
LOW-COMPLEXITY EQUALIZERS—RANK VERSUS ORDER REDUCTION

Guido Dietl and Wolfgang Utschick

Institute for Circuit Theory and Signal Processing
Munich University of Technology, 80333 Munich, Germany

E-mail: dietl@tum.de

ABSTRACT

Reduced-rank approximations of finite impulse response
equalizers in Krylov subspaces, e. g., the conjugate gradient
algorithm, can be used to decrease computational complex-
ity involved in calculating the filter coefficients. However, an
alternative approach would be to reduce the order of the cor-
responding full-rank filter or to even combine rank and order
reduction. In this paper, we compare both reduction methods
based on (G,D)-charts where we analyze the mean square
error of the reduced-rank equalizers on complexity isosets,
i. e., for tuples of the filter length G and its rank D resulting
in a certain number of floating point operations. The appli-
cation of (G,D)-charts to a coded system with an iterative
receiver (turbo equalization) reveals the superiority of rank
reduction, especially, if one is interested in low-complexity
implementations.

1. INTRODUCTION

The Wiener Filter (WF) [1] is the optimal linear equalizer
based on the minimum mean square error criterion. Never-
theless, to compute its filter coefficients, one has to solve the
Wiener-Hopf equation which involves a computational com-
plexity of O(G3) if G is the dimension of the system of linear
equations. Reduced-rank approximations of the WF in either
an eigen or Krylov subspace can be used to reduce this com-
putational burden. In the sequel, we concentrate on Krylov
methods since it was shown for several applications [2, 3, 4, 5]
that they outperform eigen based approaches.

Goldstein et al. [3] introduced the rank D Multi-Stage WF
(MSWF) which was later proven [4] to be a WF approxima-
tion in a D-dimensional Krylov subspace. Based on this fact,
it was shown in [5] that the Conjugate Gradient (CG) algo-
rithm when stopped after D iterations, can be used to imple-
ment the rank D MSWF very efficiently. Both the original
rank D MSWF as well as its CG implementation has a com-
putational complexity of O(DG2), i. e., the filter order G af-
fects the computational complexity quadratically whereas the
rank D has only a linear influence. Therefore, both D and G
can be reduced to obtain low-complexity equalizers as long
as the performance meets the system requirements.

Firstly, we compare the exact number of complex FLoat-
ing point OPerations (FLOPs) required to compute the full-
rank WF solution with the number of FLOPs needed for the
CG implementation of the reduced-rank MSWF. Here, we im-
plement the WF using the already very efficient Cholesky fac-
torization [6] which exploits the fact that the Wiener-Hopf
equation is a Hermitian system. The main contribution of this
paper is the introduction of the (G,D)-charts to find the opti-
mal combination of the filter length G and the rank D which
results in the best performance for a given number of FLOPs.
One observation will be that the CG implementation of the
reduced-rank MSWF is only computationally cheaper than
the Cholesky implementation of the WF if its rank is reduced
below a certain fraction of the filter length G. Finally, the ap-
plication of the reduced-rank equalizers to an iterative (turbo)
receiver in a coded system shows that decreasing the rank
leads to a better performance than reducing the filter order,
especially, if the number of available FLOPs is very small.

The organization of the paper is as follows. Before de-
riving the low-complexity implementations with the required
number of FLOPs in Section 3, we briefly review the WF
in Section 2. Finally, Section 4 introduces the (G,D)-charts
which are exemplarily presented in Section 6 for the commu-
nication system defined in Section 5.

Throughout the paper, vectors and matrices are denoted
by lower and upper case bold letters, and random variables are
written using sans serif font. The matrix In is the n×n iden-
tity matrix, eν its ν-th column, 0m×n the m× n zero matrix,
and 0n the n-dimensional zero vector. The operation E{·}
denotes expectation, (·)∗ conjugate complex, (·)T transpose,
(·)H Hermitian, i. e., conjugate transpose, ‖·‖2 the Euclidean
norm, and d·e rounding to the next integer greater than the ar-
gument. The matrix S(`,M,N) = [0M×`, IM ,0M×(N−`)] ∈
{0, 1}M×(M+N) is used for selection. The auto-correlation
matrix of the stationary and ergodic random vector pro-
cess u[n] ∈ Cm is Ru = E{u[n]uH [n]} ∈ Cm×m,
the cross-correlation vector between u[n] and the stationary
and ergodic random scalar process v [n] ∈ C is ru,v [ν] =
E{u[n]v∗[n− ν]} ∈ Cm, and the variance of v [n] is σ2

v
. The

entry in the i-th row and j-th column of a matrix A is denoted
as ai,j , the row vector in the i-th row from columns j to k of



A as ai,j:k, the i-th element of the vector a as ai, and the
subvector from row i to j of a as ai:j .

2. WIENER FILTER

The WF [1] w ∈ CG estimates the unknown signal x [n] ∈ C

from the observation vector y [n] ∈ CG by minimizing the
Mean Square Error (MSE) ξ(ω) ∈ R0,+ between x [n − ν]
and its estimate x̂ [n] = ωHy [n], i. e.,

w = argmin
ω

ξ(ω), with (1)

ξ(ω) = E
{

|x [n− ν]− x̂ [n]|2
}

= σ2
x
− ωHry ,x [ν]− rH

y ,x [ν]ω + ωHRyω, (2)

where ν is the latency time. The optimization leads to the
Wiener-Hopf equation

Ryw = ry ,x [ν] ∈ C
G, (3)

which has to be solved according to w. If the second order
statistics are given, solving Equation (3) involves the highest
computational complexity in calculating the WF coefficients
comprised in w.

3. LOW-COMPLEXITY IMPLEMENTATIONS

In this section, we present the full-rank WF implementation
based on the Cholesky factorization and the CG implementa-
tion of the reduced-rank MSWF. Additionally, we investigate
the number of FLOPs needed for their implementation. Here,
a FLOP is either an addition, subtraction, multiplication, di-
vision, or root extraction, no matter if operating on real or
complex values.

3.1. WF Based on Cholesky Factorization

Since the auto-correlation matrix Ry is Hermitian, the
Cholesky factorization [6] can be used to solve the Wiener-
Hopf equation Ryw = ry ,x [ν]. The procedure will be as fol-
lows. With Ry = UHU ∈ CG×G where U ∈ CG×G is an
upper triangular matrix, firstly, the system UHv = ry ,x [ν] of
linear equations is solved with respect to v ∈ CG (forward
substitution), and subsequently, the system Uw = v is solved
according to w (backward substitution).

Algorithm 1 depicts the outer product version [6] of the
Cholesky factorization where the number in brackets are the
FLOPs required to calculate the corresponding line of the al-
gorithm. After summing up, the number of FLOPs required
to perform Algorithm 1 is

ζC(G) =
G3

3
+

G2

2
+

G

6
. (4)

1Here, the upper triangular part of a matrix includes its main diagonal.

Algorithm 1 Cholesky factorization
Choose U as the upper triangular part1 of Ry

2: for i = 1, 2, . . . , G do
ui,i =

√
ui,i 〈1〉

4: ui,i+1:G ← ui,i+1:G / ui,i 〈G− i〉
for j = i + 1, i + 2, . . . , G ∧ j ≤ G do

6: uj,j:G ← uj,j:G − ui,j:Gu∗
i,j 〈2(G− j + 1)〉

end for
8: end for

The solution of the system UHv = Lv = ry ,x [ν] = b of
linear equations is obtained based on the forward substitution
given by Algorithm 2. Finally, Uw = v is solved based on
the backward substitution described in Algorithm 3. Note that
the forward as well as the backward substitution requires

ζFS(G) = ζBS(G) = G2 FLOPs. (5)

Thus, the total computational complexity of the WF imple-
mentation based on the Cholesky factorization computes fi-
nally as

ζWF(G) = ζC(G)+ζFS(G)+ζBS(G) =
G3

3
+

5G2

2
+

G

6
. (6)

Algorithm 2 Forward substitution
v1 ← b1/l1,1, 〈1〉

2: for i = 2, 3, . . . , G do
vi ← (bi − li,1:i−1v1:i−1) / li,i 〈2i− 1〉

4: end for

Algorithm 3 Backward substitution
wG ← vG/uG,G 〈1〉

2: for i = G− 1, G− 2, . . . , 1 do
wi ← (vi − ui,i+1:Gwi+1:G) / ui,i 〈2(G− i) + 1〉

4: end for

3.2. Reduced-Rank MSWF Based on CG Algorithm

In [5], it was shown that the rank D MSWF wD as an approx-
imation of the WF in the D-dimensional Krylov subspace [4],
can be implemented using the CG algorithm [7, 6] which is
stopped after D iterations.The resulting procedure is depicted
in Algorithm 4 where again, the number of FLOPs per line
are given in brackets.

If we take into account that Lines 8 to 11 have to be no
longer executed at the last iteration step, i. e., for i = D, the
execution of Algorithm 4 requires

ζCG(G,D) = 2DG2 + (9D − 4)G− 1 FLOPs. (7)



Algorithm 4 Conjugate Gradient (CG) algorithm
w0 = 0G

2: p1 = −r1 = ry ,x [ν]
%1 = rH

1 r1 〈2G− 1〉
4: for i = 1, 2, . . . , D do

q = Rypi 〈G(2G− 1)〉
6: γi = %i / (pH

i q) 〈2G〉
wi = wi−1 + γipi 〈2G〉

8: ri+1 = ri + γiq 〈2G〉
%i+1 = rH

i+1ri+1 〈2G− 1〉
10: δi = %i+1 / %i 〈1〉

pi+1 = −ri+1 + δipi 〈2G〉
12: end for

Note that Algorithm 4 can be also used to compute the
WF w, i. e., the exact solution of the Wiener-Hopf equation
Ryw = ry ,x [ν], if the rank is chosen to be equal to the filter
length, i. e., D = G. However, in this case, its computational
complexity is ζCG(G,G) = 2G3 + 9G2 − 4G − 1 which is
greater than ζWF(G) for every G ∈ N. In fact, D has to be
reduced to

D <

⌈

2G3 + 15G2 + 25G + 6

6G(2G + 9)

⌉

, (8)

to get an implementation with a smaller complexity than
the WF realized based on the Cholesky factorization. For
G → ∞, this means that D has to be smaller than dG/6e.
In Section 6, we compare the performance of the full-rank
WF and the CG implementation of the reduced-rank MSWF
when they have the same computational complexity. Here, we
vary not only the rank D but also the filter length G.

4. (G,D)-CHARTS

In this section, we describe a new chart which can be used to
find out which combination of the filter length G and the rank
D resulting in a given computational complexity, yields the
best performance according to a chosen criterion. Remember
from the previous subsection that the CG algorithm for D =
G is computationally more expensive than the WF based on
the Cholesky factorization (cf. Subsection 3.1). If we use the
CG based WF approximation for D < G but the Cholesky
based WF for D = G, calculating the rank D MSWF for
an arbitrary D ∈ {1, 2, . . . , G}, involves the computational
complexity

ζ(G,D) =

{

ζCG(G,D), G > D,

ζWF(G), G = D.
(9)

Next, we define the β-ζ0-complexity isoset1 Iβ
ζ0

as the set
of (G,D)-tuples leading to the computational complexity ζ0

1Here, we extend the notation isoset by introducing a certain tolerance
level.

with a tolerance of ±βζ0, i. e.,

Iβ
ζ0

=

{

(G,D) ∈ N×{1, 2, . . . , G} :

∣

∣

∣

∣

ζ(G,D)− ζ0

ζ0

∣

∣

∣

∣

≤β

}

.

The (G,D)-chart depicts the β-ζ0-complexity isoset in the G-
D-plane for a given computational complexity ζ0. Finally, the
performance for each element of the β-ζ0-complexity isoset is
investigated in order to find the best combination of the filter
length G and the rank D with respect to the chosen perfor-
mance criterion and for a given computational complexity ζ0.
In Section 6, we present the (G,D)-charts for the communi-
cation system which will be introduced in the next section.

5. SYSTEM MODEL

We consider a system where the block b of binary data bits
is convolutionally encoded with rate 1/2, interleaved, and
mapped to the block x of QPSK symbols x [n] ∈ C based
on a Gray code, before they are transmitted over the channel
as described in Subsection 5.1.
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Figure 1. Iterative Receiver (Turbo Equalization)

Figure 1 depicts the iterative receiver. After equalization
as described in the previous sections, soft demapping, and
deinterleaving (ΠT ), the BCJR algorithm [8] as a soft-input
soft-output Maximum A Posteriori (MAP) decoder provides
the block b̃ of detected data bits. In the case of iterative
(turbo) detection, the soft information at the output of the
MAP decoder, i. e., the block l

(D)
ext of Log-Likelihood Ratios

(LLRs), is fed back as soft a priori information (l (LD)
apr ) to the

equalizer whose design has to be slightly adjusted according
to [9, 10, 11] which is not presented in this paper due to space
limitations. In Section 6, we will see that the a priori infor-
mation from the decoder can improve drastically the equal-
izer performance, i. e., decrease the MSE which is estimated
according to the method described in [12], at the next turbo
iteration.

5.1. Channel Model Based WF Design

The symbol stream x [n] with variance σ2
x

is transmitted over
the Finite Impulse Response (FIR) channel h[n] ∈ C of order
L and perturbed by Additive White Gaussian Noise (AWGN)
h[n] with the complex-valued normal distribution Nc(0, σ

2
η
),



such that the received signal reads as

y [n] = h[n]∗x [n]+h[n] =

L
∑

`=0

h[`]x [n−`]+h[n] ∈ C. (10)

In order to end up with the WF w with FIR structure of
order G− 1, we define the observation vector as

y [n] = [y [n], y [n− 1], . . . , y [n−G + 1]]
T ∈ C

G. (11)

With the convolutional channel matrix

H =

L
∑

`=0

h[`]S(`,G,L) ∈ C
G×(G+L), (12)

the transmit vector x [n] ∈ CG+L and the noise vector h[n] ∈
CG defined as

x [n] = [x [n], x [n− 1], . . . , x [n−G− L + 1]]
T

, (13)

h[n] = [h[n], h[n− 1], . . . , h[n−G + 1]]
T

, (14)

the transmission over the channel h[n] can be written as the
matrix-vector model

y [n] = Hx [n] + h[n]. (15)

Thus, the statistics needed to solve the Wiener-Hopf equation
Ryw = ry ,x [ν] compute as

Ry = σ2
x
HHH + σ2

η
IG, (16)

ry ,x [ν] = σ2
x
Heν+1. (17)

5.2. Estimation of Second Order Statistics

In this subsection, we review the Least Squares (LS)
method [1] to estimate the second order statistics based on
the channel model described in Subsection 5.1. First, we as-
sume the transmission of P +L training symbols summarized
in the matrix

Xp = [xp[0],xp[1], . . . xp[L]] ∈ C
P×(L+1), (18)

xp = [x[n], x[n + 1], . . . , x[n + P − 1]]
T ∈ C

P . (19)

With the additional definitions of the vectors

yp = [y[0], y[1], . . . , y[P − 1]]
T ∈ C

P , (20)

ηp = [η[0], η[1], . . . , η[P − 1]]
T ∈ C

P , and (21)

h = [h[0], h[1], . . . , h[L]] ∈ C
L+1, (22)

the transmission of the training symbols over the channel h[n]
can be written as (cf. Equation 10)

yp = Xph + ηp, (23)

and the LS estimate of the channel vector h computes as

ĥ = X†
p yp =

(

XH
p Xp

)−1
XH

p yp. (24)

The channel estimate ĥ is then used to create an estimate
of the channel matrix H as defined in Equation (12) which
is finally taken to compute the estimates of the second or-
der statistics according to Equations (16) and (17). Note that
the computational complexity of the LS channel estimation is
not taken into account in the considerations of the next sec-
tion since it is negligible compared to the computational com-
plexity of the WF calculation. This is due to the fact that the
computational intense pseudo inversion X

†
p in Equation (24)

has to be performed only once if the training symbols do not
change.

6. SIMULATION RESULTS

All following simulations are averaged over several channel
realizations with order L = 29 and a uniform power delay
profile, i. e., h[n] ∼ Nc(0, 1/(L + 1)), n ∈ {0, 1, . . . , L}.
The Signal-to-Noise Ratio (SNR) has been set to 5 dB.
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Figure 2. (G,D)-chart for perfect CSI, no turbo iteration

Figures 2 and 3 depict the simulation results for per-
fect Channel State Information (CSI). The tuples of G and
D plotted with the same marker correspond to the 10%-ζ0-
complexity isoset I10%

ζ0
with the computational complexity

ζ0 as given in the legend. The color as well as the size2 of a
marker determines its MSE which we have chosen as the per-
formance criterion. The filled marker denotes the combination
of G and D with the optimal performance for a given ζ0. It can
be seen that the reduced-rank method yields the best perfor-
mance if we are interested in low-complexity receivers. Only
for ζ0 = 50000 FLOPs, the full-rank WF achieves the lowest
MSE. Moreover, if we perform turbo iterations, i. e., we use
the soft information from the decoder to adjust the statistics in
Equations (16) and (17), and therefore, the reduced-rank WF
(see [9, 10, 11]) used to repeat the equalization of the received

2The marker size depends linearly on the MSE.
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Figure 3. (G,D)-chart for perfect CSI, 2 turbo iterations

signal at the next turbo iteration, we observe that the MSE is
drastically increased. In other words, the computational com-
plexity of the linear equalizer can be further reduced without
changing its performance.

Figure 4 presents the (G,D)-chart for a system where the
channel is estimated using the LS method with P + L = 100
pilot symbols. Although the MSE is greater than in the case
of perfect CSI, reducing the rank D should again be preferred
to a WF with decreased filter order.
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Figure 4. (G,D)-chart for estimated CSI, no turbo iteration

7. CONCLUSIONS

In this paper, we introduced (G,D)-charts in order to ana-
lyze the MSE performance of the rank D MSWF for so-called
complexity isosets, i. e., combinations of the filter length G

and the rank D which result in a given computational com-
plexity. The analysis of these charts has shown that a reduced-
rank MSWF performs better than a full-rank WF with the
same computational complexity, i. e., with a decreased filter
order. The superiority of the reduced-rank MSWF is espe-
cially dominant in systems based on turbo equalization.
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