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Abstract- We investigate the effects of both fading correlations and 
transmitter channel knowledge in multiple element antenna (MEA) com- 
munication systems. While for independent and identically distributed, 
fades between receive and transmit antennas, pioneering work showed 
that a huge increase in capacity is possible for MEAs compared to a sin- 
gle antenna system, recent contributions warn that fading correlations 
destroy most of this advantage. While this is true for zero transmitter 
channel knowledge, we will show however, that long-term average chan- 
nel state information enables the transmitter to efficiently use the fad- 
ing correlations to its advantage and offers the potential to even increase 
capacity beyond the one possible for independent fading. A conceived 
transmit technique is presented that efficientlymakes use of fading corre- 
lations, and also provides optimum choice of digital modulation schemes 
that carry the information. 

I. INTRODUCTION 

Communication systems making use of multiple antennas 
at both sides of the link - so called multiple-input multiple- 
output (MIMO) antenna systems - recently have drawn con- 
siderable attention in the area of wireless communications. If 
the fades between pairs of transmit and receive antennas are 
independent and identically Rayleigh distributed, it is well 
known [ l ] ,  [2], [3], that for high enough transmit power the 
average capacity increases linearly with the minimum number 
of transmit and receive antennas, even if the transmitter has no 
knowledge of the channel. However, in a real world scenario 
the fades are usually not independent, but will exhibit certain 
fading correlations. It has been observed [4], [5], that chan- 
nel capacity degrades significantly in the presence of fading 
correlations. However, these observations were built on the 
assumption of zero transmitter channel knowledge. In this pa- 
per we like to show that allowing the transmitter to know the 
channel on average, correlated fading can be used in advan- 
tage, and actually may lead to higher channel capacity than 
uncorrelated fading would permit. After introducing the sys- 
tem model we will discuss both the impact of fading correla- 
tions and transmitter channel knowledge on capacity and pro- 
pose an efficient scheme to use fading correlations in advan- 
tage. We will also consider the effect of real digital modula- 
tion schemes on system performance by cutoff rate analysis 
and deal with the problem of optimum choice of modulation 
schemes. Finally we will show how to apply fading correla- 
tion knowledge to orthogonal frequency division multiplexing 
(OFDM) in a frequency selective fading environment. 

11. SYSTEM MODEL 

In the following we will focus on the problem of transmit- 
ting L independent data streams over a wireless channel using 
N 2 L transmit and M receive antennas. Even though a 
broadband communication system in general will experience 
a frequency selective channel, OFDM can be used to trans- 
form this frequency selective channel into many frequency flat 
channels. In the following we will therefore assume a fre- 
quency flat but possibly correlated Rayleigh fading wireless 
channel, leading to the following system model 

where s E C L  is the L-dimensional data vector with zero mean 
and unity covariance matrix, while P E 72;' is a positive 
definite diagonal matrix used to set the transmit power for each 
data stream with total transmit power given by PT = tr  P, 
and finally the matrix T E C N  performs the mapping from 
L data streams onto N transmit antennas and is composed of 
unity norm column vectors. This mapping can be viewed as 
spatial beam-forming. The channel is modeled by the ma- 
trix H E C M  with possibly correlated complex zero mean 
Gaussian entries. The receive signal vector y E C M  is cor- 
rupted by additive zero mean Gaussian noise n E C M  with co- 
variance matrix E {nnH} = (T~R, ,  where g,: is the average 
noise power per receive antenna, i.e. (TA = tr  E { nnH} / M .  
Note that tr R,n = M .  

111. CHANNEL CAPACITY 

Applying an eigenvalue decomposition to 

HHRilH = VAVH 

where A1 contains the L largest and A, the N - L remain- 
ing eigenvalues, while the eigenvector matrix V is partitioned 
accordingly into sub-matrices VI and V2, respectively, the 
ergodic capacity of this system can be expressed as [ 11 

(3) 
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where the expectation is carried out over the different real- 
izations of the channel matrix H. The transmitter can max- 
imize the average transinformation by beam-forming via T, 
power control via P, and choice of the number of data streams 
L. To what extend this maximization can be carried out, de- 
pends both on the statistical properties of H and the amount 
of knowledge the transmitter can acquire about them. 

IV. TRANSMITTER CHANNEL KNOWLEDGE 

Let us start with the discussion of the impact of transmitter 
channel knowledge on transinformation. We will look at three 
different cases: the transmitter is allowed to know the channel 
instantaneously, on average only, or not at all. 

A. Instantaneous channel knowledge 

Assuming that the transmitter exactly knows the channel 
matrix H at each transmit time instant, it is well known that 
transinformation reaches channel capacity by setting L = 
rank H ,  T = V1 and choosing P by instantaneous water.- 
filling [ 11, [6] based on the eigenvalues A,. This is, of course 
the best case scenario. 

B. N o  channel knowledge 

If there is no channel knowledge at all available to the trans- 
mitter, setting L = N ,  T = I, obviously is the only reason- 
able choice. Because of lack of channel knowledge, water- 
filling cannot be performed either and has to be replaced by 
an equal power distribution, i.e. P = (PT /N)  . I. In this sce- 
nario each antenna transmits an independent data stream with 
the power being shared equally. 

C. Long term average channel knowledge 

While instantaneous channel knowledge may be too de- 
manding a request in practice, assuming no transmitter chan- 
nel knowledge may well be over conservative. In most cases 
the transmitter should be able to acquire knowledge about the 
channel on average. Assuming we know E {HHRZ1H}, an 
eigenvalue decomposition leads to 

E{HHRZ1H} = V'A'V" 

where A; contains the L largest and A; the N - L remaining 
eigenvalues of E { H H R l 1 H ) ,  while the eigenvector matrix 
V' is partitioned accordingly into sub-matrices Vi and Vi, 
respectively. By setting L = rank E {HHRi1H), T = Vi 
and choosing P by water-filling based on the average eigen- 
values Ai,  the function 

J(T, P, L )  = log, det  E , (5) 

Fig. 1.  A semi-correlated 2-path channel: from the transmitter's point of 
view the channel is spatially correlated as the receiver can be reached through 
just two narrow spatial directions, while from the receiver's point of view the 
channel has no spatial structure due to its rich scattering environment. 

is maximized. This is of course not equivalent 110 transinfor- 
mation, but actually an upper bound, for comparing to (3) the 
expectation operator has moved inside the log, and det opera- 
tors. Later we will show however (cf. Fig 2), that maximizing 
(5) is almost equivalent to maximizing transinformation (3). 
Viewing T as beam-forming, setting T = Vi will be called 
eigenbeamdforming. Each data stream is said to be transmitted 
over an eigenbeam. 

V. FADING CORRELATIONS 

Let us now have a look at some statistical properties of the 
channel. In the following we will investigate two different 
cases, namely channels having spatial fading correlations and 
channels thlat are spatially uncorrelated. 

A. Uncorr,elated Rayleigh fading 

Such a channel may arise if both transmitter and receiver 
live in a rich scattering environment. The result will be inde- 
pendent Rayleigh fading from each transmit to each receive 
antenna. The channel matrix can be modeled as 

H E NFXN(O, 1). (6) 

The entries are i.i.d. zero mean, unity variance complex Gaus- 
sian random variables. Note that the total power amplification 
of this chaiinel is given by E { llHll'$} = N .  M. 

B. Semi-correlated K-path channels 

Imagine a scenario where the transmitter is removed from 
its rich sca.ttering environment. From the transmitter's point 
of view the spatial structure of the channel now is governed 
by remote scattering objects, and will most likely result in a 
highly spatially correlated scenario, for usually there will be 
only a few dominant remote scattering or reflecting objects 
(see Fig. I). This assumption is validated for urban mobile 
radio channels, by a recent measurement campaign taken in 
downtown Helsinki [7 ] .  We will model such a scenario by 

(7) 

where A C: C N x K  is an array steering matrix containing K 
array response vectors of the transmitting antenna array cor- 
responding to K directions of departure (DOD), and G E 
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Fig. 2. Comparison of capacity and transinformation for semi-correlated and 
uncorrelated channels with and without long-term channel knowledge. Note 
that in the uncorrelated case, having no channel knowledge is equivalent to 
having long-term channel knowledge. 

J \ / C M X K ( O ,  1) has zero mean i.i.d. Gaussian random entries. 
Angle spread is easily modeled by a high enough number of 
discrete DODs. The total power amplification of this channel 
is normalized to E { /lHlli} = N . M ,  which is the same as in 
the uncorrelated case. While both G and A are random vari- 
ables, they vary on fairly different time scales, as G models 
fast Rayleigh fading induced by small scale movements of the 
mobile receiver, while A represents the geometrical structure 
of the propagation channel, and varies with large scale move- 
ments, that usually take place at much longer a time-scale than 
fast fading, especially for large receiver-transmitter distances. 
From (7) follows 

A*AT E C N x N ,  (8) 
M . N  

tr AAH 
RT := EG {HHRilH} = -. 

which is called transmitter covariance matrix, and is indepen- 
dent of R,. The operator EG{.} denotes expectation with 
respect to G ,  i.e. averaging over fast fading. Usually RT will 
exhibit spatial correlations, possibly with numerical rank defi- 
ciency. Note that the receiver covariance matrix 

R~ := EG {H"} = N .  I E PxM,  (9) 

corresponds to a spatially uncorrelated scenario as requested 
by the model (see also Fig. 1). 

VI. CAPACITY OF SEMI-CORRELATED K-PATH CHANNELS 

To evaluate the capacity of semi-correlated channels with 
and without long-term average channel knowledge, we sim- 
ulated a M = N = 8 antenna system, where the anten- 
nas formed a omni-directional uniform linear array. We used 
a 4-path semi-correlated channel and an uncorrelated chan- 
nel for comparison. The four paths had zero angle spread 
and random directions of departure. Fig. 2 shows the re- 
sults. There are four major points to stress here. First, if 
there is no transmit channel knowledge the spatial correlations 

reduce capacity compared to the uncorrelated case. Second, 
if long-term average transmit channel knowledge is used, the 
picture changes: for low transmit powers up to a cross over 
point, the semi-correlated channel indeed offers higher capac- 
ity than the uncorrelated one , which is due to antenna gain 
that can be exploited by knowing the long-term average chan- 
nel structure. Third, for the semi-correlated channel the dif- 
ference between long-term average and instantaneous channel 
knowledge is marginal and disappears for high transmit pow- 
ers. Fourth, at high transmit powers the uncorrelated channel 
gets better and better compared to the semi-correlated case - 
or so it would seem. However note that any real communica- 
tion system will have to use finite constellation-size modula- 
tion schemes, which will limit the achievable capacity. Taking 
realistic modulation schemes into account will again change 
the picture, as we shall see in the next sections. 

VII. CUTOFF RATE 

While capacity is a theoretical limit for infinite block length 
codes and zero error probability, the cutoff rate gives a bound 
for finite block length and error probability. Furthermore it is 
computationally feasible to compute cutoff rates for real mod- 
ulation schemes in MIMO systems. The cutoff rate is useful 
because of the cutoff rate theorem [SI, which states that there 
exist (n, block codes, with code-word error probability P, 
after maximum likelihood decoding being upper bounded by 

provided the binary code rate Rb := 
cutoff-rate 

. log,q is less than the 

where M ,  with [MI = q is the set of code symbols (input 
alphabet) and p(yls)  is the probability density function of the 
received signal y given the transmitted code symbol s. To 
apply this to our MIMO system, we look at the data vector 
s as a q-ary code symbol, where each component S k ,  with 
1 5 k 5 L can take on (Ik values from a discrete modulation 
alphabet Mk,  with lMkl = q k .  The input alphabet 

is the Cartesian product of the individual alphabet sets, with 
IMI = q = q1 q 2  . . q L .  By labeling the elements of 
M = {SI, s2, - . . , s,,} the cutoff rate can be written as 

(13) 

with b, = & R,' HTP 4 sp .  The ergodic cutoff rate is the 
expectation of (13) taken with respect to H. 
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Fig. 3. Ergodic cutoff rates for semi-correlated 1-path and uncorrelated chan- 
nels with and without long-term average knowledge. 

VIII. CUTOFF RATE COMPARISON 

We assume a M = N = 8 antenna MIMO system, and 
compute the cutoff rates for a 1-path semi-correlated and for 
an uncorrelated channel. Note that the semi-correlated chan- 
nel has unity rank. We used quadrature amplitude modula- 
tion (QAM) and fixed the raw data rate to 8 bits per chan- 
nel use. For the uncorrelated channel each of the 8 anten- 
nas therefore transmits a data stream with 1 bit per channel 
use (binary phase shift keying, 2PSK). The same holds for 
the semi-correlated channel with no channel knowledge. In 
the case of available long-term average channel knowledge, 
the transmitter is aware of the rank deficiency and therefore 
transmits a single data stream over the strongest eigenbeam 
only. To achieve a raw data rate of 8 bits per channel use, 
the modulation scheme is changed to 256QAM. Fig. 3 shows 
the results. Let us stress the major points: First, again we 
see a crossover point between semi-correlated channels us- 
ing eigenbeamforming and uncorrelated channels, but since 
the cutoff rates are bounded, we can judge its position bet- 
ter than in Fig. 2: for code rates less than 314, the semi- 
correlated channel using eigenbeamforming outperforms the 
uncorrelated channel up to the antenna gain of 9dB, while 
for higher code rates the loss is limited to 4.3dB' , instead 
of growing unbound as in Fig.2. Second, having spatial fad- 
ing correlations without the transmitter knowing about them is 
even more disastrous than suggested by the capacity analysis 
in Fig. 2. Not only is there a loss due to no exploitable an- 
tenna gain, for high code rates there is additional loss, which 
turns out to be due to distortion of the received signal con- 
stellation [9]. Third, knowing about fading correlations can 
actually lead to higher capacity then is possible for uncorre- 
lated channels even in the best case of having instantaneous 
transmit channel knowledge and Gaussian signal distribution 
(see dotted capacity line in Fig. 3). 

L I 
5 20 

Fig. 4. Ergodic cutoff rates for semi-correlated 4-path and uncorrelated chan- 
nels using fixed and adaptive modulation. 

Ix. ,\DAPTIVE MODULATION AND RANK SEARCH 

We now want to address the problem of finding the num- 
ber L of transmitted data streams that is optimum in a given 
situation. For Gaussian distributed signals the answer is sim- 
ple: set 1; = N and use the water-filling policy to optimally 
share the transmit power. For modulated signals that is no 
longer applicable, as each data stream has a finite raw data 
rate. It makes more sense to ask: "How many bits should be 
transmitted over each data stream?". The answer to this one 
is adaptive modulation. The idea is to transmit more bits over 
a stream where the associated eigenbeam has a high eigen- 
value, and transmit less bits over other streams. To illustrate, 
we use a M = N = 3 system, where the transmit anten- 
nas form a ULA with X/2  antenna spacing and look into a 
semi-conelated channel that supports two DODs with differ- 
ent angle spread and attenuation, as depicted in Fig. 5. The 
eigenvalues of E{HHH) compute to 4.75, 3.23, and 1.02, re- 
spective1:y. We fix the raw data rate to 6 bits per channel use, 
and compute the average cutoff rate for different distributions 
of bits per data stream. The averaging is done by computing 
realizations of the channel matrix according to 

- 1 . G .  (E{HHH})', whereG ENCNXN(O,l). 

d 3  
Note, that using a non Gaussian random matrix G above, 
would lead to other fading statistics than Rayleigh. The trans- 
mit power is shared equally between data streams. Using 
QAM the results are given in Table I. For low transmit power 
it is best to focus on the strongest eigenbeam only and use 

TABLE I 
ERGODIC CUTOFF RATES FOR THE SCENARIO FROM FIG. 5 

'Using 256QAM asymptotically needs 22.3dB more power than 2PSK, but 
as the power is concentrated onto one stream instead of being shared on 8 
streams, there is a gain of 9dB and because of an additional antenna gain of 
9dB, the asymptotic loss turns out to be 22.3-9-9 = 4.3dB. If the number of 
antennas is reduced below 6, the loss turns into gain, e.g. 2dB for N = M 4  
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Fig. 5. Example of transmitter side angle spread 

64QAM. For medium transmit powers it pays off to open up 
and share the power with a second data stream and switch to 
16QAM/4QAM or at a little higher power to 2xSQAM. Only 
at very high transmit powers a full rank transmission is reason- 
able. The optimum number of data streams therefore depends 
on the long-term average channel situation, the used transmit 
power, the modulation schemes, and also on the raw data rate 
that has to be kept up. To show the effects of an optimum 
adaptive modulation, Fig. 4 shows the average cutoff rates for 
a M = N = 8 antenna system, transmitting at a raw data 
rate of 8 bits per channel use, over a 4-path semi-correlated 
channel (supporting independent transmission of up to four 
data streams). The 4 paths have zero angle spread and random 
DODs. The averaging is done both over short-term (fading) 
and long-term (DOD) properties of the channel. Let us state 
the major points. First, use of the fixed 4x4PSK modulation 
is inferior as the transmitter cannot react to changing average 
eigenvalue profile. It gets disastrous at higher code rates, were 
it gets even outperformed by dropping eigenbeamforming al- 
together. Second, applying additional optimum power distri- 
bution among the eigenbeams improves the performance at 
lower code rates, but also suffers at higher code rates. Third, 
optimum adaptive modulation saves the day, as it constantly 
improves performance at all code rates, especially at higher 
ones, yielding always the best performance. Note, that there 
is no cross-over point with the uncorrelated case any more. 

X. APPLICATION TO OFDM 

A broadband communication system usually will experi- 
ence a frequency selective channel. Assuming a multi-path 
MIMO channel with path delay times T k :  

d 

H(t, 7) = Hk s( t  - T k ) ,  (14) 
k=l 

and cyclic prefixed OFDM with N, sub-carriers with base- 
band frequencies & = + . $-, where T is the time for a chan- 
nel use, and 0 5 n 4 N,, thifrequency selective channel (14) 
evolves into N, frequency flat MIMO channels described by 
N, channel matrices 

The ergodic capacity therefore reads as 

By moving all averaging operations inside the log, and det 
operators, we define a cost function 

J(T,P,L) = log, det (I + -THRTP) 1 , (17) 

U: 

For temporally uncorrelated channel taps, E {HFHkr} = 
E { H t H k }  . s k , k , ,  (18) simplifies to 

d 

R = x E { H t H k } ,  (19) 
k = l  

and eigenbeamforming can be applied by eigenanalysis of R. 

XI. CONCLUSION 
The capacity of MIMO systems depends both on the statisti- 

cal properties of the channel and on the knowledge about those 
properties. While for no transmitter channel knowledge cor- 
related fading is disastrous for capacity, having the transmitter 
acquire the channel properties on average can actually lead to 
capacity improvement over uncorrelated fading channels. A 
transmit scheme was presented that efficiently exploits fading 
correlations while depending solely on average channel prop- 
erties. Cutoff rate analysis showed that for real digital mod- 
ulation schemes, correlated fading channels in practice offer 
superior performance in the whole transmit power range. A 
key to this performance gain turns out to be adaptive modu- 
lation. A method for achieving optimum adaptive modulation 
was presented that is based on the channel’s average cutoff 
rate. Finally, we showed how to make efficient use of fading 
correlations in OFDM based broadband communication sys- 
tems. 
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