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Zusammenfassung

Der Einsatz der Grafikkarte (GPU) zur Beschleunigung allgemeiner Berechnungen hat

sich im Laufe der letzten Jahre zu einer wichtigen Technik im wissenschaftlichen Bereich

entwickelt. Aufgrund der dabei verwendeten grafik-orientierten Konzepte und Werkzeuge,

führt diese Methode jedoch zu einer spürbaren Steigerung der Entwicklungskomplexität

im Vergleich zur klassischen Umsetzung für den Hauptprozessor. Die damit verbundene

Kostensteigerung verhindert bis jetzt den breiten industriellen Einsatz dieser Technik.

Diese Arbeit beschreibt einen neuartigen Ansatz zur generellen Programmierung der

Grafikkarte – das Gpu++ Entwicklungssystem. Dieses System ist nahtlos in die Program-

miersprache C++ integriert und ermöglicht so die gleichzeitige Verwendung der CPU und

GPU mittels einer bekannten Befehlssyntax. Zudem werden computer-grafische Konzepte

wie die verschiedenen Berechnungseinheiten der GPU und deren Vektorarchitektur, ef-

fizient abstrahiert. So ermöglicht Gpu++ eine einfache und schnelle Integration GPU-

beschleunigter allgemeiner Berechnungen in einen existierenden Entwicklungsprozess – und

hebt damit die Unterschiede zwischen Grafik- und Hauptprozessor größtenteils auf.

Die Evaluierung des in dieser Arbeit vorgestellten Entwicklungssystems geschieht durch

die CPU- und GPU-basierte Umsetzung bekannter Algorithmen, wie der Multiplikation

großer Matrizen, Sortieren, Schnelle Fourier-Transformation und die gefilterte Rückpro-

jektion zur Berechnung einer tomografischen Rekonstruktion. Obwohl die auf Gpu++

aufbauenden Implementationen die Geschwindigkeit der CPU-basierten Umsetzungen um

teilweise mehr als drei Größenordnungen übertreffen, hat dies keine spürbare Steigerung

der Softwarekomplexität und Entwicklungszeit zur Folge.

Diese Ergebnisse demonstrieren überzeugend, dass sich die Entwicklungskomplexität

und -zeit für die Umsetzung allgemeiner Berechnungen auf der Grafikkarte durch den

Einsatz des Gpu++ Entwicklungssystems auf ein Niveau senken lassen, welches mit der

klassischen CPU-basierten Implementation vergleichbar ist – ohne dabei auf die enormen

Geschwindigkeitsvorteile des Grafikprozessors verzichten zu müssen.
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Abstract

Using the graphics processing unit (GPU) to accelerate general-purpose computations has

become an important technique in scientific research. However, the development complex-

ity is significantly higher than for CPU-based solutions, due to the mainly graphics-oriented

concepts and development tools for GPU-programming. As a consequence, general-purpose

computations on the GPU are mainly discussed in the academic domain and have not yet

fully reached industrial software development.

This thesis presents a novel contribution to general-purpose GPU programming – the

Gpu++ development system. It features a seamless integration into the C++ programming

language to address graphics hardware via a familiar syntax, an abstraction layer to effi-

ciently hide the different computation frequencies, and a novel approach to relax the vector

processor paradigm of the GPU. The Gpu++ development system enables software engi-

neers to embed GPU-based development into their existing software engineering workflow,

thus, largely dissolving the differences between main and graphics processor.

The developed system has been evaluated by the implementation of well-known general-

purpose algorithms on both processor platforms – including general matrix multiplication,

sorting of values, the fast Fourier transform, and tomographic reconstruction via filtered

back-projection. The Gpu++ implementations outperform the CPU solutions by up to

three orders of magnitude without a noticeable increase in source code complexity.

These results clearly demonstrate that the novel Gpu++ development system signifi-

cantly reduces the source code complexity and development time of general-purpose GPU

applications to a level which is comparable to main processor implementations, while ob-

taining the tremendous performance advantages of today’s graphics hardware architectures.
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Chapter 1

Introduction

Commodity graphics hardware has evolved tremendously over the last years – it started
with basic polygon rendering via 3dfx’s Voodoo Graphics in 1996, and continued with
custom vertex manipulation four years later, the graphics processing unit (GPU) now has
improved to a full-grown graphics-driven processing architecture with a speed-performance
approx. 750 times higher than a decade before (1996: 50 mtex/s, 2006: 36,8 btex/s). This
makes the GPU evolving much faster than the CPU, which became approx. 50 times faster
in the same period (1996: 66 SPECfp2000, 2006: 3010 SPECfp2000) [69]. Figure 1.1
shows the GPU performance over the last ten years and how the gap to the CPU increases.
Experts believe that this evolution will continue for at least the next five years [66, 76].
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Figure 1.1: The performance-increase of computer graphics hardware over the last decade
(using the “texels per second” metric). The green trend line shows that the GPU doubles
its speed-performance every 13 months (i.e. GPUs of 2006 are approx. 750 times faster than
GPUs of 1996). In contrast, the performance of the CPU doubles only every 22 months [69].
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Figure 1.2: The “visual paradigm” knows two participants – the software developer and the
graphics artist – each having its own workflow. The software developer creates the “engine”
that is used by the graphics artist to create“shader”programs (that run as part of the engine).

As the name implies, the GPU was initially designed for accelerating graphical tasks.
However, it was soon being exploited for performing non-graphical computations, for in-
stance, the work of Lengyel et al. uses graphics hardware to compute robot motion, the
CypherFlow project by Kedem and Ishihara exploits the graphics accelerator to decipher
encrypted data, and a GPU-based computation of Voronoi diagrams has been presented by
Hoff et al. [72, 60, 54]. Today, implementations for various general-processing algorithms
exist for the graphics hardware, e.g. sorting, linear algebra, Fourier analysis, partial differ-
ential equations, and tomographic reconstruction [63, 70, 56, 113, 19]. Nevertheless, while
more and more algorithms are implemented for graphics hardware, most of the work stays
in the academic field and has not yet found its way into industrial software engineering.

The reason is that GPU-based application development is much more complex, mainly
because the developer has to be an expert in two domains – in the application’s domain,
and in computer graphics. This means that changing the graphics-oriented paradigms and
corresponding GPU development tools may significantly reduce development complexity.

Most of the existing GPU-based development systems are founded on the graphics-
oriented paradigm that is illustrated in figure 1.2 – the visual paradigm. This approach
has been influenced by the entertainment and special-effects industry, where the software
developer creates the so-called “rendering engine” and the graphics artist uses the engine
to create so-called “shader programs” that compute visual phenomena. For instance, a
very popular rendering engine is the RenderMan software – while the software itself is
developed by Pixar, the “visual effects” (i.e. shader programs) are created by individual
special-effects companies [119]. In this case, the visual paradigm makes sense, because
the graphics artists and the software developers usually do not know each other – and
therefore, have separated workflows that are tailored to the specific needs of each group.
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Figure 1.3: The “algorithmic paradigm” knows only the software developer, who creates
the whole “software” including code for CPU and GPU. The GPU-based functionality of the
software has to be extracted and transformed to the graphics hardware’s internal format.

Examples for GPU-based development systems that are founded on the visual paradigm
are RenderMan, Pfman, Interact-SL, RTSL, Cg, and GLslang [49, 91, 97, 99, 77,
104]. However, such development systems are inappropriate to implement general-purpose
algorithms on the GPU, mainly because of the following two reasons:

• Due to the distinct specialized workflows, broad knowledge is required in both disci-
plines – software engineering (developer) and computer graphics (artist).

• The visual paradigm also forces the software developer to leave his familiar develop-
ment environment and to develop in the graphics artist’s programming language.

Furthermore, because CPU and GPU-based code are developed in different programming
languages, additional binding code is required to “glue” the different functionality together.

Please note that there are GPU-based development systems that relax the aforemen-
tioned issues. For instance, Brook for GPUs, CUDA, and CTM are not graphics-
oriented, but they still separate between CPU- and GPU-based code [18, 89, 106]. On the
other hand, Sh allows mixing the code of both processor platforms in the same program-
ming language, but still requires knowledge in the computer graphics domain [101].

As a matter of fact, to efficiently develop general-purpose applications that are acceler-
ated by the GPU, a significantly different approach is required – the algorithmic paradigm.
Figure 1.3 illustrated the paradigm: the software developer creates the complete “software”
that contains code for the main and the graphics processor at the same time. This means
that there is a single development environment, where the same programming language is
used to define CPU- and GPU-based code side by side and no binding code is required
that connects the variables of the different processor platforms. The “Gpu++ development
system” that will be presented in this thesis, makes use of the algorithmic paradigm.
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In other words, the algorithmic paradigm conceptually eliminates the separation between
both processor platforms. In practice, GPU-based development systems that are founded
on this paradigm have to deal with the following three challenges:

Compact Set of Generic Concepts – The development system has to present a con-
sistent set of generic concepts to abstract techniques and terminology that are specific
to computer graphics. For instance, vertex and fragment processing is hard to un-
derstand by the common software developer and need to be abstracted by a generic
concept. The challenging task is that the new concepts have to be easier to learn,
compared to the graphics-oriented concepts of the visual paradigm. While this is
hard to evaluate, the rule-of-thumb is: the less concepts, the easier to learn.

Uniform Development Environment – Both processor platforms have to be accessi-
ble in the same development environment. In other words, CPU- and GPU-based
code should be mixable in the same source code files, i.e. the code is specified in the
same general-purpose programming language. Ideally, the software developer is able
to use the same familiar syntax, the same compiler collection, and the same testing
environment he is used to – for both processor architectures. Please note that “fa-
miliar syntax” means that mathematical expressions are specified in the same way,
no matter of the target platform – i.e. that code should be interchangeable.

Seamless Data Interchange Between CPU and GPU – Development systems that
follow the algorithmic paradigm have to eliminate the need of “binding code” – vari-
ables have to be accessed easily on both processor architectures. In other words,
computation results of the graphics hardware have to be directly accessible in CPU-
based code, and main processor variables have to be usable as GPU-based inputs.
Please note that the prior challenges mainly addressed the syntax and style of source
code and the software development workflow, while this is focused on the seamless
interchange and automatic transfer of data between the main and graphics processor.

The aforementioned challenges are accomplished by using the following two-stage ap-
proach: On a theoretical level, the existing graphics-oriented concepts for programming the
GPU are abstracted to generic concepts, e.g. pixel and fragment processing is abstracted
via a “unified kernel definition”, and the vector processor concept is abstracted via “vector
fusion”. Furthermore, on a practical level, graphics-hardware-based code is seamlessly inte-
grated into the general-purpose C++ programming language, which is realized by using ad-
vanced object-oriented techniques like “ad-hoc polymorphism” and “generic programming”.
To further reduce the development complexity and to improve run-time performance, a
variety of optimization strategies are automatically applied to the GPU-based code.

The Gpu++ development system will be evaluated extensively by implementing a broad
set of general-purpose algorithms. This includes the performance comparison of CPU-
based solutions with implementations for the graphics processor, as well as an analysis of
the source code complexity for both processors to verify the aforementioned design goals.
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1.1 Contributions

This dissertation makes several contributions to the areas of computer graphics, graphics
hardware programming, software engineering, and general-purpose computations on GPUs:

• An approach is presented that allows the implementation of general-purpose algo-
rithms on computer graphics hardware by seamlessly extending the C++ language
using ad-hoc polymorphism. This technique enables developers to use the same en-
vironment and language for both platforms – main and graphics processor. This
approach significantly reduces development complexity for GPU-based applications.

• A consistent set of high-level graphics-independent concepts is presented, including
the stream approach, vector processing, and computation frequencies. These concepts
enable developers to efficiently exploit the computational power of today’s graphics
accelerators without the need of being an expert in computer graphics, computer
graphics hardware, or the different graphics APIs for programming the GPUs.

• An abstraction scheme that hides the different computation units on the GPU (vertex
and fragment processing) is presented: The unified kernel definition is partitioned
automatically by the development system to efficiently exploit the different processing
units. This technique enables the developer to specify all GPU-relevant functionality
in a single place, resulting in a significant reduction of the source code complexity.

• The aforementioned GPU development system is extended to support on-the-fly opti-
mizations, like dead-code elimination, constant folding, algebraic simplification, and
back-end-dependent substitutions. These optimizations enable developers to focus
more on algorithms than on implementations. The optimizations have proved to be
useful for a variety of general-purpose computations, leading to a significant speed-up.

• A novel technique for vector component separation and efficient vector fusion is
presented, i.e. scalar operations are efficiently combined automatically to exploit the
vector processor architecture of the GPU. This leads to a much better granulation
in the optimization stage, and furthermore, enables the developer to freely choose
between vector and non-vector programming without a loss of run-time performance.

• A novel approach for efficient graph traversal and graph processing is presented,
based on the class traits paradigm that features a generic and extensible interface
and optimal run-time performance. Where the aforementioned optimizations lead
to better run-time performance, the traversal approach significantly improves the
GPU-based compile-time performance – and therefore the overall processing speed.

• Finally, a variety of general-purpose algorithms is implemented on both processor
platforms, main and graphics processor, to extensively evaluate the GPU-based de-
velopment system. In all cases, the GPU-based implementation out-performs the
CPU-based version by one to three orders of magnitude. Furthermore, the evalua-
tion demonstrates that both implementations are of similar source code complexity.
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1.2 Outline

The thesis begins in chapter 2 with a discussion of the related work, including historical and
modern shading languages dedicated to computer graphics, as well as, the latest innovations
in general-purpose languages for graphics hardware.

A consistent set of graphics-independent concepts for GPU programming is presented
in chapter 3. Furthermore, it is shown how the aforementioned concepts confine the family
of algorithms that can be accelerated by the graphics processing unit.

The major internal data structure (that represents any GPU-based code in the Gpu++

development system) is described in chapter 4. This includes the embedded creating of the
graph via ad-hoc polymorphism, as well as its fast processing using the novel visual traits
technique. This processing infrastructure is the foundation for a variety of generic and
GPU-specific run-time optimizations of GPU-based computations that are presented in
chapter 5. Chapter 6 presents the binding of the optimized kernel program to the graphics
back-end using the OpenGL low-level shading language as an exemplar implementation.

The Gpu++ development system is evaluated in chapter 7 by implementing algorithms
from digital signal processing, medical processing, and computer science. The run-time per-
formance and source code complexity of the resulting implementations are further discussed
in section 8. Finally, the thesis is concluded and areas of future research are suggested in
chapter 9.

Additional information is presented in two appendices: Appendix A is a brief reference
of the new data types, managing classes, and function calls. Appendix B contains basic
examples, including their full source code and a line–by-line description. Both appendices
do not contain conceptual information relevant to the thesis and were only included for the
sake of completeness.



Chapter 2

Related Work

The idea to implement general-purpose algorithms on computer graphics hardware has been
introduced more than fifteen years ago, when Lengyel et al. used a rasterization device for
robot motion planning in 1990 and Cabral et al. accelerated tomographic reconstruction
in 1994 [72, 19]. However, most of the early work has been designed as a proof-of-concept
and never meant to be used in industry-driven software development. But the introduc-
tion of programmable commodity graphics hardware in 2001 pushed the popularity of this
approach even further, and shortly after, the abbreviation GPGPU (“general-purpose com-
putations on GPUs”) was coined for this new domain [73, 50]. At that time, the only
way to program graphics hardware was via the detour of shading languages, because no
explicit GPGPU development tools where available for quite a long time – but shading
languages were mainly designed for the graphics and entertainment industry. As a con-
sequence, most of the work and research were focused on the implementation instead of
the algorithm. While this has changed lately when several companies released commercial
GPGPU tools and languages by the end of 2006, most of the GPU-based programming
is still done via shading languages. This chapter will present a broad overview of pro-
gramming solutions including both – shading and general-purpose languages for computer
graphics hardware.

2.1 Shading Languages

In computer generated imagery, the visual appearance of an object is influenced by both,
shape and shading. The shape of an object is based on its surface geometry and its position
relative to the viewpoint. In contrast, the shading depends on its optical properties and
the illumination environment. Impressive images can be rendered from objects with a
simple shape but a complex shading. Therefore, both attributes should are usually treated
separately. In the very beginning of computer generated imagery, most of the shading was
done by scanning textured images and attaching them to geometrical objects [20]. Soon
after, procedural shading was introduced that evaluates the final color of particular points
on the object’s surface using a set of (sometimes very complex) mathematical equations.

7
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Figure 2.1: Evolution of shading languages. Most of them are inspired by the syntax and
philosophy of C [61]. In the end of the 1990s, interactive shading languages entered the field,
first for special hardware (lighter orange), then for consumer-market GPUs (darker orange).

Complex scenes usually contain many objects and each is associated to a different
shader (i.e. the set of equations). Initially, shaders were hardwired in the rendering engine
and selected via a shader dispatch table [125]. However, due to its lack of portability and
the required knowledge, this technique was inappropriate for large productive environments
like the movie industry, which resulted in a growing demand for higher-level languages.
Figure 2.1 illustrates the evolution of these languages and how they influenced each other.

2.1.1 History

As part of his shader tree work, Robert Cook developed a system where shaders (given as a
sequence of mathematical equations) were read in, parsed and executed at run-time by the
rendering system [24]. Even if this was not a full shader language, it decoupled the shader
description from the actual rendering architecture. This concept was extended by Perlin,
who developed the Pixel Stream Editing Language (PSE) that included high-level
constructs, such as conditionals, loops, functions, and a rich set of arithmetic and logical
operators [98]. Perlin considered shading as a postprocess, so he rejected the concept of
distinct shader types (as proposed by Cook) in favor of a singular “space function”, i.e.
a per-pixel shading of the already computed frame-buffer. However, such an approach is
hard to apply within a global context, e.g. for ray-tracing and radiosity.
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Based on the aforementioned work, Hanrahan et al. developed the RenderMan Shad-
ing Language (RMSL) as part of Pixar’s RenderMan rendering system [49, 119]. The
language is similar to “C” but tailored especially to shading calculations [61]. It offers a
very small set of fixed data types (color, point, float, and string) and there is no way to
define new types or high-level constructs like data structures or arrays. Many built-in func-
tions are provided, e.g. for geometric computations, image processing and texture access.
Shaders may be instantiated multiple times with possibly different values for its arguments
and particular instances are attached to the objects in the scene. Today, RenderMan is
the de-facto standard for photorealistic rendering in movies.

In 1998, Olano et al. introduced Pfman, the first real-time shading language (for the
PixelFlow architecture). It is very similar to the aforementioned RenderMan shading
language, but is slightly limited: only surface and light shaders are supported, fixed-point
math has been added to avoid floating-point operations and C++ functions can be called
directly from the shader [91]. Because of its scalability, the PixelFlow architecture was
capable to render scenes at 30 frames per second, even for complex procedural shaders.
Unfortunately, the PixelFlow hardware was too expensive and failed commercially.

A significantly different approach was introduced by Peercy et al.: Instead of using
specific graphics hardware, the OpenGL software architecture itself is treated as a general
SIMD computer, where the high-level shading description is translated into multiple ren-
dering passes of the OpenGL library [97]. In combination with a small set of OpenGL
extensions, a full implementation of the RenderMan shading language has been presented
on top of this “SIMD model” approach – the so-called Interactive Shading Language
(ISL). Unfortunately, the generality of this approach also is its major drawback – each com-
mand of the shader program is individually executed for all frame-buffer elements, hence,
temporary values are written to the frame-buffer after one command and are read in for
the next command. As a consequence, the ISL wastes most of its run-time for memory
access and due to the large overhead of calls to the OpenGL programming interface.

Second generation GPUs started to provide (limited) programmability that was sig-
nificantly extended in 2001 with the introduction of the “programmable vertex unit” [73].
Based on this new functionality, Proudfoot et al. developed the Stanford Real-Time
Shading Language (RTSL), which was especially designed for interactive procedural
shading [99]. The RTSL is based on a unified framework – the “programmable pipeline” –
that provides the same syntax, types and operators for different “computation frequencies”,
i.e. computations done per scene, per object, per vertex and per fragment. However, this
may result in a part-time CPU-based emulation of several computation frequencies. A com-
putational model, based on the virtualization of several pipeline stages, is used to remove
resource constraints of existing hardware architectures. Beside native operations supported
by all GPUs (e.g. scalar and vector multiplication), the RTSL introduces so-called “canned
functions” that are supported by special graphics hardware or are not supported yet, but
will be in future (e.g. bump-mapping). Most of these techniques can be found in succeeding
shading languages – the RTSL itself is no longer maintained, because it evolved into the
Cg and HLSL shading languages that will be described in the next section.
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2.1.2 Cg and HLSL

Some developers of the RTSL joined hardware vendor NVIDIA at the end of 2001, to
define and implement a new shading language. This has been done in close collaboration
with Microsoft, thus, the result is one language with two different names – NVIDIA’s“C
for graphics” (Cg) and Microsoft’s “High-Level Shading Language” (HLSL) [77, 35, 45].
Even though the language is the same by syntax and semantic, they differ by philosophy :
Cg was designed as an additional layer on top of both popular graphics APIs (i.e. OpenGL
and DirectX) for a small performance penalty, while the HLSL offers a clean interface
and avoids API overhead due to a tight integration into the DirectX framework.

Cg/HLSL is a further development of Stanford’s RTSL. The language evolved broadly:
many functions have been added to address the latest GPU functionality, control flow
operators are supported, half and fixed have been added, vectors with up to four scalars
and matrices with sizes up to 4 × 4 are supported, and some C++ techniques have been
included. Changes can also be found in the architecture design: Although the concept of the
“programmable pipeline” still exists, it is combined with the idea of a virtualized machine,
leading to the concept of language profiles: subsets of the full language that are supported
on particular hardware, computation frequencies, or APIs. Cg is in active development,
even though most of the changes apply to the architecture, instead of the language. In
contrast, Microsoft decided to break the compatibility by the release of DirectX10,
introducing support for “geometry shaders”, and many extensions to the CgFX format.

2.1.3 OpenGL Shading Language

The OpenGL shading language, GLslang, was designed and implemented by 3Dlabs
in the end of 2002 [104]. However, the final specification was delayed till 2004, because
the OpenGL consortium had to decide if Cg or GLslang should be included in the final
OpenGL 2.0 specification [62]. At the end, GLslang made the race – mainly due to
architectural purposes – and therefore became the first shading language that has been
adopted in a truly cross-platform way by all major graphics hardware vendors.

Similar to most other shading languages, GLslang is based on “C” with some addi-
tional syntax from the RenderMan language. As a consequence, the important features
are very similar to HLSL/Cg. The main advantage of GLslang, compared to the afore-
mentioned choices, is not one of syntactic finesse, but rather a fundamental difference in
the design of not the language itself, but the process of using it – RTSL, Cg, and HLSL
all translate the source code to some kind of low-level assembler representation “outside”
the underlying 3D API, using external tools (RTSL and Cg) or via the API itself (HLSL).
Then, the low-level code is translated a second time “inside” the 3D API to the machine
code of the actual graphics hardware. In contrast, GLslang compiles directly from high-
level shader code to the machine code of the GPU, skipping the intermediate assembler
representation. This leads to a significant performance gain, because graphics-driver de-
velopers know best how to optimize the generated instructions for their hardware.



2.2. LANGUAGES FOR GENERAL-PURPOSE COMPUTATIONS 11

2.2 Languages for General-Purpose Computations

All the aforementioned approaches are founded on the visual paradigm, i.e. they introduce
a new programming language and they are focused on computer graphics. While the first
property might be acceptable, the latter is a major limitation for a wider acceptance of
GPGPU in industry-driven software development – additional graphics knowledge signifi-
cantly increases development times and costs. However, for a long time, the aforementioned
shading languages were the only way to develop applications for the GPU – but this has
changed lately. This section presents GPU-based programming languages that are not
focuses on computer graphics, but on general-purpose computations.

2.2.1 Brook for GPUs

Brook was developed at the Stanford University primarily as a programming language
for“streaming processors”, such as Stanford’s Merrimac streaming supercomputer, and
the Imagine processor [29]. Buck et al. adapted Brook to the capabilities of computer
graphics hardware, making it the first general-purpose language for the GPU [18]. Brook
extends the C programming language by streams – a “collection of elements” where each el-
ement is manipulated by the same computations. Streams are different to“arrays”, because
there is no index operation and element dependencies are not allowed. The functionality
that is applied to each stream element is called kernel – which is comparable to a “shader”.

Development with Brook is a two-stage process: Once the program is developed,
its compilation results in a set of C++ files that can be added to the host application.
Unfortunately, the target operating system, the target graphics vendor, and the target
graphics API have to be specified in advance. Brook is not maintained since the end of
2004, except for some small progress to support ATI’s CTM (presented in section 2.2.3).

2.2.2 CUDA – “Compute Unified Device Architecture”

The CUDA environment, introduced by NVIDIA in the end of 2006, is similar to Brook,
i.e. the standard C programming language is extended to support streaming types and cor-
responding operations [89]. In contrast to Brook, the CUDA environment generates full
executables (instead of intermediate C++ files). CUDA can be used as a unified environ-
ment to develop applications for both processor platforms – CPU and GPU. Furthermore,
this language does not need a graphics back-end, because it accesses NVIDIA graphics
hardware directly and therefore supports unique features in GPU-based development, like
a full integer and bit instruction set, branching, looping, pointer support, large kernel
programs of up to millions of instructions, and thousands of threads.

In addition to the programming language, the CUDA framework also includes libraries
for linear algebra (BLAS) and digital signal processing (FFT), that can be used outside
the CUDA language. Unfortunately, the software is in an early stage and has not yet been
opened for the public, i.e. there is no official distribution and documentation available.
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2.2.3 CTM – “Close-to-the-Metal”

At the same time NVIDIA release CUDA, ATI introduced the CTM platform – a data-
parallel virtual machine that allows direct communication with ATI graphics devices along-
side the graphics API [106]. Similar to the CUDA architecture, many constraints are
imposed by this approach, including the ability to read, modify, and write memory in a
single program, to directly access host memory, or to cast between formats without ex-
plicitly copying the data. CTM is distributed as a library that allows to open, use, and
close “managed connections” to one of the three units of the graphics hardware: 1) The
“command processor” is programmed via an architecturally independent language, 2) the
“data-parallel processor” is programmed via a native (architecturally dependent) instruc-
tion set, and 3) the “memory controller” allows direct access to graphics and main memory.

As the name implies, CTM is used to access graphics hardware on a very low level.
It has been designed for hand-optimized tuning the GPU-based functionality and not for
every-day use. Furthermore, the application is responsible for all problems that occur in
programming the graphics processor, which increases development complexity and costs.

2.3 Embedded Languages and Libraries

The aforementioned approaches all are stand-alone programming languages that are used
in addition to the general-purpose programming language of the host application (except
CUDA). This means that GPGPU developers have to switch between several languages
to address the main and the graphics processor. Furthermore, additional code is required
to “bind” GPU-based code to the CPU-based host application, e.g. to interchange data.

A different approach is based on the expression template technique (which is part of tem-
plate meta-programming)exploits the compiler to pass expressions as function arguments
[120, 121]. This usually means that operator overloading is used to overwrite the default
behavior of the compiler to postpone the evaluation of an expression to a user-defined
moment. In other words, instead of performing the actual evaluation of an expression,
intermediate code is created that wraps the expression on a higher level of abstraction
for later evaluation. The Gpu++ development system also uses this approach extensively,
hence, the technique is described in much more detail in chapter 4.

The idea of using “expression templates” for GPU programming was first mentioned
by McCool and Heidrich in the context of texture shaders in 1999 [82]. From a technical
point-of-view, the presented API was designed as an intermediate layer for shader tree
generation, located between the high-level texture shader specification and the low-level
rendering API. McCool and Heidrich presented several ideas for the high-level specifica-
tion, including shader compilers and the “expression template” approach. Based on this
work, McCool enhanced the API and created the Smash library (“Simple Modeling And
SHading”) [79]. This API was a non-hardware-accelerated testbed for low-level single- and
multi-pass graphics concepts. In parallel, the aforementioned concepts were improved and
McCool introduced the first version of Sh, based on the Smash testbed, in 2002 [83].
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2.3.1 Sh and the RapidMind Development Platform

The Smash testbed – developed at the University of Waterloo – was experimental, not
hardware accelerated, and important features were missing, e.g. only a limited subset
of OpenGL was supported and no “render-to-texture” functionality was available. This
changed in 2004, when Sh addressed real graphics accelerators for the first time [81, 101].
As a result, the Sh language was slightly downgraded, due to the limited instruction set
of the available GPUs (e.g. data-dependent control constructs, and missing data types).
Note that the Smash API still existed as a thin intermediate layer in the Sh framework,
but different targets were addressable using separate back-ends of the Smash layer.

While Sh pioneered embedded GPU programming, it still was graphics-oriented, i.e. it
was in-between the visual and the algorithmic workflow of chapter 1 (it addressed a single
developer with knowledge in both – graphics and software engineering). Furthermore, the
integration into C++ has been criticized, due to the massive use of macros and the lack of
object-oriented features (e.g. polymorphism and inheritance) [32]. The development of Sh
has been stopped in 2006, mainly because it evolved into a commercial product.

The RapidMind Development Platform (RMDP) is the commercial successor of
the Sh library that has evolved in two significant ways: It no longer is graphics-oriented
and it also supports the Cell Broadband Engine as a target processor [80]. This makes
it an attractive development platform for GPGPU programming. Unfortunately, most of
the aforementioned C++ issues still exist, e.g. the use of macros to embed the language, the
compilation of programs cannot be manually controlled, shader programs are not passed as
classes – it still is not possible to derive shader programs from existing implementations or
to use polymorphism – and the binding of parameters does not conform to common C++

argument passing. Furthermore, the developer is responsible for all optimizations – similar
to Sh, because the RMDP does not include any strategies for run-time optimization.

2.3.2 PeakStream Platform

A comparable commercial product is the PeakStream Platform that also uses the
“expression template” approach for embedded programming of the GPU [96]. However, in
contrast to other solutions, graphics hardware is optional, as long as the main processor
supports the streaming extension command sets SSE2/SSE3. Unfortunately, the software
is not yet made public and therefore no further information is available.

The PeakStream Platform currently works on Linux and extends the GCC or In-
tel compilers. Such a coupling is required, because this software introduces own compiler
pragmas and additional debugging information. Consequently, debugging and profiling the
GPU-based code is fully supported. Furthermore, new types are natively built-in, which
actually makes the PeakStream Platform an own programming language (section 2.2). The
used programming model is based on “data parallelism” similar to the SIMD approach of
ISL in section 2.1.1, i.e. special arrays (Arrayf32 and Arrayf64) are combined with high-level
operations to create new arrays. As a consequence, there is no explicit kernel synthesis.
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2.3.3 Accelerator

A similar programming model is used in the Accelerator library, which is the second pro-
gramming library for graphics hardware from Microsoft – beside the graphics-oriented
DirectX HLSL [116]. While Accelerator is distributed as a library and does not
actually use the “expression template” technique to embed into a host language, it inte-
grates into most of the languages available as part of the .NET framework (e.g. C#). The
common .NET just-in-time compilation generates CPU- or GPU-based code at run-time.

Similar to the PeakStream Platform, Accelerator does not support kernel syn-
thesis, but uses special array types (so-called“data-parallel arrays”) for GPU-based compu-
tations. Unfortunately, data-parallel arrays are different to normal memory arrays, because
they lack of specific features (e.g. aliasing, pointer arithmetic, and the access of individual
array elements). Therefore, a time-consuming explicit conversion is required each time
the developer wants to share data between CPU and GPU. Currently, the Accelerator
library is a research project and does not allow to be used in commercial development.

2.4 Comparison Chart

Table 2.1 gives a detailed overview of the aforementioned approaches and the features they
support – including architectural features, portability, and the used programming model.
The more features the language supports, the better the GPGPU software development.

Features Cg GLSL Brook CUDA CTM Sh RMDP Acc. Gpu++

General-Purpose No No Yes Yes Yes No Yes Yes Yes

Embedded Lang. No No No No No Yes Yes n/a Yes

Object-Oriented n/a n/a No No No No No No Yes

Cross-OS Yes Yes Yes Yes No Yes Yes No Yes

Cross-GPU Yes Yes Yes No No Yes Yes Yes Yes

Direct Access No No No Yes Yes No No No No

Kernel Synthesis Yes Yes Yes Yes Yes Yes Yes No Yes

Array Data-Type No No Yes Yes Yes Yes Yes Yes Yes

Optimization Yes Yes Yes Yes n/a No No No Yes

Non-Commercial Yes Yes Yes Yes Yes Yes No Yes Yes

Active Develop. Yes Yes No Yes Yes No Yes Yes Yes

Table 2.1: Comparison of the presented GPU-based development systems (and Gpu++).
PeakStream is not included, due to the lack of available information. Object-Oriented
means, that inheritance and polymorphism work for kernel programs, and Kernel Synthesis
means that kernel programs are specified explicitly (i.e. not using “data-parallel arrays”).



Chapter 3

Concepts

The Gpu++ development system has been designed to simplify the implementation of
general-purpose computations on the GPU. As shown in chapter 1, this also includes the
abstraction of GPU-specific techniques, terms and patterns. Otherwise, despite a nice
programming interface it would still be required to be an expert in computer graphics and
graphics hardware to implement non-graphical algorithms on the GPU. In other words,“the
fewer technical details about the GPU and computer graphics, the better for GPGPU”.

But this cannot be done to the maximum, due to the differences that exist between GPU
and CPU. Such differences are the main reason that some algorithms run much faster on the
graphics hardware than on the main processor. A full abstraction of the GPU therefore
inevitably leads to a theoretical construct, a proof-of-concept without a practical value.
Therefore, the Gpu++ development system has not been designed to hide all differences
between the CPU and the GPU architecture, but to abstract the most important features
by generic concepts that common C++ developers are able to learn in a short time.

This chapter is about the five concepts that are relevant for GPU-based development
using the Gpu++ system. Each of these concepts falls into one of the following categories:

Fundamental – Only two of the concepts are fundamental – the application life-cycle of
section 3.1 and the streaming paradigm of section 3.2. Developers have to be familiar
with these concepts, because they significantly affect the design of Gpu++ programs.

Optional / Optimization – The other concepts are optional – the vector processor in
section 3.3, computation frequencies in section 3.4 and array access in section 3.5. In
fact, developers are able to implement algorithms in Gpu++ without further knowl-
edge of these concepts. While this leads to adequate results, there is significant po-
tential for further optimizations. To create the most efficient code with the Gpu++

system it is inevitable for the developer to be familiar with all of these concepts.

The remaining section 3.6 clarifies the consequences of the aforementioned concepts by
presenting a list of GPU-based requirements. Even though the reader might be familiar
with programming concepts for the GPU, it is strongly recommended to read the sections
of this chapter, due to new terms and definitions that are used in the Gpu++ system.
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3.1 Application Life-Cycle

The life-cycle of a common application can roughly be divided into four stages – design,
implementation, compile-time, and run-time. While the first and second stages both are
independent of the target environment, the third and fourth stages are platform-specific,
i.e. the compiler generates an executable for a dedicated target that can only be executed in
this environment.1 In the context of C++ applications, the CPU is“known”at compile-time
and it is “used” at run-time.

But if also graphics hardware is used, there are actually two processors – the CPU
and the GPU. While most parts of the application are compiled for and executed on the
CPU, other parts are compiled for and executed on the GPU. Consequently, there are
two compile-time stages and two run-time stages – one for the main processor and one
for the graphics processor. The situation becomes even more challenging, because there
is no unified GPU architecture, i.e. there is no unified GPU instruction set. In fact, each
family of GPUs uses its own proprietary instruction format – which is encapsulated in the
graphics library. This leads to the obscure situation that there is no way to fully compile
a GPU-based program “in advance”, because the target graphics hardware is unknown.

While multiple compile-time and run-time stages might be advantageous for the differ-
ent developers of a visual workflow, they significantly hinder the single-developer algorith-
mic workflow (see chapter 1). There are two reasons that may lead to confusions – the
absence of a clear nomenclature and the overlapping of the different processor stages. For
instance, it sounds and it feels confusing that “a compile-time constant of the GPU can be
a run-time variable of the CPU”. To avoid irritation, the following definitions of the life-
cycle stages are used (excluding the processor-independent “design” and “implementation”)
– figure 3.1 presents a graphical representation:

CPU-based compile-time – The full application is compiled to the specific CPU archi-
tecture, including “intermediate code” for embedded GPU processing. While CPU-
based parts are optimized, no optimizations are applied to the GPU-based routines.

CPU-based run-time – The created executable is launched on the target mmain pro-
cessor. While the CPU-based code cannot be changed anymore, the behavior of the
GPU-based routines can be effected using CPU-based run-time variables.

GPU-based compile-time – This stage is performed at CPU-based run-time, when
GPU-based code is processed for the first time. In this stage the GPU code is created,
optimized, translated and uploaded to the available graphics processing unit.

GPU-based run-time – This stage is also performed at CPU-based run-time, when a
specific GPU routine is executed. It launches the GPU-based code (that has been
created and uploaded before), which then performs all GPU-based computations.

1The target environment is dependent of the programming language – e.g. Java generates code for a
virtual machine, while the target environment for C++ programs usually is a specific CPU. For the sake of
simplicity, the term “CPU” is used as a synonym for all target environments in the remainder of this work.
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GPU

CPU Run-TimeCompile-Time

Compile-Time Run-Time

Figure 3.1: The life-cycle stages of an application that works on both – CPU and GPU.
The first two stages (design and implementation) are not shown, due to their hardware
independence. Note that compile-time and run-time overlap for the different processors.

3.2 Streaming Paradigm

Graphics hardware has impressively evolved over the years, as shown in figure 1.1. This
leads to the question, why all the optimizations on the graphics processor cannot also be
done on the main processor. Where is the main difference between the CPU and the GPU?

Computations on the GPU can be parallelized much more efficient than CPU-based
programs. In fact, state-of-the-art graphics hardware contains more than 100 unified com-
putation units [90]. Graphics hardware initially was designed to accelerate the color com-
putation of pixels on the screen. For common visual algorithms, like texture mapping or
local illumination, such computations are independent from other pixels, i.e. a pixel can
be computed without the (intermediate) results of other pixel computations. As a matter
of fact, this independence of data allows the graphics hardware to compute a large set of
pixels simultaneously – current GPUs are able to compute up to 24 pixels in parallel [90].

Such a parallelization scheme is known as stream processing, which means in general:
given a set of input data (the so-called stream), a series of compute-intensive operations
(the so-called kernel) is applied to each element of the stream. On the graphics hardware
the stream is the “vertex list” or “input texture”, and the kernel is known as “shader” [122].
Stream processing has been known in scientific computing before – a very popular streaming
approach is the Imagine stream architecture developed at the Stanford University [103].
Furthermore, the streaming paradigm slowly finds its way to the design of next generation
CPUs, as can be seen for the latest Cell and Itanium microprocessors [52, 84].

This concept is crucial, because it leads to most of the performance-boost of the GPU
compared to the CPU. As a consequence, the streaming paradigm is fundamental in the
Gpu++ development system. However, because the term “stream” may be misunderstood
as a one-dimensional data container, the following definitions are used:

Array – Arrays are equivalent to “streams” – they contain a set of elements. However,
developers might be confused by this term, because streams are usually limited to one-
dimensional data sets, while arrays can be also of higher dimensions. Furthermore,
reading from such containers looks and feels like reading from memory arrays.



18 CHAPTER 3. CONCEPTS

Figure 3.2: The region (blue) specifies the elements of an array (red dotted squares) that
are computed by a kernel. Elements outside the region (gray circles) are not touched.

Kernel – A kernel is a series of commands that compute a value, which is then written to
an output array. The computation may depend on the individual elements of several
input arrays. Note that a kernel program is executed on an output array, i.e. the
specified kernel is applied to each element of the array it has been executed on.

Region – A region confines the elements of an array, i.e. it is a“mask”that determines the
elements that are computed by the given kernel. Regions also can be used for input
arrays, to specify the array elements that should be used as inputs for the kernel.

Figure 3.2 illustrates, how a kernel is applied to some array elements that were specified
by a region. The default case applies the kernel program to all elements of an array.

3.3 Vector Processor

Computer graphics is about vectors. The processing of geometries, the computing of colors,
such computation heavily involves vectors – in the three-dimensional space, on the two-
dimensional screen, by addressing one-, two- or three-dimensional textures, computing
three- or four-dimensional colors (with transparency as the fourth component). Hardware
that accelerates graphics computations has to address this special algebra.

As a consequence, a major difference between GPU and CPU is its “data scalarity”, i.e.
while a single instruction on the CPU usually manipulates a single data value, a single in-
struction of the GPU usually acts on multiple data entities simultaneously. This technique
is classified as single instruction, multiple data (SIMD), while the CPU instruction set
is classified as single instruction, single data (SISD) [37].2 Processor architectures based
on the SIMD approach – so-called vector processors – are known in scientific computing
since the 1960s. The GPU is a very small vector processor, because an instruction is per-
formed on four scalars at most. In contrast, the Connection Machine of the early 1980s
computed hundreds and thousands of scalars with a single instruction [118].

2Today almost all CPU designs include SIMD extensions, e.g. Intel’s MMX, SSE, and SSEx, AMD’s
3DNow, or IBM’s AltiVec. However, the core processing of these CPUs is still done via SISD commands.
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In other words, for a main and a graphics processor with the same core and memory
speed, a dedicated algorithm theoretically runs up to four times faster on the GPU due
to its vector architecture. While this is a rare case that cannot be generalized, many
algorithms can be restructured to make partial use of the SIMD approach on the GPU.

This concept is optional, because Gpu++ tries to find an optimal assignment of the
vector components for a given kernel program using the vector fusion approach of section
6.2.1. It does not make a difference, if the developer uses the vector processor abilities of
the system or not – internally, each vector component is treated as a separate equation that
is merged with the other equations in a final stage. This results in acceptable performance.
However, there are three reasons why the “vector processor” concept is recommended in
GPU development anyway: 1) the vector processing paradigm may change the design of the
kernel program, which leads to an implementation that can be optimized more efficiently,
2) to reduce GPU-based compile-time, a heuristic is used for merging vector instructions,
which works best if the developer gives some “hints”, and 3) the implementation of a kernel
might be easier to understand and to maintain when using the vector processor concept.

It should be noted that there is an alternative way to interpret the GPU as a vector
processor: On a higher level of abstraction, a single call of a graphics API function invokes
the recomputation of the complete frame-buffer [97]. However, this thesis uses the term
“vector processor” to describe the small scale parallelism of the most basic GPU vector
type of today’s graphics hardware – the four-component vector. The aforementioned large
scale parallelism has been explained in section 3.2 using the “streaming paradigm”.

3.4 Computation Frequencies

A computation frequency indicates “how often” a computation is performed in a larger
context – the more often a task is done, the higher its computation frequency. This term
usually is used in combination with the “direction” of computations, where the output of a
single low-frequency computation is used as input in multiple high-frequency computations.

Developers are accustomed to this concept in their everyday work, e.g. using precalcu-
lations, where a complex sub-expression is computed once to be reused many times in the
actual algorithm. While computations at lower frequencies might take more time, they
also reduce the execution time of higher frequencies that are performed more often. Hence,
computation frequencies may lead to optimized time and memory requirements for the
algorithm, e.g. computations done at compile-time are available for free at run-time.

The paradigm of computation frequencies has been introduced to graphics hardware
and shading languages by Proudfoot et al. as part of Stanford’s Real-Time Shading
Language [99]. A typical dependency-chain of computation frequencies in computer
graphics is: scene→ object→ vertex→ geometry→ edge→ scanline→ pixel.3

Note that there might be less or more computation frequencies, depending on the context.

3Underlined frequencies are programmable on today’s GPUs: vertex is programmable since 2001, pixel
became programmable in 2002, and geometry programming started in 2006 with the nv80 chip set [90].
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The context of the aforementioned frequency-chain is computer graphics, which seems
to be inappropriate for general-purpose computations. As a consequence, the Gpu++

development system defines its own chain of the following four computation frequencies:4

Compile – Expressions that can be evaluated at GPU-based compile-time belong to the
compile computation frequency. The inputs are taken from CPU-based run-time
(i.e. constants and variables that have been evaluated by the CPU-based parts of the
application) and the result of this computation is passed to following frequencies.

Execute – Expressions that can be evaluated before the GPU program is executed fall
into the execute computation frequency. The input arguments can change between
distinct executes, but they stay constant for all array elements. This includes all
CPU-based constants and variables, as well as results from the compile frequency.

Region – The region computation frequency evaluates all expressions that depend on
the passed regions, e.g. any linear expression that uses the array element position as
its input. As before, the inputs are taken from lower frequencies (i.e. compile and
execute), while the expression result is passed to the last frequency.

Element – Finally, the element computation frequency evaluates the remaining expres-
sions. Input arguments are the results of previous computation frequencies, as well
as elements of input arrays. The result of these expressions is the final result of the
overall computation, and therefore, it is stored in the elements of the output array.

The concept of “computation frequencies” is optional, because many algorithms can be
implemented on the GPU without further knowledge if this paradigm. However, especially
the use of “type qualifiers” (section 4.2.3) requires a brief understanding of this concept.

3.5 Array Access

Similar to CPU-based arrays, where an index addresses a specific element, GPU-based
arrays can be read within a kernel program by using a position. However, while the index
for CPU-based arrays is an integral, the GPU-based position is a floating-point value. This
leads to the following two differences: First, each array dimension is scaled to the range
[0 . . . 1], e.g. the fifth element of a one-dimensional array of size 20 is accessed by using
position 5/20 = 0.25. Second, it is possible to access an interpolated element that lies
“in-between” two array elements, e.g. position 0.251 results in a different values than 0.249.

By scaling the array dimensions to the range [0 . . . 1] and using interpolation for “in-
between elements”, the kernel program has been made independent of the actual array size.
In fact, GPU-based arrays are abstracted to continuous functions that are defined for the

4Note that these computation frequencies are defined for kernel programs only. As mentioned before,
there are additional CPU-based computation frequencies that are not included in the above list.
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Figure 3.3: Available interpolation schemes to read array elements within a kernel program:
a) nearest neighbor and b) linear interpolation. The left illustrates the weighting functions
for neighboring elements. The same 10 × 5 array is shown in the middle for the different
interpolation schemes. The right shows the the intensity values of the center row as a graph.

unit range. This forces the design of kernel programs to be generic, i.e. kernels can be used
with arrays of arbitrary resolutions. However, this concept leads to two issues:

Elements outside the range – Developers can choose between clamping the position
to the range [0 . . . 1] (i.e. positions larger than the upper bound are set to 1.0 and
positions smaller than the lower bound are set to 0.0) or infinitely repeating the range
(i.e. only the fraction of the position is used).

Interpolation scheme – Developers can choose between nearest neighbor that returns
the element that is nearest to the given position, or linear interpolation that computes
a new value by linearly interpolating the array elements (e.g. if position p lies 40% on
the way between element e1 and element e2, the value ep = 0.6e1 + 0.4e2 is returned).
See figure 3.3 for a comparison of the schemes.

Please note that these issues are relevant only for reading from an array. In contrast, writing
array elements is always done within the unit range and without applying interpolation.

It might be useful to access the same array in the same kernel with different read-access
properties. As a consequence, the properties are stored in an object separately from the
array, which is called the sampler. Multiple samplers can be associated to the same array,
where each sampler may have different strategies for handling the range and interpolation.
As a matter of fact, an array is always accessed through a sampler object within the kernel.

Please note that the linear interpolation scheme can be exploited for memory access
optimizations, because a single read command returns the linear combination of two ar-
ray elements. This approach is noticeably faster than performing two distinct reads of
neighboring pixels (without interpolation), due to its native support in graphics hardware.
There are numerous general-purpose computations, where this technique leads to a notice-
able increase of speed-performance – examples can be found in sections 7.1.2 and 7.1.3.
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3.6 Requirements

While there are plenty of algorithms that benefit from their implementation on the graphics
processing unit, others may not. The algorithm and its computational workflow need to
fulfill the architectural qualifications of the graphics hardware to result in a significant
performance gain. Some of the requirements are rooted in the architectural design of the
graphics hardware, while others are founded in the Gpu++ development system.

Ideally, all GPU-based requirements are accomplished by the GPU-based implementa-
tion, however, some prerequisites can be evaded, i.e. algorithms often can be redefined to
cooperate with the aforementioned concepts. For instance, the classic sorting algorithms
(like Quicksort) are usually inappropriate to be implemented on the GPU, but stream-
friendly sorting perfectly fits into the algorithmic requirements – see chapter 7.3.

Conceptional Requirements

The following list of requirements directly derives from the aforementioned fundamental
concepts, i.e. the stream paradigm and vector processing. Relaxing such requirements
would lead to a (partial) architectural redesign of the graphics processing unit:

Non-Sequential Output / Scattering – This means that all elements of the output
array are computed (except the elements not covered by the output region) – there
is no easy way to specify an “output modulo” that forces Gpu++ to compute only
every second or third output element. However, such a static pattern can usually be
avoided by restructuring the algorithm or using regions. Far more problematic is the
data-dependent case, where the kernel result is written to an output position that
depends on the result itself (this is called scattering). For instance, when computing a
histogram the element spectrum is divided into buckets and the algorithm computes
the element count for each bucket. The sequential algorithm goes through all n
elements ei and increases the value at output position Q[ei] via scattering (where
Q is the quantization of the input spectrum). Unfortunately, there is no efficient
implementation for histogram computations on graphics hardware [88, 36].

Limited Element Dependencies – Computations that rely on previous computations
may cause a massive performance loss. As a rule-of-thumb it can be said that: “the
more dependencies, the slower the implementation”. For instance, imagine the all-
prefix-sums algorithm that computes the sum of all previous array elements, i.e. the
first output element in a row is r0 = 0, while the second is r1 = 0 + r0, and the nth
output element is rn = r0 + r1 + . . . + rn−1. The sequential implementation uses a
temporary variable t = 0 that is raised by ri for all elements i in a row, but such vari-
ables are not available on the GPU. While there are GPU-based implementations for
similar algorithms, CPU-based solutions usually run noticeably faster [53]. However,
there are a variety of techniques to overcome this restriction, e.g. reductions or loop
swapping, where inner loops are flipped with outer loops – see section 7.2 [18].
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Data-Dependent Output Size – This means that the output size of an algorithm de-
pends on its input arguments. In fact, the size of the output is specified in advance
by creating the output array. Executing the kernel program on a given array will
not change its size, therefore, it cannot depend on the input content. For instance,
imagine an algorithm that collects all n input values above a certain threshold, i.e.
the output size varies from zero (all elements below the threshold) to n (all elements
above the threshold). This problem is usually solved by introducing empty numbers
that are returned instead of “nothing” [92]. Please note that the introduction of
geometry shaders eliminates this restriction for future GPUs [90].

Data-Dependent Workflow – This is similar to the previous property, but means that
different code is executed, dependent of the input content. While this is awkward
within a single kernel program, it becomes almost impossible when spanning over
multiple kernels, i.e. the output of kernel A effects the code that is executed in kernel
B (e.g. different array elements are read). For instance, most sequential sorting
algorithms fall into this category, because the result of a comparison effects the input
that is used in the next comparison (which repeats over and over) – see section 7.3.

Hardware Requirements

The upcoming list of requirements is rooted in practical considerations of the graphics
hardware vendors, such as the reduction of production costs. Relaxing such requirements
only leads to small changes in the architectural design of the graphics processing unit:

Data Size – One of the major differences between the CPU and GPU is the amount of
memory that they can access. The benchmark system used for the performance eval-
uation in chapter 7 is equipped with 16 GiBytes of main memory and 768 MiBytes
of graphics memory. Furthermore, the arrays can have a size of at most 8192 ele-
ments for each dimension. Both restrictions hinder the use of graphics hardware for
processing large data, like in the medical domain, where a medical data set with a
size of 5123 single-precision floating point intensity values requires 512 MiBytes of
memory – and “processing” usually means that there are at least two arrays (one for
the input and one for the output). However, such restrictions can be avoided via
bricking, where the data set is divided into subsets of moderate size [68].

Precision – Computational precision is a crucial issue in scientific research and there is a
vast number of algorithms that require special care in this context. Current graphics
hardware supports floating point values of up to 32 bits, which is equivalent to the
C++ type float. However, this does not automatically mean that all computations
are done with this precision. In fact, there are operations that might be performed
with less accuracy, like trigonometric functions – but this differs between GPUs. Tt
is recommended to create precomputed look-up-tables if high precision is crucial, but
this might drastically decrease performance. In addition, there are techniques that
virtually extend the precision of floating-point values to 64 or 128 bits [117].
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GPU++-Based Requirements

The following list contains requirements that derive from the software architecture of the
Gpu++ development system. While some GPU-based features can be used in low-level or
high-level shading languages, Gpu++ hides them to simplify its programming model:

Basic Run-Time Flow-Control – There are several flow-control approaches used in to-
day’s graphics hardware: The most basic approach for conditions is predication, where
both sides of the branch are evaluated and then one of the results is discarded based on
the conditional boolean value [93]. In MIMD branching, different computation units
can follow different paths through the kernel program. Finally, in SIMD branching,
all active computation units must execute the same instruction at the same time,
resulting in a hybrid solution of predication and MIMD branching. The Gpu++

development system does not support MIMD or SIMD branching, because the con-
ditional C++ statements (e.g. if and while) cannot be overridden. But predication
is supported by the commands min(), max(), select() and threshold().

No Graphics-Dependent Features – While computer graphics hardware was designed
to accelerate computer graphics computations, the Gpu++ development system ab-
stracts this graphical paradigms for the sake of generality. As a result, some of the
graphics-dependent features cannot be addressed via Gpu++, like the z-Buffer, the
early z-Test and occlusion queries [12]. GPU-based implementations that require
such features may run significantly slower with the Gpu++ development system.

There are numerous other restrictions, e.g. amount of temporary registers that can be used
in a kernell program, maximum size of shader programs, the amount of textures that can
be accessed by a kernel program, and the maximum number of environment variables.
However, in contrast to the aforementioned restrictions, such limitations change radically
between generations of graphics hardware and will become obsolete in the near future.



Chapter 4

The Expression Graph

Many of the GPU-based programming languages that have been presented in chapter 2
(e.g. GLslang, Brook and Cg) are “string-based”, i.e. the kernel program definition is
specified in a text-string or file that is transformed into an internal representation using a
dedicated compiler. Because such programming systems fully control the complete compi-
lation process, the internal data structure is usually designed to integrate all language- and
hardware-specific features and enables fast processing during compilation, e.g. for optimiz-
ing the GPU-based code. However, string-based languages slow down the development of
GPGPU applications, due to the separation of CPU- and GPU-based source code.

A different approach is the “embedded definition” of the kernel program, like in Sh
and the RapidMind Development Platform, where the C++ language is “extended”
to create the internal data structure. While there is no theoretical limit in the design of
the internal data structure, the aforementioned embedded approaches use compile-time-
efficient data structures that lack support for on-the-fly optimizations. Other “embedded
approaches”, like the Accelerator library or the PeakStream software, apply algebraic
operations on complete arrays, avoiding explicit kernel synthesis [96]. While this is an
intuitive scheme, it does not allow to exploit the full power of today’s GPUs.

The internal data structure of the Gpu++ development system was designed to combine
the aforementioned advantages of an embedded , graphics-independent and explicit
kernel program definition that supports on-the-fly optimizations and exploits all
computation stages of the graphics processing unit.

This chapter is about the resulting internal data structure, which is a directed acyclic
graph that represents the complete kernel program. The novel features of this data struc-
ture are described in detail in section 4.1. However, because the kernel program is embedded
in the normal C++ source code of the host-application, the creation of the data structure
is of special interest and is extensively explained in section 4.2. In contrast to other GPU-
based programming approaches, several advanced optimization strategies are performed on
the internal data structure – which requires a very efficient processing infrastructure for
the graph: thus, section 4.3 presents novel improvements of the well-known visitor pattern.
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4.1 Internal Representation

In computer science, it is common to represent mathematical expressions, and even com-
plete computer programs, by using a graph. The most simple graph type that can be used
is a tree, where all the leaf nodes represent constant values, while all the inner nodes rep-
resent operations that are performed on these constant values. Figure 4.1a shows a simple
expression tree. By recursively traversing the tree, from the leaf nodes to the root node,
each inner node can be replaced by the result of the operation on its child nodes, until
there is only one node left – which represents the result (4.1b-e). This is called evaluation.

In 1984, Robert Cook was the first who used trees to represent shading equations
during rendering – since then, most shading languages have used similar data structures
for internal shader representation [24]. However, while a tree can be used to represent
complete programs, it is a sub-optimal for programs that generate intermediate results and
store them in temporary variables – “temporaries” cannot be represented by a tree.

More generally, a graph that represents a complex expression (i.e. a complete program)
needs to be a directed acyclic graph (DAG) – for any vertex v, there are no non-empty
directed paths beginning and ending on v [27]. This definition allows temporary variables,
but also avoids “circularities”, i.e. expressions cannot use their own result as input. In fact,
a directed acyclic graph is a generalization of a tree, where subtrees can be shared in a
global context, which means that partial results are used as input more than once in the
expression (the root nodes of such subtrees are the aforementioned temporary variables).

Most of the existing GPU-based shading languages use a DAG (or similar data struc-
tures) as their internal representation of the kernel program (except Sh and the Rapidmind
architecture that both use a treelike structure with “a list of tokens” at each inner node
[101]). However, the DAG used in the Gpu++ system differs by two unique and novel
concepts – vector decoupling and the unified kernel definition – that will be explained in
sections 4.1.1 and 4.1.2. Furthermore, while features like “embedded creation” (section 4.2)
and automatic “type qualifiers” (section 4.2.3) have been introduced separately by other
GPU-based languages, only the Gpu++ development system contains them all.
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Figure 4.1: The mathematical expression “sin((1.0− 0.3)(0.5 + 0.6))” represented by a tree
(a), and the stepwise evaluation of the expression using a bottom-to-top traversal (b)-(e).
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4.1.1 Vector Decoupling

The expression graphs of other GPU-based programming languages usually map the un-
derlying graphics hardware architecture directly to the graph nodes, i.e. that an addition of
two three-component vectors is represented as a single add node with two three-component
vectors as its inputs. While this significantly simplifies the compilation processes, it has
two major drawbacks: 1) Developer have to be experienced in using a vector processor, and
2) there is no automatic combination of individual operations – or it works sub-optimal.

In contrast, the Gpu++ development system decouples the component-wise operations
in the expression DAG, e.g. the aforementioned sum of two three-component vectors is
translated to three individual add nodes, each adding a single component of the first vector
with the corresponding component of the second vector. Even further, vector operations
like cross() result in three nodes, each computing a single component of the result vector.
This novel vector decoupling approach enables optimizations on a significantly finer gran-
ulation – optimizations can be applied to single vector components instead of complete
vectors. Furthermore, it does not make any difference whether the developer is familiar to
a vector processor or not, because the expression DAG only represents scalar operations.

This novel approach only works in combination with an efficient vector fusion algorithm
that reverses the vector decoupling at the end of the optimization stage – while vector
decoupling is trivial, the vector fusion of individual instructions is an advanced task. The
Gpu++ system uses an efficient approach that is explained in section 6.2.1.

4.1.2 Unified Kernel Definition

The expression DAG in the Gpu++ development system contains expressions for all com-
putation stages of the GPU, i.e. the represented kernel program may span over several
computation frequencies (like the vertex and the fragment unit).

This is significantly different to most of the other GPU-based programming approaches,
where the kernel program is explicitly bound to a specific computation frequency. For
instance, the shader code in Sh is either associated to “gpu:vertex” or “gpu:fragment” and
GLslang and Cg work similar. Other GPU-based programming languages (like Brook,
PeakStream, and Accelerator) make only use of the graphics hardware’s fragment
processing stage. Both approaches lead to sup-optimal results: Either the computational
power of the GPU is not fully exploited, or the developer is forced to split his GPU-based
code into parts for fragment and vertex processing, which is nontrivial in many cases.

In contrast, the unified kernel definition of the Gpu++ development system abstracts
the low-level graphics hardware architecture by hiding the specific computation stages.
Instead to burden the developer with the decision of which kernel operation is executed on
which GPU computation stage, the expression DAG is automatically partitioned during
the optimization stage – see section 5.2.2. As a consequence, all relevant GPU-based code
is clustered in a single kernel program, resulting in significantly reduced code complexity.
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4.2 Embedded Creation

As mentioned before, the internal kernel representation is usually created using a dedicated
parser. Similarly, the Gpu++ development system also uses a parser: the one from the C++

compiler. This is achieved by embedding own language constructs into the C++ language.

Note, that the word “embedding” is used in the meaning of “seamlessly integrating”,
hence, “embedded expression graph creation”actually means“the creation of the expression
graph is seamlessly integrated into the C++ language”. The developer does not see a
difference between writing expressions that will be computed by the CPU and writing
expressions that will be processed on the GPU. Unfortunately, the compiler does not know
the GPU nor the DAG structure. To exploit its parser the following detour is taken:

While the C++ compiler cannot be used directly to create the expression graph, it
can be used to create intermediate code that will creates the graph when executed.

Ad-hoc polymorphism1 is used to create such “intermediate DAG creation code”, i.e. new
class types are introduced and operator overloading is used to change the implementation
of arithmetic operations that are applied to these types (such as“+”, “*”, and“<”) [111, 112].
In fact, this technique is “syntactic sugar”, i.e. it is an addition to the C++ syntax that does
not affect its expressiveness – but makes it “sweeter” to use: operator overloading allows a
familiar notation, where custom data types look like native built-in types.

For instance, consider a simple system that stores values as strings in the class value.
Furthermore, consider the following overloading of the sum operator (“operator +”):

1 value operator + (value const & a, value const & b)

2 {

3 std::strstream out; // use string-stream

4 out << "(" << a.get_string() << "+" << b.get_string() << ")"; // concatenate

5 return value(out.str(), out.tellp()); // create output from string

6 }

While the C++ expression “value r = value(3) + value(4);” looks like a typical alge-
braic equation to the software programmer, the resulting instance r encapsulates the string
“(3+4)”instead of the string“7”. In fact, the expression was not“evaluated”at compile-time,
but intermediate code was created that generates the resulting string at run-time.

This approach is common to create internal data representations in many domains,
such as in compiler design or linear algebra [86, 65]. While the technique was adopted to
computer graphics and shading languages by McCool and Qin as part of the Sh language,
it has not been used to create an expression DAG but a plain instruction list [83, 81, 101].

1There are three types of polymorphism in the C++ language: First, static polymorphism is used in
templates that are created at compile-time. Second, dynamic polymorphism is based on inheritance at
run-time, where a function call may differ dependent on the derived classes. Finally, ad-hoc polymorphism
is used to execute different functionality for different input argument types – usually done via overloading.
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4.2.1 Custom Data Types

From a conceptual viewpoint, the new custom data types represent the data primitives
available on the GPU, like vectors (section 4.2.1) and matrices (section 4.2.1). In practice
however, the custom data types encapsulate DAG nodes and the overloaded operators
connect such nodes together. Therefore, whenever the developer applies operations on the
following custom data types, the expression DAG is “silently” created in the background.

Vectors

The major data type natively supported by the GPU is a vector of up to four vector
components (or scalars) that usually represents colors, positions in space, and texture
coordinates (see section 3.3). As a consequence, the major class types of the Gpu++

system are the vector classes “vec[1|2|3|4]” (i.e. “vec1” represents a one-component vector,
“vec2” is a two-component vector, etc.).2 Operators have been overloaded as follows:

class vec2 {

vec2 operator - () const; // unary subtraction

vec2 operator + (vec2 const & v2) const; // binary addition

vec2 operator * (vec2 const & v2) const; // binary multiplication

... // same for unary +, and binary -, /, +=, -=, *=, /=

};

Please remember that the implementation of an overloaded operator does not compute
the result of the operation, but inserts a new node to the expression DAG that represents
the operation together with its operands. The mathematical operators (i.e. “+”, “-”, “*”, “/”,
“+=”, “-=”, “*=”, and “/=”) are overloaded for all reasonable vectors and vector combinations.
Additionally, the assignment operator“=”duplicates all components of a vector. A complete
list of the overloaded operators and the supported constructors can be found in the language
reference in appendix A.

Note that, until now, all mentioned mathematical operations are performed component-
wise, which is plausible for addition and subtraction, but might be confusing for multiplica-
tion and especially for division. For instance, the component-wise multiplication of vectors
v = (2,−4, 3) and u = (−1, 2, 3) leads to u× v = (−2,−8, 9).

In addition to such component-wise operations, vector operations are also supported.
However, vector operations are not implemented via operator overloading, but using func-
tion calls, e.g. “dot()” performs a vector dot product and “cross()” computes the cross
product of two three-component vectors. The function reference in appendix A.4 gives an
overview of all function call operations available in the Gpu++ development system.

2For the sake of simplicity, only scalars of type “float” (32-bit floating point) are supported. This is not
a limitation, because on current and near-future GPUs, computations are only performed in this precision.
However, Gpu++ can easily be extended to support additional scalar types, like “int” and “bool”.
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A very popular GPU-based scheme to address vector components is swizzling, which
stands for the extraction, rearrangement, and optional duplication of vector components.
This operation can be used without speed-costs on most graphics processors (or at least it
is very “cheap”). Therefore, it is heavily used in GPU-based programming. While swizzling
might lead to more efficient programs, it may also result in code that is hard to understand,
test, and maintain. Nevertheless, swizzling is an excellent optimization technique (when
used efficiently) and therefore is supported by the Gpu++ development system.

Because swizzling is not natively supported by the C++ language and non-graphics
developers may be unfamiliar with the concept, its language integration has to be “com-
patible” to the C++ specification. In fact, this is not the case for the existing syntaxes:

Cg, GLslang – Swizzling is indicated by appending a period (“.”), followed by up to four
symbols, each representing a component of the source vector, e.g. pos.xy returns a
vector containing the first (x) and second (y) component of the vector pos. This syntax
can be emulated in C++ by exploiting member fields of special types with according
names – reading and writing to the fields is bypassed to the vector object they belong
to. While this approach is compatible to most shading languages, it has major
drawbacks: complex intermediate classes and further operator overloading need to
be introduced and each vector instance requires at least 1.4 Kbytes of memory3.

Sh – Swizzling is implemented by overloading the function operator “()” that can be in-
voked with up to four component indices, e.g. pos(0,1) is equivalent to pos.xy in
Cg/GLslang. While this is easy to implement, the approach lacks an important
C++ feature – it is not type-safe. For instance, it does not make sense to access the
third component of a two-component vector, but even commands like bad=pos(8) are
compiled without compile-time errors (but they are detected at run-time). Further-
more, the syntax leads to ambiguities when writing to a swizzled vector, e.g. the
statement “v4pos(0,0)=v2pos” is ambiguous, because it is undefined whether the first
component of v4pos is replaced by the first or the second component of v2pos.

The swizzling syntax of the Gpu++ development system is a combination of the afore-
mentioned approaches: While class methods are used to safe memory and keep the system
simple, a specific class method exists for each swizzling combination, named after the
scheme of GLslang. For instance, the aforementioned example is written as pos.xy().
This approach is type-safe (pos4d.zz()=pos2d leads to an error at CPU-based compilation),
space efficient (no run-time memory allocation), and time efficient (optimized at compile-
time). Furthermore, this syntax is intuitive for by both – non-graphics C++ developers (due
to the strict compatibility to the C++ specification style) and those with graphics hardware
experience (due to its similarity to the swizzling syntax of other shading languages).

3There are up to four destination components that address one of the four source components, which
makes a maximum of

∑4
n=1 4n = 340 member fields for a four-component vector. A member field consumes

at least four bytes of memory, leading to approx. 1.4 Kbytes for each vector instance. In contrast, using
class methods instead of member fields leads to a single function-table that is only required at compile-time.
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An implementation detail for swizzling regards temporary objects, i.e. unnamed objects
that are silently created on the stack by the compiler when evaluating expressions (during
standard type conversion, argument passing, and function return) [112]. Consider a naive
vector class implementation that stores pointers to the DAG nodes directly in the class
instance. The following source code manipulates vector components via swizzling:

1 vec3 v3one(1.2, -2.0, 3.14); // v3one = (1.2, -2.0, 3.14)

2 vec3 v3two(0.0, 0.1, 0.2); // v3two = (0.0, 0.1, 0.2)

3 v3two.zx() = v3one.xy(); // What happens in here?

Unfortunately, the first and third component of v3two have not changed in line 3, because
v3one.xy() was written to the“temporary object”that was returned by v3two.zx(). Because
this temporary object is a deep copy of the first and third component of v3two, nothing
actually happens. This issue has been solved by introducing a new data structure – a
container – that can be shared between vector instances, even of different diversity (i.e.
vec1 and vec3 can share the same container instance).

Matrices

In addition to vectors, matrices are natively supported by the Gpu++ development system
through the mat[2|3|4] classes – i.e. 2×2 matrices are represented by mat2, 3×3 matrices by
mat3, and 4×4 matrices by mat4. In fact, the matrix classes are implemented as lightweight
wrappers around the aforementioned vector classes, e.g. mat4 encapsulates four vec4 vectors.

The wrapped vectors represent the matrix columns and can be accessed directly using
the array subscript operator []. Combined with the array subscript operator of the vertex
class, individual components can be accessed using the syntax “m[i][j]”, where i is the
column vector of the matrix and j is the row within that column vector. Unfortunately,
this syntax does not allow to check vector and matrix dimensions at CPU-based compile-
time, but only at GPU-based compile-time (i.e. an exception is thrown). Nevertheless, this
syntax is recommended, due to the high compatibility to most other matrix APIs.

Similar to vectors, the common mathematical unary and binary operators are over-
loaded for the matrix classes – negation, addition, subtraction, and multiplication. How-
ever, in contrast to the aforementioned vector classes, matrix multiplication uses the correct
mathematical definition, i.e. it does not work component-wise. Furthermore, the operators
for addition, subtraction, and multiplication of vector-with-matrix and matrix-with-vector
have been implemented (where vectors and matrices need to have the same dimension).
Finally, addition, subtraction, multiplication, and division with scalars (i.e. one-component
vectors of type vec1 and floats) are supported for n× n matrices.

Note that Gpu++ provides additional matrix functions, such as the component-wise
matrixCompMul() function. A list of all overloaded operators can be found in section A.2 of
the language referenc and all matrix functions are presented in section A.4.
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4.2.2 Data Managing Classes

While custom data types (that enable the embedded creation of a directed acyclic graph
using “ad-hoc polymorphism”) have been introduced, additional classes are required that
manage these data: the resulting expression DAG is wrapped in the kernel class and the
input and output arrays are accessed using the array and sampler classes.

Kernel Programs

The kernel template class encapsulates an expression DAG (that represents a kernel pro-
gram). It covers the DAG’s life-span from creation to GPU-based execution:

Creation – A custom kernel program is created by deriving an own class from the kernel

template class and overriding the pure virtual method kernel::element(). From a
conceptual viewpoint, this method is called for each element of an array (where the
kernel is executed on). However, from the implementation point-of-view, this method
is called just once – to create the expression DAG as part of the compilation process.
Thus, changing input variables may require a recompilation of the kernel (except, if
the input variables are qualified as “uniform” or “attribute” – see section 4.2.3).

Optimization – The next step of GPU-based compilation is that the previously created
expression DAG is automatically optimized. This includes advanced optimization
techniques such as algebraic simplifications, substitution of complex or unsupported
operations, elimination of “dead code”, and elimination of common sub-expressions.
See chapter 5 for a full list of optimization strategies using in the Gpu++ system.

Translation – The final step of the compilation process translates the optimized DAG to
a “back-end specific format”. While this is not done in the kernel class directly, it
provides the connection to the back-end via its template parameter. For instance, to
use the OpenGL low-level back-end to access the GPU, the developer derives its own
kernel program from “kernel<opengl>”. Depending on the selected back-end, further
optimizations (e.g. vector fusion and register renaming) are applied.

Execute – After the DAG is compiled and transferred to the graphics hardware, it only
can be executed. In fact, executing the kernel program is triggered by calling an
array class method – this will be explained in the next section. However, the main
logic of this operation is located in the kernel class, including: the synchronization of
all input parameters (i.e. uniform variables, attribute variables, samplers, and input
arrays), activation of the kernel program, binding of the output array, and rendering
the region into the output array.

The kernel class can be used like any other class in the C++ language – which includes
object-oriented features like polymorphism and inheritance. For instance, the developer
is able to derive an intermediate class that provides further GPU-based functionality, like
advanced operations for linear algebra or an implementation of the Fast Fourier Transform.
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Arrays and Samplers

Kernel programs are executed on the elements of an array, i.e. the computations are per-
formed on each element in the same way. The array[1|2|3] class can have up to three
dimensions, where each element of the array can have up to four components of a native
C++ type, e.g. array2<float,3> specifies a two-dimensional array that contains elements of
three floating-point values, and array1<int,1> represents a one-dimensional array of inte-
gers. Arrays can have arbitrary resolutions4 that can be changed at any time. Note that
currently, only two-dimensional arrays are supported as output arrays.5

Conceptually, an array is a single block of memory that can be accessed by the main
and the graphics processor, e.g. output arrays are usually computed by the GPU (using a
kernel), and then read out by the CPU. In fact, an array instance manages two memory
blocks (one in the main memory and one in the graphics memory) and synchronizes them
when needed. Note that this may involve time-consuming data transfer between the differ-
ent memories. To guarantee efficient memory handling and optimal transfer rates between
the CPU and GPU, several speedup techniques are used in the Gpu++ array classes:

Delayed Allocation – Blocks of main memory are allocated when they are accessed on
the CPU for the first time. This is optimal for “temporary” arrays that are used only
for GPU-based computations and that are never accessed on the main processor.

Shared Memory – Blocks of memory are shared between multiple arrays (via the assign
operator) as long as the developer performs read-only access. If there is CPU-based
write access to such shared memory, it is deep-copied to a new main memory block.

Lazy Up- and Download – Data is only transferred between the main and the graphics
memory if the following is true: 1) the data is “dirty”, i.e. the content on the CPU
and the GPU is not synchronized, and 2) the data is accessed by the developer.

Late Binding – Back-end binding of main memory is performed at GPU-based run-time,
because the used back-end is not known in advance. This allows to use the same array
instance with different back-ends in parallel – see section 6.3.

Kernel programs are executed on arrays by calling the class method array2::execute(),
passing the kernel program as the first argument. Please note that the kernel programm
will be implicitly compiled, if kernel::compile() was not called before.

In addition, the stream operator “«” is overloaded and has the same effect as calling
execute() – which means “a « k” equals to “a.execute(k)”. This syntax simplifies the han-
dling of arrays and kernel programs and visually demonstrates their relationship.

4Actually, the resolution of arrays is limited by the used graphics back-end and the graphics accelerator
that is available at run-time – in fact, most graphics hardware does not support a resolution larger than
4096 elements. Furthermore, a resolution that is not a two-exponent may slow down program execution.

5In theory, it is also possible to execute kernel programs on one- and three-dimensional arrays, however,
in practice, the ARB_framebuffer_object extension of the OpenGL back-end does not work properly.
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Arrays are used as output arrays to store the computation result of a kernel program.
Furthermore, they also can be used as input arrays, which means that array elements can
be read from inside a kernel program. However, array elements cannot be read directly
due to the issues described in section 3.5 – an intermediate class, the sampler, is required.

The sampler[1|2|3] template class stores three properties: First, an array instance is
attached (note that array1 corresponds to sampler1, array2 to sampler2, etc.). Second,
the wrapping property specifies how read positions ”outside” the range [0 . . . 1] are handled
(clamp vs. repeat). And third, the interpolation property effects how positions“in-between”
elements are interpreted (nearest vs. linear) – see section 3.5 for detailed information.

The same array can be attached to multiple samplers, and the same sampler can be
used in multiple kernel programs. The only sampler functionality, that can be used within
a kernel program, is the array subscript operator“[]”, i.e. s2input[v2pos] accesses the array
that is attached to sampler s2input at position v2pos. Note that the sampler parameters
(i.e. wrapping and interpolation) can be changed between several GPU-based execute calls.

There is a major limitation with arrays: It is not allowed to use the same array as input
and output for the same kernel program instance. However, this might be necessary from
time to time, e.g. for complex computations or so-called “feedback effects”. The common
approach is the ping-pong technique, where one array is used for the input and one is used
for the output and that arrays are swapped after each kernel program execute [46].

Regions

Regions were introduced in section 3.2 as a “sequence of coordinates” that forms a closed
polygon in the output array. Kernel programs are applied to all elements that are covered
by such an “output region”, while all other elements of the output array are left untouched.

The region class is used to store the aforementioned sequence of coordinates, where
each coordinate is a vector of up to four native C++ types. For instance, an object of type
region<float,2> store two-dimensional vectors of float scalars and region<int,1> encapsu-
lates a list of (one-dimensional) integer values. New coordinates are appended to the back
of the existing sequence via the push() method that allows up to four parameters.

Similar to array objects, region objects can also be shared between multiple kernel
programs and graphics hardware back-ends. In addition, most of the speedup techniques
mentioned in the prior subsection have also been implemented for region objects, including:

• Shared Memory – Memory is shared between multiple regions (for read-only access).

• Lazy Upload – The region data is transferred if GPU is not synchronized with CPU.

• Late Binding – Back-end binding of main memory is performed at kernel execution.

Please note that – in contrast to an array – a region cannot be created or manipulated
by the graphics processing unit. Therefore, “delayed allocation” has not been implemented
and the “lazy mechanism” does not include lazy download of region data.
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4.2.3 Type Qualifiers

Computation frequencies have been introduced as a “tool” for better understanding the
data flow of a program over its life-span – see section 3.4. In addition, computation
frequencies are the foundation of an efficient variable classification scheme that leads to
automatic code optimizations at compile-time. Experienced C++ developers are familiar
with this concept: Type qualifiers – such as const and volatile – are used as a “hint” to
bind variables and expressions to specific computation frequencies. For instance, the const

type qualifier associates the addressed variable with the compile computation frequency,
i.e. expressions that only contain such constants can be evaluated at compile-time.

While the C++ programming language knows two computation frequencies (i.e. CPU-
based compile and execute), the Gpu++ development system knows four additional:
GPU-based compile, execute, region, and element. Therefore, additional type qual-
ifiers are requires to bind variables to the these new computation frequencies. The syntax
for the new type qualifiers has been inspired by the built-in C++ casting operators. For
instance, a 3 × 3 matrix that is associated to the execute computation frequency, is
declared as “uniform< mat3 >” – where the uniform keyword is the Gpu++ type qualifier.

While the concept of type qualifiers is also known in other GPU-based programming
languages, they are only used for type-safety and external bindings, but not for optimiza-
tion. The reason is that other GPU-based development systems usually do not allow kernel
programs to span over multiple computation frequencies. As a consequence, the developer
has to decide what variables (and therefore which part of the code) belong to each compu-
tation frequency. For instance, while there are type qualifiers in Sh, they are “local”, i.e.
they are the same for each computation frequency: temporary, constant, input, and output.
The same approach can be found in other languages, like Cg and GLslang.

In contrast, the Gpu++ development system features a unified kernel definition (see
section 4.1.2) that uses “global” type qualifiers to perform automatic optimizations to the
kernel program – across all the aforementioned computation frequencies.

Uniforms

The uniform type qualifier is used to bind custom data types to the execute computation
frequency, i.e. uniforms have not to be specified at GPU-based compile-time, but have to
be prepared when the compiled kernel program is executed on the graphics processing unit.
This also means that the variable can be changed between distinct GPU-based executes –
without the need for recompilation – by assigning a compatible vector or float.

As all other custom data types in the Gpu++ development system, “uniform variables”
can be shared between multiple kernel program instances, i.e. assigning a new value to a
specific uniform variable will change the behavior of all kernel programs that make use of
the variable. However, uniform variables cannot be “connected”, i.e. assigning a uniform
variable to other uniform variables will lead to a compile-time error. Note that the uniform

type qualifier can be used in combination with vector and matrix classes of arbitrary sizes.
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Attributes

The attribute type qualifier is used to bind data to the region computation frequency,
i.e. attributes change “linearly” between elements of the output array. The aforementioned
linearity depends on a region object (see section 4.2.2). Whenever a kernel program is
executed on an array, the output region specifies the elements that are affected, i.e. only
the elements inside this region are computed. Note that the output region is attached
to the position attribute, which is the only input parameter of “kernel::element()” – the
“position attribute”represents the position of the currently processed output array element.

Regions are attached to attribute variables to control their content over the array, i.e.
the value of an attribute at a specific output position is the linear interpolation of the region
coordinates for that position. Developer can attach custom regions (using the region class)
to custom attribute variables (using the attribute keyword). The attribute type qualifier
can only be specified for vector classes (matrices do not work). Note that the coordinate
count of a region has to be the same for all regions that are used in a kernel program.

4.2.4 Example

The use of the aforementioned custom data types and data managing classes is demon-
strated in listing 4.1 that contains a complete Gpu++ kernel program – a rotated version
of an input image (that is attached to sampler s2input) is created by rotating the out-
put element position v4pos by an angle of v1a (uniform variable). While this listing only
shows the kernel program, the full source code can be found in section B.3. The embedded
creation of the corresponding expression DAG is illustrated line-by-line in figure 4.2.

1 struct foobar : public kernel< opengl > // the kernel uses the OpenGL back-end

2 {

3 sampler2< float, 3 > s2input; // sampler to access an attached input array

4 uniform< vec1 > v1a; // the rotation angle (in radiants)

5

6 virtual vec4 element(attribute< vec4 > const & v4pos) const

7 {

8 vec2 v2rot; // instance to store the rotated position

9 v2rot.x() = v4pos.x() * cos(v1a);

10 v2rot.x() += v4pos.y() * sin(v1a); // compute the rotate x-component

11 v2rot.y() = v4pos.x() * (-sin(v1a));

12 v2rot.y() += v4pos.y() * cos(v1a); // compute the rotated y-component

13 return s2input[v2rot]; // return the element at the computed position

14 }

15 };

Listing 4.1: A simple kernel program that accesses an array element (via sampler s2input)
at position v2rot, which is the element position v4pos rotated by angle v1a. The full source
code is presented in section B.3. The expression DAG creation is illustrated in figure 4.2.
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v2rot

8  vec2 v2rot;

10 . ()+= . ()* ( ); v2rot x v4pos y sin v1a

12  . ()+= . ()* ( );v2rot y v4pos y cos v1a 13  return [ ];s2input v2rot

11  . ()= . ()*(- ( ));v2rot y v4pos x sin v1a

9  . ()= . ()* ( );v2rot x v4pos x cos v1a

v2rot v2rot

v2rot
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Figure 4.2: Embedded creation of an expression DAG is illustrated for the kernel program
of listing 4.1 (full source code is shown in listing B.3), where an input texture is rotated by a
specific angle. Parts of the DAG, that have changed between source lines, are shown orange.
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4.3 Fast DAG Processing

In contrast to other embedded GPU-based languages (like Sh and the RapidMind De-
velopment Platform) a fundamental element of Gpu++’s compilation process is the
optimization of the expression DAG. This includes algebraic simplifications, constant fold-
ing, elimination of common sub-expressions, and back-end specific substitutions – see chap-
ter 5 for details. Applying such automatic DAG optimizations enables the developer to
focus stronger on the actual algorithm, instead of (GPU-) specific implementation details.

Because “optimization” means processing the DAG the Gpu++ development system
offers a generic processing infrastructure that is the foundation for all optimizations, but
also for the translation to the back-end specific instruction format. The expression DAG
class hierarchy (together with its node classes) is a “static” structure, i.e. it is unlikely that
it will be extended by other developers. On the other hand, the set of algorithms that is
performed on the DAG is manifold and may be changed by others. Thus, an adaptation
of the “visitor” design pattern is used as the base for DAG traversal and processing [40].

The visitor design pattern is used, when many distinct and unrelated operations are
performed on the same heterogeneous aggregate structure – this avoids“polluting”the node
classes with such operations [3]. By using the visitor pattern, the abstract algorithmic func-
tionality is moved from the “element” classes to the visitor base class. New algorithms are
implemented by deriving from visitor and overriding so-called element dispatch functions,
where each function is responsible for a specific element type of the aggregate structure.
Furthermore, an iterator class traverses the aggregate structure and calls the appropri-
ate dispatch functions of a given visitor instance. In summary, iterator encapsulates the
actual data structure and how it is traversed, while visitor wraps the actual functionality.

In the case of Gpu++ the aforementioned “aggregate structure” is the expression DAG.
Therefore, the iterator class implements a depth-first recursive traversal of the DAG and
the “elements” are the DAG nodes – see section 4.1. In contrast to the generic design
pattern, the visitor class contains dispatch functions for specific node types that are called
before and after the recursion. While this leads to a stronger coupling between visitor

and iterator, there are no practical limitations. Figure 4.3 illustrates the traversal (and
its dispatch function invocation) of the known expression DAG from section 4.2.4.

Because some of the DAG optimizations are applied multiple times, the visitor and
iterator implementation significantly effects the run-time performance of the compilation
stage (the DAG is processed a total of 14 times during optimization). The Gpu++ devel-
opment system uses two techniques to increase the performance for DAG processing:

• Custom RTTI – The dynamic_cast<> operator is replaced by a more efficient version.

• Visitor Traits – Static polymorphism (i.e. templates) is used for the visitor pattern.

Both speedup approaches are explained in the following sections. Please note that the
Gpu++ implementation of the visitor pattern has the ability to detect changes in the
expression DAG and automatically traverses the new DAG nodes – which allows on-the-fly
optimizations that replace sub-expressions with new nodes.
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Figure 4.3: The expression DAG of section 4.2.1, its traversal by the iterator class in the
Gpu++ development system, and how the dispatch functions of the visitor class are called.
Note that the traversal starts from the “output nodes” a, p, q, and r (i.e. the “get” nodes).

4.3.1 Custom RTTI Mechanism

The common implementation of the aforementioned visitor pattern uses function overload-
ing to distinguish between the different element types of the aggregate structure. But this
does not work for Gpu++’s expression DAG, because the class type of the visited DAG
node is not known at compile-time [112]. While the class type of a specific DAG node can
easily be detected at run-time using the built-in dynamic_cast<> operator, the native C++

run-time type information (RTTI) mechanism is known to be slow in many cases [59]. As a
consequence, the Gpu++ development system has implemented its own RTTI mechanism.

The DAG node class hierarchy is very simple – one root class (i.e. node), nine first-level
category classes (e.g. nodeValue, nodeBinarySlot, and nodeTransitVarying) and 42 second-
level operation classes (e.g. opAdd, and opCross). Such a sparse and static class hierarchy
allows efficient RTTI by providing the following information for each DAG node:

• The static constant class_id is created as follows: Bits 0–7 represent the first class
hierarchy level (i.e. node) and are set to 0x01, bits 8–15 represent an index for the
category classes that are directly derived from node (e.g. nodeBinarySlot), and bits
16–23 represent an index for the operation classes (e.g. nodeBinarySlot<opSub>).

• The static constant class_mask is created accordingly: For node bits 0–7 are set, for
category classes bits 0–15 are set, and for the operation classes bits 0–23 are set.

• The virtual method id() for each DAG node class returns the static constant class_id
of that class, for instance, nodeFoobar::id() returns nodeFoobar::class_id.

Finally, to test at run-time if pointer pNode is derived from DAG node class NODE, the
conditional statement “(pNode->id() & CLASS::class_mask) == CLASS::class_id)” needs to
be true. This statement is encapsulated in the template class node_cast<> that can be used
as a direct replacement for the built-in dynamic_cast<> operator. Figure 4.4 represents the
class hierarchy of all expression DAG nodes using the Unified Modeling Language [105].
The resulting speed-performance improvements are illustrated in table 4.1 on page 43.
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Figure 4.4: A partial UML class diagram of the expression DAG node inheritance hierarchy.
The hierarchy consists of only three inheritance levels (i.e. root, category, and operation) and
therefore allows a very efficient mechanism for custom run-time type information.

4.3.2 Efficient Use of Templates Using Visitor Traits

The visitor pattern is implemented via template classes, i.e. a visitor-derived class is the
template parameter for the iterator template class. As a consequence, the supported
dispatch functions are known at compile-time. In other words, the compiler knows what
DAG node types are important in the DAG traversal. While this results in fairly optimized
code (because the compiler can inline the dispatch function definitions that are provided
by the visitor-derived class), there is more potential for compile-time optimizations.

By analyzing the algorithms that are performed on the expression DAG, a crucial
observation can be made: Most of the visitor-derived classes override just a small subset
of dispatch functions. Furthermore, the iterator class performs the same operations for all
node types: the custom RTTI mechanism is used to determine a specific DAG node type
and the according (inlined) dispatch function is called – whether it contains the default
implementation or has been overridden in the visitor-derived class. In other words, due
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to the small subset of overridden dispatch functions, the default implementation (which
actually does nothing) is called most of the time. As a matter of fact, the iterator class
handles ten distinct node types, and calls fifteen according dispatch functions of the visitor

class – even if a only single dispatch function has been overridden by the visitor-derived
class.6 Obviously, much of the run-time is “wasted” for handling expression DAG nodes
with “empty” dispatch functions.

The aforementioned issue could be solved by a compile-time approach that detects
vital DAG node types and the corresponding dispatch functions of the visitor-derived
class. Ideally, non-overridden dispatch functions should result in exclusion of any relevant
code, like the RTTI-based node type detection. The Gpu++ system uses a novel approach
to achieve such “visitor-dependent compilation” by extending the “type traits” technique.

In brief, the type traits technique is used to establish associations between pieces of
metadata [3]. A prominent example is the “Boost Type Traits Library” that mainly
provides boolean-valued meta-functions the answer questions about the fundamental prop-
erties of native C++ types at compile-time, e.g. “boost::is_pointer<TYPE>::value” is “true”
if “TYPE” is a pointer, and “false” otherwise [1]. In other words, “type traits” provide the
compiler with type-specific properties. Such an approach can be extended to shift the
dynamic polymorphism of the visitor pattern to static polymorphism that is available at
compile-time: the visitor-derived class contains the dispatch functions together with a
set of visitor traits that answer the question if specific functions are available or not. As
a consequence, there is no need for a virtual base class anymore, because all important
information is stored in the visitor traits, which is part of the visitor-derived class.

To get a better understanding of the approach, the classic implementation of the visitor
pattern is compared to “visitor traits”. As an example, the source code that handles the
nodeBinarySlot node is examined (this node represents a binary slot operation). First, the
visitor base class defines the default dispatch functions – that actually do nothing:7

1 class visitor {

2 ...

3 virtual node * preBinarySlot (nodeBinarySlot * pNode) { return pNode; } // before recursion

4 virtual node * postBinarySlot(nodeBinarySlot * pNode) { return pNode; } // after recursion

5 ...

6 }

The presented dispatch functions – default or overridden – are called by the iterator tem-
plate class, whenever a DAG node of type nodeBinarySlot is visited during the expression
DAG traversal. The relevant code in the iterator class looks like this:

6The node types are: unary/binary/ternary slot operation, unary/binary vector operation, uniform and
varying transition, constant, attribute, and uniform. Each of the nodes types result in a dispatch function
call, where each “operation node” results in two calls (one call before and one after the recursion).

7In fact, the default implementation does something: it returns the node pointer that was passed as an
argument. This tells the iterator class to keep the expression DAG as it is. In contrast, if the dispatch
function returns a different node pointer, that node replaces the original node in the expression DAG.
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1 template<class VISITOR> class iterator {

2 VISITOR m_visitor; // the visitor is a class member

3 ...

4 void recursive(node * pNode) { // recursive expression DAG traversal

5 ...

6 nodeBinarySlot * pBiSlot = node_cast<nodeBinarySlot>(pNode); // custom RTTI mechanism

7 if(pBiSlot) {

8

9 node * pPreNewNode = m_visitor.preBinarySlot(pBiSlot); // call "pre" dispatch function

10 if(pNode != pPreNewNode) { /* replace the old node by a new one */ }

11

12 recursive(pBiSlot->access1stOperand()); // invoke recursion for the 1st operand

13 recursive(pBiSlot->access2ndOperand()); // invoke recursion for the 2nd operand

14

15 node * pPostNewNode = m_visitor.postBinarySlot(pBiSlot); // call "post" dispatch function

16 if(ptrNode != pPostNewNode) { /* replace the old node by a new one */ }

17 }

18 ...

19 };

Finally, consider class visitorTest that is derived from visitor and encapsulates the
actual algorithm, i.e. that the postBinarySlot() dispatch function has been overridden.

This example now is adapted to use the visitor traits approach: The major difference is
that the base class visitor becomes obsolete, because all necessary polymorphism informa-
tion is stored in the “traits structure” traits – that is part of the “derived” visitor class. For
instance, the aforementioned dispatch function requires two traits – has_binary_slot_pre

and has_binary_slot_post.8 This leads to the following visitorTest class implementation:

1 class visitorTest {

2 ...

3 struct traits {

4 ...

5 static bool const has_binary_slot_pre = false; // function "preBinarySlot()" NOT provided

6 static bool const has_binary_slot_post = true; // function "postBinarySlot()" provided

7 ...

8 };

9 ...

10 node * postBinarySlot(nodeBinarySlot * pNode) { /* finally, the actual implementation */ }

11 }

In addition, the iterator class has to be adapted to make use of the polymorphism infor-
mation stored in the visitor traits structure – in here, the information is used to decide
whether a dispatch function is called or not. The relevant parts of the source code are:

8The Gpu++ development system makes use of a third trait, has_binary_slot_recursive, that is used to
avoid an unnecessary recursion for the operands of the binary slot operation. This leads to a further speedup
if all aforementioned visitor traits are false, because the RTTI detection code is skipped completely.
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1 template<class VISITOR> class iterator {

2 ...

3 void recursive(node * pNode) { // recursive expression DAG traversal

4 ...

5 nodeBinarySlot * pBiSlot = node_cast<nodeBinarySlot>(pNode); // custom RTTI mechanism

6 if(pBiSlot) {

7

8 if(VISITOR::traits::has_binary_slot_pre) {

9 node * pPreNewNode = m_visitor.preBinarySlot(pBiSlot); // call "pre" dispatch function

10 if(pNode != pPreNewNode) { /* replace the old node by a new one */ }

11 }

12 ...

13 if(VISITOR::traits::has_binary_slot_post) {

14 node * pPostNewNode = m_visitor.postBinarySlot(pBiSlot);// call "post" dispatch function

15 if(ptrNode != pPostNewNode) { /* replace the old node by a new one */ }

16 }

17 }

18 ...

As can be seen, the visitor traits features the same functionality, but leads to optimal
code, due to the compile-time polymorphism. In fact, a visitor class, that does not provide
any dispatch functionality leads to an iterator class that does not perform any processing.

4.3.3 Performance Results

The aforementioned acceleration techniques for DAG processing have been benchmarked
using the “Smear × 4” kernel program of the filtered back-projection (see section 7.5.2).
Table 4.1 illustrates the basic implementation of the visitor pattern (using native C++

RTTI) in comparison to the custom RTTI approach and the novel visitor traits technique.

visitor Implementations Classic impl. Custom RTTI RTTI & Traits

Embedded Creation 204.7 ms 135.4 ms 106.2 ms

Algebraic Simplifications 409.1 ms 100.0 ms 78.40 ms

Algebraic Reassociation 180.4 ms 74.62 ms 58.53 ms

Com. Sub-Expression Elimination 396.7 ms 338.0 ms 265.1 ms

Frequency Transitions 187.5 ms 111.5 ms 87.46 ms

Substitutions (OpenGL) 130.7 ms 26.08 ms 20.46 ms

Overall 1509 ms 785.6 ms 616.2 ms

Table 4.1: Run-time performance for expression DAG processing of the “Smear× 4” kernel
program (see section 7.5.2) using the C++ run-time type information, custom RTTI, and the
novel visitor traits approach. The optimization techniques are presented in chapter 5.
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Chapter 5

Kernel Optimizations

The aforementioned embedded DAG creation leads to a one-to-one representation of the
kernel program’s source code. As a consequence, the DAG is not optimized. While the C++

compiler has optimized the CPU-based code, there are two issues that disable optimizations
for the GPU-based kernel program: First, the ad-hoc polymorphism of the new vector and
matrix types restricts arithmetic simplifications (even for compile-time constants), i.e. the
sum of the two compile-time constants in “vec1(3)+vec1(5)” does not leat to “vec1(8)” at
compile-time. Second, the “application life-cycle” concept of section 3.1 draws a distinction
between CPU- and GPU-based constants, i.e. CPU-based run-time variables may be used
as GPU-based constants. Therefore, kernel optimizations based on these variables cannot
be evaluated at CPU-based compile-time by the C++ compiler.

While the aforementioned optimization issues do not exist in “string-based” shader
languages like Cg, GLslang and Brook (such systems feature dedicated compiler tools
for the GPU-based kernel program source code), they could lead to sub-optimal kernel
programs in embedded shading languages like Sh and the RapidMind Development
Platform [77, 101, 80]. However, no embedded shading language has addressed these
issues before. Instead, optimizations of any kind have been imposed to the developer.

The Gpu++ development system differs significantly from other embedded approaches
by performing many DAG optimizations automatically. This includes well-known arith-
metic simplifications, like algebraic reassociation (section 5.1.3), common sub-expression
elimination (section 5.1.4) and substitution (section 5.2.1). In addition, section 5.2.2 de-
scribes the efficient partitioning of computation frequencies, which is a novel approach to
abstract the different processing units of the GPU (i.e. vertex and fragment unit). This
technique allows a single kernel program to be distributed on the GPU’s processing stages.

Note that most of the optimizations in section 5.1 are optional and can be disabled
to speedup the GPU-based compile-time performance. However, manual optimization of
CPU-based run-time variables is very difficult and leads to inefficient code in most cases.
This could result in a drastic slowdown of the kernel program’s run-time performance,
which then might lead to an overall performance-decrease of the application.

45
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5.1 Expression Optimization Strategies

The optimization of expression graphs is known from disciplines like compiler design and
computer algebra systems [86, 128]. While the optimization strategies of this section are
well known in other domains, they are novel in the context of embedded shading languages.
Hence, a brief description of each optimization strategy is given, as well as references that
contain more detailed information. Please note that more advanced techniques exist to
optimize the expression DAG [28]. However, they have not been integrated, due to their
minimal benefit in comparison to the slowdown of GPU-based kernel program compilation.

5.1.1 Basic Optimizations

One of the most evident optimizations is dead code elimination (DCE), where sub-
expressions that are irrelevant to the result of the complete expression are removed. This
happens very often in practice. For instance variables are overwritten in conditional state-
ments or a node is replaced by another node during optimization. DCE is automatically
performed via reference counting and smart pointers : whenever a “reference count” of a
DAG node becomes zero the node is “dead code” and is removed from memory [23].

A further basic optimization is constant folding (CF), which has been illustrated for
a tree in figure 4.1. Ideally, the full expression DAG can be evaluated – which is the case
for kernel programs that only uses constant variables. Nevertheless, even each evaluated
sub-expression increases the run-time performance. For instance, the expression DAG that
represents the computation “3.0 * (2.0 - (b + sin(0.5))) * 2.0” is automatically opti-
mized to “6.0 * (1.52057446 - b)” by the Gpu++ development system.

5.1.2 Algebraic Simplifications

Some expressions can be simplified by replacing them with an equivalent but more efficient
expression, e.g.“1*i+0”can be simplified to“i”[86]. While developers generally do not write
such expressions, they may silently be generated after macro expansion or conditionals.
Simplifications can be classified in one of the following three categories (see table 5.1):

Sign Beautifying – Each negation node (i.e. unary subtraction) is checked for children
that also represent negations, e.g. “-(-i)”. In this case, both negations are removed
from the DAG. Additionally, all positive nodes (i.e. unary addition) are also removed.

Identity Values – Whenever the visitor reaches a basic arithmetic operation, it checks
if one of the two children is an identity value (i.e. “0.0” or “1.0”). Many of these
operations can be simplified to a constant value or a single equivalent DAG node.

Sign Uplifting – For basic arithmetic operations, where one (or both) of the children is
a “negation”, the sign can be uplifted, i.e. it is made the new parent of the operation.
This may lead to node reductions, either directly or in subsequent traversal passes.
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◦ ◦ a ◦ ( ◦ a) 0 ◦ a a ◦ 0 1 ◦ a a ◦ 1 −a ◦ b a ◦ − b −a ◦ − b
+ a a a a 1 + a a+ 1 b− a a− b −(a+ b)

− −a a −a a 1− a a− 1 −(a+ b) a+ b b− a
× 0 0 a a −(a× b) −(a× b) a× b
÷ undefined

0 a÷ 0 1÷ a a −(a÷ b) −(a÷ b) a÷ b

Table 5.1: Arithmetic simplifications for operator “ ◦ ”. Some expressions cannot be opti-
mized (gray), while others may lead to an instruction count reduction in subsequent stages
(blue). While the first two columns relate to sign beautifying, the next four columns represent
the “identity value” optimizations. Finally, the remaining columns relate to “sign uplifting”.

A further algebraic simplification relates to the select() command (which is defined
component-wise as “select(a,b,c)=(a<0)?b:c” – see section A.4): if the 1st parameter rep-
resents a GPU-based constant value and it is negative, the operation is replaced by the 2nd

parameter, otherwise the operation is replaced by the 3rd parameter. However, if the 1st

parameter is uniform or attribute the select() command cannot be optimized.

5.1.3 Algebraic Reassociation

Expressions and sub-expressions that only contain constant values are usually handled by
“constant folding” that has been explained in section 5.1.1. But CF does not work for
expressions with “partially constant” children, e.g. the expression “(a + C1) - C2” contains
the constant values C1 and C2and the variable a. This expression cannot be evaluated via
CF, because C1 and C2 do not share the same parent node in the expression graph.

Such expressions are simplified by algebraic reassociation, where the expression is rear-
ranged to gather constants on the same DAG level [16]. In fact, this“grouping of constants”
rearranges the aforementioned example to “a + (C1 - C2)”, which can be further simplified
by a subsequent constant folding step, leading to “a + C3”. Without loss of generality, only
constants that are spread over two levels in the expression DAG need to be checked, be-
cause the recursive nature of the DAG traversal resolves more levels automatically.1 All
possible two-level constellations are presented in table 5.2.

While the same technique may be applied to expressions that mix addition/subtrac-
tion with multiplication/division, this does not lead to any reduction of DAG nodes. For
instance, the expression “(a + C1) * C2” could be rearranged to “(a * C2) + (C1 * C2)”.
However, constant folding leads to “(a * C2) + C3”. There is no optimization, because the
operation count has not decreased and the constant value count stays the same.2

1This does not work if the constant folding of the “group of constants” is postponed to a subsequent
traversal. Instead, the constants are evaluated directly within the implementation of the visitor class.

2Even worse, such a rearrangement could be disadvantageous; C1 might not be eliminated via DCE,
because it is used somewhere else in the DAG – hence, three constants need to be stored, instead of two.
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◦ • (a ◦B) • C (B ◦ a) • C C • (a ◦B) C • (B ◦ a)

+ + a+ (B + C) a+ (B + C) a+ (B + C) a+ (B + C)
− + a+ (C − B) (B + C)− a a+ (C − B) (B + C)− a
+ − a+ (B − C) a+ (B − C) (C − B)− a (C − B)− a
− − a− (B + C) (B − C)− a (B + C)− a a− (B − C)
× × a× (B × C) a× (B × C) a× (B × C) a× (B × C)
÷ × a× (C ÷ B) (B × C)÷ a a× (C ÷ B) (B × C)÷ a
× ÷ a× (B ÷ C) a× (B ÷ C) (C ÷ B)÷ a (C ÷ B)÷ a
÷ ÷ a÷ (B × C) (B ÷ C)÷ a (B × C)÷ a a÷ (B ÷ C)

Table 5.2: Grouping of constant values in two cascading binary expressions for the opera-
tions “ ◦ ” and “ • ”. The evaluation of grouped constants (shown in blue) leads to a reduction
of the instruction count and enables additional optimizations in higher levels of the graph.

5.1.4 Common Sub-Expression Elimination

An expression is a common sub-expression (CSE) if it has been computed previously for
the same DAG and the values of the operands have not changed since then. Recomputing
the expression can be eliminated by using the value of the previous computation [22].

Usually, developers eliminate the CSE manually while writing the source code. However,
the greatest source of CSEs is intermediate code generated by the compiler, e.g. array
indexing calculations, CPU-based run-time variables that become GPU-based compile-time
constants, and macro expansions that result in CSEs not apparent in the original source
code. Furthermore, constants, uniforms, and attributes are also common sub-expression
that are automatically reused to save memory resources on the graphics hardware.

Gpu++ uses fingerprints to identify CSEs. A“fingerprint” is a signature that represents
the content of a DAG node without actually evaluating the node. If two fingerprints are
equal, they compute the same expression. As a consequence, two nodes with identical
fingerprints, represent the same CSE and all references to the second node can be replaced
by references to the first node. While many fingerprint functions exist that fulfill the
aforementioned “equality” property, two additional attributes have been considered:

Commutativity – Fingerprints of commutative operations are invariant of the children’s
order. For instance, the fingerprint of “a+b” is the same as fingerprint of “b+a”. In
contrast, “a-b” results in a different fingerprint than “b-a”.

Run-Time Efficiency – The fingerprint function of the Gpu++ development system has
been designed to create fingerprints in constant time. Furthermore, the identity check
is very efficient, because fingerprints differ significantly even for similar expression,
thus, only small parts of the fingerprints need to be compared to check their identity.
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5.2 GPU-Driven Optimizations

While the aforementioned optimization strategies are known from other domains, the tech-
niques in this section are dedicated to the graphics processing unit. Furthermore, the
following techniques are not optimizations by the common meaning of “reducing the count
of expression DAG nodes to speedup the kernel program’s run-time”, but by the mean-
ing of “transformation of the expression DAG to gain better performance”. This includes
the substitution of unsupported operations, because otherwise this would result in a time-
consuming CPU-based emulation.

5.2.1 Substitutions

The substitution optimization replaces “unsupported” operations by (a sequence of) equiv-
alent but supported operations. See figure 5.1 for a graphical illustration of substituting
the “modulus” node in the DAG. Please note that “equivalent” is a theoretical statement.
In practice, the replacement of a single operation by a sequence of operations may lead to
the accumulation of inaccuracies. Furthermore, some operations are replaced by approxi-
mations – e.g. using Taylor series – which leads to additional deviations in precision.

Unsupported operations are specified via unit traits, which is a set of CPU-based
compile-time constants that specify for each DAG operation node whether it is supported
by the back-end or not. Once more, templates are used to create efficient code: the C++

compiler is able to eliminate all managing and substitution code for operations that are
natively supported by the back-end. Consequently, back-ends that support all Gpu++

operations result in empty substitution classes that do not consume memory or time.

There are two sets of traits, because the instructions differ for the GPU’s vertex and
fragment unit. For instance, the OpenGL assembly language supports sin() and cos()

operations in the fragment unit, while they need to be substituted for vertex processing.

All available substitutions for component-wise operations are shown in table 5.3, where
the DAG operation nodes are entitled with the internal Gpu++ name (e.g. “opAdd(a, b)”
represents the“addition of node a with node b”). All operations are defined in section A.4 of
the language reference. Furthermore, substitutions are available for most vector operations.
Note that some fundamental operations cannot be substituted, e.g.“+”,“min()”, and“pow()”.

 

   mod

a a

b b 

a mod b a mod b

 

 

 

 

floor

Figure 5.1: The node representing the “modulus” operation is substituted by a sequence of
new nodes that compute an equivalent result, using the relation “a mod b = a− b× ba/bc”.
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Name of operation Original node Substituted by this sequence of nodes

Division opDiv(a, b) opMul(a, opRcp(b))

Reciprocal opRcp(a) opDiv(1.0, a)

Floor opFlr(a) opSub(opCil(opSub(a)))

Ceil opCil(a) opSub(opFlr(opSub(a)))

Fraction opFrc(a) opSub(a, opFlr(a))

Modulus opMod(a, b) opSub(a, opMul(b, opFlr(opDiv(a, b))))

Linear Interpolation opMix(a, b, c) opMad(opSub(b, a), c, a)

Multiply and Add opMad(a, b, c) opAdd(opMul(a, b), c)

Compare opCmp(a, b, c) opMad(opSge(a, 0.0), opSub(c, b), b)

Greater-or-Equal opSge(a, b) opCmp(opSub(a, b), 0.0, 1.0)

Radiant-to-Degree opRad(a) opMul(a, π/180.0)

Degree-to-Radiant opDeg(a) opMul(a, 180.0/π)

Tangent opTan(a) opDiv(opSin(a), opCos(a))

Natural Exponent opExp(a) opPow(e, a)

Natural Logarithm opLog(a) opMul(opLog2(a), ln(2.0))

Binary Exponent opExp2(a) opPow(2.0, a)

Binary Logarithm opLog2(a) opMul(opLog(a), 1.0/ ln(2.0))

Square Root opSqrt(a) opRcp(opISqrt(a))

Inverse Square Root opISqrt(a) opRcp(opSqrt(a))

Table 5.3: All substitutions that are available in the Gpu++ development system. Op-
erations that are approximated using Taylor series (i.e. all trigonometric functions), or the
Henron algorithm (i.e. square root function) are not shown – see section 5.2.1 for a discussion.

Approximation of Complex Operations

If sin(), cos(), or tan() (together with their inverse versions) are not natively supported
by the back-end, they are approximated by partially evaluating of infinite sum based on
Taylor series [2]. To get adequate results, at least the first six terms of the series need to
be taken into account – table 5.4 gives detailed information about the terms used and the
resulting accuracy. As can be seen, for some operations (especially the inverse functions),
the approximation’s variance is nearly 0.04% compared to the exact definition. Therefore,
the developer is able to increase the number of the Taylor series terms up to 32. However,
if the context demands even better accuracy it is recommended to use an array-based
approach that precomputes the trigonometric values to a look-up-table.

The square root is approximated by evaluating a few iterations of Henron’s algorithm –
sometimes also called Babylonian algorithm [2]. The algorithm converges very fast, hence,
six iterations are used by default (but this can be adapted by the developer).
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Operation Approximation Variance

Sine x − 1
3!
x3 + 1

5!
x5 − 1

7!
x7 + 1

9!
x9 − 1

11!
x11 + 1

13!
x13 4.1× 10−8

Cosine 1 − 1
2!
x2 + 1

4!
x4 − 1

6!
x6 + 1

8!
x8 − 1

10!
x10 + 1

12!
x12 3.5× 10−10

Tangent x +1
3
x3 + 2

15
x5 + 17

315
x7 + 62

2835
x9 + 1382

155925
x11 + 21844

6081075
x13 4.2× 10−4

Arcsine x +1
6
x3 + 3

40
x5 + 5

112
x7 + 35

1152
x9 + 63

2816
x11 + 231

13312
x13 3.5× 10−4

Arccosine π
2
− x −1

6
x3 − 3

40
x5 − 5

112
x7 − 35

1152
x9 − 63

2816
x11 − 231

13312
x13 3.5× 10−4

Arctangent x −1
3
x3 +1

5
x5 −1

7
x7 +1

9
x9 − 1

11
x11 + 1

13
x13 5.6× 10−5

Table 5.4: The expressions used to approximate the trigonometric operations, based on
the first six terms of the corresponding Taylor series. The last column shows variance σ2 in
comparison to the exact evaluation [2]. The input domain ranges are: [−π,+π] for sine and
cosine, [−2π/5,+2π/5] for tangent, and [−1,+1] for arcsine, arccosine, and arctangent [2].

5.2.2 Frequency Transitions

As aforementioned in section 4.2.3, type qualifiers are used to mark a variable as con-
stant input for a specific computation frequency – i.e. uniform variables are constant in the
execute computation frequency, and attribute variables are constant in the region fre-
quency. In addition, computation frequencies are assigned to “processing units”: while the
compile and execute frequencies are both attached to the CPU, the region frequency
is linked to the vertex unit and the element frequency is attached to the fragment unit.

But which operation of the kernel program belongs to which computation frequency?
Or in other words, how is the expression DAG separated into the different frequencies?

Obviously, all operations could be processed in the highest frequency, i.e. the fragment
unit of the GPU. But this is sub-optimal, due to recomputations of values for each ar-
ray element. Alternatively, most of the available GPU-based programming languages (e.g.
Cg, GLslang, Sh or Brook) impose the decision to this questions to the developer. For
instance, Sh avoids type qualifiers for different computation frequencies by introducing
the so-called “compilation targets” gpu::vertex and gpu::fragment. Similarly in GLslang,
where shader programs are attached to the different processing units by using different
OpenGL extensions – ARB_vertex_shader and ARB_fragment_shader. While such an ap-
proach allows finer control of the processing units, it complicates GPGPU significantly.

In contrast, the Gpu++ development system uses the novel “unified kernel definition”
approach (see section 4.1.2) that automatically finds the optimal frequency transitions,
i.e. those edges in the DAG that separate two computation frequencies. Such a “transition
scheme” has been used in the “constant folding” technique to separate the graph into
operations that can be performed immediately on the CPU and operations that need to be
done on the GPU. The used strategy has been very simple: do as much as possible in low
frequencies. For “constant folding” this means that if the operation’s children are constant,
the operation is replaced by the result of its evaluation (which again is a constant value).
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The same strategy can be used for all other computation frequencies: For a frequency
F , traverse “bottom-to-top” from the leaf nodes of the expression DAG to its root and
check for each node if all children are part of F and if the node itself fulfills some criteria
specific to F . If both conditions are true, the node also becomes part of F , otherwise the
edges to the node’s children that belong to F are marked as “frequency transitions”.

Transition From the CPU to the GPU

This section is about uniform transition, i.e. the transition of variables between the ex-
ecute computation frequency (attached to the CPU) and the region computation fre-
quency (attached to the GPU). Note that a “uniform transition” is affected by the uniform

type qualifier, but “affected” does not mean that all edges emanating from “uniform nodes”
automatically become transitions. For instance, if U1 and U2 are both qualified as uniform,
the result of “(U1+U2)” is uniform as well: while the edges emanating directly from U1 and
U2 are no “uniform transitions”, the edge emanating from operator “+” is.

The strategy to find “uniform transition” edges is based on the aforementioned idea: By
traversing“bottom-to-top” from the DAG’s leaf nodes to its root, each node ni is checked to
be part of the execute frequency and is added to FX in this case. Otherwise, a “uniform
transition” is added to each children ci of ni that is part of FX . The algorithm is:

Algorithm 5.1: Find the set of transition edges TX for the execute frequency FX

FX ← ∅;1

TX ← ∅;2

forall nodes ni on a “bottom-to-top” traversal of the expression DAG do3

if ni = constant variable or ni = uniform variable then4

FX ← ni;5

else if ni = operation node then6

if ni 6= opGet and ∀(ci is child of ni) : ci ∈ FX then7

FX ← ni;8

else9

forall children ci of node ni : ci ∈ FX do10

TX ← ci;11

end12

end13

end14

end15

Please note the implementation detail in line 7: The opGet operation (representing array
access) is handled with special care, because it cannot be evaluated on the CPU at GPU-
based compile-time even if all children are constant values. While opGet could be evaluated
in theory, it leads to time- and memory-consuming array transfers between CPU and GPU.
Figure 5.2a shows the uniform transitions for the expression DAG of section 4.2.4.
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(b)(a)

FX
FR

Figure 5.2: The expression DAG from section 4.2.4 is partitioned into the three computation
frequencies and processing stages – CPU, vertex unit of the GPU, and fragment unit of the
GPU. (a) shows the “uniform transition” edges (green) that separate the sub-DAG relevant
to the CPU (red) from the rest (black), while (b) shows the “varying transition” edges (green)
that separate the remaining DAG into vertex unit (red) and fragment unit (black).

Transition From the Vertex Unit to the Fragment Unit

Similar to the aforementioned transition from the CPU to the GPU, the Gpu++ develop-
ment system supports a transition between the different processing units on the graphics
hardware – the so-called varying transition indicates the outputs of the vertex unit used
as inputs for the fragment unit. Such transitions are affected by the attribute qualifier,
but again this does not mean that all attributes in an expression DAG necessarily emanate
“varying transitions” – similar to uniform transitions in the prior subsection.

Please remember that attribute variables are attached to a region, which is a “list of
array coordinates” that are linearly interpolated over the covered area (section 4.2.3). For
instance, the element position v4pos is the linear interpolation of the kernel’s input region.
However, instead of computing the linear interpolation“by hand”, the following property of
the graphics hardware can be exploited: output values of the vertex unit are automatically
linearly interpolated in hardware before they are passed as inputs to the fragment unit.

Therefore, a simple transition strategy is to compute all attribute values on the ver-
tex unit and let the GPU apply the linear interpolation. However, this strategy can be
enhanced, because some mathematical operations are invariant to linear interpolation:
For instance, let Lt(a, b) = a + t(b − a) then it follows that Lt(a1, b1) + Lt(a2, b2) =
Lt(a1 + a2, b1 + b2). In other words, it does not make a difference if the results of two
linearly interpolated attributes are added or the sum of the attributes is linearly interpo-
lated – addition is invariant to linear interpolation. This property can be exploited: Instead
of adding two linear interpolated vertex unit results in the fragment unit, the sum can be
directly computed in the vertex unit and the result is passed as input to the fragment unit.
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Beside fully invariant operations (FIO) – like “addition” and “subtraction” – there are
also partially invariant operations (PIO). PIOs are invariant if some of the input parameters
are constant or uniform. For instance, multiplication is PIO, because it becomes invariant
to linear interpolation if one of its parameters is constant. Another PIO is “division” that
becomes invariant to linear interpolation if the second parameter is constant, but it is
not invariant for a constant first parameter. The other PIOs are “linear interpolation”,
“multiply-and-add”, “comparison”, “vector dot product” and “vector cross product”.

The strategy to find “varying transition” edges needs to keep track of all the aforemen-
tioned issues. This works as follows: There are three set of DAG nodes – FR stores all nodes
that belong to the region frequency, CR stores all constant or uniform transition nodes
(these are “constant” from the fragment unit’s point-of-view) and TR stores the transition
edges. The pseudo-code for the “varying transition” approach works as follows:

Algorithm 5.2: Find the set of transition edges TR for the region frequency FR

FR ← ∅;1

CR ← ∅;2

TR ← ∅;3

forall nodes ni on a “bottom-to-top” traversal of the expression DAG do4

if ni = attribute variable then5

FR ← ni;6

else if ni = uniform transition node then7

FR ← ni;8

CR ← ni;9

else if ni = operation node then10

if ni = FIO and ∀(ci is child of ni) : ci ∈ FR then11

FR ← ni;12

else if ni = PIO and ∀(ci is child of ni) : ci ∈ FR and specific ci ∈ CR then13

FR ← ni;14

else15

forall children ci of node ni, where ci ∈ FR do16

TR ← ci;17

end18

end19

end20

end21

Figure 5.2b illustrates the varying transition strategy for the known expression DAG of
section 4.2.4. It can be seen, that the complete “coordinate rotation” is performed as part
of the region frequency on the vertex unit of the GPU, because the used addition is a
FIO and the used multiplication is a PIO, where one parameter is a constant or a uniform
transition. All “varying transitions” have been detected automatically using algorithm 5.2
and the computed configuration is optimal (i.e. it cannot be further optimized manually).



Chapter 6

Back-End

The expression DAG has been created (chapter 4) and optimized (chapter 5) without any
access to the actual graphics hardware. In contrast, the back-end compiles the graph to
the specific instruction set of the target GPU, i.e. to the shader format of the API.

The back-end design of other GPU-based development systems usually is based on a
“monolithic” approach: The internal data structure is passed to the back-end that encapsu-
lates the creation of the back-end-specific output. While this is reasonable for lightweight
back-ends of non-optimizing systems (e.g. Sh and the RapidMind development platform)
and vectorized approaches (e.g. Cg and GLslang), the back-end stage of the Gpu++

development system performs additional optimizations on the low-level instruction stream.
In this case, a monolithic design leads to massive code duplication for multiple back-ends.
Therefore, back-end processing is separated into the following three stages:

Stream Creation – The expression DAG is traversed to create a “stream” of graphics
API instructions, where each instruction computes an individual vector component.

Optimization of the Stream – The stream of instructions is automatically optimized,
which includes register renaming and the “fusion” of separate vector components.

Transfer Stream to GPU – The optimized stream is used to create a back-end specific
output, which is then uploaded and attached to the GPU through the graphics API.

Only the first and last stages depend on the actual graphics API. Therefore, only these
stages have to be implemented in the Gpu++ back-end, while the stream optimization
stage is reused in each back-end. This approach simplifies implementation of new back-
ends, because only the following is required: 1) a set of custom instructions and registers to
operate on, 2) the unit traits for substitution that have been presented in section 5.2.1, 3)
a dedicated visitor class to traverse the expression DAG and create the stream of custom
instructions, and 4) a thin communication layer dedicated to the specific graphics API.

55
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Sections 6.1 through 6.3 correlate to the aforementioned three stages. The OpenGL
back-end is used as an exemplar implementation, which is based on the OpenGL low-
level/assembler language and therefore is independent of the operating system and the
graphics hardware [12]. However, the aforementioned separation facilitates the fast imple-
mentation of additional back-ends, like the DirectX low-level shader API.

6.1 Creation of the Instruction Stream

While the expression DAG can efficiently be used for processing (e.g. optimization of the
represented expression) it cannot directly be used as input for the “plain” instruction archi-
tecture of a processor platform. In other words, the graphics processor expects a sequential
stream of instructions, instead of a graph-like structure. Furthermore, the generic node
types that are used in the expression DAG usually do not match to the native instruction
set of the GPU (or the API used by the back-end). As a consequence, two tasks are crucial
for the back-end: First, a custom instruction set has to be defined, and second, a stream
of such native instructions needs to be created, using the expression DAG as input.

6.1.1 Custom Instruction Set

The custom instruction set directly maps the native GPU-based shader instructions of the
graphics API to C++ classes. Because the instructions operate on graphics API dependent
variables – so-called registers – the custom instruction set also includes the mapping of
registers. A sequence of instructions is concatenated to build an instruction stream.

From the implementational point-of-view, the aforementioned instruction stream is
stored in an instance of the template class cmdstream<CMD,REG> – where CMD represents the
base class of all custom instructions and REG represents the base class of the register types
natively supported by the back-end. Instructions and registers can be of any kind, as long
as the following methods have been implemented to incorporate with the Gpu++ system:

Vector Fusion – Two methods have to be implemented to support the vector fusion
approach of section 6.2.1: First, CMD::isCompatible() returns true if two instructions
can be combined, and second, CMD::combine() returns the combined native instruction.

Register Renaming – To support the register renaming technique of section 6.2.2, two
further methods have to be implemented: CMD::registers() returns a list of used REG

objects and finally, register renaming is applied using the CMD:mapRegisters() method.

By implementing this very “light” interface, the custom instruction set is fully integrated
into the back-end architecture, i.e. optimizations are automatically applied to the instruc-
tion stream and vector component are fused automatically. In fact, most of the complexity
in back-end implementation is wrapped in “isCompatible()” for “vector fusion”. The most
basic approach is to return false for all instructions, which disables vector fusion.
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Example – The OpenGL Assembly Language

The OpenGL graphics library includes an own powerful string-based high-level shading
language: GLslang (see section 2.1.3). However, a high-level shading language performs
its own compilation and applies own optimizations, which leads to a sub-optimal overall
GPU-based compilation performance. Furthermore, GLslang requires a fourth-generation
graphics processor and is not supported on prior hardware. Therefore, the Gpu++ back-
end is based on the widespread OpenGL assembler language1, which is accessed through
two OpenGL extensions (“ARB_vertex_program” and “ARB_fragment_program” [8, 9]).

The aforementioned extensions provide a very limited set of instructions, and some
of the instructions are not applicable for general-purpose computations or are only par-
tially supported. Table 6.1 shows the set of available OpenGL assembler instructions and
whether they are used in the back-end. Some operations are not fully supported on both
processing units of the GPU. However, the substitution stage (see section 5.2.1) ensures
that such instructions are replaced by equivalent supported instructions.2

The assembler instructions are separated into two main categories: scalar and vector
operations. While vector operations compute all scalars of a vector differently, scalar op-
erations perform the same computation to all vector components. Both main categories
are further divided into five subcategories: instructions that use one or two scalar inputs
(gl::cmdScalarUnary and gl::cmdScalarBinary) and those who use one, two or three vector
inputs (gl::cmdVectorUnary, gl::cmdVectorBinary and gl::cmdVectorTernary). The assem-
bler instruction for a texture fetch (TEX) is emulated as an unary vector instruction.

Furthermore, the OpenGL assembler language supports different types of register vari-
ables: gl::regConstant encapsulates GPU-based compile-time constants, gl::regParameter
represents “uniform transitions”, gl::regInputVertex represents attribute variables, “vary-
ing transition” are encapsulated in gl::regInputFragment, gl::regOutput wraps the output
of a computation frequency, and gl::regTemporary represents intermediate results in the
shader program. While the first five register variable types are affected by “type qualifiers”
and “frequency transitions”, temporary registers are used to store computation results that
stay in the same computation frequency.

There is a missing link between registers and instructions. Instead of raw registers,
instructions use “parameters” as their inputs and outputs. In fact, a parameter is a register
with two (optional) additional information: First, a sign-flag is used for negating the
register, and second, a component mapping is provided to swizzle the register components.
Additionally, parameters are dependent of the instruction category and whether they are
used for input or output, i.e. gl::paramScalarIn represents scalar inputs, gl::paramVectorIn
is used for vector inputs, and gl::paramVectorOut represents all results of an instruction.

1Please note that OpenGL’s low-level shading language is not identical to the native instruction set
of the specific graphics processing unit. The term “assembler language” might be misleading in this case,
because the “low-level” shader code is again transformed (which may also include further optimizations).

2In fact, such instructions are SIN, COS, LRP, CMP, and TEX – that are all supported on the fragment unit
only. However, the only critical instruction is LRP, because it is linear – and therefore may not be shifted
to the fragment unit in the frequency transition stage of section 5.2.2. All other commands are non-linear.
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Unary Scalar
ARL Address Register Load V SIN Sine F
COS Cosine F SCS Sine and Cosine F
EX2 Base-2 Exponential V+F EXP Base-2 Exponential (approx.) V
LG2 Base-2 Exponential V+F LOG Base-2 Exponential (approx.) V
RCP Reciprocal V+F RSQ Reciprocal Square Root V+F

Binary Scalar
POW Exponentiate V+F

Unary Vector
ABS Absolute Value V+F FLR Floor V+F
FRC Fraction V+F KIL Kill Fragment F
LIT Light Coefficients V+F MOV Move V+F
SWZ Extended Swizzle V+F

Binary Vector
ADD Addition V+F SUB Subtraction V+F
MUL Multiplication V+F DP3 3D Dot Product V+F
DP4 4D Dot Product V+F DPH Homogeneous Dot Product V+F
DST Distance Vector V+F MAX Maximum V+F
MIN Minimum V+F SGE Set on Greater or Equal Than V+F
SLT Set on Less Than V+F XPD 3D Cross Product V+F

Ternary Vector
CMP Compare F LRP Linear Interpolation F
MAD Multiply and Add V+F

Texture Fetch
TEX Texture Sample F TXB Texture Sample with Bias F
TXP Projected Texture Sample F

Table 6.1: The instruction set of OpenGL’s assembler language. Most commands work
for vertex (“V”) and fragment (“F”) unit, but some are only supported by one computation
frequency. Note that grayed instructions are not used by the Gpu++ development system,
because of their strong computer graphics focus, such as lighting computations using LIT.

6.1.2 Stream Creation

The instruction stream is created by traversing the expression DAG and converting each
node into a single instruction, which then is appended to the stream. This is done indi-
vidually for each computation frequency: The traversal begins with the output nodes and
creates the instruction stream for the element frequency (i.e. fragment unit). Whenever a
“varying transition” is reached, the instruction stream for the region frequency is created.
Consequently, the traversal stops at “uniform transition” nodes, because everything below
such DAG nodes is computed on-the-fly by the cpu when the kernel program is executed.
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Example – OpenGL Peculiarities

The OpenGL assembler back-end uses a dedicated visitor class (gl::visGenerateCode) to
create instruction streams for the different processing units. However, there are some
situations that requires special care.

Registers in the OpenGL assembler language are rather limited, e.g. registers cannot
be declared as input and output at the same time, and output registers cannot be used
for further computations. To overcome such limitations, the back-end may insert dummy
nodes into the expression DAG, i.e. nodes that actually do nothing but copying its input
to a new output register. Dummy nodes are inserted in one of the following situations:

Negation – The assembler language does not provide a “negation” operation, but all
instructions support implicit negation of input registers – like in MUL r0,r1,-r2 which
represents“r0 = r1(−r2)”. The negation is“for free”in this case, which leads to further
optimizations of the kernel program. However, this does not work for output nodes3.
More precisely, if an output node of the expression DAG represents a “negation”, a
dummy node has to be inserted, which leads to the simulated negation “MOV r0,-r1”.

Bypassing – There are situations, where all kernel computations are done in just one
of the two processing units, and the other unit is bypassed. For instance, writing
the element position to the output array causes only the vertex unit to perform
computations. This means that no instruction is performed in the fragment unit
and the input register of the fragment program is bypassed to its output register.
Unfortunately, in the assembler language, registers cannot be declared as input and
output at the same time. Thus, a dummy node needs to be inserted again.

Illegal Output Slot – The expression DAG can have up to four output nodes, one for
each component of the output vector. This might lead to the situation that one
output node is used to compute a second output node. For instance, in the expression
“return vec4(t,t*2,t+1,t-3)”, the output node of the first component is used as input
for all other output nodes. Unfortunately, a register in the assembler language that is
declared as output, cannot be used as input for subsequent instructions. Therefore,
a dummy node is required that replaces the first output node.

The aforementioned criteria are checked in the preOutput() method of the visitor class,
because all problems can be solved by inserting a dummy node as a new root node. This
is done for output nodes that wrap a negation, a transition, or an illegal output.

A final implementation detail regards the vertex unit: The vertex stage requires some
initialization, i.e. the input vertex position is transformed from world to screen space. The
required matrix multiplication is automatically inserted in front of the instruction stream.

3Remember that expression DAGs do not have unique root nodes that represent the final result of a
computation, like in an expression tree. Instead, there are up to four output nodes that represent the result
of each component of the output vector. While at least one of the output nodes is also a root node, there
might be other output nodes that are used for further processing and therefore are no root nodes.
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6.2 Instruction Stream Optimization

A major difference of the Gpu++ development system in comparison to other shading
languages is that back-end optimizations are done in a generic way, so that they can be
reused in all back-ends. As a consequence, the optimizations that are performed on the
instruction stream are not dependent on a specific graphics API, but they are dedicated
to the graphics hardware architecture in general (e.g. the vector processor concept). Such
a generic approach for final optimizations significantly simplifies back-end development.

6.2.1 Vector Fusion

The GPU is a vector processor that performs its computations on up to four vector com-
ponents in parallel (see section 3.3). However, the expression DAG does not completely
reflect this architectural design. Instead, it represents computations on individual scalars
and no further “vector component information” is associated to the graph. The advantage
is that developers are not forced to deal with the concept of a vector processor, which
is one of the major difficulties in understanding the GPU. In other words, an expression
DAG that represents a kernel program with massive use of the vector approach (i.e. using
vectors with multiple components and utilizing the swizzling technique) can also be created
without this concept using only the custom Gpu++ type “vec1” as a replacement of “float”.

This novel approach differs significantly from all other shading languages, where the vec-
tor processor design is an integral part of the internal data structure. While this simplifies
the language’s design and makes sense in the computer graphics domain, optimal run-time
performance can only be achieved by the use of the vector processor paradigm. Developers
who are not familiar with this concept are unable to create speed-efficient GPU-based code.

But the aforementioned approach of decoupled vectors only “virtually” eliminates the
vector processor paradigm. In fact, the need of “vectorization” is postponed to the back-
end, where individual instructions have to be combined to reduce the shader program size.
For instance, the sequence “ADD t2.x,t0.xxxx,t1.xxxx;ADD t4.x,t3.xxxx,t4.xxxx;” can be
combined to a single command “ADD tC.xy,tA.xyxx,tB.xyxx” with the according register
aliasing (i.e. tA.x=t0.x, tA.y=t3.x, tB.x=t1.x, and tB.y=t4.x). This is called vector fusion.

Shortest Edit Script

The Gpu++ development system uses a novel algorithm to fuse vector computations, i.e.
combining scalar operations to exploit the vector processor architecture. The approach is
based on the problem of “finding the shortest edit script for transforming A into B”, which
means, to find the minimum “script” of symbol deletions and insertions that transform one
symbol sequence into the other [123]. For instance, to transform sequence “ABCABBA” into
sequence “CBABAC” the shortest edit script is “ABCBABBAC” (where “X” means that X has to be
deleted, “X” means that X has to be inserted, and “X” means that X has to be taken over).
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The shortest edit script (SES) problem is most popular to its use in the well-known
diff tool on the Unix platform. The diff program compares two text files line-by-line and
outputs the difference. While this usually makes little sense for two independent files, it is
of great value for two different versions of the same file. In this case, the shortest edit script
represents the most-like editing steps (i.e. the “history”) between the two file versions: lines
that have been deleted, that have been inserted, and that have been taken over.

The Gpu++ development system exploits the shortest edit script to combine vector com-
putations as follows: Consider a simple vector processor that operates on two-component
vectors of type vec2. Furthermore, consider the following procedure for such a processor:

1 vec2 foobar(vec2 v2a, vec2 v2b, vec2 v2c)

2 {

3 vec2 v2temp = v2a + v2b.yx(); // sum two vector using swizzling

4 v2temp.x() = 2.0 * v2temp.x() + 0.5; // double first component and add offset

5 v2temp.y() = (v2temp.y() + 0.5) * 2.0; // manipulate the second component

6 return v2temp * v2c.xx(); // finally, return the product

7 }

A decoupling of vector components leads to the following instruction streams: one computes
the first component of the resulting vector (r.x) and the other computes the second (r.y):

1 ADD t1, a.x, b.y; // line 3

2 MUL t2, t1, 2.0; // line 4

3 ADD t3, t2, 0.5; // line 4

4

5 MUL r.x, t3, c.x; // line 6

1 ADD t1, a.y, b.x; // line 3

2

3 ADD t2, t1, 0.5; // line 5

4 MUL t3, t2, 2.0; // line 5

5 MUL r.y, t3, c.x; // line 6

Concatenating both instruction streams results in a working solution. But the vector
properties of the considered processor have not been exploited, because the first, third, and
last instruction of both streams can be combined (using appropriate register aliasing).

The idea is: The two instruction streams are considered as two versions of the same
stream. Furthermore, instructions of different streams are treated as “equal” whether they
can be combined on the vector processor. From this follows that the SES leads to an
optimal “combined instruction stream” that contains three types of instructions:

• Instructions of the first stream that cannot be combined (equivalent to “delete”).

• Instructions of the second stream that cannot be combined (equivalent to “insert”).

• Instructions in both streams that can be combined (equivalent to “take over”).

In the next subsections, a fast algorithm is presented that computes the shortest edit script
for a generic set of symbols and how it is extended to support a four-component vector
architecture. In addition, a heuristic approach is presented that is used in the Gpu++

development system to perform the vector component fusion in the back-end.



62 CHAPTER 6. BACK-END

The DIFF4 Algorithm

Myers has shown that computing the shortest edit script can be reduced to finding the
shortest path for an edit graph [87]. The edit graph for two sequences A = a1a2 . . . aN and
B = b1b2 . . . bM has a vertex at each point (x, y) with x ∈ [0, N ], y ∈ [0,M ]. The vertices
of the edit graph are connected with directed edges as follows: Horizontal edges connect
each vertex to its right neighbor (i.e. (x, y)→ (x+ 1, y) for x ∈ [0, N − 1] and y ∈ [0,M ]),
and vertical edges connect each vertex to the neighbor below it (i.e. (x, y) → (x, y + 1)
for x ∈ [0, N ] and y ∈ [0,M − 1]). Finally, if ax+1 = by+1 then there is a diagonal edge
connecting vertices (x, y)→ (x+1, y+1). Vertex (x+1, y+1) is called match point in such
a case. Figure 6.1 illustrates the edit graph where A and B represent the aforementioned
instruction streams (and where “match points” represent combinable instructions).

The problem of finding the SES is equivalent to finding a minimum-cost path from
(0, 0) to (N,M), where diagonal edges weight 0 and non-diagonal edges weight 1 [87].
Using the aforementioned SES terminology, horizontal edges represent “delete”, vertical
edges represent “insert”, and diagonal edges represent “take over”. Because this algorithm
has been initially used to detect the differences between two text files, it is called DIFF2.

However, the algorithm can easily be extended to D instruction streams by using D-
dimensional edit graphs and introducing several types of diagonal edges (and according
edge weights). The Gpu++ development system makes use of a four-dimensional version.
Therefore, it deals with 15 edge types: one edge that combines all four instruction streams,
four edges that combine three instruction streams, six edges that combine two instruction
streams, and four edges that represent un-combinable instructions in each stream.
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Figure 6.1: The edit graph for the two exemplar instruction streams, each responsible for
computing a vector component of result r. The minimum-cost path from (0, 0) to (4, 4)
represents the optimal vector fusion of the instruction streams, which is shown on the right.
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Heuristic Extension For Altering Instruction Streams

The described approach works very efficient for separate and fixed input streams, but this
might not always be the case: Instructions of a stream usually can be reordered without
changing the actual computation. Such expressions are combinable in a “global context”,
but cannot be detected with the basic algorithm. Furthermore, prior optimizations of the
DAG may result in additional “distortions” of the instruction streams. The edit graph can
be extended to support the aforementioned issues, however, the complexity of finding the
minimum-cost path grows exponential. By assuming that instruction streams of size N can
be altered in O(2N) ways, the computational complexity to find the shortest path grows
accordingly.

The following extensions have been integrated into the basic algorithm to create a
heuristic DIFF4 version, that leads to efficient results at significantly lower run-time:

• The edge weights in the edit graph are preprocessed: For a small value M (e.g.
M = 4) all edge-weights are scaled by M , except those edges that are in an edge
neighborhood of size M around a match point. There, the weights are scaled by
the match point distance. Figure 6.2 illustrates this for a DIFF2 edit graph. This
re-weighting leads to noticeable earlier termination of the path finding algorithm.

• Consider point (a, b) in a DIFF2 edit graph. The end-point (N1, N2) can be reached
in at least |(N1 − a)− (N2 − b)| and in at most (N1− a) + (N2− b) steps, due to the
aforementioned edit graph structure. These boundaries are used to eliminate ineffi-
cient paths at an early stage, leading to an accelerated shortest path computation.

• The altering of instructions in the stream is limited to a range of 8–16 positions.

These extensions reduce the computational complexity of finding the minimum-cost path
to O(N4 +D) in the worst-case (where the “worst-case” means “very few match points”).
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Figure 6.2: A simple DIFF2 edit graph with edge weights relative to the distance of their
nearest match point. A neighborhood of M = 4 has been used for edge weights computing.
Finding the shortest path runs more than four times faster than the non-heuristic approach.
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6.2.2 Register Renaming

The aforementioned approach for creating the instruction stream generates new tempo-
rary registers for each computation result (i.e. each inner node of the expression DAG).
While this is a simple and intuitive scheme, it may lead to resource problems, because the
amount of such registers in a kernel program is limited.4 Therefore, the OpenGL assembler
language back-end uses “register renaming” to overcome this resource restriction.

Register renaming has been used in the design of parallel and super-scalar processors
to avoid “register aliasing”, where a specific register is frequently reused in a sequential
instruction stream (and therefore restricts the parallel execution of instructions) [108]. This
problem can be solved by introducing a “register alias table” (RAT) that maps between
“logical” and “physical” registers. Instead of reusing the same register, a new register is
introduced whenever possible. Ideally, this improves the parallel execution of instructions.

In fact, back-ends have to deal with the inverse problem, because temporary registers
are used independently from each other. While this might be good for parallelism, it
wastes a lot of resources. As a consequence, the back-end uses “register renaming” to
combine temporary registers in the shader program, using a RAT again. Figure 6.3 shows
an exemplar sequence of six OpenGL assembler instructions: Because each instruction
(except the last that uses the output register o0) introduces a new temporary register to
store the result, five registers are used in total. However, the scope of each register is very
small, and most scopes do not conflict with each other, e.g. the scopes of t1 and t4 do not
intersect. The register count can be drastically reduced, by using the following RAT:

RAT = (t0 7→ t0, t1 7→ t1, t2 7→ t1, t3 7→ t0, t4 7→ t1)

Obviously, the sequence is equal in functionality, but uses only two registers. Please note
that this leads to instructions that write to the same registers that are used as their inputs.

ADD  , a0, u0t0 ADD  , a0, u0t0

ADD  , a1, u1t1 ADD  , a1, u1t1

MUL  , , t2 t0 t1 MUL  , , t1 t1t0

ADD  , , t3 t2 t0 ADD  , , t0 t0t1

ADD  , , a2t4 t3 ADD  , , a2t1 t0

ADD  o0, , t4 t3 ADD  o0, , t1 t0

0 0

1 1

2 2

3 3

4

5 5 55

3

Figure 6.3: A typical instruction stream created by the OpenGL back-end. Six instructions
result in five temporary registers (t0, . . ., t4). The thin brackets on the right illustrate the
“scope” of each temporary. Obviously, some of these registers can be reused. In fact, register
renaming reduces the amount of temporary registers to two (t0 and t1).

4Most graphics hardware allows up to 32 temporary registers, which might leads to problems for complex
computations. However, the latest generation of GPUs supports up to 4096 temporary registers.
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The following algorithm performs register renaming for a given sequence of instructions
in three steps: First, the scope of each temporary register rt is computed (lines 2 to 10).
Then, the actual mapping is created by reusing registers where the scope does not intersect
(lines 11 to 22). Finally, the renaming is applied to all temporary registers (lines 23 to 25):

Algorithm 6.1: Perform register renaming to instruction stream I

rat ← ∅;1

foreach instruction in at position n of the instruction stream I do2

foreach temporary register rt that is used in instruction in do3

if rat[rt] does not exist then4

rat[rt].map ← rt;5

rat[rt].from ← n;6

end7

rat[rt].to ← n;8

end9

end10

Rd ← ∅;11

foreach register r stored in rat do12

foreach register rd ∈ Rd do13

if rat[r].from ≥ rat[rd].to or rat[r].to ≤ rat[rd].from then14

rat[r].map ← rd;15

rat[rd].from ← min(rat[r].from, rat[rd].from);16

rat[rd].to ← max(rat[r].to, rat[rd].to);17

break18

end19

end20

Rd ← rat[r].map;21

end22

foreach instruction in at position n of the instruction stream I do23

remap all temporary registers in in according to the mapping in rat;24

end25

Please note that register renaming does not optimize the speed-performance of the
kernel program. Furthermore, the algorithm is very basic, because the instructions are not
reordered to achieve better results, e.g. a register that is created in the first instruction and
which is not further used for the next 20 instructions can be optimized by restructuring the
command sequence. However, more advanced strategies are not yet implemented, because
the computational costs increase exponentially for the length of the instruction stream. In
practice, the aforementioned approach leads to efficient results.
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6.3 Connecting to the GPU

So far, the Gpu++ back-end architecture created and optimized a stream of instructions
(based on the final expression DAG). Only two issues are left: First, the final generation of
the back-end specific output format, and second, the upload and activation of all required
data, like the shader code, arrays, regions, and uniforms. While the first task is the final
step of the GPU-based compilation process (i.e. a conversion of the custom instructions),
the second task is the first step of the GPU-based execution process. The major difference
is that the compilation process belongs to the kernel program, while the execution process
affects all GPU-based objects. As a consequence, a kernel program instance is explicitly
bound to a specific back-end, while instances of arrays, regions, and uniforms can be
assigned to multiple back-ends each time they are executed on a different kernel program.

This approach is called late binding and allows the same array, region, and uniform to
be seamlessly used in different kernel programs (that use different back-ends). As a matter
of fact, “late binding” leads directly to other features, such as delayed allocation, shared
memory, and lazy up- and downloading of arrays and regions (see section 4.2.2).

6.3.1 Back-End Stubs

Instead of using a large monolithic interface that encapsulates all back-end-dependent tasks,
the binding to the graphics hardware is realized using back-end stubs : class objects with
light interfaces that are responsible for small aspects of the kernel program parameters:

Kernel Stubs

The kernel stub is the main stub of the back-end and bears all kernel-related tasks, including
the aforementioned creation and uploading of instruction streams (by calling compile()), as
well as its activation and deactivation, together with the evaluation of uniform variables and
the transfer of regions to the GPU (via execute()). Furthermore, there are tool methods
that can be used to manage the internal indices for uniform and attribute variables.

As aforementioned, the kernel program is different from arrays, regions, and uniforms,
because of its explicit back-end binding and because it is used in both – compilation and
execution. This significantly affects the design of the kernel program stub.

Array Stubs

In brief, array stubs are responsible for all array-related tasks. While this sounds complex,
it actually reduces to the implementation of the following four methods: 1) upload() and
2) download() are responsible for the data transfer between the main and graphics memory.
Furthermore, 3) attach() and 4) detach() are responsible for activating and deactivating
the array as one of the input arrays or as the exclusive output array of the kernel program.
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The array stub of the OpenGL back-end is a thin wrapper for EXT_framebuffer_object

[11]. Note that the stub is not responsible for advanced features, like delayed up- and
downloading or caching. This is done automatically by the Gpu++ development system.

Region Stubs

Similar to array stubs, region stubs handle the GPU-based communication for region ob-
jects. The interface is identical to the aforementioned array stubs, except that there is
no way to download a region. Please note that the region stub is responsible also for
the attribute variable it is assigned to. However, from an implementational point-of-view,
attributes are just placeholders for regions.

While arrays are represented by textures and frame-buffer objects, regions are rep-
resented by “vertex-buffer objects”. Therefore, this stub is a very thin wrapper for the
OpenGL extension ARB_vertex_buffer_object [10].

6.3.2 Low-Level API Interface

The Gpu++ development system has been designed for GPU-based programming without
being an expert of the underlying graphics API. However, there might be situations, where
the graphics API and its direct access are of interest, e.g. if the results of a kernel program
should be visualized. While it might be intuitive to use the array object’s getArray()

method as the input for a texture upload, it obviously is not efficient, because this causes
two data transfers. First, from GPU to CPU, and directly after, from CPU to GPU. A
much better way is to directly access the internal texture that represents the array.

This is done via the static opengl::arrayToTexture() function that requires a pointer to
the array as its input and returns the OpenGL texture id. This texture id depends on the
internal Gpu++ rendering context, which is accessible via opengl::getRenderingContext().
If the rendering context is “shared” with the application’s rendering context, all texture ids
(that are returned by Gpu++) can be used directly for further OpenGL processing. This
approach allows the embedded creation of procedural textures with Gpu++ that can be
attached to polygons and objects in a three-dimensional computer graphics scene.

Furthermore, there are similar static functions for accessing vertex buffer objects (i.e.
regionToVertexBuffer()), vertex and fragment shaders (i.e. kernelToShader()), uniform vari-
ables (i.e. uniformToId()), and attribute variables (i.e. attributeToId()).
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Chapter 7

Evaluation

While the previous chapters have presented detailed conceptional and technical descrip-
tions of the Gpu++ development system, this chapter evaluates the efficiency of Gpu++

using real-life examples: A representative set of general-purpose algorithms from various
domains is implemented on both, CPU and GPU, to compare their performance. The com-
putations range from simple image processing techniques and data management to more
complex Fourier analysis and tomographic reconstruction. These algorithms are evaluated
concerning the following two criteria:

Speed – The major goal of every approach that uses the graphics accelerator is a signif-
icant performance gain compared to the CPU-based implementation. This is evalu-
ated by processing two- and three-dimensional data sets of various sizes and measur-
ing the processing run-time. Please note that these timings exclude any data transfer
between the main and the graphics processor (see section 8.1 for a discussion).

Complexity – In contrast to speed, a quantitative measurement of the software com-
plexity is hard to achieve: Various concurrent software metrics exist, like cyclomatic
complexity, function point analysis and code coverage, but most of these code metrics
have been designed for large software systems and are not feasible for measuring the
complexity of source code with less than thousand lines [78, 115, 21]. Therefore, due
to its simplicity, logical source lines of code (logical SLOC) are used to evaluate the
complexity of all GPU- and CPU-based implementations in this chapter [94]

Please note that all algorithms have been implemented on the GPU before [85, 131, 39,
114, 64, 44, 43, 47]. While Gpu++-based solutions do not intentionally compete with such
approaches, their speed-performance is similar and their complexity is significantly lower.

The following testbed has been used for all benchmarks: A personal computer, equipped
with two AMD Opteron Dual Core 275 64-Bit processors running at 2.2 GHz and provided
with 16 GiBytes of memory. Furthermore, the graphics hardware has been NVIDIA’s
GeForceFX 8800 GTX with 575 MHz core speed and provided with 768 MiBytes of 900
MHz clocked DDR3-memory. The operating system has been Microsoft Windows XP x64
edition, but all Gpu++-based executables have been compiled for a 32-Bit platform.

69
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7.1 Medical Image Processing

Using graphics hardware to accelerate image processing in the medical field has become
very popular [71, 107, 95, 130, 114]. To evaluate the Gpu++ development system in context
of this domain, a very simple but common medical processing pipeline will be implemented:
First, a medical image will be partitioned using threshold segmentation in section 7.1.1.
Then, in section 7.1.2, noise artifacts are removed using an island removal approach. Fi-
nally, the image is processed via gaussian smoothing that creates softer borders, in section
7.1.3. Performance and complexity results are further discussed in section 7.1.4.

7.1.1 Threshold Segmentation

Intensity-based thresholding is the simplest, but yet often most effective, segmentation
technique that identifies anatomical structures in the image by comparing their intensity
values to one or more thresholds – this is illustrated in figure 7.1 [41]. Such an approach can
be used for bone segmentation in CT images, e.g. segmentation of teeth in dental planning.
Please note that more advanced techniques were implemented on the GPU, such as level
sets and nonlinear diffusion, but high-end segmentation is not the focus of this evaluation
[71, 107]. Hadwiger et al. present an extensive overview of state-of-the-art segmentation
approaches and possible implementations on graphics hardware [48].

Threshold segmentation perfectly fits into the streaming concept, because the same
operation (i.e. threshold()) is performed on all array elements. However, the main processor
also benefits from the sequential structure of this approach. Nevertheless, table 7.2 (at the
end of this section) illustrates that the GPU is increasingly faster than the main processor,
beginning with an image size of 512 × 512 and images of size 2048 × 2048 are processed
faster by more than an order of magnitude. While this only leads to a speed-improvement
of less than ten milliseconds for two-dimensional images, the performance gap increases to
half a minute for volumes of size 20483. Please note that the GPU-based implementation
(8 lSLOC) is comparable in source code complexity to the CPU-based solution (9 lSLOC).

Figure 7.1: A slice through a human skull, acquired by a CT scanner (scalars are unified
to the range [0 . . . 1]. Bone structures have been segmented using a threshold of t = 0.58.
Please note the artifacts, near the nasal bone, that are caused by the noise in the data set.
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7.1.2 Pixel-Island Removal

By analyzing the segmentation result of section 7.1.1, artifacts caused by image noise
are noticeable, leading to so-called pixel islands (see figure 7.2a). Such artifacts may
accumulate within the medical processing pipeline, leading to sub-optimal results in later
stages, e.g. registration. A morphological filter is used to remove these artifacts [41].

A common approach to remove pixel islands uses n “erosion operations” followed by n
“dilation operations” for small N . The erosion causes objects to shrink, while the dilation
causes objects to grow in size. The amount and way of growing and shrinking depends
on the choice of the structuring element, which consists of a pattern that specifies the
coordinates of some discrete points relative to its origin. Typical structuring elements are
N4 (taking five pixels into account) and N8 (using nine pixels). The difference between
both operations is, that the erosion operator requires all pixels of the structuring element
to be set (AND), while the dilation operator requires at least one pixel to be set (OR).

Because the Gpu++ system does not support boolean operators, they are emulated by
defining the boolean value “false” as 0.0, “true” as 1.0, and using threshold() again:

AND: a1 ∧ a2 ∧ · · · ∧ an ⇒ a1 + a2 + · · ·+ an ≥ n

OR: a1 ∨ a2 ∨ · · · ∨ an ⇒ a1 + a2 + · · ·+ an ≥ 1

The limiting factor of this approach is the excessive access of the input array. For
instance, N4 requires five reads and N8 accesses the memory nine times. Furthermore, the
common three-dimensional structuring elements are N6 (with seven array access) and N26

(that reads memory twenty-seven times). This results in a significant run-time slowdown.

The memory access performance can be drastically improved, using a novel approach
that exploits the linear interpolation feature of the GPU (see section 3.5). Generally
speaking, linear interpolation reads multiple values with a single array access instruction,
but the intensity values are returned as a weighted sum. While this does not reduce the
amount of memory that is actually accessed, hardwired linear interpolation is much faster
than sequential array access in the kernel program due to its more efficient cache handling.
Consequently, the amount of array access operations can be reduced by finding the“minimal
coverage” of the structuring element and carefully choosing the pixel distances.

Figure 7.2: Left: Close-Up of the segmented maxillary bone. Center: After erosion. Right:
After dilation. Islands are removed, but, some thin anatomical structure are also eliminated.
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+ +

(a) (b)

Figure 7.3: Linear interpolation returns the weighted sum of multiple array elements, which
can be exploited to reduce the amount of array reads: (a) uses distance d = 4/5 along the
principal axis for N4, and (b) uses distance d = 2/3 along the diagonals for N8.

Figure 7.3a illustrates the optimization strategy for structuring element N4, where each
array access returns the weighted sum of two intensity values. However, this also means that
the center pixel is read four times as often as the pixels next to the center, i.e. the minimal
coverage contains four interpolations, all including the center pixel. The optimal distance
d and the constant threshold t are therefore defined by the following set of equations:

4× (1− d) = t (the center pixel is read four times)

d = t (the pixels next to the center are read once)

The solution is d = t = 0.8, i.e. if all distances along the principal axis are d = 0.8 relative
to the center point, the sum of the four interpolations is t = 0.8 for a single set point, and
5× t = 4 for all points of the structuring element N4 set. In fact, these are the threshold()

values for erosion and dilation that have to be used in the kernel program.

Figure 7.3b illustrates the same optimization for structuring element N8. This time,
each interpolation is the sum of four pixels, due to diagonal orientation, which leads to
d = 2/3 and t = 4/9 as the solution. For the three-dimensional version of the morphological
operations, d = t = 6/7 is the solution for N6, and d = 2/3 (t = 8/27) works for N26.

The speed results in table 7.2 are benchmarks of a complete island removal iteration,
i.e. the morphological erosion operator followed by the dilation operator, both using the
structural element N8. While the CPU- and GPU-based implementations are comparable
in speed for a 256×256 array, the graphics processing unit performs much better for larger
inputs – the GPU-based island removal processes a 1024× 1024 array more than 12 times
as fast as the main processor. The performance gap for three-dimensional arrays is even
larger – a 10243 volume is processed in less than two seconds on the GPU, which is nearly
20 faster than the CPU-based implementation (using N28). However, the source code of
the GPU-based solution (16 lSLOC) is noticeably less complex than for the CPU-based
approach (27 lSLOC). A comparable GLslang-based implementation takes 84 lSLOC.
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7.1.3 Gaussian Smoothing

At this point of the medical pipeline, some artifacts are still left in the data set, e.g.
noisy input data usually leads to rough borders of the segmented anatomical structures.
Especially the lighting computations in visualization suffer from a coarse surface [127, 74].
There are various approaches to smooth two- or three-dimensional data, that all use the
same idea: Each input pixel is scattered over a specific neighborhood in the output image.
Or the other way around: Each output pixel is a weighted sum of gathered input data.
However, while this reduces noise it also “blurs out” fine details of the original data [75].

A popular approach is Gaussian smoothing (sometimes also called “Gaussian blur”)
where the quantifiers of the weighted sum are based on the normal distribution [41]:

G1(r) =
1√

2πσ2
e−r

2/(2σ2) (7.1)

Here, r is the distance to the output pixel and σ is the standard deviation. In theory,
the normal distribution for every distance r will be non-zero, i.e. the entire input image is
included in the computations for a single output pixel. However, when computing a discrete
approximation of the normal distribution, pixels outside of approximately 3σ are small
enough to be considered effectively zero. For instance, using σ = 0.6 for smoothing a two-
dimensional array effectively results in 13 relevant input pixels within a 5×5 neighborhood.

The memory access can be reduced even further by exploiting the symmetry property
of the normal distribution: the n-dimensional weighting filter can be separated into n one-
dimensional filters, each using the nth dimension as its primary direction. This means
that a two-dimensional Gaussian smoothing is done by performing a horizontal, followed
by a vertical one-dimensional Gaussian smooth, i.e. G2(u, v) = G1(u)G1(v). By using this
relationship, the amount of memory reads for σ = 0.6 is reduced to 5× 2 = 10.

Implementation Details and Results

The implementations for the main and graphics processor, that have been used for run-
time measurements, are based on multiple one-dimensional normal distributions that use
σ = 0.95 (which equals to seven neighboring pixels) that are combined to perform two-
and three-dimensional smoothing of arbitrary input data. Each “smoothing pass” uses an
own kernel instance that differs in the principal processing axis.

As in section 7.1.2, the novel linear interpolation approach is used to reduce the amount
of explicit memory reads. This works as follows: As part of the smoothing process, two
neighboring input pixels P1 and P2 are weighting (with w1 and w2) and summed together,
i.e. S = w1P1 + w2P2. The same computation can be “simulated” via linear interpolation
by using an appropriate distance d between both pixels and an overall factor f , i.e. f((1−
d)P1 + dP2) ≡ S. This set of equations can be solved to:

d =
w2

w1 + w2

and f = w1 + w2
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r = −3 r = −2 r = −1 r = ±0 r = +1 r = +2 r = +3

G1(r) 0.002868 0.045788 0.241312 0.419939 0.241312 0.045788 0.002868
d 0.941038 0.465273 0.534727 0.058962
f 0.048658 0.451282 0.451282 0.048658
d+ r -2.058962 -0.534727 +0.534727 +2.058962

Table 7.1: The seven weightings of a one-dimensional Gaussian smooth G1 with σ = 0.95,
together with the distance d and factor f for linear interpolation. Note, that the last row
(“d+ r”) shows the distance in respect to the center point of the Gaussian’s filter kernel.

Table 7.1 shows the original and the “optimized” weightings of the one-dimensional
Gaussian smoothing with σ = 0.95. The seven memory reads are reduced to four accesses
using this technique (in general, n reads are always reduced to (n + 1)/2 reads). Please
note that the center point is used in two interpolated reads, i.e. the weighting is halved for
each access. The second and third row of table 7.1 show the resulting values for d and f ,
while the fourth row shows the relative distances to the center. These values are used in
the GPU-based implementation. Obviously, this optimization technique does not work for
the main processor, due to the missing natively supported linear interpolation.

The benchmark results are presented in table 7.2. It can be seen that the GPU-based
implementation exceeds the CPU-based solution even for small data sets of 256×256 pixels,
where the optimized version runs more than four times faster. Arrays of size 2048× 2048
are smoothed nearly two orders of magnitude faster on the GPU. The gap increases even
faster for three-dimensional data sets. However, this speedup does not come for the price of
a higher source code complexity: The solution for the graphics processing unit (15 lSLOC)
is only half as long as the CPU-based implementation (29 lSLOC).

7.1.4 Results and Discussion

The benchmark results of the previously presented implementations are shown in table 7.2.
Each implementation (i.e. CPU-based, basic GPU-based and optimized GPU-based) of the
different pipeline stages, as well as the full pipeline, is speed-measured for various two- and
three-dimensional data sets. It can be seen that – with one exception – the GPU-based
implementation is (significantly) faster than the equivalent solution on the main processor.

Furthermore, it can be observed that the graphics hardware seems to scale much slower
than the main processor, i.e. four times as much data does not automatically result in a
fourth of the speed-performance. This leads to the assumption, that the GPU is limited by
a high setup-time for small data sets, that neglects more and more for larger input data. For
instance, the GPU-based two-dimensional threshold segmentation seems to have a setup-
time of approx. 38 milliseconds. Subtracting this bias from the four speed measurements
leads to the actual “pure CPU processing time”: 0.02 msec for 2562, 0.04 msec for 5122,
0.22 msec for 10242, and 0.96 msec for 20482 – as expected, these values scale quadratically.
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Plane (in msec) Volume (in sec)
Algorithm

2562 5122 10242 20482 2563 5123 10243

CPU 0.19 0.76 3.20 12.64 0.05 0.39 3.28
Segmentation

GPU 0.40 0.42 0.60 1.34 0.10 0.22 0.61

CPU 0.76 3.12 12.48 49.44 0.56 4.63 37.06

Island Removal GPU 0.75 0.84 1.43 4.63 0.48 1.08 3.66

GPU’ 0.75 0.78 1.01 2.50 0.36 0.76 1.97

CPU 3.30 13.72 55.23 220.6 1.27 10.54 84.83

Smoothing GPU 0.76 0.82 1.20 3.67 0.29 0.63 1.84

GPU’ 0.75 0.77 0.97 2.54 0.29 0.59 1.49

CPU 4.25 17.6 70.91 282.7 1.88 15.56 125.2
Full Pipeline

GPU’ 1.91 1.97 2.58 6.38 0.75 1.74 4.07

Table 7.2: The speed-performance of the basic medical algorithms that have been presented
in this section. CPU means “CPU-based implementation”, GPU represents the “basic GPU-
based solution” and GPU’ means “optimized GPU-based implementation”. Please note that
the speed measurements for most implementation do not depend on the data set content, but
solely on the data set size. The fastest implementation for each size is marked in green color.

While the presented algorithms are very basic and represent only a small fraction of the
techniques that are used in the medical domain, they impart a good feeling how graphics
hardware can help to speed up medical processing. Furthermore, this section has illustrated
that the Gpu++ development system allows such speed-improvements without the necessity
of an increase in source code complexity: While the GPU outperforms the main processor
in all presented cases, the actual implementations have been of similar source code size.

An additional lesson that can be learned is that a concatenation of multiple GPU-based
algorithms may lead to a speed-improvement that justifies the data transfer between the
main and the graphics processor. While this topic is further discussed in section 8.1, it
should be pointed out that the transfer of a 5123 volume (upload to GPU memory and
read-back to main memory) takes less than 700 milliseconds, which is negligible when
compared to the 15 seconds processing time of the CPU-based solution.

A final note about the input data sets: Because the speed-performance of all the GPU-
based implementations does not depend on the data set content, but solely on the data
set size, table 7.2 does include various sizes but not various data sets. The same is true
for CPU-based threshold segmentation and Gaussian smoothing. But in theory, the data
set content may influence the speed-performance of the CPU-based island removal. In
practice, however, the detected processing time variances, for different data sets of the
same size, are below the measurement error (i.e. less than 10 microseconds).
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7.2 Multiplication of Dense Matrices

Beside other tasks, graphics hardware has been initially designed to accelerate the trans-
formation of three-dimensional objects, like resize, rotate, and translate them. As a conse-
quence, the GPU natively features linear operations, e.g. matrix and vector multiplications.
However, this is only supported for matrices and vectors of a size of up to 4×4. While this
is sufficient for computer graphics, it is inadequate for other disciplines, such as simulation.

The “single-precision general matrix multiplication” (SGEMM) is a fundamental oper-
ation of the “Basic Linear Algebra Subprograms” (BLAS) package and is extensively used
in linear algebra [31]. GPU-based SGEMM was first implemented by Larsen et al. [70].
The approach has been improved by Galoppo et al. and Govindaraju et al., who exploited
the vector architecture and used a different memory model [39, 44]. A different approach
has been implemented by Bolz et al. to compute the multiplication of sparse matrices [15].
It should be noted that some of the most efficient CPU-based algorithms for dense ma-
trix multiplication are not yet implemented on the graphics processor, like the one from
Strassen or the approach by Coppersmith and Winograd [110, 26]. An extensive discussion
of the limits of GPU-based SGEMM has been presented by Fatahalian et al. [33].

The Gpu++-based implementation for dense matrix multiplication is based on the afore-
mentioned algorithm by Larsen et al. [70]. For two matrices – p×m matrix A and n× p
matrix B – the n × m product (AB)ij =

∑p−1
k=0 aikbkj is computed as follows: For each

r = 0, . . . , p− 1, the algorithm virtually replicates the rth column of matrix A and the rth
row of matrix B over the size n×m to create the intermediate matrices Ar and Br. Both
matrices are then multiplied component-wise to create matrix Mr. Finally, the sum of all
matrices Mr leads to the matrix-product of A and B: AB =

∑p−1
r=0 Mr. This approach is

illustrated for two 4× 4 matrices in figure 7.4. In fact, the approach is equal to the classic
“three-nested-loops”, but the most inner loop has been swapped with the most outer loop.
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the output region, which is realized by manipulating the element position. For each output
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7.2.1 Implementation Details and Results

The column/row replication, component-wise multiplication, and final sum can be directly
implemented on the GPU: For each output element at position vec2(i,j), the inputs at
A[vec2(i,r)] and B[vec2(r,j)] are multiplied together and added to the result of prior
iterations. In fact, the same kernel program is called p times with a different r for each
call. Unfortunately, the intermediate result cannot directly be added to the output content
without saturation of the result [12]. Therefore, the ping-pong technique is used, where
two output arrays are swapped after each iteration [101]. This leads to a major bottleneck,
due to the massive memory access for writing the intermediate result in iteration r and
reading it back in iteration r + 1. As a consequence, the GPU-based implementation can
be significantly improved by processing multiple rows/columns in the same kernel pass.

Table 7.3 presents the speed-performance results for the multiplication of two dense ma-
trices that are filled with random values in the range [0 . . . 1]. For a better comparison of the
source code complexity, both implementations use the aforementioned three-nested-loops
approach. Multiple GPU-based benchmarks are presented for the different parallelization
factors (i.e. the number of rows/columns processed at each kernel pass). While the compu-
tational results are the same, the run-times scale nearly linear, i.e twice the parallelization
factor means twice the speed. However, a saturation is noticeable for a scalarity of 64
rows/columns. This depends on the memory bandwidth and supported kernel program
size of the actual graphics processing unit.

The GPU-based implementation performs the SGEMM of small 2562 matrices more
than 50 times faster than the solution on the main-processor. This speed-gain increases
up to more than two orders of magnitude for the multiplication of 20482 matrices. In fact,
this is even more than 15 times faster than the fastest known CPU-based implementation
[124]. Nevertheless, the GPU-based implementation (21 lSLOC) is just slightly more com-
plex than the CPU solution (16 lSLOC), and it is significantly less complex than other
implementations on the GPU – like the one from Wu and Liu (105 lSLOC) [129].

GPUSize CPU ×1 ×4 ×16 ×64 Error

256× 256 124.74 89.65 22.60 5.93 2.40 1.6× 10−11

512× 512 1095.55 178.98 45.21 16.78 15.60 6.1× 10−11

1024× 1024 35313.06 531.00 153.59 123.77 120.19 2.1× 10−10

2048× 2048 304383.69 4228.66 1230.65 977.77 951.94 5.3× 10−10

Table 7.3: Speed-performance for dense matrix multiplication using a CPU-based and a
GPU-based implementation (run-time is given in milliseconds). Furthermore, the GPU-based
solution has been measured using different parallelization factors, from ×1 to ×64. Please
note that the computational error for the GPU (for all parallelization factors) is less than a
billionth for random input values between 0 and 1, compared to the CPU-based solution.
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7.3 Sorting

Sorting a set of values is challenging on the GPU, because most popular algorithms (like
Mergesort, Quicksort or Heapsort) use a comparison sorting approach, i.e. the al-
gorithm’s workflow depends on the content [67, 51, 126]. In other words, the result of
a comparison affects the values that are used in subsequent comparisons. However, this
cannot efficiently be implemented on the graphics processing unit – see section 3.6.

In contrast, a sorting network consists of hardwired “comparators” that sort two values
(see figure 7.5a) [6]. The main difference to the aforementioned approach is that the
sequence of comparisons is set in advance, i.e. the sorting network stays the same for
different input. One of the fastest networks is based on “bitonic sequences”.

7.3.1 Bitonic Sorting

A sequence of values is called bitonic, if it contains at most one change between ascending
and descending. The comparator module Bn is defined as Bn = [0 7→ n/2], [1 7→ n/2 +
1], . . . , [n/2− 1 7→ n− 1]. Applying Bn to the bitonic sequence a = a0, . . . , an−1 results in
Bn(a) = b0, . . . , bn/2−1, c0, . . . , cn/2−1, where all bi ≤ ci and b, c are both bitonic again [67].

Comparator module Bn is used to build the bitonic sorting network : First, a “merge
module” is designed to sort arbitrary bitonic sequences by recursively applying Bn to the
input sequence (illustrated in figure 7.5). Then, this merge module itself is recursively used
to create the final sorting network that is able to sort arbitrary sequences (see figure 7.5c).

Figure 7.6 illustrates a full bitonic sorting network for n = 8. The complexity of this
approach is O(n log2 n) for a sequence of n values, which is not as good as Quicksort’s
O(n log n), but its content-independent structure fits much better to a stream processor.
GPU-based bitonic sorting has been implemented before by Purcell et al. and Kipfer et al.
[100, 64]. Furthermore, Govindaraju et al. have presented a cache-optimized version and
Greß et al. implemented adaptive bitonic sorting with complexity O(n log n) [43, 47]. But
these implementations are much more complex than the Gpu++-based solution.
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Figure 7.5: (a) The graphical representation of a comparator that sorts two input values u
and v. (b) Recursive design of a bitonic merge module that sorts a bitonic input sequence.
(c) Design of a bitonic sort module that recursively sorts an arbitrary input sequence.
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Figure 7.6: A bitonic sorting network to sort an arbitrary sequence of n = 8 elements. Note
that comparators in the same stage are executed in parallel. There are log(n)(log(n)+1)/2 =
6 stages, with n/2 comparators in each stage. Gray boxes represent comparator modules Bn.

7.3.2 Implementation Details and Results

To improve the speed-performance of the sorting network, the input sequence is interpreted
as a two-dimensional array and spatial coherence is exploited. However, this leads to a more
complex network construction and nearly triples the source code size (110 instead of 42
lSLOC). Nevertheless, beside the performance gain of 40%, this optimization also relaxes
the maximum array size that is supported by the GPU – while one-dimensional arrays allow
a maximum of 8192 values, two-dimensional arrays handle more than 67 million values.

Table 7.4 shows the results for sorting sequences of varying size (where each sequence
element is defined by a 16-bit sort key and 16-bit attached data). A CPU-based Quicksort
algorithm is compared to the presented Gpu++-based bitonic sorting network. The CPU-
based implementation works much faster for short sequences, due to the high setup-time of
the graphics processor. However, beginning with a sequence size of more than 200 thousand
values, the GPU outperforms the CPU significantly, and sorting four million values is faster
by three orders of magnitude. Nevertheless, while the code complexity of the GPU-based
implementation (110 lSLOC) is higher than for the CPU-based solution (35 lSLOC), it still
is significantly lower than for other GPU-based approaches, e.g. Kipfer (597 lSLOC) [63].

Size CPU GPU
ms mval/sec ms mval/sec

256× 256 = 65536 18.39 3.56 110.30 0.59

512× 512 = 262144 241.21 1.09 119.21 2.20

1024× 1024 = 1048576 3671.80 0.29 149.06 7.03

2048× 2048 = 4194304 59424.76 0.07 562.95 7.45

Table 7.4: Speed results for a CPU-based Quicksort and the GPU-based bitonic sorting
network. Columns with “ms” show the speed, i.e. the time to sort a sequence in milliseconds,
while columns with “mval/sec” show the throughput, i.e. millions of values sorted per second.
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7.4 Fast Fourier Transform

In mathematical physics, the field of Fourier analysis is about the decomposition of a signal
in the “time domain” (or “spatial domain”) into the coefficients of the sinusoidal basis
functions in the “frequency domain” [109]. For instance, the discrete Fourier transform
(DFT) is specialized to analyze the frequencies contained in “discrete and periodic” signals,
which is important in signal processing [102]. The DFT of a sequence of N complex values
x0, . . . , xN−1 into their frequency component X0, . . . , XN−1, is given by:

Xk =
1√
N

N−1∑
n=0

xne
−2πikn/N (7.2)

where k = 0, . . . , N − 1.1 The inverse DFT (IDFT) is defined accordingly:

xk =
1√
N

N−1∑
n=0

Xne
+2πikn/N (7.3)

The DFT can easily be computed by solving linear equations or using the “correlation
method”, but both approaches lead to O(N2) operations [17]. In contrast, the family of
fast Fourier transforms (FFT) computes a DFT in O(N logN) operations by factorizing N .
Commonly, the“radix-2”approach, presented by Cooley and Tukey, is used: The transform
is repeatedly divided into two pieces of size N/2, until the sub-DFT transform a single
value [25]. Because the factorization can take place in the time domain or in the frequency
domain, the approach is called “decimation-in-time” or “decimation-in-frequency”.

The radix-2 decimation-in-frequency FFT separates the sequence into the “top half”
(x0, . . . , xN/2−1) and the “bottom half” (xN/2, . . . , xN−1). Equation 7.2 is rearranged as:

Xk =
N/2−1∑
n=0

xne
−2πikn/N +

N−1∑
n=N/2

xne
−2πikn/N (7.4)

=
N/2−1∑
n=0

(xn + xn+N/2e
−πik)e−2πikn/N (7.5)

=
N/2−1∑
n=0

(xn + (−1)kxn+N/2)e
−2πikn/N (7.6)

If equation 7.6 is separately considered for even and odd values of k, it can be seen that a
DFT for a sequence of N numbers can be expressed by two DFTs for N/2 values:

Xk =



N/2−1∑
n=0

(xn + xn+N/2)e
−2πik′n/(N/2) Even k, with k′ =

k

2
N/2−1∑
n=0

((xn − xn+N/2)e
−2πin/N)e−2πik′n/(N/2) Odd k, with k′ =

k − 1

2

(7.7)

1The normalization factor 1/
√
N is merely a convention and may differ to other definitions. Its only

requirement is that the product of both factors is 1/N . Please note that the factor is discarded in further
equations, because it is applied in a post-process and does not belong to the actual DFT/IDFT.
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By defining the sequences xen and xon (the so-called FFT butterfly, see figure 7.7) as

xen = xn + xn+N/2 (7.8)

xon = (xn − xn+N/2)e
−2πin/N (7.9)

equation 7.7 can be simplified to

Xk =



N/2−1∑
n=0

xene
−2πik′n/(N/2) = Xe

k′ Even k, with k′ =
k

2
N/2−1∑
n=0

xone
−2πik′n/(N/2) = Xo

k′ Odd k, with k′ =
k − 1

2

(7.10)

where the sequence Xe
0 , . . . , X

e
N/2 denotes the DFT of the “sequence of even numbers”

xe0, . . . , x
e
N/2, and Xo

k′ denotes the DFT of the “sequence of odd numbers” xok′ respectively.
Note that the same recursive approach can be used to compute the inverse FFT by changing
the twiddle factors (the factors of xon in equation 7.9) from e−2πin/N to e+2πin/N .

If N is a regular power-of-two, the method can recursively be applied down to a set of
1-point DFTs (i.e. DFT of a single value), where X0 = x0. Because of the logN recursion
levels, the complexity of this approach is O(N logN). While the presented approach can
be implemented directly on the CPU, such a naive implementation “wastes” a lot of time
and memory to reorder the intermediate results, i.e. to interleave xe and xo.

However, the reordering of each recursive level can be combined to a single processing
step – which is called tangling – that can be done in post- or preprocessing: The intermedi-
ate array I of N values contains xe in the “top” half (0, . . . , N/2−1) and xo in the “bottom”
half (N/2, . . . , N−1). The aforementioned reordering interleaves the sub-sequences xe and
xo, so that the source index is turns into id = 2is (for xe) or id = 2is + 1 − N (for xo).
By treating index is as a binary value, the least significant bit of id is the most significant
bit of is. As a consequence, reordering at each recursion level leads to a bit-reversal of the
global index (figure 7.8 illustrates this for an 8-point DFT). In other words, an explicit
“bit-reversal” of the FFT result avoids time- and memory-consuming per-level reordering.
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Figure 7.7: The butterfly operation is the
core command of the FFT. It combines
equations 7.8 and 7.9 to break a DFT of
size N into two DFTs of size N/2.
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7.4.1 Adaptation to the GPU – The Split-Stream-FFT

The CPU-based implementation of the presented radix-2 DIF-FFT algorithm is straight-
forward – some of the fastest CPU-based FFT libraries use this approach [38, 55]. However,
there are some odds and ends, that prevent the algorithm to be implemented efficiently on
a streaming architecture like the GPU, mainly due to its memory access pattern:

Aggregated Butterfly Operation – Currently, the FFT butterfly operation computes
two values at once, which is not possible on the GPU. To be more precise, it is possible
for the fragment unit of today’s GPUs to compute and return multiple values, but
these are stored at the same position in different output arrays. In contrast, the
butterfly operation requires the result to be stored at different positions in the same
output array. As a consequence, the FFT butterfly operation needs to be split, which
leads to separate computations of the xe and xo expressions.

Non-Sequential Scattering – The previously described FFT approach stores the result
of intermediate computations in an interleaved fashion: First, all array elements with
even indices are computed, then, all array elements with odd indices. Unfortunately,
it is not possible to use this memory layout on the GPU – see section 3.6. As a
consequence, the ordering of the standard DIF-FFT needs to be redefined, which
easily can be achieved by moving the “tangling” stage from back to front. This leads
to the computation of a continuous output stream.

Explicit Tangling – Tangling has been presented as a separate preprocessing step to
reorder the input stream for further processing. However, tangling can be combined
with the first level of the FFT. To avoid an increase of code complexity, “scrambled
regions” are used for implicit tangling, i.e. the first recursive level of an N -point FFT
is done by performing N small butterfly operations separately, each combining xe and
xo, where the “bit-reversal” is emulated by passing accordingly aligned input regions.

Especially the split of the butterfly operation and the sequential scattering of the output
stream enable an efficient implementation of the FFT on the GPU – the so-called “Split-
Stream-FFT” [56]. Figure 7.9 illustrates the data flow through a Split-Stream-FFT of size
N = 8. The approach is very efficient, because the output stream of recursive level r can
be used directly as the input stream for level r + 1.

7.4.2 Implementation Details and Results

The DFT is defined in complex space, hence, all computations of the Split-Stream-FFT are
performed using complex values. Because the Gpu++ system does not natively support this
type, complex values are simulated using the two-component vector vec2, where x() is the
real part and y() is the imaginary part. While this allows the direct reuse of component-
wise addition and subtraction for complex values, a “complex multiplication” needs to be
implemented separately. Alternatively, the STL can be used via std::complex<vec1> [112].
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The GPU-based implementation of the Split-Stream-FFT approach has been compared
to the fastest third-party libraries available (both using the CPU): The public FFTW soft-
ware package and the commercial Intel Math Kernel Library [38, 55]. The perfor-
mance has been measured for a two-dimensional forward DFT of complex single-precision
values. Both CPU-based competitors are highly-optimized, i.e. they make use of advanced
techniques like self-modifying code, multi-threading, multi-processing, and the SSE2/SSE3
low-level instruction set. In contrast, the Gpu++-based graphics hardware implementation
is just slightly optimized and contains large potential for further enhancements [44].

The benchmark results for various quadratic input sizes are shown in table 7.5. All
timings are given in milliseconds. Furthermore, an approximated value for the “million
floating-point instructions per second” (mflops) is given, using the following relation [38]:

mflops =
N2 log2N

100(msec)
(7.11)

Beginning with a size of 5122 the GPU-based implementation performs much better than
both CPU-based solutions and the 20482 array is transformed more than twice as fast on
the GPU. Please note that the table does not contain “setup times”, i.e. the time to create
and initialize internal acceleration structures for a specific FFT size. For instance, the
FFTW takes nearly three minutes to create its internal data for 10242 FFTs. While the
IMKL does not require such setup, the Split-Stream-FFT’s setup is always less than 50ms.

Comparing the source code complexity is a hard task in this case: Both CPU-based so-
lutions provide much more functionality than the Split-Stream-FFT, e.g. multi-dimensional
DFTs, non-complex values, and arbitrary input sizes. This leads to a significantly larger
source code, e.g. the FFTW contains more than 120 thousand lSLOC. However, the FFT
routines of the FXT library (143 lSLOC) are comparable in functionality with the pre-
sented Gpu++-based solution (89 lSLOC), even if it is much slower than the FFTW or
IMKL [5]. It should be noted that other GPU-based approaches are much more complex
regarding their source code, e.g. the FFT by Sumanaweera (1762 lSLOC) [114].

FFTW (CPU) IMKL (CPU) Split-Stream (GPU)
Size

ms mflops ms mflops ms mflops Error

256× 256 2.31 2270 1.84 2849 9.45 555 1.6× 10−10

512× 512 12.99 1816 15.45 1527 10.96 2153 7.8× 10−10

1024× 1024 52.33 2004 56.32 1862 25.17 4166 4.0× 10−9

2048× 2048 233.02 1980 283.97 1625 109.44 4216 2.4× 10−8

Table 7.5: Benchmark results for a two-dimensional DFT of single-precision complex val-
ues. The GPU-based Split-Stream-FFT is compared to the fastest CPU-based approaches
available – FFTW and Intel Math Kernel Library [38, 55]. The last column contains
the root-mean-square-error of the GPU-based results compared to the CPU-based FFTW.
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7.5 Tomographic Reconstruction

Most medical image processing algorithms (like the ones in section 7.1) expect the in-
put data in a specific format: A three-dimensional volume (or as a two-dimensional slice
through such a volume) that contains a scaled representation of the scanned object. For
instance, it is assumed implicitly that a scan through a human head will show the teeth,
skull, and brain in the same geometrical relationship as it is in reality. However, this is
not the representation returned by most tomographic scanners, like a CT device. In fact,
a tomographic device returns a set of projections from different scanning angles. The pro-
jections need to be transformed into the expected format for further processing, i.e. the
object is “reconstructed” from its projections. This is called tomographic reconstruction.

A variety of practical algorithms have been developed to reconstruct tomographic data,
such as statistical and algebraic reconstruction [42, 4]. However, by far the most popular
approach is the“filtered back-projection”(FBP) and its variations [30]. While the algorithm
works best for parallel projections (i.e. projections that have been generated using parallel
CT rays), there are adaptations of the FBP for fan- and cone-beam scanning devices [34].

7.5.1 The Fourier Slice Theorem

A typical example for tomographic scanning is computer tomography (CT), where x-rays
attenuate as they propagate through biological tissue. The total attenuation of such a
beam, as it travels a straight line through the object, is represented by a line integral [58]:
If the object is represented by a two-dimensional function f(x, y), the line integral Pφ(t),
where t is the distance to center of the object and φ is the slope of the line, is defined as:

Pφ(t) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cosφ+ y sinφ− t) dx dy (7.12)

Here, δ is the “delta function”, i.e. δ(0) = 1 and δ(n 6= 0) = 0. A collection of such line
integrals is called a projection, and the parallel projection is its simplest form: a set of
parallel line integrals given by Pφ(t) for a constant φ (see the left of figure 7.10).

The Fourier slice theorem states that the Fourier transform of a parallel projection of an
image f(x, y), taken at angle φ, is equal to a line through the image in its two-dimensional
frequency domain, F (u, v), subtending an angle φ with the u-axis [57]. The theorem can
be shown exemplarily for an angle of φ = 0, which leads to a parallel projection along the
v-axis. The two-dimensional Fourier transform of f(x, y) is given by:

F (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πi(ux+vy) dx dy (7.13)

Consider the slice through F (u, v) at v = 0:

F (u, 0) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πiux dx dy (7.14)

=
∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
e−2πiux dx (7.15)
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Figure 7.10: The “Fourier slice theorem” relates the Fourier transform Sφ(s) of a projection
Pφ(t), which is created using parallel rays perpendicular to angle φ through the object f(x, y),
to the Fourier transform F (u, v) of the same object along a single radial, also at angle φ.

Substituting the term in brackets with equation 7.12 of a parallel projection leads to:

F (u, 0) =
∫ ∞
−∞

Pφ=0(t = x)e−2πiux dx (7.16)

This shows that a line at angle φ = 0 through the two-dimensional Fourier transform of the
image f(x, y) is equal to the one-dimensional Fourier transform of the parallel projection
at the same angle φ = 0. Obviously, this result is independent of the actual orientation
between the object and the coordinate system, because the coordinate system can be
rotated by an arbitrary angle φ. Figure 7.10 illustrates the Fourier slice theorem.

The Fourier slice theorem can be used for tomographic reconstruction: By giving enough
projections in frequency space at different angles, they could be assembled into a complete
estimate of the two-dimensional Fourier transform of the scanned object, which then could
be inverted to get the representation of the object in the spatial domain. While this
provides a nice conceptual model, it is not feasible for practical implementations, due to
its speed and reconstruction quality. Instead, the algorithm that is currently being used in
almost all tomography applications is the filtered back-projection (FBP).
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7.5.2 Filtered Back-Projection

Because the algorithm can be explained in a very intuitive and illustrative way, the math-
ematical foundation of the filtered back-projection is left for further reading [30, 58].

To develop the idea of the FBP, a single parallel projection is considered, taken at angle
φ = 0. Because of the Fourier slice theorem, the Fourier transform of this projection is equal
to the u-axis of the two-dimensional frequency representation of the object at v = 0. By
assuming all other projections to be zero and by performing a two-dimensional inverse DFT,
a simple (but distorted) reconstruction of the object is created. This reconstruction can be
seen as a “filtered version” of the original object, i.e. frequencies in the object’s frequency
domain are masked out. To improve the reconstruction, a second parallel projection at
angle φ = π/2 (i.e. perpendicular to the first) is considered and its DFT is added to
the aforementioned two-dimensional frequency domain of the object. The important idea
is: Because of the linearity of the Fourier transform, this summation can be done either
in the frequency domain or in the spatial domain: Instead of combining all transformed
projections to build the two-dimensional Fourier transform of the object followed by an
inverse Fourier transform, the two-dimensional frequency domains of each projection can
be created independently – and all their inverse transforms are summed together. This
sounds more time-consuming as it is, because the inverse Fourier transform of the “sparse”
two-dimensional frequency domain (containing the Fourier transform of a single projection)
is the projection itself, rotated by angle φ and duplicated over the complete image space.

However, rotating the projections by φ, duplicating them along a line perpendicular to φ
and summing them together obviously cannot result in an adequate reconstruction, because
adding two Fourier transformed projections together in the two-dimensional frequency
space doubles the DC frequency (at u = v = 0). In fact, for N projections the frequency is
N times higher as expected. Thus, the frequencies of the Fourier transformed projections
have to be weighted before back-projecting (where the weighting is proportional to the
distance to u = v = 0). Weighting in the frequency domain is the same as filtering in
the spatial domain, hence the name of the “filtered back-projection”. The algorithm is
illustrated in figure 7.11.

7.5.3 Implementation Details and Results

The filtered back-projection consists of two steps: The filtering is based on a DFT to
weight the frequency components, and the back-projection sums “smeared” and rotated
images. While the first step can be implemented using the GPU-based FFT of section 7.4,
the second step is implemented by exploiting the texturing stage of the graphics hardware.

As in section 7.2, the back-projection stage can be optimized by smearing multiple
filtered projections over the reconstruction image, i.e. n passes can be combined by smearing
n rows at the same time, each with a different input region. This allows the graphics
accelerator to make use of all texture stages (at least 16 on today’s graphics hardware).
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Figure 7.11: Tomographic reconstruction of the Shepp-Logan phantom using filtered back-
projection [58]: (a) projections measured by a tomographic device are (b) Fourier trans-
formed, weighted, and back-transformed to the spatial domain. The filtered projections are
then (c) rotated and smeared over the image plane. The total sum leads to the reconstruction.
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CPU GPU
Size

Discrete Linear ×1 ×2 ×4

128× 128 36.86 ms 54.73 ms 38.20 ms 23.37 ms 15.99 ms

256× 256 303.43 ms 434.52 ms 68.69 ms 40.16 ms 24.67 ms

512× 512 2419.1 ms 3465.3 ms 130.55 ms 70.78 ms 41.78 ms

1024× 1024 19591 ms 27900 ms 545.44 ms 281.96 ms 151.40 ms

128× 128× 128 4.75 sec 7.09 sec 4.90 sec 3.00 sec 2.06 sec

256× 256× 256 78.11 sec 114.1 sec 17.73 sec 10.31 sec 6.29 sec

512× 512× 512 1245 sec 1781 sec 66.88 sec 36.41 sec 21.41 sec

1024× 1024× 1024 20065 sec 28556 sec 560.5 sec 378.7 sec 155.9 sec

Table 7.6: Benchmark results that have been measured for the filtered back-projection of
two-dimensional (in milliseconds) and three-dimensional (in seconds) input data sets. While
the CPU-based timings are separated in discrete (i.e. nearest-neighbor) and linear interpo-
lation, all timings on the GPU were measured using linear interpolation for the best quality.

Table 7.6 contains the benchmark results for tomographic reconstruction via filtered
back-projection of two- and three-dimensional data sets with various sizes. While no per-
formance change is noticeable for different interpolation schemes (i.e. nearest-neighbor and
linear interpolation) on the graphics hardware, it makes a huge difference on the main pro-
cessor: The speed-performance decreases by more than 40% for linear interpolation. How-
ever, nearest-neighbor interpolation is inadequate in most cases. The GPU-based imple-
mentation outperforms the CPU-based solution for all relevant sizes: 1024 two-dimensional
projections of size 1024× 1024 are reconstructed to a volume in 2:35 minutes on the GPU,
while the main processor requires more than eight hours. However, today’s practical re-
construction size is 5123, where the tomographic reconstruction is computed in 21 seconds
instead of half an hour, i.e. the graphics accelerator is 83 times faster than the CPU.

The FFT’s source code complexity has been discussed extensively in section 7.4.2,
therefore it is excluded from the complexity comparison of the filtered back-projection.
This leads to 46 lSLOC for the GPU-based implementation, in contrast to the 81 lSLOC
of the CPU-based solution. Furthermore, the Gpu++-based approach is significantly less
complex than other GPU-based implementations of the FBP, like the one by Sumanaweera
(253 lSLOC) [114].
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Chapter 8

Discussion

The utility of the Gpu++ development system has been evaluated in chapter 7 by imple-
menting various general-purpose algorithms on the main and the graphics processor. Two
factors have been of importance: the speed-increase of the GPU-based implementation
compared to the CPU-based solution, and the source code complexity of both versions.
Figure 8.1 shows that all implementations on the GPU are significantly faster than their
CPU equivalents. Furthermore, the figure shows that the source is of comparable com-
plexity for the different processor types. While the first finding (“performance”) has been
presented by others, the second achievement (“complexity”) is a novel result of this work.
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Figure 8.1: Speed and complexity comparison of the CPU- and GPU-based implementations
for an input size of 20482 (except FBP, where the size is 10242). The logarithmic measure-
ments are normalized to the main processor. The light blue bars illustrate the relative speed,
while the dark blue bars stand for the relative software complexity of the graphics hardware.
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8.1 Data Transfer

The benchmark results that have been presented in chapter 7 do not include any data
transfer between the main and the graphics processor. This is comprehensible, because the
figure shows the relationship of the processing performance instead of the data throughput
from the CPU’s point-of-view. As a matter of fact, it is ambiguous if the data transfer is
added to the CPU-based implementation or if it should be associated with the GPU-based
solution – it depends on the context. While in the beginning of GPGPU the transfer time
was included to the graphics hardware measurements, this has changed in the last years.
More often, the GPU is responsible for the complete processing pipeline and the main
processor is only used for pre- and post-processing the data sets.

However, transfer timings cannot be ignored when a decision (“CPU vs. GPU”) needs
to be made. How often is the data transferred? How much data is up- or downloaded?
Can more steps be done on the GPU – even if an individual step is slower – to reduce data
transfer? But these questions need to be answered in context of the actual project.

Since 2005, most graphics accelerators make use of the “PCI-Express” transfer bus,
which allows a theoretical maximum transfer rate of 8 GiBytes/sec in both directions (which
makes a combined transfer rate of 16 GiBytes/sec) [7]. However, the practical transfer rate
is far below this theoretical maximum, e.g. the benchmarking system of chapter 7 achieves
an average transfer rate of 900 MiBytes/sec for up- and 650 MiBytes/sec for downloading.

Nevertheless, the more complex the processing task, the more negligible the data trans-
fer. Table 8.1 shows the speed-performances of the algorithms of chapter 7, but this time
the transfer has been included in the GPU measures. While “threshold segmentation” is
the only GPU-based approach that no longer is competitive with the CPU-based imple-
mentation, the full medical pipeline still beats the CPU by a factor of 13.

In-/Out CPU GPUAlgorithm
Types 10242 10243 10242 10243

Threshold Segmentation 1 7→ 1 short 3.20 ms 3.28 sec 5.90 ms 6.04 sec

Island Removal 1 7→ 1 short 12.48 ms 37.06 sec 6.31 ms 7.40 sec

Gaussian Smoothing 1 7→ 1 short 55.23 ms 84.83 sec 6.27 ms 6.92 sec

Full Medical Pipeline 1 7→ 1 short 70.91 ms 125.2 sec 7.88 ms 9.50 sec

Matrix Multiplication 2 7→ 1 float 35313 ms - 135.2 ms -

Bitonic Sorting Network 2 7→ 2 short 3672 ms - 159.7 ms -

Fast Fourier Transform 2 7→ 2 float 52.33 ms - 46.37 ms -

Filtered Back-Projection 1 7→ 1 short 27900 ms 28556 sec 156.7 ms 161.3 sec

Table 8.1: Benchmarks that include the data transfer between CPU and GPU. While simple
GPU implementations (i.e. threshold) may no longer compete with the main processor, most
other GPU-based approaches still outperform the CPU by multiple orders of magnitude.
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8.2 Software Complexity

Measuring the complexity of software is a nontrivial task, mainly because the definition of
complexity varies between projects, programming languages, and developers. In fact, the
same source code is judged differently by individual developers and a simple implementa-
tion in one language may be hard to understand in another. Furthermore, even relative
statements are highly dependent on the software engineer’s experience. As a consequence,
developers with in-depth knowledge of computer graphics programming and HLSLs may
find shader-based GPGPU development very basic and are not willing to learn the con-
cepts and terminology of the Gpu++ development system. But other software engineers
find HLSL-driven development too complex, compared to the Gpu++-based development.

There are many (sometimes even concurrent) complexity metrics that use the aforemen-
tioned factors to compute the complexity and costs of software components [78, 115, 21].
Such metrics result in a clear quantitative statement about the benefit of Gpu++ in contrast
to traditional GPGPU development in a specific software project. However, the mentioned
criteria are highly speculative and as long as no further details about the software project
are known, an average software developer – without further computer graphics skills –
is considered and the overall project also is assumed to be of average complexity. As a
consequence, the limited information only allows a qualitative tendency statement about
Gpu++-based development.

According to the widely-accepted constructive cost model (COCOMO), the amount of
“delivered source instructions” (i.e. those lines-of-code that make it into the final software)
exponentially influences the development time: The development time for a medium size
software project is computed by T = 3∗lSLOC/10001.12, which leads to an average efficiency
of 7–8 lSLOC per developer and day for a project of 100.000 lSLOC [13, 14].1 Because of
this simple relationship between code lines and development efficiency, the lSLOC metric
has been used for all algorithms presented in chapter 7.

For instance, basic COCOMO predicts a development time of approx. 5 days to imple-
ment the FFT using the Gpu++ development system, while it would take nearly 9 days
for the CPU-based approach and more than 5.6 months for a GPU-based solution using
a string-based shader language. Again, this only gives a tendency and depends on the
specific parameter of the actual software project and the software engineer’s experience.

1There are various versions of the “constructive cost model”: Basic and intermediate COCOMO (some-
times also referred as “COCOMO 81”) have been designed primarily for software development of large
projects on mainframe computers [13], while “COCOMO II” (also called “COCOMO 2.0”) has been ex-
tended to desktop development, code reusability, and the use of off-the-shelf software components [14].
However, all versions lead to similar lSLOC throughput when applied to “average software projects”.
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Chapter 9

Conclusion

The acceleration of general-purpose computations by using programmable graphics hard-
ware has become very popular over the last decade, mainly due to the massively parallelized
processor design and the enormous availability of GPUs as an inexpensive standard com-
ponent of today’s personal computers. However, most existing GPU-related development
systems are graphics-oriented and developing general-purpose applications in such environ-
ments is a challenging task for programmers who are not familiar to computer graphics.

This thesis has taken a novel direction in the design and implementation of the Gpu++

development system, which sees GPU programming no longer as a separate task, which
is done by experts of the graphics domain. Instead, it is integrated in the existing appli-
cation development workflow. This integration has been realized in two ways: First, the
graphics-oriented programming paradigms have been replaced by generic concepts, using
novel techniques like the unified kernel definition and the vector fusion approach. Second,
the definition of GPU-based code has been embedded into the C++ programming language
using ad-hoc polymorphism and operator overloading. In addition, the development com-
plexity is further reduced by providing automatic optimizations of the GPU-based code.

The Gpu++ development system has been extensively evaluated in chapter 7 by imple-
menting well-known general-purpose algorithms on the CPU and the GPU. Six out of the
seven exemplar algorithms run at least one order of magnitude faster on the graphics pro-
cessor, and four algorithms are even two orders of magnitude faster than the CPU. While
such a performance increase has been shown for other GPU-based programming systems, it
usually comes for the price of significantly higher software complexity. This is not the case
for the Gpu++ system: The GPU implementations of two of the seven exemplar algorithms
have a slightly higher complexity compared to the main processor solutions, while the other
five implementations have even less complexity than their CPU-based counterparts.

These results impressively illustrate that the novel design of Gpu++ enables software
developers of general-purpose algorithms to benefit from the computational power of to-
day’s graphics hardware, without an increase of source code complexity and development
time. This makes the Gpu++ system a valuable tool that may significantly help to increase
the acceptance of general-purpose GPU-based programming in the industrial domain.
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9.1 Contributions

This thesis has made several contributions to computer graphics, graphics hardware, soft-
ware engineering, and general-purpose computations on the graphics processing unit:

Generic GPU-Programming Concepts – The Gpu++ development system that has
been presented in this thesis uses a compact set of generic concepts and a correspond-
ing terminology for GPU-based programming. Such an abstraction from the prior
graphics-oriented programming paradigms enables the software developer to imple-
ment general-purpose algorithms on the GPU without being an expert in computer
graphics or graphics hardware. Thus, the complexity of GPU-based implementations
is significantly reduced, which leads to a noticeably shorter development time.

Embedded Kernel Definition – One of the most important features of Gpu++ is the
seamless integration of its kernel program definition into the C++ programming lan-
guage. This is realized by using ad-hoc polymorphism via operator overloading. The
Gpu++ system enables the integration of GPU-based programming into the existing
software development workflow, which includes the seamless interchange and com-
munication between code for the different platforms, as well as the detection of most
compile-time errors of the kernel program at compile-time of the host application.

Graphics Hardware Abstractions – A major contribution of the Gpu++ development
system is the efficient abstraction of graphics hardware features, such as the vec-
tor processor architecture and the different computation units (vertex and fragment
processing). This includes a novel technique that automatically combines individual
scalar instructions to generate a single equivalent vector instruction. Furthermore,
kernel programs are automatically partitioned to efficiently exploit the different GPU
computation units. In other GPU-based programming approaches, such advanced op-
timizations have to be done manually by the developer. Hence, both techniques lead
to a significant reduction of the GPU’s source code complexity.

Optimizations – The Gpu++ development system applies optimizations to the GPU-
based code automatically, which leads to a significantly increased run-time perfor-
mance. The optimizations include dead-code elimination, algebraic simplifications,
and the elimination of common sub-expressions. Nevertheless, the compile-time per-
formance of kernel program optimizations is noticeably reduced by using the novel
visitor traits technique and an efficient custom RTTI scheme.

Performance And Complexity Analysis – A variety of algorithms have been imple-
mented on the main and graphics processor to evaluate the GPU-based develop-
ment system, including computations from digital signal processing and the medical
domain. The evaluation impressively demonstrates that the Gpu++ development
system enables software developers to implement a large range of algorithms (from
matrix-multiplication to filtered back-projection) on the GPU that run significantly
faster than their CPU-based counterparts, but have similar source code complexity.
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9.2 Future Work

Graphics processing units evolve at enormous rates and new features are introduced in
every new hardware generation. At the time of writing this thesis NVIDIA released the
NV80 chip design, which is the first GPU that supports the specifications of Microsoft’s
DirectX10 application programming interface. DirectX10 introduces a new computa-
tional unit, the geometry shader, that is not yet supported by the Gpu++ system. This is
just one area of further investigation that is addressed in the following subsections.

Run-Time Flow-Control / Conditional Statements

The Gpu++ development system does not support all flow-control approaches for the kernel
program (i.e. the program flow depends on a GPU-based run-time variable) that have been
discussed in section 3.6. While the program flow of GPU-based code cannot be explicitly
affected by the computations of the code itself, there are implicit ways via the min(), max(),
select(), and threshold() commands. However, a much more intuitive way would be the
use of C++’s built-in conditional commands, like if, else, and while. Therefore, native
conditionals will be supported in future releases of the Gpu++ development system.

Geometry Shader

The latest generation of GPUs introduces a new computation unit that sits in-between the
existing vertex and fragment units. The geometry shader allows the creation of new, or
the elimination of existing stream elements [90]. The new computation unit vastly enlarges
the family of algorithms that can be accelerated by the GPU, because the size of the
output stream is more flexible. While extending the Gpu++ development system tends to
be non-critical (because all computational units of the GPU are virtualized internally and
abstracted through the interface), the static “array” class type may become obsolete.

Additional Back-Ends

The Gpu++ development system is based on the full virtualization of the graphics process-
ing unit combined with a flexible and efficient back-end infrastructure. It is planned to add
additional back-ends to the software, including the latest version of the DirectX low-level
shading language, NVIDIA’s CUDA, ATI’s CTM, and a CPU-based reference back-end
for advanced debugging issues. In fact, while the design focus of the Gpu++ system has
mainly been the graphics processing unit, there is no architectural limitation to address
other hardware, like FPGA boards, DSP chips, and the CELL processor broadband engine.

Hybrid and Distributed Computing

The Gpu++ development system exploits the computational power of the graphics process-
ing unit to perform algorithms faster than the CPU. However, while the GPU does all the
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work, the main processor is idle most of the time. Using both processors in parallel would
be much more efficient, i.e. the data processing is split into two parts, where one is com-
puted by the GPU and the other is computed by the CPU. While such a hybrid computing
approach sounds trivial, the “split of the data processing” requires a general and adaptive
cost/performance model of the different back-ends (CPU vs. GPU) and the data transfer
bandwidth. As a start, it is planned to extend the Gpu++ development system to support
“parallel back-end execution”, but leave the actual splitting of the data to the developer.

Furthermore, such systems allow distributed computing, where each node of a large
computing cluster applies the kernel program to a small part of the data. Again, while the
partitioning of the data has to be done by the software developer, the transfer and actual
computation will be integrated in future versions of the Gpu++ development system.



Appendix A

Reference of the Language Extension

This appendix will give a brief reference to the C++ language extension introduced by the
Gpu++ system. It includes an overview of the new vector and matrix class types, the math-
ematical operations that are specified for these types, type qualifiers to pass optimization-
hints to the compiler, as well as, built-in functions and variables. Further information can
be found in chapter 4, where the embedded approach of Gpu++ is described.

In addition to this reference, appendix B presents basic programming examples together
with a line-by-line description. In addition, more complex applications are introduced in
chapter 7. However, it is highly recommended to read both appendices in advance.

A.1 Vectors

The Gpu++ development system presents data types for vectors with up to four floating-
point components – vec1, vec2, vec3, and vec4. Vectors can be used to store computer
graphics related data (e.g. colors, normals, and positions) as well as general-purpose data
(e.g. complex values, array positions, and polar coordinates). Please note that variables of
type float can be used wherever type vec1 is expected, but this does not work vice versa,
i.e. once a float value is stored in a vector component, it cannot be casted back to float.

Constructors

Constructors are used to create vectors from a set of scalars or other vectors. A single
scalar parameter (i.e. vec1 or float type) causes the new vector to initialize all components
with that scalar. Non-scalar parameters will be assigned in order, from left to right, to the
new vector components – there have to be enough components provided in the constructor.

vec2 v2a(3.5); // v2a = (3.5, 3.5)

vec3 v3a(1.0, v2a); // v3a = (1.0, 3.5, 3.5)

vec4 v4a(5.0, v2a); // compilation-error: not enough scalars for all components!
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Component Access

Individual vector components can be accessed using the array subscript operator [], i.e. the
first component of the three-component vector v3fb is accessed via v3fb[0], while the third
component is accessed by v3fb[2]. This returns a new vec1 object that can be used for
reading and writing (where writing will change the addressed vector component). Please
note that it is illegal to access nonexisting components, however, it does not result in a
compile-time error, instead, the run-time exception exceptionRange is thrown.

vec3 v3col(1.0, 0.6, 0.4); // initialize three-component vector with "brown"

vec1 v1red = v3col[0]; // returns the first component = 1.0

vec1 v1alpha = v3col[3]; // run-time exception: there is no 4th component

v3col[1] = 1.0; // v3col = (1.0, 1.0, 0.4)

v3col[0] = v3col[2]; // v3col = (0.4, 1.0, 0.4)

Swizzling

An additional approach to access vector components is swizzling, where each component
is associated with a letter: x() returns the first, y() the second, z() the third, and w()

the fourth component of a vector. Furthermore, the letters can be concatenated to access
multiple vector components, e.g. v3p.yx() returns a two-component vector with rearranged
components, and v3p.zzzz() returns a four-component vector with replicated components
(while the first can be used for reading and writing component, the second cannot be used
for writing components, due to ambiguities).

vec3 v3a(0.0, 1.0, 3.0); // v3a = (0.0, 1.0, 3.0)

vec1 v1a = v3a.y(); // returns v1a = (1.0))

vec2 v2a = v1a.xy(); // compilation-error: there is no ’y’ component in v1a

v3a.y() = 5.0; // v3a = (0.0, 5.0, 3.0)

v3a.xz() += 0.5; // v3a = (0.5, 5.0, 3.5)

v1a.xx() = vec2(6.6, 2.0); // compilation-error: writing to replicated components

Accessing components via swizzling is type-safe, i.e. illegal statements (like accessing
the eighth component of a two-component vector) are detected at CPU-based compile-time.
Hence, it is recommended to use swizzling in favor to array-driven component access.

Please note that shading languages like HLSL or GLslang allow swizzling with addi-
tional letter-sets – rgba is used for colors and stpq for texture coordinates. However, such
sets are relevant only to computer graphics and provide no additional functionality.
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vec1 vec2 vec3 vec4

+ - + - * / + - * / + - * / + - * /

vec1 • • • • • • • • • • • • • • • • • •
vec2 • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
vec3 • • • • • • ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦
vec4 • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •

Table A.1: All supported operators between vectors of different sizes. Mathematically
incorrect operations are shown in red, while undefined operations are shown in green.

Basic Operators

Table A.1 shows all basic operators that are defined for the aforementioned vector types.
Please note that the operators work component-wise – this might result in definitions that
are mathematically incorrect (e.g. the multiplication of two vectors via “*” does not result
into a vector dot product) or mathematically undefined (e.g. division of vectors using “/”).

vec2 v2a(0.0, 1.0); // v2a = (0.0, 1.0)

vec2 v2b(1.0, -1.0); // v2b = (1.0, -1.5)

vec2 v2c = v2a + v2b; // v2c = (1.0, -0.5)

vec2 v2d = v2a * v2c; // v2d = (0.0, -0.5)

vec2 v2e = v2a / (-v2c.y()); // v2e = (0.0, 2.0)

A.2 Matrices

The Gpu++ development system supports 2×2, 3×3, and 4×4 matrices of floating-point
values: mat2, mat3, and mat4. Note that matrices are accessed in column major order.

Constructors

Matrices are initialized via a set of scalars or vectors. However, it is not possible to construct
a matrix from a set of smaller matrices. A single scalar will initialize the diagonal of a
matrix, with all other elements set to zero. Furthermore, a set of vectors will initialize the
matrix columns, while a set of scalars will initialize each matrix element.

mat3 m3a(1.0); // m3a = ((1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0))

mat2 m2a(vec2(0.0, 1.0), vec2(1.0, 2.0)); // m2a = ((0.0, 1.0), (1.0, 2.0))

mat3 m3b(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); // m3b = (...)

mat2 m2b(0.0, 1.0, vec2(2.0, 3.0)); // compilation-error: mixed scalars and vectors
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vec1 vec2 vec3 vec4 mat2 mat3 mat4

+ - + - * / + - * / + - * / + - * / + - * / + - * / + - * /

mat2 • • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
mat3 • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦
mat4 • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦

Table A.2: All supported operators between vectors and matrices of different sizes. In
contrast to the overloaded vector operators, matrix operators are mathematically correct.

Column Vector Access

Specific columns are accessed via the [] operator. In combination with the component
access of vectors, this leads to the well-known C++ syntax for matrix component access.

mat3 m3(4.0); // m3 = ((4.0, 0.0, 0.0), (0.0, 4.0, 0.0), (0.0, 0.0, 4.0))

vec3 v3r = m3[1]; // v3r = (0.0, 4.0, 0.0)

m3[2] = vec3(1.0); // m3 = ((4.0, 0.0, 0.0), (0.0, 4.0, 0.0), (1.0, 1.0, 1.0))

vec1 v1r = m3[1][1]; // v1r = (4.0)

m3[0][2] = -1.0; // m3 = ((4.0, 0.0, -1.0), (0.0, 4.0, 0.0), (1.0, 1.0, 1.0))

m3[0].y() = -1.0; // m3 = ((4.0, -1.0, -1.0), (0.0, 4.0, 0.0), (1.0, 1.0, 1.0))

Operations

An overview of the basic operators defined for the matrix types is presented in table A.2.
In contrast to vector operators, the matrix operators do not always work component-wise.

A.3 Type Qualifiers

The type qualifier mechanism is used to declare variables as constant for specific computa-
tion frequencies – this may lead to optimizations. The concept of computation frequencies
is explained in section 3.4 and type qualifiers are described in further detail in section 4.2.3.

Uniforms

The uniform type qualifier marks a variable as “mutable between multiple executions”, i.e.
the variable stays constant within a single execution. In other words, uniforms can be
changed without the need of a kernel program re-compilation. The uniform keyword can
be used for all vector and matrix classes, i.e. vec1, vec2, vec3, vec4, mat2, mat3, and mat4.
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The following code fills two arrays (array1 and array2) with the user-specified four-
component vector m_v4uniform (includes the kernel and its binding in the main procedure):

int main(int, char * *)

{

struct foobar : public kernel< opengl > {

uniform< vec4 > m_v4uniform; // specify a four-component vector as uniform

virtual vec4 element(attribute< vec4 > const & v4Pos) const

{

return m_v4uniform; // copy the uniform to the output element

}

}

foobar fb; // instantiate the kernel program

array2< float, 3 > a2out1(512, 512); // create a two-dimensional output array

fb.m_v4uniform = 0.5; // set uniform to (0.5, 0.5, 0.5, 0.5)

a2out1 << fb; // (compile and) execute on a2out1

array2< float, 3 > a2out2(64, 64); // create a two-dimensional output array

fb.m_v4uniform = vec4(0.1, 0.2, 0.3, 0.4); // set to (0.1, 0.2, 0.3, 0.4)

a2out2 << fb; // execute on a2out2

}

Attributes

The attribute type qualifier is used to mark an input variable as “mutable between the
vertices of a region”, i.e. the variable contains vectors for all vertices of the kernel program
output region – such vectors are linearly related1 to the array elements. Please note that
such “vertex-attached data” is given implicitly (i.e. “in advance”) as a custom region.

The kernel program’s output region (which can be passed via array2::execute()) speci-
fies the array elements the kernel program is applied to – it may be more complex than the
default region that covers the complete array (i.e. it may contain more than four vertices).
In such a case, all other attribute regions that are used in the kernel program must have
the same amount of vertices – otherwise, the behavior of the kernel program is undefined.

The attribute keyword can be used for all GPU vector classes, i.e. vec1, vec2, vec3, and
vec4. A basic example for the attribute keyword can be found in section 4.2.4.

1A graphical explanation of “linearly related” is as follows: each element is surrounded by two edges of
the kernel region (where one edge is on the left and the other edge is on the right side of the element),
and each of the two edges is itself defined by two vertices. The value of the attribute at the given array
element is computed by its weighted distance to the values attached to the four vertices – see section 4.2.3.
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A.4 Built-In Functions and Variables

The Gpu++ development system provides a variety of built-in functions for vector and
matrix types that can be used in GPU-based programming. Developers are encouraged to
use these functions rather than to do the equivalent computations on their own, because
the built-in functions are assumed to be optimal. For instance, the mix() operation is
mapped directly to a single instruction on the graphics processor, while a “custom” linear
interpolation is made of multiple instructions and therefore is executed much slower.

Many of the functions are known from the C math libraries <math.h>, e.g. the trigono-
metric routines sin, cos, tan. However, they are extended to also support vector and
matrix arguments. In the following function declarations, the type vecType is used where
the argument is a vector – similar for matType, which can be any matrix type.

Common Functions

vecType abs(vecType a) – Absolute Value

Performs a component-wise absolute value operation on the single vector operand:
⇒ for each n = 0, . . . , 3: return an if an ≥ 0, otherwise return −an
vec3 v3r = abs(vec3(-1.0, 0.0, 1.0)); // v3r = (1.0, 0.0, 1.0)

vecType inverse(vecType a) – Reciprocal

The reciprocal of each component of the single vector operand is computed:
⇒ for each n = 0, . . . , 3: return 1/an

vec3 v3r = inverse(vec3(-1.0, -2.0, -3.0)); // v3r = (-1.0, -0.5, -0.3333..)

vecType floor(vecType a) – Floor

For each component an, the largest integer less than or equal to an is computed:
⇒ for each n = 0, . . . , 3: return banc

vec3 v3r = floor(vec3(-1.2, 0.0, 0.9)); // v3r = (-2.0, 0.0, 0.0)

vecType ceil(vecType a) – Ceil

For each component an, the smallest integer greater than or equal to an is computed:
⇒ for each n = 0, . . . , 3: return dane

vec3 v3r = ceil(vec3(-1.2, 0.0, 0.9)); // v3r = (-1.0, 0.0, 1.0)
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vecType fract(vecType a) – Fraction

This function extracts the fractional part of each component of the vector operand:
⇒ for each n = 0, . . . , 3: return an − banc

vec3 v3r = fract(vec3(-1.2, 0.0, 0.9)); // v3r = (0.8, 0.0, 0.9)

vecType mod(vecType a, vecType b) – Modulus

Performs a component-wise computation of the division remainder of a by b:
⇒ for each n = 0, . . . , 3: return an − bnban/bnc)

vec2 v2r = mod(vec2(-2.0, 4.0), vec2(0.9, 0.7)); // v2r = (0.7, 0.5)

vecType min(vecType a, vecType b) – Minimum

This function computes the component-wise minimum of the two operands:
⇒ for each n = 0, . . . , 3: return an if an ≤ bn, otherwise return bn

vec2 v2r = min(vec2(0.2, 4.0), vec2(0.9, 0.7)); // v2r = (0.2, 0.7)

vecType max(vecType a, vecType b) – Maximum

This function computes the component-wise maximum of the two operands:
⇒ for each n = 0, . . . , 3: return an if an ≥ bn, otherwise return bn

vec2 v2r = max(vec2(0.2, 4.0), vec2(0.9, 0.7)); // v2r = (0.9, 4.0)

vecType mix(vecType a, vecType b, vecType c) – Linear Interpolation

A component-wise linear interpolation between the first two operands a and b is com-
puted, with the third operand c as the blending factor:
⇒ for each n = 0, . . . , 3: return an + cn(bn − an)

vec2 v2r = mix(vec2(1.0), vec2(0.0), vec2(0.3, 0.7)); // v2r = (0.7, 0.3)

vecType mad(vecType a, vecType b, vecType c) – Multiply And Add

The first two vectors are multiplied component-wise and summed with the third vector:
⇒ for each n = 0, . . . , 3: return anbn + cn

vec2 v2r = mad(vec2(0.0, 1.0), vec2(1.0), vec2(0.5)); // v2r = (0.5, 1.5)
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vecType select(vecType a, vecType b, vecType c) – Select Vector Components

A component-wise comparison of the first operand against zero is performed, where
the second or third operand is returned based on the result of the comparison:
⇒ for each n = 0, . . . , 3: return bn if an < 0, otherwise return cn

vec2 v2r = select(vec2(-0.1, 0.1), vec2(1.0), vec2(0.5)); // v2r = (1.0, 0.5)

vecType threshold(vecType a, vecType b) – Set On Greater Or Equal

Performs component-wise comparison of two operands, if the component of the first
operand is greater than or equal to that of the second, 1.0 is returned, otherwise 0.0:
⇒ for each n = 0, . . . , 3: return 1.0 if an ≥ bn, otherwise return 0.0

vec2 v2r = threshold(vec2(0.5, 1.5), vec2(1.0)); // v2r = (0.0, 1.0)

Trigonometric Functions

Function arguments specified as angle are assumed to be in units of radians. In no case
will any of these functions result in a division-by-zero error. If the divisor of a ratio is 0,
the result will be undefined.

vecType radians(vecType a) – Convert Degrees To Radians

Component-wise conversion from degrees (d ∈ [0, . . . , 360]) to radians (r ∈ [0, . . . , 2π]):
⇒ for each n = 0, . . . , 3: return πan/180

vec3 v3r = radians(vec3(0.0, 90.0, 180.0)); // v3r = (0.0, 1.5708.., 3.1416..)

vecType degrees(vecType a) – Convert Radians To Degrees

Component-wise conversion from radians (r ∈ [0, . . . , 2π]) to degrees (d ∈ [0, . . . , 360]):
⇒ for each n = 0, . . . , 3: return 180an/π

vec3 v3r = degrees(vec3(0.0, 1.5708.., 3.1416..)); // v3r = (0.0, 90.0, 180.0)

vecType sin(vecType a) – Sine

A component-wise approximation of the standard trigonometric sine function of the
vector operator. The angle is given in radians, and has to be in the range [−π, π]:
⇒ for each n = 0, . . . , 3: return sin(an)

vec3 v3r = sin(vec3(0.0, 1.5708.., 3.1416..)); // v3r = (0.0, 1.0, 0.0)
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vecType cos(vecType a) – Cosine

A component-wise approximation of the standard trigonometric cosine function of the
vector operator. The angle is given in radians, and has to be in the range [−π, π]:
⇒ for each n = 0, . . . , 3: return cos(an)

vec3 v3r = cos(vec3(0.0, 1.5708.., 3.1416..)); // v3r = (1.0, 0.0, -1.0)

vecType tan(vecType a) – Tangent

A component-wise approximation of the standard trigonometric tangent function of
the vector operator. The angle is given in radians, and has to be in the range [−π, π]:
⇒ for each n = 0, . . . , 3: return tan(an)

vec3 v3r = tan(vec3(0.0, -0.5, 1.0)); // v3r = (0.0, -0.5463.., 1,5574..)

vecType asin(vecType a) – Arc Sine

A component-wise approximation of the standard trigonometric arc sine function of
the vector operator. The angle is returned in radians, and is in the range [−π/2, π/2]:
⇒ for each n = 0, . . . , 3: return arcsin(an)

vec3 v3r = asin(vec3(0.0, 1.0, 0.0)); // v3r = (0.0, 1.5708.., 0.0)

vecType acos(vecType a) – Arc Cosine

A component-wise approximation of the standard trigonometric arc cosine function of
the vector operator. The angle is returned in radians, and is in the range [0, π]:
⇒ for each n = 0, . . . , 3: return arccos(an)

vec3 v3r = acos(vec3(1.0, 0.0, -1.0)); // v3r = (0.0, 1.5708.., 3.1416..)

vecType atan(vecType a) – Arc Tangent

A component-wise approximation of the standard trigonometric arc tangent function of
the vector operator. The angle is returned in radians, and is in the range [−π/2, π/2]:
⇒ for each n = 0, . . . , 3: return arctan(an)

vec3 v3r = atan(vec3(0.0, -0.5463.., 1,5574..)); // v3r = (0.0, -0.5, 1.0)
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Exponential Functions

vecType pow(vecType a, vecType b) – Exponentiate

A component-wise computation of the first operand raised to the power of the second
operand. Note, that this might be approximated by ab = exp2(a) log2(b), thus, it may
not be possible to exponentiate correctly with a negative base:
⇒ for each n = 0, . . . , 3: return abnn

vec3 v3r = pow(vec3(4.0, 9.0, 16.0), vec3(0.5)); // v3r = (2.0, 3.0, 4.0)

vecType exp(vecType a) – Exponential Naturalis

A component-wise computation of the natural exponentiation of the first operand.
This might be approximated using pow, thus, note the restrictions of the pow function:
⇒ for each n = 0, . . . , 3: return ean

vec2 v2r = exp(vec2(2.0, 3.0)); // v2r = (7.3891.., 20.08554..)

vecType log(vecType a) – Logarithm Naturalis

A component-wise computation of the natural logarithm of the first operand:
⇒ for each n = 0, . . . , 3: return ln(an)

vec2 v2r = log(vec2(7.3891.., 20.08554..)); // v2r = (2.0, 3.0)

vecType exp2(vecType a) – Exponential Base-2

A component-wise computation of the base-2 exponentiation of the first operand. This
might be approximated using pow, thus, note the restrictions of the pow function:
⇒ for each n = 0, . . . , 3: return 2an

vec2 v2r = exp2(vec2(2.0, 3.0)); // v2r = (4.0, 8.0)

vecType log2(vecType a) – Logarithm Base-2

A component-wise computation of the base-2 logarithm of the first operand:
⇒ for each n = 0, . . . , 3: return log2(an)

vec2 v2r = log2(vec2(4.0, 8.0)); // v2r = (2.0, 3.0)
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vecType sqrt(vecType a) – Positive Square Root

This function performs a component-wise computation of the positive square root of
the first operand. Results are undefined if x < 0:
⇒ for each n = 0, . . . , 3: return

√
an

vec2 v2r = sqrt(vec2(4.0, 9.0)); // v2r = (2.0, 3.0)

vecType inversesqrt(vecType a) – Reciprocal Of The Positive Square Root

This function performs a component-wise computation of the reciprocal of the positive
square root of the first operand. Results are undefined if x ≤ 0:
⇒ for each n = 0, . . . , 3: return 1.0/

√
an

vec2 v2r = inversesqrt(vec2(4.0, 9.0)); // v2r = (0.5, 0.3333..)

Vector Functions

vec1 length(vecType a) – Length of a Vector

Computes the length of the specified vector, hence, a one-component vector is returned:

⇒ return
√
a2

0 + . . .+ a2
3

vec1 v1r = length(vec3(1.0, 2.0, 3.0)); // v1r = (3.7417..)

vec1 distance(vecType a, vecType b) – Distance Between Vectors

Computes the distance between the first and the second operand yielding to a scalar:

⇒ return
√

(a0 − b0)2 + . . .+ (a3 − b3)2

vec1 v1r = distance(vec3(1.0, 2.0, 3.0), vec3(0.5)); // v1r = (2.9580..)

vec1 dot(vecType a, vecType b) – Dot Product

Generates a scalar by computing the dot product of the first and the second operand:
⇒ return a0b0 + . . .+ a3b3

vec1 v1r = dot(vec3(1.0, 2.0, 3.0), vec3(0.5)); // v1r = (3.0)
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vec3 cross(vec3 a, vec3 b) – Cross Product

Generates a three-component vector by computing the cross product of the first and
the second operand. The cross product is only defined for three-component vectors:
⇒ return (a1b2 − b1a2, a2b0 − b2a0, a0b1 − b0a1)

vec3 v3r = cross(vec3(1.0,0.0,0.0), vec3(0.0,1.0,0.0)); // v3r = (0.0,0.0,1.0)

vecType normalize(vecType a) – Normalize Vector

Returns a vector with unit length, pointing at the same direction as the first operand:
⇒ return a/length(a)

vec3 v3r = normalize(vec3(1.0, 2.0, 3.0)); // v3r = (0.267.., 0.534.., 0.802..)

Matrix Functions

matType matrixCompMul(matType a, matType b) – Component-Wise Matrix Product

Returns the component-wise multiplication of all elements of a with all elements of b:
⇒ for each i, j = 0, . . . , 3: return aijbij

mat2 m2r = matrixCompMul(mat2(vec2(1.0, 2.0), vec2(-1.0, 1.0)),

mat2(vec2(0.5, 1.0), vec2(0.2, -0.9)));

// m2r = ((0.5, 2.0), (-0.2, -0.9))

matType matrixCompDiv(matType a, matType b) – Component-Wise Matrix Division

Returns the component-wise division of all elements of a with all elements of b:
⇒ for each i, j = 0, . . . , 3: return aij/bij

mat2 m2r = matrixCompDiv(mat2(vec2(1.0, 2.0), vec2(-1.0, 1.0)),

mat2(vec2(0.5, 1.0), vec2(0.2, -0.9)));

// m2r = ((2.0, 2.0), (-5.0, -1.1111..))

Variables

There are some constant and uniform variables that can be used from within any GPU
program. Such variables are initialized automatically. However, there will be no overhead
if they are not used within the program. The following variables can be used:
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vec1 const m_v1pi – The Pi Value

A one-component vector holding π = 3.1415926535897932384626433832795.

vec1 const m_v1euler – The Euler Value

A one-component vector holding e = 2.7182818284590452353602874713527.

uniform< vec2 > m_v2dim – Dimensions of the Output Array

A two-component vector, where the first component (m_v2dim.x()) holds the width,
while the second component (m_v2dim.y()) contains the height of the output array.

uniform< vec2 > m_v2step – Step-Size in the Output Array

A two-component vector, where the first component (m_v2step.x()) holds the reciprocal
of the width, while the second component (m_v2step.y()) contains the reciprocal of the
height of the output array. This is useful to find elements near a given position.
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Appendix B

Examples

This appendix contains basic programs that have been implemented using the Gpu++

development system. In contrast to the more complex algorithms of chapter 7 the following
sections contain the complete source code together with a line-by-line description.

B.1 Hello World

One of the most basic examples is presented in listing B.1 – the position of each element in
the output array is stored to that element. After the inclusion of the Gpu++ header files

1 #include <kernel.hpp>

2 #include <array2.hpp>

3 #include <opengl.hpp>

4

5 using namespace gpp;

6

7 int main(int, char * *)

8 {

9 struct hello_world : public kernel< opengl > {

10

11 virtual vec4 element(attribute< vec4 > const & v4pos) const

12 {

13 return v4pos; // return the output element position

14 }

15 };

16

17 array2< float, 3 > a2out(256, 256); // create a three-component array of size 256 x 256

18 a2out << hello_world(); // execute an instance of the kernel on the array

19 return 0;

20 }

Listing B.1: Store the position for each element of the output array.

113



114 APPENDIX B. EXAMPLES

(line 1–3), the namespace gpp is made available. The kernel program hello_world (lines
9–15) implements the element() method that returns the input position without further
processing (line 11–14). The main() function instantiates an array a2out of 256×256 three-
component vectors of type float (line 17) and executes a kernel program instance on that
array (line 18). The resulting content of a2out is shown in figure B.1 on page 117.

B.2 Array Access

Listing B.2 shows an extended version of the aforementioned example, where an input
array is accessed in the element() method of a kernel program. This is done using sampler
s2input (line 12) and the array subscript operator [] (line 16). Please note that the input
position v4pos is swizzled to perform a mirroring of the input array along its diagonal axis.

In main(), an input array a2in is created from an image file (line 22) and is attached to
the aforementioned sampler (line 23). The resulting a2out content is shown in figure B.2.

1 #include <kernel.hpp>

2 #include <array2.hpp>

3 #include <sampler2.hpp>

4 #include <opengl.hpp>

5

6 using namespace gpp;

7

8 int main(int, char * *)

9 {

10 struct array_access : public kernel< opengl > {

11

12 sampler2< float, 3 > s2input; // sampler to access an attached input array

13

14 virtual vec4 element(attribute< vec4 > const & v4pos) const

15 {

16 return s2input[v4pos.yx()]; // sample input (diagonally mirrored) and return result

17 }

18 };

19

20 array_access aa; // instantiate the kernel program

21

22 array2< float, 3 > a2in("images/lenna.bmp"); // create input array from the given BMP image

23 aa.s2input.setArray(a2in); // attach the input array to the kernel’s sampler

24

25 array2< float, 3 > a2out(256, 256); // create a three-component array of size 256 x 256

26 a2out << aa; // and execute the kernel instance on that array

27 return 0;

28 }

Listing B.2: The input image a2in is mirrored along its diagonal axis.
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B.3 Array Rotation

Very similar to the previous example, the program in listing B.3 accesses an input array
a2in via sampler object s2input to create the output array. But this time the input array
is rotated by the specific angle v1a (line 13) – which is declared as uniform and therefore
can be changed without update and re-compilation of the kernel program (line 29).

To perform the rotation around the array’s center, the input position v4pos needs to be
translated (line 17) and then transformed using the known rotation equations (line 18–19).
Finally, the back-translated rotated position is used to access the input array (line 20).

The main() function instantiates the kernel program and initializes its sampler (line
24–26) – linear interpolation is used to achieve better results. Finally, the rotation angle
is set (line 29) and the kernel is executed (line 30). Figure B.3 shows the resulting a2out.

1 #include <kernel.hpp>

2 #include <array2.hpp>

3 #include <sampler2.hpp>

4 #include <opengl.hpp>

5

6 using namespace gpp;

7

8 int main(int, char * *)

9 {

10 struct rotate : public kernel< opengl > {

11

12 sampler2< float, 3 > s2input; // sampler to access an attached input array

13 uniform< vec1 > v1a; // the rotation angle (in radiants)

14

15 virtual vec4 element(attribute< vec4 > const & v4pos) const

16 {

17 vec2 v2off = v4pos.xy() - 0.5; // compute position relative to the center

18 vec1 v1x = cos(v1a) * v2off.x() - sin(v1a) * v2off.y(); // the rotated x position

19 vec1 v1y = sin(v1a) * v2off.x() + cos(v1a) * v2off.y(); // the rotated y position

20 return s2input[vec2(v1x, v1y) + 0.5]; // shift the position back to center and sample

21 }

22 };

23

24 rotate rot; // instantiate the kernel program

25 rot.s2input.setArray(array2< float, 3 >("images/mandrill.bmp")); // attach an input image

26 rot.s2input.setSampling(SAMPLE_LINEAR); // linear interpolation is used

27

28 array2< float, 3 > a2out(256, 256); // create a three-component array of size 256 x 256

29 rot.v1a = 0.52359877559829887307710723054658; // set rotation angle to 30 degree (*PI/180.0)

30 a2out << rot; // and execute the kernel instance on that array

31 return 0;

32 }

Listing B.3: The input array is rotated by the uniform angle v1a.
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B.4 Blending of Two Arrays

The final example – in listing B.4 – combines two arrays using a circular blending function.
The kernel program uses two samplers to access both arrays (line 12–13). The blending
function computes the quadratic distance to the array’s center (line 17–18). Then, the
quadratic distance v1dis is scaled (line 20) and clamped (line 21), which equals to a ramp
from 0 to 1 for 0.2 ≤ v1dis ≤ 0.22. Please note, that all scaling parameters can be specified
as uniform to increase the flexibility. Finally, mix() is used to blend the arrays (line 23).

In main(), the kernel program is instantiated and its samplers are initialized with two
imported images (line 27–29). The resulting content of a2out is illustrated in figure B.4.

1 #include <array2.hpp>

2 #include <sampler2.hpp>

3 #include <kernel.hpp>

4 #include <opengl.hpp>

5

6 using namespace gpp;

7

8 int main(int, char * *)

9 {

10 struct blend_array : public kernel< opengl > {

11

12 sampler2< float, 3 > s2input1; // sampler to access the first input array

13 sampler2< float, 3 > s2input2; // sampler to access the second input array

14

15 virtual vec4 element(attribute< vec4 > const & v4pos) const

16 {

17 vec2 v2off = v4pos.xy() - 0.5; // compute position relative to the center

18 vec1 v1dis = v2off.x() * v2off.x() + v2off.y() * v2off.y(); // find (center distance)^2

19

20 vec1 v1scale = (v1dis - vec1(0.20)) / vec1(0.02); // rescale the center distance

21 vec1 v1blend = min(max(v1scale, vec1(0.0)), vec1(1.0)); // and clamp against 0.0 and 1.0

22

23 return mix(v1blend, s2input1[v4pos.xy()], s2input2[v4pos.xy()]); // blend both arrays

24 }

25 };

26

27 blend_array ba; // instantiate the kernel program

28 ba.s2input1.setArray(array2< float, 3 >("images/peppers.bmp")); // load and attach 1st image

29 ba.s2input2.setArray(array2< float, 3 >("images/lenna.bmp")); // load and attach 2nd image

30

31 array2< float, 3 > a2out(256, 256); // create a three-component array of size 256 x 256

32 a2out << ba; // and execute the kernel instance on that array

33 return 0;

34 }

Listing B.4: Two input arrays are combined using a circular blending function.
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Figure B.1: The a2out content of listing
B.1 interpreted as an RGB image – the ver-
tical position of each output array element
is mapped to the red component, while the
horizontal position is mapped to green.

Figure B.2: Result of listing B.2, where
the famous Lenna input image is stored in
output array a2out. The mirroring along
the diagonal axis is achieved by swapping
the x and y components while sampling.

Figure B.3: Listing B.3 generates a ro-
tated version of the input array, where the
rotation depends on the uniform variable
v1a (= 30◦). Please note the “border arti-
facts” due to a clamped array sampling.

Figure B.4: The program in listing B.4
performs a smooth blending of two arrays
to create the final a2out. The blending de-
pends on the Euclidean distance of each
element to the output array’s center.
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