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Prüfer der Dissertation: 1. Univ.-Prof. Gudrun J. Klinker, Ph.D.

2. Univ.-Prof. Nassir Navab, Ph.D.

Die Dissertation wurde am 23.04.2007 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 10.09.2007 angenommen.





Abstract

Tracking is an important component of augmented reality systems. Track-
ing means to determine and follow the position and orientation of an object
with respect to some reference coordinate system over time. As with all phys-
ical measurements the estimate is affected by errors. These errors propagate
through the chain of transformations from the tracking systems to the final
application,until they appear as alignment errors in the augmented reality
application.

This thesis deals with the mathematical tools that are needed to estimate
the final resulting precision, as well as with visualization concepts for exploring
and understanding tracking errors. The special case of optical tracking systems
is further analyzed to provide useful initial estimates of the tracking error. A
set of examples finally shows the application of the error estimation in real-
world setups.





Zusammenfassung

Das Tracking ist ein wichtiger Bestandteil von Anwendungen im Bereich der
Erweiterten Realität. Tracking bedeutet, die Position und Ausrichtung eines
Objektes relativ zu einem Referenzkoordinatensystem über einen gewissen
Zeitraum hin zu bestimmen und zu verfolgen. Wie jeder andere Messprozess
ist auch dieser Prozess fehlerbehaftet. Diese Messfehler pflanzen sich durch
die gesamte Kette der Transformationen von der Messung bis hin zur tatsäch-
lichen Anwendung fort, wo sie dann als Fehler in der Überlagerung sichtbar
werden.

Die vorliegende Arbeit befasst sich sowohl mit den mathematischen Meth-
oden, die nötig sind um die endgültige Genauigkeit abzuschätzen, als auch mit
Visualisierungsmöglichkeiten um diese Fehler zu untersuchen und zu verste-
hen. Für den Spezialfall eines optischen Trackingsystems wird ein Verfahren
zur Abschätzung des Messfehlers vorgestellt. Die Nützlichkeit der präsen-
tierten Methoden wird anhand einer Reihe von Beispielen verdeutlicht.
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Part I

Introduction





1

Augmented Reality

Augmented reality is a field of computer science, which deals with a special
form of human-computer interaction. The main concept of augmented reality
is to augment a user’s perception of the reality with additional information.
This additional information can be computer-generated, or simply information
that humans can not perceive directly with their senses.

Fig. 1.1. Example scenario for augmenting the perception of the reality by
computer-mediated information

An example can be seen in figure 1.1. The real scene is augmented by
a virtual yellow car. To provide correct integration into the real scene, the
virtual scene contains additionally a rough model of the reality.

The term augmented reality is formed in analogy to virtual reality, where
the user is fully immersed into a virtual world. In contrast to that, augmented
reality tries to bring the virtual information from the computer ‘back to the
real world’ [208]. According to Milgram’s definition of the reality-virtuality
continuum [121], both augmented reality and the field of augmented virtuality
together form the field of mixed reality. Augmented virtuality denotes here
virtual environments that are enhanced by information captured from the
reality, like textures or videos. While the term is actually rarely used in the
literature nowadays, augmented reality and mixed reality are mostly used as
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synonyms. Sometimes also the term enhanced reality occurs [74, 159, 118]
interchangeably in this context.

Initially the term referred only to the use of head-mounted displays [120],
but soon included more senses [12]. However, currently most of the research
is still only focused on augmenting the visual sense using several different
presentation techniques.

1.1 History and Definition

The history of augmented reality starts – even though the term was not used at
this time – with the first head-mounted displays [147, 29] by Sutherland [177]
and Furness [67] in the late 1960s. The ability to see the reality through the
display did soon inspire researchers to the idea of spatially registered visual
information.

While the virtual reality community evolved over the years, the technical
limitations were still not allowing the use of the VR hardware for a widespread
use of augmented reality. Only in the early 1990s the technology was advanced
enough, and soon applications started to appear [30, 15, 145].

It is unclear when the term augmented reality for this part of the virtual
reality research was first used. Although the first research paper containing
the term was published in 1992 [30], it is most probable that it was already
in widespread use [145] at that time. In february 1993, a small workshop
on ‘Augmented Reality and Ubiquitous Computing’ was held at the M.I.T.,
leading to a special issue on computer augmented environments [208] in the
Communications of the ACM journal, which really coined the term in several
articles.

In the commonly accepted definition by Azuma [12], an augmented reality
system has the following three requirements: First, the system combines real
and virtual objects in a real environment, Second, this combination needs to
be interactive and in real time. Third, the combination of the real and virtual
objects has to be registered in the three-dimensional world.

In a later publication, this definition was extended [10] stating that the
real and virtual objects should be aligned with each other rather than being
registered in three dimensions. This slight distinction in the definition actually
denotes a significant difference when it comes to the area of tracking: Not
only the three-dimensional registration accuracy in the measurement space
is important, but what is even more of interest is the actual alignment in
the application space. If the application consists o two-dimensional graphical
overlay on camera images, this two-dimensional overlay has to be aligned
correctly. If measuring distances in three-dimensional space is the purpose of
the application, the alignment needs to be accurate in three dimensions. The
alignment has to be achieved in the whole working volume of the application.
In particular this includes all kinds of error propagation as presented in chapter
4.2 and 5.
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Based on these definitions, every augmented reality system requires some
tracking of the user, his head or more specifically his eyes, and any body
parts needed for the interaction with the system. To combine the real and
virtual information, some kind of display hardware is needed, and in between
a software infrastructure allowing the capturing and processing of the neces-
sary tracking and interaction information and the generation of the virtual
information according to the application. The authoring or preparation of
three-dimensional content is also an important issue, sometimes even solved
again using an augmented reality system.

1.2 Tracking Requirements for Augmented Reality

To be able to align virtual, computer mediated objects with reality, we need
to know the pose of the object relative to the user’s pose, or depending on
the used display technology also relative to the display’s pose. To obtain the
illusion of coexistence of virtual and real, this pose has to be as accurate
as possible [8]. Many different tracking systems exist [119, 21, 28, 148] that
can give us this pose. While none of them is perfect [207], we can still get
useful results by carefully designing the tracking system and sometimes using
a hybrid combination of different tracking systems [200].

The term ‘tracking’ in general means to observe the measured state of some
object over time. It is used with this meaning in a wide range of application
fields including engineering, finance and logistics. In the context of computer
vision, tracking could be the following of the pose of an object from one frame
to the next. The tracked state here would contain for example the position
of the object on the frame together with other features like the color or the
momentum. In the virtual reality community however, the term tracking is
used in a broader way: A tracking system is a system that returns the pose of
an object with a certain frequency, no matter if actually a tracking algorithm
in the computer vision sense has been used for the pose reconstruction.

In the context of this thesis we follow the definition from virutal reality
and denote with tracking the process of estimating and following the pose of
an object over time. For the accuracy considerations in the following chapters
however, we only consider on-measurement accuracy – exactly at the time the
measurement was made. Continuous accuracy estimates in between measure-
ments could be achieved by using an additional motion model [3].

The requirements on the accuracy of a tracking system depend on the ap-
plication. Usually these requirements are not imposed on the measuring pro-
cess itself but rather on the propagated error and the application space [113].
We take now a closer look at the main application areas for augmented reality
with respect to their specific accuracy requirements.
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1.2.1 Medical Applications

Medical applications have been subject to augmented reality research from
the beginning. One reason for this might be the already existing highly in-
strumented environment in modern operating rooms. Another driving force is
the need for novel user interfaces to deal with the increasingly large amounts
of multidimensional medical data. Three-dimensional data sets are regularly
generated for diagnosis and intraoperative navigation. In intraoperative nav-
igation, tracked instruments are displayed within three-dimensional imaging
data to provide visual guidance for the surgeon. The main difference to aug-
mented reality is the lack of in-situ visualization. The navigation information
is displayed potentially together with preoperative planning data on a sepa-
rate screen referenced to the imaging data. For the extension to augmented
reality, the planning data and additional information is displayed in-situ reg-
istered with the actual patient. This can be performed using head-mounted
displays [26], or by augmenting already existing optical instruments like en-
doscopes [159], microscopes [51], or x-ray machines [125].

The final alignment accuracy between a virtual object and the real patient
now depends not only on the accuracy with which the patient or instruments
can be tracked, but rather on the accuracy of the relative pose between the
display and the real object. This involves several error propagation steps,
which need to be as small as possible. Hoff et.al. [84] propose a combination of
fixed and head-mounted sensors to minimize the errors. Sauer et.al. [152] have
presented a design for a combined head-mounted display and optical tracking
system minimizing the propagated alignment error by using an inside-out
configuration for the tracking. Stetten et.al. [171] have worked on an enhanced
ultrasound transducer equipped with a semitransparent display. The display
is mounted in a way such that the ultrasound image is aligned with the reality
by design from any viewing angle, requiring no tracking at all and therefore
minimizing the tracking error. Unfortunately, similar solutions are not always
possible due to anatomical constraints.

In general, medical augmented reality systems are used as a tool to support
surgeons in their primary task and should not require too many changes in
the workflow of this task. Additionally, the procedures can in general not be
repeated if the accuracy was insufficient, and they are subject to hard real-
time constraints.

1.2.2 Industrial Applications

Industrial applications of augmented reality can be used across the whole
product life cycle [64]. Orthogonal to the life cycle phases, the applications
can be classified into three main areas: Among the first proposed applications
of augmented reality were construction and repair scenarios [30, 54]. Here
usually the accuracy requirements are not as strict as in medical applications
since the displayed information mainly consists of abstract instructions. In
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a second area, augmented reality is used to present virtual objects, such as
preliminary car designs, together with existing real objects in a natural en-
vironment [104, 65]. Here like in virtual reality scenarios the photorealistic
effect is much more important than the absolute accuracy. Due to the interac-
tivity of such applications, the dynamic errors resulting from fast movements
have much higher impact than the static registration errors. Thirdly, aug-
mented reality can be used for actual measurements between real and virtual
objects [135, 129]. In this case case the accuracy requirements are similar to
the medical scenarios. However, in most cases the augmentation can be rather
static, for example by putting the camera capturing the real scene on a tripod.

The International Standards Organisation (ISO) has published a Guide to
the Expression of Uncertainty in Measurement [88, 89] which states guidelines
for measurements in industrial applications. These guidelines have also been
implemented in their according national counterparts [191, 192].

1.2.3 Other Applications

A large range of augmented reality applications have been proposed in the
field of gaming, teaching and entertainment. Typically these applications are
still of mostly academic nature. Here, the researchers focus on other aspects
of augmented reality (see section 1.3) than tracking accuracy, and therefore
the requirements are not as strict.

In particular in the research for interaction techniques, it is more important
to reduce the dynamic errors due to movements than to improve the overall
accuracy, since the magnitude of the dynamic error is in such applications
much larger than the static registration error [11].

1.3 Research Issues

If we take a look at the accepted research papers at the International Sym-
posium on Mixed and Augmented Reality, the main conference for augmented
reality over the last five years (cf. figure 1.2), we can see that the two most
challenging research areas are still the tracking and calibration areas as well
as the research in rendering and interaction, as stated by Bishop et.al. [27] in
1992 already and confirmed by Azuma et.al. [12, 10] and Klinker [103] in the
late 1990s. However, if we take a look inside the research areas, we can see
that there has been some advance and also some change in focus in all areas.

1.3.1 Tracking and Calibration

Research in the tracking and calibration area has started from simple opti-
cal marker-based tracking systems, but now focuses with increased generality
more and more on markerless tracking in unprepared environments. While in
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Fig. 1.2. Research Issues at the International Symposium on Mixed and Augmented
Reality (ISMAR) over the years 2002–2006 by number of accepted papers.

the beginning only small movements could be tracked without large markers,
now natural feature tracking becomes usable in more and more situations.

On the calibration side, progress has been made in the use of different
tracking modalities in unified frameworks and the estimation of the resulting
errors. With the increasing commitment to applications outside of the purely
academic use, the accuracy of possibly complex tracking and calibration setups
has moved again more into the focus of research.

1.3.2 Rendering and Interaction

From the user interface side, interaction with three-dimensional content as
well as immersive authoring of content is still subject to intensive research.
Advanced rendering techniques, as they are developed in the field of computer
graphics, appear in augmented reality more often as well.

One problem for commercial applications remains here the authoring of
large amounts of three-dimensional interactive content from existing data [172].

1.3.3 Applications and Other Issues

Applications of augmented reality also appear at other conferences specific to
their particular field. Especially in the medical field, the onference on Medical
Image Computing and Compter-Assisted Intervention (MICCAI) has seen an
increased amount of publications that are closely related to the field of aug-
mented reality recently. For industrial applications, there have been workshops
on industrial augmented reality in the side program of ISMAR in the last two
years. In Germany, the industry together with the ministry for education and
research defined the research project ARVIKA [7, 64, 65], and a successor
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project ARTESAS [6] to investigate the potential use of augmented reality in
industry. This shows the ongoing interest in the industry on augmented reality
technologies. Also for academic applications we can see from figure 1.2 that
there is continuous interest. Supporting frameworks for building augmented
reality applications are also still an active research field.





2

Introduction to Ubiquitous Tracking

In the context of this thesis, tracking is the continuous estimation of the pose
of an object relative to some reference frame. Many technologies to achieve
this goal exist, but none of them is perfect [207]. To gain more flexibility in
tracking, it is necessary to be able to combine different tracking technologies
together without re-implementing the whole application. In principle we want
to be able to get the pose of any object relative to any other object at any
time. We call this concept Ubiquitous Tracking.

To reach this goal, we have a developed a layered tracking and calibration
framework [201, 200] which can be used to model, describe and implement
tracking and calibration algorithms. The Ubiquitous Tracking model consists
in the following three layers:

A Formal Description. The first step towards reusability is to have a unified
way to describe complex tracking and calibration scenarios such that com-
mon subproblems can be identified in different setups. To this end we have
defined [127] the spatial relationship graph as a formal way to describe the
spatial relationships between the objects in a scenario. We present the
formal description model in section 2.1 where we also show how this de-
scription can be used by itself to discuss frequent tracking problems.

A Library of Algorithms. Once we have a description of the setup and of the
problem, we need algorithms to solve the problem. We have identified [141]
basic subproblems and corresponding solutions from the literature which
will be described in detail in section 7. Pustka et.al. [141] call this concept
Spatial Relationship Patterns in the style of design patterns in software
engineering. In addition to that, an algorithm is presented that can be
used to automatically find possible solutions by consecutively applying the
patterns until the goal can be reached. This library needs to get extended
and updated with new algorithms that are newly developed or that are
not yet covered by the library.

Implementation Concepts. While the described concepts are not depending
on a single implementation but should by definition cover all possible
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tracking and calibration systems, there are however implementations that
suit the philosophy of reusable components better than other. We present
in section 2.2 four frameworks from different research groups and discuss
their respective advantages and disadvantages.

2.1 Formal Description

At the moment, developing an augmented reality tracking system requires a lot
of in-depth knowledge of calibration algorithms, in particular when the system
is going to use more than only one external tracking system or display. Often
there are several ways to compute a coordinate system transformation for the
visualization. The decision is usually done based on personal experience of the
programmer and then hard-coded into the system. We have proposed [128] an
abstract description of all the spatial relationships in such a system to facilitate
the reuse of successful implementations in new setups.

Like software engineering has moved from trial-and-error to modeling and
specification, and computer graphics has moved from programming every sin-
gle primitive to declaring complex scenes, we want to make the step from
reimplementing calibration and tracking algorithms to the automatic gen-
eration of the required data flow and algorithms from a declaration of the
setup [141].

2.1.1 Descriptive Language

For the purpose of tracking and calibration, we restrict our description of ob-
jects in the system to the description of the spatial relationship of the objects
among themselves, i.e. we do not consider other properties like shape, color,
or material which might be of interest when rendering the objects. Every rigid
object is represented in its own coordinate system, where a single rigid object
can be associated with several distinctive coordinate systems are statically
connected to each other by rigid transformations. In the real world now every
object has a well-defined spatial relationship with each other object. We ex-
press this relationship by the transformation in space that would be needed
to align the two coordinate systems [200]. Note also that this transformation
might be continuously changing over time for some of the objects.

The graph consisting of all these spatial relations is called the spatial rela-
tionship graph. Note that this is not a new concept; informal drawings of such
spatial relationships are well known in the literature. A few examples can be
seen in figure 2.1. However, we propose to use a unified syntax [141] in these
drawings to make them easier to understand on first sight.

In reality however we do not know the exact transformations; all we know
are measurements from tracking systems or calibration algorithms or from
other models. These measurements contain errors and only exist at discrete
points in time. Some transformations are modeled or measured only once and
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(a) (b) (c) (d)

Fig. 2.1. Informal drawings of Spatial Relationship Graphs are well-known from the
Literature: (a) Tuceryan et.al. [188], (b) Tsai et.al. [185], (c) Sielhorst et.al. [169],
(d) Hoff [84]

assumed to be static after that, because they belong to the same rigid object
or their relationship does not change during the usage of the system. Some
other transformations are continuously measured by some kind of tracking
system, where the update rates of different tracking systems range from few
milliseconds (some optical tracking systems) to seconds (GPS).

Usually, the transformation needed for visualization is not among the
transformations that can be directly measured. To compute the transforma-
tion we need to infer it from our measurements. Any inferred transformation
can be considered as a measurement itself; by subsequently applying inference
algorithms we can compute the desired transformation [141].

Figure 2.2 shows a classification of the edges in a spatial relationship graph.
The spatial relationship graph contains all spatial relationships in the system,
not only the ones that were actually measured.

Static Measurements

As stated above, there are spatial relationships in the graph that do not change
over time, either because the two coordinate systems belong to the same rigid
object, or because their relationship can be assumed to stay constant during
runtime. This might be the case for example for the base coordinate systems of
two independent tracking systems that are setup in a room and the respective
relationship is once calibrated and then assumed to stay constant as long as
the hardware is not moved around.

The fact that an edge is static might be used later by inference algorithms
as seen in section 7. Note also that even edges that are not explicitly modeled
as static edges might over some period of time actually stay static when for
example a tracked object is not moved during some stage of the application.

Dynamic Measurements

Dynamic measurements on the other hand are measurements of the spatial re-
lationship of two objects that are not connected to each other and are repeated
with some frequency. This applies also to measurements of a transformation
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Fig. 2.2. Classification of edges in the spatial relationship graph

where the underlying objects are not really moving relatie to each other, but
due to the errors in the measurements the measured transformation is chang-
ing constantly.

Direct Measurements

Direct Measurements are measurements that are either known, modeled or
come from external tracking systems, i.e. they do not depend on other mea-
surements. These measurements form the basic spatial relationship graph.

The measurements are disturbed by different kinds of errors. For static
edges, the error is systematic since it does not change over time. Such error
can come from wrong calibration of the external measurement tools, from
wrong modeling or from changes of the actual spatial relationship that was
assumed to be static, like a physical movement of a sensor.

Inferred Measurements

Inferred measurements are measurements that are derived from other mea-
surements. These measuremnts can be direct measurements or already de-
rived measurements, leading to a hierarchy of derivations, which is called the
data-flow graph for that measurement.

The data flow graph consist in a set of standard components that are linked
together according to the spatial relationship graph [127]. The data flow graph
can also be used to describe how an edge can be computed from other edges.
The data flow graph has in addition to deal with error propagation according
to chapter 4.2.
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2.1.2 Visual Programming Toolbox

If we use the formal description to uniquely describe all algorithms that are
used in the data flow graph, we can see this library of algorithms a s a toolbox
for building data flow graphs.

We could develop a visual editor where it is possible to instantiate and
connect data flow algorithms without writing a line of code. The resulting
graph could be saved in a textual description and could be instantiated even
without the editor. An overview of software frameworks to support this process
is given in section 2.2. Some of the calibration algorithms are described later
in section 4.2 and 7.

2.1.3 Automatic Pattern Search and Data-Flow Generation

With tracking setups becoming increasingly complex, it gets more difficult to
find suitable algorithms for tracking, calibration and sensor fusion. Even in
small setups, several possibilities exist how a particular calibration problem
can be solved.

Pustka et.al. [141] describe a method how the formal description of a spa-
tial relationship graph can be used to automatically derive all possible solu-
tions, given a library of potential algorithms. The algorithms are organized as
so-called spatial relationship patterns. A spatial relationship pattern is used
to identify parts of the overall spatial relationship graph for which a known
algorithm exists.

An algorithm is proposed which searches the graph recursively for potential
patterns to identify again solvable subproblems until a solution for all required
transformations is found. The corresponding data flow components then can
be instatiated and execute the algorithms to provides the result again as an
edge in the spatial relationship graph [141].

This enable the fully automatic setup of data flow graphs from a descrip-
tion of the setup alone. The choice between different potential solutions can be
done either automatically using a pre-specified error function [200], or manu-
ally from a list of potential solutions.

2.2 Supporting Middleware

To support the ideas of the ubiquitous tracking framework, a middleware is
necessary to connect the various data flow components with teach other and
to allow the execution of predefined data flows.

2.2.1 Studierstube / OpenTracker

In 2001, Reitmyar et.al. [142] presented an XML-based framework for the
flexible configuration of different tracking devices and intermediate dat flow
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components. It has been used as tracking layer in the Studierstube project [142,
178]. In this framework, every device defined an interface to a query for the
current position and orientation. The components are formed into a directed
acyclic graph (DAG) according to the instructions in a user-supplied configu-
ration file.

The framework did not support dynamic reconfiguration of the specified
graph, as it i is required for the automatic setup of data flow graphs using
spatial relationship patterns.

2.2.2 DWARF

The Distributed Wearable Augmented Reality Framework (DWARF) [17] is
a framework to build and deploy augmented reality applications [114]. The
main focus was on mobile, highly flexible and continuously changing systems.
Therefore the middleware had to be able to dynamically connect independent
components rather than instantiating a complete predefined graph.

Several academic applications have been built using the DWARF frame-
work between the years 2000 and 2005, and finally lead to the design of the
Ubitrack middleware.

2.2.3 OSGAR

OSGAR [39] is an extended scene-graph API to support uncertain transfor-
mations. Initial errors from the tracking systems get propagated to the final
application error [113]. The scene-graph is in fact a tree, not a general directed
acyclic graph.

The tracking of objects is tightly coupled with the rendering, and the
data-flow is explicitly modeled into the rendering tree. Automatic data-flow
generation is not possible using this approach.

2.2.4 Ubitrack

The Ubitrack framework [140, 127] is a conceptual enhancement of the
DWARF framework to overcome the implementational limitations of its pre-
decessor. It additionally will support more features like the automated graph
search described above and error propagation methods as described later in
this thesis. In contrast to both DWARF [114] and OpenTracker [142], the
ubitrack framework defines an XML description language to describe bith the
dataflow and the spatial relationship graph at the same time. The develop-
ment of the Ubitrack framework is an ongoing research effort at the Technische
Universität München in the group of Prof. Klinker.
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2.2.5 CampAR

CampAR [170] is another framework for augmented reality applications devel-
oped at the Technische Universität München, in the group of Prof. Navab. It is
mainly targeted at medical augmented reality with their special requirements
on high-precision tracking and reliability.

Like in the Ubitrack framework, the data flow is specified in an XML file
which is used to instantiate and execute data flow components at runtime.
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Error Representations

The error in a tracking system can be described as a statistical process [28].
At any given time the pose estimate is the the result of the true position,
affected by some static repeatable noise due to wrong calibration or static
field distortion plus additional random noise, which are non-repeatable errors
made by the measurement system. Such errors are inevitable in any kind of
physical measurement and therefore exist in any tracking system. Since it is
non-repeatable, it can also not be removed by calibration but is an error which
is intrinsic to a specific tracking system setup.

Since all calibrations are also based on measurements, the magnitude of
this error limits also the achievable accuracy for calibration.

3.1 Accuracy and Precision

There are two concepts describing a statistical error that need to be distin-
guished: The accuracy and the precision of the measurement. The accuracy
of a measurement is defined as the degree to which a measured value corre-
sponds to the true value of the measured quantity, or in case of distributions
the degree to which the distribution corresponds to the actual value.

The precision of a measurement indicates how close the measured values
are together. A precise measuring instrument will give repeatable results, al-
though they might be inaccurate if not properly calibrated. Figure 3.1 gives
a graphical depiction of the concepts.

In general we can say that the accuracy of a measuring instrument can be
increased by better calibration, while the precision of the measurements usu-
ally depends on the setup and the used hardware in the measuring instrument.
However, it is not possible to get reliable accuracy for single measurements
without a good precision. While the mean of a set of measurements with low
precision might still represent the actual value, every single measurement can
be way off.
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inaccurate and inprecise accurate but inprecise

inaccurate but precise accurate and precise

Fig. 3.1. The concept of Accuracy and Precision

Still, we can say that after diligent calibration, i.e. when we can use the
assumption that the estimated mean is in fact the correct value, the preci-
sion of the measuring device is a good estimate for the overall error of the
measurements.

3.2 Gaussian Error Distributions

This section provides an overview how errors in tracking systems, represented
by multidimensional Gaussian distributions, can be visualized to make them
understandable even by inexperienced users of such tracking systems. One rea-
son why the Gaussian distribution is of particular importance can be found in
the central limit theorem [69] which states that under certain conditions the
distribution of a sum of a large number of independent variables is approx-
imately normal distributed. For this reason we can sufficiently model errors
using Gaussian distributions, although the actual error sources have other
error characteristics.
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The chapter starts with probability density functions in several dimensions
and continues with isocontours or confidence levels. After that, different ma-
trix norms to reduce the dimension of the error are presented. To visualize
rotational errors, different kinds of error propagations are explored.

3.2.1 Probability Density Functions

A probability function [69] f(x) is a function which is non-negative and the
integral

+∞∫
−∞

f(x) dx = 1

The probability for a random variable x to be in an interval [a, b] is then given
by the integral

b∫
a

f(x) dx

One-dimensional Gaussian distribution

For the special case of a one-dimensional Gaussian or Normal distribution (fig.
3.2), the probability density function is defined as

fµ,σ(x) =
1

σ
√

2π
· e−

(x−µ)2

2σ2

in the one-dimensional case where µ denotes the mean and σ the standard
deviation (which is the square root of the variance).

!Σ Σ

Fig. 3.2. Probability density function of a one-dimensional Gaussian distribution

Multi-dimensional Gaussian Distributions

In the n dimensional case (fig. 3.3), the probability density function is

fµ,Σ(x) =
1

(2π)
N
2
√
|Σ|

e−
1
2 (x−µ)T Σ(x−µ) (3.1)
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Fig. 3.3. Probability density function of a two-dimensional Gaussian Distribution

The covariance matrix Σ is an n-dimensional square matrix where the
entry in the i-th column and j-th row denotes the covariance between the
i-th and j-th entry in the random vector x. This implies that the covariance
matrix is always symmetric and positive semi-definite, and therefore also all
eigenvalues are non-negative.

Σ =


Var(x1) Cov(x1, x2) · · · Cov(x1, xn)

Cov(x1, x2) Var(x2) · · · Cov(xn, x2)
...

...
. . .

...
Cov(x1, xn) Cov(x2, xn) · · · Var(xn)


For independent entries in the random vector, the covariance is 0, so a

diagonal covariance matrix denotes a random vector with only independent
entries.

3.2.2 Isocontours

Using the equations for the probability density functions of a normal distri-
bution, we are going to show that the set of vectors with equal probability
form a quadric in Rn. This quadric is called the surface of constant probabil-
ity, or isocontour. Additionally, the volume that is contained in this surface
is the set of points in which the random variable x lies with some cumulative
probability.

If we solve equation 3.1 for x, we get the set of vectors x which have the
same probability p by the implicit equation

xT Σ−1x = −2 ln(p
√

2π|Σ| 12 ) = z2 (3.2)

where we assume without loss of generality that the mean µ of the random
variable is zero.
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Then the cumulative probability for x being inside the surface correspond-
ing to this implicit equation is given by [69]:

1− P =
n

2n/2 Γ(n
2 + 1)

∫ ∞

z

xn−1ex2/2dx (3.3)

where Γ (x) is the Gamma function, an extension of the factorial function
to real numbers. This function gives the probability of x being inside of the
surface defined by z2 = xT Σ−1x. The inverse of this function is called the
quantile function because it returns the corresponding value for z for a given
cumulative probability P . It can be shown that there exists no closed term
of the quantile function. Solving the equation numerically for different values
of P gives the values for z for some confidence levels as shown in table 3.1
in various dimensions. Figure 3.4 shows the cumulative probability function
with the values for the confidence level of 95% indicated.

Confidence Level
Dimension 25% 50% 75% 95% 97% 99%

n = 1 0.10153 0.45494 1.3233 3.84146 4.70929 6.6349
n = 2 0.57536 1.38629 2.77259 5.99146 7.01312 9.2103
n = 3 1.21253 2.36597 4.10834 7.81473 8.94729 11.3449

Table 3.1. z2 = xT Σ−1x for different confidence levels and dimensions

1 2 3 3.84186 5 5.99146 7 7.81472 9 10

0.2

0.4

0.6

0.8

0.95
1

Fig. 3.4. Cumulative probability of Gaussian distributions; confidence levels of 95%
shown for dimension n = 1 (red), n = 2 (green), and n = 3 (blue).

Looking again at equation 3.2 we can see that this equation defines a
quadric for any given z. A quadric is a a special polynomial form which is
defined by the equation

q : Rn → R, x 7→ q(x) = xT Ax



26 3 Error Representations

for a symetric matrix A ∈ Rn×n. We have already seen that Σ is in fact pos-
itive semi-definite, so the quadric has always the special form of an ellipsoid.
An ellipsoid with the three principal axes aligned with the coordinate axes is
defined by

x2
1

a
+

x2
2

b
+

x2
3

c
= 1 where a, b, c > 0

where a, b, c are the length of the three coordinate axes. This equation can
also be rewritten as

x2
1

a
+

x2
2

b
+

x2
3

c
= xT

 1
a

1
b

1
c

x = xT Ax

It is also easy to see that an ellipsoid that is rotated by a rotation matrix R
fulfills the equation

1 = xt(RtAR)x = (Rx)tA(Rx)

The Eigenvalue decompositiion of Σ = RDRT gives a diagonal matrix D
containing the eigenvalues in the diagonal entries and a rotation matrix R
consisting in the corresponding eigenvectors. Together with equation 3.2 we
get for a certain value for z the equation for the quadric as

1 = xT

(
1
z2

Σ−1

)
x = xT

(
1
z2

RT D−1R

)
x

From this equation it can be seen that the principle axes of the ellipsoid are
along the columns of R which are the eigenvectors of the covariance matrix
and have the length li = z

√
λi (i = 1, 2, 3).
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Fig. 3.5. Three-dimensional Gaussian distributions. Two different visualizations of
the covariance ellipsoid for a certain confidence level.
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This can be used now to plot the covariance ellipsoid for a certain confi-
dence level as seen in figure 3.5. The corresponding value for z can be found
by numerically solving equation 3.3 or using lookup-tables like table 3.1 or
figure 3.4.

3.2.3 Matrix Norms

Higher dimensional Gaussian distributions are sometimes hard to visualize.
A simple projection to a subspace loses all information orthogonal to the
subspace, e.g. in figure 6.5 later in this thesis, the vertical component of the
covariance is lost. A matrix norm p(A) = ‖A‖ should fulfill the following
requirements:

Positivity

The accuracy is defined as a confidence interval around the expected value
and therefore should be always positive.

p(A) > 0 ∀A

Positive Homogeneity

A scaling of the accuracy in the original space should result in the same scaling
in the matrix norm. This requirement also includes linearity of the norm.

p(α ·A) = |α| · p(A) ∀A,α

Triangle Inequality

When combining two covariance matrices, the norm of the combined covari-
ance should not be smaller than the combined norms of the single covariances.

p(A1 + A2) ≤ p(A1) + p(A2) ∀A1, A2

where the matrix addition is an element-wise addition of two covariances in
the same reference frame as seen in section 3.4.3.

Positive Definiteness

The norm of the covariance should be only zero when there is no error, i.e. the
covariance itself is zero.

p(A) = 0 ⇔ A = 0 ∀A

In the following we present two matrix norms and their geometric meaning
for covariance matrices.
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Spectral Norm

The spectral norm of a positive-semidefinite matrix A is the square root of
the largest eigenvalue of A. As we have seen in section 3.2.2, the square root
of the eigenvalues define the main axes of the surfaces of constant probability.
Therefore the spectral norm of the covariance matrix can be seen as the ab-
solute value of the maximum error (with some probability) Figure 3.6 shows
a visualization of three-dimensional covariances in a plane by their spectral
norm.

Fig. 3.6. Spectral norm in a two-camera (left) and three-camera (right) setup

The spectral norm can be of special interest in cases where the error is
considerably larger in one direction than in the other directions. The spectral
norm, in particular when compared with the trace norm, can cover this non-
isotropic behavior by showing the maximum error.

Trace Norm

The trace norm, also called Frobenius norm, is defined as the square root of
the sum of the diagonal elements. This is – as we will see in section 3.3 –
equivalent to the root mean square error which is also widely used. Figure
3.7 shows a visualization of three-dimensional covariances in a plane by their
trace norm.

Fig. 3.7. Trace norm in a two-camera (left) and three-camera (right) setup
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The trace norm is always smaller than or equal to the spectral norm; the
quotient of trace norm and spectral norm can be used as a measure for the
isotropy of the covariance.

3.3 Root Mean Square Error

Another useful representation of errors in measurement systems is the so called
root mean square (RMS) error, which is defined as the root of the mean of
the squared absolute errors. The RMS error is an absolute error measure. It
calculates the error relative to a known ground truth value. Let xi be a set
of the measurements with i ∈ {1 . . . N} and x the real value. Then the RMS
error erms is computed as

erms =

√√√√ 1
N

N∑
i=1

|x− xi|2

This computation depends obviously on the used norm. In most cases, arith-
metic distance is used, but other vector norms are possible depending on the
application. The RMS error is a one-dimensional error measure even for mul-
tidimensional random variables.

If the underlying distribution is a one-dimensional Gaussian distribution
with known mean x̄ and standard deviation σx, we have an easy way of cal-
culating the RMS error for that distribution:

erms =
√

x̄2 + σ2
x

since

x̄2 + σ2
x = x̄2 +

1
N

N∑
i=1

(xi − x̄)2

= x̄2 +
1
N

N∑
i=1

(x2
i + x̄2 − 2xix̄)

= 2x̄2 +
1
N

N∑
i=1

x2
i −

2
N

x̄

N∑
i=1

xi

= 2x̄2 + e2
rms − 2x̄2

= e2
rms

The RMS of a zero-mean Gaussian distribution is therefore equivalent to
the variance of the distribution. For a multidimensional Gaussian distribution
with mean µ and covariance matrix Σ we can get a similar result [98]:
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erms =
√

tr(Σ) + |µ|2

Since the RMS error is only a single value even for multidimensional dis-
tributions, there exist many distributions that correspond to the same RMS
value. However, if we assume unbiased, independent, and isotropic errors, we
know that the trace of the covariance matrix should be

tr(Σ) =
n∑

i=1

σ2
i = e2

rms

and therefore due to the isotropy and independence σ2
i = 1

ne2
rms. So we can

get the corresponding Gaussian distribution with mean µ = 0 and

Σ =
1
n

e2
rms 0

. . .
0 e2

rms


Section 6.4 shows an example of such a covariance matrix corresponding

to a certain RMS value.

3.4 Error Propagation for Gaussian Distributions

Error propagation is the problem of finding a distribution of a function of
random variables. It can be applied in all cases where we have a mathemati-
cal model of the function as well as knowledge about the distribution of the
random variables. The distribution does not necessarily need to be Gaussian,
but most error propagation rules assume Gaussian distributions.

In this case, the distribution can be fully specified by their first two sta-
tistical moments, the mean and the variance of the distribution. Therefore it
is enough to provide propagation rules for these two parameters [5].

3.4.1 Forward Propagation

A nice property of Gaussian distributions is the fact that a linear function
applied to a Gaussian distribution results again in a Gaussian distribution. A
linear function is described by a matrix A, and it can be shown [69] that the
mean of the transformed distribution is obtained by applying the function to
the mean of the original distribution, f(µ).

The forward propagation of covariance rule for an affine function f is de-
fined as [78]: Let v be a random vector in RM with mean v̄ and covariance
matrix Σ, and suppose that f : RM 7→ RN is an affine mapping defined by
f(v) = f(v̄) + A(v − v̄). Then f(v) is a random variable with mean f(v̄) and
covariance matrix Σf :
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Σf = AΣAT (3.4)

If the function f is nonlinear, the propagated distribution can easily be-
come significantly different from a Gaussian distribution and therefore hard
to handle. However, for small errors the Gaussian distribution still serves as a
good approximation. To be able to apply the Gaussian forward propagation
to a general nonlinear function, we need to build the first order approxima-
tion of the function f . The first order approximation can be found using the
(multidimensional) Taylor expansion:

f(x) = f(x0 + ∆x) = f(x0) + Jf (x0)∆x +O(x2)

where Jf (x0) is equal to the Jacobian matrix evaluated at the point x0:

Jf (x0) =
δf

δx

∣∣∣∣
x=x0

=


∂ f1(x)

∂x1
· · · ∂ f1(x)

∂xn

...
. . .

...
∂ fm(x)

∂x1
· · · ∂ fm(x)

∂xn


∣∣∣∣∣∣∣∣
x=x0

ΜΜ " Σ Μ $ Σ

Μ%

Μ% " Σ%

Μ% $ Σ%
f!x"

∆
∆x

f!x"

Fig. 3.8. One-dimensional case of a nonlinear error propagation of a Gaussian distri-
bution The mapping function is approximated by the Jacobian and the distribution
is transformed using the linearized function.

Now we can define the linearized error propagation rule for non-linear
functions as: Let v be a random vector in RM with mean v̄ and covariance
matrix Σ, and suppose that f : RM 7→ RN is differentiable and approximately
linear in a neighborhood of v̄. Then, up to a first order approximation, f(v)
is a random variable with mean f(v̄) and covariance matrix Σf :
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Σf = JfΣJf
T (3.5)

where Jf is the Jacobian matrix of f evaluated at v̄. Figure 3.8 shows a
one-dimensional visualization of this concept.

3.4.2 Backward Propagation

In some cases we do know the covariance of the function f(v) and want to
estimate the covariance of the parameters v. We could apply forward propa-
gation on the inverse function f−1, but what if the inverse function is hard
to compute? Instead of computing Jf−1ΣJf−1

T we can show [78] that this is
equal to computing

Σf−1 = (Jf
T Σ−1Jf )−1

which is easier to achieve. Again, this can be visualized intuitively using figure
3.8. Instead of computing the potentially complicated Jacobian of the inverse
function f−1, we simply invert the already linearized solution. This can be
performed easily.

Additionally, we get a solution for the overparametrized case when we
replace the matrix inversion by the pseudoinverse

Σf−1 = (Jf
T Σ−1Jf )+ (3.6)

This propagation rule can therefore be also applied for least-square solutions
(cf. section 5.3.5).

3.4.3 Combination of Random Variables

In some cases it is necessary to combine two or more distributions into a
single one. We have to distinguish two cases here: Either the two distributions
describe independent parameters of the combination function, or we have a
fusion of two distributions describing the same parameters [84].

Combination of Random Variables

A function f can have several random variables as input. The distribution of
each of these random variables adds to the final error [85]. This is for example
the case for the concatenation of two transformations as described in section
4.2.2.

We assume we have a function f(x1, x2) where x1, x2 are random variables
with covariances Σ1 and Σ2 and we are interested in the combined covariance
Σc. Then f could as well be described as a function f(x) where x = (x1, x2)
is the combination of both input variables. Since we know that the input
variables are independent, the Jacobian is a block matrix

J =
[

J1 0
0 J2

]
, J1 =

δf

δx1
, J2 =

δf

δx2
(3.7)
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where the upper left block is only derivatives of x1 and the lower right only
derivatives of x2. Applying the error propagation from equation 3.8 this equa-
tion can be rewritten as

Σc = J1Σ1J
T
1 + J2Σ2J

T
2 (3.8)

Literally this means that all covariances are transformed into the same
target coordinate system and then added element by element [85].

! "

Fig. 3.9. Combination of two covariances. The resulting covariance is larger than
the original covariances.

Fusion of Random Variables

The fusion of random variables is necessary when there are two different –
but independent – estimates for the same parameters. This is for example the
case in filtering applications like the Kalman filter [9, 28].

Let X1 and X2 be two independent random variables with their associated
covariance matrices Σ1 and Σ2, then the combined random variable XC is
given by the weighted average of the two random variables using the covariance
matrices as weights:

XC = Σ2(Σ1 + Σ2)−1X1 + Σ1(Σ1 + Σ2)−1X2 (3.9)

and the corresponding covariance matrix by

Σc = Σ2(Σ1 + Σ2)−1Σ1 (3.10)

The covariance matrix of the fused estimate is always smaller than the two
original covariance matrices.

This equation can easily be extended to a fusion of more than two random
variables.

3.4.4 Monte-Carlo Simulation

Monte-Carlo simulation is a method of simulating the behavior of complex
systems. They are in particular well suited to simulate the error propagation
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! !

Fig. 3.10. Fusion of two covariances. The resulting covariance is smaller than the
original covariances.

in functions where analytic error propagation would be hard to achieve. It
also can handle arbitrary non-standard input distributions.

To compute the Monte-Carlo simulation of a function f(x) where x is a
random variable with some (not necessarily Gaussian) distribution, we draw
random samples xi from the distribution of x and compute the function value
f(x). Note that x can be a vector with several possibly independent random
variables. From the resulting point set we can then compute again a distribu-
tion function. Figure 4.5 shows an example for the Monte-Carlo simulation of
the concatenation of two rigid transformations with error.

As in all simulations, ground truth data can be used both to generate
the input distributions and to validate the results in the end. This makes the
Monte-Carlo simulation a very useful tool for offline accuracy analysis [219].

The main problem that arises when using Monte-Carlo simulations is the
number of samples needed to get statistically significant results. This number
increases exponentially with the number of dimensions in the random variable
vector. Therefore, Monte-Carlo simulations have only limited use when the
computing time is restricted, as in online error estimates.

3.4.5 Unscented Transform

The unscented transform is a second-order error propagation for gaussian
distributions [95]. It has been proposed initially for nonlinear Kalman filter-
ing [97, 94] but can be used for any kind of nonlinear error propagation.

The concept is similar to the Monte-Carlo simulation: A set of sample
points are drawn from the distribution of the random variable and transformed
using the function f . However, in contrast to the Monte-Carlo method, the
sample points are not drawn randomly. A set of so-called sigma points is
chosen deterministically such that the covariance matrix of the point set is
equal to the original covariance matrix. These points are transformed using
the function f and then the covariance of the resulting point cloud is computed
as in Monte-Carlo simulation [96]. It can be shown that the points propagated
through the true non-linear system capture the posterior mean and covariance
accurately to the third order of the Taylor series expansion for any nonlinear
function [202].



3.4 Error Propagation for Gaussian Distributions 35

Fig. 3.11. Transformation of the sigma points

There are many different possibilities for choosing the set of sigma points.
Any set of points where the covariance matrix of the point set is equal to
the original covariance is a valid set of sigma points. One possibility is [95] to
compute the Cholesky decomposition Chol(Σ) of the covariance matrix and
use the columns with positive and negative sign together with the mean as
sigma points.

Pσ =
{
± Chol(Σ)1...n

0

}
Figure 3.12 shows the sigma points for a three-dimensional Gaussian dis-

tribution using this construction.

Fig. 3.12. Example sigma points for the error propagation with unscented transform
of a three-dimensional covariance. The ellipsoid shows the standard deviation of the
covariance matrix

One problem with the standard unscented transform is the fact that some
of the sigma points (especially for higher dimensional random variables) tend
to lie far away from the mean. Therefore, the approximation of the function
f is not anymore local around the true value. Figure 4.7 later in this thesis
shows this effect already for a three-dimensional covariance, and it is even more
prevalent in higher dimensions [190]. To overcome this drawback, a variant of
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the unscented transform has been proposed where the sigma points are scaled
towards the mean and this scaling is corrected after the transformation [93].



4

Representing Uncertain Transformations

Since almost all transformations in augmented reality systems are affected
by errors, we need a consistent way to represent these errors [39] to allow a
propagation of the errors. Uncertain transformations are given as a tupel (T, e)
of the transformation T in some kind of representation and the associated error
e in some other representation. Note that the representation of transformation
and the representation of the error do not necessary need to be based on the
same concept. We will see how for example a rotation can be represented by
a matrix and at the same time the according error as a covariance matrix of
the corresponding euler angles.

4.1 Representing Rigid Transformations

A rigid transformationis a mathematical way to describe the motion of a rigid
object in n-dimensional space without changing its size or shape. Rigid trans-
formations are also called isometries because they preserve the same measures
for lengths and angles. The set of all isometries is called the Euclidean Group,
which includes additionally reflections.

All rigid transformations are in fact affine, which means that the transfor-
mation T can be represented by

x′ = R x + t (4.1)

where A ∈ Rn×n is a matrix and t ∈ Rn is a vector.

4.1.1 Homogeneous Matrix Representation

A linear transformation is a special case of an affine transformation which ad-
ditionally fulfills the requirements of additivity and homogenity. Since equation
4.1 is not a pure linear transformation (the law of homogenity is violated), we
move from n-dimensional euclidean space Rn to n + 1-dimensional projective
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space Pn by defining equivalence classes of vectors αx with the homogeneous
vector x = (x1, . . . , xn−1, 1) as its representative. This allows us to reformulate
equation 4.1 as a linear equation using block matrix notation:

x′ =
[

R t
0 1

]
x (4.2)

This matrix representation is called homogeneous matrix representation
and is now a linear transformation. This matrix representation is easy to use;
the concatenation of multiple rigid transformations can be computed by the
matrix product of the respective homogeneous matrices, and the application
of a transformation to a vector can be computed by the matrix vector product.

When we look at the rotation matrix R we can see that to be an isometry,
the matrix needs to be orthonormal; i.e. the columns of the matrix need to
be of unit length and be mutually orthogonal. There are

(
n
2

)
different pairs of

columns and n equations that need to be of unit length, leading to a total of
n(n + 1)/2 independent (nonlinear) equations which reduces the n2 degrees
of freedom of the general n-dimensional matrix to n2 − n(n + 1)/2 = n(n −
1)/2 =

(
n
2

)
degrees of freedom for the set of orthonormal matrices. It can

be shown that the set of n-dimensional orthonormal matrices under matrix
multiplication forms a group, which is called the orthogonal group O(n).

In addition it is easy to see that all homogenous matrices A which represent
rigid transformations need to have determinant det(A) = 1 to exclude reflec-
tions. Adding this requirement leads to the special orthogonal group SO(n),
the group of n-dimensional rotation matrices.

Now it is obvious to see that rotations in R2 have one degree of freedom,
and rotations in R3 have three degrees of freedom.

Since orthogonal matrices have the useful property that AT A = I, we
can compute the inverse of a homogeneous matrix efficiently and numerically
stable as [

R t
0 1

]−1

=
[

R−1 −R−1t
0 1

]
=

[
RT −RT t
0 1

]
(4.3)

However, when we try to find such a matrix in nonlinear estimation (cf.
section 7.2), n(n + 1)/2 additional constraints would need to be added to
ensure the matrix to be orthogonal [107]. Direct linear interpolation is also
not possible using this matrix representation of rotations.

4.1.2 Euler Angles

To overcome the drawbacks of using homogeneous matrices to represent rota-
tions, several other representations exist.

In three-dimensional euclidean space R3, a general rotation can be decom-
posed into three consecutive rotations around three distinct but fixed axes
through the origin [193]. Since the arbitrary rotation has three degrees of
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freedom, three rotations are enough to specify the rotation. While arbitrary
axes are possible here, it is most convenient to use rotations around the prin-
cipal orthogonal axes since this gives the following simple formulas:

Rx =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


Ry =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)


Rz =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


These can be used to parametrize arbitrary rotations as a triple (α, β, γ)
of the respective rotation angles. This representation is called Euler angles
since they have first been described by Leonhard Euler [53]. However, there
is an ambiguity in this description when the rotation axes are not explicitly
defined: There are twelve different possibilities to apply a sequence of three of
these rotations with no two consecutive rotations having the same axis [91].
therefore the exact sequence of rotation axes needs to be defined, which may
lead to confusion if only Euler angles are given. Rotation axes can be defined
in world-fixed coordinates, or relative to the moving object. It can be shown
that these two different points of view simply correspond to an inversion of
the sequence of rotations.

One special case of Euler angles is the yaw, pitch, roll representation which
is commonly used in ship and airplane navigation [28]. Here the three rotation
axes are explicitly named with intuitive terms: roll is the rotation Rx around
the x-axis (which is assumed to be aligned with the main axis of the airplane
or ship) with angle α; pitch is the rotation Ry around the y-axis, and yaw is
the rotation Rz around the vertical z-axis. The order is given by the order of
words, and all coordinate axes are local since it is used from inside a ship or
airplane.

x′ = RxRyRzx

There is one major drawback connected to the representation of rotations
using Euler angles: For β = ±π

2 , the rotation matrix collapses to

R =

 0 sin(α− γ) cos(α− γ)
0 cos(α− γ) − sin(α− γ)

−1 0 0


which means the rotation axes of α and γ are actually aligned in space. While
in all other situations smooth changes of the rotation in all directions are
possible using smooth changes in the angles, in this case some rotations are
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not possible. Close to this situation, infinitesimally small changes in rotation
require infinitely large changes in the angle parameters. This is called gimbal
lock since it originates in an actual physical problem when a gimbal is used
for example in a gyrocompass to determine orientation. There exist combina-
tions of the gimbal joints where certain rotations can not be accomplished by
the gimbal (it is ‘locked’ in this direction) and therefore could not be mea-
sured, which would lead to significant drift in the orientation determination.
Spaceship engineers therefore avoided getting too close to the locking config-
uration [82]. The avoidance of gimbal lock was the reason why the quaternion
representation of orientation started to find extensive use in the aerospace
community.

Conversion from Euler Angles to Rotation Matrix

Whenever in the context of this thesis we use Euler angles, we use the following
conversion to a rotation matrix:

R(α, β, γ) = Rx(α)Ry(β)Rz(γ)

which is the fixed angle x, y, z representation.

Conversion from Rotation Matrix to Euler Angles

The back-conversion to the same representation can be found when inspecting
the full rotation matrix in analytical form:

α = tan−1

(
R3,2

R3,3

)
β = − sin−1(R3,1) γ = tan−1

(
R2,1

R1,1

)
where Ri,j is the entry in the i-th column and the j-th row of the matrix R.

We denote this conversion function by Eu(.) with

Eu
(
R(α, β, γ)

)
= (α, β, γ)

when we refer to it later.

4.1.3 Axis Angle Representation

The fundamental theorem of Leonhard Euler states that every finite three-
dimesional rotation of a rigid body with respect to a fixed reference frame can
be described as a simple rotation by some angle θ around some axis v [52].
In contrast to the representation of rotation as a orthonormal rotation matrix
using euler angles, we represent now the rotation as a tupel (a, θ) of the
rotation axis a and the rotation angle θ. This tupel can be used to represent
any kind of rotations. Since only the direction of the rotation axis a is needed
to specify the rotation, a has only two degrees of freedom and we can use the
length of the vector to encode the rotation angle into a single vector v ∈ R3:

θ = |v| a =
v

|v|
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Conversion from Axis-Angle to Rotation Matrix

Olinde Rodrigues gave the following formula to compute the rotation matrix
R ∈ R3×3 corresponding to an axis-angle rotation v [175]:

R = I3 +
sin θ

θ
Skew(v) +

1− cos θ

θ2
Skew(v)2

where Skew(v) is the skew-symetric matrix

Skew(v) =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (4.4)

Note that the rotation angle θ can be directly used as a metric for the
distance between rotations [91]. It is however important to consider the fact
that the angle θ is cyclic modulo 2π and usually constrained between for
example −π < θ < π, which needs to be taken into account for measuring
distances and for interpolation.

Conversion from Rotation Matrix to Axis-Angle

The axis of rotation of a rotation matrix is the set of points that do not move
when the matrix is applied. According to Euler’s theorem, this axis exists for
every rotation. By definition of an eigenvector, the axis of rotation a is exactly
the eigenvector corresponding to a unit eigenvalue [91].

The angle θ can be found by using the remaining two eigenvalues which
are at cos θ ± i sin θ [155].

Composition of Rotations in Axis-Angle Representation

A composition of rigid transformations as well as the inverse of a rigid trans-
formation is again a rigid transformation. This implies that the combination of
rotations around distinct axes is again a rotation [52]. However, it is not easy
to compute the rotation axis of the composition of two rotation from the axis-
angle representation directly without going through the matrix representation
and back – a numerically not always recommended process.

4.1.4 Quaternion Representation

Quaternions were discovered in 1843 [42] by William Hamilton as an extension
of complex numbers to four dimensions [75, 76] and independently by Olinde
Rodrigues [42]. A quaternion is a four-tupel q = (qx, qy, qz, qw) ∈ R4 which
can be seen as a real number w with three imaginary parts,

(qx, qy, qz, qw) = qw + iqx + jqy + kqz

or in vector notation q = (qv, qw) where qv ∈ R3 and qw ∈ R. Quaternions can
be used to either represent real numbers (qx = qy = qz = 0), three-dimensional
vectors (qw = 0) or rotations as we will see later.
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Quaternion Addition

Quaternion addition ⊕ is defined as standard vector addition [136]

(qx, qy, qz, qw)⊕ (px, py, pz, pw) = (qx + px, qy + py, qz + pz, qw + pw)

which is obviously associative and commutative and preserves the rules for
the addition of vectors and real numbers.

Quaternion Multiplication

Quaternion multiplication ⊗ is defined similar to polynomial multiplication
and together with the rules i2 = j2 = k2 = ijk = −1 we get in vector notation

(qv, qw)⊗ (pv, pw) = (qwpw − qv · pv, qv × pv + pwqv + qwpv)

which is not commutative, but associative and distributive over addition.

q ⊗ (x⊕ y) = (q ⊗ x) + (q ⊗ y)

Quaternion multiplication also preserves the rules for the multiplication of
real numbers.

Unit Quaternions

The norm of a quaternion q is defined as
√

q2
x + q2

y + q2
z + q2

w. A quaternion
with unit norm is called a unit quaternion. It can be shown that the set
of unit quaternions under quaternion multiplication form a subgroup of the
full quaternion group [91]. This means that the multiplication of two unit
quaternions is again a unit quaternion; a useful property that we will need to
represent rotations later.

Conjugate Quaternion

Similar to complex numbers, the conjugate q∗ of a quaternion q is computed
by negating the vectorial part,

q∗ = (−qv, qw) = (−qx,−qy,−qz, qw)

Unit quaternions have the useful property that their inverse is simply their
conjugate: It is easy to see that with this equation, for unit quaternions

q∗ ⊗ q = q ⊗ q∗ = 1

The conjugate operation is distributive over quaternion addition, i.e. (q⊕
p)∗ = q∗ ⊕ p∗ but for multiplication we get (q ⊗ p)∗ = p∗ ⊗ q∗, similar to the
inverse of the product of two matrices.
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Representing Rotations

One important property of quaternions is the fact that they can be used to
represent rotation [16, 86, 194, 175]. Using unit quaternions and the multipli-
cation rules of the quaternion algebra we can now define the quaternion based
on the axis angle notation from section 4.1.3 with rotation axis a and rotation
angle θ.

q =
(

cos
θ

2
, sin

θ

2
a

)
To rotate a point x we write x as a pure quaternion x̂ = (0, x) with zero

rotation angle. The rotation is then defined as

x̂′ = q ⊗ x̂⊗ q∗

where q∗ is the conjugate of q. The concatenation of two rotations p and q is
possible by quaternion multiplication p⊗ q.

x̂′ = (p⊗ q)⊗ x̂⊗ (p⊗ q)∗ = p⊗ (q ⊗ x̂⊗ q∗)⊗ p∗

Representing Six-dimensional Transformations

A six-dimensional rigid transformation is represented by a tupel (p, q) of a
rotation quaternion q and a pure quaternion p representing the translation.
Applying a six-dimensional transformation (p, q) to a single point x̂ = (0, x)
is achieved by first applying the rotation and then the translation:

x̂′ = q ⊗ x̂⊗ q∗ ⊕ p

The composition (pc, qc) of two such transformations (p1, q1) and (p2, q2)
is then given accordingly:

(pc, qc) = (p1, q1) ◦ (p2, q2) = ((q1 ⊗ p2 ⊗ q∗1)⊕ p1, q1 ⊗ q2)

which can be shown by expanding the equation.

Interpolation

Since (unit) quaternions are spherical parametrizations, it is not straightfor-
ward to use euclidean metrics for the difference of two rotations, or to in-
terpolate between two rotations. There is a special quaternion interpolation
algorithm called Slerp which provides a smooth way to interpolate between
rotations [43, 100, 164, 91]. This provides a useful tool for animations as well
as optimization and filtering applications [139].
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4.1.5 Dual Quaternions

Chasle’s theorem [32, 124] states that any rigid transformation can be de-
scribed by a screw motion, i.e. a rotation about an axis not through the origin
and a translation parallel to this axis [45]. The screw axis is a line in space
which requires four parameters, and the rotation and translation can be de-
scribed by two single parameters, which results in the six degrees of freedom
we would expect for a rigid transformation [34]. The screw parametrization
has been used frequently to represent arbitrary rigid transformations [42].

In contrast to the previous parametrizations of rotations around the origin,
the screw notion gives us the possibility to provide a closed representation of
an arbitrary rigid transformation, but with less redundancy than homogeneous
transformation matrices. One algebraic possibility of representing screw mo-
tions is through the use of unit dual quaternions. Dual quaternions are defined
like quaternions with dual numbers. Unit dual quaternions have six degrees
of freedom and therefore can be used to uniquely represent a rigid trans-
formation [45]. Using this representation it is possible to define non-linear
optimization functions that optimize rotation and translation simultaneously.

4.1.6 Exponential Maps

A variety of other parametrizations of the rotational group SO(3) exist, most
notably exponential maps [73, 16] which have been used in several applica-
tions [50], but in general they have only slight advantages for special purposes
and therefore have only limited prevalence throughout the community.

4.2 Error Propagation

In this section we combine the representation of transformations with the
gaussian error propagation methods to provide the tools that are needed to
propagate gaussian errors through general augmented reality tracking systems.

4.2.1 Representing Gaussian Errors

The representation of errors in the measurement of rigid transformations is
closely connected with the representation of the transformation itself. While a
redundant representation, as for example homogeneous transformation matri-
ces, only consume more memory and sometimes more computing time when
used to represent the actual rotation, it is even more important to reduce the
number of parameters when representing errors.

The assumption of statistically not independent parameters leads to large
covariance matrices with even more redundancy to represent the Gaussian dis-
tributions. In the following we analyze two frequently used representations,
one using small quaternions [139] and the other one using small rotations [47].
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However, there is actually not much difference in the two representations
since the formulations discussed above all yield the same first order approxi-
mation [107]. As long as only first order error propagation is used, all repre-
sentations give the same result.

In the vector quaternion representation, a measurement for a rigid trans-
formation is parametrized using a vector t for the translation and a rotation
quaternion r for the orientation [139]. The full transformation can be applied
to a vector x by first applying the rotation and then the translation. We use
from now on whenever it is not ambiguous the following abbreviated notation:

x′ = (r ⊗ x⊗ r∗)⊕ t

:= rxr∗ + t

Using Euler angles α, β, γ for the rotation [47], the same equation reads

x′ =
[

R(α, β, γ) t
0 0

]
x = R(α, β, γ)x + t (4.5)

Both representations are valid and lead in first order approximation to the
same result [107].

Choice of Error Representation

Since we assume the measurement is affected by some error, we need to add
the rotational error ∆r and the positional error ∆t to the equation. We assume
that the error (∆r,∆t) is normally distributed with a covariance matrix Σ ∈
R6×6 and a mean of 0.:

(∆r,∆t) ∼ N(Σ, 0) (4.6)

For demonstration we visualize this concept in R2 (figure 4.1). The trans-
lation (green dots) is distributed around a mean value and the new orientation
(green lines) has also a gaussian distribution around the mean rotation.

Now we have basically four different possibilities in which order to apply
the error in the transformation:

(1) x′ = ∆r(rxr∗)∆∗
r + t + ∆t

(2) x′ = r(∆rx∆∗
r)r

∗ + ∆t + t

(3) x′ = ∆r(rxr∗ + t)∆∗
r + ∆t

= ∆r(rxr∗)∆∗
r + ∆rt∆

∗
r + ∆t

(4) x′ = r(∆rx∆∗
r + ∆t)r∗ + t

= r(∆rx∆∗
r)r

∗ + r∆tr
∗ + t
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Fig. 4.1. Rigid body transformation in R2 with Gaussian distribution

Using homogeneous matrices, the same equations read:

(1) x′ = (∆R R)x + t + ∆t

(2) x′ = (R ∆R)x + ∆t + t

(3) x′ = (∆R R)x + (∆Rt) + ∆t

=
[

∆R ∆t

0 1

] [
R t
0 1

]
x

(4) x′ = (R ∆R)x + (R∆t) + t

=
[

R t
0 1

] [
∆R ∆t

0 1

]
x

Note that due to the missing commutativity of the quaternion multiplication
or matrix multiplication, there is a difference between first applying the ro-
tational error and then the actual rotation, and the other way around. The
reason for this difference is the reference coordinate frame in which the error is
expressed. Equations (3) and (4) can be decomposed into two consecutive rigid
transformations, one with the actual transformation and another one with the
transformation error. Figure 4.4 shows an explanation of the concept.

For all further analysis we choose equation (4), which implies that both
the rotational and the translational error are expressed in already transformed
coordinates, but also (2) has been used [139].

We denote a transformation with some error by the tupel (T,Σ), where T
is the expected value of the transformation and Σ the covariance matrix of
the error ∆T with
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∆T ∼ N(0, Σ)

Likewise, a transformation T = [R|t] consists of a rotation R and a trans-
lation t with corresponding errors ∆R and ∆t. For the error ∆R we use some-
times the matrix representation, but for the covariance we need a represen-
tation with less redundancy, therefore the fixed Euler angle representation is
used.

∆r = Eu(∆R)

For Euler angles, we assume that the rotational error (∆α,∆β ,∆γ) is
distributed normally around the mean of (0, 0, 0) (no rotation), for the
quaternion we assume also normal distribution of ‘almost-unit’ quaternions
(∆qx

,∆qy
,∆qz

, 1) around (0, 0, 0, 1) [139]
Using this error representation, the covariance matrix Σ is a six-dimensional

covariance matrix with three parameters for the translation and another three
parameters for the rotation expressed in Euler angles.

4.2.2 Concatenation

Concatenation of two spatial measurements is a common procedure in com-
puter graphics as well as in tracking networks [85]. The error propagation
under concatenation has been analyzed by West et.al. [217] for isotropic root
mean square errors and by Coelho et.al [39] using the unscented transform.
In our work we use standard linear error propagation.

In the spatial relationship graph of figure 4.2, concatenation means we
construct a new edge Tc = [Rc|tc] from A to C by combining the edges
T1 = [R1|t1] from A to B and T2 = [R2|t2] from B to C.

A C

B
(T1,Σ1) (T2,Σ2)

(Tc,Σc)

Fig. 4.2. Concatenation of two spatial transformations (T1, Σ1) and (T2, Σ2) into
the combined transformation (Tc, Σc)

In homogeneous matrix representation, concatenation is simply defined by
matrix multiplication

x′ = [R1|t1][∆R1 |∆t1 ] [R2|t2][∆R2 |∆t2 ]x
= [Rc|tc][∆Rc

|∆tc
]x

with
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tc = R1t2 + t1

Rc = R1R2

∆tc
= R1(∆R1(R2∆t2) + ∆t1 − t2)

∆Rc
= RT

2 ∆R1R2∆R2

The magnitude of the new translational error ∆tc
depends now not any-

more only on the error of (T2, Σ2) and the translational error of (T1, Σ1), but
additionally on the rotational error of (T1, Σ1), proportional to the distance
t2. The rotational error on the other hand consists in the combination of both
rotational errors where ∆R1 first gets rotated into the coordinate system of
T2.

From this we build again the derivative of (∆tc
,∆Rc

) with respect to ∆t1 ,
∆t2 , ∆r1 = Eu(∆R1), and ∆r2 = Eu(∆R2) evaluated at 0 to get the error
propagation formula for Σc. This results in rather huge equations [139] which
are not easy to handle. Therefore we are going to analyze first some simplified
special cases, which we will then use to get a generalized analysis for arbitrary
transformations.

Coordinate System Change

We can perform a coordinate system change to a transformation (T2, Σ2) by
applying an error-free transformation (T1, 0) to the transformation (T2, Σ2).
Figure 4.3 shows the concept of this coordinate system change.

A C

B
(T1,0) (T2,Σ2)

(TC,ΣC)

Fig. 4.3. Changing coordinate system by applying an error-free transformation
(T1, 0) to a transformation (T2, Σ2)

We will show that in this case the rotational error does not change while
the translational error is rotated into the new coordinate system.

A transformation with errors (T2, Σ2) is transformed into a new coordinate
system by an error-free transformation T1. This results into the following
equation for the resulting transformation:

x′ = T1T2∆T2x

= R1(R2(∆R2x + ∆t2) + t2) + t1
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which can be rewrittten as

Rc(∆Rcx + ∆tc) + tc

with

tc = R1t2 + t1

Rc = R1R2

∆tc
= R1∆t2

∆Rc
= ∆R2

To get the error propagation for the random variable ∆T2 = [∆R2 |∆t2 ] we
need to build the derivative of (∆tc

,∆Rc
) with respect to the error ∆t2 and

∆r2 = Eu(∆R2), evaluated at 0.

δ

δ(∆t2 ,∆r2)

[
R1∆t2

Eu(∆R2)

]∣∣∣∣
∆t2=Eu(∆R2 )=0

=
[

R1 0
0 I

]
(4.7)

So the new covariance matrix Σc is obtained by

Σc =
[

R1 0
0 I

]
Σ2

[
R1 0
0 I

]T

The translational part of the covariance matrix is rotated by a similarity
transform into the new coordinate system, while the rotational part of the
covariance stays unchanged [85]. In the case of three-dimensional positional
covariances (cf. section 5.3.3), we can also write

Σc = R1Σ2R
T
1

by using only the upper left part of the Jacobian matrix from equation 4.7.
We can use this error propagation to derive formulas for the combination of
two transformations with error

(T1, 0) ◦ (I,Σ2) = (T1, R1Σ2R
T
1 ) (4.8)

(T1, 0) ◦ (T2, Σ2) = (T1T2, R1Σ2R
T
1 ) (4.9)

or vice versa for decomposing a transformation with error into a pure trans-
formation and the pure error:

(T,Σ) = (T, 0) ◦ (I,RT ΣR) (4.10)

This will enable us later to analyze the error propagation under the assumption
of an identity transformation affected by the error.
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A C

B' B

(T1, 0) (T1,Σ1)
(T2, 0)

(Tc,Σc)

(I,RT
1 Σ1R1)

Fig. 4.4. Propagation of an error-free transformation (T2, 0) through a transforma-
tion (T1, Σ1). The decomposition of equation 4.10 is shown with dotted lines.

Propagation of an Error-free Transformation

Now we assume that (T2, 0) is a pure transformation with no error and (T1, Σ1)
contains error.

Again the equations for the resulting translational and rotational error will
be much simpler:

x′ = [R1|t1][∆R1 |∆t1 ] [R2|t2]x
= [Rc|tc][∆Rc |∆tc ]x

with

tc = R1t2 + t1

Rc = R1R2

∆tc
= R1(∆R1t2) + ∆t1

∆Rc
= RT

2 ∆R1R2

Without loss of generality we assume additionally that T1 = I. We can always
use the decomposition of equation 4.10 to accomplish this. The equation then
reads

∆tc
= ∆R1t2 + ∆t1

∆Rc
= RT

2 ∆R1R2

We can now compute the derivative

δ

δ(∆t1 ,∆r1)

[
∆tc

∆rc

]∣∣∣∣
∆t1=∆r1=0

=


1 zt2 −yt2

1 −zt2 xt2

1 yt2 −xt2

RT
2
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Since we are going to need this Jacobian a few more times, we define

JT := J[R|t] =
[

I Skew(t)
0 RT

]
(4.11)

where Skew(t) is the skew-symetric matrix

Skew(t) = Skew
(
(xt, yt, zt, )T

)
=

 zt −yt

−zt xt

yt −xt


So the resulting error Σc of a identity transformation with error (I,Σ1)

by a pure transformation (T2, 0) is given by

Σc = Jt2Σ2J
T
t2

and therefore
(I,Σ1) ◦ (T2, 0) = (T2, JT2Σ1J

T
T2

) (4.12)

Concatenation of Two Transformations with Error

Using the results of the previous sections, we can now derive a simpler term
for the combined transformation with error (Tc, Σc) as a concatenation of the
transformation (T1, Σ1) and (T2, Σ2) as in figure 4.2.

-1 1 2 3 4 5
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Fig. 4.5. Error propagation for the concatenation (red dots) of two rigid transfor-
mations (green and blue dots) with some error. For small rotational errors the linear
error propagation fits with the actual error from a Monte-Carlo simulation

We apply the error propagation for general rigid transformations to the
covariance matrix Σ1 to get the propagated covariance in the same coordinate
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system as Σ2. After combining them to a joint covariance matrix (cf. section
3.4.3 and [85]) we retransform them back to the original coordinate frame.

(Tc, Σc) = (T1, Σ1) ◦ (T2, Σ2)
(4.10)
= (T1, 0) ◦ (I,RT

1 Σ1R1) ◦ (T2, 0) ◦ (I,RT
2 Σ2R2)

(4.12)
= (T1, 0) ◦ (T2, JT2R

T
1 Σ1R1J

T
T2

) ◦ (I,RT
2 Σ2R2)

(4.10)
= (T1, 0) ◦ (T2, 0) ◦ (I,RT

2 JT2R
T
1 Σ1R1J

T
T2

R2) ◦ (I,RT
2 Σ2R2)

(3.8)
= (T1T2, 0) ◦ (I,RT

2 (JT2R
T
1 Σ1R1J

T
T2

+ Σ2)R2)
(4.8)
= (T1T2, R1(JT2R

T
1 Σ1R1J

T
T2

+ Σ2)RT
1 ) (4.13)

Note that applying a rotation to a six-dimensional covariance matrix in this
case means applying the rotation to the positional part of the covariance only
(cf. equation 4.7).

Similar results can be derived using quaternion notation [139] or using
absolute bounding errors [85].

Nonlinear Error Propagation

The first-order error propagation using linear forward propagation with Ja-
cobi matrices is only an approximation of the actual error propagation. To
analyze the effect of this linearization, we use a Monte-Carlo experiment for
the concatenation of two transformations. Figure 4.6 shows the result of this
simulation for two transformations in R2 with rather large angular error com-
pared to the positional error.
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Fig. 4.6. Error propagation for the concatenation of two rigid transformations
(green and blue dots) with error. The Monte-Carlo simulation of the concatena-
tion (red dots) shows a ‘banana shape’ in the distribution for large angular errors.
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The error distribution of the red points was computed using a Monte-Carlo
simulation. It is obvious that the linear error propagation can not cover this
error correctly anymore. This effect gets bigger for larger angular errors in
Σ1. Using a second order approximation, for example the unscented trans-
form (cf. section 3.4.5 and figure 4.7) could reduce this problem. However, in
many setups the actual angular uncertainty is not too large, so linear error
propagation is a valid choice.

1 2 3 4 5

-1

1

2

3

4

Fig. 4.7. Linear error propagation (yellow) compared with second order propagation
using the unscented transform (sigma points shown in red). For large angular errors
the difference in the two propagations is noticable.

Especially in augmented reality scenarios, large angular errors and their
propagation would lead to tremendous alignment errors and would make the
system unusable even before the nonlinearity effects become significant.

4.2.3 Inversion

In a similar way we can now develop the error propagation formula for the
inversion of an edge. Given a transformation T = [R|t] with the corresponding
covariance matrix Σ, the inverse of the full transformation with error is given
by

x′ =
([

R t
0 1

] [
∆R ∆t

0 1

])−1

x =
[

∆R ∆t

0 1

]−1 [
R t
0 1

]−1

x (4.14)

This shows that the inversion is nothing else than a propagation with a
transformation (T−1, 0) of the inverse of the error. We can apply the decom-
position of equation 4.10 to get

(T−1, ΣI) = (T−1, 0) ◦ (I,RΣIR
T )
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BA

(T,Σ)

(T−1,ΣI)

Fig. 4.8. Inversion of a transformation (T, Σ) results in a transformation (T−1, ΣI)

While we do have the propagation formula for the concatenation with the
pure transform already, we still need to analyze the error propagation in case
of the inversion.

The corresponding equation is given by

x′ = [∆R|∆t]−1x

= [∆T
R| −∆R∆t]x

= RI(∆RI
x + ∆tI

) + tI

with

tI = 0
RI = I

∆tI
= −∆R∆t

∆RI
= ∆T

R

The derivative of (∆tI
,∆RI

) with respect to ∆tI
, ∆RI

evaluated at 0 is
the negative identity matrix, so applying the error propagation formula does
not change the covariance.

Going back to the original equation 4.14 we see that we can ignore the
inversion of the error for the propagation and apply the error propagation
(cf. section 4.2.2.) for the inverse transformation T−1 = [RT | − RT t]. This
leads to a new covariance matrix ΣI with

ΣI = J(−RT t)RΣRT JT
(−RT t) (4.15)

Again, the rotation is only applied to the positional part of the covariance
matrix here (cf. equation 4.7).

Figure 4.9 shows a visualization of this equation in R2. The transformation
T from A to B is inverted, and the corresponding covariance ΣI of the inverted
edge is computed using the error propagation formula.

Similar results can be derived using quaternion notation [139]. Also, non-
linear error propagation using the unscented transform (section 3.4.5) could
be employed.
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A

B

!

!I

Fig. 4.9. Example error propagation for the inversion of a transformation. The
transformation (TAB, Σ) from A to B with error Σ is inverted to (TBA, ΣI).
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Statistical Models for the Accuracy of Optical
Tracking Systems

Every physical measurement is affected by errors. There are many different
kinds of errors, which we are going to present in the following section. We
then show methods and guidelines on how to estimate the errors in a tracking
system. After that we go into details of a specific class of tracking systems: We
show how error estimation can be performed for both n-ocular and monocular
optical tracking systems.

5.1 Classification of Errors

Many different sources of errors contribute to the final error of a tracking
system. Some of the errors presented here are specific for optical tracking
systems, while others apply to different tracking systems as well.

The most important distinction is between dynamic and static errors [12].
We also distinguish between measurement errors that cause only wrong po-
sition measurements, and detection errors when the whole object can not be
detected, due to occlusions or misidentification. Finally we have to differen-
tiate between actual random errors and systematic errors, usually resulting
from a wrong model of the measurement system. We are also going to show
how these errors can be all treated as random errors for simplification.

5.1.1 Dynamic Errors

Dynamic errors are errors that are only present when the objects in the scene
are moving [13]. The reason for this is the end-to-end delay [85] from the time
of the measurement until the application displays or uses the data.

First-order dynamic error [139] is the registration error caused by the mo-
tion of the tracked object and the end-to-end system delay and can be es-
timated by the product of the motion speed and the delay. Other dynamic
errors are introduced in intermediate steps when several unsynchronized mea-
surements are used together.
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In both cases, the sampling rate of the sensor is of importance. Longer
intervals between measurements lead to larger errors [3] since the measure-
ments tend to be outdated when they are used. Additionally, according to the
sampling theorem, motions with high frequency can not be detected by slow
measurements [139]. It is important to note that dynamic errors usually are
much larger than static errors [205] in many setups.

There are several possible solutions to reduce the influence of dynamic
errors besides the obvious way of increasing the sampling rate and speed of
the measurements. To reduce the synchronization delay, we can physically
assure that all the measurements are made at the same time. In particular
this means for video see-through augmented reality to synchronize the tracking
system with the video camera [170] and therefore delaying the whole display
process. Using this trick, the tracking system measurements always fits to the
displayed image, and small delays in the whole image in the head-mounted
display are much more tolerable than discrepancies in the overlay.

Another way of synchronizing measurements is the use of predictive fil-
ters [9] and an appropriate motion model for the measurement data. This
process needs accurate synchronized clocks on all machines to get useful esti-
mates from the filters. The success of this method highly depends on the choice
of a good motion model and therefore is hard to apply in a general context.
Predictive filters can be also used to estimate the current error [3, 28] of a
measurement at any time later than the measurement.

In the further context of this thesis however we are only interested in the
static measurement error. We want to estimate the static error at the time
of the measurement. This error can then additionally be processed through
predictive models to get estimates for other points in time.

5.1.2 Identification and Visibility

Detecting and identifying features in the camera image is an important sub-
task for optical tracking systems. Also in this step, errors can occur. Features
can be hidden due to occlusions from other objects, or parts of an object can
be misidentified as a feature point.

Usually the pose reconstruction is performed using a set of correspon-
dences between points on the two-dimensional image plane of the camera and
three-dimensional feature points on the tracking target. The pose estimation
problem is harder when the corresponding points are not known [46]. Iden-
tification of corresponding points can be established by uniquely identifiable
patterns [102] (see section 5.4.1) at the fiducials, or by analyzing the marker
constellation, a technique common with passive infrared systems [152, 167, 77].
Active infrared systems have the additional advantage that they can use time-
division multiplexing to identify the fiducials [80].

It is important to design marker targets in a way such that they provide
not only optimal accuracy but also optimal visibility. This has an influence
on the marker design [48, 49] and on the camera placement [37, 36, 31]. In
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particular the case of merging markers, this means fiducials that are so close
together such that they cannot be distinguished, needs special consideration
(see section 5.3.2). Some fiducials can be only detected under a certain viewing
angle. This is not only true for printed flat markers (see section 5.4.1) but also
for active markers that show a significant anisotropic behavior in the center
detection for different viewing angles [92] and therefore are only used for the
pose estimation when the viewing angle is in a certain range, although they
could be detected otherwise.

In our error analysis we assume that all used features are correctly detected
and already identified. Although we can not generally assume that this will
be actually the case, we have at runtime inside the tracking system all this
information. Therefore we can perform the analysis with all actually used
features instead of all possible features.

5.1.3 Systematic Errors

Experience shows that many of the measurement errors in optical tracking
systems show a significant systematic behavior. Besides the occlusion and
identification problems mentioned above, there are many different sources of
error here.
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Fig. 5.1. Position of a single fiducial rotating on a helical path on the camera
image plane. Systematic errors in the two-dimensional feature detection will result
in interference patterns in the three-dimensional pose estimation in a two-camera
setup.

The most important influence on the accuracy in a multiple camera system
comes from the epipolar geometry. This relationship between the different
cameras has to be estimated initially. We have observed significant errors
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(cf. figure 5.11) resulting from a wrong calibration of the extrinsic camera
parameters in our experiments [154, 183]. Thermal drift due to the heating
of the cameras [183] as well as vibrations in the mounting of the cameras
also changes the extrinsic camera parameters. Some of these influences can be
minimized by using only measurements relative to a reference target.

For every camera, the intrinsic camera parameters have to be determined
as well [184] for the pose estimation. The accuracy of the intrinsic camera
parameters [72, 209] can have a large systematic influence on the overall ac-
curacy [162], since this is usually calibrated once and used thereafter. Also
residual errors in the nonlinear camera model [110, 109] can lead to system-
atic errors [61].

A last source of systematic errors potentially comes from the algorithms
used in the overall process (see figure 5.1) as well as from the quantization on
the camera chip (cf. figure 5.6)

5.1.4 Random Noise

In addition to the systematic errors described above, there is also random noise
resulting from two-dimensional marker jitter [198] in the cameras. But our ex-
periments (cf. figure 5.5) show that also the systematic errors are coming from
so many different sources that under certain circumstances they will result in
quasi-random error that can be approximated using a gaussian distribution.

5.2 Measuring the Error

Measuring the error in augmented reality systems is not an easy task. To get
absolute error numbers, we need to compare the measurements with some kind
of ground truth. Alternatively, we can use simulations with a known ground
truth to estimate the accuracy. The last option is to provide an analytical
function to compute the current accuracy. To get an international compa-
rable way of determining and expressing uncertainties in measurements, the
International Standards Organisation (ISO) has published a Guide to the Ex-
pression of Uncertainty in Measurement (GUM) [89, 88].

5.2.1 Empirical Evaluations

Empirical evaluations are the best option to measure the accuracy of a track-
ing system. This means evaluating the uncertainty by the statistical analysis
of a series of observations. In this case the uncertainty is the experimental
standard deviation of the mean that follows from an averaging procedure or
an appropriate regression analysis [89]. Therefore we have to make sure that
the measurement process itself, that is used as a ground truth, has significantly
less error than the process to be measured [146].
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The uncertainty is most commonly given as an average RMS error inside
the whole working volume. This is also well accepted and regularly performed
by tracking system manufacturers [223, 222]. Other empirical evaluations show
that the errors have in fact large differences inside the tracking volume [62]

The standard process [191] recommends the measurement of relative dis-
tances rather than absolute values when no reliable ground truth is available.

5.2.2 Monte-Carlo Simulations

If no ground truth data is available for a system, it is sometimes possible
to generate artificial input data for predefined parameters with some sta-
tistical variation to compare the result with the original values. This kind
of Monte-Carlo simulation has been used frequently. Florou et.al. [61] use a
Monte-Carlo simulation to estimate the quality of camera calibration and re-
sulting position accuracy. Weyrich et.al. [220] and Pentenrieder et.al. [134] use
computer-generated images to test an optical tracking system.

The main difficulty here is the need for an inverse function of the process
to estimate. In the case of an optical tracking system, a renderer has to be
written that generates input images. This inverse function has to include all
kinds of errors that will occur in reality to be a good model of the actual
runtime system [219].

Additionally, Monte-Carlo simulations have the property that they need
large amounts of simulation runs for higher-dimensional input vectors to give
statistically significant results. Even simple models of optical tracking systems
have already quite a lot of input parameters. This is usually no problem, since
the simulation can be done offline. However, runtime estimates of the current
accuracy are not possible using this model.

5.2.3 Analytical Models

The advantage of analytical models for accuracy estimates to compute er-
ror estimates at runtime for the actual current situation. An analytical error
model is a function of a defined set of input parameters that returns some
measure for the accuracy of the particular configuration of the system given
by the parameters. Again, this is only a simplification of the actual process,
therefore the validity of the error function has to be proved using either em-
pirical measurements or simulations first.

Abawi et.al. [1] provide an accuracy function for the ARToolkit which
they have extracted from a series of empirical measurements. They return an
abstract value from good to bad depending on the viewing angle and distance
of the camera to the marker. Pentenrieder et.al. [134] propose an accuracy
function for a monocular flat marker tracker based on a database of simulation
results. They use a six-dimensional error covariance matrix that can be used
for error propagation as in chapter 4.2. We will give in section 5.3 and section
5.4 an analytical error function based on the geometry of the cameras and
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the fiducial layout. This error function is applicable for a variety of optical
tracking systems

A similar method of estimating the accuracy based on the geometric con-
stellation only is used in satellite positioning systems [149]. Here the pose
estimation is based on range measurements from the satellite sender to the
mobile receiver. The receiver estimates from the difference in the received
time-stamp signals both the exact local time and the three-dimensional posi-
tion in space. The dilution of precision [105] denotes the expected accuracy of
the pose and time estimation based on the satellite constellation in space.

Fig. 5.2. Dilution of Precision in range measurements for satellite positioning sys-
tems: A small baseline gives bad dilution of precision (left) while a large baseline
gives good dilution of precision (right)

The range measurements are affected by errors coming from a variety
of different sources, mainly atmospheric refraction and different signal run-
time in different layers of the atmosphere. Although mathematically incor-
rect [225, 226], it is assumed that the wrong measurements in fact form a sta-
tistically gaussian distributed deviation of the pseudo-range measurements.
This statistical deviation is called the user equivalent range error and is esti-
mated globally for every satellite by the control segment and transmitted from
the satellites to the receiver. Geometrically, the effect can be seen in figure
5.2.

From this error it is possible to compute a four-dimensional covariance
matrix [116] for the three position variables and the single time variable.
From this covariance matrix, four different values are computed by means of
the matrix trace norm which is equivalent to a root mean square error (see
3.2.3). The positional dilution of precision (PDOP) is the trace norm of the
positional part, which is the upper left 3 × 3 matrix. The time dilution of
precision (TDOP) is the lower right diagonal element, the time variance. For
the next two measures the covariance matrix is first transformed from the
original world-fixed coordinate system into a local coordinate system at the
estimated point (cf. section 4.2.2). Then the horizontal dilution of precision
(HDOP) is the trace of the 2×2 horizontal part of the transformed covariance
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matrix, which is the expected horizontal root mean square error, and the
vertical dilution of precision (VDOP) is the variance in the vertical direction.

Fig. 5.3. Dilution of Precision for angular measurements in pose estimation using
triangulation from two cameras. Again, large baseline (right) gives better dilution
of precision than small baseline (left)

In a similar way, we compute the predicted accuracy of an optical tracking
system based on covariances on the image plane and the geometric constella-
tion of cameras and fiducials in chapter 5 (see figure 5.3).

The accuracy of an augmented reality system can be most easily defined
in terms of the discrepancy of the real and the virtual objects. However, while
a good alignment of the fiducials is desirable in a visual augmented reality
application, it has been noted [60] that good fiducial alignment is in general a
poor indicator of the overall accuracy. This means that the analysis of errors is
highly application specific and can not be performed without the application
in mind [113]. All general building blocks of an augmented reality system,
such as tracking systems, calibration algorithms and other algorithms need
to apply the error analysis in a general way such that the application can
finally apply the general error to the actual application specific error. This is
also the reason why we propose using full six-dimensional covariance matrix
propagation instead of root-mean-square errors in section 6.4.

The overall error is the result of all individual errors in the tracking, cali-
bration and projections and the propagation and combination of these errors
to the error in the final augmentation.

5.3 n-Ocular Vision

An n-ocular optical tracking system usually contains of a set of n infrared
cameras which are rigidly connected with each other, such that the epipolar
geometry is constant. The object to be tracked is rigidly connected to a track-
ing target which contains several fiducials, which are retroreflective balls or
infrared LEDs that can be seen by the infrared camera system. From the pre-
calibrated extrinsic camera geometry the position of the fiducials in space and
therefore the pose of the instrument can be computed [87]. A typical camera
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configuration is a rigid bar which contains one camera at each end, but more
flexible camera arrangements are also possible.

The accuracy of n-ocular optical tracking systems has been analyzed al-
ready in the context of intraoperative navigation systems. In most common
setups with two or more cameras the fiducial location error is not isotropic
and independent. We present a refined estimation of the target registration
error based on the propagation of covariances from the image plane up to the
point of interest. We show that there are significant differences in the expected
accuracy compared with the current state of the art.

In 1998, Fitzpatrick et.al. have presented a simple formula [60] for the
estimation of the target registration error from a given fiducial location error.
The fiducial location error is the error in detecting every single fiducial and is
assumed to be unbiased, isotropic and independent. However, in real setups
the error tends to be non-isotropic [218, 101] as we will also demonstrate in
section 5.3.2

Hoff et.al. [83] have used arbitrary covariances for the fiducial location
error to predict the marker target error. Our derivation in section 5.3.3 is
based on their work. Ma et.al. [112] use spatial stiffness analysis to predict
the registration error depending on the fiducial configuration. Davis et. al. [47]
have also presented a method to predict the accuracy of a tracking target for
optimized target design.

Sun et.al. [176] have introduced the concept of imaginary markers which
they use to express the point of interest on which the target registration error
is computed. From this they can obtain the accuracy distribution in a volume
around the tracked rigid body. They use a Monte-Carlo simulation to estimate
the resulting error at a point of interest given the error in the pose estimation
of the target. Instead of randomized simulation we provide a closed form
solution for this estimation in section 5.3.5.

Taking all together, we present a closed-form solution that estimates the
target registration error only from the geometric setup of the cameras and
the fiducials on the tracked tool and an estimate for the image plane error
that can be derived from manufacturers data or estimated experimentally for
each camera. The proposed approach provides more accurate results than the
currently known methods.

5.3.1 Terminology of Errors

First we describe the terminology of errors we are using and relate them to the
errors used in literature. In particular, we are looking at the following kinds
of errors (cf. figure 5.4):

Image Plane Error (IPE)

The tracking algorithm detects the point features in the image plane. The
accuracy of this feature detection is limited by factors such as the image noise
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Image Plane Error (IPE)

Fiducial Location Error (FLE)

Marker Target Error (MTE)

Target Registration Error (TRE)

Fig. 5.4. Terminology of Errors involved in the estimation of the target registration
error (TRE)

or the algorithm used and can be well approximated by a two-dimensional
Gaussian error distribution, as we show later. Mistakes made in this step are
propagated and amplified in the following steps and accumulate in the TRE.
Also any other error made in the pose estimation process could be reprojected
onto the image plane. Therefore we will show later that we can consider the
IPE as the source of all the other errors we are dealing with.

Fiducial Location Error (FLE)

After the 2D locations of feature points in the image plane of two or more
cameras are known, the 3D position of these features can be computed in the
world. The way errors in the image plane propagate to the FLE is influenced
by the position of the feature and the arrangement of the cameras. We will
investigate this further in section 5.3.2. Allen et. al. [3] present a general frame-
work for predicting the estimated performance of arbitrary tracking systems.
Their work is similar to what we propose in section 5.3.2 and will be discussed
in more detail there. Mitschke et. al. [122] showed that it is crucial to know
about the general shape of the error covariances in a given camera setup at
design time.

Fiducial Registration Error (FRE)

This error is the root-mean-square distance between the measured fiducial
locations after registration and their theoretically known locations. It can be
easily measured but provides only a one-dimensional estimate which is under
certain assumptions related to the fiducial location error [60].



66 5 Statistical Models for the Accuracy of Optical Tracking Systems

Marker Target Error (MTE)

In most cases, rigid arrangements of three or more fiducials are used to con-
struct a marker target of which both position and orientation can be deter-
mined. In this case the FLE error distributions of the individual fiducials
influence the error in the 6D pose, but also the way they are arranged.

Target Registration Error (TRE)

In most applications, the pose of the marker target is not used directly, but
instead the position of some point of interest in the target coordinate frame
is determined, such as the tip of a pointing device. By propagating the MTE
errors in position and orientation of the marker target to this point of interest,
the TRE error relevant for the application can be estimated.

By combining the error propagations of all four steps, we can give a correct
estimate of the target registration error for every measurement at runtime.
Accurate runtime estimates can only be given by the tracking system itself
since information is needed on how many cameras and how many feature
points were used for the particular measurement.

However, at design time, the single error propagation steps are useful on
their own, when used with reasonable default distributions of the previous
step, in order to design optimal marker targets for particular applications or
to experiment with different camera setups.

For our work, we assume that the actual positions of features, fiducials or
targets are computed independently and provided to the accuracy estimation.
This makes the approach suitable as an add-on to existing trackers or, provided
with hypothetical input, as an off-line analysis tool.

5.3.2 Estimating the FLE from IPE

The fiducial location error is the error between the true position of a fiducial
and the measured position. This error is usually given by the tracking system
manufacturer as a result of standardization procedures [191] or can be mea-
sured experimentally [101, 33, 62, 223] as an average error inside a specified
tracking volume, or predicted using Monte-Carlo simulation [61]. Typically,
this error is given as a one-dimensional root-mean-square error. Fitzpatrick
et.al. [60] base their analysis on this kind of unbiased, isotropic, and indepen-
dent errors. However, looking at the experimental evaluations in the litera-
ture [101, 33, 62, 223, 153] shows that the errors in common two-camera setup
are actually not isotropic.

Sanders-Reed [150] shows the derivation of error propagation formulas
for a two sensor setup using first order statistics and shows the validity of
the model using Monte-Carlo simulations. Our work [19, 154] goes beyond
this by providing a simple matrix equation that can be used to estimate the
accuracy of a tracking system with any number of cameras. The Gaussian
error propagation has been used for the accuracy of mechanical stereotactic
localizing before [234].
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Experimental Setup

To assess the fiducial location error for a specific tracking setup, we have
conducted a set of experiments with a two-camera tracking system.

We placed retroreflective marker balls as features in a regular grid on a
table in our tracking volume. Both the cameras and the markers on the table
were fixed throughout the experiment. We captured the measured locations of
the features in space for several minutes at 60 Hz resulting in a total of 71553
sample points for each feature. We used a rather small baseline of about 20 cm
to emphasize the effects in the images, see figure 5.5.

Cameras

Feature Points

Cameras

Fig. 5.5. Error in position estimation for a regular grid (side view and top view of
the setup; error for visualization exaggerated by a factor 50)

The results of this experiment are shown in figure 5.6, where the measured
3D locations of a single feature point are plotted as black dots. We also cal-
culated the covariance for each single feature point from this dataset, which
is displayed as an ellipse at a 75% confidence level around the centroid. The
particular regular pattern in the 3D reconstruction of the point results from
discretization in the camera coordinate system. However, the general shape of
the measurements in space is in fact approximated by the covariance ellipsoid.

To validate the result, we first map this covariance onto the image plane. In
other words, we are searching for a covariance on the image plane of the camera
that would result in this observed covariance at the position of the marker.
To this end, we first need to develop a model of the camera equations, such
that we can apply the error propagation from chapter 4.2 to these equations.

Pinhole Camera Model

The pinhole camera model [78] is a simplified model of the projection in a
camera. The pinhole camera is a linear projection of a point x in space onto
a point u on the image plane.
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Fig. 5.6. Error in position estimation together with estimated covariance (95%
confidence level) for a single marker from figure 5.5

p : R3 → R2, x 7→ ρ

u
v
1

 = KTx (5.1)

where T ∈ R4×4 is a rigid transformation matrix that transforms the point
p from world coordinates to camera coordinates. This transformation is also
called the extrinsic camera matrix since it describes the position and orien-
tation of the camera in space. The matrix K ∈ R3×4 is the intrinsic camera
projection matrix. There are different models for the intrinsic camera ma-
trix, describing parameters like the principle point offset, the skew and the
pixel aspect ratio. For our further analysis however it does not matter which
parameters are used inside the camera matrix.

The parameter ρ is the normalization factor, i.e. the inverse of the third row
of the camera matrix equation. This maps all points located on the projection
line through the camera center and the point x to the same point u.

Derivation of Covariance Formulas

We want to estimate the 3D covariance Σp ∈ R3×3 of the detection of a single
feature (FLE) at position p in a given multi-camera setup, consisting in n
pinhole cameras. We assume for now that the intrinsic and extrinsic camera
parameters are known without error [162] and we have an estimate Σu ∈
R2×2 for the 2D IPE detection covariance including image noise, algorithm
artifacts, and quantization errors on the image plane. For simplicity of the
model we assume the same covariance in each camera (which is acceptable for
commercial tracking systems).

If we use an n-ocular stereo system detecting the same point, we get the
measurement function for the Triangulation, a set of nonlinear camera equa-
tions p:

p : u1 =
1
ρ1

K1T1x
...

...

un =
1
ρn

KnTnx
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as the projection function, with Ki and Ti being the respective parameters
of the i-th camera.

In order to compute the FLE, we build the Jacobian Jp = δp
δx and apply

the backward propagation formula (3.6).

Σx =

Jp
T

Σu1 0
. . .

0 Σun


−1

Jp


+

(5.2)

The resulting equations are analytically computed using a computer al-
gebra system and then evaluated for each position in space. Details can be
found in Appendix A.1.

Fig. 5.7. The projected mean of the fiducial centers does not coincide exactly with
the statistical mean for small baselines

From figure 5.7 it can be see that the projected mean of the fiducials
on the image plane does not coincide exactly with the statistical mean of
the estimated points for small baselines and large angular errors. Therefore
the estimation of the gaussian error assumption is violated here [157, 158].
However, it can be shown using Monte-Carlo simulation that this difference
is in fact negligible for common setups.

Estimation of the Image Plane Error

We now estimated the actual error covariance Σu on the image plane using the
experimental measurements for a single feature point and applied the model
to predict the parameters for the other fifteen points; we then compared the
prediction with the measurements for these points.

To estimate the error in the image plane, we evaluated our model with
symbolic parameters for the covariances on the image plane and used New-
ton’s method to fit the parameters to the measurements. We assumed an
unbiased Gaussian distributed error around the true two-dimensional marker
locations [198]. Figure 5.8 shows the measured errors in red together with the
computed errors in black first horizontally on the grid (x-z-plane) and then
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x-z-plane x-y-plane

Fig. 5.8. Measured errors (red dotted line) vs. predicted errors (black line)

parallel to the image plane (x-y-plane, projected onto the grid). The param-
eter estimation was done for the lower leftmost point and then applied to all
other points. The predicted values fit the measured values quite well, as can
be seen in figure 5.8. In our experiment, we estimated a standard deviation of
1

115 pixel on the image plane for the detection of the center of the fiducials.

Prediction for Common Setups

Using this image plane error, we can now apply equation 5.2 to estimate the
fiducial location error for every single fiducial. Figure 5.9 shows the expected
error in a four camera setup. The error is shown as covariance ellipsoids as
well as RMS error. Figure 6.5 shows visualizations for several common setups
with three and two cameras. The error covariances are magnified for better
visibility.

In the same figure it is possible to see the effect of the occlusion of single
cameras onto the fiducial location error. In the example, all configurations
are subsets of a four camera setup. Therefore the effect of occluding a single
camera or of occluding two cameras can be observed in the figure. Note the
significant difference between large baseline and small baseline in the two
camera examples.

Validation of the Model for Image Plane Error

To estimate the accuracy of optical coordinate measurement systems, VDI/VDE
2634/1 [191, 192] recommends measuring differences between single features
in several directions [63]. We have implemented this measurement with a ro-
tating two-ball target (cf. figure 5.10) for which we have measured the distance
between the balls [19].
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Fig. 5.9. Predicted accuracy in a four camera setup. Covariance ellipsoids (left) and
RMS error (right). See also figure 6.5

Applying our theoretical error prediction model to this kind of test, we
need to build the Jacobian Jd from the distance function,

Jd =
∂

∂(x1,x2)

√
(x1 − x2)T (x1 − x2)

which we use to propagate the two 3D covariances Σx1 and Σx2 to a one-
dimensional variance σd of the distance with

d

Fig. 5.10. Two rotating balls, rigidly connected

σd = Jd
T

[
Σp1 0
0 Σp2

]
Jd

We compare the variance σd with our measurements, as shown in figure 5.11.
The horizontal axis shows the angle of the two balls and the vertical axis the
respective measured distance.

In the errors we first note a large sinusoidal error in the angular data. This
error comes from a wrong scaling of the three room axes during the calibra-
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Fig. 5.11. Error in length estimation for a rotating two-ball target, blue line shows
assumed room calibration error

tion of the system. Different calibration runs showed this effect in different
intensity. This systematic error from the calibration process provided by the
manufacturer of the tracking system needs to get eliminated independently,
as it cannot well be modeled as Gaussian noise. For our analysis, we have
removed that error manually from the data by assuming independent scaling
on the three axes.

The remaining error consists of a random part coming from system noise as
analyzed above, and an additional irregular error coming from subpixel effects
in the 2D detection algorithms. Although these errors are in fact systematic,
we assume for now that we can approximate them with a Gaussian distribution
and model them as a zero-mean noise in the image plane. This is justified by
the relatively high frequency of the artifacts.

Figure 5.12 shows a plot of the predicted one-dimensional standard devi-
ation of the error covariance for the respective angle in green together with
the distance measurements, already corrected for the wrong room calibration.
While the corrected error obviously is not Gaussian, the predicted covariance
fits the measurements still well.

This experiment shows that already for two fiducials in a single target
the systematic errors begin to appear more and more random. Using typical
targets with four or more fiducials, it is safe to assume that the resulting error
is in fact gaussian distributed.

Additional Influences on the Image Plane Error

There are additional factors that influence the detection accuracy on the image
plane [41]. The fiducial detection algorithms are more accurate when the fidu-
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Fig. 5.12. Measured errors corrected for room scaling (blue dots) vs. predicted error
standard deviation (green line)

cial fills a larger area on the image plane. This depends both on the distance
from the camera to the fiducial as well as on the fiducial size.

Partial occlusions of fiducials by other fiducials or different objects as well
as anisotropic lighting behavior of the fiducials lead to a shift in the estimated
fiducial center. Finally, weak lighting conditions also influence the accuracy.

Distance and Marker Size

Different kinds of fiducials [38, 182] need different algorithms for the sub-
pixel accurate determination of the fiducial location. Many systems use ellip-
tic shapes [165, 20, 229, 59, 180] for fiducials, others use black square mark-
ers [173, 58, 24]. All these methods have the property that they get more
accurate when the size of the fiducial on the image plane is larger. Table 5.3.2
shows the diameter in pixels of a circular fiducial depending on the diameter
of the fiducial and the distance to the camera.

Distance from Camera to Marker

Size 0.25m 0.5m 0.75m 1.0m 1.25m 1.5m 1.75m 2.0m 2.25m 2.5m 2.75m 3.0m

12mm 22.6 11.3 7.5 5.6 4.5 3.7 3.2 2.8 2.5 2.2 2.0 1.8
14mm 26.4 13.2 8.8 6.6 5.2 4.4 3.7 3.3 2.9 2.6 2.4 2.2
20mm 37.8 18.9 12.6 9.4 7.5 6.3 5.4 4.7 4.2 3.7 3.4 3.1
30mm 56.7 28.3 18.9 14.1 11.3 9.4 8.1 7.0 6.3 5.6 5.1 4.7

Table 5.1. Relationship between marker ball diameter and distance to the camera
and the resulting pixel-size diameter on the image plane. The focal-length is 3.5mm
and chip-size is 4.87mm× 3.67mm for a resolution of 640× 480 pixels.
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It is obvious that in a certain distance from the camera the size differences
due to the distance are becoming smaller. Additionally, the influence of a larger
radius on the accuracy of the whole fiducial gets smaller with increasing size
of the fiducial. Even using larger and larger fiducials, the achievable accuracy
is limited.

Merging Markers and Partial Occlusions

One important situation to consider is the case of merging markers. This
occurs when two markers are almost aligned in the camera image. The images
of both markers merge together to a single fiducial on the image plane. The
resulting estimate using standard algorithms like weighted averaging for the
center of the fiducial is therefore biased into the direction of the merged fiducial
as seen in figure 5.13. This case can be detected (but not necessarily corrected)
using algorithms that determine the roundness of the fiducial. After the pose
estimation is finished, a backprojection of the fiducial locations onto the image
plane can be used as well to detect potential merging markers. Systems using
uniquely identifiable fiducials are not affected by this problem.

Fig. 5.13. Merging markers. Ellipse center detection in this case results in a devi-
ation of the estimated fiducial center.

Fiducials can also be partially occluded by other objects in the scenery.
Under certain circumstances the detection of the fiducial is still possible, while
the estimated center is biased away from the occlusion.

Some tracking systems detect partially occluded markers and do not give
pose estimates [23], others try to deal with partial occlusions as much as
possible [57, 56].

Anisotropic Behavior of Fiducials

Depending on the type of fiducial, the pose estimation process can be affected
by considerably large systematic effects. Active infrared emitting diodes have
an angle-dependent anisotropic lighting behavior [92]. Circular shaped flat
disk features have the property that they will under projection always be
seen as ellipses; the center of the ellipse however does not coincide with the
projected center of the circle (fig. 5.14) [167, 144].
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C

E

Fig. 5.14. Difference between the projected center C of a circle and the center E
of the projection of the circle.

This error however can be corrected under certain circumstances when the
target geometry is known [2]. Another approach is the definition of a maximum
viewing angle for every fiducial [131]. Both methods necessarily lead to an
iterative pose estimation process. The affected fiducials are removed from the
fiducial list and the pose estimation process is repeated.

Using Residuals for Error Estimation

After the pose estimation process we can compute for every fiducial P and
every camera Ci the backprojected residual (fig. 5.15). This is the distance
between the projection Pi of the estimated three-dimensional location of P
and the original two-dimensional position P ′

i of the fiducial on the image
plane [183].

P

P ′
i

Ci

Pi

Fig. 5.15. The backprojection of the three-dimensional residual error onto the image
plane can be used to adjust the image plane covariance and to detect systematic
errors

This distance is a measure for the correlation between the measurement of
this camera and the overall estimate. Therefore this could be used to adjust the
image plane covariance accordingly. Additionally, an average of the distance
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vectors over time could be used to detect systematic errors resulting from
errors in the extrinsic camera parameters from wrong calibration or accidental
change of the orientations of the cameras after calibration as a consistency
check.

5.3.3 Estimating the MTE from FLE

The estimation of the error in position and orientation of a target with several
fiducials from a given error distribution for every fiducial has been of interest
in the medical communitiy for a while [60], mainly in the area of multimodal
medical image registration [216, 215] and the measurement of human body
movements [224, 123] but has been extended by West et.al. [218, 217] to the
accuracy of optical tracking systems. In their work, only independent and
isotropic errors are considered.

Davis et.al. [48, 49, 47] presents another method to predict the expected
tracking error using a first-order propagation of the errors associated with the
fiducials of the target. In his work, he allows both the fiducial configuration
and the pose estimation to be affected by gaussian one-dimensional noise.

Ma et.al. [112] use spatial stiffness analysis to predict the registration error
depending on the fiducial configuration.

In our work we follow the method presented by Hoff et.al. [84, 83]. We
start with computing the 6D error covariance Σc ∈ R6×6 of the marker target
in the centroid c, assuming that we know the fiducial location error (FLE) for
every feature point pi, not only as a single RMS value [60] but as an arbitrary
covariance matrix Σpi

∈ R3×3.
Without loss of generality we consider a marker target defined as a set

of feature point coordinates {qk} ∈ R3 in a local coordinate system with the
origin in the centroid of the marker balls, and their respective counterparts
{pk} ∈ R3 in the tracker coordinate system, which are additively disturbed
by zero-mean Gaussian errors {∆pk

} ∈ R3. The according covariance matrices
are given as Σpk

, assuming independent error for every fiducial. A possible
correlation between the two-dimensional coordinates of the jitter in the camera
image would need to be investigated further [198].

Note that, for the propagation to work properly, the origin has to be defined
at the centroid of the marker target. Otherwise, the positional error would be
artificially increased due to its distance from the origin. We will take this effect
into account separately when we propagate MTE errors to points of interest.

From the corresponding point sets we estimate the pose of the target by
solving the 3D/3D Pose Estimation problem using any kind of algorithm, for
example [87, 106]. This estimation leads to a homogeneous transformation
[R|t] which maps

R(∆R qk + ∆t) + t = pk + ∆pk

with some unknown error [∆R|∆t] of the whole transformation and the resid-
ual ∆pk

for every fiducial k. Our goal is to estimate the error [∆R|∆t].
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To this end we first split with the use of equation 4.10 the transforma-
tion into a error-free transformation and a transformation that contains only
the error. This means we transform the coordinate system such that all co-
ordinates pk and the respective covariances are given in the marker target
coordinate system by propagating the individual covariances with RT Σpk

R.
Using Euler angle representation for [∆R|∆t], we can treat the orientation

and position of the centroid c = (x, y, z, α, β, γ)T as a random variable that
represents the MTE. To apply the error propagation, we linearize the error
function f(p,q) = Rq + t− p by computing the Jacobian

Jf (q) =
∂f(p,q)

∂c

∣∣∣∣
c=0

(5.3)

with respect to the 6D pose c at the target centroid and evaluate the Jacobian
at the pose c = 0. The resulting Jacobian is the same as the upper part of
equation 4.11. This is because we consider only the three-dimensional position
of the fiducials here since they do not have an orientation.

Jf (q) =

1 0 0 0 qz −qy

0 1 0 −qz 0 qx

0 0 1 qy −qx 0


This Jacobian maps the 6D pose error ∆x of the target to the respective 3D
feature errors, and we can stack the equations for all fiducials together in a
single matrix M ∈ R6×3n: ∆p1

...
∆pn

 =

 Jf (q1)
...

Jf (qn)

∆x = M∆x (5.4)

Using the backward propagation formula (3.6) we get

Σc =

MT

RT Σp1R 0
. . .

0 RT Σpn
R


−1

M


−1

(5.5)

for the MTE covariance Σc in the centroid of the marker target (where
RT Σpk

R are the FLE covariances in the target coordinate system).
Note that to visualize this error covariance in the original world coor-

dinate system, we should again retransform the resulting covariance matrix
covariance matrix by computing RΣcR

T according to equation 4.9.
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5.3.4 Estimating the TRE directly from the IPE

The two steps from section 5.3.2 and section 5.3.3 could also be integrated
into a single computation step by constructing a Jacobian matrix of a func-
tion that maps the six-dimensional marker target error to the respective
two-dimensional image plane errors. In that case we do not compute indi-
vidual three-dimensional fiducial location error covariances, but rather the
six-dimensional marker target error covariance directly. A similar method is
used in section 5.4.2 to estimate the accuracy of monocular tracking systems.
Depending on the algorithms used in the pose estimation process, this func-
tion could also include additional algorithmic details that go beyond a simple
least-squares estimation as in the presented case.

Since this function is highly dependent on the actual implementation of
the pose estimation process in the tracking software, we do not consider this
in our generalized description here. However, it should be included in the
accuracy estimation for a specific tracking system.

5.3.5 Estimating the TRE from MTE

From this 6D MTE covariance in the centroid we can compute the 3D TRE
covariance Σp at a point other than the centroid by applying the forward
propagation formula (3.5).

Again we use the Jacobian Jf from equation 5.3 evaluated at the point of
interest p. The target registration error at the point of interest is then given
by forward propagation with

Σp = JfΣcJf
T (5.6)

Assuming that the rotational part of the error in the centroid is independent of
the positional part, it is then easy to see that the positional error at the point
of interest is equal to the positional error at the centroid plus a positional
error coming from the propagated rotational error [60], which is increasing
proportionally to the distance from the centroid. Examples for this can be
seen in chapter 6 and 8.

Here we have assumed that the position of the point of interest is known
without errors. In general, this transformation might be affected by errors
coming from a calibration process (see section 7.1) as well. In this case we
would rather use the error propagation from section 4.2.2 here.

5.4 Monocular Vision

The estimation presented before can be only used for n-ocular tracking sys-
tems, since the three-dimensional position of the fiducials in space need to
be known. There is however a simple extension of this analysis to monocular
tracking systems, which we are going to develop in this section.
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5.4.1 Monocular Tracking Systems

Monocular tracking systems are widely used in Augmented Reality and pho-
togrammetric applications. In contrast to n-camera systems, not only less
hardware and also no synchronization between the cameras is required. Also
the calibration of the epipolar geometry between the different cameras can be
omitted.

While there are many different kinds of monocular tracking systems [107],
we consider in our analysis only those that are using point-based fiducials. A
marker is therefore defined by a set of fiducials. By knowing its geometrical
model it is possible to obtain all six spatial constraints from the correspon-
dences of four or more points [227].

Flat Visible Light Markers

Flat visible light markers have been used in near-range photogrammetry for
example in crash tests and for quality assessment in metalworking already for
a long time. The identification of corresponding points is done here often with
user interaction or using special application-specific heuristics.

To make the process automatic, markers have been proposed that consist
of an easy detectable black square frame that provides at least the coordi-
nates of the four corner points. Inside that frame, some kind of code is used
to distinguish several markers from each other. Many systems use a binary
code [143, 228, 57] for identifying the marker, but also two-dimensional (color)
patterns [23] or fourier-encoded greylevel patterns [132] are used. Using this

Fig. 5.16. Examples for Planar Tracking Markers [143, 23, 132, 228, 228]

code, not only the identification of the whole marker is possible but also the
identification of corresponding points. The image of the square is rectified
using a homography H and then the pose is computed from this homogra-
phy [107].

Active and Passive Infrared Fiducials

Another different class of monocular tracking systems uses retroreflective
marker targets as common in multicamera tracking setups. The identification
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of the corresponding corner points which is needed for the pose reconstruc-
tion is solved either by specially designed markers [152, 198] or generally by
using an initial estimate of the pose based on depth estimations [167]. Wang
et.al. [204] used active infrared emitters mounted on the ceiling. The emit-
ters use different pulsating patterns for identification. Our error and accuracy
analysis can be used for both kinds of tracking systems.

5.4.2 Accuracy of Monocular Tracking

Due to the widespread use of monocular tracking systems, several groups have
worked on analyzing the accuracy of planar marker tracking systems. The work
was mainly based on the widely used ARToolkit [23] but in general could be
applied to any of these tracking systems. Malbezin et.al. [115] measured the
accuracy in a distance of up to three meters and compared the pose estima-
tion to manually measured values. Zhang et.al. [228] compared four different
planar marker tracking systems with respect to processing time, accuracy and
recognition performance. Abawi et.al. [1] provide a coarse accuracy function
depending on the distance and angle between marker and camera. Penten-
rieder et.al. [134] use a Monte-Carlo simulation to generate a more general
accuracy function for a planar marker tracker. The main consensus of these
evaluations is a decreasing accuracy with the distance and a viewing angle
dependent behavior with maximum accuracy around a viewing angle of about
45◦.

Our approach goes one step further and tries to analyze the theoretically
achievable accuracy by analyzing the geometric setup of the marker and the
camera and predicting the accuracy in terms of a error covariance matrix as
we did in the n-camera case. Therefore we do not care about the detection of
the marker and the marker features as well as the identification of the features.

Theoretical Model

From now on we assume that the topology of the target is known exactly
and all the features from the target can be well recognized and that the 2D
position estimation is unbiased but not noise free. So the 2D positons can
be interpreted as two dimensional gaussian distributed error variables with
zero-mean and a covariance matrix in two dimensions, which describes the
non-isotropic jointly distributed error of position estimation.

Derivation of Error Propagation Formulas

In general, this analysis follows the ideas presented in section 5.3.2 and 5.3.3.
Since no three-dimensional estimate of a single fiducial point is possible using
only one camera, we need to join the two steps to a single step where we
estimate the accuracy of the six-dimensional pose estimate of the whole target
from the image plane errors directly.
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Without loss of generality we use a spherical coordinate system for the
following analysis of the accuracy to get results that are comparable with the
published experimental results in the literature [1, 115, 228, 151]. The target
is fixed in position and orientation and only the camera is moving on a sphere
with radius r.

r

α

β

Fig. 5.17. Setup for analyzing the theoretical accuracy of a monocular tracking
system with planar fiducials.

We use the same pinhole camera model as in section 5.3.2, and again assume
that the camera parameters are known without error [162].

p : R3 → R2, x 7→ ρ

u
v
1

 = KTx

and the set of nonlinear camera equations

p : u1 =
1
ρ1

KTx1

...
...

un =
1
ρn

KTxn

The same camera maps the different points xi to different locations ui on the
image plane.

Without loss of generality we parametrize the extrinsic camera parameters
(and therefore also the error) using three parameters α, β and r. This means
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we have no roll around the camera axis and assume that the camera is always
centered towards the origin where the marker is placed. A parametrization
using standard Euler angles could be used as well. In this case the Jacobian
in the following section would be done with respect to all Euler parameters
instead.

The transformation T are the extrinsic camera parameters which map the
fiducial points xi into camera coordinates. Again we decompose the transfor-
mation according to eq. 4.10 into the transformation and the unbiased error.
Now we can compute analogous to equation 5.4 the Jacobian of p evaluated
at the origin

Jp =
∂ p

∂(α, β, r)

∣∣∣∣
0

∈ R3×2n (5.7)

and apply the backward propagation formula (3.6).
Assuming points on the image plane can be detected with uncertainty

given by the covariance matrices Σvi ∈ R2×2. Then the covariance matrix for
detecting the planar fiducial is

Σα,β,r =

JT
f

Σv1

. . .
Σvn


−1

Jf


−1

∈ R3×3 (5.8)

Now the covariance of the spherical angles α, β and the distance r is known
and can be calculated for any arbitrary position of the camera or of the target,
respectively.

Accuracy Depending on the Viewing Angle

We can now use this theoretical model to derive error functions for monocular
tracking systems. We do this on the example of planar markers.

First we analyze the influence of the viewing angle or marker tilt (α in
fig. 5.4.2) on the accuracy in distance and angle. Figure 5.18 shows the pre-
dicted standard deviation of the depth estimation for r (left) and the tilt angle
(α). The angle α changes from −π

2 to π
2 which is a full half circle at constant

distance r around the marker which is placed in the origin.
We can see from the graph that the angular accuracy is worst around

the pose where the camera is looking frontal onto the flat marker. This is
reasonable since in this position, a small change in the tilt angle only changes
the projected image slightly. Therefore, slight random noise in the image leads
to larger errors in the estimated tilt angle. The distance error in the centroid
in contrast is a bit smaller around this pose, since small errors do not affect
the distance too much here. However, due to the error propagation, the large
angular error will cancel this effect out when moving away from the center.
For estimating the camera pose relative to the marker see figure 5.19. The
presented derivation estimates the pose of the marker in camera coordinates,
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Fig. 5.18. Influence of the marker tilt to the accuracy in distance (left) and angle
(right). Note that usually tracking is not possible at tilt angles larger than 80◦

which is what most simple augmented reality applications actually need for
displaying virtual objects in the camera image. If the pose of the camera in
marker coordinates is required (inside-out tracking), this involves inverting
the tracked pose and at the same time applying the error propagation for
pose inversion from section 4.2.3. The result can be seen in figure 5.19: The
ellipsoids show a large pose error when the camera is pointing frontal to the
marker, and smaller errors at larger tilt angles.

Fig. 5.19. Accuracy of the pose of the camera in marker coordinates (inside-out
tracking) is rather weak due to the pose inversion and high angular uncertainty. The
covariance ellipsoids are magnified for illustration of the difference only.

The same behavior can be found in the experimental evaluations [1, 151,
115]. From this result we can conclude that planar markers should be posi-
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tioned always in such a way that the camera can look at the marker at a
certain angle and not frontal. It is obvious that non-planar markers will have
better performance also in moncular tracking systems [198].

We have verified these results using Monte-Carlo simulations. For every
tilt angle we have computed the projected image of the marker and applied
unbiased random noise to the two-dimensional locations. From these values
we reconstruct again the pose of the camera which we can then compare to
the ground truth.

Note that the errors might in reality not be unbiased due to the feature
detection algorithms. Also the standard deviation of the fiducials might be
different for different tilting angles due to the perspective distortion.

Accuracy Depending on the Distance

It has been noted earlier [1] that the positional error of a monocular tracking
system increases more than linearly with the distance. This can be observed
from figure 5.20 as well.

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

Fig. 5.20. Influence of the distance to the marker to the accuracy in distance
measurements for a fixed tilt angle

Pentenrieder et.al. [134] have analyzed the accuracy of distance measure-
ments in a series of simulation runs and come to the same result.

5.4.3 Natural Feature Tracking and Point-based Registration

The presented estimation was performed using an artificial fiducial tracking
system. However, the same analysis could theoretically be applied to a natural
feature tracking system as well. In fact in natural feature tracking systems,
quite similar estimations [40] have been performed, but so far only to improve
the tracking internally. The estimated accuracy values could additionally be
used for further error estimation inside a larger tracking framework [200].
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Another application of this theory is the field of three-dimensional image
registration, where so far only isotropic and independent errors are consid-
ered [216]. However, in these applications there is usually not too much prop-
agation of the errors since the final volume of interest is close to the centroid
of the fiducial distribution, such that the difference to the currently used error
models is not too large.
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Designing Targets for Optical Tracking

In the previous chapter we have presented a method for the estimation of
the expected accuracy in an optical tracking system. This estimation function
returns the expected accuracy for a given camera configuration and a specific
tracking target at a specified pose inside the tracking volume.

When designing applications involving optical tracking systems, this func-
tion can be used to evaluate the expected accuracy at typical scenarios. It can
not directly be used to compute the ‘optimal’ setup of cameras and marker
fiducials. Davis et.al. [49] use simulated annealing and a simpler error function
to design optimal tracking targets under the assumption that the fiducials will
be located on the surface of an existing CAD model. The CAD model enables
them to consider visibility of the fiducials as well [48]. West et.al. [218] ana-
lyze the error for various fiducial configurations and give some conclusions for
common configurations for the tracking of a pointing device and an endoscope.

In general, the problem of finding an optimal setup of cameras and fiducials
has far too many parameters to be solved automatically. In particular, some
of the most obvious ways of increasing the accuracy, as we will see later, are
only bounded by the usability for the final application — a parameter that can
hardly be fitted into a formula for some optimization process.We will rather
give a set of rules and insights to show how various changes on the setup
influence the final accuracy when designing a tracking system.

As a side effect, we will show that it is important for a useful runtime
estimate to do the error estimation also online and use all available informa-
tion on how many cameras and fiducials were actually used in a particular
measurement (cf. section 8.4). These are crucial parameters for the accuracy,
and this information is only available online and usually only inside the track-
ing system software. Therefore it would actually be the task of the tracking
software to deliver these online error estimates.
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6.1 General Rules

It is desirable to define some general rules of thumb for the construction of
tracking targets with optimal accuracy. It can be shown [218] that the best
accuracy is achieved when all fiducials are distributed with equal distance
on a sphere around the point of interest. While this can be achieved in rigid
three-dimensional data registration [216], is is usually not an option for optical
tracking. Here we have to make sure that the tracked tool is still usable.

We give now an overview of potential rules and their applicability in prac-
tice.

6.1.1 Use More Fiducials

The most obvious way of improving the accuracy might be the use of more
fiducials. The error decreases with n being the number of fiducials by 1√

n
[60].

This can be derived from the quadratic form in equation 5.5. However, using
more fiducials also increases the occurrence of occlusions between the fiducials.
With too many mutual occlusions, no tracking is possible at all. This limits the
amount of markers in realistic setups, since the increase in accuracy is rather
slow with more than five or six fiducials, while the probability of occlusion
increases when the diameter of the fiducial distribution is not increased at the
same time. Additionally, too many fiducials might interfere with the originally
intended use of the tracked object. In most cases, more than five fiducials are
not required, since other effects have larger influence on the final accuracy.
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Fig. 6.1. Error covariance in the centroid for increasing number of fiducials

Figure 6.1 shows how adding fiducials influences the resulting accuracy in
the centroid. Note that the arrangement of the fiducials does not affect the
accuracy in the centroid, which is depicted in the graph.
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6.1.2 Use a Larger Diameter for the Fiducial Distribution

A second obvious method to increase the accuracy is to use a more widespread
fiducial distribution [166, 108, 60]. However, increasing the diameter of the
fiducial distribution does not change the positional accuracy. This can be
derived from equation 5.5 when we look at the expanded matrix. Due to the
form of the Jacobian Jf and therefore the matrix M , the expanded covariance
matrix will only contain terms from the positional covariances of the Σpi

and
no mixed terms from the rotational covariances.

In contrast to that, the rotational accuracy does indeed increase inversely
proportional with a larger distribution [224, 60]. Therefore it is a good rule
to make the distribution of fiducials as large as possible, in particular when a
propagation of the rotational error is expected. Unfortunately, the diameter
can only be increased as long as the usability of the tracked object allows this
(cf. section 8.1).

Fig. 6.2. Propagated error covariances along three coordinate axes for a tetrahedral
fiducial configuration of different size (increasing from left to right)

Figure 6.2 shows how the propagated error decreases with a larger diameter
of the fiducial distribution.

6.1.3 Put the Centroid Close to the Point of Interest

The largest part of the final tracking error is coming from propagated rota-
tional errors. This propagation is smallest at the centroid of the fiducials [224].
Unfortunately it is usually not always possible to position the fiducials in a
way such that the centroid lies at the point of interest. For example in a point-
ing device this would make pointing impossible. When tracking an endoscope,
the point of interest actually lies inside the body of the patient and therefore
all fiducials have to be rather far away from that point. The error increases
linearly with the distance from the centroid (see figure 6.3).

If the point of interest is in fact a whole area or volume of interest, make
sure that all points in the volume are as close as possible to the centroid. Note
also that ‘close’ in this case means close relative to the radius of the fiducial
distribution.
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Fig. 6.3. Propagated error covariances at points of interest with different distance
to the centroid of the fiducials

6.1.4 Improving the Image Plane Covariance

The resulting error at the point of interest depends directly on the detection
covariance on the image plane. Therefore, all methods that are able to improve
the image plane covariance directly reduce the resulting error. This includes
methods that increase the size of a fiducial on the image plane, like the use
of larger fiducials (cf. section 5.3.2), a higher resolution of the camera chip,
or a longer focal length a as well as changes in the lighting conditions or the
detection algorithms.

Usually however, many of these methods are unavailable when using an
existing commercial tracking system.

6.1.5 Special Rule for Pointing Devices

A pointing device that is used only to identify three-dimensional points does
not need to provide rotational accuracy around the pointing axis (cf. figure
6.9). In this case, accuracy around this screw axis does not matter. Therefore,
the diameter of the fiducial distribution in this dimension can be really small.
However, this is not valid for devices which need actual rotation information,
like in an endoscope [218].

Some intraoperative navigation systems use pointing devices with collinear
fiducials. With minor modifications, the error estimation can be applied to
such targets as well. Since there is no information about the rotation around
the pointing axis, this dimension simply needs to be excluded from the Jaco-
bian matrix and the resulting covariance.
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6.1.6 Planar Marker

For manufacturing reasons it is sometimes easier to produce targets with pla-
nar fiducial distribution. While the positional error in the centroid is not
affected by the distribution, the propagated error depends on the rotational
error. This error is in all dimensions larger for planar markers [218].

Fig. 6.4. Propagated error covariances for a flat fiducial distribution (left) compared
to a tetrahedron configuration (right)

Figure 6.4 shows an example of the propagated error for a planar marker
as compared to a volumetric one. This means that volumetric markers should
be used whenever possible to increase the accuracy.

6.2 Dealing with Occlusions

When we started with the analysis of optical tracking systems in chapter 5, we
have stated that we do not consider the visibility of the fiducials; our analysis
is based on the fact that all fiducials we use for the error estimation were
actually seen by all cameras. When we want to use this analysis for the design
of optical tracking targets, we can not assume this any more.

6.2.1 Occluding Cameras

The optimal camera configuration in terms of errors is a configuration where
all cameras are evenly distributed on a sphere around the point of interest [31].
In reality however, there are usually some restrictions on where cameras can
be placed [37, 36].

Looking at figure 6.5, we can see that the effect of occluding cameras has a
rather large influence on the resulting error. When designing tracking setups,
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Fig. 6.5. Effect of the occlusion of different cameras on the resulting FLE error.
Covariance ellipsoids and RMS errors.

this means that we do not only need to consider visibility under partial oc-
clusions, but additionally need to make sure that the remaining configuration
still provides useful pose estimates when some cameras are occluded.

In a runtime system this means that different fiducials might have quite
different fiducial location error, since a different number of cameras has been
involved in detecting each particular fiducial.

6.2.2 Occluding Single Fiducials

In a similar way we can analyze the effect of the occlusion of single fiducials.
Again, it is important to consider how the fiducial layout changes when single
fiducials are occluded. Figure 6.6 shows the difference between a rhombus
layout of four fiducials and a square layout (cf. section 8.2).
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Fig. 6.6. Difference in error propagation in case of occlusion – Comparison of dif-
ferent target layouts: rhombus (left) and square (right)

While there is no difference in the propagated error when all four mark-
ers are visible, occluding single markers reveals a difference. This difference
is mainly due to the fact that occluding a marker also shifts the centroid.
Therefore it is useful to place redundant markers close to the point of inter-
est, such that occluding one of these markers does not shift the centroid too
far away from the point of interest. Additionally, for good angular accuracy it
is important to maintain the maximum fiducial distribution radius even under
occlusions as good as possible, especially along the main pointing direction.

6.3 Inside-out vs. Outside-in Tracking

It is a frequent practice to classify tracking systems into inside-out and outside-
in systems. These terms were coined by Wang [204, 203] and then adopted by
many others [148, 21, 28, 102].

Figure 6.7 explains the concept with an easy example. The outside-in con-
figuration is common in many commercial tracking systems: The camera is
mounted fixed in the environment and senses the object. The rotation of the
object, the cube in this case, produces a small motion of the image on the
CCD camera. In contrast to that, in the inside-out configuration, the rotation
of the camera, which is movable in this case, produces a large motion of the
image of the cube on the CCD camera [148]. Sometimes, the term inside-in is
additionally used to denote tracking systems where both the sensor and the
sensed properties are part of the object. One example are data gloves that
track the internal state of the hand without providing information about its
pose relative to other objects.

Due to this observation, it has been frequently stated [102, 21, 148] that an
inside-out system can compute angular orientation of the target with higher
accuracy than an outside-in system that uses comparable technology.

It is easy to see that the difference between both configurations is only the
inversion of the pose estimate. An optical tracking system always senses the



94 6 Designing Targets for Optical Tracking

C O

C

O

C O

C

O

Fig. 6.7. Outside-in (left) and inside-out (right) configuration of the same tracking
system. The difference is in the direction of the pose estimate.

position of the fiducials relative to the camera coordinate system and computes
the pose from that. We have shown in section 4.2.3 that the inversion of an
edge in the spatial relationship graph is nothing than a coordinate system
change with subsequent error propagation to the new endpoint. Equation
4.15 shows that the magnitude of angular precision does not change under
inversion.

And in fact what we have observed in the inside-out tracking system is not
the rotation of the camera but rather the change in position of the tracked
object. The relative orientation between the two objects depends on the ori-
entation of the object relative to the camera, just as in the outside-in case.

The inside-out configuration does not yield higher resolution and accuracy
in orientation than the outside-in. The angular accuracy depends only on the
relative baseline of the cameras and the fiducials in the marker.

From an applications point of view, there can still be a large difference.
The main error in common augmented reality setups comes from the propa-
gation of initially small angular error through the whole spatial relationship
graph. By making this propagation chain as short as possible, for example
by mounting the tracking system in an inside-out configuration close to the
actual application, even a cheap inside-out system can outperform an expen-
sive stereo system [122]. The main drawback of outside-in systems as opposed
to inside-out systems is the longer chain of error propagations, not larger er-
rors by itself. All that matters for the error is the size and orientation of the
baseline.

The main difference between inside-out and outside-in configurations actu-
ally is the fact that a movable inside-out system can not be as large or heavy as
a fixed installation. Outside-in tracking systems typically use more than one
camera while inside-out systems are monocular, but there are also lightweight
inside-out tracking systems using several cameras [206], a panoramic cam-
era [219, 220] or laser rays in different directions [199].

Nevertheless it is still a good idea to combine outside-in and inside-out
approaches. What actually matters for good augmentation is positional accu-
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racy after the propagation, and using a clever combination of complementary
positional measurements [84], the resulting accuracy can be improved.

6.4 Influence of Anisotropic FLE on the Final TRE

Fitzpatrick et.al. [60] already mention that ‘it is not always a good assumption
that FLE is isotropically distributed’. They have shown [214] that the theory
is still valid for multimodal registration of computer generated medical images
where the point of interest is not too far away from the centroid, or even inside
the bounding box of the fiducial distribution. However, for the case of optical
tracking of cameras or tools, the point of interest lies usually farther out. We
will see that in this case the anisotropy of the fiducial location error does in
fact matter.

6.4.1 Input Covariances (FLE)

To this end we compare both error prediction methods for the same fiducial
configuration and input error. We use a realistic covariance matrix Σ from
one of our lab setups as shown in figure 6.8.

Σ =

 1.987 · 10−9 7.129 · 10−10 9.453 · 10−11

7.129 · 10−10 1.733 · 10−9 −2.103 · 10−10

9.453 · 10−11 −2.103 · 10−10 1.214 · 10−8


This is an example covariance from a four camera setup. Note that in the

quite common two camera setups, the anisotropy of the error is even more
significant (cf. figure 5.6 and 6.5).

Σ̂
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-0.5

0

0.5

-0.4-0.2 0 0.2 0.4

-0.5

0

0.5

Σ

Fig. 6.8. Visualization of the input covariances (75% confidence level in mm) for
the isotropic case (left) and the anisotropic case (right)
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To get the according isotropic error for this slightly anisotropic covariance,
we use a diagonal matrix with 1

3Tr(Σ) = 5.288 · 10−9 as the diagonal entries:

Σ̂ =

5.288 · 10−9 0 0
0 5.288 · 10−9 0
0 0 5.288 · 10−9


In terms of RMS error this corresponds to

√
Tr(Σ) = 0.1259 mm error.

The two covariance matrices are displayed in figure 6.8.
The fiducial configuration we are using for this experiment is from a point-

ing device used in a commercial medical intraoperative navigation system. The
pointer and the fiducial distribution can be seen in figure 6.9. It consists in
four retroreflective fiducials and a point of interest at the tip of the tool which
is about 15 cm away from the centroid of the fiducial distribution with a max-
imum radius of about 7 cm. This factor is quite common for a lot of tools and
therefore serves as a good example.

Fig. 6.9. Exemplary commercial pointing device (Northern Digital, Inc.)

6.4.2 Propagation of the Isotropic Error

If we now apply both the TRE estimation [60] and the covariance propagation
(CP) [19] to this tool, we get the following results: The RMS target registration
error for the isotropic case is 0.172 mm with both methods. For the TRE
estimation we get

TRE(Σ̂) =

9.905 · 10−9 0 0
0 9.905 · 10−9 0
0 0 9.905 · 10−9


However, the shape of the resulting covariance from the proposed covari-

ance propagation method is in fact a flattened disk (cf. figure 6.10) with a
smaller error along the axis of propagation (from the centroid to the point of
interest) and larger error orthogonal to that axis.

CP (Σ̂) =

 1.836 · 10−9 −1.959 · 10−9 1.413 · 10−9

−1.959 · 10−9 1.368 · 10−8 1.246 · 10−9

1.413 · 10−9 1.246 · 10−9 1.420 · 10−8
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TRE(Σ̂)
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CP (Σ̂)

Fig. 6.10. Propagation of the isotropic fiducial location error using the TRE method
(left) and covariance propagation (right)

The square roots of the eigenvalues of this matrix are 0.123, 0.115, 0.036 mm
as compared to three times 0.099 mm for the TRE estimation. Therefore the
standard deviation of the error is already about 20% larger in two of the three
dimension while all have the same RMS error of 0.172 mm (as expected).

6.4.3 Propagation of the Anisotropic Error

If we additionally consider the slightly anisotropic fiducial location error as
input, the result is in fact different for different orientations of the tool due
to the anisotropic propagation. Propagating the error from the already larger
direction results in bigger errors than propagating the smaller part. In figure
6.11 this is done for an exemplary direction where this is visible. Now even
the resulting RMS error differs from the RMS error estimated with the TRE
method, 0.203 mm in this case.

The according covariance matrix looks as shown here:

TRE(Σ̂)

-0.4 -0.2 0 0.2 0.4

-0.5

0

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

0

0.5

CP (Σ)

Fig. 6.11. Propagation of the isotropic fiducial location error using the TRE method
(left) and propagation of the anisotropic covariance (right)
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CP (Σ) =

 1.0722 · 10−9 −0.732 · 10−9 3.347 · 10−9

−0.732 · 10−9 7.513 · 10−9 2.346 · 10−9

3.347 · 10−9 2.346 · 10−9 32.61 · 10−9


with square root of eigenvalues of 0.182, 0.086, 0.024 mm while for the TRE
estimation we have still three times 0.099 mm.

6.4.4 Target Orientation

As already mentioned, the orientation of the propagation axis from the cen-
troid of the fiducial distribution to the point of interest matters. When this
axis is vertical to the bigger parts of the anisotropic FLE covariance, then this
error gets propagated. In this case the resulting error is in fact larger than
estimated using the TRE estimation. On the other hand when propagating
the smaller error parts, the resulting estimate might be even smaller than the
one from TRE, as can be seen in figure 6.12. The target is rotated by 90 degree
from the worst orientation (in that case horizontal) to the best (in that case
vertical).
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Fig. 6.12. Error propagation for different orientations: Propagating large errors
(left) to small errors (right) when rotating by 90 degrees. For comparison, the ac-
cording TRE estimation is shown additionaly.

One has to note though that for small camera baselines, the best orien-
tation unfortunately coincides with the orientation that provides the worst
visibility and most interfiducial occlusions. These occlusions are not consid-
ered in this model but still need some attention [48]. We can conclude therefore
that it is in fact necessary to consider both the anisotropic error propagation
as well as the anisotropic fiducial location errors since they result in larger er-
rors then estimated using the TRE method alone. This gets more significant
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when the point of interest lies outside of the fiducial distribution which is usu-
ally the case for optical tracking of tools and less significant for multimodal
registration of medical images where the point of interest usually is inside or
close to the fiducial configuration.

6.5 Conclusion

To sum up the statements from the previous sections, we can define the fol-
lowing rules for the design of an optical tracking system setup:

• Try to minimize the error propagation distance by carefully positioning
the cameras

• Avoid propagation of already large errors. Pay attention to large rotational
errors, they have a huge influence on the final error.

• Use as many fiducials as you can afford without disturbing the usability
and without creating too many merging markers.

• Make the diameter of the fiducial distribution as large as possible.
• Bring the centroid of the fiducial distribution as close to the point of

interest as possible.
• Try to consider effects of occlusions of cameras and fiducials.
• Try to use the smaller error dimension of anisotropic errors.

After considering all these rules, the accuracy can be estimated and com-
pared to the desired accuracy.
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Calibration: Inferred Measurements

Many transformations in a tracking network can not be directly measured.
They rather get inferred from other measurements [141]. In this section we
give an overview over some of the frequently observed calibration problems
and on algorithms used to solve them. In particular, we look at the calibration
of pointing devices, the hand-eye calibration problem and the calibration of
optical see-through head mounted displays.

7.1 Pointing Device Calibration

Pointing devices are used in many augmented reality applications. They are
used for point-based object registration, and for measurements where the point
of interest can not be measured directy, but can be touched with a pointer.

There exist a variety of commercial pointing devices for different purposes
(cf. 7.1) by different manufacturers. One thing all these devices have in com-
mon is the fact that the pose of the pointing device is needed at a certain point
of interest where it is not directly measured. The tip offset, the position of the
point of interest in local marker coordinates needs to be calibrated unless it
is known from manufacturing.

˜
(a) (b) (c)

Fig. 7.1. Different designs of pointing devices for coordinate measurements and
point-based registration: (a) Northern Digital, Inc., (b) BrainLab AG, (c) Advanced
Realtime Tracking GmbH
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7.1.1 Collecting Calibration Data

Pointer calibration is the process of computing the offset ph of the tip of a
pointing device (‘caliper’) in the coordinate system of the used marker target.
To this end the user has to move the pointing device in a way such that the
tip is always at the same place in the coordinate system of the tracking device.
The pointer rotates around the tip and the positions pi of the attached marker
target, and if possible also the rotations Ri of the target are recorded.

This process is sometimes also called Hot-Spot calibration [221], stylus
calibration [66] or pivoting [130].

(a) (b) (c)

Fig. 7.2. Pivoting instructions from (a) Fuhrmann et.al. [66] and NDI [130]. The
pointing device is rotated around the hot-spot and the data of the tracking system
is recorded. Collected data points (c) from the pivoting process

The computation of the offset now depends on the fact if orientation data
for the recorded positions is available, or not.

7.1.2 Using Orientation and Position

If we have for every measurement not only the position pi but also the orien-
tation Ri (as rotation matrix) we can set up a system of equations(

pw

1

)
=

(
Ri pi

0 1

) (
ph

1

)
, (7.1)

Where pw is the tip of the pointing device in world coordinates and ph the
tip in marker coordinates.

It is obvious that ph and pw are constant but unknown. We construct the
following linear system of equations [188]:

A
(

ph

pw

)
=


R1 −I
R2 −I
...

...
Rn −I


(

ph

pw

)
=


−p1

−p1

...
−pn

 (7.2)

This system is highly overdetermined since we have only six unknowns but
potentially hundreds of measurements. To find the least-square solution of the
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Fig. 7.3. Calibrating a pointing device. Setup and spatial relationship graph.

system, we build the singular value decomposition (SVD) of A, which gives
us

A = UΣVT (7.3)

where Σ is a diagonal matrix with 1
wi

in the diagonal elements. Finally we
get the following formula for the solution of the linear system of equations:

(
ph

pw

)
=

n∑
i=1

(
U(i) · b

wi

)
V(i) with b =


−p1

−p2

...
−pn


and U(i),V(i) the ith column of U and V, respectively [138].

Additionally it is possible to use the numerical condition of the matrix A
as a measure of the quality of the solution by building the ratio between the
largest and the smallest singular value in Σ. Another way of estimating the
quality of the solution is to compute the reprojection with [Ri|pi] ph ≈ pw and
get the covariance of the resulting point cloud. Figure 7.4 shows the reprojec-
tion covariance at a 75% confidence level together with the reprojected points
(blue) and the measured points (red). In this case the standard deviation was
between one and two millimeters.

This error needs to be additionally propagated when estimating the accu-
racy on the point of interest according to section 5.3.5.

7.1.3 Using only Position

If we have a tracking system that gives us only 3D measurements, we can
not use the described algorithm to get the position of the point of interest.
However, we can still use this tracking system to measure locations in 3D.
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Fig. 7.4. Reprojection of the pointing device tip into world coordinates shows a
standard deviation of one to two millimeters in this calibration run.

Four points are sufficient to uniquely define a sphere. Given at least four
points pi that lie on the surface of a sphere, it is possible to calculate the
center and the radius of the sphere [137].

pw
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pi
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r

Fig. 7.5. Measurement of a single point. Setup and spatial relationship graph.

We can use this to compute the pivoting point in tracker coordinates. In the
presence of measurement errors it is better to use more than just four points
and least squares methods to fit the center of a circle to the data [137, 111].
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However, this pivoting process needs to be repeated for every point we
want to measure in that case, since we do not get the full pose of the tip in
tool coordinates here.

7.2 Hand-Eye Calibration

Hand-eye calibration is the process of determining the relative transformation
between the extrinsic coordinate system of a camera (‘eye’) and the coordinate
system of an attached external tracking system (‘hand’). The external tracking
system can be a robot with the camera mounted rigidly onto the gripper. This
is where the problem was originally described. More common is the case that
a marker target of the external tracking system is attached to the camera.
This is for example the case in all video augmented reality systems where the
camera image in which the augmentation is performed can not be used for the
tracking.

H

E

T

Fig. 7.6. The hand-eye calibration problem: Estimating the offset between the
camera coordinate system and the target coordinate system of an attached external
tracking marker

One has to note that the problem of computing the hand-eye transfor-
mation does under certain circumstances not require algorithms commonly
referred to in the literature as hand-eye calibration algorithms. Depending
on the kind of markers and tracking systems, several solutions are possible,
from a trivial direct solution (7.2.1) to a class of algorithms that solve the
most general hand-eye calibration problem (7.2.3). These algorithms can be
additionally used to solve other kinds of problems, including the alignment of
two independent coordinate systems.

The hand-eye calibration problem is stated as follows: A camera E is
equipped with a marker H of an external tracking system T (see figure 7.6).
While the transformation TTH = [RTH|tTH] is given by the tracking system,
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we are searching for the transformation THE to compute for example poses of
virtual objects in camera coordinates.

7.2.1 Direct Solution

If both tracking systems are able to find the same marker in 6D, there is a
trivial solution to the problem [22]. We can compute directly

THE = (TTH)−1TTM(TME)−1

by matrix inversion and concatenation as seen in figure 7.7.

T

H

E

M

TH

M

 6D

6D

E

6D

6D

Fig. 7.7. Direct solution: The same marker can be seen in both tracking systems.
The desired transformation can be computed directly by matrix inversion and con-
catenation

The error propagation in this case can be derived easily by applying the
propagation rules for inversion (equation 4.15) and concatenation (equation
4.13).

7.2.2 Semi-Direct Solution

In many cases, the camera E is not able to detect the same kind of markers
as the tracking system T. However, the relative position between the marker
of the tracking system and a set of 3D points the camera can detect is either
known by design (e.g. flat retroreflective markers for the external system,
glued to well-defined locations on a printed calibration grid marker for the
camera), or can be estimated (see fig. 7.8) using a calibrated pointing device
(cf. section 7.1).

In that case we might first solve the 3D-3D pose estimation problem to
get TPE and then compute the required transformation THE as a combination
T−1

TH TTPTPE. Other solutions are possible as well [141].
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Fig. 7.8. Semi-direct solution: The coordinate systems are preregistered using a
3D-3D registration process with a calibrated pointer.

7.2.3 Indirect Solution

The most general solution to the problem is usually known in the literature as
hand-eye calibration algorithms. Initial solutions to the problem in the robotics
community used to employ multiparameter nonlinear optimization over the
whole robot kinematics including the camera setup. This was not sufficient
due to performance reasons and the need for a good initial guess [185]. The
current state of the art is to solve the problem independent from the robot
kinematic model.

From an abstract point of view we have two tracking systems T and E
providing at any point in time the transformations Ai = TTH and Bi = TEP,
and we are looking for the relative transformations X and Y between their
respective coordinate systems (cf. figure 7.9).
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Fig. 7.9. Indirect computation of the hand-eye offset between a camera and an
attached marker from an external tracking system. Setup and spatial relationship
graph.
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At every point in time, the two tracking systems provide measurements Ai

and Bi for both transformations. To compute THE we use relative measure-
ments between two poses by computing Aij = (Ai)−1Aj and Bij = (Bi)−1Bj.
Therefore we get for any arbitrary pair of measurements an equation with six
degrees of freedom.

AijTHE = THEBij (7.4)

⇐⇒
[

RAij tAij

0 1

] [
RHE tHE

0 1

]
=

[
RHE tHE

0 1

] [
RBij tBij

0 1

]
(7.5)

We need at least two such equations [185, 34] to solve the system of equa-
tions, which is obviously not linear with respect to THE.

HH

E

E

THE

Ai j

Bi j

THE

Fig. 7.10. The System of equations AijTHE = THEBij can be solved first for rotation,
then for translation. At least two relative motions around different rotations axes
are required

A Survey on Solving the Equation AX = XB

In 1987, Roger Tsai and Reimar Lenz [186, 185] proposed a solution to the
general hand-eye calibration problem by first decomposing equation 7.5 into
a rotational part of

RAij RHE = RHERBij

and a translational part

(RAij
− I)tHE = RHEtBij

− tAij

After first solving the rotational part for RHE, they use this solution to find
the translation tHE.
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To reach their goal, they represent the rotations by their main rotation axis
PAij

and PBij
(which is in fact the vectorial part of the according quaternion)

and find the linear least squares solution

P ′
HE = Skew(PAij + PBij )

+ (PCij − PAij )

and after scaling

PHE =
2P ′

HE√
1 + |P ′

HE|2

which can be reconverted into a rotation matrix to get RHE. Now this can be
used to solve the translational part

tHE = (RAij
− I)+ (RHEtBij

− tAij
)

again using a linear least-square technique.
In an independent work around the same time [163], Shiu and Ahmad

present a closed-form solution to the problem, using two independent rota-
tion pairs. Their approach was refined by Zhuang and Roth [231] by using
again quaternion representation. Chen [34, 35] notes that under certain cir-
cumstances this closed-form solution does not provide unique solutions.

More recently, Daniilidis et.al. [44, 45] have presented a closed form solu-
tion based on dual quaternions (cf. section 4.1.5). Hirzinger et.al. [174] give a
more detailed overview over the proposed methods together with a comparison
of different algorithms based on simulation data.

Selection of Movement Pairs

It has been noted in the original work of Tsai and Lenz that not any pairs
of the hand-eye poses give good numerical performance. In particular, when
recording continuous data from two tracking systems instead of moving a
robot arm to well-defined poses, the resulting small movements will not result
in good movement pairs when used consecutively. The relative rotation axes
of two movement pairs should be ideally vertical, while the relative rotation
should be about 90◦ [186]. Additionally, the distance from the camera to the
optical marker should be as small as possible – an obvious result of the error
propagation in the pose inversion as seen in figure 5.19. The same applies
to the relative translation tHE in the hand-eye matrix, though this is usually
given by the application.

Schmidt et.al. [156] present an efficient algorithms to select movement
pairs automatically from a series of measurements. Shi et.al. present a similar
algorithm [161] based again on the principal rules stated by Tsai and Lenz.

7.2.4 Iterative Solution

The hand-eye calibration problem can also be seen as a recursive matrix equa-
tion X = A−1XB. Hirsh et.al. [81] have presented a solution based on this
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recursive definition. While the system does not converge for a single equation,
they use a system of equations with one equation for each measurement, and
average the value of X in every step using quaternion interpolation (cf. section
4.1.4). Using this method, the iterative estimation converges.

Another iterative solution was presented by Zhuang et.al. [230, 232, 233].
They provide a Jacobian relating the measurement residual errors to pose
errors of the unknown matrix X. Based on this relationship, the system can be
solved using nonlinear optimization. Additionally, this measurement Jacobian
directly provides the possibility to apply linear error propagation here.

7.2.5 Error Propagation for the Hand-Eye Calibration

The error propagation during hand-eye calibration naturally depends on the
algorithm that is used. If a direct computation (cf. section 7.2.1) is used, the
error propagation from section 4.2.2 can be used. Aron et.al. [4] have given
an error estimation for the rotation-only hand-eye calibration, which is the
first step of the algorithms described in [185]. For simplification, they assume
the vision tracking to be error-free. When using the translation as well, this
is not a good assumption since the translational error in this case is rather
large (cf. figure 5.19).

In this case we apply again the backward error propagation (section 3.4.2)
by computing the Jacobian function Jf that maps the 6D pose error of the
hand-eye transformation to the respective errors of the tracking systems, lin-
earized at zero error [230, 211].

7.3 Tracker Alignment

Tracker alignment is the problem of aligning the base coordinate systems of
two or more different tracking systems with each other [14]. This problem
is quite similar to the problem of hand-eye calibration. When we want to
use sensor fusion (cf. section 3.4.3) of two different tracking system, we need
the tracking data given in the same coordinate system. Figure 7.11 shows an
example of the fusion of an electromagnetic tracking system with the sensor
mounted at the tip of a pointer, and an optical tracking system with the
fiducials at the end of the same pointer. To apply the sensor fusion, the relative
pose between the optical target and the magnetic sensor needs to be known.

Sometimes it is possible to use the same fiducials for both tracking sys-
tems [169]. The alignment of the two tracking systems is then equivalent to
the direct computation of the hand-eye calibration (cf. section 7.2.1).
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Fig. 7.11. Tracker alignment of two tracking systems tracking the same rigid object.

7.4 Optical See-through Head-mounted Display
Calibration

For visual augmented reality, there are several different options for the display
technology. We can classify the displays according to the location of the display
relative to the user [25] in head-attached displays, hand-held displays and spa-
tial displays. Head-attached displays either use optical see-through or video-
feed-through [103, 147] technology. In addition, retinal displays [181, 195, 68]
and head-mounted projectors have been proposed. Azuma et.al. [8] defined
the tracking requirements for head-mounted reality.

The acceptance of an augmented reality system heavily depends on the
correct alignment of virtual and real objects. To reach this goal we do not
only need accurate tracking but also a correct determination of the parameters
of the display system. The calibration of optical see-through displays always
needs special attention, since in this case the augmented reality system has no
access to an image of the reality. For calibration of such displays user input is
therefore necessary, which introduces additional sources of error.

Since the emergence of optical see-through displays, several methods have
been proposed for the determination of the projection parameters and the
transformation from the display to the user’s eye. At the moment, two meth-
ods are considered state of the art: The Single Point Active Alignment Method
(SPAAM) and the Display Relative Calibration (DRC) which are both ex-
plained in more detail in the next section.

Tang et.al. [179] have already analyzed the performance of different vari-
ants of the SPAAM method. In this section we compare both methods with
respect to their performance using over 1500 corresponding points from over
20 users and three different displays. Using different displays we can also draw
conclusions independent from a single specific setup. The displays used for this
study were the following three displays also shown in figure 7.12:
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Sony Glasstron PLM-S700E This display with a resolution of 800 by
600 pixel is widely used and was also available in a stereo variant. However
we used the mono display since we only analyzed monocular calibration.
The second eye was covered by tape to avoid distraction.

Virtual i.O. i-glasses! This display uses a 640 by 480 resolution in which
measuremets in this paper are made while only 320 by 240 pixel are ac-
tually displayed. Although this is a stereo display, we used again only a
single eye for the calibration study.

Microvision Nomad This display is actually a 800 by 600 monochrome
virtual retinal display which draws images by scanning low power laser
light directly onto the retina.

Glasstron i-glasses Nomad

Fig. 7.12. Optical see-through HMDs

Similar products from competitors exist that have higher resolution and
full color but were unfortunately not available for our studies.

7.4.1 Current Calibration Methods

Early work in the field of optical see-through head-mounted display calibration
usually included the task of aligning some virtual object displayed in the HMD
with its real counterpart. The alignment is achieved by holding the head still
and manipulating the virtual object for example with the keyboard [90] or
mouse [99]. The main problem with these approaches is the fact that it is
not easy for novice users to align three-dimensional objects with its virtual
counterparts and additionally holding the head still during such an alignment
procedure.

SPAAM and EasySPAAM

The Single Point Active Alignment Method (SPAAM) [187] and its improve-
ment, EasySPAAM [71] aim at making this calibration procedure more usable.
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Eye Coordinate System

HMD Marker
Coordinate System

World/Tracker
Coordinate System

TMarkerToEye

TWorldToEye

TWorldToMarker

Fig. 7.13. Relevant coordinate systems and transformations for SPAAM calibration

This method estimates the projection matrix P of the HMD directly from a
set of 3D-2D corrrespondences which are collected one after the other by a
simple interaction procedure: A virtual crosshair is shown to the user wearing
the HMD. The user then has to align this crosshair with a known point on a
tracked object. As an easy model for the head-mounted display projection we
can again use the pinhole camera model:

ρXimage = PXmarker

where

Xmarker = TWorldToMarker Xworld

Figure 7.4.1 shows the relevant coordinate systems and tranformations
needed for this procedure.

If a sufficiant number of correspondences is collected, the least square
solution for the transformation P can be computed directly using singular
value decomposition [187]. This method can be extended to stereo displays as
well [70, 189].

The EasySPAAM [71] method is an extension of the general method where
the whole process is split into two phases. In the first phase, which is done
once, the transformation from the tracking marker to the display coordinate
system as well as the intrinsic parameters are determined as above. In the
second phase, these transformations are only linearily shifted and scaled to
match the users eye position using few point correspondences. The user can
choose the initial calibration from several precomputed calibrations. Although
this seems to be rather imprecise, the accuracy of the results approved this
procedure.
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Display Relative Calibration (DRC)

More recently, Owen et al. [133] proposed the display-relative calibration
(DRC) method. This method is again a two stage method and aims at re-
ducing the amount of user interaction by an offline calibration step done un-
der laboratory conditions. In this stage the intrinsic camera parameters are
estimated relative to the display coordinate system and the transformation
between the display relative and the eye coordinate system is then adjusted
in the second phase online (figure 7.4.1).

Eye
Coordinate

System

HMD Marker
Coordinate System

World/Tracker
Coordinate System

TMarkerToDRC

TWorldToCamera

TWorldToMarker

TCameraToDRC

Camera
Coordinate System

Display Relative
Coordinate System

TDRCToEye

Fig. 7.14. Relevant coordinate systems and transformations for DRC calibration

The first phase does not require any user interaction; here the human eye
is replaced by a digital camera. First the camera is calibrated using several
planar fiducials on two calibration boards. After that, the display plane of the
HMD is calibrated using this calibrated camera and fiducial markers displayed
on the HMD screen. These fiducials are captured by the calibrated camera,
which is moved horizontally and parallel to the image plane to different loca-
tions at about 3 millimeter distance, as seen in figure 7.15.

The corresponding points found in this stage are used to define the virtual
display plane of the display. In the standard pinhole model this is assumed
to be a flat plane, but for DRC a parabolic display plane is used to cover
additional distortion errors. The resulting display planes for our displays are
shown in figure 7.16.

During the online phase, only the exact center of projection has to be es-
timated. This is dependent from the position of the eye relative to the display
coordinate system and therefore requires user interaction. Several methods
were proposed to achieve this alignment, for example measuring the inter-
pupilatory distance or a manual adjustment by the user; for our experiments,
we used the collection of point correspondences similar to the second phase of
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Fig. 7.15. Setup for the DRC Off-Line Phase: Calibration of the intrinsic camera
parameters (left) and calibration of the display plane by taking several pictures with
the HMD at a fixed position and the camera moved horizontally (right).

EasySPAAM. Using these correspondences, the eye position can be adjusted
in three dimensions.

7.4.2 Comparative Evaluation

According to [13], the main sources for static registration errors are distor-
tion in the HMD optics, mechanical misalignments in the HMD, errors in the
tracking system and incorrect intrinsic and extrinsic parameters. The aim of
HMD calibration is to estimate the intrinsic and extrinsic parameters; there-
fore it is necessary to use the same HMD and tracking system (and if possible
also the same measurements) to compare only the influence of the calibration
algorithm on the final result while all other parameters stay fixed.

Approaches for the Evaluation of Optical See-Through Calibration

Evaluating the accuracy of the calibration has because of the missing ground
truth the same problems as the calibration itself. Since there is no digital image
of the result available, again user interaction is needed for the evaluation. We
present different approaches [79] for the evaluation in the following sections.

User Feedback

The simplest way of evaluating the accuracy is getting feedback from the user
itself. However, problems here are not only the lack of quantitative values for
the accuracy but primarily the subjectivity of the answers which are neither
reproducable nor comparable.

However, some conclusions can be drawn even from user feedback, there-
fore we gathered qualitative user feedback for the calibrations in addition to
our evaluation.
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Video Camera

To circumvent the problem of not being able to access the augmented image,
a video camera can be used which is placed at the estimated eye position [187,
70]. It is utilized during both the calibration and the evaluation process. Thus,
a digital augmented image is obtained which can be analyzed for registration
errors, measured in pixels. This method depends on a rather complicated setup
which requires the camera being attached rigidly to the head-mounted display.
Furthermore, it is questionable if the results really reflect the situation of a
human using the augmented reality system since a video camera is only an
approximation of the eye.

Evaluation Board

To get at least some quantitative number, a tracked evaluation board can
be used where the user is asked to point the location where he percieves the
virtual object [117, 126]. This can be done either by a tracked pointing device
or by displaying a virtual mouse pointer in the head-mounted display. Note
that this method could easily be integrated into the user’s daily work, e.g.
by using the buttons in his application software as target points. Thus, the
AR system could be capable of providing feedback concerning the calibration
accuracy, of warning the user if the accuracy drops below a certain threshold
or even of utilizing the user inputs for calibration purposes.

Using Point Correspondences

The simplest but most effective way of getting user feedback is to collect
again single point correspondences as desribed for SPAAM or the online phase
of DRC. To determine pixel error, the 3D point in marker coordinates is
projected onto its corresponding 2D location and the distance to the actual
2D crosshair location is computed. For metric errors in the real world, the
inverse of the projection matrix is used to map 2D points into 3D. This gives
a line in space which can be used to get the angular error in space or a metric
error in terms of “millimeters per meter” at a certain distance.

A major advantage of this evaluation method is its simple user interaction.
Moreover, the procedure of collecting point correspondences is exactly the
same which the user encountered during the calibration phase with SPAAM,
EasySPAAM or DRC and thus, he is accustomed to it. Even more important
for comparing different calibration methods, however, is that it is possible to
let the user collect many correspondences and to decide afterwards how to use
them. For example, subsets with varying numbers of correspondences can be
utilized for calibrating the HMD. This makes it possible not only to compare
different calibration methods, but to draw conclusions concerning the required
number of correspondences to reach the desired accuracy.



7.4 Optical See-through Head-mounted Display Calibration 117

Evaluation Results

To be able to compare the calibration methods SPAAM, EasySPAAM and
DRC we first did a DRC off-line calibration followed by a user study to collect
the necessary point correspondences and after that an off-line analysis of the
collected data [79].

Hardware Setup

To track the HMDs and the calibration objects we used an infrared optical
tracking system with retroreflective marker targets, produced by Advanced
Realtime Tracking GmbH, more specifically a three-camera setup looking at
the calibration area from three different sides to get almost isomorphic error
for the detection of the markers in space.

In the HMD we displayed a crosshair with concentric circles that had to
be aligned with a well-defined point on an also tracked calibration object
held by the user. Once alignment has been achieved, the user had to press a
button with his other hand. The points were displayed on a regular grid in
the HMD, but with random order. The collected point correspondences then
were used for the various calibration methods as well as for the evaluation of
the accuracy as described in 7.4.2.

DRC Off-line Phase

For the DRC offline calibration we used a Canon EOS 300D Digital camera
(due to size reasons the i-glasses were calibrated using a smaller Canon Dig-
ital Ixus II camera). Although it showed to be not too easy to gather the
required number of pictures with all markers visible, finally the intrinsic and
extrinsic parameters of the camera/display system could be determined: the
focal length f in pixels, the projection center (cx, cy) and pixel aspect ratio s
are displayed in table 7.4.2 [79]. From the corresponding points we addition-
ally were able to determine the virtual display plane depth z0 in meters, the
spherical aberration parameter κ2, the HMD apex (ax, ay) and the residual r
from the optimization process.

f [px] (cx, cy) [px] s z0 [m] κ2 ax [m] ay [m] r [m]

Glasstron 1745 (466, 409) 0.9803 -1.35 11.25 0.0078 -0.0238 0.015

i-glasses 1404 (371, 238) 1.0325 -2.16 9.64 0.0484 -0.0721 0.172

Table 7.1. Intrinsic parameters as a result of the DRC off-line phase

The computed virtual display planes of the Glasstron (a) and the i-glasses
(b) are shown in figure 7.16. For the Nomad display, we were unfortunately not
able to generate the required number of at least five pictures to perform the
analysis. This was mainly due to the rather small viewing angle of the Nomad
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(a) Glasstron (b) i-glasses

Fig. 7.16. Display planes as computed in the off-line phase of DRC

display, which did only allow images at a maximum horizontal distance of
about 8 millimeters. For this reason, we had to exclude the Nomad display
from our further analysis.

User Study

For further analysis, a user study with 14 participants was conducted [79].
Each user had to collect 25 point correspondences with a distance to the
calibration object of 40 to 60cm. The points displayed in the HMD were
distributed on a regular 5 × 5 grid, but were shown in a random order. To
obtain the depth information required for the SPAAM calibration, the user
was asked to capture another 25 correspondences at a distance of 90 to 110cm.
The process was then repeated for the other displays.

After completing the point correspondences we asked for qualitative user
feedback: We displayed a virtual overlay over the calibration object using
different projection matrices calculated with the various calibration methods
and let the user rate the quality on a scale of 1 to 6.

As mentioned above, calibration of optical see-through displays is highly
user-specific due to different ways of wearing the HMD as well as varying
anatomical properties such as the interpupillary distance. These differences
are supposed to be reflected by the intrinsic and extrinsic parameters deter-
mined by the calibration procedure. In order to examine this, all 50 point
correspondences of each user were utilized to compute the respective pro-
jection matrix. Since the correspondences are guaranteed to contain varying
depth information, the resulting matrices should contain the actual param-
eters. Each matrix was then decomposed yielding the intrinsic and extrinsic
parameters. Thus, the user-specific parameters f (focal length), (cx, cy) (pro-
jection center), sx (pixel aspect ratio), s (skew) and (tx, ty, tz) (eye position)
shown in table 7.2 were obtained.
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Glasstron i-glasses

min mean max σ min mean max σ

f [px] 1679 1714 1756 20.7 1353 1390 1432 18.4

cx [px] 298 405 504 66.3 294 368 485 45.9

cy [px] 244 368 605 82.4 159 247 394 65.6

sx 0.955 0.976 0.996 0.01 1.021 1.036 1.045 0.007

s -24.5 2.3 43.1 17.2 -16.6 -0.9 13.8 10.7

tx [m] -0.159 -0.149 -0.141 0.004 -0.049 -0.044 -0.040 0.003

ty [m] 0.090 0.095 0.101 0.004 0.099 0.107 0.116 0.004

tz [m] -0.079 -0.059 -0.042 0.012 -0.086 -0.074 -0.062 0.007

Table 7.2. SPAAM Calibration parameters of different users, using all point corre-
spondences

Comparison of SPAAM, EasySPAAM and DRC

To determine if a user-specific calibration is really necessary, a default SPAAM
calibration was conducted by a single user by carefully collecting 50 point
correspondences at varying depths.

As shown in [187], at least six point correspondences are required for a
SPAAM calibration. In practice, more correspondences need to be collected
in order to obtain more robust results. To evaluate how many actually are
required and sufficient, different SPAAM calibrations for each user were com-
puted out of randomly chosen subsets of the respective correspondences with
varying size. The chosen correspondences were guaranteed to contain different
depth information so that high-quality SPAAM calibrations were obtained.
Furthermore, this procedure was repeated 30 times for each user and each
subset size in order to compensate for noisy data and outliers. The results
are depicted in figure 7.17 which shows both the average pixel error and the
standard deviation with increasing number of correspondences.

Obviously, less than nine point correspondences are not sufficient to obtain
an acceptable accuracy and robustness. Although the pixel error continuously
decreases, no significant improvements can be expected with more than 20
correspondences. However, the decreasing variance shows that more corre-
spondences contribute to more robust calibrations. Thus, the number of point
correspondences has to be chosen according to the application’s requirements
in terms of accuracy and robustness as well as to the effort which is reasonable
for the users.

To eliminate the influence of erroneous default calibrations and thus to
obtain reliable facts concerning the accuracy and effectiveness of EasySPAAM
and DRC, the computations described before were repeated with different
default calibrations as starting point. For that, the default SPAAM and DRC
calibrations were used as a starting point for both an EasySPAAM and a DRC
recalibration. In summary, the following four calibrations were evaluated:
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(a) Glasstron (b) i-glasses

Fig. 7.17. Average pixel error and standard deviation of SPAAM calibrations

• EasySPAAM starting with SPAAM calibration
• EasySPAAM with DRC off-line phase parameters
• DRC with a default SPAAM calibration
• DRC with DRC off-line phase parameters

These computations are possible since the DRC parameters can be com-
bined to a projection matrix which can be used as a default calibration for
EasySPAAM and since a SPAAM matrix can be decomposed to the intrinsic
and extrinsic parameters which in turn can be applied during the DRC on-line
phase. For those parameters which are not included in a SPAAM matrix such
as the display plane depth and curvature, the respective default values of the

Fig. 7.18. Average pixel error and standard deviation of EasySPAAM and DRC
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DRC calibration are used. The same procedure as described before then yields
the results shown in figure 7.4.2.

(a) Glasstron (b) i-glasses

Fig. 7.19. Average pixel error of EasySPAAM and DRC for different default cali-
brations

Most striking in these diagrams are the contrasting results concerning the
Glasstron and the i-glasses. While the DRC method consistently yields higher
accuracy for the Glasstron, it is the opposite way round for the i-glasses.
While this seems to be contradictory at a first glance, it can be explained by
considering the results of a prior DRC off-line calibration of the Glasstron and
an informal user study with less participants conducted earlier [79]. There, the
same computations as described above yielded a consistently higher pixel error
for DRC. The explanation for this varying behavior of the display-relative
calibration is supposed to be found in the parameters determined in the off-line
phase. While the conventional intrinsic and extrinsic parameters of both DRC
calibrations more or less coincide, the values describing the virtual display
plane are different, especially the display plane depth z0 (-1.35 vs. -1.88).
Although both calibrations were conducted as carefully as possible, the results
show a significant variance which obviously influences the accuracy compared
to the more robust EasySPAAM method.

7.4.3 Conclusions from the Experiments

In this section we present the conclusions that we drew from our experi-
ments [79] to help other researchers make their choice in what kind of cali-
bration to choose for their application.

Necessity of User-Specific Calibration

The most important result of our work was the observation that it is in fact
necessary to calibrate optical see-through HMDs for a specific user at any
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usage. First of all due to different wearing positions the actual center of pro-
jection with respect to the tracking system varied in our experiments by up
to 3.7cm in the z direction.

Additionally, a qualitative feedback during the user study suggested that
the users were consistently more satisfied with their own calibration than with
some carefully conducted default calibration.

Glasstron i-glasses

mean σ mean σ

Default SPAAM 2.1 0.9 3.1 0.7

User-specific SPAAM 1.8 0.8 1.6 0.6

Default DRC 2.8 1.6 5.5 0.7

User-specific DRC 2.0 1.0 2.7 1.3

Table 7.3. Summary of the user feedback (marks 1–6) for different calibrations

However, in real world applications the static registration error might not
be the biggest source of errors and may be shadowed completely by dynamic
errors due to lag or by other kinds of calibration or registration errors. In
such cases it still can be feasible to use one default calibration instead of user
specific calibrations. The additional effort of user specific calibration would
not lead to visible improvements.

How to Collect the Point Correspondences

One of the key factors for a good calibration is to collect corresponding points
with different distances to the calibration point, in particular at the distances
in which objects are displayed later on during the application. This should
be enforced by the calibration software. Otherwise the calibration will only
provide acceptable results at the depth where the point correspondences were
collected.

Another limitation on the quality of calibration is the fact that head point-
ing might not be suited as input method [179] since it is not capable of pro-
viding the required level of precision due to physical limitations.

Theoretically the calibration under laboratory conditions with additional
online user adjustment can be regarded as a good idea. In practice however
we had the problem that the attached markers could be twisted easily by
accident, which produced a significantly increased error. Therefore, due to
the fact that the used tracking system is an integral part of the calibration
procedure, it is important to have an easy way of performing the calibration
if such influences can not be avoided.
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SPAAM is More Robust than DRC

As shown before, the EasySPAAM method seems to be more robust to errors
in the measurements than the DRC method. Furthermore the DRC calibra-
tion requires a more or less complex setup for the offline phase, while the
EasySPAAM method uses only point correspondences which are needed for
the second phase of DRC as well. Using one of the simpler methods to gather
the data for the second phase as proposed in [133] does not seem to be a good
idea [79].

Modifications of DRC

To justify the additional overhead of the DRC offline phase, we tried to ana-
lyze some modifications to the originally proposed method to gain additional
accuracy. We have analyzed [79] several modifications of the DRC algorithm
and their influences to the registration accuracy.

Different Image Plane Models

In particular we tried to fit different plane models to the data in the off-line
phase: The radially symmetric parabolic as proposed by Owen, a flat plane,
and a more general parabolic with different curvature in x and y direction, as
seen on figure 7.20.

(a) (b) (c)

Fig. 7.20. Visualization of different display plane models (Glasstron): Radially
symmetric parabolic (b), flat plane (a), and general parabolic (c)

We then evaluated the accuracy again with random subsets of the users
correspondences. Surprisingly, as seen on figure 7.21, the error for the most
simple model was smallest for few correspondences in the online phase and
converged to the same error with more correspondences. The error for the
general parabolic and for the radially symmetric one were quite similar due
to almost identical parameters.
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Fig. 7.21. Average pixel error of DRC with different display plane models

Nonlinear Mapping

Although the DRC calibration uses a nonlinear display plane, in the end for
the point correspondences and for the final augmentation a projection ma-
trix and therefore a linear mapping is used. We analyzed the influence of
this obvious mismatch and developed in theory a model for nonlinear projec-
tion to compensate for the distortion as perceived by the user, neglecting the
problem of an efficent implementation for this mapping at runtime. Anyways,
although this would be theoretically justified, the experiments did not result
in a significant increase in accuracy.

However, there might be room for improvements here. While the display-
relative calibration is unique in characterizing the virtual display plane, this
information is not taken into consideration consistently. Since the intrinsic
and extrinsic parameters are based on the pinhole camera model and are
determined with Tsai’s camera calibration algorithm in the off-line phase, a
flat display plane is assumed first. The computation of the display plane as a
parabolic then leads to a mismatch which requires several compromises in the
further calibration process. In order to exploit the advantages of estimating the
shape and location of the virtual display plane, the implied nonlinearity should
be considered throughout the whole calibration procedure. As a starting point,
a modified pinhole camera model which incorporates the curvature of the
display plane could be utilized. Finally, the effects of such modifications have
to be analyzed empirically to be able to justify these theoretical considerations.
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Applications

In this chapter we describe some applications of the theory presented in this
thesis. We start with an example from an industrial scenario where virtual
objects should be graphically overlaid in a video camera image of the real
objects. Then we analyze in a medical context the accuracy of a tracked la-
paroscopic camera, which is a common setup in medical augmented reality.
Finally we show a visualization tool that can be used to explore the errors in
optical tracking in an interactive way.

8.1 Camera Augmentation in an Industrial Application

Augmentations of video images are common in augmented reality systems. In
the following example, we analyze the tracking requirements for an industrial
augmented reality application [129]. In a car manufacturing company, virtual
CAD models of planned car parts should be augmented onto existing parts of
the car (see figure 8.1). This can be used in an early design phase to evalu-
ate prototypical designs. To perform the overlay, a camera with an attached
tracking target is tracked in a four-camera setup. The camera views the real
scene in a distance of one meter.

Fig. 8.1. Tracking setup with four cameras in an industrial environment (left, mid-
dle). Virtual overlay on a real car part (right).
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The specifications from the manufacturer require a maximum error of 1 mm
in space at the real car part. This corresponds to an angular error of about
tan(10−3) = 0.0572958◦. At a 75% confidence level (see table 3.1), this requires
a standard deviation of 0.0139462◦ for the angle.

To reach the specified accuracy in a setup where the camera is tracked
with an attached marker, in a typical setup with a fiducial location error of
about 0.1mm and a four-fiducial target in tetrahedral form, this would require
a diameter of about 60 cm for the fiducial distribution. Figure 8.2 shows the
expected accuracy for different diameters.
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Fig. 8.2. Expected accuracy (75% confidence level) at 1m distance in an outside-in
configuration (ellipsoid magnified by a factor of 50 for visualization)

The position of the real object which needs to be overlaid with the virtual
graphics also has to be known; if this is done using another tracking target or
by point-based registration (cf. section 7.1), the error during registration adds
to the final augmentation error. The same applies for the error in the hand-eye
calibration (cf. section 7.2) for the tracked camera. This increases the resulting
error even more. Both calibration errors however are fixed after calibration and
therefore are systematic errors. They can be reduced by diligent re-calibration
if necessary.
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Fig. 8.3. Expected accuracy (75% confidence level) at 1m distance in an inside-out
configuration with a video camera mounted rigidly to a stereo camera system.
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When we consider the results from section 6.3, an inside-out configuration
might be a better choice. For this configuration, we mount the video camera
rigidly as close as possible to the baseline of a stereo camera tracking system.
This system is used to track the real object using a tracking target mounted
onto the object close to the actual point of interest. Figure 8.3 shows that the
expected accuracy is not very good in the depth direction, but on the camera
projection we perceive only the smaller directions of the error. While this
setup is not a good choice for general measurement applications due to the
larger depth error, it is suitable for the camera augmentation example. The
error propagation from the tracked target to the point of interest is sufficiently
small when the target is close enough to the point of interest.

This example shows how a systematic analysis of both the requirements
and the potential solutions can lead to surprising results. Using the methods
presented in this thesis, we can in advance evaluate the expected tracking
accuracy of different tracking setups and choose the optimal solution.

8.2 Laparoscope Tracking Accuracy

In medical applications, accuracy considerations are of special importance
for safety reasons. One common medical application is the augmentation of
endoscopic images [213, 212, 196, 197, 156, 159, 160]. We have evaluated the
design of tracking targets for laparoscope augmentation [55]. A laparoscope
is a telescopic rod lens connected to a video camera to perform minimally
invasive surgeries. Figure 8.4 shows a schematic drawing and an image of an
actual laparoscope. While the camera is outside the patient body during an
operation, the optical center of the camera is at the tip of the rod and therefore
inside the patient.

Fig. 8.4. Schematic drawing of an endoscope with tracked fiducials (left). The point
of interest is about 30 centimeter away from the centroid of the fiducial distribution.
Image of a real endoscope with attached prototypical target (right)

The instrument is tracked to enable augmentation of preoperative planning
data onto the image plane of the laparoscope. This involves additionally a
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Fig. 8.5. Four-camera setup in the lab with covariance ellipsoids (left) at a height
of one meter inside the tracking volume of all four cameras. In the center we have
an expected RMS error of about 0.5 mm (right) with significant anisotropy.

registration of the planning data with the patient, the tracking of the patient,
camera calibration of the laparoscope and the hand-eye calibration of the
laparoscope camera with the tracked fiducials on the instrument. While all
these steps might involve errors as well, and all theses errors contribute to
the final application error, we focus only on the accuracy of the instrument
tracking itself.

The laparoscope is tracked by a four-camera tracking system as shown in
figure 8.5. The expected fiducial location error shows significant anisotropic
behavior; we will analyze the effect of this anisotropy later as well. The ex-
pected fiducial location error in the center of the tracking volume is also shown
in figure 8.5. The optical tracking fiducials need to stay visible and outside
the body, therefore they are mounted about 30 centimeters away from the
optical center of the camera, which is located approximately in the tip of the
instrument. The exact location needs to be determined using the hand-eye
calibration (section 7.2)
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Fig. 8.6. Statistically expected tracking error (RMS) in an instrument’s field of
view (left) with occlusion of single fiducials (right)
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We compute the statistically expected tracking error [218] in the instru-
ment’s field of view for a specific orientation of the instrument, in this case
oriented horizontally. The spatial distribution of tracking error is shown in
figure 8.6 for four different fiducial configurations.

On the right hand side of the figure, the effect of occluded fiducials can be
seen. While in the top row the accuracy decreases a lot when the frontmost
fiducial is occluded, in the bottom row the accuracy remains acceptable. In
particular in crowded operating rooms, an occlusion of single fiducials is rather
likely and has to be considered in advance when designing the setup.

Additionally it can be seen that the levels of constant RMS error actually
form ellipsoids around the centroid of the fiducial configuration, with the main
axes of the ellipsoid oriented proportional to the main axes of the fiducial
distribution.
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Fig. 8.7. The expected tracking error changes under rotation of the instrument
due to the anisotropy in the fiducial location error. Left column shows the expected
error for different fiducial distributions when the instrument is held horizontally,
right column shows the error when the instrument is oriented vertically.

Figure 8.7 shows the change in the expected error due to the anisotropy of
the fiducial location error. The fiducial location error is larger in the vertical
direction (see figure 8.5). The fiducial configurations in this case are flat con-
figurations (cf. section 6.1.6). This results in a higher rotational error when
the instrument is oriented horizontally, and due to the error propagation to
the tip of the instrument, the positional error at the tip is larger.

Figure 8.7 shows the error as a RMS value in the field of view of the camera.
This is useful to evaluate the error from the instrument tracking alone. For
an actual endoscope augmentation application [55] we would further need to
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propagate the error through the laparoscope camera projection to get a two-
dimensional error on the image plane of the camera, since this overlay error
should be minimized in the end.

8.3 Interactive Visualization of Tracking Errors

During the development of an augmented reality application it is often useful
to get an impression of the tracking errors in an intuitive way. We have devel-
oped and presented [18] an application for the interactive exploration of the
tracking errors in a running application.

The tool can be used as an add-on to any existing optical tracking appli-
cation and provides online visualization of the current error characteristics.
Figure 8.8 shows a screenshot of the running application.

M

F

T

P

E

H

Fig. 8.8. Augmented Reality visualization of the error propagation in a pointing
device. Fiducial location errors (red), marker target error (yellow), and target reg-
istration error (green)

The system uses augmented reality overlays on the image of a tracked
webcam to show the magnitude of the positional fiducial location errors (red)
together with the propagated marker target error (yellow) in the centroid of
the target and the target registration error (green) at the point of interest.
The errors are displayed as covariance ellipsoids with a user-defined uniform
scaling to make them visible even when they are small.

The extrinsic camera parameters, the target geometry and the location of
the point of interest are imported from configuration files and can be adopted
to any tracking application. The tool receives the pose of the pointer M as well
as the pose of the target H mounted onto the webcam E from the tracking
system. The hand-eye calibration for the tracked webcam is performed in
advance using a second tool implementing the algorithms described in section
7.2 [185].

It is important to note that we display only the prediction for the er-
rors from the tracking system to the point of interest. This is the error of
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Fig. 8.9. Visualization of the error for different (hypothetic) camera setups. Differ-
ence between large baseline (left) and small baseline (right)

the transformation TTP in figure 8.8. What we actually see on the camera
image as augmentation error is the propagated combined error of the edges
TPETEHT−1

TH TTP (cf. section 4.2.2), which is usually by orders of magnitude
larger than the predicted error.

Besides this graphical output we have implemented also a display of the
relevant covariance matrices, the Eigenvalues,, the RMS errors, and for com-
parison an estimate of the TRE following the point based registration error
method by Fitzpatrick et al. [60].

Since the tracking camera setup is loaded from a configuration file, we can
use the same tool also as an evaluation tool for hypothetic camera setups.
Figure 8.9 shows two screenshots of the same target using two different track-
ing camera setups, one with large baseline between the cameras and another
one with small baseline. In a future version we plan to receive and adopt the
error estimation to additional runtime information from the tracking system

Fig. 8.10. Estimation of the accuracy at a point of interest using target RMS [60]
(left) and estimation of covariance using fiducial covariance [19] (right) — orange:
covariance of fiducial, cyan: covariance at point of interest, purple: covariance at
center of fiducials
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on the number of markers and cameras used for a particular measurement.
This will enable the user to interactively hide single markers from the view
of single cameras and observe the decrease in accuracy instantaneously in the
visualization. So far this information is usually not available from outside the
tracking system software.

8.4 Integration of visibility Information

In a prototypical implementation [168], we have integrated visibility informa-
tion from an actual tracking system into our error estimation. The tracking
software provides information about the geometric setup of the tracking cam-
eras, and at runtime the full visibility information for every camera and every
fiducial. Using this information, we can now compute individual error covari-
ances for the fiducial location error (cf. section 5.3.2) and use these covariances
in the estimation of the marker target error (cf. section 5.3.3) and the target
registration error (cf. section 5.3.5).

Figure 8.10 shows a comparison of the estimated accuracy using the target
RMS method [60] and our proposed method. The most obvious difference is the
spherical error covariance in the target RMS error method, resulting from the
one-dimensional RMS error estimate. Our method shows a flat disc resulting
from the propagation of the angular error as described in section 4.2.2.

Figure 8.11 shows the effect of occluded cameras onto the estimated error.
For every fiducial, we show the visibility by each of the four cameras in our
setup by a red or green disk besides the fiducial. Occluding cameras increases
the estimated error, and additionally changes the general shape of the error.

Note that the difference in the errors is not as significant as in figure 8.9,
since in this example we chose a camera setup which provides a good baseline
(cf. section 5.3.2) even when only two cameras are used for tracking.

Fig. 8.11. Effect of occluded cameras on the estimation of covariance [168]. Pose
estimation using three (left) or two (right) cameras — orange: covariance of fiducial,
cyan: covariance at point of interest, purple: covariance at center, green/red: camera
visibility of fiducials
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Fig. 8.12. Effect of occluded fiducials on the estimation of covariance [168] —
orange: covariance of fiducial, cyan: covariance at point of interest, purple: covariance
at center, green/red: camera visibility

Figure 8.12 shows the effect of the occlusion of fiducials, either by the hand
of the user or by partial self occlusion (cf. section 5.3.2). It can be seen that
partial occlusions can have a significant impact on the final accuracy. Our
experiments also showed, that these partial occlusion are much more common
that we expected during the normal use of the tracking system. It proved to
be rather difficult to avoid partial occlusions for certain movements.

This shows, that the currently used offline error estimation using all pos-
sible fiducials can be used to analyze the general achievable accuracy, but is
insufficient to provide actual online error estimates. Applications that rely
on a guaranteed accuracy need to take the visibility of fiducials at runtime
into account. This is even more important in setups with potentially small
baselines.
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Conclusion

In this thesis I have presented a comprehensive mathematical framework for
the prediction of errors in complex tracking setups. This is similar to the work
of Holloway [85], but includes full six-dimensional error distributions with
covariant parts rather than maximum error statistics. I have presented simple
formal rules for the propagation of these errors in general spatial relationship
graphs. This makes the theory easily usable in a tracking middleware [200].

For the special case of optical tracking systems using one or more matrix
cameras, I have presented [19] an estimation of the anisotropic fiducial location
error. Similar to the estimation of the dilution of precision in global positioning
systems, this estimation is only based on the geometrical configuration of the
cameras and the fiducials. It can be seen roughly as an extension of the triangle
intercept theorem to multiple dimensions.

Under some assumptions on the linearity I have shown the estimation
of the marker target error for n-ocular (see section 5.3) and monocular (see
section 5.4) cameras. With only slight modifications in the projection function
the same estimation can be applied to tracking systems using line cameras
as well [210]. It therefore is a useful tool for anyone using optical tracking.
The predicted errors are consistent with previously measured results from
the literature [214, 101], but provides full six-dimensional error covariances
instead of one-dimensional root mean square error only. This is important for
the further propagation of such errors.

I have shown in section 6 that there is a benefit of this new theory compared
to the previous estimations that were based on the assumption of isotropic
and independent errors when we consider error propagation. Under certain
circumstances that are quite common in currently used tracking setups, the
tracking errors can actually be larger than expected before. Additionally I
have shown that it is really important to consider how many of the cameras
and fiducials were actually used for the pose estimation. The occlusion of
single cameras or single fiducials has a significant influence on the expected
accuracy of an optical tracking system.
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Finally I have given an overview of different calibration methods in the
context of this general framework. This includes pointing device calibration,
hand-eye calibration and the calibration of optical see-through head-mounted
displays. A set of applications shows the use of the theory in common real-
world scenarios and also emphasizes the need for an online estimation of the
error inside the tracking system software.



Part IV

Appendix





A

Mathematica Implementations

This chapter explains the implementation of the core concepts in Mathemat-
ica. Additional implementations for visualization only are not explained but
can be found in the according Mathematica notebooks.

Before we start to implement the algorithms, we need some helper func-
tions to deal with homogeneous coordinates. The functions can be used to
convert vectors and matrices to homogeneous form and back.

MakeHom[mat_?MatrixQ ] := Transpose[Append[Transpose[Append[mat,
Table[0, {Dimensions[mat][[2]]}]]], Append[Table[0, {Dimensions[mat][[1]]}], 1]]]

MakeHom[v_?ListQ] := Append[v, 1]
MakeDeHom[mat_?MatrixQ] := Transpose[Drop[Transpose[Drop[mat, −1]], −1]]
MakeDeHom[v_?ListQ] := Drop[v, −1]

A block-diagonal matrix is can be constructed from a list of matrices using
the following function:

BlockDiagonalMatrix[ mat : {_?MatrixQ ..}] :=
Normal[SparseArray[Flatten[MapThread[Array[List, #1, #2 + 1] &,
{#, Most[FoldList[Plus, {0,0},#]]}&[Dimensions /@ mat]], 2] → Flatten[mat]]]

A.1 Estimation of the FLE

This is the implementation of equation 5.2 that is used to generate C code for
the accuracy prediction. This code makes use of the Format package which is
not part of the original distribution but can be downloaded from the Website1.

First we have to define the perspective projection function. For the sake
of simplicity we use a very basic camera model with equal focal length in
horizontal and vertical direction and the principle point exactly in the center
of the image. However, a full pinhole camera model could be used likewise
here if the parameters are available.
1 Format.m, http://library.wolfram.com/infocenter/MathSource/60/
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proj[{x_, y_, z_, h_}, f_] := 1/z {{f, 0, 0}, {0, f, 0}}.{x, y, z}

The last parameter h in the projection function is simply required for homo-
geneous coordinates and ignored in the projection.

We then need to define some abstract named parameters for the image
plane covariances

S1 = {{S111, S112}, {S121, S122}};
S2 = {{S211, S212}, {S221, S222}};
S3 = {{S311, S312}, {S321, S322}};
...

for the maximum number of cameras we want to use.
Also we need the entries of the extrinsic camera matrices

C1 = {{C111, C112, C113, C114}, {C121, C122, C123, C124},
{C131, C132, C133, C134}, {0, 0, 0, 1}};

C2 = {{C211, C212, C213, C214}, {C221, C222, C223, C224},
{C231, C232, C233, C234}, {0, 0, 0, 1}};

C3 = {{C311, C312, C313, C314}, {C321, C322, C323, C324},
{C331, C332, C333, C334}, {0, 0, 0, 1}};

...

and the output matrix for the resulting covariance

R = {{R11, R12, R13}, {R31, R32, R33}, {R31, R32, R33}};

As a helper function we define a function that builds a blockdiagonal ma-
trix from a list of matrices

BlockDiagonalMatrix[ mat : {_?MatrixQ ..}] :=
Normal[SparseArray[Flatten[MapThread[Array[List, #1, #2 + 1] &,

{#, Most[FoldList[Plus, {0,
0}, #]]} &[Dimensions /@ mat]], 2] −> Flatten[mat]]]

Now we can get the C code by applying equation 5.2 from section 5.3.2 to get
the covariance in the two-camera case

fs = {f1, f2};
cams = {C1, C2};
covs = {S1, S2};
jacobi = BlockMatrix[MapThread[

{Outer[D, proj[#1.{x, y, z, 1}, #2], { x, y, z}]} &, {cams, fs}]];
back = Inverse[Transpose[jacobi].Inverse[BlockDiagonalMatrix[covs]].jacobi];
CAssign[R, back] >> twocamera_covariance.c

and likewise in the three-camera case

fs = {f1, f2, f3};
cams = {C1, C2, C3};
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covs = {S1, S2, S3};
jacobi = BlockMatrix[MapThread[

{Outer[D, proj[#1.{x, y, z, 1}, #2], { x, y, z}]} &, {cams, fs}]];
back = Inverse[Transpose[jacobi].Inverse[BlockDiagonalMatrix[covs]].jacobi];
CAssign[R, back] >> threecamera_covariance.c

and so on for as many cameras as needed.
In Mathematica code, the same computation can be performed with

CalcCovariance[cams_, fs_, covars_, position_] := Module[{jacobi},
jacobi = BlockMatrix[MapThread[
{Outer[D,proj[#1.{x,y,z,1},#2], {x,y,z}]}&, {cams, fs}]];

Inverse[Transpose[jacobi].Inverse[BlockDiagonalMatrix[covars]].jacobi]
/. { x→position[[1]], y→position[[2]], z→position[[3]]}

]

The result is a 6 × 6 covariance matrix that can be used for further error
propagation. Note that the extrinsic camera parameters in cams need to be
defined such that they convert world coordinates into camera coordinates
according to equation 5.1.

A.2 Estimation of the MTE from the FLE

To estimate the six-dimensional marker target error according to section 5.3.3,
we implement the algorithm proposed by Hoff et.al [83]. We need a list balls
containing the locations of the fiducials and a list covs containing the accord-
ing covariances, both already in the marker target coordinate system. We can
convert the covariances from room coordinates to marker target coordinates
using the error propagation from equation 4.9:

rcov = Transpose[R].cov.R

where R is the rotation matrix from the pose of the marker target, which is
given to us by the tracking system. Now we can implement equation 5.5:

PropagateFLEtoMTE[balls_, covs_] :=
Module[{Mf},
Mf = Join @@ (Drop[Jf[MakeDeHom[#1]], −1] & ) /@

MakeHom /@ Function[x, x − Plus @@ balls/Length[balls]] /@ balls;
PseudoInverse[Mf].BlockDiagonalMatrix[covs].Transpose[PseudoInverse[Mf]]

]

Note that using the pseudo-inverse here after expanding the outer matrix
inversion is equivalent to equation 5.5.

If we want to simplify the estimation a bit, we can under certain circum-
stances use the same covariance cov for all fiducials in the target [154].

covs = Table[cov, {Length[balls]}]
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A.3 Estimation of the TRE from the MTE

The target registration error can be estimated from the marker target error
by forward propagation to the point of interest (see section 5.3.5 and 4.2.2).

First we need to define a general rotation matrix using Euler angles (cf. sec-
tion 4.1.2).

R[ax_, ay_, az_] :=
{{1, 0, 0}, {0, Cos[ax], −Sin[ax]}, {0, Sin[ax], Cos[ax]}}.
{{Cos[ay], 0, Sin[ay]}, {0, 1, 0}, {−Sin[ay], 0, Cos[ay]}}.
{{Cos[az], −Sin[az],0}, {Sin[az], Cos[az], 0}, {0, 0, 1}};

Using this matrix, we can build the function for the composition of the
two poses.

f = Join[ R[ax, ay, az].{xq, yq, zq} + {tx, ty, tz} , {ax, ay, az} + {aq, bq, cq}];

This is the Jacobian of the composed function, evaluated at zero (cf. equa-
tion 4.11):

Jg[{xq_, yq_, zq_}] := Outer[D, f, {tx, ty, tz, ax, ay, az}] /.
{ax → 0, ay → 0, az → 0, tx → 0, ty → 0, tz → 0}

Now we can apply the forward propagation (cf. equation 4.12):

PropagateMTEtoTRE[poi_?VectorQ, cov_?MatrixQ] :=
Jg[MakeDeHom[poi]].cov.Transpose[Jg[MakeDeHom[poi]]]

Note that for a three-dimensional point of interest, the upper left 3 × 3
matrix is sufficient.

A.4 Hand-Eye Calibration

For the hand-eye calibration we assume that the tracking target (hand) and
according camera (eye) poses are given as lists of homogeneous matrices Ai
for the eye (pose of the calibration pattern in camera coordinates) and Bi for
the hand (pose of the target in tracking system cordinates).

From this we compute all possible pairs of relative motions

Hc = Flatten[Table[Table[Ai[[j]].Inverse[Ai[[i]]],
{j, i + 1, Length[Ai]}], {i, Length[Ai]}], 1];

Hg = Flatten[Table[Table[Inverse[Bi[[j]]].Bi[[i]],
{j, i + 1, Length[Bi]}], {i, Length[Bi]}], 1];

The hand eye calibration itself is implemented according to Tsai-Lenz [185]

HandEyeTsaiLenz[Hg_, Hc_] := Module[{Pg, Pc, lefthand, righthand, Rcg, Tcg},
Pg = Drop[DCM2Quat[#1], 1] & /@ Hg;
Pc = Drop[DCM2Quat[#1], 1] & /@ Hc;
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(∗ Solve for the rotational part ∗)
lefthand = Flatten[Skew /@ (Pc + Pg), 1];
righthand = Flatten[Pc − Pg, 1];
Pcg = PseudoInverse[lefthand].righthand;
Pcg = 2/Sqrt[1 + Pcg.Pcg] Pcg;
Rcg = (1 − 0.5 ( Pcg.Pcg))IdentityMatrix[3]

+ 0.5 ∗( (Transpose[{Pcg}].{Pcg}) + Sqrt[4 − Pcg.Pcg] Skew[Pcg]);

(∗ Solve for the translational part ∗)
lefthand = Flatten[ (#[[Range[3], Range[3]]]

− IdentityMatrix[3]) & /@ Hg, 1];
righthand = Flatten[(Rcg.(#[[Range[3], 4]]) & /@ Hc), 1]

− Flatten[(#[[Range[3], 4]]) & /@ Hg, 1];

Tcg = PseudoInverse[lefthand].righthand;
Append[Transpose[Append[Transpose[Rcg], Tcg]], {0, 0, 0, 1}]

]

with

Skew[{x_, y_, z_}] := {{0, −z, y}, {z, 0, −x}, {−y, x, 0}}

A.5 Pointing Device Calibration

Pointing device calibration is described in section 7.1. We assume that we
have the poses of the pivoting process already stored in two lists, pos for the
positions and rots for the rotations. First we load an additional package for
matrix manipulations,

<< LinearAlgebra‘MatrixManipulation‘

and then we can build the matrices for the equation system in equation 7.2.

A = BlockMatrix[Table[{rots[[i]], −IdentityMatrix[3]}, {i, Length[rots]}]];
b = −Flatten[Table[pos[[i]], {i, Length[pos]}]];

This system is solved using singular value decomposition with

svd = SingularValueDecomposition[A];
phpw = Plus @@ Table[

( (Transpose[svd[[1]]][[i]].b)/svd[[2, i, i]] ) ∗ Transpose[svd[[3]]][[i]],
{i, Length[svd[[3]]]}]

The resulting vector phpw contains the position ph of the tip in marker co-
ordinates in the first three entries and the position pw of the tip in world
coordinates in the last three.
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analytical model, 61
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backward propagation, 32, 77, 82

calibration
hand-eye, 105–110, 128–132, 144
HMD

DRC, 114–121
EasySPAAM, 113, 115–121
SPAAM, 112, 115–121
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pointing device, 145
stylus, see pointer

caliper, see pointing device
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camera setup, 70, 87
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corresponding points, 58
covariance matrix, 24, 30, 68
cumulative probability, 25
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extrinsic camera parameters, 60
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forward propagation, 30, 78
Frobenius norm, 28
fusion, 33

Gamma function, 25
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hand-eye calibration, see calibration,
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head-mounted display, 4
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industrial applications, 6, 127
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intraoperative navigation, 6
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medical applications, 6, 129
merging markers, 59, 74
monocular, 79
Monte-Carlo simulation, 33, 51–53, 61,

69, 84

occlusion, 88, 91
OpenTracker, 15
OSGAR, 16
outside-in, 93

pinhole, 67, 68, 81, 113, 114, 124, 141
pivoting, see calibration, pointer
planar marker, 79, 91
pointer, see pointing device
pointing device, 90, 101, 102
pose estimation, 5, 58, 78
precision, 21
prediction, 58

quadric, 25
quantile function, 25
quaternion, 41–43, 45, 110

reality-virtuality continuum, 3
residual, 75
rigid transformation, see transforma-

tion, rigid
root mean square, 28, 29, 47, 61, 96, 97,

130, 131, 133, 137
rotation axis, 39–41

runtime, 13, 17, 59, 61, 66, 87, 92, 124,
133

scene-graph, 16
screw, 44
sigma points, 34
skew-symetric matrix, 41, 51, 145
Slerp, 43, 110
software engineering, 12
spatial relationship

graph, 11, 13, 14
pattern, 11, 15

special orthogonal group, 38
spectral norm, 28
Studierstube, 15
surface of constant probability, 24

target registration error, 63–66, 78, 96,
132, 144

thermal drift, 60
tilt angle, 74, 82
time-division multiplexing, 58
trace norm, 28
tracker alignment, 110
tracking, 5
transformation

affine, 37
linear, 37
rigid, 46, 48
unscented, see unscented transform

triangle intercept theorem, 137
triangulation, 68

ubiquitous tracking, 11–16
unscented transform, 34, 47, 53, 54

visibility, 58, 91

without loss of generality, 24, 50, 81
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