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1
Introduction

In 1957 Margaret and Geoffrey Burbidge, William Fowler, Fred Hoyle, and Alistair Cameron
presented in a pioneering work the details of nucleosynthesis in stars by neutrons (Burbidge
et al. 1957; Cameron 1957). The theories at that time claimed that all elements were already
present after the Big Bang and before the first stars were formed, in contrast to their work, which
explained the origin of metals1 as a consequence of processes occurring in stars. Accordingto
Burbidge et al.(1957) “the history is hidden in the abundance distribution of the elements”.
Their reasoning was based on three main features, which can be distinguished in the element
abundance curve (Fig.1.1): A rapid drop of the abundance from mass numbers A= 1 to A= 50,
a big peak around A≈ 56, and smaller, slow decline (with mass number) of the abundances for
A > 56. From each of these features it is possible to extract someinformation about properties
of the nuclei and hints on the mechanisms that led to their formation.

The most abundant nuclei, hydrogen and helium, are ashes of the Big Bang. These ashes them-
selves are burned in stellar interiors producing the metallic elements as residue. During the
life of a star, nuclear burning in the center produces the pressure necessary to hold the star up
against the force of gravity. The price paid by the star is thechange of its composition: In the
first burning stage hydrogen is burned to helium, which in turn is converted to carbon in the
second stage. Increasingly heavy nuclei are produced in thelater stages. Once one type of fuel
is exhausted, the star contracts and its central temperature rises, thus allowing for the next type
of fuel to be ignited. This process continues, in the case of massive stars2 (M > 8 M⊙), until an
inert core of iron is formed in the center.

These burning stages give rise to the nuclei from mass numberA = 1 to A ≈ 50. The decrease
of the abundances in this mass number range is due to the fact that the Coulomb barrier rises as
the nuclear charge increases. On the other hand, also the binding energy per nucleon increases

1Elements heavier than He
2For low mass stars, i.e. M< 8 M⊙, the final composition of the core depends on the central temperature that

the star can reach and which is related to its mass (gravitational pressure). For stellar evolution reviews with
discussion of the different burning stages, seeClayton(1968); Arnett (1996)
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6 CHAPTER 1. INTRODUCTION

with nuclear mass and reaches its maximum for56Fe, the most tightly bound of all nuclei. This
explains the pronounced abundance peak around iron. The production of any heavier nuclei by
direct fusion is endothermic and thus strongly suppressed,compared to the lighter ones. From
the astrophysical point of view the production of elements lighter than iron in stellar interiors is
well understood (seeClayton 1968). Most of the iron is produced in thermonuclear supernovae,
violent events in which the explosive disruption of a white dwarf is triggered by mass accretion
from a companion star.

Figure 1.1: This is the original figure of the paper ofBurbidge et al.(1957), which shows the element
abundance distribution. One can distinguish the elements formed by nuclear fusion in stellar interiors,
they are indicated in the figure as H- and He-burning products. The peakin the iron-group elements is
one of the most remarkable features. For heavier elements r, s, and p indicate that they are generated
by rapid andslow neutron capture or byproton capture, respectively. The numbers (N= 50, 82, 126)
correspond to magic numbers for closed neutron shells.

After the iron-group peak the abundance curve exhibits a much slower decrease with mass
number and the absolute abundances are much higher than the values one would expect if they
were produced in the same way (i.e. by charged-particle reactions) as the lighter elements.
Where and how are these heavy elements produced? The basic mechanism for nucleosynthesis
beyond iron is neutron capture, already proposed byBurbidge et al.(1957). As a result of
neutron captures, a nucleus is transformed into heavier isotopes and moves out of the valley
of stability. Eventually it undergoes a beta decay, which transforms a neutron into a proton
and thus increases the charge number Z by 1 without changing the mass number A. If every
neutron capture is immediately followed by a beta decay the process is known as s-process.
Here s means slow and refers to the fact that the neutron capture timescale is longer than the
beta decay time (τβ ≪ τn). Therefore the new nuclei remain close to the valley of stability. In
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contrast, when the timescale between two neutron capture reactions is much smaller than the
beta decay timescale (τβ ≫ τn), nuclei are produced far away from the valley of stability and
close to the neutron drip line. This process is called rapid or r-process. For both processes
maxima in the abundance distribution are reached for certain “magic” neutron numbers, which
correspond to closed neutron shell configurations. However, owing to the fact that s- and r-
process occur along different paths in the N-Z plane these maxima are located at different mass
numbers. This is the reason for the double peaks visible in Fig. 1.1.

Different astrophysical sites are needed for these two kinds of processes. The s-process nuclei
are understood to be products of neutron captures on preexisting silicon-iron “seed” nuclei, oc-
curring under hydrostatic burning conditions in both helium-burning cores of massive stars and
particularly the thermally pulsing helium shells of asymptotic giant branch stars. The r-process
nuclei are primary nucleosynthesis products formed under extreme and dynamic conditions.
However, the exact site where r-process takes place is stillunclear. The most promising sites
are associated with supernova explosions of massive stars,as already proposed byBurbidge
et al. (1957). However, there are other possible r-process scenarios like neutron star mergers
(Lattimer et al. 1977; Rosswog et al. 1999), which can produce an r-process abundance pattern
consistent with the solar system matter (Freiburghaus et al. 1999). However, it seems problem-
atic that the frequency of such events in the Galaxy is too low(Qian 2000; Argast et al. 2004)
and therefore a high amount of r-process matter has to be ejected per event, which is inconsistent
with the level of scattering of r-process abundances observed in the halo stars. Accretion disks
and outflows in collapsing stellar cores (LeBlanc & Wilson 1970; Cameron 2001) are another
possibility also tied to massive stars and supernovae.

The core collapse supernova is one of the most promising and the best-studied r-process sites.
However, neither the explosion mechanism itself, nor the nucleosynthesis taking place during
the explosion are well-understood. In the following sections some details of this scenario and
its nucleosynthesis implications are given.

1.1 Core-collapse supernovae

The composition of massive stars changes with time as they gothrough different hydrostatic
burning stages (Arnett 1996). At the end of their life massive stars (Woosley et al. 2002) have
developed an onion-shell like structure with a central corethat consists of iron-group elements
and is surrounded by shells of lighter elements – around the core silicon, and further out oxygen,
neon, carbon, helium, and finally hydrogen. The inert iron core increases in mass owing to the
silicon burning taking place at its surface. When the core mass approaches a mass close to the
Chandrasekhar mass limit (about 1.44M⊙), the gravity cannot be balanced by the pressure of the
degenerate electrons any more and the core becomes unstableand starts to collapse. During the
collapse gravitational energy is transformed into internal energy, which initially can be radiated
away in form of neutrinos. However, this energy loss is stopped soon, when the density in
the contracting core exceeds a density of about 1012g cm−3. At such densities the opacity for
neutrinos becomes so high that they cannot stream out freelyand are “trapped” in the collapsing
core. Therefore most of the released gravitational energy remains stored as internal energy in
the core.

The collapse is stopped when super-nuclear densities are reached and a proto-neutron star con-
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sisting of almost incompressible matter forms. In the center the matter overshoots the hydro-
static equilibrium density and bounces back, thereby generating pressure waves that steepen
into a shock wave, which travels outwards into the still infalling matter of the progenitor star.

Initially it was thought that this shock wave could propagate through the outer layers of the star
and make them unbound, triggering an explosion. However, itturned out that in general this
“prompt explosion mechanism” does not work, because the shock wave suffers severe energy
loss and stagnates at only 100−200 km, still inside the collapsing iron core. On the one handthe
energy loss is caused by the endothermic dissociation of theiron group nuclei falling through
the shock. On the other hand, once the post-shock density hasfallen below the trapping density,
neutrinos are able to stream off freely again and remove considerable amounts of energy from
the shock wave.

Already Colgate & White(1966) proposed that neutrinos leaking out of the forming neutron
star, the so-called proto-neutron star could deposit energy in the layers close to the shock and
compensate for these energy losses. Indeed,Wilson (1985) found in numerical simulations
that neutrinos emitted by the proto-neutron star can deposit enough energy behind the shock to
revive it and trigger an explosion (see alsoBethe & Wilson 1985). Furthermore, it turned out
that this mechanism requires several 100 ms of neutrino energy deposition before the explosion
sets in. Consequently it is known as the “delayed, neutrino-driven explosion mechanism”.

However, improved simulations (e.g. better microphysics,general relativity effects, more so-
phisticated neutrino transport, multidimensional hydrodynamics) that have been performed in
the past 20 years failed to demonstrate that the delayed explosion mechanism works robustly
(Rampp & Janka 2000, 2002; Buras et al. 2003, 2006b,a; Mezzacappa et al. 2001; Liebendör-
fer et al. 2001; Thompson et al. 2003; Liebendörfer et al. 2005). Although several successful
simulations have been reported (Kitaura et al. 2006; Buras et al. 2006b; Burrows et al. 2006),
the viability of this mechanism for a wide range of parameters (e.g. progenitor masses, rotation
rates) remains unproven. Nevertheless, all these simulations have helped to understand which
effects play important roles. For example convection and otherhydrodynamic instabilities have
been recognized to improve the efficiency of energy deposition behind the shock (Herant et al.
1994; Burrows et al. 1995; Janka & Müller 1995, 1996). Despite these problems the delayed,
neutrino-driven mechanism is still the most promising explanation for supernova explosions of
massive stars (seeBethe 1990; Kotake et al. 2006; Woosley & Janka 2005for reviews).

Independent of the details of the mechanism that leads to theonset of the explosion it is expected
that the densities around the nascent neutron star will decrease in the subsequent evolution,
which will allow for the formation of a neutrino-driven windemanating from the neutron star
surface.

1.2 Neutrino-driven wind

Neutron stars are born as extremely hot and dense remnants atthe center of exploding massive
stars. Shortly after their formation they heat up to temperatures that can reach tens of MeV and
become even higher than 50 MeV for soft nuclear equations of state (e.g.,Burrows & Lattimer
1986; Keil & Janka 1995; Pons et al. 1999). Their gravitational binding energy is carried away
by neutrinos, which are abundantly produced at such conditions. On a timescale of seconds
these neutrinos diffuse out of the interior of the star and escape from their mean surface of last
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scattering, the neutrinosphere. By the associated energy and lepton number loss, the hot, still
proton-rich and neutrino-opaque proto-neutron star thus evolves to the final cold, neutron-rich
and neutrino-transparent remnant during roughly the first minute of its life.

Outside of the neutrinosphere the radiated neutrinos, which have typical energies of 10–20 MeV,
travel through a layer with a very steep density gradient anddecreasing temperature. It is un-
avoidable that the residual interactions of the high-energy neutrinos with the cooler stellar mat-
ter deposit energy in this region. This energy transfer doesnot allow the “surface” layers of the
hot, neutrino-cooling neutron star to remain in hydrostatic equilibrium, but leads to mass loss
at a low rate in a neutrino-driven outflow of baryonic matter (Duncan et al. 1986; Woosley &
Baron 1992). This outflow, the so-called “neutrino-driven wind”, unavoidably accompanies the
birth of a hot, neutrino-cooling neutron star, independentof the details of the not finally under-
stood supernova explosion mechanism. The mass loss of the nascent neutron star begins after
the supernova explosion has been launched and continues until the neutron star is essentially
transparent to neutrinos.

Only in case the neutrino-driven outflow becomes supersonicbeyond a critical point, the sonic
point, it truly deserves the name “wind”. In such wind solutions the physical conditions at the
neutrinosphere and behind the supernova shock are causallydisconnected. The presence of the
sonic point unambiguously determines the solution for a given value of the driving luminosity.
Wind solutions possess the highest (“critical”) mass loss rate (and the lowest specific total en-
ergy of the ejected matter) for a given neutrino luminosity.Physical solutions with larger mass
loss rates (and lower specific total energy) do not exist. Lower mass loss rates (higher specific
total energies) correspond to “breeze solutions” (Takahashi & Janka 1997; Otsuki et al. 2000).
In these, the outflow velocity reaches a maximum and then decreases again to asymptote to zero
at infinity. The whole region between the proto-neutron starsurface and the outer boundary of
the considered outflow is therefore in sonic contact. While wind solutions are characterized
by a continuously rising velocity and decreasing temperature, the temperature of breezes levels
off to a constant value at large radii where the flow is dominated by internal instead of kinetic
energy. This limiting value of the temperature at large distances from the neutron star is an
additional characteristic parameter of breeze solutions.

1.3 Nucleosynthesis in neutrino-driven winds

This flow of baryonic matter is a rapidly expanding and cooling high-entropy environment –
conditions that can lead to the production of elements heavier than the iron group. A number
of parameters have been recognized to determine the possibility of r-process nucleosynthesis in
the neutrino-wind environment:

• the neutron-to-proton ratio in the wind, expressed in termsof the electron-to-baryon ratio
or electron factionYe;

• the expansion timescale,τ, which decides how fast the temperature and density of the
outflowing matter drop;

• the wind entropy per nucleon,s, as a measure of the photon-to-baryon ratio of the envi-
ronment.
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Nucleosynthesis processes taking place during supernova expansion start with high temperature
and density. The extreme conditions in the first phase of the supernova explosion allows the
system to be in nuclear statistical equilibrium (NSE), i.e.there is a balance between nuclear
reactions, which produce heavy nuclei, and photodisintegration that decompose those existing
heavy nuclei into nucleons. The entropy for a system in equilibrium has a maximum, which
means that the system has evolved until all possible states of the total energy are available. In
nuclear statistical equilibrium the mass fraction of a nucleusAZ is given by (Meyer et al. 1992;
Woosley & Hoffman 1992)

Y(Z,A) = G(Z,A)[ζ(3)A−1π(1−A)/22(3A−5)/2]A3/2

(
kT

mNc2

)3(A−1)/2

φ1−AYZ
p YA−Z

n exp

[
B(Z,A)

kT

]
, (1.1)

whereG(Z,A) is the nuclear partition function,B(Z,A) is the binding energy,T is the temper-
ature,k is the Boltzmann constant,ζ(3) is the Riemann zeta function,mN is the nucleon mass,
Yp andYn are the proton and neutron fraction, respectively, andφ is the photon-to-baryon ratio
given by

φ =
nγ
ρNA

=
1
π2

gγ
(hc)3

ζ(3)(kT)3

ρNA
, (1.2)

wheregγ in the spin factor for photons,h is the Plank constant,NA is the Avogadro number, and
ρ is the baryon density. The photon-to-baryon ratio is proportional to the entropy per baryon in
a relativistic gas, which is

s≈ 4
3

a
(kT)3

ρNA
, (1.3)

herea is the Stephan-Boltzmann constant. Therefore, combining Eqs. (1.2) and (1.3) we get the
relation between the photon-to-baryon ratio and the entropy, i.e. φ ≈ 10s.

Equation (1.1) indicates that the presence of a nucleus depends strongly on φ andB(Z,A)/kT.
If φ is of the order of unity, iron-group nuclei are favored in NSEbecause of their large binding
energies,B(Z,A). In contrast, ifφ is large, many photons are available per baryon, and the
result is a gas consisting mostly of nucleons and alpha particles in which it is difficult to build
up heavy nuclei because they are quickly photodisintegrated.

In the first half a second after bounce, the temperatures and densities are high enough to main-
tain equilibrium. During the expansion the temperature decreases and consequently the NSE
composition varies. ForT9 ∼ 10 (T9 = 109 K) alpha particles start to appear. With the decrease
of the temperature the reactions begin to proceed more slowly, and finally the reaction rates
become smaller than the expansion rate. These reactions first fall out of equilibrium and then
“freeze out”. At the breakdown of the NSE (T9 ∼ 6) alpha-particles recombine into heavier
nuclei starting with the triple-alpha reaction (3α → 12C), and followed by alpha- and neutron-
captures on the produced12C. This is known as “alpha-process” (Witti et al. 1994), which
continues until the Coulomb barrier for alpha-particles becomes too high (T9 ∼ 3) and the
“alpha-rich freeze-out” of the charged-particle reactions takes place.

In the first one or two seconds after the onset of the explosion, the proton-rich ejecta (Ye > 0.5)
are exposed to an extreme neutrino flux. Recently,Fröhlich et al.(2006a) found that under
such conditions the electron antineutrinos are absorbed byfree protons producing a continuous
supply of free neutrons, which are captured by the seed nuclei. This novel nucleosynthesis
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process is known asνp-process (Pruet et al. 2006, 2005; Fröhlich et al. 2006b, 2005; Wanajo
2006). For later times the ejecta may become neutron-rich (Ye < 0.5). In this case, after the
alpha freeze-out, the expanding matter consists of heavy nuclei formed by alpha-process and
free neutrons. The r-process sets in when these heavy seed nuclei capture the neutrons and
experience beta decays. The neutron-to-seed ratio necessary to build up nuclei toA ∼ 240 from
seed nuclei withA ≈ 70− 100 has to beYn/Yseed> 100. Therefore, during the alpha-process
only a few seed nuclei are allowed to be formed in order to haveenough neutrons left.

In addition to the neutron-richness of the matter, two more conditions have to be fulfilled to al-
low for the r-process: The entropy must be high and the expansion timescale short. The entropy
of the wind is typically tens to more than 100kB per nucleon, making the wind environment
a candidate for the so-called high-entropy r-process (Meyer et al. 1992; Meyer 1994). At very
high entropy (s ∼ 300kB) the photodisintegration allows for the presence of only a few seed
nuclei, and therefore, there are many free neutrons. On the other hand, the expansion timescale
plays an important role during the alpha-process. The first alpha reaction is a three-body reac-
tion that is very slow, so that for a sufficiently rapid expansion this reaction has no time to start
the formation of heavy nuclei. Only if the time scale is very short (around a few milliseconds),
it is possible to obtain a small abundance of seed nuclei and ahigh neutron density.

Together with the requirement that the conditions in the wind have to allow the r-process, the
mass-loss rate decides whether the wind can be the major source of the observed galactic abun-
dance of r-process material. These wind parameters (i.e. expansion timescale, entropy, mass
loss rate) depend on the neutron star properties, in particular on the gravitational field of the
neutron star and thus its mass and radius, and on the neutrinoemission of the neutron star, i.e.,
the time-dependent luminosities and spectra of the radiated neutrinos (Qian & Woosley 1996).
Since it is mainly the absorption of electron neutrinos,νe, and antineutrinos, ¯νe, on free neutrons
and protons, respectively, which heats the stellar gas and is responsible for driving the mass loss
and for setting the electron fraction in the ejected gas, theemission properties of these neutrinos
are most relevant.

1.4 Previous works

Transsonic neutrino-driven winds in the context of supernova explosions and nucleosynthesis
were investigated by means of hydrodynamic simulations (Woosley & Baron 1992), analytic
discussion (Qian & Woosley 1996; Cardall & Fuller 1997), and numerical solutions of the
steady-state wind equations (Otsuki et al. 2000; Thompson et al. 2001). Otsuki et al.(2000)
discussed the difference between winds and breezes, but likeWanajo et al.(2001) they con-
centrated on the subsonic solutions for their nucleosynthesis calculations, mainly because these
allowed them to set a boundary value of the temperature at some large radius. This was un-
derstood to mimic the transition of the wind into a dense shell of ejecta behind the outgoing
supernova shock, the presence of which hampered the free expansion of the wind. Such a be-
havior was found in calculations of supernova explosions bythe Livermore group, which were
employed in the r-process studies ofWoosley & Hoffman(1992), Woosley et al.(1994), and
Hoffman et al.(1996), and also in hydrodynamic simulations of neutrino-drivenoutflows by
Witti et al. (1994) andTakahashi et al.(1994), which were started from post-bounce models
provided by the Livermore group. The outflow trajectories inthese simulations showed temper-
ature and density declining asymptotically to nearly constant values, which were reached when
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the flow was gradually decelerated upon catching up with the slower, earlier ejecta behind the
supernova shock.Sumiyoshi et al.(2000) andTerasawa et al.(2002) also referred to this behav-
ior for using an artificially imposed constant pressure at the outer boundary in their Lagrangian
hydrodynamic simulations of neutrino-driven mass ejection. The external pressure produced
outflow deceleration similar to that found in the previous supernova models.

Applying modern, high-resolution shock-capturing schemes and a better numerical resolution
to long-time hydrodynamic simulations of supernova explosions, Janka & Müller(1995) and
Burrows et al.(1995) (see also the more recent models ofBuras et al. 2006bused for nucleosyn-
thesis studies byPruet et al. 2005) discovered the formation of a wind termination shock caused
by the collision of a transsonic neutrino-driven wind with the dense, slower ejecta shell behind
the supernova shock. So far, however, this reverse shock, which leads to an abrupt deceleration
and shock heating of the fast wind, has not received much attention. Subtle, potentially signifi-
cant effects in the r-process nucleosynthesis that may depend in interesting ways on the location
of and strength of the reverse shock were found byThompson et al.(2001). Although these
authors mentioned a rather modest reheating of the wind material by the reverse shock passage
(that causes a increase of the specific entropy of 10kB per nucleon), they obtained a consider-
ably enhanced production of third-peak r-process nuclei due to a slower post-shock expansion
and a significantly higher temperature (0.05 MeV instead of 0.01 MeV for unshocked winds) at
the time the r-process freeze-out happens. AlsoWanajo et al.(2002), alluding to the possibility
of a wind termination shock, introduced a freeze-out valueTf as the final temperature of the
wind, i.e., they limited the temperature (and density) decrease in the supersonic wind by a cho-
sen lower value. The choice of this temperature was, naturally, to some degree ad hoc, although
Wanajo et al.(2002) justified it by nucleosynthesis considerations. A systematic and detailed
exploration of the formation of the wind termination shock,of its hydrodynamical effects on
the wind properties, and of its nucleosynthetic consequences, however, is still lacking.

1.5 Aims of this thesis

This work is a study of the time-dependent evolution of the wind termination shock in different
stellar progenitors with spherically symmetric (1D) and two-dimensional (2D) models. For this
purpose, simulations of neutrino-driven explosions have been performed, employing some ap-
proximations to the full supernova physics already used in previous works (Scheck et al. 2004,
2006). The neutron star in the performed simulation is replaced by a contracting inner boundary
at which neutrino luminosities are imposed such that supernova explosions with a typical explo-
sion energy of 1–2×1051 erg=1–2 bethe (B) are triggered by neutrino heating. The subsequent
evolution of the relic neutron star and the explosion ejectaare followed until 10 s after core
bounce in the case of one-dimensional simulation and duringaround 2 s for the more compu-
tationally expensive two-dimensional calculations. Varying the neutron star contraction, which
depends on the incompletely known high-density equation ofstate, and the time-dependent neu-
trino emission from the forming neutron star, the sensitivity of the reverse shock effects on the
neutrino-wind properties will be investigated. By means of two-dimensional simulations one
can demonstrate that convection does not destroy the effect of the reverse shock, but makes
it angular dependent. This has a direct influence on the amount of ejected matter with high
entropy, i.e. possible favourable nucleosynthesis conditions. The one- and two-dimensional re-
sults found in this work suggest that wind termination shocks are a robust, long-lasting feature
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in the supernova core just like the outgoing supernova shockand the neutrino-driven wind are.
Of course, since a final understanding of the explosion mechanism of core-collapse supernovae
is still missing (see, e.g.Buras et al. 2003, 2006b,a, and references therein) and because of the
excision of the neutron star at the grid center (instead of simulating its neutrino-cooling evo-
lution) and of the approximations contained in the neutrinotransport method, the calculations
of this work will not be able to yield final answers. Nevertheless, the results are suitable for
discussing fundamental properties of the wind terminationshock and for developing a basic
understanding of how this so far not well studied aspect of supernova explosions may influence
the nucleosynthesis.

This work is structured in the following way. In Chapter2 I will briefly describe the numerical
approach taken in this work, give definitions of several quantities that will be used later, and
present the progenitor stars that are used as initial models. Spherically symmetric models are
addressed in Chapter3, which starts with a presentation of a reference case, followed by an
analytic discussion and an investigation of how varied boundary and initial conditions change
the results. Two-dimensional simulations are the topic of Chapter4, where the influence of
multidimensional effects on the ejecta distribution and on wind termination shock evolution
is analyzed. Finally, summary and conclusions follow in Chapter 5. Parts of this work were
already presented in the publication ofArcones et al.(2007).





2
Model description

The neutrino-driven wind, which sets after the supernova explosion, has been studied in previ-
ous works by solving the steady state wind equations (see e.g. Thompson et al. 2001). However,
full neutrino-hydrodynamic simulations are necessary to deal with the whole problem, i.e. the
wind evolution and its interaction with the ejecta, in a consistent way. In this work we are
not interesting in proving the viability of the explosion mechanism because the neutrino-driven
wind is independ of it. Therefore, we can use an approximate treatment that allows a higher
variability of the conditions relevant for the wind. We are using Newtonian hydrodynamics
(Sect.2.1) with relativistic correction for the gravitational potential (Sect.2.2). In order to save
computational time and thus to be able to follow the wind for some seconds, simplified neutrino
transport is required (Sect.2.3). Moreover, we avoid using the nuclear density equation that is
needed in the neutron star but it still not well understood. Instead of it, we cut out the interior
(Sect.2.5) and take an inner boundary that mimics the neutron star contraction (Sect.2.6). With
these approximation one can follow the wind evolution for different progenitor stars, which
initial models are presented in Sect.2.7.

2.1 Hydrodynamics

The tool we are using is based on solving the Euler equations of hydrodynamics, since the
matter can be considered as a fluid in the non-relativistic limit and in the absence of viscosity
and magnetic fields. These equations express the conservation of mass, momentum and energy:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.1)

∂ρv
∂t
+ ∇ · (ρvv) + ∇P = −ρ∇Φ +QM (2.2)

∂ρE
∂t
+ ∇ · ([ρE + P]v) = −ρv · ∇Φ + QE + v ·QM + ρQN (2.3)
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hereρ, v, and P are density, fluid velocity, and pressure, respectively. The E = |v|2/2 + ǫ
is the specific total energy, withǫ being the specific internal energy, andΦ is the gravitational
potential, computed by solving the Poisson’s equation. Thesource terms, denoted byQ, account
for the neutrino momentum (QM) and neutrino energy (QE) transfer (see Sect.2.3), and for
the specific net energy gain from nuclear reactions (QN). The latter requires one additional
continuity equation to be added the set of Eqs. (2.1)-(2.3) for calculating the evolution of the
composition:

∂ρXi

∂t
+ ∇ · (ρXiv) = ρẊi (2.4)

hereρXi is the partial density of the nucleus i,ρẊi denotes the source term due to nuclear
reactions, andXi is the mass fraction of that species. We do not solve the nuclear reaction
network, but assume nuclear statistical equilibrium (NSE)during the phase between collapse
and first seconds of the neutrino-wind. Under this assumption one can calculate the composition
just from the temperature, density and electron fractions.The temperature and the density
change every time a new hydrodynamical state is computed, while the electron fraction depends
on the neutrino-matter interaction. Therefore, after performing a hydro step and after calculating
the transport, one has to update the energy and composition values by means of the equation of
state. The equation of state (EoS) is needed to close the system, by defining a relation between
pressure, density, and temperature:P = P(ρ, eint, Xi ) with eint being the internal energy.

The equation of state used in the simulations presented hereis valid below densities of roughly
1013 g cm−3 where non-ideal effects due to strong interactions between nucleons can be safely
ignored. It was used before in the calculations byJanka & Müller(1996), Kifonidis et al.
(2003), andScheck et al.(2006). Neutrons, protons,α-particles and a representative heavy
nucleus of the iron group (chosen to be54Mn) are assumed to be non-relativistic Boltzmann-
gases in nuclear statistical equilibrium. Electrons and positrons are treated as Fermi-gases of
arbitrary degeneracy and arbitrary degree of relativity, and photon contributions are included
as well. Pressure and energy are corrected for Coulomb effects due to the electromagnetic
interactions between nucleons and the surrounding sea of charged leptons.

The simulations of this work were carried out with the neutrino-hydrodynamics code and the
microphysics described byScheck et al.(2006). The hydrodynamics module is a version of the
P code which is based on a direct Eulerian implementation of the Piecewise Parabolic
Method (PPM) ofColella & Woodward(1984). It is a high-resolution shock capturing scheme
and performs a conservative, explicit integration of the Newtonian hydrodynamics equations
with third-order accuracy in space and second-order accuracy in time (see, e.g.,Kifonidis et al.
2003and references therein).

2.2 Gravity

Relativistic effects are taken into account in our Newtonian hydrodynamics code by using an
“effective relativistic gravitational potential” (Rampp & Janka 2002). The simulations per-
formed for this work (different from those ofScheck et al. 2006) employ the improved version
of this potential described byMarek et al.(2006), who found excellent agreement with fully
relativistic calculations during collapse and the first several hundred milliseconds after core
bounce (test for the later neutrino-wind phase can be found in Sect.3.2).
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The approach consist in taking the general relativity version of the one-dimensional Newtonian
hydrostatics equation

1
ρ0

∂P
∂r
= −GMr

r2
= −∇ΦN

1D , (2.5)

hereMr is the baryonic mass enclosed at a radiusr. The Tolmann-Oppenheimer-Volkoff equa-
tion is the general relativistic form of Eq.(2.5):

1
ρ0

∂P
∂r
= −Gm̃TOV

r2

(
1+

4πr3P
m̃TOVc2

1
Γ2

) (
1+

P
ρc2

)
. (2.6)

The Newtonian gravitational potential (ΦN
1D) have been replaced with the modified TOV poten-

tial:

ΦTOV(r) = −4πG
∫ ∞

r

dr ′

r ′2

(
m̃TOV

4π
+

r ′3P
c2

)
1
Γ2

(
ρ + e+ P
ρc2

)
, (2.7)

whereρ is the rest-mass density,e = ρε the internal energy density withε being the specific
internal energy, andP is the gas pressure. The usually rather small corrections ofthe gravita-
tional potential due to neutrino pressure, energy density,and flux terms (seeMarek et al. 2006)
are neglected in Eq.(2.7). The “modified TOV mass”̃mTOV is given by

m̃TOV(r) = 4π
∫ r

0
dr ′r ′2

(
ρ +

e
c2

)
Γ , (2.8)

with the metric function

Γ =

√
1+

v2

c2
− 2m̃TOV

rc2
. (2.9)

The extra factorΓ in Eq. (2.8), compared to the relativistic definition of the TOV mass, enters
the mass integral for reasons of consistency with the Newtonian hydrodynamics equations and
accounts for the fact that in the Newtonian code there is no distinction between local proper
volume and coordinate volume (for more details, seeMarek et al. 2006).

There is, however, an important difference of our calculations compared to those performed by
Marek et al.(2006). While the latter included the whole neutron star down to thecenter, the
use of the inner grid boundary at a radiusRib > 0 in the present work prevents the evaluation
of the integral in Eq. (2.8) within the neutron star core. We solve this problem by starting our
calculations with a given value of the modified TOV mass of thecore att = 0, m̃TOV(Rib,0),
which was provided to us as part of the data set for the initialconditions of our simulations. For
t > 0 we then approximately evolve the modified TOV mass according to the expression

m̃TOV(Rib, t) = m̃TOV(Rib,0)−
∫ t

0
Lib
ν (t′) dt′ −

∫ t

0
4πR2

ib(t′)Pib(t′)
dRib

dt′
dt′ , (2.10)

where the second term on the rhs yields the energy loss from the neutron star core by the total
neutrino luminosity at the inner boundary,Lib

ν (t), and the last term represents the compression
(PdV) work done on the core at the contracting inner boundary. Thetotal modified TOV-mass
at radiusr, which we consider as “gravitational mass”, is thus given by

m̃TOV(r, t) = m̃TOV(Rib, t) + 4π
∫ r

Rib

dr ′r ′2
(
ρ +

e
c2

)
Γ . (2.11)
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In two-dimensional simulations asphericity of the potential is considered by using two-dimensional
Newtonian corrections added to theΦN

1D:

Φ2D = Φ
TOV
1D +

(
ΦN

2D − ΦN
1D

)
(2.12)

2.3 Neutrino treatment

The role of the neutrinos in supernova is crucial, but the waythey are included in the whole
problem is not trivial. The most sophisticated neutrino treatment (Rampp & Janka 2002; Buras
et al. 2006b,a) has the disadvantages that is computationally very expensive, thus it makes
impossible to follow the evolution of the neutrino-driven wind during a few seconds, and it
is not enough to explain explosion mechanism in general. On the other hand, the transport
treatment used in previous works of neutrino-wind were rather simplified (Otsuki et al. 2000;
Thompson et al. 2001). Here, we are using a neutrino transport approximation between both.
The pros are that it is not very computational expensive but at the same time we are performing
the radial integration of the grey energy and lepton number.Moreover, the results obtained with
this neutrino transport are qualitatively the same as the ones coming from the most accurate
Boltzmann transport, but not quantitatively. This is exactly the disadvantage, i.e. it is not
possible to give final numbers for quantities like the electron fraction, which is crucial for
nucleosynthesis.

The transport of neutrinos and antineutrinos of all flavors is based on a computationally very
efficient, analytic integration along characteristics of the frequency-integrated zeroth-order mo-
ment equations of the Boltzmann equation for neutrino numberand energy (for details, see the
Appendix ofScheck et al. 2006). The zeroth-order moment of the equation of radiative transport
for spherical symmetry is:

∂

∂t
E +

1
r2

∂

∂r
(r2F) = Q+ − Q− (2.13)

whereE is the energy density andF the energy flux. In the rhs the source term is separated into
emission rateQ+ and absorption rateQ−.

The neutrino spectra are assumed to have Fermi-Dirac shape,in which case

Fn(η) =
∫ ∞

0
dx

xn

1+ exp (x− η) , (2.14)

with a spectral temperature that is determined from the ratio of neutrino-energy to neutrino-
number flux. Therefore in general the spectral temperature is different from the local gas tem-
perature. The closure of the neutrino number and energy equations is achieved by employing
the flux factor:

f (r, t) =
F
Ec
, (2.15)

which couples the local energy (or number) flux with the neutrino energy (or number) density.
For f (r, t) we use a prescribed function which was determined by fits to Monte Carlo transport
results (Janka 1991). This yields a reasonably good approximation in the transparent and semi-
transparent regimes but is not designed to accurately reproduce the diffusion limit at very high
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optical depths (where due to numerical reasons the applicability of the approach is anyway
strongly constrained by the need of very fine grid zoning, Sect. 2.5).

Therefore, assuming that∂t f = 0 and in terms of the luminosity (L = 4πr2ceff = 4πr2 f cE, with
ceff = f c being the effective speed of neutrino propagation), Eq.(2.13) can be writing as:

∂

∂t
L + ceff

∂

∂r
L = 4πr2ceff(Q

+ − Q−). (2.16)

The coefficientsQ+ and κ̃ = κ/ f = 4πr2Q−/L can be considered constant between two points
(r, t) and (r∗, t∗) which are connected by a characteristic line:r∗ = r − ceff(t − t∗). Under this
assumption, Eq.(2.16) can be solve analytically. Details about the numerical scheme to calculate
the luminosity as a function of time and radius are given inScheck et al.(2006). The integration
yields the neutrino number (L = Ln) and energy fluxes (L = Le) as functions of time and radius
for three neutrino types:νe, νe, andνx (with νx = νµ, νµ, ντ, ντ). Our approach thus accounts
for the luminosity contributions due to the accretion on theforming neutron star.

The neutrino source terms in the transport equation (Eq.2.16) and thus the source terms for lep-
ton number, energy, and momentum in the hydrodynamics equations include the most relevant
neutrino-matter interactions:

• Charge-current processes with neutrons and protons,

νe+ n←→ p+ e− , (2.17)

νe+ p←→ n+ e+ , (2.18)

• Thermal electron-positron pair creation and annihilation,

e+ + e− ←→ νi + νi (i = e,µ, τ) , (2.19)

• Neutrino scattering off nuclei (A), nucleons, and electrons and positrons,

νi +



A
n
p
e±


←→ νi +



A
n
p
e±


. (2.20)

The neutrino emission and absorption rates for these processes are described in detail in the
Appendix D.6 ofScheck et al.(2006).

2.4 Definitions

Here we introduce some quantities that will be used in the following chapters. The neutron
star is defined by its radius and mass. The neutron star radius, Rns corresponds to the location
where the density is 1011g cm−3. The baryonic and gravitational mass are computed for the
matter inside the neutron star radius. The baryonic mass of the neutron star,Mns, is given by the
central point mass plus the mass integral over all the grid zones below the neutron star radius.
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The gravitational mass for the neutron star is given by Eq. (2.11) for r = Rns. And the effective
mass for the neutron star,Meff, is the mass for which a Newtonian force equals the modified
TOV force, i.e.

dΦTOV

dr
=

GMeff

r2
, (2.21)

evaluated atr = Rns

We define also some quantities related with the neutrinos, e.g. the total energy radiated in
neutrinos of all flavours:

∆Etot
ν (t) =

∫ t

0
Ltot
ν (r, t′)dt′ , (2.22)

whereLtot
ν (r, t′) is the total neutrino luminosity given by the integration of Eq. (2.16). Usually the

neutrino luminosity and the radiated energy are evaluated at radius of 500 km. These quantities
are also given forνe andνe.

The inner boundary neutrino luminosity is

Lib(t) ≡ Le,νe(Rib, t) + Le,νe(Rib, t) , (2.23)

We use two definitions for the mean neutrino energy. One is defined as the ratio of neutrino
energy flux to neutrino number flux,

〈ǫν〉 ≡
Le

Ln
, (2.24)

and another as rms (root mean squared) energy,

〈ǫν〉rms ≡
√〈
ǫ2ν

〉 ≡ kBTν

√
F5(ην)
F3(ην)

, (2.25)

which is the energy that enters the calculation of the neutrino absorption rates on nucleons (cf.,
for example,Scheck et al. 2006). In Eq. (2.25), Tν andην are the spectral temperature and
degeneracy, assuming that the neutrino spectra have Fermi-Dirac shape (Eq.2.14).

The explosion energy,Eexp, is defined as the sum of the total energy of all zones of the grid
where the energy is positive, i.e.

Eexp =
∑

etot,i>0

etot,i ∆mi , (2.26)

wherei is the zone counter,∆mi the mass contained in zonei, andetot is the total specific energy
given by the sum of the specific gravitational, kinetic, and internal energies,

etot = egrav+
1
2

v2 + eint . (2.27)

Here we use the one-dimensional Newtonian expression to evaluate the gravitational energy,

egrav(r) = −
GM(r)

r
(2.28)
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General relativistic corrections have been taken into account in the simulations, but can be
neglected in the pos-processing calculation because the majority of the matter that contributes
to the explosion energy is placed at larger radii, where the Newtonian calculation does not differ
from the general relativity one.

Another quantity related with the explosion itself is the explosion timescale,texp, which is the
post-bounce time when the explosion sets in. Here, it is defined as the moment when the energy
of the expanding postshock matter exceeds 1049 erg.

2.5 Numerical grid

The hydrodynamic equations are solved in a spherical grid (r, θ). In the radial direction the inner
boundary corresponds to a Lagrangian mass shell that is below the neutrinosphere, and the outer
boundary is settle at∼ 1010 cm, its exact value is chosen such that the supernova shock does
not run off the grid. We note that the steepening density gradient near the neutron star surface
requires extremely fine grid zoning for getting converged results of the neutrino-driven outflow.
Therefore, the zone size fulfils the following prescription:

dr i =


αRib if r ≤ Rconst,

α r i if r > Rconst,
(2.29)

whereα ≈ 2− 3%. In the region between the inner boundary and the radiusRconst= 20− 40 km,
the radial zones have the same size. And betweenRconst and the outer boundary the size of the
zones increases logarithmically with radius.

In the angle direction, all the simulations presented in this work have a resolution of∆θ = 1o

and are performed for half sphere,θtot = π. We denote as “north pole” the angleθ = 0, and as
“south pole”θ = π.

We typically use about 1000 radial mesh points and, for the two-dimensional simulations, 180
angular beams.

2.6 Boundary conditions

In our simulations we replace the inner core of the neutron star (usually roughly 1M⊙ of bary-
onic matter) by an inner Lagrangian boundary of our grid, whose prescribed contraction is
supposed to mimic the shrinking of the nascent neutron star as it loses energy and lepton num-
ber by neutrino emission. Using this inner boundary, which typically is located at aνe optical
depth of more than 100 and a density ofρib & 1013 g cm−3, does not only allow us to apply the
simple neutrino transport approximation described above,but also gives us the freedom to vary
the time-evolution of the neutron star radius and of the coreneutrino fluxes imposed at the inner
grid boundary. This makes sense because both the equation ofstate of hot neutron star matter
and the neutrino transport in nascent neutron stars are not finally understood. Changing the
inner boundary conditions thus allows us to investigate thedifferences resulting from different
explosion energies and timescales and from a different evolution of the neutrino-wind power in
a given progenitor.
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Three parameters serve us to describe the motion of the innerboundary:Ri, Rf , andt0. The
initial radiusRi is the radius of the inner core that we chose to excise from thepost-bounce
models we start our simulations from,Rf is the final radius of this core for timet → ∞, andt0
is the timescale of an exponential contraction according tothe expression

Rib(t) = Rf + (Ri − Rf )e
−t/t0 . (2.30)

Our standard choice oft0 = 0.1 s reproduces the contraction of the excised core during thefirst
few hundred milliseconds after bounce as found in full-scale supernova simulations with the
equation of state ofLattimer & Swesty(1991), using the energy-dependent neutrino transport
of the V code (cf.Buras et al. 2006aand also Fig. 1 inScheck et al. 2006).

In the simulations presented here we also explore the consequences of a different time-
dependence of the neutrino luminosities imposed at the inner grid boundary (see Sects.3.1and
3.5). The explosion energy of a model is mostly determined by thechoice of the initial values
of these luminosities (in particular those ofνe and ν̄e). These initial values are constrained by
the prescribed total loss of neutrino energy from the core during the proto-neutron star cooling,
∆Etot
ν,core, and by the total loss of lepton number:

∆Ye,core(t) = N−1
b,core

∫ t

0
(Ln,νe(Rib, t

′) − Ln,νe(Rib, t
′))dt′ =

∆Etot
ν,core

Nb,core

(
Kνe
〈ǫνe〉ib

−
Kνe
〈ǫνe〉ib

)
. (2.31)

The relative contribution ofνe to the total core luminosity is set to 20%, (i.e.,Kνe = 0.2 in
terms of the parameters introduced inScheck et al. 2006), the contribution of ¯νe is determined
from requesting∆Ye,core = 0.3, and the muon and tau neutrino contributions then follow from
Kνe + Kνe + 4Kνx = 1. The mean energies of the neutrinos entering the computational grid at
the inner boundary are chosen to be〈ǫνe〉ib = 12 MeV, 〈ǫν̄e〉ib = 16 MeV, and〈ǫν̄x〉ib = 20 MeV
whenνx denotes muon and tau neutrinos and antineutrinos. These energies are kept constant
with time.

Because of the contraction and post-bounce accretion of the proto-neutron star, the density and
optical depth in the layers near the inner grid boundary can increase to such large values that
the application of our transport approximation becomes inefficient by the required very fine
zoning, and the equation of state fails to describe the densestellar matter. Whenever theνe
optical depth begins to exceed a certain value (usually chosen to be 300), we shift the inner
boundary to a larger radius̃Rib(tcut) and thus to a larger mass shell where the neutrino optical
depth is significantly lower (usually 200 forνe). The additional excised baryonic mass is added
to the previous core mass and the gravitational mass of the new, increased core is set equal to
the gravitational mass computed at radiusR̃ib(tcut) where the new inner grid boundary is placed
(see Sect.2.2). The subsequent motion of the new boundary fort > tcut is assumed to follow the
function

R′ib(t) = Rf + (R̃ib(tcut) − Rf ) exp
[
v(t − tcut)/(R̃ib(tcut) − Rf )

]
, (2.32)

wherev < 0 is the recession velocity of the mass shell of the new boundary at time tcut. The
new boundary contracts in a very similar way as the previous one because the removed shell is
very narrow. The neutrino luminosities and mean energies ofthe streaming neutrinos imposed
at the new boundary att = tcut are chosen to be the values computed with the transport scheme
at this radius and to have the same time behavior as the initial boundary luminosities and mean
energies.
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Figure 2.1: Density profiles for the progenitor stars we study (see Table2.1). The differences at larger
radii have a big influence for the shock expansion. For the progenitor with mass 10.2M⊙ (red line) the
density is lower and therefore the accretion is smaller, which allows to the shock to expand more rapidly.
The 15M⊙ and 20M⊙ progenitor stars (green and blue lines, respectively) present a similar structure,
thus their evolution will be also similar. The biggest progenitor (orange line) has 25M⊙ and very high
accretion rate, which leads slow shock expansion and a massive neutronstar.

2.7 Initial model and progenitors

We start our simulations a few milliseconds after bounce andfollow the shock stagnation and
subsequent expansion, as well as the beginning of the wind and the its later interaction with
the evolved supernova core. Starting after collapse allowsus to ignore the neutron star in our
simulation, and thus to reduce the computational time. The zero time of the model presented
here corresponds to a few milliseconds after bounce (see Table 2.1). The collapse and bounce
have been computed with neutrino-hydrodynamics code V producing the initial data for
our simulations (A. Marek, private communication).

Table 2.1: List of progenitors used in the simulations

Progenitor MZAMS [M⊙] t after bounce [ms] Reference
s10.2 10.2 15.6 A. Heger personal communication
s15s7b2 15 15.1 Woosley & Weaver(1995)
s20.0 20.0 10.3 Woosley et al.(2002)
s25a28 25 12.9 Heger et al.(2001)

We have used four progenitors which cover a zero age main sequence mass (ZAMS mass) range
from 10.2M⊙ to 25M⊙ (see Table2.1). Figure2.1 shows the density profiles of the progenitor
at the time our simulations start.





3
Spherically symmetric hydrodynamic

simulations

One-dimensional simulations require only modest amounts of computing time and therefore
allow us to investigate a wide parameter range and also to study the evolution of the wind for
several seconds. Since the neutrino-driven wind is spherical (in the absence of rotation, which
is not considered in this study), the one-dimensional approach is adequate to study the evolu-
tion of the neutrino-driven wind and provides already basicinformation about the interaction
of the wind with the explosion ejecta. However, in order to analyze this interaction in detail
multidimensional simulations have to be performed (see Chap. 4). In this chapter we present
the results of our time-dependent one-dimensional hydrodynamic simulations. An overview of
the computed models will be given in Sect.3.1. A comparison with fully relativistic wind solu-
tion is presented in Sect.3.2. Sect.3.3contains the description of a reference case, which was
computed for a certain choice of the time-dependent contraction of the inner grid boundary and
of the neutrino luminosities imposed at this boundary. In Sect. 3.4 we demonstrate that basic
features of the wind termination shock can be understood by simple analytic considerations.
Furthermore, we investigate the influence of variations of the conditions at the inner boundary
in Sect.3.5, and finally we discuss the neutrino wind evolution in different progenitor stars
(Sect.3.6).

3.1 The computed models

A list of computed 1D models with their characterizing parameters is given in Table3.1. We
have performed simulations for progenitor stars which are presented in Tab.2.1. Extensions
of the model names (“r1”, “r2”,....) indicate different prescriptions for the contraction of the
inner grid boundary, whose motion was varied by choosing different values of the final radius
Rf and of the exponential contraction timescalet0 (Eq.2.30). Larger numbers in this sequence
correspond to less quickly contracting or less compact neutron stars. Moreover, we varied

25
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the sum of theνe and ν̄e luminosities imposed at the grid boundary with respect to the initial
value as well as time-dependence. In most of the calculations the luminosities were chosen to
be constant during the first second of post-bounce evolutionand to decay proportional tot−3/2

afterwards as inScheck et al.(2006). Such models are labelled by the extensions “l1”, “l2”, etc.,
with a higher number meaning a lower initial value of the boundary luminosity. In another set
of calculations the boundary luminosities were assumed to have a smoother time-dependence
(with no jumps in the time derivative) and in particular withless neutrino energy radiated at late
post-bounce times. The luminosities were prescribed as

L(t) =


L0 if t ≤ 0.5s,

L0 f (t) if t > 0.5s,
(3.1)

with

f (t) =
exp

[
−(t − 0.5)2

]
+ b [ 1+ (t − 0.5)n ]−1

(1+ b)
, (3.2)

where the timet is measured in seconds. The corresponding models can be recognized by the
letters “lt” in their names. The parametern was set to 1.5 in both cases, whileb = 0.2 was used
for model M15-lt1-r4 andb = 0.3 for M15-lt2-r3.

A comparison of these models allows us to study the influence of different contraction behavior
of the nascent neutron star. The contraction determines therelease of gravitational energy from
the mantle layers of the compact remnant. The accretion luminosity generated in the mantle
adds to the core flux (given by the imposed boundary condition) and has an influence on the
explosion timescale and explosion energy of a model and thuson the location of the mass
cut and the baryonic mass of the neutron star. The corresponding gravitational mass, which
decreases when energy is lost in neutrinos (Eq.2.10), the radius of the neutron star, and the
luminosities and mean energies of the radiated neutrinos are crucial parameters that directly
affect the neutrino-wind properties as functions of time (seeQian & Woosley 1996).

We note that the supernova models we study here do not permit us to change individually
and independently all parameters and conditions that affect the neutrino wind properties and
that determine the behavior of the wind termination shock. The wind depends, e.g., on the
neutron star gravitational potential and thus on the neutron star mass. The latter becomes larger
when the post-bounce accretion phase lasts longer and the explosion happens later, or when the
progenitor is more massive and therefore the iron core and post-bounce accretion rate are larger.
More massive progenitors thus tend to produce neutron starswith bigger masses. For this reason
one cannot disentangle the influence of the progenitor structure on the wind termination shock
from the effects of the neutron star mass on the neutrino wind.

In order to structure the discussion, we decided to first describe basic features in case of a 15M⊙
reference model, then to vary the boundary conditions for this model, and finally to present the
results for different progenitors.

3.2 Comparison with fully relativistic wind solutions

In this section we will discuss our simulation approach in view of other published work on
relativistic steady-state solutions for neutrino-drivenwinds. General relativistic (GR) effects
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Table 3.1: Model parameters of our spherically symmetric simulations. The different models are char-
acterized by the chosen contraction of the inner grid boundary, which is expressed in terms of the final
radiusRf and the exponential contraction timescalet0 (cf. Eq.2.30). Different choices of these values are
indiced by the extensions “r1”, “r2”, etc. of the model names. In addition,different initial luminosities
of νe plus ν̄e (measured in bethe [B]= 1051 erg per second) are imposed at the inner grid boundary in
case of our standard luminosity behavior (constant until 1 s and then at−3/2 decay). These variations
are reflected by the extensions “l1”, “l2”, etc. in the model names. Moreover, the time-dependence of
the boundary luminosity has been modified to a luminosity decay that is more rapid than in the standard
description (Eqs.3.1and3.2; models with “lt” in their names).

Model Contraction Lib
νe
+ Lib

ν̄e
Progenitor Mass

(Rf , t0) [B/s] [M⊙]
M15-l1-r1 9 km; 0.1 s 52.5 15
M15-l1-r2 9 km; 0.2 s 52.5 15
M15-l1-r5 11 km; 0.1 s 52.5 15
M15-l1-r6 14 km; 0.1 s 52.5 15
M15-l2-r1 9 km; 0.1 s 38.6 15
M15-l3-r3 10 km; 0.1 s 35.8 15
M15-lt2-r3 10 km; 0.1 s 55.2 15
M15-lt1-r4 10.5 km; 0.1 s 55.8 15
M10-l1-r1 9 km; 0.1 s 52.5 10
M10-l5-r3 10 km; 0.1 s 30.3 10
M20-l1-r1 9 km; 0.1 s 52.5 20
M20-l3-r3 10 km; 0.1 s 35.8 20
M20-l4-r3 10 km; 0.1 s 33.1 20
M25-l5-r4 10.5 km; 0.1 s 30.3 25

have been recognized to cause important changes of the neutrino wind properties, e.g., to lead
to a decrease of the expansion timescale and to an increase ofthe wind entropy, seeQian &
Woosley(1996), Cardall & Fuller(1997), Sumiyoshi et al.(2000). A comprehensive discussion
of these effects in comparison with the Newtonian treatment was provided by Otsuki et al.
(2000) andThompson et al.(2001).

In our simulations we account for relativistic gravity onlyby using a modified effective poten-
tial (Sect.2.2), but otherwise we solve the Newtonian equations of hydrodynamics. We also
ignore relativistic redshift and ray bending effects in our description of the neutrino transport
(cf. Scheck et al. 2006).

The use of the generalized potential in a Newtonian hydrodynamics code was shown previously
to yield results in very good agreement with relativistic core-collapse simulations up to several
100 ms after core bounce (Liebendörfer et al. 2005; Marek et al. 2006). For the later neutrino-
wind phase we tried to compare with solutions plotted byThompson et al.(2001) for cases
when our neutron star masses, neutron star radii, and neutrino-heating rates were similar to the
ones considered in that paper. Unfortunately, we were unable to find moments in our simulations
where all relevant parameters match up exactly the cases considered byThompson et al.(2001).
As far as a comparison was possible, we observed satisfactory agreement in the main properties
characterizing the wind.
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Figure 3.1: Derivatives of the velocity (top), density (middle), and temperature (bottom)as functions
of radius from our hydrodynamic model M15-l1-r1 at 1.5 s after bounce(black lines) compared to these
derivatives as computed from the relativistic stationary wind equations of Eqs. (5)–(7) inThompson et al.
(2001) (blue curves). These equations were evaluated by using the values ofall gas quantities as pro-
vided by our hydrodynamic model. Consistency between our hydrodynamics results (with approximative
treatment of relativity) and the fully relativistic wind solution would require the corresponding lines to
lie on top of each other. The agreement is very good and the sonic point is located at about 80 km in both
cases. This location is a critical point of the wind equations, which explains the pathological behavior of
the curves there. The evaluation of the expression for the temperature gradient is numerically inaccurate
in a region where the two terms in Eq. (7) of Thompson et al.’s paper are very large and have opposite
signs, in which case dT/dr becomes slightly positive while the hydrodynamical result is still negative.



3.2. COMPARISON WITH FULLY RELATIVISTIC WIND SOLUTIONS 29

Figure 3.2: Radial profiles of the net total neutrino heating rate ˙qtot (top), νe and ν̄e luminositiesLν
(second panel, in bethe per second or 1051 erg s−1), mean neutrino energies〈ǫν〉 (third panel; Eq.2.24),
rms energies〈ǫν〉rms (fourth panel; Eq.2.25), and flux factor for model M15-l1-r1 at 1.5 s after bounce.
For comparison with Thompson at al. (2001), we also show〈ǫν〉 and〈ǫν〉rms as used in that paper, rescaled
to our values ofLνe andLν̄e, the flux factor with and without relativistic corrections from that work, and
the Newtonian and GR charged-current heating plus cooling rates using Thompson et al.’s formulas,
evaluated with our neutrino luminosities and rms energies (red and blue curves) or with the rescaled rms
energies of Thompson et al. (green curve). The vertical dashed line marks the position of theνe-sphere,
and the vertical dotted line the neutron star “surface” at a density of 1011 g cm−3.
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A more quantitative comparison is hampered by the fact that relativistic neutrino-wind simula-
tions are not available to us. We therefore decided to make use of Eqs. (5)–(7) for the velocity
derivative,∂v/∂r, the density derivative,∂ρ/∂r, and the temperature derivative,∂T/∂r, in the
paper ofThompson et al.(2001). Figure3.1 shows these derivatives as functions of radius at
a certain time for one of our models, compared to the results from Thompson et al.’s fully rel-
ativistic expressions. Evaluating the latter, we took all quantities on the rhs. of the formulas
(velocity v, adiabatic sound speedcs, densityρ, gravitational massM, neutrino heating rate ˙q,
etc.) from our model. Ideally, the pairs of corresponding curves in Fig.3.1should fall on top of
each other, which would demonstrate consistency of both calculations. The overall agreement
of the two cases is very good, with a small difference being visible only around the maximum
of the acceleration, which, however, is located at the same radius. Also the sonic point is
nearly at the same position of about 80 km (we are not disturbed by the pathological behavior
of the curves in this region, where the expressions for the derivatives have a critical point). We
therefore conclude that our approach reproduces the most important features of the relativistic
solution, and that relativistic kinematics (which we ignore) is of minor importance compared to
the effects of the stronger GR potential, which makes the proto-neutron star more compact and
the density and temperature gradients in the neutrinospheric region steeper than in Newtonian
gravity.

We also compared our neutrino heating and cooling rates withthose used byOtsuki et al.(2000)
andThompson et al.(2001). Figure3.2 shows the radius-dependent net (i.e., heating minus
cooling) specific rate of neutrino energy deposition by theβ-processes according to Eqs. (20)
and (21) ofThompson et al.(2001) with and without corrections for relativistic redshift and
ray bending, evaluated at all radii with the stellar parameters and the neutrinospheric values of
theνe andν̄e luminosities and mean energies from one of our simulations.The data were taken
from the same model and time used in Fig.3.1. The behavior of both curves agrees qualitatively
with Fig. 5a ofOtsuki et al.(2000). Close to the neutrinosphere ray bending effects enhance
the net heating (since GR causes a reduction of the flux factoras visible for Thompson et al.’s
prescription of this quantity in Fig.3.2), whereas gravitational redshifting of the neutrino lu-
minosities and energies grows monotonically with distancefrom the neutrinosphere and finally
wins, reducing the GR rate below the Newtonian value.Otsuki et al.(2000) performed test cal-
culations to disentangle the influence of GR corrections in the neutrino treatment from that of
the relativistic terms in the wind structure equations. In spite of the sizable change of the local
heating rate,Otsuki et al.(2000) found that neutrino redshift and ray bending have only little
impact on the wind entropy. Similar conclusions were arrived at byThompson et al.(2001).

In Fig. 3.2also the total specific rate of neutrino heating and cooling from our hydrodynamical
model is displayed. This rate includes all contributing processes, i.e. besides theβ-reactions
of νe and ν̄e absorption and production also energy transfer by the scattering off electrons,
positrons, and free nucleons, and neutrino-antineutrino pair annihilation, to which neutrinos
of all flavors contribute (cf. the appendix ofScheck et al. 2006). This total rate is similar to the
neutrino capture and emission rates of Eqs. (20) and (21) ofThompson et al.(2001), because
for the considered situation the neutrino luminosities arehigh (see Fig.3.2) and therefore the
wind mass loss rate is large and the wind entropy fairly low (sw . 50kB per nucleon). At such
conditions of high wind density and modest abundance of e+e−-pairs, the other reactions do not
contribute significantly to the total rate of energy deposition.

We point out here that our approximative treatment of neutrino transport evolves the trans-
port solution self-consistently with the temperature and density structure of the stellar medium.



3.3. EVOLUTION OF A REFERENCE CASE 31

This is different from the light-bulb approach of previous steady-state or hydrodynamical wind
studies (e.g.,Sumiyoshi et al. 2000; Otsuki et al. 2000; Thompson et al. 2001). Inside the neu-
trinosphere neutrinos and matter are in equilibrium, around the neutrinosphere neutrinos begin
to decouple thermodynamically from the medium, and at some larger distance they start stream-
ing freely. A changing radial structure of the contracting neutron star leads to changes of the
neutrino luminosities and mean energies, and the gradual loss of neutrinos drives the cooling
and deleptonization of the surface-near layers of the neutron star. In previous wind studies (ex-
cept full supernova models), such a coupling and interdependence was ignored. Close to the
neutron star surface the flux factor (or flux dilution factor)used in our transport, which is based
on a Monte Carlo calibration byJanka(1991), is lower than the vacuum approximation chosen
by Thompson et al.(2001) andOtsuki et al.(2000), see Fig.3.2. Thompson et al.(2001) have
tested the improved description byJanka(1991) and found that its effects are negligible for the
range of model conditions considered by them. This, however, is true only during phases where
the density gradient near the neutrinosphere is very steep and in regions where the neutrino
luminosities have already reached their asymptotic values.

The most important difference of our simulations compared to other relativistic wind studies is
the different treatment of the spectra in the neutrino transport. Inour “grey” but non-equilibrium
description of neutrino number and energy transport, we determine a neutrino spectral tempera-
ture that is independent of the matter temperature and can bedifferent from it (for details, see the
appendix ofScheck et al. 2006). This leads to higher mean energies ofνe andν̄e radiated from
the neutrinosphere than considered in the other works. Figure3.2shows these mean energies as
functions of radius following the definitions given by Eqs. (2.24) and (2.25).

For comparison, Fig.3.2 also presents the corresponding mean energies and rms energies as
used byThompson et al.(2001), appropriately scaled byL1/4

ν to account for the larger neutrino
luminosities considered here, and takingην = 0 for neutrinos and antineutrinos. The net heating
rate computed with these rms energies is significantly lowerthan the heating rate from our
hydrodynamic model (Fig.3.2).

At first glance, our mean energies forνe and ν̄e might appear on the large side. One must,
however, take into account that the mean energies in our simulations are significantly lower
in the first∼0.5 seconds when the neutron star is still rather extended, and only increase as
it heats up during contraction. They reach a maximum betweenone and two seconds after
bounce to decrease afterwards as the proto-neutron star cools (see Sect.3.3). So the condi-
tions plotted in Fig.3.2 correspond to a time when the neutrino luminosities are still rather
high and the mean energies in this phase at their maximum. Moreover, one should remember
that we ignore gravitational redshifting in our transport.The redshift from the neutrinosphere
at radiusRν to infinity after the contraction of the neutron star can become quite significant,√

1− 2GM/(Rνc2) =
√

1− Rs/Rν ≈ 0.7...0.8 for 1
2 & Rs/Rν & 1

3, which reduces the mean en-
ergies for a distant observer by typically 20–30%. In our Newtonian transport treatment we
prefer to use the higher neutrinospheric energies for evaluating the neutrino heating, because
the neutrino-wind properties are mostly determined by the heating just outside of the neutri-
nosphere, where it is also strongest.
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Figure 3.3: Mass shell plot for the evolution of model M15-l1-r1. The explosion occurs about 0.2
seconds after bounce. The red line marks the supernova shock, the blue line the wind termination shock,
the orange lines the locations where the expansion velocity of the gas equalsthe local sound speed (sonic
points), and the green line the neutron star radius defined as the location where the density drops below
1011 g cm−3. A contact discontinuity separates the dense shell of ejecta that were accelerated by the
outgoing shock from the very dilute neutrino-driven wind. Mass shells in the wind are labelled by the
corresponding enclosed baryonic masses.

3.3 Evolution of a reference case

In our reference model, M15-l1-r1, the conditions at the inner boundary were chosen such that
the 15M⊙ star explodes with an energy of∼1.5×1051 erg and the neutron star attains a final
gravitational mass of∼1.2M⊙ (1.4 M⊙ baryonic) and a radius of 10 km (Table3.2).

A mass-shell plot for the space-time evolution of this modelis given in Fig.3.3. The explo-
sion sets in about 200 ms after bounce (at the timetexp given in Table3.2, which is defined
as the moment when the total energy of expanding matter starts to exceed 1049 erg). At this
time the stalled shock is revived by neutrino heating and starts continuous expansion with an
average velocity of roughly 10.000 km s−1. On its way out the shock reverses the infall of the
swept-up matter. After the onset of the explosion, ongoing neutrino energy transfer drives an
outward acceleration of heated material in the gain layer around the neutron star. At the inter-
face between this dilute neutrino-driven wind and the denser outer ejecta a contact discontinuity
is formed. Even farther behind the forward shock, the neutrino-driven wind, whose velocity
increases rapidly with distance from the neutron star, collides with more slowly moving mate-
rial and is decelerated again. The strongly negative velocity gradient at this location steepens
into a reverse shock when the wind velocity begins to exceed the local sound speed (Janka &
Müller 1995). First indications of a forming wind termination shock canbe seen in Fig.3.3at
t &350 ms post bounce at a radiusr ∼300 km.

Figure3.4 displays theνe and ν̄e luminosities and the mean energies emitted by the nascent
neutron star (gravitational redshift effects are ignored). One can see the accretion phase with
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Figure 3.4: Luminosities, mean energies according to Eq. (2.24), and rms energies (Eq.2.25, 〈ǫ〉rms >

〈ǫ〉) of νe and ν̄e, and total energy radiated in neutrinos of all flavors for model M15-l1-r1 as functions
of time (left), measured outside of the nascent neutron star (at a radius of500 km). Note that we do not
include gravitational redshifting in our neutrino treatment. The rapid decline of the luminosities after
about 0.2 marks the end of the accretion phase of the forming neutron star at the onset of the explosion.
The panels on the rhs side give the baryonic mass and the gravitational mass(Eq. 2.11) of the neutron
star in model M15-l1-r1, the explosion energy, and the expansion timescales of the neutrino-driven wind
as functions of time. For the latter, the results from three different definitions are displayed, namely those
used byQian & Woosley(1996), Otsuki et al.(2000), andThompson et al.(2001), given in Eqs. (3.3),
(3.4), and (3.5), respectively.
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Figure 3.5: Radial profiles of the net neutrino-heating rate ˙q, density, temperature, entropy (left, from
top to bottom), velocity, mass loss rate, electron fractionYe, and mass fractions of free protons andα
particles for the neutrino wind in model M15-l1-r1 at different post-bounce times. For the mass fractions
only the information for the first and last moments of time is provided. The wind termination shock is
clearly visible in its effects on the velocity, density, temperature, and entropy of the outflow.
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Figure 3.6: Radius, density, entropy (left, from top to bottom), velocity, temperature, and electron frac-
tion Ye as functions of time along the trajectories of different mass shells that are ejected in the neutrino-
driven wind of model M15-l1-r1. The times correspond to the moments when the mass shells cross
a radius of 100 km. After a very rapid expansion, the wind is abruptly decelerated by the termination
shock. This leads to an increase of the entropy by more than a factor of two, and to a subsequently much
slower decline of the temperature and density.
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its production of accretion luminosity ending at the time the explosion sets in. The following
plateau phase untilt ≈ 1 s and subsequent decay of the luminosities show the influence of the
time-dependence of the imposed boundary fluxes. This is alsothe case for the mean neutrino
energies. Their values increase during the first second of post-bounce evolution because the
inner grid boundary and the neutron star radius contract (Fig. 3.3). Consequently, the outer
layers of the neutron star heat up due to the conversion of gravitational energy to internal energy
by compression. After one second the rapid contraction is over and the decay of the boundary
luminosities leads to less energy transport into these layers, which therefore begin to cool down,
causing the mean energies of the radiated neutrinos to decline.

Figure3.4 also provides information about the total energy carried away by neutrinos and an-
tineutrinos of all three lepton flavors,∆Etot, as a function of time, and the corresponding reduc-
tion of the gravitational mass of the nascent neutron star. The latter is taken to be the modified
TOV mass (Eq.2.11) at the neutron star radiusRns (which is defined as the radius where the
density is 1011 g cm−3). In contrast, the baryonic mass of the neutron star, given by the rest mass
enclosed by the radiusRns, initially increases in the course of accretion. After the explosion has
taken off, it decreases again only slightly due to the mass loss in the neutrino-driven wind.

The middle panel on the right side of Fig.3.4 reveals that about 50% of the explosion energy
are contributed by the early neutrino wind, and after 2 s the energy has reached 95% of its
final value. The panel below gives the expansion timescales of the ejected mass shells in the
neutrino wind. The first definition followsQian & Woosley(1996, Eq. 60), who introduced the
dynamical timescale as

τdyn =
r
v

∣∣∣∣∣
kBT=0.5 MeV

. (3.3)

We compare this with the cooling timescale used byOtsuki et al.(2000, Eq. 23),

τT =

∫ kBT=0.5 MeV/e

kBT=0.5 MeV

dr
v
, (3.4)

variations of which were considered byWitti et al. (1994, cooling time betweenT = 7× 109 K
andT = 3× 109 K) andWanajo et al.(2001, cooling time betweenkBT = 0.5 MeV andkBT =
0.2 MeV). The third definition we consider is the one ofThompson et al.(2001, Eq. 32), who
employed the e-folding time of the density instead of that ofthe temperature,

τρ =
1
v

∣∣∣∣∣
1
ρ

∂ρ

∂r

∣∣∣∣∣
−1

kBT=0.5 MeV
, (3.5)

where we set for our Newtonian simulationsy = 1 in Thompson et al.’s Eq. (32). As can be
expected from the fact that the wind is radiation-dominatedand therefores ∝ T3/ρ ∼ const,
the timescaleτρ is always significantly shorter than the cooling timescaleτT (Fig. 3.4). Ideally,
in such a situation one would expectτT/τρ = 3, which is more closely reached at later stages
when the wind entropy is higher (Fig.3.5). Due to the different mathematical expressions in
Eqs. (3.4) and (3.5), the factor 3 is never exactly realized. The third timescale, Eq. (3.3), yields
a result that is between the other two values during most of the computed post-bounce evolution
and comes closer to the timescale of Eq. (3.4) in the late stages of the simulations.

In Fig.3.5the radial profiles of different wind quantities are given for our reference model M15-
l1-r1 at a number of post-bounce times. The neutrino heatingaccelerates the wind to a peak
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velocity of about 25% of the speed of light for neutrino luminositiesLνe ≈ Lν̄e ≈ 3×1052 erg s−1.
The maximum velocity decreases as does the heating rate whenthe luminosities decline with
time. The density and temperature in the wind region follow roughly the usualr−3 and r−1

behavior, respectively, in the region where the entropy is aconstant. The profiles are slightly
steeper and thus closer to these power laws at later times when the wind entropy is higher
and the wind therefore more dominated by radiation pressure. The radial profiles ofρ andT
also steepen at larger distance from the neutron star, leading to a visible increase of the wind
acceleration at the point where free nucleons recombine toα-particles and the neutrino heating
ceases (see the corresponding panels in Fig.3.5). At this radius the entropy of the outflow
reaches its final value. This asymptotic wind entropy increases from about 60kB per nucleon at
1 s to around 90kB at 10 s.

For (approximately) the same values of theνe and ν̄e luminosities, model M15-l1-r1 tends to
yield somewhat lower expansion timescales, slightly lowerentropies, and a bit higher mass loss
rates than those found byThompson et al.(2001), see Figs. 5, 8, and Tables 1 and 2 there. This
can be understood on the one hand by the smaller gravitational mass of the neutron star in our
model compared to the canonical 1.4M⊙ star considered byThompson et al.(2001), and on the
other hand it is caused by our larger heating rates due to the higher mean neutrino energies (cf.
our discussion in Sect.3.2). These differences affect the characteristic wind parameters with
different sensitivity. According toQian & Woosley(1996), the entropy scales with the neutrino
luminosity L, the mean neutrino energyǫ, the neutron star radiusR, and the neutron star mass
M like

s∝ L−1/6ǫ−1/3R−2/3M , (3.6)

the expansion timescale like

τ ∝ L−1ǫ−2RM , (3.7)

and the wind mass loss rate like

Ṁ ∝ L5/3ǫ10/3R5/3M−2 (3.8)

(modifications of these relations due to relativistic effects were addressed byThompson et al.
2001).

During the first∼2 seconds after the onset of the explosion, the neutrino windis p-rich, i.e.
Ye > 0.5. This is in agreement with explosion models that employ a Boltzmann solver for
the spectral neutrino transport (seeBuras et al. 2006b; Pruet et al. 2005). Afterwards the
electron fraction drops below 0.5, and gradually the wind develops increasing neutron ex-
cess. Qualitatively, this trend to lowerYe at later times is reproduced when the neutrino lu-
minosities and mean energies from the simulation are inserted into the simple analytic relation
Ye ∼ [ 1 + (Lν̄eǫν̄e/Lνeǫνe) ]−1, although the values do not agree quantitatively. We emphasize
here that the gray and approximative treatment of the neutrino transport employed in this work
(for a critical assessment, seeScheck et al. 2006) is also not able to yield reliable results for
the electron fraction in terms of absolute numbers. The competition of νe andν̄e absorption on
free neutrons and protons sensitively determines the asymptotic value ofYe, an accurate cal-
culation of which requires detailed information of the neutrino and antineutrino spectra in the
co-moving frame of the expanding wind matter. The wind at late times might therefore become
significantly more neutron rich than predicted in our models. Figure3.5 also reveals that the
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mass loss rate reaches its asymptotic value closest to the neutrinosphere, thenYe, and finally the
entropy.

At a radius of a few 1000 km, the supersonic wind is abruptly slowed down in the termination
shock. The compression leads to a density and temperature increase. The conversion of ki-
netic to internal energy in the shock boosts the entropy to more than twice the wind entropy
in model M15-l1-r1. This is a much more extreme impact of the termination shock than pre-
viously suggested in the literature (Thompson et al. 2001). The decelerated wind material is
accumulated in a dense shell between the forward and reverseshocks. The pressure across this
dense shell is nearly uniform, while the contact discontinuity between the accumulated wind
matter and the dense layer of shock-accelerated progenitorgas is clearly visible in the density
profiles. One should also notice that the conditions at the wind termination shock are by no
means time-independent as previously assumed in nucleosynthesis calculations (e.g.,Wanajo
et al. 2002). Temperature and density at the reverse shock in model M15-l1-r1 evolve, because
the radial position of the reverse shock as well as the wind properties change with time. The
impact of the wind termination shock on the conditions in theexpanding wind mass shells is
better visible in Fig.3.6, where the time-evolution of different quantities is depicted as seen
co-moving with some selected mass shells. The extremely rapid decline of the temperature and
density in the fast wind are stopped and switch over to a much slower evolution. After the
wind material has been added to the dense shell between the two shocks, it moves with nearly
constant velocity. Its density therefore decays approximately like ρ ∝ t−2 and because the gas is
radiation-dominated, its temperature follows roughly thepower lawT ∝ t−2/3.

3.4 Analytic discussion of the wind termination shock

The behavior of the wind termination shock and its effects on the neutrino-driven outflow can
basically be understood by simple analytic considerations. For this purpose we consider the
three Rankine-Hugoniot shock jump conditions for mass, momentum and energy flow,

ρrsurs = ρwuw , (3.9)

Prs+ ρrsu
2
rs = Pw + ρwu2

w , (3.10)
1
2

u2
rs+ ωrs =

1
2

u2
w + ωw , (3.11)

where the indices w and rs denote quantities of the wind just ahead of the shock and of the
shocked matter just behind the shock, respectively. The fluid velocitiesuw andurs are measured
relative to the shock velocity,u = v − Us, P is the pressure,ρ the mass density, andω =
(ε + P)/ρ the enthalpy per mass unit whenε is the internal energy density of the gas. In case of
radiation-dominated and nondegenerate conditions, one can write s = (ε + P)/(nBkBT) for the
dimensionless entropy normalized by the baryon densitynB = ρ/mB (mB is the average baryon
mass), and therefore one gets

srskBTrs− swkBTw =
1
2

mB(u2
w − u2

rs) . (3.12)

Since the wind termination shock strongly decelerates the wind, the postshock and preshock
velocities fulfill the relationu2

w ≫ u2
rs. Thus the postshock entropy is approximately given by

srs ≈ sw
kBTw

kBTrs
+

1
2

mBu2
w

kBTrs
. (3.13)
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Again making the assumption that the gas on both sides of the shock is radiation dominated, the
dimensionless entropy per nucleon is given by

s= fγaγ
(kBT)3

nB
, (3.14)

whereaγ = a/k4
B = 2.08×1049 erg−3cm−3 is related to the radiation constanta, and fγ is a factor

whose exact value depends on the temperature and thus the mixture of radiation and e+e−-
pairs; assuming zero electron degeneracy, the corresponding range of values is43 ≤ fγ ≤ 11

3 .
Equation (3.14) can be used to expresskBT ahead of and behind the shock in terms ofs and
ρ. Using also that the densities are connected byρrs = βρw with β ∼ 7 for a strong shock and
radiation-dominated conditions, one derives

srs ≈
[

s4/3
w

β1/3
+ α1/3 u2

w

ρ
1/3
w

]3/4

≈


s4/3
w

β1/3
+ 33.5

u2
w,9

ρ
1/3
w,2


3/4

, (3.15)

whereα ≡ fγaγm4
B/(8β), uw,9 is the wind velocity measured in 109 cm s−1, ρw,2 the wind density

in 100 g cm−3, and the numerical value in the second expression was calculated withβ = 7 and
fγ = 4

3. Equation (3.15) can be rewritten in terms of the wind mass loss rateṀw and reverse
shock radiusRrs, using

Ṁw = 4πR2
rsρwvw (3.16)

and assuming that the shock velocity is negligible, and thereforevw = uw, which gives

srs ≈
[

s4/3
w

β1/3
+ (4πα)1/3R2/3

rs u7/3
w

Ṁ1/3
w

]3/4
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3/4

. (3.17)

HereRrs,8 is in units of 108 cm andṀw,−5 is normalized to 10−5 M⊙. If the wind entropy is low,
sw ≪ srs, only the second terms in Eqs. (3.15) and (3.17) are relevant.

It is also possible to obtain an estimate of the reverse shockposition from known supernova and
wind parameters. In case of a strong shock, i.e.,Prs ≫ Pw, one can derive from Eqs. (3.9) and
(3.10) the relationPrs ≈ (1− β−1)ρwu2

w. Using again Eq. (3.16) for ρw, one gets

Rrs ≈

√(
1− 1
β

)
Ṁwuw

4πPrs
. (3.18)

Assuming the spherical shell between the forward shock at radius Rs ≫ Rrs and the reverse
shock to have constant pressure and to be radiation dominated, one can make the approximation

Prs ∼
fexpEexp

4πR3
s
, (3.19)

where fexp is the fraction of the supernova explosion energyEexp that is present as internal
energy of the gas between forward and reverse shock. Plugging Eq. (3.19) into Eq. (3.18) one
obtains

Rrs ∼

√(
1− 1
β

)
ṀwuwR3

s

fexpEexp
≈ 4.14× 103

√
Ṁw,−5uw,9R3

s,10

fexp,0.1Eexp,51
[km] . (3.20)
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Figure 3.7: Entropy of the shocked material, reverse shock radius, and pressureabove it. The green line
in the three plots comes directly from simulation results, while the blue line in the upper plot is computed
by using Eq.3.17, the black lines are obtained using the approximation of Eq.3.19, and the red line is
gotten by plugging numbers in Eq.3.20. In the middle plotfexp = 1 is assumed obtaining the red and
black lines. In the pressure plot the three black lines correspond tofexp= 0.25, 0.5, 1 from the lowest to
highest black curve.
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The numerical value was computed by takingβ = 7 and normalizing the shock radius to
1010 cm, the explosion energy to 1051 erg, and the parameterfexp to 0.1.

In Figure3.7we show the analytic formulas derived above, evaluated withnumbers for the wind
quantities and compared to the results from the simulation for the reference model, M15-l1-r1.
The green line in the three plots correspond to the values taken directly from the simulation.
In the upper plot the blue line was computed using Eq. (3.17), the result nicely agrees with the
simulation data. In the middle plot there is some discrepancy, the black line which fits well
with simulation data is calculated using Eq. (3.18), while for the red one we use Eq. (3.20)
with fexp = 1. The difference between the red and green lines is due to the approximation of
the pressure in terms of the explosion energy. In the bottom plot the pressure calculated with
Eq. (3.19) is plotted for fexp = 0.25, 0.5, 1, increasing from the lower black curve to the higher
ones. The simulation data match with the upper curve (fexp = 1) during the first four seconds,
and consequently the reverse shock radius predicted for this case (red line in the middle plot)
agrees well with the radius measured in the simulations. From four seconds on, however, the
pressure at the reverse shock is better approximated if one assumes a smaller contribution of the
explosion energy (Eq.3.20). As time goes on, an increasing fraction of the explosion energy is
kinetic energy and not internal energy. The ejected matter is accelerated (PdV expansion work)
at the cost of internal energy and, therefore,fexp decreases.

3.5 Variations of inner boundary conditions

It is clear from Eqs. (3.15), (3.17), and (3.18) that the behavior of the reverse shock depends on
the structure of the exploding star and on the neutrino-windproperties, in particular the wind
mass-loss rate and velocity. Since the latter increases with the distance from the neutron star, the
radius of the reverse shock introduces an additional velocity dependence in Eqs. (3.15), (3.17),
and (3.18).

In order to investigate the changes associated with different strength and time evolution of the
neutrino wind, we varied the wind-determining parameters,i.e., the neutron star mass, radius,
and the core neutrino luminosities and energies and their time dependence. In this section we
therefore discuss the influence of these variations, which are achieved by changing the inner
boundary conditions.

3.5.1 Neutron star contraction

The neutron star contraction can be changed by using a different final radius for the neutron star
or by modifying the contraction timescale (see Eq.2.30). The effect of different neutron star
radii is visible from a comparison of our reference model M15-l1-r1 with models M15-l1-r5 and
M15-l1-r6. Model M15-l1-r2, on the other hand, has a different contraction timescale compared
to the reference case .

Figure3.8 shows the time evolution of quantities that determine and characterize the neutrino
wind and reverse shock behavior in our simulations for different contraction parameters (see
Table3.1). These four simulations are computed with the same inner boundary condition for
the neutrinos and produce neutron stars with approximatelythe same gravitational masses but
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final radii of 10, 13, and roughly 17 km (Table3.2). The neutrino luminosities radiated from
the nascent neutron star and the energy emitted inνe and ν̄e as well as the total energy lost
in neutrinos are nearly the same (Fig.3.9). Because of similar explosion energies, also the
supernova shock in the four models propagates with similar velocity (Fig.3.8).

The mean neutrino energies, however, show a clear correlation with the neutron star radius: the
more compact the neutron star is, the higher are the energiesof the escapingνe andν̄e in Fig.3.9.
Also the neutrino-wind properties reveal the variation with the compactness of the neutron star
that is qualitatively expected from the analytic expressions given byQian & Woosley(1996,
see also Sect.3.3, Eqs.3.6–3.8). A largerRns leads to a longer expansion timescale and thus
lower wind velocity, larger mass-loss rate, and smaller wind entropy (see Fig.3.8). In case of
the mass-loss rate, however, the influence of the larger neutron star radius is partly cancelled
by the lower mean neutrino energies (see Eq.3.8) (and by the slightly higher neutron star mass
of model M15-l1-r6), for which reason the differences inṀ are rather modest, in particular
between models M15-l1-r5 and M15-l1-r6.

Qualitatively, the reverse shock exhibits the same behavior in these two models as in M15-
l1-r1. While its radiusRrs is essentially the same in models M15-l1-r1 and M15-l1-r5, the
wind termination shock, however, expands less strongly in model M15-l1-r6, reacting to the
considerably lower wind velocity and slightly slower propagation of the supernova shock in
this somewhat less energetic model (cf. Eqs.3.18and3.20). Finally, the entropy of the matter
decelerated in the reverse shock behaves as expected from Eqs. (3.15) and (3.17) when values
for the wind parameters and reverse shock radius are inserted into these equations. It is highest
in model M15-l1-r1 and lowest in model M15-l1-r6. The densities behind the reverse shock are
ordered inversely.

Model M15-l1-r2 has a slower contraction than model M15-l1-r1 but the same final radius (see
left column of Fig.3.8). Yet, the contraction in the first seconds does not determine the later
evolution of the wind. When the final radius is reached both models approach to the same
values for the wind quantities, i.e. wind entropy, expansion timescale, and mass-loss rate (see
Fig. 3.8). The slower contraction results in a larger neutron star mass and a lower explosion
energy (Fig.3.9). The neutrino energy is larger for the rapid contraction model during the
first two seconds of the evolution because its neutron star radius is smaller. However, once the
neutron star radius is the same for both models, then, also the neutrino properties have the same
values. The entropy at the reverse shock (right column of Fig. 3.8) in the model M15-l1-r2 is
the same as for the references cases after 6 s, although the reverse shock radius is still smaller
for the model with slower contraction (M15-l1-r2).

3.5.2 Different neutrino luminosities and neutron star masses

The neutrino luminosity has a non negligible effect on the wind properties (seeQian & Woosley
1996and Sect.3.3). When the luminosity decreases, the wind entropy and the expansion time
scale increase and the wind mass loss rate decreases, as we have shown in the reference case
after one second. In order to study the effect of the time evolution of the luminosity we compare
our reference case, M15-l1-r1, to two other models (M15-lt1-r4 and M15-lt2-r3) with different
temporal evolution of the luminosity (Eq.3.1, Eq.3.2). Another model (M20-l3-r3) with lower
inner boundary luminosity (see Tab.3.1) and different progenitor star allows us to study also
the influence of a larger neutron star mass.
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Figure 3.8: Time evolution of different quantities for a set of simulations with different neutron star
contraction, M15-l1-r1, M15-l1-r2, M15-l1-r5, and M15-l1-r6. Shown are the baryonic mass,Mbar, and
gravitational mass,Mgrv (Eq.2.11), neutron star radius, neutrino-wind expansion timescale according to
Eq. (3.5), mass-loss rate, electron fraction, and entropy per nucleon (left, from top to bottom), radius
of the supernova shock, radius of the reverse shock, and pressure, density, temperature, and entropy per
nucleon downstream of the reverse shock.
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Figure 3.9: For a set of simulations with different neutron star contraction, M15-l1-r1, M15-l1-r2, M15-
l1-r5, and M15-l1-r6 the different panels show as functions of time in the left column: the cumulative
energy emitted inνe and ν̄e, ∆Eνe and the total energy released in neutrinos and antineutrinos of all
flavors,∆Etot (top), and the explosion energy of the models (bottom); and in the right column: the
radiated luminosities ofνe andν̄e (top), the mean energies of these neutrinos (bottom)(all measured at a
distance of 500 km, disregarding gravitational redshift effects).

Model M15-lt2-r3 demonstrates the influence of a more rapid decay of the luminosities and
mean energies of the radiated neutrinos after one second of post-bounce evolution. This is
associated with a reduced energy loss of the nascent neutronstar and leads to an increase of
the wind expansion timescale, a steep decrease of the wind mass loss rate, and a higher wind
entropy compared to model M15-l1-r1. The reverse shock reacts to that by a rapid recession
between about 1 s and 3 s after bounce (cf. Eq.3.18) before it starts an outward motion again
at later times when the pressurePrs drops faster thaṅMw anduw of the wind. Due to the small
reverse shock radius, however,uw at the shock is low and the entropy increase through the wind
termination shock is modest.

Model M20-l3-r3 with a neutron star radius and neutrino emission properties very similar to
model M15-l1-r1, but a significantly higher neutron star mass, reveals an even more extreme
behavior. The larger neutron star mass increases the wind entropy, but at the same time re-
duces the wind mass-loss rate and the inverse wind expansiontimescale (and thus the wind
velocity; cf. Eqs.3.6–3.8). Moreover, the explosion energy of this model is very low and the
supernova shock expands only slowly. All together forces the wind termination shock to retreat
as the neutrino fluxes decay, until it falls below the sonic point in the wind and disappears.
This brings the whole region from the proto-neutron star surface to the outer boundary of the
neutrino-driven outflow (which is the contact discontinuity between shock-accelerated ejecta
and neutrino-heated ejecta) in sonic contact, see Fig.3.12. The neutrino-driven outflow is now
only a subsonic breeze and merges with the dense shell of ejecta behind the outgoing supernova
shock without being accelerated to supersonic speed.

In order to study this phenomenon and its implications in more detail, we triggered the occur-
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Figure 3.10: The same as Fig.3.8, but for simulations with varied inner boundary conditions. The
models M15-lt1-r4, M15-lt2-r3, and M20-l3-r3 are compared with our reference 15M⊙ model M15-l1-
r1 in order to demonstrate the influence of different core neutrino luminosities at the inner grid boundary.
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Figure 3.11: The same as Fig.3.9, but for simulations with varied inner boundary conditions. The
models M15-lt1-r4, M15-lt2-r3, and M20-l3-r3 are compared with our reference 15M⊙ model M15-l1-
r1 in order to demonstrate the influence of different core neutrino luminosities at the inner grid boundary.

Figure 3.12: Same as Fig.3.3, but for model M15-lt1-r4. Here the explosion occurs at 0.22 s after
bounce and because of the assumed fast subsequent decay of the neutrino luminosity, the reverse shock
reveals a much different behavior than in case of model M15-l1-r1. It temporarily disappears when a
subsonic breeze instead of a wind develops after about 2.5 s. Att & 7 s the outflow expansion becomes
supersonic again and a wind termination shock appears again.
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Figure 3.13: Same as Fig.3.4, but for model M15-lt1-r4. Compared to model M15-l1-r1, the neutrino
luminosities and mean energies decrease faster, the total energy radiated inneutrinos and the explosion
energy are lower, and the gravitational mass of the neutron star is larger.The breeze solutions that
develop between 2.5 s and 7 s have significantly longer expansion timescales.
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Figure 3.14: Left, from top to bottom: Radial profiles of the velocity, density, temperature,and entropy
in model M15-lt1-r4 at different post-bounce times. The profiles should be compared with the corre-
sponding ones of model M15-l1-r1 in Fig.3.5. Right: The same quantities as functions of time for some
mass shells ejected in the neutrino-driven outflow of model M15-lt1-r4. Forcomparison with Model
M15-l1-r1, see Fig.3.6.
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rence of the breeze at a much earlier time in model M15-lt1-r4, in which the neutrino lumi-
nosities at the inner boundary were assumed to decay faster and the radiated neutrino energy is
therefore even lower than in model M15-lt2-r3 (see Fig.3.11). As a consequence, the neutrino
wind does not have sufficient power to keep the wind termination shock at a large radius. In
spite of a standard explosion energy (Eexp ∼ 1.2 bethe; Table3.2and Fig.3.13) and fast propaga-
tion of the supernova shock, the reverse shock begins to retreat already after 1 s and disappears
after 2.5 s (Fig.3.12) whereas this happens only after 7 s as in model M15-lt2-r3 (Fig. 3.10).
Fig. 3.13 shows that the transition to the subsonic breeze is accompanied by a considerable
growth of the expansion timescales calculated from Eqs. (3.3) and (3.5). The timescale calcu-
lated from Eq. (3.4) exhibits even a sudden increase which occurs when the wind termination
shock has retreated so much that it is encompassed by the radial integral of Eq. (3.4). The
integral then includes shock-decelerated outflow, which cools much more slowly.

After about 7 seconds, however, the sound speed in the neutron star surroundings has dropped
and the dense ejecta shell behind the supernova shock has moved outward sufficiently far so
that the neutrino-driven outflow can again reach supersonicvelocities, despite of a much less
powerful acceleration of the wind matter than in the first twoseconds after bounce (Fig.3.12).
This is visible also in the radial profiles and mass shell trajectories plotted in Fig.3.14, where at
late times (t ≥ 8 s) the discontinuity that characterizes the presence of a wind termination shock
appears again in all quantities. Because of the low wind velocity and very low mass-loss rate
and therefore small reverse-shock radius, at these late times, the shock is much weaker than it
was in the early phase. The associated density, temperature, and entropy steps are consequently
also smaller (Fig.3.14).

During the breeze phase the outflow material is accelerated to a maximum velocity and then
continuously decelerated again as it joins into the dense layer of ejecta behind the supernova
shock. The mass-shell trajectories on the rhs. of Fig.3.14illustrate this smooth transition from
the breeze expansion to the slower evolution when the matteris added to the dense ejecta shell.

Models M15-lt1-r4 and M20-l3-r3 demonstrate clearly that the wind termination shock can be
a transient feature and its presence is very sensitive to thetime-dependent conditions in the
neutrino-driven outflow and the expansion of the dense postshock shell of supernova ejecta.
Simulations with a consistent treatment of the neutron starevolution and of the baryonic mass
loss of the nascent neutron star are needed to make predictions of the detailed evolution for a
given progenitor star. But even then such predictions are constrained by our incomplete knowl-
edge of the neutrino emission of forming neutron stars on theone hand and of the high-density
equation of state and the associated neutron-star properties on the other.

3.6 Different progenitors

The analytic discussion of the previous section, in particular Eqs. (3.15), (3.17), and (3.18),
allow us now to understand the behavior of the wind termination shock in different progenitor
stars. For this purpose we compare our 15M⊙ reference model, M15-l1-r1, with models M10-
l1-r1, M20-l1-r1, and M25-l5-r4, which are explosion simulations for 10.2, 20, and 25M⊙ stars,
respectively. The conditions at the inner grid boundary were chosen such that the models have
similar explosion energies between roughly 1.3 B and 2 B (Table 3.2). The 25M⊙ star has such
a big mass accretion rate and correspondingly high accretion luminosity that the explosion tends
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to become stronger than in the lower-mass progenitors. To lessen this effect, we reduced the
boundary luminosities compared to the other models and chose a larger final radius of the inner
boundary and thus of the new-born neutron star.

The neutron star mass and radius in the 10.2, 15, and 20M⊙ simulations are rather similar (Ta-
ble3.2) and so are the time-dependent luminosities, mean neutrinoenergies, and energy radiated
in νe and ν̄e, as well as the total energy release in neutrinos of all flavors, ∆Etot, (Fig. 3.16).
The 25M⊙ run, however, sticks out with significantly higher values ofall these quantities.
Progenitor-dependent differences associated with the density structure of the collapsing star
outside of the iron core are responsible for the differences in the time-dependence of the explo-
sion energy for the 10.2, 15, and 20M⊙ models displayed in the lower panel of Fig.3.16. A
more massive progenitor has a higher mass accretion rate andaccretion luminosity and also a
larger mass in the gain layer. Its explosion therefore tendsto be more energetic. In case of the
models M20-l1-r1 and M25-l5-r4, the large binding energy ofthe outer stellar shells later on
leads to a visible decrease of the explosion energy from a maximum value reached transiently
during the simulation (Fig.3.16).

Figure3.15shows the time evolution of quantities that determine and characterize the neutrino
wind and reverse shock behavior in our simulations with different progenitors. The wind prop-
erties (left column in Fig.3.15) exhibit their well-known dependence on the neutron star mass
and radius and on the neutrino luminosities and mean energies. Because of the similarity of
these quantities in case of the 10.2, 15, and 20M⊙ models, only rather small differences are vis-
ible between these runs, revealing a slightly longer expansion timescale, lower mass-loss rate,
and higher entropy for model M20-l1-r1 with its more massiveneutron star (see also Table3.2).
The electron fraction shows a somewhat wider variation because of its strong sensitivity to the
spectral and flux differences of theνe andν̄e emission. The large neutron star mass and neutrino
luminosities in case of the 25M⊙ progenitor separate this model clearly from the others. They
affect in particular the neutrino-wind entropy, which scales with the value of the neutron star
mass but is only weakly dependent on the neutrino emission properties (Eq.3.6). In contrast,
the expansion timescale and mass loss rate are similar to theother models because of a partial
cancellation of their dependencies onL, ǫ, andM in Eqs. (3.7) and (3.8).

The wind termination shock evolves largely differently in all cases (Fig.3.15, right column).
Obviously, the progenitor structure has a big influence on its behavior. The supernova shock
expands much faster in the lower-mass stars, causing a more rapid decline of the pressure in the
shell between forward and reverse shock. The propagation ofthe forward shock and the time-
varying conditions there are communicated inward to the reverse shock on the sound propaga-
tion timescale. Therefore the pressure just downstream of the reverse shock,Prs, as well as the
density and temperature at this location, decrease, too. From Eq. (3.18) it can be understood that
in model M10-l1-r1 the strong pressure reduction triggers afast outward motion of the reverse
shock. In the 15M⊙ star the increase ofRrs is much less extreme, and in the 20 and 25M⊙ runs
the wind termination shock even retreats after∼2 s of initial expansion and transient stagnation.
In these cases the decline ofPrs is not fast enough to compete with the decrease ofṀw anduw

in the numerator of Eq. (3.18). A similar effect can be observed att = 1 s when we change the
time-dependence of the neutrino luminosity at the inner grid boundary. The subsequent lumi-
nosity decrease leads to the mass-loss rate and velocity of the wind dropping more quickly than
Prs in all models except M10-l1-r1, explaining why the initial expansion of the reverse shock is
stopped at about this time.
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Figure 3.15: The same as Fig.3.8, but for simulations with varied progenitor star. The models M10-l1-
r1, M20-l1-r1, and M25-l5-r4 are compared with our reference 15M⊙ model M15-l1-r1.
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Figure 3.16: The same as Fig.3.9, but for simulations with varied the progenitor star. The models
M10-l1-r1, M20-l1-r1, and M25-l5-r4 are compared with our reference 15M⊙ model M15-l1-r1.

Because of the different reverse shock behavior, the density, temperature, and entropy down-
stream of the reverse shock as functions of time show also large differences between the pro-
genitors (Fig.3.15). In model M10-l1-r1 the wind termination shock moves to radii beyond
10,000 km within little more than one second. During this phase the densityρw behind this
shock drops to less than 103 g cm−3 and the temperatureTw becomes lower than 109 K. The en-
tropy, on the other hand, is nearly 300kB per nucleon after 2 seconds. In the runs for the more
massive progenitors, the density and temperature at the reverse shock are larger for a longer pe-
riod of postbounce evolution, and the entropy does not reachthe very high values of the 10M⊙
simulation. The more massive the progenitor is — or, more precisely, the denser the shells
around the iron core are — the slower propagates the shock fora given value of the explosion
energy, and the more confined is the reverse shock. In none of the compared cases, however,
are the conditions at the wind termination shock constant with time.

3.7 Summary

The most important results of the one-dimensional simulations can be summarized as follows:

• The basic properties of the wind termination shock which forms when the outflow be-
comes supersonic, can be understood from simple analytic considerations using the shock-
jump conditions at this reverse shock. The entropy of the shock-decelerated matter in-
creases with the wind velocity and is lower for high wind density. Therefore a large
reverse shock radius is favorable for a high entropy jump. The reverse shock radius in-
creases with the mass-loss rate and velocity of the wind, butdecreases when the pressure
behind the reverse shock is high. The latter dependence links the behavior of the reverse
shock to the propagation of the supernova shock and thus to the progenitor structure and
the explosion properties.



54 CHAPTER 3. SPHERICALLY SYMMETRIC HYDRODYNAMIC SIMULATIONS

• The conditions at the reverse shock are progenitor-dependent and usually strongly time-
dependent and therefore the shock effects are not well represented by an outer boundary
condition with constant pressure (e.g.,Sumiyoshi et al. 2000) or constant temperature
(e.g.,Wanajo et al. 2002). The conversion of kinetic energy to internal energy in the
wind termination shock can raise the entropy to several times the wind entropy. We find
the highest values of more than 400kB per nucleon behind the reverse shock (more than
a factor of five increase) — but also the lowest temperatures (. 109 K) and densities
(. 1000 g cm−3) — in case of the considered 10M⊙ progenitor. In this star the supernova
shock and the reverse shock propagate outward very rapidly.In the considered progen-
itors with masses of more than 15M⊙ the maximum entropies are more than 200kB per
nucleon, corresponding to an increase of roughly a factor ofthree, with densities and
temperatures behind the reverse shock in the first ten seconds of typically 100–104 g cm−3

and 0.4–2× 109 K, respectively.

• When the supernova shock expands slowly or the neutrino emission from the nascent
neutron star decays rapidly and the wind power thus drops quickly, the reverse shock
can show phases of recession and can even reach the sonic point in the wind and vanish.
The outflow then becomes a subsonic breeze that merges smoothly with the ejecta shell
behind the shock without any jumps in the velocity and in the thermodynamic quantities.
Changing conditions around the neutron star can lead to a re-establishment of a supersonic
wind at later times.



4
Results for two-dimensional models

In the previous chapter we have shown that the reverse shock could play an important role for
nucleosynthesis because it is able to increase the entropy and to change the evolution of density
and temperature. As discussed in Sect.3.4, the value that the entropy can reach and the position
of the reverse shock depend not only on the neutrino wind, which for non-rotating neutron stars,
is spherical and can be studied by one-dimensional simulations, but it is also influenced by the
pressure in the preceding ejecta. Multi-dimensional effects (e.g. convection, downflows, insta-
bilities) modify the pressure distribution and can destroythe reverse shock or change its shape
and position, which could also have influence on the nucleosynthesis. A detailed analysis of the
behavior of the reverse shock in two dimensions is the goal ofthis chapter. For this purpose we
have performed several simulations that are summarized in Sect.4.1. A detailed analysis is done
for one model in Sect.4.2, and interpreted using analytic derivations in Sect.4.3. Models based
on the same progenitor star but with different boundary luminosities and ejecta morphologies
are briefly discussed in Sect.4.4, and models based on different progenitor stars are addressed
in Sect4.5. One- and two-dimensional simulation are compared in Sect.4.6.

4.1 The computed models

Two-dimensional simulations are computational significantly more expensive than one-
dimensional ones. Therefore it was not possible to calculate a similar number of models and
run the simulations as long as in the case of the one-dimensional models of Chapter3. A list
of our 2D models with their characterizing parameters is given in Table4.1. The names of the
models start with “T” to denote two dimensions. The rest of the name has the same meaning
as in one-dimensional simulations (see Sect.3.1). The name extensions “l1”, “l2” corresponds
to different boundary luminosities. The contraction parameters (Eq.2.30) are also given in Ta-
ble 4.1, and different values are indicated by “r1”, “r0”, “r4” in the name of the model. There
are also simulations for different progenitor stars (Table2.1) with the masses indicated in Ta-
ble 4.1. The initial models are the same as in the one-dimension simulations. However, since
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Table 4.1: Model parameters of our two-dimensional simulations. The different models are characterized
by the chosen contraction of the inner grid boundary, which is expressed in terms of the final radiusRf

and the exponential contraction timescalet0 (cf. Eq.2.30). In addition, different initial luminosities ofνe
plus ν̄e (measured in bethe [B]= 1051 erg per second) are imposed at the inner grid boundary.

Model Contraction Lib
νe
+ Lib

ν̄e
Progenitor Mass

(Rf , t0) [B/s] [M⊙]
T15-l1-r0 8 km; 0.1 s 52.5 15
T15-l1-r1 9 km; 0.1 s 52.5 15
T15-l2-r1 9 km; 0.1 s 38.6 15
T10-l1-r1 9 km; 0.1 s 52.5 10
T10-l2-r1 9 km; 0.1 s 38.6 15
T25-l5-r4 10.5 km; 0.1 s 30.3 25

this initial configuration is spherically symmetric, i.e. isotropic, and our code conserves this
symmetry, it is necessary to add random perturbations to thevelocity field (with an amplitude
of typically 0.1 %) to allow for hydrodynamic instabilitieslike convection (for more details see
Scheck et al. 2006, Scheck 2006). As we reported on the effects of varying boundary conditions
(contraction, neutrino luminosity) already in Chapter3, we will now focus on the impact of
two-dimensional effects.

The evolution of the reverse shock (and its effect on the maximum entropy value and on the tem-
poral variation of density and temperature) depends on the interaction of the neutrino-driven
wind with the slower-moving preceding ejecta. The wind is spherically symmetric because
the neutrino emission is isotropic. Varying boundary conditions, i.e. contraction, neutrino
luminosity, affects the wind properties in the same way as in 1D (Sect.3.5). However, the
ejecta are strongly influenced by multidimensional effects, as hydrodynamic instabilities lead
to a pronounced anisotropy of the explosion. These important effects are not modelled in one-
dimensional simulations. Furthermore, the anisotropy varies strongly with the neutrino lumi-
nosity at the inner boundary during the first hundreds of milliseconds of the explosion and even
depends in a chaotic way on the initial random perturbation.Therefore a single two-dimensional
simulation is not sufficient to clarify the influence of multidimensional effects — several models
with different initial and boundary conditions are required.

The enhancement of neutrino heating due to convection has a direct consequence on the explo-
sion: for the same inner boundary parameters, it occurs earlier than in 1D and is more energetic.
As there is less time for the neutron star to accrete matter, aprocess that is basically stopped
once the explosion has set in, the neutron star masses are smaller in two dimensions. This re-
sults also in different wind and reverse shock properties. To find a two- and a one-dimensional
model with the same wind properties is therefore non-trivial.

In order to organize the two-dimensional discussion, we will first analyze a reference case in
detail, and then discuss the other models of Table4.1briefly.
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Table 4.2: Results of the 2D models at one second after bounce. The end of the simulation is denoted by
the timetend given in seconds after bounce.Mbar is the baryonic mass of the neutron star. The neutron
star radius isRns is defined as the location where the density is 1011 g cm−3. ∆Etot is the total energy
radiated in neutrinos of all flavors (measured in bethe [B]= 1051 erg), Lνe andLν̄e are the luminosities
of electron neutrinos and antineutrinos measured at 500 km,〈ǫνe〉 and〈ǫν̄e〉 are the corresponding mean
energies,Eexp is the explosion energy,texp is the post-bounce time when the explosion sets in (defined as
the moment when the energy of expanding postshock matter exceeds 1049 erg).

Model tend Mbar ∆Etot Rns Lνe Lνe 〈ǫνe〉 〈ǫνe〉 Eexp texp

[s] [M⊙] [100B] [km] [B/s] [B/s] [MeV] [MeV] [B] [s]
T15-l1-r0 2.0 1.393 1.460 12.79 25.53 26.45 22.68 24.04 1.364 0.156
T15-l1-r1 1.0 1.388 1.461 13.27 27.66 28.22 22.55 23.87 1.341 0.162
T15-l2-r1 1.5 1.421 1.228 12.76 22.60 23.23 22.27 23.75 1.405 0.184
T10-l1-r1 2.8 1.261 1.305 14.82 22.97 24.63 20.51 22.10 1.457 0.153
T10-l2-r1 2.2 1.280 1.146 13.44 21.76 22.49 21.36 22.91 0.938 0.170
T25-l5-r4 1.6 1.869 2.233 13.41 36.46 39.92 24.31 25.51 3.674 0.197

4.2 Evolution of a reference case in two dimensions

In this section we describe the evolution of Model T15-l1-r0(see Table4.1) giving a brief
overview of how the explosion develops in presence of convection and showing how the wind
evolves in 2D. It is not our aim to analyse the origin of the anisotropies (seeScheck et al. 2006;
Scheck 2006; Scheck et al. 2007for discussion of this issue), but to study how they influence
the later interaction between the wind and the slower-moving ejecta. We have chosen Model
T15-l1-r0 as a reference case because it presents standard values for an explosion of a 15M⊙
progenitor, i.e. at 2 s after bounce it has an explosion energy of ∼ 1.6 B, the neutron star
contracts to a radius of∼ 10 km and obtains a baryonic mass of∼ 1.4 M⊙.

The entropy distribution for different times is shown in Fig.4.1. At the beginning the distribu-
tion is spherical symmetric, except for small random seed perturbations. However, when the
neutrinos start to deposit energy behind the shock a negative entropy gradient establishes in this
region. The layer between neutron star and shock becomes thus Ledoux-unstable1 and develops
a convective overturn. In the first panel (t = 100 ms after bounce) one can distinguish, in the left
side (region betweenθ = π/2 andθ = π), Rayleigh-Taylor “mushrooms”, which start to grow
from the initial perturbations. The buoyant bubbles merge and rise up, disturbing the shock
shape. Neutrino-heated matter with high entropy streams upwards, while downflows transport
low entropy matter from the shock to the neutron star (see Fig. 4.1panel fort = 150 ms), where
it is decelerated and spread around the neutron star. The downflows and rising bubbles evolve
quickly on time scales of the order of 10 ms. These convectivestructures and the associated
shock deformations are characterised by increasingly large angular scales. Eventually the mass

1 In the Ledoux approximation, convective instabilities arise when a displaced fluid element of constant entropy
and electron fraction, maintaining pressure equilibrium with its surroundings, experiences buoyancy forces
which tend to amplify its displacement. In this case the criterion for convective instability is given by

dS
dr
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distribution below the shock is highly anisotropic and dominated by low modes. In this phase
persistent neutrino-heating in the post-shock layer, aided by convection, finally leads to the on-
set of the explosion: The matter in the gain layer becomes unbound and moves outwards behind
the accelerating shock.

After the onset of the explosion the evolution becomes slower, and the shock and the ejecta
expand quasi-self-similarly (see Fig.4.1 panel fort ≥ 300 ms). This “freeze-out” of the mor-
phology occurs when a large bubble in the southern hemisphere (left side in Fig.4.1) has pushed
the shock further out. This hemispheric asymmetry is visible until the end of the simulation. At
400 ms there is still a downflow present near the equatorial plane which continuously accretes
matter onto the neutron star. However, in the following a neutrino-driven wind forms around
the neutron star and blows this last downflow away (see panel for t = 500 ms). Like in the
one-dimensional simulations the wind material is accelerated to velocities that are supersonic
in the frame of the slower-moving ejecta further out, which leads to the formation of a reverse
shock. The wind depends on the spherical neutrino emission,therefore the region between the
neutron star and the reverse shock evolves as in one-dimensional models (Chapter3).

The local radius of the reverse shock is angle-dependent since the layer between reverse shock
and shock has developed a very anisotropic matter distribution. At t = 0.4 − 0.5 s one can
see how the reverse shock expands faster in the southern hemisphere, i.e. negative z-axis,
where also the ejecta have moved out farther. In contrast, high density regions in the ejecta,
which are the remainders of former downflows blown away by thewind, present obstacles
that prevent a fast reverse shock expansion (Fig.4.2). The most prominent of these regions is
located near the equatorial plane. In the analytic discussion of the last Chapter (Sect.3.4) we
found (Eq.3.18) that the reverse shock position is proportional to the pressure, mass outflow
rate and wind velocity, i.e.

Rrs ∝

√
Ṁwuw

Prs
. (4.1)

Since the mass outflow rate,̇Mw, and the wind velocity,uw, are similar for every angle, due to
the spherical-symmetry of the wind, the angular dependencecomes from the behavior of the
pressure above the shock,Prs. In the regions where the pressure is higher the reverse shock
radius has a lower value (see Fig.4.4).

Figure4.3shows the velocity, pressure and entropy radial profiles fortwo angles, which corre-
spond to the red and green lines in Fig.4.2. From these profiles one can see that the behavior
of the flow between neutron star and reverse shock is the same as in 1D (see Fig.3.5): the
neutrinos heat the matter, which can expand quickly since the density is low, the velocities
becomes supersonic and approaches an asymptotic value. Thevariation of the reverse shock
radius with angle does not affect much to the maximum value that the velocity can reach. The
reason for this is that for large radii the velocity increases only slowly towards the asymptotic
value. Another remarkable feature appears in the red line ofthe velocity profile which goes
through the, above mentioned, high-density region: just outside of the reverse shock the veloci-
ties are almost zero. This indicates that there was a dense downflow in this region before, which
delayed and hampered the expansion into this direction, leading to a low velocity outflow and
higher pressure values. The later has a direct influence (Eq.4.1) on the reverse shock position,
as we have already shown in Fig.4.4and explained above. Moreover, in the pressure jump the
value corresponding to the wind pressure can vary significantly depending on the position of
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Figure 4.1: Entropy distribution in Model T15-l1-r0 for different times. The figures are plotted such that
the polar axis is orientated horizontally with “south” (θ = π) on the left and “north” (θ = 0) on the right.
The grey line marks the shock radius. Note that the scales differ between plots. The red and green lines
in the 1000 ms panel mark selected angles, which will be used to show the evolution of shocked material
properties in Sect.4.6.
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Figure 4.2: Density distribution in Model T15-l1-r0 fort = 1.5 s. Only the inner part is plotted to
show that the reverse shock radius is smaller when an obstacle (high density region) is present. The red
and green lines mark selected angles, along which the radial profiles for different quantities are given in
Fig. 4.3.

Figure 4.3: Radial profiles of the velocity, pressure and entropy for Model T15-l1-r0 at t = 1.5 s. The
red and green line correspond to two different angles, which are indicated with the same color in Fig.4.2.
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Figure 4.4: Angular variation of the pressure, radius and entropy at the reverse shock for the reference
model att = 1.5 s.

the reverse shock. This is because, unlike the wind velocity, the pressure does not approach
a constant value. The pressure jump can be also used to calculate the angle between reverse
shock and wind velocity (Sect.4.3).

As visible in Fig.4.3, the entropy increases in the region where the neutrinos deposit energy near
the neutron star, remains constant in the wind further out and shows a jump at the reverse shock.
All these features are the same as in one-dimensional simulations (see Fig.3.5). However, the
anisotropic distribution of the ejecta in the layer betweenreverse shock and shock leads to an
angle dependence of the entropy jump. Figure4.4 shows the entropy value of the shocked
material just above the reverse shock as a function of the azimuthal angle. The entropy jump
depends on the reverse shock position (roughlysrs ∝

√
Rrs), however, in Fig.4.4 the reverse
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Figure 4.5: Schematic representation of the velocities in a fluid going through an oblique shock (red
line). Only the velocity component perpendicular to the shock,u⊥, is changed when a mass element
crosses the shock – the parallel component is conserved. Therefore, the direction of the flow is changed
at the shock.

shock radius has a minimum atθ ≈ 65, while the entropy has a local maximum. The reason for
this is that the entropy also depends on the wind velocity (see Eq.3.17), or, more precisely, on
the component of the velocity that is perpendicular to the shock. And this component is larger
at the angle where the entropy has a local maximum. The angular dependence is explained in
more detail in the following section.

4.3 Analytic discussion: angular dependence

In this section we study the angular dependence that enters in the Rankine-Hugoniot conditions
in the case of an oblique shock (Landau & Lifshitz 1959). Figure4.5 shows a schematic rep-
resentation of what happens in an oblique wind termination shock: The wind expands in radial
direction with a velocityuw and hits the shock at an angleφ.

The tangential component of the velocity,u‖ is continuous through the shock, i.e.:

uw cosφ = urs,r cosφ + urs,θ sinφ . (4.2)

where the velocities of the rhs,

urs,r = urs cosχ , (4.3)

urs,θ = urs sinχ , (4.4)
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Figure 4.6: Result of plugging numbers in Eq.4.7for Model T15-l1-r0 att = 1.5 s. Using this equation
sinφ can be approximately calculated for every angular beam, i.e. for everyθ.

are the radial and tangential reverse shock velocity components (see Fig.4.5).

On the other hand, the component of the velocity,u⊥, which is perpendicular to the shock, is the
one that enters in the Rankine-Hugoniot conditions, Eqs. (3.9) – (3.11). The mass conservation
equation, Eq. (3.9), including the angle can be rewritten as:

ρwuw sinφ = ρrsurs,r sinφ + ρrsurs,θ cosφ . (4.5)

The momentum continuity equation, Eq. (3.10), for an oblique shock is:

Pw + ρwu2
w,⊥ = Prs+ ρrsu

2
rs,⊥ (4.6)

where only the perpendicular component of the velocity has to be considered. One can write
this equation in terms of the angleφ,

∆P = ρwu2
w sin2 φ

(
1− 1
β

)
, (4.7)

where∆P is the pressure jump at the reverse shock,uw is the radial velocity (Fig.4.5), andβ is
given by the density or velocity jump,

β =
ρrs

ρw
=

uw,⊥

urs,⊥
=

uw sinφ
urs,r sinφ + urs,θ cosφ

. (4.8)

Equation (4.7) indicates that the sine of the angleφ is smaller when the pressure jump is also
smaller, whileφ tends toπ/2, i.e. the wind velocity is perpendicular to the reverse shock, at
those angles where the jump∆P is larger. The angleφ can be directly related to the jump in
the pressure because in the windρw anduw have the same value for every angular beam at a
given radius, and the productρwu2

w does not change much for different positions of the reverse
shock because of the asymptotic behavior of the velocity (Fig. 4.3). We plug numbers for the
pressure jump, wind velocity and density in Eq. (4.7), assumingβ = 7. For doing that we
use again the references case, i.e. Model T15-l1-r0 (Sect.4.2), at 1.5 s after bounce. Fig.4.6
shows the value of the sinφ as a function of the azimuthal angleθ. There are angles where the



64 CHAPTER 4. RESULTS FOR TWO-DIMENSIONAL MODELS

Figure 4.7: Pressure distribution in Model T15-l1-r0 fort = 1.5 s. The arrows mark the velocity field.
Only the inner part is plotted to show the effect of the reverse shock on the velocity.

Figure 4.8: Schematic representation of the velocities in a fluid going through the reverseshock (red
line) where a kink leads to the collimation of the outflowing matter.

velocity is perpendicular to the reverse shock, as Fig.4.7 shows, here the arrows represent the
velocity field and the pressure is given by the color scale. However, the value of sinφ is never
one because of simplifications of assumingβ = 7 and not taking into account the velocity of the
reverse shock. The velocity entering in the Rankine-Hugoniot conditions (Eq.4.7) is the fluid
velocity in the frame of the reverse shock,urs, and we are using the fluid velocity in the frame
of the neutron star,vrs. Therefore, if the reverse shock expansion is very rapid andanisotropic
these two velocities are not exactly the same, buturs = vrs − Ṙrs with Ṙrs being the velocity of
the reverse shock in the frame of the neutron star.



4.4. TWO MORE MODELS BASE ON A 15M⊙ PROGENITOR 65

Figure 4.9: Velocity distribution in Model T15-l1-r0 fort = 1.5 s. The jump of the velocity at the reverse
shock is clearly visible and also the two main outflow streams formed as a consequence of the reverse
shock shape, which comes from the evolution of the ejecta during the firs half second of the explosion.

In Fig. 4.7one can distinguish two points in the reverse shock atθ ≈ 30 andθ ≈ 100 where the
angleφ changes abruptly. Fig.4.8 illustrates, in a simplified way, the effect that such a kink in
the reverse shock has on the flow across the discontinuity. The oblique shock is less effective in
decelerating the flow, which leads to much higher velocitiesoutside the non-spherical parts of
the reverse shock than above the spherical parts. Furthermore, the wind hitting the non-spherical
part of the reverse shock is deflected towards the radial flow outside of the spherical part of the
reverse shock. These effects result in the formation of collimated high velocity outflows starting
at the kinks (see Fig.4.9). Moreover, the kinks of the reverse shock lead to minimum values of
the pressure and entropy for the shocked material (see Fig.4.4).

4.4 Two more models base on a 15 M⊙ progenitor

In this section we present two additional models based on thesame progenitor as our reference
case: T15-l1-r1 and T15-l2-r1 (see Table4.1). These models develop different ejecta distribu-
tions due to the different neutrino luminosities and the chaotic dependence of the flow on the
initial perturbations that were also chosen differently. We describe briefly the evolution of the
two models, in order to be able to analyze the influence of the anisotropy on the reverse shock
position and on the entropy of the shocked material.

The evolution of the Model T15-l1-r1 is shown in Fig.4.10and values for several important
quantities are given in Table4.2. The initial model is the same as in the references case de-
scribed in Sect.4.2 but the parameters are slightly different (see Table4.1). Also the initial
random perturbations are different. In the post-shock layer a negative entropy gradient estab-
lishes that leads to the beginning of the convection, which is clearly visible already in the first
panel corresponding to a time of 200 ms after bounce. At 300 msthere are still downflows in
the left part, while the wind is already starting in the right. This is visible by the almost constant
value that the entropy reaches just outside the neutron star. About hundred ms later the wind has
started in all directions and the reverse shock is visible asa jump of the entropy in the right part
(see panel fort = 400 ms). The following evolution is less dynamic than the previous phase, the
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Figure 4.10: Entropy distribution in Model T15-l1-r1 for different times. Same as Fig.4.1.

wind material expands supersonically and the ejecta between shock and reverse shock moves
outwards with a slow change of its structures. The reverse shock remains almost spherical sym-
metric until approximately one second after bounce. The spherical shape of the reverse shock
(see panel fort = 700 ms) gives rise to the same situation as in one-dimensional simulations.
One second after bounce the anisotropic distribution of theejecta begins to affect to the reverse
shock, which starts to develop a flat, non-spherical sectionlike in the reference case (Sect.4.2).

In contrast to this nearly spherical model, the evolution ofModel T15-l2-r1 is characterized by
long-lasting downflows and a strongly anisotropic shape of the reverse shock, which last only
a few tens milliseconds. In the panel fort = 200 ms of Fig.4.11one can see that the entropy
distribution is rather homogeneous with the presence of only one narrow downflow (compare
with the other models at the same time in Figs.4.1and4.10). Here the formation and grow of
the Rayleigh-Taylor mushrooms is also nicely visible. The subsequent evolution (see panels for
t = 300 ms andt = 400 ms) is dominated by convection without a main downflow – instead
many small structures prevail in this phase. After 500 ms, one can see that a main downflow
has formed at an angle of approximatelyπ/4 while a bubble inflates the north (right) hemi-
sphere. The presence of this downflow continues until one second, and consequently there are
two outflows at every side of the downflow. The expansion to theleft and to the right of these
outflows is visible in the panel fort = 700 ms. Moreover one can also see the deformation of
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Figure 4.11: Entropy distribution in Model T15-l2-r1 for different times. Same as Fig.4.1.

the shock due to this rapid expansion of the matter in certaindirections. However, the devel-
opment of these outflows is quite different. The outflow in the northem hemisphere (right side
in Fig. 4.11) starts earlier but does not become supersonic. On the otherhand, the outflow in
the southem hemisphere is able to reach supersonic velocities and a reverse shock caused by
the interaction with the preceding ejecta is already present at t = 700 ms (see Fig.4.11). In
the following, the entropy of the shocked matter increases and the reverse shock continues to
expand, while there is not yet a indication of a spherical wind around the neutron star.

Why are the evolutions of these two models so different? The two models, T15-l1-r1 and T15-
l2-r1, studied here have different inner boundary luminosity (see Table4.1). The Model T15-
l2-r1, i.e. the one with long-lasting downflows, has a lower luminosity at the inner boundary,
which makes it more difficult to blow away the matter that is being accreted. Long-lasting
downflows are possible, in particular for low explosion energies. However, here we see that
even for similar explosion energy, one can find strong differences in the downflows behavior
due to the chaotic dependence on the initial perturbation (Scheck et al. 2006; Scheck 2006).
These two models have similar explosion energies because the matter that is responsible for the
bulk of the explosion energy, is concentrated in a narrow shell just below the supernova shock.
This region follows the evolution of the shock, which is verysimilar in the two models.
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4.5 Progenitor variation

We have seen that the conditions for nucleosynthesis could be influenced by the reverse shock,
and we have demonstrated, by analytic means (Sects.3.4, 4.3), that its behavior depends on
the evolution of the layer between the forward shock and the reverse shock. In the spherically
symmetric case the behavior of this shell is strongly influenced by the progenitor structure. And
in two-dimensional simulations we have seen that anisotropies emerging during the first second
of the explosion have a big influence. It is, therefore, interesting to study the combined effect
of the two ingredients: progenitor structure and ejecta anisotropy.

For the 10M⊙ progenitor we have tried two different neutrino luminosities at the inner boundary
(Table4.1). Model T10-l1-r1 has the same parameters as the one-dimensional Model M10-l1-
r1 (Table3.1), however it has a very high explosion energy,Eexp = 1.8 B at 2 s after bounce.
Therefore, we have performed another simulation with lowerboundary luminosity, i.e. Model
T10-l2-r1.

Figure4.12shows that, for the Model T10-l1-r1, the anisotropies develop very quickly, and at
t = 200 ms (first panel), there is already a big deformation of thesupernova shock. Between
200 ms and 500 ms the most remarkable feature is a big downflow near the equatorial plane (θ =
π/2). After half a second the wind has already started and the anisotropic matter distribution
leads to a non-spherical reverse shock. Moreover, the rapidshock expansion caused by the
steep density gradient present in this progenitor (see Fig.2.1) produces a region of high entropy
just below the shock radius. The following evolution is characterized by a increasingly strong
deformation of the reverse shock and very high values of the entropy, which we found already
for the same progenitor in the spherically symmetric simulations.

The Model T10-l2-r1, which has lower boundary luminosity, develops also an anisotropic con-
figuration with significant shock deformation after 200 ms (see Fig.4.13). The shock expansion
is slower than for Model T10-l1-r1 in the first hundreds milliseconds. After 400 ms the wind
starts and hits the ejecta, forming a rather spherical reverse shock. However, the small devia-
tions from the spherical shape are enough to produce significant differences in the entropy of
the shocked material. For this low-mass progenitor, the model with lower boundary luminos-
ity develops a quasi-spherical reverse shock and the model with higher boundary luminosity
becomes more anisotropic. In case of the 15M⊙ progenitor (see Sect.4.4), the opposite was
true, i.e. the more spherically symmetric reverse shock appears in the simulation with higher
boundary luminosity. This shows that the form of the reverseshock is not only influenced
by the boundary luminosity, but depends also in a chaotic wayon the initial perturbations. A
more quantitative conclusion regarding the relative importance of this two dependencies would
require more simulations.

We have chosen the 25M⊙ progenitor to study a case of a progenitor more massive than the
15 M⊙ reference case (see Table2.1). The parameters for Model T25-l5-r4 (Table4.1) are the
same as for one-dimensional simulation for this progenitor. Owing to the convective overturn,
which increases the efficiency of neutrino-heating, the explosion energy is significantly higher
in two dimensions. Moreover, the explosion begins much earlier in the two-dimensional simu-
lation (texp = 0.197 s) than in the corresponding one-dimensional simulation (texp = 0.401 s).

The evolution of the Model T25-l5-r4 is shown in Fig.4.14. Due to the high accretion rate
the shock does not expand as rapidly as in less massive progenitors. After 200 ms the typical
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Figure 4.12: Entropy distribution in Model T10-l1-r1 for different times. Same as Fig.4.1.
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Figure 4.13: Entropy distribution in Model T10-l2-r1 for different times. Same as Fig.4.1.
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Figure 4.14: Entropy distribution in Model T25-l5-r4 for different times. Same as Fig.4.1.

two-dimensional structures have just started to emerge. However, in the following panels one
can see that the instabilities are able to grow. Also as a consequence of the high accretion rate
the downflows are quite stable and the wind is not able to blow them away from the vicinity
of the neutron star until almostt = 1 s after bounce. Therefore, the ejecta have more time to
develop a highly anisotropic pressure distribution, whichleads to a non-spherical reverse shock.
In simulations based on this rather extreme progenitor model we encountered several numerical
problems that did not show up for less massive stars. This prevented us from computing more
25M⊙ models and even made impossible to continue the simulation of Model T25-l5-r4 for
longer time.
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4.6 Comparison of one- and two-dimensional simulations

In this section we compare the typical values of the relevantquantities at the reverse shock in
1D and 2D. There are many possibilities to carry out such comparison. For example, one can
consider two models of the same progenitor with similar explosion energy in 1D and 2D, or
models, in which the explosion starts at the same time after bounce. The latter is much harder
to achieve, as the explosion time is not known a priori. Therefore, our choice is to keep the
same boundary parameters in one- and two-dimensional simulations. This means the explosion
energies will be different, since the convection increases the efficiency of the neutrino energy
deposition, thus changing also the time when the explosion starts. The models we investigate
here are: T10-l1-r1, T15-l1-r0, and T25-l5-r4 (see Table4.1for the boundary parameters). They
can be directly compared to the one-dimensional models: M10-l1-r1, M15-l1-r1, and M25-l5-
r4, respectively.

From the models presented in this chapter it is obvious that 2D effects can have a strong in-
fluence on the conditions relevant for nucleosynthesis. Is the variation of the thermodynamic
conditions due to 2D effects less or more important than the variation related to different progen-
itor stars that are visible in the one-dimensional simulations? In order to answer this question
we show in Figs.4.15, 4.16, 4.17, the evolution of entropy, pressure, density, and temperature
of the shocked material, as well as the reverse shock radius for progenitor stars with masses
of 10, 15, and 25M⊙, respectively. The red and green lines correspond to the angles marked
with straight lines of the same colors in the plot of the entropy distribution fort = 1000 ms
(Figs.4.12, 4.1, and4.14).

In Model T10-l1-r1 the reverse shock position and orientation change considerably with angle
(see Fig.4.12). In the Figure4.15the red and green lines mark approximately the maximum
and minimum radii of the reverse shock, respectively. The maximum value is only a bit larger
than the one we found in the one-dimensional simulation for the same progenitor and initial
parameters (Fig.3.15). All other quantities shown in Fig.4.15are also in the same range as in
1D. Besides the angular variation, Fig.4.15shows that in 2D the properties of the matter behind
the reverse shock do not evolve as smoothly as in 1D.

Figure4.16shows that for the 15M⊙ the evolution is almost spherically symmetric, because the
values for the red and green lines do not differ much from each other, although they correspond
approximately to extreme reverse shock positions. Apart ofa flat section of the reverse shock
(see Sect.4.2), the evolution is rather similar to 1D, not only qualitatively but also quantitatively
(see Fig.3.15).

In the case of the most massive progenitor, Model T25-l5-r4,the quantities vary with time
around a mean value (Fig.4.17). The wind starts after half second, but the accretion continues
and the reverse shock is destroyed again by downflows (Fig.4.14). The wind reappears again
but lasts only until another downflow reaches the reverse shock. The effect of the long-lasting
downflows is visible by the points in Fig.4.17between half a second and one second, which
mark the presence of the reverse shock just during a short time – there is not a continuous line
like in the other progenitors for the same time. The high accretion rate prevents a fast expansion
of the reverse shock, which stays at smaller radii than in less massive progenitors. This effect is
the same as in the one-dimensional simulation. However, in 2D the evolution of the downflows
leads to a varying deformation of the reverse shock, and therefore also of the properties in the
shocked material vary. This can allow for larger entropy values in certain regions (compare
Fig. 4.17and Fig.3.15).
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Figure 4.15: Time evolution of different quantities for the Model T10-l1-r1. Shown are the radius of the
reverse shock, and entropy per nucleon, pressure, density, and temperature downstream of the reverse
shock. The red and green lines correspond to two chosen angles that are marked with the same color in
the panel fort = 1 s of Fig.4.12.
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Figure 4.16: Same as Fig.4.15but for the Model T15-l1-r0. Here the color lines are associated with the
angles marked with the same colors in Fig.4.1.
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Figure 4.17: Same as Fig.4.15but for the Model T25-l5-r4. Here the color lines are associated with the
angles marked with the same colors in Fig.4.14.
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Two-dimensional simulations have a broader range of valuesfor the properties of the shocked
material than one-dimensional simulations. However, the progenitor dependence visible in the
one-dimensional simulations is not completely destroyed by 2D effects. In particular there is
a quite good agreement between 1D and 2D results for those angular beams where the reverse
shock reaches its maximum radius and is perpendicular to theradial direction, i.e. the maximum
values for the entropy are similar in 1D and 2D. To asses the influence of 2D effects on the
nucleosynthesis more quantitatively, one has to compare the distribution functions of relevant
quantities computed from one- and two-dimensional simulations. For this purpose we determine
e.g. the total amount of matter that is ejected as a function of entropy by integrating over time
the flux of mass for a given entropy value which goes through the reverse shock radius:

∆M(si < s< si+1) =
∑

n

∑

θ

∆A(Rrs, θ, tn) · vrs(Rrs, θ, tn) · ρrs(Rrs, θ, tn) · (tn+1− tn) . (4.9)

HereA(Rrs, θ, tn) = 2πR2
rs(cosθ j+1 − cosθ j) is the cell surface through which the matter flows.

The first sum represents the integration over time, while thesecond sum integrates over those
angular beams where the reverse shock is present and the entropy is in the considered rage
si < s(Rrs, θ, tn) < si+1.

Figure4.18shows the result of applying Eq. (4.9) for the three progenitors discussed before.
The orange line results from performing the integration forthe one-dimensional simulations.
The mass distribution for the one-dimensional models are rather flat, i.e. the amount of mass
is roughly of the same order for each entropy bin. This can be explained by the fact that on
the one hand mass flux decreases strongly with time, but on theother hand the entropy varies
more and more slowly. Therefore, although for a given entropy range the mean mass flux is
lower for a larger entropy value, the time interval, in whichsuch entropies prevail, is larger (see
Fig. 4.19). For the 25M⊙ one-dimensional model the entropy at late times varies so slowly that
actually more mass is accumulated in the bins arounds = 200kB/nuc (in 0.8s< t < 1.6s) than
for smaller entropies (see Fig.3.15).

In the two-dimensional models the non-spherical reverse shock leads to a range of entropies at
any given time. As the obliqueness of the reverse shock in 2D can easily reduce the entropy of
the shocked matter, whereas large changes of the reverse shock radius are required to modify
this entropy significantly, one can expect that in general the mass in the high-entropy bins is
reduced in 2D. This effect is clearly visible in case of the 10M⊙ model, where almost no mass
with s > 200kB/nuc is produced in the two-dimensional model. However, thismodel shows
also a second effect: The maximum entropies are somewhat higher than in 1D, because, due
to the strong anisotropy of the model, parts of the reverse shock are located at a larger radius
than in the corresponding 1D model (see Figs.4.15and3.15). In case of the 15M⊙ models,
however, the higher maximum entropy in 2D is caused by the more compact neutron star and
is not related to 2D effects. The latter are anyway very weak in Model T15-l1-r1, in which the
reverse shock remains nearly spherical. This explains the good agreement of the histograms in
this case.

Another remarkable feature of Fig.4.18appears in the low-entropy region, which is empty in the
case of one-dimensional simulations. In spherically symmetric simulations the minimum value
of the entropy corresponds to the wind entropy at the moment of the reverse shock formation. In
contrast, for two-dimensional simulations this minimum value depends also on the orientation
of the reverse shock with respect to the radial velocity, therefore lower values are also possible.
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Figure 4.18: Ejecta mass vs. entropy of the matter crossing the reverse shock. The time integration of
Eq. (4.9) is done from the moment the reverse shock appears until the end of two-dimensional simulation
(this time is given in the every plot). The black and orange lines correspond to2D and 1D simulations,
respectively. The different panels corresponds to different progenitors: 10, 15, and 25M⊙, from top to
bottom.
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Figure 4.19: Ejecta mass vs. entropy of the matter crossing the reverse shock. Only the results for the
Model M15-l1-r1 (one-dimensional simulation) is shown. The different colors correspond to different
time intervals for the integration of Eq. (4.9), and the black line corresponds to the total time between
the formation of the reverse shock andt = 2 s after bounce.

This kind of histograms is also a tool to study the evolution of the electron fraction,Ye. In
Fig. 4.20 one can see the distribution of ejecta mass versus electron fraction for the two-
dimensional simulations of the three progenitors discussed in this section. The black line corre-
sponds to the integration of Eq. (4.9) for the whole time, i.e. from the formation of the reverse
shock until the end of the simulations. The colors mark different integration intervals. At first,
the matter is in the most proton-rich state and then moves towards the neutron-rich zone of the
diagram, i.e.Ye < 0.5. At the end of the simulations, the matter is still proton rich. In order
to carry out a detailed analysis of the nucleosynthesis relevant-conditions therefore not only a
larger number of two-dimensional simulations is required to be able to do some statistics, but
also calculations following the supernova explosion for several seconds after bounce are needed
to allow the matter to become neutron-rich.

4.7 Summary

In addition to the variability present in our one-dimensional models, multi-dimensional effects
like long-lasting anisotropic accretion and directed outflow introduce a stochastic element in the
supernova evolution during the first seconds of post-bounceevolution. The supernova ejecta in
different directions can develop largely different conditions due to the strong anisotropy of the
explosion mechanism and of the environment of the forming neutron star. The pronounced
anisotropy is caused by hydrodynamic instabilities, whichallow small seed perturbations to
grow to large-amplitude global modes before the onset of theexplosion. The morphology of
the explosion ejecta depends in a unpredictable, chaotic way on the initial perturbations. What
is the influence of these multidimensional effects on the interaction between wind and ejecta?

• The wind termination shock feature is also present in two dimensions. However, the
reverse shock is non-spherical, which is a consequence of the anisotropic pressure distri-
bution in the ejecta. We have shown by analytic means that a larger pressure above the
reverse shock leads to a smaller reverse shock radius. The varying radius implies also
that the parts of the shock are not oriented perpendicular, but at an oblique angle to the



4.7. SUMMARY 79

Figure 4.20: Ejecta mass vs. electron fraction of the matter crossing the reverse shock.Only the results
for two-dimensional simulations are shown. The different colors correspond to different time intervals
for the integration of Eq. (4.9), and the black line corresponds to the total time between the formation of
the reverse shock and the end of the simulation. The different panels corresponds to different progenitors:
10, 15, and 25M⊙, from top to bottom.
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radial direction. We observed often “kinks” in the reverse shock (i.e. points, where the
obliqueness changes abruptly), which give rise to collimated high-velocity outflows.

• The shape of the reverse shock is time dependent – spherical reverse shocks can turn non-
spherical and vice versa. It is even possible that the reverse shock does not contain the full
solid angle, because long-lasting downflows of matter from the ejecta to the neutron star
are still present. For higher boundary luminosities these downflows tend to be blown away
earlier. However, when exactly this happens depends also sensitively and in a chaotic way
on the initial random perturbation.

• There is no obvious dependence of the anisotropy on the progenitor mass – both strongly
anisotropic and almost spherical reverse shocks are possible for low and high mass pro-
genitors. The thermodynamic conditions around the non-spherical reverse shock in the
two-dimensional models vary but are in general not far from those of the correspond-
ing one-dimensional models, i.e. simulations with same boundary parameters. However,
the amount of mass with given conditions, e.g. high entropy,is different compared to
one-dimensional simulations. In 2D the obliqueness of the reverse shock tends to reduce
the amount of high-entropy matter, whereas due to the varying reverse shock radius even
higher maximum entropies are possible.



5
Summary and conclusions

The main nucleosynthesis process yielding elements heavier than iron is the rapid neutron cap-
ture on “seed nuclei” , also known as “r-process”. Rapid implies that several neutron captures
take place before the nucleus undergoes a beta decay, so thatthe nuclei taking part in this
process move far out of the “valley ofβ-stability”. The extreme conditions required for this
nucleosynthesis process, i.e. high neutron densities and short dynamical time scales, point to
cataclysmic astrophysical events as possible sites for ther-process. Already fifty years ago,
core-collapse supernova were proposed byBurbidge et al.(1957) andCameron(1957) as the
most promising scenario in which heavy elements can be synthesized by rapid neutron capture.
The aim of this work was to understand better the role supernovae may play for the formation
of heavy elements, in particular whether supernova explosions are a viable site for the creation
of r-process elements.

Core-collapse supernovae are caused by the collapse of the iron core of a massive star, which
leads to the formation of an extremely dense neutron star. During this process an outward travel-
ling shock wave is generated in the center of the core. After the shock has been launched, most
of its energy is lost in the dissociation of iron-group nuclei and therefore the shock stagnates.
Yet, neutrinos streaming out from the nascent neutron star,could be able to deposit sufficient
amounts of energy behind the shock wave to “revive” it. The shock wave would then propa-
gate through the outer stellar layers, making them unbound and thus disrupting the star. This
“neutrino-driven explosion mechanism” is the most promising way to explain core-collapse su-
pernovae, although still it has to be shown that it works reliably. However, independent of
the details of the explosion mechanism, once the explosion has set in and the shock expands,
the densities around the neutron star must decline strongly. This allows for the formation of a
neutrino-driven wind, i.e. due to strong neutrino heating,matter is blown from the neutron star
surface and accelerated to supersonic velocities.

The conditions given in neutrino-driven winds — temperature, density (which together deter-
mine the entropy,s∝ T3/ρ), neutron density, and expansion timescale — are interestingly close
to allowing the r-process to happen. In the past years, the nucleosynthesis potential of this site
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was studied by means of analytic models (Qian & Woosley 1996) and by numerically solving
the wind equations for given boundary and initial parameters (Otsuki et al. 2000; Thompson
et al. 2001). Yet, only for extreme and not generic parameters (i.e. fora very large neutron
star mass near the upper mass limit and for a very small neutron star radius), it was possible
to obtain the conditions needed for the generation of the heaviest elements (Thompson et al.
2001). Therefore, the question arises whether these models contain all the ingredients that are
relevant for setting the conditions in this nucleosynthesis site. In pioneering two-dimensional
hydrodynamical simulations of supernova explosionsJanka & Müller(1995) andBurrows et al.
(1995) found that the supersonic neutrino-driven wind is decelerated in a strong “reverse” or
“termination” shock, when it hits the slower moving matter ejected earlier, at the onset of the
explosion. Although the formation of this reverse shock cannot be treated directly by steady-
state wind solutions, several groups tried to assess its possible influence by imposing an outer
boundary condition with constant pressure (Sumiyoshi et al. 2000) or constant temperature
(Wanajo et al. 2002). However, asThompson et al.(2001) pointed out, the behavior of such
a termination shock can be dependent on the stellar progenitor and on time, therefore the only
way to study its impact is by performing hydrodynamical simulations of the long-time evolution
of core-collapse supernova explosions and post-explosionoutflows.

The one- and two-dimensional hydrodynamical simulations carried out for this work are the first
detailed investigation of the interaction of the neutrino-driven baryonic outflow from the neutron
star surface with the slower dense shell of ejecta that movesoutwards behind the expanding
supernova shock. The main result is that a wind termination shock can not only change the
wind entropy by factors of a few, which is a huge value and an unexpected finding, but leads
also to a much slower expansion of the shocked outflow after its deceleration. Furthermore,
we confirmed the speculations ofThompson et al.(2001) that the reverse shock depends on the
progenitor star and its behavior can vary strongly with time.

The wind properties and the evolution of the ejecta layer located between reverse shock and
forward shock was found to be crucial to understand the behavior of the matter decelerated at
the reverse shock. The basic dependence can be described by analytic means, showing that
the entropy of the shocked gas attains higher values for increasing reverse shock radius and
wind velocities. The development of the wind is determined (Qian & Woosley 1996) by the
neutron star parameters (mass and radius) and neutrino properties (luminosity and energy).
Since all these quantities are time dependent, e.g. the neutron star contracts and decreases in
the gravitational mass due to its continuous loss of energy by neutrino emission, the reverse
shock position and thus the properties of the shocked material vary with time. In extreme cases,
characterised by rapid decrease of the neutrino luminosity(and consequently also of the wind
power) or by slow supernova expansion in the more massive stars, the reverse shock retreats
until it reaches the sonic point. At this position the reverse shock vanishes, leaving a subsonic
breeze.

The pressure above the reverse shock has a direct influence onthe reverse shock position and
thus also on the entropy jump. This pressure is affected by the propagation of the forward
shock, and thus by the progenitor structure, and by the anisotropies that develop in the ejecta
layer. For a low-mass progenitor (10M⊙) with rather low mass accretion rate and a steep density
gradient in the layer surrounding the iron core, the supernova shock and also the reverse shock
were shown to expand very quickly. Due to the large radii reached by the reverse shock, the
entropy of the shocked material can even reach 500kB/nuc. However, the low temperatures that
prevail at such radii suggest that the influence of the reverse shock on the nucleosynthesis in the
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supernova outflow is negligible in this case. On the other hand, more massive progenitors (e.g.
25 M⊙ stars) develop a rather modest entropy jump at the reverse shock, since the latter remains
at comparingly small radii. Yet, because of the more massiveneutron star the wind entropies
are higher (Qian & Woosley 1996) than in less massive progenitors. The high wind entropy
values and the short expansion timescales might allow for a larger number of free neutrons
per seed nucleus. This composition together with the suddendeceleration of the matter, which
happens at a radius where the wind temperature is still high,might be better suitable for efficient
r-processing.

The other aspect, which affects the evolution of the reverse shock is the anisotropic matter
distribution of the ejecta caused by hydrodynamic instabilities. Two-dimensional simulations
show that a pronounced explosion anisotropy does not prevent the formation of a reverse shock.
However, the reverse shock is strongly deformed in particular due to the presence of downdrafts
of dense, low-entropy matter. The radius and the orientation (relative to the radial direction) of
the reverse shock lead to an angular dependence of the properties of the shocked-matter. There-
fore, the amount of ejected matter with certain conditions,e.g. high entropy, differs between the
spherically symmetric and two-dimensional cases. This will have consequences for the yields
of nucleosynthesis production in the ejecta.

Because of the involved approximations and assumptions (e.g. an inner boundary that mimics
the evolution of the shrinking neutron star, and a simplifiedneutrino transport that allows to save
computational time), the calculations developed here can only be suggestive but are not suitable
for making definitive predictions of the nucleosynthesis-relevant conditions in dependence of
the progenitor star. The main goal of this work was thereforea matter-of-principle study of the
interaction of the neutrino-driven wind and the slow-moving ejecta. In spite of the mentioned
limitations and although detailed nucleosynthesis network calculations are essential to draw
conclusions about the influence of the reverse shock on the production of heavy elements, one
can already speculate about possible implications.

Only if the reverse shock affects the wind during (or prior to) a phase of its expansion which
is important for the operation of n-capture reactions, i.e.at temperatures around and somewhat
below 109 K and neutron densities of 1023–1026 cm−3, the wind termination shock may have a
decisive influence on the possibility of high-mass r-process elements to form. Such conditions
could rather discontinuously depend on the way the explosion starts to develop, on progenitor
properties, and on anisotropies in the ejecta, because the reverse shock needs to be at a beneficial
location during a certain evolution phase of the neutrino wind. Moreover, the proton-richness of
the early supernova ejecta, which is seen in our models as well as in state-of-the-art simulations
with energy-dependent neutrino transport, points to the later stages of the neutrino wind as more
likely site for r-processing.

An important result of the simulations performed for this work is the fact that the material is
dramatically slowed down and reheated when it crosses the reverse shock, causing an abrupt
change of the expansion timescale, i.e. density and temperature do not drop by several orders of
magnitude in milliseconds as in the wind phase, but they decrease just slightly during seconds.
This has two effects: on one hand, the neutron capture can proceed for a longer time, and can
even continue until all the free neutrons are captured on heavy nuclei; on the other hand, the
beta decay timescale is not any more restricted to be as shortas the expansion timescale of the
fast wind. The latter will affect the path along which the r-process takes place in the plane of
neutron number vs. proton number , and thus it probably changes the requirements for the wind
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condition, which could become less extreme than the ones needed for making the r-process
elements in the neutrino-driven wind without reverse shockdeceleration.

Although the wind termination could provide improved conditions for the r-process, it remains
to be investigated whether and when the production of heavy elements for this modified site is
compatible with observational constrains coming from the r-process element abundances in very
old stars in the Galactic halo — known as ultra metal-poor (UMP) halo stars. The interstellar
medium in which these ultra metal-poor stars were formed wasalready enriched with those
heavy elements. The abundance pattern observed in the solarsystem and in the ultra metal-
poor stars is the same, especially in the range of atomic numbers between 35 and 55 (Cowan
& Thielemann 2004; Cowan & Sneden 2006). This implies that the r-process has taken place
in a very robust way for a long time. Therefore, the varying conditions in the neutrino-driven
wind and the strong time- and progenitor-dependence of the behavior of the wind termination
shock and of its effects on the wind raise a serious question: Do supernova coresprovide the
environment for producing the extremely uniform solar-system like r-process abundance pattern
between the Ba- and Pt-peaks observed in ultra metal-poor stars?

Certainly a larger number of simulations in one and two dimensions combined with detailed
nucleosynthesis calculations is needed to study such questions and come to more definitive
conclusions. Especially in the two-dimensional case it would be important to perform enough
simulations to have reasonable set of models which show the possible variation of conditions
and their links to governing parameters of the problem. Improved neutrino transport methods
will bring a more accurate prediction of relevant wind properties. Moreover, using more progen-
itor stars and including rotation might reveal interestingnew phenomena. For r-process nucle-
osynthesis the later stages of the developing explosion arethe most interesting ones. Therefore
running the simulations for several seconds will be crucialin our future work.
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