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Abstract— Common transmit processing concepts are either
based on complete, partial, or no channel state information
(CSI). But the quality of CSI is crucial for a fair comparison.
Therefore, we derive an explicit expression of the bit error
probability (binary modulation) for the transmit matched filter,
beamforming, and Alamouti space-time block code in case of
linear estimation and prediction of the channel coefficients or a
delay of the channel estimates. Uncorrelated as well as correlated
frequency flat channels are considered. Based on the analytical
expressions a comparison for these three representatives for all
three types of CSI is made. The break even point between the
three schemes is computed numerically, which can serve as a
switching point between the concepts.

I. INTRODUCTION

The performance improvement of space-time processing for
wireless communications is widely accepted [1]. But exploit-
ing the spatial domain of the channel increases computational
complexity for signal processing, which is a problem at the
mobile terminal in particular. Thus, it is explored to equip the
base station with multiple antennas and exploit the additional
degrees of freedom for equalization, diversity, and antenna
gain with signal processing at the transmitter, which is more
likely to provide the resources for the additional complexity
in the downlink.

The choice of a transmit processing (precoding) concept
depends on the channel state information (CSI) available at
the transmitter in principle, i.e., whether uplink and downlink
channels are reciprocal or a feedback channel is provided
from the receiver to the transmitter. Moreover, the quality
of the CSI available in the current environment is crucial
for selecting the appropriate concept. We distinguish three
main concepts based on the channel state information at the
transmitter, which is required for their design: (1) Processing
relying on complete CSI, e.g., linear precoding with a transmit
matched filter (TxMF), transmit zero forcing (TxZF), and
transmit Wiener filter [2], [3], (2) using partial (average) CSI,
which is the second order moments of the channel coefficients,
e.g., beamforming [4], [5], (3) precoding without CSI, e.g.,
Alamouti space-time block codes (STBC) [6].

In the sequel we assume a time-division duplex (TDD) link
with M antennas at the transmitter and one antenna at the
receiver with a reciprocal up- and downlink channel. Thus,
all three concepts can be applied theoretically. To increase the
data rate in the downlink an asymmetric slot configuration can
be used, i.e., more transmission time is spent for the downlink,
which results in a significant delay between the last uplink slot

available for channel estimation and the downlink slots. The
resulting performance degradation is significant for schemes
relying on full CSI [7]. Depending on the speed of the mobile
it is advantageous for the transmitter to switch to a concept
based on partial or no CSI. Previous contributions considered,
for example, switching between different spatial signaling
schemes (space-time coding and spatial multiplexing) for
MIMO channels based on bounds for the probability of symbol
error not considering degradations due to delay and channel
estimation, e.g., [8].

We analyze and compare representatives of the three trans-
mit processing concepts described above for frequency flat
fading channels introduced in Section II: the TxMF [2], beam-
forming [4], and Alamouti STBC [6]. To compare performance
in time-variant channels it is necessary to take into account the
effect of imperfect CSI as a major source of degradation of
the TxMF: the analysis is done for linear channel estimators
and linear prediction at the transmitter (Section III).

Previously, the effect of channel estimation errors on co-
herent detection for single antenna systems was studied in
[9] and on STBC in [10], where it results in intersymbol
interference. Pairwise error probability and cut-off rate were
investigated for the TxMF and STBC in uncorrelated channels
[11]. A comparison of STBC with beamforming was presented
in [12] for uncorrelated channels, which also considers channel
coding, but does not include channel estimation. Moreover, an
optimistic gain of beamforming was assumed in [12] instead
of a more accurate analysis considering channel correlations.

In Section IV we derive the (uncoded) bit error probability
(BEP) for BPSK modulation analytically and explicitly for
correlated and uncorrelated Rayleigh fading channels taking
into account channel estimation errors and the delay of the
channel estimates based on results from [13], [14]. The BEP
derivations for the TxMF and beamforming are valid for
arbitrary M , whereas the Alamouti scheme is designed for
M=2. Note that all three approaches provide the same raw
data rate since Alamouti STBC is a rate one code. Results
are also applicable for analysis of the TxMF with a feedback
channel as long as the complex Gaussian error model for the
CSI is valid.

The performance comparison (Section V) based on the
derivations is done for M=2. The gains for perfect CSI
are discussed, before considering the delay between channel
estimation and the downlink slot at the transmitter for the
TxMF and channel estimation at the receiver for beamforming
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and Alamouti STBC. The break even points between the
concepts, which represent the switching points, are computed
numerically for symmetric/asymmetric slot configurations and
different mobile velocities.

Our contributions are: i) The BEP analysis of the Tx-
MF for imperfect CSI based on a linear channel estima-
tor/predictor or a simple delay. ii) Comparison of transmit
processing/precoding representatives for all three categories of
CSI under realistic assumptions. iii) Illustration of the break
even point for different TDD system configurations.

Throughout the paper, â denotes an estimate of a, ‘⊗’ the
Kronecker product, IM the M×M identity matrix, and ei the
i-th column of I . The transpose, complex conjugate transpose,
and complex conjugate of a matrix is written as AT, AH, and
A∗ respectively. Deterministic variables as well as realizations
of a random variable a are written as a.

II. TRANSMIT PROCESSING CONCEPTS

The receive signal x[n] of a (downlink) data channel for a
link with M transmit and 1 receive antenna is described by

x[n] = hTps[n] + n[n], n ∈ Z (1)

with channel h ∈ C
M , linear transmit filter p ∈ C

M , BPSK
data symbols s[n] ∈ {+√

Ps,−
√
Ps}, and white additive

complex Gaussian noise n[n] ∼ Nc(0, σ2
n).

A. Transmit Matched Filter

Generally, the goal of linear precoding based on perfect
knowledge of h is to exploit additional spatial degrees of free-
dom keeping the receiver simple. For frequency flat channels
the TxMF [2], which is equivalent to transmit zero forcing
in this case, maximizes cross-correlation between the decision
variable d[n] = x[n], passed to the decision device, and s[n]
(Figure 1) constrained by the available transmit power PT:

pMF = arg max
p

|E[s[n]∗d[n]]|2 s.t.: E[‖p s[n]‖2
2] = PT (2)

pMF =
√
PT/Ps h∗/‖h‖2. (3)

The instantaneous SNR ‖h‖2
2PT/σ

2
n at the receiver for detec-

tion of one symbol for perfect CSI yields an average SNR
for many channel realization of SNR = trace(Rh)PT/σ

2
n. In

practice only an estimate ĥ is available for pMF (cf. Sec. III).

s[n]

n[n]

d[n] ŝ[n]
p hT

M

ĥ

Fig. 1. Transmit matched filter for data channel.

B. Beamforming

If the channel h is considered a random vector h ∼
Nc(0,Rh) with eigenvalue decomposition (EVD) of its covari-
ance matrix Rh = E[hhH] = UΛUH and a diagonal Λ with
eigenvalues λm ≥ λm+1 m ∈ {1, . . . ,M}, the filter p can be

optimized based on the average (long-term) channel properties
described by Rh. The optimum beamformer maximizes the
SNR for fixed available power PT [4]:

pB = arg max
p

E[|hTp|2] = arg max
p

pTRhp
∗

s.t.: E[‖p s[n]‖2
2] = PT. (4)

It is given by the eigenvector u1 = Ue1 of Rh corresponding
to the largest eigenvalue λ1

pB =
√
PT/Ps u∗

1. (5)

Compared to the TxMF with full channel state information
the receiver is more complex for this concept [5]. Here, it
simply estimates the resulting channel coefficient c to correct
the channel phase

d[n] = ĉ∗x[n], c = uH
1 h. (6)

We assume perfect knowledge of Rh, as the spatial channel
properties change slowly enough compared to h, which allows
for its accurate estimation [15], [16]. The average SNR at the
receiver for perfect CSI is SNR = λ1PT/σ

2
n.

C. Alamouti Space-Time Block Code

For M = 2 the Alamouti STBC maximizes diversity without
rate loss and without requiring any CSI for flat channels. The
receive signal x[k]T = [x[k], x[k + 1]] is

x[k]T = hTS[k] + n[k]T, k = 2n, (7)

where the symbols s[n] are arranged in blocks of two symbols
with block index k:

S[k] =
[

s[k] s[k + 1]
−s[k + 1]∗ s[k]∗

]
. (8)

To satisfy the transmit power constraint we have Ps = PT/2.
The receiver decodes the STBC based on estimates of the
channel h = [h1, h2]T[

d[k]
d[k + 1]

]
=

[
ĥ∗1 ĥ2

ĥ∗2 −ĥ1

] [
x[k]

x[k + 1]∗

]
=

= ‖h‖2
2

[
s[k]

s[k + 1]

]
+

[
h∗1 h2

h∗2 −h1

] [
n[k]

n[k + 1]∗

]
, (9)

where perfect channel estimates are assumed for the second
equation. The channel is assumed constant over at least one
block. The SNR at the decision device for perfect CSI for one
channel realization is SNR = ‖h‖2

2PT/(2σ2
n) and on average

for many channels SNR = trace(Rh)PT/(2σ2
n).

III. CHANNEL ESTIMATION AND PREDICTION

In TDD links we have the possibility to estimate the channel
h from the uplink and use it to design p for the next downlink
slot due to the reciprocity of the channel. Thus, the channel
estimate will be outdated by at least one slot depending on
the slot structure. For example, an asymmetric slot structure
with period P = 4 is (downlink slot: ‘↓’; uplink slot: ‘↑’)

↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓
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For P = 2 the assignment between up- and downlink trans-
mission time is symmetric.

For slot � the Np uplink pilot symbols sp[n] are received
with M antennas as

x′p,�[n] = h[�]sp[n] + n′
p,�[n] ∈ C

M , n ∈ {1, . . . , Np}, (10)

which can be written more concisely as (Figure 2)

xp[�] = Sph[�] + np[�] ∈ C
MNp (11)

with xp[�] = [x′p,�[1]T, . . . , x′p,�[Np]T]T. They are arranged
in Sp = sp ⊗ IM with sp = [sp[1], . . . , sp[Np]]T and
power Pp = PT. For simplicity—without loss of generality—
we assume Rnp = σ2

nIMNp . The channel h[�] is assumed
constant over one slot and correlated over time (slots).

�
�
�
�

�
�
�
���

Sp

np[�]

h[�]

ĥ[�]
ĥ
′
[�]

ĥ
′
[�− w]

MNp

xp[�]

M
W

G

Fig. 2. Uplink channel estimation and linear prediction.

The downlink pilot signal for the STBC is (11) with xp[�] ∈
C

Np and 2Np pilot symbols Sp ∈ C
Np×2 chosen as SH

p Sp =
I2NpPp. The power in the pilot sequence is Pp = PT/2. The
slot index is �.

In the case of beamforming we exchange Sp by sppT in
(11) with Pp = PT to obtain ĉ[�].

In all cases the channel h[�] in slot � can be estimated with
a linear estimator W as

ĥ
′
[�] = W xp[�] = WSph[�] + Wnp[�], (12)

where the matrix B = WSp determines the bias. For white
noise the (unbiased) ML channel estimator is given as

W ML =
1

NpPp
SH

p (13)

under the assumptions from above and SH
p Sp = IMNpPp,

i.e. B = IM . The analysis below is valid for all linear
estimators W (e.g. Wiener filter), where B has to be adjusted
accordingly.

With G = gH ⊗ IM we describe which channel estimate
ĥ
′
[�−µ] (µ > 0 modeles a delay or out-dating of the channel

estimate) or which combination (linear prediction) of previous
estimates is available in slot �, i.e.

ĥ[�] = G(Iw+1 ⊗ B)ht[�] + ε[�] (14)

with ht[�] = [h[�]T, . . . ,h[�− w]T]T ∈ C
M(w+1). The noise

ε[�] ∼ Nc(0,Rε) in the estimate is

ε[�] = G(Iw+1 ⊗ W )np,t[�] (15)

with Rε = σ2
nG(Iw+1 ⊗ WW H)GH = IM‖g‖2

2/γp (16)

Rĥ = G(Iw+1 ⊗ B)Rht(Iw+1 ⊗ BH)GH + Rε

= gHRag BRhB
H + Rε (17)

assuming Rht = Ra⊗Rh, i.e., same autocorrelation properties
for all channel coefficients (e.g. a small array). The normalized
autocorrelation properties of the channel coefficients hm[�]
are given as r[µ] = E[hm[�]hm[� − µ]∗]/E[|hm|2] in r =
[r[0], . . . , r[w]]T and Ra, which is Hermitian and Toeplitz
with first row equal to rT. The ratio of pilot symbol power
and noise variance at the receiver is γp = NpPp/σ

2
n.

For example, if the estimate of the µ-th previous (uplink)
slot is used for the TxMF we set g = eµ+1 and if g = e1

the estimate from the current slot is available as for Alamouti
STBC and beamforming.

Particularly for the TxMF linear prediction of the channel
improves performance considerably [7], where G = gH⊗IM

predicts the channel in the temporal domain only. The LMMSE
predictor

g =
(
T

[
Ra + Iw+1/

(
γpE[|hm|2])] T

)†
Tr (18)

for B = IM is the solution of the Wiener-Hopf equation,
where T is the diagonal (selection) matrix with ones at
positions, for which a channel estimate is available, and zeros
elsewhere [7]. The pseudo inverse is denoted by ‘†’.

IV. BIT ERROR PROBABILITY ANALYSIS

A. Transmit Matched Filter

1) Equivalence of TxMF and RxMF: Previous results [14]
for the BEP of the receive MF (RxMF) can be used for
analysis of the TxMF, as both are equivalent in performance
for spatially white noise, flat channels, and PSK modulation.
For the TxMF we can write x[n] with (3) and (1) equivalently
as

deq[n] = xeq[n] =
√
PT/Ps ĥ

H
hs[n] + ‖ĥ‖2n[n]. (19)

Comparing it with the receive MF for M antennas

d[n] = ĥ
H
x[n] = ĥ

H
hs[n] + ĥ

H
n[n] ∈ C

M (20)

we observe that the noise neq[n] = ‖ĥ‖2n[n] and ĥ
H
n[n]

have the same distribution conditioned on ĥ if Rn = σ2
nIM ,

i.e., E[|neq[n]|2] = E[|ĥH
n[n]|2] = ‖ĥ‖2

2σ
2
n and E[neq[n]] =

E[ĥ
H
n[n]] = 0. The BEP for TxMF can be calculated via

the RxMF if the same ĥ is used, as they are equivalent in
performance for each channel realization and, thus, also have
the same performance on average.

2) Derivation of Average BEP: The real part of the decision
variable d[n] for the RxMF can be written as a quadratic form

dR[n] = Re (d[n]) = Re
(
ĥ

H
UUHx[n]

)
= 1/2

(
ĥ

H

d y[n] + y[n]Hĥd

)
= 1/2 vHCv (21)

in v = [ĥd,1, y1[n], . . . , ĥd,M , yM [n]]T and C = IM⊗[e2,e1].
To obtain explicit results later, we introduced UUH = IM

to decorrelate the channel coefficients in (21), i.e., the new
equivalent channel is hd = UH

d h with diagonal covariance
matrix Rhd = Λ [14]. The transformed signal is

y[n] = UHx[n] = hds[n] + nd[n] (22)
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with nd[n] = UH
d n[n] and Rn = Rnd = Rnp = σ2

nIM .
As the coefficients in hd are uncorrelated, i.e., one element

does not contain information about other coefficients, temporal
prediction as introduced above with G = gH⊗IM is sufficient
and B = diag([b1, . . . , bM ]) is diagonal in general. The
covariance matrix Rv = diag (Rv1 , . . . ,RvM

) of v is block
diagonal with

Rvm
=

[
E[|ĥd,m[�]|2] E[ĥd,m[�]ym[n]∗]

E[ĥd,m[�]ym[n]∗]∗ E[|ym[n]|2]
]

(23)

=
[
b2mλmgHRag + 1

γp
b2m‖g‖2

2 bmλmgHrs[n]
bmλmgHrs[n] λmPs + σ2

n

]
,

where rvij denotes the ij-th element of Rvm
.

Turin [13] showed that the characteristic function of dR[n]
(21), a quadratic form in zero mean Gaussian random vari-
ables, can be written in terms of the eigenvalues ξ+m and ξ−i
of 1/2Rvm [e2,e1]

ψ(ω) = E[ejωdR ] =
M∏

m=1

1
(1 − jωξ+m)(1 − jωξ−m)

. (24)

We introduce the parameters α1 = gHr/‖g‖2 and α2 =
gHRag/‖g‖2

2 describing the impact of delayed channel es-
timates and prediction on the BEP.

The probability density function p(dR|s = +
√
Ps) of the

decision variable dR[n] conditioned on a transmitted data
symbol s[n] = +

√
Ps is given by the inverse Fourier transform

of the characteristic function. After a partial fraction expansion
of the characteristic function (24) and for distinct eigenvalues
ξ±m [14] it is

p(dR|s = +
√
Ps) =

M∑
m=1

Am

ξ+m
e−dR/ξ+

m Θ(dR)

+
Bm

−ξ−m
e−dR/ξ−

m Θ(−dR) (25)

Am =
M∏
i=1
i�=m

(
1 − ξ+i

ξ+m

)−1 M∏
i=1

(
1 − ξ−i

ξ+m

)−1

Bm =
M∏
i=1

(
1 − ξ+i

ξ−m

)−1 M∏
i=1
i�=m

(
1 − ξ−i

ξ−m

)−1

(26)

with Θ(d) = 1, if d > 0, and Θ(d) = 0, elsewhere. The
eigenvalues are distinct if λm are distinct (the case λM = 0
can be handled reducing M by one), bm and gTr nonzero,
and γd 	= (

[λm + 1/(α2γp)]α2/α
2
1 − λm

)−1
. The probability

of a bit error Pb for equally probable transmitted symbols and
a maximum a posteriori decision device is (compare e.g. [17])

Pb =
∫ 0

−∞
p(δ|s[n] = +

√
Ps) dδ =

M∑
m=1

Bm

=
M∑

m=1


 M∏

i=1

1 − ξ+i
ξ−m

M∏
i=1
i�=m

1 − ξ−i
ξ−m




−1

, (27)

which depends only on the ratio of eigenvalues, e.g.,

ξ+m
ξ−i

=
bmλm

biλi

1 +

√(
1 +

1
γdλm

) (
1 +

1
γpλmα2

)
α2

α2
1

1 −
√(

1 +
1

γdλi

) (
1 +

1
γpλiα2

)
α2

α2
1

. (28)

For equal eigenvalues ξ+m (ξ−m), i.e. U = IM , λ = λm, b =
bm ∀m, the BEP is [18]

Pb =
1
2

[
1 − ρ

M−1∑
m=0

(
2m
m

)(
1 − ρ2

4

)m
]

(29)

ρ =
E[xm[n]ĥm]√

E[|xm[n]|2]E[|ĥm|2]

=
((

1 +
1
γdλ

) (
1 +

1
γpλb

2α2

)
α2

α2
1

)−1/2

(30)

for real valued gHr as above.

B. Beamforming

The BEP for beamforming (4) assuming estimates ĉ[�] as
discussed in Section III and perfect knowledge of Rh, is a
special case of (27) for M = 1.

C. Alamouti STBC

From (9) the real part of the decision signal for symbol s[k]
is the quadratic form

dR[k] = Re
(
ĥ∗1x[k] + ĥ2x

∗[k + 1]
)

= Re
(
(ĥ∗1h1 + ĥ∗2h2)s[k] + (ĥ∗1h2 − ĥ2h

∗
1)s[k + 1]

+ĥ∗1n[k] + ĥ2n[k + 1]
)

= 1/2 wHAw. (31)

For imperfect estimates ĥ we observe two additional sources
of BEP degradation (besides additive noise): phase error in the
resulting factor in front of s[k] and intersymbol interference
from s[k + 1].

The BEP analysis is similar to our procedure above and
presented as a special case in [10]. The characteristic function
ψ(ω) of (31) in w = [ĥ1, ĥ2, x[k], x[k + 1]]T and with A =
[e2,e1] ⊗ I2 is given in terms of the eigenvalues ξm of
1/2RwA (24). In contrast to above there is no equivalence
transform to achieve a block diagonal structure of Rw. Thus,
the 4 eigenvalues have to be computed numerically from

Rw =
[

Rĥ Rĥx

RH
ĥx

Rx

]
∈ C

4×4 (32)

with Rx = S[k]TRhS[k]∗ + σ2
nI2, Rĥx = E[ĥ[�]x[k]H] =

gHrBRhS[k]∗, and Eqn. (17). With 4 distinct eigenvalues
ξm the result is similar to (27)

Pb =
4∑

m=1
ξm<0

4∏
i=1
i�=m

(
1 − ξi

ξm

)−1

(33)
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Transmit Processing Antenna/SNR gain Diversity gain
Tx Matched Filter 2 (= M) 2 (= M)
Beamforming Mλ1/trace(Rh) 1
Alamouti STBC 1 2

TABLE I

ANTENNA GAIN AND DIVERSITY GAIN OF TRANSMIT PROCESSING

SCHEMES FOR M = 2 ANTENNAS COMPARED TO A SINGLE ANTENNA.

Channel scenario: λ1 λ2 standard deviation
correlated 0.9998 0.0002 1◦
semi-correlated 0.89 0.11 60◦
uncorrelated 0.5 0.5 —

TABLE II

EIGENVALUES OF Rh FOR EVALUATED SCENARIOS AND CORRESPONDING

STANDARD DEVIATION (ANGLE SPREAD) OF THE ZERO MEAN

(BROADSIDE) LAPLACE DISTRIBUTION OF THE ANGLE OF DEPARTURE.

with coefficients of the partial fraction expansion as in (26).
For multiple equal eigenvalues a partial fraction expansion of
the characteristic function of dR[n] (24) for multiple poles is
needed, which is tedious but straight forward.

V. PERFORMANCE COMPARISON

A. Perfect Channel State Information

The gain in average SNR (antenna gain) at the receiver
(Table I) results in a left-shift of the BEP (Figure 3) compared
to the case of 1 antenna at the transmitter. For beamforming
it depends on the channel correlations. Thus, we consider 3
scenarios as given in Table II. The diversity gain, i.e., the
asymptotic slope of the BEP w.r.t. γd [17], is independent
of channel correlations. But the SNR for which this slope
is achieved is shifted to higher SNR the more the channel
is correlated (Figure 3): e.g. the break even point between
Alamouti STBC and beamforming is at an SNR of 39.3 dB for
the correlated scenario, whereas the BEP of Alamouti STBC
is always lower for no correlations. Having complete CSI the
TxMF achieves the maximum gains for all scenarios. These
well known facts hold for perfect CSI only.

−10 0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TxMF − correlated
Beamforming − correlated
Alamouti − correlated
TxMF − uncorrelated
Beamforming − uncorrelated
Alamouti − uncorrelated

B
E

P

γd [dB]
Fig. 3. BEP for perfect CSI and uncorrelated/correlated channels.

Channel scenario correlated semi-correlated uncorrelated
Break even BEP 4.77 · 10−3 0.0374 0.3505
Break even γd 40.42 dB 11.50 dB −2.56 dB

TABLE III

BREAK EVEN POINT BETWEEN BEAMFORMING AND ALAMOUTI STBC

WITH ML CHANNEL ESTIMATION (Np = 20) AND WITHOUT PREDICTION.

B. Imperfect Channel State Information

For the comparison equal power Ps=Pp in pilot and data
channel, Np=20 pilot symbols, and a temporal channel cor-
relation function r[µ] from a Jakes power spectrum [19] with
maximum Doppler frequency fd are assumed.

The BEP degradation for beamforming (≈0.2 dB) and
Alamouti STBC (≈0.5 dB) considering imperfect CSI is small
compared to the TxMF, whose BEP saturates due to the delay
between the previous uplink slot and the current downlink slot
(Figure 4). For P=4 we compute the BEP for the worst-case
slot, which experiences a delay of 3 slots (g = e3). For a
carrier frequency of 2GHz and a slot period of 1/1500 s as
in TDD UMTS [20] fd = 0.001 corresponds to a velocity of
1 km/h and fd = 0.093 to 75 km/h. With LMMSE prediction
(cf. Eqn. 18) the TxMF BEP for fd = 0.037 (30 km/h) can be
improved to be superior to Alamouti STBC for a wide SNR
range.

For these system parameters Figure 5 shows the break even
BEP for velocities between 1 km/h and 100 km/h (fd =
0.001 to 0.124), i.e., for a desired BEP larger than the break
even BEP the TxMF requires a lower γd for a given maximum
Doppler frequency. For uncorrelated channels the region of
superior operation (area above the graph) of the TxMF is larger
than for correlations. An asymmetric downlink configuration
(P=4) reduces this region considerably compared to P=2.
With LMMSE prediction based on the channel estimates
from the previous 10 uplink slots this region is extended
significantly again. The break even point at 0.5 (e.g. the
saturation level of P=4 for large fd) occurs, when Alamouti
STBC always outperforms the TxMF (no cross-over point at
finite γd in dB).

For uncorrelated channels the SNR degradation can be
computed explicitly from (30). Moreover, an optimization
of the power distribution between pilot and data channel is
possible, similarly to [21] for maximum ratio combining at
the receiver. From (28) and (30) we note that an α2 ≥ 1
describes a gain achieved from channel prediction, whereas
α2/α

2
1 is a measure of the degradation from the delay and the

prediction error, as increasing this ratio has the same effect as
decreasing γp. For a delay of the channel estimate by µ slots
we have α2 = 1 and α1 = r[µ]: the smaller r[µ] the larger
the degradation. For full correlation over time r[µ] = 1 there
would be no degradation since α1 = 1.

The break even points between beamforming and Alamouti
STBC in Table III state below which γd or equivalently above
which BEP beamforming is superior to the STBC for different
scenarios. As expected partial CSI (beamforming) should be
exploited at the transmitter for more correlated channels.
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Fig. 4. BEP for imperfect CSI and semi-correlated channel without and with
LMMSE prediction (Np = 20, P = 4; dashed-dotted line with markers:
g = e3; solid line with markers: LMMSE predictor with w = 10P ).
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VI. CONCLUSIONS

The quality of available channel state information plays a
key role when deciding for a transmit processing concept. We
compared three precoding schemes for flat fading channels: the
transmit matched filter, beamforming, and Alamouti STBC.
Their uncoded bit error probability is derived analytically
for BPSK, correlated and uncorrelated Rayleigh fading, and
general complex Gaussian distributed errors in channel state
information.

The superior performance of the transmit matched filter
due to its full channel state information in case of no
channel estimation errors degrades when considering time-
variant channels: its optimality region mainly depends on the
slot configuration in the downlink, the speed of the mobile
(maximum Doppler frequency), and is significantly improved
by linear prediction. The results show that linear prediction is a

key ingredient to make transmit processing based on complete
CSI possible in time-variant channels.

The explicit BEP expressions allow further insights about
the influence of temporal channel correlations, channel estima-
tion, and linear prediction. For a switching between the con-
cepts the knowledge about their break even point is necessary,
which can be computed numerically based on our derivations
of the BEP in the case of binary modulation. A derivation of
the BEP for higher order modulation, correlated channels, and
channel estimation errors would be important and remains a
topic for future research.
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