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Abstract— Orthogonal space-time block codes (STBC) consti-
tute a simple way of exploiting transmit diversity. If no channel
knowledge is available at the transmitter the use of diversity
can increase performance significantly. However, if some partial
channel state information (CSI) is available, such as knowledge
of the transmit correlation matrix, adapting transmission to this
knowledge provides additional perfomance gains. In such case,
adaptivity can be introduced by using a unitary eigenbeamformer
with beams pointing along the directions of the eigenvectors
of the transmit correlation matrix and applying a convenient
power loading along the resulting beams. While for Rayleigh-
fading channel eigenbeamforming has been shown to be optimum
in terms of ergodic capacity, so far, no closed solution for the
optimum power loading has been found. In the work at hand,
orthogonal STBC are combined with eigenbeamforming in an
orthogonal frequency-division multiplexing (OFDM) context and
an optimum power loading is found, where optimality refers to an
upperbound of pairwise error probability (PEP). The resulting
signaling scheme can be viewed as an extension of STBC to
OFDM with partial channel knowledge. The solution represents a
very interesting trade-off between transmit diversity and antenna
gain.

I. INTRODUCTION

The deployment of antenna arrays at both sides of a wire-
less communication link proves highly beneficial. Inherently,
the resulting multiple-input multiple-output (MIMO) channel
has more capacity than any of the single-input single-output
(SISO) channels between single pairs of array elements. Signal
processing at the receiver benefits from antenna gain and
the possibility to efficiently combat interference by means of
spatial filtering. The transmitter can resort to the exploitation
of transmit diversity in order to improve reliability if no
channel state information (CSI) is available or adapt the
transmit signal to the channel as much as the available
knowledge allows, which results in an efficient use of transmit
power due to spatial signal shaping and thus permits the
reduction of interference. Due to the fading nature of wireless
channels, all those are indispensable features if the goal of
deploying bandwidth-efficient wireless networks supporting
high-rate multimedia services is to be reached.

Multipath propagation in the wireless channel causes tem-

poral inter-symbol interference (ISI), which increases the
processing burden required at the receiver to recover the
transmitted signals. While narrowband signals are hardly
affected by multipath, frequency selectivity poses a serious
impediment to the efficient detection of broadband signals.
OFDM circumvents this problem by introducing a cyclic prefix
between consecutive symbols. If the cyclic prefix is longer
than the channel delay profile the frequency selective channel
can be effectively decomposed in a number of parallel flat-
fading channels, which dramatically eases the detection of the
transmitted signals.

Aiming at the design of broadband wireless systems, the
combination of OFDM and MIMO techniques offers a good
trade-off between bandwidth efficiency and complexity. More-
over, the flat-fading property of single frequency channels
in OFDM makes possible a simple extension of MIMO
approaches, mostly conceived using flat-fading channels as a
model, to frequency selective channels.

Orthogonal STBC have been introduced [1] as a means to
exploit transmit diversity. They are characterized by their easy
implementation and low detection complexity, which different
from space-time trellis codes does not esentially increase with
the size of the modulation alphabet employed. An extension
of orthogonal STBC to OFDM is rather straightforward. The
scheme can either be applied in a subcarrier basis, coding
along the time, or replacing the time by the frequency axis,
thus coding along frequency. In both cases, the optimality of
a widely linear receiver will depend on the ratio between the
lenght of a code block and the coherence time or bandwidth
of the channel respectively.

While extensive literature exists on the topic MIMO OFDM
that considers either perfect, e.g. [2], [3], [4], or no channel
knowledge at all, e.g. [5], [6], [7], to date, hardly any publica-
tion can be found that considers partial CSI in a multicarrier
context as it is understood here, namely as knowledge of
the transmit channel correlation matrix. However, partial CSI
at the transmitter is not difficult to obtain and proves very
advantageous, especially in spatially correlated channels [8].

In this work, orthogonal STBC are extended to OFDM
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with partial CSI. Channel knowledge is taken advantage of
by applying eigenbeamforming and conveniently distributing
the available transmit power along the resulting beams. The
optimum power distribution is found that minimizes an upper
bound of PEP and simulation curves are shown that back the
use of PEP as a design criterion. The remaining of the paper is
structured as follows. Section II introduces the system model
and some notation. In Section III an upper bound of PEP
is derived for the system model introduced in Section II. In
Section IV the extension of STBC to OFDM with partial CSI
is described and an optimum distribution of transmit power is
found using the upper bound derived in Section III. Section
V shows some simulation results and finally, in Section VI
conclusions are drawn.

II. SYSTEM MODEL

Given a zero-mean complex Gaussian distributed MIMO
channel with Mt transmit antennas, Mr receive antennas and
L delay paths the relationship between vector y

(b)
k ∈ C

Mr×1

of receive signals and a vector x
(b)
k ∈ C

Ne×1 of signals
transmitted over subcarrier k ∈ {0, . . . , N −1} during OFDM
block b ∈ {1, . . . , B} might be written as

y
(b)
k = HkUkP

1/2
k x

(b)
k + n

(b)
k (1)

where n
(b)
k ∈ C

Mr×1 is a white Gaussian distributed noise
vector, Hk ∈ C

Mr×Mt is the channel matrix at subcarrier k,
which is assumed to be approximately constant for the duration
of B OFDM blocks, Uk ∈ C

Mt×Ne is an arbitrary matrix with
orthonormal columns, P

1/2
k ∈ R

Ne×Ne is a diagonal matrix
that assigns a certain transmit power to each signal component
and E{|x(b)

k,n|2} = 1. Ne ≤ Mt is the number of spatial
dimensions of the signal to be transmitted over the channel.
If Ne = Mt and power is uniformly distributed over spatial
components it is easily shown that, under the assumption of
no CSI at the transmitter, this transmit structure is capacity
achieving.

The relationship between the channel matrices in the fre-
quency domain and the channel matrices corresponding to
each delay path in the time domain is given by [9]

Hk =
L∑

�=1

H
(t)
� ej2πn�k/N .

where n� is the delay of temporal path �. If an uncorrelated
scattering (US) assumption holds for the channel, i.e. the
fading processes of different delay paths are mutually uncor-
related, then the transmit covariance matrix in the frequency
domain is found to be

R = E
{

HH
k Hk

}
=

L∑
�=1

R
(t)
� , (2)

which turns out to be independent of frequency. Therefore, the
conclusion can be drawn that partial knowledge as considered
here provides information about the spatial structure of the
channel but not about its spectral characteristic. In [10] it
has been shown that, assuming complex Gaussian distributed

entries in the channel matrices and spatial decorrelation of
the fading process at the receiver, for a system model as
given by Eqn. 1 the optimum matrix Uk has the eigen-
vectors of the transmit covariance matrix of the channel as
columns. This result can be readily extended to channels
showing spatial correlation at the receiver. As a consequence,
index k is henceforth left out and U will be referred to as
eigenbeamforming matrix. Furthermore, due to the fact that
no information about the spectral characteristic of the channel
is available at the transmitter there is no reason for a frequency
dependent allocation of transmit power. Accordingly, a unique
power allocation matrix P will be applied to all subcarriers.
Taking into account these observations and arranging all B
OFDM blocks in a matrix format our system model can be
compactly expressed as

Y k = HkUP 1/2Xk + Nk,

where
Y k = [ y

(1)
k y

(2)
k · · · y

(B)
k

],

Xk = [ x
(1)
k x

(2)
k · · · x

(B)
k

],

Nk = [ n
(1)
k n

(2)
k · · · n

(B)
k

].

For purposes of clarity, the following notation is introduced
that will be used for the derivation of an upper bound of PEP
in the next section. Ã = IL ⊗ A, ωk,� = e−j2πkn�/N and
hT

�,m = [H(t)
� ]m,•, where [A]r,• denotes the rth row of matrix

A.

III. PAIRWISE ERROR PROBABILITY

Considering all dimensions of a transmitted signal,
which can be expressed in matrix form as X =
[ X0 X1 · · · XN−1 ], a maximum-likelihood detection
of the signal at the receiver yields

X̂ = arg min
X

N−1∑
k=0

∥∥∥Y k − HkUP 1/2Xk

∥∥∥2

. (3)

The probability that in Eqn. 3 X̂ is equal to X ′ having
transmitted X conditioned on a particular channel realization
is called PEP. For our system model this probability can be
expressed in closed form using the Gaussian error function
[5],

PX̂(X̂ = X ′|X;H) = Q

(√
d2(X,X ′;H)

2σ2

)
, (4)

where σ2 is the variance of the complex-valued noise pro-
cess, H stands for a particular channel realization and
d(X,X ′,H) is the distance of the two transmit signals at
the receiver, which is given by

d2(X,X ′;H) =
N−1∑
k=0

∥∥∥HkUP 1/2∆k

∥∥∥2

, (5)

with ∆k = X ′ − X . Since at the transmitter no information
about the instantaneous channel realization is available, it is
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appropriate to calculate the expectation of Eqn. 4 over all
possible channel realizations, which leads to the ergodic pair-
wise error probability. However, for this expectation no closed
solution has been found. Fortunately, Eqn. 4 can be tightly
upperbounded using the Chernoff bound for the Gaussian error
function as

PX̂(X̂ = X ′|X;H) ≤ e−
d2(X,X′;H)

4σ2 , (6)

whose mean value will give an upper bound for the ergodic
pairwise error probability. In order to arrive to a meaningful
expression for the expected value of this upper bound some
algebraic manipulations on Eqn. 5 are needed, viz.

d2(X,X ′;H) =

=
Mr∑

m=1

hT
m

(
N−1∑
k=0

ΩkUP 1/2∆k∆H
k P 1/2UHΩH

k

)
h∗

m

=
Mr∑

m=1

hT
mŨP̃

1/2
N∑

k=1

Ω′
k∆k∆H

k Ω′,H
k︸ ︷︷ ︸

GTG∗

P̃
1/2

Ũ
H
h∗

m (7)

=
Mr∑

m=1

hT
mŨ P̃

1/2
GTG∗P̃

1/2
Ũ

H
h∗

m

=
Mr∑

m=1

zT
m R(t),H/2Ũ P̃

1/2
GTG∗P̃

1/2
Ũ

H
R(t),1/2︸ ︷︷ ︸

M

z∗
m

=
Mr∑

m=1

zT
mMz∗

m (8)

where,
Ωk = [ ωk,1 · · · ωk,L ]T ⊗ IMt

,

Ω′
k = [ ωk,1 · · · ωk,L ]T ⊗ INe

,

hT
m = [ hT

1,m · · · hT
L,m ],

R(t) = MrE{h∗
mhT

m} and R(t) = R(t),1/2R(t),H/2. For
these last equalities the assumption has been made that all
MISO channels that make up the MIMO channel exhibit the
same statistics and thus E{h∗

mhT
m} does not depend on m.

Also, it has been implicitely assumed that R(t) is a full-rank
matrix, which will be true with probability tending to 1 from
an algebraic point of view. Note that the components of zm

realizations of statistically independent, Gaussian distributed
random variables. If we additionally assume spatially decor-
related fading processes at the receiver then,

E{z∗
mzT

m′} =
δm,m′

Mr
I .

Considering this property of vectors zm, the expectation of
the upper bound in Eqn. 6 can be easily computed and yields

PX̂(X̂ = X ′|X) ≤
(

ρ∏
r=1

(
1 +

λr(M)
4σ2Mr

))−Mr

(9)

Here λr(M) are the eigenvalues of matrix M and ρ its
rank. Finally Eqn. 9 can be rewritten in compact form as a
determinant,

PX̂(X̂ = X ′|X) ≤
(

det
(

I +
M

4σ2Mr

))−Mr

.

This expression provides us with a figure of merit that de-
pends on all relevant design parameters at the transmitter,
e.g. modulation alphabet, signalling scheme, transmit power,
etc., and includes the channel knowledge available at the
transmitter, i.e. the transmit covariance matrix. For high values
of SNR and depending on the geometry of the transmit signals,
pairwise error probability might provide a good estimation
of the bit error rate if the union bound is used. But even
for low SNR pairwise error probability will show a certain
correlation with the expected bit error rate. This is the main
motivation for using pairwise error probability as a design
measure. Following this idea the following criterion for the
transmitter design can be set up,

max
G, P : tr{P} = PT

{
min
X, X′

det
(

I +
M

4σ2Mr

)}
, (10)

where PT is the transmit power budget per subcarrier. When
no CSI is available at the transmitter, we can still perform some
transmitter design considering the region of high SNR values.
In that case the identity matrix can be neglected, Ne = Mt,
P = PT

Mt
I and the design problem reduces to

max
G

{min
X, X′

det(GTG∗)} ,

which is the criterion that implicitely inspires many ap-
proaches that do not consider any channel knowledge at the
transmitter (s. Section I).

Solving Eqn. 10 is not a trivial problem. Moreover, the
result would yield the optimum code for a given transmit
covariance matrix, i.e. the search for the optimum code should
be repeated every time the channel statistics change. Here
we will focus on a less ambitious goal. Given a particular
signaling scheme such as orthogonal space-time block codes
the optimum power allocation matrix P will be identified that
maximizes the criterion set up above. Note that in this case
the signalling scheme employed determines matrix factor G
and the maximization of Eqn. 10 is simply carried out over
the choice of P .

IV. EXTENDED STBC

Orthogonal space-time block codes [1] are characterized by
their easy implementation and low detection complexity, which
different from space-time trellis codes does not essentially
increase with the size of the modulation alphabet employed.
Given a number S of symbols ss drawn from a certain
modulation alphabet A, these symbols are arranged in a code
block Ci ∈ C

Mt×C according to the following construction
rule,

Ci =
S∑

s=1

(Asss + Bss
∗
s) ,
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where As ∈ R
Mt×C and Bs ∈ R

Mt×C are chosen so that for
any set of symbols ss

CiC
H
i =

S∑
s=1

|ss|2I .

For Mt = 2 it is possible to find a code such that S = C
whereas for Mt > 2, it necessarily holds S < C, which
implies a rate penalty of S/C.

Aiming at maximizing Eqn. 10 over the choice of P ,
we first consider B = 1 and two transmit signals X =
[ C1 C2 · · · CK ] and X ′ = [ C ′

1 C ′
2 · · · C ′

K ]
with K = N/C. Observing Eqn. 7 it is easy to note that,
for any realization of the channel and an arbitrary matrix P ,
the minimum distance of two transmitted signals X and X ′

at the receiver is reached when these only differ in one code
block. This necessarily implies that the mean of the upper
bound is maximized for this choice of transmit signal pairs
and consequently the minimum for the determinant in Eqn.
10 is reached. Now, substituting this pair of transmit signals
in Eqn. 10 we obtain,

GTG∗ =
iC−1∑

k=(i−1)C

Ωk∆k∆H
k ΩH

k ,

which if (nL − n1)(C − 1)/N � 1 can be approximated as

GTG∗ ≈ Ω(i−1)C


 iC−1∑

k=(i−1)C

∆k∆H
k


ΩH

(i−1)C

It can be easily shown that further minimization of the
determinant in Eqn. 10 is now reached if the two differing
code blocks Ci and C ′

i do in turn differ in only one symbol
being the distance between both symbols, e.g. ss and s′s,
the minimum distance dmin between any two symbols in A.
Considering this and replacing in the last expression we get,

GTG∗ ≈ d2
minΩ(i−1)CΩH

(i−1)C . (11)

The condition (nL − n1)(C − 1)/N � 1 is equivalent to
the condition (C − 1)∆f � 1/(nL − n1)∆t, where ∆f and
∆t stand for the frequency and time sampling interval of the
OFDM system respectively. 1/(nL − n1)∆t is a measure of
the coherence bandwidth of the channel. Thus this condition
demands a coherence bandwidth much larger than the span
of a block code in the frequency domain, which considering
typical values of block length and coherence bandwidth is a
realistic assumption. Now, using Eqn. 11, M can be rewritten
as

M = d2
minR(t),H/2Ω(i−1)CUPUHΩH

(i−1)CR(t),1/2

and applying the identity det(I + AB) = det(I + BA) to
the determinant in Eqn. 10 we obtain

det
(

I +
1

4σ2Mr
d2
minPUHΩH

(i−1)CR(t)Ω(i−1)CU

)
,

where, if decorrelation between different temporal paths is
assumed, R(t) becomes block diagonal and

R = ΩH
(i−1)CR(t)Ω(i−1)C ,

which is the covariance matrix in the frequency domain (cf.
Eqn. 2). Since U is the matrix of eigenvectors of this covari-
ance matrix the optimization problem of Eqn. 10 symplifies
to

max
P : tr{P} = PT

{
det
(

I +
1

4σ2Mr
d2
minPΛ

)}
,

where Λ is the matrix of eigenvalues of R. The solution
to this optimization problem is the well-known waterfilling
distribution of transmit power

Pn = max
{

ν − 4σ2Mr

λnd2
min

, 0
}

,

where ν is chosen to satisfy the constraint tr{P } = PT .
Following the same reasoning it is straightforward to show
that exactly the same result is obtained if we consider B =
C and transmit signals X = [ C0 C1 · · · CN−1 ].
Interestingly, this result coincides with the one presented in
[11] for a spatially correlated, flat fading MISO channel using
an upper bound of symbol error probability as criterion.

Finally, for the sake of fairness it should be mentioned
that shortly before the acceptance of this paper the authors
have become aware of [12], where assuming partial CSI at
the transmitter optimum linear precoding for space-time codes
has been investigated. Our result turns out to be a particular
case of the more general result obtained there. This somehow
undermines the originality of the result itself. However, its
derivation departing from a multicarrier context offers insights
that are not provided by [12].

V. SIMULATION RESULTS

In order to verify the optimality of the power distribution
derived in the previous section some simulations have been
carried out. The OFDM scheme employed has 1024 subcar-
riers and 135 Mhz bandwidth and the modulation alphabet is
8PSK. We have two transmit antennas and one receive antenna,
thus, the STBC corresponds to the well-known Alamouti
scheme.

Channel A, which is the first of the two channels we will
consider, consists of two temporal paths. The second path
exhibits a delay of 60 samples and an attenuation of 3 dB
with respect to the first. The matrix of eigenvalues is given by

ΛA = diag{1.9628 0.0372} .

From this eigenvalue profile we note that the channel is
strongly correlated. In Fig. 1 BER simulation results are de-
picted for three different power distributions. Uniform power
distribution, which is optimum if no CSI is available, a
waterfilling distribution that maximizes the capacity of the
average channel [8] (cap wf) and the waterfilling distribution
derived in the previous section (pw wf). Solid curves were
obtained using an ML detector at the receiver. Dashed lines
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correspond to the simple widely linear receiver structure for
orthogonal STBC.

Due to the frequency selectivity of the channel, the curves
corresponding to the simple linear detection show an error
floor for high values of SNR. The waterfilling approaches
exploit the partial channel knowledge and benefit from antenna
gain whereas standard Alamouti tries to exploit a diversity
that in this case the channel does not offer. As a consequence,
we observe a performance loss with respect to the waterfilling
approaches that amounts to 3 dB at 10% BER. Though slightly,
still, a performance gain of the PEP-based waterfilling can
be observed with respect to the capacity-based waterfilling.
However, the essential difference of both approaches is that
while capacity-based waterfilling only adapts to the channel
statistics, PEP-based waterfilling adapts to both channel statis-
tics and modulation alphabet employed.
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CSI pw wf ML

Fig. 1. Performance curves for channel A

Channel B consists of 24 temporal paths with a maximum
delay of 184 samples and an exponential profile with a decay
rate of 0.5 dB per tap. The matrix of eigenvalues is given by,

ΛB = diag{1.7180 0.2820} .

From this eigenvalue profile we note that channel B shows
a weaker spatial correlation than channel A. In the curves
(cf. Fig. 2), this translates into a reduced performance gap
between waterfilling approaches and standard Alamouti. The
reason for that is the increase in spatial diversity that channel B
offers compared to channel A, from which standard Alamouti
profits. Furthermore, due to the stronger frequency selectivity
of channel B, performance degradation of linear receivers
becomes somewhat larger.

VI. CONCLUSION

In the present work we have extended orthogonal STBC
to OFDM with partial CSI at the transmitter. To this end,
based on an upper bound of PEP, the optimum transmit power
distribution has been found that allows the transmitter to

0 2 4 6 8 10 12 14 16 18 20
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10
−2

10
−1

10
0

SNR

B
E

R

No CSI
No CSI ML
CSI cap wf
CSI cap wf ML
CSI pw wf
CSI pw wf ML

Fig. 2. Performance curves for channel B

adapt to the channel statistics choosing operational points that
smoothly range from standard Alamouti (completely uncorre-
lated channel) to beamforming (completely correlated chan-
nel). Simulation results were shown that verify the optimality
of our solution.
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