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ABSTRACT 
Errors in channel state information have a significant im- 
pact on the performance of linear precoding (transmit fil- 
ters) in frequency selective MISO communication links. We 
present a new robust optimization scheme for the design 
of the robust transmit Wiener filter, which is based on a 
stochastic error model. This general paradigm achieves an 
average robustness as it  is relevant for physical layer signal 
processing. 

1. INTRODUCTION 

Space-time equalization improves the quality of a wireless 
communication link at the expense of an increased compu- 
tational complexity. With linear precoding the complexity 
of channel equalization is shifted from the receiver to the 
transmitter, e.g. the base station in the downlink, where 
power and cost constraints are less stringent. We consider 
a link with multiple antennas at the transmitter and a single 
antenna at the receiver. The design of the linear transmit fil- 
ter considered here relies on full channel state information 
(CSI), i.e. knowledge of all current channel coefficients. 3 
main types of linear precoders exist: the transmit marched 
filter (TxMF), transmit zero forcing (TxZF), and the frans- 
mit Wienerfilter (TxWF) [ I ] ,  where the first two are special 
cases of the TxWF, In time-division duplex (TDD) links 
the channel estimates from the uplink can be used for lin- 
ear precoding of the downlink symbols due to reciprocity 
of the up- and downlink channels. But channel estimates 
are only available from a previous uplink slot and there- 
fore out-dated, which results in a significant degradation in 
performance and requires linear prediction to improve the 
transmitter's channel knowledge 121. The nominal design 

robust signal processing in the physical layer. For the ro- 
bust design of the TxWF in Section 5 we define the robust 
optimization criterion and derive its solution. Interpreting 
the new cost function and the robust TxWF (RTxWF) we 
give an explanation for the performance difference of the 
robust version and its relation to the field of regularization. 
Finally, i t  is shown by simulation that the RTxWF decreases 
the error floor of the uncoded hit error ratio (BER). 

Throughout the paper, i denotes an estimate of x, '@' 
the Kronecker product, O M ~ N  the M x N zero matrix, and 
In( the M x M identity matrix. Deterministic variables as 
well as realizations of a random variable x are written as 2. 

2. SYSTEM MODEL 

A single user MISO system is considered. A QPSK symbol 
sequence s E Cw with correlation matrix R, = E [ssH] E 
C w x w  is precoded with P E ChfwXw and transmitted 
over M antenna elements and the received signal in the 
downlink is given by (Fig. 1) 

(1) i = H,Ps + q E Cw+Q-l, 

The model can he generalized to include multiple users and 
processing at the receiver independent of P [I].  The dis- 
crete time frequency selective channel of length Q is con- 
stant during slot n and given by the block Toeplitz matrix 

Q-1 

(2) E ~ ( W + Q - l ) x M W  Hn = ~Tp,w.Q-i) @hz,q 
9=0 

with selection matrix 

S(,,hf,Nj = [ ~ M x u , ~ n f , o ~ , x ( , Y - q ) ]  E {O> l}*'X(*f+Nj 
I - -  L 

methods for standard linear transmit filters do not model 
the errors in the transmitter's channel knowledge. To our 
knowledge robust design of linear precoders for frequency 
selective channels has not been considered in the literature. 
We present a new robust design of the TxWF based on the 
paradigm of static stochastic programming [3] for a stochas- 
tic model of the parameter errors, which decreases the sen- 
sitivity of the TxWF to parameter errors. 

After defining the system model and the slot structure, 

and the vector channel coefficient hn,9 E Chf of tap q. 
Here, q - x(O,%) with % = E [qq"] is additive 
complex Gaussian noise. Signal and noise are uncorrelated, 
i.e. E [soH] = O W ~ ( W + Q - ~ ) .  

The received pilot sequence in the uplink is (Fig. 1) 

y, = S,hn-e + 7, E CM(Np-Q+l) (3) 

with the spatio-temporal channel vector 
which yields out-dated CSI, the standard TxWF (nominal 
design) is revisited. In Section 4 we discuss our notion of 

T 
h - e  = [h;f-t .,,... , h ; f - e , ~ - ~ ]  E C*fQ 
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Fig. 1. Downlink transmit processing based on channel es- 
timation and prediction from the uplink. 

and matrix S, = Sb C3 l h , ,  where Sb is Toeplitz and con- 
tains Np pilot symbols. 

The maximum likelihood (ML) channel estimator (RTu = 
U n l h f ( N p - ~ + l ) )  2 for uplink slot n ~ Cis 

(4) h,-t ^ h l L  = Fy,, F = ( S ~ S P ) - ’ S ~ .  

The positions e of available uplink slots depend on the 
slot assignment: In the TDD mode of UMTS, for example, 
the signal is divided into frames, which consist of 15 slots 
[4]. Each slot contains a midamble and a data signal. From 
various ways of assigning slots to the up- (“7”) or downlink 
(“I”), we pick the following 2 proposed frame structures for 
medium and high data rates [4]: 

111 t i l l  T I  11 T I I ( T I  11 t l  11 t l  I1 T I  11 
Symmetric multiple switching point downlink frame. 

Asymmetric multiple switching point downlink frame. 
~ i i i l i l i l i l i t i t t l i l i l i i  t i i i i i i l  

Using the ML channel estimates the linear minimum 
mean square error (MSE) or Wiener prediction for tap q 
with w,, the solution of the Wiener-Hopf equation, reads 

The diagonal matrix T k  E 0 l}l5PX 15P selects the uplink 
slots from past 15p slots @I k m e s ) .  A detailed description 
of the parameters and solution can be found in [2]. 

In the sequel we assume that 1st and 2nd-order statistics 
of all random sequences are known perfectly. 

3. STANDARD TRANSMIT WIENER FILTER 

The nominal design of the TxWF PWF assuming perfect 
knowledge of H ,  minimizes the modijiedmean square er- 
m r u : ( P : P : H , : ’ P s )  = E [ I l ~ ( H ~ ) l l g ]  ofE(H,) = 9s- 
fl-’G> wherePS = {a,&} and* = [ l w , o W ~ Q - l ] ~ ,  

using the whole available transmit power Em: 

[PWF,@wFI = . , g ~ ~ ~ E [ I l * S - @ - ’ e l l ~ ]  (6 )  

s.t.: E [llpsllf] 5 

It can be written as [ I ]  
1 

P W F  =flwF ( H f f f n  + < l i c l W ) -  H t *  (7) 

with < = tr(%)/Em. flw is used to set the transmit power 
to Em. To reduce the necessary complexity we decided to 
employ block filters which do not process the whole slot at 
once, but split the slot into smaller windows with M’ sym- 
bols. Therefore, we have to suppress the interference gen- 
erated for the following window described by *. 

4. ROBUST SIGNAL PROCESSING FOR 
COMMUNICATIONS 

Dealing with errors in the channel parameters, the true chan- 
nel matrix is modeled by the transmitter as 

H, = fin + E, with E, = 
Q-1 

Sz,w,Q-l,  8 e,,,. (8) 
q=0 

Robust optimization methods can be classified based on 
the underlying assumptions on the model errors: 

I)  A deterministic ermr model such as a norm bound 
IIE.I~F 5 a (unstructurederror) or I/en,,l/2 5 aq (struc- 
tured error) is used for min-max optimization, minimizing 
the error U: in the worst case [5,6]. It guarantees a cost not 
exceeding the worst case, but requires knowledge about the 
compact set of errors, e.g. the norm bound a or CY,. 

2) If the error is modeled as a (stationary) srochastic 

and R., = E[e,,,ef,,], the cost function is also a stochas- 
tic process and the paradigms known from static stochastic 
pmgramming [3] can be applied. The solution depends on 
the error distribution or. e.g., its firsdsecond order moments. 
Prkkopa in 131 proposes to minimize the expected value of 
the cost function w.r.1. enr4: 

~ & ( p , P > f i ~ , ’ P s )  =E~,,[uz(l‘ ,P,fi~ +En,%)]. (9) 

Thus, it provides a robustness on average. 
Application of the min-max approach based on the de- 

terministic error model to physical layer design in commu- 
nications would have 2 major disadvantages: 

I )  In communications errors in channel parameters are 
caused by noise, modeled by a (complex) Gaussian disuibu- 
tion, or a delay. The stochastic noise model above implies 
an unlimited set size a (not compact), which we would need 
to choose heuristically or based on an additional criterion. 

2) Physical layer processing is part of a large system: 
As higher layers handle worst case of the physical layer, 
a useful definition the of worst case at this layer becomes 
unclear. Moreover, the design goal of physical layer signal 
processing is to provide good performance on average (Av- 
erage BER, MSE). Thus, average robustness appears as a 
consistent notion of robustness for the physical layer. 

T 

pmcess, e.g. en,, - A L ( P ~ ~ , & ~ )  with peq = , 

. 
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5. ROBUST TRANSMIT WIENER FILTER 

5.1. Stochastic Error Model 

As discussed above, the transmitter views the real channel 
coefficients hn,q as a stochastic process centered at the esti- 
mated coefficients hn,q corrected by the average error peq: 

kq = hn,q + en,, with h,,, - NC(k,q + peq, Re, 1. 
For delayed CSI from ML channel estimation improved by 
linear prediction [21 we set in,, = hky:. For Rayleigh 
fading and spatially correlated coefficients the 1st and 2nd 
order moments can he derived (in several steps) from (5) as 
peq = 0 and 

%* = IZhq - 2Re(&,,(l,w @Tkwq))  + 
( I n 4  8 w ~ T ~ ) R T , ~ ( ~ M  @ T~w,). (10) 

= E[h,,,h;,,], The spatial correlation matrix of tapq is 
spatial-temporal correlations are summarized in 

R T , ~  = Rhq @ Ra,p 

+ S ~ q ~ ~ , ~ ~ r , ~ Q - l ) M ) F ~ ~ ~ H S ~ ~ \ I , M , ( ~ - l ) M ) :  

where Ra,q is Toeplitz with 1st row [r,[O],. . . , r q [ 1 5 p  - 
l]] and autocorrelation sequencer,[!] = E[h~,,h~-,;,]/M 
(temporal correlations are spatially invariant for small an- 
tenna spacing), and the cross-correlation matrix Rc,, = 
R+,q@~T withcorrelationvectorTq = [ r q [ l ] , . . .  ,r,[15p]]T. 
The situation that only delayed and estimated CSI is avail- 
able are special cases of (10). 

5.2. Robust Optimization 

Applying the method of static srochasric pmgramming we 
include knowledge about parameters error in the design. To 
obtain a more transparent notation we assume peq = 0. The 
error w.r.1. P (Eqn. I )  considering errors in H ,  (Eqn. 8) is 

~ ( k , ,  + E,) = Q s  - /"' ((ft. + En) Ps + q) 
= €(fin) - p-'E,Ps. (11) 

According to (9) we take the expected value of E ( H ,  + E,) 
w.r.t. q. s, and E,. As E, is statistically independent from 
the former two random variables we get 

UR.E(P:P:H,,PR)=U:(PIP,~":PS)+ 2 

8-2t r  ( R , P ~ R , ~ P ) ,  (12) 

with PR = Ps U {REH} and error covariance matrix 

REIS = EE, [E;E,] 

Q - 1  

,=O 
- - ~ ( s [ q , W F , Q - - l ) s ~ , W F , Q - l ) )  @ R&. ( I 3 )  

The new robust optimization goal is minimizing the modi- 
fied MSE with average robustness constrained by the avail- 
able transmit power Et,: 

[PRwF,PRWF] = a r g ~ ~ ~ ~ ~ , ~ ( P , P , I l l ~ , p R )  

s.t. : E  [llPs11;] 5 Etr. (14) 

The problem remains convex [7]. Its solution is 

PRWF = P R W F ( ~ : ~ ,  + < ~ M w  + REII)-'~:*, (15) 

and ORWF is chosen to satisfy the constraint with equality. 
Comparing (15) with (7) we observe that the regulariza- 

tion term in the robust cost function (12) results in a "loud- 
ing" of the matrix inverse according to the size and struc- 
ture of the channel parameter errors described by  RE^. The 
loading keeps TxWF closer to the (inherently robust) TxMF 
and thus achieves an on average optimum trade-off between 
interference cancellation as performed by the TxZF and serv- 
ing the user with maximum power as done by the TxMF [ 2 ] .  

The only additional complexio for the design of the 
RTxWF compared to the TxWF are some matrix multipli- 
cations and additions to determine RE" (Eqn. 10 and 13). 
In case the auto-correlation properties of the channel coef- 
ficients are not already needed to design the linear predictor 
(Section 2), they have to be estimated to compute R p .  

5.3. Interpretation of Regularization and Robustness 

The robust criterion in (9) and (12) regularizes the soh- 
tion by O ( P )  = p - ' t r ( & P H R E H P ) .  If & = lw 
and  RE^ = ai 1 ~ w .  additionally to a small E ,  regular- 
ization tries to keep the Frobenius norm of P small, since 
O ( P )  = 0-' ut liP11;. This is known as fichonov regu- 
larization with weight given by the variance U,' of the (un- 
correlated) error [7]. More generally, for & = lw and the 
eigenvalue decomposition of R p  = U E A E U ~  we oh- 

tain O ( P )  = 0-2 t r  ( P ~ R ~ H P )  = 0 - 2  xE,~  llpill;, 

where pi are the rows of UEP and XE,, form the diag- 
onal of AE. Thus,  RE^ determines in which direction the 
columns of P should be regularized (small norm), i.e. where 
the error in channel knowledge is large. & determines 
which subspaces of the row space of P should he of small 
norm, i.e. those used by data symbols for transmission. 

We observed that the optimization in (12) prefers solu- 
tions P with small llP11; or norm of transformed columns 
llpiI1;. It remains to illustrate the impact of regularization 
on the sensitivity of u:(P,/3, H , , P s )  in (6) to errors in 
H,: In contrast to the transmitter's channel error model (S), 
we now assume H, = H ,  + E, to evaluate the sensitivity. 
From Jensen's inequality [7] follows 

Eh" [$(P,ia, Hn,Ps)] 2 d(P,P,Efim[Hnl ,Ps) ,  

M W  

i=l 
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Fig. 2. Symmetric frame: RTxWF (solid) vs. standard 
TxWF (dashed) 

i.e. variations in H , P  increase the MSE U: and the error 
E, is amplified by P: The sensitivity of the cost function 
u:(P,fl,H,,Ps) to E,, increases with llPil$ or Ilp:ll$ 

* o"t-dated exact 

-8. predicted channel with order 2 
+ perfect channel knowledge 

-t p,edined With 

6. BER PERFORMANCE 

With a window size W = 8, 128 symbols per slot are 
transmitted over .R.I = 2 antenna elements in the down- 
link. An uplink slot contains No' = 256 pilot symbols at 
an SNR of 3 dB. The channel coefficients are i.i.d. com- 
plex Gaussian distributed (Q  = 4 paths) assuming a Jakes 
power spectrum describing temporal correlations with max- 
imum Doppler frequency fdm = 100 Hz (approx. 54 km/h 
at a carrier frequency of 2 GHz). Moreover, we assume 
R, = U : ~ W + Q - I  and R, = lw. The SNR is the ratio 
of transmit power Er and noise variance at the receiver U:. 

In Figs. 2 and 3, we compare the uncoded BER of the 
robust and nominal TxWF for symmefric and asymmefric 
frame structure, respectively (out-dated exact or estimated 
channel: hnZq = h,-c,q or hn,q = hi4&e,q; Wiener pre- 
diction with order p E {1,2}). For increasing SNR, the 
BERs of the nominal TxWFs (dashed lines) with outdated 
CSl have a minimum at afinife SNR between 10 and 15 dB. 
This behavior follows from the convergence of the TxWF to 
the TxZF for high SNR, since the non-robust TxZF tries to 
remove interference based on outdated CSI and thus, intro- 
duces additional interference. On the other hand, the robust 
TxWF (solid lines) only shows a lower saturation for high 
SNR due to the loading term which makes the TxWF more 
similar to the inherently robust TxMF [2]. Therefore, not 
only CSI prediction is necessary for uncoded BER below 
lo-' (see Fig. Z), but also a robust design of the transmit 
filter (cf. Fig. 3). 

' ' ' 

1 o' 

=lo- 

m W 
- ~ . . . . . . . : . . . . . . .  ;...\ . . . , . . . . . . . . .  < . . . . . . . . . .  

I "  ' '  . . . .  I . . . . . . . . . . . . . . . . . . . . z 
0 I h * o-t-dated est matea cnannel "\ 

0 5 10 15 20 
SNR/dB 

Fig. 3. Asymmetric frame: RTxWF (solid) vs. standard 
TxWF (dashed) 

I. CONCLUSIONS 

A mbusf version of the fransmif wienerfilfer was derived 
from an optimization problem tailored to achieve average 
robustness as it is relevant for physical layer design. The 
solution finds the best trade-off between transmit matched 
filter and zero-forcing based on 1st and 2nd order moments 
of the errors in channel state information, i.e. it adapts to 
the error statistic with little additional complexity. From the 
interpretation of the new cost function and numerical results 
we conclude that linear precoding for time-variant channels 
requires linear prediction and a robust design. 
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