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Abstract—We propose a receiver for multipoint-to-point sys- In [7], a theoretical framework was proposed with the
tems based on theminimum mean square erro(MMSE) criterion,  gpecial casesero-forcing(ZF) DFE and MLD, that enables al-
where the symbols aredetected in groupsand already detected o 51ive feedback detectors with diversity orders between that

symbols are fed back for interference subtraction, as known for
decision feedback equalizatio(DFE). The proposedscaled DFE of DFE and MLD. The scheme of [7] offers a good trade-off

(SDFE) has two special cases: 1) DFE for a group size of one, i.e.0€tween error performance (different possible diversity orders)
for symbol-by-symbol detection. 2)Maximum likelihood detection and complexity for detection. Heuristically, the detection order

(MLD), if the group comprises all transmitted symbols. The was computed following the principle of V-BLAST [4], i.e.,

diversity order of SDFE lies between the poor diversity order of ; ; . ‘i
DFE and the full diversity order of MLD. Therefore, SDFE offers the stream with the best SNR is detected first. A similar ZF
scheme was also presented in [8].

a trade-off between complexity due to the group-wise symbol ) )
detection and the increased diversity order compared to DFE.  Thescaled DFE(SDFE) proposed in this paper follows the
We also present an algorithm to compute the SDFE filters with same idea as in [7], that is, the symbols are detected group-

an order of complexity which is the same as that to compute wise, where the group size is a design parameter. Contrary to
linear equalization filters. Motivated by the promising results [7] and [8], we do not restrict to ZF approaches and our SDFE
of_ detectors based_oriattlce reductl_on (LR), we C(_)mblne SDFE desian is b d th inimizati f thee

with LR. The resulting detector exhibits full diversity order and esign is based on theé minimization o an square error
improved performance compared to LR-DFE. (MSE) without ZF constraint. We formulate the SDFE filter

The simulations show that SDFE is an interesting general- design as an optimization problem similar to the approach to
ization of DFE for detectors with zero-forcing constraint, since DFE in [6] and find an optimal rule to compute the detection
;‘ﬁg'f(se’\}’%‘ I‘_’lléwg\r/?rrmLSR II_DRF-gFelih]icg'i’tsretﬁgsggsii?gsllj-lttg_?c?tis:r; order. Since the computation of the optimal detection order
affordable complexity, 'when dropping the zero-forcing constraint. has high Complex,lty’ we present an altemat_lve lmplement.atlon

(V-BLAST detection order) of the SDFE filter computation
algorithm whose complexity is cubic in the number of data
streams, i.e., the algorithm has the same order of complexity
as that for the computation of linear equalization filters.

In a system with anultiple-input-multiple-outpu¢(MIMO) For QAM alphabets, MLD can be interpreted as a closest
channel [1], the received signal is not only perturbed kyoint search in a lattice (e.g., [9]). As suggested by Babai
noise but also by the interference between the transmitted dgi@], a very powerful approximation for this closest point
streams. MLD leads to full order of diversity as it optimallysearch is th@earest-plane algorithpwhich can be interpreted
takes into account the properties of the noise and the interfas- a DFE for aLenstra-Lenstra-Laasz (LLL, [11]) reduced
ence. However, MLD has prohibitive (non-polynomial, e.gchannel matrix. Babai’s approximation has been applied to ZF
[2]) complexity due to the necessary search over all possildetection in [12], [13] and to MMSE detection in [14]. The
data vectors. Contrary to MLD, suboptimal detection schemessulting LR-DFEs show very good performance and have full
such as linear equalization [3] and DFE (V-BLAST, e.g., [4liversity order [15]. We apply LR to the proposed SDFE and
[5], [6]) exhibit a complexity for detection that is quadraticend up with LR-SDFE which has full diversity order.
in the number of data streams. Linear equalization and DFEAfter reviewing MLD and DFE in Sections Ill and IV,
first suppress interference by some linear transformation of trespectively, we introduce SDFE together with LR-SDFE and
received signal before the data are detected symbol-wise. Give an efficient algorithm to compute the SDFE filters in
linear equalization, this linear transformation has to combat tSection V. The simulation results are presented in Section VI.
interference of all other data streams. Therefore, the equalizing
filter is highly constrained and the resulting diversity order
is poor. Although DFE feeds back already detected symbolsWe consider a MIMO system with3 transmit and Ny
to suppress the interference induced by them, DFE has tleeeive antennas. ThB transmit antennas are not allowed to
same diversity order as linear equalization, because the dadaperate and can be treatediadistinct single-antenna users
stream detected first is equalized by a linear filter which haghich communicate with avg receive-antenna base station.
to suppress the interference caused by all other data streaiie input signalss;, i = 1,..., B are independent complex

|. INTRODUCTION

Il. SYSTEM DESCRIPTION
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baseband taking values from a constellation alphabethe s T
signal vectors = [sg,...,sp]T,} with covariance matrix BN
&, = 021, is transmitted over a flat fading MIMO channel R
H e CN**B with tap-gain[H];; from transmit antenna to
receive antenng. The signal of interest is perturbed at the
receiver by the additive zero-mean complex Gaussian noise Fig. 1. Decision-feedback equalizer reference model
vectorn with covariance matrix®,,,, yielding the observation

x = Hs + n. We assume the receiver has perfect knowledge

of the channel matrix{ . G..p=Ip— F)IP, " (I5 — FY + G&,,G!
[1l. M AXIMUM LIKELIHOOD DETECTION ~Ge M (15 — F) — (I - F)II$,,G".  (4)

The MLD decides for the signaly,. which maximizes the Here.&... and®
likelihood of the received signat = H's + n: e

s« are the following covariance matrices

A b, = E [$33H] = HdissHH + Py, (5)
Sdu. = argmax(Ilnp(x|s)) - -
s e AB b, = E[sa"] =0, ,H" (6)
_ : o Hg—1 o
o Efgrg?(“f Hs) &, (z — Hs) The optimization problem can be formulated as
= argmin |‘45;r}/2 (x — H'S)H% 1) {Gopta Foyy, Oopt} = argmin ¢
s AP (G.F.0} @)
This minimization is a closest-point search problem in a st. e/FS/ =0}_,,, for i=1.... B.

B-dimensional lattice. The search can be accelerated by the . .
sphere decoder [9]. Although MLD is the best detectio e selection matrix
method for equiprobable input symbols, the complexity of the S; = [0p_it1.-1, Ip_is1] € {0,1}Bi+1xB 8)
subspace search in (1) is prohibitive for practical systems. ’
cuts out the lasB — i+ 1 elements of &-dimensional vector.
IV. DECISION FEEDBACK EQUALIZATION Using Lagrangian multipliers we obtain the filter solution
The DFE scheme described here follows [6]. Fig. 1 depicts
the reference model for DFE detection. The received signal

z is first processed by the linear filter which includes a ¢,, 4 given orderingIT, where L and D are given by the
proper reordering? of the data streams. The ML quantizefcpglesky factorization with symmetric permutation
Q(e) detects the entries af, element-wise starting from the

first entry. The feedback filteF' removes the interference of et =LpLY, (10)
the already detected symbols to the not yet detected, and has &= (P, + H & 'H) . (11)
a lower triangular structure with zero main diagonal to assure * "
realizability. After the loop is completed, the symbols attaigP is theerror covariance matri6]. L is unit lower triangular
the original ordering through multiplication with the transposand D is diagonal. From (9) and (3), we get for the MSE
of the permutation matridl = 3" | e;e] . 5

For the filter design, we assume that the output of the ¢ = tr(D) = Zdi' (12)
guantizer is error-free. This model is depicted in Fig. 2 Py
(without the dashed box), where the input to the feedback . . . . .
filter is the actual signak after permutation withIZ. The Minimizing each summand in (12) separately yields the

MMSE-DFE tries to minimize the MSE of MMSE V-BLAST detection order

For=Ip— L', Gop=DL"ITH"®, (9)

. k; - i d;. 13
Sp = Gu + Flls 2) P (13)

with respect to the permuted data sigddls. We define the ap jterative algorithm that calculates the Cholesky factoriza-

error vectorep = II's — 3p and the MSE reads as tion in (10) by minimizing the MSE at every step using (13)
¢ =E [[lepll3] = tr(Pecp), A3) is presented in detail in [6].
where®.. , is the covariance matrix of: V. SCALED DECISION FEEDBACK EQUALIZATION

AN . _ SDFE combines the architectures of MLD and DFE. The
Notation: Throughout the paper, we denote vectors and matrices with .. . . . .
lower and upper case bold letters, respectively. We B8, (o)T, (o), Teference model is identical to Fig. 1, with,(e) instead of
tr(e), ®, and R(e) for expectation, transposition, conjugate transpositior(j(e). DFE operates in a symbol-wise manner, while SDFE
the trace of a matrix, the Kronecker product, and the real part, respectivqbperates in g-wise fashion. The modified quantiz€) (.)
The N x N identity matrix isIy and its:-th columne;. The B-dimensional . . . P,
all-ones and all-zeros vector alg; and 0, respectively. TheV x M all- decides onp Symbqls .at a t'meby performlng a ML-like
zeros matrix is denoted b s as. search. The group sizels a system parameter and takes values



1 <p< B and B/p € N.2 The detected symbols are therwhose trace is the MSE (cf. Eq. 3) and®,, and ®,, are

fed back and the interference caused to the not yet detectiedined in (5) and (6), respectively. The optimization problem
symbols is removed vid'. Due to thep-wise operation, the takes the following form

backward filter F' has ablock lower triangular structure,

where itsp x p diagonal blocks are zero. The feedforward — {Gopt, Kopt, Oopt} = argmin tr(Pec p) 17)
filter G suppresses the interference caused by the not yet - - {G.K,0} )

detected symbols to the block of symbols to be quantized, but st.(e; @I))KSy 11 =0pxppi; i=1....,B/p—1
ignores the interference inside the latter blockpogsymbols e;Ke; =0 for i=1,...,B (18)
This interference will be resolved by the quantizer. Hence, _ _ ) )

we linearly suppressB — p instead of B — 1 interferers wheree; is thei-th column of theB/p x B/p identity matrix
and gain this wayp — 1 degrees of freedom compared t@pdéi.is thei-th column pf theB X B identity matrix.Si is
DFE (cf. [8]). We can enforce the special function@fby 9ivenin (8). The constra_mt_s (1_8) impose the _speC|aI struc.ture
artificially extracting the interference inside these blocks usir@j) K- We solve the optimization problem using Lagrangian
an auxiliary matrixC. This modification can be seen insidgnultipliers and obtain the filter solution

the dashed box in Fig. 2. The signalis first permuted, then B

processed with the filteC' and added to the loopback Gopt = Z %éié?LHHHH@ilj
has ap x p block diagonal structure with zero main diagonal, i1 e/ D 'e; "
and perfectly extracts thitra-block interference. ThusG B 1

will only suppress the remaininigter-blockinterference. The Kot = Ip-— Z ————e&;e;, D'L™", (20)
auxiliary matrixC' will be used only for the calculation of the imeD e

filters & gndF, a_nd not during the operation Of. t_he receivgn%or a given detection ordefI. The matricesL and D are
For the filter design, we assume that the modified quantiz

fven by theblock Cholesky factorizationf &
Q, () takes always correct decisions, like for DFE (cf. Fig. 2)§ en by thebloc olesky lactonzafiod

(19)

et =LoprLt, (21)

where L is block unit lower triangularwith p x p identity
submatrices on the main diagonal afd is block diagonal
with p x p submatrices on the main diagonal. From (16), (19)
and (20), the MSE for the given orderingT can be written
as

B
1

¢ = tr(Pecp) = ; D Te (22)

Z:]gd fv'ithoE?‘:,'ﬁ'gg;h@gdﬁgxﬂv'f';;’;;g{i‘feIj‘,_“a”"ze“ for SDFE and DFE, Wilgimijar to (12),¢ depends on the block diagonal entries of
D. The values ofD depend in turn on the block Cholesky
factorization (21) which depends on the orderfdg A succes-

. _ sive algorithm computes the factorization trying to minimize

A. MMSE Scaled Decision Feedback Equalizer the respective MSE summand in (22) at every iteration. The

In the MMSE approach, we try to minimize the MSE of following table summarizes the pseudocode for the proposed
block Cholesky factorization. The factorization algorithm in

[6] is a special case of this algorithm fer= 1. However,

with respect to the permuted data sigiiis. Recall thatF” has the complexity of the proposed algorithm increases for high
a block lower triangular structure whit® has a block diagonal Values of p due to the combinatorial search in line 5. A
structure. Thus, we can use the auxiliary mafix= F + C low C(_)mplexny suboptimum version of the algorithm uses the
for our derivation, and extradf andC at the end. The desired©rdering forp = 1 for all values ofp (lines 5 to 12 are replaced
signal for s, is the permuted signall s, and the error vector With ¢ = argming _; 5, #(¢’,¢)).

is

$p=Gx+CIlIs+ FIIs=Gx+ (C+ F)IIs (14)

H G 3

S
ep=1IIs— 3, = (Ip — K)IIs — Gu. (15) :BD:@DD

The covariance matrix ofp, is given by n

Q%) {f’f S

b..p=(Ip - KIS, I (Iz — K") + GP,.G"
-G (15 - K% - (Is - K)[1$,,.G", (16)

Fig. 3. Reference model for the derivation of the modified quantizg(e).

2In principle, B/p need not be integer. However, we make this restriction W?.ConCIUde. with the dF_,-rlvatlon (?f the decision rule of the
for the sake of notational simplicity. modified quantizeQ,,(e). Fig. 3 depicts the reference model.



Algorithm : Calculation of the Block Cholesky Factorization

factorize: IT®ITT =

Mo

8:
9:
10:
11:

12:
13:

14
15:
16:
17:
18:

arhwNE

LDL" (find: IT, L, D)
“I1 =1, D =0g5x5
fOI’ i=1,...,B/p
k= [pi— p+1 pi—p+2,...
m=[pi+1,pi+2,...,B]
find all combinations of the set of indices
{pi—p+1,pi—p+2,...,B} takenp at a time and
place them ing row wise.
for all rows ing
IT; = Iz whose rowsk are exchanged with the rows
with indicesq
Htemp: HiH
Slstemp: ITI;PII;
D(k k)[emp: (_p(k k)
m = ZI 1 TDtempeL
Keep the indiceg; that give the lowesin
IT; = Is whose rowsk are exchanged with the rows
with indicesq
IT = 11,11
& = I, PITS
D(k,k) = ®(k,k)
PB(pi—p+1:B,k)=S(pi—p+1:B,k)(D(k, k)"
&(m,m) = B(m,m) — B(m, k)D (k. k)(B(m. k)"

, i

19: LY = upper triangular part o

We start from the general ML rule applied to the whole filtere

vector §p°. Similar to (1), we have

§ = argmin(8p, — GHs)"(G®,,G") (3, — GH s)
s € AB
= argmin s" HY'GY"(G®,,G")'GHs
s € AB

wheres, = ITs and N = Y7
the above rule is just another expressmn for the ML rule

—2R(s"HYGY (G®,, G 5)

= argmin sE(L* Hp='L=' — e I1")s,
s € AB

—2R(STITTL TN 3y),

1= 1eTD 1*

(2). At this point, we define the projector matrix

II, = Z eje; (24)
and introduce the heuristic rule
3p; = argmin SE(A?pD_lAW — Hdis_slHT)sp
sp,i € AP ’
—2R(sy A}, N718p), (25)
fori=1,..., B/p, whereA, , = II,,L~"II ;. The heuristic

rule computes the estimates férsuccessively inB/p iter-
ations.sp = [5p1,.. -,
already computed parts, ;, j = 1,...,
yet detected parsp ;. Due to the projector matrifl;, only
the firsti groups ofp symbols ofs, are used at thé-th step.

3Note that in the following 3p does not include the feedback like in Fig. 1.

'§p,i71; Sp,ia 0, ey O]T

4In (23), we substituteds from (19).

(23)

e;el.* Note that

consists of the
1 — 1 and the not

Using properties of the matricds, D, andI1;, we can further

simplify (25)
1 1/2
Sp; = argmin Dli—I> Sp.i
P, Sw_ge o ([ ] o2 P P,
1 —1/2 2
— ([Dl]i — FIp) [N"Y:81 (26)
s 2

Here, 3;; is the signals, after the loopback filterF, as
computed during the operation of the loopback of Fig. 1.
[e]; denotes the-th diagonalp x p block of a matrix. Rule
(26) describes the ML-like operation of the modified quantizer
Q,(e). As we can see, the calculation &f; results from

a closest point search in g-dimensional subspace, which
defines the complexity of the detector.

For p = B, the projector matrix in (24) idlp = Iy and
we have only one iteration in (25) with the whole vecgyt
Thus, the heuristic rule of (25) is identical to the ML rule in
(23) and SDFE converges to MLD fer= B.

For p = 1, the block Cholesky factorization in (21) is equal
to the factorization in (10)D is diagonal,N = D and the
filter solutions (20) and (19) are equal to (9). It can be shown
that the modified quantizeR,(e) using (26), takes the same
gecisions as the ML quantiz€l(e) in DFE. Thus, forp = 1,
SDFE converges to DFE.

For values ofp betweenl and B, we get a scaled sys-
tem whose performance lies between DFE and MLD. The
closest-point search in (25) is performed ipaimensional
subspace instead of B-dimensional subspace as for MLD.
The resulting diversity order is equal t8g — B + p, while
the complexity, which is a function gf, scales between the
guadratic complexity of DFE and the exponential complexity
of MLD (cf. [8]).

B. Lattice Reduction Aided Scaled DFE

We can combine SDFE with LR aided detection. This
figquires the use of the equivalent real-valued model, for which
p = 1,...,2B (cf. [16]). For MMSE-LR-SDFE, we use
the extended channdlex = [H', 0, /015" (cf. [14])°
followed by ZF-SDFE. For the ZF variant of SDFE we use
b = (HHH)—1 in (11) and omit the terms’; I, in (26).

Let s, = a(5 + 3125), wheres € {—VM, .. \/_ 1125,
« depends on the modulation alphabet (cf [14]). The basis
reduction is performed ol ey, i.€. Hieqg = HexI', WhereT
is a unimodular integer matrix. For LR-SDFE, the ZF-SDFE
filters are computed usindd,.q. Before entering the SDFE
loop we perform the normalization step

z= EGZFmr - %GZFHextIQBa (27)
wherez = T~ 's, andx, = [(H;s,+n)";0T]T. The estimate
of z is found by the modified quantizer

(ID71:)* 2. — (ID1):)

Zp,i = argmin
zpi € 1LP

2Nz

5The index 'r' denotes the real-valued model.



Note that the above closest-point search is performed’in
Finally, the estimate 0§, is

1
Ss=aTz+ 504123. (28)

VI. SIMULATION RESULTS AND CONCLUSIONS

The channel used for our simulations has i.i.d. unit variance
Rayleigh fading coefficients and emulates an idealized rich-
scattering environment. The noigeis white with covariance
matrix &,,, = oI . Figs. 4 and 5 show the average uncoded

bit error rate (BER) over Ey,/Ny NR—"E, where Ry, is the
number of information bits per symbol.

Rba?
Fig. 4 compares ZF-SDFE with ZF-LR aided detection,
linear equalization and DFE [13]. The variant with the subop-

timum block Cholesky factorization is also depicted. Althoughg.
SDFE Cbarlg}ses the suboptimum block Cholesky factorization.

the LR curves exploit the full channel diversity,
outperforms them in the high-BER-low-SNR region. The
shortcoming of ZF-LR in this region is due to a quantization
loss at the translation of the result to the initial basis (cf. [13]).
We do not show the results for ZF-LR-SDFE, since it provideqy;
insignificant gains with respect to ZF-LR detection.

Fig. 5 compares MMSE-DFE with MMSE-LR-SDFEWe
see that MMSE-LR-SDFEp( = 1, [14]) is the favorable
technique due to its low complexity and superb performance.
The margin between MMSE-LR-SDFE and MLD is now much[f’1
smaller than in Fig. 4, and for > 1, the gains are insignificant
given the much higher computational complexity.

From the above results, we draw a two-fold conclusiong
First, ZF-SDFE is an interesting alternative to standard DFE
(in accordance to [7]) and also LR aided ZF detection (not
considered in [7]). Second, one has to resort to the simp
MMSE-LR-DFE of [14], when using MMSE detectors (which
clearly outperform ZF detectors).

(2]
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(8]
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—o—p=2, SDFE
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Fig. 4. B = Nr = 8, ZF detection, QPSK modulation.

[16]
SWe do not show the results for MMSE-SDFE, since they are very similar
to the results for MMSE-DFE.

6] K. Kusume, M. Joham, and W. Utschick,

—e—p=1, SDFE (MMSE-DFE)
——p=16, SDFE (MLD)
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5. B = Ngr = 8, MMSE detection, 16-QAM modulation, LR-SDFE
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