure 7.7: Dissociation probabilities of the upper (black) and lower (grey) adiabatic

limits.

call this phenomenon the “odd-even” effect. A similar effect was noted before by

Baer et al. in their discussions of the state-to-state transition probabilities within

a quasi-Jahn-Teller model [274].

If we put two quanta into the OH stretching mode, that is, (2,0), (2,1) and

(2,2) initial conditions, we observe a similarly fast decay of the population of the

1ππ∗ state, see Fig. 7.8. The odd-even effect disappears. Instead, the lifetime

of the diabatic 1ππ∗ state decreases monotonically with increasing the energy in
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the coupling mode (see Fig. 7.8). Likewise, the dissociation probability to the
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Figure 7.8: Population probabilities of the diabatic states; P1: the ground state (dotted

lines), P2: the 1πσ∗ state (dashed lines), and the P3:
1ππ∗ state (full lines), for the initial

conditions (2,0) (a), (2,1) (b) and (2,2) (c).

lower (1πσ∗) dissociation limit decreases monotonically with the excitation of the

coupling mode, see Fig. 7.7.

The timescale of the photochemistry of phenol is thus extremely sensitive to

the initial state of the OH stretching mode. While the S1(
1ππ∗) excited state

exhibit no sub-picosecond nonadiabatic dynamics when the OH stretching mode

is in its ground vibrational level, the 1ππ∗ state decays in less than 50 fs when one

quantum of the OH stretching mode is excited (see Fig. 7.6). The acceleration

of the nonradiative decay already saturates at nr = 1; preparation of the nr = 2

level does not lead to a significant enhancement of the decay rate (see Fig. 7.8).

This saturation of the decay rate at the energy of the conical intersection has

been predicted many years ago by Sobolewski in the framework of the statistical

theory of radiationless transitions [275]. The initial excitation of the torsional
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mode, on the other hand, has a moderate impact on the decay rates and the

branching ratio for dissociation into the 2π and 2σ states of the phenoxyl radical,

see Fig. 7.6 - 7.7. At least within the present model of limited dimensionality,

the photodissociation dynamics of OH stretching excited phenol via the repulsive

1πσ∗ state is an ultrafast and highly coherent process which is suitable for efficient

control by laser fields.

We also have checked the validity of the Condon approximation by taking the

dependence of the diabatic TDMs on the nuclear geometry into account. Among

all TDM elements, only µx
13 is nonzero when θ = 0. This means that µx

13 plays

the most important role for the laser excitation. Since µx
13 depends only weakly

on the nuclear coordinates in the Franck-Condon region, the corrections to the

Condon approximation are found to be negligible. The Condon approximation

thus is well justified in the present case and we have used it throughout our

calculations.

7.2.4 Time-dependent wave packets

In this section, we shall provide a detailed picture of the nuclear WPs in the

1ππ∗, 1πσ∗ and S0 diabatic states which evolve after preparation of the (1,0),

(1,1) and (1,2) initial states. Since the initial location of the WP, the 1ππ∗-1πσ∗

and the 1πσ∗-S0 conical intersections lie in a line (all three correspond to planar

configuration of phenol), the system has interesting symmetry properties. These

symmetry properties are revealed by snapshots of the WPs in the three electronic

states at suitable times.

7.2.4.1 The 1ππ∗-1πσ∗ conical intersection

Let us start with the (1,0) initial condition. Fig. 7.9 shows the absolute square of

projection of the WP on the 1ππ∗, 1πσ∗ and diabatic S0 states at 30 fs respectively.

The locations of the two conical intersections are indicated by the crosses. After

the initial WP has been prepared by the vertical excitation, the shape of its

projection on the 1ππ∗ state does not change during the first 30 fs, reflecting the

absence of a Frank-Condon shift of the 1ππ∗ state. Throughout the whole process,
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the 1ππ∗ component of the density (see Fig. 7.9 (a)) remains spatially localized

in the well of the 1ππ∗ state. The node of the wavefunction in the OH stretching

direction is clearly visible. The 1ππ∗ density decays as a result of the the fast

population transfer at the first conical intersection. A snapshot of the absolute

square of the wavefunction in the 1πσ∗ state at 30 fs is shown in Fig. 7.9 (b).

It is seen that the node in the OH stretching direction has disappeared, while

a nodal line at θ = 0 has been generated by the 1ππ∗-1πσ∗ conical intersection.

The latter node is a necessary consequence of the fact that the diabatic coupling

operator is an odd function of θ. In the adiabatic picture, the nodal line at θ = 0

reflects the so-called Berry phase of the nuclear wavefunction. The two parts

of the wavefuntion move around the 1ππ∗-1πσ∗ conical intersection along two

different adiabatic paths (clockwise or anti-clockwise), and interfere destructively

at θ = 0.
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Figure 7.9: Snapshots of the probability density in the diabatic 1ππ∗ state at 30 fs

(a), the diabatic 1πσ∗ state at 30 fs (b) and the diabatic ground state at 30 fs (c),

for the (1,0) initial condition. The crosses indicate the locations of the two conical

intersections.

For the (1,1) initial condition, the WP in 1ππ∗ state possesses two nodal lines.

This feature is still present at 20 fs, as shown in Fig. 7.10 (a). Fig. 7.10 (b) reveals

that both nodal lines have disappeared in the 1πσ∗ state. While the initial WP

placed in the 1ππ∗ state was an antisymmetric function of θ, we have a symmetric

wavefunction in the 1πσ∗ state.

Fig. 7.11 (a) and Fig. 7.11 (b) show the nuclear density in the 1ππ∗ state at

20 fs and in the 1πσ∗ state at 30 fs, respectively, for the (1,2) initial preparation.

As expected, there are two nodal lines in the 1ππ∗ state along the coupling coor-
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Figure 7.10: Snapshots of the probability density in the diabatic 1ππ∗ state at 20 fs

(a), the diabatic 1πσ∗ state at 30 fs (b) and the diabatic ground state at 30 fs (c),

for the (1,1) initial condition. The crosses indicate the locations of the two conical

intersections.
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Figure 7.11: Snapshots of the probability density in the diabatic 1ππ∗ state at 20 fs

(a), the diabatic 1πσ∗ state at 30 fs (b) and the diabatic ground state at 30 fs (c),

for the (1,2) initial condition. The crosses indicate the locations of the two conical

intersections.

dinate. As before, the nodal line in the stretching coordinate disappears after the

transition through the 1ππ∗-1πσ∗ conical intersection, while an additional nodal

line is created at θ = 0 in the WP in the 1πσ∗ state.

In the discussion of the population decay of the 1ππ∗ state, we have pointed

out that an “odd-even” effect exists for nr = 1 when successive quanta are put

into the coupling mode. This effect can be understood from the inspection of the

WPs in Figs. 7.9 - 7.11. As a function of θ, the central part of the WP (close to

θ = 0) tends to move along the diabatic path at the conical intersection, while the

wing parts prefer to follow the adiabatic path. For the (1,1) initial condition, the

initial wavefunction in the 1ππ∗ state has a nodal line at θ = 0. Therefore, the

WP will preferentially go around the conical intersection, following the adiabatic
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pathway, which implies a switch to the 1πσ∗ diabatic state. This explains why

the decay of the diabatic 1ππ∗ population is faster in this case than for the other

two initial conditions.

The projected nuclear densities obtained for the (2,0), (2,1) and (2,2) initial

conditions are qualitatively similar and are therefore not shown. With increasing

excitation of the coupling mode, the distribution of density along θ becomes

more delocalized. This leads to preferentially adiabatic motion of the WP at the

conical intersection, implying the faster decay of the population of the diabatic

1ππ∗ state.

7.2.4.2 The 1πσ∗-S0 conical intersection

After the population transfer from the 1ππ∗ state to the 1πσ∗ state, the WP

quickly reaches the 1πσ∗-S0 conical intersection due to the strongly repulsive

character of the 1πσ∗ PE function. Fig. 7.9 (b), Fig. 7.10 (b) and Fig. 7.11 (b)

show the probability density projected on the 1πσ∗ state at 30 fs, for the (1,0),

(1,1) and (1,2) initial conditions respectively. Parts of the WP have already

passed the second conical intersection. It is seen that the 1πσ∗ probability density

abruptly drops in the region of the 1πσ∗-S0 conical intersection, especially in the

outer wings.

For the (1,0) initial condition, the nuclear density in the diabatic S0 state,

after having passed through both conical intersections, is shown in Fig. 7.9 (c) at

t = 30 fs. Although the diabatic WP is an even function of θ and there is thus

no nodal line at θ = 0, the density is clearly bifurcated, reflecting the splitting of

the WP by the steep lower cone of the adiabatic surface near the 1πσ∗-S0 conical

intersection (see Fig. 7.3 (c)).

For the (1,1) initial condition, the WP projected on the diabatic S0 state is

shown in Fig. 7.10 (c). It is an antisymmetric function of θ and it has an exact

nodal line at θ = 0. It can again be seen that the density is forced away from

θ = 0 by the steep lower cone of the 1πσ∗-S0 conical intersection.

For the (1,2) initial condition, the WP in the diabatic S0 state (Fig. 7.11 (c))

is again an even function of θ. It is seen that increasing excitation of the coupling



154 Ph.D Thesis of Z. Lan

mode spreads the WP in the θ direction. This reduces the probability density in

the immediate vicinity of the conical intersections.

As discussed previously, the excitation of the coupling mode broadens the

probability density along θ, resulting in a more adiabatic pathway. In addition,

the presence of a nodal line at θ = 0 also favors transfer between diabatic states.

These two mechanisms govern the population transfer at the second conical in-

tersection and thus affect the dissociation probabilities. Among the (1,0), (1,1)

and (1,2) initial conditions, only the (1,1) case results in a WP in the 1πσ∗ state

without a nodal line at θ = 0. This WP hits the second conical intersection with

a significant probability at θ = 0, amplifying the flux along the diabatic path

(that is towards the lower adiabatic dissociation limit).

For (2,0), (2,1) and (2,2) initial conditions, the odd-even effect is not visible

because of the higher initial energies. As previously found in the photoinduced

dynamics of pyrrole [89,93], excitation of the coupling mode spreads the nuclear

density along θ, thus enhancing the dissociation probability towards the upper

adiabatic limit.

We do not observe reflection and subsequent capture of the WP in the bound

part of the ground-state surface for any initial condition. This reflects the fact

that both dissociation channels are open and that the excess energy cannot be

absorbed by other degrees of freedom in our two dimensional model.

7.3 Summary

We have investigated the quantum WP dynamics following the excitation of the

S1(
1ππ∗) state of phenol. A two-dimensional model has been constructed, which

includes the OH stretching motion and the internal rotation of the OH group.

The repulsive PE function of the dark 1πσ∗ excited state of phenol crosses the

PE functions of the 1ππ∗ and S0 states, resulting in two conical intersections.

We have computed the adiabatic PE surfaces, DMs and TDMs with the

CASSCF method. A diabatic two-mode three-state Hamiltonian has been con-

structed via an analytic ansatz for the three-state diabatic PE matrix and a

least-squares fit of the eigenvalues to the ab initio data. The resulting diabatic
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PE surfaces, as well as DMs and TDMs, are smooth functions of the nuclear

coordinates.

The ultrafast photoinduced dynamics of phenol has been investigated using

the time-dependent quantum WP propagation method. We have calculated the

lifetime of the 1ππ∗ state, as well as the branching ratio between the two disso-

ciation channels, for various initial vibrational levels. The results show that (i)

the photodissociation rate is dramatically enhanced when one quantum of the

OH stretching mode is excited, and (ii) the excitation of the coupling mode has a

noticeable impact on the lifetime of the 1ππ∗ state and the branching ratio of the

two dissociation channels. For the (1,nθ) initial conditions, we observe an odd-

even effect with respect to the number nθ of quanta in the coupling mode. For

the (2,nθ) initial conditions, increasing excitation of the coupling mode results in

a shortening of the lifetime of the 1ππ∗ state and an increase of the flux in the

upper adiabatic dissociation channel.

We also have developed an intuitive picture of the photodissociation dynamics

through two conical intersections. The interplay of two conical intersections can

have a profound influence on the WP dynamics. In the case of phenol, the

symmetry of the nuclear wavefunction plays a key role for the understanding of the

dynamics at the conical intersections. When the WP switches between diabatic

surfaces, its symmetry with respect to the coupling mode changes. The resulting

node structure of the nuclear WP is “felt” by the second conical intersection,

with pronounced implications for the branching ratio of dissociation. The second

conical intersection acts as a sensitive “detector” for the nonadiabatic dynamics

occurring at the first conical intersection.
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Chapter 8

Quantum dissipative dynamics of

pyrrole

In this chapter, the influence of vibrational relaxation on the photoinduced dy-

namics of pyrrole via the 1A2–S0 conical intersection is investigated within the

reduced density matrix formalism. The system involves the 1A2–S0 conical in-

tersection and takes the dominant tuning (NH stretching) and the dominant

coupling coordinate into account. We consider the coupling of the system to an

environment which represents the other photo-inactive modes. This environment

is modelled by a thermal bath composed of many independent harmonic oscil-

lators. The system-bath coupling is defined to properly describe the vibrational

energy transfer from the system to the bath. The reduced density matrix is prop-

agated to explore the influence of the dissipation of the system energy on the

internal-conversion dynamics of pyrrole.

8.1 Theoretical framework

8.1.1 Model Hamiltonian

The total Hamiltonian is

Ĥ = Ĥs + Ĥb + Ĥsb, (8.1)
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where Ĥs, Ĥb and Ĥsb denote the system Hamiltonian, the bath Hamiltonian and

the system-bath coupling Hamiltonian, respectively.

The system Hamiltonian in the present model is expressed in the diabatic

basis:

Ĥs = T̂N





1 0

0 1



+





V11 V12

V21 V22



 , (8.2)

where V11 and V22 describe the PE surfaces of the diabatic electronic states, corre-

lating with the ground diabatic S0 and 1A2 states, respectively. The off-diagonal

elements describe the electronic couplings between the two diabatic states. Here,

the OH stretching coordinate is the tuning coordinate and the normal coordinate

Q11 is the dominant coupling coordinate. The kinetic-energy operator T̂N is given

by:

T̂N = − h̄2

2µ

∂2

∂r2
− 1

2
ω11

∂2

∂Q2
11

. (8.3)

The details of this 2D model are discussed in Chapter 6.

The other photo-inactive vibrational modes are described by a bath composed

of many independent harmonic oscillators:

Ĥb =
∑

b

ωb

2
(P̂ 2

b + Q̂2
b), (8.4)

with the dimensionless coordinates Qb and momenta Pb.

From the WP calculations in Chapter 6, we have already seen that a minor

part of the nuclear WP enters the bound region of the S0 surface. This part of

the WP shows that the NH stretching motion is highly excited. Thus, we expect

that the cooling of the OH vibration should enhance the internal-conversion prob-

ability. Therefore, in a first approximation, it is sufficient to consider only the

vibrational relaxation of the tuning coordinate. Thus the system-bath interaction

Hamiltonian is written as:

Ĥ t
sb = {

∣

∣φd
1

〉 〈

φd
1

∣

∣+
∣

∣φd
2

〉 〈

φd
2

∣

∣}K̂
∑

b

gt,bQ̂t,b, (8.5)

K̂ = exp[−a1(r − r0)] (8.6)
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where we take the value of a1 from the potential function of the S0 state of pyrrole

(see Chapter 6). The exponential decay of the system-bath coupling with r reflects

the fact that the intramolecular vibrational relaxation involving the departing H-

atom takes place in the bound region and vanishes in the dissociation limit (see

Chapter 5).

The bath is characterized by a spectral density. Here we take the Ohmic form:

J(ω) = ηωΘ(ω)e−
ω
ωc , (8.7)

where η is a parameter describing the system-bath coupling strength and Θ(ω) is

the Heaviside step function. We assume that the cutoff frequency ωc equals the

fundamental vibrational frequency of the OH stretching mode. We assume zero

temperature.

8.1.2 Quantum master equation

If we assume that the coupling between the bath and the system is weak, the

motion of the reduced density operator follows the Redfield equation (see Chap-

ter 5):

∂

∂t
ρ̂s(t) = −iL̂sρ̂s(t) + D̂ρ̂s(t), (8.8)

L̂s• = −i[Ĥs, •], (8.9)

D̂ρ̂s(t) = −
∫ ∞

0

dτ ( C(τ)[K̂, K̂(I)(−τ)ρ̂s(t)]

−C(−τ)[K̂, ρ̂s(t)K̂
(I)(−τ)] ) . (8.10)

In the present calculations, a coordinate-grid and a harmonic-oscillator basis are

used to represent the tuning and coupling coordinates, respectively. This repre-

sentation is called “MGBR”, which has been discussed in Chapters 4 and 6.

8.1.3 Preparation of initial state

The initial state is prepared via the vertical excitation of selected vibrational

states of the electronic ground state to the excited-state surface (see Chapter 5).
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8.1.4 Propagation of reduced density matrix

In the present calculations, the split-operator technique is applied to disentangle

the short-time propagations governed by L̂s and D̂. For the short-time propa-

gation governed by the system Hamiltonian, we use the split-operator technique

again. The FFT method is used to evaluated the kinetic-energy operator of the

NH stretching coordinate. For the dissipative part in the quantum master equa-

tion, we use the Runge-Kutta method to propagate the density matrix for a finite

time step. In the evaluation of the Redfield tensors, the Lamb shifts are neglected.

To construct the real parts of the Redfield tensors, the operators K̂ and

K̂(I)(−τ) are represented in the MGBR (see Chapter 5). Eq. 5.81 exhibits the

procedure to perform this task for K̂, while the evaluation of K̂(I)(−τ) follows the

method proposed in the last subsection of Chapter 5. Since the dissipation takes

place in the bound region and vanishes in the dissociation limit, we can define

a box to describe this localized dissipation. The pseudo-eigenstates of this box

are used to evaluate the matrix representation of K̂(I)(−τ) according to Eq. 5.82.

The inner edge of the box is rmin = 3.0 au, which is the inner edge of the grid

for the density-matrix propagation. The outer edge of the box is increased un-

til convergence is achieved. This yields rmax = 7.5 au. The pseudo-eigenstates

are obtained by the diagonalization of the Hamiltonian inside this box with the

DVR technique. We use 60 Colbert-Miller DVR functions for r and 10 harmonic-

oscillator basis functions for Qc to construct the matrix representation of the

Hamiltonian in this this box.

For the propagation of the reduced density matrix, we use 128 grid points

for r, from 3.0 au to 15.8 au. For the coupling mode, we employ 10 harmonic-

oscillator basis functions. The reduced density matrix is propagated for 160 fs

with a time step 0.2 fs. The total propagation time is long enough to ensure that

convergence is reached. To avoid reflection at the grid boundary, we activate the

damping function for rmask > 12.5 au.
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8.1.5 Physical observables and probability density

The electronic population probabilities and dissociation probabilities have been

gain an understanding of the essential features of the dissipative dynamics of

pyrrole. We determine the dissociation probability by measuring the quantum

flux passing through a surface at rD=12 au in the dissociation limit.

To describe the internal-conversion dynamics, we define the population prob-

ability of the bound region [rmin, rI ] in the diabatic electronic ground state:

P I
0 (t) =

∫ rI

rmin

dr
∑

m

...ρd
0,0,m,m(t, r, r). (8.11)

We choose rI=5.0 au to get a reasonable characterization of the bound region.

To obtain insight into dissipative dynamics, we have also calculated the nu-

clear probability density in the ith diabatic state (see Chapter 5), which is

̺d
i (t, r, Qc) = ρd

i,i(t, r, r, Qc, Qc) (8.12)

=
∑

m,n

〈Qc| νm〉 ρd
i,i,m,n(t, r, r) 〈νn| Qc〉 . (8.13)

8.2 Results and discussion

In this section, we discuss the dependence of the internal-conversion dynamics

of pyrrole on the system-bath coupling strength. Previous WP calculations have

already exhibited the influence of the excitation of the NH stretching mode on the

reaction rate. The ultrafast dynamics does not take place when the NH stretching

motion is not excited. If one quantum of energy is put into the NH stretching

mode, we observe an ultrafast decay of the excited-state population via the 1A2–

S0 conical intersection. Only in this case, a minor part of the nuclear WP enters

the bound region of the S0 surface. For excitations beyond nr=1, the WP passes

the conical intersection once and dissociates directly. Thus, we select nr=1 as

the appropriate initial conditions for the investigation of the internal-conversion

dynamics of pyrrole.

We have already calculated the quantum dissipative dynamics of pyrrole for

the (1,0), (1,1) and (1,2) initial conditions. The results show that the general
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features of the dynamics and their dependence on the system-bath coupling are

similar in these different initial conditions. Therefore, for sake of brevity, we only

discuss the quantum dissipative dynamics for the (1,0) initial condition.

8.2.1 Electronic population dynamics

To test the density-matrix propagation code, we have repeated the calculation

of nonadiabatic dynamics through the A2–S0 conical intersection. Fig. 8.1 shows

the time-dependent electronic-population probabilities.
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Figure 8.1: Population probabilities of the diabatic states for the initial (1,0) condi-

tion; P1 the ground S0 state, and P2: the 1A2 state.

The comparison of the results of the density-matrix calculation and the WP

calculation (see Chapter 6) proves that the density matrix propagation reproduces

the time evolution of the diabatic population correctly. We observe the fast

population decay of P2 in the first stage of the reaction and the slow recovery

in the later stages. The mechanism behind this population dynamics has been

discussed in Chapter 6.

For the directly dissociating part of the WP, the system-bath coupling cannot

slow down the WP motion due to the ultrafast timescale. For the minor part

of the WP entering the bound region, on the other hand, the coupling to the
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environment can induce vibrational energy dissipation, thus leading to internal

conversion. Because only a minor part of the WP can enter the bound region

before dissociation, the effect of the vibrational damping on the overall population

dynamics is rather small. Thus, we do not discuss the electronic population

probabilities for η 6= 0.

8.2.2 Internal-conversion dynamics

Fig 8.2 shows the time-dependent probability in the bound region of the diabatic

S0 state, P I , for different system-bath coupling strengths (from η=0 to η=1.2).
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Figure 8.2: Internal-conversion probabilities obtained for different damping strengths

for the initial (1,0) condition: η = 0 (dashed line), η = 0.4 (solid line with circles),

η = 0.8 (solid line with squares) and η = 1.2 (solid line with diamonds).

For the isolated system (η=0), P I remains nearly zero within 20 fs. P I begins

to increase at 40 fs and decrease at 60 fs. After a few recurrences, P I eventu-

ally decays to zero. This behaviour of the time-dependent internal-conversion

probability can be understood by the reaction mechanism. In the early stage of
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the reaction, the WP is in the 1A2 state before reaching the conical intersection.

After the population transfer, the part of the WP with large excess kinetic en-

ergy continues to move towards large NH distances. Only the low-energy part of

the WP, which is reflected by the attractive potential of the S0 state, enters the

bound region. Therefore, P I begins to rise at 40 fs, at later time than the main

nonadiabatic population transfer (30 fs). Because of the high excess energy in

the OH stretching motion, the WP quickly oscillates in the bound region. In the

absence of vibrational energy relaxation, P I decays to zero.

Although the probability in the bound region of the S0 state is rather small, we

can observe the enhancement of P I by the system-bath coupling. With increasing

coupling strength η (from η = 0 to η = 1.2), we observe that the oscillations of P I

become less pronounced and that P I does not decay to zero (see Fig. 8.2). This

reflects the fact that the damping of the NH stretching motion by the heat bath

captures a part of the WP in the bound region. In other words, the coupling of

the system with the remaining vibrational modes enhances the internal-conversion

probability.

The damping effect is not pronounced here and the internal-conversion prob-

ability remains rather small for the present initial condition. However, a more

significant dissipation effect is expected when the NH stretching mode is not

excited. The WP, which escapes from the well of the 1πσ∗ state by quantum tun-

nelling, moves slowly. The damping caused by the system-bath coupling them

acts on a longer timescale. After the population transfer at the 1A2–S0 conical

intersection, the WP moving on the S0 state should be completely reflected back

to the bound region, because its energy is lower than that of the upper dissocia-

tion limit. Therefore, a large amount of the WP should enter the bound region.

This implies that the influence of system-bath coupling on the internal-conversion

dynamics should become more pronounced.

8.2.3 The nuclear probability densities

To get more insight of the influence of the dissipation effects on the system dy-

namics, we provide a detailed picture of the time-dependent nuclear probability
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Figure 8.3: Snapshots of the nuclear probability density in the diabatic 1A2 state as

function of r and Q11 at different times, for η = 0. The snapshots are taken every 12 fs.

densities as functions of r and Q11, for the (1,0) initial condition. The time step

for the presentation of the snapshot is 12 fs.

Figs. 8.3 and 8.4 show the probability densities of the diabatic 1A2 and S0

states, respectively, for the isolated system, η = 0. These figures do not provide

new information but recall the results of the WP calculations in Chapter 6.

After the initial WP has been prepared by the vertical excitation, it moves

on the PE surface of the diabatic 1A2 state to the conical intersection within

12 fs, see Fig. 8.3 (a). The central part follows the diabatic pathway and a large

part of the WP quickly moves towards the lower dissociation limit within 36 fs,

see Fig. 8.3 (b) and (c). Afterwards, a little probability density remains in the
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Figure 8.4: Snapshots of the nuclear probability density in the diabatic S0 state as

function of r and Q11 at different times, for η = 0. The snapshots are taken every 12 fs.

FC and conical intersection regions, corresponding to the residual WP trapped

by the well on the 1A2 surface and the upper cone of the conical intersection,

respectively. Note that the WP in the upper cone of the conical intersection

exhibits a multi-node pattern.

At the conical intersection, the wing part of the WP will follow the adiabatic

path towards the upper dissociation limit. A nodal line at Q11=0 is created by

the conical intersection, since the coupling operator is an odd function of Q11, see

Fig. 8.4. The high-energy part of the WP moves towards the upper dissociation

limit directly, see Figs. 8.4 (b) and (c), while a tiny part with low energy is

reflected and enters the bound region, see Figs. 8.4 (d)-(i). This part of the WP
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Figure 8.5: Snapshots of the nuclear probability density in the diabatic 1A2 state as

function of r and Q11 at different times, for η = 1.2. The snapshots are taken every

12 fs

displays a multi-node structure, indicating the high vibrational excitation of the

NH stretching mode.

Next, the time-dependent nuclear density probabilities are discussed when the

system-bath coupling is taken into account. For sake of brevity, I show here the

nuclear probability densities of 1A2 and S0 states in Figs. 8.5 and 8.6, respectively,

for the case η = 1.2.

In the early stage of the reaction, the WP motion in the 1A2 state is similar to

the η = 0 case (see Figs. 8.3 (a)-(c) and 8.5 (a)-(c)). As a result of the repulsive

PE surface of the 1A2 state, the WP accesses the conical intersection quickly. The
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Figure 8.6: Snapshots of the nuclear probability density in the diabatic S0 state as

function of r and Q11 at different times, for η = 1.2. The snapshots are taken every

12 fs

center part following the diabatic path moves towards the lower dissociation limit.

Since this process takes place within 40 fs, the dissipation does not play a role

here. After later time, however, the vibrational relaxation completely removes

the probability density in the conical intersection region, see Figs. 8.5 (e)-(i).

Only the WP trapped by the well of the 1A2 state is left.

In the S0 state, the nodal line at Q11=0 is kept, because the system-bath

interaction Hamiltonian of this model preserves the symmetry of the system. In

the early stage of the reaction (up to 36 fs), only minor differences in the sys-

tem dynamics exist between the η = 0 and η = 1.2 cases, see Figs. 8.6 (a)-(c).
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Afterwards, the damping of the NH vibrational motion induced by the environ-

ment becomes obvious, see Figs. 8.6 (d)-(i). The multi-node structure of the NH

vibrational WP is suppressed to a certain degree. This reflects the fact that the

excess energy of the NH stretching motion is transferred to the environment. The

vibrational cooling leads to the survival of more nuclear probability density in the

bound region of the S0 state. In other words, it enhances the internal-conversion

probability.

8.3 Summary

We have explored the quantum dissipative dynamics of pyrrole through the 1A2–

S0 conical intersection. The dissipation is introduced via the weak coupling of

the NH stretching coordinate to a bath composed of many harmonic oscillators.

The quantum master equation has been solved to explore the internal-conversion

dynamics of pyrrole.

The physical observables, such as the electronic population probabilities and

the internal-conversion probability, have been calculated to understand the quan-

tum dissipative dynamics of pyrrole. The primary finding is that energy dissi-

pation of the system leads to a non-zero probability for internal conversion. As

expected, the probability of internal conversion is enhanced by increasing the

system-bath coupling strength.

A rather detailed picture of the quantum dissipative dynamics of pyrrole has

been developed in terms of time-dependent nuclear probability densities as func-

tions of the tuning and coupling coordinates. The system-bath coupling induces

a damping of the NH stretching motion and suppresses the fragmentation of the

hot molecule.

While the internal-conversion probability is rather small for pyrrole, the com-

putational method developed here can be used to explore the photoinduced dy-

namics of larger biomolecules. In the DNA pairs, for example, the hydrogen bond

connects the two aromatic ring groups, therefore the dissociation channel is closed.

After population transfer at the conical intersection, a large part of the WP can

enter the bound region of the ground states without fragmentation. In this case,
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the environment has sufficient time to induce vibrational relaxation of the system

and to lead to internal conversion. Even with a rather small system-bath cou-

pling strength, the internal conversion takes place on the picosecond timescale,

see Ref [64]. Thus, an appropriate extension of the present calculations will be

useful to explain the mechanism of the photostability of biomolecular systems.



Chapter 9

Conclusions and outlook

We have chosen pyrrole and phenol as representative systems to explore the pho-

toinduced nonadiabatic dynamics of aromatic biomolecules. Models of reduced

dimensionality have been developed which include the tuning coordinate (NH

or OH stretching mode) and a few dominant coupling modes. The diabatic PE

surfaces have been constructed on the basis of accurate ab initio multi-reference

electronic-structure data. Time-dependent quantum WP methods have been used

to explore the nonadiabatic dynamics at conical intersections. The influence of

vibrational relaxation on the internal-conversion dynamics of pyrrole has been

investigated in the framework of the reduced density-matrix formalism.

For pyrrole, we have systematically characterized the two lowest conical in-

tersections [1A2–S0 and 1B1–S0], exploying the CASSCF method. The coupling

strengths of all symmetry-allowed coupling modes of these two conical intersec-

tions have been obtained. To understand the main features of the dynamics

through the conical intersections, we have constructed 2D models including the

NH stretching coordinate and the dominant coupling mode for each conical inter-

section. To explore the influence of multiple coupling modes on the dynamics, we

have also developed multi-mode models by including additional weak coupling

modes. The ultrafast nonadiabatic dynamics of pyrrole has been investigated

using time-dependent quantum WP propagation methods.

For phenol, we have taken three states and two conical intersections [1ππ∗–

πσ∗ and πσ∗–S0] into account. Since these two conical intersections possess the

171
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same coupling mode, it was sufficient to develop a 2D model. We have performed

time-dependent quantum WP calculations to explore the ultrafast nonadiabatic

dynamics of phenol.

In the quantum WP calculations of pyrrole and phenol, we have investigated

the dependence of the nonadiabatic dynamics on the initial preparation of the

system. The following conclusions can be draw from these calculations: (1) The

photodissociation rate is dramatically enhanced when one quantum of the NH or

OH stretching mode is excited. (2) the excitation of the strong coupling mode

has a noticeable impact on the population transfer and the branching ratio of the

two dissociation channels. In general, the excitation of the coupling mode will

enhance the adiabatic pathway. (3) The inclusion of the weak coupling modes

has a rather weak impact on the population dynamics, while they lead to the

interesting effects in the nuclear probability densities.

These findings indicate that control of the photodissociation dynamics via

mode-specific IR excitation, as recently demonstrated for ammonia [269–272],

should be possible for these molecules. For phenol, theoretical studies have sug-

gested that the branching ratio of photodissociation can be controlled by opti-

mization of the excitating laser pulse [121].

Many aromatic biomolecules share similar photoinduced dynamical processes.

After photoexcitation, the nuclear WP is transferred from the bright 1ππ∗ excited

state to a dark 1πσ∗ state through a conical intersection. Experimentally, it is

difficult to obtain information about the nonadiabatic transition at the first coni-

cal intersection. The experiments provide information about the dynamics at the

second conical intersection, e.g. via the branching ratio of the different dissoci-

ation channels. For the example of phenol, we have shown that the geometric

phase induced by the first conical intersection has a pronounced effect on the dy-

namics at the second conical intersection. Therefore, the experimental results on

the branching ratio contain information on the nonadiabatic dynamics occurring

at the first conical intersection.

When the WP passes the second conical intersection, a part of it can be re-

flected and temporarily captured in the bound region of the ground state. In
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few-mode systems, the excess energy can not be absorbed. In multi-mode sys-

tems, the excess energy in the tuning mode can be absorbed by other degrees

of freedom, which results in the capture of the WP in the bound region of the

electronic ground state. This interplay of conical intersections and vibrational

energy relaxation explains the mechanism of the radiationless decay dynamics of

aromatic biomolecules.

When pyrrole is excited with wavelengths shorter than 220 nm, the dynamics

start from the optically bright 1B2(ππ
∗) and 1A1(ππ

∗) states. Therefore, a more

comprehensive description of the photodissociation process involves five electronic

states [S0,
1A2(πσ

∗), 1B1(πσ
∗), 1B2(ππ

∗), and 1A1(ππ
∗)] and several types of con-

ical intersections, ππ∗–πσ∗ [86], πσ∗–S0 [89,93], as well as ππ∗–S0 [267]. In addi-

tion, the 2A2 and 2B1 electronic states of the pyrrolyl radical are strongly coupled

through a conical intersection [1A2(πσ
∗)–1B1(πσ

∗)] [265, 266]. Although each of

these conical intersections has been characterized individually, a comprehensive

picture of the dynamics of the photodissociation process has not been developed

yet. Therefore, it is a great challenge to set up a more complete multi-state

multi-mode model and to perform bechmark calculations for the photoinduced

dynamics of pyrrole.

The experimental observations have shown that the photodissociation dynam-

ics of phenol involves a remarkably limited number of the vibrational modes [95,

120]. Therefore, a systematic investigation should be performed to identify all

relevant tuning and coupling modes. A reduced model including the strongly

coupled modes should be constructed and the WP dynamics calculations should

be performed for such extended model. Moreover, the effects of the coupling

between the active modes and the inactive modes on the photoinduced dynamics

of phenol should be explored in the future.

Previous calculations have shown that several aromatic biomolecules exhibit

rather similar PE profiles, for instance indole. Therefore, the quantum dynamics

of indole can be explored with the methods developed in the present thesis.

Many biologically relevant molecular systems contain hydrogen bonds (e.g.,

the DNA pairs). Until now, the theoretical investigations of these systems have
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exhibited the characteristic features of the excited-state PE surfaces, as well as

their conical intersections with the ground state. These calculations have identi-

fied possible reaction channels of the photoinduced dynamics, but a treatment of

the nonadiabatic nuclear dynamics is still missing. Thus, the quantum dynam-

ics of these systems should be explored to understand their photophysical and

photochemical properties, in particular their roles for the photostability of life.



Appendix A

Dimensionless normal

coordinates

The small-amplitude vibrational motion of a polyatomic molecule with N atoms

can be described by a group of uncoupled harmonic oscillators [209]. In this

so-called normal-mode approximation, the molecular vibrational Hamiltonian is

expressed as:

Ĥ =

M
∑

i=1

−1

2

∂2

∂q2
i

+
1

2
ω2

i q
2
i . (A.1)

The total number M of the normal modes is 3N − 6 (for nonlinear molecules) or

3N − 5 (for linear molecules). For each normal mode, qi and ωi are the coordi-

nate and the frequency, respectively. In this approximation, the total vibrational

wavefunction becomes the direct product of the wavefunctions for each normal

mode.

Defining frequency-weighted dimensionless coordinates

Qi =
√
ωiqi, (A.2)

the Hamiltonian becomes

Ĥ =

M
∑

i=1

ωi(−
1

2

∂2

∂Q2
i

+
1

2
Q2

i ). (A.3)

The Schrödinger equation for the ith mode is:

ωi(−
1

2

∂2

∂Q2
i

+
1

2
Q2

i )ψn(Qi) = (n+
1

2
)ωiψn(Qi). (A.4)
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In the calculation of the PE surfaces near conical intersections, we have to

make displacements along different normal modes. However, the displacement

vectors obtained from a standard package, like GAUSSIAN [31], are only valid in

the vicinity of equilibrium configuration become the normal modes are expanded

in Cartesian displacement coordinates. To perform finite displacements along

normal modes, we express the normal-mode displacements as linear combinations

of internal-coordinate displacements, like bond distances and bond angles.

The procedure for the construction of finite normal mode-like displacements

has been described in detail in Ref. [276]. After calculating the Hessian at the

reference geometry with a the standard package, we have obtained the transfor-

mation matrix B between the dimensionaless normal-mode coordinates {Qi} and

Cartesian coordinates {xi}

Q = Bx. (A.5)

It is also possible to express the internal symmetry coordinates {si} as a linear

combination of the Cartesian coordinates {xi} via a matrix C:

s = Cx. (A.6)

Furthermore, a linear relation between internal symmetry coordinates {si} and

dimensionless normal coordinates Q is established via a matrix L = BC−1:

Q = Ls = BC−1s. (A.7)

In other words, for finite displacements from the reference configuration, the

coordinates {Qi} can be considered to be linear combinations of the symmetry

coordinates {si}. Subsequently, a Cartesian geometry corresponding to a given

displacement Qi is constructed by explicitly considering the changes of internal

bond length and bond angle variables in the transformation through an iterative

scheme.



Appendix B

Bath correlation function

The importance of the reservoir correlation function for the dynamics of the

system is apparent from the quantum master equation. In this appendix, we

discuss general properties of this function.

Since F̂m is a Hermitian operator, we obtain the property (see Eq. 5.33):

C∗
mn(t) = Cnm(−t). (B.1)

Considering the Fourier transformation of this function:

Cmn(ω) =

∫ ∞

−∞

dteiωtCmn(t), (B.2)

we obtain the relation:

Cnm(−ω) =

∫ ∞

−∞

dteiωtC∗
mn(t). (B.3)

In frequency space, the detail balance principle requires:

Cmn(ω)

Cnm(−ω)
= exp(

h̄ω

kBT
) (B.4)

where kB is the Bolzmann constant and T is the temperature of the bath.

The transformation of the correlation function from the frequency domain to

the time domain can be recast in terms of a half-side Fourier integral over positive

ω:

Cmn(t) =

∫ ∞

−∞

dω
1

2π
e−iωtCmn(ω),

=

∫ ∞

0

dω
1

2π

[

e−iωtCmn(ω) + eiωte
− h̄ω

kBT Cnm(ω)
]

(B.5)
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For the harmonic-oscillator bath, the spectral density J(ω) is a function in the

frequency domain. Therefore we can use it to express C(ω). Then the half-side

Fourier transformation of C(ω) generates C(τ), the bath correlation function

in the time domain. This provides an alternative way to obtain Eq. 5.43 in

Chapter 5.



Appendix C

List of abbreviations

AIMS Ab initio multiple spawning

AT Adenine-thymine

BO Born-Oppenheimer

CASPT2 Complete-active-space perturbation theory 2

CASSCF Complete-active-space self-consistent-field

CI Configuration interaction

CID Double excitation of configuration interaction

CIS Single excitation of configuration interaction

CISD Single and double excitations of configuration interaction

DM Dipole moment

DVR Discrete variational representation

FBR finite basis representation

FC Frank-Condon

FFT Fast-Fourier-transformation

FOCI First-order configuration interaction.

GC Guanine-cytosine

HF Hartree-Fock

IR Infrared radiation

JT Jahn-Teller

LCAO linear combination of atomic orbitals
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MCSCF Milti-configuration self-consistent-field

MCTDH Multi-configuration time-dependent Hartree

MGBR Mix-grid-eigenstate representation

MO Molecular orbital

MP Møller-Plesset perturbation

MRCI Multi-reference configuration interaction

PE Potential energy

RT Renner-Teller

SCF Self-consistent-field

SOCI Second-order configuration interactions

TDM Transition dipole moment

UV Ultraviolet

VBR Variational basis representation

WP Wave packet

2D Two dimensional

3D Three dimensional
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