
Institut für Informatik der Technischen Universität München
Lehrstuhl Informatik II

Type Checking
XML Transformations

Thomas Perst

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Alfons Kemper, Ph.D.
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Helmut Seidl
2. Ass. Prof. Dr. Frank Neven, Univ. of Limburg/Belgien

Die Dissertation wurde am 04.09.2006 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 13.02.2007
angenommen.

Acknowledgments

I wish to thank Helmut Seidl for inspiring me to conduct my research in
the field of XML transformations, and I feel deep gratitude towards him for
guiding me like Virgil through the circles of tree transducers. He employed
me on a project position providing ideal conditions for conducting my re-
search. It was funded by the “Deutsche Forschungs Gemeinschaft” under
the headword “MttCheck”.

I am grateful to many colleagues who in one way or another contributed
to this thesis. Special thanks to Thomas Gawlitza, Ingo Scholtes, and Peter
Ziewer for careful reading of the manuscript and for their helpful comments
and suggestions.

Last but not least, I want to thank Jennifer for her love and constant sup-
port on the stony path of writing this work.

Abstract

XML documents are often generated by some application in order to be pro-
cessed by a another program. For a correct exchange of information it has to
be guaranteed that for correct inputs only correct outputs are produced. The
shape of correct documents, i.e., their type, is usually specified by means of
schema languages.

This thesis is concerned with methods for statically guaranteeing that
transformations are correct with respect to pre-defined types. Therefore, we
consider the XML transformation language TL abstracting the key features
of common XML transformation languages.

We show that each TL program can be decomposed into at most three
stay macro tree transducers. By means of classical results for stay macro tree
transducers, this decomposition allows to formulate a type checking algo-
rithm for TL. This method, however, has even for small programs an exorbi-
tant run-time.

Therefore, we develop an alternative approach, which allows at least for
a large class of transformations that they can be type checked in polynomial
time. The developed algorithms have been implemented and tested for prac-
tical examples.

Zusammenfassung

XML-Dokumente werden oft von Anwendungen erzeugt, um von anderen
Anwendungen konsumiert zu werden. Für einen korrekten Informations-
austausch muss garantiert werden, dass für korrekte Eingaben nur korrekte
Ausgaben erzeugt werden. Die vorliegende Arbeit untersucht Methoden,
um statisch zu garantieren, dass eine Transformation nur korrekte Ausgaben
erzeugt. Dazu betrachten wir die Sprache TL, die die Eigenschaften gängiger
XML-Transformationsprachen abstrahiert. Wir zeigen, dass jedes TL Pro-
gramm in höchstens drei stay macro tree transducers zerlegt werden kann.
Diese Zerlegung erlaubt, ein Typüberprüfungsverfahren zu konstruieren.
Dieses weist allerdings selbst für kleine Programme exorbitante Laufzeiten
auf. Darum entwickeln wir einen alternativen Ansatz, der zumindest für
eine große Klasse praktischer Transfromationen Typüberprüfung in poly-
nomieller Zeit erlaubt. Beide Ansätze wurden implementiert und an prak-
tischen Beispielen getestet.

Contents

1 Introduction . 1

2 Preliminaries . 7
2.1 Trees and Forests . 7
2.2 Tree Substitution . 12
2.3 Finite-state Tree Automata . 13
2.4 Monadic Second-Order Logic . 15
2.5 Notes and References . 17

3 The Transformation Language TL . 19
3.1 Definition . 21
3.2 Example . 24
3.3 Induced Transformation . 26

3.3.1 Denotational Semantics . 27
3.3.2 Operational Semantics . 28

3.4 Notes and References . 30

4 Stay Macro Tree Transducers . 33
4.1 Definition . 34
4.2 Induced Tree Transformation . 35

4.2.1 Denotational Semantics . 37
4.2.2 Operational Semantics . 39

4.3 Basic Properties . 41
4.4 Stay Macro Forest Transducers . 46

4.4.1 Induced Transformation . 47
4.4.2 Characterization . 50

4.5 Stay-Mtts with Regular Look-ahead . 57
4.6 Notes and references . 58

XIV Contents

5 Type Checking TL Programs . 63
5.1 Annotating the Input . 66
5.2 Removing Global Selection . 69
5.3 Removing Up Moves . 75
5.4 The Decomposition by Example . 83
5.5 Notes and References . 85

6 Type Checking by Forward Type Inference . 89
6.1 Intersection with Regular Languages . 91
6.2 Shortening of Right-hand Sides . 93
6.3 Linear Stay-Mtts . 94
6.4 b-bounded Stay-Mtts . 99
6.5 Stay Macro Forest Transducers . 102
6.6 Forward Type Checking by Example . 106
6.7 Notes and References . 109

7 Implementation of a Type Checker . 111
7.1 A Type Checker Tutorial . 112
7.2 The Implementation Details . 115

7.2.1 Representation of Macro Tree Transducers 116
7.2.2 Pre-Image Computation . 119
7.2.3 Implementation of Forward Type Inference 121
7.2.4 Realization of Emptiness Check . 123
7.2.5 Tuning the Macro Tree Transducer 124

7.3 Dealing with Infinite Alphabets . 125
7.4 Dealing with Attributes . 127
7.5 Notes and References . 128

8 Conclusion . 131

A Proofs . 133
A.1 Proof of Theorem 3.7 . 134

A.1.1 Outside-in Evaluation . 135
A.1.2 Inside-out Evaluation . 138

References . 141

1

Introduction

When Axel Thue published his article about logical problems [Thu10; ST00]
in 1910, he certainly would not have expected that his ideas of trees and their
rewriting will become as popular as 90 years later with the introduction of
the Extensible Markup Language (XML). The W3C1, an international consor-
tium to develop Web standards, describes this language as “a simple, very
flexible text format derived from SGML. Originally designed to meet the challenges
of large-scale electronic publishing, XML is also playing an increasingly important
role in the exchange of the variety of data on the Web and elsewhere” [Qui06]. More-
over, by proposing XML the W3C fulfils its mission “to lead the World Wide
Web to its full potential by developing protocols and guidelines that ensure long-
term growth of the Web,” because since the publication of the standard in 1998,
XML enjoys an increasing popularity in nearly all fields of information tech-
nologies.

XHTML is an XML format for designing Web pages [Pem02], XSL:FO is
a language for outlining general layouts [Adl01], and MATHML provides
elements for typesetting mathematical formulas [CIMP03]. With SMIL it is
possible to create interactive audio-visual presentations [Hos98]. The biblio-
graphic records of the Computer Science bibliography DBLP2 are organized
with XML [Ley02]. The office-suite of OpenOffice.org [Man06] uses the Open
Document Format, an XML-based file format for office applications [DBO06].
Even this small selection of XML applications shows that Vianu does not ex-
aggerate if he denotes XML as the lingua franca of the Web [Via01].

Technically, XML is a meta-language for storing structured data in a se-
quential format. Therefore, data are grouped into elements, and each element
is enclosed between an opening and closing tag indicating the start and the
end of such a logical component. Since elements can be nested, every XML
document can be naturally considered as a tree whose nodes are the tags and

1 Worls Wide Web Consortium
2 Digital Bibliography & Library Project

2 1 Introduction

whose leafs are the data. Once a document has been structured with XML el-
ements, the actual XML share of the document is called markup.

One of XML’s design goals and advantages over other data formats is
that XML is typed. This means, it is possible to specify where each element
may occur in a document. For this purpose the W3C recommendation sug-
gests document type definitions (DTDs), which provide rules for how the
XML elements, attributes, and other data are defined and logically related
in a document [BPSM+04]. A document adhering to the XML syntax specifi-
cations and the rules outlined by its DTD is considered to be valid. More ex-
pressive typing mechanisms are XML Schema [FW04] and Relax NG [Jam01].
They provide more base types for data values like integers, decimals or re-

als; moreover, they allow users to define their own types by combining base
types. Validity, however, can be checked by a type-aware parser which tests
for every element whether the sequence of its children conforms to the spec-
ifications made in the type definition.

Another advantage of XML certainly is its extensability that allows to cre-
ate and format your own document markups. The Web publishing language
HTML, for example, consists of a fixed set of elements with a more or less
predefined meaning. XML, on the other hand, allows to create new markup
at will and, moreover, to specify in a DTD or other schema how this markup
is related inside a document. Since “XML data exchange is always done in the
context of a fixed type” [AMF+01;AMF+03], a common scenario is that a com-
munity (or industry) agrees on a certain type, and all members have to create
documents that are of that type. One possibility to asure validity, is to parse
every created document and to check if it conforms to the specified type. This
method, however, is very time consuming, because every document has to
be reread, which takes some time for large documents. Moreover, the same
document is repeatedly checked whenever it is created.

Since XML documents are often generated dynamically by some pro-
gram [Suc02], e.g. as result of the transformation induced by a stylesheet
processor, it would be more convenient to check whether all XML documents
generated by a program are valid with respect to a specified type. This is
called the type checking problem or static type checking — in contrast to dynam-
ically checking every generated document. For a program or transformation
F, it asks whether for all documents d of an input domain D, the transforma-
tion result F(d) is valid with respect to an output type Tout. More formally, it
asks whether

∀d ∈ D : F(d) ∈ Tout?

The type checker, i.e., the program for solving the type checking problem, an-
alyzes the transformation itself and the output type to decide whether all
documents produced by F are valid. If the type checker gives a positive an-
swer, transformation F is called type-safe. Besides the fact that a type-safe
transformation will never raise run-time type errors, type checking also helps
to guarantee that a program computes the transformation intended by the

1 Introduction 3

programmer. The intended transformation is specified via an input and an
output type. If the program is type-safe with respect to these types, it surely
realizes the intended transformation. Guaranteeing type-safety might even
be security relevant. Consider, for example, an XML document, which con-
tains information about students — including their names, examination re-
sults, and the visited courses. In order to satisfy red tape, a lot of statistics
are automatically generated. For data protection reasons, however, gener-
ated documents must not contain information so that examination results
can be mapped to a student’s name. This can be assured by type checking
the transformations against an appropriate output type.

A closely related problem is the type inference problem. Here, it is necessary
to compute for the given transformation F the type F(D) = {F(d) | d ∈ D}.
Whenever this is possible for a transformation F, the type checking problem
can be solved in the following way: first compute F(D), and then check if
this inferred type is a subset of the allowed output type.

Type checking techniques heavily depend on the used type model and
transformation language. But instead of developing different type checking
algorithms for every XML transformation language, our aim is to present an
approach that is as general as possible. For that purpose, we focus in the
context of this work on formal models which

(1) subsume most of the features of existing languages and also
(2) provide a tractable type checking problem.

As type model we prefer recognizable tree languages because they are a
convenient abstraction of the popular XML typing facilities like DTD, XML
Schema [FW04], or Relax NG [Jam01]. Recognizable tree languages define
sets of trees and the membership to such a set can be decided by means of a
finite state automaton [GS97].

By presenting our own transformation language TL together with a type
checking algorithm, we obtain a general type checking mechanism for all
languages that can be compiled into our formalism. From XSLT [XSL99] we
borrow the idea to organize the transformation in named functions defined
by rules. Each rule defines a translation of a set of nodes, which is given by
a match pattern. Such a pattern, for example, specifies “all nodes that are la-
beled with Chapter” or “all nodes that are below a node labeled with Doc”.
When transforming the matched nodes, select patterns determine those sub-
trees where the transformation should continue. Match patterns as well as
select patterns are defined by using monadic second-order logic, an extension
of first-order logic with set variables [Tho97]. In order to accumulate interme-
diate results during the transformation, each rule can be enhanced with pa-
rameters. They allow to transport context information from the current node
to a subsequent translation step. These four “ingredients”

• named functions,
• match patterns,

4 1 Introduction

• select patterns, and
• accumulating parameters

form the core of our transformation language TL. The key idea of our type
checking algorithm is to simulate TL transformations by compositions of top-
down finite state tree transducers with parameters, which are also called stay
macro tree transducers [EV85]. They can be considered as first-order functional
programs performing a top-down traversal over their first argument while
possibly accumulating temporary results in additional parameters. While TL
is our specification language for XML transformations, the stay macro tree
transducer can be viewed as “low-level” model to implement TL functions.
By compiling a TL program (or transformation) into compositions of stay
macro tree transducers, we obtain at the same time a solution for the type
checking problem for TL, because for a composition of macro tree transduc-
ers it is decidable whether it produces only outputs of a predefined type
[EV85].

The pre-image of a set Tout with respect to a transformation F is the set
of all inputs d such that F(d) ∈ Tout. Since recognizability of sets of output
trees is preserved by taking pre-images, the type checking problem can be
solved as follows: first, compile TL into a composition τ of stay macro tree
transducers. Then determine a finite automaton for the set

U = τ−1(Tout),

where Tout is the complement of the desired output type. Hence, U char-
acterizes all inputs for which τ returns results not conforming to Tout. This
method is called inverse type inference [MSV00]. For a given input type Tin,
it then suffices to check whether or not the intersection Tin ∩U is empty. In
particular, no wrong results are produced if the intersection is empty. The
main limitation of this type checking approach is its high complexity due to
the non-elementary size of the automaton accepting the pre-image.

Therefore, we investigate classes of stay macro tree transducers for which
type checking can be done in acceptable time. For a stay macro tree trans-
ducer F, which is restricted in copying its input, we present a type checking
algorithm based on forward type inference. For a specified input type Tin,
this algorithm exactly determines the set F(Tin) of outputs generated by the
transducer, i.e.,

F(Tin) = {F(t) | t ∈ Tin}.

Then F type checks with respect to Tin and a predefined output type Tout,
if the set F(Tin) is contained in Tout. Since this inclusion is decidable, we
have an algorithm for exact type checking tree transformations, which can
be expressed by one stay macro tree transducer with restricted copying.

This work is devided into 8 chapters. Chapter 2 provides some prelimi-
naries. The transformation language TL is defined and characterizations of
the induced translations are given in Chapter 3. Then a definition of stay

1 Introduction 5

macro tree transducers is given and extensions of this model are discussed.
Inductive characterizations are given for the derivation relation of stay macro
tree transducers. In Chapter 5 type checking of TL by means of decomposi-
tion into stay macro tree transducers is studied. Chapter 6 is concerned with
forward type inference for restricted classes of stay macro tree transducers.
In the second last Chapter 7 we consider how to implement the presented al-
gorithms in order to test them for practical examples. Finally, Chapter 8 gives
some conclusions and remarks.

2

Preliminaries

In this chapter we briefly introduce the basic concepts used throughout this
work. We first formalize the terms “tree” and “forest” and precisely define the
automata model accepting tree languages. Then, we present an extension of
first-order logic, called monadic second-order logic.

2.1 Trees and Forests

Since every XML document is a sequential representation of a tree [Suc01],
we have to formalize the intuition behind this term. Figure 2.1 shows the tree
induced by the following XML document:

Example 2.1

〈Doc〉
〈Chapter〉
〈Title〉Introduction〈/Title〉
〈Body〉〈Par〉 . . . 〈/Par〉〈/Body〉

〈/Chapter〉
〈Chapter〉
〈Title〉Preliminaries〈/Title〉
〈Body〉〈Par〉 . . . 〈/Par〉〈Par〉 . . . 〈/Par〉〈/Body〉

〈/Chapter〉
〈/Doc〉

XML documents describe unranked trees, which means that the number of
direct successors of a node is not fixed. In our example this property is illus-
trated by the fact that the two occurrences of the element labeled Body have
different numbers of children. Note that the trees induced by the structure
of an XML document are ordered, i.e., the order of the children of a node is
relevant.

8 2 Preliminaries

Introduction

.

ParParPar

Preliminaries

Doc

Chapter Chapter

Title Body Title Body

Fig. 2.1. The tree representation of the XML document given in Example 2.1.

Formally, an unranked tree over an alphabet Σ consists of a root node la-
beled by a symbol a from Σ and a forest f , written a〈 f 〉. A forest is a sequence
of arbitrary many unranked trees, written t1 t2 · · · tm. The number m is called
the length of the forest. The empty forest, i.e., a forest with length m = 0, is de-
noted by ε.

Definition 2.2 (Forests) Let Σ be a finite unranked alphabet. Then the set FΣ

of forests f over Σ is recursively defined as:

t ::= a〈 f 〉,
f ::= ε | t f

where a ∈ Σ and ε denotes the empty forest. /

In order to illustrate our definition, we repeat the document of Example
2.1 in this “unranked” or “forest syntax”:

Doc〈
Chapter〈
Title〈Introduction〉
Body〈Par〈. . .〉〉
〉
Chapter〈
Title〈Preliminaries〉
Body〈Par〈. . .〉Par〈. . .〉〉
〉

〉

Given a forest f = a〈 f1〉 f2 ∈ FΣ, the tree t = a〈 f1〉 is called the head
and the forest f2 the tail of f . The symbol a ∈ Σ is the label of the head. The
forest f1 is the content of the tree t and the forest f2 is its right context, i.e., the
sequence of its right siblings.

Sometimes forests are also called hedges, e.g., by Murata [Mur01], Tozawa
[Toz01] or in the publications of Brüggemann-Klein and Wood [BW04].

2.1 Trees and Forests 9

Since the same tree may occur several times as a subtree of a given forest,
it is necessary to distinguish between a subtree and an occurrence of a sub-
tree [GS84]. Assigning unique coordinates to the nodes of a forest makes it
possible to indicate a certain occurrence of a subtree by the coordinates of its
root. As coordinates we define the set Π(f) ⊆N

∗ of all paths π in forest f

Π(ε) = {ε}
Π(t1 · · · tn) = {ε} ∪ {iπ | 1 ≤ i ≤ n, π ∈ Π(fi) for ti = ai〈 fi〉}

where N
∗ is the set of strings (including the empty string) over the alpha-

bet of positive natural numbers and ε denotes the empty string. The three
occurrences of the Par-elements of our document in Example 2.1, have the
following coordinates. The first occurrence has the coordinate 1121 because
the root node has coordinate 1 and the Par-element can be reached on the
path: to the left Chapter-element (1), to the Body-element (2), and then to Par

(1). The other two occurrences have coordinates 1221 and 1222. Figure 2.2
shows the XML tree of Figure 2.1 together with its coordinates.

. . .

1221
1211

121

1111

111

11

1121

112

1222

122

12

1

Introduction

BodyTitleBodyTitle

ChapterChapter

Doc

Preliminaries
Par Par Par

.

Fig. 2.2. The tree representation of the XML document given in Example 2.1 annotated
with the coordinates of the nodes.

The nodes of a forest f = t1 · · · tn are then uniquely identified by the ele-
ments of the set N (f) = Π(f) \ {ε}. For a given path (or node) π ∈ N (f),
f [π] is called the subtree of f located at π and is defined as

(t1 · · · tn)[iπ] =

{

ti, if π = ε

fi[π], if π 6= ε and ti = a〈 fi〉.

If the number of direct successors of a node is fixed, then the resulting
trees are called ranked. A ranked alphabet is a set of symbols Σ = {a, b, . . .}
together with a mapping rank : Σ → N which associates each element of Σ

with a positive integer, the rank of the symbol. The rank defines the number
of direct successors of a node. For k ∈ N with k ≥ 0, the subset Σk of the
ranked alphabet Σ is the set of all symbols with rank k,

Σk = {a ∈ Σ | rank(a) = k}.

10 2 Preliminaries

In order to indicate that a symbol a ∈ Σ is of rank k, we either write a ∈ Σk,
or we introduce the symbol with its rank as superscript, written a(k). Note
that for two ranks k 6= n, the symbols a(k) and a(n) are different.

A ranked tree over the ranked alphabet Σ has a designated root labeled
with a symbol a ∈ Σk and k direct subtrees t1, . . . , tk, written as a(t1, . . . , tk).
For a symbol of rank k = 0 we often write a rather than a().

Definition 2.3 (Ranked Trees) Let Σ be a finite ranked alphabet. Then the
set TΣ of ranked trees t over Σ is defined as:

t ::= a | b(t1, . . . , tk)

where a ∈ Σ0, and for k ≥ 0, b ∈ Σk, and t1, . . . , tk are trees over Σ. /

Given a tree t = a(t1, . . . , tk) ∈ TΣ, the trees ti, 1 ≤ i ≤ k, are the children
or sons of t, while t itself is the father of all ti. The symbol a ∈ Σk is the label of
t.

As a special case, we define trees whose leafs can be elements of a given
set S. For a set S of symbols or trees, TΣ(S) is the set of trees defined induc-
tively as:

(1) S ⊆ TΣ(S) and
(2) for a symbol a ∈ Σk, k ≥ 0, and trees t1, . . . , tk ∈ TΣ(S), a(t1, . . . , tk) ∈
TΣ(S).

For the unranked case, the set FΣ(S) is analogously defined.
The height of a tree is inductively defined on its structure. It intuitively is

the number of nodes of the longest path from a leaf to the root.

Definition 2.4 (Tree Height) Let Σ be an alphabet. The height of a ranked tree
t, is provided by the function ht(t) : TΣ →N, which is defined as:

(i) For a ∈ Σ0, ht(a) = 1 and
(ii) for a symbol b ∈ Σk with k ≥ 1 and t1, . . . , tk ∈ TΣ, ht(b(t1, . . . , tk)) =

1 + max{ht(ti) | i ∈ {1, . . . , k}}. /

Doc

Preliminaries ConclusionIntroduction

. . .

BodyBody TitleTitleBodyTitle

ChapterChapterChapter

Fig. 2.3. An unranked tree.

2.1 Trees and Forests 11

ε

Chapter

Title

Conclusion

Body

Chapter

Title

Preliminaries

Body

ε

ε

ε

Doc

Chapter

Title

Body

Introduction

ε

Fig. 2.4. The binary tree representation of the tree in Figure 2.3.

If we fix the rank of all symbols in Σ as 2 and have one element ε with
rank rank(ε) = 0 then we call the ranked trees over Σ binary trees.

Definition 2.5 (Binary Trees) Let ε be a symbol of rank 0. Let Σ = Σ2 ∪ {ε}
be a finite ranked alphabet. Then the set BΣ of binary trees b over Σ is defined
as:

b ::= ε | a(b1, b2)

for a ∈ Σ2 and b1, b2 ∈ BΣ where ε identifies the leaves. /

Binary trees are in one-to-one correspondence with unranked trees and
sequences of unranked trees (forests). Using the well-known first-child next-
sibling encoding a binary tree t represents a forest in the following way. The
label of the root node of t is the label of the left-most tree of the forest. The
content of this tree is given by the left child of t’s root. The right child accord-
ingly represents the sequence of siblings. Additionally, we have to mark the
end of each sequence of siblings with the special symbol “ε” of rank 0. Fig-
ure 2.3 shows an unranked tree and Figure 2.4 its binary tree representation1.
Therefore, the two formats

a(t1, t2) and a〈t1〉 t2

representing a forest are equivalent but in order to distinguish binary trees
from binary tree representations of forest, we will use the latter format when-
ever talking about forests. Based on this representation of forests as binary
trees, we define two kinds of height of a forest.

1 The three little triangles under each Body-element represent a forest throughout
this work.

12 2 Preliminaries

Definition 2.6 (Binary height) Let Σ be an alphabet. The height and binary
height of a forest f ∈ FΣ, denoted by ht(f) and bht(f) respectively, are defined
by:

(i) For ε, ht(ε) = bht(ε) = 0 and
(ii) for a ∈ Σ2 and t1, t2 ∈ BΣ, ht(a〈t1〉 t2) = max{ht(t1) + 1, ht(t2)} and

bht(a〈t1〉 t2) = 1 + max{bht(t1), bht(t2)}. /

2.2 Tree Substitution

Since each transformation can be put down to tree substitutions, we define it
in this section.

For a set Zk = {z1, . . . , zk} of symbols (k ≥ 0) and a forest f ∈ FΣ(Zk) and
forests f1, . . . , fk ∈ FΣ, we denote by

f [f1/z1, . . . , fk/zk]

the result of substituting forest fi for every occurrence of symbol zi in forest
f . The same is also defined for substituting nodes. For a set Y = {y1, y2} of
symbols and two trees t1 and t2 (as a special case of forests) the tree substitu-
tion is depicted in Figure 2.5.

a

c

εd

εε

εε

z

f :

t2 :

t1 :

εy2

y1 b

y1b

a

ε ε

d ε

c

c

εd

εε εε

z

f [t1/y1, t2/y2] :

ε

b

b

Fig. 2.5. The substitution f [t1/y1, t2/y2] of trees t1, t2 for symbols y1, y2.

Let Y = {y1, y2, y3, . . .} be the set of formal parameters and let Yk =

{y1, . . . , yk} for k ≥ 0. For languages L ∈ 2FΣ(Yk) and L1, . . . , Lk ∈ 2FΣ(Yk) with
k ≥ 0 and m ≥ 0, we present here the definition of inside-out and outside-in
substitution of L1, . . . , Lk into L of [EV85] (see also [ES77; ES78]).

The inside-out substitution (IO-substitution), denoted by

2.3 Finite-state Tree Automata 13

L[L1/y1, . . . , Lk/yk]

is defined as

L[L1/y1, . . . , Lk/yk] = { f [f1/y1, . . . , fk/yk] | t ∈ L, fi ∈ Li, i = 1, . . . , k}.

The ouside-in substitution (OI-substitution), denoted by

L[y1 ← L1, . . . , yk ← Lk]

is defined as follows. For a forest f ∈ FΣ(Yk), let Ny(f) denote the set of all
nodes which are labeled with yj, j = 1, . . . , k.

L[y1 ← L1, . . . , yk ← Lk] =

{ f [f1/r1, . . . , fn/rn] | f ∈ L,Ny(f) = {r1, . . . , rn},
λ(ri) = yj ⇒ fi ∈ Lj, i = 1, . . . , n}.

Here, λ(ri) denotes the label of the node ri. Note that although all variables
are substituted simultaneously, each single occurrence of a variable y j (j =
1, . . . , n) is replaced by an arbitrary element of the according set L j.

2.3 Finite-state Tree Automata

Types for XML are usually given as DTDs, XML Schema, or Relax NG. Since
its widespread use, we here briefly consider DTDs. A document type defini-
tion (DTD) for the document of Figure 2.1 is for example:

〈!ELEMENT Doc (Chapter∗) 〉
〈!ELEMENT Chapter (Title, Body)〉
〈!ELEMENT Body (Par+) 〉
〈!ELEMENT Title #PCDATA 〉
〈!ELEMENT Par ANY 〉

Each line defines the content-model for an element, i.e., it precisely describes
which elements may occur in the forest of children and their order. For ele-
ment Chapter, for example, the DTD defines that the children are a Title-
element followed by Body. A detailed description of the syntax and features
of DTDs can be found in the XML recommendation [BPSM+04].

A convenient abstraction of the languages described by schema lan-
guages are recognizable tree languages. They are accepted by finite-state tree
automata.

Definition 2.7 (Tree Automaton) A finite-state tree automaton (fta) is given by
a finite set Q of states, a finite ranked alphabet Σ of input symbols, a set
F ⊆ Q, a set Iσ for each symbol σ ∈ Σ, and a finite set δ of transitions. Set F

14 2 Preliminaries

contains all states that can be assigned to the root node of a tree, and Iσ lists
all states which can be assigned to a leaf node with label σ. Thus, an fta A is
specified by the tuple

A = (Q, Σ, F, Iσ, δ).

δ is a relation between an input symbol together with a sequence of states
and a state, i.e., δ ⊆ Q× Σ×Qk. A transition is of the form

(q, a, q1 · · · qk)

where q, q1, . . . , qk ∈ Q and a ∈ Σk is a symbol with rank k ≥ 0.

Tree automata can be viewed as processing their input in a bottom-up or
in a top-down fashion, depending on the roles of the sets F and Iσ.

“Bottom-up” indicates the direction from the leaves to the root of the
tree2. A bottom-up tree automaton A = (Q, Σ, F, Iσ, δ) works as follows. It
starts processing by assigning to each leaf node b ∈ Σ0 a state of Ib. Automa-
ton A moves up all the branches towards the root step by step as follows. If
a node v is labeled with the symbol a ∈ Σ of rank k, then A enters v in state
q if there is a transition (q, a, q1 · · · qk) ∈ δ, where q1, . . . , qk are the states of A
at the direct successors of v. The tree is accepted if A assigns a final state of F
to the root.

In the top-down view, an accepting state from set F is assigned to the root.
New states are assigned to the children of a node depending on its label and
state. A tree is accepted if every leaf labeled with b is assigned a state from
Ib [Nev02].

For the set of nodes of a tree t, denoted by N (t), a run of automaton A on
a tree t ∈ TΣ is a mapping

runA : N (t) → Q

which assigns to each node v ∈ N (t) a state runA(v) ∈ Q such that the
transitions relation is locally respected. For a node v ∈ N (t) it is inductively
defined as follows: if v is a leaf, then

runA(v) ∈ {q ∈ Q | (ε, q) ∈ δ},

and otherwise if v is an internal node with label a ∈ Σk,

runA(v) ∈ {q ∈ Q | ∃ q1, . . . , qk ∈ Q : (q, a, q1 . . . qk) and
qi ∈ runA(vi), i = 1, . . . , k}.

The tree language accepted by A consists of the trees t ∈ TΣ by which A
can reach an accepting state

2 Gécseg and Steinby remark to this that “this terminology is connected with the common
practice of drawing trees upside down” [GS84].

2.4 Monadic Second-Order Logic 15

L(A) = {t ∈ TΣ | runA(t) ∈ F}.

In other words, the language consists of all trees having runs which map
their roots to an accepting state.

If δ is a function, i.e., if there is for each symbol a ∈ Σk of rank k and
each k-tupel q1, . . . , qk at most one state q with (q, a, q1 · · · qk) ∈ δ, then A is
called deterministic. Since for the deterministic case δ is a function δ : Σ ×
Qk → Q, we use the following notation δa(q1 · · · qk) = q to indicate that
the automaton changes into state q for symbol a if q1, . . . , qk are the states at
the corresponding subtrees. In theory, deterministic finite tree automata can
be exponentially larger than non-deterministic ones. In practice, however,
they are usually not much larger than a corresponding non-deterministic one
[GS97].

Example 2.8 Let A = (Q, Σ, F, Ie, δ) such that

• Q = {qend, qleft, qright, qinit},
• Σ = {root, left, right, e} where the symbols root, left, and right

have rank 2, and e is of rank 0,
• F = {qend},
• Ie = {qinit},

and δ consists of the following transitions:

(qend, root, qleftqright), (qinit, e),
(qleft, left, qleftqright), (qright, right, qleftqright),
(qleft, left, qleftqinit), (qright, right, qleftqinit),
(qleft, left, qinitqright), (qright, right, qinitqright),
(qleft, left, qinitqinit), (qright, right, qinitqinit).

Automaton A accepts all trees with a root node labeled with “root”; nodes
which are the left son of its father are labeled with “left” while right sons
are labeled with “right” and leafs labeled with “e”.

2.4 Monadic Second-Order Logic

One of the main tasks in XML processing is querying, i.e., locating parts of
documents with some specified structural properties. The queries are de-
fined in a pattern language, which allows to exactly describe all properties
that should be matched by the queried nodes. Common pattern languages
are XPath [CD99a] or fxgrep [Ber05]. They both share the idea of using paths
as a framework for expressing queries. The following XPath expression

//Chapter[Body/Def]/Title

asks for all Title-elements in a document which are the direct successor of
a node labeled with Chapter. The additional expression grouped in “[]”

16 2 Preliminaries

restricts the Chapter-elements to those having a Def node inside a Body-
element.

Monadic second-order logic (MSO) on unranked trees has been identified
as a convenient theoretical framework for reasoning about the expressive-
ness and implementations of practical XML query languages (cf. [NS02]).
The above query can be formulated in MSO as follows:

∃ z. labelChapter(z)∧
(∃ x1. z/x1 ∧ labelBody(x1) ∧ (∃ x2. x1/x2 ∧ labelDef(x2)))∧
z/x1 ∧ labelTitle(x)

Here, the formula in braces corresponds to the additional structural restric-
tion [Body/Def]. The first sub-formula ∃ z. labelChapter(z) corresponds to
the XPath expression //Chapter. The formula labelChapter(z) returns true
for all nodes that are labeled with Chapter. The last part of the formula,
i.e., z/x1 ∧ labelTitle(x) completes the path to the queried nodes. The sub-
formula z/x1 denotes all direct successors x1 of node z and labelTitle(x) re-
stricts these nodes to those that are labeled with Title.

Monadic second-order logic is an extension of first-order logic by second-
order variables denoted with X, X1, X2 . . . which range over sets of elements
of models. Each second-order variable X implies a corresponding atomic for-
mula X(x), X(y) with the intended meaning “x belongs to X”, “y belongs
to X”. An overview of MSO and its connection to automata can be found
in [Tho97].

An MSO formula φ (over alphabet Σ) is given by the grammar:

φ ::= x1; x2 | x1/x2 | labela(x1) | X(x1) | φ1 ∨ φ2 | ¬φ | ∃ x1.φ | ∃ X.φ

Here, x1, x2 are individual variables ranging over nodes of the input forest,
while X is a set variable ranging over sets of nodes. The binary relation sym-
bols “;” and “/” denote the next sibling and child relation between nodes,
respectively. The expression labela(x) is true for all nodes labeled with the
symbol a ∈ Σ.

For a given forest f , an assignment ρ1 of the individual variables occur-
ring free in a formula φ to nodes in N (f), and an assignment ρ2 of set vari-
ables to node sets, the satisfiablity assertion ρ1, ρ2 |= f φ is defined by

ρ1, ρ2 |= f x1; x2 iff ∃s ∈ Π(f), i ∈N : ρ1(x1) = si and ρ1(x2) = s(i + 1)

ρ1, ρ2 |= f x1/x2 iff ∃i ∈ N : ρ1(x1)i = ρ1(x2)

ρ1, ρ2 |= f labela(x1) iff f [ρ1(x1)] = a〈 f ′〉 for a ∈ Σ, f ′ ∈ FΣ

ρ1, ρ2 |= f X(x1) iff ρ1(x1) ∈ ρ2(X)

ρ1, ρ2 |= f φ1 ∨ φ2 iff (ρ1, ρ2 |= f φ1) or (ρ1, ρ2 |= f φ2)

ρ1, ρ2 |= f ¬φ iff not ρ1, ρ2 |= f ¬φ

ρ1, ρ2 |= f ∃ x1.φ iff ρ1 ⊕ {x1 7→ v}, ρ2 |= f φ for some v ∈ N (f)
ρ1, ρ2 |= f ∃ X.φ iff ρ1, ρ2 ⊕ {X 7→ V} |= f φ for some V ⊆ N (f)

2.5 Notes and References 17

where “⊕” is the operation which updates or extends an environment with
the new bindings to the right3.

In particular, if an MSO formula φ contains the free variables x1, . . . , xk,
we write

(v1, . . . , vk) |= f φ

to indicate that φ holds (or matches) in the forest f if we bind variable xi to
the node vi ∈ N (f) for i = 1, . . . , k.

We close this short introduction to monadic second-order logic with a
classical result of Thatcher and Wright [TW68] and Doner [Don70], respec-
tively. It relates recognizablity with MSO-definability:

Theorem 2.9 A set of finite trees is recognizable by a finite tree automaton if
and only if it is MSO-definable.

This result implies that for every MSO formula, there exists a nondeter-
ministic finite automaton accepting exactly the same set as described by the
formula.

2.5 Notes and References

The connection between XML and unranked trees is described in several
publications. We mention here on behalf of the existing introductions the sur-
vey of Suciu [Suc98], the books of Goldfarb [Gol90], Abiteboul et al. [ABS00],
and the recently published XML introduction of Møller and Schwartzbach
[MS06]. Our approach is also inspired by the works of Neumann [Neu99]
and Berlea [Ber05].

The term binary height in Definition 2.6 was introduced in an article about
a finite-state transducer, which directly works on forests [PS04].

A full explanation of inside-out and outside-in substitution can be found
in the survey “IO and OI” of Engelfriet and Schmidt [ES77; ES78].

Tree automata were introduced by Doner [Don65; Don70] and Thatcher
and Wright [TW65; TW68]. Their goal was to prove the decidability of weak
second-order theory with multiple successors. Overviews of tree automata
are given in the excellent publications of Gécseg and Steinby [GS84; GS97]
and Hopcroft et al. [HMU01]. Additionally, we want to mention the “TATA”
textbook presenting basics of tree automata as well as several variants [CDG+97].

A concise overview of monadic second-order logic and its connection to
automata can be found in [Tho97].

3 For two variable environments σ and ω,

(σ⊕ω)(xi) =

{

ω(xi), if defined
σ(xi), otherwise.

3

The Transformation Language TL

Due to XML’s increasingly important role in the exchange of data on the
Web, it is highly desirable to have algorithms for static type checking XML
transformations. This means, before transforming concrete documents, we
want to analyse whether each document, which conforms to a specified input
type, is transformed into a valid document of the predefined output type.

Static type checking of XML transformations can be considered in a wide
variety of settings [MS05]. In general, one first has the choice in the type and
second in the transformation formalism. Usually, the input and output types
are specified by DTDs [BPSM+04] or XML Schema [FW04]. Now one can also
use Relax NG to define a pattern for the structure and content of an XML
document [Jam01]. Transformation formalisms can be XQuery [BCF+06],
XSLT [Cla99;Kay05], or the pure functional approach fxt [BS02]. Clearly, the
decidability of the type checking problem heavily depends on the expres-
sive power of the type and transformation formalisms used. If, for example,
a general purpose programming language like OCaml is used to define the
transformation, then type checking is obviously undecidable and can only
be approximated. In the context of this work we are interested in exact al-
gorithms, and thus we only consider transformation formalisms for which
static type checking is decidable.

In order to be as flexible as possible and to abtract from concrete limita-
tions of existing XML transformation languages, we want to have a transfor-
mation language, which

(1) subsumes the key features of the usual languages, and
(2) allows exact static type checking.

Developing such a “universal” transformation language together with a type
checking algorithm, provides a type checking method for all languages cap-
tured by our “universal” transformation language.

Before introducing our XML transformation language, we first present
the type formalism for specifying the correct inputs and outputs of our pro-
grams. A convenient abstraction of the existing XML type formalisms are

20 3 The Transformation Language TL

regular tree languages [MLM01; Nev02] (see Section 2.3). They essentially
capture the expressiveness of DTDs as well as that of XML Schema. XML
Schema, for example, goes beyond regular tree languages because it allows
to precisely define the types of the data nodes [FW04]. In the context of this
thesis, we are only concerned with the structural properties of XML doc-
uments. This means, we understand an XML type as description how the
XML elements are related in a document.

In order to illustrate fundamental elements of XML transformation lan-
guages, we consider the following XSLT program, which creates a table of
contents for a given document:

Example 3.1

1 〈xsl : template match = “Doc′′〉
2 〈Doc〉
3 〈Toc〉
4 〈xsl : for-each select = “Chapter′′〉
5 〈Entry〉〈xsl : value-of select = “Title′′/〉〈/Entry〉
6 〈/xsl : for-each〉
7 〈/Toc〉
8 〈xsl : element〉〈xsl : apply-templates/〉〈/xsl : element〉
9 〈/Doc〉

10 〈/xsl : template〉

11 〈xsl : template match = “∗′′〉
12 〈xsl : element〉〈xsl : apply-templates/〉〈/xsl : element〉
13 〈/xsl : template〉

Each template is applicable to those input nodes that are matched by the
XPath expression given as attribute with name “match”. In line 1 it is laid
down that this template is meant to transform all nodes of the input labeled
with “Doc”. Line 11 uses the wild-card “∗” to indicate that this template
matches all other nodes which are not labeled with “Doc”. These expressions
are called match patterns and are one of the most important elements of trans-
formation languages.

In the first template the pattern “Chapter” in line 4 defines that the code
enclosed with the xsl : for-each tags (lines 4 and 6) is executed for each
node labeled with “Chapter”. For each Chapter-element an Entry-element is
written into the output whose content is determined as the text of the Title-
element in the currently transformed Chapter-element (line 5). This second
sort of patterns like the one in line 4 are called select patterns.

For structuring the transformation it might be useful to organize it in func-
tions. The for-each part for example could also be realized as a function that
is called for each Chapter-element. The concept of functions corresponds to
“modes” in XSLT: all templates with the same mode form a function [XSL99].

3.1 Definition 21

Moreover, it seems to be useful to borrow the idea of parameters from
programming languages. In this way it is possible to transport context in-
formation from the currently transformed element to a later transformation
step. Due to the fact that these parameters are a restricted variant whose
content cannot be transformed but only copied, they are called accumulating
parameters.

Summing up, our “universal”XML transformation language should pro-
vide:

(1) match patterns for selecting rules,
(2) select patterns determining where the transformation continues,
(3) named functions, which allow to devide the whole transformation into

components, and
(4) accumulating parameters to refer to context information.

Therefore, we present the transformation language TL which is powerful
enough to express many real-world XML applications and nevertheless can
effectively be type checked. This language is based on the deterministic and
parameter-less transformation language DTL suggested in [MN99]. Since it
combines the recursion mechanism of XSLT and monadic second-order logic
(MSO) as pattern facility, TL subsumes the essential operations of existing
domain specific languages for XML processing, i.e., the so-called tree trans-
formation core.

This chapter is devided into 4 sections. We will first define the syntax of
a TL program (Section 3.1). After exemplifying TL by means of a typical use-
case of text processing, we formalize its denotational and operational seman-
tics in Section 3.3. The chapter is closed by discussing other transformation
models.

3.1 Definition

Before discussing its functionality, we first present a formal definition of TL
programs. Sharing the rule based approach with most of the well established
XML transformation languages such as XSLT, TL can be imagined as a col-
lection of rules, each defining how to transform an exactly differentiated set
of sub-forests of the input. This set of sub-forests to which a specific rule is
applicable is determined by means of a monadic second-order (MSO) match
pattern which is given in the definition of that rule. The body of a rule is
built up of constant XML parts combined with accumulating parameters and
function calls. Function calls again use MSO patterns — the so-called select
patterns — to specify the parts of the input document for which the func-
tion should be called. Accumulating parameters allow to “transport” context
information to a subsequent transformation step. Accumulating parameters
have to be carefully distinguished from parameters known from program-
ming languages because — in contrast to the latter ones — the content of

22 3 The Transformation Language TL

accumulating parameters cannot be queried or transformed. It is only possi-
ble to copy their content into the output or a new parameter.

Definition 3.2 A TL program P is a pair

(R, A0)

where A0 is an initial action and R is a finite set of rules of the form

q(φ, y1, . . . , yk) −→ A

where q is a function name, φ is an MSO match pattern with one free variable
x1, the y1, . . . , yk, k ≥ 0 are the accumulating parameters, and A is an action.
Possible actions are ε, or one of accumulating parameters y j of the left-hand
side. Moreover, assuming that A1, . . . , Am are actions, then the following ex-
pressions are also actions

A1 A2, 〈a〉A1〈/a〉, q′(ψ, A1, . . . , Am)

where a is the label of a node in the output, q′ is a function name, and ψ is a
select pattern, i.e., an MSO formula with two free variables x1, x2. /

Given a rule q(φ, y1, . . . , yk) −→ A of a TL program P, φ is called the match
pattern and defines to which nodes of the input this rule can be applied. The
right-hand side A is called action part or simply action. The accumulating
parameters y1, . . . , yk determine the rank of a function q, denoted by rank(q):
a function without any parameters is of rank 0 and a function with k > 0
parameters is of rank k.

Intuitively, the meaning of the actions listed in the definition is as follows:
the output for a node x1 in the input forest can be either the empty forest ε, or
the content of one of the accumulating parameters y j listed in the left-hand
side of the rule. It can be the concatenation A1 A2 of the outputs produced
by the actions A1 and A2, or a single element labeled a whose content is re-
cursively determined by some action A1. Finally, it can be a recursive call
to some function q′ where the values of the actual parameters are again de-
termined by actions Ai and furthermore, the nodes processed next by q′ are
precisely specified by means of some binary MSO pattern ψ, the select pattern.

Since TL programs usually are nondeterministic, we combine the possible
action parts A1, . . . , An in one rule and write

q(φ, y1, . . . , yk) −→ A1 | . . . | An.

In general, more than one pattern may match at a point of the compu-
tation, i.e., for a call q(ψ, s1, . . . , sk) to function q with the actual parameters
s1, . . . , sk there may be rules

3.1 Definition 23

q(φ1, y1, . . . , yk) −→ A1
...

q(φn, y1, . . . , yk) −→ An

matching at the nodes specified by a select pattern ψ. In different practi-
cal transformation languages, different resolution strategies have been pro-
posed. fxt, for example, simply chooses the first applicable rule [BS02].
XSLT [Cla99] and its revised second version [Kay05], on the other hand, both
recommend on choosing the “most specific” rule. A rule is more specific than
another if its priority — a decimal number — is higher. If a node in a source
document matches more than one rule, only the rule with the highest prior-
ity is considered. The priority of a rule can be explicitly specified by the pro-
grammer or if it is not specified, a default priority is computed, based on the
syntax of the pattern. For example, a pattern that matches nodes according
to their name and context has a higher priority than a pattern that matches
nodes only according to their names. In many cases, the suggested process
to determine priorities computes for highly selective patterns a higher prior-
ity than for less selective patterns. However, since the priority is determined
only based on the syntax of the pattern, a pattern that matches a subset of the
nodes matched by another one has not necessarily a higher priority. The pat-
terns attribute(*,xs:decimal) and attribute(*,xs:short), for example
— matching attributes of type decimal or short —, have the same priority,
despite the fact that the latter pattern matches a subset of the nodes matched
by the former. Therefore, the second version of XSLT recommends to allocate
explicit priorities [Kay05].

MSO logic as a pattern language is strong enough to make priorities for
selecting rules explicit by adding the negation of a conjunction of all patterns
of higher priorities. For three rules, for example,

q(φ1, y1, . . . , yk) −→ A1
q(φ2, y1, . . . , yk) −→ A2
q(φ3, y1, . . . , yk) −→ A3

where ψ1 has the highest priority and ψ3 the lowest, we construct the follow-
ing patterns:

q(φ1, y1, . . . , yk) −→ A1
q(φ2 ∧ ¬φ1, y1, . . . , yk) −→ A2
q(φ3 ∧ ¬(φ1 ∨ φ2), y1, . . . , yk) −→ A3

Thus, it is always possible to write TL programs for which the match pat-
terns of the same function are all mutually disjoint. In this way, we call a
TL program deterministic if for each function q at every node of every in-
put document at most one match pattern of q’s rules matches. Note that this
property is decidable for a given TL program P.

24 3 The Transformation Language TL

Definition 3.3 (Deterministic TL programs) A TL program P = (R, A0) is
deterministic if for all q and all select patterns ψ occuring in a call to q holds:
at most one match pattern φ of q’s rules matches the selected set of nodes. /

In order to be more flexible, we consider nondeterministic TL programs
because nondeterminism can be used to paraphrase predicates that go be-
yond MSO’s expressive power. This means — with regard to types — that
at such a point of the transformation, the type of the result is the type re-
turned by one of the potentially chosen actions. The nondeterministic choice
between the different potentially chosen actions gives a type safe over-
approximation of the intended transformation.

3.2 Example

The following TL program illustrates the different language features. A very
common task in document processing is to make a table of contents. Thinking
of a PhD thesis for example, it is arranged in chapters each having a title and
a body containing the text of that chapter. An example document can be seen
in Figure 3.1.

Preliminaries

Doc

Chapter Chapter Chapter

Title Body Title TitleBody Body

. . .

Introduction Conclusion

Fig. 3.1. A document tree.

The table of contents should contain all chapter titles in the correct order,
i.e., in our case it lists “Introduction”, “Preliminaries”,. . ., and finally “Con-
clusion”. Figure 3.2 shows the transformed document which now contains
an element Toc as new child of the root element. This new element contains
an Entry-element for each chapter.

In order to create the table of contents automatically, one has to succes-
sively transform each Chapter-element, identify the string of its title, and
copy it as Entry into the Toc-element. More precisely, we start the transfor-
mation at the root node and write a Doc-node followed by a Toc-element into
the output. Then, we have to search for every Title-node occurring under
the root node. Each of these is transformed by grouping its content under an
Entry-element, and then copied as child into Toc. To complete the transfor-
mation, an exact copy of the sequence of Chapter-elements has to be added
as right siblings of Toc. This operation can be expressed with the TL program

3.2 Example 25

Doc

. . .

Conclusion
Preliminaries

Introduction

EntryEntryEntry

Toc

Preliminaries ConclusionIntroduction

. . .

BodyBody TitleTitleBodyTitle

ChapterChapterChapter

Fig. 3.2. The transformed document.

Example 3.4

1 q0(labelDoc(x1)) −→ 〈Doc〉
2 〈Toc〉
3 q1(∃ z. x1/z ∧ z/x2 ∧ labelTitle(x2))
4 〈/Toc〉
5 q2(x1/x2)
6 〈/Doc〉
7 q1(labelTitle(x1)) −→ 〈Entry〉q2(x1/x2)〈/Entry〉
8 q2(x1) −→ x1

The left-hand sides of the rules (cf. lines 1, 7, and 8) define at which nodes
of the input the respective function is applicable. Line 1 defines function q0.
The match pattern labelDoc(x1) signalizes that q0 can be applied to all nodes
with label Doc. Each right-hand side defines how the matched nodes have
to be transformed. They contain XML fragments like 〈Doc〉 . . . 〈/Doc〉, and
calls of other TL functions. In line 3 function q1 is called for all nodes that
are matched by the MSO select pattern ∃ z. x1/z ∧ z/x2 ∧ labelTitle(x2). It
matches all nodes x2 that are a child of a node z, which itself is a child of
the current node x1. Moreover, this node must be labeled with Title. Thus,
this select pattern searches for every Title elements occurring in the input
document. Line 5 completes the transformation by adding an exact copy of
the sequence of Chapter-elements as children of Doc.

The transformation of the Title-elements is defined in line 7. Function
q1 groups the content of each Title (expressed by q2(x1/x2)) between tags
labeled with Entry.

Last but not least, function q2 (cf. line 8) returns an exact copy of the cur-
rent input.

This short TL program obviously preforms the desired transformation
and creates an output document for a document arranged in chapters where
the sequence of chapters is preceeded by a Toc-element containing all chapter
titles. Thus, it is equivalent to the XSLT-program presented in Example 3.1.

26 3 The Transformation Language TL

3.3 Induced Transformation

The evaluation of a TL Program P = (R, A0) begins at the root node of the in-
put document. Given an input document d, the program P starts processing
by evaluating its initial action A0 for the root node of d. A function q with ac-
tual parameters f1, . . . , fk is applied to a node v of the input by carrying out
the following steps. First, we nondeterministically choose one of the rules
q(φ, y1, . . . , yk) −→ A for function q where pattern φ matches the input node
v. Then we bind the formal parameters yj, j = 1, . . . , k, to the actual param-
eters f j and execute the action part A of the chosen rule. Depending on the
current node v the next nodes for the application of a successive function call
q′(ψ, A1, . . . , Am) are selected in accordance to the binary pattern ψ, i.e., we
choose all nodes u of the input document for which the pair (v, u) matches
pattern ψ.

We first characterize the transformation induced by a TL program P by
means of a fixpoint semantics. Afterwards, we define it by using a “tradi-
tional” operational semantics via interpreting each TL function as a rewrite-
system working on forests.

Due to the use of accumulating parameters, function calls can be nested.
Accordingly, we have the choice to which function we apply a rule first.
Therefore, we have to distinguish between two different evaluation modes:
outside-in and inside-out [EV85]. In general, both strategies compute differ-
ent results because of the order of copying and nondeterminism. Consider
the following TL program:

q0(φ0) −→ q1(x1, q2(x1))
q1(φ1, y) −→ 〈a〉y y〈/a〉
q2(φ1) −→ 〈/l〉|〈/r〉

For a node v of the input, the program is evaluated with the following trans-
formation steps:

q0(v) ⇒ q1(v, q2(v))

Evaluating the inner-most function call first, results in

q1(v, 〈/l〉) ⇒ 〈a〉〈/l〉 〈/l〉〈/a〉 or
q1(v, 〈/r〉) ⇒ 〈a〉〈/r〉 〈/r〉〈/a〉

This means inside-out evaluation results in trees where the leafs are identical.
For the outside-in mode, we get

q0(v) ⇒ q1(v, q2(v)) ⇒ 〈a〉q2(v) q2(v)〈/a〉

Then, each occurrence of q2(v) is nondeterministically evaluated and the re-
sulting tree is one of:

〈a〉〈/r〉 〈/r〉〈/a〉, 〈a〉〈/r〉 〈/l〉〈/a〉, 〈a〉〈/l〉 〈/r〉〈/a〉, 〈a〉〈/l〉 〈/l〉〈/a〉

3.3 Induced Transformation 27

In the outside-in mode parameters may contain unevaluated function calls
which are first copied and then nondeterministically evaluated in a subse-
quent step. The inside-out mode first chooses nondeterministically how to
evaluate the innermost call and copies the evaluation result to every corre-
sponding parameter position [EV85; ES77; ES78].

3.3.1 Denotational Semantics

Let P = (R, A0) be a TL program. Let Σ denote the set of symbols possibly oc-
curring in input or output forests and let Q denote the set of all TL functions
occurring in program P.

Before presenting the semantics, we first define the concatenation of lan-
guages L1, . . . , Lk as the set of forests assembled from forests of the k lan-
guages, i.e.,

L1 · · · Lk = { f1 · · · fk | fi ∈ Li, i = 1, . . . , k}.

Outside-In Evaluation

Outside-in evaluation means that the evaluation of parameters is passed to a
subsequent transformation step. Accordingly, they may contain unevaluated
function calls.

For a given input forest f ∈ FΣ, each function symbol q ∈ Q with
rank(q) = k + 1 is associated with a function from input nodes to sets of
forests with parameters in Y = {y1, . . . , yk},

[[q]] f ,OI : N (f) → 2FΣ(Y).

For all rules q(φ, y1, . . . , yk) −→ A of R, the denotation functions are defined
as the least fixpoint of

[[q]] f ,OI(v) ⊇ [[A]] f ,OIv

where v is a node of the input matching pattern φ, i.e., v |= f φ.
Here, [[·]] f ,OIv denotes the evaluation of a right-hand side expression with

respect to the given input forest f and the current node v

[[ε]] f ,OIv = {ε}
[[yj]] f ,OIv = {yj}

[[A1 A2]] f ,OIv = { f1 f2 | fi ∈ [[Ai]] f ,OIv, i = 1, 2}
[[〈a〉A1〈/a〉]] f ,OIv = {〈a〉 f ′〈/a〉 | f ′ ∈ [[A1]] f ,OIv}

[[q′(ψ, A1, . . . , Am)]] f ,OIv = L′1 · · · L
′
l ,

where L′i = L̃i[y1 ← L1, . . . , ym ← Lm] with L̃i = [[q′]] f ,OI(vi) and Lµ =
[[Aµ]] f ,OIv for all µ = 1, . . . , m, and where v1 < . . . < vl are all nodes vi ∈ N (f)
in document order “<” which form together with the current node v a match
of the binary pattern ψ, i.e., (v, vi) |= f ψ for all i = 1, . . . , l.

The simultaneous OI-substitution is defined in Section 2.2.

28 3 The Transformation Language TL

Inside-Out Evaluation

In the case of inside-out evaluation, the inner-most function call of nested
functions in an accumulating parameter is evaluated first. As a consequence,
every parameter position contains only fully evaluated results. This evalua-
tion mode corresponds to parameter passing in most of the general purpose
programming languages like OCaml or Java.

For a given input forest f ∈ FΣ and a set of parameter variables Y =
{y1, . . . , yk}, every function symbol q with k accumulating parameters again
denotes a function

[[q]] f ,IO : N (f) → 2FΣ(Y).

which are defined as the least fixpoint of

[[q]] f ,IO(v) ⊇ ([[A]] f ,IOv)[f [v]/x1]

if v |= f φ, and q(φ, y1, . . . , yk) −→ A is a rule in R. The interpretation of the
right-hand side expressions is formalized over their structure, i.e.,

[[ε]] f ,IOv = {ε}
[[yj]] f ,IOv = {yj}

[[A1 A2]] f ,IOv = { f1 f2 | fi ∈ [[Ai]] f ,IOv, i = 1, 2}
[[〈a〉A1〈/a〉]] f ,IOv = {〈a〉 f ′〈/a〉 | f ′ ∈ [[A1]] f ,OIv}

[[q′(ψ, A1, . . . , Am)]] f ,IOv = L′1 · · · L
′
l

where L′1 · · · Ll again denotes the concatenation of all possible forests

L′i = L̃i[L1/y1, . . . , Lm/ym]

with L̃i = [[q′]] f ,IO(vi) and Lν = [[Am]] f ,IOv for all ν = 1, . . . , m. As for the
outside-in mode, v1 < . . . < vl are all nodes vi ∈ N (f) in document or-
der “<” which form together with the current node v a match of the binary
pattern ψ, i.e., (v, vi) |= f ψ for all i = 1, . . . , l.

The IO-substitution is explained in Section 2.2.

Definition 3.5 Let µ ∈ OI, IO. The µ-transformation realized by a TL pro-
gram P = (R, A0) on non-empty forests, denoted by τP,µ, is defined by

τP,µ = {(f , s) ∈ FΣ ×FΣ | s ∈ [[A0]] f ,µ root(f)}

where root(f) is the root node of the left-most tree of the input forest f .

3.3.2 Operational Semantics

After characterizing TL programs with the help of fixpoint semantics, we
now associate with each TL program a translation by means of a derivation

3.3 Induced Transformation 29

relation. Therefore, each function is interpreted as a rewriting system work-
ing on forests.

Let P = (R, A0) be a TL program. Let Q denote the set of all function
symbols occurring in the rules of P and let Σ be the set of all input and output
symbols.

For a set Q of TL functions, an alphabet Σ, and an input forest f ∈ FΣ,
the set DT (Q, Σ, f) of terms occurring in a derivation is defined inductively
as follows:

(1) ε ∈ DT (Q, Σ, f);
(2) for the maximal number r of parameters of all functions in Q, term y j

with 1 ≤ j ≤ r is in DT (Q, Σ, f);
(3) for d ∈ DT (Q, Σ, f) and a ∈ Σ, term 〈a〉d〈/a〉 ∈ DT (Q, Σ, f);
(4) if d1 and d2 are terms in DT (Q, Σ, f), then d1 d2 ∈ DT (Q, Σ, f);
(5) for a function q ∈ Q with k parameters, a node v ∈ N (f) and terms

d1, . . . , dk ∈ DT (Q, Σ, f), then q(v, d1, . . . , dk) is a term in DT (Q, Σ, f).

Particularly, every result forest is contained in the set of derivation terms, i.e.,
FΣ ⊆ DT (Q, Σ, f).

Before defining the derivation relations, we first specify how the action
part of a TL rule is evaluated with respect to an input forest f ∈ FΣ and a
node v ∈ N (f).

[ε] f ,v = ε

[〈a〉A〈/a〉] f ,v = 〈a〉[A] f ,v〈/a〉
[A1 A2] f ,v = [A1] f ,v [A2] f ,v
[yj] f ,v = yj
[q(ψ, A1, . . . , Ak)] f ,v = q(u1, [A1] f ,v, . . . , [Ak] f ,v) . . . q(ur , [A1] f ,v, . . . , [Ak] f ,v),

where {u1 < . . . < ur} = {u ∈ N (f) | (u, v) |= f ψ}. The order < is the
natural document order of f . In particular, the evaluation of the initial action
A0 of program P is contained in the set of derivation terms DT (Q, Σ, f).

In order to define the derivation relation, let α, β ∈ DT (Q, Σ, f). The bi-
nary relations ⇒P, f ,⇒P, f ,IO,⇒P, f ,OI⊆ DT (Q, Σ, f) × DT (Q, Σ, f) are given
by

(i) α ⇒P, f β if there are forests s1, . . . , sk ∈ DT (Q, Σ, f), there is an occur-
rence of an unevaluated function call q(v, s1, . . . , sk) at node u ∈ N (α) of
α, and there is a rule q(φ, y1, . . . , yk) −→ A in R with v |= f φ, such that

β = α[[A] f ,v/u][s1/y1, . . . , sk/yk],

i.e., the unvaluated call of q at node u is replaced by its result [A] f ,v.
(ii) α ⇒P, f ,OI β if α ⇒P, f β, but for u in (i) the following holds: on the path

from u to the root of α no function symbol occurs. This restriction guar-
antees that the outermost function call is evaluated first.

30 3 The Transformation Language TL

(iii) α ⇒P, f ,IO β if α ⇒P, f β, but the parameters s1, . . . , sk are restricted to be
elements of FΣ, i.e., parameters are fully evaluated when they are passed
to a subsequent transformation step.

For both binary relations⇒IO and⇒OI,
∗
⇒ and +

⇒ are defined as usual.

Definition 3.6 Let µ ∈ {OI, IO}. The µ-translation induced by TL program
P = (R, A0) on non-empty forests, denoted by πP,µ, is defined as

πP,µ = {(f , s) ∈ FΣ ×FΣ | [A0] f ,root(f) ⇒P, f ,µ s}

where root(f) denotes the root node of the left-most tree of the input forest f
and [A0] f ,root(f) denotes the evaluation of the initial action. /

The following theorem states that the fixpoint characterization and the
operational semantics of TL programs coincide. As a consequence, this result
justifies the use of the fixpoint semantics in the following discussions.

Theorem 3.7 Let P = (R, A0) a TL program and let µ ∈ {IO, OI}. Then
πP,µ = τP,µ.

3.4 Notes and References

Our XML transformation language TL has been previously presented in
[MBPS05]. It is based on the transformation language DTL [MN99]. Based on
the recursion mechanism of XSLT [XSL99] and using monadic second-order
logic as pattern language, DTL subsumes the essential operations of domain
specific languages for XML processing. All results concerning DTL, how-
ever, are restricted to to the fragment of deterministic and top-down trans-
formations only. This fragment is a natural generalization to unranked trees
of top-down tree transducers with look-ahead. Moreover, it is shown that
the emptiness and finiteness problems are decidable for ranges of DTL pro-
grams. Here, we lift the restriction and consider general DTL programs (de-
terministic and nondeterministic). Moreover, we enhance the original model
by accumulating parameters. They allow for long-distance tranportation of
document parts and are therefore a convenient technique to provide access
to context information.

There are a number of well-established XML transformation languages
with varying support for type checking.

Unquestionably, the most popular transformation languages are XSLT1.0
[Cla99] and its follow-up version XSLT2.0 [Kay05]. They are stand-alone
domain-specific language, i.e., they have their own compiler or interpreter.
Like TL, it is rule-based and these rules are similar to those of TL. Match
and select patterns are defined in XPath1.0 [CD99b] and XPath2.0 [BBC+06],
respectively, which are both languages for addressing nodes or parts of an

3.4 Notes and References 31

XML document. The first version itself is untyped and does not support type
checking, but recently, a tool for flow-based type checking of XSLT has been
designed [MOS05]. XSLT2.0 is prepared as a schema-aware transformation
processor but it still has only the status of a Candidate Recommendation.

XQuery [BCF+06] is proposed by the W3C. It is a strongly-typed func-
tional language for querying and transforming XML documents. While XSLT
is more intuitive as a stylesheet language, XQuery is especially expressive for
typical database operations like joins and sorting in so-called data-oriented ap-
plications [Ber05]. As XML trees may be seen to generalize relational database
tables, XQuery is designed to generalize the SQL query language [MS05]. A
term language is used for constructing values, and XPath [CD99b] is used for
deconstructing and pattern matching.

XDuce [HP03] and CDuce [BCF03] are a family of functional transforma-
tion languages. The intention has been to investigate the type-safe integra-
tion of XML into a functional programming language. Navigation and de-
construction are based on an extension of the pattern matching mechanism
of functional languages with regular expressions. Patterns may contain vari-
ables which are bound to parts of the matched structure. The bound parts
then can be addressed in subsequent processing. CDuce provides some lan-
guage features borrowed from general purpose functional languages, like
overloaded functions, iterators on sequences and trees, and a very comfort-
able pattern algebra.

Another functional approach to XML processing is fxt [BS02]. Although
it does not support type checking, it is the force behind some features of TL,
especially the binary select patterns. Moreover, the lack of schema-awareness
in fxt was a decisive motivation to think about an XML transformation model
subsuming the tree transformation core of most of the existing transforma-
tion languages.

The same reason induced also Milo, Suciu, and Vianu to develop an ab-
stract and rather general model of XML transformation languages called k-
pebble tree transducer [MSV00;MSV03]. The k-pebble tree transducer (k-ptt)
expresses transformations on ordered, labeled trees. Inspired by tree-walking
pebble automata [EH99], up to k pebbles can be placed on the input tree,
moved up and down the tree, and removed. Engelfriet illustrates the basic
idea of pebbles with the following statement: “The input is not fed into the
[transducer] (like money into a coffee machine), but the [transducer] walks on the
input [tree] (like a mouse in a maze)” [EH99]. Transitions of the k-ptt are deter-
mined by the symbol of the current node, the state, and the placement of the
pebbles. Once started by placing the first pebble on the root node of the in-
put, the k-ptt is able to move in every (possible) direction in the tree or to stay
at the current node. If the transducer emits some output it does not move on
the input. A tree-walk automaton [EHV99] is a 1-pebble tree transducer with-
out output transitions and with an accepting state. As observed in [MSV00],
there is also a natural connection of pebble tree transducers and the con-
cept of tree-walking automata introduced by Aho and Ullmann [AU71] (see

32 3 The Transformation Language TL

also [ERS80]). Pebble transducers can be obtained from these automata by
adding pebbles and generalizing them from strings to trees [EM03a]. Top-
down tree transducers [GS97; GS84] correspond also to the case when k = 1
and the pebble is allowed to move only downwards.

4

Stay Macro Tree Transducers

Macro tree transducers were introduced by Engelfriet in 1980 [Eng80]. They
combine features of top-down tree transducers [Rou70b] and macro gram-
mars [Fis68a; Fis68b]. Top-down tree transducers map an input tree to an
output tree by using finite state rules. They work strictly top-down, which
means they start working on the root node of the input tree, then on the
second level and so forth until the leaf nodes have been processed. Top-
down tree transducers were invented as a formal model of syntax-directed
translations. Macro grammars generalize the rewriting rules of context-free
grammars by enhancing them with the idea of macros which were originally
developed for programming languages. A concise and nevertheless thor-
ough introduction and investigation of macro tree transducers can be found
in [EV85].

In principle, macro tree transdcucers consist of rules, each of them mean-
ing to transform a node of the input tree depending on the node’s label. Sub-
sequent functions are called for the children of the transformed node. This
means that every macro tree transducer can be seen as a restricted TL pro-
gram where match patterns only test for the label and select patterns choose
only nodes that are children of the current node.

On the other hand, a macro tree transducer can be considered as a first-
order functional program performing a top-down traversal over its input.
Therefore it has named functions with one input argument and a possibly
empty list of additional arguments, often called accumulating or context pa-
rameters. With these parameters it is possible to accumulate intermediate re-
sults and thus they implicitly give access to the context of the tree currently
processed in the first argument. In contrast to ordinary parameters known
from programming languages, it is not possible to query or even transform
a once accumulated temporary result in an accumulating parameter. Com-
pared to the top-down tree transducer, the ability of carrying context infor-
mation to further processing steps makes the macro tree transducer the more
expressive model.

34 4 Stay Macro Tree Transducers

4.1 Definition

Here, we consider a slight generalization of macro tree transducers. Our
model is not obliged to proceed to subterms of its current input in every
step. This variant is called stay macro tree transducer (stay-mtt) because it has
the ability to change its state while “staying” at a node. It was invented by
Engelfriet and Maneth in [EM03a] in order to have a convenient model cap-
turing all features of k-pebble tree transducers [MSV00; MSV03].

Definition 4.1 (Stay macro tree transducer) A stay macro tree transducer (stay-
mtt) M is defined by

(Q, Σ, Q0, R)

where Q is the finite ranked set of function names or states, Σ is the finite
ranked alphabet, Q0 ⊆ Q is the set of initial functions, and R is a finite set of
rules of the form

q(x0, y1, . . . , yk) → t or
q(a(x1, . . . , xn), y1, . . . , yk) → t

where q ∈ Q is a function symbol of rank k + 1, a is an input symbol from Σ,
x0 as well as x1, . . . , xn are input variables, y1, . . . , yk (k ≥ 0) are the accumu-
lating parameters of q, and t is an expression describing the output actions
of the corresponding rule. Possible actions are recursively composed by the
grammar

t ::= b(t1, . . . , tr) | yj | q′(xi, t1, . . . , ts)

where r, s ≥ 0, b ∈ Σ is a label of an output node, y j, j = 1, . . . , k, is one of the
accumulating parameters, q′ ∈ Q is of rank s + 1, and xi is one of the input
variables of the left-hand side. /

The first argument of a function q is called input, and the others are called
accumulating parameters or shorter parameters. Correspondingly, we will call
variables xi input variables and variables yj accumulating variables.

Every function q ∈ Q of a stay-mtt is at least of rank 1. For a function
q with k parameters its rank is denoted by rank(q) = k + 1. We here restrict
initial function symbols to not having accumulating parameters, i.e., we fix
for every q ∈ Q0 that rank(q) = 1. Accordingly, right-hand sides of rules for
initial functions do not contain parameters yj.

Rules like q(x0, y1, . . . , yk) → t are called stay-rules and rules of the form
q(a(x1, . . . , xn), y1, . . . , yk) → t are called q, a-rules. In case of several rules for
the same function symbol q and the same symbol a we also write

q(a(x1, . . . , xn), y1, . . . , yk) → t1 | . . . | tr

or in case of a stay-rule

q(x0, y1, . . . , yk) → t1 | . . . | ts

4.2 Induced Tree Transformation 35

to enumerate all occurring right-hand sides. The set of right-hand sides of a
q, a-rule is denoted by rhs(q, a) = {t1, . . . , tr} and accordingly, the set of right-
hand sides of a stay-rule of function q is defined as rhs(q) = {t1, . . . , ts}.

Intuitively, the meaning of the action expressions is as follows. The out-
put can either be a node labeled with a symbol b ∈ Σ, whose content is
recursively determined by expressions t1, . . . , tr. The output can be the cur-
rent content of one of the accumulating parameters y j of the left-hand side.
It can be a recursive call to some function q′ on the i-th subtree of the current
input node or on the current input node itself, if it is a stay-rule, where the
parameters of q′ are again determined by some expressions t1, . . . , ts.

In general, the input and output symbols are defined seperately by two
different alphabets Σ and ∆ [EV85; FV98]. Although we do not distinguish
between input and output alphabet, it is obviously possible to define trans-
ductions where the symbols in the input and output differ. The set of input
symbols for a stay-mtt M consists of all symbols occurring in a left-hand side
of a rule. Thus, the input alphabet is implicitly given by the rules of M:

Ain := {a ∈ Σ | ∃q ∈ Q : rhs(q, a) 6= ∅}

Analogously we define the set Aout of output symbols as the set of all sym-
bols b ∈ Σ occurring in a right-hand side of a rule of M:

Aout := {b ∈ Σ | ∃ q ∈ Q : b ∈ r, such that r ∈ rhs(q, a) ∪ rhs(q), a ∈ Ain}

Definition 4.2 (i) A stay macro tree transducer M is deterministic, if for each
function q ∈ Q either the only rule for q is a stay-rule q(x0, y1, . . . , yk) → t
or for each input symbol a ∈ Σ there is at most one rule in R with left-
hand side q(a(x1, . . . , xn), y1, . . . , yk) and in R is no stay-rule for q.

(ii) A stay macro tree transducer is linear, if in the right-hand side of ev-
ery rule in R, each input variable xi of the left-hand side occurs at most
once [EV85].

(iii) A stay macro tree transducer without stay-rules q(x0, y1, . . . , yk) → t is
called macro tree transducer (mtt). /

The class of all transductions, which can be realized by a stay macro tree
transducer is denoted by s-MTT.

4.2 Induced Tree Transformation

A stay-mtt can transform input trees into output trees and hence it realizes or
induces a tree transformation, sometimes also called tree transduction, since
the model itself is named transducer. The evaluation of a stay macro tree
transducer M = (Q, Σ, Q0, R) begins at the root node of the input. Given an
input tree s0, the stay-mtt M starts to process by evaluating one of its initial
functions q0 ∈ Q0 for the root node of s0. A function q ∈ Q with actual

36 4 Stay Macro Tree Transducers

accumulating parameters t1, . . . , tk is applied to a subtree s = a(s1, . . . , sn) by
carrying out the following steps. First, it is nondeterministically chosen one
of the rules

q(x0, y1, . . . , yk) → t or
q(a(x1, . . . , xn), y1, . . . , yk) → t′

for function q. If we have chosen a stay-rule, s is substituted for the input
variable x0 and the actual parameter tj for the accumulating variable yj in t.
Otherwise, we substitute the subterms si and tj for the variables xi and yj in
t′.

Since function calls may be nested, the order in which nested calls are
evaluated influences the value of the final output. Consider the following
stay-mtt M = (Q, Σ, Q0, R) with the three states Q = {q0, q1, q2}, the alphabet
Σ = {a, e, l, r} where a is of rank 2 and the other symbols are of rank 0. M
has one initial state q0 and the rule set R consists of

q0(a(x1, x2)) → q1(x1, q2(x1))
q1(a(x1, x2), y) → a(y, y)
q2(a(x1, x2)) → l | r
q2(e) → e

The first rule calls function q1 for the first input variable with a call of func-
tion q2 on the second input variable. Let s be an input tree of the form

a(a(e, e), e).

If we evaluate the outermost call first, we get

q0(a(a(e, e), e)
⇒ q1(a(e, e), q2(a(e, e))
⇒ a(q2(a(e, e)), q2(a(e, e)))

Then we can nondeterministically choose how to evaluate function q2 and
we get the following possible results for our transformation:

a(l, l), a(l, r), a(r, l), or a(r, r).

If we otherwise evaluate the innermost call to function q2 first, we nondeter-
ministically choose once how to evaluate q2. As a consequence, we only get
those result trees where the left and right leaf are the same, i.e.,

a(l, l), or a(r, r).

The difference between these two evaluation methods for nested function
calls is caused by the order of copying and nondeterminism: whereas in
the latter case nondeterminism is followed by copying, in the former case
q2(a(e, e)) is copied first and then evaluated nondeterministically [EV85].

4.2 Induced Tree Transformation 37

These two different evaluation orders are known as outside-in or inside-
out [ES77; ES78]. In outside-in order (OI), outermost calls are evaluated first.
The parameters of a function call may themselves contain function calls
which are thus transferred to the body of the function in an unevaluated
form. This evaluation order corresponds to the call-by-name passing of func-
tion arguments in programming languages. Engelfriet and Vogler state al-
ready in [EV85], that it does not have any influence on the translation of a
stay macro tree transducer if it is evaluated in outside-in mode or if the or-
der, in which nested functins calls are evaluated, is completely unrestricted.
The proof idea in [EV85] is as follows: each language derivable from an ini-
tial function application can be obtained as the tree language generated by a
particular context-free tree grammar. The construction encodes a transducer
function together with its input into the nonterminals of the grammar. The
grammar rules are obtained from the rule set of the transducer by propa-
gating the according input information to all occurring function calls in the
right-hand sides and omitting the input variables xi. Then they conclude
from the fact that the languages generated from a context-free tree gram-
mar by means of outside-in or unrestricted derivation are the same [Fis68a],
that the outside-in and the unrestricted evaluation mode are equivalent for
macro tree transducers.

In the inside-out (IO) order of function evaluation the innermost function
call is evaluated first. This means that only fully evaluated output trees are
passed in accumulating parameters when a function call is evaluated. This
evaluation strategy corresponds to call-by-value parameter passing as pro-
vided by mainstream imperative programming languages like C [KR88] or
functional languages such as ML [MTRD97] or OCaml [LDJ+04].

4.2.1 Denotational Semantics

In this section we define the transformation induced by a stay macro tree
transducer from a denotational point of view. We first consider the inside-out
evaluation strategy for nested function calls and then define the transduction
for outside-in evaluation. The following concerns an arbitrary but fixed stay-
mtt M = (Q, Σ, Q0, R).

Inside-Out Evaluation

The meaning of a function symbol q ∈ Q with k accumulating parameters is a
function from input trees to sets of trees with parameters in Y = {y1, . . . , yk}

[[q]]IO : TΣ → 2TΣ(Y).

These functions are defined as the least functions satisfying the following
inclusions

38 4 Stay Macro Tree Transducers

• for stay-rules q(x0, y1, . . . , yk) → t1

[[q]]IO(s) ⊇ [[t1[s/x0]]]IO

with q ∈ Qk+1 and input tree s ∈ TΣ, and
• for q, a-rules q(a(x1, . . . , xl), y1, . . . , yk) → t2

[[q]]IO(s) ⊇ [[t2[s1/x1, . . . , sl/xl]]]IO

with q ∈ Qk+1 and input s = a(s1, . . . , sl) for a ∈ Σ and s1, . . . , sl ∈ TΣ,

where the interpretation of a right-hand side expression is given by

[[yj]]IO = {yj}
[[b(t1, . . . , tm)]]IO = {b(t′1, . . . , t′m) | t′i ∈ [[ti]]IO, i = 1, . . . , m}

[[q′(s′, t1, . . . , tn)]]IO = {t′[t′1/y1, . . . , t′n/yn] | t′ ∈ [[q′]]IO(s′),
t′i ∈ [[ti]]IO, i = 1, . . . , n},

where t′[t′1/y1, . . . , t′n/yn] denotes the simultaneous IO substitution of all oc-
currences of variable yi by the tree t′i for all i = 1, . . . , n.

An accumulating variable is mapped to itself. The output of a tree with
the constant label b of rank m and children given by the expressions t1, . . . , tm,
i.e., a right-hand side expression of the form b(t1, . . . , tm), is mapped to the
set of all potential trees labeled with b whose children are given by evaluat-
ing the trees t1, . . . , tm. A function call q′(s′, t1, . . . , tn) is replaced by the set of
all potential evaluations t′ of the function symbol q′. The inside-out evalua-
tion strategy finds expression in the fact that every occurrence of a parameter
yi, i = 1, . . . , n, in the tree t′ is replaced by the same tree t′i ∈ [[ti]]IO.

Outside-In Evaluation

Again, each function symbol q ∈ Q with rank(q) = k + 1 is associated with a
function from input trees to sets of trees with parameters in Y = {y1, . . . , yk},

[[q]]OI : TΣ → 2TΣ(Y).

These functions are defined as the least functions satisfying the following
inclusions

• stay-rules q(x0, y1, . . . , yk) → t1 in R have to satisfy

[[q]]OI(s) ⊇ [[t1]]OIσ

where s is the current input and σ(x0) = s and
• (q, a)-rules q(a(x1, . . . , xl), y1, . . . , yk) → t2 in R with a ∈ Σ have to satisfy

[[q]]OI(s) ⊇ [[t2]]OIσ

where s = a(s1, . . . , sl) with s1, . . . , sl ∈ TΣ is the current input and
σ(xi) = si, i = 1, . . . , l.

4.2 Induced Tree Transformation 39

Here, [[·]]OIσ denotes the evaluation of a right-hand side expression with
respect to the binding σ of the input variables xi, namely

[[yj]]OIσ = {yi}
[[b(t1, . . . , tm)]]OIσ = {b(t′1, . . . , t′m) | t′i ∈ [[ti]]OIσ, i = 1, . . . , m}

[[q′(xi, t1, . . . , tn)]]OIσ = L[y1 ← L1, . . . , yn ← Ln],

where L = [[q′]]OI(σ(xi)) and Lj = [[tj]]OIσ for each i = 1, . . . , n, and L[y1 ←
L1, . . . , yn ← Ln] denotes the simultaneous OI substitution (cf. Section 2.2).

An accumulating variable is mapped to itself. The expression b(t1, . . . , tm)
is mapped to the set of all potential trees labeled with b whose children are
given by evaluating the trees t1, . . . , tm. A function call q′(xi, t1, . . . , tn) is first
evaluated according to the current input and in the results simultaneously all
occurrences of accumulating variables yj are replaced. Here, the outside-in
evaluation strategy becomes apparent in the definition of the simultaneous
parameter substitution.

Definition 4.3 Let µ ∈ {IO, OI} and let M = (Q, Σ, Q0, R) be a stay-mtt.
The µ-transformation realized by M on a non-empty input tree s, denoted
by τM,µ, is for both evaluation modes a mapping from trees to sets of trees
τM,µ : TΣ → 2TΣ . These mappings are induced by the initial functions from
Q0 and are defined as

τM,µ(s) =
⋃

q∈Q0

[[q]]µ(s)./

For a given set S ⊆ TΣ we denote by τM,µ(S) the set of all outputs which
are produced by M on input trees in S, i.e.,

τM,µ(S) =
⋃

s∈S

τM,µ(s),

where µ again denotes the evaluation strategies IO or OI, respectively.

4.2.2 Operational Semantics

We now associate a tree translation with a stay macro tree transducer by
means of a derivation relation. By substituting input trees and trees possibly
containing function symbols for the input variables and the accumulating
parameters, respectively, a stay-mtt rule describes the rewriting of subtrees.
With these rewriting rules it is possible to define the derivation relation.

Let M = (Q, Σ, Q0, R) be a stay macro tree transducer and φ, ψ ∈ TQ∪Σ.
The set DT (Q, Σ) of terms occurring in a derivation is defined inductively as
follows:

(1) for the maximal number r of parameters of all functions in Q, term y j
with 1 ≤ j ≤ r is in DT (Q, Σ);

40 4 Stay Macro Tree Transducers

(2) for d1, . . . , dk ∈ DT (Q, Σ) and a ∈ Σk, the term a(d1, . . . , dk) ∈ DT (Q, Σ);
(3) for a function q ∈ Q with k parameters, an input tree s ∈ TΣ and terms

d1, . . . , dk ∈ DT (Q, Σ), then q(s, d1, . . . , dk) is a term in DT (Q, Σ).

Particularly, every result tree is contained in the set of derivation terms, i.e.,
TΣ ⊆ DT (Q, Σ).

In order to define the derivation relation, let α, β ∈ DT (Q, Σ). The binary
relations⇒M,⇒M,OI,⇒M,IO⊆ DT (Q, Σ)×DT (Q, Σ) are given by

(i) α ⇒M β if there are trees s1, . . . , sk ∈ DT (Q, Σ), there is an input tree
s = a(s1, . . . , sn), and there is an occurrence of an unevaluated function
call q(s, s1, . . . , sk) at node u ∈ N (α) of α, and there is a rule

q(a(x1, . . . , xn), y1, . . . , yk) → t or
q(x0, y1, . . . , yk) → t′

in R, such that

β = α[t[s1/x1, . . . , sn/xn, s1/y1, . . . , sk/yk]/u], or
β = α[t′[s/x0, s1/y1, . . . , sk/yk]/u].

The occurrence of the unevaluated call is replaced by the according right-
hand side, in which the input variables and formal parameters are sub-
stituted by the appropriated input trees and actual parameters, respec-
tively.

(ii) α ⇒M,OI β if α ⇒M β, but for u in (i) the following holds: on the path from
u to the root of α no function symbol occurs. This restriction guarantees
that the outermost function call is evaluated first.

(iii) α ⇒M,IO β if α ⇒M β, but the parameters s1, . . . , sk are restricted to be
elements of TΣ, i.e., parameters are fully evaluated when they are passed
to a subsequent transformation step.

For both binary relations⇒IO and⇒OI,
∗
⇒ and +

⇒ are defined as usual.

Definition 4.4 Let µ ∈ {IO, OI} and let M = (Q, Σ, Q0, R) be a stay-mtt. The
µ-translation realized by M on a non-empty input tree s, denoted by πM,µ, is

πM,µ = {(s, t) ∈ TΣ × TΣ | ∃q ∈ Q0 : q(s) ∗
⇒M,µ t}./

After having presented a fixpoint characterization of stay-mtts and a for-
malization of the induced transformation by means of a derivation relation,
we conclude with the fact that both characterizations are equivalent. As for
TL this justifies the usage of the fixpoint semantics in our proofs and consid-
erations.

Theorem 4.5 Let M = (Q, Σ, Q0, R) be a stay macro tree transducer and let
µ ∈ {IO, OI}. Then for all input trees s ∈ TΣ holds: t ∈ τM,µ(s) implies that
(s, t) ∈ πM,µ.

4.3 Basic Properties 41

A formal proof that the two semantics coincide for mtts, can be found
in [EV85; FV98]. The proof for stay-mtts is a straight-forward generalization,
because the only feature going beyond the functionality of macro tree trans-
ducers are the stay-rules. A stay-rule for function q can be chosen instead of
every other matching q, a-rule (for a symbol a); and it does not proceed to the
subtrees of the current input, but passes the complete input to the subsequent
transformation steps.

4.3 Basic Properties

The first theorem recalls a classical result for macro tree transducers. It states
that taking pre-images of macro tree transductions and compositions of mtts
effectively preserve recognizability.

Theorem 4.6 (7.4 of [EV85]) Let F be the composition of a finite number of
relations of inside-out and outside-in mtts. Then, the class of recognizable
tree languages RECOG is closed under F−1.

As an immediate consequence, we obtain that type checking is decidable
for compositions of mtts. For a given output type Tout, we compute the pre-
image F−1(Tout), where → denotes the complement of Tout. Check whether
the intersection with a specified input type is empty or not, solves the type
checking problem. In particular, if the intersection is empty, the transforma-
tion of a correct input document never results in an incorrect output docu-
ment.

Corollary 44 of [EM03a] generalizes this result to stay macro tree trans-
ducers. This means, for compositions of stay-mtts, it is decidable for an out-
put language in s-MTT(RECOG) whether or not it is included in a given reg-
ular tree language. The decision algorithm is similar to that for macro tree
transducers.

The proof for the next theorem proceeds along the lines of the one given
at the end of [EM03a]. We give the explicit construction, in order to illustrate
the and to exhibit the according the complexity.

Theorem 4.7 Let M be an outside-in stay macro tree transducer and let T be
a recognizable set. Then,

(i) the pre-image τM,T is recognizable, and
(ii) the computation of the pre-image for a fixed T can be performed in de-

terministic exponential time.

Proof. Let M = (Q, Σ, Q0, R) be a stay-mtt. Furthermore, let A = (P, Σ, δ, FA)
be a right-to-left bottom-up tree automaton such that L(A) = T.

From automaton A and transducer M we construct a deterministic au-
tomaton B = (D, Σ, β, FB) recognizing τ−1

M (T), i.e., L(B) = τ−1
M (T). The key

42 4 Stay Macro Tree Transducers

issue of B is to simulate the accepting computations of A on the right-hand
sides of the transformation rules of M.

Let Dom denote the set of all combinations of a function q ∈ Q and all
suitable tuples of binary relations on automata states

Dom = {(q, S1, . . . , Sk) | q ∈ Qk and Si ⊆ P, i = 1, . . . , k}.

Then, the set D of states of automaton B is given by

D = Dom→ 2P.

A state d ∈ D assigned to an input tree t records for every function q of the
stay-mtt and every possible sequence S1, . . . , Sk of state sets for the accumu-
lating parameters the set of all states which can be obtained by calling q on t
and actual parameters satisfying the Si.

Given this set of new states D, we define δa(d1 . . . dn) = d where

d(q, S1, . . . , Sk) =

m
⋃

i=1

[ti] σ ρ

if q(a(x1, . . . , xn), y1, . . . , yk) → t1| . . . |tm is a rule in M, σ(xj) = dj for
j = 1, . . . , n, and ρ(yi) = Si for all i = 1, . . . , k. Accordingly, for every
symbol a ∈ Σn, n ≥ 0, and d1, . . . , dn ∈ D, let δa(d1 . . . dn) = d where
d is defined as follows. For every stay-rule q(x0, y1, . . . , yk) → t1| . . . |tm,
holds d(q, S1, . . . , Sk) =

⋃m
i=1[ti] σ ρ with σ(x0) = d and ρ(yi) = Si for all

i = 1, . . . , k.
The set FB of final states of the pre-image automaton B consists of all

mappings d such that for each q0 ∈ Q, set d(q0) contains a state p0 ∈ FA.
The mapping [], which we used to define d0 and the transition function

δ, simulates the computations of automaton A on the right-hand sides of the
transformation rules. It is formalized with respect to assigments σ for input
variables and ρ for parameters as follows

[yj] σ ρ = ρ(yj)

[b(t1, . . . , tn)] σ ρ = {p ∈ P | ∃p1, . . . , pn ∈ P :
pi ∈ [ti] σ ρ, p = βa(p1 . . . pn)}

[q′(xi, t1, . . . , tk)] σ ρ = (σ(xi))(q′, [t1] σ ρ, . . . , [tk] σ ρ).

For the maximal number k of parameters of a function, the number of states
of automaton B is at most

|Q → (2P)k → 2P| = (2|P|)(2|P|)k·|Q| ≤ 2|P|·|Q|·2
|P|·k

This means, the pre-image is double-exponential in the size of the automaton
A representing the output type, but only single-exponential in the size of
transducer M. Since the construction can be performed in time polynomial in

4.3 Basic Properties 43

the size of the computed automaton B, the upper complexity bound follows.
ut

Intuitively, the idea of the pre-image automaton B is to run automaton
A on the right-hand sides of the rules of M. This is possible by extending
A appropriately, because a right-hand side ξ might contain parameters y j or
recursive function calls of the form q′(xi, t1, . . . , tk).

The most fiddly situation is the handling of parameters. Since the state
pj in which A arrives after processing the actual parameter forest f j of pa-
rameter yj is not a priori determined, a state d of the pre-image automaton B
has to record all possible choices of states of A for the parameters, and thus
d(q) is a function mapping k-tuples of sets of states in P to a set of states in P.
A concrete mapping d(q, p1, . . . , pk) = p epitomizes the following situation:
assuming state pj for each actual parameter tj, then automaton A is in state
p after processing the right-hand side ξ.

Then recursive calls can be simulated by applying di to the called function
q′ provided that di represents the state in which A arrives at the i-th input
sub-tree.

Consequently, whenever reasoning about the transition function of the
pre-image automaton B, one has to keep in mind that it takes all state transi-
tions into account which can be obtained by calling a function on some input
sub-forest. In other words, if B changes its state to d on some input forest f ,
this has to be interpreted as follows. In d(q) is exactly that state transition
tabulated which is performed by automaton A on a tree t′ provided that t′ is
the result of applying function q to input tree t. This elucidates the immense
size of the pre-image automaton compared with the size of the output type.

For deterministic stay macro tree transducers, it suffices to define the pre-
image automaton over a state set D, which consists of all mappings d such
that for every stay-mtt function q ∈ Qk+1, d(q) is a mapping from Pk to P.
The number k again denotes the maximal number of parameters of a function
in Q. This means, every state d records for every parameter position only a
single state of the automaton. Thus, D consists of all functions

Q → Pk → P.

Accordingly, the number of states reduces to |P||Q|·|P|
k
.

So far we have the following complexity results for computing the pre-
image of outside-in macro tree transductions:

OI dfta nfta
dstay-mtt |P||Q|·|P|

k

stay-mtt 2|P|·|Q|·2
|P|·k

The situation for inside-out macro tree transductions differs in the com-
plexity for computing the pre-image of nondeterministic stay-mtts. In the
inside-out mode for evaluating nested function calls, the innermost call is

44 4 Stay Macro Tree Transducers

evaluated first. This means that we have to record in the states of the pre-
image automaton only a single state for each parameter position. Thus, we
have the following complexity results:

IO dfta nfta
dstay-mtt |P||Q|·|P|

k

stay-mtt 2|P|
k+1·|Q|

In the next lemma, we repeat a result about the connection between stay
macro tree transducers and the original macro tree transducer [EM03a]. The
difference between mtts and stay-mtts is that the translation of the latter ones
may be infinite, i.e., there are stay-mtts that generate infinitely many output
trees for one input tree. A typical example is the following transducer monΣ:

1 q0(x0) → q(x0, q′ε(x0, ε))
2 q(a(x1, . . . , xn), y) → q′a(x1, a(q(x1, q′ε(x1, ε)), . . . , q(xn, q′ε(xn, ε))))
3 q(ε, y) → y
4 q′a(x0, y) → a(q′a(x0, y)) | y
5 q′ε(x0, y) → ε(q′ε(x0, y)) | y

This transducer generates above each occurring symbol a of the input tree an
arbitrary long sequence of monadic symbols a (i.e., rank(a) = 1). Figure 4.3
illustrates the induced transformation.

ε

a

a a

ε ε ε

a

εε

ε

ε ε

ε

a

aa

a

a

a

ε

ε

ε

ε

εε

aa

Fig. 4.1. Transducer monΣ transforms the tree on the left into a tree of the form as
shown on the right-hand side.

The transformation starts with function q0 at the root node of the input
tree. It calls function q for the root and generates in the parameter position

4.3 Basic Properties 45

of q a sequence of ε symbols. Function q decides depending on the label of
the current node whether it has to generate a new sequence of monadic sym-
bols or, if the current node is labeled with ε, to output the pre-computed ε
sequence. This sequence has to be generated in the previous step because
when the transducer reaches ε with function q, there does not exist any input
variable for which the generation process could be started. When function
q transforms a node labeled with a, then it generates via function q′ the se-
quence of overlined symbols and passes to q′ the symbol a together with its
recursively transformed successors. Since q′ consists only of a stay-rule, the
node to which it is applied is not relevant. Function q′ recursively produces
one overlined symbol above the other, or ends by writing the pre-computed
tree rooted at the original node.

This translation can be used to simulate an arbitrary stay-mtt M by an
mtt: first, monΣ translates input s into the “stretched” version s′, then a macro
tree transducer M′ can be constructed that simulates on s′ the stay-mtt M.
Whenever M executes a stay, M′ moves down the unary symbols inserted by
monΣ. Thus, we have for MON denoting the class of all translations monΣ:

Lemma 4.8 (Lemma 27 of [EM03a]) s-MTT ⊆ MTT ◦MON

One of the important questions in formal language theory is whether a
given language contains any words. This means, one wants to know, whether
an given automaton accepts or a grammar generates the empty language.

The same question arises for transductions: the most common problem
for a given stay-mtt M is to decide whether or not the transduction is non-
empty. In particular, this problem is important in the context of type check-
ing. The reason that a transducer produces no output can be twofold — the
transducer is defined for the wrong input type or the functions producing
output are unspecified or never reached. We recall a well-known result of
tree transducer theory (see for example [MPS06]):

Theorem 4.9 Deciding whether the transduction τM for a stay macro tree
transducer M is not empty is DEXPTIME-complete.

Proof. The lower bound follows since the translation nonemptiness is hard
in DEXPTIME already in absence of parameters, i.e., for top-down tree trans-
ducers [Sei94a].

In order to show the construction, assume that M = (Q, Σ, Q0, R) is the
stay-mtt. Furthermore, assume w.l.o.g. that for every state q ∈ Q with k accu-
mulating parameters there is a rule q(x0, y1, . . . , yk) → q(x0, y1, . . . , yk) in R.
These rule will be used when checking the nonemptiness of several functions
simultaneously where for some states stay-rules are selected.

For every subset S ⊆ Q, we introduce a propositional variable [S] where
[S] = true denotes the fact that

∃t ∈ TΣ∀q ∈ S : [[q]](t) 6= ∅.

46 4 Stay Macro Tree Transducers

In particular, for the empty set {} we have the implication [{}] ⇐ true. For
all selections of stay-rules q(x0, y1, . . . , yk) → tq of R, q ∈ S, we consider all
propositional implications

[S] ⇐ [S0]

with S0 = {p ∈ Q | ∃q ∈ S : p(x0, . . .) occurs in tq}. Accordingly, we consider
all implications

[S] ⇐ [S1] ∧ . . . ∧ [Sn]

for all selections of rules q(a(x1, . . . , xn), y1, . . . , yk) → t′q, q ∈ S, for the same
symbol a ∈ Σ where Si = {p ∈ Q | ∃q ∈ S : p(xi, . . .) occurs in t′q}.

Let CM denote this system of implications. By construction, the size of CM
is exponential in the size of M. Moreover, the translation τM is nonempty if
and only if for some q ∈ Q0, [{q}] = true follows from CM. Since systems
of such propositional Horn clauses can be solved in linear time [DG84], the
assertion follows. ut

4.4 Stay Macro Forest Transducers

Generally, XML transformation languages are defined to work on forests
rather than on trees, because the XML standard does not fix the num-
ber of children of the elements. Since stay macro tree transducers are de-
fined on ranked alphabets, their major deficiency is that they do not op-
erate on forests directly but refer to representations of forests as ranked
trees. Thus, they do not support concatenation of intermediate forests. For
two forests f = f1 · · · fn and f ′ = f ′1 · · · f ′m the concatenation is defined as
f f ′ = f1 · · · fn f ′1 · · · f ′m.

In [PS04] it is shown that this limitation can be lifted. There, the so-called
macro forest transducer is proposed which operates on forests directly. They
generalize macro tree transducers by providing concatenation as additional
basic operation on output forests. This extra feature implies that some trans-
ductions realized by a macro forest transducer cannot be performed by a
single macro tree transducer alone but only by the composition of a macro
tree transducer with a transformation depending on the used alphabet.

Here, we additionally enhance this model by allowing to process a node
of the input arbitrarily often. This means that we introduce stay-rules and
thus, generalize macro forest transducers in the same way as stay-mtts gen-
eralize mtts.

The stay macro forest transducer has to deal with arbitrary long sequences
of direct successors of a node. Therefore, we define it on a first-child next-
sibling encoding of forests. Recall that this encoding describes a forest in the
following way: the left child of a node represents its content and the right
child its right sibling (cf. Figure 2.3 on page 10). In order to indicate that
these transducers work on forests, we use here a slightly different notation

4.4 Stay Macro Forest Transducers 47

for the input patterns and the output. q, a-rules match now forests of the
form a〈x1〉 x2 and stay-rules differ only in the right-hand sides. Additionally,
we need a new form of rules that match the empty forest because it indi-
cates that the computation has reached a leaf. These rules are of the form
q(ε, y1, . . . , yk) → f where symbol ε signalizes the empty forest.

Definition 4.10 (Stay Macro Forest Transducer) A stay macro forest transducer
(stay-mft) is a tuple

(Q, Σ, Q0, R)

where Q is a finite set of function names (or states), Σ is the finite alphabet,
Q0 ⊆ Q is the set of initial functions, and R is a finite set of rules of the form

q(ε, y1, . . . , yk) → f or
q(x0, y1, . . . , yk) → f or
q(a〈x1〉 x2, y1, . . . , yk) → f

where q ∈ Q is a function symbol of rank k + 1, a is an input symbol from
Σ, x0, x1 and x2 are input variables, y1, . . . , yk, k ≥ 0 are the accumulating
parameters of q, and f is an expression describing the output actions of the
corresponding rule. Possible actions are composed by the grammar

f ::= ε | b〈 f 〉 | yj | q′(xi, t1, . . . , tm) | f1 f2

where b ∈ Σ is a label of an output node, yj is one of the accumulating pa-
rameters (1 ≤ j ≤ k), q′ ∈ Q is of rank m + 1, and xi is one of the input
variables of the left-hand side. /

Intuitively, the meaning of the actions is as follows. The transducer can
produce the empty forest ε or a single tree b〈 f 〉 whose children are deter-
mined by expression f . It is also possible to emit the content of the accu-
mulating parameter yj and to call function q recursively for one of the input
variables of the left-hand side. This means, right-hand sides of stay-rules can
contain only variable x0 while in all other q, a-rules the variables x1 and x2
can occur. Finally, f1 f2 concatenates the two recursively determined forests
f1 and f2.

4.4.1 Induced Transformation

In order to formalize the transformation induced by a stay-mft, we care-
fully have to distinguish between the two evaluation strategies for nested
function calls. We will first define the semantics of inside-out transducers
and afterwards of the opposite evaluation method. For the following let
M = (Q, Σ, Q0, R) be an arbitrary stay macro forest transducer.

48 4 Stay Macro Tree Transducers

Inside-Out Evaluation

The meaning of a function symbol q ∈ Q with k accumulating parameters is
a function from input forests to sets of forests which may contain parameters
from the set Y = {y1, . . . , yk}

[[q]]IO : FΣ → 2FΣ(Y).

These functions are inductively defined by

[[q]]IO(s) ⊇ [[t1[s/x0]]]IO

[[q]]IO(a〈s1〉 s2) ⊇ [[t2[s1/x1, s2/x2]]]IO

[[q]]IO(ε) ⊇ [[t3]]IO

for stay-rules q(x0, y1, . . . , yk) → t1, q, a-rules q(a〈x1〉 x2, y1, . . . , yk) → t2 or
rules matching the empty forest q(ε, y1, . . . , yk) → t3, respectively. The eval-
uation of the right-hand side expressions is defined as follows

[[ε]]IO = {ε}
[[yj]]IO = {yj}

[[b〈s1〉 s2]]IO = {b〈s′1〉 s′2 | s′i ∈ [[si]]IO, i = 1, 2}
[[s1 s2]]IO = {s′1 s′2 | s′i ∈ [[si]]IO, i = 1, 2}

[[q′(s′, t1, . . . , tn)]]IO = {t′[t′1/y1, . . . , t′n/yn] | t′ ∈ [[q′]]IO(s′),
t′i ∈ [[ti]]IO, i = 1, . . . , n}.

The empty forest is evaluated to the empty forest and an accumulating pa-
rameter yj is mapped to itself. The output of a forest b〈s1〉 s2 is mapped to the
set of all potential forests whose first tree is labeled with b and has as content
the evaluation of expression s1 and whose tail is determined by s2. The con-
catenation of two expressions s1 and s2 is evaluated to all forests whose first
part is an element of the evaluation of s1 and whose second part accordingly
is an element of [[s2]]IO. The result of a function call q′(s′, t1, . . . , tn) is the set
of all evaluations t′ of the function symbol q′ where each occurrence of a pa-
rameter yi, i = 1, . . . , k is replaced by the forest t′i ∈ [[ti]]IO. This process is a
simultaneous substitution of all occurrences.

Outside-In Evaluation

For the contrary evaluation mode, the meaning of a function symbol q ∈ Q
with k accumulating parameters again is a function from input forests to sets
of output forests possibly containing variables in Y = {y1, . . . , yk}:

[[q]]OI : FΣ → 2FΣ(Y).

The functions [[q]]OI are defined as the least fixpoint of the following inclusions

4.4 Stay Macro Forest Transducers 49

• for stay-rules q(x0, y1, . . . , yk) → t1 in R

[[q]]OI(s) ⊇ [[t1]]OIσ

where s ∈ FΣ and σ(x0) = s;
• for q, a-rules q(a〈x1〉 x2, y1, . . . , yk) → t2 in R with a ∈ Σ

[[q]]OI(s) ⊇ [[t2]]OIσ

where s = a〈s1〉 s2 with s1, s2 ∈ FΣ and σ(xi) = si, i = 1, 2;
• for empty forest rules q(ε, y1, . . . , yk) → t3

[[q]]OI(s) ⊇ [[t3]]OI∅

where s = ε and ∅ is the empty assignment.

The right-hand side expressions are evaluated by means of the function [[·]]OIσ
where σ binds input variables to the current input, i.e.,

[[ε]]OIσ = {ε}
[[yj]]OIσ = {yj}

[[b〈s1〉 s2]]OIσ = {b〈s′1〉 s′2 | s′i ∈ [[si]]OIσ, i = 1, . . . , m}
[[s1 s2]]OIσ = {s′1 s′2 | s′i ∈ [[si]]OIσ, i = 1, 2}

[[q′(xi, s1, . . . , sn)]]OIσ = L[y1 ← L1, . . . , yn ← Ln],

where L = [[q′]]OI(σ(xi)) and Lj = [[sj]]OIσ for each j = 1, . . . , n.
The empty forest is mapped to itself and a variable yi is replaced by the

corresponding content of the i-th actual parameter. The output of a forest
b〈s1〉 s2 is mapped to the set of all forests f starting with a tree which is la-
beled with b ∈ Σ and whose content is recursively determined by s1. The
tail of f is determined by the evaluation of expression s2. The concatenation
of expressions s1 and s2 is mapped to all sequences of trees whose first part
is a forest of [[s1]]OI and whose second part is a forest of [[s2]]OI. Finally, a call
of q′ is mapped to the interpretation of the donation function [[q′]]OI for the
content or right context of the current input together with the actual parame-
ters given by the evaluation of the expressions s1, . . . , sn. The parameters are
again replaced by means of simultaneous OI substitution (cf. Section 2.2).

With the definitions of the semantics of functions we are now able to de-
fine the transduction induced by a macro forest transducer.

Definition 4.11 Let µ ∈ {IO, OI} and let M = (Q, Σ, Q0, R) be a stay-mft.
The µ-transformation realized by M on a non-empty input forest s, denoted
by τM,µ, is for both evaluation modes a function from forests to sets of forests
τM,µ : FΣ → 2FΣ . These functions are induced by the initial functions from
Q0 and they are defined as

τM,µ(s) =
⋃

q∈Q0

[[q]]µ(s)./

50 4 Stay Macro Tree Transducers

For a given set S ⊆ FΣ we denote by τM,µ(S) the set of all outputs which
are produced by M on input forests in S, i.e.,

τM,µ(S) =
⋃

s∈S

τM,µ(s),

where µ again denotes the evaluation strategies IO or OI, respectively.

4.4.2 Characterization

In this section we give some characterizations and basic properties of stay
macro forest transducers. In particular, we characterize the relation between
the height of the input and the output of a stay-mft. Taking advantage of this
result we compare stay-mfts with their tree variant and show that the lat-
ter ones are a subclass of stay-mfts. Moreover, we present a decomposition
of stay macro forest transducers into a stay-mtt and a transduction which
performes the concatenation of forests. We close this section by a result stat-
ing that recognizable languages are closed under taking pre-images of stay
macro forest transductions. The corresponding results for macro forest trans-
ducers (without stay rules) can be found in [PS04].

Recall that the binary height equals the height of a forest considered as a
binary tree [PS04] — its formal definition is given in Definition 2.6. Our first
result relates the binary height of the input with the binary height of the out-
put. Note that stay macro forest transducers can produce forests of arbitrary
height by recursively choosing a stay-rule and accumulating an increasing
output at every step. Thus, the binary height bht of an output forest is either
unbounded or, for a finite transduction, it can be exponentially larger then
the binary height of the input.

Lemma 4.12 Let Σ be an alphabet. There is a stay-mft M such that for an
infinite number of forests f ∈ FΣ, bht(s) ≥ 22bht(f)

for every s ∈ τM(f).

Proof. Consider the total and deterministic stay-mft M = (Q, Σ, q0, R) where
Q0 = {q0, q}, Σ = {a, b}, and R consists of the rules

q0(a〈x1〉 x2) → q(x2, q(x2, b)
q0(ε) → b b

q(a〈x1〉 x2, y) → q(x2, q(x2, y)
q(ε, y) → y y.

The last rule concatenates parameter y to itself, thus it is doubling the binary
height of the accumulated output forest.

We first show by induction on the length k ≥ 0 of the input forest s = ak

that function q produces a forest ym with m = 22k
.

For k = 0, we have [[q]](s) = {y y} = {y2}, and the assertion follows since
220

= 21 = 2.

4.4 Stay Macro Forest Transducers 51

For k > 0, function q evaluates to

{[[q]](ak−1)[([[q]](ak−1)[y/y])/y]}

which by induction hypothesis applied to both procedure calls, results in a
set {ym} with

m = 22k−1
· 22k−1

= 22k
.

The lemma follows by induction on the structure of the input forest. For
f = ε, the initial function evaluates to {bb} = {b2} and the assertion follows.
For f = an, we have

{[[q]](ak−1)[([[q]](ak−1)[b/y])/y]}.

By our first induction, function q evaluates to a forest ym with m = 22k
. The

lemma follows by substituting every occurrence of y by b. ut

Due to their ability to concatenate forests, we show in the next theorem
that stay-mfts are strictly more expressive than stay-mtts. This result corre-
sponds to Theorem 8 of [PS04], where tree transducers and forest transducers
without stay-rules are compared.

Theorem 4.13 s-MTT ⊂ s-MFT.

Proof. The height property for s-MTT says that for every stay-mtt M, there
is a constant c > 0 such that for every input f , if τM(f) is finite then bht(s) ≤
cbht(f) (cf. [FV98] in combination with the results of [EM03a]). Hence, the
translation of the stay-mft M from the last lemma cannot be expressed by
any stay macro tree transducer. ut

In the next theorem we show that every stay-mft M can be simulated by
a stay macro tree transducers followed by an ordinary macro tree transducer
(i.e., without stay-rules). The idea is to split the transformation induced by
M into two transductions: the first one essentially executes M’s transitions,
but with the only difference that each concatenation in the output is replaced
by an application of a concatenation symbol “@”. In the second step, this
symbolical lengthening of forests is evaluated, i.e., at every occurrence of
the concatenation symbol its right successor is “transported” to the right-
most leaf of its left successor. This step can be performed by the total and
deterministic macro tree transducer App with the following rules:

qin(x0) → q(x0, ε)
q(ε, y) → y
q(a〈x1〉 x2, y) → a〈q(x1, ε)〉 q(x2, y)
q(@〈x1〉 x2, y) → q(x1, q(x2, y))

for all symbols a of the underlying alphabet. Since function App is defined
for every alphabet, let APP denote the class of all transductions evaluating
the symbolic concatenation.

52 4 Stay Macro Tree Transducers

Theorem 4.14 s-MFT ⊆ APP ◦ s-MTT.

Proof. Let M = (Q, Σ, Q0, R) be a stay-mft. We construct a new stay-mtt
M′ = (Q′, Σ ∪ {@}, Q′0, R′) from M. The set of functions is defined as Q′ =
{q | q ∈ Q}. Accordingly, the set of initial functions Q′0 consists of all q0
such that q0 ∈ Q0. Every rule q(π, y1, . . . , yk) → f in R is emulated by a
rule q(π, y1, . . . , yk) → rew(f) where pattern π is copied unchanged and the
right-hand sides f are rewritten by means of

rew(ε) = ε
rew(b〈 f1〉 f2) = b〈rew(f1)〉 rew(f2)
rew(yj) = yj
rew(q(xi, f1, . . . , fk)) = q(xi, rew(f1), . . . , rew(fk))
rew(f1 f2) = @〈rew(f1)〉 rew(f2).

Let τApp denote the transformation which evaluates the concatenation sym-
bols “@”. Moreover, we extend this transformation to sets of forests by

τApp(S) = {τApp(s) | s ∈ S}

for every set S ∈ FΣ∪{@}.
By structural induction on input forests f ∈ FΣ, one verifies for all states

q ∈ Q that
[[q]](f) = τApp([[q]](f)).

This assertion follows from proving for every sub-forest s occurring in a
right-hand side of a rule of M that

[[s]]OIσ = τApp([[rew(s)]]OIσ) or [[s]]IO = τApp([[rew(s)]]IO)

for OI- and IO-transductions, respectively. Hence,

[[q0]](f) = τApp([[q0]](f)

for all q0 ∈ Q0, and therefore, we can conclude that τM(f) = τApp(τM′(f)) for
every f ∈ FΣ. ut

As an immediate consequence, we obtain a height property for the class
of stay macro forest transductions stating that the height of an output forest
is either unbounded or it is double exponentially bounded by the height of
the input forest.

Corollary 4.15 Let M be a stay-mft. There is a constant c > 0 such that for
every input forest f , if τM(f) is finite, then bht(s) ≤ 22c·bht(f)

for every output
forest s ∈ τM(f).

The decomposition of a stay-mft into two tree transducers is not arbitrary,
but for a given alphabet Σ, it always uses the same deterministic macro tree
transducer App to evaluate the auxiliary concatenation symbols “@”. For ev-
ery such transducer App, we observe

4.4 Stay Macro Forest Transducers 53

Lemma 4.16 For every forest f ∈ FΣ∪{@} and {s} = τApp(f), ht(s) ≤ ht(f).

Proof. Transducer App is defined as above, and thus it is total and determin-
istic by definition. Let s′ be a temporary result accumulated in the parameter
position of function q. We first show that for each call q(f , s′) holds:

ht(s) ≤ max{ht(f), ht(s′)}.

We proceed by structural induction on f .
If f = ε, then [[q(f , s′)]] = {s′}. It follows that s = s′, and thus the claim

follows.
If f = @〈 f1〉 f2, then [[q(f , s′)]] = {([[q]](f1))[([[q]](f2))[s′/y]/y]}. By in-

duction hypothesis for f2, we obtain ht(s2) ≤ max{ht(f2), ht(s′)} for {s2} =
([[q]](f2))[s′/y]. Applying the induction hypothesis to f1, we obtain

ht(s) ≤ max{ht(f1), ht(s2)}
= max{ht(f1), ht(f2), ht(s′)}
≤ max{ht(f), ht(s′)}

which we wanted to prove.
Finally, for f = a〈 f1〉 f2 for some a ∈ Σ, we obtain [[q(f , s′)]] = {a〈s1〉 s2},

where
s1 ∈ [[q]](f1)[ε/y]
s2 ∈ [[q]](f2)[s′/y]

and the claim follows from the induction hypothesis applied to f1 and f2.
The lemma follows by the fact that the initial function qin is evaluated to

[[q(f , ε)]] for every input forest f ∈ FΣ. ut

Lemma 4.16 gives us a single exponential upper bound on the height of
output forests of stay macro forest transducers:

Theorem 4.17 For every stay-mft M there is a constant c > 0 such that — if
τM(f) is finite — for every f ∈ FΣ and s ∈ τM(f). ht(s) ≤ 2c·bht(f).

The height of the output tree of a stay macro tree transducer is either
unbounded or it can be exponentially bounded in the height of the input
tree [FV98;EM03a]. In fact, there is a stay macro tree transducer which exactly
performs the exponential growth of the input tree. It translates monadic trees
of height n into monadic trees of height 2n [FV98]. Iterating this stay-mtt, a
translation in s-MTT2 — denoting the class of all transductions that can be
performed by the composition of two stay-mtts — is obtained which, by The-
orem 4.17 cannot by realized by a single stay macro forest transducer. This
result is the direct generalization of Corollary 12 in [PS04] to transductions
with stay-rules.

Theorem 4.18 s-MFT ⊂ s-MTT2.

54 4 Stay Macro Tree Transducers

Since this thesis is mainly concerned with macro transductions rather
than top-down transductions (i.e., without accumulating parameters) and
since the proof is almost literally the same as for the case without stay-
rules in [PS04], we here present only as conjecture the relation between stay
top-down tree transductions, stay top-down forest transdcuetions, and stay
macro tree transductions. Let therefore s-TOP denote the class of all trans-
ductions that can be performed by a stay macro tree transducer without pa-
rameters, and let s-FTOP denote the class of all transductions which can be
realized by a stay macro forest transducer without parameters.

Conjecture 4.19 s-TOP ⊂ s-FTOP ⊂ s-MTT.

It is well known in tree transducer theory that the pre-image of a recog-
nizable tree language with respect to a macro tree transducer is again recog-
nizable and can be effectively computed [EV85]. In [EM03a] this result could
even be strengthened to the more general result that type checking of com-
positions of stay-mtts is decidable.

Since stay-mfts can be simulated by the two-fold composition of stay-
mtts, we conculde that the pre-image τ−1

M (T) of the recognizable language T
with respect to the transformation τM is recognizable as well and can be ef-
fectively constructed. The basic proof idea for the next theorem can be found
in [EM03a]. It was adapted to macro forest transducers (without stay-rules)
in [PS04]. We give an intuition of the construction to illustrate how concate-
nation and stay-rules can be treated directly.

Before presenting the result, we first have to discuss, how to deal with
forests in the output of the transduction. We have to take into account that
our finite representation of the output type is compatible with concatena-
tions. Therefore, we use the idea of a forest algebra (cf. the discussion in
[BW05]).

Let Σ be a finite alphabet. Then a finite forest monoid (ffm) consists of a
finite monoid M with a neutral element e ∈ M, a subset F ⊆ M of accepting
elements, and finally, a function up : Σ × M → M mapping a symbol of
the alphabet Σ together with a monoid element for its content to a monoid
element representing a forest of length 1.

Given a deterministic bottom-up tree automaton A = (P, Σ, δ, FA), we can
construct a finite forest monoid as follows. Let M = P → P be the monoid
of functions from the set of automata states P into itself where the monoid
operation is the function composition ◦ : M ×M → M such that for a state
p ∈ P and monoid elements f , g ∈ M, (f ◦ g)(p) = f (g(p)). In particular,
the neutral element of the monoid is the identity function id. Moreover, for
symbol a ∈ Σ, monoid element f ∈ M, and state p ∈ P, the function up is
defined as

up(a, f)(p) = δa(p f (δε))

where ε is the input symbol denoting the empty forest. Finally, the set of
accepting elements is given by

4.4 Stay Macro Forest Transducers 55

F = { f ∈ M | f (δε) ∈ FA}.

This construction shows that every recognizable forest language can be rec-
ognized by a finite forest monoid and although the ffm for a bottom-up tree
automaton generally can be exponentially larger, this need not always be the
case.

Theorem 4.20 Let M be a stay-mft and T a recognizable set. Then

(1) The pre-image τ−1
M (T) is recognizable.

(2) An automaton accepting τ−1
M (T) can be constructed in deterministic ex-

ponential time.
(3) Deciding emptiness of the pre-image of recognizable languages with re-

spect to stay-mfts is DEXPTIME-hard.

Proof. Let M = (Q, Σ, Q0, R) be a stay-mft. Furthermore, let A = (P, Σ, δ, FA)
be a finite forest monoid accepting T, i.e., L(A) = T.

From A and transducer M we construct an automaton B = (D, Σ, β, FB)

recognizing τ−1
M (T), i.e., L(B) = τ−1

M (T).
Let Dom denote the set of all combinations of a function q ∈ Q and all

suitable tuples of binary relations on states of A

Dom = {(q, S1, . . . , Sr) | q ∈ Qk and Si ⊆ P× P, i = 1, . . . , k}.

Then, the set D of states of B is given by

D = Dom→ 2P×P.

Intuitively, a relation S ∈ P × P describes the set of all possible state tran-
sitions of the automaton for T on the forests from a given set of outputs. A
state d ∈ D assigned to an input forest f records for every function q of the
stay-mft and every possible sequence S1, . . . , Sk of such effect descriptions
for the accumulating parameters the set of all state transitions which can be
obtained by calling q on f and actual parameters satisfying the Si.

Given this set of states D, we define for rules transforming the empty
forest:

d0(q, S1, . . . , Sk) =

m
⋃

i=1

[fi] ∅ ρ

if q(ε, y1, . . . , yk) → f1| . . . | fm is a rule in M, ∅ is the empty assignment, and
ρ(yi) = Si for all i = 1, . . . , k.

Moreover, we define δa(d1d2) = d where

d(q, S1, . . . , Sk) =
n

⋃

i=1

[fi] σ ρ

56 4 Stay Macro Tree Transducers

if q(a〈x1〉 x2, y1, . . . , yk) → f1| . . . | fn is a rule in M, σ(xj) = dj for j = 1, 2, and
ρ(yi) = Si for all i = 1, . . . , k.

The set FB of final states of B consists of all mappings d such that for each
q0 ∈ Q, the relations d(q0) contain a pair (p, p0) with p0 ∈ FA.

The mapping [] simulates the computations of automaton A on the right-
hand sides of the transformations rules. Let 1 ⊆ P × P denote the relation
{(p, p) | p ∈ P} and let ‘◦’ denote the composition of translations. Then
[] is formalized with respect to assigments σ for input variables and ρ for
parameters as follows

[ε] σ ρ = 1
[yj] σ ρ = ρ(yj)

[f1 f2] σ ρ = ([f1] σ ρ) ◦ ([f2] σ ρ)
[b〈 f1〉 f2] σ ρ = {(b1, b2) ∈ P× P | ∃s1, s2 ∈ P :

(s1, b0) ∈ [f1] σ ρ, (s2, b2) ∈ [f2] σ ρ, b1 = βb(s1s2)}
[q′(xi, f1, . . . , fk)] σ ρ = (σ(xi))(q′ , [f1] σ ρ, . . . , [f1] σ ρ).

The number of states of B is at most

|Q → (2P2
)k → 2P2

| = (2|P|
2
)(2|P|

2
)k·|Q| ≤ 2|P|

2·|Q|·2|P|
2·k

This means, the pre-image is double-exponential in the size of the automaton
A representing the output type, but only single-exponential in the size of
transducer M. Since the construction can be performed in time polynomial in
the size of the computed automaton B, the upper complexity bound follows
(given that n is bounded by some constant). For the lower bound, we recall
that it holds already for the class of top-down transductions [MN02] and thus
also holds for s-MFT. ut

The main difference to the tree variant is that for forest transducers, rela-
tions of states have to be recorded for every parameter position of a stay-mft
function. Accordingly, we have the following complexity results for outside-
in stay macro forest transdcuers:

OI dfta nfta
dstay-mft |P||Q|·|P|

k

stay-mft 2|P|
2·|Q|·2|P|

2·k

Note that p stands now for monoid elements. As in the case of tree trans-
ductions, the difference of outside-in and inside-out evaluations is that the
pre-image automaton has to record only a single state for each parameter
position of a function. Thus, the complexities for inside-out stay-mfts are as
follows:

IO dfta nfta
dstay-mft |P||Q|·|P|

k

stay-mft 2|P|
2(k+1)·|Q|

4.5 Stay-Mtts with Regular Look-ahead 57

4.5 Stay-Mtts with Regular Look-ahead

An interesting extension of our transducer model are stay macro tree transduc-
ers with look-ahead. Then, the transducer is allowed to inspect the subtrees of
a node before processing it. In other words, the new model has an arbitrarily
large look-ahead. The idea of a regular look-ahead also occurs in the theory
of parsing of context-free languages. It was first combined with a transducer
model in [Eng77].

A rule can be applied only if the current node is an element of a recog-
nizable tree language. To be more specific, each rule is additionally equipped
with a state p of a bottom-up tree automaton A, thus it is of the form

q(a(x1, . . . , xn), y1, . . . , yk)
p → t.

This rule is applicable to an input tree s, if the root of s is labeled with symbol
a and moreover, if there is a run of automaton A such that state p is assigned
to s.

Definition 4.21 (Stay-mtt with Look-ahead) A stay macro tree transducer with
regular look-ahead is a pair

MA = (M, A)

consisting of a bottom-up finite tree automaton A = (P, Σ, F, δ) and a stay
macro tree transducer M = (Q, Σ, Q0, R) whose rules are of the form

q(x0, y1, . . . , yk)
p → t or

q(a(x1, . . . , xn), y1, . . . , yk)
p → t

where q ∈ Q, a ∈ Σ, p is a look-ahead state in P, and t is composed by the same
grammar as for stay-mtts. /

As observed in [EV85], regular look-ahead does not enlarge the class
of translations realized by nondeterministic macro tree transducers. This
means each transducer with regular look-ahead can be simulated by a trans-
ducer without look-ahead. A detailed and exact construction can be found
in [EV85]. The proof idea is to combine all right-hand sides of rules for the
same function and input symbol into one right-hand side that starts with
a “test tree”. This tree is organized like nested if-then-else statements such
that each original right-hand side is arranged below the corresponding look-
ahead. There are additional rules imitating the if-then-else construction for
each look-ahead state.

Here, we prefer a more practical simulation of look-ahead. A stay-rule
q(x0, y1, . . . , yk)

p → t for a look-ahead state p ∈ P of the finite tree automaton
A can be transformed into a rule

q(x0, y1, . . . , yk) → checkp(x0, t)

58 4 Stay Macro Tree Transducers

where the test of the look-ahead p is postponed to the new function checkp.
It is defined as

checkp(a(x1, . . . , xn), y) → checkp1(x1, checkp2(x2, . . . checkpn(xn, y) . . .))

for all transitions (p, a, p1 . . . pn) of automaton A. Analogously, each q, b-rule
with look-ahead state p can be simulated by a new rule checkp which checks
for both, the input symbol b and look-ahead state p. The size of the stay-mtt
without look-ahead is linear in the sum of the sizes of the original stay-mtt
with look-ahead and of the finite tree automaton A.

4.6 Notes and references

Fischer submitted his thesis about “Grammars with Macro-like Produc-
tions” in 1968 [Fis68a]. His motivation was that context-free languages inade-
quately model some features of programming languages. On the other hand,
Fischer was convinced that only a formal model could help to describe the
programming language to other people or to investigate certain properties of
programs. In order to meet his idea of a natural and descriptive formal model
for programming languages, for which emptiness is still decidable, Fischer
generalized the rules of context-free grammars by borrowing from program-
ming the idea of macros. A macro has a name, a list of (named) arguments,
and a body, which may contain occurrences of the argument names, other
macros, and terminal symbols. A macro is expanded by replacing its name
and any arguments with its corresponding body into which the arguments
have been substituted for the argument names. With this intuition in mind,
he defines a macro grammar as a rewriting system, where each non-terminal
can have a list of arguments, which may be used in the right-hand sides of
rewriting rules. In this way, for example, he can define a grammar system as
follows:

S → F(a, b, c)
F(x, y, z) → F(xa, yb, zc)
F(x, y, z) → xyz

Starting with the non-terminal S, the grammar rewrites it to F(a, b, c). Ap-
plying the second rule, for example two times, it produces F(aa, bb, cc). The
third rule then emits the word “aabbcc”. This grammar obviously generates
the language {anbncn | n ≥ 1}which is not context-free [Fis68a]. Since macro
calls can be nested in the right-hand sides, Fischer considers both evaluation
orders: inside-out and outside-in, because they generate different classes of
languages.

Engelfriet takes up these ideas and combines them with the features of
top-down tree transducers [Eng80]. Here the point of view has changed:
while macro grammars generate some output starting with an initial non-
terminal, now the choice of the rules is triggered by some input tree. This

4.6 Notes and references 59

is the time of birth of the macro tree transducer. The first extensive investi-
gation can be found in [EV85]. Deterministic macro tree transducers are in-
vestigated in detail in [FV98], where they are compared with other formal
models of syntax-directed semantics. “Syntax-directed semantics is based on the
idea that the semantics of a string of a context-free language is defined in terms of
the semantics of the syntactic substructures of the string” [FV98]. This means, if
the semantics is specified in a syntax-directed way, it is necessary that each
string is already parsed before the computation of its semantic value can
begin. The authors introduce macro tree transducers as a formal model to
specify syntax-directed semantics.

Fülöp and Vogler additionally define in [FV98] an environment E so they
do not need to fix the rank of the initial state to 1. They define a deterministic
mtt M as the tuple

(Q, Σ, ∆, q0, R, E)

where Q is the set of states, Σ and ∆ are the input and output alphabet, re-
spectively, q0 ∈ Q is a designated state called the initial state, and R is a set
of rules of the form

q(a(x1, . . . , xn), y1, . . . , yk) → t

with q ∈ Q, a ∈ Σ, and t is defined as in Definition 4.1 but contains
only symbols from the output alphabet ∆. Finally, E = (t1, . . . , tr) where
t1, . . . , tr ∈ T∆ and r + 1 = rank(q0). Let M = (Q, Σ, ∆, q0, R, E) be such an mtt
with E = (t1, . . . , tr). Then we can construct a stay-mtt N = (QN , ΣN , Q0, RN)
with the same behaviour as M. Therefore, we define QN = Q ∪ q′ for a new
state q′, ΣN = Σ ∪ ∆, Q0 = {q′}, and RN = R ∪ {r} where the initial rule r of
the stay-mtt N is defined as

q′(x0) → q0(x0, t1, . . . , tr).

The complete input tree is passed on to the initial function q0 of M; at the
same time the accumulating parameters are set to the trees ti of the envi-
ronment E. This means the new rule r only calls function q0 on the input
together with the parameters defined in the environment without changing
the transformational behaviour.

Stay macro tree transducers were first mentioned in [EM03a]. There, k-
pebble tree transducers are realized by an (k + 1)-fold composition of macro
tree transducers. Conversely, every macro tree transducer can be simulated
by a composition of pebble tree transducers. Therefore, the mtt must be ex-
tended by the ability to remain at a node, instead of strictly moving down in
each transformation step. The idea is to encode the behaviour of each single
pebble into one (somehow simple) transducer and to realize the transfor-
mation core by a nondeterministic macro tree transducer. Each of the first k
transducers implements the same total and deterministic function that adds
information about the position of a pebble to the input tree. Engelfriet and
Maneth define the stay macro tree transducer to have rules of the form

60 4 Stay Macro Tree Transducers

〈q, a, b, j〉(y1, . . . , yk) → ζ,

where q denotes a state of the transducer, a is a symbol of the input tree, and
j is the child number of the current node (j for the j-th child; 0 for the root
node). Right-hand sides ζ are trees over output symbols, state-instruction
pairs and parameters. The state-instruction pairs can have the two forms

〈q, stay〉 or 〈q, downi〉

where i denotes the child to which state q should be applied. This means,
there is no explicit distinction between stay-rules and q, a-rules as in our def-
inition. In a deterministic setting stay operations are superfluous [EM03a],
and thus, both transducers models are equivalent. In the nondeterministic
case, both models can be transformed into each other, because whenever
a stay-instruction occurrs in a right-hand side of Engelfriet and Maneth’s
transducers, a stay-rule of the transducers as defined in Definition 4.1 can be
chosen and vice versa.

Note that in [MBPS05], stay-mtts are defined in a slightly different way.
The rules there are of the form

q(x0 as a(x1, . . . , xn), y1, . . . , yk) → t.

For an input tree s = a(s1, . . . , sn), variable x0 is bound to the current input
s while for all i = 1, . . . , n, variable xi is bound to the according subtree si.
Variable x0 as well as x1, . . . , xn can occur in the right-hand side t. In our
nondeterministic setting, both formats can be converted into each other.

An interesting result about macro tree transducers (without stay-rules)
is that every composition computing a function of linear size increase can
be realized by just one macro tree transducer [Man03]. Linear size increase
means that the size of the output is linear bounded in the size of the input.
In [EM03b] it is proved that for a total deterministic mtt with look-ahead, it
is decidable whether or not it is of linear size increase. The proof puts the
term of linear size increase down to the term of finite copying. In this con-
text, finite copying means that every node of the input tree is transformed
only by a bounded number of states (functions), and that each parameter
is also copied a bounded number of times only. Since this property is de-
cidable for mtts, one has an algorithm to decide for a composition of mtts
whether it is of linear size increase, and if so to effectively construct a single,
transduction-equivalent mtt.

Voigtländer considers macro tree transducers from a different point of
view [VK04; Voi04]. Although modularization is a key advantage of func-
tional languages, it is, on the other hand, one of the sources for unefficient
programs. Solving a problem by composing functions that solve subprob-
lems, means that each time the next function is called on the way to the com-
plete solution, intermediate results have to be created. Viewing each macro
tree transducer as a special kind of functional program, Voigtländer investi-
gates certain syntactic restrictions of the composed transducers, such that it

4.6 Notes and references 61

is possible to eliminate intermediate results by constructing a single macro
tree transducer that implements the composition of the original ones [VK04].

5

Type Checking TL Programs

As mentioned in the introduction, XML is a very popular data exchange for-
mat. Usually, XML documents are often generated automatically by some
application, and are then processed by a another application or program. For
a correct exchange of information it has to be guaranteed that for correct in-
puts only correct outputs are produced.

Consider, for example, an XML file of bibliographic entries functioning
as database (e.g. [Ley02]). Users can search this database via a Web interface,
which starts a query (or transformation) returning the search results. The
query should always return a valid XHTML (or HTML) document, otherwise
the result cannot be correctly displayed in the Web interface. Consequently,
the query is correct only if it returns those parts of the document matching
the user’s search and the queried parts are formatted as an XML document
of type XHTML.

Thus, the wish for type-safe XML transformations becomes the center
of interest, where type-safe means that for every correct input document a
transformation produces results, which meet the structural requirements of
the output. In this context, static type checking XML transformations is of
great benefit. On the one hand it guarantees that the transformation com-
putes the transformation actually intended by the programmer, and on the
other hand each output document conformes to a specified output type that
is possibly input for a successive transformation.

In Chapter 3 we have presented the transformation language TL which
subsumes the so-called tree transformation core of most of the popular trans-
formation languages like XSLT [XSL99] or XQuery [BCF+06]. In order to il-
lustrate the idea of type checking, we start with an example transformation.

The given document lists all incoming e-mails in the Inbox-element. Ele-
ment Trash is meant to collect all deleted e-mails. Besides the normal Mail-
elements, Inbox also contains e-mails inside a Spam-element. This indicates
that these mails have been identified as spam, e.g., by some automated mail-
filter.

64 5 Type Checking TL Programs

Example 5.1

〈MailDoc〉
〈Inbox〉
〈Mail〉
〈From〉 hamlet@denmark.com 〈/From〉
〈To〉 horatio@denmark.com 〈/To〉
〈Subject〉〈/Subject〉
〈Data〉 . . . 〈/Data〉〈/Mail〉

〈Spam〉
〈Mail〉

. . . 〈Subject〉 V.I.A.G.R.A. 〈/Subject〉
〈Data〉 . . . 〈/Data〉

〈/Mail〉〈/Spam〉
〈/Inbox〉
〈Trash〉 . . . 〈/Trash〉

〈/MailDoc〉

In order to “clean up” the Inbox-element, all e-mails marked as spam
should be moved into the Trash-element, while all other elements in the
Inbox should be left untouched. Thus, a transformation should return:

Example 5.1 (continued)

〈MailDoc〉
〈Inbox〉
〈Mail〉
〈From〉 hamlet@denmark.com 〈/From〉
〈To〉 horatio@denmark.com 〈/To〉
〈Subject〉〈/Subject〉
〈Data〉 . . . 〈/Data〉〈/Mail〉

〈/Inbox〉
〈Trash〉
〈Spam〉
〈Mail〉

. . . 〈Subject〉 V.I.A.G.R.A. 〈/Subject〉
〈Data〉 . . . 〈/Data〉

〈/Mail〉〈/Spam〉
. . . 〈/Trash〉

〈/MailDoc〉

The transformation explained above can be implemented with the fol-
lowing TL program

5 Type Checking TL Programs 65

1 q0(labelMailDoc(x1)) −→ 〈MailDoc〉
2 q0(labelInbox(x2))
3 q0(labelTrash(x2))
4 〈/MailDoc〉
5 q0(labelInbox(x1)) −→ 〈Inbox〉
6 q2(x1/x2 ∧ labelMail(x2))
7 〈/Inbox〉
8 q0(labelTrash(x1)) −→ 〈Trash〉
9 q2(∃ z. z; x1 ∧ z/x2 ∧ labelSpam(x2))

10 q2(x1/x2)
11 〈/Trash〉
12 q2(x1) −→ x1

The first rule for q0 (cf. line 1) is applicable to the MailDoc-element of the
input. Its action specifies to produce an MailDoc-element in the output whose
content is obtained by recursively applying q0 to the nodes specified by the
select patterns labelInbox(x2) and labelTrash(x2), respectively. Since these pat-
terns do not contain variable x1, the nodes to which they refer are deter-
mined absolutely in the input tree, i.e., from the root node. The second rule of
q0 is applicable if the current node is an Inbox-element. Its action specifies
to generate a new Inbox in the output. The Inbox’s content is obtained by
applying q2 to the nodes selected by the pattern x1/x2 ∧ labelMail(x2) (line
6), i.e., the children x2 of the current node x1 which are labeled with Mail.
Since the current node is the Inbox-element of the input, this rule copies
all e-mails from the folder for incoming mails into the Inbox-element of
the output — except the Spam-elements. The third q0-rule transformes the
Trash-element. The first call to function q2 is meant to copy all Spam-elements
from Inbox into Trash. The necessary select pattern is given by the formula
∃ z. z; x1 ∧ z/x2 ∧ labelSpam(x2). This formula selects all nodes x2 labeled with
Spam whose ancestor z is a left sibling of the current node x1 (line 9). For
completing our transformation, we finally have to copy all elements x2 of
the Trash folder x1 into the Trash-element of the output.

Although the attentive and gentle reader might be convinced that this TL
program realizes the “simple” transformation we explained above, we want
to have a general facility testing whether a given program implements the
intended transformation. Consider, for example, an XML document contain-
ing information about the clients of a company. The different departments of
the company need different pieces of information in order to transact busi-
ness. The software develpors, for example, need the specifications of the or-
dered programs; the accounting department needs only a detailed statement
of costs. All these information pieces are automatically extracted from the
same XML document. This means, it is necessary to guarantee that the auto-
matic extraction returns the correct data.

66 5 Type Checking TL Programs

A prerequisite for such a test is an exact specification of the transforma-
tion. One possibility to define the intended transformation is to specify the
input and output type.

Our problem can then be reduced to the question whether the program
is correct with respect to the given types. This process is called type checking.
Recall that for a given transformation F and an input and output type, Tin
and Tout, respectively, F type checks with respect to Tin and Tout implies, that

∀d ∈ Tin : F(d) ∈ Tout.

This means, for all documents d conforming to the input type, the transfor-
mation result F(d) is valid with respect to the output type Tout.

In this chapter we describe how to type check TL programs. The key idea
is to convert an arbitrary TL program into a model for which type checking
is decidable. This model is the stay macro tree transducer because first, type
checking of compositions of stay-mtts is decidable, and second, since each
stay-mtt can be viewed as a restricted form of a TL program, the conversion
is tractable and has to concentrate only on those features that go beyond the
stay-mtt.

Let Prog = (R, A0) a TL program as defined in Chapter 3.1 (cf. Definition
3.2). The decomposition of Prog into stay-mtts, which realize the transforma-
tion induced by Prog, is carried out in several steps.

(1) In a first step (Section 5.1) the input is decorated so that the simulating
transducer can decide at each node whether a pattern matches or not. For
this decoration, we use a bottom-up followed by a top-down relabeling.

(2) Then we simulate program Prog by a tree-walking transducer Twalk (Sec-
tion 5.2). The key point of this step is to compile the global movements,
inherent in the select patterns, into local movements. Twalk works as fol-
lows: if a TL expression q(ψ, S1, . . . , Sk) is evaluated for a node v, Twalk
successively proceeds from v to the root node of the input, where it re-
turns a (representation of a) list of the results obtained by recursively
applying the function q to all nodes u where the pair (v, u) satisfies the
pattern ψ.

(3) In the last step we have to eliminate all up-moves in the input tree and
obtain a composition of stay macro tree transducers simulating Prog’s
transformation (Section 5.3).

5.1 Annotating the Input

In order to annotate the input with informations about the matching pat-
terns, we first compile all match and select patterns of the TL program into a
single automaton. Since we want to decompose TL programs into stay macro
tree transducers, we have to take into account that stay-mtts work on ranked

5.1 Annotating the Input 67

trees. Thus, the input forest has to be represented as binary tree (cf. Section
2.1).

Let Φ and Ψ be the finite sets of MSO match and select patterns occur-
ring in our TL program Prog, respectively. By using suitable encodings of the
basic predicates “;” and “/”, the formulas in Φ and Ψ can be equivalently
expressed by MSO formulas over binary trees.

Using the well-known translation of MSO formulas over finite ranked
trees by Thatcher and Wright [TW68], we can construct a nondeterministic
tree automaton

Match = (P, Σ, F, δ).

Together with this automaton, we define sets Uφ ⊆ P, φ ∈ Φ, and relations
Bψ ⊆ P2, ψ ∈ Ψ, such that for every document forest f the following holds:

(1) For every φ ∈ Φ, (v) |= f φ if and only if there exists an accepting run run
of Match on the binary encoding of f such that run(v) ∈ Uφ, and

(2) for every ψ ∈ Ψ, (v, u) |= f ψ if and only if there exists an accepting run
run of Match on the binary encoding of f such that (run(v), run(u)) ∈ Bψ.

While the sets Uφ contain those states which indicate a match of a match
pattern φ in a left-hand side of a TL rule, the relations Bψ contain all pairs
of states indicating a match of a select pattern ψ occurring in a recursive
function call in a rule.

For the binary tree representation t of a forest, let S(t) ⊆ P denote the
set of states p in which the match automaton Match = (P, Σ, F, δ) (defined
on page 67) may possibly reach the root node of t. The set S(t) is recursively
defined by

S(ε) = {p ∈ P | (p, ε) ∈ δ}
S(a(t1, t2)) = {p ∈ P | ∃pi ∈ S(ti) : (p, a, p1p2) ∈ δ}.

(1) First, each node v ∈ N (t) of the input tree t labeled with a symbol a ∈ Σ

is relabeled by
〈a, S1, S2〉

where S1, S2 is the set of states reachable at the subtree rooted at the first
and second child of v, respectively. According to the recursive definition
of the sets S(), this relabeling can be done by means of a single deter-
ministic post-order traversal over t. This means it can be done by a total
deterministic bottom-up relabeling

Bot = (BBot, Σ, FBot, RBot),

where BBot = 2S, Σ is the alphabet of the match automaton Match, and
FBot is the set of final states which coincides with the set of accepting
states of Match. The rules in RBot are

ε → bS′(〈ε〉)
a(bS1(x1), bS2 (x2)) → bS′′(〈a, S1, S2〉(x1, x2)),

68 5 Type Checking TL Programs

where the sets S′ and S′′ are defined as follows

S′ = S(ε)
S′′ = {s ∈ S | (s, a, s1s2) ∈ δ, si ∈ Si, i = 1, 2}.

A formal definition of bottom-up relabelings and a comparison with top-
down finite state tree transformations can be found in [Eng75].

(2) Additionally, each node v ∈ N (t) receives the value 0 if v is the root node
of t or its child number i ∈ {1, 2} if v is the i-th child of its father node.
Moreover, we place at v the set

T(v) = {run(v) | run accepting run of Match for t},

i.e., the set of all states to which v is mapped by accepting runs of the
match automaton. Thus, now internal nodes v with original label a have
labels

〈a, j, T(v), S(v1), S(v2)〉,

whereas leaf nodes u have labels

〈a, j, T(v)〉.

After having equipped every node of t with the according sets of reach-
able states as described above, this second relabeling can be implemented
by means of a single deterministic pre-order traversal over the annotated
input tree t.
This relabeling can be done by a total deterministic top-down relabeling
which corresponds to a top-down tree transducer whose rules are of the
general form q(a(x1, . . . , xk)) → b(q(x1), . . . , q(xk)) [EM99]. In particular,
the relabeling is implemented by the transducer

Top = (BTop, Σ′, b0,F, RTop),

where the function set BTop = {0, 1, 2} × 2S contains all pairs consisting
of a child number and a subset of states. Σ′ denotes the modified labels
of the form 〈a, S1, S2〉 for all symbols a ∈ Σ and sets S1, S2 ∈ S. The initial
function is b0,F and the rules in RTop are

bj,T0(〈a, S1, S2〉(x1, x2)) → 〈a, j, T, S1, S2〉(b1,T1(x1), b2,T2(x2)),

where the sets T and Ti, i = 1, 2, are defined as

T = {p ∈ T0 | (p, a, p1p2) ∈ δ and pi ∈ Si}
Ti = {pi ∈ Si | (p, a, p1p2) ∈ δ and p ∈ T, p3−i ∈ S3−i}.

Moreover, for leaf nodes the following rules are in RTop

bj,T0(ε) → 〈ε, j, T〉,

where T = {p ∈ T0 | (p, ε) ∈ δ}.

5.2 Removing Global Selection 69

Note that our bottom-up relabeling Bot followed by the top-down relabel-
ing Top can jointly be considered as top-down relabeling with regular look-
ahead, because the set of deterministic bottom-up relabelings is a subset of
the class of deterministic top-down transducers with look-ahead (Theorem
3.2 of [Eng77]) and this class is closed under composition with deterministic
top-down relabelings (Lemma 2.10(2) of [Eng77]). Our complete relabeling is
also equivalent to an MSO definable relabeling [EM99;BE00]. Let REL denote
the class of all MSO definable relabelings.

5.2 Removing Global Selection

In this section we consider how to determine the nodes that are selected by
a select pattern during the execution of a TL program. The idea is to compile
the global selection steps into local movements. This means, instead of defin-
ing a binary relation between nodes of the input with an MSO formula, we
now formalize a collection of functions traversing the input node by node
and collecting the nodes which have to be processed next.

As an intermediate model, we define a generalization of macro tree trans-
ducers (defined on page 34) called macro tree-walking transducer.

This model generalizes the stay-mtts by allowing to continue the trans-
formation at a child or the father of the current node.

Definition 5.2 (Macro tree-walking transducer) A macro tree-walking trans-
ducer (2-mtt) is a pair (R, A0) where A0 is a set of initial actions and R is a
finite set of rules of the form

q(labela(x0), y1, . . . , yk) −→ A,

where q is a function name and a is a label of a node in the input. Possible
actions (including the initial actions from A0) are described by the grammar:

A ::= b(A) | x0 | yj | q′(ψ, A1, . . . , Am),

where b is the label of a node in the output, yj is one of the accumulating
parameters, q′ is a function name, and ψ is a pattern which is either x0 = x1,
or x1 = father(x0), or x1 = childi(x0).

Intuitively, a 2-mtt is similar to a TL program, but operates on ranked
trees instead of forests. Moreover, match patterns in the left-hand side of the
rules are restricted to the form labela(x0), i.e., they are only allowed to check
the label of the current input node x0. The select patterns in recursive func-
tion calls may only be of one of the following forms:

• x0 = x1, i.e., the current node x0 itself is selected;
• x1 = father(x0) selects the father of x0;

70 5 Type Checking TL Programs

• x1 = childi(x0), which selects the i-th child of the current node x0 – in our
binary tree representation of forests, this pattern replaces the “;” and “/”
predicats.

Note that each of these patterns selects at most one next node v′, given any
binding of variable x0 to a node v of the input tree.

If we restrict the select patterns to x0 = x1 and x1 = childi(x0) and fur-
thermore do not allow the copy action x0 in right-hand sides, then we get the
concept of stay macro tree transducers (cf. Definition 4.1 on page 34).

The key idea of the simulation of the TL program Prog by a macro tree-
walking transducer is as follows. Assume that a call q(ψ, A1, . . . , Ak) of the
TL function q is to be evaluated at a node v of the input forest f with the
binary select pattern ψ. This means function q has to be applied to all nodes
v1 < . . . < vn where the sequence of pairs (v, v1), . . . , (v, vn) represents all
matches in document order of the pattern ψ in f . In order to collect the forests
produced by

[[q]] f (vi, [[A1]] f , . . . , [[Ak]] f)

for all nodes vi, i = 1, . . . , n, our simulating 2-mtt successivly proceeds from
the node v to the root node r of the annotated input where it returns a repre-
sentation of the list

[[q]] f (v1, [[A1]] f , . . . , [[Ak]] f) · · · [[q]] f (vn, [[A1]] f , . . . , [[Ak]] f).

These applications to the nodes vi are collected on the path from v to the
root node by traversing the prevailing left or right siblings, depending on
the direction from where the simulation has moved up.

��

r

q(ψ, A1, . . . , Ak)
u

v′ v

��

��

moving up

matches
searching foru

vv′

r

Fig. 5.1. Simulating global selection. In order to simulate the call of TL function q at
node v, one traverses the subtree of v, moves up to the father u of v, and searches
from u the left sibling v′ of v for nodes matching ψ, and so on until reaching the root
node.

Figure 5.1 illustrates this behaviour. At node v function q(ψ, A1, . . . , Ak) is
called. In order to find all nodes v1, . . . , vn building together with v a match

5.2 Removing Global Selection 71

for pattern ψ, we systematically have to traverse the complete input tree.
Therefore, we first scan the subtree rooted at node v for possible matches.
Then we move up to the father u of v and have to search sibling v′ of v for
possible matches and at the same time we have to test whether u itself is a
possible match. From node u we continue this traversal until reaching the
root r of the input tree and have searched the complete input for matching
nodes.

For the up movements, we therefore introduce the family of functions up,
whereas for the collection of matches to the left and right of the current path
to the root, we introduce the functions down.

In particular, we construct for the TL program Prog = (R, A0) the rule set
of the macro tree-walking transducer Twalk as follows. Each TL rule

q(ψ, y1, . . . , yk) −→ A

is simulated by the rules

q(label〈a,j,T,S1,S2〉(x1), y1, . . . , yk) → [A]j
q(label〈ε,j,T〉(x1), y1, . . . , yk) → [A]j

whenever the TL rule is indeed applicable to the current node, i.e., whenever
Uψ ∩ T 6= ∅. Depending on the child number j ∈ {0, 1, 2} of the current
node, the new right-hand sides of the rules are determined by means of the
transformation [.]j. It is recursively defined over the structure of the right-
hand sides of TL programs

[ε]j = ε

[yi]j = yi
[x1]j = x1
[〈b〉A〈/b〉]j = b([A]j, ε)

[A1 A2]j = [A1]j@[A2]j.

Since 2-mtts operate on ranked trees, they do not support concatenation of
forests as a base operation. Therefore, we express concatenation symbolically
by means of the new binary constructor “@”1. The occurrences of this sym-
bolic operator will be evaluated in a subsequent transformation.

In order to simulate recursive function calls q′(ψ, A1, . . . , Ak) occurring in
the action part, we make use of the functions up and down. If q′(ψ, A1, . . . , Ak)
occurs at the root node r and the pair (r, r) is a match for select pattern ψ, i.e., r
is selected by ψ, then the 2-mtt transforms r with function q and concatenates
the results of calling down for the child nodes of r,

[q′(ψ, A1, . . . , Ak)]0 = q′(x1 = x2, [A1]0, . . . , [Ak]0)@
down

q′
ψ,g1

(x2 = child1(x1), [A1]0, . . . , [Ak]0)@

down
q′
ψ,g2

(x2 = child2(x1), [A1]0, . . . , [Ak]0).

1 For better readability this constructor is written infix, i.e., t1@t2 stands for the bi-
nary tree @(t1, t2) and denotes the concatenation of the trees t1 and t2.

72 5 Type Checking TL Programs

Note that the function down records the name q′ of the called function to-
gether with the select pattern ψ and a relation gi, i = 1, 2, on the nodes
which is explained below. Note also that the current node is selected by
the pattern ψ if and only if T contains a state p such that (p, p) ∈ Bψ.
If the current node is not selected by ψ, then we omit the transformation
q′(x1 = x2, [A1]0, . . . , [Ak]0) of the current node, thus we simulate the call by

[q′(ψ, A1, . . . , Ak)]0 = down
q′
ψ,g1

(x2 = child1(x1), [A1]0, . . . , [Ak]0)@

down
q′
ψ,g2

(x2 = child2(x1), [A1]0, . . . , [Ak]0).

If on the other hand the function call q′(ψ, A1, . . . , Ak) occurs at a node v
different from the root node of the input, i.e., j 6= 0, we have to search the
current subtree for possible matches and we have to continue our search at
the father of v. If v is selected by pattern ψ, then the subsequent call for q′ is
simulated by

[q′(ψ, A1, . . . , Ak)]j = up
q′,j
ψ,h(x2 = father(x1), [A1]j, . . . , [Ak]j,

q′(x1 = x2, [A1]j, . . . , [Ak]j)@

down
q′
ψ,g1

(x2 = child1(x1), [A1]j, . . . , [Ak]j)@

down
q′
ψ,g2

(x2 = child2(x1), [A1]j, . . . , [Ak]j).

Again, if the current node v is not selected by ψ, then we omit the call q′(x1 =
x2, [A1]j, . . . , [Ak]j) in the accumulating parameter of up and have

[q′(ψ, A1, . . . , Ak)]j = up
q′,j
ψ,h(x2 = father(x1), [A1]j, . . . , [Ak]j,

down
q′
ψ,g1

(x2 = child1(x1), [A1]j, . . . , [Ak]j)@

down
q′
ψ,g2

(x2 = child2(x1), [A1]j, . . . , [Ak]j).

Analogue to the case where q′ is called at the root node, we compute the list
of outputs for the matches located in the subtree rooted at the current node
at that node. Now, however, we pass a tree representation of this forest in
an accumulating parameter to the function up. This function is meant to pro-
ceed upwards to the root to collect also the transformations of the remaining
nodes selected by pattern ψ. Similar to down, function up receives as extra
information the name q′ of the function to be called, the select pattern ψ, but
furthermore also the current child number j and a mapping h.

The extra information h and gi (i = 1, 2) for the functions up and down,
respectively, are relations on the states. They are meant to relate states at the
node where the current function q has been applied to those states at present
nodes where up and down are to be evaluated which are possibly connected
through a common run of the match automaton Match (cf. page 67)

h = {(p, p) | p ∈ T}
gi = {(p, pi) ∈ T × Si | ∃p3−i ∈ S3−i : (p, a, p1p2) ∈ δ}.

5.2 Removing Global Selection 73

The relation gi stores information about the node for which down is called.
On the other hand, the relation h used by up stores information about the
node at which the particular call was issued.

It remains to provide definitions for the functions up and down. The func-
tion

down
q′
ψ,g

is meant to traverse the subtree at the current node w and to return (a rep-
resentation of) the list of results obtained by applying the function q′ to all
nodes v1, . . . , vm in document order which are selected by pattern ψ. In other
words, down concatenates the values of q′ for all selected nodes in the subtree
rooted at w. Thus, it can recursively be defined by the rules

down
q′

ψ,h(label〈ε,j,T〉(x1), y1, . . . , yk) →

q′(x1 = x2, y1, . . . , yk)

down
q′

ψ,h(label〈a,j,T,S1,S2〉(x1), y1, . . . , yk) →

q′(x1 = x2, y1, . . . , yk)@
down

q′

ψ,g′1
(x2 = child1(x1), y1, . . . , yk)@

down
q′

ψ,g′2
(x2 = child2(x1), y1, . . . , yk)

with

g′i = {(p, pi) ∈ P× Si | ∃(p, p′) ∈ h, p3−i ∈ S3−i : (p′, a, p1p2 ∈ δ}.

These rules deal with the case where the current node is a match of ψ, i.e.,
h ∩ Bψ 6= ∅. Otherwise the call q′(x1 = x2, y1, . . . , yk) in the right-hand sides
must be omitted.

For the up moving function on the other hand, a call

up
q,j
ψ,h

denotes the function up scanning the input on its way to the root for matches
of the select pattern ψ, and each match is transformed with function q. The
number j ∈ {1, 2} indicates that the current node w was reached coming from
its j-th child. The function up moves from the current node to its father, and
then, depending whether it came from the left or right subtree (recorded in
the number j) it calls function down on the right or left subtree, respectively.
For the case that the current node is selected by the pattern ψ, i.e., h j ∩Bψ 6= ∅

if up is called from the j-th child, we define for the case that the root node of
the input is reached from the right child

up
q′,1
ψ,h (label〈a,0,T,S1,S2〉(x1), y1, . . . , yk, yk+1) →

q′(x1 = x2, y1, . . . , yk)@
yk+1@
down

q′
ψ,g1

(x2 = child2(x1), y1, . . . , yk)

74 5 Type Checking TL Programs

and for all other nodes reached from the right child

up
q′,1
ψ,h (label〈a,j,T,S1,S2〉(x1), y1, . . . , yk, yk+1) →

up
q′,j
ψ,h1

(x2 = father(x1), y1, . . . , yk,
q′(x1 = x2, y1, . . . , yk)@
yk+1@
down

q′
ψ,g1

(x2 = child2(x1), y1, . . . , yk)).

The definitions for reaching a node from the left child are defined accordingly

up
q′,2
ψ,h (label〈a,0,T,S1,S2〉(x1), y1, . . . , yk, yk+1) →

q′(x1 = x2, y1, . . . , yk)@
down

q′
ψ,g2

(x2 = child1(x1), y1, . . . , yk)@
yk+1

up
q′,2
ψ,h (label〈a,j,T,S1,S2〉(x1), y1, . . . , yk, yk+1) →

up
q′,j
ψ,h1

(x2 = father(x1), y1, . . . , yk,
q′(x1 = x2, y1, . . . , yk)@
down

q′
ψ,g2

(x2 = child1(x1), y1, . . . , yk)@
yk+1).

Observe that the recursive calls to up receive modified values h j. Moreover,
we have to generate new relations gj for the subsequent calls of down travers-
ing the up to now un-scanned subtrees. The new values hi and gi (i = 1, 2)
are defined by

hi = {(p, p′) ∈ P× T | ∃(p, pi) ∈ h, p3−i ∈ S3−i : (p′, a, p1p2) ∈ δ}
gi = {(p, p3−i) ∈ P× S3−i | ∃p′ ∈ T, (p, pi) ∈ h : (p′, a, p1p2) ∈ δ}.

In this section we compiled the TL program Prog into a 2-mtt Twalk oper-
ating on suitable annotated tree representations of forests. The 2-mtt, how-
ever, does not compute the (tree representations of the) output forests of Prog
directly. Instead, it generates occurrences of the symbolic concatenation op-
erator @ whenever needed. Summing up, we have the following result:

Theorem 5.3 For every TL program P there is a composition

A ◦ τP′ ◦ R

which computes the binary tree encoding of the transformation realized by
P. A ∈ APP is the mapping which evaluates all occurrences of @ in binary
trees, P′ is a 2-mtt, and R is a relabeling in REL. If P is deterministic, then the
2-mtt P′ can be chosen to be deterministic, too.

5.3 Removing Up Moves 75

5.3 Removing Up Moves

In the previous section we constructed from a TL program P a macro tree-
walking transducer. In this section we want to change this constructed trans-
ducer in such a way that the new transducer processes the input in a strict
top-down fashion. This means, we aim at simulating a TL program with stay
macro tree transducers (cf. Chapter 4).

Since stay-mtts cannot move upwards in their input, we need an appro-
poriate method to translate all moves to ancestors performed by the 2-mtt.
The key idea is, instead of moving up to a node u, we generate all possible
function calls at u and pass them in the parameter positions to any further
calls. In this way, a call of function q for the father node can be simulated
by selecting the corresponding parameter yq. Clearly, this simulation idea in-
creases the number of parameters dramatically, because each possible func-
tion call is simulated in an extra parameter, i.e., for functions q1, . . . , qn of the
2-mtt we now need n functions each with n accumulating parameters.

����

	

qi(x1 = father(x0))

q(child2(x0))
u

r

v1 v2

��

�
�
yi

q(child2(x0), q1(x0), q2(x0), . . . , qi(x0), . . .)

v2v1

r

u

Fig. 5.2. Removing up moves. The upper tree shows the situation for the 2-mtt: at
node u function q is applied to node v2, and at v2 function qi is applied to its father u.
The second tree shows the simulation idea: Now, function q records in the parameters
each possible transformation result of the current node x0. Then, the transformation
of the father node can be replaced by looking up the appropriate parameter.

76 5 Type Checking TL Programs

This simulation, however, is not able to deal properly with accumulating
parameters of the 2-mtt which are modified during up moves. Therefore, we
first make use of the following decomposition idea: we decompose the 2-mtt
P into a 2-mtt P′ without accumulating parameters followed by some special
transformation Y (which we explain later). The 2-mtt P′ executes only the
calling behaviour of P, while performing parameter passing symbolically by
means of formal substitution symbols. A symbol αi represents the usage of
formal parameter yi and a symbol σm represents the substitution of m actual
parameters. Thus, the following small 2-mtt with parameters

q(labela(x0), y1, y2) → q(x1 = child1(x0), b(y1), y2)
q(labelr(x0), y1, y2) → y1
q(labell(x0), y1, y2) → y2

would be rewritten as

q(labela(x0)) → σ2(q(x1 = child1(x0)), b(α1), α2)
q(labelr(x0)) → α1
q(labell(x0)) → α2

Such a transducer without parameters now produces trees containing the
auxiliary occurrences of the symbols αi and σm.

The symbolic substitution can be evaluated by a yield transformation. For
an extended alphabet Σ′ = Σ ∪ {αi | 1 ≤ i ≤ m} ∪ {σi | 1 ≤ i ≤ m}, this
transformation can be implemented by a deterministic macro tree transducer
Yield = (Q, Σ′, yield0, RYield) with

Q = {yieldi | 1 ≤ i ≤ m}.

For k ≥ 0 function yieldk has k extra arguments and is defined as

yieldk(αj, y1, . . . , yk) → yj, if j ≤ k
yieldk(σn(x1, . . . , xn+1), y1, . . . , yk) → yieldn(x1,yieldk(x2, y1, . . . , yk), . . . ,

yieldk(xn+1, y1, . . . , yk))
yieldk(b, y1, . . . , yk) → b

yieldk(a(x1, x2), y1, . . . , yk) → a(yieldk(x1, y1, . . . , yk),
yieldk(x2, y1, . . . , yk)),

where a and b are symbols from Σ. Let YIELD denote the class of all trans-
ductions realizing the symbolic substitution and parameter passing.

In the following results we consider without loss of generality only 2-mtts
working on binary tree representations of forests, i.e., the working alphabet
has one symbol “ε” of rank 0 denoting the empty forest, and all other sym-
bols are of rank 2.

We first consider deterministic tree-walking transducers and show that
they can be decomposed into a deterministic macro tree transducer followed
by a yield-function for evaluating the symbolic substitution. This decompo-
sition is performed in two steps:

5.3 Removing Up Moves 77

(1) The 2-mtt is decomposed into another 2-mtt without accumulating pa-
rameters followed by a yield-function.

(2) The 2-mtt without accumulating parameters then can be translated into
a deterministic macro tree transducer.

Lemma 5.4 For every deterministic 2-mtt P there exists a 2-mtt P′ without
parameters such that

τP = Y ◦ τP′ ,

where Y is a transformation of the class YIELD and P′ again is deterministic.

Proof. Let P = (Σ, R, A0) be a deterministic 2-mtt. Moreover, let m be the
maximal number of accumulating parameters of a function of P. Then we
construct a deterministic 2-mtt P′ = (Σ′, R′, A′0). The new alphabet is defined
as

Σ′ = Σ ∪ {αi | 1 ≤ i ≤ m} ∪ {σi | 1 ≤ i ≤ m} ∪ {⊥}

where ⊥ is a new symbol denoting undefined. The initial rule is A′0 = S(A0)
and the new rule set is obtained from R by rewriting each rule

q(labela(x0), y1, . . . , yk) → A as q(labela(x0)) → S(A)

where the new actions are obtained by

S(yi) = αi
S(b(A1, . . . , Ak)) = b(S(A1), . . . , S(Ak))
S(q′(ψ, A1, . . . , Al)) = σl(q′(ψ), S(A1), . . . , S(Al)).

Furthermore, we add for all pairs q, b for which P does not have a rule with
left-hand side q(labelb(x0), . . .) the new rule

q(labelb(x0)) →⊥ .

These rules avoid that P′ reaches a node v with a function q for which no rule
is applicable – or even simpler, the rules avoid that P′ gets “stuck”.

The transformation Y is implemented by an yield transducer as described
above. Note that none of the functions yieldk is defined for the input symbol
⊥. ut

The following result has already been proved in [EV86]. We repeat the
construction here, because the provided decomposition is necessary for un-
derstanding the complete simulation of TL programs by at most three stay
macro tree transducers.

Lemma 5.5 The transformation of a deterministic 2-mtt P can be effectively
decomposed into

Y ◦ τM,

where M is a total and deterministic mtt, Y is a transformation of the class
YIELD.

78 5 Type Checking TL Programs

Proof. We first decompose P according to Lemma 5.4 into a 2-mtt P′ without
parameters and a macro tree transducer Yield. P′ can now be transformed
into a total and deterministic mtt M = (Q, Σ, q0, R).

Our construction depends on the information whether a node is the root
node or not. Since mtts are closed under relabelings, we relabel the input and
keep in mind that this additional transfromation step can be absorbed into
M [EV85]. It is sufficient to use a deterministic mtt with the initial function
b0 and rules of the form

bj(a(x1, x2)) → 〈a, j〉(b1(x1), b2(x2))

for all occurring symbols a.
Assume that P′ has functions q1, . . . , qn. For each of these functions, M

has two variants. One without parameters which is used if the current node
is the root node, because no up moves can be performed and thus no param-
eters are necessary. The second variant is used at every other node and has n
accumulating parameters to store all possible function values for the current
node. This means

Q = {qν | rank(qν) = 0, ν = 1, . . . , n} ∪ {qν | rank(qν) = n + 1, ν = 1, . . . , n}.

Based on this set of functions, we replace each rule

qν(labeld(x0)) → t

with d = 〈a, j〉 a symbol of the annotated input, by the new rules

qν(d(x1, x2)) = U0(t), if j = 0
qν(d(x1, x2)) = U(t), for j 6= 0.

The right-hand side t is rewritten with

U(d′(A1, . . . , Ak)) = d′(U(A1), . . . , U(Ak))
U(qµ(x1 = father(x0))) = yµ

U(qµ(x1 = x0)) = U(rhs(qµ, labeld(x0)))
U(qµ(x1 = childj(x0))) = qµ(zj, U(rhs(q1, labeld(x0))), . . . ,

U(rhs(qn, labeld(x0)))),

where j ∈ {1, 2} and rhs(qi, labeld(x0)), i = 1, . . . , n, is the right-hand side of
the qi rule of P′ with match pattern labeld(x0).

The rules for leaf nodes with labels 〈ε, j〉 are rewritten analogously, with
the only difference that no accumulating parameters occur in the correspond-
ing right-hand sides.

When transforming a single right-hand side with U(.), it may recursively
start to evaluate other right-hand sides for parameter positions. Since the
2-mtt P is assumed to be deterministic, P will fail to terminate whenever
it processes the same node with the same function qi more than once. For

5.3 Removing Up Moves 79

representing nonterminating computations, we use the auxiliary symbol ⊥
denoting undefined. Thus, we replace the (n + 1)-th recursive application of
U(.) by ⊥. ut

Switching to nondeterministic tree-walking transducers, we carefully
have to distinguish between outside-in and inside-out evaluation. Recall that
the two evaluation modes differ in the order of evaluating nested function
calls. Outside-in transducers compute the outermost function call first, thus
parameters may contain unevaluated functions. Inside-out transducers, on
the other hand, evaluate the innermost function call first (cf. [ES77; ES78;
EV85]).

Therefore, we first explain the decomposition for outside-in 2-mtts and
afterwards for inside-out 2-mtts. The idea is the same as for deterministic
transformations: the tree-walking transducer is simulated by a 2-mtt with-
out accumulating parameters and a yield function for evaluating the sym-
bolic substitution. Then the constructed 2-mtt without parameters is trans-
lated into a stay macro tree transducer.

Lemma 5.6 The transformation of a nondeterministic OI 2-mtt P can be ef-
fectively decomposed into

Y ◦ τM,

where M is a nondeterministic OI stay-mtt and Y is a transfromation of the
class YIELDc.

Proof. As in Lemma 5.4 for deterministic 2-mtts, we first decompose P into a
2-mtt P′ without accumulating parameters followed by a function for evalua-
tion of symbolic substitution. Afterwards we simulate P′ with an OI stay-mtt
M.

In order to construct P′, we use a decomposition idea which has already
been provided by Engelfriet and Vogler in [EV86]. The idea is as follows.
First, we force P to be deterministic by collecting all rules

q(labela(x0), y1, . . . , yk) → ti, for i = 1, . . . , r

for function q with the same left-hand side, and combining all right-hand
sides into a single rule

q(labela(x0), y1, . . . , yk) → $(t1, $(. . . , $(tr−1, tr) . . .)),

where “$” is a new binary operator symbol denoting binary choice. The re-
sulting transducer is obviously deterministic. We then apply the transforma-
tion S(.) from Lemma 5.4 to the initial action as well as to the new rules —
if there were more than one initial rules, they would have been combined in
the same way. Additionally and in order to allow termination of the function
call at any moment, we add for every pair q, a

q(labela(x0)) →⊥

80 5 Type Checking TL Programs

as a second rule. Intuitively, the resulting transducer P′ does not only delay
substitution into formal variables but also the choice between different alter-
natives for a given function call. The substitution and choice operators are
evaluated by a transformation Y which can be implemented by an stay-mtt
Yield similar to that of Lemma 5.4 but with additional rules

yieldk($(x1, x2), y1, . . . , yk) → yieldk(x1, y1, . . . , yk)
yieldk($(x1, x2), y1, . . . , yk) → yieldk(x2, y1, . . . , yk)

for the binary choice symbol “$”.
The stay macro tree transducer is then constructed similar to the deter-

ministic variant but with the modified definition of the transformation U(.)
of right-hand sides:

U(b′(A1, . . . , Ak)) = b′(U(A1), . . . , U(Ak))
U(qµ(x1 = father(x0))) = yµ

U(qµ(x1 = x0)) = qµ(z0)
U(qµ(x1 = childj(x0))) = qµ(zj, q1(z0, y1, . . . , yn), . . . , qn(z0, y1, . . . , yn)).

The transformation is now simpler, because we are able to use the stay rules
for expressing a repeated transformation of the current node. ut

Lemma 5.7 The transformation of a nondeterministic IO 2-mtt P can be ef-
fectively decomposed into

Y ◦ τM,

where M is a nondeterministic IO stay-mtt and Y is a transfromation of the
class YIELDc.

Proof. Again, we first decompose P into a 2-mtt P′ without accumulating
parameters. Therefore we rewrite each rule

q(labela(x0), y1, . . . , yk) → A as q(labela(x0)) → S(A),

where S(.) is defined as in Lemma 5.5. We also assume that the input is re-
labeled as in Lemma 5.5. Recall that this relabeling can be performed in one
step together with the simulating mtt M [EV85].

The resulting transducer can now be transformed into an IO stay-mtt M.
We assume that P′ consists of functions q1, . . . , qn. For each of these n func-
tions, the stay macro tree transducer M has two variants:

(1) qν is used if the current node is the root node, i.e., no up-moves can be
performed and therefore no parameters are necessary;

(2) qν is used for every other node and has n accumulating parameters for
capturing all possible next actions.

5.3 Removing Up Moves 81

On the basis of this set, we replace each rule

qν(labeld(x0)) → t

with d = 〈a, j〉 by the new stay-rules

qν(z0) = U0(t), if j = 0
qν(z0, y1, . . . , yn) = Ud(t), for j 6= 0.

The new mtt M operates on input variables z0 for stay-rules and z1, z2 for
binary symbols.

The right-hand sides t are converted with the rewrite function Ud(.)
which is recursively defined over the structure of right-hand sides:

Ud(b
′(A1, . . . , Ak)) = b′(Ud(A1), . . . , Ud(Ak))

Ud(qµ(x1 = father(x0))) = yµ

Ud(qµ(x1 = x0)) = qµ(z0, y1, . . . , yn)
Ud(qµ(x1 = childj(x0))) = q′i,j(z0, iter1,d(z0, y1, . . . , yn), . . . ,

itern,d(z0, y1, . . . , yn)).

Since our mtt model allows only rules which either contain input variable
z0 representing the current node (the stay-rules) or input variables z1, z2, . . .
representing the first, second,. . . son of the current node, we have to post-
pone the transformation of the j-th son in the last equation by introducing
functions q′µ,j. They are defined for all binary labels d as follows:

q′µ,1(d(z1, z2), y1, . . . , yn) → qµ(z1, y1, . . . , yn)

q′µ,2(d(z1, z2), y1, . . . , yn) → qµ(z2, y1, . . . , yn).

Function iteri,d iterates nondeterministically over all possible definitions of
function qi applied to a node labeled with d. Thus, it allows to simulate the
IO evaluation of nested function calls. It either returns undefined (“⊥”) or the
choice over all appropriate right-hand sides of function qi. Given that

qi(labeld(x0)) → t1 | . . . | tk,

it is defined as

iteri,d(z0, y1, . . . , yn) → ⊥
iteri,d(z0, y1, . . . , yn) → $(Ud(t1), $(. . . , $(Ud(tk−1), Ud(tk)) . . .)).

The new output symbol “$” represents the choice between its left and right
child. Function iteri,d again calls for each right-hand side t1, . . . , tk the above
defined transformation Ud(.).

If the current node is the root node, i.e., the label is of the form d = 〈a, 0〉,
then the right-hand sides are transformed by function U0(.):

82 5 Type Checking TL Programs

U0(b
′(A1, . . . , Ak)) = b′(U0(A1), . . . , U0(Ak))

U0(qµ(x1 = x0)) = qµ(z0)

U0(qµ(x1 = childj(x0))) = q′µ,j(z0, iter1,d(z0), . . . , itern,d(z0)).

Accordingly, the iterating function iter has also no parameters and uses only
the parameterless version of functions q1, . . . , qn. Its definition is nearly equal
to that of iter above and therefore omitted. ut

Theorem 5.3 illustrates that every TL program can be decomposed into
a macro tree-walking transducer followed by the evaluation of the symbolic
concatenation given that the input is annotated with information about the
used patterns. Together with Lemma 5.5, we obtain our main decomposition
result for deterministic TL programs.

Theorem 5.8 There effectively exists a total and deterministic mtt M for ev-
ery determinitic TL program P such that

τP = A ◦Y ◦ τM,

where the transformations A and Y only depend on the used alphabet.

Proof. According to our constructions so far, we have decomposed the trans-
formation realized by a TL program P into a composition

A ◦Y ◦ τM ◦ R.

This follows from Theorem 5.3 and Lemma 5.5. The theorem follows from
the fact that macro tree transducers are effectively closed under relabelings
of the input from REL, by Theorem 4.21 and Corollary 4.10 of [EV85]. ut

With Lemmata 5.6 and 5.7 we obtain a corresponding result for nondeter-
ministic TL programs.

Theorem 5.9 The transfromation of every nondeterministic TL program P
can be decomposed into the composition

A ◦Y ◦ τM,

where M is a stay-mtt which can be effectively constructed from P.

Proof. By Theorem 5.3 and Lemmata 5.6 or 5.7, we have decomposed a TL
program P into a composition

A ◦Y ◦ τM ◦ R.

The theorem follows from the fact that IO as well as OI macro tree trans-
ducers are effectively closed under relabelings of the input from REL [EV85].
ut

5.4 The Decomposition by Example 83

These two theorems substantiate our main result: recognizability of sets
of forests is effectively preserved by taking pre-images of TL transforma-
tions. Every TL program can be effectively compiled into a composition of
three (stay) macro tree transducers, and since their introduction it is known
that taking pre-images of compositions of macro tree transductions effec-
tively preserves recognizability (Theorem 7.4 of [EV85]). The same also holds
for stay macro tree transducers (Corollary 44 of [EM03a]).

Theorem 5.10 Let Σ be an alphabet. For every TL program P and recogniz-
able set R ∈ FΣ of output forests, the pre-image

τ−1
P (R) = { f ∈ FΣ | ∃r ∈ R : (f , r) ∈ τP}

is again recognizable. Moreover, a finite automaton recognizing τ−1
P (R) can

be effectively constructed from program P and a finite automaton for R.

As a corollary this result gives a solution for the type checking problem
for TL programs. Assume we are given recognizable sets Tin, Tout ∈ FΣ of
the admissable input and output types, respectively. In order to check that
the set of outputs produced by a TL program Prog for every f ∈ Tin always
conformes to Tout, we perform inverse type inference [MSV00]. Using Theorem
5.10, type checking can be done as follows. First, determine a finite automa-
ton for the set

U = τ−1
P (FΣTout)

which is possible by Theorem 5.10 and because of the fact that recognizable
sets are effectively closed under complement. The set U represents the set
of all inputs for which the transformation τP returns results which do not
conform to Tout. In the second step, it hence remains to verify whether or not
Tin ∩ U = ∅. In particular, no wrong results are produced by program P if
and only if the intersection is empty. Since intersection emptiness is decidable
for finite automata, we obtain the following result.

Corollary 5.11 Type checking for TL programs is decidable.

5.4 The Decomposition by Example

In oder to illustrate the key ideas of the decomposition of a TL program into
at most three macro tree transducer, we here show the steps by means of our
example TL program.

Recall that the program moves all mails which are marked as spam from
the inbox into the trash folder.

84 5 Type Checking TL Programs

1 q0(labelMailDoc(x1)) −→ 〈MailDoc〉
2 q0(labelInbox(x2))
3 q0(labelTrash(x2))
4 〈/MailDoc〉
5 q0(labelInbox(x1)) −→ 〈Inbox〉
6 q2(x1/x2 ∧ labelMail(x2))
7 〈/Inbox〉
8 q0(labelTrash(x1)) −→ 〈Trash〉
9 q2(∃ z. z; x1 ∧ z/x2 ∧ labelSpam(x2))

10 q2(x1/x2)
11 〈/Trash〉
12 q2(x1) −→ x1

In the first step of the decomposition, the TL program is translated into
a macro tree-walking transducer. This translation compiles the global selec-
tions specified by the occurring select patterns into local movements.

Consider, for example, the rule transforming the Inbox-element (line 5). It
selects in its right-hand side each child which is labeled with Mail and copies
it into the output. This rule is simulated by the following 2-mtt rule:

q0(label〈Inbox,...〉(x1)) −→ Inbox(up
q2,1
ψ,h (x2 = father(x1),

down
q2
ψ,g1

(x2 = child1(x1))@
down

q2
ψ,g2

(x2 = child2(x1))), ε),

where ψ denotes the pattern x1/x2 ∧ labelMail(x2).
In the next step, we reformulate the macro tree-walking transducer into

one without accumulating parameters. Therefore, the passing of parameters
and substitutions are expressed by symbolic operators αi and σi. Thus, the
rule is rewritten as:

q0(label〈Inbox,...〉(x1)) −→

Inbox(σ1(up
q2,1
ψ,h (x2 = father(x1)),

σ0(down
q2
ψ,g1

(x2 = child1(x1)))@
σ0(down

q2
ψ,g2

(x2 = child2(x1))))), ε),

Since the function moving up in the input has one parameter, it is grouped
into a σ1 operator, while the down functions are grouped into σ0.

In the last step, we have to create from this macro tree-walking trans-
ducer an ordinary stay macro tree transducer, by eliminating each up move.
Assuming that the result of up

q2,1
ψ,h applied to the father of the current node is

passed in the k-th parameter, the rule is rewritten as:

q0(〈Inbox, . . .〉(z1, z2), y1, . . . , yk, . . . , yn) −→

Inbox(σ1(yk, σ0(down
q2
ψ,g1

(z1, s1, . . . , sn))@
σ0(down

q2
ψ,g2

(z2, s1, . . . , sn)))), ε),

5.5 Notes and References 85

where si are the results of applying each function to the current node. By
these three steps, every TL program can be transformed into a stay macro
tree transducer with symbolic substitution and symbolic concatenation.

5.5 Notes and References

The decomposition of TL programs into at most three stay macro tree trans-
ducers have been published in [MBPS05]. There, we invastigated only the
decomposition of outside-in transformations, meaning that, in the presence
of nested function calls, we fixed order of evaluation to be outside-in.

The macro tree-walking transducer — the intermediate model for compil-
ing global selections into local movements — equals the CFT(Tree-walk)
transducer model defined in [EV86], because they combine the features of
context-free tree grammars with a tree-walk facility [EV86;EM03a]. In [EV86]
the so-called grammar with storage is introduced as a transducer model. Ba-
sically, “a storage type is specified by a set of configurations which can be tested
by predicates and transformed by instructions” [EV86]. The nonterminals of the
grammar are viewed as the functions of the transducer. If each occurrence
of a nonterminal N then is associated with a configuration c, the grammar
is enabled to act on a storage type. Since a grammar rule can only be ap-
plied to a nonterminal-configuration pair N(c) if a test (specified in the rule)
holds for the configuration c, the “derivations of the grammar are controlled by
the storage configurations” [EM03a]. The new configuration-nonterminal pairs
are obtained from the right-hand side of the rule and a specified transfor-
mation of c. The 2-mtt is also equal to the 0-pebble macro tree transducer
introduced in [EM03a], and thus is in one-to-one correspondence with the
macro attributed tree transducer of [KV94; FV98].

XQuery [BCF+06] treats XML data as immutable trees. Moreover, the
nodes of the input also have a physical identity, which means that parts may
be either identical or equal as labeled trees. Type checking is performed via
forward type inference, i.e., starting out from the given input type, the proces-
sor infers for each function its output type and checks whether these inferred
types are consistent in themselves and with respect to a given output type.
This means, type checking is only approximative and type errors might oc-
cur at run-time. Since XQuery is able to generate new element and attribute
names, the corresponding type rule must be pessimistically assume that the
result type can be of any kind [MS05].

A large class of transformations which was specifically designed in order
to model most of the existing XML transformation languages, is the k-pebble
tree transducer [MSV00]. One of its most important conceptional characteris-
tics is that type checking is decidable with respect to regular tree languages.
Milo et al. present one of the first techniques for exact type checking and
familiarize the XML community with the method of inverse type inference.

86 5 Type Checking TL Programs

This means, instead of inferring the possible outputs of a given transforma-
tion F, they compute the pre-image

U = {d | F(d) /∈ Tout}

of all inputs d that result in outputs which do not conform to the given output
type Tout. This set gives a solution for the type checking problem, because for
a given input type Tin, one simply has to check whether the intersection of U
and Tin is empty or not. If it is empty, for all inputs conforming to Tin only
outputs of type Tout are produced.

In principle, the k-pebble tree transducer is a finite state transducer mark-
ing nodes of the input tree with up to k different pebbles. When modeling an
XML transformation, one extra pebble is used for each node that appears in
the pattern of the transformation [MSV00]. This means that the number k
depends on the complexity of the patterns that are used to realize the trans-
formation. Unfortunately, this number k influences the time complexity of
type checking a k-pebble tree transducer. The best known time complexity
is a tower of exponents whose height grows with the number of used peb-
bles [EM03a].

In order to obtain more efficient type checking algorithms, one can restrict
the expressive power of the type and transformation formalism. Restrictions
under which type checking for a fragment of top-down XSLT can be done
in polynomial time were investigated in [MN02;MN04]. Since type checking
quickly turns undecidable for query languages that are able to test equality of
data values, Martens and Neven focus on simple top-down recursive (struc-
tural) transformations motivated by XSLT and recursion on trees [MN05].
For deleting and unbounded copying transformations, they show that type
checking is hard for EXPTIME. Restricting to non-deleting transductions,
the complexity of type checking lowers to PSPACE, when the output type
is given by DTDs [MN05]. Moreover, they show that type checking becomes
tractable, i.e. is in PTIME, for restricted deletion and copying. The most inter-
esting fact of this restricted class of transformations is that arbitrary deletion
is allowed when no copying occurs, and bounded copying is permitted for
all transformation rules that delete only in a bounded fashion [MN04]. Here,
the ability of deleting is measured in the number of states occurring in the
top-level of a right-hand side, while the ability of copying is bounded by a
number k if there are at most k occurrences of states in every sequence of sib-
lings in the right-hand sides of the transducer. This definition is motivated
by the fact that a function occurring in a right-hand side of a rule is applied
to every subtree of the current node. This means, that a rule (qa) → b(q1),
transforms every subtree of a with function q1 and puts the resulting forest
under the new output symbol b. This corresponds to the following macro
forest transducer:

q(a〈 f1〉 f2) → b〈repeatq1
(f1)〉

repeatq1
(c〈 f1〉 rest) → q1(f1) repeatq1

(rest).

5.5 Notes and References 87

Pankowski shows that this approach is both descriptive and expressive, and
illustrates how to use these unranked top-down tree transducers to specify
and perform transformations of XML documents [Pan03a; Pan03b].

XDuce and CDuce [HP01; BCF03] support a local form of type inference
where types are explicitly specified for the function arguments and their re-
turn values, while they are inferred for pattern matching. The type system
is based on the notion of regular expression types, which correspond to the
class of regular tree languages. The most essential part of the type system
is the subtyping relation, which is defined by inclusion of the values rep-
resented by the types [MS05]. XDuce’s type checker is conservative in the
sense that a program that passes type checking is guaranteed to transform
valid input into valid output. On the other hand, there exist programs that
are correct, i.e., type-safe, but where appropriate type annotations are not ex-
pressible. Hence, type checking is approximative, and possibly correct pro-
grams are rejected.

Another functional approach to XML processing is XMλ [MS99]. Here,
the type information is mapped onto extended Haskell types. As in XQuery
and XDuce, type inference is approximate.

In [AMF+01;AMF+03] type checking is considered from a different point
of view. Milo et al. investigate the type checking problem fro transformations
relational data into tree data. The problem consists of statically verifying that
the output of every transformation belogns to a predefined output tree lan-
guages. This means, the transformations do not map trees onto trees, but
database entries to trees. Therefore, they introduce the transformation lan-
guage TreeQL. A program is a tree, where each node is labeled with a sym-
bol of the output tree language and a formula extracting some entries from
the database. Additionally, the free variables of a formula at a descendant
node in the program must be a superset of the free variables at its ances-
tors [AMF+03]. For this class of transductions it is shown that type checking
is undecidable in its most general formulation, but can be done in polyno-
mial time, when the formulas in the TreeQL programs are restricted to con-
junctive queries with a bounded number of variables and the output type
specifies only cardinality constraints on the tags of the children of a node,
but does not restrict their order [AMF+01].

6

Type Checking by Forward Type Inference

In general, the type checking problem for XML transformations is undecid-
able. Hence, every solution which deals with all possible transformation fea-
tures has to be approximative. However, this seem to work well for practical
XSLT transformations. Another approach is to restrict the types and transfor-
mations in such a way that type checking becomes decidable.

In the previous chapter we restricted the transformations to be express-
ible in the language TL. For this transformation language, we have provided
an exact type checking algorithm by decomposing every TL program into
at most three stay macro tree transducers — independent of the match and
select patterns used by the transformation.

Even though the class of translations for which type checking is decidable
is surprisingly large, the price to be paid for exactness is also extremely large:
the complexity of the known algorithms for compositions of stay-mtts is a
tower of exponents whose height grows with the number of transducers in
the composition. For practical considerations, however, one is interested in
useful subclasses of transformations for which type checking is tractable.

In this chapter, we report on another approach to type checking XML
transformations: we show that exact type checking can be done in polyno-
mial time for a large class of practically interesting transformations obtained
by putting only mild restrictions onto the transducers. More precisely, we
show that exact type checking can be solved in polynomial time for any
transformation realized by

(1) a linear stay macro tree transducer which never translates the same node
more than once at the same time, or

(2) a b-bounded stay macro tree transducer which translates every node only
a bounded number of times.

Note that no restriction is put on the copying that the stay-mtt applies to
its accumulating parameters, i.e., parameters can freely be copied. Note fur-
ther, that we focus on nondeterministic tree transducers with call-by-value
semantics, i.e., which evaluate nested function calls in an inside-out mode.

90 6 Type Checking by Forward Type Inference

Opposed to the techniques in the previous chapter, this approach is based
on forward type inference which means that we compute for a given transfor-
mation the possible set of outputs with respect to a given input type, and
then test whether or not this computed set is contained in the desired output
type.

First, we generalize the well-known triple construction for context-free
grammars to provide a general construction for stay-mtts which produce
only output trees of the language accepted by some deterministic finite au-
tomaton (Section 6.1). In Section 6.2 we use stay moves to cut down the num-
bers of function calls in right-hand sides which crucially affect the complex-
ity of the construction. We also present a formulation by Datalog to obtain
a practically efficient implementation. Then we exhibit subclasses for which
our approach to type checking is provably efficient and present an adaptive
algorithm which is correct for arbitrary stay-mtts but automatically meets
the improved time bounds on the provably efficient sub-classes (Sections 6.3
and 6.4). We close the chapter by generalizing the techniques from stay-mtts
to stay macro forest transducers which additionally provide built-in support
for the concatenation of forests.

In the following, we will not mention given input types in our discus-
sions and theorems explicitly. Instead, we implicitly assume that this type
has been encoded into the stay-mtt. This can be done as follows. Assume
that the input type S is given by a possibly nondeterministic finite tree au-
tomaton A = (P, Σ, F, δ) (cf. Section 2.3). From a stay-mtt M = (Q, Σ, Q0, R),
we then build a new stay-mtt MA = (Q′, Σ, Q′0, R′) whose function symbols
are pairs consisting of a function symbol of M and an automaton state of A,
i.e.,

Q′ = {〈q, p〉 | q ∈ Q and p ∈ P} ∪ {〈q,>〉 | q ∈ Q}

with > ∩ P = ∅. For each rule q(a(x1, . . . , xn), y1, . . . , yk) → t with a ∈ Σ we
create new rules

〈q, p〉(a(x1, . . . , xn), y1, . . . , yk) → [t] ρ,

where for all 1 ≤ j ≤ n, ρ(xj) = pj if (p, a, p1 · · · pn) ∈ δ. [t] ρ describes
the rewriting of the right-hand sides and is inductively defined over their
structure

[yi] ρ = yi
[b(x1, . . . , xm1)] ρ = b([t1] ρ, . . . , [tm1] ρ)
[q′(xj, t1, . . . , tm2)] ρ = 〈q′, ρ(xj)〉(xj, [t1] ρ, . . . , [tm2] ρ).

This means, a predecessor state pj corresponds to the input variable xj and
therefore occurs in the new right-hand sides as the second component in
recursive calls on xj.

Since stay-rules only change the state of the transducer independent from
the input, it is also not necessary to consider a change of the tree automata
states. Thus, a stay-rule q(x0, y1, . . . , yk) → t is rewritten as

6.1 Intersection with Regular Languages 91

〈q,>〉(x0, y1, . . . , yk) → [t] ∅

where> signalizes that this rule is valid for all states of M and ∅ is the empty
assignment.

In order to deal with variables xj not occurring in the right-hand side, we
introduce extra functions checkp′ for every state p′ ∈ P such that checkp′(s, y1)
produces y1 if and only if there is a run of A on the tree s which results in a
state p′.

Then the new set of initial states is the set of all pairs consisting of an
initial state of M and an accepting state of A, thus

Q′0 = {〈q, p〉 | q ∈ Q0 and p ∈ F}.

In particular, the new stay-mtt MA is of size O(|M| · |A|), where |M| is the
size of the transducer and |A| is the size of the tree automaton representing
the input type. Since the construction of MA does not add new function calls
in rules of M, MA is linear in the input variables x0, x1, . . . if M is.

6.1 Intersection with Regular Languages

We show that for a stay macro tree transducer and a given output type, it
is possible to construct a new stay macro tree transducer which produces
only outputs of the desired type. In fact, if the output type is given as finite
tree automaton, the corresponding construction is a rather straight-forward
generalization of the triple construction known for context-free languages. In
case of stay-mtts, the construction is even simpler if we additionally assume
that the recognizable tree language is given by a deterministic finite tree au-
tomaton. Remember that these are finite tree automata where the transition
relation defines a function as explained on page 15.

Theorem 6.1 Let Σ be an alphabet. For a stay-mtt M and a deterministic fi-
nite tree automaton A there is a stay-mtt MA with

τMA(t) = τM(t) ∩ L(A)

for all trees t ∈ TΣ.
The stay-mtt MA can be constructed in time O(N · nk+1+d) where N is the

size of M, k is the maximal number of accumulating parameters of a function
symbol of M, d is the maximal number of function occurrences in any right-
hand side, and n is the size of the finite tree automaton A.

Proof. For a given alphabet Σ let M = (Q, Σ, Q0, R) be a stay-mtt and let
A = (P, Σ, δ, Pf) be the deterministic bottom-up finite state tree automaton
where P is the set of states, Pf ⊆ P is the set of final states, and δ : Σ× Pk → P
is the transition function.

92 6 Type Checking by Forward Type Inference

The set of function symbols of the new stay-mtt MA = (QA, Σ, Q0,A, RA)
consists of all pairs whose first component is a function symbol of rank k + 1
of M and whose second component is a sequence of length k of states of A,
i.e.,

QA = {〈q, p0 . . . pk〉 | q ∈ Qk+1, p0, . . . , pk ∈ P}.

One of these new function symbols 〈q, p0 . . . pk〉 is meant to generate all trees
t containing variables from y1, . . . , yk for which there is a run of automaton
A starting at the leaves yi (i = 1, . . . , k) with states pi and reaching the root of
t in state p0.

The rule set RA of the intersection stay-mtt MA consists of all rules

〈q, p0 . . . pk〉(π, y1, . . . , yk) → t′

for each rule q(π, y1, . . . , yk) → t of M, where either π = x0 or π =
b(x1, . . . , xl), and a tree t′ ∈ Tp0...pk [t], where the sets Tp0...pk [t] are inductively
defined over the structure of right-hand sides

Tpip1 ...pk [yi] = {yi}
Tp0p1 ...pk [a(t1, . . . , tm)] = {a(t′1, . . . , t′m) | δa(p′1, . . . , p′m) = p0 and

∀i ∈ {1, . . . , m} : t′i ∈ Tp′i p1...pk [ti]}
Tp0p1 ...pk [q′(, t1, . . . , tn)] = {〈q′, p0p′1 . . . p′m〉(t′1, . . . , t′n) |

∀i ∈ {1, . . . , n} : t′i ∈ Tp′ip1 ...pk [ti]}.

By fixpoint induction, we verify for every function q of rank k ≥ 0, every
input tree s ∈ TΣ, and states p0, . . . , pk that

[[〈q, p0 . . . pk〉]](s) = [[q]](s) ∪ {t ∈ TΣ(Y) | δ∗(t, p1 . . . pk) = p0} (6.1)

Y = {y1, . . . , yk} and δ∗ is the extension of the transition function of automa-
ton A to trees containing variables from Y, namely

δ∗(yi, p1 . . . pk) = pi
δ∗(a(t1, . . . , tm), p1 . . . pk) = δa(δ∗(t1, p1 . . . pk), . . . , δ∗(tm, p1 . . . pk))

for all symbols a ∈ Σ. The set of new initial function symbols then consists
of all 〈q, p f 〉, where q0 ∈ Q0 and p f ∈ Pf is an accepting state of A. Then the
correctness of the construction follows from equation (6.1).

Let the stay-mtt M be of size N with at most k parameters and at most d
occurrences of function calls in the right-hand sides, and let n be the number
of states of the deterministic tree automaton. Since there can be (in the worst
case) nk+1 copies of a rule of M; and for every non-terminal occurring in
the right-hand sides we may choose arbitrary output states, the intersection
grammar is of size O(N · nk+1+d). This completes the proof. ut

6.2 Shortening of Right-hand Sides 93

6.2 Shortening of Right-hand Sides

In general, the number of occurrences of states in a right-hand side of a rule
can be arbitrarily large. Stay macro tree transducers, however, allow a con-
struction which cuts down the depth of right-hand sides to at most 2.

The key idea of Lemma 6.2 is to split the right-hand sides into their sub-
terms and to organize the execution or rather the data-flow by stay-rules. In
this way, for every internal (i.e., non-root and non-leaf) node of rank r in the
right-hand side of a rule of M, the new transducer M′ has a new state of rank
r. Clearly, r is bounded by the maximum rank of states and output symbols
of M. Moreover, if the corresponding left-hand side of a rule in M is a state
with m parameters, then each new state also has rank m. Accordingly, m pa-
rameters are passed in each of the new rules, which explains the size increase
of at most k2.

Lemma 6.2 For every stay-mtt M, a stay-mtt M′ can be constructed with the
following properties:

(1) τM = τM′ ;
(2) whenever a right-hand side of M′ is not contained in TΣ(Y), then the

depth of t is bounded by 2;
(3) the maximal number of states in a right-hand side of M′ is at most k + 1;

and
(4) the size of M′ is bounded by O(|M| · k2)

where k is the maximum of the maximal rank of output symbols and the
maximal number of accumulating parameters of a state of M.

Proof. For alphabet Σ, let M = (Q, Σ, Q0, R), and let k denote the maximum
of the maximal rank of output symbols and the maximal number of accumu-
lating parameters of a state.

In the first step, we show that from the stay-mtt M we can construct a
stay-mtt M1 of size O(|M|) which is equivalent to M and whose only rules
of depth exceeding 2 either do not contain input variables xi or are stay-rules.
The idea is to replace q, a-rules

q(a(x1, . . . , xn), y1, . . . , yk) → t

of M where t contains variable xj and is of depth exceeding 2, with the rules

q(x0, y1, . . . , yk) → t′

〈p, a, j〉(a(x1, . . . , xn),y1, . . . , ym) → p(xj, y1, . . . , ym).

The new right-hand side t′ is obtained from t by replacing each call p(xj, . . .)
with a call of the new function 〈p, a, j〉 applied to the current node x0, i.e.,

p(xj, . . .) is replaced by 〈p, a, j〉(x0, . . .).

94 6 Type Checking by Forward Type Inference

Thus, we postpone pattern matching against the current input subtree until
the recursive call p(xj, . . .).

In the next step, we simulate each stay-rule

q(x0, y1, . . . , yk) → t

of M1, where t is too deep, by rules of depth at most 2. Therefore, we intro-
duce separate states for every proper subterm of t. Thus, a rule

q(x0, y1, . . . , yk) → σ(t1, . . . , ti, . . . , tn)

where σ is either a function or an output symbol, and subterm ti is deeper
than 1, is simulated by

q(x0, y1, . . . , yk) → σ(t1, . . . , qti(x0, y1, . . . , yk), . . . , tn)
qti(x0, y1, . . . , yk) → ti

for a new auxiliary state qti . Since every subterm of depth at most 2 can only
contain k + 1 states, the assertion follows. ut

Note that this reduction of right-hand sides undoubtedly influences the
execution of a stay-mtt. Assume therefore that both M and M′ work on a
given input tree s. If there is a computation of M using n sequential rule
applications (in the conventional term rewriting sense), then there is a corre-
sponding computation of M′ with at most c · n rule applications, where c is
the size of the largest right-hand side of the rules of M.

6.3 Linear Stay-Mtts

We first consider stay macro tree transducers, where each input variable xi
occurs at most once in every right-hand side of the stay-mtt. stay-mtts as well
as ordinary mtts satisfying this restriction are called linear (cf. Definition 4.2
or [EV85]). Note that there is no restriction on the use of parameters. Lin-
earity means, that no input node is transformed more than once in a single
transformation step.

Linearity for a stay-mtt in particular implies that the number of func-
tion calls in right-hand sides is bounded by the maximal rank of the input
symbols. We observe for linear stay-mtts that their output languages can be
described by means of rules where the input arguments of all occurring func-
tion symbols are simply omitted.

Accordingly, the resulting rules no longer specify a transformation from
input trees into output trees of a special shape. Instead, the rule system now
generates output trees of that shape. In this way, we obtain a set of rules which
constitutes a context-free tree grammar (cftg).

Context-free tree grammars were invented in the late 60s [Rou70a;Rou70b],
gaining the structural intuition about macro grammars [Fis68b]. Regular tree

6.3 Linear Stay-Mtts 95

grammars are natural generalizations of regular grammars from strings to
trees [Bra69]. As a consequence, nonterminals can only occur as leaves in the
right-hand sides of the productions of regular tree grammars. This restriction
was lifted by Rounds by allowing for arbitrary nodes in the right-hand sides
to be labeled with a nonterminal [Rou70b]. In this way Rounds generalized
context-free grammars to work on trees. See [ES77; ES78] for a comprehen-
sive study of the basic properties of context-free tree grammars and an exact
and detailed differantiation between inside-out and outside-in context-free
tree languages.

Formally, a context-free tree grammar G can be represented by a tuple

(N, Σ, P, N0),

where N is a finite ranked set of nonterminals, N0 ⊆ N is a set of initial
symbols of rank 0, Σ is the finite ranked alphabet of terminal symbols, and P
is a finite set of rules of the form

q(y1, . . . , yk) → t

where q ∈ Nk is a nonterminal of rank k ≥ 0. The right-hand side t is a tree
built up from the variables y1, . . . , yk by means of applying nonterminal and
terminal symbols.

Analogue to stay-mtts, inside-out (IO) and outside-in (OI) evaluation or-
der for nonterminal symbols must be carefully distinguished [ES77;ES78]. In
the context of this chapter, we define the evaluation mode to be IO or call-by-
value evaluation order in the presence of nested function calls.

Intuitively, the generation induced by a grammar G starts with one of
the initial nonterminals. If there occurs a nonterminal q(t1, . . . , tk) for trees
t1, . . . , tk ∈ TΣ in an already generated tree t, we nondeterministically choose
one of the productions for q, then replace in its right-hand side each occur-
rence of a variable yi with the corresponding (fully evaluated) tree ti for all
i = 1, . . . , k, and replace in t the nonterminal node by the obtained tree. The
generating process ends if the resulting tree does not contain any further
nonterminal symbols.

The least fixpoint semantics for the context-free tree grammar G over Σ

and with nonterminals N is obtained straightforwardly along the lines for
stay-mtts — simply by removing the corresponding input components. In
particular, this semantics assigns to every nonterminal q ∈ Nk of rank k ≥
0, a set [[q]] ⊆ TΣ(Y) for a set of variables Y = {y1, . . . , yk}. The language
generated by grammar G is

L(G) =
⋃

{t ∈ TΣ | t ∈ [[q0]], q0 ∈ N0},

i.e., the language consists of all trees that can be generated starting from an
initial nonterminal.

By Corollary 5.7 of [EV85] follows that the output language of a linear
IO stay-mtt M can be characterized by an IO context-free tree grammar GM

96 6 Type Checking by Forward Type Inference

which can be constructed from M in linear time. The following theorem re-
peats this result.

Theorem 6.3 The output language of a linear stay-mtt M can be character-
ized by a context-free tree grammar GM which can be constructed from M in
linear time.

Proof. Given a linear stay-mtt M = (Q, Σ, Q0, R), we construct

GM = (N, Σ, P, N0),

where each function of M with k accumulating paramters is represented by a
nonterminal of rank k, i.e., N = {sq|q ∈ Qk+1, rank(sq) = k} and N0 = {sq ∈
E|q ∈ Q0}. For every rule

q(π, y1, . . . , yk) → t

of R, where pattern π is either x0 or a(x1, . . . , xn) for a ∈ Σn, there is exactly
one rule in P

sq(y1, . . . , yk) → rpl(t),

where the right-hand side of the production is obtained from t by the rewrit-
ing function rpl which is defined as

rpl(yj) = yj
rpl(a(t1, . . . , tn)) = a(rpl(t1), . . . , rpl(tn))
rpl(q′(xi, t1, . . . , tm)) = sq′(rpl(t1), . . . , rpl(tm)).

A formal proof that GM indeed characterizes the output language of M can
be found, e.g., in [EV85]. ut

The characterization of the output language of a particular stay-mtt by a
context-free tree grammar is useful because emptiness for (IO)-cftgs is decid-
able in linear time. The emptiness check can be done with a similar algorithm
as the one for context-free word grammars, see for example [Sal73].

In the word case, the algorithm works as follows. Mark each terminal
symbol in every rule of the grammar. Then search in the rule set for a pro-
duction rule A → α, in which α only consists of marked symbols and nonter-
minal A is unmarked. If such a production exists, mark A in every rule and
repeat this process. If the start symbol of the grammar is unmarked, then the
language generated by the grammar is empty, otherwise it is non-empty.

Accordingly, this algorithm can be formalized for context-free tree gram-
mars as follows. Let G = (N, Σ, N0, P) be a cftg over alphabet Σ and let
Y = {y1, . . . , ym} be a set of variables. Let U0 ⊆ U1 ⊆ U2 ⊆ . . . be a sequence
of subsets of N with

U0 = ∅

Uk+1 = Uk ∪ {q ∈ N | ∃q(y1, . . . , yk) → α in P such that α ∈ TΣ∪Uk(Y)}.

6.3 Linear Stay-Mtts 97

Since the set of nonterminals N is finite and Uk ⊆ Uk+1 ⊆ N for all k follows
that there exists a number n ≥ 1 with Un = Un+1, and for all k > n, Uk = Un.
The language L(G) generated by G is obviously empty if N0 /∈ Un [Fis68a].

The next theorem summarizes some known results about cftgs which are
of interest in the context of this work (cf. [GS84; GS97]):

Theorem 6.4 Let G be a context-free tree grammar.

(1) It can be decided in linear time whether or not L(G) is empty.
(2) For every deterministic finite tree automaton A, a cftg GA can be con-

structed such that
L(GA) = L(G) ∩ L(A).

The grammar GA can be constructed in time O(N · nk+1+d) where N is
the size of G, k is the maximal rank of the nonterminals of G, d is the
maximal number of occurrences of nonterminals in right-hand sides of
G, and n is the number of states of the finite tree automaton.

The complexity bound provided for the construction of Theorem 6.4 is
a worst-case estimation. Instead, we want to point out that the triple con-
struction for the context-free tree grammar GA can be organized in such a
way that only “useful” nonterminals are constructed. Here useful means,
that each nonterminal is used in some derivation step.

Therefore, we introduce for every nonterminal q of grammar G with rank
k, a predicate q with arity k + 1, written in the standard Datalog terminology
as q/k + 1 [AHV95]. Every production q(y1, . . . , yk) → t of G induces the
Datalog implication

q(Y0, . . . , Yk) ⇐ goals[t]Y0

where the body of the clause is determined by goals[t]Y0 . For a variable X it
is recursively defined over the structure of t

goals[yj]X = X = Yj
goals[a(t1, . . . , tm)]X = δ(X, a, X1, . . . , Xm) ∧ goals[t1]X1 ∧ . . . ∧ goals[tm]Xm
goals[q′(t1, . . . , tn)]X = q′(X, X1, . . . , Xn) ∧ goals[t1]X1 ∧ . . . ∧ goals[tn]Xn

where the variables Xi in the last two rows are “fresh” (for all i of 1, . . . , m
and 1, . . . , n, respectively). For subsets X and X1, . . . , Xk of the set of states of
automaton A, the predicate δ(X, a, X1, . . . , Xk) denotes that (p, a, p1, . . . , pk)
for all p ∈ X and pi ∈ Xi, i = 1, . . . , k.

If we add the transitions of the finite tree automaton A as facts, for ev-
ery nonterminal q of rank k, a bottom-up evaluation of the resulting Datalog
program computes the set of all tuples (p0, . . . , pk) such that the evaluation
[[〈q, p0, . . . , pk〉]] is non-empty. If we additionally want to restrict these rela-
tions only to those tuples which may contribute to a terminal derivation of
the initial nonterminal 〈q0, p f 〉, we simply may top-down solve the program
with the query⇐ q0(p f).

98 6 Type Checking by Forward Type Inference

Practically, top-down solving organizes the construction in such a way
that only “useful” nonterminals of the intersection grammar GA are consid-
ered [AHV95]. Using this approach, the number of newly constructed non-
terminals will often be much smaller than the bounds stated in Theorem 6.4.

In general, we are interested in type checking tree transformations which
are implemented as stay-mtts. As we have seen in the introduction to this
chapter, it is possible to code the input type specification into the stay-mtt
M. Moreover, assume that we have given a deterministic bottom-up tree au-
tomaton A which describes the output type. Constructing the correspond-
ing complement automaton Ac, type checking for M means to test whether
any output of M is accepted by Ac. If transducer M is linear, then the cor-
responding intersection stay-mtt MAc is again linear. Thus, its range can be
characterized by a context-free tree grammar generating all “illegal outputs”
of M with respect to Ac. Therefore, Theorem 6.4 gives us the following type
checking result together with a time estimation for linear stay macro tree
transducers.

Theorem 6.5 (Type checking linear stay-mtts) Let M be a linear stay-mtt.
Then M can be type checked with respect to a given output type.

The type checking can be done in time O(N · nk+1+d) where N is the size
of the stay-mtt M, k is the maximal number of accumulating parameters, d
is the maximal rank of an input symbol, and n is the size of a deterministic
finite tree automaton for the output type.

Proof. Following Theorem 6.3, we first construct the context-free tree gram-
mar GM for stay-mtt M which characterizes precisely the output language
of M. Then, following Theorem 6.4, we construct the intersection grammar
between GM and the complement automaton of the deterministic finite tree
automaton which represents the specified output type. Finally, we check non-
emptiness of the intersection grammar which can be done in linear time, cf.
Theorem 6.4. ut

If we apply the algorithm in the proof of Theorem 6.5 to non-linear stay-
mtts, then the constructed context-free tree grammar does no longer pre-
cisely characterize the output language of the transformation. This is because
dependencies on the input subtrees, viz several function calls on the same
input variable xi, have been lost in the grammar. Rather, the cftg generates
a superset of the possible outputs and hence provides a conservative over-
approximation.

Theorem 6.6 Let M be a stay-mtt and GM the context-free tree grammar con-
structed for M. Then τM(TΣ) ⊆ L(GM).

Since the constructed cftg still provides a safe superset of produced out-
puts, type checking based on cftgs is sound in the sense that it accepts only

6.4 b-bounded Stay-Mtts 99

correct programs. This means if our type checking routine answers posi-
tively, then the program definitly type checks with respect to the given input
and output types. On the other hand, a correct program might be rejected as
not type safe due to our conservative approximation.

Note that when we approximate the output languages of general stay-
mtts with context-free tree grammars, then we no longer assume that the
maximal number d of occurrences of nonterminals in a right-hand side of
this grammar is bounded by a small constant. If d turns out to be “unaccept-
ably large”, we still can apply Lemma 6.2 to limit the maximal number of
occurrences of nonterminals in each right-hand side to a number k which is
the maximum for the maximal rank of the input symbols and the maximal
number of parameters.

From a practical point of view, one does not necessarily need to first con-
struct the context-free tree grammar depicting the output language of the
transducer and then test the emptiness of the intersection grammar. Assume,
we are given a stay-mtt M and a deterministic tree automaton A which de-
scribes the output type. Then, it is possible to directly construct the intersec-
tion stay-mtt MA and test it for emptiness. Therefore, we assemble for each
rule

q(π, y1, . . . , yk) → t

of M, where pattern π either is a(x1, . . . , xn) or x0, a Datalog implication

q(Y0, . . . , Yk) ⇐ goals[t]Y0 ,

where q/(k + 1) is a predicate with arity k + 1 and the body goals[t]Y0 is com-
puted as for grammars shown on page 97. In order to test the emptiness of
the intersection stay-mtt MA, it suffices to query the Datalog program with
⇐ q0(p) for all initial functions q0 of M and final states p of A.

This gives us the following type checking algorithm for linear stay macro
tree transducers:

(1) Compute Datalog program D(M)
(2) Compute the intersection stay-mtt MA by solving D(M)
(3) if no accepting states of A are found for the predicates q0/1
(4) then return True
(5) else return False

6.4 b-bounded Stay-Mtts

In this section we investigate in how far the exact techniques from the last
section can be extended to more general classes of stay macro tree transduc-
ers. Again our ambition is to find precise and even more important tractable

100 6 Type Checking by Forward Type Inference

characterizations of the output language. If the stay-mtt is no longer linear,
we must take into account that distinct function calls could refer to the same
input node and therefore must be “glued together”. This means we pay par-
ticular attention to those function calls transforming the same input subtree.
Therefore, we first formalize the notion of b-bounded stay-mtts and then ex-
tend our type checking methods to this class of transducers.

In general, an arbitrary number of function calls may be applied to the
same sub-document of the input. On the other hand, typical transformations
consult every part of the input only a small number of times. Therefore, we
consider the subclass of stay-mtts processing every subtree of the input at
most b times. Thus in principle, b-bounded copying is a semantic property
(cf. [MN04] and [EM99]).

Instead of dealing with a semantic definition, we find it more convenient
to consider syntactic b-bounded copying only. In order to define this prop-
erty, let M = (Q, Σ, Q0, R) be a stay macro tree transducer. Assume w.l.o.g.
that every state of M is syntactically productive, i.e., can produce at least one
tree with respect to the cftg approximating M. For all states q of M, we define
the maximal copy numbers β[q] as the least fixpoint of a constraint system
over

N = {1 < 2 < . . . < ∞},

the complete lattice of natural numbers extended with ∞. The constraint sys-
tem consists of all constraints:

β[q] ≥ β[q1] + . . . + β[qm],

where q(a(x1, . . . , xl), y1, . . . , yk) → t is a rule of M and, for some i, 1 ≤ i ≤ l,
q1, . . . , qm is the sequence of occurrences of calls qj(xi, . . .), j = 1, . . . , m, for
the same variable xi in the right-hand side t. The constraints for stay-rules
are constructed analogously. Let [q], q state of M, denote the least solution
of this system. Then the stay-mtt M is syntactically b-bounded copying (or, a
b-stay-mtt for short) if and only if [q] ≤ b for all states of M.

The least solutions of such constraint systems over the natural num-
bers can be determined in linear time [Sei94b]. In fact, [Sei94b] also pro-
vides a simple criterion which precisely characterizes whether or not all
copy numbers are finite. It amounts to checking that for every constraint
β[q] ≥ β[q1] + . . . + β[qm], whenever q and qj are in the same strong com-
ponent of the variable dependence graph of the constraint system then the
constraint is of the simple form: β[q] ≥ β[qj] only. Thus, the next propostion
follows from the definitions and [Sei94b].

Proposition 6.7 Assume that M is a stay-mtt where every state is syntacti-
cally productive.

1. It can be decided in linear time whether the stay-mtt M is syntactically
b-bounded for some b.

6.4 b-bounded Stay-Mtts 101

2. If M is syntactically b-bounded-copying then b ≤ 2|M|.
3. The syntactic copy numbers of every state of M can be determined in

linear time.

Depart from fundamental considerations, we here are interested in stay-
mtts where every input node is visited only a small number of times. Al-
though difficult to substantiate, we start out from the idea that most trans-
formations do not process the same input subtree arbitrarily often but only a
small number of times. We observe for b-bounded stay-mtts:

Theorem 6.8 For every syntactically b-bounded stay-mtt M the following
holds:

1. For every dfta A, the intersection stay-mtt MA is again syntactically b-
bounded.

2. Translation emptiness can be decided in time O(|M|b).

Proof. Let M = (Q, Σ, Q0, R) a b-bounded stay-mtt. For the first assertion, we
claim that for every state q ∈ Q of M with k parameters,

β[q] ≥ β[〈q, p0 . . . pk〉]

for every sequence p0, . . . , pk of automata states where β[〈q, p0 . . . pk〉] is
syntactically productive. This claim is easily verified by fixpoint induction
with respect to the corresponding constraint systems characterizing the copy
numbers β[q] and β[〈q, p0 . . . pk〉], respectively.

For a proof of the second assertion, we observe that, for syntactically b-
bounded stay-mtts, the propositional variables [{q}] for all initial functions
q ∈ Q0, only depend on propositional variables [S] for sets of states S of
cardinality at most b. ut

Theorem 6.1 provides us with the technical background to prove our
main result for syntactically b-bounded stay macro tree transducers.

Theorem 6.9 (Type checking b-bounded stay-mtts) Type checking for a b-
bounded stay macro tree transducer M can be done in timeO(Nb · nb·(k+1+d))
where N is the size of the stay-mtt M, k is the maximal number of accumu-
lating parameters, d is the maximal rank of an input symbol, and n is the size
of a deterministic finite tree automaton for the output type.

Instead of first testing b-boundedness and then running a specialized al-
gorithm, we prefer to formulate a general purpose algorithm which returns
correct results for all stay-mtts, but will additionally meet the better com-
plexity bounds on the exhibited sub-classes. Given a stay-mtt M and a deter-
ministic bottom-up tree automaton A, our algorithm works as follows:

102 6 Type Checking by Forward Type Inference

(1) For M, compute equivalent stay-mtt M′ where the numbers
of occurrences of functions in right-hand sides are bounded

(2) Compute Datalog program D(M′)
(3) Compute a safe superset of the states of the intersection stay-

mtt M′A by solving D(M′)
(4) if no accepting states of A are found for the predicates q0/1
(5) then return True
(6) else compute Horn clauses H(M′A)
(7) return solve(H(M′A))

In the worst case, this algorithm will be exponential in the number of
states of M and double exponential in the number of parameters. Due to the
lower bounds for translation emptiness, there is only little hope to get bet-
ter performances. If on the other hand, the stay-mtt is linear or syntactically
b-bounded, the algorithm’s complexity will achieve the upper bounds given
in Theorems 6.5 and 6.9, respectively. Even more, due to the demand-driven
algorithms in steps 3 and 7, we obtain satisfying run-times even for prac-
tical relevant transformations, like the one presented in the introduction to
Chapter 5.

6.5 Stay Macro Forest Transducers

In the previous sections, we took a closer look at linear and syntactically b-
bounded stay macro tree transducers. Since they are defined to work only on
ranked trees, they have the disadvantage that stay-mtts are not able to work
on forests directly but refer to representations of forests by means of ranked
trees. In this context we understand a forest as an arbitrary long sequence
of trees. As a consequence, there is no intuitive stay-mtt solution express-
ing the “simple” operation of lengthening a forest by another sequence of
trees. As shown in [PS04], this limitation, though, can be lifted. There, we
have proposed macro forest transducers which operate on forests directly
and generalize stay-mtts by providing concatenation of forests as additional
operation on output forests. This extra feature implies that some macro for-
est translations cannot be realized by a single stay-mtt alone but only by the
composition of a stay-mtt with the transformation App. In this section we
want to discuss in how far the results for linear and b-bounded macro tree
transducers can be generalized to macro forest transducers.

We first show that the emptiness problem is DEXPTIME-complete also
for stay-mfts. Furthermore, we present the counterpart of Theorem 6.1 for
the forest case, viz. that it is possible to construct for a given stay-mft M and
an output type, a stay-mft M′ that produces only outputs of the desired type.

6.5 Stay Macro Forest Transducers 103

Theorem 6.10 Deciding whether the transduction τM for a stay macro forest
transducer M is not empty is DEXPTIME-complete.

Proof. The lower bound follows since every stay-mtt is also a stay-mft, i.e.,
s-MTT ⊂ s-MFT. The algorithm for the upper bound almost literally also
works for stay-mfts (cf. Theorem 4.9). ut

In order to formalize the result about restricting the range of a stay macro
forest transducer, we additionally have to take into account that our deter-
ministic finite state representation of the output type is compatible with con-
catenations.

Therefore, we fall back upon the known idea of a forest algebra. We pro-
pose to use finite forest monoids (cf. the discussion in [BW05]). Let Σ be a
finite alphabet. Then a finite forest monoid (ffm) consists of a finite monoid M
with a neutral element e ∈ M, a subset F ⊆ M of accepting elements, and
finally, a function up : Σ×M → M, which maps a symbol of the alphabet Σ

together with a monoid element for its content to a monoid element repre-
senting a forest of length 1.

Given a deterministic bottom-up tree automaton A = (P, Σ, δ, FA), we can
construct a finite forest monoid as follows. Let M = P → P be the monoid
of functions from the set of automata states P into itself, where the monoid
operation is the function composition ◦ : M ×M → M such that for a state
p ∈ P and monoid elements f , g ∈ M, (f ◦ g)(p) = f (g(p)). In particular,
the neutral element of the monoid is the identity function id. Moreover, for
symbol a ∈ Σ, monoid element f ∈ M, and state p ∈ P, the function up is
defined as

up(a, f)(p) = δa(p f (δε)),

where ε is the input symbol denoting the empty forest. Finally, the set of
accepting elements is given by

F = { f ∈ M | f (δε) ∈ FA}.

This construction shows that every recognizable forest language can be rec-
ognized by a finite forest monoid and although the ffm for a bottom-up tree
automaton generally can be exponentially larger, this does not always need
to be the case.

Theorem 6.11 Let Σ be an alphabet. For a stay-mft M and a finite forest
monoid A there is a stay-mft MA with

τMA(t) = τM(t) ∩ L(A)

for all trees t ∈ TΣ.
The stay-mft MA can be constructed in time O(N · nk+1+d), where N is

the size of M, k is the maximal number of accumulating parameters of a
function symbol of M, d is the maximal number of function occurrences in
any right-hand side, and n is the size of the finite forest monoid A.

104 6 Type Checking by Forward Type Inference

Note that the complexity bound postulated for the construction of The-
orem 6.11 is not worse than for macro transducers which work on trees. In
order to cut down the number d in the exponent of the complexity estimation,
we proceed as in Lemma 6.2. For the forest case, however, it is not sufficient
to cut down only the depths of the right-hand sides. We additionally have to
ensure that all occurring forests also contain at most two trees. This is pos-
sible by introducing appropriate states for sub-forests which contain more
than two trees. Accordingly, we obtain

Lemma 6.12 For every stay-mft M, a stay-mft M′ can be constructed with
the following properties:

(1) τM = τM′ ;
(2) whenever a right-hand side of M′ is not contained in TΣ(Y), then the

depth of t is bounded by 2;
(3) the maximal number of states in a right-hand side of stay-mft M′ is at

most max(k + 1, 2); and
(4) the size of M′ is bounded by O(|M| · k2)

where k is the maximum of the maximal rank of output symbols and the
maximal number of accumulating parameters of a state of M.

The concepts for delineating or approximating the output languages of
stay-mtts given in Sections 6.3 and 6.4 naturally can be extended to stay
macro forest transducers as well. We only have to take care that the grammar
notions are appropriately generalized to deal with the ability of stay-mfts to
concatenate forests.

We introduce the concept of a context-free forest grammar (cffg) G as a tuple

(E, Σ, P, E0),

where E is a finite ranked set of non-terminals, E0 ⊆ E is a set of initial non-
terminals with rank(p0) = 0 for all non-terminals p0 ∈ E0, Σ is the finite
ranked alphabet of terminal symbols, and P is a finite set of production rules
of the form

p(y1, . . . , yk) → f

where p ∈ E is a non-terminal with rank k ≥ 0. The right-hand sides f
are built up from the empty forest and variables y1, . . . , yk by means of con-
catenation, application of non-terminal and terminal symbols. Note that this
new grammar formalism can be considered as a generalization of Fischer’s
macro grammars [Fis68a] from trees to forests. As in the rest of this chapter,
we concentrate on the inside-out mode of evaluating nested non-terminal
occurrences.

Since the notion of linearity for stay macro forest transducers is com-
pletely analogously defined as linearity for stay-mtts, we characterize the

6.5 Stay Macro Forest Transducers 105

output language of a stay-mftas a context-free forest grammar. The construc-
tion idea again can be viewed as ignoring each occurring input pattern and
variable.

Theorem 6.13 For each stay-mft M, a context-free forest grammar GM can
be constructed in linear time such that τM(FΣ) ⊆ L(GM). If M is linear, then
even holds τM(FΣ) = L(GM).

Proof. Given a stay-mft M = (Q, Σ, Q0, R) we construct

GM = (N, Σ, P, N0)

where each function of M with k accumulating paramters is represented by a
non-terminal of rank k, i.e., N = {sq|q ∈ Qk+1, rank(sq) = k} and N0 = {sq ∈
E|q ∈ Q0}. For every rule

q(π, y1, . . . , yk) → t

of R where pattern π is either x0 or ε or a〈x1〉 x2 for a ∈ Σ2, there is exactly
one rule in P

sq(y1, . . . , yk) → rpl(t)

where the right-hand side of the production is obtained from t by the rewrit-
ing function rpl which is defined as

rpl(yj) = yj
rpl(a〈t1〉 t2) = a〈rpl(t1)〉 rpl(tn)
rpl(q′(xi, t1, . . . , tm)) = sq′(rpl(t1), . . . , rpl(tm)).

The proof that GM indeed characterizes the output language of M is a
straight-forward generalization of the proof in [EV85]. ut

Due to the analogous definitions of tree and forest grammars, a counter-
part to Theorem 6.4 also exists for the forest case and summarizes the obser-
vations as follows.

Theorem 6.14 Let G be a context-free forest grammar.

(1) It can be decided in linear time whether or not L(G) is empty.
(2) For every finite forest monoid M, a cftg GM can be constructed such that

L(GM) = L(G) ∩ L(M).

The grammar GM can be constructed in time O(N · nk+1+d), where N is
the size of G, k is the maximal rank of the nonterminals of G, d is the
maximal number of occurrences of nonterminals in right-hand sides of
G, and n is the number of states of the finite forest monoid.

106 6 Type Checking by Forward Type Inference

The latter Theorem 6.14 immediatly gives us a first precise type checking
result for linear stay-mfts.

Theorem 6.15 (Type checking linear stay-mfts) Type checking for a linear
stay-mft M can be done in time O(N · nk+3) where N is the size of the stay-
mft M, k is the maximal number of accumulating parameters, and n is the
size of a finite forest monoid for the output type.

Again, we also obtain from this result a method for approximative type
checking general transducers. This means we compute a safe superset of the
possible outputs and type check the transducer on the basis of this set.

Literally rendering the notion of syntactically b-bounded transducers
from the tree case (cf. 100), we can extend the methodes from linear stay-
mfts to stay macro forest transducers which inspect their input several but
only a bounded number of times.

By analogy with the tree case, we obtain the following result.

Theorem 6.16 For every syntactically b-bounded stay-mft M the following
holds:

1. For every ffm A, the intersection stay-mft MA is again syntactically b-
bounded.

2. Translation emptiness can be decided in time O(|M|b).

As an immediate consequence, we can state our main theorem for type
checking b-bounded stay macro forest transducers. The interesting observa-
tion about this result is that type checking for the more expressive model of
forest transductions can be solved with the same expenditure of time as for
tree transducers.

Theorem 6.17 (Type checking b-bounded stay-mfts) Type checking for a b-
bounded stay macro forest transducer M can be done in timeO(Nb · nb·(k+3)),
where N is the size of the stay-mtt M, k is the maximal number of accumu-
lating parameters, n is the size of a finite forest monoid for the output type.

6.6 Forward Type Checking by Example

Our running example transformation of a mail file (cf. 3) can also be imple-
mented as a stay macro tree transducer working on a binary tree represention
of the input. In order to keep the example code small, we omit the content of
the Mail- and Spam-elements.

6.6 Forward Type Checking by Example 107

1 q(MailDoc(x1, x2)) → MailDoc(q(x1), ε)
2 q(Inbox(x1, x2)) → Inbox(qmail(x1), qtrash(x2, qspam(x1)))
3 qmail(Mail(x1, x2)) → Mail(ε, qmail(x2))
4 qmail(Spam(x1, x2)) → qmail(x2)
5 qmail(ε) → ε
6 qspam(Mail(x1, x2)) → qspam(x2)
7 qspam(Spam(x1, x2)) → Spam(ε, qspam(x2))
8 qspam(ε) → ε
9 qtrash(Trash(x1, x2), y) → Trash(qtrash(x1, y), ε)

10 qtrash(Spam(x1, x2), y) → Spam(ε, qtrash(x1, y))
11 qtrash(Mail(x1, x2), y) → Mail(ε, qtrash(x1, y))
12 qtrash(ε, y) → y

The first line starts with processing the MailDoc-element. Line 2 transformes
the Inbox-element by producing a new Inbox-element in the output and call-
ing function qmail on the left son and function qtrash on the right son. The re-
sult of trasnforming the content of the Inbox-element with function qspam is
passed as parameter to qtrash. The functions qmail and qspam specify contrary
transformations of the content of the Inbox-element. While qmail collects all
elements labeled with Mail, function qspam collects all elements labeled with
Spam. Function qtrash copies its input into the output and passes parameter y
until a leaf is reached, and outputs the parameter.

This stay macro tree transducer is not linear, because the rule in line 2 calls
two functions for the second input variable x2.

The forward type inference algorithm characteritzes the output language
of a b-bounded stay macro tree transducer by means of a context-free tree
grammar. Recall, that the tree grammar is obtained from the transducer by
omitting the input arguments. Thus, it looks for our example stay-mtt as fol-
lows:

1 q → MailDoc(q, ε)
2 q → Inbox(qmail, qtrash(qspam))
3 qmail → Mail(ε, qmail)
4 qmail → qmail
5 qmail → ε
6 qspam → qspam
7 qspam → Spam(ε, qspam)
8 qspam → ε
9 qtrash(y) → Trash(qtrash(y), ε)

10 qtrash(y) → Spam(ε, qtrash(y))
11 qtrash(y) → Mail(ε, qtrash(y))
12 qtrash(y) → y

In line 2, one can see that only function (nonterminal) qtrash keeps its param-
eter as argument. All other functions are nonterminals without arguments.

In order to check whether the intersection of this grammar and a specified
output type is empty or not, a Datalog program of the following form is

108 6 Type Checking by Forward Type Inference

constructed. It can by solved by any Datalog solver for a query “q(p f)”,
where p f is a finite state of an automaton describing the predefined output
language.

q_spam(X34) :-

q_spam(X34).

q_spam(X31) :-

delta(X31, Spam, X32, X33),

delta(X32, e),

q_spam(X33).

q_spam(X30) :-

delta(X30, e).

q_trash(X25, X26) :-

delta(X25, Trash, X27, X28),

q_trash(X27, X29),

X26=X29,

delta(X28, e).

q_trash(X20, X21) :-

delta(X20, Spam, X22, X23),

delta(X22, e),

q_trash(X23, X24),

X21=X24.

q_trash(X15, X16) :-

delta(X15, Mail, X17, X18),

delta(X17, e),

q_trash(X18, X19),

X16=X19.

q_trash(X13, X14) :-

X14=X13.

q_mail(X10) :-

delta(X10, Mail, X11, X12),

delta(X11, e),

q_mail(X12).

q_mail(X9) :-

q_mail(X9).

q_mail(X8) :-

delta(X8, e).

q(X5) :-

delta(X5, MailDoc, X6, X7),

q(X6),

delta(X7, e).

q(X1) :-

delta(X1, Inbox, X2, X3),

q_mail(X2),

q_trash(X3, X4),

6.7 Notes and References 109

q_spam(X4).

6.7 Notes and References

The results presented in this chapter are previously published in [MPS06].
In 6.3 we used Datalog to model the intersection of a context-free tree

grammar and a regular tree language. Datalog is regarded as a “toy lan-
guage” for studying deductive databases; it extends the conjunctive queries
with recursion. Although closely related to logic-programming, there are
some main differences between Datalog and logic-programming. Datalog
only has relation symbols, whereas logic-programming also uses function
symbols. Due to the absence of function symbols, Datalog programs always
have finite models. Moreover, the expressive power of Datalog lies within
PTIME.

Technically, a Datalog program consists of rules of the form

R1(u1) ← R2(u2), . . . , Rn(un),

where R1, . . . , Rn with n ≥ 1 are relation names and u1, . . . , un are free tuples
of appropriate arities. Each variable occurring in u1 must occur in at least one
tuple of the right-hand side. The semantics of such a program is the minimal
model satisfying all rules [AHV95].

Evaluation techniques are usually devided into two classes: the top-down
and bottom-up evaluation. The advantage of top-down solving is that selec-
tions which are a part of the initial query can be propagated into the rules
as they are expanded. Top-down techniques are therefore more efficient than
bottom-up solutions [AHV95].

Discussing the results for stay macro tree transducers with bounded
copying, we defined this property as syntactic b-bounded copying. This means,
it can be tested by inspecting the transducer rules. An alternative syntactic
restriction, which implies our restriction of b-bounded copying, is the notion
of single use restriction. It was originally invented in the context of attribute
coupled grammars, but later generalized to stay-mtts in [EM99]. There it is
shown for a restricted class of stay-mtts, that semantic bounded copying (called
finite-copying) implies single use restriction, and hence syntactic bounded
copying.

In [MOS05] Møller et al. propose a sound type checking algorithm based
on an XSLT flow analysis which determines the possible outcomes of pattern
matching operations. For the benefit of better performance, the algorithm
deals with regular approximations of possible outputs.

Xact is a so-called embedded XML system with Java as host language
[KMS04; KCM04]. XML data is modeled with templates, which are XML tree
fragments with named gaps appearing in element contents or attributes. Val-
ues can be filled into these gaps in any order and at any time, and con-
versely, subtrees can be replaced by gaps in order to replace or even remove

110 6 Type Checking by Forward Type Inference

data [MS05]. The static guarantees are obtained by a dataflow analysis based
on the concept of summary graphs which approximatively track the opera-
tions on templates in the program. The type checker is conservative which
means a program which passes the analysis cannot produce invalid XML
documents at runtime.

Another embedded XML transformation language is XOBE [KL03]. This
system uses regular hedge expressions as typing formalism, which (more or
less) correspond to the class of regular tree languages. Based on explicit type
annotations on every XML variable declaration, XOBE checks the subtype
relationship for assignment statements. The type checker is not sound, i.e., in
some cases programs that are not type-safe are classified as correct because
the check routine makes somehow generous assumptions [MS05].

7

Implementation of a Type Checker

A common task in document processing, especially in XML processing, is
to transform a document from one format into another format. A publica-
tion list stored as XML document, for example, has to be transformed into
XHTML so that it can be viewed in a Web browser (cf. [Ley02]). Or a view
of an XML database has to be computed by omitting some information from
each entry or by restricting the set of returned entries to those specified in
the view.

In general, such transformation are realized by an application written
in a domain specific transformation language like XSLT [XSL99], XQuery
[BCF+06], or fxt [Ber05], or it is implemented via a general purpose program-
ming language with a more or less comfortable interface for XML processing
like C [KR88], C] [ECM06], or Java [GJS96]. The computation, however, is
similar for every implementation: traversing the input, the program collects
all relevant parts and generates from these selected parts together with some
new elements the output.

Since the produced output might be the input for a subsequent applica-
tion, it is necessary to guarantee some pre-defined structural properties. Pro-
vided that the input is correct, the generation of XHTML documents from
an XML bibliography should always result in a valid XHTML file, because
otherwise the Web browser does not present the intended information. Guar-
anteeing structural properties might even be security relevant. Consider an
XML file, which contains information about students including their names,
marks, and the visited courses. For data protection reasons, the transforma-
tion results must not contain information so that marks can be mapped to a
student’s name. Even these “simple” examples show that structural guaran-
tees for the output are an important task in XML processing.

In the previous chapters we have shown that transformations, which take
only structural information into account, can be expressed by macro tree
transducers and thus can be type checked. This means, it is possible to check
whether each output document is of a specified structure or type. In order

112 7 Implementation of a Type Checker

to test our theoretical results for practical examples, we have developed a
macro tree transducer suite which provides basic type checking algorithms.

7.1 A Type Checker Tutorial

We introduce the functionality of the type checker by means of our example
macro tree transducer for moving mail marked as spam from the inbox into
the trash folder (cf. Chapter 5). Recall that macro tree transducers work on
ranked trees. Accordingly, we define the transducer to work on a binary tree
representation of the mail file.

To keep the rule set small, we assume that mail-elements only contain the
designated leaf label e representing the empty forest. Thus, we do not need
rules for transforming Body-, From- or To-elements etc. Then the transforma-
tion is given by the following macro tree transducer:

1 q init(Doc(l, r)) -> Doc(q inbx(l), e())
2 q inbx(Inbox(l, r)) -> Inbox(q mail(l), q trsh1(r, q spam(l)))
3 q trsh1(Trash(l, r), y) -> Trash(q trsh2(l, y), e())
4 q mail(Mail(l, r)) -> Mail(e(), q mail(r))
5 q mail(Spam(l, r)) -> q mail(r)
6 q mail(e()) -> e()
7 q spam(Mail(l, r)) -> q spam(r)
8 q spam(Spam(l, r)) -> Spam(e(), q spam(r))
9 q spam(e()) -> e()

10 q trsh2(Mail(l, r), y) -> Mail(e(), q trsh2(r, y))
11 q trsh2(Spam(l, r), y) -> Spam(e(), q trsh2(r, y))
12 q trsh2(e(), y) -> y

The transducer is defined in its normal syntax except that the right-arrow
is replaced by “ -> ”. Since the gentle reader is already familiar with this
transducer, we explain only those details, which illustrate the features of our
implementation.

Line 1 defines a rule for function q init. Function names are strings start-
ing with a letter, followed by a sequence consisting of letters, numbers, and
the underscore “ ”. Additionally, function names can end with “′”. Legal
function names are q inbx, Init, q trsh2, or q′.

The patterns are defined in the usual way, like Inbox(l, r) in line 2. Input
symbols, here Inbox, also have to start with a letter and can consist of letters,
numbers, and the underscore. The programmer does not need to define the
used alphabet. It is automatically generated from all symbols occurring in
the left- and right-hand sides. The rank of a symbol is also derived from the
given pattern. Line 2, for example, defines symbol Inbox to be of rank 2,
whereas e() in line 1 indicates that this symbol is of rank 0. The two forms
e() and e for leaf labels are equivalent.

7.1 A Type Checker Tutorial 113

In order to make the rules more readable, input variables for identifying
the subtrees of an input symbol can be named like functions. These variable
names are only valid for one rule. This means, Inbox(l, r) (line 2) identifies
the left son with l and the right son with r. Both names can be used in a
function call in the right-hand side of that rule.

A function call is an expression like q trsh1(r, q spam(l)) in line 2. Func-
tion q trsh1 is applied to input variable r. The expression q spam(l) sets the
accumulating parameter of q trsh1 to the result of applying function q spam
to input variable l. Recall that we have to collect all mails marked as spam,
i.e., mails inside a Spam-element, at this point of the transformation because
later the mtt cannot go back to this node. If a function has more than one
parameter, we have a comma-separated list of expressions, where the first is
passed to the first parameter, the second expression to the second parameter
and so on.

Line 3 gives an example, how parameters are used. Left of “ -> ”the pa-
rameter is named y, where again the name can freely be chosen as for func-
tion names. In the right-hand side, this name can be used to refer to the con-
tent of the according parameter. If a function has more than one parameter,
each parameter has to be declared in a comma-separated list in the left-hand
side. As mentioned above, parameters are passed by their order to the func-
tion. Consequently, the content of the first parameter is identified by the first
declared name, the second parameter by the second name and so on. In the
right-hand side of the rule in line 3, parameter y occurs in the parameter po-
sition of the function call q trsh2(l, y). Parameter names can occur anywhere
in a right-hand side, except as input argument for a function call.

To save the overhead of specifying initial functions explicitly, the type
checker uses the first function rule to determine the initial function. In our
example mtt, function q init is the initial function.

In order to type check this macro tree transducer, we need a facility to
define types. As mentioned in the preliminaries, we abstract from concrete
type definition languages like DTD, XML Schema or Relax NG [BPSM+04;
FW04; Jam01], and prefer to specify input and output types as recognizable
tree languages. Due to their one-to-one correspondence with regular tree au-
tomata, types are given as bottom-up automata (see Section 2.3) description
in the following way:

114 7 Implementation of a Type Checker

1 p Mail, Mail, p Lea f , p Lea f ;
2 p Mail, Mail, p Lea f , p Mail;
3 Error, Mail, p Lea f , p Spam;
4 Error, Mail, p Lea f , Error;
5 p Spam, Spam, p Lea f , p Lea f ;
6 p Spam, Spam, p Lea f , p Mail;
7 p Spam, Spam, p Lea f , p Spam;
8 p Spam, Spam, p Lea f , Error;
9 p Inbx, Inbox, p Lea f , p Trsh;

10 p Inbx, Inbox, p Mail, p Trsh;
11 p Trsh, Trash, p Lea f , p Lea f ;
12 p Trsh, Trash, p Mail, p Lea f ;
13 p Trsh, Trash, p Spam, p Lea f ;
14 Error, Inbox, p Spam, p Trsh;
15 Error, Inbox, Error, p Trsh;
16 p Doc, Doc, p Inbx, p Lea f ;
17 Error, Doc, Error, p Lea f ;
18 p Lea f , e; .
19 Error

This description is partitioned into two parts: first, a rule set and second,
the accepting states. The rule set is given by a “;” separated list of transition
rules. The rule in line 1, for example:

p Mail, Mail, p Lea f , p Mail;

has to be read as follows. The automaton is in state p Lea f for the left son
of the current node and in state p Mail for the right son. If the label of the
current node equals Mail, then the automaton assigns state p Mail to the
tree rooted at Mail. Rules for leafs, for example in line 15, have an empty
list of states for the subtrees. The rule set is closed with a period. Then the
comma-separated list of final or accepting states follows. In our example this
list consists only of state Error.

The example automaton describes all incorrect outputs of our mailbox
transformation. If a Spam-element occurs in the list of Mail-elements, then the
automaton changes into state Error (line 3). Once the Error-state is reached, it
is propagated through the list of Mail-elements (line 4) to the Inbox-element
(line 15) and further to the root node (line 17). The rule in line 8 specifies that
state p Spam is assigned to a Spam-element, even if it is above a subtree whose
state is Error. With this rule we avoid that the automaton assigns state Error
to the content of the Trash-element because there Mail- and Spam-elements
can be mixed. The accepting state is defined as Error because this exactly
describes the tree structure we want to avoid with our transformation.

Assuming that we have saved the macro tree transducer in file “mail.mtt”
and the automaton describing the erroneous outputs in file “output.fta”, we
can check our mtt with the following command:

7.2 The Implementation Details 115

check -top -mtt mail.mtt -out output.dfa

This command determines the output language of the macro tree transducer
and checks whether the intersection between the computed output language
and the given output type is empty (cf. Section 6.3). For our example mtt and
the specification of the erroneous output documents, the checker returns that
the intersection is empty. This means in particular that the transducer does
not produce any document of the given type, thus we can conclude that the
transformation is correctly designed.

Changing the output type so that it describes exactly all documents that
can be produced by our macro tree transducer, then the checker returns that
the intersection is not empty. This answer, however, says only that the trans-
ducer is able to generate a document conforming to the predefined type. The
check against the set of incorrect outputs, on the other hand, says that the
mtt by no means produces a document of the wrong type.

To type check our example macro tree transducer by computing the pre-
image as described in Chapter 4, one can use the command:

check -pre -mtt mail.mtt -out output.dfa

Unfortunately, the automaton accepting the pre-image is so large that the
runtime of the checker becomes inacceptable. The mtt has 6 functions:

q init, q inbx, q trsh1, q trsh2, q mail, and q spam

with maximal one accumulating parameter. Let Q denote this set of func-
tions. The tree automaton has a state set P consisting of 7 states:

p Mail, p Spam, p Inbx, p Trsh, p Doc, p Lea f , and Error.

The constructed automaton accepting the pre-image has as states mappings
d such that for every function q with k parameters, d(q) is a mapping from Pk

to P (see Section 4.3). Thus, the number of states of the pre-image automaton
is |Q → Pk → P| which equals (|P||P|

k
)|Q| = |P||Q||P|

k
. Since |Q| = 6 in our

example and |P| = 7, we have 77·6(= 742) states for the pre-image automa-
ton. In order to compute the automaton, the checker has to determine for
each of the 742 states the according transitions. Due to the “non-elementary”
size of the pre-image automaton, this type checking method works only for
very small transducers.

7.2 The Implementation Details

In this section we briefly highlight some important implementation issues
and solutions specific to our approach. We have developed an OCaml suite,
which implements basic concepts for storing and manipulating macro tree
transducers. Moreover, the suite provides prototype implementations of the
two type checking methods:

116 7 Implementation of a Type Checker

(1) computing the pre-image of an mtt, and
(2) characterizing the output language of an mtt.

For our implementation of the macro tree transducer suite, we have cho-
sen OCaml for several practical reasons. As a functional language OCaml is
a natural choice for processing tree structured data. Compared to impera-
tive approaches, the declarative programming technique of tree processing
via recursive functions in functional languages is much clearer. This is an
advantage, since the right-hand sides of the rules form trees.

A second reason is, that OCaml is a strongly typed language, which means
that the compiler can ensure that each program executes without any type
errors. It also helps to find programming errors as early as possible — which
was also a motivation for our research in the field of XML transformations.

Moreover, OCaml provides the concepts of modules. A module or structure
is a collection of data types and functions. A signature specifies which com-
ponents of a structure are accessible from the outside, and with which type.
It can be used to hide some components or the concrete implementation by
restricting the types. Signatures are the interfaces for structures. Functors can
be understand as functions from structures to structures. They are used to ex-
press parameterized structures. A structure A parameterized by a structure
B is a functor F with a formal parameter B which returns the actual structure
A itself. The expected type of parameter B is specified via a signature. The
functor F can then be applied to one or several implementations B1, . . . , Bn of
B, yielding the corresponding structures A1, . . . , An. The concept of modules
reuse and maintain the implemented functions.

Another advantage of OCaml is that the programs usually exhibit sat-
isfactory performance. The compiler can produce both bytecode and native
code, i.e., the programmer has the choice whether the compiled program has
to be interpreted or is a standalone executable.

In the following, we first introduce the data structure for storing macro
tree transducers. Then, we present the two type checking methods, and close
with the implementation of the emptiness check and some considerations
how to reduce the size of macro tree transducers.

7.2.1 Representation of Macro Tree Transducers

A macro tree transducer obviously can be represented as a collection of mu-
tual recursive OCaml functions. The transformation induced by the follow-
ing macro tree transducer

7.2 The Implementation Details 117

1 q0(R(x1, x2)) → M(q1(x1, E′), q2(x2, E))
2 q1(A(x1, x2), y) → A′(q1(x1, D(y)), q2(x2, D(y)))
3 q1(B(x1, x2), y) → B′(q1(x1, D(y)), q2(x2, D(y)))
4 q1(E, y) → y
5 q2(A(x1, x2), y) → A′(q1(x1, D(y)), q2(x2, D(y)))
6 q2(B(x1, x2), y) → B′(q1(x1, D(y)), q2(x2, D(y)))
7 q2(E, y) → E′

which replaces each left leaf by a sequence of D’s that is of the same length as
the path from the root to that leaf, can be realized by the OCaml program

1 type t = E | A of t * t | B of t * t

2 type r = R of t * t

3 type t’ = E’ | A’ of t’ * t’ | B’ of t’ * t’ | D of t’

4 let rec q0 s = match s with

5 | R(x1,x2) -> M(q1 x1 E’, q2 x2 E’)

6 and q1 s y = match s with

7 | A(x1,x2) -> N(q1 x1 (D(y)), q2 x2 (D(y)))

8 | B(x1,x2) -> O(q1 x1 (D(y)), q2 x2 (D(y)))

9 | E -> y

10 and q2 s y = match s with

11 | A(x1,x2) -> A’(q1 x1 (D(y)), q2 x2 (D(y)))

12 | B(x1,x2) -> B’(q1 x1 (D(y)), q2 x2 (D(y)))

13 | E -> E’

The lines 1, 2 and 3 of the OCaml program define the tree structure on which
the transducer is defined. Line 2 restricts the root label to R, which is done by
the q0-rule of the mtt. Each mtt function corresponds to an OCaml function.
The functions are defined as mutual recursive functions (defined by the let

rec – and expression) because the q1- and q2-rules call each other. The case
expression of the form

match expr
with pattern1 -> expr1
| pattern2 -> expr2

...
| patternn -> exprn

matches the value of expr against patterns pattern1 to patternn. If the matching
against patterni succeeds, the associated expression expri is evaluated, and its
value becomes the value of the whole match expression. If several patterns
match the value of expr, the one that occurs first in the match expression is
selected [LDJ+04]. This means that in our example program the input tree s

is matched against the patterns and the according action is performed.
Although this is a very elegant way to represent macro tree transducers

and to study their outputs, we here prefer an abstract representation of mtts,

118 7 Implementation of a Type Checker

because we want to analyse some syntactic properties and construct other
formats of the mtt rules. Therefore, we store each macro tree transducer in
the following data structure:

1 type symbol = int

2 type state = int

3 type rhs = (symbol, state) RightHandSide.rhs

4 type action = Undefined | Det of rhs | Non_det of rhs list

5 type domain = None | OneOf of symbol list

6 type rule = symbol -> action

7 type rule_set = (state,(domain * rule)) Hashtbl.t

8 type parameter_table = (state,int) Hashtbl.t

9 type (’a,’b,’c) mtt = {

10 mutable q : ’a symbol_table;

11 mutable pars : parameter_table;

12 mutable sigma : ’b symbol_table;

13 mutable delta : ’c symbol_table;

14 mutable init : state list;

15 mutable rules : rule_set;

16 mutable sigma_arity : (symbol,int) table }

Symbols as well as functions (or states) are represented as integers, because
then we can abstract from the concrete function or symbol types.

In order to be as flexible as possible, the type for macro tree trasducer
is a polymorphic record where the type variable ′a denotes the type of the
function names, type variable ′b stands for the type of the input symbols
and type variable ′c denotes the type of the output symbols. Each field of
the record is declared to be mutable so that its value can be “physically”
changed [LDJ+04].

Function names q (cf. line 10), input symbols sigma (line 12), and ouput
symbols delta (line 13) are stored in a symbol table of the according type.
A symbol table maps integers to the represented values and vice versa. Ad-
ditionally, the number of parameters of each occurring function is stored in
the field pars and the rank (or arity) of input symbols is stored in the field
sigma_arity. The initial functions are stored as list in the field init (line 14).

The rules of the mtt are stored in a hashtable (line 15). The hashkeys are
the function names of the mtt. The hashed entries are pairs consisting of the
symbols for which this function is defined and a function mapping an input
symbol to an action (cf. lines 6 and 7). An action is encoded as variant type
and can either be undefined, or exactly one right-hand side expression, or —
in the case of a nondeterministic mtt — a list of right-hand side expressions.
Each right-hand side expression is also represented by a variant type, which
consists of the following constructors:

7.2 The Implementation Details 119

1 type (’symbol,’state) rhs =

2 | Empty_rhs

3 | Parameter of int

4 | Symbol of ’symbol * int * (’symbol,’state) rhs list

5 | Call of ’state * int * int * (’symbol,’state) rhs list

A right-hand side can either be empty (line 2), or the j-th parameter (line
3), an output symbol followed by the list of its successors, or a function call
together with the list of parameters. The integer type int in the Symbol case
(line 4) stores the length of the successor list. The integers in the case of Call
specify the input variable xi and the number of parameters (i.e., the length of
the parameter list).

A macro tree transducer, which is given by the command-line argument
-mtt is automatically translated into this internal data representation.

7.2.2 Pre-Image Computation

In the context of type checking, one of the main properties of macro tree
transducers is that taking pre-images effectively preserves recognizability. In
other words, for a recognizable set T and an mtt M the pre-image τ−1

M (T)
is again recognizable (see Theorem 4.6). As we have seen, this justifies the
following algorithm to check whether a macro tree transducer M computes
a type-safe transduction with respect to an input type Tin and an outpt type
Tout:

(1) Compute the complement T = Tout of Tout;
(2) Compute U = τ−1

M (T);
(3) if U ∩ Tin = ∅

(4) then return ”type-safe”
(5) else return ”there are type errors”

The main point of this algorithm is the computation of the pre-image of
the macro tree transducer. The automaton accepting it has to keep track of all
possible inputs whose transformation results in a document of type Tout.

We concentrate here on deterministic macro tree transducers with one
initial state. Let M = (Q, Σ, {q0}, R) be such an mtt, and let A = (P, Σ, δ, FA)
be a bottom-up tree automaton such that L(A) = T, where T denotes the
complement of the output type.

From M and A we construct an automaton B = (D, Σ, β, FB) recognizing
the pre-image U. The state set D consists of all mappings d such that for every
q ∈ Q with k parameters, d(q) is a mapping from Pk to P.

A naive solution determines for every symbol a ∈ Σ of rank n ≥ 0, and
every k-tuple d1, . . . , dn ∈ Dn, a transition δa(d1 . . . dn) = d of automaton B.

120 7 Implementation of a Type Checker

State d of D is defined as follows: For every function q ∈ Qk, and p1, . . . , pk ∈
P, and mtt rule q(a(x1, . . . , xn), y1, . . . , yk) → t of M, let

d(q)(p1, . . . , pm) = [t] σ ρ,

where
σ(xj) = dj for j = 1, . . . , n
ρ(yi) = pi for i = 1, . . . , k.

The definition of [t] σ ρ can be found in the proof of Theorem 4.6. For this
approach, the state set D has to be computed a priori and the determination
of each transition is very time consuming. The number of states of D is

|Q → Pk → P| = |P||Q|·|P|
k
.

Then, for every symbol a of Σ with rank n one has to find for every n-tuple
of states of D, the correct result state.

In order to improve this computation, it is better to construct the tran-
sitions of the pre-image automaton in a demand-driven way. Demand-driven
means, the algorithm starts with a minimal initial set, and computes all other
states and their transitions by need or on demand.

We begin the demand-driven computation of β with states for the ini-
tial function q0. An accepting run of automaton A assigns to the root node
of a possible output tree a state p0 ∈ FA. The root node of any output tree
is produced by processing the initial function of M. Therefore, we start the
construction of β with d0 : {q0 7→ p0}. In order to obtain the transitions that
have as result d0, we have to inspect the rules of the initial function q0. In-
stead of presenting the complex algorithm, which obtains from already com-
puted states and transitions the next states together with their transitions, we
try to give an intuition of the construction by maens of some characteristic
examples.

For a transition δb(p1, p2, p3) = p0 of the output automaton, and a trans-
formation rule

q0(a(x1, x2)) → b(q1(x1), q2(x2), q3(x1)),

we construct the following transition of β:

βa({q1 7→ p1 ∧ q3 7→ p3}{q2 7→ p2}) = d0,

where {q1 7→ p1 ∧ q3 7→ p3} ∈ D is the state of the left son of the input
symbol a, and {q2 7→ p2} ∈ D the state of the right son of a. The state {q1 7→
p1 ∧ q3 7→ p3} is obtained from all function calls in the right-hand side which
are applied to x1. Due to the transition δa, function call q1(x1) must result in
the state p1 because its return value determines the first son of b. Accordingly,
q2 is connected with the state p2, and from function q3 has to be obtained the
state p3. Each of the mappings from mtt functions to automata states, give
rise to the next construction step.

7.2 The Implementation Details 121

For an mtt rule of the form

q(a(x1, x2), y) → c(q1(x1, q2(x1, y))),

and a transition δa(p1) = p2, we obtain for all states p3 ∈ P the following
transitions of the pre-image automaton:

βa({(q1, p3) 7→ p1 ∧ (q2, p) 7→ p3}) = {(q, p) 7→ p1}.

Here, the return value of the function q1 depends on the return value of the
function q2, because the call q2(x1, y) is in the parameter position of the call
of function q1. Therefore, the result state p3 of q2 is an input state for q1.

For a transformation rule, which return only the value of its parameter

q(a(x1, x2), y) → y,

We obtain all transitions βa(,) = {(q, p) 7→ p} for all states p ∈ P, because
the output is independent from the subtrees of the current input, but it de-
pends on the content of the accumulating parameter y. Here, stands for all
states d ∈ D. Accordingly, an mtt rule of the form

q(a(x1, x2), y) → c(y),

gives rise to the transition βa(,) = {(q, p) 7→ p1} for all transitions δc(p2) =
p1 of the output automaton.

During this demand-driven computation, we have to keep track of al-
ready computed states d and their transitions, in order to avoid that any state
or transition is computed twice.

7.2.3 Implementation of Forward Type Inference

Forward type inference is a method to solve the type checking problem. For
a given transformation F, the output language with respect to a predefined
input type Tin is inferred:

F(Tin) = {F(t) | t ∈ Tin}.

To check whether F generates for correct inputs of Tin only correct outputs of
a specified output type Tout, the intersection of the inferred output type and
the complement of Tout is determined. For the complement set Tout, we have

F(Tin) ∩ Tout = ∅ if and only if ∀t ∈ Tin : F(t) ∈ Tout.

This means that we have to implement an efficient algorithm to infer the set
of all outputs and to test whether the intersection of this inferred set and a
predefined set of illegal outputs is empty or not.

In Section 6.3 we have shown that the output languages of linear stay
macro tree transducers can be exactly characterized by context-free tree

122 7 Implementation of a Type Checker

grammars. However, instead of first constructing a context-free grammar,
then determine the intersection grammar, and finally, check whether it is
empty, we organize this method in two steps. Let M = (Q, Σ, {q0}, R) be
a macro tree transducer and let R = (P, Σ, F, δ) be a finite tree automaton.

First, we construct from mtt M and automaton R a Datalog program P.
The transition rules of R become the facts of P. For each rule

q(a(x1, . . . , xn), y1, . . . , yk) → t

of the automaton, we construct a Datalog implication

q(Y0, . . . , Yk) :- goals[t]Y0 .

where q/(k + 1) is a predicate of arity k + 1 (see page 99). The body goals[t]Y0
is recursively defined over the structure of t

goals[yj]Y0 = X = Yj
goals[a(t1, . . . , tm)]Y0 = δ(Y0, a, X1, . . . , Xm), goals[t1]X1, . . . ,goals[tm]Xm

goals[q′(t1, . . . , tn)]Y0 = q′(Y0, X1, . . . , Xn),goals[t1]X1, . . . ,goals[tn]Xn

where the variables Xi in the last two rows are fresh (for all i of 1, . . . , m and
1, . . . , n, respectively).

Second, we start to solve for each initial function q0 of the mtt and each
accepting state p f of the automaton the query

?- q0(p f).

This query asks whether there exists a model for all clauses of program P
such that this fact can be derived. In particular, if such a model exists, then the
intersection of the output language and the given output type is not empty.

The query is solved by the so-called SuccinctSolver developed by Niel-
son, Nielson and Seidl [NS01; NNS+04]. This solver suite provides a state-
of-the-art constraint solver. It computes teh least model of the alternation-
free fragment of Least Fixpoint Logic in clausel form. Although this logic is
more expressive than Datalog, it still allows for polynomial model-checking
routines [NNS+04]. On the Datalog fragment, the solver achieves the best
known theoretical bound.

The solver operates by recursively processing the original clause and by
propagating an environment which collects bindings of the instantiated vari-
ables. Environments map variables to atoms but they are constructed in a
lazy fashion meaning that variables may not have been given their values
when introduced by quantifiers. Hence, environments are partial mappings
consisting of pairs x 7→ a, where x is a variable and a is either an atom or un-
bound. Whenever during the propagation of a partial environment, a quan-
tified subexpression is encountered introducing variable x, the environment
is extended by the binding x 7→ unbound. New bindings for variables are ob-
tained at a query as the most general unifiers. A detailed explanation of the
solving algorithm can be found in [NS01; NSN02; NNS+04].

7.2 The Implementation Details 123

The OCaml suite provides an implementation of Datalog. Besides the
common functionality it supports explicit unification and explicit dis-unification
by means of operators “=” and “\=”, respectively. The implementation pro-
vides integer arithmetics, where the builtin infix predicate “is/2” assigns the
result of evaluating the expression on its right-hand side to a variable on its
left-hand side. This means, “X is 2*Y” bounds the value of “2*Y” to vari-
able X. Furthermore, the SuccinctSolver supports untyped lists by means of
the builtin “::/2”.

The SuccinctSolver solves queries like “?- q0(p f).” in a top-down fashion.
This solving strategy propagates selections that are made in the initial query
into the rules as they are expanded. This makes the solver very elegant and
fast [NSN02; NNS+04].

Compared with the approach presented in the previous section, forward
type inference shows efficient performances on all tested transformations,
due to the elegant solving techniques. The mtt implementation of the trans-
formation, which moves spam mails into a trash folder (see Chapter 5), is
checked in a few seconds, while computing the pre-image is very time-
consuming and uses the complete memory of OCaml so that the checker
stops with an out-of-memory exception.

7.2.4 Realization of Emptiness Check

As described in Section 4.3, it is decidable whether the transduction of a
given stay-mtt or mtt is empty or not.

We briefly repeat the algorithm. Let therefore M = (Q, Σ, Q0, R) be a mtt.
For every subset S ⊆ Q, we introduce a propositional variable [S], where
[S] = true denotes the fact that every function q ∈ S produces some output
for an input tree, i.e.,

∃t ∈ TΣ∀q ∈ S : [[q]](t) 6= ∅.

In particular, for the empty set {} we have the implication [{}] ⇐ true. For
every subset S ⊆ Q, we consider all implications

[S] ⇐ [S1] ∧ . . . ∧ [Sn]

for all selections of rules q(a(x1, . . . , xn), y1, . . . , yk) → t′q, q ∈ S, for the same
symbol a ∈ Σ. The sets Si are defined as follows: Si = {p ∈ Q | ∃q ∈ S :
p(xi, . . .) occurs in t′q}.

Since the size of the constraint system is exponential in the size of the
macro tree transducer M, we use a local constraint solver with dynamic
tracking of variable dependencies [Sei06]. The solver is an OCaml functor

module SolverCon (X: Item) (D: Lattice)

where structure X specifies the variables of the constraint system, and struc-
ture D defines the lattice. Since we are interested only in the question whether

124 7 Implementation of a Type Checker

a function of the transducer produces some output or not, it suffices to use an
implementation of the boolean lattice. Structure X implements the variables
as lists of transducer states together with a compare function.

The advantage of this solver implementation is that it is not necessary to
generate the complete constraint system a priori. Instead, the solver is started
with an initial list of variables together with a function, which returns for
every variable its dependencies. Whenever a new variable is introduced in
a right-hand side of a constraint, it is added to the list of variables whose
values have to be computed. Additionally, the variable of the left-hand side
is added to the influence list of the new variable. Then, if a new value is
obtained for that variable, every value of variables in its influence list is up-
dated. In this way, the solver computes a model for the constraint system by
dynamically adding new variable dependencies and updating the values of
all variables, when the value of an influencing variable is changed.

7.2.5 Tuning the Macro Tree Transducer

As we have already seen, the number of functions of the macro tree trans-
ducer and the number of parameters has a great influence on the complexity
of the pre-image automaton. Recall that the automaton accepting the pre-
image has

|Q → Pk → P| = |P||Q|·|P|
k
,

where Q denotes the set of mtt functions, P denotes the set of states of the
output automaton, and k is the maximal number of parameters occurring in
a function.

Therefore, it is of great benefit to keep the number of mtt functions and
the number of parameters as small as possible. In this section, we present a
method to determine unused functions, i.e., functions that are never called,
and an technique to reduce the number of parameters.

Find Superfluous mtt Functions

Each macro tree transducer M = (Q, Σ, Q0, R) induces a graph which elu-
cidates the calling behaviour of each function. The vertices of this graph G
are the function names in Q. The edges are obtained as follows: Graph G
contains an edge from a function q to a function q′ only if q′ occurs in a right-
hand side of a q rule. Then, a function is superfluous, if it is not reachable
from an initial state q0 in the graph G. Since these functins are never called,
they can be deleted together with all their rules. This method works for both
deterministic and nondeterministic (stay) macro tree transducers.

Removing Superfluous Parameters

The key problem is to detect, if a function q of a macro tree transducer does
not need all its accumulating parameters. This means, we are interested in

7.3 Dealing with Infinite Alphabets 125

describing, whether a certain parameter of a state is ever needed during any
computation.

Our implementation first normalizes the names of the parameters to inte-
gers. Then we compute the dependency graph G of the transducer. The depen-
dency graph illustrates the calling behaviour of the mtt. It is constructed in
the following way: The vertices are the function names of the mtt, and it con-
tains an edge from function q to function q′, if q′ occurs in a right-hand side
of a q-rule. For graph G we compute the strongly connected components,
and sort these topologically. Then we propagate the used variables along the
strongly connected components, where a variable is used, if it occurs in a
right-hand side of one of the functions in a component. Each variable which
is not propagated through the component graph, is considered to be super-
fluous and thus deleted from the rules.

Note that this method also works for nondeterministic stay macro tree
transducers, but may change their semantics. Consider for example the fol-
lowing inside-out stay macro tree transducer:

q0(a(x1, x2)) → b(q1(x1, q2(x2)))
q1(a(x1, x2), y) → b(q1(x1, q2(x2)))
q1(e(x1, x2), y) → e()
q2(x0) → q2(x0)

The parameter y of function q1 is obviously is superfluous, because it is never
used. Removing it, turns the transducer into always terminating, while its
current transformation never terminates. When function q1 is called in the
first line, function q2 recurses infinitely on the second input argument. For
inside-out evaluation of nested function calls, this leads to nonterminating
transformations.

Even for macro tree transducers, the parameter reduction can change the
induced transformation. Consider the following mtt:

q0(a(x1, x2)) → b(q1(x1, q2(x2)))
q0(e(x1, x2), y) → e()
q1(a(x1, x2), y) → b(q1(x1, q2(x2)))
q1(e(x1, x2), y) → e()

Since function q2 is undefined, removing the parameter will change the mtt
from an erronous transformation into a total deterministic transformation.

7.3 Dealing with Infinite Alphabets

Our considerations are based on finite alphabets so far. Recall that stay macro
tree transducers are defined to deal with an explicitely given finite alphabet
Σ (cf. Definition 4.1). The original definitions of Engelfriet and Vogler even

126 7 Implementation of a Type Checker

specify a finite output alphabet ∆ [EV85]. Implementing a tree transforma-
tion with stay-mtts consequently results in rules for each occurring symbol.
Assume, for example, the transformation Id, which copies the input tree to
the output. For alphabet Σ = {ε, a, b, c, . . . , z}, it consists of the rules

q(a(x1, x2)) → a(q(x1), q(x2))
q(b(x1, x2)) → b(q(x1), q(x2))
q(c(x1, x2)) → c(q(x1), q(x2))

...
q(z(x1, x2)) → z(q(x1), q(x2))
q(ε) → ε.

Although Id defines a simple transformation, the rule set consists of dispro-
portinate many rules, which differ only in the transformed symbol.

A first improvement certainly is to define stay macro tree transducers to
work on sets of symbols. Our transducer Id1 has then two rules of the form

q(S(x1, x2)) → S(q(x1), q(x2)) with S in a, b, . . . , z
q(ε) → ε.

Whatever this transducer computes, Id1 is not equivalent to Id because in
each transformation step the output symbol can freely be chosen from Σ.
Besides, using sets of symbols does not solve the problem that the transducer
has to be redefined for every new alphabet.

An appropriate solution to both problems is to define stay macro tree
transducers to work on infinite alphabets. Transducer Id2 consequently con-
sists of the two rules

q(?(x1, x2)) → ?(q(x1), q(x2))
q(ε) → ε,

where the new symbol ? in the left-hand sides indicates that the label of the
currently inspected node is copied to every occurrence of ? in the right-hand
side. Transducer Id2 obviously implements the same transformation as Id be-
cause every input symbol is mapped to the same symbol in the output. More-
over, Id2 works for all binary trees independent of the underlying alphabet.

Clearly, this works best for stay-mfts, because they work on unranked
trees. Accordingly, the symbol alphabet is defined as Σ0 = Ω ∩ {ε}, where Ω

is the infinite alphabet and ε the symbol denoting the empty forest. Then, the
working alphabet of a stay-mft is specified as Σ = Σ0 ∪ ∆, where ∆ contains
all fixed symbols needed for the constructions, i.e., ∆ = {?, $, @, σi, αj,⊥}.

In order to specify an output type for a stay macro tree transducer with
an infinite alphabet, we have to enhance our type model appropriately. Using
the new symbol ? in a tree automaton, leads to a nondeterministic automa-
ton, since transitions for the ? can be chosen for every symbol. A natural
and nevertheless elegant way to describe the output language for a stay-mtt

7.4 Dealing with Attributes 127

working on an infinite alphabet is to use the boolean algebra over finite and
cofinite sets of an infinite alphabet Σ0. Thus, our new automata work on the
alphabet

Σ = {A | A ⊆ Σ0} ∪ {A | A ⊆ Σ0}.

For σ1, . . . , σn ∈ Σ0, let ~[σ1, . . . , σn] denote a confinite set, defining the set
{σ ∈ Σ0 | σ /∈ {σ1, . . . , σn}}. The incorrect output for our running example of
transforming a mail file can be defined as:

1 p Mail, Mail, p Lea f , p Lea f ;
2 p Mail, Mail, p Lea f , p Mail;
3 p Spam, Spam, p Lea f , p Lea f ;
4 p Spam, ~[Mail], p Lea f , p Mail;
5 p Spam, ~[], p Lea f , p Spam;
6 p Spam, Spam, p Lea f , Error;
7 p Inbx, Inbox, p Lea f , p Trsh;
8 p Inbx, Inbox, p Mail, p Trsh;
9 Error, Inbox, p Spam, p Trsh;

10 p Trsh, Trash, p Lea f , p Lea f ;
11 p Trsh, Trash, p Mail, p Lea f ;
12 p Trsh, Trash, p Spam, p Lea f ;
13 p Doc, Doc, p Inbx, p Lea f ;
14 Error, Doc, Error, p Lea f ;
15 p Lea f , e; .
16 Error

Line 4 specifies that every other symbol than Mail above a sequence of mails
leads to state p Spam. Line 5 uses the special confinite set ~[] denoting that
every symbol matches. Thus, this transition is allowed for every symbol of
Σ0 and reflects the fact that if once in a sequence a Spam element occurs, state
q spam is assigned to the complete sequence. This automaton specifies all
documents which should not be produced by the transformation. Although
we have specified that Σ consists of the finite and cofinite subsets, it is suffi-
cient to use single elements of Σ0 to identify the symbols that are explicitely
allowed.

For an alphabet like the Unicode alphabet, one possibly would prefer to
use the algebra over finite conjunctions of ranges. This means, instead of enu-
merating each symbol of a set, one specifies an interval containing the appro-
priate symbols.

7.4 Dealing with Attributes

The W3C recommendation allows that every XML element can be equipped
with attributes [BPSM+04] describing additional information about an ele-
ment. An attribute is a pair consisting of a name and a value. They are listed
along with the start-tag of an element, as for example in

128 7 Implementation of a Type Checker

〈Chapter name = ”Introduction” numbering = ”arabic”〉
When Axel Thue . . .
〈/Chapter〉

At first sight, attributes do not add to the expressiveness of XML. There-
fore, Berlea and Neumann separatly suggest [Ber05; Neu99] to represent
them by using dedicated element names, which are grouped under a spe-
cial Attributes-element. This leads to the following representation:

〈Chapter〉
〈Attributes〉
〈name〉Introduction〈/name〉
〈numbering〉arabic〈/numbering〉

〈/Attributes〉
〈Content〉

When Axel Thue . . .
〈/Content〉

〈/Chapter〉

To avoid that the content of the Chapter-element is a mixture of normal text
and XML elements (called mixed content in XML [BPSM+04]), we have in-
troduced the Content-element, which now contains the original content of
Chapter.

From a type checking point of view, attributes do change the expressive-
ness of XML, because the XML standard clearly states that the order of at-
tribute specifications in a start-tag is not significant. Allowing attributes thus
breaks our fundamental assumption of ordered trees. This means a type for
an XML document in which attributes are used has to take into account that
elements under the Attributes-element may occur in any order.

In order to deal with attributes, we have to enhance our typing mecha-
nism by allowing that for sequences of siblings may only the occurring el-
ement names are given, while their order is left unspecified. Consequently,
for attribute sequences, a type checker can only test whether the attribute
elements are present. In [AMF+03] it is shown that type checking for a re-
stricted from of TreeQL can be done in polynomial time in the presence of
types specifying only cardinality constraints on the tags. Hence, we conjec-
ture that enhancing our model by attributes (and unordered lists thereof)
does not influence our type checking results.

7.5 Notes and References

Voigtländer and Kühnemann have a different view on macro tree transduc-
ers. They take as starting point that many functional programs with accu-
mulating parameters are contained in the class of macro tree transducers.
In [VK04] they present a transformation technique which can be used to solve

7.5 Notes and References 129

inefficiencies due to the creation and consumption of intermediate data struc-
tures. In [Voi01] Voigländer identifies restrictions for which two macro tree
transducers can be composed. The mtt applied first has to be non-copying,
and the second mtt has to be weakly single-use. Non-copying means that each
accumulating parameter occurs at most once in a right-hand side. Weakly
single-use is a property on the input, which says that each subtree of a node
is processed at most once.

In order to test their ideas, they implemented the compostion algorithm
in the Haskell+ program transformation system [HMKV01]. Each macro tree
transducer is directly embedded into the program code, whereas we pref-
ered to represent mtts by means of a data structure. Accordingly, they need a
sophisticated algorithm to detect the transducer definition inside a program.

Another difference between the two systems is that Haskell+ is a lazy pro-
gramming language, which means the evaluation of a function application
is postponed until its value is needed. Thus, their transducers also evalu-
ate in outside-in order in the presence of nested function calls. On the other
hand, they assume each macro tree transducer to be total deterministic, and
thus, the order of evaluation does not influence the transformation result.
Our transducer suite can be equipped with different evaluation strategies.
Currently, the usual inside-out mode is implemented.

In a future version of our macro tree transducer suite, we want to general-
ize the transducer model to stay macro tree transducer, because then, we are
able to add regular look-ahead (cf. 4.5). In order to implement a more or less
comfortable frontend, reading TL programs, we want to enhance our suite in
such a way, that it can handle “unknown” symbols.

Furthermore, we want to improve the run-time of the pre-image compu-
tation by integrating the input type. Then, it is possible to stop the automata
construction as early as the first inconsistency with the input type is detected.

Another problem that is worth to be solved, is to give detailed informa-
tions about the occurring type errors. For the user of our suite it would be of
great benefit, if the system could give hints, which functions cause the errors.

8

Conclusion

We have presented several techniques to type check XML transformations.
Type checking guarantees that for correct input documents, only correct out-
put documents are produced. Since XML can be considered as the de facto
standard for data exchange, type checking can help to ensure that only the
intended information is transfered.

In order to be independent from the syntactic sugar of existing transfor-
mation languages, and to reduce the provided functionality to a transforma-
tion core for which type checking is still decidable, we introduced the trans-
formation language TL. It subsumes the so-called tree transformation core of
most of the existing XML transformation languages. TL is a rule-based do-
main specific language for processing XML data. Rule selection is done via
monadic second-order patterns. The navigation on the input is also realized
by (binary) monadic second-order formulas. TL rules have access to the con-
text via accumulating parameters.

The key idea of type checking TL was to compile a given TL program into
at most three stay macro tree transducers. Therefore, we had to translate the
global selections, which are inherent in the select patterns, into local move-
ments to traverse the complete input for all nodes matching a pattern. Since
the obtained intermediate transducer contains up moves, we had to simu-
late these by a parameter construction, in order to get three stay macro tree
transducers performing the transformation of the TL program. Then, type
checking can be done via inverse type inference, which means that the pre-
image of the transducer composition is computed with respect to the com-
plement of a given output language. The TL program is type-safe only if the
intersection of the pre-image and a given input language is empty.

Since this method for type checking XML transformations, has even for
small programs an exorbitant run-time, we developed an alternative ap-
proach, which allows at least for a large class of transformations that they
can be type checked in polynomial time. This class contains all transforma-
tions which can be expressed by a single stay macro tree transducer, which
copies its input only a bounded number of times. Here, type checking can be

132 8 Conclusion

done by exact characterizations of the ouptput languages of the tree trans-
ducers.

We implemented most of the ideas in a macro tree transducer suite, which
provides basic manipulation functions as well as different type checking so-
lutions. Probably, the forward type inference by means of exact characteriza-
tions of the ouput languages of mtts is the most innovative method. It yields
acceptable performances even for larger programs (with several states and
parameters).

Due to this positive result, a natural question is, whether this technique
of forward type inference can be generalized to compositions of (stay) macro
tree transducers. Engelfriet and Vogler show in [EV88] that the so-called n-
level tree transducer is equivalent to the n-fold composition of macro tree
transducers. “n-level tree transducers combine the features of n-level tree grammars
and of top-down tree transducers in the sense that the derivations of the grammars
are syntax-directed by input trees” [EV88]. Hence, the n-level tree transducer is
a single transformation model expressing the functionality of compositions
of mtts. Moreover, Engelfriet and Vogler show that the class of regular tree
languages is closed under the inverse of high level tree transductions, and
thus, type checking is decidable. These are hints that the interesting question,
whether compositions of mtts can be type checked by characterizations of
their output languages, might be positively answered. As a consequence, it
would be possible to type check TL in a more direct way.

A

Proofs

134 A Proofs

A.1 Proof of Theorem 3.7

Before we can prove the equivalence of the operational and the denotational
semantics, we first show that each derivation can be decomposed into several
derivations of shorter length.

Lemma A.1 Let P = (R, A0) be a TL program, let f be an input forest,
and let Y = {y1, . . . , yk} denote a set of accumulating parameters. Let
w0, w1, . . . , wk ∈ DT (Q, Σ, f) be a derived term with

w = w0[w1/y1, . . . , wk/yk],

then there exists a derivation Π, such that

Π : w ⇒∗f s

with s = s0[s1/r1, . . . , sn/rn] for some nodes r1, . . . , rn of s0, where

Π0 : w0 ⇒
∗
f s0

Πi : wji ⇒
∗
f si for j = 1, . . . , k and i = 1, . . . , n

with ∑
n
i=0 |Πi| = |Π|.

Proof. We prove the assertion by induction on the length of Π0.

(i) |Π0| = 0, then w0 does not contain any function calls. Thus, the deriva-
tion is composed of the derivations of the wi and the assertion follows.

(ii) |Π0| > 0, then we proceed by induction on the structure of w0.
a) for w0 = ε and w0 = y the claim trivially follows;
b) w0 = w′1 w′2, then the claim follows by induction hypothesis for w′1

and w′2;
c) w0 = 〈a〉w′〈/a〉, then by induction hypothesis for w′ the assertion

follows;
d) w0 = q(v, w′1, . . . , w′m), then there exists a derivation

q(v, w′1, . . . , w′m) ⇒ f w00 [w
′
1/y1, . . . , w′m/ym].

This means, we have a derivation Π′ with

Π′ : q(v, w′1[w1/y1, . . . , wk/yk], . . . , w′m[w1/y1, . . . , wk/yk]) ⇒ f
w00 [(w′1[w/y]k)/y1, . . . , (w′m[w/y]k)/yk]

= w00 [w
′
1/y1, . . . , w′m/ym][w1/y1, . . . , wk/yk]

where [w/y]k abbreviates [w1/y1, . . . , wk/yk]. By applying the in-
duction hypothesis to w00 [w

′
1/y1, . . . , w′m/ym], there is a derivation

Π′ : w00 [w
′
1/y1, . . . , w′m/ym] ⇒∗f s, with derivations Π′0 : w00 ⇒

∗
f s0

and Π′i : w′ji ⇒
∗
f si with ∑

m
i=0 |Π

′
i| = |Π

′|.

A.1 Proof of Theorem 3.7 135

Since Π′ is a part of Π, we have

Π : q(v, w′1[w1/y1, . . . , wk/yk], . . . , w′m[w1/y1, . . . , wk/yk])
⇒ f w00 [(w′1[w/y]k)/y1, . . . , (w′m[w/y]k)/yk]

⇒∗f s0[s1/r1, . . . , sn/rn = s

with |Π| = 1 + |Π′ | = 1 + ∑
m
i=0 |Π

′
i|, which is what we wanted to

prove.

This completes the proof of Lemma A.1 ut

Now, we are able to show that the two characterizations of the transduc-
tion induced by a TL program coincide. Assume we are given a TL program
P = (R, A0) and let r denote the root node of the input forest f . In order to
show that the fixpoint and the operational semantics are equivalent for TL,
we have to show the two implications:

s ∈ [[A0]] f ,µ v implies that [A0] f ,v ⇒
∗
f ,µ s

[A0] f ,v ⇒
∗
f ,µ s implies that s ∈ [[A0]] f ,µ v

We first show for an arbitrary action that the implication holds for outside-in
evaluation order in presence of parameters.

A.1.1 Outside-in Evaluation

(1) In order to show that

s ∈ [[A]]if v implies [A] f ,v ⇒
∗
f s (A.1)

we proceed by an induction on the number i of fixpoint iterations.
a) i = 0: Then the assertion follows.
b) i > 0: We proceed by structural induction on A.

i. For A = ε and A = y, the claim follows.
ii. For A = 〈a〉A1〈/a〉, then s = 〈a〉s′〈/a〉 ∈ [[A]]if v. Applying

the induction hypothesis we obtain that there exists a derivation
[A1] f ,v ⇒

∗
f s′, and thus [A] f ,v ⇒

∗
f 〈a〉s

′〈/a〉, which we wanted to
prove.

iii. If A = A1 A2 then the assertion follows also by induction hy-
pothesis for A1 and A2.

iv. For A = q(ψ, A1, . . . , Ak), there are nodes v1 < . . . < vm ∈ N (f)
such that (v, vi) |= f ψ. The i-th fixpoint iteration results in

[[A]]if v = ([[q]]if v1)[y1 ← [[A1]]
i
f , . . . , yk ← [[Ak]]

i
f] · · ·

([[q]]if vm)[y1 ← [[A1]]
i
f , . . . , yk ← [[Ak]]

i
f]

= ([[ti1]]
i−1
f v1)[y1 ← [[A1]]

i
f , . . . , yk ← [[Ak]]

i
f] · · ·

([[tim]]i−1
f vm)[y1 ← [[A1]]

i
f , . . . , yk ← [[Ak]]

i
f],

136 A Proofs

where each tij is a right-hand side of a matching q-rule. An ex-

pression ([[q]]if v1)[y1 ← [[A1]]
i
f , . . . , yk ← [[Ak]]

i
f] denotes the si-

multaneous OI-substitution of the semantics of the actual param-
eters for the formal parameters. Thus, s = s1 · · · sm is an element
of the i-th fixpoint iteration of [[A]]if v, where for j = 1, . . . , m, each

sj = s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

] with s′ι j
∈ [[Aκ]]

i
f v if the label at rι is yκ .

Now, we have to construct a derivation for s in order to show the
assertion. We have:

[A] f ,v = [q(ψ, A1, . . . , Ak)] f ,v
= q(v1, [A1] f ,v, . . . , [Ak] f ,v) · · ·

q(vm, [A1] f ,v, . . . , [Ak] f ,v)

For all nodes vj (j = 1, . . . , m), we obtain

q(vj, [A1] f ,v, . . . , [Ak] f ,v) ⇒ f [tij] f ,vj
[[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

where tij is a right-hand side for q. Since each tij is evaluated in
the (i − 1)st iteration, we can apply the induction hypothesis for
[[tij]]

i−1
f vj and get:

Π0[tij] f ,vj
⇒∗f s′0j

.

Since the Aκ (κ = 1, . . . , k) are smaller terms than A, we obtain by
applying the induction hypothesis to [[Aκ]]if v:

Πκ : [Aκ] f ,v ⇒
∗
f s′1.

Assembling all subderivations, we can construct for each func-
tion call q(vj, A1, . . . , Ak) (j = 1, . . . , m) a derivation for sj:

Πj : q(vj, A1, . . . , Ak)

⇒ f [tij] f ,vj [[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

⇒∗f s′0j
[s′1j

/r1j , . . . , s′lj
/rlj] = sj

The complete derivation for s = s1 · · · sm is composed from the
derivations for the sj, which is what we wanted to prove.

This ends the proof for implication (A.1).
(2) We prove the second implication

[A] f ,v ⇒
∗
f s implies s ∈ [[A]] f v (A.2)

by an induction on the length n of the derivation.
a) n = 0: The expression A does not contain expressions of the form

q(v, s1, . . . , sk), and thus the assertion follows.
b) n > 0: We proceed by structural induction on A.

A.1 Proof of Theorem 3.7 137

i. For A = ε and A = y, the claim follows.
ii. For A = 〈a〉A1〈/a〉, then [A] f ,v ⇒

∗
f 〈a〉s

′〈/a〉 = s. Applying the

induction hypothesis we obtain that s′ ∈ [[A1]]
i
f v. Thus, we get

s ∈ {〈a〉s1〈/a〉 | s1 ∈ [[A1]] f v} = [[A]]if v, which we wanted to
prove.

iii. If A = A1 A2 then the assertion follows also by induction hy-
pothesis for A1 and A2.

iv. For A = q(ψ, A1, . . . , Ak), we have

[A] f ,v = [q(ψ, A1, . . . , Ak)] f ,v
= q(v1, [A1] f ,v, . . . , [Ak] f ,v) · · ·

q(vm, [A1] f ,v, . . . , [Ak] f ,v)

For each function call q(v1, [A1] f ,v, . . . , [Ak] f ,v) there exists a deri-
vation

Πj : q(vj, [A1] f ,v, . . . , [Ak] f ,v)

⇒ f [tij] f ,vj
[[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

⇒∗f s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

] = sj

By Lemma A.1 we have:

Π0 : [tij] f ,vj
⇒∗f s′0j

Πι : [Aκι] f ,v ⇒
∗
f s′ι j

with |Πj| = ∑
l
ι=0 |Πι|. Since they have a shorter derivation, we

can apply the induction hypothesis to Π0 and Πι, and obtain:

s′0j
∈ [[tij]] f vj and s′ι j

∈ [[Aκι]] f v.

Furthermore,

s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

]

∈ {t[t′1j
/r1j , . . . , t′lj

/rlj
] | t ∈ [[tij]] f vj, t′µj

∈ [[Aκι]] f v if λ(rµj) = yκ}

= ([[tij]] f vj)[y1 ← [[A1]] f v, . . . , yk ← [[Ak]] f v],

which is contained in the denotational semantics of

([[q]] f vj)[y1 ← [[A1]] f v, . . . , yk ← [[Ak]] f v],

The claim follows for s by analoguos considerations for all func-
tion evaluations on nodes v1, . . . , vm.

This ends the proof for implication (A.2).

The equivalence of the characterization by means of a derivation relation
and the inductive characterization follows by taking the initial action for A.

138 A Proofs

A.1.2 Inside-out Evaluation

(1) In order to show that

s ∈ [[A]]if v implies [A] f ,v ⇒
∗
f s (A.3)

we proceed by an induction on the number i of fixpoint iterations.
a) i = 0: Then the assertion follows.
b) i > 0: We proceed by structural induction on A.

i. For A = ε and A = y, the claim follows.
ii. For A = 〈a〉A1〈/a〉 and A = A1 A2 the assertion follows by in-

duction hypothesis.
iii. For A = q(ψ, A1, . . . , Ak), there are nodes v1 < . . . < vm ∈ N (f)

such that (v, vi) |= f ψ. The i-th fixpoint iteration results in

[[A]]if v = ([[q]]if v1)[[[A1]]
i
f /y1, . . . , [[Ak]]

i
f /yk] · · ·

([[q]]if vm)[[[A1]]
i
f /y1, . . . , [[Ak]]

i
f /yk]

= ([[ti1]]
i−1
f v1)[[[A1]]

i
f /y1, . . . , [[Ak]]

i
f /yk][f [v]/x1] · · ·

([[tim]]i−1
f vm)[[[A1]]

i
f /y1, . . . , [[Ak]]

i
f /yk][f [v]/x1],

where each tij is a right-hand side of a matching q-rule. An ex-
pression ([[q]]if v1)[[[A1]]

i
f /y1, . . . , [[Ak]]

i
f /yk] denotes the simulta-

neous IO-substitution of the semantics of the actual parameters
for the formal parameters. Thus, s = s1 · · · sm is an element of
the i-th fixpoint iteration of [[A]]if v, where for j = 1, . . . , m, each

sj = s′0j
[s′1j

/r1j , . . . , s′lj
/rlj] with s′ι j

∈ [[Aκ]]
i
f v if the label at rι is yκ .

We have:
[A] f ,v = [q(ψ, A1, . . . , Ak)] f ,v

= q(v1, [A1] f ,v, . . . , [Ak] f ,v) · · ·
q(vm, [A1] f ,v, . . . , [Ak] f ,v)

For all nodes vj (j = 1, . . . , m), we obtain

q(vj, [A1] f ,v, . . . , [Ak] f ,v) ⇒ f [tij] f ,vj [[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

where tij is a right-hand side for q. Since each tij is evaluated in
the (i − 1)st iteration, we can apply the induction hypothesis for
[[tij]]

i−1
f vj and get:

Π0[tij] f ,vj
⇒∗f s′0j

.

Since the Aκ (κ = 1, . . . , k) are smaller terms than A, we obtain by
applying the induction hypothesis to [[Aκ]]if v:

Πκ : [Aκ] f ,v ⇒
∗
f s′1.

A.1 Proof of Theorem 3.7 139

We can construct for each function call q(vj, A1, . . . , Ak) (j =
1, . . . , m) a derivation for sj:

Πj : q(vj, A1, . . . , Ak)
⇒ f [tij] f ,vj

[[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

⇒∗f s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

] = sj

The complete derivation for s = s1 · · · sm is composed from the
derivations for the sj, which is what we wanted to prove.

This ends the proof for implication (A.3).
(2) We prove the second implication

[A] f ,v ⇒
∗
f s implies s ∈ [[A]] f v (A.4)

by an induction on the length n of the derivation.
a) n = 0: The expression A does not contain expressions of the form

q(v, s1, . . . , sk), and thus the assertion follows.
b) n > 0: We proceed by structural induction on A.

i. For A = ε and A = y, the claim follows.
ii. For A = 〈a〉A1〈/a〉 and A = A1 A2 the assertion follows also by

induction hypothesis.
iii. For A = q(ψ, A1, . . . , Ak), we have

[A] f ,v = [q(ψ, A1, . . . , Ak)] f ,v
= q(v1, [A1] f ,v, . . . , [Ak] f ,v) · · ·

q(vm, [A1] f ,v, . . . , [Ak] f ,v)

For each function call q(v1, [A1] f ,v, . . . , [Ak] f ,v) there exists a deri-
vation

Πj : q(vj, [A1] f ,v, . . . , [Ak] f ,v)

⇒ f [tij] f ,vj
[[A1] f ,v/y1, . . . , [Ak] f ,v/yk]

⇒∗f s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

] = sj

By Lemma A.1 we have:

Π0 : [tij] f ,vj
⇒∗f s′0j

Πι : [Aκι] f ,v ⇒
∗
f s′ι j

with |Πj| = ∑
l
ι=0 |Πι|. Since they have a shorter derivation, we

can apply the induction hypothesis to Π0 and Πι, and obtain:

s′0j
∈ [[tij]] f vj and s′ι j

∈ [[Aκι]] f v.

Furthermore,

140 A Proofs

s′0j
[s′1j

/r1j , . . . , s′lj
/rlj

]

∈ {t[t′1j
/r1j , . . . , t′lj

/rlj] | t ∈ [[tij]] f vj, t′µj
∈ [[Aκι]] f v if λ(rµj) = yκ}

= ([[tij]] f vj)[[[A1]] f v/y1, . . . , [[Ak]] f v/yk]

⊆ ([[q]] f vj)[[[A1]] f v/y1, . . . , [[Ak]] f v/yk].

The claim follows for s by analoguos considerations for all func-
tion evaluations on nodes v1, . . . , vm.

This ends the proof for implication (A.4).

Again, the equivalence of the characterization by means of a derivation
relation and the inductive characterization follows by taking the initial action
for A.

References

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web.
Morgan Kaufmann, 2000.

[Adl01] Sharon Adler et al. Extensible Stylesheet Language (XSL) Version 1.0.
W3C Recommendation, World Wide Web Consortium, October 2001.
Available online http://www.w3.org/TR/2001/REC-xsl-20011015/.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, Reading, Massachusetts, 1995.

[AMF+01] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
Typechecking XML Views of Relational Databases. In 16th IEEE
Symposium on Logic in Computer Science (LICS), pages 421–430, 2001.

[AMF+03] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu.
Typechecking XML Views of Relational Databases. ACM Transactions on
Computational Logic, 4(3):315–354, 2003.

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on a Context-Free
Grammar. Information and Control, 19(5):439–475, 1971.

[BBC+06] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez,
Michael Kay, Jonathan Robie, and Jérôme Siméon, editors. XML Path
Language (XPath) 2.0. W3C Candidate Recommendation, World Wide
Web Consortium, June 2006. Available online
http://www.w3.org/TR/xpath20.

[BCF03] Véronique Benzaken, Guiseppe Castagna, and Alain Frisch. CDuce: An
XML-Centric General-Purpose Language. In 8th ACM International
Conference on Functional Programming (ICFP), pages 51–63. ACM Press,
2003.

[BCF+06] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniel Florescu,
Jonathan Robie, and Jérôme Siméon, editors. XQuery 1.0: An XML
Query Language. W3C Candidate Recommendation, World Wide Web
Consortium, June 2006. Available online
http://www.w3.org/TR/2006/CR-xquery-20060608/.

[BE00] Roderick Bloem and Joost Engelfriet. A Comparison of Tree
Transductions defined by Monadic Second Order Logic and by Attribute
Grammars. Journal of Computer and System Sciences (JCSS), 61(1):1–50,
2000.

142 References

[Ber05] Alexandru Berlea. Efficient XML Processing with Tree Automata. PhD
thesis, Institut für Informatik der Technischen Universität, München,
2005.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau, editors. Extensible Markup Language (XML) 1.0. W3C
Recommendation, World Wide Web Consortium, February 2004.
Available online http://www.w3.org/TR/2000/REC-xml-20040204.

[Bra69] Walter S. Brainerd. Tree Generating Regular Systems. Information and
Control, 14(2):217–231, 1969.

[BS02] Alexandru Berlea and Helmut Seidl. fxt – A Transformation Language
for XML Documents. Journal of Computing and Information Technology,
10(1):19–35, 2002.

[BW04] Anne Brüggemann-Klein and Derick Wood. Balanced Context-Free
Grammars, Hedge Grammars and Pushdown Caterpillar Automata. In
Extreme Markup Languages, Montréal, Quebec, 2004. Available online
http://www.mulberrytech.com/Extreme/Proceedings.

[BW05] Mikołai Bojańczyk and Igor Walukiewicz. Unranked Tree Algebra.
Technical report, Wydział Matematyki, Informatyki i Mechaniki,
Uniwersytetu Warszawskiego (Warsaw University), 2005.

[CD99a] J. Clark and S. DeRose, editors. XML Path Language (XPath) 1.0. W3C,
November 1999. Available online http://www.w3.org/TR/xpath.

[CD99b] James Clark and Steve DeRose, editors. XML Path Language (XPath) 1.0.
W3C Recommendation, World Wide Web Consortium, November 1999.
Available online http://www.w3.org/TR/xpath.

[CDG+97] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques
and Applications. Available online http://www.grappa.univ-lille3.fr/tata,
1997. release October, 1rst 2002.

[CIMP03] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier, editors.
Mathematical Markup Language (MathML) Version 2.0. W3C
Recommendation, World Wide Web Consortium, October 2003.
Available online
http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[Cla99] James Clark, editor. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, World Wide Web Consortium, November 1999.
Available online http://www.w3.org/TR/xslt.

[DBO06] Patrick Durusau, Michael Brauer, and Lars Oppermann, editors. Open
Document Format for Office Applications (Open Document) v1.1.
Committe Draft, Oasis, July 2006. Available online http://www.oasis-
open.org/committees/download.php/19321/OpenDocument-v1.1-cd2.pdf.

[DG84] William F. Dowling and Jean H. Gallier. Linear-Time Algorithms for
Testing the Satisfiability of Propositional Horn Formulae. Journal of Logic
Programming, 1(3):267–284, 1984.

[Don65] John Doner. Decidability of the Weak Second-Order Theory of Two
Successors. Notices of the American Mathematical Society, 12:365–468, 1965.

[Don70] John Doner. Tree Acceptors and some of their Applications. Journal of
Computer and System Sciences (JCSS), 4(5):406–451, 1970.

[ECM06] ECMA Technical Commitee 39. C# Language Specification. Standard
ECMA-334, ECMA International, June 2006. Available online

References 143

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-
334.pdf.

[EH99] Joost Engelfriet and Hendrik J. Hoogeboom. Tree-Walking Pebble
Automata. In J. Karkumäki, H. Maurer, G. Paun, and G. Rozenberg,
editors, Jewels are forever, contributions to Theoretical Computer Science in
honor of Arto Salomaa, pages 72–83. Springer, 1999.

[EHV99] Joost Engelfriet, Hendrik J. Hoogeboom, and Jan P. Van Best. Trips on
Trees. Acta Cybernetica, 14(1):51–64, 1999.

[EM99] Joost Engelfriet and Sebastian Maneth. Macro Tree Transducers,
Attribute Grammars, and MSO Definable Tree Translations. Information
and Computation, 154(1):34–91, 1999.

[EM03a] Joost Engelfriet and Sebastian Maneth. A Comparison of Pebble Tree
Transducers with Macro Tree Transducers. Acta Informatica,
39(9):613–698, 2003.

[EM03b] Joost Engelfriet and Sebastian Maneth. Macro Tree Translations of Linear
Size Increase are MSO Definable. Society for Industrial and Applied
Mathematics (SIAM) Journal of Computing, 32(4):950–1006, 2003.

[Eng75] Joost Engelfriet. Bottom-up and Top-down Tree Transformations – A
Comparison. Mathematical Systems Theory, 9(3):198–231, 1975.

[Eng77] Joost Engelfriet. Top-down Tree Transducers with Regular Look-Ahead.
Mathematical Systems Theory, 10:289–303, 1977.

[Eng80] Joost Engelfriet. Some Open Questions and Recent Results on Tree
Transducers and Tree Languages. In R.V. Book, editor, Formal Language
Theory; Perspectives and Open Problems, pages 241–286. Academic Press,
New York, 1980.

[ERS80] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree
Transducers, L Systems, and Two-way Machines. Journal of Computer and
System Sciences (JCSS), 20(2):150–202, 1980.

[ES77] Joost Engelfriet and Erik M. Schmidt. IO and OI. (I). Journal of Computer
and System Sciences (JCSS), 15(3):328–353, 1977.

[ES78] Joost Engelfriet and Erik M. Schmidt. IO and OI. (II). Journal of Computer
and System Sciences (JCSS), 16(1):67–99, 1978.

[EV85] Joost Engelfriet and Heiko Vogler. Macro Tree Transducers. Journal of
Computer and System Sciences (JCSS), 31(1):71–146, 1985.

[EV86] Joost Engelfriet and Heiko Vogler. Pushdown Machines for the Macro
Tree Transducer. Theoretical Computer Science, 42:251–368, 1986.

[EV88] Joost Engelfriet and Heiko Vogler. High Level Tree Transducers and
Iterated Pushdown Tree Transducers. Acta Informatica, 26:131–192, 1988.

[Fis68a] Michael J. Fischer. Grammars with Macro-like Productions. PhD thesis,
Harvard University, Massachusetts, 1968.

[Fis68b] Michael J. Fischer. Grammars with Macro-like Productions. In 9th IEEE
Symopsium on Switching and Automata Theory (SWAT), pages 131–142,
Schenectady, New York, 1968.

[FV98] Zoltán Fülöp and Heiko Vogler. Syntax-Directed Semantics; Formal Models
Based on Tree Transducers. Springer, Berlin, 1998.

[FW04] David C. Fallside and Priscilla Walmsley, editors. XML Schema. W3C
Recommendation, World Wide Web Consortium, October 2004.
Available online
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

144 References

[GJS96] James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Specification.
Addison-Wesley, Reading, Massachusetts, 1996.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1990.
[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó,

Budapest, 1984.
[GS97] Ferenc Gécseg and Magnus Steinby. Tree languages. In Grzegorz

Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
volume 3, pages 1–68. Springer, Berlin, 1997.

[HMKV01] M. Höff, R. Maletti, A. Kühnemann, and J. Voigtländer. Tree Transducer
Based Program Transformations for Haskell+. Progress report,
Technische Universität, Dresden, 2001.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, New
York, second edition, 2001.

[Hos98] Philipp Hoschka, editor. Synchronized Multimedia Integration
Language (SMIL) 1.0 Specification. W3C Recommendation, World Wide
Web Consortium, June 1998. Available online
http://www.w3.org/TR/1998/REC-smil-19980615.

[HP01] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Typed XML
Processing Language. In Third International Workshop on The World Wide
Web and Databases (WebDB). Selected Papers, Lecture Notes in Computer
Science (LNCS) Vol. 1997, pages 226–244, 2001.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Statically Typed XML
Processing Language. ACM Transactions on Internet Technologies (TOIT),
3(2):117–148, 2003.

[Jam01] RELAX NG Tutorial. Oasis committee specification, The Organization
for the Advancement of Structured Information Standards (OASIS),
December 2001. Available online
http://www.oasis-open.org/committees/relax-ng.

[Kay05] Michael Kay, editor. XSL Transformations (XSLT) Version 2.0. W3C
Candidate Recommendation, World Wide Web Consortium, November
2005. Available online http://www.w3.org/TR/xslt20.

[KCM04] Chritian Kirkegaard, Aske S. Christensen, and Anders Møller. A
Runtime System for XML Transformations in Java. In Second International
XML Database Symposium (XSym), Lecture Notes in Computer Science
(LNCS) Vol. 3186, pages 143–157, 2004.

[KL03] Martin Kempa and Volker Linnemann. Type Checking in XOBE. In 10.
Konferenz über Datenbanksysteme für Business, Technologie und Web (BTW),
Lecture Notes in Informatics (LNI) Vol. 26, pages 227–246, 2003.

[KMS04] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach.
Static Analysis of XML Transformations in Java. IEEE Transactions on
Software Engineering, 30:181–192, 2004.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, 1988.

[KV94] Armin Kühnemann and Heiko Vogler. Synthesized and Inherited
Functions. A new Computational Model for Syntax-Directed Semantics.
Acta Informatica, 31(5):431–477, 1994.

[LDJ+04] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The Objective Caml System, Documentation and User’s

References 145

Manual. Institute National de Recherche en Informatique et en
Automatique (INRIA), Rocquencourt, France, 2004.

[Ley02] Michael Ley. The DBLP Computer Science Bibliography: Evolution,
Research Issues, Perspectives. In 9th International Symposium on String
Processing and Information Retrieval (SPIRE), Lecture Notes in Computer
Science (LNCS) Vol. 2476, pages 1–10, 2002. Digital Bibliography &
Library Project (DBLP) online
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/.

[Man03] Sebastian Maneth. The Macro Tree Transducer Hierarchy Collapses for
Functions of Linear Size Increase. In 23rd Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), Lecture
Notes in Computer Science (LNCS) Vol. 2914, pages 326–337, 2003.

[Man06] Andreas Mantke. Dokumentationen für Version 2.0. Technical report,
OpenOffice.org, August 2006. Available online
http://de.openoffice.org/doc/howto_2_0/index.html.

[MBPS05] Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl.
XML Type Checking with Macro Tree Transducers. In 24th ACM
Symposium on Principles of Database Systems (PODS), pages 283–294. ACM
Press, 2005.

[MLM01] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML
Schema Languages using Formal Language Theory. In Extreme Markup
Languages, Montréal, Quebec, 2001. Available online
http://www.idealliance.org/papers/extreme00/.

[MN99] Sebastian Maneth and Frank Neven. Structured Document
Transformations Based on XSL. In 7th International Workshop on Database
Programming Languages (DBPL), Lecture Notes in Computer Science
(LNCS) Vol. 1949, pages 80–98, 1999.

[MN02] Wim Martens and Frank Neven. Typechecking Top-Down Uniform
Unranked Tree Transducers. In 9th International Conference on Database
Theory (ICDT 2003), Lecture Notes in Computer Science (LNCS) Vol.
2572, pages 64–78. Springer, 2002.

[MN04] Wim Martens and Frank Neven. Frontiers of Tractability for
Typechecking Simple XML Transformations. In 23rd ACM Symposium on
Principles of Database Systems (PODS), pages 23–34. ACM Press, 2004.

[MN05] Wim Martens and Frank Neven. On the Complexity of Typechecking
Top-Down XML Transformations. Theoretical Computer Science,
336(1):153–180, 2005.

[MOS05] Anders Møller, Mads Østerby Olesen, and Michael Schwartzbach. Static
Validation of XSL Transformations. Technical Report RS-05-32,
Department of Computer Science, Aarhus Universitet (BRICS), October
2005.

[MPS06] Sebastian Maneth, Thomas Perst, and Helmut Seidl. Exact XML Type
Checking in Polynomial Time. Forschungsbericht nr. 06-4, Universität
Trier, 2006.

[MS99] Erik Meijer and Mark Shields. XMλ: A Functional Language for
Constructing and Manipulating XML Documents. 1999. Available online
http://www.cse.ogi.edu/~mbs/pub/xmlambda/.

[MS05] Anders Møller and Michael I. Schwartzbach. The Design Space of Type
Checkers for XML Transformation Languages. In 10th International

146 References

Conference on Database Theory (ICDT), Lecture Notes in Computer Science
(LNCS) Vol. 3363, pages 17–36, 2005.

[MS06] Anders Møller and Michael Schwartzbach. An Introduction to XML and
Web Technologies. Addison-Wesley, Reading, Massachusetts, 2006.

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML
Transformers. In 19th ACM Symposium on Principles of Database Systems
(PODS), pages 11–22, 2000.

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML
Transformers. Journal of Computer and System Sciences (JCSS), 66(1):66–97,
2003.

[MTRD97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, Cambridge, MA, 1997.

[Mur01] Makoto Murata. Extended Path Expressions for XML. In 20th ACM
Symposium on Principles of Database Systems (PODS), pages 153–166, 2001.

[Neu99] Andreas Neumann. Parsing and Querying XML Documents in SML. PhD
thesis, Universität Trier, Trier, 1999.

[Nev02] Frank Neven. Automata Theory for XML Researchers. SIGMOD Record,
31(3):39–46, 2002.

[NNS+04] Flemming Nielson, Hanne Riis Nielson, Hongyan Sun, Mikael
Buchholtz, René Rydhof Hansen, Henrik Pilegaard, and Helmut Seidl.
The Succinct Solver Suite. In Kurt Jensen and Andreas Podelski, editors,
10th Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Lecture Notes in Computer Science (LNCS) Vol. 2988,
pages 251–265, 2004.

[NS01] Flemming Nielson and Helmut Seidl. Succinct Solvers.
Forschungsbericht nr. 01-12, Universität Trier, 2001.

[NS02] Frank Neven and Thomas Schwentick. Query Automata. Theoretical
Computer Science, 1-2(275):633–674, 2002.

[NSN02] Flemming Nielson, Helmut Seidl, and Hanne Riis Nielson. A Succinct
Solver for AFLP. Nordic Journal of Computing, 9(4):335–372, 2002.

[Pan03a] Tadeusz Pankowski. Specifying Transformations for XML Data. In
B. Thalheim and G. Fiedler, editors, Emerging Database Research in East
Europe. Pre-Conference Workshop of VLDB 2003, pages 86–90, Cottbus,
2003. Brandenburgische Technische Universität. Computer Science
Reports, Report 14/03.

[Pan03b] Tadeusz Pankowski. Transformation of XML Data using an Unranked
Tree Transducer. In Kurt Bauknecht, A. Min Tjao, and Gerald
Quirchmayr, editors, 4th International Conference on E-Commerce and Web
Technologies (EC-Web), Lecture Notes in Computer Science (LNCS) Vol.
2738, pages 259–269, 2003.

[Pem02] Steven Pemberton et al. XHTMLTM 1.0 The Extensible HyperText
Markup Language. W3C Recommendation, World Wide Web
Consortium, August 2002. Available online
http://www.w3.org/TR/2002/REC-xhtml1-20020801/.

[PS04] Thomas Perst and Helmut Seidl. Macro Forest Transducers. Information
Processing Letters, 89(3):141–149, 2004.

[Qui06] Liam Quin. Extensible Markup Language (XML). Technical report,
World Wide Web Consortium, April 2006. Available online
http://www.w3.org/XML/.

References 147

[Rou70a] William C. Rounds. Context-free Grammars on Trees. In 1st Annual
ACM Symposium on Theory of Computing (STOC), pages 143–148, Marina
del Ray, California, 1970.

[Rou70b] William C. Rounds. Mappings and Grammars on Trees. Mathematical
Systems Theory, 4(3):257–287, 1970.

[Sal73] Arto Salomaa. Formal Languages. ACM Monograph Series. Academic
Press, New York, 1973.

[Sei94a] Helmut Seidl. Haskell Overloading is DEXPTIME Complete. Information
Processing Letters, 52(3):57–60, 1994.

[Sei94b] Helmut Seidl. Least Solutions of Equations over N . In International
Colloquium on Automata, Languages and Programming (ICALP), Lecture
Notes in Computer Science (LNCS) Vol. 820, pages 400–411. Springer,
1994.

[Sei06] Helmut Seidl. ConstraintSolver Suite. Available online
http://wwwseidl.informatik.tu-muenchen.de/repos/seidl/OCaml/Fix/,
2006. Source Code.

[ST00] Magnus Steinby and Wolfgang Thomas. Trees and Term Rewriting in
1910: On a Paper by Axel Thue. Bulletin of the European Association for
Theoretical Computer Science, (72):256–269, 2000.

[Suc98] Dan Suciu. Semistructured Data and XML. In International Conference on
Foundations of Data Organization (FODO), 1998.

[Suc01] Dan Suciu. Typechecking for Semistructured Data. In International
Workshop on Database Programming Languages (DBPL), Lecture Notes in
Computer Science (LNCS) Vol. 2397, pages 1–20, 2001.

[Suc02] Dan Suciu. The XML Typechecking Problem. SIGMOD record,
31(1):89–96, March 2002.

[Tho97] Wolfgang Thomas. Languages, Automata, and Logic. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
volume 3, pages 389–455. Springer, Berlin, 1997.

[Thu10] Axel Thue. Die Lösung eines Spezialfalles eines generellen logischen
Problems. Kra. Videnskabs-Selskabets Skrifter. I.
Matematisk-naturvidenskapelig Klasse 1910, (8), 1910.

[Toz01] Akihiko Tozawa. Towards Static Type Inference for XSLT. In ACM
Symposium on Document Engineering, pages 18–27, 2001.

[TW65] James W. Thatcher and Jesse B. Wright. Generalized Finite Automata.
Notices of the American Mathematical Society, page 820, 1965. Abstract No.
65T-649.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized Finite Automata
with an Application to a Decision Problem of Second Order Logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[Via01] Victor Vianu. A Web Odyssey: From Codd to XML. In 20th ACM
Symposium on Principles of Database Systems (PODS), pages 1–15, 2001.

[VK04] Janis Voigtländer and Armin Kühnemann. Composition of functions
with accumulating parameters. Journal of Functional Programming,
14(3):317–363, 2004.

[Voi01] Janis Voigtländer. Composition of Restricted Macro Tree Transducers,
2001.

[Voi04] Janis Voigtländer. Tree Transducer Composition as Program Transformation.
PhD thesis, Technische Universität, Dresden, 2004.

148 References

[XSL99] World Wide Web Consortium (W3C). XSL Transformations (XSLT), 16
November 1999. Available online http://www.w3.org/TR/xslt.

