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Abstract— We propose a receiver for multipoint-to-point sys-
tems based on theminimum mean square error(MMSE) criterion,
where the symbols aredetected in groupsand already detected
symbols are fed back for interference subtraction, as known for
decision feedback equalization(DFE). The proposedscaled DFE
(SDFE) has two special cases: 1) DFE for a group size of one, i.e.,
for symbol-by-symbol detection. 2)Maximum likelihood detection
(MLD), if the group comprises all transmitted symbols. The
diversity order of SDFE lies between the poor diversity order of
DFE and the full diversity order of MLD. Therefore, SDFE offers
a trade-off between complexity due to the group-wise symbol
detection and the increased diversity order compared to DFE.
We also present an algorithm to compute the SDFE filters with
an order of complexity which is the same as that to compute
linear equalization filters. Motivated by the promising results
of detectors based onlattice reduction (LR), we combine SDFE
with LR. The resulting detector exhibits full diversity order and
improved performance compared to LR-DFE.

The simulations show that SDFE is an interesting general-
ization of DFE for detectors with zero-forcing constraint, since
SDFE even outperforms LR-DFE for realistic signal-to-noise-
ratio (SNR). However, LR-DFE exhibits the best results for an
affordable complexity, when dropping the zero-forcing constraint.

I. I NTRODUCTION

In a system with amultiple-input-multiple-output(MIMO)
channel [1], the received signal is not only perturbed by
noise but also by the interference between the transmitted data
streams. MLD leads to full order of diversity as it optimally
takes into account the properties of the noise and the interfer-
ence. However, MLD has prohibitive (non-polynomial, e.g.,
[2]) complexity due to the necessary search over all possible
data vectors. Contrary to MLD, suboptimal detection schemes
such as linear equalization [3] and DFE (V-BLAST, e.g., [4],
[5], [6]) exhibit a complexity for detection that is quadratic
in the number of data streams. Linear equalization and DFE
first suppress interference by some linear transformation of the
received signal before the data are detected symbol-wise. For
linear equalization, this linear transformation has to combat the
interference of all other data streams. Therefore, the equalizing
filter is highly constrained and the resulting diversity order
is poor. Although DFE feeds back already detected symbols
to suppress the interference induced by them, DFE has the
same diversity order as linear equalization, because the data
stream detected first is equalized by a linear filter which has
to suppress the interference caused by all other data streams.

In [7], a theoretical framework was proposed with the
special caseszero-forcing(ZF) DFE and MLD, that enables al-
ternative feedback detectors with diversity orders between that
of DFE and MLD. The scheme of [7] offers a good trade-off
between error performance (different possible diversity orders)
and complexity for detection. Heuristically, the detection order
was computed following the principle of V-BLAST [4], i.e.,
the stream with the best SNR is detected first. A similar ZF
scheme was also presented in [8].

Thescaled DFE(SDFE) proposed in this paper follows the
same idea as in [7], that is, the symbols are detected group-
wise, where the group size is a design parameter. Contrary to
[7] and [8], we do not restrict to ZF approaches and our SDFE
design is based on the minimization of themean square error
(MSE) without ZF constraint. We formulate the SDFE filter
design as an optimization problem similar to the approach to
DFE in [6] and find an optimal rule to compute the detection
order. Since the computation of the optimal detection order
has high complexity, we present an alternative implementation
(V-BLAST detection order) of the SDFE filter computation
algorithm whose complexity is cubic in the number of data
streams, i.e., the algorithm has the same order of complexity
as that for the computation of linear equalization filters.

For QAM alphabets, MLD can be interpreted as a closest
point search in a lattice (e.g., [9]). As suggested by Babai
[10], a very powerful approximation for this closest point
search is thenearest-plane algorithm, which can be interpreted
as a DFE for aLenstra-Lenstra-Lov́asz (LLL, [11]) reduced
channel matrix. Babai’s approximation has been applied to ZF
detection in [12], [13] and to MMSE detection in [14]. The
resulting LR-DFEs show very good performance and have full
diversity order [15]. We apply LR to the proposed SDFE and
end up with LR-SDFE which has full diversity order.

After reviewing MLD and DFE in Sections III and IV,
respectively, we introduce SDFE together with LR-SDFE and
give an efficient algorithm to compute the SDFE filters in
Section V. The simulation results are presented in Section VI.

II. SYSTEM DESCRIPTION

We consider a MIMO system withB transmit andNR

receive antennas. TheB transmit antennas are not allowed to
cooperate and can be treated asB distinct single-antenna users
which communicate with aNR receive-antenna base station.
The input signalssi, i = 1, . . . , B are independent complex



baseband taking values from a constellation alphabetA. The
signal vectors = [s1, . . . , sB]T,1 with covariance matrix
Φss = σ2

sIB, is transmitted over a flat fading MIMO channel
H ∈ C

NR×B with tap-gain[H ]j,i from transmit antennai to
receive antennaj. The signal of interest is perturbed at the
receiver by the additive zero-mean complex Gaussian noise
vectorη with covariance matrixΦηη, yielding the observation
x =Hs+ η. We assume the receiver has perfect knowledge
of the channel matrixH .

III. M AXIMUM LIKELIHOOD DETECTION

The MLD decides for the signal̂sML which maximizes the
likelihood of the received signalx =Hs+ η:

ŝML = argmax
s ∈ AB

(ln p(x|s))

= argmin
s ∈ AB

(x−Hs)HΦ−1
ηη (x−Hs)

= argmin
s ∈ AB

‖Φ−1/2
ηη (x−Hs)‖22. (1)

This minimization is a closest-point search problem in a
B-dimensional lattice. The search can be accelerated by the
sphere decoder [9]. Although MLD is the best detection
method for equiprobable input symbols, the complexity of the
subspace search in (1) is prohibitive for practical systems.

IV. D ECISION FEEDBACK EQUALIZATION

The DFE scheme described here follows [6]. Fig. 1 depicts
the reference model for DFE detection. The received signal
x is first processed by the linear filterG which includes a
proper reorderingO of the data streams. The ML quantizer
Q(•) detects the entries of̂sp element-wise starting from the
first entry. The feedback filterF removes the interference of
the already detected symbols to the not yet detected, and has
a lower triangular structure with zero main diagonal to assure
realizability. After the loop is completed, the symbols attain
the original ordering through multiplication with the transpose
of the permutation matrixΠ =

∑B
i=1 eie

T
ki

.
For the filter design, we assume that the output of the

quantizer is error-free. This model is depicted in Fig. 2
(without the dashed box), where the input to the feedback
filter is the actual signals after permutation withΠ . The
MMSE-DFE tries to minimize the MSE of

ŝp = Gx+ FΠs (2)

with respect to the permuted data signalΠs. We define the
error vectorεp =Πs− ŝp and the MSEφ reads as

φ = E
[‖εp‖22

]
= tr(Φεε,p), (3)

whereΦεε,p is the covariance matrix ofεp:

1Notation: Throughout the paper, we denote vectors and matrices with
lower and upper case bold letters, respectively. We useE[•], (•)T , (•)H,
tr(•), ⊗, and<(•) for expectation, transposition, conjugate transposition,
the trace of a matrix, the Kronecker product, and the real part, respectively.
TheN×N identity matrix isIN and itsi-th columnei. TheB-dimensional
all-ones and all-zeros vector are1B and 0B , respectively. TheN ×M all-
zeros matrix is denoted by0N×M .

s ŝŝpx

B

H G

F

NR
η

ΠT

Q(•)

Fig. 1. Decision-feedback equalizer reference model

Φεε,p = (IB − F )ΠΦssΠT(IB − FH) +GΦxxGH

−GΦH
sxΠ

T(IB − FH)− (IB − F )ΠΦsxGH. (4)

Here,Φxx andΦsx are the following covariance matrices

Φxx = E
[
xxH] =HΦssHH +Φηη, (5)

Φsx = E
[
sxH] = ΦssHH. (6)

The optimization problem can be formulated as

{Gopt,Fopt,Oopt} = argmin
{G,F ,O}

φ

s.t. eT
i FS

T
i = 0T

B−i+1 for i = 1. . . . , B.
(7)

The selection matrix

Si = [0B−i+1,i−1, IB−i+1] ∈ {0, 1}B−i+1×B (8)

cuts out the lastB−i+1 elements of aB-dimensional vector.
Using Lagrangian multipliers we obtain the filter solution

Fopt = IB −L−1, Gopt = DLHΠHHΦ−1
ηη , (9)

for a given orderingΠ , whereL andD are given by the
Cholesky factorization with symmetric permutation

ΠΦΠT = LDLH, (10)

Φ = (Φ−1
ss +HHΦ−1

ηηH)−1. (11)

Φ is theerror covariance matrix[6]. L is unit lower triangular
andD is diagonal. From (9) and (3), we get for the MSE

φ = tr(D) =
B∑
i=1
di. (12)

Minimizing each summand in (12) separately yields the
MMSE V-BLAST detection order

ki,subopt= argmin
k/∈{k1,...,ki−1}subopt

di. (13)

An iterative algorithm that calculates the Cholesky factoriza-
tion in (10) by minimizing the MSE at every step using (13)
is presented in detail in [6].

V. SCALED DECISION FEEDBACK EQUALIZATION

SDFE combines the architectures of MLD and DFE. The
reference model is identical to Fig. 1, withQp(•) instead of
Q(•). DFE operates in a symbol-wise manner, while SDFE
operates in ap-wise fashion. The modified quantizerQp(•)
decides onp symbols at a time, by performing a ML-like
search. The group sizep is a system parameter and takes values



1 ≤ p ≤ B andB/p ∈ N.2 The detected symbols are then
fed back and the interference caused to the not yet detected
symbols is removed viaF . Due to thep-wise operation, the
backward filter F has a block lower triangular structure,
where itsp × p diagonal blocks are zero. The feedforward
filter G suppresses the interference caused by the not yet
detected symbols to the block of symbols to be quantized, but
ignores the interference inside the latter block ofp symbols.
This interference will be resolved by the quantizer. Hence,
we linearly suppressB − p instead ofB − 1 interferers
and gain this wayp − 1 degrees of freedom compared to
DFE (cf. [8]). We can enforce the special function ofG by
artificially extracting the interference inside these blocks using
an auxiliary matrixC. This modification can be seen inside
the dashed box in Fig. 2. The signals is first permuted, then
processed with the filterC and added to the loopback.C
has ap× p block diagonal structure with zero main diagonal,
and perfectly extracts theintra-block interference. Thus,G
will only suppress the remaininginter-block interference. The
auxiliary matrixC will be used only for the calculation of the
filtersG andF , and not during the operation of the receiver.
For the filter design, we assume that the modified quantizer
Qp(•) takes always correct decisions, like for DFE (cf. Fig. 2).

s

s

x ŝpG

F

CΠ

Π

Fig. 2. Equivalent model without the quantizer for SDFE and DFE, with
and without the dashed box, respectively.

A. MMSE Scaled Decision Feedback Equalizer

In the MMSE approach, we try to minimize the MSE of

ŝp = Gx+CΠs+ FΠs = Gx+ (C + F )Πs (14)

with respect to the permuted data signalΠs. Recall thatF has
a block lower triangular structure whileC has a block diagonal
structure. Thus, we can use the auxiliary matrixK = F +C
for our derivation, and extractF andC at the end. The desired
signal for ŝp is the permuted signalΠs, and the error vector
is

εp =Πs− ŝp = (IB −K)Πs−Gx. (15)

The covariance matrix ofεp is given by

Φεε,p = (IB −K)ΠΦssΠT(IB −KH) +GΦxxGH

−GΦH
sxΠ

T(IB −KH)− (IB −K)ΠΦsxGH, (16)

2In principle,B/p need not be integer. However, we make this restriction
for the sake of notational simplicity.

whose trace is the MSEφ (cf. Eq. 3) andΦxx andΦsx are
defined in (5) and (6), respectively. The optimization problem
takes the following form

{Gopt,Kopt,Oopt} = argmin
{G,K,O}

tr(Φεε,p) (17)

s.t.(eT
i ⊗ Ip)KST

pi+1 = 0p×B−pi, i = 1. . . . , B/p− 1
ēT
i Kēi = 0 for i = 1, . . . , B (18)

whereei is thei-th column of theB/p×B/p identity matrix
and ēi is the i-th column of theB ×B identity matrix.Si is
given in (8). The constraints (18) impose the special structure
onK. We solve the optimization problem using Lagrangian
multipliers and obtain the filter solution

Gopt =
B∑
i=1

1
ēT
i D

−1ēi
ēiē

T
i L

HΠHHΦ−1
ηη , (19)

Kopt = IB −
B∑
i=1

1
ēT
i D

−1ēi
ēiē

T
i D

−1L−1, (20)

for a given detection orderΠ . The matricesL andD are
given by theblock Cholesky factorizationof Φ

ΠΦΠT = LDLH, (21)

whereL is block unit lower triangularwith p × p identity
submatrices on the main diagonal andD is block diagonal
with p× p submatrices on the main diagonal. From (16), (19)
and (20), the MSEφ for the given orderingΠ can be written
as

φ = tr(Φεε,p) =
B∑
i=1

1
ēT
i D

−1ēi
. (22)

Similar to (12),φ depends on the block diagonal entries of
D. The values ofD depend in turn on the block Cholesky
factorization (21) which depends on the orderingΠ . A succes-
sive algorithm computes the factorization trying to minimize
the respective MSE summand in (22) at every iteration. The
following table summarizes the pseudocode for the proposed
block Cholesky factorization. The factorization algorithm in
[6] is a special case of this algorithm forp = 1. However,
the complexity of the proposed algorithm increases for high
values of p due to the combinatorial search in line 5. A
low complexity suboptimum version of the algorithm uses the
ordering forp = 1 for all values ofp (lines 5 to 12 are replaced
with q = argminq′=i,...,B/pΦ(q′, q′)).

s ŝŝpH ΠTG

η

Qp(•)

Fig. 3. Reference model for the derivation of the modified quantizerQp(•).

We conclude with the derivation of the decision rule of the
modified quantizerQp(•). Fig. 3 depicts the reference model.



Algorithm : Calculation of the Block Cholesky Factorization
factorize:ΠΦΠT = LDLH (find: Π ,L,D)

1: Π = IB , D = 0B×B
2: for i = 1, . . . , B/p
3: k = [pi− p+ 1, pi− p+ 2, . . . , pi]
4: m = [pi+ 1, pi+ 2, . . . , B]
5: find all combinations of the set of indices
{pi− p+ 1, pi− p+ 2, . . . , B} takenp at a time and
place them inq row wise.

6: for all rows in q
7: Πi = IB whose rowsk are exchanged with the rows

with indicesq
8: Πtemp = ΠiΠ
9: Φtemp = ΠiΦΠi

10 : D(k, k)temp = Φ(k, k)
11 : m =

Pp
i=1

1
ēT
i D−1

tempēi

12 : Keep the indicesq that give the lowestm
13 : Πi = IB whose rowsk are exchanged with the rows

with indicesq
14 : Π = ΠiΠ
15 : Φ = ΠiΦΠT

i

16 : D(k, k) = Φ(k,k)
17 : Φ(pi− p+ 1 : B,k) = Φ(pi− p+ 1 : B,k)(D(k, k))−1

18 : Φ(m,m) = Φ(m,m)−Φ(m,k)D(k, k)(Φ(m,k))H

19 :LH = upper triangular part ofΦ

We start from the general ML rule applied to the whole filtered
vector ŝp

3. Similar to (1), we have

ŝ = argmin
s ∈ AB

(ŝp −GHs)H(GΦηηGH)−1(ŝp −GHs)

= argmin
s ∈ AB

sHHHGH(GΦηηGH)−1GHs

− 2<(sHHHGH(GΦηηGH)−1ŝp)
= argmin

s ∈ AB

sH
p (L−HD−1L−1 −ΠΦ−1

ss Π
T)sp

− 2<(sHΠTL−HN−1ŝp), (23)

wheresp = Πs andN =
∑B
i=1

1
ēT
i D−1ēi

ēiē
T
i .4 Note that

the above rule is just another expression for the ML rule in
(1). At this point, we define the projector matrix

Πi =
i∑
j=1
ēj ē

T
j (24)

and introduce the heuristic rule

s̃p,i = argmin
sp,i ∈ Ap

sH
p (ΛH

i,pD
−1Λi,p −ΠΦ−1

ss Π
T)sp

−2<(sH
pΛ

H
i,pN

−1ŝp), (25)

for i = 1, . . . , B/p, whereΛi,p =ΠpiL−1ΠT
pi. The heuristic

rule computes the estimates forŝ successively inB/p iter-
ations.sp = [s̃p,1, . . . , s̃p,i−1, sp,i,0, . . . ,0]T consists of the
already computed parts̃sp,j , j = 1, . . . , i − 1 and the not
yet detected partsp,i. Due to the projector matrixΠi, only
the first i groups ofp symbols ofŝp are used at thei-th step.

3Note that in the following,̂sp does not include the feedback like in Fig. 1.
4In (23), we substitutedG from (19).

Using properties of the matricesL,D, andΠi, we can further
simplify (25)

s̃p,i = argmin
sp,i ∈ Ap

∥∥∥∥∥
(

[D−1]i − 1
σ2
s

Ip

)1/2

sp,i

−
(

[D−1]i − 1
σ2
s

Ip

)−1/2

[N−1]iŝl,i

∥∥∥∥∥
2

2

. (26)

Here, ŝl,i is the signalŝp after the loopback filterF , as
computed during the operation of the loopback of Fig. 1.
[•]i denotes thei-th diagonalp × p block of a matrix. Rule
(26) describes the ML-like operation of the modified quantizer
Qp(•). As we can see, the calculation ofs̃p,i results from
a closest point search in ap-dimensional subspace, which
defines the complexity of the detector.

For p = B, the projector matrix in (24) isΠB = IB and
we have only one iteration in (25) with the whole vectorŝp.
Thus, the heuristic rule of (25) is identical to the ML rule in
(23) and SDFE converges to MLD forp = B.

For p = 1, the block Cholesky factorization in (21) is equal
to the factorization in (10).D is diagonal,N = D and the
filter solutions (20) and (19) are equal to (9). It can be shown
that the modified quantizerQp(•) using (26), takes the same
decisions as the ML quantizerQ(•) in DFE. Thus, forp = 1,
SDFE converges to DFE.

For values ofp between1 and B, we get a scaled sys-
tem whose performance lies between DFE and MLD. The
closest-point search in (25) is performed in ap-dimensional
subspace instead of aB-dimensional subspace as for MLD.
The resulting diversity order is equal toNR − B + p, while
the complexity, which is a function ofp, scales between the
quadratic complexity of DFE and the exponential complexity
of MLD (cf. [8]).

B. Lattice Reduction Aided Scaled DFE

We can combine SDFE with LR aided detection. This
requires the use of the equivalent real-valued model, for which
p = 1, . . . , 2B (cf. [16]). For MMSE-LR-SDFE, we use
the extended channelHext = [HT

r , ση/σsI
T
2B]T (cf. [14])5

followed by ZF-SDFE. For the ZF variant of SDFE we use
Φ = (HHH)−1 in (11) and omit the terms1

σ2
s
Ip in (26).

Let sr = α(s̄+ 1
2 12B), wheres̄ ∈ {−√M, . . . ,√M − 1}2B.

α depends on the modulation alphabet (cf. [14]). The basis
reduction is performed onHext, i.e.Hred =HextT , whereT
is a unimodular integer matrix. For LR-SDFE, the ZF-SDFE
filters are computed usingHred. Before entering the SDFE
loop we perform the normalization step

z = 1
α
GZFxr − 1

2GZFHext12B, (27)

wherez = T−1sr andxr = [(Hrsr+ηr)T; 0T]T. The estimate
of z is found by the modified quantizer

z̃p,i = argmin
zp,i ∈ Zp

∥∥∥([D−1]i
) 1

2 zp,i −
(
[D−1]i

)− 1
2 [N−1]iẑl,i

∥∥∥2

2
.

5The index ’r’ denotes the real-valued model.



Note that the above closest-point search is performed inZ
p.

Finally, the estimate ofsr is

s̃r = αT z̃ + 1
2α12B. (28)

VI. SIMULATION RESULTS AND CONCLUSIONS

The channel used for our simulations has i.i.d. unit variance
Rayleigh fading coefficients and emulates an idealized rich-
scattering environment. The noiseη is white with covariance
matrixΦηη = σ2

ηIB . Figs. 4 and 5 show the average uncoded

bit error rate (BER) overEb/N0 = NRσ
2
s

Rbσ2
η

, whereRb is the
number of information bits per symbol.

Fig. 4 compares ZF-SDFE with ZF-LR aided detection,
linear equalization and DFE [13]. The variant with the subop-
timum block Cholesky factorization is also depicted. Although
the LR curves exploit the full channel diversity, SDFE clearly
outperforms them in the high-BER-low-SNR region. The
shortcoming of ZF-LR in this region is due to a quantization
loss at the translation of the result to the initial basis (cf. [13]).
We do not show the results for ZF-LR-SDFE, since it provided
insignificant gains with respect to ZF-LR detection.

Fig. 5 compares MMSE-DFE with MMSE-LR-SDFE.6 We
see that MMSE-LR-SDFE (p = 1, [14]) is the favorable
technique due to its low complexity and superb performance.
The margin between MMSE-LR-SDFE and MLD is now much
smaller than in Fig. 4, and forp > 1, the gains are insignificant
given the much higher computational complexity.

From the above results, we draw a two-fold conclusion.
First, ZF-SDFE is an interesting alternative to standard DFE
(in accordance to [7]) and also LR aided ZF detection (not
considered in [7]). Second, one has to resort to the simple
MMSE-LR-DFE of [14], when using MMSE detectors (which
clearly outperform ZF detectors).
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Fig. 4. B = NR = 8, ZF detection, QPSK modulation.

6We do not show the results for MMSE-SDFE, since they are very similar
to the results for MMSE-DFE.
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Fig. 5. B = NR = 8, MMSE detection, 16-QAM modulation, LR-SDFE
uses the suboptimum block Cholesky factorization.
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