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Abstract— Tomlinson-Harashima precoding (THP) for a sys-
tem with multiple transmit antennas and non-cooperative re-
ceivers is considered (broadcast channel). Design of THP for this
channel is typically based on complete CSI at the transmitter,
which is not available in mobile wireless systems. For larger
Doppler frequencies it even performs significantly worse than
linear precoding or simple beamforming due to its high sensitivity
to parameter errors. We apply a novel optimization criterion
based on partial CSI to THP. For this robust design it is shown
that a continuous transition from complete to statistical CSI is
achieved and that THP is now guaranteed to perform always
better than or equal to linear precoding.

I. INTRODUCTION

Tomlinson-Harashima precoding is a well established trans-
mit processing technique in wireline communications [1],
[2]. In contrast to the wireline channel the mobile wireless
channel may be highly time-varying. In time-division duplex
(TDD) systems channel state information (CSI) is available
from training signals in the uplink or—in other systems—
due to (limited) feedback from the receivers. The CSI at the
transmitter is already significantly outdated at low Doppler
frequencies, as the slot structure is generally asymmetric in
TDD systems or only a small feedback rate is available. This
results in a large performance degradation for THP [3].

We consider a system with M transmit antennas and K
non-cooperating (decentralized) one-antenna receivers, i.e., a
broadcast channel. For this channel THP can be considered the
one-dimensional implementation of “writing-on-dirty-paper”
[4], [5]. Moreover, reducing interference by preprocessing the
transmitted signal results in simple, power-efficient (mobile)
receivers. Applicability of THP in this scenario highly depends
on its robustness w.r.t. erroneous CSI.

Conventionally THP is designed assuming complete CSI
(C-CSI): Zero-forcing THP was presented in [6] and the mini-
mum mean square error (MMSE) optimization was introduced
in [7], [8], [9]. A robust optimization for zero-forcing THP as-
suming erroneous CSI and no specific receiver processing was
first presented in [3], which includes linear minimum mean
square error (LMMSE) prediction of the channel parameters.
For THP in case of cooperative receivers, where the linear
feedforward filter is still at the receiver, a similar approach
is given in [10] for a SISO system and a heuristic solution
was proposed by [6]; both do not include prediction of the
parameters.

We define partial CSI (P-CSI) as knowledge of a conditional
probability density function (PDF) for the random channel
parameters given outdated and noisy observations of the train-
ing sequence. Statistical CSI (S-CSI)—as asymptotic case of
P-CSI—is the knowledge of the PDF of the random channel
parameters, e.g., the observation of the training sequence is
statistically independent of the current channel state.

In case of P-CSI the channel is a random variable from
the perspective of the transmitter. Consequently, the cost
function is also a random variable, as it depends on the
channel and is described by a conditional PDF. The traditional
solution is to estimate the channel, e.g., using an LMMSE
estimator, and apply the estimates to the cost function as if
they were error-free. We show in Sec. V that bit error rate
(BER) performance of this traditional THP design degrades
for increasing parameter errors and, finally, saturates at a BER
of 0.5. We show that it even performs worse than a simple
beamforming solution based on S-CSI.

This is not acceptable and a robust solution incorporating
the knowledge about the PDF is given in Sec. III. Based
on the MSE criterion [7] we propose a novel THP opti-
mization based on P-CSI: Taking a Bayesian approach we
perform a conditional mean estimate of the MSE relying
on observed training signals from the uplink (Sec. III). This
general paradigm has already been applied successfully to
equalizer optimization in [11]. In contrast to [3] the trans-
mitter assumes receivers with CSI performing a simple phase
correction. This optimization problem including the optimum
ordering of the data streams can be solved explicitly with an
average transmit power constraint. Numerical complexity is
similar to the traditional THP optimization. In Sec. IV we
show that our solution achieves a smooth transition between
complete and S-CSI. For S-CSI, i.e., only knowledge about the
channel parameters’ PDF, THP reduces to linear processing
in most scenarios, where it performs a channel covariance
matrix based beamforming. In these cases, from information
theoretic considerations it is intuitively clear that successive
non-linear precoding in a “writing-on-dirty-paper” fashion—
as performed by THP—is not possible for S-CSI. Our THP
solution confirms this intuition. Thus, our THP optimization
for P-CSI performs always better than a linear precoder as
confirmed by simulations (Sec. V).

In summary our contributions are: 1) THP optimization
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with P-CSI including receivers’ processing. 2) A THP design
enabling the transition from complete to S-CSI. 3) Interpreta-
tion of THP based on S-CSI as MSE based linear precoding,
i.e., beamforming. 4) Performance of THP based on P-CSI is
always better than linear precoding in the region of interest.

Notation: Random vectors and matrices are denoted by lower and
upper case sans serif bold letters (e.g. b, B), whereas the realizations
or deterministic variables are, e.g., b, B. The operators E[•], (•)T,
(•)H, and tr(•) stand for expectation, transpose, Hermitian transpose,
and trace of a matrix, respectively. ⊗ and δk,k′ denote the Kronecker
product and function, vec(B) stacks the columns of B in a vector.
ei is the ith column of an N × N identity matrix IN

II. SYSTEM MODEL

Downlink Data Channel: Data symbols sd[n] ∈ B
K with

E[sd[n]sd[n]H] = IK and modulation alphabet B are first
reordered before being sequentially precoded (Fig. 1). Re-
ordering is performed by the permutation matrix Π(O) ∈
{0, 1}K×K , whose (i, k)th element is one, if user k is pre-
coded in the i-step, and zero elsewhere. The dependency on
the specific ordering O is denoted by the superscript (O).
Non-linear precoding requires a modulo operator M(•) at the
transmitter and receivers, which is defined as

M(z) = z −
⌊

Re(z)
τ

+
1
2

⌋
τ − j

⌊
Im(z)

τ
+

1
2

⌋
(1)

with τ = 2
√

2 for QPSK symbols and taken element-wise for
a vector. The feedback filter F ∈ C

K×K with columns fk is
lower triangular with zero diagonal to ensure spatial causality
for a realizable feedback loop. The output w [n] of the modulo
operator is linearly precoded with P = [p1, . . . ,pK ] ∈
C

M×K and transmitted using M antennas over the channel
Hq ∈ C

K×M to K receivers in the downlink (time slot
q). The channel is assumed constant during one time slot
(“block-fading”). The (non-cooperative) receivers are modeled
as G = diag[gk]Kk=1 ∈ C

K×K . Including white additive
complex Gaussian noise n[n] ∼ Nc(0, σ2

nIK) the estimate
of the signal sd[n] before decision is

s̃d[n] = M
(
β−1GHqPw [n] + β−1Gn[n]

) ∈ C
K . (2)

Additionally, a common real-valued scaling β−1 is introduced
to allow for a power constraint at the transmitter in the
optimization (Sec. III).

sp[n]yq−�[n]

vq−�[n]
HT

q−�

M K

Figure 2. Uplink training channel

Downlink Training Channel: There are two main con-
cepts for training symbol based channel estimation in the
downlink: Providing K receiver specific (dedicated) training
sequences (in some systems restricted to M “antenna specific”
sequences) or transmitting one common training sequence to
the receivers. For the former case a different transmit filter qk

can be used for every training sequence, e.g., qk is the kth

column of P . In the latter case it is transmitted with the same
filter qk = q, e.g., over the first antenna qk = e1. Thus, we
assume that receiver k knows hT

k,qqk (hk,q is the kth column
of HT

q ) and corrects the phase based on this CSI:

G = diag [gk]Kk=1 = diag
[(

hT
k,qqk

)∗ / ∣∣hT
k,qqk

∣∣]K
k=1

. (3)

Uplink Training Channel: In a TDD system the channel
parameters for optimizing the THP parameters F and P can
be estimated from N training symbols (per receiver) sp[n] ∈
C

K (n ∈ {1, . . . , N}) in an uplink slot. We assume alternating
up-/downlink slots and a delay of 3 slots (due to processing
the training sequence) to the first uplink slot available with a
training sequence. The receive training signal is (Fig. 2)

yq[n] = HT
q sp[n] + vq[n] ∈ C

M , n ∈ {1, . . . , N} (4)

with additive white noise vq[n] ∼ Nc(0, σ2
vIM ). Collecting

all N training symbols in one matrix S′
p ∈ C

K×N we obtain

Yq = HT
q S′

p + Vq ∈ C
M×N

ȳq = vec[Yq] = (S′T
p ⊗ IM )hq + v̄q ∈ C

MN ,

where hq = vec[HT
q ]. Considering training signals from Q

previous uplink slots the total observation is

yq = ShT,q + vq ∈ C
MNQ (5)

with hT,q = [hT
q−3,hT

q−5, . . . ,hT
q−(2Q+1)]

T ∈ C
QMK , yq =

[ȳT
q−3, ȳT

q−5, . . . , ȳT
q−(2Q+1)]

T, and S = IQ ⊗ S′T
p ⊗ IM .

The channel coefficients hq = vec[HT
q ] are modeled as a

stationary zero mean complex Gaussian random vector with
covariance matrix Ch = E[hqhH

q ], which is block diagonal
assuming E[hk,qhH

k′,q] = Chk
δk,k′ . For simplicity, we assume

identical autocorrelation r[i] (normalized to r[0] = 1) for all
elements of hq and a time-difference of i slots: CT is Toeplitz
with first column [r[0], r[2], . . . , r[2Q−2]]T and ChT = CT⊗
Ch .

Throughout the article we assume that first and second order
channel and noise statistics are given.

III. OPTIMIZATION WITH PARTIAL CSI AT THE

TRANSMITTER

The modulo operators at the transmitter and receivers can
be expressed by the summation of a[n] and ã[n] [2], [9].
Optimization of THP is based on this linear representation
(Fig. 1). MMSE optimization of THP was shown to be superior
to zero-forcing [7], where the MSE

CT(P ,F , β;Hq) = E[‖d [n] − d̃ [n]‖2
2] (6)

depends on the current channel parameters Hq.
Complete knowledge about the realization Hq is never

available at the transmitter, but obtained via the observations
in yq (5). Thus, from the point of view of optimization the
channel Hq is a random variable, which is described by its
conditional probability density function (PDF) pH|yq

(Hq|yq).
Based on our assumptions (Sec. II) it is a (complex) Gaussian

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 0-7803-9415-1/05/$20.00 © 2005 IEEE2380
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Figure 1. THP for downlink data transmission with M transmit antennas and K non-cooperative receivers: Representation with modulo operators (upper
diagram) and equivalent linear representation (lower diagram)

PDF with mean µh|yq
= E[hq|yq] and covariance matrix

Ch|yq
= E[(hq − µh|yq

)(hq − µh|yq
)H|yq]:

µh|yq
= ĥq = Wyq,W = ChhTSH(SChTSH + σ2

vIMNQ)−1

Ch|yq
= Ch − WSCH

hhT
, (7)

where ChhT = E[hqhH
T,q] = [r[3], r[5], . . . , r[2Q + 1]] ⊗ Ch ,

hq = vec(HT
q ), and W is equivalent to the LMMSE estimator

[12]. Due to the partial knowledge about Hq via the condi-
tional PDF the cost function (6) is a random variable, too.
In the sequel, the traditional approach for dealing with this
random cost function and our new approach are presented.

For the subsequent derivations the widespread assumption
Cw = diag[σ2

wk
]Kk=1 is made.

A. Traditional Optimization

Conventionally, the errors in Ĥq are assumed to be negligi-
ble and the estimate Ĥq is used as if it was the true one, i.e.,
we set Hq = Ĥq in (6), leading to the optimization problem

min
P ,F ,β

CT(P ,F , β; Ĥq) s.t. tr
(
PCwP H

)
≤ PT,

F : lower triangular, zero diagonal (8)

with average transmit power constrained by PT and the
constraint on F to ensure implementability. The solution using
the Lagrange approach and the KKT conditions is [9]

pT,k = βT

(
Â

(O),H

T,k Â
(O)

T,k +
Kσ2

n

PT
IM

)−1

Â
(O),H

T,k ek (9)

fT,k = −β−1
T

[
0k×M

B̂
(O)

T,k

]
pT,k, (10)

where βT is chosen to satisfy the power constraint with
equality. Â

(O)

T,k denotes the first k rows and B̂
(O)

T,k the last K−k
rows of the reordered and estimated effective channel matrix
Π(O)ĜTĤq. The estimate is obtained from the LMMSE
estimator in (7) and our assumption about the receivers’

processing (3), i.e., ĜT = diag
[(

ĥT
k,qqk

)∗ / ∣∣∣ĥT
k,qqk

∣∣∣]K
k=1

.
Optimization of the ordering is similar to Sec. III-D [9].

B. Conditional Mean Estimate of the Cost Function

In our systematic approach we do not estimate the channel
parameters, but the MSE cost function (6). Employing the
Bayesian paradigm the best estimator in the mean-square sense
is the conditional mean (CM) estimator. The CM estimate of
(6) is

CP(P ,F , β;yq) = E[CT(P ,F , β;Hq)|yq] (11)

= tr
(
(IK − F )Cw (IK − F )H

+β−2Cn + β−2CwP HE[HH
q Hq|yq]P

)
−2β−1Re

{
tr
(
Π(O)E[GHq|yq]PCw (IK − F )H

)}
.

This approach results in a large difference in the quality of the
solution, as the MSE is a non-linear function of Hq, i.e., its
PDF is not Gaussian anymore. The impact of this paradigm
and conclusion on THP design will become clear from the
discussion of the solution (Sec. IV).

The novel cost function (11) was simplified using GHG =
IK . Now, it depends on E[HH

q Hq|yq] and E[GHq|yq], which
can be computed explicitly in terms of the moments in (7).
The CM estimate of the channel Gramian HH

q Hq is
E
[
HH

q Hq|yq

]
= Ĥ

H

q Ĥq + CHH|yq
, Ĥq = E[Hq|yq]. (12)

The conditional covariance matrix can be computed using (7)
CHH|yq

= E[(Hq − Ĥq)H(Hq − Ĥq)|yq] =
∑K

k=1 C∗
hk|yq

and is identical to the covariance matrix of the estimation error
E[(Hq − Ĥq)H(Hq − Ĥq)] due to the orthogonality property
of the LMMSE estimator and the jointly (complex) Gaussian
distribution of yq and hq [12].

The CM estimate of the effective channel GHq reads

E[GHq|yq] = ĜĤq + UH|yq
, Ĝ = E[G |yq] = diag [ĝk]Kk=1 ,

where the kth row of UH|yq
∈ C

K×M is given by

eT
k UH|yq

= qH
k C∗

hk|yq
c−1
xk|yq

(
E
[|xk| |yq

]− µxk|yq
ĝk

)
.

The channel estimated by the kth receiver is xk = hT
k,qqk

(Sec. II) with first and second order moments

µxk|yq
= E[xk|yq] = ĥ

T

k,qqk,

cxk|yq
= E[|xk − µxk|yq

|2|yq] = qH
k C∗

hk|yq
qk.
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With [13] the remaining terms, i.e., the CM estimate of the
receivers’ processing gk and of the magnitude |xk| are

ĝk = E[gk|yq] (13)

=
√

π

2

|µxk|yq
|

c
1/2
xk|yq

µ∗
xk|yq

|µxk|yq
| 1F1

(
1
2
, 2,−|µxk|yq

|2
cxk|yq

)
,

E[|xk| |yq] =
√

π

2
c
1/2
xk|yq

1F1

(
−1

2
, 1,−|µxk|yq

|2
cxk|yq

)
, (14)

where 1F1(α, β, z) is the confluent hypergeometric function.

C. Solution for CM Estimate of the Cost Function

With the CM estimate of the MSE expressed in terms of
the moments (7) of the conditional PDF, which determines
the transmitter’s P-CSI, the new optimization problem is

min
P ,F ,β

CP(P ,F , β;yq) s.t. tr
(
PCwP H

)
≤ PT,

F : lower triangular, zero diagonal. (15)

The solution is again obtained based on the Lagrange function
and KKT conditions following the steps in [9], where the
derivative of the Lagrange function w.r.t. P yields

P = β

(
E[HH

q Hq|yq] +
Kσ2

n

PT
IM

)−1

E[HH
q GH|yq]×

× Π(O),T(IK − F ), (16)

which is needed below for interpretation. The complete solu-
tion for a given ordering O is

pP,k = βP

(
Lyq

+ Â
(O),H

k Â
(O)

k +
Kσ2

n

PT
IM

)−1

Â
(O),H

k ek

fP,k = −β−1
P

[
0k×M

B̂
(O)

k

]
pP,k, (17)

where βP is chosen to satisfy the power constraint with
equality. It is expressed in terms of the first k and last K − k

rows Â
(O)

k ∈ C
k×M and B̂

(O)

k ∈ C
K−k×M , respectively, of

the ordered CM estimate of the effective channel GHq[
Â

(O)

k

B̂
(O)

k

]
= Π(O)

[
Âk

B̂k

]
= Π(O)E[GHq|yq] ∈ C

K×M .

The difference to the traditional solution (9) and (10) is
twofold: A structured loading

Lyq
= E[HH

q Hq|yq] − E[HH
q GH|yq]E[GHq|yq] (18)

is added in the inverse of pP,k (17) and the CM estimate of
the overall channel GHq is used instead of simply plugging
the CM estimate of Hq into the product GHq as in Sec. III-A.
Obviously, the additional complexity of this solution is small
compared to the complexity of the traditional THP solution
assuming an LMMSE estimator is used and the confluent
hypergeometric function is given by a look-up table.

D. Ordering Optimization

Applying the solution of (15), which is given in terms of a
fixed ordering O, to the cost function (11) we obtain

CP(O;yq) = tr(Cw )−

−
K∑

k=1

eT
k Â

(O)

k

(
Lyq

+ Â
(O),H

k Â
(O)

k +
Kσ2

n

PT
IM

)−1

Â
(O),H

k ek.

To avoid the high complexity of O(K!K3) for a full search
among all possible orderings the standard suboptimum ap-
proach [9] minimizes each term in the sum separately starting
with the Kth term. Thus, the user to precode in the ith step,
where i = K, . . . , 1, is determined by

max
k

eT
k Â

(O)

i

(
Lyq

+ Â
(O),H

i Â
(O)

i +
Kσ2

n

PT
IM

)−1

Â
(O),H

i ek.

Finally, this yields the permutation matrix Π(OP).

IV. TRANSITION FROM COMPLETE TO STATISTICAL CSI

A. Complete CSI at the Transmitter

For C-CSI, i.e., Ĥq = Hq, the error covariance matrix
of the channel estimate is zero (7) and the CM estimate
E[GHq|yq] is equivalent to the (true) effective channel GHq

(Sec. III-B):

CHH|yq
→ 0M×M , UH|yq

→ 0K×M , Ĥq → Hq, Ĝ → G.

Convergence is achieved for σ2
v → 0 and r[i] → 1∀i. The

MSE (6) is no random variable anymore, as the conditional
PDF pH|yq

(Hq|yq) = δ(hq − Wyq) is a Dirac distribution
centered at Wyq. The optimum filters pP,k and fP,k converge
to

pC,k = βC

(
A

(O),H
k A

(O)
k +

Kσ2
n

PT
IM

)−1

A
(O),H
k ek (19)

fC,k = −β−1
C

[
0k×M

B
(O)
k

]
pC,k (20)

with the reordered effective channel[
A

(O),T
k , B

(O),T
k

]T
= Π(O)GHq. (21)

B. Statistical CSI at the Transmitter

The critical case for THP performance occurs for large
errors in Ĥq, where it performs worse than a linear precoder,
which is less sensitive to an inaccurate CSI than THP. Sta-
tistical CSI is the limiting case, where the observation yq

is statistically independent of the current channel Hq, i.e.,
pH|yq

(Hq|yq) → pH(Hq). This means no information about
the current channel realization is available if σ2

v → ∞ or for
a temporally uncorrelated channel r[i] → 0 for i > 0, e.g., at
very high Doppler frequency. If Hq is zero mean, the LMMSE
estimate is Ĥq = 0K×M in this limit.

One consequence of this observation is that P T → 0M×K

(cf. Eqn 9). Although this case is not achieved exactly in the
simulations as ‖Ĥq‖F > 0 numerically, the BER saturates at
0.5. This is not acceptable as any simple beamforming solution
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based on S-CSI would perform better as will be shown in
Sec. V.

The solution based on the CM estimate of the MSE (11)
has much more appealing properties. It is determined by the
asymptotic behavior of

E[HH
q Hq|yq] → CHH = E[HH

q Hq]
E[GHq|yq] → UH (22)

with kth row eT
k UH =

√
πqH

k C∗
hk

/(qH
k C∗

hk
qk)1/2/2. Apply-

ing these limits to (17) we obtain the solution for THP in case
only S-CSI is available. Its interpretation follows in the next
two subsections.

C. Inactivity of Modulo Operation at Transmitter

In case of S-CSI our THP solution still seems to be non-
linear, as F is non-zero. But the modulo operator (1), which
is piecewise linear, is only non-linear if its input’s real-
or imaginary part is larger than τ/2 in magnitude. This is
mainly determined by F . The relative frequency of the modulo
operator to be inactive for each reordered data stream (in
the order it is precoded) vs. maximum normalized Doppler
frequency fd in the scenario of Sec. V is shown in Fig. 3. We
see that the modulo operator is always inactive for the first
data stream to be precoded due to the lower triangular structure
of F . For larger Doppler frequencies the modulo operator is
inactive for all users. Thus, THP is linear and reduces to linear
precoding which is briefly derived in the next section. This
observation was confirmed by more extensive simulations in
other scenarios with “well”-conditioned CHH (see Sec. IV-E).
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Figure 3. Relative frequency of inactive modulo operation at transmitter vs.
max. Doppler frequency at PT/σ2

n of 20 dB.

D. Linear Precoding

If the modulo operator is inactive in the case of S-CSI, the
THP is a linear precoder with parameters (22). Thus, w [n]
depends linearly on sd[n] (Fig. 1)

w [n] = (IK − F )−1sd[n] (23)

and we set Π(O) = IK as ordering is meaningless now. The
linear precoder for P-CSI is identical to THP optimization

with F = 0K×K or can be derived using (15), (16), and (23)
assuming an inactive modulo operator

plin,k = βlin

(
E[HH

q Hq|yq] +
Kσ2

n

PT
IM

)−1

E[HH
q GH|yq]ek.

(24)

For S-CSI with (22) it converges to

plin,k = βlin

(
CHH +

Kσ2
n

PT
IM

)−1

UH
Hek, (25)

which shows a close relation to traditional beamforming solu-
tions. Note, that the transmitter’s channel model is determined
largely by the system’s concept for transmitting the downlink
training sequence with spatial filters qk (Sec. II).

E. Convergence of THP to Linear Precoding

The previous two subsections show that THP for S-CSI can
be identical to beamforming (25). Thus, with the novel THP
design paradigm (11) it is ensured that the performance is
always better than or—in the worst case—equal to a linear
design of the transmitter. This has important consequences for
the relevance of THP in wireless systems: For low mobile
velocities (low Doppler frequencies) we obtain the excellent
THP performance, and for high velocities performance is
upper bounded by a linear design or beamformer.

THP is considered an implementable one-dimensional ver-
sion of “writing-on-dirty-paper” [4], [5] in case of known
interference at the transmitter, which is given for C-CSI. In
the non-linear part of THP previously precoded data streams,
which present known interference in case of C-CSI, are fed
back, subtracted, and modulo reduced. For S-CSI the interfer-
ence at the receivers is unknown besides its statistic (similar
to additive noise at the receiver) and cannot be removed.
Interference at the receivers can only be avoided by linear
precoding. In the light of this relation convergence of THP to
linear precoding for S-CSI could be expected as “writing-on-
dirty-paper” is not possible anymore. Our THP for P-CSI is
the first implementation of this (ad-hoc) information theoretic
conjecture. Surprisingly, in scenarios (results not shown here)
with a bad condition number of CHH THP remains non-linear
and gains in performance over linear precoding, i.e., is a non-
linear “beamformer” for S-CSI.

V. PERFORMANCE EVALUATION

Simulation parameters: QPSK data symbols, M = 4
transmit antennas in a uniform linear array (half wavelength
spacing), and K = 3 receivers are used. Transmitter and
receivers are modeled as in Sec. II. All complex Gaussian
channel coefficients have the same Jakes power spectrum
with maximum Doppler frequency fd (normalized to the slot
period). The azimuth directions of the receivers’ channels
are uniformly distributed within 3◦ centered at the means
[−15◦, 0◦, 15◦]. Walsh-Hadamard sequences of length N = 32
are used for training in the uplink and the received training
sequences from Q = 5 previous uplink slots are considered
for prediction. q∗

k is given by the principal eigenvector of the
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conditional correlation matrix E
[
hk,qhH

k,q|yq

]
(12). For all

THP results suboptimum spatial (re)ordering is applied.
Results: Figures 4 and 5 show the average uncoded BER

vs. Doppler frequency fd and PT/σ2
n , respectively. Aiming

at a THP design which always performs better than linear
precoding also the performance for linear precoding based on
P-CSI (24) and for S-CSI (25) are given as a reference. From
Fig. 4 we see that performance of THP with C-CSI (19), (20)
is only achievable for very small Doppler frequencies (up to
fd = 0.04). Traditional THP design (9), (10) degrades quickly
with increasing Doppler frequency, i.e., larger parameter er-
rors, and already performs worse than linear precoding (S-
CSI) for fd ≥ 0.09. It saturates at a BER of 0.5. For our
novel THP optimization based on P-CSI and a CM estimate
of the cost function (cf. Eq. 17) we show two versions: one as
described above, the second omits the modulo operation at a
receiver (modulo adaptation = “mod. adapt.”), if its own and
preceding precoding operations were performed linearly, i.e.,
with inactive modulo operation. We see that the novel THP
optimization—including adaptation of the modulo operator at
the receivers (“mod. adapt.”)— always performs better than
linear precoding and converges to linear precoding with S-
CSI at high fd. If the modulo operators are not adapted,
performance is worse than linear precoding with S-CSI due
to the increased number of neighbors (a.k.a. “modulo-loss”).

Here, we considered a system with alternating up- and
downlink slots. Degradation of THP is shifted to lower
Doppler frequencies in a system with asymmetric slot struc-
ture, i.e., with more down- than uplink slots. In such a scenario
it is even more important to be able to design THP with
a smooth transition to linear precoding in case of S-CSI.
Note that the alternative to a continuous transition would
be switching between linear precoding and traditional THP
design, which performs worse (cf. Fig. 4) and is usually much
harder to design with the problem of defining and adapting
switching points.

At a Doppler frequency of fd = 0.08 a BER of 10−2 is
achieved with 2.5 dB less transmitter power for THP based on
P-CSI compared to linear precoding with P-CSI and a 5 dB
gain over the traditional design at 10−2 (Fig. 5). To achieve the
same BER traditional design results in an increased transmit
power compared to linear precoding.

VI. CONCLUSIONS

A novel Tomlinson-Harashima precoding optimization for
partial CSI was introduced, which results in a continuous
transition from the case of complete CSI to statistical CSI.
In case of statistical CSI THP reduces to linear precoding.
Thus, we ensure a THP performance, which is always better
than linear precoding and continuously adapts to the amount of
CSI available. With previously known designs THP performs
significantly worse than linear precoding for medium to large
parameter errors, i.e., high Doppler frequencies.
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