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∞

skin-friction coefficient

h compression-decompression corner height
E total energy
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M =
U
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p static pressure
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qx, qy, qz heat fluxes in respective direction
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ρ∗∞U∗

∞δ∗

µ∗
∞

Reynolds number based on boundary layer thickness
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Reynolds number based on momentum thickness and
wall viscosity

t time



X Nomenclature

T static temperature
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u, u1 streamwise velocity component
v, u2 spanwise velocity component
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Abstract

Well-resolved Large-Eddy Simulations (LES) are performed in or-
der to investigate flow phenomena and turbulence structure of the tur-
bulent boundary layer along a supersonic compression-decompression
ramp. For the first time it was possible to reproduce directly a ref-
erence experiment with a free-stream Mach number of M∞ = 2.95 and
a Reynolds number based on the incoming boundary-layer thickness of
Reδ0

= 63560. The effect of subgrid-scales is modeled by the approxi-
mate deconvolution model.

An analysis of the results shows a good agreement with reference ex-
periment in terms of mean quantities and turbulence structure. The
computational data confirm theoretical and experimental results on
fluctuation-amplification across the interaction region. In the wake of the
main shock a shedding of shocklets is observed. The temporal behavior
of the coupled shock-separation system agrees well with experimental
data. The simulation data provide indications for a large-scale shock
motion. Also the existence of three-dimensional large-scale streamwise
structures, commonly referred to as Görtler-like vortices, is confirmed.
The LES provide a reliable and detailed flow information, which helped
to improve the understanding of shock-boundary-layer interaction con-
siderably.

Kurzfassung

Mittels gutaufgelöster Grobtruktursimulationen (LES) werden
Strömungsphänomene und Struktur der turbulenten Grenzschicht
entlang einer Kompressions-Dekompressions-Rampe bei Überschal-
lanströmung untersucht. Zum ersten Mal war es möglich, ein Bezug-
sexperiment mit einer Anström-Machzahl von M∞ = 2.95 und einer
Reynoldszahl von Reδ0

= 63560 direkt zu reproduzieren. Eine Anal-
yse der Resultate zeigt eine gute Übereinstimmung zwischen Simula-
tion und Referenzexperiment hinsichtlich statistischer Mittelwerte, wie
z.B. der Stoßposition, Lage von Strömungsablösung und -wiederanlegen,
Wandreibungs- und Oberflächendruckverteilungen und Turbulenzstruk-
tur. Unmittelbar hinter dem Stoßsystem werden schwache, eingebettete
Stöße generiert, die stromab konvektieren. Anhand der Simulationsdaten
können auch Hinweise für eine großskalige Stoßbewegung gefunden wer-
den. Ebenfalls kann die Existenz dreidimensionaler, großer, stromab-
orientierter Görtler-artiger Wirbel bestätigt werden.





Chapter 1

Introduction

Design of new high-speed vehicles requires a detailed knowledge of
the flow behavior at supersonic and hypersonic speeds. Traditionally, the
experiment was the major source of such knowledge. Growing computer
power and development of reliable numerical techniques made it possi-
ble to obtain more detailed data from numerical modeling. Currently
the flow field around an entire aircraft configuration can be modeled
numerically based on inviscid and viscous models (Agarwal, 1999). Uti-
lizing the Euler equations allows to capture the global flow structure,
but because viscosity is neglected it cannot predict separation related to
viscous-inviscid interaction (e.g. Volkov et al. (2002); Volkov & Loginov
(2000)). Obtaining reliable results in case of turbulent flow, which is
virtually every flow encountered in practical applications, is even more
complicated. In spite of more than a century of research on turbu-
lent motion, a closed theory still does not exist. Shock waves and their
interaction with turbulent boundary layers are accompany flight at su-
personic speeds. The shock wave / turbulent boundary layer interaction
(SWTBLI) can have very complicated appearance. It usually occurs in
inlets, near deflected control surfaces, near surfaces junctions, and has
a big influence on structural loads, sometimes causing aircraft damage.
This necessitates a reliable prediction tool with the ability to capture all
relevant physical phenomena.

Two basic ways of computing turbulence have traditionally been di-
rect numerical simulation (DNS) and Reynolds-averaged (RANS) model-
ing. In the former, the full, time-dependent, Navier-Stokes equations are
solved numerically, essentially without approximations. The results are
expected to be equivalent to experimental ones. In the latter, only the
statistical mean flow is computed, and the effect of the turbulent fluctu-
ations is modeled according to a variety of physical approximations. It
was realized early that direct numerical simulations were too expensive
for most cases of industrial interest, while Reynolds-averaged modeling
was too dependent on the characteristics of particular flows for being
generally applicable. Large-eddy simulations (LES) were developed as
an intermediate approximation between these two approaches, the gen-
eral idea being that the large, non-universal, scales of the flow were to
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be computed explicitly, as in DNS, while the small scales were mod-
eled. The hope was that the small scales, which are neglected from flow
inhomogeneities and particular boundary conditions by several steps of
the turbulent cascade, would be universal (independent of the particu-
lar flow) and isotropic enough for a single simple model to be able to
represent them in all situations.

1.1 Flow physics of SWTBLI

For supersonic flows the interaction of turbulent boundary layers with
shocks and rarefaction waves is one of the most prevalent phenomena
governing the overall flow structure. Research on SWTBLI interaction
commonly employs a range of canonical flow configurations. Among the
canonical configurations two- and three-dimensional and axisymmetric
geometries are considered: impinging normal shocks, oblique-shock re-
flections, compression ramps and one- and two fins mounted on a flat
plate, cavity flows. For a detailed survey of the current knowledge on
SWTBLI, mainly drawn from experiments, the reader is referred to Del-
ery & Marvin (1986), Settles & Dolling (1990), Smits & Dussauge (1996),
Zheltovodov (1996), Andreopoulos et al. (2000) and Dolling (2001). A
generic feature of such flows is that the shock wave, formed by a deflected
surface or by an external shock generator, alters the supersonic turbulent
boundary layer developing along the surface. The changes can be local,
but for sufficiently large pressure rise, the boundary layer separates and
a separation region with reverse flow at the wall appears. The pressure
distribution reveals a characteristic plateau region with almost constant
pressure for the developed separation zones.

A compilation of a large range of available experimental data is pro-
vided by Settles & Dodson (1991, 1994). More than hundred studies were
subjected to a test based on rigorous criteria and nineteen high-quality
experiments on supersonic and hypersonic SWTBLI, suitable for use in
turbulence modeling, were extracted. The data include axisymmetric,
two- and three-dimensional interactions in a wide range of Mach and
Reynolds numbers. Settles & Dodson (1994) recognized that selected
cases do not cover realistic flight conditions for a modern aerospace ve-
hicle, which operates on higher Mach and Reynolds numbers. On the
other hand, currently only a low Reynolds number range is affordable
for DNS/LES simulations due to limited computer power. Very few ex-
periments exist in this range, making validation of DNS/LES difficult.
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Figure 1.1: Examples of canonical configurations.

Recently some efforts in this direction are made by Bookey et al. (2005).
Engine-inlets as well as some other elements of supersonic planes

often use successive forward and backward-facing ramp configurations,
so that along with simplified configurations (figure 1.1a,b) also generic
compression-decompression and decompression-compression ramps (fig-
ure 1.1c,d) are investigated. These interactions combine the effects of
the mean shear, a longitudinal pressure gradient, the streamline curva-
ture, volumic compression, and unsteady effects caused by separation.
Seminal contributions on compression-corner flows were made by Settles
et al. (1979), Dolling & Murphy (1983), and Smits & Muck (1987).

Essential flow phenomena for compression-decompression ramps are
sketched in figure 1.2, following Zheltovodov (1991). The undisturbed
incoming turbulent boundary layer is deflected at the compression cor-
ner. The resulting compression shock penetrates into the boundary layer
where the penetration depth depends on the local Reynolds number
(Adamson & Messiter, 1980). For sufficiently large deflection angles
the rapid compression within the boundary layer results in a region of
mean-flow separation near the compression corner. The separation re-
gion is surrounded by a detached shear layer which reattaches at the
deflected part of the compression ramp. A λ-shock system is generated
near the separation region. The forward foot of the λ-shock originates
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from the region of flow separation, the rearward foot from the region of
flow reattachment. Further downstream, the reattached boundary layer
reaches the decompression ramp and passes through the Prandtl–Meyer
expansion. Even further downstream, the boundary layer relaxes again
towards a developed zero-pressure-gradient boundary layer.

In figure 1.2 separation and reattachment lines are indicated by S
and R, respectively. Turbulence is amplified by interaction with a rapid
compression within the boundary layer (item 1) and by direct interaction
with the shock in the external flow, item 2. Note also that the shock
foots spread out towards the wall due to reduced local Mach number and
due to turbulent diffusion. Item 3 points to the damping of turbulent
fluctuation by the interaction with the expansion wave at the expansion
corner. After reattachment at the deflected part of the compression
ramp a turbulent boundary layer is reestablished, item 4. Experimental
and computational results, which are discussed in section 4, support
the existence of pairs of large counterrotating streamwise vortices in
the reattachment region, item 5. Within the area of flow separation
the reverse mean flow has the character of a wall jet which exhibits
indications of relaminarization, item 6.

The shock-turbulence interaction in free and wall-bounded flows is re-
viewed by Andreopoulos et al. (2000). Turbulence amplification through
shock wave interactions is a direct effect of the Rankine-Hugoniot rela-
tions applied in the instantaneous sense. In turn changing conditions in
front of and behind the shock cause it to deform and oscillate. The mu-
tual influence makes the interaction very complex. Three major factors
in the interaction can be identified: mean flow compression across the
shock, shock front curvature, and unsteady shock front motion. Kovasz-
nay (1953) suggested to decompose small-amplitude fluctuations into
three elementary modes of mutually independent fluctuations: vorti-
cal, acoustic, and entropic. Linear interaction analysis (LIA), developed
by Ribner (1954), relates the turbulent fluctuations downstream of the
shock wave with the orientation, amplitude, and length scale of inci-
dent elementary wave. LIA, assumed a small fluctuation, such that the
Rankine-Hugoniot condition can be linearized, also valid in case of evi-
dent shock front deformation. On the other hand rapid distortion theory
(RDT) was found inappropriate for the analysis of shock/turbulence in-
teraction, since the shock front curvature and the shock front unsteadi-
ness cannot be accounted for in the analysis (Lee et al., 1997). Anyiwo
& Bushnell (1982) identify primary mechanisms of turbulence enhance-
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Figure 1.2: Essential flow phenomena in compression ramp flows (for expla-
nations see text on page 4)

ment: amplification of the vorticity mode, generation of acoustic and
entropy modes from the interaction, and turbulence pumping by shock
oscillations.

Near the decompression corner the flow experiences a short region
of favorable pressure gradient, as well as stabilizing effects of convex
curvature. It is found that the expansion wave / boundary layer inter-
action reduces the intensity of turbulent fluctuations (Smits & Wood,
1985; Zheltovodov & Yakovlev, 1986). The experimentally determined
temperature/velocity correlation coefficient of about 0.8 supporting the
validity of the strong Reynolds analogy (SRA) of Morkovin (1962) in
this region. Furthermore, a rapid distortion analysis demonstrated rea-
sonable agreement with the experimental results. Knight et al. (2003)
provide a review of the compressible turbulent boundary layers in the
compression/expansion corners.

The unsteadiness of the shock is an important feature of separated
flows. It was observed for different configurations: two-dimensional and
swept corner interactions and wall-mounted blunt fins. The shock foot
motion can be described by two primary components: a low frequency,



Introduction

large-scale motion and a high frequency, small-scale motion. The char-
acteristic frequencies of these components differ significantly: in the
unswept compression corner interaction the order of magnitude of the
first motion it is about 100Hz, while for the latter one is about 10000Hz
Dolling (2001). Note that the use of the terms high – low frequency and
large – small scales refer to the shock, not the turbulent scales of the
boundary layer. Andreopoulos & Muck (1987) found that small-scale
shock oscillation is indeed driven by the oncoming large-scale turbulent
fluctuations. Erengil & Dolling (1991) confirmed their conclusions, eval-
uating a correlation between the wall pressure fluctuations beneath the
incoming boundary layer and the shock foot velocity. The large-scale
shock motion (LSSM) was also observed. There are several theories try-
ing to explain LSSM. According to the experiment of Erengil & Dolling
(1991) the large-scale motion is a result of the shock displacement due
to the expansion and contraction of the separation bubble. A physical
model of the shock unsteadiness was developed from these observations,
in which the expansion and contraction of the separation bubble dis-
places the shock upstream or downstream. Plotkin (1975) suggested a
one-dimensional theory, which is based on perturbation of a shock by
random fluctuations in the incoming turbulent flow. This model mimics
the manner analogous to linearly damped Brownian motion, in which
relatively broadband perturbations in the incoming turbulent flow lead
to relatively low-frequency motion of the separation bubble and its asso-
ciated shock system. Recently Poggie & Smits (2001, 2005) re-evaluate
data of blunt fin interactions and reattaching shear layers and found
that Plotkin’s theory can describe shock motion with good accuracy.
Recently J.-P. Dussauge & J.-F.Debiève (2006) in their shock reflection
experiment found a connection between downstream vortical structure
and low frequency shock motion. The vortical structures have frequency
scales of the same order as the dominant shock motion frequencies. A
frequency scaling based on the separation length and on the upstream
external velocity as suggested formerly by Erengil & Dolling (1991) is
likely to be the proper scaling for the flow. Finally, the experimen-
tal setup might have an artificial influence on large-scale low-frequency
shock motion (Dolling, 2001). For example, the Görtler vortices develop-
ing in the nozzle of the wind tunnel may introduce temporal variations
in the incoming boundary layer, which cause LSSM.

Streamwise vortices affect the turbulence structure and the properties
of the mean flow significantly (Inger, 1977; Brazhko, 1979; Zheltovodov
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et al., 1983; Zheltovodov & Yakovlev, 1986; Floryan, 1991; Simeonides,
1993; Lüdeke et al., 2004). Probably the first who observed and docu-
mented the streamwise vortices in reattaching supersonic turbulent flow
was Ginoux (1971). Experiments on backward facing steps and axisym-
metric hollow cylinder flare showed a striation pattern at the surface
with a wavelength of about two to three boundary layer thicknesses. An
influence of streamwise vortices on skin-friction and heat-transfer distri-
bution in spanwise direction and limiting streamline pattern with saddle
and nodal points near reattachment was suggested. Based on oil-flow vi-
sualizations Zheltovodov et al. (1983) proposed a more detailed pattern
of limiting streamlines presented in figure 1.3(a). Along the reattach-
ment line (divergence line in oil-flow pattern) nodal and saddle points
can be identified. Downstream of the reattachment line clear footprints
of vortices appear. Inside the separation zone such footprints are only
weak. From the surface flow pattern also the existence of singular (sad-
dle and nodal) points on the upstream located convergence line can be
implied. There are two convergence lines near separation, caused proba-
bly by the unsteadiness of the separation-shock system. Based on these
observations a Görtler-like vortex configuration can be inferred as shown
in figure 1.3(b).

A generic model of the deflected X-38 flap was investigated by Lüdeke
et al. (2004) using a 20◦-degree ramp under M∞ = 3. Artificial pertur-
bations were introduced near the leading edge of the flat plate by using
thin foils in the shape of a zigzag band. The influence of the pertur-
bation magnitude and wavelength on the vortices was investigated by
varying the thickness of the foil and cusp distance. The vortices did
not appear until the perturbation magnitude exceeded a certain value,
i.e. as long as the wall can be assumed as hydraulically smooth. Differ-
ent perturbation wavelengths result in similar vortex width, and circular
vortices were most amplified. The facts support the interpretation that
a mechanism selecting a certain wavelength exists.

1.2 Referenced experiments

A series of experiments for forward- and backward facing steps was per-
formed in the Institute of Theoretical and Applied Mechanics by Zhel-
tovodov et al. (1983); Zheltovodov & Yakovlev (1986); Zheltovodov et al.
(1987); Borisov et al. (1993). The data obtained in the experiments are
well validated and were found to be accurate enough to include them
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Figure 1.3: Experimentally suggested flow field with streamwise vortices.

into the database of Settles & Dodson (1994). The experimental data
are available in tabulated form and described in detail by Zheltovodov
et al. (1990). The experiments were performed using two models of
the same shape, but of different linear scales: the big one had a step
height of h = 15mm, whereas h = 6mm for the small model. The sur-
face deflection angles were β = ±8◦;±25◦;±45◦; 90◦, the negative sign
corresponding backward facing steps.

The mean flow is investigated in detail for the big forward facing step
with a free-stream Mach number of M∞ = 2.9 ± 1.5% and Reynolds
number of Reδ0

= 110000 − 150000. For this purpose static and pitot
pressure are measured along vertical lines at several downstream sta-
tions, the velocity was obtained using Crocco’s relation. The validity
of this relationship has been verified by optical measurements of the
density field (Zheltovodov, 1979). The surface-pressure distribution and
the skin-friction coefficient, obtained from the velocity profiles, are also
available. Surface oil-flow techniques and Schlieren photographs are used
for flow visualization. Additional experiments have been performed at
M∞ = 2.25 and 4 (Zheltovodov et al., 1983).

The turbulence characteristics are investigated for the small model
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under free-stream conditions M∞ = 2.95 and Reδ0
= 63560 (Zhel-

tovodov & Yakovlev, 1986). A constant-current hot-wire measurement
was employed to obtain total temperature and mass-flux fluctuations,
based on the technique of Kovasznay (1953). The mass-flux fluctuation
was decomposed into density and velocity fluctuations using the strong
Reynolds analogy. The mean skin-friction measurements were performed
by the Global Interferometry Skin Friction technique (GISF) (Borisov
et al., 1993).

Heat transfer measurements for the small model were performed by
Zheltovodov et al. (1987) at free-stream conditions M∞ = 2.9 , Reδ0

=
86520 and M∞ = 4, Reδ0

= 100000. The data include adiabatic and
heated-wall temperature distributions and the heat transfer coefficient.

An experimentally obtained flow field structure and the measure-
ment stations are sketched in figure 1.4 for a 25◦-degree compression
ramp. The positions of the stations in terms of the downstream coor-
dinate measured along the wall from the compression corner position,
are summarized in table 1.1. Obviously, the big model allowed more
detailed measurements of the mean flow. The Reynolds numbers based
on the undisturbed boundary layer thickness are Reδ0

= 144000 and
Reδ0

= 63560 for big and small models respectively. Despite of signif-
icant Reynolds number differences, the mean flow structure is rather
similar if scaled in δ0 as shown by Zheltovodov & Yakovlev (1986), so
both experiments may be used together for a detailed analysis.

1.3 Prediction capabilities

As pointed out by Dolling (1998, 2001) and confirmed by a more recent
comprehensive analysis (Knight et al., 2003) the numerical prediction of
SWTBLI by statistical turbulence modeling is yet unsatisfactory. For
situations with shock-induced flow separation computational results em-
ploying Reynolds-averaged (RANS) turbulence modeling exhibit a large
scatter of predicted separation lengths for various geometrical config-
urations. Although numerous computations based on the Reynolds-
averaged Navier-Stokes equations (RANS) have been performed, cur-
rently only weak and moderate interactions, characterized by low super-
sonic Mach number or small flow deflection angles, can be predicted by
RANS computations without specific a posteriori adjustment of turbu-
lence models. For strong interactions, the results of RANS computa-
tions show generally a significant disagreement with experimental data
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Figure 1.4: Sketch of flow structure and measurement stations for big (a) and
small (b) forward facing steps with β = 25◦.

Symbol x∗
1, [mm] x1

1 -3.3 -8.05
2 -1.2 -2.93
3 -0.8 -1.95
4 -0.5 -1.22
5 0.5 1.22
6 1.1 2.68
7 1.25 3.05
8 1.7 4.15
9 2.35 5.73
10 3.1 7.56
11 5.0 12.20
12 6.25 15.24
13 7.85 19.15
14 9.85 24.02
15 11.7 28.54
16 13.6 33.17
17 15.05 36.71

Symbol x∗
1, [mm] x1

E1 -35. -15.42
E2 10. 4.41
E3 18. 7.93
E4 34. 14.98
E5 59. 25.99

(a) (b)

Table 1.1: Streamwise distance of the measurement stations for big (a) and
small (b) forward facing steps with β = 25◦.



11

in terms of surface pressure, skin friction, and heat transfer distribu-
tions. Furthermore, these approaches turn out to be unable to predict
the unsteadiness of the shock system, which is, however, a very impor-
tant feature of SWTBLI. Comprehensive summaries of the current status
of computational fluid dynamics (CFD) on the prediction of SWTBLI
are due to Zheltovodov et al. (1992); Zheltovodov (1996), and Knight &
Degrez (1998).

A main deficit of RANS approaches is that for unsteady flows, sta-
tistical turbulence modeling can be expected to reproduce the proper
temporal mean-flow behavior only if mean-flow time scales and fluctu-
ation time scales are separated so that standard assumptions involved
in turbulence modeling can be applied. This is not the case for SWT-
BLI because of its essential unsteadiness. Sinha et al. (2005) proposed a
shock-unsteadiness correction for k− ǫ, k−ω and Spalart-Allmaras tur-
bulence models. The simulations in 16, 20 and 24◦-degree compression
corners demonstrated an improvement over existing models, although
the length of the separation zone was not predicted correctly.

An alternative to RANS are the Large-Eddy-Simulation (LES) and
Direct Numerical Simulation (DNS) approaches. DNS recovers the en-
tire temporal and spatial flow information. Since all relevant flow scales
need to be resolved DNS is limited essentially by the available computer
power. In practice, only rather small Reynolds numbers and narrow
computational domains can be considered. The range of flow parame-
ters where most of experimental data are available cannot be reached.
Spatial and temporal resolution requirements can be lowered by employ-
ing LES at the expense of modeling the effect of discarded scales. For
LES, evolution equations for the low-pass filtered solution are solved.
The instantaneous interaction of these so-called resolved scales with the
remainder range of scales needs to be modeled. For a comprehensive
account of current LES the reader is referred to the textbooks of Sagaut
(2002); Garnier et al. (2007). Nevertheless, LES maintains the main ad-
vantages of DNS, namely providing the full spatial and temporal flow
information down to the smallest resolved scales. Based on recent ad-
vances in modeling and computing, LES nowadays can be considered
as the most appropriate numerical tool for the analysis of complex un-
steady transitional and turbulent flows. However, as pointed out by
Knight et al. (2003) and Zheltovodov (2004), even LES predictions need
to be interpreted with care.

LES simulations can be very expensive at high (experimental)
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Reynolds numbers mainly because of resolution requirements near the
wall. Different techniques are investigated in order to decrease computa-
tional costs. Detached-eddy simulation (DES) (Squires, 2004) and wall
modeling (Moin, 2002) are common examples. The DES approach at-
tempts to treat near-wall regions in a RANS-like manner, and treat the
rest of the flow in an LES-like manner. The second approach utilizes
wall functions, which provide an algebraic relationship between the local
wall stresses and the tangential velocities at the first off-wall velocity
nodes.

Zheltovodov (2004) and Knight et al. (2003) provide an extensive
comparison of RANS and LES, applied to supersonic compression ramps.
The numerical details of compression ramp simulations can be found in
appendix B. Probably the first attempt of an LES for a compression-
ramp flow was done by Hunt & Nixon (1995), who qualify their simula-
tion as a very large-eddy simulation. The results show some agreement
with the experiment of Dolling & Murphy (1983), e.g. in terms of the
shock-motion frequency. For a weak interaction at a free-stream Mach
number of M∞ = 3 and a ramp deflection angle of β = 8◦ no mean-
flow separation was found in the LES of Urbin et al. (1999), Kannepalli
et al. (2002), and El-Askary et al. (2003), although instantaneous re-
verse flow regions may exist. A thin separation zone was observed in
the DNS of Adams (2000) at M∞ = 3, β = 18◦. No large-scale shock
motion (LSSM) was found. The observed small-scale shock-motion has
a dominant frequency which is close to the inverse characteristic time
scale of bursting events within the incoming boundary layer. An instan-
taneous Schlieren-type visualization exhibits compression waves shed by
the main compression shock above the separated shear layer and down-
stream of the interaction. These DNS results were confirmed by the LES
of Stolz et al. (2001a) and by von Kaenel et al. (2004) for the same con-
figuration. For both LES the approximate deconvolution model (ADM)
was employed for sub-grid scale (SGS) modeling, whereas finite-volume
discretization is used in the latter.

The same free-stream flow parameters as in Adams (2000) were con-
sidered by Rizzetta et al. (2001) and El-Askary et al. (2003). Compu-
tations without SGS model agreed with LES with a Smagorinsky model
and with a dynamic model at the same resolution, indicating that the
effect of the employed SGS model was negligible. No agreement was
found with the results of Adams (2000) in terms of skin-friction and
surface-pressure distribution in the interaction area. Aside of the mod-
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eling issues, the main reason for this disagreement is that the incoming
boundary layers were different. A case with a strong interaction was
studied by Urbin et al. (2000) and Yan et al. (2000, 2001) at M∞ = 3
and β = 25◦. A range of deflection angles β = 8◦, 16◦, 20◦, 24◦, cor-
responding to experiments of Smits & Muck (1987), Dolling & Murphy
(1983) and data of Settles & Dodson (1991), was investigated by Rizzetta
& Visbal (2002). The latter case of β = 24◦ was also considered by Kan-
nepalli et al. (2002). However, for all these computations the momentum-
thickness Reynolds number of the incoming boundary layer was about
one to two orders of magnitude smaller than for the experiments. For
none of these computations a developed pressure plateau near the cor-
ner was observed, a result which is typical for low Reynolds numbers.
Also the separation length was not reproduced correctly. There was no
LSSM found and the temporal evolution of the shock-separation system,
in terms of the surface-pressure intermittency, exhibits quantitative dif-
ferences from the experiment. Recently Smits et al. (2006) presented
results for a DNS of a 24◦-compression corner at a free-stream Mach
number M = 2.9 and an incoming-boundary-layer momentum-thickness
Reynolds number of Reθ = 2900, corroborating the above findings. Only
a preliminary analysis and comparison with the experiment of Bookey
et al. (2005) at the same Reynolds number is provided. So far there is
to our knowledge no direct comparison with a compression-ramp experi-
ment. The only example of a successful comparison between experiment
and LES is the work of Garnier et al. (2002), who investigated impinging
shock / turbulent boundary layer interaction using a mixed-scale model
and found a good agreement of mean and turbulent quantities.

For some simulations the separation length agrees with the experi-
ment although the experimental Reynolds number is much larger. This
fact contradicts the dependency of the separation length on Reynolds
number as reported by Knight et al. (2003). Most of the currently avail-
able analysis is restricted to spanwise-averaged flow data and a detailed
investigation of the flow structure is not available. An open question is
the existence of large-scale periodic streamwise vortex structures in the
reattaching flow and their origin. Experimental oil-flow patterns suggest
the presence of pairwise counter-rotating vortices near reattachment. For
a transitional interaction Comte & David (1996) found Görtler-like vor-
tices for an LES of the boundary-layer along a generic body-flap configu-
ration at Reδ0

≈ 840, where δ0 is the incoming boundary-layer thickness.
It was shown that these vortices have a strong effect on local skin friction
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Parameter value
M∞ 2.95
β 25◦

Reδ0
63560

U∗
∞, [m/s] 614.6

T ∗
∞, [K] 108

ρ∗∞, [kg/m3] 0.314
µ∗
∞, [kg/(ms)] 6.89 × 10−6

δ∗0 , [mm] 2.27
δ∗1 , [mm] 0.79
δ∗2 , [mm] 0.15

Table 1.2: Free-stream conditions of the reference experiment.

and heat transfer.

Simulation considering more complex interactions with different
types of perturbations imposed onto the turbulent boundary layer
sequentially are not numerous. Xiao et al. (2003) used a hybrid
LES/RANS approach to calculate full 25◦ compression-decompression
ramp configuration at the same flow conditions as the experiment of
Zheltovodov et al. (1983). Knight et al. (2001) computed the backward
facing step at Reδ0

= 2000.

1.4 Objectives of the present work

The objective of the numerical investigation is a direct comparison with
an available experiment, along with a detailed investigation of the instan-
taneous and the averaged flow structure. For this purpose all flow param-
eters and the flow geometry are matched to an available experiment of
Zheltovodov et al. (1983) and Zheltovodov & Yakovlev (1986). The free-
stream Mach number is M∞ = 2.95, the Reynolds number based on the
incoming boundary-layer thickness is Reδ0

= 63560, the ramp deflection
angle is β = 25◦. The experimental conditions are collected in table 1.2,
where the data corresponding to the undisturbed boundary layer are in-
cluded. In the following we refer to the experiment at these conditions
as “reference experiment” (figure 1.4b). Additional experimental data
at M = 2.9 and Reδ0

= 144000 for the same geometry will be used and
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referred to as “higher-Reynolds-number experiment” (figure 1.4a). By
matching directly the experimental parameters, the prediction quality
of the employed sub-grid-scale model can be assessed without further
assumptions. Given a successful validation, the computational results
provide a reliable source for further analysis.

While the reference experiment is done for the entire compression-
decompression ramp configuration, in the simulation we split this config-
uration into two parts, namely, the compression- and the decompression-
corner part. The reason for splitting the problem into two parts is
twofold. First, the estimated computational cost of well-resolved LES
for the full configuration is rather large and leads to rather long compu-
tational times. Second, the compression-corner interaction is sufficiently
complex to justify a separate investigation. Preliminary compression-
corner results based on the analysis of limited statistical data were given
by Loginov et al. (2004c, 2006b).

In section 2 we provide the problem formulation and give a brief sum-
mary of the simulation method which is essentially the same as in Stolz
et al. (2001a). A simulation for the turbulent boundary layer along a flat
plate was used to provide inflow data for the compression ramp. Results
for this precursor simulation are summarized in section 3. The main
subject of this paper is the analysis of the compression-corner flow in
section 4. A discussion of results of the successive decompression corner
simulation is given in section 5. The last section 6 gives a summary and
final conclusions.





Chapter 2

Simulation method

2.1 Domain and grid

A well-resolved LES for the full configuration requires about 29 million
gridpoints. It requires a lot of memory (about 15 Gb) and computa-
tional time (about 35 000 CPUh), leading to huge simulations on a cur-
rent supercomputer. For this reason the domain of the full configuration
(figure 2.1a) was split into two parts, namely the compression and the
decompression corner part, as shown in figure 2.1(b). The domain size is
chosen according to the reference experiment, the arrows denote exper-
imental stations E1 − E4 (figure 1.4b). The domain does not cover the
experimental station E5 since it would almost double the gridsize for the
same resolution requirements. The compression-corner domain is con-
tinued beyond the decompression corner position ensuring that outflow
boundary condition does not affect the upstream flow. The upstream
influence of the decompression corner is not modeled in the first simula-
tion. The inflow section of the decompression-corner domain is matched
to a cross-section of the compression-corner domain. The station E2
belongs to both domains, allowing for a cross-check of the results. The
spanwise domain size is chosen wide enough so that large-scale coherent
structures such as Görtler-like vortices can be captured.

A generalized-coordinate formulation of the compressible Navier-
Stokes equations (NSE) in conservation form is employed. The NSE
are written in the Cartesian (x1, x2, x3) physical space, using a transfor-
mation to computational space (ξ1, ξ2, ξ3) as detailed by Adams (1998).
The computational-space coordinates are orthogonal and normalized,
where ξ1 corresponds to the streamwise direction, ξ2 to the spanwise
direction and ξ3 to the wall-normal direction. Note that the lines
ξ1 = const and ξ3 = const are non-orthogonal in physical space, see
figure 2.2. In this figure a side-view of the computational meshes
of compression and decompression parts are shown, where only every
10th mesh line is displayed. For conciseness we use a tensor nota-
tion with summation convention. Since only two-dimensional configu-
rations in the (x1, x3)-plane are considered, the spanwise direction x2
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(a) (b)

Figure 2.1: Domain splitting.

Figure 2.2: Computational mesh (each 10th line is shown).

is orthogonal on the (x1, x3) plane and ξ2 is mapped onto x2 linearly.
Further domain and grid details are given below. In the following we
use synonymously {x1, x2, x3} ≡ {x, y, z}, {ξ1, ξ2, ξ3} ≡ {ξ, η, ζ} and
{u1, u2, u3} ≡ {u, v, w} for notational convenience.
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2.2 Governing equations

The compressible Navier-Stokes equations in curvilinear coordinates are
written as

∂

∂t

f

J
+

∂

∂ξ

FE

J
+

∂

∂η

GE

J
+

∂

∂ζ

HE

J
=

∂

∂ξ

FS

J
+

∂

∂η

GS

J
+

∂

∂ζ

HS

J
, (2.1)

where the conservative variables are f = {ρ, ρu1, ρu2, ρu3, E}. The
convective fluxes FE , GE , HE are defined as:

FE =





ρ(uξx + wξz)
ρu(uξx + wξz) + pξx

ρv(uξx + wξz)
ρw(uξx + wξz) + pξz

(E + p)(uξx + wξz)





, GE =





ρ(vηy)
ρu(vηy)

ρv(vηy) + pηy

ρw(vηy)
(E + p)(vηy)





,

HE =





ρ(uζx + wζz)
ρu(uζx + wζz) + pζx

ρv(uζx + wζz)
ρw(uζx + wζz) + pζz

(E + p)(uζx + wζz)





and FS , GS , HS are the diffusive fluxes:

FS =





0
τxxξx + τxzξz

τxyξx + τyzξz

τxzξx + τzzξz

−qxξx − qzξz + (uτxx + vτxy + wτxz)ξx + (uτxz + vτyz + wτzz)ξz





,

GS =





0
τyxηy

τyyηy

τyzηy

−qyηy + (uτyx + vτyy + wτyz)ηy





,

HS =





0
τxxζx + τxzζz

τxyζx + τyzζz

τxzζx + τzzζz

−qxζx − qzζz + (uτxx + vτxy + wτxz)ζx + (uτxz + vτyz + wτzz)ζz




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in the respective coordinate directions. J = ξxζz − ξzζx is the Jacobian
of the mapping (x, z) ↔ (ξ, ζ). A linear mapping of y to η results in a
constant mapping coefficient ηy = 1/Ly. The normal stresses are defined
as

τxx =
µ

Re

[
4

3

(
∂u

∂ξ
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∂ζ
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)
− 2

3
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3
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The viscous shear stresses are:

τxy =
µ

Re
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τyz =
µ
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.

The heat fluxes are defined as

qx = − µ

(κ − 1)M 2
∞PrRe

(
∂T

∂ξ
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∂ζ
ζx

)
,

qy = − µ
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∂T
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)
.

We assume the solution to be L2-periodic in x2. A perfect gas with
a specific-heat ratio of κ = 1.4 is assumed and the viscosity is calculated
according to Sutherland’s law

µ∗

µ∗
∞

=

(
T ∗

T ∗
∞

) 3
2 T ∗

∞ + 110.4

T ∗ + 110.4
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with a reference temperature T ∗
∞ = 108 K and a reference viscosity

µ∗
∞ = 6.89 × 10−6kg/(m s). Dimensional quantities are indicated by an

asterisk. Non-dimensionalization is done by

ui = u∗
i /U∗

∞ , ρ = ρ∗/ρ∗∞ , T = T ∗/T ∗
∞ ,

p = p∗/(ρ∗∞U∗
∞

2) , E = E∗/(ρ∗∞U∗
∞

2) .

ui denotes the Cartesian velocity component in xi direction, ρ is the
density, p is the pressure and E = p/(κ − 1) + ρuiui/2 is the total
energy. The reference length is the mean boundary-layer thickness of
the experiment δ∗0 = 2.27mm at the first reference station E1. The
boundary-layer thickness is measured as the distance from the wall where
99% of the mean free-stream velocity is reached. The time t is non-
dimensionalized by the characteristic time scale of the mean incoming
boundary layer at the reference station E1, δ∗0/U∗

∞ = 3.69µs.

2.2.1 SGS modelling

For LES, equations (2.1) are filtered at the expense of the appearance of
unclosed SGS terms. The resulting equations are solved with respect to
the filtered variables f̄ = G ∗ f , where G is the filter kernel of width ∆
and ∗ denotes a convolution operation. Here a brief description of basic
SGS model is given, the incompressible formulation is used in order to
highlight the general idea. In the traditional approach unclosed terms
are rearranged to form the SGS stress tensor τSGS

ij = uiuj − ūiūj . An
eddy-viscosity model assumes that

τSGS
ij = 2νT S̄ij ,

when different methods to define the eddy-viscosity νT can be used.
Here Sij = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the strain-rate tensor. The classical model

of Smagorinsky (1963) constructs νT as a product of a length scale and
a velocity difference at that scale:

νT = CS∆
(
∆(2SijSij)

1
2

)
,

where CS is the Smagorinsky constant. The similarity model of Bardina
et al. (1980) assumes turbulence scale invariance, thus τSGS

ij must be
similar to a stress tensor constructed from the resolved velocity field:

τSGS
ij = Cs( ̂̄uiūj − ˆ̄ui ˆ̄uj).
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Herêdenotes a second (test) filter with filter width k∆, (k > 1), Cs is
a scaling factor (usually about 1). Germano et al. (1991) proposed to
determine model constants dynamically instead of prescribing or tuning
them. The approach again uses the assumption of scale invariance by
applying the coefficient measured from the resolved scales to the SGS
range. Formally, the dynamic procedure is based on the Germano iden-
tity:

Lij = TSGS
ij − τ̂SGS

ij

where Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj is the resolved stress tensor and TSGS
ij = ûiuj −

¯̄ui ¯̄uj is the SGS stress at the test level. In the monotonically integrated
large-eddy simulation (MILES, sometimes also referred as ”unresolved
DNS“ or ”no-model“) approach τSGS

ij is not modeled explicitly. Instead
a numerical dissipation plays the role of SGS dissipation. For a more
comprehensive analysis and a discussion of different SGS models the
reader is referred to the review of Meneveau & Katz (2000).

In this work the deconvolution SGS model, namely the approximate
deconvolution model (ADM) of Stolz et al. (2001a) is used. A detailed
description of ADM can be found in this reference and in Stolz et al.
(2001b). Here, we only summarize the most important facts. With
ADM a discrete filter G is explicitly applied along with its approximate
inverse, the deconvolution operator QN ≈ G−1. The operator QN is
applied to the filtered variables f̄ in order to approximate the unfiltered
variables by f⋆ = QN ∗ f̄ . A key feature of ADM is that the flux
terms in (2.1) are computed directly using the approximately unfiltered
fields f ≈ f⋆ which are subsequently filtered explicitly with the discrete
filter G. To model the transfer of energy to scales which cannot be
represented on the computational mesh a relaxation term is added. No
a priori estimates for model parameters are needed. Inverse relaxation
times for density, momentum and energy are determined dynamically.
The equations solved have the following form

∂

∂t

f

J
+ G ∗ ∂

∂ξ1

FE

J
+ G ∗ ∂

∂ξ2

GE

J
+ G ∗ ∂

∂ξ3

HE

J
=

= G ∗ ∂

∂ξ1

FS

J
+ G ∗ ∂

∂ξ2

GS

J
+ G ∗ ∂

∂ξ3

HS

J
− χ(I − QN ∗ G) ∗ f ,

(2.2)

where all fluxes are computed with the approximately deconvolved solu-
tion f∗ = QN ∗ f . The relaxation parameter χ is estimated dynamically
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(Stolz et al., 2001a). For simplicity we will omit the overbar on fil-
tered quantities in the following, implying that all variables actually are
filtered variables if not mentioned otherwise.

During the simulations it can occur that at isolated instances small
flow regions are marginally resolved. In these cases, the deconvolution
applied to the filtered temperature which is required for computing the
energy transport term overamplifies numerical errors and can result in
negative deconvolved temperatures. Note that ADM is designed to am-
plify non-resolved scales before the computation of the nonlinear trans-
port. In such cases the deconvolved temperature is substituted by the fil-
tered temperature in the neighborhood of where the event occurred. This
approach is known as Landweber projection in regularized-deconvolution
procedures when a priori bounds on the deconvolved solution are pos-
sible (Bertero & Boccacci, 1998). During our simulations these events
occurred rarely (about once per 2000 time steps at a few random points
near mean-flow separation) so that an adverse effect on the results can
be excluded.

2.3 Discretization

For numerical integration, equations (2.2) are discretized on the mesh
described above. A 6th-order compact central finite-difference scheme
of Lele (1992) is used for discretizing all spatial derivatives at the in-
ner mesh points. The accuracy is decreased to 4th order at the first
point off the domain boundary and a one-sided approximation of 3rd
order is used at the boundary. Time advancement is done with an ex-
plicit low-storage 3rd-order Runge-Kutta scheme (Williamson, 1980). A
necessary condition for a stable time integration is that the eigenvalues
of the spatially discretized linearized Navier-Stokes equations lie within
the stability domain of the Runge-Kutta scheme. This stability crite-
rion is maintained by a dynamic time-step control derived from a scalar
model advection-diffusion equation. For a CFL number equal to 0.5
a typical timestep in the compression-corner calculation has a value of
about 1 × 10−3δ0/U∞, for a flat-plate calculation this value was about
2.8 × 10−3δ0/U∞. It is well known that linear central finite-difference
discretizations are generally not suitable for capturing shocks. However,
Stolz et al. (2001a) have demonstrated that for finite Reynolds num-
ber ADM is able to reproduce the filtered-shock solution without local
coupling to shock-capturing schemes. It should be emphasized that the
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exact filtered shock solution, where the high-wavenumber part of the
spectrum has been removed, is slightly oscillatory owing to the Gibbs
phenomenon.

2.4 Boundary conditions

Boundary data are imposed as follows. At inflow we prescribe all con-
servative variables f as function of time, using data from a separate
computation. For the compression corner calculation results of a flat
plate boundary layer calculation are used. This calculation in turn sup-
plies inflow conditions for the decompression corner. The rescaling and
recycling method of Stolz & Adams (2003) is employed for the flat plate
simulation, see section 3 for a discussion. Periodic boundary conditions
were applied in the spanwise direction. At the outflow a sponge-layer
technique is used (Adams, 1998). At the upper truncation plane of the
computational domain non-reflecting conditions are imposed. The wall
is assumed to be isothermal and no-slip conditions are enforced on the
velocity. The wall-temperature distribution is uniform in spanwise di-
rection, along the streamwise direction it is taken from the experiment
of Zheltovodov et al. (1987), where the wall is supposed to be adiabatic.
Since in this experiment the non-dimensional wall temperature on the
flat plate has a small difference compared to that of the considered case,
it was rescaled linearly. Then the data was smoothed and interpolated
onto the computational grid as shown in figure 2.3. Isothermal condi-
tions are preferable over adiabatic conditions since for the experiment an
almost constant temperature distribution in time was observed during
the measurements.



25

-20 -10 0 10 20

2.55

2.6

2.65

2.7

x1

Tw

Figure 2.3: Streamwise distribution of the wall temperature. smoothed
and interpolated values; △ experimental data (Zheltovodov et al., 1990)

rescaled to the reference experimental value of Tw.





Chapter 3

Flat plate boundary layer

A well known problem in the simulation of turbulent boundary layers
is that realistic inflow data are needed. Recently Xu & Martin (2004)
have reviewed different inflow generation techniques. Following them,
the inflow generation techniques can be organized into three categories:

1 spatially evolving boundary layer simulating the full transition pro-
cess;

2 using data from previous simulations (or data combined with those
from experiment);

3 various techniques using an instantaneous downstream flow field
(streamwise periodic boundary conditions, extended temporal ap-
proach, rescaling and recycling method, etc.).

A brief summary of available simulations can be found in appendix A.
A DNS of a spatially evolving turbulent supersonic flat-plate boundary
layer is conducted by Rai et al. (1995). A developed turbulent boundary
layer with a momentum thickness of Reθ ≈ 4500 was obtained by the
simulation of laminar-turbulent transition initiated by a blowing/suction
strip. This case is close to an experiment by Shutts et al. (case 55010501
in Fernholz & Finley (1977)) with Reθ ≈ 6000 and M∞ = 2.25. Later
Gatski & Erlebacher (2002) and Pirozzoli et al. (2004) repeated this DNS
on a finer grid. Their results showed that both the near-wall asymptotic
behavior and the log-law exhibit similarities with the incompressible case
when the van-Driest velocity transformation is applied. Similarly, the
Reynolds stresses also are independent of Mach number when scaled with
the mean density ratio as suggested by Morkovin (1962). The results also
showed that the total temperature fluctuations were not negligible. LES
of this case was performed by Spyropoulos & Blaisdell (1998) using a
dynamic Smagorinsky model and by Rizzetta & Visbal (2004), using
Smagorinsky, dynamic Smagorinsky and MILES approaches.

Guarini et al. (2000) employed a ”slow growth” assumption to sim-
ulate a turbulent boundary layer at Reθ = 1577. It is assumed that the
boundary layer grows slowly in the streamwise direction so that the tur-
bulence can be treated as approximately homogeneous in this direction.



Flat plate boundary layer

The slow growth is accounted for by a coordinate transformation and
a multiple-scale analysis, resulting in some extra terms in the Navier-
Stokes equations. The simulation confirmed the validity of mean flow
and turbulence scaling. An extended form of the Reynolds analogy was
also found to hold, nevertheless their results invalidate many of the as-
sumptions made in deriving SRA.

A similar technique called extended temporal direct numerical sim-
ulation (ETDNS) is used by Maeder et al. (2001) to investigate turbu-
lent boundary layers at different Mach numbers of M∞ = 3; 4.5; 6 and
Reθ ≈ 3000. Their results showed that compressibility effects on turbu-
lence statistics are small up to a Mach number of about 5. Additionally,
the ratio of the Reynolds shear stress to the turbulent kinetic energy is
approximately constant in the outer part of the boundary layer. Maeder
et al. (2001) also confirmed that the total temperature fluctuations are
not negligible, and that the streamwise velocity and temperature fluctu-
ations are not perfectly anti-correlated.

A compressible extension of the rescaling and recycling method
(RRM) of Lund et al. (1998) is used by Yan et al. (2002a,b) for adiabatic-
and isothermal-wall boundary layers at M∞ = 2.88 and 4. In this ap-
proach the instantaneous flow field is taken from a reference cross-section
at a downstream position xr at every timestep, rescaled according to em-
pirical laws for mean flow and turbulence evolution and reintroduced at
the inflow. The essential advantage of this method, which we will call
the rescaling-recycling method RRM in the following, is that it allows
a better control of the desired turbulent-boundary-layer properties at
a certain downstream station and reduces the transient region down-
stream of inflow required to recover a developed turbulent boundary
layer compared with other approaches. Stolz & Adams (2003) proposed
another formulation of compressible RRM and determine the validity of
the method by the simulations of flat plate boundary layer at Reθ = 4530
and 10049. Xu & Martin (2004) formulated an alternative technique for
rescaling.

For the flat plate the computational domain is rectangular with ex-
tents of 16 × 4 × 4 in the streamwise, spanwise and wall-normal direc-
tions. The mesh consists of 201 × 132 × 101 grid points (about 2.7
million in total), the step size in physical space is uniform along stream-
wise and spanwise directions. In wall-normal direction gridpoints were
condensed towards the wall. The first point off the wall is located at
x+

3 = x3uτ/νw = 2.4, wall-unit distances in streamwise and spanwise
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directions are 45.8 and 17.7. Here the friction velocity uτ =
√

τw/ρw

and the kinematic viscosity at the wall νw = µw/ρw are based on mean
flow quantities. The boundary layer is resolved by 58 gridpoints in wall-
normal direction, and by 2 points in the viscous sublayer. Such a reso-
lution is found to be sufficient for the considered flow parameters (Stolz
& Adams, 2003).

As initial data an instantaneous solution was taken from the previous
flat plate simulations of Stolz & Adams (2003) and rescaled to match the
required Mach number and domain size. Since in the previous simulation
the domain width was only one third of the current, the initial field was
composed by repeating this field three times in spanwise direction. The
simulation was run long enough, so that a statistically stationary state
was reached. Sequentially it was continued for 55.7δ0/U∞ characteris-
tic time-scales. Of all conservative variables (density, momentum and
total energy) 400 samples were taken at evenly spaced consecutive time
increments roughly spaced by 0.14δ0/U∞ at the downstream position
xr = 11.15. for the estimation of mean and statistical quantities and for
inflow preparation. In the following we distinguish between Favre, i.e.
density-weighted statistical averages and Reynolds averages. The former
is indicated by a double prime f ′′ = f − 〈ρf〉 / 〈ρ〉 = f − {f}, the latter
by a single prime f ′ = f − 〈f〉.

3.1 Instantaneous structures

The instantaneous flow field can be visualized in terms of the density
field. Figure 3.1 reveals the existence of organized motions in the outer
layer, which is characterized by the occurrence of large-scale intermit-
tently appearing structures. These structures are separated from the
surrounding essentially irrotational fluid by sharp interfaces having a
three-dimensional character. Unlike the DNS, the LES resolution is not
sufficient to show them clearly. The angle of the structures agrees with
the values 45 − 60◦ reported by Spina et al. (1994). They move down-
stream at approximately 90% of the freestream velocity. The average
spanwise extent of the largest eddies is approximately 1/2δ in the outer
layer, and decreases towards the wall.

The near-wall resolution is sufficient to capture fine structures. The
existence of elongated streaky structures of alternating high and low
speed near the wall is illustrated in figure 3.2 by the wall-normal com-
ponent of vorticity ωz. The wall-parallel plane is located at x+

3 = 8.5.
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(a)

(b)

Figure 3.1: Instantaneous density in (a) x− z section and (b) y − z section at
x = xr.

The spanwise spacing of the streaks is found to be about 90 to 120 wall
units, which is in agreement with Spina et al. (1994) and Stolz & Adams
(2003). A time series visualization revealed a meandering and lateral
motion of the streaky structures by about 100 wall units. The represen-
tation of these near-wall structures is important for correct prediction of
the skin friction.
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Figure 3.2: Instantaneous z−vorticity component ωz in x − y section.

3.2 Mean flow and statistical analysis

The mean-flow characteristics for the reference section xr are summa-
rized and compared with the experiment in table 3.1. δ1 and δ2 are dis-
placement and momentum thickness, respectively. Reδ2

is the Reynolds
number based on the free-stream velocity, momentum thickness and vis-
cosity at the wall. H12 is the shape factor. The agreement of δ0, δ1,
δ2, H12 with the experiment is good. The computed skin-friction coef-
ficient Cf differs more significantly from the experiment with an uncer-
tainty of about ±10%. However, the discrepancy is within the limits of
experimental-data scatter, as shown in figure 3.3. In this figure several
experimental data sets Cf versus Reδ2

, taken from Fernholz & Finley
(1977, 1981), are shown along with our computed values and the experi-
mental reference values at station E1. An empirical fit of the experimen-
tal data is shown by the dashed line, using a von Kármán-Schoenherr
incompressible skin-friction formula

Cfinc
=

1

17.08(log10 Reθinc
)2 + 25.11 log10 Reθinc

+ 6.012
,
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δ0 δ1 δ2 Reδ2
Cf × 103 H12

Experiment 1 0.35 0.066 1826 1.79 5.3
Computation 1.001 0.368 0.071 1954 2.05 5.22
Difference 0.1 % 5.3 % 7.0 % 7.0 % 14.5 % 1.5 %

Table 3.1: Summary of mean-flow parameters for the flat-plate boundary layer
simulation.

0 2000 4000 6000 8000 10000

1.5×10
-3

2.0×10
-3

2.5×10
-3

Cf

Reδ2

Figure 3.3: Skin-friction coefficient dependency on Reynolds number Reδ2 . + ,
current LES at xr position; × , reference experiment; , Mabey et al. CAT7402
(M∞ = 3); ⋄ , Mabey et al. CAT7402 (M∞ = 2.8); △ , Maier CAT7003
(M∞ = 2.9); ◦ , Stalmach CAT5802 (M∞ = 2.75); ∇ , Laderman & Deme-
triades CAT7702 (M∞ = 3); , prediction by von Kárman-Schönherr
skin-friction law with van-Driest-II transformation. Data from Fernholz &
Finley (1977, 1981).
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extended to the compressible case as:

Cfinc
= FCCf ,

Reθinc
= FθReθ.

The van-Driest-II transformation for coefficients FC and Fθ

FC =
κ−1

2 M 2
∞r

(arcsin α + arcsinβ)
2 ,

Fθ =
µ∞

µw

with

α =
2A2 − B√
4A2 + B2

,

β =
B√

4A2 + B2
,

A =

√
κ − 1

2
M 2

∞r
T∞

Tw
,

B =

(
1 +

κ − 1

2
M 2

∞r − Tw

T∞

)
T∞

Tw

is found to be superior to others by Hopkins & Inouye (1971). Here
r = 0.9 is the temperature recovery factor. Obviously, the considered
case (Reδ2

≈ 2000) is in the region of the rapid change of Cf , where data
are much more scattered than at higher Reynolds number (Reδ2

> 4000).
The calculated skin friction coefficient lies close to the upper limit of this
scatter, the referenced experiment at the lower, but both of them agree
well with established data from Fernholz & Finley (1977, 1981) and
empirical correlations.

The wall normal distributions of mean Mach number, temperature,
velocity, and density are compared with the experimental data in fig-
ure 3.4. In the bulk, the computed velocity profiles agree well with the
experimental data, minor discrepancies can be observed for the density
and temperature profiles. These differences are well within the exper-
imental error margin. The computed van-Driest-transformed velocity
profiles, shown in figure 3.5, agree well with the logarithmic law of the
wall U+

VD = lnx+
3 /0.4 + 5.1. Wall-law constants are taken for adiabatic

walls, since our temperature at the wall is equal to the adiabatic one, this
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Figure 3.4: Wall-normal distributions of the mean-flow for the incoming flow
at station xr. , current LES; ◦ , Mach number; , temperature; ⋄ ,
velocity; △ , density. Symbols denote data from the reference experiment.
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Figure 3.5: The Van-Driest transformed mean-velocity profiles for the incom-
ing flow at station xr. ◦ , reference experiment; , current LES; ,
linear and log-law ln x+

3 /0.4 + 5.1; , reference experiment with corrected Cf .
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comparison can be considered as valid. The velocity UVD is computed
as defined by Bradshaw (1977)

〈U〉VD =

∫ 〈U〉

0

√
〈ρ〉
〈ρ〉w

d 〈U〉

and scaled by the wall-friction velocity uτ =
√

τw/ρw. The wall-normal
coordinate in wall units is x+

3 = uτx3/νw. In wall units the experimental
data, shown as open circles, differ more significantly from the law of the
wall. A better agreement with the law of the wall is obtained if the
experimental UVD is scaled with uτ of the simulation (open squares).
This reflects the already mentioned fact of scattered skin friction data
(see figure 3.3) and exhibits an influence of the accuracy of the Cf -
measurement on the presentation of data in wall units.

As discussed by Zheltovodov & Yakovlev (1986) and Smits & Dus-
sauge (1996) the scaling

√
〈ρ〉 〈u′

1u
′
1〉 /τw provides an approximate self-

similar correlation of experimental data for supersonic flat plate zero
pressure gradient adiabatic boundary layers, although the measurements
close to the wall are subject to considerable uncertainty. In figure 3.6
upper and lower bounds of an extensive set of experimental data for the
Mach number range M = 1.72÷9.4 are displayed in accordance with the
generalization of Zheltovodov & Yakovlev (1986). With respect to in-
ner variables the density-weighted Reynolds-normal-stress and Reynolds-
shear-stress profiles should agree with incompressible data in the near
wall region (Smits & Dussauge, 1996). This is the case for our simulation
data in the region x+

3 < 20 as shown in figure 3.7 by a comparison with
incompressible DNS of Spalart (1988).

3.3 Composition of inflow data

The results of the flat plate boundary layer simulation showed a good
quality and can be considered as a reliable data for use in subsequent
computation. We follow here the approach of Adams (2000) where a
separate boundary-layer computation was performed in order to sup-
ply inflow boundary conditions. The data from 400 sequential sam-
ples described earlier were interpolated by 6th-order splines in the wall-
normal direction to the finer grid which is used for the compression
corner. Since the time step for the compression-corner simulation can
differ from the sampling time intervals these data were interpolated in
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Figure 3.6: Streamwise Reynolds stress. , current LES; , data of
Zheltovodov & Yakovlev (1986).
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time by a 3rd-order Neville-Aitken algorithm as described by Adams
(2000). The interpolation causes a transient of about 3δ0 and the mean
flow parameters at station E1 are not exactly the same as at the ref-
erence station xr in flat plate simulation. Nevertheless, the differences
are small (Loginov et al., 2006a). To allow for a longer time advance-
ment of the ramp computation than the sampling-time period of the
inflow data these data are repeated periodically in time. The inflow-
data sampling interval Tsamp was chosen in such a way that a strong
scale separation TSSSM << Tsamp << TLSSM between the characteris-
tic time scales of sampling Tsamp = 55.7δ0/U∞, small-scale shock motion
TSSSM ∼ O(δ0/U∞), and large-scale shock motion TLSSM = 707δ0/U∞

was satisfied. Such a procedure ensures that an artificial time scale im-
posed by the inflow data does not affect turbulence and LSSM time
scales.

Another important issue in the preparation of inflow data is statistical
homogeneity in time and over the spanwise direction. The first one is
ensured by beginning the sampling after reaching statistical stationarity,
it was checked using spanwise averaged quantities. The second issue was
not considered previously. Unfortunately, spanwise homogeneity was not
monitored during the calculations. The simulation resulted in a small
spanwise inhomogeneity in the mean quantities. For example velocity
contains disturbances over a range of wave numbers with an amplitude
of at most 0.03U∞. Several reasons were investigated in order to explain
the appearance of such an inhomogeneity:

• The time evolution of the initial field was not long enough. By con-
struction, the artificial spanwise wavelength of L2/3 was imposed
on the initial flow field.

• The sampling period (or number of samples) is insufficient to reach
statistical convergence.

• The RRM procedure, which basically connects inflow and down-
stream sections, may play a role. In particular the streamwise
distance xr may not be sufficient to decorrelate the largest eddies.

In addition to the described flat plate calculation with 400 samples,
the simulation was continued with the same sampling parameters. Ad-
ditional 4× 400 samples were collected over a time period of 220δ0/U∞.
Each of these additionally collected datasets were analyzed separately
and exhibited the same statistical properties with very similar spanwise
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variation, which is close to the one previously observed. This confirms
the statistical stationarity and absence of an initial field influence. The
mean properties calculated from the entire set of 2000 samples revealed
the same kind of spanwise inhomogeneity. So, the first two reasons can
be excluded. Using two-point correlations Stolz & Adams (2003) demon-
strate that a streamwise distance of xr = 6.7δ0 is sufficient to decorre-
late turbulent fluctuations. On the other hand experimental data suggest
that the large-scale structures persist for at least 4 boundary-layer thick-
nesses (and probably much farther) downstream (Spina et al., 1994). In
order to clarify this point the domain length was doubled in streamwise
direction and the recycling station was set up to xr = 27.15. Large scale
turbulent structures can evolve over longer distances. This simulation
gave a slight improvement, but did not suppress spanwise inhomogene-
ity entirely. This fact might indicate that a longer xr is preferable. A
further increase of xr however, seems to be impractical, since the com-
putational cost of the inflow field computation would approach that of
the compression corner computation.



Chapter 4

Compression corner flow

The integration domain of the compression corner computation has
the extents L1 = 25.9, L2 = 4, L3 ≈ 4, in the streamwise, spanwise,
and wall-normal directions, respectively. The streamwise length mea-
sured along the surface, the inflow spanwise and wall-normal sizes are
the same as in the flat plate calculation described in chapter 3. The
computational mesh consists of 701 × 132 × 201 (about 18.6 million in
total) points. The spatial resolution of the simulation is matched to
that of Stolz et al. (2001a) in terms of wall units, which was found to be
sufficient to reproduce DNS results with good accuracy.

The ramp computation was started from synthetic initial data gen-
erated by an inviscid flow field superimposed with a laminar flat-plate
boundary layer. After an initial transient the compression corner sim-
ulation was continued for 707 characteristic time scales of the incoming
boundary layer δ0/U∞. This corresponds to about 27 flow-through times
of the free stream through the computational domain and is about twice
as long as for the earlier DNS of Adams (2000). Owing to the larger
sampling time, smoother statistical data have been obtained, and also at
least one period of low frequency large-scale shock motion (LSSM) could
be captured (see section 4.3). During this time interval the flow field
was sampled 1272 times for statistical analysis. Various statistical quan-
tities and time-history data have been saved. This calculation required
about 18000 CPU hours on 4 − 6 CPUs running in parallel on vector-
parallel platforms NEC SX-5 and SX-6. For additional details about
computational resources and performance please refer to appendix C.

An overview of all relevant flow parameters is given in table 4.1.
Additionally, the number of grid points Ni is specified for each coordi-
nate direction i = 1, 2, 3. The extents of the computational domain in
streamwise direction is L1, in spanwise direction L2, and in wall-normal
direction at inflow L3. Measured in wall units of the incoming boundary
layer the grid size in the respective coordinate directions is given as ∆+

xi
,

where for the wall-normal direction this refers to the distance of the first
grid-point off the wall. There are 117 points inside the boundary layer
at section 1.

In the following we present data along certain computational-grid
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parameter value comment
β 25◦

M∞ 2.95
Reδ0

63560
Reδ1

22120
Reθ 4705 using ν∞
Reδ2

2045 using νw

δ1 0.37 at section E1
δ2 0.071 at section E1
N1 701
N2 132
N3 201
L1 25.8 along the wall
L2 4
L3 ≈ 4
∆+

x1
16 to 34

∆+
x2

17.7 at section E1
∆+

x3
1.1 first point off the wall at section E1

Table 4.1: Simulation parameters.
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Figure 4.1: Compression corner mesh (each 10th line is shown); for selected
reference stations as indicated by arrows and dots, refer to tables 4.2 and 1.1a.

Symbol x1 comment
E1 -15.4 experimental reference section E1
I -6.1 incipient interaction
S -4.5 mean-flow separation
P -1.5 pressure plateau position
R 2.5 mean-flow reattachment
E2 4.4 experimental reference section E2

Table 4.2: Selected downstream stations.

lines ξ1 = const. For the analysis of the compression-corner flow
selected downstream stations will be referred, as indicated in fig-
ure 4.1. The relevant sections are labeled with symbols which we
refer to in the following. Their positions in terms of the down-
stream coordinate x1, along with their particular significance, are
summarized in table 4.2. Additional sections 1 − 9 from higher-
Reynolds-number experiment are shown in figure 4.1 by points and
are also used for detailed mean flow analysis. Where appropri-
ate, the velocity is represented by its contravariant components, uc

1 =
(u1∂ξ1/∂x1 + u3∂ξ1/∂x3)/

√
(∂ξ1/∂x1)2 + (∂ξ1/∂x3)2, uc

2 = u2, and

uc
3 = (u1∂ξ3/∂x1 + u3∂ξ3/∂x3)/

√
(∂ξ3/∂x1)2 + (∂ξ3/∂x3)2. The com-

putational grid is constructed in such a way that the difference between
contravariant components and longitudinal components, where the ve-
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Figure 4.2: Mean density gradient ‖∇ρ‖ averaged in spanwise direction (for
legend see text on page 42).

locity is rotated into a Cartesian system aligned with the wall, is small.
The contravariant projection, however, removes the ambiguity of the
longitudinal projection near the corner.

4.1 Mean flow

For a general impression of the flow in figure 4.2 a Schlieren-imitation
(density-gradient magnitude) of the mean flow in the interaction region
is shown. A corresponding Schlieren photograph of the reference experi-
ment would require an exposure of about 2.6ms. Note that the flow near
the outflow boundary is affected by the sponge outflow treatment where
artifacts can be seen, which are, however, not relevant for our analysis.
The computed flow recovers the main flow features that were described
in section 1. The ramp deflection angle of β = 25◦ at M∞ = 2.95 is
large enough for the incoming boundary layer (1) to separate. Where
the large near-wall density gradient of the incoming boundary layer de-
taches from the wall the separation region (3) begins. A detached shear
layer (4) contains the reverse flow region (3). Since the Reynolds num-
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ber is comparably large, the forward shock (2) penetrates rather deeply
into the boundary layer. Near the wall increased turbulent diffusion and
finite mean streamline curvature cause the shock foot to spread out so
that it is hardly visible in the Schlieren image. LSSM and spanwise
shock deformation give rise to apparent additional shock images around
the main compression shock. The rear compression shock (5) appears as
a converging set of compression waves originating from the reattachment
region. Instantaneous data will show, however, that the rearward shock
is in fact created by highly unsteady compression waves and shocklets.

Another important finding can be drawn from figure 4.3. The
computational-domain boundaries are indicated by thin black lines,
crossflow-planes are colored with local mean temperature. A translu-
cent isosurface of mean pressure 〈p〉 = 1.2pI = 0.1 represents the mean
forward shock. This value is recommended by Hunt & Nixon (1995)
for detecting the shock position. Despite the fact that the flow ge-
ometry is nominally two-dimensional, the interaction breaks the span-
wise translational symmetry. The temperature distribution in a cross-
flow plane after the interaction clearly shows a spanwise variation un-
like for a cross-flow plane before the interaction. A rake of 10 col-
ored mean streamlines identifies the recirculating flow in the separa-
tion region. Furthermore, a non-planar motion in the separation zone
and a rotational motion after reattachment are evident. The stream-
lines originate from midspan position of inflow section at x3/δ0 =
0.002; 0.004; 0.01; 0.022; 0.026; 0.05; 0.066; 0.16; 0.33; 0.91 or in wall units
x+

3 = 1.1; 2.5; 6; 13; 21; 36; 52; 126; 267; 540.

Two pairs of counterrotating streamwise vortices can be identified in
the reattaching shear layer from isosurfaces of contravariant streamwise
vorticity ωc

1. Several identification methods based on point-wise anal-
ysis of the velocity gradient tensor as described by Chakraborty et al.
(2005) are tried. All of them show quite similar results. Since the circu-
lation of the vortices is rather small which makes them hard to extract
from background noise, the streamwise mean vorticity was additionally
filtered by a top-hat filter on the computational mesh for the purpose
of visualization. Positive rotation is indicated by the color “cyan” and
negative rotation by “magenta”.

These streamwise vortices affect the turbulence structure and the
properties of the mean flow significantly (Zheltovodov & Yakovlev, 1986;
Floryan, 1991; Lüdeke et al., 2004, e.g.). This is evident if we consider the
computational analogue of an experimental oil-flow image in figure 4.4,
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Figure 4.3: Three-dimensional mean flow.
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where we show the distribution of the mean skin-friction coefficient. Solid
lines represent the contour Cf = 0, the left-most line representing separa-
tion, the right-most reattachment. For reference, the corner is indicated
by a dashed line. The skin-friction coefficient is calculated as follows.

The viscous stress tensor τij = µ

Re

(
∂ui

∂xj
+

∂uj

∂xi
+ 2

3
∂uk

∂xk
δij

)
was com-

puted first, then it was projected onto the surface τijnj , and finally the
magnitude of the projected vector with appropriate sign is taken. Here
nj = {∂ξ3/∂x1, 0, ∂ξ3/∂x3} /

√
(∂ξ3/∂x1)2 + (∂ξ3/∂x3)2 is the unit vec-

tor, normal to the wall (ξ3 = const surface). It is evident that although
the separation line is curved without significant variations in the span-
wise direction, the reattachment line clearly exhibits two pairs of flow
convergence and divergence lines. The position of the convergence lines
is approximately at x2 ≈ δ0 and at x2 ≈ 3δ0, the position of the diver-
gence lines at approximately x2 ≈ 2δ0 and x2 ≈ 4δ0. The convergence
lines can be attributed to cross-flow uplift and the divergence lines to
cross-flow downwash, so that they represent footprints of two-pairs of
counterrotating streamwise vortices. Consistent with experimental ob-
servations (Floryan, 1991, e.g.) we find that the spanwise width of each
vortex pair is about 2δ0. A surface oil-flow visualization obtained in
the experiments of Zheltovodov et al. (1983); Zheltovodov & Yakovlev
(1986) exhibits similar features, for the higher-Reynolds-number exper-
iment the photo of oil-flow visualization is shown in figure 4.5. The
characteristic pattern can be associated with a system of steady stream-
wise vortices. Again the vertical dashed line indicates the position of
the ramp corner. The accumulation of oil downstream shows the typical
mean-flow reattachment topology in the presence of streamwise vortices
(Zheltovodov et al., 1983; Lüdeke et al., 2004) with a sequence of the sin-
gular saddle- and node- type points along the reattachment line (see also
figure 1.3). Clearly visible are convergence and divergence lines in the
reattaching flow, pairs of convergence and divergence lines being spaced
by approximately 2δ0. A similar footprint of streamwise vortices is ob-
served on panoramic interferograms when measuring the skin friction in
the reference experiment.

The spanwise variation of the mean skin-friction coefficient at the
reference stations E1, I, S, P , R, and E2 is shown in figure 4.6. While Cf

varies at station E1 in the undisturbed boundary layer by a magnitude
of approximately ±0.24 · 10−3, this variation increases to about ±0.69 ·
10−3 at station E2 after reattachment. It is obvious that the spanwise
variation of the mean flow should be taken into account when comparing



Compression corner flow

Figure 4.4: Distribution of the mean skin-friction coefficient. , Cf = 0;
, corner position.

Figure 4.5: Oil-flow visualization pattern from higher-Reynolds-number exper-
iment, the thick dashed vertical line indicates the corner position.
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computational data with the experiment since experimental data usually
are collected only at a single section x2 = const (usually the model
centerline).

To assess the agreement of our computation with the experiment we
compare skin-friction coefficient and surface pressure in figure 4.7. The
mean skin-friction measurements were done by the Global Interferometry
Skin Friction technique (GISF) (Borisov et al., 1993, 1999). The method
allowed panoramic skin-friction measurements. Because of poor picture
quality only several partially overlapping datasets were generated near
the model centerline between convergence-divergence-line pairs, but the
exact position, with respect to these is unknown. The computational
data averaged in time and in the spanwise direction (thick solid line)
are in very good agreement with the experimental data (circles), fig-
ure 4.7(a). Deviations of experimental data from computed spanwise
averaged values are in between of min

x2

Cf and max
x2

Cf denoted by dot-

ted lines. We recall that in this computation the decompression cor-
ner is not considered. Instead, the deflected part of the compression
ramp is longer than for the reference experiment and a sponge zone
is added at the outflow of the computational domain. Therefore, no
agreement of computational and experimental data can be expected near
the decompression corner and beyond. The mean-flow separation is lo-
cated at x1S = −4.5 ± 0.25δ0 and mean-flow reattachment occurs at
x1R = 2.5 ± 0.7δ0. The separation length Lsep can be estimated as 7δ0.
Separation and reattachment positions are determined by zero spanwise
averaged skin-friction are displayed with S and R respectively.

A less strong spanwise variation is observed for the surface pressure,
shown in figure 4.7(b) normalized by the surface pressure of the incom-
ing boundary layer value at reference station E1. The surface pressure
exhibits a pressure plateau with an inflection point P as indicated in
the figure. Further downstream, the wall-pressure eventually recovers
to the inviscid oblique-shock value shown by dash-dotted line, but the
point where this occurs is located farther downstream. For our case, the
inviscid value is not recovered before the decompression corner position.
Again, a very good agreement between computational and experimental
results is found. Here, we can also verify that differences between com-
putation and experiment near the decompression corner are due to the
mentioned differences in the length of the deflected part of the ramp and
due to the sponge zone. With open squares we also show in figure 4.7(b)
surface-pressure data from the higher-Reynolds-number experiment with
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Figure 4.7: Averaged skin-friction coefficient (a) and wall-pressure (b) distri-
butions in the streamwise direction. ◦ , reference experiment; , current
LES averaged in time and over spanwise direction; , current LES av-
eraged in time only, min and max values over spanwise; , higher-Reynolds-
number experiment; , free interaction theory; , inviscid solution.
The leftmost dashed vertical line indicates the compression-corner position, the
middle dashed vertical line the decompression-corner of the experiment and the
right-most dashed vertical line the beginning of the sponge-zone at outflow of
the computation.
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a longer deflected surface. First, we note that in the considered range the
Reynolds number has a negligible effect on the surface pressure. Second,
it can be seen that the computational data indeed follow the additional
experimental data before they are affected by the outflow sponge zone.
By comparison with experimental data the sponge zone invalidates a
layer with a length of about δ0 upstream of outflow.

For an analytic prediction of the separation location in shock-
boundary-layer interaction frequently the free-interaction theory for
large Reynolds numbers is invoked (Chapman et al., 1957). A result
of this theory is an empirical formula for the surface pressure across the
interaction region (Erdos & Pallone, 1962)

F (s) = (p(s) − pI)

√√√√
√

M 2
∞ − 1

2CfI
,

where p(s) and pI are the wall pressure normalized by the dynamic pres-
sure q = 1

2ρ∞U2
∞ as function of the normalized streamwise coordinate

s =
x − xI

xS − xI
.

The index I indicates that data are to be taken from the incoming undis-
turbed boundary layer just before the interaction. Although the free
interaction theory predicts a steeper pressure raise and an earlier sepa-
ration than is observed for experiment and LES, the predicted pressure-
plateau value agrees with both.

Figure 4.8 gives an impression of the mean flow evolution. The com-
putational data are shown by thick solid and dotted lines, having the
same meaning as in figure 4.7. The black dots correspond to sections
E1 and E2 of the reference experiment, open circles indicate higher-
Reynolds-number experimental data at sections 1 − 9, their streamwise
positions are detailed in table 1.1a. The incoming undisturbed turbulent
boundary-layer profile in section 1 transforms into a profile with weak
reverse flow slightly downstream of the separation point (section 2). Fur-
ther downstream the reverse flow becomes stronger (sections 3 − 5). At
section 6 the boundary layer is reattached while still expressing a mo-
mentum deficit in the wake. This reestablished attached boundary layer
develops towards an undisturbed profile further downstream. The exper-
imental profiles exhibit only a weak dependence on the Reynolds number
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in the considered range (only at sections 1 and 8 data from both exper-
iments are available). Taking into account the spanwise variation of
the computed mean velocity experimental and numerical data generally
agree well. Excessive negative experimental velocity data at section 5 can
be explained by difficulties to measure the reverse flow, also near the line
of the zero velocity the accuracy and reliability of the experimental data
are reduced. Differences inside the boundary layer at section 2 (x3 < δ0)
and in the outer flow at section 8 (x3 > δ0) may be attributed to difficul-
ties with pitot probes in the highly unsteady regions as pointed out by
Dolling (1998). A pitot probe overestimates data in these regions. Also
the accuracy of the static pressure measurements is very limited near
unsteady shock waves and near separation and reattachment regions.

The spanwise averaged mean flow field is presented in figure 4.9 by the
shock wave (thick solid line), by streamlines originating from the inflow
section at x3/δ0 = 0.2; 0.4; 0.6, the sonic line with 〈M〉 = 1 (dashed line)
and the zero-velocity line with uc

1 = 0 enveloping the reverse flow (thick
dotted line). Generally speaking averaging in homogeneous spanwise di-
rection is not valid in our case since the considered flow is essentially
inhomogeneous in spanwise direction. Nevertheless we used this tradi-
tional approach in order to present an overall impression of the flow.

4.2 Görtler vortices

The question arises about the origin of streamwise vortices as mentioned
in section 1. When a boundary layer develops on a concave wall, stream-
wise vortices can occur within the boundary layer. A centrifugal force
imposed by the curvature of the wall forces fluid particles to be displaced
towards the wall. On the other hand the pressure force opposes this cen-
trifugal force to restore the particles to their original position. When the
centrifugal force is larger than the pressure force such that the viscosity
cannot damp the motion, the flow field is considered to be unstable and
small disturbances are likely to be amplified. Görtler (1954) proposed a
stability criterion

G =
U∞δ2

ν

√
δ2

R
(4.1)
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Figure 4.8: Velocity profiles at several downstream positions.

Figure 4.9: Two-dimensional representation of the mean flow. , shock
wave with λ-configuration; , sonic line with 〈M〉 = 1; , zero-
velocity line with uc

1 = 0.
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for this situation. Here R = d2zs

dx2
s

(
1 +

(
dzs

dxs

)2
)−1.5

is the curvature

radius of the mean-flow streamlines within the boundary layer close to
the corner, xs, zs are streamline coordinates. Although the Görtler in-
stability, which is inviscid in nature, has been the subject of many inves-
tigations, these investigations have been limited mainly to laminar and
incompressible flow fields with emphasis on the role of the vortices in the
transition process. For a detailed overview of current knowledge of the
subject, readers are referred to the reviews by Floryan (1991) and Saric
(1994).

If the mean streamline curvature in the separation region or in the
reattachment region is larger than the critical value for laminar flow a
similar mechanism generating streamwise vortices may be active in the
turbulent flow as well. Tani (1962) suggested that criterion (4.1) could be
applied to turbulent flows by using the same characteristic length scale,
δ2, and simply replacing the molecular viscosity ν by the eddy viscosity
νT . If we assume that the eddy viscosity in the outer layer is given by
νT = 0.018U∞ then the Görtler number for a turbulent boundary layer
can be estimated as

GT =
δ2

0.018δ1

√
δ2

R
.

For an estimation of the Görtler number in the considered flow, the
mean velocity field averaged in spanwise direction was used to plot the
streamlines. For the streamlines shown in figure 4.9 the Görtler number
distribution in streamwise direction is shown in figure 4.10. Numerous
streamlines through the boundary layer were checked, all of them show
a similar trend. Near the separation region all streamlines within the
boundary layer have GT > 1 which is well above the critical value of
about 0.6 for laminar flows (Görtler, 1954). GT is slightly smaller in the
reattachment region but still near the critical value. Another criterion
for the significance of streamline curvature is given by the curvature pa-
rameter δ0/R which was used for the investigation of subsonic turbulent
flows (Floryan, 1991). From our simulation we find δ0/R > 0.1 near
the separation line and δ0/R ≥ 0.03 near reattachment. Again these
values are much larger than the critical value δ/R = 0.01, for which the
first appearance of streamwise vortices was found. These two indica-
tors, Görtler number and curvature parameter, point to a Görtler-like
mechanism being responsible for the observed streamwise vortices.

For a statistically two-dimensional turbulent flow there is no reason
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Figure 4.10: Görtler number distribution in streamwise direction. ,
for streamline at x3 = 0.2; , for streamline at x3 = 0.4; , for
streamline at x3 = 0.6; Vertical lines have the same meaning as in figure 4.7.

why the observed streamwise vortices should remain steady at a fixed
spanwise position. A hypothesis about the existence of instantaneous
streamwise vortices was suggested by several researchers. Steady or very
low frequency spanwise variations within the incoming boundary layer
or model imperfections can result in fixing the spanwise location of these
vortices, as was observed by Lüdeke et al. (2004) and pointed out by Flo-
ryan (1991). As described in section 3 the incoming boundary layer is
not ideally two dimensional in the mean. It contains steady disturbances
over a range of wave numbers. These steady disturbances can act as a
seed similarly to experimental-model imperfections and probably fix the
vortex locations. The streamwise curvature imposed by streamlines acts
as a filter, allowing amplification of certain wave numbers and suppress-
ing the others in accordance with the Görtler criterion.

LES of Comte & David (1996) indirectly supports this selection mech-
anism. Inflow conditions for this simulation were composed of a mean
velocity profile calculated using a k − ǫ model and white noise with an
amplitude of 2 × 10−3U∞ superimposed onto three components at each
time-step. Thus the broadband range of spanwise wavelengths was im-
posed onto the incoming boundary layer. Such a procedure results in
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streamwise vortices with estimated wavelength of about 0.75δ0 found in
the instantaneous and in the mean flow. This result is not quite in ac-
cordance with the current simulation, it is worthy to note that the flow
field of Comte & David (1996) cannot be considered as fully a turbulent
one due to the low Reynolds number of Reδ1

= 280.

4.3 Shock wave system behavior

An impression of the instantaneous shock-wave structure can be obtained
from a computed Schlieren-type visualization in figure 4.11. This figure
is similar to figure 4.2, the flow snap-shot is taken at a time instant, how-
ever, and corresponds roughly to an experimental spark shadowgraph.
The figure legend refers to the same events as shown in figure 4.2. The
spanwise variation of the shock position causes some smearing of the
shock position in the interaction region after averaging in the spanwise
direction. Clearly visible are compression waves (5) above the separated
shear layer (4) and the rearward stem of the λ-shock which originates
from the reattachment region. Also the general shape of the forward
shock appears to have changed slightly. A similar observation can be
made for experimental visualizations at two different time instants for the
higher-Reynolds-number experiment (Zheltovodov et al., 1983), shown
in figures 4.11(c) and (d).

An animation of a time-series of shock visualiza-
tions for our computation is available under the URL
http://www.aer.mw.tum.de/gallery/grad rho.avi which clearly
shows the unsteady motion of the shock system and the shedding
of compression waves behind the forward shock. We find in our
simulations a small-scale shock motion, as reported by Andreopoulos &
Muck (1987) and Adams (2000), along with a LSSM, as reported by
Dolling & Murphy (1983). We also observe that the rearward shock is
highly unsteady and becomes invisible at irregular time intervals. The
compression waves, indicated as 5 in figure 4.11, travel downstream
with a speed of about 0.1U∞ to 0.4U∞.

4.3.1 Unsteady motion

A series of instantaneous snapshots with a diamond marker in the field
is shown in figure 4.12. Initially at t = 95 (subfigure a) the shock is
located slightly downstream of the marker, then it moves upstream until

http://www.aer.mw.tum.de/gallery/grad_rho.avi
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Figure 4.11: Schlieren-type visualization at two time instants: simulation, computed as density gradient ‖∇ρ‖ averaged
in spanwise direction (a, b); higher Reynolds number experiment (c, d). Computational and experimental time instants
are not related to each other, legend is the same as in figure 4.2.
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it reaches its maximum upstream position at t ≈ 500 (subfigure f ).
Finally the shock wave roughly recovers its initial position at t = 691
(subfigure h).

For an analysis of the shock motion Dolling & Or (1985) recorded
the time evolution of wall-pressure signals to identify the shock-foot lo-
cation. A direct comparison is possible if we apply a similar analysis
to our computational data. Time-histories of wall pressure normalized
by the mean value at station I are shown in figure 4.13 at six different
downstream positions. Sensors were placed at the centerline of the do-
main, their streamwise positions are shown in figure 4.12(a) as a–f and
corresponding to:

(a) within the undisturbed boundary layer at station I,

(b) near the beginning of the interaction where the mean pressure
starts to rise above the value in the incoming boundary layer
〈p〉 = 1.1 〈p〉I at position x1 = −5 (see figure 4.7b),

(c) maximum pressure fluctuation position at x1 = −4.5 (refer to fig-
ure 4.14),

(d) inside the separation region at station P ,

(e) near the reattachment line at station R,

(f) downstream of the separation at the experimental station E2.

The arrows and dashed lines indicate the respective time-averaged pres-
sure values. Within the insets in each figure the normalized probability-
density function (PDF) for the respective pressure signal is shown. For
reference also a Gaussian PDF is indicated by a dashed curve. Evidently
the PDF distribution is essentially Gaussian within the incoming bound-
ary layer, figure 4.13(a), and within the separation region, figure 4.13(d).
An off-center peak in the PDF at the beginning of the interaction (fig-
ure 4.13b) indicates that the shock wave does not simply oscillate around
its mean position, but that larger excursions have higher probability. By
the appearance of a PDF peak at negative pressure values near the onset
of the interaction the motion of the forward shock front manifests itself
in the pressure fluctuations. The PDF also shows that the forward shock
intermittently crosses the sensor position, pre-shock pressure values be-
ing more likely found than post-shock values. This finding agrees with
the observations of Dolling & Or (1985). The streamwise length of the
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(a) (e)

(b) (f )

(c) (g)

(d) (h)

Figure 4.12: A series of instantaneous Schlieren-type visualizations. The time
in subfigures (a) – (h) corresponds to t = 95; 180; 265; 351; 436; 518; 623; 691.
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Figure 4.13: Wall pressure history and probability distributions at six differ-
ent wall positions, (a) at I within the incoming boundary layer, (b) near the
beginning of the interaction region, (c) near the location of maximum pressure
fluctuations (refer to figure 4.14), (d) at P inside the separation region, (e) at
R near reattachment, (f) at E2 downstream of reattachment.
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forward-shock excursion can be estimated as 1.16δ0. Further evidence
of LSSM can be found at the next sensor position, figure 4.13(c). Ini-
tially, the observed pressure is below its average value (the shock wave
is downstream of the sensor position). Subsequently, the shock moves
upstream, and the pressure value increases beyond its average value at
about 400δ0/U∞. At the end of the observation time interval the pres-
sure roughly recovers its initial value. Given a limited observation time
interval a LSSM time scale cannot be deduced quantitatively. For this
purpose, the simulation should cover several cycles of shock motion.
Since such a requirement would multiply the computational cost by at
least a factor of two it is impractical for us.

We find a PDF with a single off-center peak at the beginning of the
interaction and a double-peaked PDF within the interaction region. This
reflects the highly intermittent shock motion which has been observed
in earlier experiments (Dolling & Murphy, 1983; Dolling & Or, 1985).
Inside of the separation zone, figure 4.13(d) and further downstream, fig-
ure 4.13(e), the PDF distributions resume a Gaussian shape. The quali-
tative difference of the pressure signal in the intermittent region near the
beginning of the interaction, figure 4.13(b), which is dominated by the
separation shock motion, and the one near reattachment, figure 4.13(e),
which is affected by the unsteady rearward stem of the λ-shock suggests
that the motion of the rearward stem is not related to the motion of the
foreward stem.

As was mentioned in section 1, while several studies (e.g. Andreopou-
los & Muck, 1987; Adams, 2000) indicate that the small-scale shock
motion is driven by turbulent bursting events in the incoming bound-
ary layer, there is currently no theory available which explains LSSM
(Dolling, 1998, 2001). It should be mentioned that we can exclude that
LSSM in our simulation was driven by the periodically repeated inflow
data since the time-scales of LSSM and data repetition differ by about
one order of magnitude.

Dolling & Murphy (1983) found a characteristic shape of the
standard-deviation distribution of the wall-pressure fluctuations across
the interaction, figure 4.14(b). Normalized by the local mean wall pres-
sure our computational results (figure 4.14a) agree quantitatively with
the experimental results of Dolling & Murphy (1983), although for these
results the Reynolds numbers are one to two orders of magnitude larger.
Since no Reynolds-number independent scaling of the interaction-region
extent is known, σ(pw) at locations corresponding to respective interac-
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Figure 4.14: Standard deviation of wall pressure fluctuation (a) computation
and (b) experiment of Dolling & Murphy (1983). , Reδ0 = 780000;

△ , Reδ0 = 1400000. Vertical lines have the same meaning as in figure 4.7.
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tion events, such as separation location S, pressure-plateau location P
and reattachment location R have to be compared. A global maximum
at about 20% of the local mean wall pressure is observed for the LES in
the separation region at x1 ≈ −4.5δ0 which corresponds to the mean sep-
aration position S, figure 4.14(a). The maximum value agrees well with
the experimental data of Dolling & Murphy (1983) at larger Reynolds
number. Note that Dolling & Murphy (1983) find the peak location
slightly upstream of their measured separation point. The reason may
be that the separation location was identified visually from kerosene-
lampblack streak pattern, whereas for the computation Cf = 0 could
be identified directly. As discussed before, the observed large variance
of the pressure fluctuations is a consequence of the shock-foot motion.
Characteristic for the standard-deviation distribution is a second peak
which can be found near the reattachment position. Its value is at about
9% of the local mean wall pressure for both, computation and experi-
ment. Three-dimensionality of the field indeed affects unsteady loads
as well. In spanwise direction the peak value varies in the range of
0.186− 0.21. Unfortunately, no clear dependence of the curve shape can
be found if different spanwise positions with respect to the vortex core
are considered.

The intermittency factor is defined by Dolling & Or (1985) as

λ =
time[pw > (〈p〉wI + 3σ(pwI))]

totaltime

and represents the fraction of the time that pw is above the maximum
pressure of the undisturbed flow at station I. The streamwise distribu-
tion is shown in figure 4.15. The curve resembles the Gaussian prob-
ability distribution, found to be universal for separated flows (Dolling
& Or, 1985). The mean flow separation point S corresponds to a high
intermittency value of λ = 0.88.

The flow unsteadiness rises a question about the averaging time pe-
riod necessary for obtaining converged statistical data. The sensitivity
of flow properties with respect to the averaging period is illustrated in
figure 4.16, where examples of the time-averaged wall pressure distribu-
tions were obtained using described instantaneous data. The averaging
periods correspond to ∆t = 53.6; 107.2; 214.4. The pressure in the in-
termittent region and the reattached flow are affected the most by the
unsteady motion, while the plateau value remains constant. The plateau
region seems to be independent of the shock unsteadiness, and to exist in
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the instantaneous flow also. This partially explains the success of free-
interaction theory. A similar analysis is performed by Dolling (1998)
using ensemble-averaging of the wall pressure taken instantaneously for
different shock wave positions.

4.3.2 Shocklets

An instantaneous representation of the flow is shown in figure 4.17. The
slices are colored with the instantaneous density, the isosurface of the
pressure with p = 0.1 represents the shock wave, the horizontal black line
crosses the isosurface at the mean incoming boundary layer thickness for
reference purposes. The eight gray lines on the shock surface show the
spanwise positions, where data were analyzed. The large scale turbulent
structures perturb the shock foot, causing a spanwise wrinkling. It can
be observed that the perturbations propagate along the shock to the
outer flow and are damped as they move outwards.

Behind the separation shock compression waves exist. They are rep-
resented by isosurfaces of the density gradient colored by red in fig-
ure 4.17. Some of these compression waves originate from the reattach-
ment region forming the second stem of the λ-configuration. Others are
located above the separated shear layer. Obviously, they have a three-
dimensional shape with a wave front directed primarily in the streamwise
direction. A detailed view of this time instant is given in figure 4.18,
where density gradients are shown in several spanwise planes (see also
figure 4.12(h) for a spanwise averaged picture) The waves belonging to
the λ-configuration generally persist over a longer spanwise length. A
separation shock corrugation is observed where it intersects with shock-
lets.

It is found that waves travelling at larger speed are truly shocklets.
Their speed is of the same order of magnitude as the convection ve-
locity of the largest eddies in the detached shear layer (4) so that the
ambient-flow speed is supersonic relative to these eddies. For verification
of the shocklet character of the stronger compression waves, we have con-
firmed that the change of the flow state across the shocklets satisfies the
Rankine-Hugoniot conditions (Lee et al., 1991) relative to the ambient
flow behind the separation shock. The shocklet Mach number, defined
as the ratio of ambient-flow velocity relative to the shocklet and sound
speed, varies between 1.23 and 2.2. The stronger shocklets with larger
Mach numbers have lower absolute velocity and belong to the unsteady
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Figure 4.15: Intermittency distribution. Vertical lines have the same meaning
as in figure 4.7.
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Figure 4.16: Mean pressure dependency on the averaging time. ◦ , reference
experiment; , current LES averaged in time and over spanwise direction;

, LES averaged over ∆t = 53.6; , LES averaged over ∆t = 107.2;
, LES averaged over ∆t = 214.4; Vertical lines have the same meaning

as in figure 4.7.
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Figure 4.17: Three-dimensional flow field at t = 691.
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(a) (e)

(b) (f )

(c) (g)

(d) (h)

Figure 4.18: Instantaneous density gradient ‖∇ρ‖ in several spanwise sections
with t = 691. The spanwise position in subfigures (a) – (h) corresponds to x2 =
0.6; 1.1; 1.5; 2.0; 2.4; 2.9; 3.4; 3.8, also shown by lines on the shock in figure 4.17.
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second stem of the λ-shock.
We believe that the presence of travelling compression waves and

shocklets in the wake of the compression shock explains the high level
of turbulent fluctuations in the external flow between the separation
shock and the detached shear layer which was observed earlier in exper-
iments by hot-wire measurements (Zheltovodov & Yakovlev, 1986). The
observed phenomenon provides evidence for an additional mechanism
which enhances the level of turbulent fluctuations in this flow region
along with direct interaction of shock and turbulence (Anyiwo & Bush-
nell, 1982; Andreopoulos et al., 2000). By the method of diagrams of
Kovasznay (1953) it was shown by Zheltovodov & Yakovlev (1986) that
the acoustic mode is prevalent in this region which is consistent with the
existence of weak shocklets.

4.4 Turbulence enhancement

One of the most significant effects of shock-turbulence interaction is that
turbulent fluctuations increase and turbulent length scales decrease when
passing through sufficiently strong shocks. For a comprehensive sum-
mary on the current knowledge the reader is referred to Andreopoulos
et al. (2000). For the case considered here, the amplification of turbu-
lent fluctuations is evident from figure 4.19. Profiles of root-mean-square

(RMS) values of the mass-flux 〈(ρU)
′2〉1/2, density 〈ρ′2〉1/2, and velocity

〈U ′2〉1/2 fluctuations (top to bottom) are shown at several downstream
sections as given in table 1.1. All quantities are normalized by the incom-
ing free-stream quantities. The solid line denotes the time and spanwise
averaged value, the spanwise variation is indicated by dotted lines. Thin
horizontal lines correspond to the location of zero mean velocity, which
bounds the reverse flow region. The outer maxima which can be observed
in sections 2 − 9 originate from unsteady shock motion as described in
section 4.3. The maxima between x3 = 0.75δ0 and x3 = 1.25δ0 are
located within the detached shear layer. (i.e. inflection point in the ve-
locity profile) and thus exhibit high level of fluctuations. The velocity
fluctuations in the first section show the typical near-wall peak. Further
downstream this peak remains but its fluctuation level is smaller than
that of the detached shear layer. While in the outer flow fluctuations
are small at section 1, they grow by interaction with the shock wave
(sections 5 − 9, x3 ≈ 2.25) up to values of larger than 0.1ρ∞ for the
density and about 0.01U∞ for the velocity fluctuations. As mentioned
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Figure 4.19: Downstream evolution of mass-flux (a), density (b) and velocity
(c) fluctuations. Positions are detailed in table 1.1.
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before, aside from direct interaction with the shock wave, downstream
travelling shocklets contribute additionally to this increase.

We compare data from RMS fluctuations with the reference exper-
iment at positions E1 and E2 in figure 4.20. Since the measurement
technique does not cover the entire frequency range of fluctuations, it is
more reliable to use relative changes of the RMS values where data of
the undisturbed boundary layer serve as reference. We try to resemble
the experimental procedure by normalizing our computational data with
the respective maxima in the first section E1. Fluctuations of momen-
tum and density are amplified by about a factor of 4 across the interac-
tion, which agrees well with previous observations (Smits & Muck, 1987;
Adams, 2000). The simulation shows larger amplifications than the ex-
periment for all quantities near the local maxima in 0.7δ0 < x3 < 1δ0

at position E2, and for the density fluctuations in the external flow
x3/δ0 > 1.5. Given that the measurement error is at best between 15%
and 20% the agreement between computational and experimental data
nonetheless can be considered as satisfactory. Near-wall maxima of the
RMS distributions are not captured by the experiment due to the lack
of near-wall resolution.

The Reynolds normal stress τ11 =
〈
ρuc

1
′′uc

1
′′
〉
, the Reynolds shear

stress τ13 =
〈
ρuc

1
′′uc

3
′′
〉

and the structure parameter −τ13/τii are shown
using their contravariant representation in figures 4.21(a), 4.21(b) and
4.21(c), respectively. The Reynolds-normal-stress maximum is located
near the wall in the incoming flow, shifts to the detached shear layer and
diminishes at the last station. The amplification ratio of about 8 and the
quantitative evolution are in agreement with those reported by Smits &
Muck (1987) for a compression ramp with β = 25◦ at M∞ = 2.79
and Reδ0 = 1570000. A direct comparison is not possible due to the
large difference in Reynolds number. The Reynolds-shear-stress maxima
(figure 4.21b) are amplified by a factor of about 28, which is larger
than that reported by Smits & Muck (1987). It was noted by Adams
(2000) that τ13 is very sensitive to the experimental probe adjustment
and the transformation of the computational data into the contravariant
representation (see also 4.22b). The spanwise variation reaches about
±50% in the calculation, while it was claimed that three-dimensional
effects are small in the experiments of Smits & Muck (1987).

Figures 4.21(a, b) and 4.22 indicate that Reynolds normal and shear
stresses behave differently so that the turbulence structure changes.
Anisotropy can be measured by the structure parameter, in fig-
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Figure 4.20: Amplification of RMS of momentum (a), density (b) and velocity
fluctuations (c) between position E1 and position E2. ◦ , reference experiment;

, current LES averaged in time and over spanwise direction; ,
current LES averaged in time only, minimum and maximum values over the
spanwise direction.
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downsream positions.
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ure 4.21(c). Its value between 0.13 and 0.15 in the incoming bound-
ary layer agrees well with data reported by Adams (2000) and with
incompressible boundary layers (Smits & Dussauge, 1996). Through the
interaction it decreases inside the separation zone and then increases
again up to the value of ≈ 0.2 in the region after reattachment. Further
downstream values tend to decrease towards their magnitude before the
interaction. Particularly large values can be observed in the detached
shear layer.

4.5 Relaminarization effects

As already mentioned in section 1 the reverse flow exhibits indications of
relaminarization inside the separation zone. Zheltovodov (1979) found
that a favorable pressure gradient acting on the reverse flow between
reattachment and separation line and a decrease of the local Reynolds
number can lead to a transformation of the reverse-flow velocity profiles
from a shape which is typical for turbulent near-wall jets to a shape
which is typical for laminar ones. RANS calculations for a 90◦ step
with a k − ω turbulence model also revealed indications of this kind of
transformation and a decrease of the eddy viscosity in the reverse flow
ahead of a 90◦ step (Borisov et al., 1996). Bedarev et al. (1998) have
demonstrated that it is possible to predict relaminarization trends in
the separation regions for forward-facing steps and compression ramps
through an ad hoc modification of ω. These computations indicate the
importance to model this phenomenon for a better prediction of surface
pressure, skin-friction, and heat transfer in the separation region. A
comparison of RANS calculations with experimental data at M∞ = 3
and a wide range of deflection angles of β = 8◦, 25◦, 45◦ and 90◦ was
performed by Borisov et al. (1999).

The reverse flow inside the separation zone can be considered as a
near wall jet (Zheltovodov, 1979) and we use this fact to analyse effects of
inverse transition. The mean velocity profiles for the separated region are
plotted in figure 4.23. The reverse velocity is normalized by its maximum
value Umax, the wall-normal coordinate is normalized by l 1

2
where the

mean velocity is half of its maximum value. In such variables a turbulent
near-wall jet has a universal profile indicated by the thick solid line, the
dashed line denotes a laminar profile (Vulis & Kashkarov, 1965, p. 262).
The higher-Reynolds-number experimental data at sections 3,4 and 5
are shown in the figure 4.23(a), computational results at corresponding
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Figure 4.22: Reynolds normal stress τ11 =
˙

ρuc
1
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(a), the Reynolds shear
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3
′′

¸

(b) isolevels.
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Figure 4.23: Mean velocity in the reverse flow plotted in wall jet variables:
higher-Reynolds-number experiment (a) and current simulation (b). ,
turbulent near wall jet; , laminar near wall jet; ◦ , section 3; , section
4; ⋄ , section 5; , section 2; , section 3; , section 4; ,
section 5.

streamwise positions are shown in the figure 4.23(b). It can be seen
that the experimental data scatter around the laminar jet profile. The
simulation exhibits a clear tendency of a transformation from turbulent
to laminar jet profiles. This agrees with the experimental findings of
Zheltovodov (1979) for a forward-facing 90◦ step.

Based on an analysis of mean-flow and turbulence measurements for
a backward-facing step, Adams & Johnston (1988) found that a pro-
cess similar to an inverse transition can appear also in subsonic tur-
bulent separation. Following their suggestion we show the evolution of
mean flow profiles scaled in outer units, figure 4.24(a) and in wall units,

figure 4.24(b). For reference, a U
Umax

=
(

x3

δmax

)1/7

law and a log-law

U+
VD = lnx+

3 /0.4+5.1 are shown additionally, where the boundary-layer
thickness δmax here is defined as wall-normal distance of the point of
maximum reverse velocity. An evolution away from the turbulent shape
is evident.

The variation of maximum negative velocity in the reverse flow Umax

is shown in figure 4.25. From reattachment R to separation S the reverse
flow accelerates strongly by the favorable (negative) pressure gradient
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Figure 4.24: Mean velocity in the reverse flow plotted in outer boundary layer
scaling (a) and inner scaling (b). , section 2; , section 3; ,
section 4; , section 5. , power-law 〈U〉 / 〈U〉

max
= (x3/δmax)

1/7

and log-law ln x+

3 /0.4 + 5.1.

up to the corner position. From these data the acceleration parame-
ter ν

U2
max

dUmax

dx , which is commonly used to assess the relaminarization

conditions can be estimated between 10−4 and 4 × 10−4 which is in the
same range as reported by Adams & Johnston (1988). It is two orders of
magnitude larger then the relaminarization limit of 3.0 × 10−6 (Adams
& Johnston, 1988). This fact supports the possibility of relaminariza-
tion which is also in agreement with the decrease of velocity fluctuations
along the line of maximum negative velocity, figure 4.25. After the corner
the reverse flow slows down and the near-wall-jet mean-velocity profile
assumes a laminar shape. A slight increase of velocity fluctuations can
be attributed to approaching the highly unsteady region near separation
S.
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dotted line.



Chapter 5

Compression-decompression corner

So far we have considered a turbulent boundary layer influenced by
the shock wave, as the only perturbation imposed. In many practical
configurations, however, more than one perturbation event may occur
sequentially. For instance, in the compression-decompression corner (see
figure 1.1c) a rapid compression by the shock wave is followed by an ex-
pansion fan. Considering them together allows to investigate the effect
of successive perturbations on the turbulent boundary layer. We follow
the experimental approach and results are discussed for a full configura-
tion, keeping in mind that two separate simulations on different domains
were performed as described in section 2.1.

The domain of the second simulation, considering the decompression
corner only, has the extent L1 = 14.4 in the streamwise, L2 = 4 in the
spanwise direction, and in the wall-normal direction L3 varies from 3.6 at
inflow to 7.6. The computational mesh consists of 401×132×201 (about
10.6 million in total) points. The rather big domain height made it pos-
sible to avoid an influence of the upper boundary condition on the flow
field near the triple point of the λ-configuration. As explained in sec-
tion 2.1 the inflow section of the decompression-corner domain is exactly
matched to a cross-section of the compression-corner domain. In this sec-
tion the instantaneous field of all conservative variables was saved 5033
times during a period of 259δ0/U∞ of the compression-corner simulation.
The experimental section E2 belongs to both domains, furthermore a
short overlapping region of length x1 ≈ 2δ0 exists, allowing for a cross-
checking of the results. The decompression corner results may suffer
from inflow-data interpolation. Differences between compression-corner
and decompression-corner data in the overlapping region are expected
to be small due to very fine time slices, spaced by ∆t ≈ 0.05δ0/U∞,
and avoiding spatial interpolation. It should be noted however, that
an exact match of the results is not possible, since the explicit filter
utilized in ADM depends on the grid, which is different for the two sim-
ulations. On the other hand the compression corner simulation does
not take into account the effect of the decompression corner, which was
substituted by an outflow sponge-layer condition. The estimated up-
stream distance affected by the decompression corner is about δ0 (see
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section 4.1, figure 4.7), which is not considered when analyzing data in
the entire configuration.

Numerical method and boundary conditions are essentially the same
as used in the compression corner simulation as described in section 2.
Minor modifications of the boundary conditions were made. The em-
ployed central scheme is not able to provide sufficient dissipation near
the upper boundary, where the grid is very coarse. In order to maintain
numerical stability a second order Jameson-like (Jameson et al., 1981)
dissipation is added locally in this region. Similarly to the compression-
corner simulation, the inflow-boundary conditions are prepared from the
preceeding simulation. It is worthwhile noting that an essential temporal
inhomogeneity of the inflow data caused by the shock-system unsteadi-
ness does not permit the use of temporally periodic inflow conditions.

An instantaneous snapshot of the flow averaged in spanwise direc-
tion is presented in figure 5.1. The density (a) increases in the shock
wave, and diminishes in the Prandtl-Meyer expansion. The boundary
layer becomes thicker downstream of the expansion. The undisturbed
boundary layer, the separated shear layer, the shock wave system with
an unsteady second stem of the λ-configuration, and shocklets can be
identified from the density gradient magnitude (b). Turbulent fluctua-
tions are suppressed in the expansion fan after the decompression corner.
The shocklets cannot be identified as organized structures downstream of
the expansion fan, but a higher level of fluctuations in the external flow
still exists. A corresponding Schlieren-type photograph from the higher-
Reynolds number experiment shown in fig 5.1(c) exhibits a qualitative
agreement with numerical results.

5.1 Mean flow and turbulence

The mean flow is computed from 105 samples taken with an interval
of ∆t ≈ 0.5δ0/U∞. Due to the limited number of samples the flow is
averaged additionally in the spanwise direction for smoother statistics.
The mean skin-friction coefficient and the wall pressure distribution are
shown in figure 5.2. The mean flow quantities of the boundary layer tend
to recover their initial values during a streamwise distance of x1 ≈ 12
downstream of the perturbations. Generally, the comparison with the
reference experiment is favorable. Some discrepancies in the overlap re-
gion may be attributed to the difficulties described earlier. The spike
near the decompression corner in the skin friction is likely due to limited
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(a)
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(c)

Figure 5.1: Instantaneous representation of the flow for the entire configu-
ration. The calculated density (a), Schlieren-type picture (b) and Schlieren
visualization of the higher-Reynolds number experiment (c).
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Figure 5.2: Averaged skin-friction coefficient (a) and wall-pressure (b) distri-
butions in the streamwise direction. ◦ , reference experiment; , current
LES averaged in time and over spanwise direction; , compression corner
simulation results in the overlapping part of the domains. Symbols E1 − E4
point to the experimental positions, S and R are separation and reattachment
positions. The leftmost dashed vertical line indicates the compression-corner
position and the right-most dashed vertical line the decompression-corner of
the experiment.
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Figure 5.3: Velocity profiles at several downstream sections E1 − E4. ◦ ,
reference experiment; , current LES averaged in time and over spanwise
direction; , compression corner simulation results in the overlapping part
of the domains.

resolution of the corner singularity. Sharp gradients of flow variables oc-
cur over a short distance near the compression and decompression corner
positions causing a Gibbs-like oscillation in the numerical solution. A
slight pressure increase in the region 6 < x1 < 7 may indicate the exis-
tence of a weak compression wave inside the boundary layer downstream
of the expansion as sketched in figure 1.4.

Figure 5.3 gives an impression of the mean velocity profile evolu-
tion in the streamwise direction. The computational data are shown by
solid and dotted lines, having the same meaning as in figure 5.2. The
inner velocity deficit at station E2 is compensated by the expansion
(station E3). A developed turbulent boundary layer profile is recov-
ered approximately at the downstream station E4. The profiles of the
undisturbed turbulent boundary layer at station E1 and downstream of
the expansion at stations E3, E4 agree well with experimental data. As
explained in section 4.1, differences inside the boundary layer at sec-
tion E2 (x3 > 1) may be attributed to a deficiency of the experimental
measurement technique.
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The spanwise distribution of Cf is presented in figure 5.4. A com-
parison of data in the overlap region (station E2) reveals a deviation
of the decompression-corner results (solid line) from the compression-
corner simulation (dotted line). The difference can be attributed to the
different amount of statistical data collected in both simulations. The
influence of Görtler-like vortices on the surface data decreases at station
E3 and disappears further downstream at station E4, suggesting that
streamwise vortices decay while passing through the expansion. A vol-
umetric visualization also supports this conclusion. Apparently in the
current simulation vortices decay shortly downstream of the decompres-
sion corner. Generally, the evolution of the streamwise vortices further
downstream is an open question. It is unclear how long they exist in
the subsonic flow, even in the absence of a favorable pressure gradient
(Floryan, 1991), while for a compression corner at hypersonic speeds at
M = 6 they survive only for a rather short distance downstream of the
region with concave streamline curvature (Simeonides, 1993). The oil-
flow visualization in the higher Reynolds number experiment supports
this claim also.

Root-mean-square (RMS) values of the mass-flux 〈(ρU)
′2〉1/2, density

〈ρ′2〉1/2, and velocity 〈U ′2〉1/2 fluctuations (top to bottom) are shown
at several downstream sections E1 − E4 in figure 5.5. The profiles are
normalized with values of the undisturbed boundary layer in accordance
with the experiment of Zheltovodov & Yakovlev (1986). As predicted by
the experiment the RMS values increase during the interaction with the
shock (see station E2) shifting the maximum from a near wall position
to the shear layer. The Prandtl-Meyer expansion moves the maximum
further away from the wall and damps the RMS values. Fluctuations are
rather large outside of the boundary layer. Obviously the RMS profiles
at the downstream section E4 have a shape which is different from that of
the equilibrium boundary layer at the inflow station E1. The agreement
with the experimental data is good, some discrepancies at station E2
are discussed in section 4.4. The near-wall peaks which are well-resolved
in the simulation are not captured by the experiment.

The behavior of the mass-flux fluctuation in the boundary layer and
in the external flow is compared with the reference experiment in fig-
ure 5.6. The maxima of the profiles are taken for a fluctuation analysis
within the boundary layer, while the values in the range 2 < x3 < 3 are
taken from the outer flow (refer to figure 5.5a). The data are normal-
ized with their respective values at station E1. The results inside the
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Figure 5.4: Distribution of the mean skin-friction coefficient at the wall in
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over spanwise direction; , compression corner simulation results in the
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Figure 5.5: Root-mean-square of the momentum (a), density (b) and velocity
(c) fluctuations between position E1 and position E4. ◦ , reference experiment;

, current LES averaged in time and over spanwise direction; ,
compression corner simulation results in the overlapping part of the domains.
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boundary layer show a good agreement with the experiment. The fluc-
tuations are amplified within the shock at station E2 and then damped
by the expansion almost down to the initial level at station E4. In the
outer flow turbulent fluctuations grow by an order of magnitude dur-
ing the interaction with the shock. The expansion decreases this level,
but it remains at a significantly higher level than the initial one over
a long distance downstream. The simulation qualitatively follows this
trend, a quantitative comparison is difficult because of the low level of
external turbulence at station E1 which is used for normalization. An
additional uncertainty is introduced by the ambiguity in determining
the external part of the profile in the separation region. This behavior of
the turbulence outside the boundary layer can be explained as follows.
The turbulence is amplified by the interaction with the shock wave, the
shocklets also contribute to the enhancement of fluctuation, as described
in section 4.3.2. The expansion destroys the shocklets as coherent struc-
tures, but does not damp entirely the fluctuations caused by them, thus
keeping the external turbulence level high. This is an important feature
of the flow captured by the current LES, since the outer turbulence has
an influence on the heat transfer at the wall.

5.2 Turbulent kinetic energy balance

A fundamental equation used in turbulence modeling is the transport
equation of the turbulent kinetic energy which can be written according
to Gatski (1997) as:

∂ 〈ρ〉K

∂t
+

∂

∂xj
({uj} 〈ρ〉K)

︸ ︷︷ ︸
I

= 〈ρ〉P︸ ︷︷ ︸
II

+ 〈ρ〉Πd

︸ ︷︷ ︸
III

+ M︸︷︷︸
IV

+
∂Dt

j

∂xj︸ ︷︷ ︸
V

−

〈ρ〉 ε︸︷︷︸
V I

+
∂

∂xj

( 〈µ〉
Re

∂K

∂xj

)

︸ ︷︷ ︸
V II

, (5.1)

where the turbulent kinetic energy (TKE) is defined as

〈ρ〉K =
1

2
〈ρu′′

i u′′
i 〉 .

The following definitions and interpretations are assigned to the individ-
ual terms of equation (5.1):
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(I) is the convection of K;

(II) is the production of K

〈ρ〉P = −
〈
ρu′′

i u′′
j

〉 ∂ {ui}
∂xj

;

(III) is the pressure dilatation

〈ρ〉Πd =

〈
p′

∂u′
k

∂xk

〉
,

which is a purely compressible term since it vanishes for divergence-
free flows;

(IV) is the mass flux variation

M = 〈u′′
i 〉

(
∂ 〈τij〉
∂xj

− ∂ 〈p〉
∂xi

)
,
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(V) is the turbulent diffusion

∂Dt
j

∂xj
= − ∂

∂xj

[
1

2

〈
ρu′′

i u′′
i u′′

j

〉
+

〈
p′u′

j

〉]
;

(VI) is the turbulent dissipation

〈ρ〉 ε =

〈
τ ′
ij

∂u′
i

∂xj

〉
;

(VII) is the viscous diffusion.

These terms are non-dimensionalized by the free-stream quantities as
described in section 2.2. It should be noted that correlations involving
viscosity fluctuations have been neglected in the definitions of terms VI
and VII. They are certainly unimportant in the present case (Huang
et al., 1995).

The wall-normal distribution of individual terms at stations E1−E4
is presented in figures 5.7, 5.8. Our results show that the turbulent
convection (I), pressure dilatation (III) and mass-flux-variation (IV) are
very small at station E1. In order to show relatively small terms clearly
we presented them magnified in the insets. TKE production (II) and
the turbulent dissipation (VI) occur mainly near the wall. In the in-
teraction region at section E2 convection (I) and production (II) terms
become significantly higher and have a different distribution across the
boundary layer. Along with increased fluctuation levels (see figure 5.5)
the dissipation (V) also increases. Near the wall, a steep increase of
velocity fluctuations causes large dissipation rates. Other terms change
only slightly. At section E3 the production term (II) becomes negative
indicating a damping of turbulent fluctuations. Further downstream the
profiles tend to recover the undisturbed shapes. Due to limited sta-
tistical samples collected in the decompression corner simulation some
terms are difficult to analyze. They incorporate third and fourth order
correlations and definitely are statistically not converged.
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Figure 5.7: Turbulence kinetic energy budget at station E1 (a), E2 (b). In-
dividual terms are according to equation (5.1): , I; , II; ,
III; , IV; , V; , VI; , VII.
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Figure 5.8: Turbulence kinetic energy budget at station E3 (c), E4 (d). In-
dividual terms are according to equation (5.1): , I; , II; ,
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Chapter 6

Conclusions

The numerical investigation of compression-decompression ramp flow
was performed using large-eddy simulation. Unprecedentedly, a high
Reynolds number corresponding to experimental conditions is achieved,
allowing direct comparison. The Reynolds number based on the in-
coming boundary-layer thickness is Reδ0

= 63560, the free-stream Mach
number is M∞ = 2.95. For obtaining the numerical solution a high-order
compact difference scheme was used. The subgrid-scales are modelled
by the Approximate Deconvolution Method.

The results are validated successfully against the reference experi-
ment. In particular a good agreement was achieved for surface-pressure
and skin-friction distributions, mean velocity profiles, mass-flow, density
and velocity fluctuations and wall-pressure-fluctuation distributions. It
was possible to resolve entirely the unsteady behavior of the shock system
around the separation region. Along with high frequency fluctuations of
the shock system a large-scale shock motion was confirmed by the simu-
lation. Aside of the direct shock-turbulence interaction a mechanism for
turbulence amplification in the external flow above the detached shear
layer was proposed based on downstream travelling shocklets. This ex-
plains a nature of experimentally observed turbulence amplification and
details its acoustic mode downstream of the shock wave. The existence
of streamwise Görtler-type vortices was corroborated by the simulation.
The effect of these structures on the spanwise mean-flow variation should
be taken into account in validation efforts of CFD methods based on
experimental data. Indications for a relaminarization tendency in the
separation region were found.

The results of current research was presented at several seminars
held in the Institute of Fluid Dynamics (ETHZ, Zürich), Institute of
Theoretical and Applied Mechanics (Novosibirsk), Institute of Aerody-
namics (TUM, Munich), Institute of Aerodynamics and Flow Technol-
ogy (DLR, Göttingen). The publications include conference proceedings
(Zheltovodov et al., 2003; Loginov & Adams, 2003; Loginov et al., 2003,
2004a,b,c, 2005c,a,b, 2006b) and a paper in a peer-reviewed journal
(Loginov et al., 2006a).





Appendix A

Summary of flat-plate boundary layer simulations

Reference M∞ Reθ N1 × N2 × N3 ∆+
x1

× ∆+
x2

× ∆+
x3

SGS comments

Rai et al. (1995) 2.25 ≈ 4500 971 × 321 × 55 27 × 10.4 × 0.95 DNS SE, AW
Spyropoulos & Blaisdell (1998) 2.25 ≈ 4300 416 × 257 × 55 59 × 11.4 × 0.87 DS SE, AW

Guarini et al. (2000) 2.5 1577 256 × 192 × 209 8.86 × 5.96 × 0.48 DNS SG, AW
Maeder et al. (2001) 3 3038 192 × 144 × 180 2.9 × 2.2 × 1.3 DNS ET, IW
Maeder et al. (2001) 4.5 3305 432 × 192 × 200 2.9 × 1.6 × 0.6 DNS ET, IW
Maeder et al. (2001) 6 2945 240 × 160 × 220 1.3 × 1.1 × 0.5 DNS ET, IW

Gatski & Erlebacher (2002) 2.25 4250 1701 × 501 × 55 13.9 × 6.8 × 0.97 DNS SE, AW

Yan et al. (2002b) 2.88 Reδ = 20000 1.4 × 106 cells 20; 18 × 7; 6.4 × 1.8; 1.6 MILES RRM, AW; IW

Yan et al. (2002b) 4 Reδ = 20000 1.4 × 106 cells 12; 11 × 4; 3.4 × 1.8; 1.6 MILES RRM, AW; IW
Yan et al. (2002a) 2.88 Reδ = 82400 N/A 17 × 17 × 1.8 MILES RRM, AW

Stolz & Adams (2003) 2.5 4530 251 × 51 × 101 41 × 21 × 2.7 ADM RRM, IW
Stolz & Adams (2003) 2.5 10049 361 × 73 × 145 59 × 29 × 3.6 ADM RRM, IW
Pirozzoli et al. (2004) 2.25 4246 2065 × 255 × 56 14.5 × 6.56 × 1.05 DNS SE, AW

Rizzetta & Visbal (2004) 2.25 371 × 151 × 61 83.81 × 21.55 × 0.9 MILES, S, DS SE, AW
Table A.1: Summary of DNS/LES for a flat-plate boundary layer. Subgrid scale
models: DNS — direct numerical simulation (no SGS model); DS — dynamic
Smagorinsky SGS model; MILES — monotonically integrated large-eddy simula-
tion; ADM — approximate deconvolution model; S — Smagorinsky SGS model.
Comments: SE — spatially evolving boundary layer; SG — ”slow growth” formula-
tion; ET — ”extended temporal” approach; AW — adiabatic wall; IW — isotermal
wall.





Appendix B

Summary of compression ramp simulations

Reference
Hunt & Nixon
(1995)

Adams (1998),
Adams (2000)

Urbin et al.
(1999)

Yan et al.
(2001)

Rizzetta et al.
(2001)

Rizzetta &
Visbal (2002)

Deflection angle (β)
24◦ 18◦ 8◦ 25◦ 18◦ 8; 16; 20; 24◦

Free-stream Mach number (M∞)
2.8 3 3 2.88 3 3

Free-stream Reynolds number (Reδ0
)

106 21365 20000 20000 20807 20807
SGS model

two part
eddy-viscosity
model of Moin
& Kim (1982)

DNS classical
constant-
coefficient
Smagorinsky
(1963) model
with Van Dri-
est dumping
near the wall

MILES (Boris
et al., 1992)

Smagorinsky
(1963) model,
dynamic
Smagorinsky
model (Ger-
mano et al.,
1991), MILES
(Boris et al.,
1992)

dynamic
Smagorinsky
model (Ger-
mano et al.,
1991)

Grid size (streamwise × spanwise × wall-normal, total)
117 × 61 × 59,
≈ 0.42 × 106

1001×81×181,
≈ 14.7 × 106

unstructured
grid,
1.6 × 106

unstructured
grid
213 × 57 × 35
nodes,
≈ 2 × 106

tetras

421× 81× 151,
≈ 5.1 × 106

421× 81× 151,
≈ 5.1 × 106
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Hunt & Nixon
(1995)

Adams (1998),
Adams (2000)

Urbin et al.
(1999)

Yan et al.
(2001)

Rizzetta et al.
(2001)

Rizzetta &
Visbal (2002)

Spatial discretization
convective terms

N/A hybrid
compact-
ENO finite-
difference
scheme
(Adams &
Shariff, 1996):
5th-order
Padé-like up-
wind biased
scheme, 4th-
order ENO
scheme around
discontinuities

finite volume,
2nd order
reconstruction
by least square
method of
Ollivier-Gooch
(1997)

finite volume,
2nd order
reconstruction
by least square
method of
Ollivier-Gooch
(1997)

6th-order
compact finite-
difference
scheme of Lele
(1992) in con-
junction with
a 10th-order
nondisper-
sive filter
(Gaitonde
et al., 1997),
upwind biased
scheme of Roe
(1981) using
MUSCL in-
terpolation is
employed near
the shocks

6th-order
compact finite-
difference
scheme of Lele
(1992) in con-
junction with
a 10th-order
nondisper-
sive filter
(Gaitonde
et al., 1997),
upwind biased
scheme of Roe
(1981) using
MUSCL in-
terpolation is
employed near
the shocks

diffusion terms
N/A 6th-order

compact finite-
difference
scheme of Lele
(1992)

finite volume,
3D version
of 2nd order
scheme of
Knight (1994)

finite volume,
3D version
of 2nd order
scheme of
Knight (1994)

6th-order
compact finite-
difference
scheme of Lele
(1992)

6th-order
compact finite-
difference
scheme of Lele
(1992)
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Hunt & Nixon
(1995)

Adams (1998),
Adams (2000)

Urbin et al.
(1999)

Yan et al.
(2001)

Rizzetta et al.
(2001)

Rizzetta &
Visbal (2002)

Temporal discretization
N/A explicit low-

storage 3rd-
order Runge-
Kutta scheme
of Williamson
(1980)

2nd-order 2nd-order
Runge-Kutta

2nd-order ap-
proximately
factored finite
difference algo-
rithm of Beam
& Warm-
ing (1978)
employing
Newton-like
subiterations

2nd-order ap-
proximately
factored finite
difference algo-
rithm of Beam
& Warm-
ing (1978)
employing
Newton-like
subiterations

Domain size, δ
streamwise (L1)

16 27.4 12.1 16.8 28.1 31.2
spanwise (L2)

5 1.22 4.4 1.925 2.9 2.9
wall-normal (L3) inflow ÷ outflow

3 4.57 ÷ 8.99 3.4 3.4 4.7 4.7
Inflow generation method

Sampling time, δ0/U∞

N/A 385 N/A 48 ≈ 385 ≈ 385
Number of samples

N/A 600 N/A N/A 12469 12469
Table B.1: Summary of DNS/LES for a compression corner
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Reference
Stolz et al.
(2001a)

Kannepalli
et al. (2002)

El-Askary
et al. (2003)

von Kaenel
et al. (2004)

Smits et al.
(2006)

Comte &
David (1996)

Deflection angle (β)
18◦ 8; 24◦ 8; 18◦ 18◦ 24◦ 20◦

Free-stream Mach number (M∞)
3 2.88 3 3 2.9 2.5

Free-stream Reynolds number (Reδ0
)

21365 20000 20000 21365 35921 ≈ 840
SGS model

Approximate
Deconvolution
Model of Stolz
et al. (2001a)

MILES MILES Approximate
Deconvolution
Model of Stolz
et al. (2001a)

DNS selective
structure-
function model
of Métais &
Lesieur (1992)

Grid size (streamwise × spanwise × wall-normal, total)
334 × 31 × 91,
≈ 0.9 × 106

300 × 56 × 65,
≈ 1.1 × 106

347× 33× 113,
≈ 1.3 × 106

975× 33× 125,
≈ 4 × 106

332 × 30 × 90,
≈ 0.9 × 106

412× 128× 96,
≈ 5.1 × 106

220× 25× 140,
≈ 0.8 × 106

Spatial discretization
convective terms

6th-order
compact finite-
difference
scheme of Lele
(1992)

5th-order up-
wind biased
with Roe-flux-
extrapolation
procedure (Rai
& Moin, 1993)

2nd-order
advection up-
stream split-
ting method of
Liou & Steffen
(1991)

4th-order dis-
cretization
in skew-
symmetric
form

3rd-order ac-
curate WENO

N/A

diffusion terms
6th-order
compact finite-
difference
scheme of Lele
(1992)

4th-order cen-
tral differenc-
ing

2th-order cen-
tral differenc-
ing

computed us-
ing the gradi-
ent theorem on
a shifted vol-
ume

4th-order
accurate cen-
tral standard
method

N/A



9
9

Stolz et al.
(2001a)

Kannepalli
et al. (2002)

El-Askary
et al. (2003)

von Kaenel
et al. (2004)

Smits et al.
(2006)

Comte &
David (1996)

Temporal discretization
explicit low-
storage 3rd-
order Runge-
Kutta scheme
of Williamson
(1980)

2nd-order
implicit three-
factor ap-
proximate
factorization

2nd-order ex-
plicit Runge-
Kutta scheme

explicit low-
storage four-
stage Runge-
Kutta scheme

3rd- or 4th-
order accurate
low-storage
Runge-Kutta
method

fully explicit
McCormack
scheme

Domain size, δ
streamwise (L1)

27.4 14.8 11; 30.5 27.4 13 N/A
spanwise (L2)

1.22 1.93 N/A 1.22 2 ≈ 1.5
wall-normal (L3) inflow ÷ outflow

4.57 ÷ 8.99 3.4 N/A 4.57 ÷ 8.99 4.5 N/A
Inflow generation method

Sampling time, δ0/U∞

370 320 N/A 63 35; 90 N/A
Number of samples

N/A N/A N/A 1500 N/A N/A
Table B.2: Summary of DNS/LES for a compression corner (continue)





Appendix C

Computational details

For the current computations a FORTRAN code designed and op-
timized for shared memory vector-parallel computers is used. Compu-
tations are performed on the NEC SX-5/6/8 systems available at High
Performance Computing Center (Höchstleistungsrechenzentrum, HLRS)
in Stuttgart . Parallelization and vectorization of the code relies on the
compiler automatic parallelization and manual tuning in critical sections
with compiler directives (the NEC FORTRAN90/SX compiler is used).
Typical values for production runs on NEC SX-5 machine are given in
the table C.1. The performance ratio is in accordance with previously
obtained data at another SX-5 computer with 8 GFLOPS peak perfor-
mance of Swiss National Supercomputing Centre (CSCS, Switzerland).
It varies slightly when running on different number of processors. Ap-
proximately 10000 CPU hours are used on this platform. Significant
performance ratio decreasing was observed when calculation was run-
ning on NEC SX-6 platform. A dependence on the number of CPUs
is significant in this case. We spent more then 8000 CPUh on SX-6
platform. The decomperession corner simulation was running on SX-8
platform, see table C.1 for details. The simulation is requires a vast
amount of disk space to save results since a lot of instantaneous data
have to be saved for time-history analysis. More than 500 GigaBytes of
data have been saved for post-processing.



Computational details

Table C.1: Details of the production runs SX platforms

parameter value comment

SX-5

Memory, GB 6.7 7.7 with concurrent postprocessing
Performance, MFLOPS 1748 ≈ 44% of peak performance
Number of CPU 5 tried 4 – 12 CPUs
Vector optimization ratio, % 99.3
Wall clock time, hours 185.3 for 694.8 CPUh user time

SX-6

Memory, GB 6.9
Performance , MFLOPS 2763 ≈ 30% of peak, varies 25–34%
Number of CPU 6
Vector optimization ratio, % 99.3
Wall clock time, hours 38.9 for 163.3 CPUh user time

SX-8

Memory, GB 9.8
Performance , MFLOPS 3815
Number of CPU 4
Vector optimization ratio, % 99.2
Wall clock time, hours 5.8 for 19.4 CPUh user time
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Saric, W. S. 1994 Görtler vortices. Annu. Rev. Fluid Mech. 26, 379–
409.

Settles, G. S. & Dodson, L. J. 1991 Hypersonic shock/boundary-
layer interaction database. Tech. Rep. NASA CR 177577. NASA Ames
Research Center, Moffet Field, California.

Settles, G. S. & Dodson, L. J. 1994 Supersonic and hypersonic
shock / boundary layer interaction database. AIAA J. 32, 1377–1383.

Settles, G. S. & Dolling, D. S. 1990 Swept shock/ boundary-layer
interactions – tutorial and update. AIAA Paper 90-0375.

Settles, G. S., Fitzpatrick, Th. J. & Bogdonoff, S. M. 1979
Detailed study of attached and separated compression corner flowfields
in high Reynolds number supersonic flow. AIAA J. 17, 579–585.

Simeonides, G. 1993 Hypersonic shock wave boundary layer interac-
tions over simplified deflected control surface configurations. Tech.
Rep. AR-792. AGARD Report.

Sinha, K., Mahesh, K. & Candler, G. V. 2005 Modeling the effect of
shock unsteadiness in shock / turbulent boundary-layer interactions.
AIAA J. 43, 586–594.

Smagorinsky, J. 1963 General circulation experiments with the primi-
tive equations. i. the basic experiment. Mon. Weather Rev. 91, 99–164.

Smits, A. J. & Dussauge, J.-P. 1996 Turbulent Shear Layers in Su-
personic Flow . Woodbury, New York: AIP Press.

Smits, A. J. & Muck, K.-C. 1987 Experimental study of three shock
wave / turbulent boundary layer interactions. J. Fluid Mech. 182,
291–314.



Bibliography

Smits, A. J. & Wood, D. H. 1985 The response of turbulent boundary
layers to sudden perturbations. Annu. Rev. Fluid Mech. 17, 321–358.

Smits, M. P. Martin A., Wu, M. & Ringuette, M. 2006 The
turbulence structure of shockwave and boundary layer interaction in
a compression corner. AIAA Paper 06–0497.

Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer
up to Reθ = 1410. J. Fluid Mech. 187, 61–98.

Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics
of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26,
287–319.

Spyropoulos, E. T. & Blaisdell, G. A. 1998 Large-eddy simulation
of a spatially evolving supersonic turbulent boundary-layer flow. AIAA
J. 36, 1983–1990.

Squires, K. D. 2004 Detached-eddy simulation: current status and
perspectives. In Direct and Large-eddy simulations — 5 , pp. 465–480.
Dordrecht, The Netherlands: Kluwer, poitiers-Futuroscope, France,
September 12 – 14, 2005.

Stolz, S. & Adams, N. A. 2003 Large-eddy simulation of high-
Reynolds-number supersonic boundary layers using the approximate
deconvolution model and a rescaling and recycling technique. Phys.
Fluids 15, 2398–2412.

Stolz, S., Adams, N. A. & Kleiser, L. 2001a The approximate de-
convolution model for large-eddy simulation of compressible flows and
its application to shock-turbulent-boundary-layer interaction. Phys.
Fluids 13, 2985–3001.

Stolz, S., Adams, N. A. & Kleiser, L. 2001b An approximate de-
convolution model for large-eddy simulation with application to in-
compressible wall-bounded flows. Phys. Fluids 13, 997–1015.

Tani, I. 1962 Production of longitudinal vortices in the boundary layer
along a concave wall. Journal of Geophysical Research .

Urbin, G., Knight, D. & Zheltovodov, A. A. 1999 Compressible
large eddy simulation using unstructured grid - supersonic turbulent
boundary layer and compression corner. AIAA Paper 99-0427.



113

Urbin, G., Knight, D. & Zheltovodov, A. A. 2000 Large eddy
simulation of a supersonic compression corner. AIAA Paper 00-0398.

Volkov, V. F. & Loginov, M. S. 2000 Computational study of su-
personic flow over the wings at high angles of attack and sideslip in the
framework of euler equations. In International Confenference on the
Methods of Aerophysical Research, Part 2 , pp. 149–157. Novosibirsk,
Russia, July 9 – 16, 2000.

Volkov, V. F., Zheltovodov, A. A., Derunov, E. K. & Loginov,

M. S. 2002 Numerical simulation of supersonic inviscid flow around
lifting bodies. Thermophysics and Aeromechanics 9 (2), 215–232, (in
Russian).

von Kaenel, R., Kleiser, L., Adams, N. A. & Vos, J. B. 2004
Large-eddy simulation of shock-turbulence interaction. AIAA J. 42,
2516–2528.

Vulis, L. A. & Kashkarov, W. P. 1965 Theory of the Viscous Liquid
Jets. Moscow: Nauka, (in Russian).

Williamson, J. H. 1980 Low-storage Runge-Kutta schemes. J. Com-
put. Phys. 35, 48–56.

Xiao, X., Edwards, J. R., Hassan, H. A. & Baurle, R. A. 2003
Inflow boundary conditions for hybrid large eddy / Reynolds averaged
Navier-Stokes simulations. AIAA J. 41, 1481–1489.

Xu, S. & Martin, M. P. 2004 Assessment of inflow boundary con-
ditions for compressible turbulent boundary layers. Phys. Fluids 16,
2623–2639.

Yan, H., Knight, D. & Zheltovodov, A. A. 2001 Large eddy sim-
ulation of supersonic compression corner using ENO scheme. In Third
AFOSR Intern. Conf. on DNS and LES , pp. 381–388. Arlington:
Univ. of Texas, August 5–9, 2001.

Yan, H., Knight, D. & Zheltovodov, A. A. 2002a Large eddy
simulation of supersonic flat plate boundary layer part II. AIAA Paper
2002-4286.



Bibliography

Yan, H., Knight, D. D. & Zheltovodov, A. A. 2002b Large-eddy
simulation of supersonic flat-plate boundary layers using the monoton-
ically integrated large-eddy simulation (MILES) technique. Journal of
Fluids Engineering 124, 868–875.

Yan, H., Urbin, G., Knight, D. & Zheltovodov, A. A. 2000 Com-
pressible large eddy simulation using unstructured grid: supersonic
boundary layers and compression ramps. In International Confenfer-
ence on the Methods of Aerophysical Research, Part 1 , pp. 215–224.
Novosibirsk, Russia, 9 – 14 July, 2000.

Zheltovodov, A. A. 1979 Analysis of properties of two-dimensional
separated flows at supersonic speeds conditions. In Investigations of
near-wall flows of viscous gas (ed. academician N. N. Yanenko), pp.
59–94. Novosibirsk: Institute of Theoretical and Applied Mechanics,
USSR Academy of Sciences, (in Russian).

Zheltovodov, A. A. 1991 Peculiarities of development and model-
ing possibilities of supersonic turbulent separated flows. In Separated
Flows and Jets: IUTAM Symposium (ed. V. V. Kozlov & A. V. Dov-
gal), pp. 225–236. Novosibirsk, USSR July 9 - 13, 1990.

Zheltovodov, A. A. 1996 Shock waves/turbulent boundary-layer in-
teractions – fundamental studies and applications. AIAA Paper 96-
1977.

Zheltovodov, A. A. 2004 Advances and problems in modelling of
shock wave turbulent boundary layer interactions. In International
Confenference on the Methods of Aerophysical Research, Part 2 , pp.
149–157. Novosibirsk, Russia, June 28 – July 3, 2004.

Zheltovodov, A. A., Borisov, A. V., Knight, D. D., Horstman,

C. C. & Settles, G. S. 1992 The possibilies of numerical simula-
tion of shock waves / boundary layer interaction in supersonic and
hypersonic flows. In International Confenference on the Methods of
Aerophysical Research, Part 1 , pp. 164–170. Novosibirsk, Russia, Au-
gust 31 - September 4, 1992.

Zheltovodov, A. A., Loginov, M. S., Maksimov, A. I., Adams,

N. A., Knight, D. & Thivet, F. 2003 Problems, achievements and



115

prospects in supersonic turbulent separation research. In Airgasody-
namics in XXI century, all-Russian conference dedicate to 80th an-
niversary of academician G. G. Chernyi (book of abstracts). Moscow,
Russia, January 27 – 30, 2003 (in Russian).
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