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Abstract- We derive the minimum mean square error (MMSE)
solution to vector precoding for frequency flat multiuser scenarios
with a centralized multi-antenna transmitter. The receivers em-
ploy a modulo operation, giving the transmitter the additional
degree of freedom to choose a perturbation vector. Similar to
existing vector precoding techniques, the optimum perturbation
vector is found with a closest point search in a lattice. The
proposed MMSE vector precoder does not, however, search for
the perturbation vector resulting in the lowest transmit energy,
as proposed in all previous contributions on vector precoding, but
finds an optimum compromise between noise enhancement and
residual interference. We present simulation results showing that
the proposed technique outperfonns existing vector precoders,
as well as the MMSE Tomlinson-Harashima precoder.

I. INTRODUCTION

In the case of non-cooperative receivers (broadcast chan-
nel), the only way to achieve the maximum possible perfor-
mance is through the application ofprecoding. Linear precod-
ing (see e. g. [1], [2], [3]) is attractive due to its simplicity, i. e.
the data signal is linearly transformed at the transmitter and
the received signal is only weighted with a scalar before quani-
tization. However, it is clearly outperformed by the nonlinear
Tomlinson-Harashima precoding (THP), which was employed
for MIMO channels with non-cooperative receivers in [4], [5],
[6], [7]. The advantage of THP compared to linear precoding
results from the introduction of a modulo operator inside the
feedback loop at the transmitter, limiting the amplitude of the
transmit signal. To counteract the operation of the modulo
operator at the transmitter, the receivers also have to apply
modulo operators before quantization.
The modulo operators at the receivers allow for a more

general choice of the additive perturbation signal than done by
THP, as was highlighted by Hochwald, Peel, and Swindlehurst
in [8]. They proposed to use a linear transformation at the
transmitter, whose input is the data signal superimposed with
a perturbation signal with properties known from THP, i. e. its
entries are integer multiples of the modulo constant. First, the
linear transformation is chosen and kept fixed, e. g. following
a zero-forcing criterion resulting in the weighted channel
pseudoinverse. In a second heuristic step, the perturbation
signal is optimized to minimize the transmit power [8]. Since
the algorithm to find the perturbation signal is closely related
to the sphere decoder (e.g. [9]), the algorithm was named
sphere encoder [8]. However, we follow [ 10] and simply
call the scheme vector precoding. We also note that vector
precoding is spatial shaping without scrambling (cf. e. g. [1 1]).
To circumvent the computational complexity necessary for

vector precoding, two suboptimum approaches have been

proposed. In [10], Windpassinger et al. replaced the sphere
decoder necessary for finding the perturbation signal by the
respective lattice reduction aided detector, a technique known
from the receiver side [12]. Meurer et al. [13] proposed to
split the symbols into groups to reduce the dimensionality of
the problem for the sphere decoder.

It is well researched and understood that the zero-forcing
type is always outperformed by the minimum mean square
error (MMSE) type for linear precoding (see [1], [3]) and for
THP (see [7]). We can expect the same for vector precoding.
Therefore, a variant with a regularized pseudoinverse as the
linear transformation at the transmitter was proposed in [8].
Again, the perturbation signal is found by heuristically mini-
mizing the transmit power. For the application of this scheme
to frequency selective MIMO systems see [14]. As noted in
[8], the choice of the regularization in the pseudoinverse is
an open question and the results were obtained by a trial and
error procedure. In [15], an SINR criterion was used to find
the regularization, but the power of some intermediate signal
was minimized instead of the total transmit power.
Our contributions in this paper are:
t) We base vector precoding on one optimization instead of

the state-of-the-art two step optimization. Motivated by
Fomey [16, Remark 8], we use the mean square error
(MSE) as the figure of merit.

2) We derive MMSE vector precoding, i. e. we find a closed
form solution for the necessary regularization in the
pseudoinverse.

3) We show that the minimization of the transmit power is
not optimum in the MMSE sense.

4) By including a zero-forcing constraint, we find that the
scheme of [8] is the solution for zero-forcing vector
precoding. From this observation it is clear that our new
MMSE vector precoding is superior to the variant in [8],
since MMSE vector precoding does not have to fulfill
the zero-forcing constraint.

Notation: Throughout the paper, we will denote vectors and
matrices by lower and upper case bold letters, respectively. We
use E[-], (.)*, (.)T, (.)H, tr(e), and Re(-) for expectation,
the complex conjugate, transposition, conjugate transposition,
the trace of a matrix, and the real part, respectively. The Ml-
dimensional zero vector is OM1 and the N x N identity matrix
is 1N. We refer to the imaginary unit as j.

II. STATE OF THE ART VECTOR PRECODING
We begin by reviewing the principle of THP for fre-

quency flat MIMO channels (block diagram in Fig. 1(a),

978-3-8007-2909-8/05/$20.00 ©2005 IEEE 107



2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

(a) Transmission Block Diagram

Fig. 1. Spatial Tomlinson-Harashima Precoding

[5], [7]). We assume Na antennas at the transmitter and B
non-cooperative single-antenna receivers with different data
streams. The transmitter uses the linear feedforward filter
to give the effective channel desired characteristics. The
data symbols belonging to the B streams are precoded as

follows: the first symbol is transmitted unaltered; the second
symbol is transmitted taking into account and subtracting the
interference that will be caused by the first symbol, and so on,

until the B-th symbol is transmitted with compensation for all
other symbols. This successive interference cancelation can

be expressed with the feedback filter matrix , which must
have lower triangular structure with a zero main diagonal.
Obviously, if the effective channel is lower triangular,
interference-free transmission is possible.

Furthermore, every precoded symbol passes the modulo
operation M(e), which maps both the real and the imaginary
part of the symbol to the interval [-r/2; r/2) by adding
integer multiples of T, where r is the modulo constant. Let us

consider, for instance, 4QAM symbols with real and imaginary
parts that can have the values -1 and +1. We then might
choose = 4, so that the modulo output is always between
-2 and +2. An input of 2.2 - 3.1j would consequently be
mapped to - 1.8+0.9j. In this case, the modulo operator added
-4 + 4j to the symbol.
The receivers must apply the same modulo operation after

scaling the received signal with g, to 'reverse' the effect of
the transmitter modulo operation. In our example, the receiver
modulo operator would add 4 - 4j, resulting in the desired
data symbol, assuming that the interference was perfectly pre-
subtracted and not taking into consideration the additive noise.

If we think of the modulo operation on the B data streams
as the addition of an auxiliary vector signal , we can equiva-
lently let it be located in front of the feedback loop, leading to
the block diagram of the transmitter in Fig. (b). We must keep
in mind, however, that the values of the auxiliary vector signal

are determined by the modulo operation during the process
of limiting the amplitude of the successively precoded signals

. Nonetheless, the feedback filter and the feedforward filter
now are both linear operations and can be combined into a

single filter matrix (1B - )-1. For zero-forcing THP (ZF-
THP), where all interference is canceled, the resulting filter
evaluates to g- H( H)1 i. e. the scaled pseudoinverse
of the channel [5], [7].

FTx

-1 H( H)-1i

BET2B±+jB

Fig. 2. Vector Precoding with Channel Inversion

This leads us to the idea of vector precoding, as proposed
in [8] (cf. Fig. 2): instead of letting the successive procedure of
interference cancelation and modulo operation determine the
additive 'perturbation' signal, the vector precoder optimizes
directly. The goal is to minimize the unscaled transmit energy,

or equivalently, to minimize the noise enhancement factor g

for a given transmit energy:

vP- argmin H(
aErZIB+jr2B

2
H)- ( +

)

(1)

The optimization is equivalent to a closest point search in a

lattice, of which the real valued representation can be solved
with the methods in [9].

Hochwald et al. were able to further improve the perfor-
mance of vector precoding by regularizing the matrix inverse
in the linear pre-filter [8]. Finding the optimum regularization
coefficient, however, was noted to be an open problem. When
we look at the MMSE solution to THP, which does not cancel
interference completely, but finds the optimum compromise
between noise enhancement and interference, we notice that
the combined feedforward filter resulting from the filters
and in Fig. l(b) can be expressed as g-1 H( H +
41B)-1, where ( denotes the inverse signal-to-noise ratio
(SNR, see Eq. 6) [7]. The obvious heuristic approach to
MMSE vector precoding would be to simply employ this
regularized feedforward filter and to otherwise use the same

procedure of minimizing the transmit energy as in (1), see [81:

regVP = arg min H (
aE-TZB+jj7ZB

+ 6()2
2

Simulations indeed show a performance improvement in most
cases (cf. [8],[14]).

Surprisingly though, for low SNRs, MMSE-THP per-

forms better than this regularized vector precoding technique
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Fig. 3. System Model

(cf. Section IV), allowing the conclusion that there exists a
better vector precoder, of which MMSE-THP is a constrained,
and therefore suboptimum, variant. The problem with the
regularized vector precoder is the fact that it does not take
into account that interference between the data streams is not
completely suppressed, and that different perturbation vectors
result in different interferences. The additive signal that leads
to the lowest unscaled transmit energy, and thus to the lowest
noise gain g, might entail considerably higher interference at
the receiver, even though the SNR is maximized.

In the following section, we introduce a vector precoder that
minimizes the MSE, finding an optimum compromise between
noise enhancement and residual interference for each symbol.

III. MMSE VECTOR PRECODING

A. System Model
In our system (cf. Fig. 3), a base station with Na transmit

antennas serves B decentralized users with independent data
streams. The data symbols of the B streams are collected in
the vector

[n] = [si [n],.. .,SB[n]]T E CB.
We consider the transmission of one block of data symbols
of length NB, during which symbols are transmitted with a
constant scaling that is chosen to fulfill a certain average trans-
mit energy. Based on the data symbols [1],..., [NB], the
precoder chooses the transmit signal vectors [1], [NB,
where

[n] = [y[n],. ..,yNj[nl]T e CNa

contains the transmit signals at each antenna element.
The B users scale the received signal with g E IR7F, yielding

the estimates [n] = g [n] + g [n] e CB, where E
CB,XN is the frequency flat channel matrix and [n] is a
stationary zero-mean noise signal with the spatial covariance
matrix

E [ [n] [n]= .

The receivers apply the modulo operation M(.) (cf. Sec-
tion II) to [n], yielding the estimate ^[n] of the data vector
[n]. The modulo constant r obviously must be large enough

for both the real and imaginary part of every possible data
symbol si[n] to have a magnitude less than T/2.

B. Mean Square Error Optimization
The precoder has to perform two tasks: First, it must choose

the symbols
[n] = [n] + [n],

of which the estimates at the receivers will be [n], where
[n] E T7ZB + j7ZB. As was noted in the end of Section 11,

the choice of the perturbation vector [n] in general has
an influence on the interference, except for the zero-forcing
solution, where interference is always completely canceled.
Second, the precoder must determine the transmit vectors [n],
so that the average transmit symbol energy in the block equals
Etr (transmit energy constraint), and the [rn] are as close as
possible to [n]. Inherent in the choice of the transmit symbols
is the choice of the gain factor g.

In the following we will derive the joint MMSE or Wiener
filter (WF) solution of [n], [n], and g, for a given block
of data symbols [n], n - 1, ... , NB. We will then use this
solution to describe the MMSE vector precoder.
We define the MSE for a given block of data symbols
[1, ..., [NB] as

Te [n], [n],) E [n] - [n] [n]
Then

£ ( [n], [n], g)-

(2)N E
H [n] [n]- 2g Re( [n] [n])

+ g92 H[n] H [n] + g2 tr ( >) .

Our optimization problem, together with the transmit energy
constraint, reads as

{ WF [nj, WF [n], 9WF} arg min e ( [n], [n], g)
{a[n],y[n?,g3

NB

s.t.: N ESI [n]112j= Etrc

In order to find the solution to this optimization problem, we
form the Lagrangian function

L( [n], [n],g,A) =

[n] -Etr)

and set the derivatives with respect to [n] and g to zero:
OL(. ..) ( 9 T[n]+ *[n]A *[[n])O [rn]NB~

= ONE,

DL(...) 1 NB

agfJ NBE(2Re( H1[n]
+ 2g [n] H

(3)

(4)
[n])

[n]) + 2gtr ( r) =0.
Combining (3) and (4) with the transmit energy constraint and
applying the matrix inversion lemma (e.g. [171), we find that

WF[n] gF H( H + 41 -1 [n], (5)
NB H[n] ( H+tNN2 H [n]

9WF=V ~EtrNB
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where
tr(( ) (6)

Etr

It is important to point out that the optimum transmit vector
is a linearly filtered version of the desired symbol vector [n]
and that only the scaling gwF, but not the structure of the
linear filter, depends on the perturbation vector [n].

Assuming that the optimum transmit vector and gain factor
are employed, and making use of the matrix inversion lemma,
the MSE in (2) simplifies to

( [n], WF[n],9WF) =
NB

NBZ ( [n] + [n]) (
NB

To find the optimum series of perturbation vectors WF [n]
we can minimize each summand of the MSE separately. With
any matrix that fulfills

( H±~+41B) =_H

which can be obtained e. g. via Cholesky factorization, we can

rewrite the problem as

WF[T] = argmin £( [n], WF[n],gWF)
a[n] ErB±+jrZB

argmin j| ( [n] + [n])11* (7)
a[n] ETZB+jrZB

Obviously, the optimum choice of [n] is again the solution
to a closest point search in a lattice (cf. Section II). In this
case, the lattice is generated by T , and we are looking for
the integer vector that corresponds to the lattice point closest
to - [n]. Note that in general this is not the point resulting
in the lowest unscaled transmit energy. Lattice searches have
been shown to be NP-hard problems that grow exponentially
in complexity with the dimensionality [9].
We can now specifiy the Wiener filter vector precoder

as follows: for every symbol in the block, determine the
perturbation vector with (7), and filter the resulting desired
symbol with the regularized pseudoinverse of the channel

H( H + 41B)-1. Then, scale the whole block, so that
the transmit energy constraint is fulfilled. The procedure is
described in detail in Table I.

TABLE I

THE WIENER FILTER VECTOR PRECODER

C. Optimization with Zero-Forcing Constraint
Now we use the same method to derive the zero-forcing (ZF)

vector precoder. We only need to include complete interference
cancelation as an additional constraint in the optimization,
which now reads as

{ ZF[n], ZF [n], ZF} argmin £( [n], [n], g)
{a[n],y[n],g}

NB

S.t.: Zll [n]ll2 = Etr and
n=1

g [n]= [n], n=1,...,NB.

The MSE in (2) then simplifies to

( [n], [n], g) = tr ( t)
The method of Lagrangian multipliers leads to the solution

ZF[n] gZF H( H)l [n] and

I NB

9ZF = EtrNBg E [n](
With ZF [n] and gzF, the MSE is

H [n.

I&( [n], ZF [n], 9ZF) =
NB

= ( [n] + [n]) (
We can therefore find the optimum perturbation vectors with

ZF [n] = arg min H (
a[n]ErZB+jrZZB

H) ( [n] + [n])

For blocklength NB = 1, this solution is identical to vector
precoding as proposed in [8] (cf. Section II and Eq. 1).

IV. SIMULATION RESULTS
For the results in Fig. 4 and Fig. 5, we employed a channel

model with i. i. d. unit variance Rayleigh fading coefficients
and assumed perfect channel state information at the trans-
mitter. NB = 100 16QAM symbols were transmitted to
each receiver per channel realization, the modulo constant r
was set to four times the distance between nearest neighbors
in the symbol constellation. The Tomlinson-Harashima pre-
coders employed the optimum precoding order of the data
streams (cf. [7]). For comparison, we also included linear pre-
equalization in our simulations.
The simulations show that the vector precoders (WF-VP

and ZF-VP) outperform the respective Tomlinson-Harashima
precoders (WF-THP and ZF-THP), especially for high SNRs,
and that the WF-VP, in particular, is superior to all other
schemes. For the low-dimensional case in Fig. 4, the bit error

rate (BER) graphs of the vector precoders have a steeper slope
than the respective THP BER plots. In general, the diversity
order of WF-THP and ZF-THP is the same as that of the linear
WF and ZF. However, we observed that with an increasing
number of users the true diversity order of THP becomes
visible only for very high SNRs. The vector precoder graphs,
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aWF [n] argmin lIL(s[n] +an])112
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y[n] HH(HHH+±1B) I(s[n] + aWF[n])
1 NB
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on the contrary, do not exhibit an asyml
slope, i. e. the vector precoders achiev
In the high-dimensional case in Fig. 5,
THP is not visible in the shown SNR
THP graphs run approximately paralle
difference between WF-VP and WF-TE
We can also see that the heuristic

feedforward filter as described in Sei
clearly inferior to the WF-VP In Fig.
even causes a performance degradati
VP. In [8], a regularization factor ofd
'optimum' for the 10 user scenario (rc
to a small improvement over ZF-VP.r
numbers of users, other regularization I
The regularized vector precoders, how
perform worse than WF-THP for low S

V. CONCLUSION
Even though the performance gain over WF-THP that can

be achieved with MMSE vector precoding seems modest-

especially when considering the complexity involved in closest
point searches in lattices-we believe our results to be of

..............
great relevance. On the one hand, the same approaches to

......... complexity reduction are applicable to our method as to ZF

.,. vector precoding (e. g. [10]); we expect that a lattice-reduction-
>\ +x aided MMSE vector precoder will be able to achieve nearly
..:8:\::optimum performance at a complexity comparable to THP.

On the other hand, we were able to show that our vector
.... .e precoder is truly optimum in the MSE-sense. Following the

arguments of [ 16], we therefore think that the proposed MMSE

vector precoder is a strong candidate for the optimum precoder
15 20 25 for decentralized modulo receivers.
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