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ABSTRACT
We address the joint optimization of transmitter and receivers
for a multi-usermultiple-input multiple-output(MIMO) broad-
cast channel(BC) system under the assumption of perfectchan-
nel state information(CSI) at both, transmitter and receivers.
Tomlinson Harashima precoding(THP) is employed for inter-
user interference presubtraction and themean square error
(MSE) is minimized. Since the downlink problem is difficult
to handle, we formulate an equivalent uplink problem by ex-
ploiting the duality between THP anddecision feedback equal-
ization(DFE). We present an iterative solution, which delivers
suboptimum transmit and receive matrices as well as a subop-
timum precoding order. The performance of the algorithm is
studied theoretically and experimentally.

1. INTRODUCTION

In a downlink scenario, the receivers are decentralized and
can be equipped with a single antenna (multi-user MISO sys-
tem) or even with multiple antennas (multi-user MIMO sys-
tem) each. The decentralization implies the necessity of pre-
equalization at the transmitter. Linear pre-processing was con-
sidered in [1] based on theminimum MSE(MMSE) andzero-
forcing(ZF) criteria, where the receivers were restricted to ap-
ply the same scalar weight. Jointly optimizing the linear trans-
mit and receive matrices for theQuality of Service(QoS) and
sum-MSE criteria was considered in [2, 3, 4] for the MISO
case and was extended to the MIMO case in [5, 6, 7, 8].

Nonlinear precoding strategies clearly improve the perfor-
mance compared to linear pre-processing and may achieve the
full capacity [9]. THP with restricted receivers was derived us-
ing a sum-MSE approach in [10]. A QoS based joint optimiza-
tion of THP transceivers was considered in [11] (MISO) and
[12] (MIMO) for fixed precoding order. However, the sum-
MSE based optimization of THP is very difficult and up to
now, only solutions based on an exhaustive search exist [13].

Our contribution is a solution for the weighted sum-MSE
minimization for the downlink with nonlinear beamforming.
For simplicity, only the inter-user interference is presubtracted
nonlinearly, whereas the streams of each user are jointly pre-
coded linearly. The design is performed in a dual uplink model,
which offers a better mathematical structure, by iteratively solv-
ing the necessary first order KKT conditions for local optimal-
ity. We cannot prove the global optimality of such a solution
since the problem is non-convex but we show through simu-
lations in Section 7 that the algorithm delivers excellent solu-
tions in practice. Our paper is organized as follows: In Sec-
tion 3 we prove the duality between DFE and THP in terms

of MSE for general feedback matrices (contrary to previous
proofs). Sections 4 and 5 deal with the iterative solution of the
weighted sum-MSE optimization using a gradient projection
approach [14]. The precoding order problem is discussed in
Section 6. Finally, we present simulation results in Section 7.

2. SYSTEM MODEL AND NOTATION

We consider aK-users MIMO BC system with anM antennas
transmitter and thekth receiver hasNk antennas (see Fig. 1).
The channel matrix of userk isHH

k ∈ CNk×M , k = 1, . . . , K,
and the vectorsk ∈ CBk comprises theBk uncorrelated unit
variance symbols of userk which are assumed to be uncor-
related with other users’ symbols. The vectorsη1, . . . ,ηK

denote zero-mean white noise with varianceσ2
n for each com-

ponent. In addition to the feedforward filters̄P k ∈ CM×Bk ,
the transmitter is extended with amodulo device M(•) and a
spatial feedback filter̄F , where fork > j, F̄ k,j ∈ C

Bπk
×Bπj .

The users are successively precoded with orderπ, i.e., userπk

sees the interference caused by the usersπk+1, . . . , πK . The
decentralized receive filter of userk is Ḡk ∈ C

Bk×Nk . For a
shorter notation, we introduce the matrix products

Āk,j := Ḡπk
HH

πk
P̄ πj and Ak,j := Gπk

Hπj P πj . (1)

With these definitions, the estimatêsπk
of userπk reads as

ŝπk
=

(
Āk,kuk +

∑
j 6=k

Āk,juj + Ḡπk
ηπk

)
mod τ

=
(
Āk,kuk +

∑
j 6=k

Āk,juj + Ḡπk
ηπk

−
∑

j<k
F̄ k,juj +

∑
j<k

F̄ k,juj

)
mod τ

=
(
sπk

−uk + Āk,kuk +
∑

j 6=k
Āk,juj

−
∑

j<k
F̄ k,juj + Ḡπk

ηπk

)
mod τ,

(2)

since(
∑

j<k F̄ k,juj)modτ = (sπk
− uk)modτ . When we

neglect themodulo-loss, the error vectoreDL
πk

= ŝπk
− sπk

is

eDL
πk

= (Āk,k−I)uk+Ḡπk
ηπk

+
∑
j 6=k

Āk,juj−
∑
j<k

F̄ k,juj . (3)

Assuming that the entries ofui have unit variance (τ =
√

6)
and are uncorrelated, andui anduk are mutually uncorrelated
for i 6= k [15], the MSEεDL

πk
= E[‖eDL

πk
‖2
2] can be written as

εDL
πk

= tr
[
(Āk,k−I)(Āk,k−I)H +

∑
j>k

Āk,jĀ
H
k,j

]
+

∑
j<k

(Āk,j−F̄ k,j)(Āk,j−F̄ k,j)H+σ2
nḠπk

Ḡ
H
πk

]
. (4)
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Ḡ1

Ḡ2
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Fig. 1. Downlink with nonlinear transmit beamforming.
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Fig. 2. Equivalent uplink with nonlinear receive beamforming.

From (4), we see that the MSEεDL
k of userk in the downlink

depends on all precoding matricesP DL
j which are strongly

coupled by the sum power constraint. Thus, we formulate an
equivalent uplink problem with a better mathematical structure
in the next section, where the precoders are decoupled and
only a joint power constraint has to be considered.

3. NON-LINEAR DOWNLINK/UPLINK DUALITY

Fig. 2 shows the dual uplink system (multiple access channel,
MAC) with DFE. We note that the users are decoded in the re-
verse order compared to the downlink, which is necessary for
the duality. In other words, userπK is decoded first and user
π1 last. Assuming that the signals from usersπK , . . . , πk+1

have correctly been decoded, i.e.,uj , sπj for j > k, the
estimatêsπk

can be expressed as

ŝπk
= Ak,ksπk

+ Gπk
η +

∑
j 6=k

Ak,juj −
∑
j>k

F k,juj , (5)

and the MSEεUL
πk

= E[‖ŝπk
− sπk

‖2
2] can be derived easily:

εUL
πk

= tr
[
(Ak,k−I)(Ak,k−I)H +

∑
j<k

Ak,jA
H
k,j

+
∑

j>k
(Ak,j−F k,j)(Ak,j−F k,j)H+σ2

nGπk
GH

πk

]
.

(6)

Theorem 1 Given the dimensionsB1, . . . , BK of the user-
symbol vectors, the MIMO BC channel and the dual MIMO
MAC channel achieve the same user-wiseMSE region, when
using THP for the MIMO BC and DFE for the MIMO MAC
under a fixed sum power constraintPtr , if the modulo-loss of
THP and the error propagation of the DFE are neglected.

Proof. To prove the MSE duality between the uplink and
downlink, we show that for any set of precodersP k, receivers

Gk, and feedback matrixF describing the uplink system and
achieving certain MSE values, there exists at least one set of
linear precoders and receivers for the dual BC channel that
achieves the same MSE values under the same sum power and
vice versa (see the next two subsections).

3.1. Uplink to Downlink Transformation

Similar to the duality of the linear system in [8], the trans-
formation is based on switching the role of precoders and re-
ceivers and scaling them withK strictly positive constants:

P̄ k = αkGH
k , Ḡk =

1
αk

P H
k , F̄ k,j =

απj

απk

F H
j,k. (7)

SettingεUL
πk

= εDL
πk

yields a following linear equation system:

T N




α2
π1
...

α2
πK


 = σ2

n




tr(P π1P
H
π1

)
...

tr(P πK P H
πK

)


 , (8)

where

T N,k,i=

8>>><
>>>:

−tr
h
(Ai,k−F i,k) (Ai,k−F i,k)H

i
if i < k,

−tr
h
Ai,kAH

i,k

i
if i > k.

tr
h
σ2

nGπkGH
πk

i
−P

j 6=k T N,j,k if i = k,

(9)

Obviously, T N is a strictly (column) diagonally dominant
real-valued matrix1, so it is non-singular(|T N| > 0); more-
over, it has strictly positive diagonal entries and negative off-
diagonal entries, thus all entries of the inverse matrixT−1

N are
non-negative and the diagonal entries ofT−1

N are strictly pos-
itive.2 Summing up all equations of the system, we get:

K∑
k=1

tr(P̄ kP̄
H
k )=

K∑
k=1

tr(α2
kGkGH

k )=
K∑

k=1

tr(P kP H
k ). (10)

We see that there is always a strictly positive3 solution vector
[α2

1, . . . , α
2
K ]T, such that the uplink system can be transformed

into an equivalent downlink system with the same individual
MSEs and by using the same sum power (due to Equation 10).

3.2. Downlink to Uplink Transformation

Conversely, it can be shown by the same reasoning that every
downlink system can be transformed into an equivalent uplink
system with the same individual MSEs and with the same sum-
powerPtr. The uplink transceivers are obtained through:

P k = ᾱkḠ
H
k , Gk =

1
ᾱk

P̄
H
k , F k,j =

ᾱπj

ᾱπk

F̄
H
j,k. (11)

The scalars̄α2
1, . . . , ᾱ

2
K satisfy following system of equations:

T̄ N




ᾱ2
π1
...

ᾱ2
πK


 = σ2

n




tr
(
P̄ π1P̄

H
π1

)
...

tr
(
P̄ πK P̄

H
πK

)

 , (12)

where the strictly (column) diagonally dominant real valued
matrix T̄ N has a similar structure asT N in (9). Thus, a strictly
positive solution to (12) exists and the downlink can be trans-
formed to an uplink with the same sum power.

1TN,k,k >
P

j 6=k

˛
˛TN,j,k

˛
˛ ∀k.

2Consider the explicit formula of the adjoint matrix for the proof.
3We assume that allPk 6= 0, since we have to consider only the active

users. For the other users, the duality is evident. Therefore,αk > 0 ∀k.



4. OPTIMUM RECEIVER AND FEEDBACK
MATRICES

To design the system, we first derive the optimum receive and
feedback matrices, assuming the transmitterP k and the pre-
coding orderπ are fixed. Then, we deal with the difficult part,
i.e., the derivation of the optimum transmit matrices. We can
easily see from (6) that the optimum feedback matrices are

F k,j = Gπk
Hπj P πj = Ak,j , (13)

since they minimize every user’s MSEεπk
separately.

Now, for given precodersP k and precoding orderπ we can
see in a similar way that the receiversGk must be the MMSE
receivers minimizing each MSEεk individually:

Gk = P H
k HH

k T k, (14)

where

T πk
= (

∑
j≤k

Hπj P πj P
H
πj

HH
πj

+ σ2
nI )−1. (15)

The MSE of userk herewith becomes

εk = tr [Ek] = tr(I − P H
k HH

k T kHkP k). (16)

where the error covariance matrix of userk is denoted byEk.
Note that these optimum receivers and feedback matrices are
independent of the cost function, as long as the cost is increas-
ing in every user’s MSE. In particular, sum-MSE minimization
and QoS design, i.e., minimization of the transmit power under
individual MSE constraints, satisfy this condition.

5. WEIGHTED SUM-MSE OPTIMIZATION

Our goal is to design the transceiver minimizing aweighted
sum of the users’ MSEsεk with positive scalarswk:

min
{P 1,...,P K},π

εtot =
∑

k

wkεk s.t.:
∑

k

tr(P kP H
k )≤Ptr.

(17)
In this section, we consider a fixed precoding orderπ. Us-
ing (16), the KKT conditions of the weighted sum-MSE mini-
mization (17) read as:

µP πk

!=HH
πk

[
wπk

T πk
(σ2

nI +
∑
j<k

Hπj P πj P
H
πj

HH
πj

)T πk

−
∑
j>k

wπj T πj Hπj P πj P
H
πj

HH
πj

T πj

]
Hπk

P πk
,

(18)
with the Lagrangian multiplierµ ≥ 0. If we multiply (18) for
eachπk with P H

πk
from the left and take its trace, we observe

that the weightingwk satisfies nearly the same linear system
of equations as the scalarsαk of the uplink/dowlink transfor-
mation except for a constantµ/σ2

n (cf. Eq. 8)4. We get the
following relation:

α2
1

w1

!=
α2

2

w2

!= · · · !=
α2

K

wK
, (19)

which also holds for the linear case, see [8]. Hence, the weights
α2

k can be computed directly from the transmit power con-
straint, which is the big advantage of our duality. In particular,
for the sum-MSE minimization (wk = 1), all αk are equal.

4Remember thatGk = PH
k HH

k Tk (see Eq. 14).
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In order to solve the constrained optimization problems,
the standard unconstrained gradient algorithm can be modi-
fied to take into account the constraints. The modified gradi-
ent algorithm is called theprojectedgradient algorithm and its
iteration is defined as follows [14]:

P (`+1) = [P (`) + ηM−1∇f(P (`))]⊥, (20)

where∇ corresponds to the matrix-valued nabla operator (Ja-
cobianmatrix) and[.]⊥ denotes the projection operator onto
the hypersphere with radius

√
Ptr, η is the step size, andM

represents a preconditioning matrix, which is chosen to be

M−1 =
√

Ptr

‖∇f‖2F I for simplicity. In this way, the speed of

the algorithm becomes almost independent from the SNR.5

Algorithm 1 is the pseudo-code of the gradient projection
iterative solution. The iteration is divided into two steps: the
first one (lines 4 to 12) is the standard gradient iteration step
and the second one (line 13) consists of a projection onto the
constraint set. The convergence of this algorithm is proved by
means of a descent argument [14]:

Theorem 2 Supposef is bounded below and Lipschitzian with
the Lipschitz constant L, and0 < η < 2/L. The sequence gen-
erated by the gradient projection algorithm then converges.
Furthermore, the limit point of this sequence satisfies the first
order KKT optimality condition. In particular, iff is convex
then the algorithm converges to the global minimum.

Proof. See [14]. The parameterη ensures the convergence of
the algorithm. Choosingη = 1/d features excellent conver-
gence properties (see Fig. 3), whend is initialized with 2 and
is incremented, as the objective tends to increase (line 15).

6. SUBOPTIMUM PRECODING ORDER

Problem (17) is very hard to tackle. A simultaneous or alter-
nating optimization overP k andπ is impossible, since the first
variable is continuous and the second one is discrete. Hence,

5The function is nearly flat for high SNR and the gradient becomes very
small. Thus, the Jacobian has a small Frobenius norm, which makes this
scaling important.



Algorithm 1 MIMO Weighted Sum-MSE Algorithm

1: Initialize: P
(0)
k (1 : Bk, 1 : Bk)⇐

√
PtrP
Bk

IBk
, ∀k

d ⇐ 2, ` ⇐ 0
2: repeat
3: ` ⇐ ` + 1
4: T π0 ⇐ σ−2

n I
5: for k = 1, . . . , K do
6: T πk

⇐ T πk−1 − T πk−1Hπk
P (`−1)

πk
(IBπk

+
P (`−1),H

πk

×HH
πk

T πk−1Hπk
P (`−1)

πk
)−1P (`−1),H

πk
HH

πk
T πk−1

7: end for
8: S ⇐ 0
9: for k = K, . . . , 1 do

10: S ⇐ S + wπk
T πk

Hπk
P (`−1)

πk
P (`−1),H

πk
HH

πk
T πk

11: Gradient Update forP k (∀k):
δP (`)

πk
⇐ HH

πk
(wπk

T πk
− S)Hπk

P (`−1)
πk

12: end for
13: ∀k, δP

(`)
k ⇐

√
PtrP ‖δP

(`)
k ‖δP

(`)
k (scaled gradient)

∀k, P
(`)
k ⇐ 1

dδP
(`)
k + P

(`−1)
k

∀k, P
(`)
k ⇐

√
PtrP ‖P (`)

k ‖P
(`)
k (Projection)

14: if
∑

k wktr(E(`)
k ) >

∑
k wktr(E(`−1)

k ) then
15: d ⇐ d + 1, ` ⇐ `− 1
16: end if
17: until desired convergence accuracy forEk is achieved
18: GDL

k ⇐ 1
αk

P H
k , P DL

k ⇐ αkT kHkP k

whereαk ⇐
√

wkPtrP
tr(wkP H

k
HH

k
T kHkP k)

we propose to optimize the cost function with respect toπ for
givenP k. However, we must chooseP k carefully, such that
it does not influence the result. In order to assure a fair com-
parison between all possible permutations, we evenly allocate
powers to the users, such that our solution depends on the sys-
tem parameters (channels, weighting, and sum-powerPtr) as
much as possible. Intuitively, we chooseP k as follows:

P k =

√
Ptr∑
k Bk

V k (21)

whereV k comprises theBk dominant right singular vectors
of Hk. Herewith, we optimize the weighted sum-MSE w.r.t.
the orderingπ:

min
π

∑
k

wπk
tr(I − P H

πk
HH

πk
T πk

Hπk
P πk

). (22)

Even with this simplification, the problem remains NP hard, as
we must check allK! possible permutations. To reduce com-
plexity, we minimize each summand separately like in [10],
i.e.,πk is chosen under the assumption thatπk+1, . . . , πK are
fixed. Since we do not necessarily have the sameBk for all
users, every summand is divided by the number of streams:

πk = min
i/∈πk+1,...,πK

witr(I − P H
i HH

i T πk
HiP i)/Bi. (23)

For the MISO case, this suboptimum precoding order is equiv-
alent to MMSE V-BLAST [16]. From simulations we observe
that this solution mostly delivers the optimum precoding order.
Algorithm 2 shows the detailed precoding order optimization,
where the matricesT πk

are computed successively (line 5).

Algorithm 2 Precoding Order Algorithm

1: Initialize: P k(1 : Bk, 1 : Bk)⇐
√

PtrP
Bk

V k, ∀k, where

V k = SVD(Hk)
2: T = (

∑
j HjP jP

H
j HH

j + σ2
nI)−1

3: for k = K, . . . , 1 do
4: πk = min

i/∈πk+1,...,πK

witr(I − P H
i HH

i TH iP i)/Bi

5: T ⇐ T + THπk
P πk

(IBπk
− P H

πk

×HH
πk

THπk
P πk

)−1P H
πk

HH
πk

T
6: end for

7. SIMULATION RESULTS

In our channel model, the entries ofHk are complex-valued
realizations of independent zero-mean Gaussian random vari-
ables, each having the same variance E[|hk,n,m|2] = 1. The
uncodedbit error rate (BER) results were averaged over 1000
channel realizations, where 100 16QAM modulated symbols
were transmitted per realization.

In Fig. 4 we compare the new THP transceiver with the
TxWF-THP of [10], in which all users apply the same scalar
at the receivers. We choose a MISO system (one antenna per
user), where 3 users are served by only two transmit antennas,
since we expect a big improvement of the BER performance in
this case. In fact, the curve of the TxWF exhibits an error floor.
This is due to the fact that we allocate the same scalar receiver
for all users, and therefore nearly the same power to each of
them. Since the channel is rank deficient, the SINR of the first
precoded user cannot grow arbitrarily large. However, the new
sum-MSE THP transceiver allows a strongly uneven power al-
location, which enables each user to get more power than sub-
sequent users, and thus an (nearly) arbitrary high SINR.

Fig. 5 compares our sum-MSE THP transceiver with exist-
ing MIMO THP approaches, in particular the block diagonal
THP approach (also known as ZF-THP) [17]. We enhanced
the performance of ZF-THP by allowing for a non-unitary pre-
coder. Note that the algorithm in [17] requires that the number
of transmit antennas must be greater than or equal to the total
number of receive antennas in order to satisfy the null-space
criterion. Therefore, we chose a system with 6 transmit an-
tennas and 3 users with 2 receive antennas and 2 streams each.
Not surprisingly, sum-MSE THP clearly outperforms ZF-THP.
Fig. 5 shows also some linear processing approaches such as
linear ZF from [18] and sum-MSE minimization from [8] (see
also [7]). Obviously, the higher the SNR, the better the perfor-
mance of the new THP system compared to linear transceivers.

8. CONCLUSION

We addressed the problem of jointly designing THP transmit-
ters and receivers for a multi-user MIMO system. Thanks to a
user-wise MSE duality between THP and DFE, we formulated
a weighted sum-MSE minimization problem in the uplink and
solved the KKT conditions iteratively using a gradient pro-
jection method, which has good convergence properties com-
pared to alternating optimization of transmitter and receivers.
We examined the precoding order problem and derived a sub-
optimum solution. Our THP transceiver, which has a low com-
plexity structure, outperforms all existing solutions and offers
excellent performance in rank deficient systems.
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