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Abstract— Points on the boundary of the MIMO broadcast
channel (BC) capacity region are achieved by a combination
of dirty paper coding (DPC) and linear precoding. The linear
precoding determines the covariance matrices of the transmitted
signals. Determining the optimum covariance matrices may lead
to an undesirably high computational complexity for systems of
high dimension. In this paper, an approach to approximate the
MIMO BC capacity region is proposed. The proposed method
combines DPC with sub-optimum linear precoding matrices that
can be computed with low complexity but provide close to
optimum performance. Motivated by multiobjective optimization,
an efficient algorithm developed for sum-rate maximization is
generalized to computing an achievable rate region. Simulation
results show that this rate region, which has low complexity in
terms of computing the precoding matrices, well approximates
the capacity region of the MIMO BC.

I. INTRODUCTION

The term broadcast channel denotes a setting in which a
unique transmitter sends information to a number of non-
cooperating receivers. In particular, we focus on broadcast
channels in which the transmitter sends independent informa-
tion to every user, as it occurs in the downlink of a wireless
cellular system, and consider the general case of having
multiple antennas or inputs at the transmitter and multiple
antennas or outputs at each receiver. Assuming static channel
matrices and Gaussian distributed noise vectors, this model
generally corresponds to a non-degraded Gaussian BC for
which the capacity region has remained unknown until very
recently [1]. The boundary of this region can be reached by
successively encoding information for the different users and
neutralizing at each step known interference caused by already
encoded users using an appropriate codebook [2].

Directly finding transmit covariance matrices that achieve
the boundary of the capacity region in the BC constitutes a
non-convex optimization problem difficult to solve. However,
duality results with the multiple access channel (MAC) allow
to convert this problem into a convex optimization problem,
whose solution can be transformed back into the solution of
the original problem [3]. To solve the convex optimization
problem in the MAC a gradient based algorithm is presented
in [4]. For the particular case of computing transmit covariance
matrices that achieve the maximum sum capacity point, more
efficient algorithms have been presented in [5] and [6].

The algorithms in [4], [5], and [6] are iterative, and,
although they converge to the optimum solution, little can

be said about their convergence rates. Indeed, the algorithm
presented in [4] shows very slow convergence for broadcast
channels with large numbers of inputs and outputs such as
those resulting from employment of multicarrier transmission
schemes [7].

The complexity involved in computing the optimum co-
variance matrices of the transmitted signals motivates the
development of sub-optimum approaches that significantly
reduce the complexity required for computing the covariance
matrices while providing a close approximation of the capacity
region. Such a low complexity achievable rate region is of
particular interest for computing an achievable rate region for
systems of high dimension, for which the convergence of the
optimum algorithms may be too slow.

The paper focuses on the complexity involved in computing
the transmit covariance matrices. The proposed rate regions
still rely on dirty paper coding. The complexity induced by
DPC is not taken into account, due to the fact that for
computing rate regions, there is no need to actually carry out
the coding. For practical implementation, the proposed method
for computing transmit covariance matrices is of interest in
conjunction with real-world “approximations” of DPC, such
as Tomlinson-Harashima precoding [8], [9].

II. SYSTEM MODEL

A MIMO broadcast channel with K receivers is considered.
The transmitter has N transmit antennas, while receiver k
is equipped with Mk receive antennas. The transmitter sends
independent information to each of the receivers.

The received signal at receiver k is given by

yk = Hk

K∑
i=1

xi + ηk,

where Hk ∈ CMk×N is the channel to receiver k and xk ∈
CN is the signal transmitted to receiver k. Furthermore, ηk is
the circularly symmetric complex Gaussian noise at receiver
k, with ηk ∼ CN (0, σ21Mk

).
The transmit covariance matrix of user k is given by Qk =

E
[
xkxH

k

]
. Due to the fact that independent information is

transmitted to the receivers, the total transmitted power is
given by tr

(∑K
k=1 Qk

)
. The total transmit power has to

satisfy the power constraint tr
(∑K

k=1 Qk

)
≤ Ptr.
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A linear precoding structure

xk = VkP
1
2

k sk

is used to form the transmitted signal xk from the data signal
sk ∼ CN (0,1Qk

), with a unitary matrix Vk ∈ CN×Qk and a
diagonal as well as positive definite power allocation matrix
Pk. Note that the number Qk of transmitted data streams to
receiver k corresponds to the rank of the covariance matrix
Qk, which has to be chosen appropriately for every point in
the achievable rate region.

III. ZERO FORCING SUCCESSIVE ENCODING

In [10], an algorithm is presented that decomposes the
MIMO broadcast channel into a set of decoupled scalar
subchannels. The decoupling is achieved by a combination of
successive encoding of data streams and linear zero-forcing of
the remaining interference. This algorithm, denoted as coop-
erative Zero-Forcing with Successive encoding and Successive
allocation (ZFSS), represents a central building block of the
results to follow. This section provides a short summary of
ZFSS.

The algorithm assigns spatial dimensions to users in a
successive manner. A spatial dimension is characterized by a
unit norm transmit vector and a unit norm receive vector. Let
vi and ui denote the transmit and receive vector assigned at
the ith iteration, respectively. The following steps are taken
to determine vi and ui: First, given the transmit vectors
v1, . . . ,vi−1 assigned at the previous iterations, the channel
matrices are projected as follows:

Hi
k = Hk

(
1N −

i−1∑
�=1

v�v
H
�

)
, ∀k. (1)

Next, a singular value decomposition of each projected matrix
is performed:

Hi
k = U i

kΣi
kV i,H

k , ∀k.

Finally, vi and ui are chosen from one of the matrices V i
k

and U i
k according to some spatial allocation rule r(•):

vi = V i
ki

eci
, ui = U i

ki
eci

,

where

(ki, ci) = r(Hi
1, . . . ,H

i
K ,µ).

The allocation rule r(•) is discussed in more detail in Sec-
tion V.

By construction of vi and ui, transmission over vi causes no
interference to streams transmitted over v1, . . . ,vi−1. Interfer-
ence caused to streams i+1, . . . , Q is canceled by successive
encoding. As a result, a set of Q decoupled subchannels
results, each with gain

g2
i = |uH

i Hki
vi|2.

Define an allocation π : {1, . . . , Q} → {1, . . . , K} such that

π(i) = ki.

Given an allocation π and a power allocation

p = [p1, . . . , pQ]T ,

an achievable rate vector is given by

R(π,p) = [R1(π,p), . . . , RK(π,p)]T ,

with

Rk(π,p) =
∑

i:π(i)=k

log2(1 + g2
i pi).

IV. ACHIEVABLE RATE REGION

Let S denote the set of all possible subchannel allocations
to users. Moreover, let P denote the set of all feasible power
allocations p:

P = {p ∈ RQ
+ : ‖p‖1 ≤ Ptr}.

Consider the rate region of ZFSS achievable by varying over
all possible subchannel and power allocations:

RZFSS =
⋃
π∈S
p∈P

R(π,p). (2)

With the usual time-sharing argument, we define the achiev-
able rate region of ZFSS as

R̄ZFSS = Co (RZFSS) , (3)

where Co (R) denotes the convex hull of the set R. While (2)
and (3) allow us to formally define the achievable rate region,
varying over all feasible subchannel and power allocations
is practically infeasible. This motivates to look for ways to
characterize R̄ZFSS in a more efficient manner.

Consider the boundary of RZFSS where the rate of one user
can only be further increased by decreasing the rate of at least
one other user:

E = {R ∈ RZFSS : (�R′ ∈ RZFSS : R′ � R)} , (4)

where the strict partial order � is defined as

R′ � R ⇔ R′
k ≥ Rk,∀k ∧ ∃k : R′

k > Rk.

Notably, the set E contains all relevant information about
R̄ZFSS, in the sense that

R̄ZFSS = Co ({E ,0K}) .

According to (4), the set E is the so-called efficient set of the
multiobjective optimization problem

max
π∈S
p∈P

R(π,p). (5)

In the following, a low-complexity approximation of the
achievable rate region R̄ZFSS is derived which is based on
an approximation of the efficient set E by a finite number of
rate vectors. Finally, simulation results are used to demonstrate
that the approximation of R̄ZFSS also well-approximates the
capacity region.
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V. LOW COMPLEXITY RATE REGION

As stated in Section IV, the efficient set E captures all
relevant characteristics of the achievable rate region and cor-
responds to the solution of the multiobjective optimization
problem (5). A well-known technique to solve multiobjective
optimization methods is the weighting method [11], which
corresponds to scalarizing the optimization problem by multi-
plying the objective function with a weight vector µ. Applying
the weighting method, problem (5) is transformed into

max
π∈S
p∈P

µTR(π,p), (6)

with µ ∈ RK , ‖µ‖ = 1. For each choice of the weight vector
µ, we obtain maximizers πµ and pµ such that

R(πµ,pµ) ∈ E . (7)

Problem (6), however, can only be solved by an exhaus-
tive search over all possible subchannel allocations π ∈ S.
Therefore, we propose to solve a simplified optimization
problem. We first derive a sequential algorithm for determining
a subchannel allocation. In a second step, the optimum power
allocation, given a subchannel allocation, is found.

A. Subchannel Allocation

The weighted problem (6) corresponds to a weighted sum-
rate maximization. In particular, for µk = 1/K,∀k, (6) cor-
responds to maximizing the sum-rate. Sum-rate maximization
for ZFSS is addressed in [12]. In order to avoid the exhaustive
search over all possible subchannel allocations that is required
for solving

max
π∈S
p∈P

K∑
k=1

Rk(π,p), (8)

in [12] a sequential algorithm for allocating subchannels to
users is proposed. At step i of the subchannel allocation
procedure, the following heuristic allocation rule is applied:

(ki, ci) = argmax
k,c

σi
k,c, (9)

where σi
k,c is the cth singular value of the projected channel

matrix Hi
k defined in (1).

Aiming at a maximization of the weighted sum-rate, we
modify the allocation rule (9), which aims at sum-rate maxi-
mization, as follows:

(ki, ci) = argmax
k,c

µkσi
k,c. (10)

Note that (10) represents a heuristic rule that does not neces-
sarily guarantee an optimum subchannel allocation. However,
simulation results show that (10) provides a good approxima-
tion at low complexity.

B. Generalized Waterfilling

Given a weight vector µ and a subchannel allocation πµ

obtained according to Subsection V-A, the optimum power
allocation pµ is found by solving

pµ = argmax
p∈P

µTR(πµ,p). (11)

For notational convenience, in the following we write π instead
of πµ. Problem (11) can be rewritten as

pµ = argmax
p

Q∑
i=1

µπ(i) log2(1 + g2
i pi)

s.t.
Q∑

i=1

pi ≤ Ptr, pi ≥ 0, 1 ≤ i ≤ Q.

Evaluating the KKT conditions yields

pi =
(
ηµπ(i) − g−2

i

)+
,

where η is chosen such that the power constraint is satis-
fied with equality. The structure of the classical waterfilling
solution can be obtained by substituting pi = µπ(i)p̃i. With
λi = µπ(i)g

2
i , this yields

p̃i =
(
η − λ−1

i

)+
,

where η is now chosen such that

Q∑
i=1

µπ(i)p̃i = Ptr.

C. Approximate Rate Region

For each weight vector µ, we obtain a rate vector

R(µ) ≡ R(πµ,pµ).

Using S different weight vectors µ1, . . . ,µS yields an approx-
imation of E by S rate vectors:

Ê =
{
R(µ1), . . . ,R(µS)

}
.

The set Ê is an approximation of E for two reasons: First,
we only use a finite number of rate vectors to represent the
efficient set. Second, due to the fact that the subchannel allo-
cation obtained by the sequential allocation is not necessarily
optimum, it is not guaranteed that (7) holds.

A low complexity approximation of the achievable rate
region R̄ZFSS is given by

R̂ZFSS = Co
(
{Ê ,0K}

)
.

The main complexity of the algorithm lies in the computation
of the SVDs of the matrices Hi

k. At each of the Q steps, at
most K SVDs have to be computed, resulting in QK SVDs
in total. Importantly, the algorithm finishes after Q steps, and,
except for computing the SVDs, no numerical iterations are
required. This clearly distinguishes our approach from the
capacity-optimum algorithms. In [4], a gradient-search based
algorithm is proposed for obtaining arbitrary points on the
boundary of the capacity region. While optimum, an a priori
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unknown number of numerical iterations is required for each
point. For systems of large dimension (e.g., MIMO OFDM),
we have observed extremely slow convergence [7], resulting
in a large number of iterations and a high computational
complexity. For the computation of the point in the capacity
region that maximizes the sum-rate, more efficient algorithms
than [4] have been proposed [5],[6]. These algorithms, how-
ever, also require an a priori unknown number of numerical
iterations. Moreover, they are specifically tailored to sum-rate
maximization and cannot be generalized to computing the
entire capacity region [6].

The quality of the approximation R̂ZFSS strongly depends
on the choice of the weight vectors µ1, . . . µS . Let U denote
the set of feasible weight vectors:

U =
{
µ ∈ RK

0,+ : ‖µ‖1 = 1
}

.

Distributing the S weight vectors uniformly on U generally
does not result in a uniform distribution of the corresponding
rate vectors, a behavior that is well known for the weighting
method [13]. Instead, a uniform distribution of the weight
vectors usually yields a few regions in which rate vectors are
densely clustered. Based on this observation, it is desirable to
find a method for choosing the weight vectors µ such that a
better distribution of the rate vectors R(µ) results.

D. Weight Adaption

In order to obtain a good distribution of the sample rate vec-
tors R(µ1), . . . ,R(µS), we propose to adapt the generation
of the weight vectors µ1, . . . ,µS to changes in the subchannel
allocation. We first limit our considerations to the case of
K = 2 users. The first weight vector is chosen as

µ1 =
[
1 0

]T
.

With this weight vector, the algorithm defined in Subsection V-
A is carried out, resulting in a set of projected matrices Hi

k

and the corresponding singular value decompositions. Denote
the singular values corresponding to the weight vector µw as
σi,w

k,c . Define

σi,w
k = max

c
σi,w

k,c .

According to (10), with µ1
1 = 1, the first r1 subchannels are

allocated to user 1, as

µ1
1σ

i,1
1 ≥ (1 − µ1

1)σ
i,1
2 ,∀i. (12)

In the next step, µ1
1 is decreased to obtain a second weight

vector µ2. Let

µ̄1
1 = max

i

σi,1
2

σi,1
1 + σi,1

2

.

While µ̄1
1 yields the same subchannel allocation as µ1

1, any
µ1 < µ̄1

1 yields a different allocation. In general, let µ̄w
1 be

the smallest µ1 that yields the same subchannel allocation
as µw

1 . A change in the subchannel allocation indicates a

significant change in the corresponding rate vector. Therefore,
given weight vector µw, the weight vector µw+1 is chosen as

µw+1 =
[
µ̄w

1 1 − µ̄w
1

]T
.

We proceed until the first M2 subchannels are allocated to
user 2. The final weight vector is set to

µW =
[
0 1

]T
.

By this procedure, we obtain W weight vectors. If W < S,
the remaining S−W weight vectors are obtained by a uniform
distribution of µ1 on each of the W − 1 intervals [µ̄w

1 , µ̄w+1
1 ].

The weight vector adaption based on changes in the sub-
channel allocation has the following advantageous properties:
First, a dense clustering of the generated rate vectors is
avoided. Moreover, we are able to capture every change in
the subchannel allocation, which helps to avoid undesirably
large “jumps” between subsequent rate vectors.

The idea of adapting the weight vector to changes in the
subchannel allocation can be extended to more than two users.
The basic algorithm corresponds to searching for changes in
the subchannel allocation while varying µ over the set U .
For two users, this search is relatively simple, as U is a
line. For more than two users, the increased dimensionality
of U renders this search a more difficult task. A possible
approach is to choose the K boundary points of U where
µk = 1 as starting points and then to search over the vertices
connecting these points. A detailed investigation of this higher-
dimensional search is left as an open problem.

The proposed method provides a low-complexity approx-
imation of the capacity region. Clearly, the complexity-
performance trade-off achieved by the proposed method is the
most significant figure of merit. So far, we have not been able
to provide an analytical assessment of the performance of the
proposed method. Instead, we have to resort to a simulative
assessment, which is provided in the next section.

VI. SIMULATION RESULTS

In Figs. 1 and 2 the ZFSS region R̄ZFSS, the suboptimum
ZFSS region R̂ZFSS and the actual capacity region are com-
pared for a scenario with N = 4 transmit antennas, K = 2
receivers and Mk = 2 receive antennas at each of the two
receivers. For Fig. 1 the entries of the channel matrices are

H1 =
[

0.0112 0.8057 −0.9898 0.2895
−0.6451 0.2316 1.3396 1.4789

]
,

H2 =
[

1.1380 −1.2919 −0.3306 0.4978
−0.6841 −0.0729 −0.8436 1.4885

]
.

For Fig. 2 channel coefficients are obtained by multiplying
matrix H1 by 2 and matrix H2 by 0.5. This corresponds to
an unbalanced situation that might arise when users are at
different distances from the transmitter. The transmit power is
chosen such that 10 log10

Ptr
σ2 = 10 dB.

To plot the boundary of the capacity region the algorithm
presented in [4] is used. Points on the boundary are computed
by incrementing the weight µ1 from 0 to 1 in increments of
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Fig. 1. Capacity and ZFSS regions for a balanced BC.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

R
1
 (bits/channel use)

R
2 (

bi
ts

/c
ha

nn
el

 u
se

)

Capacity Region
Suboptimum ZFSS Region
ZFSS Region

Fig. 2. Capacity and ZFSS regions for an unbalanced BC.

0.05 and then carrying out the algorithm from [4] for each µ1,
yielding a total of 22 points. Note that for µ1 = µ2 = 1/2 two
different points result corresponding to two different precoding
orders. The boundary of the ZFSS is computed by building
the convex hull over the union of regions that are obtained
by considering all possible allocations. The boundary of the
suboptimum ZFSS region is plotted using a total of S = 21
samples determined as described in Section V-D.

In both examples, it can be observed that the difference
between R̄ZFSS and R̂ZFSS regions is very slight and the loss
of any of these with respect to the capacity region is almost
negligible.

A. Average Results

In order to avoid being misled by particular examples, aver-
age results over a number of different channel realizations are
required. Averaging of rate regions can be done by considering
straight lines going through the origin and defined by particular
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Fig. 3. Average capacity and ZFSS regions for uncorrelated balanced BC.
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Fig. 4. Average capacity and ZFSS regions for uncorrelated unbalanced BC.
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Fig. 5. Average capacity and ZFSS regions for correlated balanced BC.
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Fig. 6. Average capacity and ZFSS regions for correlated unbalanced BC.

ratios between rates of different users. The intersection points
of these lines with the boundary of any region are computed
and averaged over different channel realizations.

Four scenarios have been simulated with the settings listed
above, i.e. N = 4, K = 2, Mk = 2 and a transmit SNR of 10
dB. Fig. 3 corresponds to a balanced situation in which channel
coefficients are independently drawn according to a zero-mean
circularly symmetric complex Gaussian distribution with unit
variance. Fig. 4 corresponds to an unbalanced situation in
which the variance of the distributions is 4 for user 1 and
1/4 for user 2. Coefficients are also drawn independent of
each other. Figs. 5 and 6 respectively represent the balanced
and unbalanced situations mentioned above but now some
correlation is introduced between transmit elements. For the
balanced situation the eigenvalue profile of the transmit corre-
lation matrix, defined as RTx = E{HH

k Hk}, has been chosen
to be

λ = 2 · [ 3.65 0.34 0.01 0 ].

The same profile has been chosen for the unbalanced situation
scaled by 4 for user 1 and by 1/4 for user 2.

For averaging purposes straight lines have been considered
that go through the origin and have slopes R1/R2 = 0.1× n,
and R2/R1 = 0.1 × n, where 1 ≤ n ≤ 10, n ∈ N. The
intersection points of these lines with the boundaries of the
regions under study were averaged over 100 randomly drawn
channel realizations.

It can be observed that for uncorrelated channels (Figs.
3, 4) the suboptimum ZFSS region R̂ZFSS is practically as
large as the actual ZFSS region R̄ZFSS. Also the difference
between any of these regions and the capacity region is very
small. The same occurs for correlated channels in the balanced
situation (Fig. 5). The largest difference is found in Fig. 6
and corresponds to the case of having correlated channels
in an unbalanced situation. Due to the strong correlation and
the different channel powers, this scenario almost corresponds
to a degraded BC. In this kind of channels our zero-forcing

approach becomes equivalent to time sharing between the
users, i.e. the boundary of the ZFSS is the straight line passing
through the single user capacity points on the axes. The
optimum approach however admits interuser interference and
the capacity region shows a tangential slope of 1 at the sum
capacity point of the region, which is equal to the capacity of
the user with the strongest channel.

VII. CONCLUSIONS

A method for computing a low-complexity approximation of
capacity region of the MIMO broadcast channel was presented.
In contrast to optimum algorithms, an achievable rate region is
computed in a non-iterative fashion. Special emphasis is put on
obtaining a good approximation with only a small number of
computed points. The quality of the approximation is validated
by means of simulations, which show a small loss with respect
to the capacity region for the settings under consideration. An
analytical investigation of the performance of the proposed
method is subject of future research.
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